Sample records for aer three-wave interactive

  1. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Weisenstein, Debra; Shia, Run-Lie; Sze, N. D.

    1998-01-01

    The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling tools for this work are the AER 2-dimensional chemistry-transport model, the AER 2-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry. We will continue developing our three-wave model so that we can help NASA determine the strength and weakness of the next generation assessment models.

  2. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, M. K. W.; Weisenstein, Debra; Shia, Run-Lie; Sze, N. D.

    1998-01-01

    The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling tools for this work are the AER two-dimensional chemistry-transport model, the AER two-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry. We will continue developing our three-wave model so that we can help NASA determine the strength and weakness of the next generation assessment models.

  3. Coupling Processes between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, M. K. W.; Weisenstein, Debra; Shia, Run-Lie; Sze, N. D.

    1998-01-01

    This is the third semi-annual report for NAS5-97039, covering January through June 1998. The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling for this work are the AER 2-dimensional chemistry-transport model, the AER 2-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry. We will continue developing our three-wave model so that we can help NASA determine the strengths and weaknesses of the next generation assessment models.

  4. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, M. K. W.; Weisenstein, Debra; Shia, Run-Li; Sze, N. D.

    1997-01-01

    This is the first semi-annual report for NAS5-97039 summarizing work performed for January 1997 through June 1997. Work in this project is related to NAS1-20666, also funded by NASA ACMAP. The work funded in this project also benefits from work at AER associated with the AER three-dimensional isentropic transport model funded by NASA AEAP and the AER two-dimensional climate-chemistry model (co-funded by Department of Energy). The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling tools for this work are the AER two-dimensional chemistry-transport model, the AER two-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry.

  5. Continued development and validation of the AER two-dimensional interactive model

    NASA Technical Reports Server (NTRS)

    Ko, M. K. W.; Sze, N. D.; Shia, R. L.; Mackay, M.; Weisenstein, D. K.; Zhou, S. T.

    1996-01-01

    Results from two-dimensional chemistry-transport models have been used to predict the future behavior of ozone in the stratosphere. Since the transport circulation, temperature, and aerosol surface area are fixed in these models, they cannot account for the effects of changes in these quantities, which could be modified because of ozone redistribution and/or other changes in the troposphere associated with climate changes. Interactive two-dimensional models, which calculate the transport circulation and temperature along with concentrations of the chemical species, could provide answers to complement the results from three-dimension model calculations. In this project, we performed the following tasks in pursuit of the respective goals: (1) We continued to refine the 2-D chemistry-transport model; (2) We developed a microphysics model to calculate the aerosol loading and its size distribution; (3) The treatment of physics in the AER 2-D interactive model were refined in the following areas--the heating rate in the troposphere, and wave-forcing from propagation of planetary waves.

  6. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Weisenstein, Debra; Rodriguez, Jose; Danilin, Michael; Scott, Courtney; Shia, Run-Lie; Eluszkiewicz, Junusz; Sze, Nien-Dak

    1999-01-01

    This is the final report. The overall objective of this project is to improve the understanding of coupling processes among atmospheric chemistry, aerosol and climate, all important for quantitative assessments of global change. Among our priority are changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The work emphasizes two important aspects: (1) AER's continued participation in preparation of, and providing scientific input for, various scientific reports connected with assessment of stratospheric ozone and climate. These include participation in various model intercomparison exercises as well as preparation of national and international reports. and (2) Continued development of the AER three-wave interactive model to address how the transport circulation will change as ozone and the thermal properties of the atmosphere change, and assess how these new findings will affect our confidence in the ozone assessment results.

  7. Coupling Processes between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Weisenstein, Debra K.; Shia, Run-Lie; Scott, Courtney J.; Sze, Nien Dak

    1998-01-01

    This is the fourth semi-annual report for NAS5-97039, covering the time period July through December 1998. The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling tools for this work are the Atmospheric and Environmental Research (AER) two-dimensional chemistry-transport model, the AER two-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry. For this six month period, we report on a modeling study of new rate constant which modify the NOx/NOy ratio in the lower stratosphere; sensitivity to changes in stratospheric water vapor in the future atmosphere; a study of N2O and CH4 observations which has allowed us to adjust diffusion in the 2-D CTM in order to obtain appropriate polar vortex isolation; a study of SF6 and age of air with comparisons of models and measurements; and a report on the Models and Measurements II effort.

  8. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm; Weisenstein, Debra; Rodriquez, Jose; Danilin, Michael; Scott, Courtney; Shia, Run-Lie; Eluszkiewicz, Janusz; Sze, Nien-Dak; Stewart, Richard W. (Technical Monitor)

    1999-01-01

    This is the final report for NAS5-97039 for work performed between December 1996 and November 1999. The overall objective of this project is to improve the understanding of coupling processes among atmospheric chemistry, aerosol and climate, all important for quantitative assessments of global change. Among our priority are changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The work emphasizes two important aspects: (1) AER's continued participation in preparation of, and providing scientific input for, various scientific reports connected with assessment of stratospheric ozone and climate. These include participation in various model intercomparison exercises as well as preparation of national and international reports. (2) Continued development of the AER three-wave interactive model to address how the transport circulation will change as ozone and the thermal properties of the atmosphere change, and assess how these new findings will affect our confidence in the ozone assessment results.

  9. Fgf16 is essential for pectoral fin bud formation in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nomura, Ryohei; Kamei, Eriko; Hotta, Yuuhei

    2006-08-18

    Zebrafish pectoral fin bud formation is an excellent model for studying morphogenesis. Fibroblast growth factors (Fgfs) and sonic hedgehog (shh) are essential for pectoral fin bud formation. We found that Fgf16 was expressed in the apical ectodermal ridge (AER) of fin buds. A knockdown of Fgf16 function resulted in no fin bud outgrowth. Fgf16 is required for cell proliferation and differentiation in the mesenchyme and the AER of the fin buds, respectively. Fgf16 functions downstream of Fgf10, a mesenchymal factor, signaling to induce the expression of Fgf4 and Fgf8 in the AER. Fgf16 in the AER and shh in themore » zone of polarizing activity (ZPA) interact to induce and/or maintain each other's expression. These findings have revealed that Fgf16, a newly identified AER factor, plays a crucial role in pectoral fin bud outgrowth by mediating the interactions of AER-mesenchyme and AER-ZPA.« less

  10. Estimation of bias with the single-zone assumption in measurement of residential air exchange using the perfluorocarbon tracer gas method

    PubMed Central

    Van Ryswyk, K; Wallace, L; Fugler, D; MacNeill, M; Héroux, M È; Gibson, M D; Guernsey, J R; Kindzierski, W; Wheeler, A J

    2015-01-01

    Residential air exchange rates (AERs) are vital in understanding the temporal and spatial drivers of indoor air quality (IAQ). Several methods to quantify AERs have been used in IAQ research, often with the assumption that the home is a single, well-mixed air zone. Since 2005, Health Canada has conducted IAQ studies across Canada in which AERs were measured using the perfluorocarbon tracer (PFT) gas method. Emitters and detectors of a single PFT gas were placed on the main floor to estimate a single-zone AER (AER1z). In three of these studies, a second set of emitters and detectors were deployed in the basement or second floor in approximately 10% of homes for a two-zone AER estimate (AER2z). In total, 287 daily pairs of AER2z and AER1z estimates were made from 35 homes across three cities. In 87% of the cases, AER2z was higher than AER1z. Overall, the AER1z estimates underestimated AER2z by approximately 16% (IQR: 5–32%). This underestimate occurred in all cities and seasons and varied in magnitude seasonally, between homes, and daily, indicating that when measuring residential air exchange using a single PFT gas, the assumption of a single well-mixed air zone very likely results in an under prediction of the AER. PMID:25399878

  11. Loss- and Gain-of-Function Mutations in the F1-HAMP Region of the Escherichia coli Aerotaxis Transducer Aer

    PubMed Central

    del Carmen Burón-Barral, Maria; Gosink, Khoosheh K.; Parkinson, John S.

    2006-01-01

    The Escherichia coli Aer protein contains an N-terminal PAS domain that binds flavin adenine dinucleotide (FAD), senses aerotactic stimuli, and communicates with the output signaling domain. To explore the roles of the intervening F1 and HAMP segments in Aer signaling, we isolated plasmid-borne aerotaxis-defective mutations in a host strain lacking all chemoreceptors of the methyl-accepting chemotaxis protein (MCP) family. Under these conditions, Aer alone established the cell's run/tumble swimming pattern and modulated that behavior in response to oxygen gradients. We found two classes of Aer mutants: null and clockwise (CW) biased. Most mutant proteins exhibited the null phenotype: failure to elicit CW flagellar rotation, no aerosensing behavior in MCP-containing hosts, and no apparent FAD-binding ability. However, null mutants had low Aer expression levels caused by rapid degradation of apparently nonnative subunits. Their functional defects probably reflect the absence of a protein product. In contrast, CW-biased mutant proteins exhibited normal expression levels, wild-type FAD binding, and robust aerosensing behavior in MCP-containing hosts. The CW lesions evidently shift unstimulated Aer output to the CW signaling state but do not block the Aer input-output pathway. The distribution and properties of null and CW-biased mutations suggest that the Aer PAS domain may engage in two different interactions with HAMP and the HAMP-proximal signaling domain: one needed for Aer maturation and another for promoting CW output from the Aer signaling domain. Most aerotaxis-defective null mutations in these regions seemed to affect maturation only, indicating that these two interactions involve structurally distinct determinants. PMID:16672601

  12. Estimation of bias with the single-zone assumption in measurement of residential air exchange using the perfluorocarbon tracer gas method.

    PubMed

    Van Ryswyk, K; Wallace, L; Fugler, D; MacNeill, M; Héroux, M È; Gibson, M D; Guernsey, J R; Kindzierski, W; Wheeler, A J

    2015-12-01

    Residential air exchange rates (AERs) are vital in understanding the temporal and spatial drivers of indoor air quality (IAQ). Several methods to quantify AERs have been used in IAQ research, often with the assumption that the home is a single, well-mixed air zone. Since 2005, Health Canada has conducted IAQ studies across Canada in which AERs were measured using the perfluorocarbon tracer (PFT) gas method. Emitters and detectors of a single PFT gas were placed on the main floor to estimate a single-zone AER (AER(1z)). In three of these studies, a second set of emitters and detectors were deployed in the basement or second floor in approximately 10% of homes for a two-zone AER estimate (AER(2z)). In total, 287 daily pairs of AER(2z) and AER(1z) estimates were made from 35 homes across three cities. In 87% of the cases, AER(2z) was higher than AER(1z). Overall, the AER(1z) estimates underestimated AER(2z) by approximately 16% (IQR: 5-32%). This underestimate occurred in all cities and seasons and varied in magnitude seasonally, between homes, and daily, indicating that when measuring residential air exchange using a single PFT gas, the assumption of a single well-mixed air zone very likely results in an under prediction of the AER. The results of this study suggest that the long-standing assumption that a home represents a single well-mixed air zone may result in a substantial negative bias in air exchange estimates. Indoor air quality professionals should take this finding into consideration when developing study designs or making decisions related to the recommendation and installation of residential ventilation systems. © 2014 Her Majesty the Queen in Right of Canada. Indoor Air published by John Wiley & Sons Ltd Reproduced with the permission of the Minister of Health Canada.

  13. Ion-exchange selectivity of diclofenac, ibuprofen, ketoprofen, and naproxen in ureolyzed human urine.

    PubMed

    Landry, Kelly A; Sun, Peizhe; Huang, Ching-Hua; Boyer, Treavor H

    2015-01-01

    This research advances the knowledge of ion-exchange of four non-steroidal anti-inflammatory drugs (NSAIDs) - diclofenac (DCF), ibuprofen (IBP), ketoprofen (KTP), and naproxen (NPX) - and one analgesic drug-paracetamol (PCM) - by strong-base anion exchange resin (AER) in synthetic ureolyzed urine. Freundlich, Langmuir, Dubinin-Astakhov, and Dubinin-Radushkevich isotherm models were fit to experimental equilibrium data using nonlinear least squares method. Favorable ion-exchange was observed for DCF, KTP, and NPX, whereas unfavorable ion-exchange was observed for IBP and PCM. The ion-exchange selectivity of the AER was enhanced by van der Waals interactions between the pharmaceutical and AER as well as the hydrophobicity of the pharmaceutical. For instance, the high selectivity of the AER for DCF was due to the combination of Coulombic interactions between quaternary ammonium functional group of resin and carboxylate functional group of DCF, van der Waals interactions between polystyrene resin matrix and benzene rings of DCF, and possibly hydrogen bonding between dimethylethanol amine functional group side chain and carboxylate and amine functional groups of DCF. Based on analysis of covariance, the presence of multiple pharmaceuticals did not have a significant effect on ion-exchange removal when the NSAIDs were combined in solution. The AER reached saturation of the pharmaceuticals in a continuous-flow column at varying bed volumes following a decreasing order of DCF > NPX ≈ KTP > IBP. Complete regeneration of the column was achieved using a 5% (m/m) NaCl, equal-volume water-methanol solution. Results from multiple treatment and regeneration cycles provide insight into the practical application of pharmaceutical ion-exchange in ureolyzed urine using AER.

  14. Individual Differences in Automatic Emotion Regulation Interact with Primed Emotion Regulation during an Anger Provocation.

    PubMed

    Zhang, Jing; Lipp, Ottmar V; Hu, Ping

    2017-01-01

    The current study investigated the interactive effects of individual differences in automatic emotion regulation (AER) and primed emotion regulation strategy on skin conductance level (SCL) and heart rate during provoked anger. The study was a 2 × 2 [AER tendency (expression vs. control) × priming (expression vs. control)] between subject design. Participants were assigned to two groups according to their performance on an emotion regulation-IAT (differentiating automatic emotion control tendency and automatic emotion expression tendency). Then participants of the two groups were randomly assigned to two emotion regulation priming conditions (emotion control priming or emotion expression priming). Anger was provoked by blaming participants for slow performance during a subsequent backward subtraction task. In anger provocation, SCL of individuals with automatic emotion control tendencies in the control priming condition was lower than of those with automatic emotion control tendencies in the expression priming condition. However, SCL of individuals with automatic emotion expression tendencies did no differ in the automatic emotion control priming or the automatic emotion expression priming condition. Heart rate during anger provocation was higher in individuals with automatic emotion expression tendencies than in individuals with automatic emotion control tendencies regardless of priming condition. This pattern indicates an interactive effect of individual differences in AER and emotion regulation priming on SCL, which is an index of emotional arousal. Heart rate was only sensitive to the individual differences in AER, and did not reflect this interaction. This finding has implications for clinical studies of the use of emotion regulation strategy training suggesting that different practices are optimal for individuals who differ in AER tendencies.

  15. A review of air exchange rate models for air pollution exposure assessments.

    PubMed

    Breen, Michael S; Schultz, Bradley D; Sohn, Michael D; Long, Thomas; Langstaff, John; Williams, Ronald; Isaacs, Kristin; Meng, Qing Yu; Stallings, Casson; Smith, Luther

    2014-11-01

    A critical aspect of air pollution exposure assessments is estimation of the air exchange rate (AER) for various buildings where people spend their time. The AER, which is the rate of exchange of indoor air with outdoor air, is an important determinant for entry of outdoor air pollutants and for removal of indoor-emitted air pollutants. This paper presents an overview and critical analysis of the scientific literature on empirical and physically based AER models for residential and commercial buildings; the models highlighted here are feasible for exposure assessments as extensive inputs are not required. Models are included for the three types of airflows that can occur across building envelopes: leakage, natural ventilation, and mechanical ventilation. Guidance is provided to select the preferable AER model based on available data, desired temporal resolution, types of airflows, and types of buildings included in the exposure assessment. For exposure assessments with some limited building leakage or AER measurements, strategies are described to reduce AER model uncertainty. This review will facilitate the selection of AER models in support of air pollution exposure assessments.

  16. DSCOVR_EPIC_L2_AER_01

    Atmospheric Science Data Center

    2018-04-23

    DSCOVR_EPIC_L2_AER_01 The Aerosol UV product provides aerosol and UV products in three tiers. Tier 1 products include Absorbing Aerosol Index (AAI) and above-cloud-aerosol optical depth (ACAOD). Tier 2 ...

  17. Accumulating Evidence for a Drug–Drug Interaction Between Methotrexate and Proton Pump Inhibitors

    PubMed Central

    Mackey, Ann Corken; Kluetz, Paul; Jappar, Dilara; Korvick, Joyce

    2012-01-01

    Background. A number of medications are known to interact with methotrexate through various mechanisms. The aim of this article is to apprise practitioners of a new labeling change based on the accumulating evidence for a possible drug–drug interaction between methotrexate (primarily at high doses) and proton pump inhibitors (PPIs). Methods. The U.S. Food and Drug Administration (FDA) Adverse Event Reporting System (AERS) database of spontaneous adverse event reports and the published literature were searched for cases reporting an interaction between methotrexate and PPIs. Results. A search of the AERS database and existing literature found several individual case reports of drug–drug interactions and three additional supportive studies that suggest potential underlying mechanisms for the interaction. Conclusion. There is evidence to suggest that concomitant use of methotrexate (primarily at high doses) with PPIs such as omeprazole, esomeprazole, and pantoprazole may decrease methotrexate clearance, leading to elevated serum levels of methotrexate and/or its metabolite hydroxymethotrexate, possibly leading to methotrexate toxicities. In several case reports, no methotrexate toxicity was found when a histamine H2 blocker was substituted for a PPI. Based on the reviewed data, the FDA updated the methotrexate label to include the possible drug–drug interaction between high-dose methotrexate and PPIs. Physicians should be alerted to this potential drug–drug interaction in patients receiving concomitant high-dose methotrexate and PPIs. PMID:22477728

  18. Three-dimensional vapor intrusion modeling approach that combines wind and stack effects on indoor, atmospheric, and subsurface domains.

    PubMed

    Shirazi, Elham; Pennell, Kelly G

    2017-12-13

    Vapor intrusion (IV) exposure risks are difficult to characterize due to the role of atmospheric, building and subsurface processes. This study presents a three-dimensional VI model that extends the common subsurface fate and transport equations to incorporate wind and stack effects on indoor air pressure, building air exchange rate (AER) and indoor contaminant concentration to improve VI exposure risk estimates. The model incorporates three modeling programs: (1) COMSOL Multiphysics to model subsurface fate and transport processes, (2) CFD0 to model atmospheric air flow around the building, and (3) CONTAM to model indoor air quality. The combined VI model predicts AER values, zonal indoor air pressures and zonal indoor air contaminant concentrations as a function of wind speed, wind direction and outdoor and indoor temperature. Steady state modeling results for a single-story building with a basement demonstrate that wind speed, wind direction and opening locations in a building play important roles in changing the AER, indoor air pressure, and indoor air contaminant concentration. Calculated indoor air pressures ranged from approximately -10 Pa to +4 Pa depending on weather conditions and building characteristics. AER values, mass entry rates and indoor air concentrations vary depending on weather conditions and building characteristics. The presented modeling approach can be used to investigate the relationship between building features, AER, building pressures, soil gas concentrations, indoor air concentrations and VI exposure risks.

  19. Effect of angiotensin-converting enzyme (ACE) gene polymorphism on progression of renal disease and the influence of ACE inhibition in IDDM patients: findings from the EUCLID Randomized Controlled Trial. EURODIAB Controlled Trial of Lisinopril in IDDM.

    PubMed

    Penno, G; Chaturvedi, N; Talmud, P J; Cotroneo, P; Manto, A; Nannipieri, M; Luong, L A; Fuller, J H

    1998-09-01

    We examined whether the ACE gene insertion/deletion (I/D) polymorphism modulates renal disease progression in IDDM and how ACE inhibitors influence this relationship. The EURODIAB Controlled Trial of Lisinopril in IDDM is a multicenter randomized placebo-controlled trial in 530 nonhypertensive, mainly normoalbuminuric IDDM patients aged 20-59 years. Albumin excretion rate (AER) was measured every 6 months for 2 years. Genotype distribution was 15% II, 58% ID, and 27% DD. Between genotypes, there were no differences in baseline characteristics or in changes in blood pressure and glycemic control throughout the trial. There was a significant interaction between the II and DD genotype groups and treatment on change in AER (P = 0.05). Patients with the II genotype showed the fastest rate of AER progression on placebo but had an enhanced response to lisinopril. AER at 2 years (adjusted for baseline AER) was 51.3% lower on lisinopril than placebo in the II genotype patients (95% CI, 15.7 to 71.8; P = 0.01), 14.8% in the ID group (-7.8 to 32.7; P = 0.2), and 7.7% in the DD group (-36.6 to 37.6; P = 0.7). Absolute differences in AER between placebo and lisinopril at 2 years were 8.1, 1.7, and 0.8 microg/min in the II, ID, and DD groups, respectively. The significant beneficial effect of lisinopril on AER in the II group persisted when adjusted for center, blood pressure, and glycemic control, and also for diastolic blood pressure at 1 month into the study. Progression from normoalbuminuria to microalbuminuria (lisinopril versus placebo) was 0.27 (0.03-2.26; P = 0.2) in the II group, and 1.30 (0.33-5.17; P = 0.7) in the DD group (P = 0.6 for interaction). Knowledge of ACE genotype may be of value in determining the likely impact of ACE inhibitor treatment.

  20. Modeling spatial and temporal variability of residential air exchange rates for the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS).

    PubMed

    Breen, Michael S; Burke, Janet M; Batterman, Stuart A; Vette, Alan F; Godwin, Christopher; Croghan, Carry W; Schultz, Bradley D; Long, Thomas C

    2014-11-07

    Air pollution health studies often use outdoor concentrations as exposure surrogates. Failure to account for variability of residential infiltration of outdoor pollutants can induce exposure errors and lead to bias and incorrect confidence intervals in health effect estimates. The residential air exchange rate (AER), which is the rate of exchange of indoor air with outdoor air, is an important determinant for house-to-house (spatial) and temporal variations of air pollution infiltration. Our goal was to evaluate and apply mechanistic models to predict AERs for 213 homes in the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS), a cohort study of traffic-related air pollution exposures and respiratory effects in asthmatic children living near major roads in Detroit, Michigan. We used a previously developed model (LBL), which predicts AER from meteorology and questionnaire data on building characteristics related to air leakage, and an extended version of this model (LBLX) that includes natural ventilation from open windows. As a critical and novel aspect of our AER modeling approach, we performed a cross validation, which included both parameter estimation (i.e., model calibration) and model evaluation, based on daily AER measurements from a subset of 24 study homes on five consecutive days during two seasons. The measured AER varied between 0.09 and 3.48 h(-1) with a median of 0.64 h(-1). For the individual model-predicted and measured AER, the median absolute difference was 29% (0.19 h‑1) for both the LBL and LBLX models. The LBL and LBLX models predicted 59% and 61% of the variance in the AER, respectively. Daily AER predictions for all 213 homes during the three year study (2010-2012) showed considerable house-to-house variations from building leakage differences, and temporal variations from outdoor temperature and wind speed fluctuations. Using this novel approach, NEXUS will be one of the first epidemiology studies to apply calibrated and home-specific AER models, and to include the spatial and temporal variations of AER for over 200 individual homes across multiple years into an exposure assessment in support of improving risk estimates.

  1. Address-event-based platform for bioinspired spiking systems

    NASA Astrophysics Data System (ADS)

    Jiménez-Fernández, A.; Luján, C. D.; Linares-Barranco, A.; Gómez-Rodríguez, F.; Rivas, M.; Jiménez, G.; Civit, A.

    2007-05-01

    Address Event Representation (AER) is an emergent neuromorphic interchip communication protocol that allows a real-time virtual massive connectivity between huge number neurons, located on different chips. By exploiting high speed digital communication circuits (with nano-seconds timings), synaptic neural connections can be time multiplexed, while neural activity signals (with mili-seconds timings) are sampled at low frequencies. Also, neurons generate "events" according to their activity levels. More active neurons generate more events per unit time, and access the interchip communication channel more frequently, while neurons with low activity consume less communication bandwidth. When building multi-chip muti-layered AER systems, it is absolutely necessary to have a computer interface that allows (a) reading AER interchip traffic into the computer and visualizing it on the screen, and (b) converting conventional frame-based video stream in the computer into AER and injecting it at some point of the AER structure. This is necessary for test and debugging of complex AER systems. In the other hand, the use of a commercial personal computer implies to depend on software tools and operating systems that can make the system slower and un-robust. This paper addresses the problem of communicating several AER based chips to compose a powerful processing system. The problem was discussed in the Neuromorphic Engineering Workshop of 2006. The platform is based basically on an embedded computer, a powerful FPGA and serial links, to make the system faster and be stand alone (independent from a PC). A new platform is presented that allow to connect up to eight AER based chips to a Spartan 3 4000 FPGA. The FPGA is responsible of the network communication based in Address-Event and, at the same time, to map and transform the address space of the traffic to implement a pre-processing. A MMU microprocessor (Intel XScale 400MHz Gumstix Connex computer) is also connected to the FPGA to allow the platform to implement eventbased algorithms to interact to the AER system, like control algorithms, network connectivity, USB support, etc. The LVDS transceiver allows a bandwidth of up to 1.32 Gbps, around ~66 Mega events per second (Mevps).

  2. Comparison of Combined Aerobic and High-Force Eccentric Resistance Exercise With Aerobic Exercise Only for People With Type 2 Diabetes Mellitus

    PubMed Central

    Marcus, Robin L; Smith, Sheldon; Morrell, Glen; Addison, Odessa; Dibble, Leland E; Wahoff-Stice, Donna; LaStayo, Paul C

    2008-01-01

    Background and Purpose: The purpose of this study was to compare the outcomes between a diabetes exercise training program using combined aerobic and high-force eccentric resistance exercise and a program of aerobic exercise only. Subjects and Methods: Fifteen participants with type 2 diabetes mellitus (T2DM) participated in a 16-week supervised exercise training program: 7 (mean age=50.7 years, SD=6.9) in a combined aerobic and eccentric resistance exercise program (AE/RE group) and 8 (mean age=58.5 years, SD=6.2) in a program of aerobic exercise only (AE group). Outcome measures included thigh lean tissue and intramuscular fat (IMF), glycosylated hemoglobin, body mass index (BMI), and 6-minute walk distance. Results: Both groups experienced decreases in mean glycosylated hemoglobin after training (AE/RE group: −0.59% [95% confidence interval (CI)=−1.5 to 0.28]; AE group: −0.31% [95% CI=−0.60 to −0.03]), with no significant between-group differences. There was an interaction between group and time with respect to change in thigh lean tissue cross-sectional area, with the AE/RE group gaining more lean tissue (AE/RE group: 15.1 cm2 [95% CI=7.6 to 22.5]; AE group: −5.6 cm2 [95% CI=−10.4 to 0.76]). Both groups experienced decreases in mean thigh IMF cross-sectional area (AE/RE group: −1.2 cm2 [95% CI=−2.6 to 0.26]; AE group: −2.2 cm2 [95% CI=−3.5 to −0.84]) and increases in 6-minute walk distance (AE/RE group: 45.5 m [95% CI=7.5 to 83.6]; AE group: 29.9 m [95% CI=−7.7 to 67.5]) after training, with no between-group differences. There was an interaction between group and time with respect to change in BMI, with the AE/RE group experiencing a greater decrease in BMI. Discussion and Conclusion: Significant improvements in long-term glycemic control, thigh composition, and physical performance were demonstrated in both groups after participating in a 16-week exercise program. Subjects in the AE/RE group demonstrated additional improvements in thigh lean tissue and BMI. Improvements in thigh lean tissue may be important in this population as a means to increase resting metabolic rate, protein reserve, exercise tolerance, and functional mobility. PMID:18801851

  3. Effects of salt supplementation on the albuminuric response to telmisartan with or without hydrochlorothiazide therapy in hypertensive patients with type 2 diabetes are modulated by habitual dietary salt intake.

    PubMed

    Ekinci, Elif I; Thomas, Georgina; Thomas, David; Johnson, Cameron; Macisaac, Richard J; Houlihan, Christine A; Finch, Sue; Panagiotopoulos, Sianna; O'Callaghan, Chris; Jerums, George

    2009-08-01

    OBJECTIVE This prospective randomized double-blind placebo-controlled crossover study examined the effects of sodium chloride (NaCl) supplementation on the antialbuminuric action of telmisartan with or without hydrochlorothiazide (HCT) in hypertensive patients with type 2 diabetes, increased albumin excretion rate (AER), and habitual low dietary salt intake (LDS; <100 mmol sodium/24 h on two of three consecutive occasions) or high dietary salt intake (HDS; >200 mmol sodium/24 h on two of three consecutive occasions). RESEARCH DESIGN AND METHODS Following a washout period, subjects (n = 32) received 40 mg/day telmisartan for 4 weeks followed by 40 mg telmisartan plus 12.5 mg/day HCT for 4 weeks. For the last 2 weeks of each treatment period, patients received either 100 mmol/day NaCl or placebo capsules. After a second washout, the regimen was repeated with supplements in reverse order. AER and ambulatory blood pressure were measured at weeks 0, 4, 8, 14, 18, and 22. RESULTS In LDS, NaCl supplementation reduced the anti-albuminuric effect of telmisartan with or without HCT from 42.3% (placebo) to 9.5% (P = 0.004). By contrast, in HDS, NaCl supplementation did not reduce the AER response to telmisartan with or without HCT (placebo 30.9%, NaCl 28.1%, P = 0.7). Changes in AER were independent of changes in blood pressure. CONCLUSIONS The AER response to telmisartan with or without HCT under habitual low salt intake can be blunted by NaCl supplementation. By contrast, when there is already a suppressed renin angiotensin aldosterone system under habitual high dietary salt intake, the additional NaCl does not alter the AER response.

  4. Effects of Salt Supplementation on the Albuminuric Response to Telmisartan With or Without Hydrochlorothiazide Therapy in Hypertensive Patients With Type 2 Diabetes Are Modulated by Habitual Dietary Salt Intake

    PubMed Central

    Ekinci, Elif I.; Thomas, Georgina; Thomas, David; Johnson, Cameron; MacIsaac, Richard J.; Houlihan, Christine A.; Finch, Sue; Panagiotopoulos, Sianna; O'Callaghan, Chris; Jerums, George

    2009-01-01

    OBJECTIVE This prospective randomized double-blind placebo-controlled crossover study examined the effects of sodium chloride (NaCl) supplementation on the antialbuminuric action of telmisartan with or without hydrochlorothiazide (HCT) in hypertensive patients with type 2 diabetes, increased albumin excretion rate (AER), and habitual low dietary salt intake (LDS; <100 mmol sodium/24 h on two of three consecutive occasions) or high dietary salt intake (HDS; >200 mmol sodium/24 h on two of three consecutive occasions). RESEARCH DESIGN AND METHODS Following a washout period, subjects (n = 32) received 40 mg/day telmisartan for 4 weeks followed by 40 mg telmisartan plus 12.5 mg/day HCT for 4 weeks. For the last 2 weeks of each treatment period, patients received either 100 mmol/day NaCl or placebo capsules. After a second washout, the regimen was repeated with supplements in reverse order. AER and ambulatory blood pressure were measured at weeks 0, 4, 8, 14, 18, and 22. RESULTS In LDS, NaCl supplementation reduced the anti-albuminuric effect of telmisartan with or without HCT from 42.3% (placebo) to 9.5% (P = 0.004). By contrast, in HDS, NaCl supplementation did not reduce the AER response to telmisartan with or without HCT (placebo 30.9%, NaCl 28.1%, P = 0.7). Changes in AER were independent of changes in blood pressure. CONCLUSIONS The AER response to telmisartan with or without HCT under habitual low salt intake can be blunted by NaCl supplementation. By contrast, when there is already a suppressed renin angiotensin aldosterone system under habitual high dietary salt intake, the additional NaCl does not alter the AER response. PMID:19549737

  5. The Roots of Individuality: Brain Waves and Perception.

    ERIC Educational Resources Information Center

    Rosenfeld, Anne H.; Rosenfeld, Sam A.

    Described is research using computer techniques to study the brain's perceptual systems in both normal and pathological groups, including hyperactive children (6-12 years old). Reviewed are the early studies of A. Petrie, M. Buchsbaum, and J. Silverman using the electroencephalograph to obtain AER (average evoked response) records of…

  6. Swab culture monitoring of automated endoscope reprocessors after high-level disinfection

    PubMed Central

    Lu, Lung-Sheng; Wu, Keng-Liang; Chiu, Yi-Chun; Lin, Ming-Tzung; Hu, Tsung-Hui; Chiu, King-Wah

    2012-01-01

    AIM: To conduct a bacterial culture study for monitoring decontamination of automated endoscope reprocessors (AERs) after high-level disinfection (HLD). METHODS: From February 2006 to January 2011, authors conducted randomized consecutive sampling each month for 7 AERs. Authors collected a total of 420 swab cultures, including 300 cultures from 5 gastroscope AERs, and 120 cultures from 2 colonoscope AERs. Swab cultures were obtained from the residual water from the AERs after a full reprocessing cycle. Samples were cultured to test for aerobic bacteria, anaerobic bacteria, and mycobacterium tuberculosis. RESULTS: The positive culture rate of the AERs was 2.0% (6/300) for gastroscope AERs and 0.8% (1/120) for colonoscope AERs. All the positive cultures, including 6 from gastroscope and 1 from colonoscope AERs, showed monofloral colonization. Of the gastroscope AER samples, 50% (3/6) were colonized by aerobic bacterial and 50% (3/6) by fungal contaminations. CONCLUSION: A full reprocessing cycle of an AER with HLD is adequate for disinfection of the machine. Swab culture is a useful method for monitoring AER decontamination after each reprocessing cycle. Fungal contamination of AERs after reprocessing should also be kept in mind. PMID:22529696

  7. The effect of filmed versus personal after-event reviews on task performance: the mediating and moderating role of self-efficacy.

    PubMed

    Ellis, Shmuel; Ganzach, Yoav; Castle, Evan; Sekely, Gal

    2010-01-01

    In the current study, we compared the effect of personal and filmed after-event reviews (AERs) on performance, and the role that self-efficacy plays in moderating and mediating the effects of these 2 types of AER on performance. The setting was one in which 49 men and 63 women participated twice in a simulated business decision-making task. In between, participants received a personal AER, watched a filmed AER, or had a break. We found that individuals who participated in an AER, whether personal or filmed, improved their performance significantly more than those who did not participate in a review. Furthermore, there was no significant difference in performance improvement between the personal and the filmed AER, which suggests that the 2 are quite similar in their effect. We also found that the differences in performance improvement between the personal AER group and the control group were somewhat greater than those found in the filmed AER group. Self-efficacy mediated the effect of AER on performance improvement in both types of AER. In addition, the effect of AER on performance improvement was moderated by initial self-efficacy in the personal but not in the filmed AER: The personal AER was more effective, the higher the initial self-efficacy. Copyright 2009 APA, all rights reserved.

  8. A deep azygoesophageal recess may increase the risk of secondary spontaneous pneumothorax.

    PubMed

    Takahashi, Tsuyoshi; Kawashima, Mitsuaki; Kuwano, Hideki; Nagayama, Kazuhiro; Nitadori, Jyunichi; Anraku, Masaki; Sato, Masaaki; Murakawa, Tomohiro; Nakajima, Jun

    2017-09-01

    The azygoesophageal recess (AER) is known as a possible cause of bulla formation in patients with spontaneous pneumothorax. However, there has been little focus on the depth of the AER. We evaluated the relationship between the depth of the AER and pneumothorax development. We conducted a retrospective study of 80 spontaneous pneumothorax patients who underwent surgery at our institution. We evaluated the depth of the AER on preoperative computed tomography scans. Ruptured bullae at the AER were found in 12 patients (52.2%) with secondary spontaneous pneumothorax (SSP) and 8 patients (14.0%) with primary spontaneous pneumothorax (PSP) (p < 0.001). In patients with ruptured bullae at the AER, 10 SSP patients (83.3%) had a deep AER while only 2 PSP patients (25%) had a deep AER (p = 0.015). A deep AER was more frequently associated with SSP than with PSP. A deep AER may contributes to bulla formation and rupture in SSP patients.

  9. Aggregate Size and Architecture Determine Microbial Activity Balance for One-Stage Partial Nitritation and Anammox ▿

    PubMed Central

    Vlaeminck, Siegfried E.; Terada, Akihiko; Smets, Barth F.; De Clippeleir, Haydée; Schaubroeck, Thomas; Bolca, Selin; Demeestere, Lien; Mast, Jan; Boon, Nico; Carballa, Marta; Verstraete, Willy

    2010-01-01

    Aerobic ammonium-oxidizing bacteria (AerAOB) and anoxic ammonium-oxidizing bacteria (AnAOB) cooperate in partial nitritation/anammox systems to remove ammonium from wastewater. In this process, large granular microbial aggregates enhance the performance, but little is known about granulation so far. In this study, three suspended-growth oxygen-limited autotrophic nitrification-denitrification (OLAND) reactors with different inoculation and operation (mixing and aeration) conditions, designated reactors A, B, and C, were used. The test objectives were (i) to quantify the AerAOB and AnAOB abundance and the activity balance for the different aggregate sizes and (ii) to relate aggregate morphology, size distribution, and architecture putatively to the inoculation and operation of the three reactors. A nitrite accumulation rate ratio (NARR) was defined as the net aerobic nitrite production rate divided by the anoxic nitrite consumption rate. The smallest reactor A, B, and C aggregates were nitrite sources (NARR, >1.7). Large reactor A and C aggregates were granules capable of autonomous nitrogen removal (NARR, 0.6 to 1.1) with internal AnAOB zones surrounded by an AerAOB rim. Around 50% of the autotrophic space in these granules consisted of AerAOB- and AnAOB-specific extracellular polymeric substances. Large reactor B aggregates were thin film-like nitrite sinks (NARR, <0.5) in which AnAOB were not shielded by an AerAOB layer. Voids and channels occupied 13 to 17% of the anoxic zone of AnAOB-rich aggregates (reactors B and C). The hypothesized granulation pathways include granule replication by division and budding and are driven by growth and/or decay based on species-specific physiology and by hydrodynamic shear and mixing. PMID:19948857

  10. Acute kidney injury during concomitant use of valacyclovir and loxoprofen: detecting drug-drug interactions in a spontaneous reporting system.

    PubMed

    Yue, Zhihua; Shi, Jinhai; Jiang, Pengli; Sun, He

    2014-11-01

    Little is known about the effects of drug-drug interactions between valacyclovir and non-steroidal anti-inflammatory drugs (NSAIDs). In this study, we analysed the adverse event 'acute kidney injury (AKI)' resulting from a possible interaction between loxoprofen (a non-selective NSAID) and valacyclovir in reports received by FDA Adverse Event Reporting System (AERS) database between January 2004 and June 2012. Adverse event reports of elderly patients aged ≥65 years old were included in the study. Exposure categories were divided into three index groups (only valacyclovir or loxoprofen was used, and both drugs were concomitantly used) and a reference group (neither valacyclovir nor loxoprofen were used). Case/non-case AKI reports associated with these drugs were recorded and analysed by the reporting odds ratio (ROR). In total, 447 002 reports were included in the study. The ROR, adjusted for year of reporting, age and sex, for an AKI in elderly patients who used only valacyclovir or loxoprofen compared with elderly patients who used neither valacyclovir nor loxoprofen was 4.6 (95%CI: 4.1-5.2) and 1.4 (95%CI: 1.2-1.6), respectively, while the adjusted ROR was 26.0 (95%CI: 19.2-35.3) when both drugs were concomitantly used. Case reports in AERS are suggestive that interactions between valacyclovir and loxoprofen resulting in AKI may occur, while this association needs to be analysed by other methods in more detail in order to determine the real strength of the relationship. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Bacterial Energy Sensor Aer Modulates the Activity of the Chemotaxis Kinase CheA Based on the Redox State of the Flavin Cofactor.

    PubMed

    Samanta, Dipanjan; Widom, Joanne; Borbat, Peter P; Freed, Jack H; Crane, Brian R

    2016-12-09

    Flagellated bacteria modulate their swimming behavior in response to environmental cues through the CheA/CheY signaling pathway. In addition to responding to external chemicals, bacteria also monitor internal conditions that reflect the availability of oxygen, light, and reducing equivalents, in a process termed "energy taxis." In Escherichia coli, the transmembrane receptor Aer is the primary energy sensor for motility. Genetic and physiological data suggest that Aer monitors the electron transport chain through the redox state of its FAD cofactor. However, direct biochemical data correlating FAD redox chemistry with CheA kinase activity have been lacking. Here, we test this hypothesis via functional reconstitution of Aer into nanodiscs. As purified, Aer contains fully oxidized FAD, which can be chemically reduced to the anionic semiquinone (ASQ). Oxidized Aer activates CheA, whereas ASQ Aer reversibly inhibits CheA. Under these conditions, Aer cannot be further reduced to the hydroquinone, in contrast to the proposed Aer signaling model. Pulse ESR spectroscopy of the ASQ corroborates a potential mechanism for signaling in that the resulting distance between the two flavin-binding PAS (Per-Arnt-Sim) domains implies that they tightly sandwich the signal-transducing HAMP domain in the kinase-off state. Aer appears to follow oligomerization patterns observed for related chemoreceptors, as higher loading of Aer dimers into nanodiscs increases kinase activity. These results provide a new methodological platform to study Aer function along with new mechanistic details into its signal transduction process. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Probabilistic estimation of residential air exchange rates for ...

    EPA Pesticide Factsheets

    Residential air exchange rates (AERs) are a key determinant in the infiltration of ambient air pollution indoors. Population-based human exposure models using probabilistic approaches to estimate personal exposure to air pollutants have relied on input distributions from AER measurements. An algorithm for probabilistically estimating AER was developed based on the Lawrence Berkley National Laboratory Infiltration model utilizing housing characteristics and meteorological data with adjustment for window opening behavior. The algorithm was evaluated by comparing modeled and measured AERs in four US cities (Los Angeles, CA; Detroit, MI; Elizabeth, NJ; and Houston, TX) inputting study-specific data. The impact on the modeled AER of using publically available housing data representative of the region for each city was also assessed. Finally, modeled AER based on region-specific inputs was compared with those estimated using literature-based distributions. While modeled AERs were similar in magnitude to the measured AER they were consistently lower for all cities except Houston. AERs estimated using region-specific inputs were lower than those using study-specific inputs due to differences in window opening probabilities. The algorithm produced more spatially and temporally variable AERs compared with literature-based distributions reflecting within- and between-city differences, helping reduce error in estimates of air pollutant exposure. Published in the Journal of

  13. Measuring and modeling air exchange rates inside taxi cabs in Los Angeles, California

    NASA Astrophysics Data System (ADS)

    Shu, Shi; Yu, Nu; Wang, Yueyan; Zhu, Yifang

    2015-12-01

    Air exchange rates (AERs) have a direct impact on traffic-related air pollutant (TRAP) levels inside vehicles. Taxi drivers are occupationally exposed to TRAP on a daily basis, yet there is limited measurement of AERs in taxi cabs. To fill this gap, AERs were quantified in 22 representative Los Angeles taxi cabs including 10 Prius, 5 Crown Victoria, 3 Camry, 3 Caravan, and 1 Uplander under realistic driving (RD) conditions. To further study the impacts of window position and ventilation settings on taxi AERs, additional tests were conducted on 14 taxis with windows closed (WC) and on the other 8 taxis with not only windows closed but also medium fan speed (WC-MFS) under outdoor air mode. Under RD conditions, the AERs in all 22 cabs had a mean of 63 h-1 with a median of 38 h-1. Similar AERs were observed under WC condition when compared to those measured under RD condition. Under WC-MFS condition, AERs were significantly increased in all taxi cabs, when compared with those measured under RD condition. A General Estimating Equation (GEE) model was developed and the modeling results showed that vehicle model was a significant factor in determining the AERs in taxi cabs under RD condition. Driving speed and car age were positively associated with AERs but not statistically significant. Overall, AERs measured in taxi cabs were much higher than typical AERs people usually encounter in indoor environments such as homes, offices, and even regular passenger vehicles.

  14. AER synthetic generation in hardware for bio-inspired spiking systems

    NASA Astrophysics Data System (ADS)

    Linares-Barranco, Alejandro; Linares-Barranco, Bernabe; Jimenez-Moreno, Gabriel; Civit-Balcells, Anton

    2005-06-01

    Address Event Representation (AER) is an emergent neuromorphic interchip communication protocol that allows for real-time virtual massive connectivity between huge number neurons located on different chips. By exploiting high speed digital communication circuits (with nano-seconds timings), synaptic neural connections can be time multiplexed, while neural activity signals (with mili-seconds timings) are sampled at low frequencies. Also, neurons generate 'events' according to their activity levels. More active neurons generate more events per unit time, and access the interchip communication channel more frequently, while neurons with low activity consume less communication bandwidth. When building multi-chip muti-layered AER systems it is absolutely necessary to have a computer interface that allows (a) to read AER interchip traffic into the computer and visualize it on screen, and (b) convert conventional frame-based video stream in the computer into AER and inject it at some point of the AER structure. This is necessary for test and debugging of complex AER systems. This paper addresses the problem of converting, in a computer, a conventional frame-based video stream into the spike event based representation AER. There exist several proposed software methods for synthetic generation of AER for bio-inspired systems. This paper presents a hardware implementation for one method, which is based on Linear-Feedback-Shift-Register (LFSR) pseudo-random number generation. The sequence of events generated by this hardware, which follows a Poisson distribution like a biological neuron, has been reconstructed using two AER integrator cells. The error of reconstruction for a set of images that produces different traffic loads of event in the AER bus is used as evaluation criteria. A VHDL description of the method, that includes the Xilinx PCI Core, has been implemented and tested using a general purpose PCI-AER board. This PCI-AER board has been developed by authors, and uses a Spartan II 200 FPGA. This system for AER Synthetic Generation is capable of transforming frames of 64x64 pixels, received through a standard computer PCI bus, at a frame rate of 25 frames per second, producing spike events at a peak rate of 107 events per second.

  15. Experimental study of three-wave interactions among capillary-gravity surface waves

    NASA Astrophysics Data System (ADS)

    Haudin, Florence; Cazaubiel, Annette; Deike, Luc; Jamin, Timothée; Falcon, Eric; Berhanu, Michael

    2016-04-01

    In propagating wave systems, three- or four-wave resonant interactions constitute a classical nonlinear mechanism exchanging energy between the different scales. Here we investigate three-wave interactions for gravity-capillary surface waves in a closed laboratory tank. We generate two crossing wave trains and we study their interaction. Using two optical methods, a local one (laser doppler vibrometry) and a spatiotemporal one (diffusive light photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance conditions in frequency and in wave number. Furthermore, by focusing on the stationary regime and by taking into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then compared to the predictions of the weakly nonlinear triadic resonance interaction theory. The obtained results confirm qualitatively and extend previous experimental results obtained only for collinear wave trains. Finally, we discuss the relevance of three-wave interaction mechanisms in recent experiments studying gravity-capillary turbulence.

  16. Experimental study of three-wave interactions among capillary-gravity surface waves.

    PubMed

    Haudin, Florence; Cazaubiel, Annette; Deike, Luc; Jamin, Timothée; Falcon, Eric; Berhanu, Michael

    2016-04-01

    In propagating wave systems, three- or four-wave resonant interactions constitute a classical nonlinear mechanism exchanging energy between the different scales. Here we investigate three-wave interactions for gravity-capillary surface waves in a closed laboratory tank. We generate two crossing wave trains and we study their interaction. Using two optical methods, a local one (laser doppler vibrometry) and a spatiotemporal one (diffusive light photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance conditions in frequency and in wave number. Furthermore, by focusing on the stationary regime and by taking into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then compared to the predictions of the weakly nonlinear triadic resonance interaction theory. The obtained results confirm qualitatively and extend previous experimental results obtained only for collinear wave trains. Finally, we discuss the relevance of three-wave interaction mechanisms in recent experiments studying gravity-capillary turbulence.

  17. Comparative cost-efficiency of the EVOTECH endoscope cleaner and reprocessor versus manual cleaning plus automated endoscope reprocessing in a real-world Canadian hospital endoscopy setting

    PubMed Central

    2011-01-01

    Background Reprocessing of endoscopes generally requires labour-intensive manual cleaning followed by high-level disinfection in an automated endoscope reprocessor (AER). EVOTECH Endoscope Cleaner and Reprocessor (ECR) is approved for fully automated cleaning and disinfection whereas AERs require manual cleaning prior to the high-level disinfection procedure. The purpose of this economic evaluation was to determine the cost-efficiency of the ECR versus AER methods of endoscopy reprocessing in an actual practice setting. Methods A time and motion study was conducted at a Canadian hospital to collect data on the personnel resources and consumable supplies costs associated with the use of EVOTECH ECR versus manual cleaning followed by AER with Medivators DSD-201. Reprocessing of all endoscopes was observed and timed for both reprocessor types over three days. Laboratory staff members were interviewed regarding the consumption and cost of all disposable supplies and equipment. Exact Wilcoxon rank sum test was used for assessing differences in total cycle reprocessing time. Results Endoscope reprocessing was significantly shorter with the ECR than with manual cleaning followed by AER. The differences in median time were 12.46 minutes per colonoscope (p < 0.0001), 6.31 minutes per gastroscope (p < 0.0001), and 5.66 minutes per bronchoscope (p = 0.0040). Almost 2 hours of direct labour time was saved daily with the ECR. The total per cycle cost of consumables and labour for maintenance was slightly higher for EVOTECH ECR versus manual cleaning followed by AER ($8.91 versus $8.31, respectively). Including the cost of direct labour time consumed in reprocessing scopes, the per cycle and annual costs of using the EVOTECH ECR was less than the cost of manual cleaning followed by AER disinfection ($11.50 versus $11.88). Conclusions The EVOTECH ECR was more efficient and less costly to use for the reprocessing of endoscopes than manual cleaning followed by AER disinfection. Although the cost of consumable supplies required to reprocess endoscopes with EVOTECH ECR was slightly higher, the value of the labour time saved with EVOTECH ECR more than offset the additional consumables cost. The increased efficiency with EVOTECH ECR could lead to even further cost-savings by shifting endoscopy laboratory personnel responsibilities but further study is required. PMID:21967345

  18. Comparative cost-efficiency of the EVOTECH endoscope cleaner and reprocessor versus manual cleaning plus automated endoscope reprocessing in a real-world Canadian hospital endoscopy setting.

    PubMed

    Forte, Lindy; Shum, Cynthia

    2011-10-03

    Reprocessing of endoscopes generally requires labour-intensive manual cleaning followed by high-level disinfection in an automated endoscope reprocessor (AER). EVOTECH Endoscope Cleaner and Reprocessor (ECR) is approved for fully automated cleaning and disinfection whereas AERs require manual cleaning prior to the high-level disinfection procedure. The purpose of this economic evaluation was to determine the cost-efficiency of the ECR versus AER methods of endoscopy reprocessing in an actual practice setting. A time and motion study was conducted at a Canadian hospital to collect data on the personnel resources and consumable supplies costs associated with the use of EVOTECH ECR versus manual cleaning followed by AER with Medivators DSD-201. Reprocessing of all endoscopes was observed and timed for both reprocessor types over three days. Laboratory staff members were interviewed regarding the consumption and cost of all disposable supplies and equipment. Exact Wilcoxon rank sum test was used for assessing differences in total cycle reprocessing time. Endoscope reprocessing was significantly shorter with the ECR than with manual cleaning followed by AER. The differences in median time were 12.46 minutes per colonoscope (p < 0.0001), 6.31 minutes per gastroscope (p < 0.0001), and 5.66 minutes per bronchoscope (p = 0.0040). Almost 2 hours of direct labour time was saved daily with the ECR. The total per cycle cost of consumables and labour for maintenance was slightly higher for EVOTECH ECR versus manual cleaning followed by AER ($8.91 versus $8.31, respectively). Including the cost of direct labour time consumed in reprocessing scopes, the per cycle and annual costs of using the EVOTECH ECR was less than the cost of manual cleaning followed by AER disinfection ($11.50 versus $11.88). The EVOTECH ECR was more efficient and less costly to use for the reprocessing of endoscopes than manual cleaning followed by AER disinfection. Although the cost of consumable supplies required to reprocess endoscopes with EVOTECH ECR was slightly higher, the value of the labour time saved with EVOTECH ECR more than offset the additional consumables cost. The increased efficiency with EVOTECH ECR could lead to even further cost-savings by shifting endoscopy laboratory personnel responsibilities but further study is required.

  19. Incipient and overt diabetic nephropathy in African Americans with NIDDM.

    PubMed

    Dasmahapatra, A; Bale, A; Raghuwanshi, M P; Reddi, A; Byrne, W; Suarez, S; Nash, F; Varagiannis, E; Skurnick, J H

    1994-04-01

    OBJECTIVE--To determine the prevalence of incipient and overt nephropathy in African-American subjects with non-insulin-dependent diabetes mellitus (NIDDM) attending a hospital clinic. Contributory factors, such as blood pressure (BP), duration and age at onset of diabetes, hyperglycemia, hyperlipidemia, and body mass index (BMI) also were evaluated. RESEARCH DESIGN AND METHODS--We recruited 116 African-American subjects with NIDDM for this cross-sectional, descriptive, and analytical study. BP, BMI, 24-h urine albumin excretion, creatinine clearance, serum creatinine, lipids, and GHb levels were measured. Albumin excretion rate (AER) was calculated, and subjects were divided into three groups: no nephropathy (AER < 20 micrograms/min), incipient nephropathy (AER 20-200 micrograms/min), and overt nephropathy (AER > 200 micrograms/min). Frequency of hypertension and nephropathy was analyzed by chi 2 testing, group means were compared using analysis of variance, and linear correlations were performed between AER and other variables. Multiple regression analysis was used to examine the association of these variables while controlling for the effects of other variables. RESULTS--Increased AER was present in 50% of our subjects; 31% had incipient and 19% had overt nephropathy. Hypertension was present in 72.4%; nephropathy, particularly overt nephropathy, was significantly more prevalent in the hypertensive group. Mean BP and diastolic blood pressure (dBP) were higher in the groups with incipient and overt nephropathy, and systolic blood pressure (sBP) was increased in overt nephropathy. Men with either form of nephropathy had higher sBP, dBP, and mean BP, whereas only women with overt nephropathy had increased sBP and mean BP. Subjects with incipient or overt nephropathy had a longer duration of diabetes, and those with overt nephropathy had a younger age at onset of diabetes. By multiple regression analysis, AER correlated with younger age at diabetes onset, but not with diabetes duration. No correlation with age, lipid levels, or GHb was noted. BMI correlated with AER. CONCLUSIONS--Incipient and overt nephropathy were observed frequently in these African-American subjects with NIDDM. Albuminuria correlated with BP, younger age at diabetes onset, and BMI. Association of albuminuria and increased cardiovascular mortality may place 50% of inner-city African-American patients with NIDDM at risk for developing cardiovascular complications.

  20. AER image filtering

    NASA Astrophysics Data System (ADS)

    Gómez-Rodríguez, F.; Linares-Barranco, A.; Paz, R.; Miró-Amarante, L.; Jiménez, G.; Civit, A.

    2007-05-01

    Address Event Representation (AER) is an emergent neuromorphic interchip communication protocol that allows real-time virtual massive connectivity among huge number of neurons located on different chips.[1] By exploiting high speed digital communication circuits (with nano-seconds timing), synaptic neural connections can be time multiplexed, while neural activity signals (with mili-seconds timings) are sampled at low frequencies. Neurons generate "events" according to their activity levels. That is, more active neurons generate more events per unit time and access the interchip communication channel more frequently than neurons with low activity. In Neuromorphic system development, AER brings some advantages to develop real-time image processing system: (1) AER represents the information like time continuous stream not like a frame; (2) AER sends the most important information first (although this depends on the sender); (3) AER allows to process information as soon as it is received. When AER is used in artificial vision field, each pixel is considered like a neuron, so pixel's intensity is represented like a sequence of events; modifying the number and the frequency of these events, it is possible to make some image filtering. In this paper we present four image filters using AER: (a) Noise addition and suppression, (b) brightness modification, (c) single moving object tracking and (d) geometrical transformations (rotation, translation, reduction and magnification). For testing and debugging, we use USB-AER board developed by Robotic and Technology of Computers Applied to Rehabilitation (RTCAR) research group. This board is based on an FPGA, devoted to manage the AER functionality. This board also includes a micro-controlled for USB communication, 2 Mbytes RAM and 2 AER ports (one for input and one for output).

  1. Predicting residential air exchange rates from questionnaires and meteorology: model evaluation in central North Carolina.

    PubMed

    Breen, Michael S; Breen, Miyuki; Williams, Ronald W; Schultz, Bradley D

    2010-12-15

    A critical aspect of air pollution exposure models is the estimation of the air exchange rate (AER) of individual homes, where people spend most of their time. The AER, which is the airflow into and out of a building, is a primary mechanism for entry of outdoor air pollutants and removal of indoor source emissions. The mechanistic Lawrence Berkeley Laboratory (LBL) AER model was linked to a leakage area model to predict AER from questionnaires and meteorology. The LBL model was also extended to include natural ventilation (LBLX). Using literature-reported parameter values, AER predictions from LBL and LBLX models were compared to data from 642 daily AER measurements across 31 detached homes in central North Carolina, with corresponding questionnaires and meteorological observations. Data was collected on seven consecutive days during each of four consecutive seasons. For the individual model-predicted and measured AER, the median absolute difference was 43% (0.17 h(-1)) and 40% (0.17 h(-1)) for the LBL and LBLX models, respectively. Additionally, a literature-reported empirical scale factor (SF) AER model was evaluated, which showed a median absolute difference of 50% (0.25 h(-1)). The capability of the LBL, LBLX, and SF models could help reduce the AER uncertainty in air pollution exposure models used to develop exposure metrics for health studies.

  2. Simultaneous removal of dissolved organic matter and bromide from drinking water source by anion exchange resins for controlling disinfection by-products.

    PubMed

    Phetrak, Athit; Lohwacharin, Jenyuk; Sakai, Hiroshi; Murakami, Michio; Oguma, Kumiko; Takizawa, Satoshi

    2014-06-01

    Anion exchange resins (AERs) with different properties were evaluated for their ability to remove dissolved organic matter (DOM) and bromide, and to reduce disinfection by-product (DBP) formation potentials of water collected from a eutrophic surface water source in Japan. DOM and bromide were simultaneously removed by all selected AERs in batch adsorption experiments. A polyacrylic magnetic ion exchange resin (MIEX®) showed faster dissolved organic carbon (DOC) removal than other AERs because it had the smallest resin bead size. Aromatic DOM fractions with molecular weight larger than 1600 Da and fluorescent organic fractions of fulvic acid- and humic acid-like compounds were efficiently removed by all AERs. Polystyrene AERs were more effective in bromide removal than polyacrylic AERs. This result implied that the properties of AERs, i.e. material and resin size, influenced not only DOM removal but also bromide removal efficiency. MIEX® showed significant chlorinated DBP removal because it had the highest DOC removal within 30 min, whereas polystyrene AERs efficiently removed brominated DBPs, especially brominated trihalomethane species. The results suggested that, depending on source water DOM and bromide concentration, selecting a suitable AER is a key factor in effective control of chlorinated and brominated DBPs in drinking water. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  3. Chloride Ion Adsorption Capacity of Anion Exchange Resin in Cement Mortar.

    PubMed

    Lee, Yunsu; Lee, Hanseung; Jung, Dohyun; Chen, Zhengxin; Lim, Seungmin

    2018-04-05

    This paper presents the effect of anion exchange resin (AER) on the adsorption of chloride ions in cement mortar. The kinetic and equilibrium behaviors of AER were investigated in distilled water and Ca(OH)₂ saturated solutions, and then the adsorption of chloride ions by the AER in the mortar specimen was determined. The AER was used as a partial replacement for sand in the mortar specimen. The mortar specimen was coated with epoxy, except for an exposed surface, and then immersed in a NaCl solution for 140 days. The chloride content in the mortar specimen was characterized by energy dispersive X-ray fluorescence analysis and electron probe microanalysis. The results showed that the AER could adsorb the chloride ions from the solution rapidly but had a relatively low performance when the pH of its surrounding environment increased. When the AER was mixed in the cement mortar, its chloride content was higher than that of the cement matrix around it, which confirms the chloride ion adsorption capacity of the AER.

  4. Effect of P T symmetry on nonlinear waves for three-wave interaction models in the quadratic nonlinear media

    NASA Astrophysics Data System (ADS)

    Shen, Yujia; Wen, Zichao; Yan, Zhenya; Hang, Chao

    2018-04-01

    We study the three-wave interaction that couples an electromagnetic pump wave to two frequency down-converted daughter waves in a quadratic optical crystal and P T -symmetric potentials. P T symmetric potentials are shown to modulate stably nonlinear modes in two kinds of three-wave interaction models. The first one is a spatially extended three-wave interaction system with odd gain-and-loss distribution in the channel. Modulated by the P T -symmetric single-well or multi-well Scarf-II potentials, the system is numerically shown to possess stable soliton solutions. Via adiabatical change of system parameters, numerical simulations for the excitation and evolution of nonlinear modes are also performed. The second one is a combination of P T -symmetric models which are coupled via three-wave interactions. Families of nonlinear modes are found with some particular choices of parameters. Stable and unstable nonlinear modes are shown in distinct families by means of numerical simulations. These results will be useful to further investigate nonlinear modes in three-wave interaction models.

  5. Measurement of air exchange rates in different indoor environments using continuous CO2 sensors.

    PubMed

    You, Yan; Niu, Can; Zhou, Jian; Liu, Yating; Bai, Zhipeng; Zhang, Jiefeng; He, Fei; Zhang, Nan

    2012-01-01

    A new air exchange rate (AER) monitoring method using continuous CO2 sensors was developed and validated through both laboratory experiments and field studies. Controlled laboratory simulation tests were conducted in a 1-m3 environmental chamber at different AERs (0.1-10.0 hr(-1)). AERs were determined using the decay method based on box model assumptions. Field tests were conducted in classrooms, dormitories, meeting rooms and apartments during 2-5 weekdays using CO2 sensors coupled with data loggers. Indoor temperature, relative humidity (RH), and CO2 concentrations were continuously monitored while outdoor parameters combined with on-site climate conditions were recorded. Statistical results indicated that good laboratory performance was achieved: duplicate precision was within 10%, and the measured AERs were 90%-120% of the real AERs. Average AERs were 1.22, 1.37, 1.10, 1.91 and 0.73 hr(-1) in dormitories, air-conditioned classrooms, classrooms with an air circulation cooling system, reading rooms, and meeting rooms, respectively. In an elderly particulate matter exposure study, all the homes had AER values ranging from 0.29 to 3.46 hr(-1) in fall, and 0.12 to 1.39 hr(-1) in winter with a median AER of 1.15.

  6. Energetic Profile of the Basketball Exercise Simulation Test in Junior Elite Players.

    PubMed

    Latzel, Richard; Hoos, Olaf; Stier, Sebastian; Kaufmann, Sebastian; Fresz, Volker; Reim, Dominik; Beneke, Ralph

    2017-11-28

    To analyze the energetic profile of the basketball exercise simulation test (BEST). 10 male elite junior basketball players (age: 15.5±0.6yrs, height: 180±9cm, body mass: 66.1±11.2kg) performed a modified BEST (20 circuits consisting of jumping, sprinting, jogging, shuffling, and short breaks) simulating professional basketball game play. Circuit time, sprint time, sprint decrement, oxygen uptake (VO2), heart rate (HR), and blood lactate concentration (BLC) were obtained. Metabolic energy and metabolic power above rest (W tot , P tot ) as well as energy share in terms of aerobic (W aer ), glycolytic (W blc ), and high energy phosphates (W PCr ) were calculated from VO2 during exercise, net lactate production, and the fast component of post-exercise VO2 kinetics, respectively. W aer , W blc , and W PCr reflect 89±2%, 5±1%, and 6±1% of total energy needed, respectively. Assuming an aerobic replenishment of PCr energy stores during short breaks, the adjusted energy share yielded W aer : 66±4%, W blc : 5±1%, and W PCr : 29±1%. W aer and W PCr were negatively correlated (-0.72, -0.59) with sprint time, which was not the case for W blc . Consistent with general findings on energy system interaction during repeated high intensity exercise bouts, the intermittent profile of the BEST relies primarily on aerobic energy combined with repetitive supplementation by anaerobic utilization of high energy phosphates.

  7. Chloride Ion Adsorption Capacity of Anion Exchange Resin in Cement Mortar

    PubMed Central

    Lee, Hanseung; Jung, Dohyun; Chen, Zhengxin

    2018-01-01

    This paper presents the effect of anion exchange resin (AER) on the adsorption of chloride ions in cement mortar. The kinetic and equilibrium behaviors of AER were investigated in distilled water and Ca(OH)2 saturated solutions, and then the adsorption of chloride ions by the AER in the mortar specimen was determined. The AER was used as a partial replacement for sand in the mortar specimen. The mortar specimen was coated with epoxy, except for an exposed surface, and then immersed in a NaCl solution for 140 days. The chloride content in the mortar specimen was characterized by energy dispersive X-ray fluorescence analysis and electron probe microanalysis. The results showed that the AER could adsorb the chloride ions from the solution rapidly but had a relatively low performance when the pH of its surrounding environment increased. When the AER was mixed in the cement mortar, its chloride content was higher than that of the cement matrix around it, which confirms the chloride ion adsorption capacity of the AER. PMID:29621188

  8. An introduction to analytical methods for the postmarketing surveillance of veterinary vaccines.

    PubMed

    Siev, D

    1999-01-01

    Any analysis of spontaneous AER data must consider the many biases inherent in the observation and reporting of vaccine adverse events. The absence of a clear probability structure requires statistical procedures to be used in a spirit of exploratory description rather than definitive confirmation. The extent of such descriptions should be temperate, without the implication that they extend to parent populations. It is important to recognize the presence of overdispersion in selecting methods and constructing models. Important stochastic or systematic features of the data may always be unknown. Our attempts to delineate what constitutes an AER have not eliminated all the fuzziness in its definition. Some count every event in a report as a separate AER. Besides confusing the role of event and report, this introduces a complex correlational structure, since multiple event descriptions received in a single report can hardly be considered independent. The many events described by one reporter would then become inordinately weighted. The alternative is to record an AER once, regardless of how many event descriptions it includes. As a practical compromise, many regard the simultaneous submission of several report forms by one reporter as a single AER, and the next submission by that reporter as another AER. This method is reasonable when reporters submit AERs very infrequently. When individual reporters make frequent reports, it becomes difficult to justify the inconsistency of counting multiple events as a single AER when they are submitted together, but as separate AERs when they are reported at different times. While either choice is imperfect, the latter approach is currently used by the USDA and its licensed manufacturers in developing a mandatory postmarketing surveillance system for veterinary immunobiologicals in the United States. Under the proposed system, summaries of an estimated 10,000 AERs received annually by the manufacturers would be submitted to the USDA. In quantitative summaries, AERs received from lay consumers are usually weighted equally with those received from veterinary health professionals, although arguments have been advanced for separate classifications. The emphasis on AER rate estimation differentiates the surveillance of veterinary vaccines by the USDA CVB from the surveillance of veterinary drugs as practiced by the Food and Drug Administration (FDA) Center for Veterinary Medicine (CVM). The FDA CVM does, in fact, perform a retrodictive causality assessment for individual AERs (Parkhie et al., 1995). This distinction reflects the differences between vaccines and drugs, as well as the difference in regulatory philosophy between the FDA and the USDA. The modified Kramer algorithm (Kramer et al., 1979) used by the FDA relies on features more appropriate to drug therapy than vaccination, such as an ongoing treatment regimen which allows evaluation of the response to dechallenge and rechallenge. In tracking AERs, the FDA has emphasized the inclusion of clinical manifestations on labels and inserts, while the USDA has been reluctant to have such information appear in product literature or to use postmarketing data for this purpose. The potential for the misuse of spontaneous AER data is great. Disinformation is likely when the nature of this type of data is misunderstood and inappropriate analytical methods blindly employed. A greater danger lies in the glib transformation of AER data into something else entirely. Since approval before publication is not required, advertisements for veterinary vaccines appear with claims such as "over 3 million doses, 99.9905% satisfaction rating," or "11,500,000 doses, 99.98% reaction free." These claims, presumably based on spontaneous AERs, are almost fraudulent in their deceptiveness. Are we to suppose that 11.5 million vaccinations were observed for reactions? In comparing the two advertisements, we find the second presumed AER rate is double the first. (ABSTRACT TRU

  9. Aerobic and Strength Training in Concomitant Metabolic Syndrome and Type 2 Diabetes

    PubMed Central

    Earnest, Conrad P.; Johannsen, Neil M.; Swift, Damon L.; Gillison, Fiona B.; Mikus, Catherine R.; Lucia, Alejandro; Kramer, Kimberly; Lavie, Carl J.; Church, Timothy S.

    2014-01-01

    Purpose Concomitant type 2 diabetes (T2D) and metabolic syndrome exacerbates mortality risk; yet, few studies have examined the effect of combining (AER+RES) aerobic (AER) and resistance (RES) training for individuals with T2D and metabolic syndrome. Methods We examined AER, RES, and AER+RES training (9-months) commensurate with physical activity guidelines in individuals with T2D (N=262, 63% female, 44% black). Primary outcomes were change in, and prevalence of, metabolic syndrome score at follow-up (mean, 95%CI). Secondary outcomes included maximal cardiorespiratory fitness (VO2peak and estimated METs from time-to-exhaustion (TTE), and exercise efficiency calculated as the slope of the line between ventilatory threshold, respiratory compensation, and maximal fitness. General linear models and bootstrapped Spearman correlations were used to examine changes in metabolic syndrome associated with training primary and secondary outcome variables. Results We observed a significant decrease in metabolic syndrome scores (P-for-trend, 0.003) for AER (−0.59, 95%CI, −1.00, −0.21) and AER+RES (−0.79, 95%CI, −1.40, −0.35), both being significant (P < 0.02) vs. Control (0.26, 95%CI, −0.58, 0.40) and RES (−0.13, 95%CI, −1.00, 0.24). This lead to a reduction in metabolic syndrome prevalence for the AER (56% vs. 43%) and AER+RES (55% vs. 46%) groups between baseline and follow-up. The observed decrease in metabolic syndrome was mediated by significant improvements in exercise efficiency for the AER and AER+RES training groups (P<0.05), which was more strongly related to TTE (25–30%; r= −0.38; 95% CI: −0.55, −0.19) than VO2peak (5–6%; r= −0.24; 95% CI: −0.45, −0.01). Conclusion Aerobic and AER+RES training significantly improves metabolic syndrome scores and prevalence in patients with T2D. These improvements appear to be associated with improved exercise efficiency and are more strongly related to improved TTE versus VO2peak. PMID:24389523

  10. Development of a Graphics Based Automated Emergency Response System (AERS) for Rail Transit Systems

    DOT National Transportation Integrated Search

    1989-05-01

    This report presents an overview of the second generation Automated Emergency Response System (AERS2). Developed to assist transit systems in responding effectively to emergency situations, AERS2 is a microcomputer-based information retrieval system ...

  11. Feedforward Categorization on AER Motion Events Using Cortex-Like Features in a Spiking Neural Network.

    PubMed

    Zhao, Bo; Ding, Ruoxi; Chen, Shoushun; Linares-Barranco, Bernabe; Tang, Huajin

    2015-09-01

    This paper introduces an event-driven feedforward categorization system, which takes data from a temporal contrast address event representation (AER) sensor. The proposed system extracts bio-inspired cortex-like features and discriminates different patterns using an AER based tempotron classifier (a network of leaky integrate-and-fire spiking neurons). One of the system's most appealing characteristics is its event-driven processing, with both input and features taking the form of address events (spikes). The system was evaluated on an AER posture dataset and compared with two recently developed bio-inspired models. Experimental results have shown that it consumes much less simulation time while still maintaining comparable performance. In addition, experiments on the Mixed National Institute of Standards and Technology (MNIST) image dataset have demonstrated that the proposed system can work not only on raw AER data but also on images (with a preprocessing step to convert images into AER events) and that it can maintain competitive accuracy even when noise is added. The system was further evaluated on the MNIST dynamic vision sensor dataset (in which data is recorded using an AER dynamic vision sensor), with testing accuracy of 88.14%.

  12. Time-recovering PCI-AER interface for bio-inspired spiking systems

    NASA Astrophysics Data System (ADS)

    Paz-Vicente, R.; Linares-Barranco, A.; Cascado, D.; Vicente, S.; Jimenez, G.; Civit, A.

    2005-06-01

    Address Event Representation (AER) is an emergent neuromorphic interchip communication protocol that allows for real-time virtual massive connectivity between huge number neurons located on different chips. By exploiting high speed digital communication circuits (with nano-seconds timings), synaptic neural connections can be time multiplexed, while neural activity signals (with mili-seconds timings) are sampled at low frequencies. Also, neurons generate 'events' according to their activity levels. More active neurons generate more events per unit time, and access the interchip communication channel more frequently, while neurons with low activity consume less communication bandwidth. When building multi-chip muti-layered AER systems it is absolutely necessary to have a computer interface that allows (a) to read AER interchip traffic into the computer and visualize it on screen, and (b) inject a sequence of events at some point of the AER structure. This is necessary for testing and debugging complex AER systems. This paper presents a PCI to AER interface, that dispatches a sequence of events received from the PCI bus with embedded timing information to establish when each event will be delivered. A set of specialized states machines has been introduced to recovery the possible time delays introduced by the asynchronous AER bus. On the input channel, the interface capture events assigning a timestamp and delivers them through the PCI bus to MATLAB applications. It has been implemented in real time hardware using VHDL and it has been tested in a PCI-AER board, developed by authors, that includes a Spartan II 200 FPGA. The demonstration hardware is currently capable to send and receive events at a peak rate of 8,3 Mev/sec, and a typical rate of 1 Mev/sec.

  13. High-level endoscope disinfection processes in emerging economies: financial impact of manual process versus automated endoscope reprocessing.

    PubMed

    Funk, S E; Reaven, N L

    2014-04-01

    The use of flexible endoscopes is growing rapidly around the world. Dominant approaches to high-level disinfection among resource-constrained countries include fully manual cleaning and disinfection and the use of automated endoscope reprocessors (AERs). Suboptimal reprocessing at any step can potentially lead to contamination, with consequences to patients and healthcare systems. To compare the potential results of guideline-recommended AERs to manual disinfection along three dimensions - productivity, need for endoscope repair, and infection transmission risk in India, China, and Russia. Financial modelling using data from peer-reviewed published literature and country-specific market research. In countries where revenue can be gained through productivity improvements, conversion to automated reprocessing has a positive direct impact on financial performance, paying back the capital investment within 14 months in China and seven months in Russia. In India, AER-generated savings and revenue offset nearly all of the additional operating costs needed to support automated reprocessing. Among endoscopy facilities in India and China, current survey-reported practices in endoscope reprocessing using manual soaking may place patients at risk of exposure to pathogens leading to infections. Conversion from manual soak to use of AERs, as recommended by the World Gastroenterology Organization, may generate cost and revenue offsets that could produce direct financial gains for some endoscopy units in Russia and China. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Randomised placebo-controlled trial of lisinopril in normotensive patients with insulin-dependent diabetes and normoalbuminuria or microalbuminuria. The EUCLID Study Group.

    PubMed

    1997-06-21

    Renal disease in people with insulin-dependent diabetes (IDDM) continues to pose a major health threat. Inhibitors of angiotensin-converting enzyme (ACE) slow the decline of renal function in advanced renal disease, but their effects at earlier stages are unclear, and the degree of albuminuria at which treatment should start is not known. We carried out a randomised, double-blind, placebo-controlled trial of the ACE inhibitor lisinopril in 530 men and women with IDDM aged 20-59 years with normoalbuminuria or microalbuminuria. Patients were recruited from 18 European centres, and were not on medication for hypertension. Resting blood pressure at entry was at least 75 and no more than 90 mm Hg diastolic, and no more than 155 mm Hg systolic. Urinary albumin excretion rate (AER) was centrally assessed by means of two overnight urine collections at baseline, 6, 12, 18, and 24 months. There were no difference in baseline characteristics by treatment group; mean AER was 8.0 micrograms/min in both groups; and prevalence of microalbuminuria was 13% and 17% in the placebo and lisinopril groups, respectively. On intention-to-treat analysis at 2 years, AER was 2.2 micrograms/min lower in the lisinopril than in the placebo group, a percentage difference of 18.8% (95% CI 2.0-32.7, p = 0.03), adjusted for baseline AER and centre, absolute difference 2.2 micrograms/min. In people with normoalbuminuria, the treatment difference was 1.0 microgram/min (12.7% [-2.9 to 26.0], p = 0.1). In those with microalbuminuria, however, the treatment difference was 34.2 micrograms/min (49.7% [-14.5 to 77.9], p = 0.1; for interaction, p = 0.04). For patients who completed 24 months on the trial, the final treatment difference in AER was 38.5 micrograms/min in those with microalbuminuria at baseline (p = 0.001), and 0.23 microgram/min in those with normoalbuminuria at baseline (p = 0.6). There was no treatment difference in hypoglycaemic events or in metabolic control as assessed by glycated haemoglobin. Lisinopril slows the progression of renal disease in normotensive IDDM patients with little or no albuminuria, though greatest effect was in those with microalbuminuria (AER > or = 20 micrograms/min). Our results show that lisinopril does not increase the risk of hypoglycaemic events in IDDM.

  15. US residential building air exchange rates: new perspectives to improve decision making at vapor intrusion sites.

    PubMed

    Reichman, Rivka; Shirazi, Elham; Colliver, Donald G; Pennell, Kelly G

    2017-02-22

    Vapor intrusion (VI) is well-known to be difficult to characterize because indoor air (IA) concentrations exhibit considerable temporal and spatial variability in homes throughout impacted communities. To overcome this and other limitations, most VI science has focused on subsurface processes; however there is a need to understand the role of aboveground processes, especially building operation, in the context of VI exposure risks. This tutorial review focuses on building air exchange rates (AERs) and provides a review of literature related building AERs to inform decision making at VI sites. Commonly referenced AER values used by VI regulators and practitioners do not account for the variability in AER values that have been published in indoor air quality studies. The information presented herein highlights that seasonal differences, short-term weather conditions, home age and air conditioning status, which are well known to influence AERs, are also likely to influence IA concentrations at VI sites. Results of a 3D VI model in combination with relevant AER values reveal that IA concentrations can vary more than one order of magnitude due to air conditioning status and one order of magnitude due to house age. Collectively, the data presented strongly support the need to consider AERs when making decisions at VI sites.

  16. Identifying Housing and Meteorological Conditions Influencing Residential Air Exchange Rates in the DEARS and RIOPA Studies: Development of Distributions for Human Exposure Modeling

    EPA Science Inventory

    Appropriate prediction of residential air exchange rate (AER) is important for estimating human exposures in the residential microenvironment, as AER drives the infiltration of outdoor-generated air pollutants indoors. AER differences among homes may result from a number of fact...

  17. Surveillance cultures of samples obtained from biopsy channels and automated endoscope reprocessors after high-level disinfection of gastrointestinal endoscopes

    PubMed Central

    2012-01-01

    Background The instrument channels of gastrointestinal (GI) endoscopes may be heavily contaminated with bacteria even after high-level disinfection (HLD). The British Society of Gastroenterology guidelines emphasize the benefits of manually brushing endoscope channels and using automated endoscope reprocessors (AERs) for disinfecting endoscopes. In this study, we aimed to assess the effectiveness of decontamination using reprocessors after HLD by comparing the cultured samples obtained from biopsy channels (BCs) of GI endoscopes and the internal surfaces of AERs. Methods We conducted a 5-year prospective study. Every month random consecutive sampling was carried out after a complete reprocessing cycle; 420 rinse and swabs samples were collected from BCs and internal surface of AERs, respectively. Of the 420 rinse samples collected from the BC of the GI endoscopes, 300 were obtained from the BCs of gastroscopes and 120 from BCs of colonoscopes. Samples were collected by flushing the BCs with sterile distilled water, and swabbing the residual water from the AERs after reprocessing. These samples were cultured to detect the presence of aerobic and anaerobic bacteria and mycobacteria. Results The number of culture-positive samples obtained from BCs (13.6%, 57/420) was significantly higher than that obtained from AERs (1.7%, 7/420). In addition, the number of culture-positive samples obtained from the BCs of gastroscopes (10.7%, 32/300) and colonoscopes (20.8%, 25/120) were significantly higher than that obtained from AER reprocess to gastroscopes (2.0%, 6/300) and AER reprocess to colonoscopes (0.8%, 1/120). Conclusions Culturing rinse samples obtained from BCs provides a better indication of the effectiveness of the decontamination of GI endoscopes after HLD than culturing the swab samples obtained from the inner surfaces of AERs as the swab samples only indicate whether the AERs are free from microbial contamination or not. PMID:22943739

  18. Surveillance cultures of samples obtained from biopsy channels and automated endoscope reprocessors after high-level disinfection of gastrointestinal endoscopes.

    PubMed

    Chiu, King-Wah; Tsai, Ming-Chao; Wu, Keng-Liang; Chiu, Yi-Chun; Lin, Ming-Tzung; Hu, Tsung-Hui

    2012-09-03

    The instrument channels of gastrointestinal (GI) endoscopes may be heavily contaminated with bacteria even after high-level disinfection (HLD). The British Society of Gastroenterology guidelines emphasize the benefits of manually brushing endoscope channels and using automated endoscope reprocessors (AERs) for disinfecting endoscopes. In this study, we aimed to assess the effectiveness of decontamination using reprocessors after HLD by comparing the cultured samples obtained from biopsy channels (BCs) of GI endoscopes and the internal surfaces of AERs. We conducted a 5-year prospective study. Every month random consecutive sampling was carried out after a complete reprocessing cycle; 420 rinse and swabs samples were collected from BCs and internal surface of AERs, respectively. Of the 420 rinse samples collected from the BC of the GI endoscopes, 300 were obtained from the BCs of gastroscopes and 120 from BCs of colonoscopes. Samples were collected by flushing the BCs with sterile distilled water, and swabbing the residual water from the AERs after reprocessing. These samples were cultured to detect the presence of aerobic and anaerobic bacteria and mycobacteria. The number of culture-positive samples obtained from BCs (13.6%, 57/420) was significantly higher than that obtained from AERs (1.7%, 7/420). In addition, the number of culture-positive samples obtained from the BCs of gastroscopes (10.7%, 32/300) and colonoscopes (20.8%, 25/120) were significantly higher than that obtained from AER reprocess to gastroscopes (2.0%, 6/300) and AER reprocess to colonoscopes (0.8%, 1/120). Culturing rinse samples obtained from BCs provides a better indication of the effectiveness of the decontamination of GI endoscopes after HLD than culturing the swab samples obtained from the inner surfaces of AERs as the swab samples only indicate whether the AERs are free from microbial contamination or not.

  19. Influence of nonlinear interactions on the development of instability in hydrodynamic wave systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanova, N. N.; Chkhetiani, O. G., E-mail: ochkheti@mx.iki.rssi.ru, E-mail: ochkheti@gmail.ru; Yakushkin, I. G.

    2016-05-15

    The problem of the development of shear instability in a three-layer medium simulating the flow of a stratified incompressible fluid is considered. The hydrodynamic equations are solved by expanding the Hamiltonian in a small parameter. The equations for three interacting waves, one of which is unstable, have been derived and solved numerically. The three-wave interaction is shown to stabilize the instability. Various regimes of the system’s dynamics, including the stochastic ones dependent on one of the invariants in the problem, can arise in this case. It is pointed out that the instability development scenario considered differs from the previously consideredmore » scenario of a different type, where the three-wave interaction does not stabilize the instability. The interaction of wave packets is considered briefly.« less

  20. A polishing hybrid AER/UF membrane process for the treatment of a high DOC content surface water.

    PubMed

    Humbert, H; Gallard, H; Croué, J-P

    2012-03-15

    The efficacy of a combined AER/UF (Anion Exchange Resin/Ultrafiltration) process for the polishing treatment of a high DOC (Dissolved Organic Carbon) content (>8 mgC/L) surface water was investigated at lab-scale using a strong base AER. Both resin dose and bead size had a significant impact on the kinetic removal of DOC for short contact times (i.e. <15 min). For resin doses higher than 700 mg/L and median bead sizes below 250 μm DOC removal remained constant after 30 min of contact time with very high removal rates (80%). Optimum AER treatment conditions were applied in combination with UF membrane filtration on water previously treated by coagulation-flocculation (i.e. 3 mgC/L). A more severe fouling was observed for each filtration run in the presence of AER. This fouling was shown to be mainly reversible and caused by the progressive attrition of the AER through the centrifugal pump leading to the production of resin particles below 50 μm in diameter. More important, the presence of AER significantly lowered the irreversible fouling (loss of permeability recorded after backwash) and reduced the DOC content of the clarified water to l.8 mgC/L (40% removal rate), concentration that remained almost constant throughout the experiment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. The effects of two different swimming training periodization on physiological parameters at various exercise intensities.

    PubMed

    Clemente-Suárez, Vicente Javier; Dalamitros, Athanasios; Ribeiro, João; Sousa, Ana; Fernandes, Ricardo J; Vilas-Boas, J Paulo

    2017-05-01

    This study analysed the effects of two different periodization strategies on physiological parameters at various exercise intensities in competitive swimmers. Seventeen athletes of both sexes were divided to two groups, the traditional periodization (TPG, n = 7) and the reverse periodization group (RPG, n = 10). Each group followed a 10-week training period based on the two different periodization strategies. Before and after training, swimming velocity (SV), energy expenditure (EE), energy cost (EC) and percentage of aerobic (%Aer) and anaerobic (%An) energy contribution to the swimming intensities corresponding to the aerobic threshold (AerT), the anaerobic threshold (AnT) and the velocity at maximal oxygen uptake (vVO 2 max) were measured. Both groups increased the %An at the AerT and AnT intensity (P ≤ .05). In contrast, at the AnT intensity, EE and EC were only increased in TPG. Complementary, %Aer, %An, EE and EC at vVO 2 max did not alter in both groups (P > .05); no changes were observed in SV in TPG and RPG at all three intensities. These results indicate that both periodization schemes confer almost analogous adaptations in specific physiological parameters in competitive swimmers. However, given the large difference in the total training volume between the two groups, it is suggested that the implementation of the reverse periodization model is an effective and time-efficient strategy to improve performance mainly for swimming events where the AnT is an important performance indicator.

  2. Macroscopic Lagrangian description of warm plasmas. II Nonlinear wave interactions

    NASA Technical Reports Server (NTRS)

    Kim, H.; Crawford, F. W.

    1983-01-01

    A macroscopic Lagrangian is simplified to the adiabatic limit and expanded about equilibrium, to third order in perturbation, for three illustrative cases: one-dimensional compression parallel to the static magnetic field, two-dimensional compression perpendicular to the static magnetic field, and three-dimensional compression. As examples of the averaged-Lagrangian method applied to nonlinear wave interactions, coupling coefficients are derived for interactions between two electron plasma waves and an ion acoustic wave, and between an ordinary wave, an electron plasma wave, and an ion acoustic wave.

  3. Experimental investigation of three-wave interactions of capillary surface-waves

    NASA Astrophysics Data System (ADS)

    Berhanu, Michael; Cazaubiel, Annette; Deike, Luc; Jamin, Timothee; Falcon, Eric

    2014-11-01

    We report experiments studying the non-linear interaction between two crossing wave-trains of gravity-capillary surface waves generated in a closed laboratory tank. Using a capacitive wave gauge and Diffusive Light Photography method, we detect a third wave of smaller amplitude whose frequency and wavenumber are in agreement with the weakly non-linear triadic resonance interaction mechanism. By performing experiments in stationary and transient regimes and taking into account the viscous dissipation, we estimate directly the growth rate of the resonant mode in comparison with theory. These results confirm at least qualitatively and extend earlier experimental results obtained only for unidirectional wave train. Finally we discuss relevance of three-wave interaction mechanisms in recent experiment studying capillary wave turbulence.

  4. Mutagenic and antimutagenic effects of aqueous extract of rosemary (Rosmarinus officinalis L.) on meristematic cells of Allium cepa.

    PubMed

    Felicidade, I; Lima, J D; Pesarini, J R; Monreal, A C D; Mantovani, M S; Ribeiro, L R; Oliveira, R J

    2014-11-28

    Polyphenolic compounds present in rosemary were found to have antioxidant properties, anticarcinogenic activity, and to increase the detoxification of pro-carcinogens. The aim of the study was to determine the effect the aqueous extract of rosemary (AER) on mutagenicity induced by methylmethane sulfonate in meristematic cells of Allium cepa, as well as to describe its mode of action. Anti-mutagenicity experiments were carried out with 3 different concentrations of AER, which alone showed no mutagenic effects. In antimutagenicity experiments, AER showed chemopreventive activity in cultured meristematic cells of A. cepa against exposure to methylmethane sulfonate. Additionally, post-treatment and simultaneous treatment using pre-incubation protocols were the most effective. Evaluation of different protocols and the percent reduction in DNA indicated bioantimutagenic as well desmutagenic modes of action for AER. AER may be chemopreventive and antimutagenic.

  5. Growth of Aeromonas species on increasing concentrations of sodium chloride.

    PubMed

    Delamare, A P; Costa, S O; Da Silveira, M M; Echeverrigaray, S

    2000-01-01

    The growth of 16 strains of Aeromonas, representing 12 species of the genera, were examined at different salt levels (0-1.71 M NaCl). All the strains grew on media with 0.34 M NaCl, and nine on media with 0.68 M. Two strains, Aer. enteropelogenes and Aer. trota, were able to grow on media with 0.85 M and 1.02 M NaCl, respectively. Comparison of the growth curves of Aer. hydrophila ATCC7966 and Aer. trota ATCC 49657 on four concentrations of NaCl (0.08, 0.34, 0.68 and 1.02 M) confirm the high tolerance of Aer. trota, and indicate that high concentrations of salt increase the lag time and decrease the maximum growth rate. However, both strains were able to grow, slowly, in at least 0.68 M NaCl, a sodium chloride concentration currently used as food preservative.

  6. Simultaneous measurement of ventilation using tracer gas techniques and VOC concentrations in homes, garages and vehicles.

    PubMed

    Batterman, Stuart; Jia, Chunrong; Hatzivasilis, Gina; Godwin, Chris

    2006-02-01

    Air exchange rates and interzonal flows are critical ventilation parameters that affect thermal comfort, air migration, and contaminant exposure in buildings and other environments. This paper presents the development of an updated approach to measure these parameters using perfluorocarbon tracer (PFT) gases, the constant injection rate method, and adsorbent-based sampling of PFT concentrations. The design of miniature PFT sources using hexafluorotoluene and octafluorobenzene tracers, and the development and validation of an analytical GC/MS method for these tracers are described. We show that simultaneous deployment of sources and passive samplers, which is logistically advantageous, will not cause significant errors over multiday measurement periods in building, or over shorter periods in rapidly ventilated spaces like vehicle cabins. Measurement of the tracers over periods of hours to a week may be accomplished using active or passive samplers, and low method detection limits (<0.025 microg m(-3)) and high precisions (<10%) are easily achieved. The method obtains the effective air exchange rate (AER), which is relevant to characterizing long-term exposures, especially when ventilation rates are time-varying. In addition to measuring the PFT tracers, concentrations of other volatile organic compounds (VOCs) are simultaneously determined. Pilot tests in three environments (residence, garage, and vehicle cabin) demonstrate the utility of the method. The 4 day effective AER in the house was 0.20 h(-1), the 4 day AER in the attached garage was 0.80 h(-1), and 16% of the ventilation in the house migrated from the garage. The 5 h AER in a vehicle traveling at 100 km h(-1) under a low-to-medium vent condition was 92 h(-1), and this represents the highest speed test found in the literature. The method is attractive in that it simultaneously determines AERs, interzonal flows, and VOC concentrations over long and representative test periods. These measurements are practical, cost-effective, and helpful in indoor air quality and other investigations.

  7. Co-Production of Quality in the Applied Education Research Scheme

    ERIC Educational Resources Information Center

    Ozga, Jenny

    2007-01-01

    This contribution looks at the ways in which research quality is defined and addressed in the Applied Education Research Scheme (AERS), particularly within the network on Schools and Social Capital, which is one of the four areas of work within the overall AERS scheme. AERS is a five-year programme, funded jointly by the Scottish Executive and the…

  8. EFFECTS OF PH AND COMPETING ANIONS ON THE SPECIATION OF ARSENIC IN FIXED IONIC STRENGTH SOLUTIONS BY SOLID PHASE EXTRACTION CARTRIDGES

    EPA Science Inventory

    Anion-exchange resins (AERs) separate As(V) and As(lIl) in solution by retaining As(V) and allowing As(lIl) to pass through. AERs offer several advantages including portability, ease of use, and affordability (relative to other As speciation methods). The use of AERs for the inst...

  9. CAVIAR: a 45k neuron, 5M synapse, 12G connects/s AER hardware sensory-processing- learning-actuating system for high-speed visual object recognition and tracking.

    PubMed

    Serrano-Gotarredona, Rafael; Oster, Matthias; Lichtsteiner, Patrick; Linares-Barranco, Alejandro; Paz-Vicente, Rafael; Gomez-Rodriguez, Francisco; Camunas-Mesa, Luis; Berner, Raphael; Rivas-Perez, Manuel; Delbruck, Tobi; Liu, Shih-Chii; Douglas, Rodney; Hafliger, Philipp; Jimenez-Moreno, Gabriel; Civit Ballcels, Anton; Serrano-Gotarredona, Teresa; Acosta-Jimenez, Antonio J; Linares-Barranco, Bernabé

    2009-09-01

    This paper describes CAVIAR, a massively parallel hardware implementation of a spike-based sensing-processing-learning-actuating system inspired by the physiology of the nervous system. CAVIAR uses the asychronous address-event representation (AER) communication framework and was developed in the context of a European Union funded project. It has four custom mixed-signal AER chips, five custom digital AER interface components, 45k neurons (spiking cells), up to 5M synapses, performs 12G synaptic operations per second, and achieves millisecond object recognition and tracking latencies.

  10. Different regulation of limb development by p63 transcript variants.

    PubMed

    Kawata, Manabu; Taniguchi, Yuki; Mori, Daisuke; Yano, Fumiko; Ohba, Shinsuke; Chung, Ung-Il; Shimogori, Tomomi; Mills, Alea A; Tanaka, Sakae; Saito, Taku

    2017-01-01

    The apical ectodermal ridge (AER), located at the distal end of each limb bud, is a key signaling center which controls outgrowth and patterning of the proximal-distal axis of the limb through secretion of various molecules. Fibroblast growth factors (FGFs), particularly Fgf8 and Fgf4, are representative molecules produced by AER cells, and essential to maintain the AER and cell proliferation in the underlying mesenchyme, meanwhile Jag2-Notch pathway negatively regulates the AER and limb development. p63, a transcription factor of the p53 family, is expressed in the AER and indispensable for limb formation. However, the underlying mechanisms and specific roles of p63 variants are unknown. Here, we quantified the expression of p63 variants in mouse limbs from embryonic day (E) 10.5 to E12.5, and found that ΔNp63γ was strongly expressed in limbs at all stages, while TAp63γ expression was rapidly increased in the later stages. Fluorescence-activated cell sorting analysis of limb bud cells from reporter mouse embryos at E11.5 revealed that all variants were abundantly expressed in AER cells, and their expression was very low in mesenchymal cells. We then generated AER-specific p63 knockout mice by mating mice with a null and a flox allele of p63, and Msx2-Cre mice (Msx2-Cre;p63Δ/fl). Msx2-Cre;p63Δ/fl neonates showed limb malformation that was more obvious in distal elements. Expression of various AER-related genes was decreased in Msx2-Cre;p63Δ/fl limb buds and embryoid bodies formed by p63-knockdown induced pluripotent stem cells. Promoter analyses and chromatin immunoprecipitation assays demonstrated Fgf8 and Fgf4 as transcriptional targets of ΔNp63γ, and Jag2 as that of TAp63γ. Furthermore, TAp63γ overexpression exacerbated the phenotype of Msx2-Cre;p63Δ/fl mice. These data indicate that ΔNp63 and TAp63 control limb development through transcriptional regulation of different target molecules with different roles in the AER. Our findings contribute to further understanding of the molecular network of limb development.

  11. Non-filamentated ultra-intense and ultra-short pulse fronts in three-dimensional Raman seed amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, G.; Spatschek, K. H.

    Ultra-intense and ultra-short laser pulses may be generated up to the exawatt-zetawatt regime due to parametric processes in plasmas. The minimization of unwanted plasma processes leads to operational limits which are discussed here with respect to filamentation. Transverse filamentation, which originally was derived for plane waves, is being investigated for seed pulse propagation in the so called π-pulse limit. A three-dimensional (3D) three-wave-interaction model is the basis of the present investigation. To demonstrate the applicability of the three-wave-interaction model, the 1D pulse forms are compared with those obtained from 1D particle in cell and Vlasov simulations. Although wave-breaking may occur,more » the kinetic simulations show that the leading pumped pulse develops a form similar to that obtained from the three-wave-interaction model. In the main part, 2D and 3D filamentation processes of (localized) pulses are investigated with the three-wave-interaction model. It is shown that the leading pulse front can stay filamentation-free, whereas the rear parts show transverse modulations.« less

  12. An Update on the Journal Astronomy Education Review and Why Your Work Isn't Done Until You Have Published

    NASA Astrophysics Data System (ADS)

    Wolff, S.; Fraknoi, A.; Hockey, T.; Biemesderfer, C.; Johnson, J.

    2010-08-01

    Astronomy Education Review (AER) is an online journal and magazine, covering astronomy and space science education and outreach. Founded in 2001 by Andrew Fraknoi and Sidney Wolff, and published until recently by National Optical Astronomy Observatories (NOAO), the journal is now a proud part of the journals operation of the American Astronomical Society (AAS) found online at http://aer.aip.org. If you are presenting at this conference, or reading the conference proceedings, you may be an ideal candidate to publish in AER. Later in this paper, we present some encouraging hints and guidelines for publishing in the journal.

  13. SMART- Small Motor AerRospace Technology

    NASA Astrophysics Data System (ADS)

    Balucani, M.; Crescenzi, R.; Ferrari, A.; Guarrea, G.; Pontetti, G.; Orsini, F.; Quattrino, L.; Viola, F.

    2004-11-01

    This paper presents the "SMART" (Small Motor AerRospace Tecnology) propulsion system, constituted of microthrusters array realised by semiconductor technology on silicon wafers. SMART system is obtained gluing three main modules: combustion chambers, igniters and nozzles. The module was then filled with propellant and closed by gluing a piece of silicon wafer in the back side of the combustion chambers. The complete assembled module composed of 25 micro- thrusters with a 3 x 5 nozzle is presented. The measurement showed a thrust of 129 mN and impulse of 56,8 mNs burning about 70mg of propellant for the micro-thruster with nozzle and a thrust of 21 mN and impulse of 8,4 mNs for the micro-thruster without nozzle.

  14. Multi-soliton interaction of a generalized Schrödinger-Boussinesq system in a magnetized plasma

    NASA Astrophysics Data System (ADS)

    Zhao, Xue-Hui; Tian, Bo; Chai, Jun; Wu, Xiao-Yu; Guo, Yong-Jiang

    2017-04-01

    Under investigation in this paper is a generalized Schrödinger-Boussinesq system, which describes the stationary propagation of coupled upper-hybrid waves and magnetoacoustic waves in a magnetized plasma. Bilinear forms, one-, two- and three-soliton solutions are derived by virtue of the Hirota method and symbolic computation. Propagation and interaction for the solitons are illustrated graphically: Coefficients β1^{} and β2^{} can affect the velocities and propagation directions of the solitary waves. Amplitude, velocity and shape of the one solitary wave keep invariant during the propagation, implying that the transport of the energy is stable in the upper-hybrid and magnetoacoustic waves, and amplitude of the upper-hybrid wave is bigger than that of the magnetoacoustic wave. For the upper-hybrid and magnetoacoustic waves, head-on, overtaking and bound-state interaction between the two solitary waves are asymptotically depicted, respectively, indicating that the interaction between the two solitary waves is elastic. Elastic interaction between the bound-state soliton and a single one soliton is also displayed, and interaction among the three solitary waves is all elastic.

  15. Combing signals from spontaneous reports and electronic health records for detection of adverse drug reactions

    PubMed Central

    Harpaz, Rave; Vilar, Santiago; DuMouchel, William; Salmasian, Hojjat; Haerian, Krystl; Shah, Nigam H; Chase, Herbert S; Friedman, Carol

    2013-01-01

    Objective Data-mining algorithms that can produce accurate signals of potentially novel adverse drug reactions (ADRs) are a central component of pharmacovigilance. We propose a signal-detection strategy that combines the adverse event reporting system (AERS) of the Food and Drug Administration and electronic health records (EHRs) by requiring signaling in both sources. We claim that this approach leads to improved accuracy of signal detection when the goal is to produce a highly selective ranked set of candidate ADRs. Materials and methods Our investigation was based on over 4 million AERS reports and information extracted from 1.2 million EHR narratives. Well-established methodologies were used to generate signals from each source. The study focused on ADRs related to three high-profile serious adverse reactions. A reference standard of over 600 established and plausible ADRs was created and used to evaluate the proposed approach against a comparator. Results The combined signaling system achieved a statistically significant large improvement over AERS (baseline) in the precision of top ranked signals. The average improvement ranged from 31% to almost threefold for different evaluation categories. Using this system, we identified a new association between the agent, rasburicase, and the adverse event, acute pancreatitis, which was supported by clinical review. Conclusions The results provide promising initial evidence that combining AERS with EHRs via the framework of replicated signaling can improve the accuracy of signal detection for certain operating scenarios. The use of additional EHR data is required to further evaluate the capacity and limits of this system and to extend the generalizability of these results. PMID:23118093

  16. Transient Inhibition of FGFR2b-Ligands Signaling Leads to Irreversible Loss of Cellular β-Catenin Organization and Signaling in AER during Mouse Limb Development

    PubMed Central

    Tabatabai, Reza; Baptista, Sheryl; Tiozzo, Caterina; Carraro, Gianni; Wheeler, Matthew; Barreto, Guillermo; Braun, Thomas; Li, Xiaokun; Hajihosseini, Mohammad K.; Bellusci, Saverio

    2013-01-01

    The vertebrate limbs develop through coordinated series of inductive, growth and patterning events. Fibroblast Growth Factor receptor 2b (FGFR2b) signaling controls the induction of the Apical Ectodermal Ridge (AER) but its putative roles in limb outgrowth and patterning, as well as in AER morphology and cell behavior have remained unclear. We have investigated these roles through graded and reversible expression of soluble dominant-negative FGFR2b molecules at various times during mouse limb development, using a doxycycline/transactivator/tet(O)-responsive system. Transient attenuation (≤24 hours) of FGFR2b-ligands signaling at E8.5, prior to limb bud induction, leads mostly to the loss or truncation of proximal skeletal elements with less severe impact on distal elements. Attenuation from E9.5 onwards, however, has an irreversible effect on the stability of the AER, resulting in a progressive loss of distal limb skeletal elements. The primary consequences of FGFR2b-ligands attenuation is a transient loss of cell adhesion and down-regulation of P63, β1-integrin and E-cadherin, and a permanent loss of cellular β-catenin organization and WNT signaling within the AER. Combined, these effects lead to the progressive transformation of the AER cells from pluristratified to squamous epithelial-like cells within 24 hours of doxycycline administration. These findings show that FGFR2b-ligands signaling has critical stage-specific roles in maintaining the AER during limb development. PMID:24167544

  17. Research in Modeling and Simulation for Airspace Systems Innovation

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.; Kimmel, William M.; Welch, Sharon S.

    2007-01-01

    This viewgraph presentation provides an overview of some of the applied research and simulation methodologies at the NASA Langley Research Center that support aerospace systems innovation. Risk assessment methodologies, complex systems design and analysis methodologies, and aer ospace operations simulations are described. Potential areas for future research and collaboration using interactive and distributed simula tions are also proposed.

  18. Impact of line parameter database, continuum absorption, full grind configuration, and L1B update on GOSAT TIR methane retrieval

    NASA Astrophysics Data System (ADS)

    Yamada, A.; Saitoh, N.; Nonogaki, R.; Imasu, R.; Shiomi, K.; Kuze, A.

    2016-12-01

    The thermal infrared (TIR) band of Thermal and Near-infrared Sensor for Carbon Observation Fourier Transform Spectrometer (TANSO-FTS) onboard Greenhouse Gases Observing Satellite (GOSAT) observes CH4 profile at wavenumber range from 1210 cm-1 to 1360 cm-1 including CH4 ν4 band. The current retrieval algorithm (V1.0) uses LBLRTM V12.1 with AER V3.1 line database to calculate optical depth. LBLRTM V12.1 include MT_CKD 2.5.2 model to calculate continuum absorption. The continuum absorption has large uncertainty, especially temperature dependent coefficient, between BPS model and MT_CKD model in the wavenumber region of 1210-1250 cm-1(Paynter and Ramaswamy, 2014). The purpose of this study is to assess the impact on CH4 retrieval from the line parameter databases and the uncertainty of continuum absorption. We used AER v1.0 database, HITRAN2004 database, HITRAN2008 database, AER V3.2 database, and HITRAN2012 database (Rothman et al. 2005, 2009, and 2013. Clough et al., 2005). AER V1.0 database is based on HITRAN2000. The CH4 line parameters of AER V3.1 and V3.2 databases are developed from HITRAN2008 including updates until May 2009 with line mixing parameters. We compared the retrieved CH4 with the HIPPO CH4 observation (Wofsy et al., 2012). The difference of AER V3.2 was the smallest and 24.1 ± 45.9 ppbv. The differences of AER V1.0, HITRAN2004, HITRAN2008, and HITRAN2012 were 35.6 ± 46.5 ppbv, 37.6 ± 46.3 ppbv, 32.1 ± 46.1 ppbv, and 35.2 ± 46.0 ppbv, respectively. Compare AER V3.2 case to HITRAN2008 case, the line coupling effect reduced difference by 8.0 ppbv. Median values of Residual difference from HITRAN2008 to AER V1.0, HITRAN2004, AER V3.2, and HITRAN2012 were 0.6 K, 0.1 K, -0.08 K, and 0.08 K, respectively, while median values of transmittance difference were less than 0.0003 and transmittance differences have small wavenumber dependence. We also discuss the retrieval error from the uncertainty of the continuum absorption, the test of full grid configuration for retrieval, and the retrieval results using GOSAT TIR L1B V203203, which are sample products to evaluate the next level 1B algorithm.

  19. Neural Substrates of Auditory Emotion Recognition Deficits in Schizophrenia.

    PubMed

    Kantrowitz, Joshua T; Hoptman, Matthew J; Leitman, David I; Moreno-Ortega, Marta; Lehrfeld, Jonathan M; Dias, Elisa; Sehatpour, Pejman; Laukka, Petri; Silipo, Gail; Javitt, Daniel C

    2015-11-04

    Deficits in auditory emotion recognition (AER) are a core feature of schizophrenia and a key component of social cognitive impairment. AER deficits are tied behaviorally to impaired ability to interpret tonal ("prosodic") features of speech that normally convey emotion, such as modulations in base pitch (F0M) and pitch variability (F0SD). These modulations can be recreated using synthetic frequency modulated (FM) tones that mimic the prosodic contours of specific emotional stimuli. The present study investigates neural mechanisms underlying impaired AER using a combined event-related potential/resting-state functional connectivity (rsfMRI) approach in 84 schizophrenia/schizoaffective disorder patients and 66 healthy comparison subjects. Mismatch negativity (MMN) to FM tones was assessed in 43 patients/36 controls. rsfMRI between auditory cortex and medial temporal (insula) regions was assessed in 55 patients/51 controls. The relationship between AER, MMN to FM tones, and rsfMRI was assessed in the subset who performed all assessments (14 patients, 21 controls). As predicted, patients showed robust reductions in MMN across FM stimulus type (p = 0.005), particularly to modulations in F0M, along with impairments in AER and FM tone discrimination. MMN source analysis indicated dipoles in both auditory cortex and anterior insula, whereas rsfMRI analyses showed reduced auditory-insula connectivity. MMN to FM tones and functional connectivity together accounted for ∼50% of the variance in AER performance across individuals. These findings demonstrate that impaired preattentive processing of tonal information and reduced auditory-insula connectivity are critical determinants of social cognitive dysfunction in schizophrenia, and thus represent key targets for future research and clinical intervention. Schizophrenia patients show deficits in the ability to infer emotion based upon tone of voice [auditory emotion recognition (AER)] that drive impairments in social cognition and global functional outcome. This study evaluated neural substrates of impaired AER in schizophrenia using a combined event-related potential/resting-state fMRI approach. Patients showed impaired mismatch negativity response to emotionally relevant frequency modulated tones along with impaired functional connectivity between auditory and medial temporal (anterior insula) cortex. These deficits contributed in parallel to impaired AER and accounted for ∼50% of variance in AER performance. Overall, these findings demonstrate the importance of both auditory-level dysfunction and impaired auditory/insula connectivity in the pathophysiology of social cognitive dysfunction in schizophrenia. Copyright © 2015 the authors 0270-6474/15/3514910-13$15.00/0.

  20. SPECIAL ISSUE DEVOTED TO THE 80TH BIRTHDAY OF S.A. AKHMANOV: Three-wave interactions of surface defect-deformation waves and their manifestations in the self-organisation of nano- and microstructures in solids exposed to laser radiation

    NASA Astrophysics Data System (ADS)

    Emel'yanov, Vladimir I.; Seval'nev, D. M.

    2009-07-01

    The self-organisation of the surface-relief nanostructures in solids under the action of energy and particle fluxes is interpreted as the instability of defect-deformation (DD) gratings produced by quasi-static Lamb and Rayleigh waves and defect-concentration waves. The allowance for the nonlocality in the defects—lattice atom interaction with a simultaneous account for both (normal and longitudinal) defect-induced forces bending the surface layer leads to the appearance of two maxima in the dependence of the instability growth rate of DD waves on the wave number. Three-wave interactions of quasi-static coupled DD waves (second harmonic generation and wave vector mixing) are considered for the first time, which are similar to three-wave interactions in nonlinear optics and acoustics and lead to the enrichment of the spectrum of surface-relief harmonics. Computer processing of experimental data on laser-induced generation of micro- and nanostructures of the surface relief reveals the presence of effects responsible for the second harmonic generation and wave vector mixing.

  1. On nonlinear Tollmien-Schlichting/vortex interaction in three-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Davis, Dominic A. R.; Smith, Frank T.

    1993-01-01

    The instability of an incompressible three-dimensional boundary layer (that is, one with cross-flow) is considered theoretically and computationally in the context of vortex/wave interactions. Specifically the work centers on two low amplitude, lower-branch Tollmien-Schlichting waves which mutually interact to induce a weak longitudinal vortex flow; the vortex motion, in turn, gives rise to significant wave-modulation via wall-shear forcing. The characteristic Reynolds number is taken as a large parameter and, as a consequence, the waves' and the vortex motion are governed primarily by triple-deck theory. The nonlinear interaction is captured by a viscous partial-differential system for the vortex coupled with a pair of amplitude equations for each wave pressure. Three distinct possibilities were found to emerge for the nonlinear behavior of the flow solution downstream - an algebraic finite-distance singularity, far downstream saturation or far-downstream wave-decay (leaving pure vortex flow) - depending on the input conditions, the wave angles, and the size of the cross-flow.

  2. Interaction of Lamb Waves with Fatigue Cracks in Aluminum

    DTIC Science & Technology

    2011-09-01

    Interaction of Lamb Waves with Fatigue Cracks in Aluminum E. D. SWENSON, C. T. OWENS and C. ALLEN ABSTRACT Elastic waves can travel across...the interaction of Lamb waves with both open and closed low-cycle fatigue cracks in aluminum plates using a three-dimensional laser Doppler vibrometer...and antisymmetric Lamb wave modes differ upon encountering fatigue cracks. INTRODUCTION The use of guided elastic waves (Lamb waves) has shown

  3. Urinary Liver-Type Fatty Acid–Binding Protein and Progression of Diabetic Nephropathy in Type 1 Diabetes

    PubMed Central

    Panduru, Nicolae M.; Forsblom, Carol; Saraheimo, Markku; Thorn, Lena; Bierhaus, Angelika; Humpert, Per M.; Groop, Per-Henrik

    2013-01-01

    OBJECTIVE Diabetic nephropathy (DN) has mainly been considered a glomerular disease, although tubular dysfunction may also play a role. This study assessed the predictive value for progression of a tubular marker, urinary liver-type fatty acid–binding protein (L-FABP), at all stages of DN. RESEARCH DESIGN AND METHODS At baseline, 1,549 patients with type 1 diabetes had an albumin excretion rate (AER) within normal reference ranges, 334 had microalbuminuria, and 363 had macroalbuminuria. Patients were monitored for a median of 5.8 years (95% CI 5.7–5.9). In addition, 208 nondiabetic subjects were studied. L-FABP was measured by ELISA and normalized with urinary creatinine. Different Cox proportional hazard models for the progression at every stage of DN were used to evaluate the predictive value of L-FABP. The potential benefit of using L-FABP alone or together with AER was assessed by receiver operating characteristic curve analyses. RESULTS L-FABP was an independent predictor of progression at all stages of DN. As would be expected, receiver operating characteristic curves for the prediction of progression were significantly larger for AER than for L-FABP, except for patients with baseline macroalbuminuria, in whom the areas were similar. Adding L-FABP to AER in the models did not significantly improve risk prediction of progression in favor of the combination of L-FABP plus AER compared with AER alone. CONCLUSIONS L-FABP is an independent predictor of progression of DN irrespective of disease stage. L-FABP used alone or together with AER may not improve the risk prediction of DN progression in patients with type 1 diabetes, but further studies are needed in this regard. PMID:23378622

  4. Improving the toughness of ultrahigh strength steel

    NASA Astrophysics Data System (ADS)

    Sato, Koji

    2002-01-01

    The ideal structural steel combines high strength with high fracture toughness. This dissertation discusses the toughening mechanism of the Fe/Co/Ni/Cr/Mo/C steel, AerMet 100, which has the highest toughness/strength combination among all commercial ultrahigh strength steels. The possibility of improving the toughness of this steel was examined by considering several relevant factors. Chapter 1 reviews the mechanical properties of ultrahigh strength steels and the physical metallurgy of AerMet 100. It also describes the fracture mechanisms of steel, i.e. ductile microvoid coalescence, brittle transgranular cleavage, and intergranular separation. Chapter 2 examines the strength-toughness relationship for three heats of AerMet 100. A wide variation of toughness is obtained at the same strength level. The toughness varies despite the fact that all heat fracture in the ductile fracture mode. The difference originates from the inclusion content. Lower inclusion volume fraction and larger inclusion spacing gives rise to a greater void growth factor and subsequently a higher fracture toughness. The fracture toughness value, JIc, is proportional to the particle spacing of the large non-metallic inclusions. Chapter 3 examines the ductile-brittle transition of AerMet 100 and the effect of a higher austenitization temperature, using the Charpy V-notch test. The standard heat treatment condition of AerMet 100 shows a gradual ductile-brittle transition due to its fine effective grain size. Austenitization at higher temperature increases the prior austenite grain size and packet size, leading to a steeper transition at a higher temperature. Both transgranular cleavage and intergranular separation are observed in the brittle fracture mode. Chapter 4 examines the effect of inclusion content, prior austenite grain size, and the amount of austenite on the strength-toughness relationship. The highest toughness is achieved by low inclusion content, small prior austenite grain size, and a small content of stable austenite. The low inclusion content increases the strain at the fracture. The reduction in prior austenite grain size prevents the fast unstable crack propagation by cleavage. And the stable austenite decreases the strength of the intergranular separation at the prior austenite grain boundary, which provides the stress relief at the crack tip.

  5. Three-dimensional separation for interaction of shock waves with turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Goldberg, T. J.

    1973-01-01

    For the interaction of shock waves with turbulent boundary layers, obtained experimental three-dimensional separation results and correlations with earlier two-dimensional and three-dimensional data are presented. It is shown that separation occurs much earlier for turbulent three-dimensional than for two-dimensional flow at hypersonic speeds.

  6. Correlated wave functions for three-particle systems with Coulomb interaction - The muonic helium atom

    NASA Technical Reports Server (NTRS)

    Huang, K.-N.

    1977-01-01

    A computational procedure for calculating correlated wave functions is proposed for three-particle systems interacting through Coulomb forces. Calculations are carried out for the muonic helium atom. Variational wave functions which explicitly contain interparticle coordinates are presented for the ground and excited states. General Hylleraas-type trial functions are used as the basis for the correlated wave functions. Excited-state energies of the muonic helium atom computed from 1- and 35-term wave functions are listed for four states.

  7. Amusia and protolanguage impairments in schizophrenia

    PubMed Central

    Kantrowitz, J. T.; Scaramello, N.; Jakubovitz, A.; Lehrfeld, J. M.; Laukka, P.; Elfenbein, H. A.; Silipo, G.; Javitt, D. C.

    2017-01-01

    Background Both language and music are thought to have evolved from a musical protolanguage that communicated social information, including emotion. Individuals with perceptual music disorders (amusia) show deficits in auditory emotion recognition (AER). Although auditory perceptual deficits have been studied in schizophrenia, their relationship with musical/protolinguistic competence has not previously been assessed. Method Musical ability was assessed in 31 schizophrenia/schizo-affective patients and 44 healthy controls using the Montreal Battery for Evaluation of Amusia (MBEA). AER was assessed using a novel battery in which actors provided portrayals of five separate emotions. The Disorganization factor of the Positive and Negative Syndrome Scale (PANSS) was used as a proxy for language/thought disorder and the MATRICS Consensus Cognitive Battery (MCCB) was used to assess cognition. Results Highly significant deficits were seen between patients and controls across auditory tasks (p<0.001). Moreover, significant differences were seen in AER between the amusia and intact music-perceiving groups, which remained significant after controlling for group status and education. Correlations with AER were specific to the melody domain, and correlations between protolanguage (melody domain) and language were independent of overall cognition. Discussion This is the first study to document a specific relationship between amusia, AER and thought disorder, suggesting a shared linguistic/protolinguistic impairment. Once amusia was considered, other cognitive factors were no longer significant predictors of AER, suggesting that musical ability in general and melodic discrimination ability in particular may be crucial targets for treatment development and cognitive remediation in schizophrenia. PMID:25066878

  8. Amusia and protolanguage impairments in schizophrenia.

    PubMed

    Kantrowitz, J T; Scaramello, N; Jakubovitz, A; Lehrfeld, J M; Laukka, P; Elfenbein, H A; Silipo, G; Javitt, D C

    2014-10-01

    Both language and music are thought to have evolved from a musical protolanguage that communicated social information, including emotion. Individuals with perceptual music disorders (amusia) show deficits in auditory emotion recognition (AER). Although auditory perceptual deficits have been studied in schizophrenia, their relationship with musical/protolinguistic competence has not previously been assessed. Musical ability was assessed in 31 schizophrenia/schizo-affective patients and 44 healthy controls using the Montreal Battery for Evaluation of Amusia (MBEA). AER was assessed using a novel battery in which actors provided portrayals of five separate emotions. The Disorganization factor of the Positive and Negative Syndrome Scale (PANSS) was used as a proxy for language/thought disorder and the MATRICS Consensus Cognitive Battery (MCCB) was used to assess cognition. Highly significant deficits were seen between patients and controls across auditory tasks (p < 0.001). Moreover, significant differences were seen in AER between the amusia and intact music-perceiving groups, which remained significant after controlling for group status and education. Correlations with AER were specific to the melody domain, and correlations between protolanguage (melody domain) and language were independent of overall cognition. This is the first study to document a specific relationship between amusia, AER and thought disorder, suggesting a shared linguistic/protolinguistic impairment. Once amusia was considered, other cognitive factors were no longer significant predictors of AER, suggesting that musical ability in general and melodic discrimination ability in particular may be crucial targets for treatment development and cognitive remediation in schizophrenia.

  9. On the interaction between the shock wave attached to a wedge and freestream disturbances

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.; Lasseigne, D. Glenn; Hussaini, M. Y.

    1993-01-01

    A study of the interaction of small amplitude, unsteady, freestream disturbances with a shock wave induced by a wedge in supersonic flow is presented. These disturbances may be acoustic waves, vorticity waves, or entropy waves (or indeed a combination of all three). Their interactions then generate behind the shock disturbances of all three classes, an aspect that is investigated in some detail, our motivation being to investigate possible mechanisms for boundary-layer receptivity, caused through the amplification and modification of freestream turbulence through the shock-body coupling. Also, the possibility of enhanced mixing owing to additional vorticity produced by the shock-body coupling is investigated.

  10. Three-wave resonant interactions: Multi-dark-dark-dark solitons, breathers, rogue waves, and their interactions and dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Guoqiang; Yan, Zhenya; Wen, Xiao-Yong

    2018-03-01

    We investigate three-wave resonant interactions through both the generalized Darboux transformation method and numerical simulations. Firstly, we derive a simple multi-dark-dark-dark-soliton formula through the generalized Darboux transformation. Secondly, we use the matrix analysis method to avoid the singularity of transformed potential functions and to find the general nonsingular breather solutions. Moreover, through a limit process, we deduce the general rogue wave solutions and give a classification by their dynamics including bright, dark, four-petals, and two-peaks rogue waves. Ever since the coexistence of dark soliton and rogue wave in non-zero background, their interactions naturally become a quite appealing topic. Based on the N-fold Darboux transformation, we can derive the explicit solutions to depict their interactions. Finally, by performing extensive numerical simulations we can predict whether these dark solitons and rogue waves are stable enough to propagate. These results can be available for several physical subjects such as fluid dynamics, nonlinear optics, solid state physics, and plasma physics.

  11. Ocean dynamics studies. [of current-wave interactions

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Both the theoretical and experimental investigations into current-wave interactions are discussed. The following three problems were studied: (1) the dispersive relation of a random gravity-capillary wave field; (2) the changes of the statistical properties of surface waves under the influence of currents; and (3) the interaction of capillary-gravity with the nonuniform currents. Wave current interaction was measured and the feasibility of using such measurements for remote sensing of surface currents was considered. A laser probe was developed to measure the surface statistics, and the possibility of using current-wave interaction as a means of current measurement was demonstrated.

  12. Complete energy conversion by autoresonant three-wave mixing in nonuniform media.

    PubMed

    Yaakobi, O; Caspani, L; Clerici, M; Vidal, F; Morandotti, R

    2013-01-28

    Resonant three-wave interactions appear in many fields of physics e.g. nonlinear optics, plasma physics, acoustics and hydrodynamics. A general theory of autoresonant three-wave mixing in a nonuniform media is derived analytically and demonstrated numerically. It is shown that due to the medium nonuniformity, a stable phase-locked evolution is automatically established. For a weak nonuniformity, the efficiency of the energy conversion between the interacting waves can reach almost 100%. One of the potential applications of our theory is the design of highly-efficient optical parametric amplifiers.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiferlein, Katherine E.

    The Annual Energy Review (AER) presents the Energy Information Administration’s historical energy statistics. For many series, statistics are given for every year from 1949 through 2002. The statistics, expressed in either physical units or British thermal units, cover all major energy activities, including consumption, production, trade, stocks, and prices, for all major energy commodities, including fossil fuels, electricity, and renewable energy sources. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the Energy Information Administration (EIA) under Section 205(a)(2), which states: “The Administrator shallmore » be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the AER and in other EIA publications. Related Publication: Readers of the AER may also be interested in EIA’s Monthly Energy Review, which presents monthly updates of many of the data in the AER. Contact our National Energy Information Center for more information.« less

  14. The Steris Reliance EPS endoscope processing system: a new automated endoscope reprocessing technology.

    PubMed

    2007-01-01

    In this Evaluation, we examine whether the Steris Reliance EPS--a flexible endoscope reprocessing system that was recently introduced to the U.S. market--offers meaningful advantages over "traditional" automated endoscope reprocessors (AERs). Most AERs on the market function similarly to one another. The Reliance EPS, however, includes some unique features that distinguish it from other AERs. For example, it incorporates a "boot" technology for loading the endoscopes into the unit without requiring a lot of endoscope-specific connectors, and it dispenses the germicide used to disinfect the endoscopes from a single-use container. This Evaluation looks at whether the unique features of this model make it a better choice than traditional AERs for reprocessing flexible endoscopes. Our study focuses on whether the Reliance EPS is any more likely to be used correctly-thereby reducing the likelihood that an endoscope will be reprocessed inadequately-and whether the unit possesses any design flaws that could lead to reprocessing failures. We detail the unit's advantages and disadvantages compared with other AERs, and we describe what current users have to say. Our conclusions will help facilities determine whether to select the Reliance EPS.

  15. Sensitivity of Geoelectrical Measurements to the Presence of Bacteria in Porous Media

    EPA Science Inventory

    We investigated the sensitivity of low frequency electrical measurements (0.1-1000 Hz) to (i) microbial cell density, (ii) live and dead cells, and (iii) microbial attachment onto mineral surfaces of clean quartz sands and iron oxide coated sands. Three strains of Pseudomonas aer...

  16. Integrable generalizations of non-linear multiple three-wave interaction models

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav

    1989-07-01

    Integrable generalizations of multiple three-wave interaction models in terms of r-matrix formulation are investigated. The Lax representations, complete sets of first integrals in involution are constructed, the quantization leading to Gaudin's models is discussed.

  17. A quasi-experimental study of after-event reviews and leadership development.

    PubMed

    Derue, D Scott; Nahrgang, Jennifer D; Hollenbeck, John R; Workman, Kristina

    2012-09-01

    We examine how structured reflection through after-event reviews (AERs) promotes experience-based leadership development and how people's prior experiences and personality attributes influence the impact of AERs on leadership development. We test our hypotheses in a time-lagged, quasi-experimental study that followed 173 research participants for 9 months and across 4 distinct developmental experiences. Findings indicate that AERs have a positive effect on leadership development, and this effect is accentuated when people are conscientious, open to experience, and emotionally stable and have a rich base of prior developmental experiences.

  18. Experimental evaluation of the power balance model of speed skating.

    PubMed

    de Koning, Jos J; Foster, Carl; Lampen, Joanne; Hettinga, Floor; Bobbert, Maarten F

    2005-01-01

    Prediction of speed skating performance with a power balance model requires assumptions about the kinetics of energy production, skating efficiency, and skating technique. The purpose of this study was to evaluate these parameters during competitive imitations for the purpose of improving model predictions. Elite speed skaters (n = 8) performed races and submaximal efficiency tests. External power output (P(o)) was calculated from movement analysis and aerodynamic models and ice friction measurements. Aerobic kinetics was calculated from breath-by-breath oxygen uptake (Vo(2)). Aerobic power (P(aer)) was calculated from measured skating efficiency. Anaerobic power (P(an)) kinetics was determined by subtracting P(aer) from P(o). We found gross skating efficiency to be 15.8% (1.8%). In the 1,500-m event, the kinetics of P(an) was characterized by a first-order system as P(an) = 88 + 556e(-0.0494t) (in W, where t is time). The rate constant for the increase in P(aer) was -0.153 s(-1), the time delay was 8.7 s, and the peak P(aer) was 234 W; P(aer) was equal to 234[1 - e(-0.153(t-8.7))] (in W). Skating position changed with preextension knee angle increasing and trunk angle decreasing throughout the event. We concluded the pattern of P(aer) to be quite similar to that reported during other competitive imitations, with the exception that the increase in P(aer) was more rapid. The pattern of P(an) does not appear to fit an "all-out" pattern, with near zero values during the last portion of the event, as assumed in our previous model (De Koning JJ, de Groot G, and van Ingen Schenau GJ. J Biomech 25: 573-580, 1992). Skating position changed in ways different from those assumed in our previous model. In addition to allowing improved predictions, the results demonstrate the importance of observations in unique subjects to the process of model construction.

  19. AerChemMIP: Quantifying the effects of chemistry and aerosols in CMIP6

    DOE PAGES

    Collins, William J.; Lamarque, Jean -François; Schulz, Michael; ...

    2017-02-09

    The Aerosol Chemistry Model Intercomparison Project (AerChemMIP) is endorsed by the Coupled-Model Intercomparison Project 6 (CMIP6) and is designed to quantify the climate and air quality impacts of aerosols and chemically reactive gases. These are specifically near-term climate forcers (NTCFs: methane, tropospheric ozone and aerosols, and their precursors), nitrous oxide and ozone-depleting halocarbons. The aim of AerChemMIP is to answer four scientific questions. 1. How have anthropogenic emissions contributed to global radiative forcing and affected regional climate over the historical period? 2. How might future policies (on climate, air quality and land use) affect the abundances of NTCFs and theirmore » climate impacts? 3.How do uncertainties in historical NTCF emissions affect radiative forcing estimates? 4. How important are climate feedbacks to natural NTCF emissions, atmospheric composition, and radiative effects? These questions will be addressed through targeted simulations with CMIP6 climate models that include an interactive representation of tropospheric aerosols and atmospheric chemistry. These simulations build on the CMIP6 Diagnostic, Evaluation and Characterization of Klima (DECK) experiments, the CMIP6 historical simulations, and future projections performed elsewhere in CMIP6, allowing the contributions from aerosols and/or chemistry to be quantified. As a result, specific diagnostics are requested as part of the CMIP6 data request to highlight the chemical composition of the atmosphere, to evaluate the performance of the models, and to understand differences in behaviour between them.« less

  20. AerChemMIP: Quantifying the effects of chemistry and aerosols in CMIP6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, William J.; Lamarque, Jean -François; Schulz, Michael

    The Aerosol Chemistry Model Intercomparison Project (AerChemMIP) is endorsed by the Coupled-Model Intercomparison Project 6 (CMIP6) and is designed to quantify the climate and air quality impacts of aerosols and chemically reactive gases. These are specifically near-term climate forcers (NTCFs: methane, tropospheric ozone and aerosols, and their precursors), nitrous oxide and ozone-depleting halocarbons. The aim of AerChemMIP is to answer four scientific questions. 1. How have anthropogenic emissions contributed to global radiative forcing and affected regional climate over the historical period? 2. How might future policies (on climate, air quality and land use) affect the abundances of NTCFs and theirmore » climate impacts? 3.How do uncertainties in historical NTCF emissions affect radiative forcing estimates? 4. How important are climate feedbacks to natural NTCF emissions, atmospheric composition, and radiative effects? These questions will be addressed through targeted simulations with CMIP6 climate models that include an interactive representation of tropospheric aerosols and atmospheric chemistry. These simulations build on the CMIP6 Diagnostic, Evaluation and Characterization of Klima (DECK) experiments, the CMIP6 historical simulations, and future projections performed elsewhere in CMIP6, allowing the contributions from aerosols and/or chemistry to be quantified. As a result, specific diagnostics are requested as part of the CMIP6 data request to highlight the chemical composition of the atmosphere, to evaluate the performance of the models, and to understand differences in behaviour between them.« less

  1. Combined anaerobic and aerobic digestion for increased solids reduction and nitrogen removal.

    PubMed

    Novak, John T; Banjade, Sarita; Murthy, Sudhir N

    2011-01-01

    A unique sludge digestion system consisting of anaerobic digestion followed by aerobic digestion and then a recycle step where thickened sludge from the aerobic digester was recirculated back to the anaerobic unit was studied to determine the impact on volatile solids (VS) reduction and nitrogen removal. It was found that the combined anaerobic/aerobic/anaerobic (ANA/AER/ANA) system provided 70% VS reduction compared to 50% for conventional mesophilic anaerobic digestion with a 20 day SRT and 62% for combined anaerobic/aerobic (ANA/AER) digestion with a 15 day anaerobic and a 5 day aerobic SRT. Total Kjeldahl nitrogen (TKN) removal for the ANA/AER/ANA system was 70% for sludge wasted from the aerobic unit and 43.7% when wasted from the anaerobic unit. TKN removal was 64.5% for the ANA/AER system. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Microphysical and Optical Properties of Saharan Dust Measured during the ICE-D Aircraft Campaign

    NASA Astrophysics Data System (ADS)

    Ryder, Claire; Marenco, Franco; Brooke, Jennifer; Cotton, Richard; Taylor, Jonathan

    2017-04-01

    During August 2015, the UK FAAM BAe146 research aircraft was stationed in Cape Verde off the coast of West Africa. Measurements of Saharan dust, and ice and liquid water clouds, were taken for the ICE-D (Ice in Clouds Experiment - Dust) project - a multidisciplinary project aimed at further understanding aerosol-cloud interactions. Six flights formed part of a sub-project, AER-D, solely focussing on measurements of Saharan dust within the African dust plume. Dust loadings observed during these flights varied (aerosol optical depths of 0.2 to 1.3), as did the vertical structure of the dust, the size distributions and the optical properties. The BAe146 was fully equipped to measure size distributions covering aerosol accumulation, coarse and giant modes. Initial results of size distribution and optical properties of dust from the AER-D flights will be presented, showing that a substantial coarse mode was present, in agreement with previous airborne measurements. Optical properties of dust relating to the measured size distributions will also be presented.

  3. Differentiation between electron transport sensing and proton motive force sensing by the Aer and Tsr receptors for aerotaxis

    PubMed Central

    Edwards, Jessica C.; Johnson, Mark S.; Taylor, Barry L.

    2007-01-01

    SUMMARY Aerotaxis (oxygen-seeking) behavior in Escherichia coli is a response to changes in the electron transport system and not oxygen per se. Because changes in proton motive force (PMF) are coupled to respiratory electron transport, it is difficult to differentiate between PMF, electron transport or redox, all primary candidates for the signal sensed by the aerotaxis receptors, Aer and Tsr. We constructed electron transport mutants that produced different respiratory H+/e- stoichiometries. These strains expressed binary combinations of one NADH dehydrogenase and one quinol oxidase. We then introduced either an aer or tsr mutation into each mutant to create two sets of electron transport mutants. In vivo H+/e- ratios for strains grown in glycerol medium ranged from 1.46 ± 0.18 to 3.04 ± 0.47, but rates of respiration and growth were similar. The PMF jump in response to oxygen was proportional to the H+/e- ratio in each set of mutants (r2 = 0.986 to 0.996). The length of Tsr-mediated aerotaxis responses increased with the PMF jump (r2 = 0.988), but Aer-mediated responses did not correlate with either PMF changes (r2 = 0.297) or the rate of electron transport (r2 = 0.066). Aer-mediated responses were linked to NADH dehydrogenase I, although there was no absolute requirement. The data indicate that Tsr responds to changes in PMF, but strong Aer responses to oxygen are associated with redox changes in NADH dehydrogenase I PMID:16995896

  4. The Involvement of Lipid Peroxide-Derived Aldehydes in Aluminum Toxicity of Tobacco Roots1[W][OA

    PubMed Central

    Yin, Lina; Mano, Jun'ichi; Wang, Shiwen; Tsuji, Wataru; Tanaka, Kiyoshi

    2010-01-01

    Oxidative injury of the root elongation zone is a primary event in aluminum (Al) toxicity in plants, but the injuring species remain unidentified. We verified the hypothesis that lipid peroxide-derived aldehydes, especially highly electrophilic α,β-unsaturated aldehydes (2-alkenals), participate in Al toxicity. Transgenic tobacco (Nicotiana tabacum) overexpressing Arabidopsis (Arabidopsis thaliana) 2-alkenal reductase (AER-OE plants), wild-type SR1, and an empty vector-transformed control line (SR-Vec) were exposed to AlCl3 on their roots. Compared with the two controls, AER-OE plants suffered less retardation of root elongation under AlCl3 treatment and showed more rapid regrowth of roots upon Al removal. Under AlCl3 treatment, the roots of AER-OE plants accumulated Al and H2O2 to the same levels as did the sensitive controls, while they accumulated lower levels of aldehydes and suffered less cell death than SR1 and SR-Vec roots. In SR1 roots, AlCl3 treatment markedly increased the contents of the highly reactive 2-alkenals acrolein, 4-hydroxy-(E)-2-hexenal, and 4-hydroxy-(E)-2-nonenal and other aldehydes such as malondialdehyde and formaldehyde. In AER-OE roots, accumulation of these aldehydes was significantly less. Growth of the roots exposed to 4-hydroxy-(E)-2-nonenal and (E)-2-hexenal were retarded more in SR1 than in AER-OE plants. Thus, the lipid peroxide-derived aldehydes, formed downstream of reactive oxygen species, injured root cells directly. Their suppression by AER provides a new defense mechanism against Al toxicity. PMID:20023145

  5. Nonlinear wave interactions in shallow water magnetohydrodynamics of astrophysical plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimachkov, D. A., E-mail: klimachkovdmitry@gmail.com; Petrosyan, A. S., E-mail: apetrosy@iki.rssi.ru

    2016-05-15

    The rotating magnetohydrodynamic flows of a thin layer of astrophysical and space plasmas with a free surface in a vertical external magnetic field are considered in the shallow water approximation. The presence of a vertical external magnetic field changes significantly the dynamics of wave processes in an astrophysical plasma, in contrast to a neutral fluid and a plasma layer in an external toroidal magnetic field. There are three-wave nonlinear interactions in the case under consideration. Using the asymptotic method of multiscale expansions, we have derived nonlinear equations for the interaction of wave packets: three magneto- Poincare waves, three magnetostrophic waves,more » two magneto-Poincare and one magnetostrophic waves, and two magnetostrophic and one magneto-Poincare waves. The existence of decay instabilities and parametric amplification is predicted. We show that a magneto-Poincare wave decays into two magneto-Poincare waves, a magnetostrophic wave decays into two magnetostrophic waves, a magneto-Poincare wave decays into one magneto-Poincare and one magnetostrophic waves, and a magnetostrophic wave decays into one magnetostrophic and one magneto-Poincare waves. There are the following parametric amplification mechanisms: the parametric amplification of magneto-Poincare waves, the parametric amplification of magnetostrophic waves, the amplification of a magneto-Poincare wave in the field of a magnetostrophic wave, and the amplification of a magnetostrophic wave in the field of a magneto-Poincare wave. The instability growth rates and parametric amplification factors have been found for the corresponding processes.« less

  6. DLX5, FGF8 and the Pin1 isomerase control ΔNp63α protein stability during limb development: a regulatory loop at the basis of the SHFM and EEC congenital malformations

    PubMed Central

    Restelli, Michela; Lopardo, Teresa; Lo Iacono, Nadia; Garaffo, Giulia; Conte, Daniele; Rustighi, Alessandra; Napoli, Marco; Del Sal, Giannino; Perez-Morga, David; Costanzo, Antonio; Merlo, Giorgio Roberto; Guerrini, Luisa

    2014-01-01

    Ectrodactyly, or Split-Hand/Foot Malformation (SHFM), is a congenital condition characterized by the loss of central rays of hands and feet. The p63 and the DLX5;DLX6 transcription factors, expressed in the embryonic limb buds and ectoderm, are disease genes for these conditions. Mutations of p63 also cause the ectodermal dysplasia–ectrodactyly–cleft lip/palate (EEC) syndrome, comprising SHFM. Ectrodactyly is linked to defects of the apical ectodermal ridge (AER) of the developing limb buds. FGF8 is the key signaling molecule in this process, able to direct proximo-distal growth and patterning of the skeletal primordial of the limbs. In the limb buds of both p63 and Dlx5;Dlx6 murine models of SHFM, the AER is poorly stratified and FGF8 expression is severely reduced. We show here that the FGF8 locus is a downstream target of DLX5 and that FGF8 counteracts Pin1–ΔNp63α interaction. In vivo, lack of Pin1 leads to accumulation of the p63 protein in the embryonic limbs and ectoderm. We show also that ΔNp63α protein stability is negatively regulated by the interaction with the prolyl-isomerase Pin1, via proteasome-mediated degradation; p63 mutant proteins associated with SHFM or EEC syndromes are resistant to Pin1 action. Thus, DLX5, p63, Pin1 and FGF8 participate to the same time- and location-restricted regulatory loop essential for AER stratification, hence for normal patterning and skeletal morphogenesis of the limb buds. These results shed new light on the molecular mechanisms at the basis of the SHFM and EEC limb malformations. PMID:24569166

  7. Resonance fluorescence based two- and three-dimensional atom localization

    NASA Astrophysics Data System (ADS)

    Wahab, Abdul; Rahmatullah; Qamar, Sajid

    2016-06-01

    Two- and three-dimensional atom localization in a two-level atom-field system via resonance fluorescence is suggested. For the two-dimensional localization, the atom interacts with two orthogonal standing-wave fields, whereas for the three-dimensional atom localization, the atom interacts with three orthogonal standing-wave fields. The effect of the detuning and phase shifts associated with the corresponding standing-wave fields is investigated. A precision enhancement in position measurement of the single atom can be noticed via the control of the detuning and phase shifts.

  8. Numerical Study of a Three Dimensional Interaction between two bow Shock Waves and the Aerodynamic Heating on a Wedge Shaped Nose Cone

    NASA Astrophysics Data System (ADS)

    Wu, N.; Wang, J. H.; Shen, L.

    2017-03-01

    This paper presents a numerical investigation on the three-dimensional interaction between two bow shock waves in two environments, i.e. ground high-enthalpy wind tunnel test and real space flight, using Fluent 15.0. The first bow shock wave, also called induced shock wave, which is generated by the leading edge of a hypersonic vehicle. The other bow shock wave can be deemed objective shock wave, which is generated by the cowl clip of hypersonic inlet, and in this paper the inlet is represented by a wedge shaped nose cone. The interaction performances including flow field structures, aerodynamic pressure and heating are analyzed and compared between the ground test and the real space flight. Through the analysis and comparison, we can find the following important phenomena: 1) Three-dimensional complicated flow structures appear in both cases, but only in the real space flight condition, a local two-dimensional type IV interaction appears; 2) The heat flux and pressure in the interaction region are much larger than those in the no-interaction region in both cases, but the peak values of the heat flux and pressure in real space flight are smaller than those in ground test. 3) The interaction region on the objective surface are different in the two cases, and there is a peak value displacement of 3 mm along the stagnation line.

  9. Structure of CARB-4 and AER-1 CarbenicillinHydrolyzing β-Lactamases

    PubMed Central

    Sanschagrin, François; Bejaoui, Noureddine; Levesque, Roger C.

    1998-01-01

    We determined the nucleotide sequences of blaCARB-4 encoding CARB-4 and deduced a polypeptide of 288 amino acids. The gene was characterized as a variant of group 2c carbenicillin-hydrolyzing β-lactamases such as PSE-4, PSE-1, and CARB-3. The level of DNA homology between the bla genes for these β-lactamases varied from 98.7 to 99.9%, while that between these genes and blaCARB-4 encoding CARB-4 was 86.3%. The blaCARB-4 gene was acquired from some other source because it has a G+C content of 39.1%, compared to a G+C content of 67% for typical Pseudomonas aeruginosa genes. DNA sequencing revealed that blaAER-1 shared 60.8% DNA identity with blaPSE-3 encoding PSE-3. The deduced AER-1 β-lactamase peptide was compared to class A, B, C, and D enzymes and had 57.6% identity with PSE-3, including an STHK tetrad at the active site. For CARB-4 and AER-1, conserved canonical amino acid boxes typical of class A β-lactamases were identified in a multiple alignment. Analysis of the DNA sequences flanking blaCARB-4 and blaAER-1 confirmed the importance of gene cassettes acquired via integrons in bla gene distribution. PMID:9687391

  10. Multicasting mesh AER: a scalable assembly approach for reconfigurable neuromorphic structured AER systems. Application to ConvNets.

    PubMed

    Zamarreno-Ramos, C; Linares-Barranco, A; Serrano-Gotarredona, T; Linares-Barranco, B

    2013-02-01

    This paper presents a modular, scalable approach to assembling hierarchically structured neuromorphic Address Event Representation (AER) systems. The method consists of arranging modules in a 2D mesh, each communicating bidirectionally with all four neighbors. Address events include a module label. Each module includes an AER router which decides how to route address events. Two routing approaches have been proposed, analyzed and tested, using either destination or source module labels. Our analyses reveal that depending on traffic conditions and network topologies either one or the other approach may result in better performance. Experimental results are given after testing the approach using high-end Virtex-6 FPGAs. The approach is proposed for both single and multiple FPGAs, in which case a special bidirectional parallel-serial AER link with flow control is exploited, using the FPGA Rocket-I/O interfaces. Extensive test results are provided exploiting convolution modules of 64 × 64 pixels with kernels with sizes up to 11 × 11, which process real sensory data from a Dynamic Vision Sensor (DVS) retina. One single Virtex-6 FPGA can hold up to 64 of these convolution modules, which is equivalent to a neural network with 262 × 10(3) neurons and almost 32 million synapses.

  11. A numerical study on the effects of wave-current-surge interactions on the height and propagation of sea surface waves in Charleston Harbor during Hurricane Hugo 1989

    NASA Astrophysics Data System (ADS)

    Liu, Huiqing; Xie, Lian

    2009-06-01

    The effects of wave-current interactions on ocean surface waves induced by Hurricane Hugo in and around the Charleston Harbor and its adjacent coastal waters are examined by using a three-dimensional (3D) wave-current coupled modeling system. The 3D storm surge modeling component of the coupled system is based on the Princeton Ocean Model (POM), the wave modeling component is based on the third generation wave model, Simulating WAves Nearshore (SWAN), and the inundation model is adopted from [Xie, L., Pietrafesa, L. J., Peng, M., 2004. Incorporation of a mass-conserving inundation scheme into a three-dimensional storm surge model. J. Coastal Res., 20, 1209-1223]. The results indicate that the change of water level associated with the storm surge is the primary cause for wave height changes due to wave-surge interaction. Meanwhile, waves propagating on top of surge cause a feedback effect on the surge height by modulating the surface wind stress and bottom stress. This effect is significant in shallow coastal waters, but relatively small in offshore deep waters. The influence of wave-current interaction on wave propagation is relatively insignificant, since waves generally propagate in the direction of the surface currents driven by winds. Wave-current interactions also affect the surface waves as a result of inundation and drying induced by the storm. Waves break as waters retreat in regions of drying, whereas waves are generated in flooded regions where no waves would have occurred without the flood water.

  12. Effect of dynamical phase on the resonant interaction among tsunami edge wave modes

    USGS Publications Warehouse

    Geist, Eric L.

    2018-01-01

    Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ1 + θ2 − θ3 is constant at the value for maximum energy exchange (φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.

  13. Effect of Dynamical Phase on the Resonant Interaction Among Tsunami Edge Wave Modes

    NASA Astrophysics Data System (ADS)

    Geist, Eric L.

    2018-02-01

    Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ 1 + θ 2 - θ 3 is constant at the value for maximum energy exchange (φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.

  14. Effect of Dynamical Phase on the Resonant Interaction Among Tsunami Edge Wave Modes

    NASA Astrophysics Data System (ADS)

    Geist, Eric L.

    2018-04-01

    Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ 1 + θ 2 - θ 3 is constant at the value for maximum energy exchange ( φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.

  15. The effect of obesity and type 1 diabetes on renal function in children and adolescents.

    PubMed

    Franchini, Simone; Savino, Alessandra; Marcovecchio, M Loredana; Tumini, Stefano; Chiarelli, Francesco; Mohn, Angelika

    2015-09-01

    Early signs of renal complications can be common in youths with type 1 diabetes (T1D). Recently, there has been an increasing interest in potential renal complications associated with obesity, paralleling the epidemics of this condition, although there are limited data in children. Obese children and adolescents present signs of early alterations in renal function similar to non-obese peers with T1D. Eighty-three obese (age: 11.6 ± 3.0 yr), 164 non-obese T1D (age: 12.4 ± 3.2 yr), and 71 non-obese control (age: 12.3 ± 3.2 yr) children and adolescents were enrolled in the study. Anthropometric parameters and blood pressure were measured. Renal function was assessed by albumin excretion rate (AER), serum cystatin C, creatinine and estimated glomerular filtration rate (e-GFR), calculated using the Bouvet's formula. Obese and non-obese T1D youths had similar AER [8.9(5.9-10.8) vs. 8.7(5.9-13.1) µg/min] and e-GFR levels (114.8 ± 19.6 vs. 113.4 ± 19.1 mL/min), which were higher than in controls [AER: 8.1(5.9-8.7) µg/min, e-GFR: 104.7 ± 18.9 mL/min]. Prevalence of microalbuminuria and hyperfiltration was similar between obese and T1D youths and higher than their control peers (6.0 vs. 8.0 vs. 0%, p = 0.02; 15.9 vs. 15.9 vs. 4.3%, p = 0.03, respectively). Body mass index (BMI) z-score was independently related to e-GFR (r = 0.328; p < 0.001), and AER (r = 0.138; p = 0.017). Hemoglobin A1c (HbA1c) correlated with AER (r = 0.148; p = 0.007) but not with eGFR (r = 0.041; p = 0.310). Obese children and adolescents show early alterations in renal function, compared to normal weight peers, and they have similar renal profiles than age-matched peers with T1D. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Increased Uptake of HCV Testing through a Community-Based Educational Intervention in Difficult-to-Reach People Who Inject Drugs: Results from the ANRS-AERLI Study

    PubMed Central

    Roux, Perrine; Rojas Castro, Daniela; Ndiaye, Khadim; Debrus, Marie; Protopopescu, Camélia; Le Gall, Jean-Marie; Haas, Aurélie; Mora, Marion; Spire, Bruno; Suzan-Monti, Marie; Carrieri, Patrizia

    2016-01-01

    Aims The community-based AERLI intervention provided training and education to people who inject drugs (PWID) about HIV and HCV transmission risk reduction, with a focus on drug injecting practices, other injection-related complications, and access to HIV and HCV testing and care. We hypothesized that in such a population where HCV prevalence is very high and where few know their HCV serostatus, AERLI would lead to increased HCV testing. Methods The national multisite intervention study ANRS-AERLI consisted in assessing the impact of an injection-centered face-to-face educational session offered in volunteer harm reduction (HR) centers (“with intervention”) compared with standard HR centers (“without intervention”). The study included 271 PWID interviewed on three occasions: enrolment, 6 and 12 months. Participants in the intervention group received at least one face-to-face educational session during the first 6 months. Measurements The primary outcome of this analysis was reporting to have been tested for HCV during the previous 6 months. Statistical analyses used a two-step Heckman approach to account for bias arising from the non-randomized clustering design. This approach identified factors associated with HCV testing during the previous 6 months. Findings Of the 271 participants, 127 and 144 were enrolled in the control and intervention groups, respectively. Of the latter, 113 received at least one educational session. For the present analysis, we selected 114 and 88 participants eligible for HCV testing in the control and intervention groups, respectively. In the intervention group, 44% of participants reported having being tested for HCV during the previous 6 months at enrolment and 85% at 6 months or 12 months. In the control group, these percentages were 51% at enrolment and 78% at 12 months. Multivariable analyses showed that participants who received at least one educational session during follow-up were more likely to report HCV testing, compared with those who did not receive any intervention (95%[CI] = 4.13[1.03;16.60]). Conclusion The educational intervention AERLI had already shown efficiency in reducing HCV at-risk practices and associated cutaneous complications and also seems to have a positive impact in increasing HCV testing in PWID. PMID:27294271

  17. Analysis of technical alternative technologies for the development of context-driven composable environmental representations for JSB

    NASA Astrophysics Data System (ADS)

    Hummel, John R.; Bergenthal, Jeff J.; Seng, William F.; Moulton, Joseph R., Jr.; Prager, S. D.

    2004-08-01

    The Joint Synthetic Battlespace for the Air Force (JSB-AF) is being developed to provide realistic representations of friendly and threat capabilities and the natural environmental conditions to support a variety of Department of Defense missions including training, mission rehearsal, decision support, acquisition, deployment, employment, operations, and the development of Courses of Action. This paper addresses three critical JSB issues associated with providing environ-mental representations to Modeling and Simulation (M&S) applications. First, how should the requirements for envi-ronmental functionality in a JSB-AF application be collected, analyzed, and used to define an Authoritative Environ-mental Representation (AER)? Second, how can JSB-AF AERs be generated? Third, once an AER has been generated, how should it be "served up" to the JSB-AF components? Our analyses of these issues will be presented from a general M&S perspective, with examples given from a JSB-AF centered view. In the context of this effort, the term "representa-tions" is meant to incorporate both basic environmental "data" (e.g., temperature, pressure, slope, elevation, etc.) and "effects", properties that can be derived from these data using physics-based models or empirical relationship from the fundamental data (e.g., extinction coefficients, radiance, soil moisture strength, etc.) We present a state-of-the-art review of the existing processes and technologies that address these questions.

  18. Effects of leaf hair points of a desert moss on water retention and dew formation: implications for desiccation tolerance.

    PubMed

    Tao, Ye; Zhang, Yuan Ming

    2012-05-01

    Leaf hair points (LHPs) are important morphological structures in many desiccation-tolerant mosses, but study of their functions has been limited. A desert moss, Syntrichia caninervis, was chosen for examination of the ecological effects of LHPs on water retention and dew formation at individual and population (patch) levels. Although LHPs were only 4.77% of shoot weight, they were able to increase absolute water content (AWC) by 24.87%. The AWC of samples with LHPs was always greater than for those without LHPs during dehydration. The accumulative evaporation ratio (AER) showed an opposite trend. AWC, evaporation ratio and AER of shoots with LHPs took 20 min longer to reach a completely dehydrated state than shoots without LHPs. At the population level, dew formation on moss crusts with LHPs was faster than on crusts without LHPs, and the former had higher daily and total dew amounts. LHPs were able to improve dew amounts on crusts by 10.26%. Following three simulated rainfall events (1, 3 and 6 mm), AERs from crusts with LHPs were always lower than from crusts without LHPs. LHPs can therefore significantly delay and reduce evaporation. We confirm that LHPs are important desiccation-tolerant features of S. caninervis at both individual and population levels. LHPs greatly aid moss crusts in adapting to arid conditions.

  19. Decoding the drivers of bank erosion on the Mekong river: The roles of the Asian monsoon, tropical storms, and snowmelt.

    PubMed

    Darby, Stephen E; Leyland, Julian; Kummu, Matti; Räsänen, Timo A; Lauri, Hannu

    2013-04-01

    We evaluate links between climate and simulated river bank erosion for one of the world's largest rivers, the Mekong. We employ a process-based model to reconstruct multidecadal time series of bank erosion at study sites within the Mekong's two main hydrological response zones, defining a new parameter, accumulated excess runoff (AER), pertinent to bank erosion. We employ a hydrological model to isolate how snowmelt, tropical storms and monsoon precipitation each contribute to AER and thus modeled bank erosion. Our results show that melt (23.9% at the upstream study site, declining to 11.1% downstream) and tropical cyclones (17.5% and 26.4% at the upstream and downstream sites, respectively) both force significant fractions of bank erosion on the Mekong. We also show (i) small, but significant, declines in AER and hence assumed bank erosion during the 20th century, and; (ii) that significant correlations exist between AER and the Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO). Of these modes of climate variability, we find that IOD events exert a greater control on simulated bank erosion than ENSO events; but the influences of both ENSO and IOD when averaged over several decades are found to be relatively weak. However, importantly, relationships between ENSO, IOD, and AER and hence inferred river bank erosion are not time invariant. Specifically, we show that there is an intense and prolonged epoch of strong coherence between ENSO and AER from the early 1980s to present, such that in recent decades derived Mekong River bank erosion has been more strongly affected by ENSO.

  20. Decoding the drivers of bank erosion on the Mekong river: The roles of the Asian monsoon, tropical storms, and snowmelt

    PubMed Central

    Darby, Stephen E; Leyland, Julian; Kummu, Matti; Räsänen, Timo A; Lauri, Hannu

    2013-01-01

    We evaluate links between climate and simulated river bank erosion for one of the world's largest rivers, the Mekong. We employ a process-based model to reconstruct multidecadal time series of bank erosion at study sites within the Mekong's two main hydrological response zones, defining a new parameter, accumulated excess runoff (AER), pertinent to bank erosion. We employ a hydrological model to isolate how snowmelt, tropical storms and monsoon precipitation each contribute to AER and thus modeled bank erosion. Our results show that melt (23.9% at the upstream study site, declining to 11.1% downstream) and tropical cyclones (17.5% and 26.4% at the upstream and downstream sites, respectively) both force significant fractions of bank erosion on the Mekong. We also show (i) small, but significant, declines in AER and hence assumed bank erosion during the 20th century, and; (ii) that significant correlations exist between AER and the Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO). Of these modes of climate variability, we find that IOD events exert a greater control on simulated bank erosion than ENSO events; but the influences of both ENSO and IOD when averaged over several decades are found to be relatively weak. However, importantly, relationships between ENSO, IOD, and AER and hence inferred river bank erosion are not time invariant. Specifically, we show that there is an intense and prolonged epoch of strong coherence between ENSO and AER from the early 1980s to present, such that in recent decades derived Mekong River bank erosion has been more strongly affected by ENSO. PMID:23926362

  1. Watch-hand-like optical rogue waves in three-wave interactions.

    PubMed

    Chen, Shihua; Soto-Crespo, Jose M; Grelu, Philippe

    2015-01-12

    We investigate the resonant interaction of three optical pulses of different group velocity in quadratic media and report on the novel watch-hand-like super rogue wave patterns. In addition to having a giant wall-like hump, each rogue-wave hand involves a peak amplitude more than five times its background height. We attribute such peculiar structures to the nonlinear superposition of six Peregrine-type solitons. The robustness has been confirmed by numerical simulations. This stability along with the non-overlapping distribution property may facilitate the experimental diagnostics and observation of these super rogue waves.

  2. Probabilistic estimation of residential air exchange rates for population-based human exposure modeling

    EPA Science Inventory

    Residential air exchange rates (AERs) are a key determinant in the infiltration of ambient air pollution indoors. Population-based human exposure models using probabilistic approaches to estimate personal exposure to air pollutants have relied on input distributions from AER meas...

  3. Enhanced Al and Zn removal from coal-mine drainage during rapid oxidation and precipitation of Fe oxides at near-neutral pH

    USGS Publications Warehouse

    Burrows, Jill E.; Cravotta, Charles A.; Peters, Stephen C.

    2017-01-01

    Net-alkaline, anoxic coal-mine drainage containing ∼20 mg/L FeII and ∼0.05 mg/L Al and Zn was subjected to parallel batch experiments: control, aeration (Aer 1 12.6 mL/s; Aer 2 16.8 mL/s; Aer 3 25.0 mL/s), and hydrogen peroxide (H2O2) to test the hypothesis that aeration increases pH, FeII oxidation, hydrous FeIII oxide (HFO) formation, and trace-metal removal through adsorption and coprecipitation with HFO. During 5.5-hr field experiments, pH increased from 6.4 to 6.7, 7.1, 7.6, and 8.1 for the control, Aer 1, Aer 2, and Aer 3, respectively, but decreased to 6.3 for the H2O2 treatment. Aeration accelerated removal of dissolved CO2, Fe, Al, and Zn. In Aer 3, dissolved Al was completely removed within 1 h, but increased to ∼20% of the initial concentration after 2.5 h when pH exceeded 7.5. H2O2 promoted rapid removal of all dissolved Fe and Al, and 13% of dissolved Zn.Kinetic modeling with PHREEQC simulated effects of aeration on pH, CO2, Fe, Zn, and Al. Aeration enhanced Zn adsorption by increasing pH and HFO formation while decreasing aqueous CO2 available to form ZnCO30 and Zn(CO3)22− at high pH. Al concentrations were inconsistent with solubility control by Al minerals or Al-containing HFO, but could be simulated by adsorption on HFO at pH < 7.5 and desorption at higher pH where Al(OH)4− was predominant. Thus, aeration or chemical oxidation with pH adjustment to ∼7.5 could be effective for treating high-Fe and moderate-Zn concentrations, whereas chemical oxidation without pH adjustment may be effective for treating high-Fe and moderate-Al concentrations.

  4. Res-E Support Policies in the Baltic States: Electricity Price Aspect (Part II)

    NASA Astrophysics Data System (ADS)

    Bobinaite, V.; Priedite, I.

    2015-04-01

    Increasing volumes of electricity derived from renewable energy sources (RES-E) affect the electricity market prices and the prices for final electricity consumers in the Baltic States. The results of a multivariate regression analysis show that in 2013 the RES-E contributed to decreasing the electricity market prices in the Baltic States. However, the final electricity consumers pay for the promotion of RES-E through the approved RES-E component which has a tendency to increase. It is estimated that in 2013 the net benefits from the wind electricity promotion were achieved in Lithuania and Latvia while the net cost - in Estonia. This suggests that the economic efficiency of the wind electricity support scheme based on the application of feed-in tariffs was higher than that based on the feed-in premium. Rakstā analizēta elektroenerģijas ražošanas no atjaunojamiem energoresursiem (AER-E) palielināšanas ietekme uz elektroenerģijas tirgus cenu un gala cenu elektroenerģijas lietotājiem Baltijas valstīs. Daudzfaktoru regresijas analīzes rezultāti atklāja, ka AER-E 2013. gadā varētu samazināt elektroenerģijas tirgus cenas Baltijas valstīs. Tomēr jāņem vērā, ka elektroenerģijas lietotāja gala cenā ir iekļauta AER-E atbalsta komponente, kurai ir raksturīgi palielināties. Aprēķināts, ka no vēja elektroenerģijas ražošanas Latvijā un Lietuvā tika iegūta tīrā peļņa, bet Igaunijā tikai nosedza pašizmaksu. Tas liecina, ka vēja elektroenerģijas atbalsta shēmai, kas balstīta uz obligātā iepirkuma atbalsta principu, ir augstāka ekonomiskā efektivitāte, nekā atbalsta shēmai, kas balstīta uz piemaksu par no AER saražoto elektroenerģiju obligātā iepirkuma ietvaros.

  5. Impact of line parameter database and continuum absorption on GOSAT TIR methane retrieval

    NASA Astrophysics Data System (ADS)

    Yamada, A.; Saitoh, N.; Nonogaki, R.; Imasu, R.; Shiomi, K.; Kuze, A.

    2017-12-01

    The current methane retrieval algorithm (V1) at wavenumber range from 1210 cm-1 to 1360 cm-1 including CH4 ν 4 band from the thermal infrared (TIR) band of Thermal and Near-infrared Sensor for Carbon Observation Fourier Transform Spectrometer (TANSO-FTS) onboard Greenhouse Gases Observing Satellite (GOSAT) uses LBLRTM V12.1 with AER V3.1 line database and MT CKD 2.5.2 continuum absorption model to calculate optical depth. Since line parameter databases have been updated and the continuum absorption may have large uncertainty, the purpose of this study is to assess the impact on {CH}4 retrieval from the choice of line parameter databases and the uncertainty of continuum absorption. We retrieved {CH}4 profiles with replacement of line parameter database from AER V3.1 to AER v1.0, HITRAN 2004, HITRAN 2008, AER V3.2, or HITRAN 2012 (Rothman et al. 2005, 2009, and 2013. Clough et al., 2005), we assumed 10% larger continuum absorption coefficients and 50% larger temperature dependent coefficient of continuum absorption based on the report by Paynter and Ramaswamy (2014). We compared the retrieved CH4 with the HIPPO CH4 observation (Wofsy et al., 2012). The difference from HIPPO observation of AER V3.2 was the smallest and 24.1 ± 45.9 ppbv. The differences of AER V1.0, HITRAN 2004, HITRAN 2008, and HITRAN 2012 were 35.6 ± 46.5 ppbv, 37.6 ± 46.3 ppbv, 32.1 ± 46.1 ppbv, and 35.2 ± 46.0 ppbv, respectively. Maximum {CH}4 retrieval differences were -0.4 ppbv at the layer of 314 hPa when we used 10% larger absorption coefficients of {H}2O foreign continuum. Comparing AER V3.2 case to HITRAN 2008 case, the line coupling effect reduced difference by 8.0 ppbv. Line coupling effects were important for GOSAT TIR {CH}4 retrieval. Effects from the uncertainty of continuum absorption were negligible small for GOSAT TIR CH4 retrieval.

  6. Determinants of indoor and personal exposure to PM 2.5 of indoor and outdoor origin during the RIOPA study

    NASA Astrophysics Data System (ADS)

    Meng, Qing Yu; Spector, Dalia; Colome, Steven; Turpin, Barbara

    2009-12-01

    Effects of physical/environmental factors on fine particle (PM 2.5) exposure, outdoor-to-indoor transport and air exchange rate ( AER) were examined. The fraction of ambient PM 2.5 found indoors ( F INF) and the fraction to which people are exposed ( α) modify personal exposure to ambient PM 2.5. Because F INF, α, and AER are infrequently measured, some have used air conditioning (AC) as a modifier of ambient PM 2.5 exposure. We found no single variable that was a good predictor of AER. About 50% and 40% of the variation in F INF and α, respectively, was explained by AER and other activity variables. AER alone explained 36% and 24% of the variations in F INF and α, respectively. Each other predictor, including Central AC Operation, accounted for less than 4% of the variation. This highlights the importance of AER measurements to predict F INF and α. Evidence presented suggests that outdoor temperature and home ventilation features affect particle losses as well as AER, and the effects differ. Total personal exposures to PM 2.5 mass/species were reconstructed using personal activity and microenvironmental methods, and compared to direct personal measurement. Outdoor concentration was the dominant predictor of (partial R2 = 30-70%) and the largest contributor to (20-90%) indoor and personal exposures for PM 2.5 mass and most species. Several activities had a dramatic impact on personal PM 2.5 mass/species exposures for the few study participants exposed to or engaged in them, including smoking and woodworking. Incorporating personal activities (in addition to outdoor PM 2.5) improved the predictive power of the personal activity model for PM 2.5 mass/species; more detailed information about personal activities and indoor sources is needed for further improvement (especially for Ca, K, OC). Adequate accounting for particle penetration and persistence indoors and for exposure to non-ambient sources could potentially increase the power of epidemiological analyses linking health effects to particulate exposures.

  7. Guided waves in anisotropic and quasi-isotropic aerospace composites: three-dimensional simulation and experiment.

    PubMed

    Leckey, Cara A C; Rogge, Matthew D; Raymond Parker, F

    2014-01-01

    Three-dimensional (3D) elastic wave simulations can be used to investigate and optimize nondestructive evaluation (NDE) and structural health monitoring (SHM) ultrasonic damage detection techniques for aerospace materials. 3D anisotropic elastodynamic finite integration technique (EFIT) has been implemented for ultrasonic waves in carbon fiber reinforced polymer (CFRP) composite laminates. This paper describes 3D EFIT simulations of guided wave propagation in undamaged and damaged anisotropic and quasi-isotropic composite plates. Comparisons are made between simulations of guided waves in undamaged anisotropic composite plates and both experimental laser Doppler vibrometer (LDV) wavefield data and dispersion curves. Time domain and wavenumber domain comparisons are described. Wave interaction with complex geometry delamination damage is then simulated to investigate how simulation tools incorporating realistic damage geometries can aid in the understanding of wave interaction with CFRP damage. In order to move beyond simplistic assumptions of damage geometry, volumetric delamination data acquired via X-ray microfocus computed tomography is directly incorporated into the simulation. Simulated guided wave interaction with the complex geometry delamination is compared to experimental LDV time domain data and 3D wave interaction with the volumetric damage is discussed. Published by Elsevier B.V.

  8. Experimental research on crossing shock wave boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Settles, G. S.; Garrison, T. J.

    1994-10-01

    An experimental research effort of the Penn State Gas Dynamics Laboratory on the subject of crossing shock wave boundary layer interactions is reported. This three year study was supported by AFOSR Grant 89-0315. A variety of experimental techniques were employed to study the above phenomena including planar laser scattering flowfield visualization, kerosene lampblack surface flow visualization, laser-interferometer skin friction surveys, wall static pressure measurements, and flowfield five-hole probe surveys. For a model configuration producing two intersecting shock waves, measurements were made for a range of oblique shock strengths at freestream Mach numbers of 3.0 and 3.85. Additionally, measurements were made at Mach 3.85 for a configuration producing three intersecting waves. The combined experimental dataset was used to formulate the first detailed flowfield models of the crossing-shock and triple-shock wave/boundary layer interactions. The structure of these interactions was found to be similar over a broad range of interaction strengths and is dominated by a large, separated, viscous flow region.

  9. Shock wave/turbulent boundary layer interaction in the flow field of a tri-dimension wind tunnel

    NASA Technical Reports Server (NTRS)

    Benay, R.; Pot, T.

    1986-01-01

    The first results of a thorough experimental analysis of a strong three-dimensional shock-wave/turbulent boundary-layer interaction occurring in a three dimensional transonic channel are presented. The aim of this experiment is to help in the physical understanding of a complex field, including several separations, and to provide a well documented case to test computational methods. The flowfield has been probed in many points by means of a three-component laser Doppler velocimeter. The results presented relate only to the mean velocity field. They clearly show the formation in the flow of a strong vortical motion resulting from the shock wave interaction.

  10. Electromagnetic radiation from beam-plasma instabilities

    NASA Technical Reports Server (NTRS)

    Pritchett, P. L.; Dawson, J. M.

    1983-01-01

    A computer simulation is developed for the generation of electromagnetic radiation in an electron beam-plasma interaction. The plasma is treated as a two-dimensional finite system, and effects of a continuous nonrelativistic beam input are accounted for. Three momentum and three field components are included in the simulation, and an external magnetic field is excluded. EM radiation generation is possible through interaction among Langmuir oscillations, ion-acoustic waves, and the electromagnetic wave, producing radiation perpendicular to the beam. The radiation is located near the plasma frequency, and polarized with the E component parallel to the beam. The scattering of Langmuir waves caused by ion-acoustic fluctuations generates the radiation. Comparison with laboratory data for the three-wave interactions shows good agreement in terms of the radiation levels produced, which are small relative to the plasma thermal energy.

  11. Theory of inertial waves in rotating fluids

    NASA Astrophysics Data System (ADS)

    Gelash, Andrey; L'vov, Victor; Zakharov, Vladimir

    2017-04-01

    The inertial waves emerge in the geophysical and astrophysical flows as a result of Earth rotation [1]. The linear theory of inertial waves is known well [2] while the influence of nonlinear effects of wave interactions are subject of many recent theoretical and experimental studies. The three-wave interactions which are allowed by inertial waves dispersion law (frequency is proportional to cosine of the angle between wave direction and axes of rotation) play an exceptional role. The recent studies on similar type of waves - internal waves, have demonstrated the possibility of formation of natural wave attractors in the ocean (see [3] and references herein). This wave focusing leads to the emergence of strong three-wave interactions and subsequent flows mixing. We believe that similar phenomena can take place for inertial waves in rotating flows. In this work we present theoretical study of three-wave and four-wave interactions for inertial waves. As the main theoretical tool we suggest the complete Hamiltonian formalism for inertial waves in rotating incompressible fluids [4]. We study three-wave decay instability and then present statistical description of inertial waves in the frame of Hamiltonian formalism. We obtain kinetic equation, anisotropic wave turbulence spectra and study the problem of parametric wave turbulence. These spectra were previously found in [5] by helicity decomposition method. Taking this into account we discuss the advantages of suggested Hamiltonian formalism and its future applications. Andrey Gelash thanks support of the RFBR (Grant No.16-31-60086 mol_a_dk) and Dr. E. Ermanyuk, Dr. I. Sibgatullin for the fruitful discussions. [1] Le Gal, P. Waves and instabilities in rotating and stratified flows, Fluid Dynamics in Physics, Engineering and Environmental Applications. Springer Berlin Heidelberg, 25-40, 2013. [2] Greenspan, H. P. The theory of rotating fluids. CUP Archive, 1968. [3] Brouzet, C., Sibgatullin, I. N., Scolan, H., Ermanyuk, E. V., & Dauxois, T., Internal wave attractors examined using laboratory experiments and 3D numerical simulations. Journal of Fluid Mechanics, 793, 109-131, 2016. [4] Gelash A. A., L'vov V. S., Zakharov V. E. Dynamics of inertial waves in rotating fluids, arXiv preprint arXiv:1604.07136. - 2016. [5] Galtier S. Weak inertial-wave turbulence theory, Physical Review E 68.1: 015301, 2003.

  12. Review of Air Exchange Rate Models for Air Pollution Exposure Assessments

    EPA Science Inventory

    A critical aspect of air pollution exposure assessments is estimation of the air exchange rate (AER) for various buildings, where people spend their time. The AER, which is rate the exchange of indoor air with outdoor air, is an important determinant for entry of outdoor air pol...

  13. 77 FR 58203 - AER Energy Resources, Inc.; Alto Group Holdings, Inc.; Bizrocket.Com Inc.; Fox Petroleum, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] AER Energy Resources, Inc.; Alto Group Holdings, Inc.; Bizrocket.Com Inc.; Fox Petroleum, Inc.; Geopulse Explorations Inc.; Global Technologies... accuracy of press releases concerning the company's revenues. 4. Fox Petroleum, Inc. is a Nevada...

  14. Matter rogue waves in an F=1 spinor Bose-Einstein condensate.

    PubMed

    Qin, Zhenyun; Mu, Gui

    2012-09-01

    We report new types of matter rogue waves of a spinor (three-component) model of the Bose-Einstein condensate governed by a system of three nonlinearly coupled Gross-Pitaevskii equations. The exact first-order rational solutions containing one free parameter are obtained by means of a Darboux transformation for the integrable system where the mean-field interaction is attractive and the spin-exchange interaction is ferromagnetic. For different choices of the parameter, there exists a variety of different shaped solutions including two peaks in bright rogue waves and four dips in dark rogue waves. Furthermore, by utilizing the relation between the three-component and the one-component versions of the nonlinear Schrödinger equation, we can devise higher-order rational solutions, in which three components have different shapes. In addition, it is noteworthy that dark rogue wave features disappear in the third-order rational solution.

  15. Three-wave and four-wave interactions in gravity wave turbulence

    NASA Astrophysics Data System (ADS)

    Aubourg, Quentin; Campagne, Antoine; Peureux, Charles; Ardhuin, Fabrice; Sommeria, Joel; Viboud, Samuel; Mordant, Nicolas

    2017-11-01

    Weak-turbulence theory is a statistical framework to describe a large ensemble of nonlinearly interacting waves. The archetypal example of such system is the ocean surface that is made of interacting surface gravity waves. Here we describe a laboratory experiment dedicated to probe the statistical properties of turbulent gravity waves. We set up an isotropic state of interacting gravity waves in the Coriolis facility (13-m-diam circular wave tank) by exciting waves at 1 Hz by wedge wave makers. We implement a stereoscopic technique to obtain a measurement of the surface elevation that is resolved in both space and time. Fourier analysis shows that the laboratory spectra are systematically steeper than the theoretical predictions and the field observations in the Black Sea by Leckler et al. [F. Leckler et al., J. Phys. Oceanogr. 45, 2484 (2015), 10.1175/JPO-D-14-0237.1]. We identify a strong impact of surface dissipation on the scaling of the Fourier spectrum at the scales that are accessible in the experiments. We use bicoherence and tricoherence statistical tools in frequency and/or wave-vector space to identify the active nonlinear coupling. These analyses are also performed on the field data by Leckler et al. for comparison with the laboratory data. Three-wave coupling is characterized by and shown to involve mostly quasiresonances of waves with second- or higher-order harmonics. Four-wave coupling is not observed in the laboratory but is evidenced in the field data. We discuss temporal scale separation to explain our observations.

  16. The human auditory evoked response

    NASA Technical Reports Server (NTRS)

    Galambos, R.

    1974-01-01

    Figures are presented of computer-averaged auditory evoked responses (AERs) that point to the existence of a completely endogenous brain event. A series of regular clicks or tones was administered to the ear, and 'odd-balls' of different intensity or frequency respectively were included. Subjects were asked either to ignore the sounds (to read or do something else) or to attend to the stimuli. When they listened and counted the odd-balls, a P3 wave occurred at 300msec after stimulus. When the odd-balls consisted of omitted clicks or tone bursts, a similar response was observed. This could not have come from auditory nerve, but only from cortex. It is evidence of recognition, a conscious process.

  17. Three-wave interaction solitons in optical parametric amplification.

    PubMed

    Ibragimov, E; Struthers, A A; Kaup, D J; Khaydarov, J D; Singer, K D

    1999-05-01

    This paper applies three-wave interaction (TWI)-soliton theory to optical parametric amplification when the signal, idler, and pump wave can all contain TWI solitons. We use an analogy between two different velocity regimes to compare the theory with output from an experimental synchronously pumped optical parametric amplifier. The theory explains the observed inability to compress the intermediate group-velocity wave and 20-fold pulse compression in this experiment. The theory and supporting numerics show that one can effectively control the shape and energy of the optical pulses by shifting the TWI solitons in the pulses.

  18. 75 FR 66195 - Schedules of Controlled Substances: Placement of Propofol Into Schedule IV

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-27

    ... published abuse liability studies of propofol in humans in which the reinforcement and reward effects have... reporting by the subject feeling ``high,'' relative to the placebo. The motivation for abuse of propofol is... Reporting System (AERS) DataMart database). In the AERS database, there are reports of propofol diversion...

  19. Linking In-Vehicle Ultrafine Particle Exposures to On-Road Concentrations

    PubMed Central

    Hudda, Neelakshi; Eckel, Sandrah P.; Knibbs, Luke D.; Sioutas, Constantinos; Delfino, Ralph J.; Fruin, Scott A.

    2013-01-01

    For traffic-related pollutants like ultrafine particles (UFP, Dp < 100 nm), a significant fraction of overall exposure occurs within or close to the transit microenvironment. Therefore, understanding exposure to these pollutants in such microenvironments is crucial to accurately assessing overall UFP exposure. The aim of this study was to develop models for predicting in-cabin UFP concentrations if roadway concentrations are known, taking into account vehicle characteristics, ventilation settings, driving conditions and air exchange rates (AER). Particle concentrations and AER were measured in 43 and 73 vehicles, respectively, under various ventilation settings and driving speeds. Multiple linear regression (MLR) and generalized estimating equation (GEE) regression models were used to identify and quantify the factors that determine inside-to-outside (I/O) UFP ratios and AERs across a full range of vehicle types and ages. AER was the most significant determinant of UFP I/O ratios, and was strongly influenced by ventilation setting (recirculation or outside air intake). Inclusion of ventilation fan speed, vehicle age or mileage, and driving speed explained greater than 79% of the variability in measured UFP I/O ratios. PMID:23888122

  20. Characteristics of high and low energy reporting teenagers and their relationship to low energy reporting mothers.

    PubMed

    Vågstrand, Karin; Lindroos, Anna Karin; Linné, Yvonne

    2009-02-01

    To describe the differences in socio-economic characteristics and body measurements between low, adequate and high energy reporting (LER, AER and HER) teenagers; furthermore, to investigate the relationship to misreporting mothers. Cross-sectional study. Habitual dietary intake was reported in a questionnaire. Classification into LER, AER and HER using the Goldberg equation within three activity groups based on physical activity questionnaire and calculated BMR. Stockholm, Sweden. Four hundred and forty-one 16-17-year-old teenagers (57 % girls) and their mothers. Of the teenagers, 17-19 % were classified as HER, while 13-16 % as LER. There was a highly significant trend from HER to LER in BMI (P < 0.001) and body fat % (P < 0.001). There was also a trend in number of working hours of mother (P = 0.01), family income (P = 0.008) and number of siblings (among boys only) (P = 0.02), but not in educational level of either father or mother. HER teenagers were lean, had mothers working fewer hours with lower income and had siblings. It was more likely that an LER girl had an LER mother than an AER mother (OR = 3.32; P = 0.002). The reasons for the high number of over-reporters could be many: misclassification due to growth, lacking established eating pattern due to young age or method-specific. Nevertheless, the inverted characteristic of HER compared to LER indicates that this is a specific group, worth further investigation.

  1. Effect of short-term alkaline intervention on the performance of buffer-free single-chamber microbial fuel cell.

    PubMed

    Yang, Na; Ren, Yueping; Li, Xiufen; Wang, Xinhua

    2017-06-01

    Anolyte acidification is a drawback restricting the electricity generation performance of the buffer-free microbial fuel cells (MFC). In this paper, a small amount of alkali-treated anion exchange resin (AER) was placed in front of the anode in the KCl mediated single-chamber MFC to slowly release hydroxyl ions (OH - ) and neutralize the H + ions that are generated by the anodic reaction in two running cycles. This short-term alkaline intervention to the KCl anolyte has promoted the proliferation of electroactive Geobacter sp. and enhanced the self-buffering capacity of the KCl-AER-MFC. The pH of the KCl anolyte in the KCl-AER-MFC increased and became more stable in each running cycle compared with that of the KCl-MFC after the short-term alkaline intervention. The maximum power density (P max ) of the KCl-AER-MFC increased from 307.5mW·m -2 to 542.8mW·m -2 , slightly lower than that of the PBS-MFC (640.7mW·m -2 ). The coulombic efficiency (CE) of the KCl-AER-MFC increased from 54.1% to 61.2% which is already very close to that of the PBS-MFC (61.9%). The results in this paper indicate that short-term alkaline intervention to the anolyte is an effective strategy to further promote the performance of buffer-free MFCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Comparative analysis of virulence genes, antibiotic resistance and gyrB-based phylogeny of motile Aeromonas species isolates from Nile tilapia and domestic fowl.

    PubMed

    Abu-Elala, N; Abdelsalam, M; Marouf, Sh; Setta, A

    2015-11-01

    The nucleotide sequence analysis of the gyrB gene indicated that the fish Aeromonas spp. isolates could be identified as Aeromonas hydrophila and Aeromonas veronii biovar sobria, whereas chicken Aeromonas spp. isolates identified as Aeromonas caviae. PCR data revealed the presence of Lip, Ser, Aer, ACT and CAI genes in fish Aer. hydrophila isolates, ACT, CAI and Aer genes in fish Aer. veronii bv sobria isolates and Ser and CAI genes in chicken Aer. caviae isolates. All chicken isolates showed variable resistance against all 12 tested antibiotic discs except for cefotaxime, nitrofurantoin, chloramphenicol and ciprofloxacin, only one isolate showed resistance to chloramphenicol and ciprofloxacin. Fish Aeromonads were sensitive to all tested antibiotic discs except amoxicillin, ampicillin-sulbactam and streptomycin. Many integrated fish farms depend on the application of poultry droppings/litter which served as a direct feed for the fish and also acted as pond fertilizers. The application of untreated poultry manure exerts an additional pressure on the microbial world of the fish's environment. Aeromonas species are one of the common bacteria that infect both fish and chicken. The aim of this study was to compare the phenotypic traits and genetic relatedness of aeromonads isolated from two diverse hosts (terrestrial and aquatic), and to investigate if untreated manure possibly enhances Aeromonas dissemination among cohabitant fish with special reference to virulence genes and antibiotic resistant traits. © 2015 The Society for Applied Microbiology.

  3. Long-term risks of subsequent primary neoplasms among survivors of childhood cancer.

    PubMed

    Reulen, Raoul C; Frobisher, Clare; Winter, David L; Kelly, Julie; Lancashire, Emma R; Stiller, Charles A; Pritchard-Jones, Kathryn; Jenkinson, Helen C; Hawkins, Michael M

    2011-06-08

    Survivors of childhood cancer are at excess risk of developing subsequent primary neoplasms but the long-term risks are uncertain. To investigate long-term risks of subsequent primary neoplasms in survivors of childhood cancer, to identify the types that contribute most to long-term excess risk, and to identify subgroups of survivors at substantially increased risk of particular subsequent primary neoplasms that may require specific interventions. British Childhood Cancer Survivor Study--a population-based cohort of 17,981 5-year survivors of childhood cancer diagnosed with cancer at younger than 15 years between 1940 and 1991 in Great Britain, followed up through December 2006. Standardized incidence ratios (SIRs), absolute excess risks (AERs), and cumulative incidence of subsequent primary neoplasms. After a median follow-up time of 24.3 years (mean = 25.6 years), 1354 subsequent primary neoplasms were ascertained; the most frequently observed being central nervous system (n = 344), nonmelanoma skin cancer (n = 278), digestive (n = 105), genitourinary (n = 100), breast (n = 97), and bone (n = 94). The overall SIR was 4 times more than expected (SIR, 3.9; 95% confidence interval [CI], 3.6-4.2; AER, 16.8 per 10,000 person-years). The AER at older than 40 years was highest for digestive and genitourinary subsequent primary neoplasms (AER, 5.9 [95% CI, 2.5-9.3]; and AER, 6.0 [95%CI, 2.3-9.6] per 10,000 person-years, respectively); 36% of the total AER was attributable to these 2 subsequent primary neoplasm sites. The cumulative incidence of colorectal cancer for survivors treated with direct abdominopelvic irradiation was 1.4% (95% CI, 0.7%-2.6%) by age 50 years, comparable with the 1.2% risk in individuals with at least 2 first-degree relatives affected by colorectal cancer. Among a cohort of British childhood cancer survivors, the greatest excess risk associated with subsequent primary neoplasms at older than 40 years was for digestive and genitourinary neoplasms.

  4. The apical ectodermal ridge of the mouse model of ectrodactyly Dlx5;Dlx6−/− shows altered stratification and cell polarity, which are restored by exogenous Wnt5a ligand

    PubMed Central

    Conte, Daniele; Garaffo, Giulia; Lo Iacono, Nadia; Mantero, Stefano; Piccolo, Stefano; Cordenonsi, Michelangelo; Perez-Morga, David; Orecchia, Valeria; Poli, Valeria; Merlo, Giorgio R.

    2016-01-01

    The congenital malformation split hand/foot (SHFM) is characterized by missing central fingers and dysmorphology or fusion of the remaining ones. Type-1 SHFM is linked to deletions/rearrangements of the DLX5–DLX6 locus and point mutations in the DLX5 gene. The ectrodactyly phenotype is reproduced in mice by the double knockout (DKO) of Dlx5 and Dlx6. During limb development, the apical ectodermal ridge (AER) is a key-signaling center responsible for early proximal–distal growth and patterning. In Dlx5;6 DKO hindlimbs, the central wedge of the AER loses multilayered organization and shows down-regulation of FGF8 and Dlx2. In search for the mechanism, we examined the non-canonical Wnt signaling, considering that Dwnt-5 is a target of distalless in Drosophila and the knockout of Wnt5, Ryk, Ror2 and Vangl2 in the mouse causes severe limb malformations. We found that in Dlx5;6 DKO limbs, the AER expresses lower levels of Wnt5a, shows scattered β-catenin responsive cells and altered basolateral and planar cell polarity (PCP). The addition of Wnt5a to cultured embryonic limbs restored the expression of AER markers and its stratification. Conversely, the inhibition of the PCP molecule c-jun N-terminal kinase caused a loss of AER marker expression. In vitro, the addition of Wnt5a on mixed primary cultures of embryonic ectoderm and mesenchyme was able to confer re-polarization. We conclude that the Dlx-related ectrodactyly defect is associated with the loss of basoapical and PCP, due to reduced Wnt5a expression and that the restoration of the Wnt5a level is sufficient to partially reverts AER misorganization and dysmorphology. PMID:26685160

  5. Impacts of Anthropogenic Aerosols on Regional Climate: Extreme Events, Stagnation, and the United States Warming Hole

    NASA Astrophysics Data System (ADS)

    Mascioli, Nora R.

    Extreme temperatures, heat waves, heavy rainfall events, drought, and extreme air pollution events have adverse effects on human health, infrastructure, agriculture and economies. The frequency, magnitude and duration of these events are expected to change in the future in response to increasing greenhouse gases and decreasing aerosols, but future climate projections are uncertain. A significant portion of this uncertainty arises from uncertainty in the effects of aerosol forcing: to what extent were the effects from greenhouse gases masked by aerosol forcing over the historical observational period, and how much will decreases in aerosol forcing influence regional and global climate over the remainder of the 21st century? The observed frequency and intensity of extreme heat and precipitation events have increased in the U.S. over the latter half of the 20th century. Using aerosol only (AER) and greenhouse gas only (GHG) simulations from 1860 to 2005 in the GFDL CM3 chemistry-climate model, I parse apart the competing influences of aerosols and greenhouse gases on these extreme events. I find that small changes in extremes in the "all forcing" simulations reflect cancellations between the effects of increasing anthropogenic aerosols and greenhouse gases. In AER, extreme high temperatures and the number of days with temperatures above the 90th percentile decline over most of the U.S., while in GHG high temperature extremes increase over most of the U.S. The spatial response patterns in AER and GHG are significantly anti-correlated, suggesting a preferred regional mode of response that is largely independent of the type of forcing. Extreme precipitation over the eastern U.S. decreases in AER, particularly in winter, and increases over the eastern and central U.S. in GHG, particularly in spring. Over the 21 st century under the RCP8.5 emissions scenario, the patterns of extreme temperature and precipitation change associated with greenhouse gas forcing dominate. The temperature response pattern in AER and GHG is characterized by strong responses over the western U.S. and weak or opposite signed responses over the southeast U.S., raising the question of whether the observed U.S. "warming hole" could have a forced component. To address this question, I systematically examine observed seasonal temperature trends over all time periods of at least 10 years during 1901-2015. In the northeast and southern U.S., significant summertime cooling occurs from the early 1950s to the mid 1970s, which I partially attribute to increasing anthropogenic aerosol emissions (median fraction of the observed temperature trends explained is 0.69 and 0.17, respectively). In winter, the northeast and southern U.S. cool significantly from the early 1950s to the early 1990s, which I attribute to long-term phase changes in the North Atlantic Oscillation and the Pacific Decadal Oscillation. Rather than being a single phenomenon stemming from a single cause, both the warming hole and its dominant drivers vary by season, region, and time period. Finally, I examine historical and projected future changes in atmospheric stagnation. Stagnation, which is characterized by weak winds and an absence of precipitation, is a meteorological contributor to heat waves, extreme pollution, and drought. Using CM3, I show that regional stagnation trends over the historical period (1860-2005) are driven by changes in anthropogenic aerosol emissions, rather than rising greenhouse gases. In the northeastern and central United States, aerosol-induced changes in surface and upper level winds produce significant decreases in the number of stagnant summer days, while decreasing precipitation in the southeast US increases the number of stagnant summer days. Outside of the U.S., significant drying over eastern China in response to rising aerosol emissions contributed to increased stagnation during 1860-2005. Additionally, this region was found to be particularly sensitive to changes in local aerosol emissions, indicating that decreasing Chinese emissions in efforts to improve air quality will also decrease stagnation. In Europe, I find a dipole response pattern during the historical period wherein stagnation decreases over southern Europe and increases over northern Europe in response to global increases in aerosol emissions. In the future, declining aerosol emissions will likely lead to a reversal of the historical stagnation trends, with increasing greenhouse gases again playing a secondary role. Aerosols have a significant effect on a number of societally important extreme events, including heat waves, intense rainfall events, drought, and stagnation. Further, uncertainty in the strength of aerosol masking of historical greenhouse gas forcing is a significant source of spread in future climate projections. Quantifying these aerosol effects is therefore critical for our ability to accurately project and prepare for future changes in extreme events.

  6. A pilot study using scripted ventilation conditions to identify key factors affecting indoor pollutant concentration and air exchange rate in a residence.

    PubMed

    Johnson, Ted; Myers, Jeffrey; Kelly, Thomas; Wisbith, Anthony; Ollison, Will

    2004-01-01

    A pilot study was conducted using an occupied, single-family test house in Columbus, OH, to determine whether a script-based protocol could be used to obtain data useful in identifying the key factors affecting air-exchange rate (AER) and the relationship between indoor and outdoor concentrations of selected traffic-related air pollutants. The test script called for hourly changes to elements of the test house considered likely to influence air flow and AER, including the position (open or closed) of each window and door and the operation (on/off) of the furnace, air conditioner, and ceiling fans. The script was implemented over a 3-day period (January 30-February 1, 2002) during which technicians collected hourly-average data for AER, indoor, and outdoor air concentrations for six pollutants (benzene, formaldehyde (HCHO), polycyclic aromatic hydrocarbons (PAH), carbon monoxide (CO), nitric oxide (NO), and nitrogen oxides (NO(x))), and selected meteorological variables. Consistent with expectations, AER tended to increase with the number of open exterior windows and doors. The 39 AER values measured during the study when all exterior doors and windows were closed varied from 0.36 to 2.29 h(-1) with a geometric mean (GM) of 0.77 h(-1) and a geometric standard deviation (GSD) of 1.435. The 27 AER values measured when at least one exterior door or window was opened varied from 0.50 to 15.8 h(-1) with a GM of 1.98 h(-1) and a GSD of 1.902. AER was also affected by temperature and wind speed, most noticeably when exterior windows and doors were closed. Results of a series of stepwise linear regression analyses suggest that (1) outdoor pollutant concentration and (2) indoor pollutant concentration during the preceding hour were the "variables of choice" for predicting indoor pollutant concentration in the test house under the conditions of this study. Depending on the pollutant and ventilation conditions, one or more of the following variables produced a small, but significant increase in the explained variance (R(2)-value) of the regression equations: AER, number and location of apertures, wind speed, air-conditioning operation, indoor temperature, outdoor temperature, and relative humidity. The indoor concentrations of CO, PAH, NO, and NO(x) were highly correlated with the corresponding outdoor concentrations. The indoor benzene concentrations showed only moderate correlation with outdoor benzene levels, possibly due to a weak indoor source. Indoor formaldehyde concentrations always exceeded outdoor levels, and the correlation between indoor and outdoor concentrations was not statistically significant, indicating the presence of a strong indoor source.

  7. Exotic topological density waves in cold atomic Rydberg-dressed fermions

    PubMed Central

    Li, Xiaopeng; Sarma, S Das

    2015-01-01

    Versatile controllability of interactions in ultracold atomic and molecular gases has now reached an era where quantum correlations and unconventional many-body phases can be studied with no corresponding analogues in solid-state systems. Recent experiments in Rydberg atomic gases have achieved exquisite control over non-local interactions, allowing novel quantum phases unreachable with the usual local interactions in atomic systems. Here we study Rydberg-dressed atomic fermions in a three-dimensional optical lattice predicting the existence of hitherto unheard-of exotic mixed topological density wave phases. By varying the spatial range of the non-local interaction, we find various chiral density waves with spontaneous time-reversal symmetry breaking, whose quasiparticles form three-dimensional quantum Hall and Weyl semimetal states. Remarkably, certain density waves even exhibit mixed topologies beyond the existing topological classification. Our results suggest gapless fermionic states could exhibit far richer topology than previously expected. PMID:25972134

  8. Computation of three-dimensional shock wave and boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Hung, C. M.

    1985-01-01

    Computations of the impingement of an oblique shock wave on a cylinder and a supersonic flow past a blunt fin mounted on a plate are used to study three dimensional shock wave and boundary layer interaction. In the impingement case, the problem of imposing a planar impinging shock as an outer boundary condition is discussed and the details of particle traces in windward and leeward symmetry planes and near the body surface are presented. In the blunt fin case, differences between two dimensional and three dimensional separation are discussed, and the existence of an unique high speed, low pressure region under the separated spiral vortex core is demonstrated. The accessibility of three dimensional separation is discussed.

  9. Synchronism of nonlinear internal waves in a three-layer fluid

    NASA Astrophysics Data System (ADS)

    Talipova, Tatiana; Kurkina, Oxana; Terletska, Katerina; Rouvinskaya, Ekaterina

    2017-04-01

    In a three layer fluid with arbitrary layer widths and densities the existence of long internal solitons and breathers is proven theoretically and numerically, see for example (Pelinovsky et al., 2007; Lamb et al., 2007). The existence of breather-like waves of the intermediate length is also shown in numerical simulations (Terletska et al., 2016). For such waves conditions of synchronism are valid when a breather of the first mode and a soliton of the second mode move together with the same speed and form an asymmetric solitary wave of the second mode. The process of strong interaction of long nonlinear internal waves in the framework of three-layer Camassa-Choi model demonstrates the same effect (Jo&Choi, 2014; Barros, 2016). We analyze possible synchronism conditions for steady-state internal waves in a three-layer fluid analytically the framework of the Gardner equation, which is valid for long weakly nonlinear internal waves. The equations for synchronism conditions are derived and considered in terms of wave amplitudes, layer widths and density jumps. The configurations of three-layer fluid are found for which such a synchronism is possible. References: Barros R. Large amplitude internal waves in three-layer flows. The forth international conference "Nonlinear Waves - Theory and Applications", MS7, Beijing, China, June 25 - 28, 2016 Pelinovsky E., Polukhina O., Slunyaev A., Talipova T. Internal solitary waves // Chapter 4 in the book "Solitary Waves in Fluids". WIT Press. Southampton, Boston. 2007. P. 85 - 110. K. Terletska., K. T. Jung, T. Talipova, V. Maderich, I. Brovchenko and R. Grimshaw Internal breather-like wave generation by the second mode solitary wave interaction with a step// Physics of Fluids, 2016, accepted

  10. Annual Percentage Rate and Annual Effective Rate: Resolving Confusion in Intermediate Accounting Textbooks

    ERIC Educational Resources Information Center

    Vicknair, David; Wright, Jeffrey

    2015-01-01

    Evidence of confusion in intermediate accounting textbooks regarding the annual percentage rate (APR) and annual effective rate (AER) is presented. The APR and AER are briefly discussed in the context of a note payable and correct formulas for computing each is provided. Representative examples of the types of confusion that we found is presented…

  11. Confinement-induced p-wave resonances from s-wave interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishida, Yusuke; Tan, Shina; School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332

    2010-12-15

    We show that a purely s-wave interaction in three dimensions (3D) can induce higher partial-wave resonances in mixed dimensions. We develop two-body scattering theories in all three cases of 0D-3D, 1D-3D, and 2D-3D mixtures and determine the positions of higher partial-wave resonances in terms of the 3D s-wave scattering length assuming a harmonic confinement potential. We also compute the low-energy scattering parameters in the p-wave channel (scattering volume and effective momentum) that are necessary for the low-energy effective theory of the p-wave resonance. We point out that some of the resonances observed in the Florence group experiment [Phys. Rev. Lett.more » 104, 153202 (2010)] can be interpreted as the p-wave resonances in the 2D-3D mixed dimensions. Our study paves the way for a variety of physics, such as Anderson localization of matter waves under p-wave resonant scatterers.« less

  12. Nonlinear interaction of infrared waves on a VO2 surface at a semiconductor-metal phase transition

    NASA Astrophysics Data System (ADS)

    Berger, N. K.; Zhukov, E. A.; Novokhatskii, V. V.

    1984-04-01

    Nonlinear interactions (including wavefront reversal) of light from CW or pulsed 10.6-micron CO2 lasers at the semiconductor-metal phase transition in a VO2 film are investigated experimentally. The results are presented in graphs and characterized in detail. The intensity reflection coefficients of the three-wave interactions are found to be 0.5 percent for a CW reference wave of intensity 900 mW/sq cm and 42 percent for a pulsed reference wave of threshold density 600-800 microjoule/sq cm.

  13. Localized waves in three-component coupled nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Chen, Yong

    2016-09-01

    We study the generalized Darboux transformation to the three-component coupled nonlinear Schrödinger equation. First- and second-order localized waves are obtained by this technique. In first-order localized wave, we get the interactional solutions between first-order rogue wave and one-dark, one-bright soliton respectively. Meanwhile, the interactional solutions between one-breather and first-order rogue wave are also given. In second-order localized wave, one-dark-one-bright soliton together with second-order rogue wave is presented in the first component, and two-bright soliton together with second-order rogue wave are gained respectively in the other two components. Besides, we observe second-order rogue wave together with one-breather in three components. Moreover, by increasing the absolute values of two free parameters, the nonlinear waves merge with each other distinctly. These results further reveal the interesting dynamic structures of localized waves in the three-component coupled system. Project supported by the Global Change Research Program of China (Grant No. 2015CB953904), the National Natural Science Foundation of China (Grant Nos. 11275072 and 11435005), the Doctoral Program of Higher Education of China (Grant No. 20120076110024), the Network Information Physics Calculation of Basic Research Innovation Research Group of China (Grant No. 61321064), and Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things, China (Grant No. ZF1213).

  14. A three-dimensional simulation of the equatorial quasi-biennial oscillation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, M.; Boville, B.A.

    1992-06-15

    A simulation of the equatorial quasi-biennial oscillation (QBO) has been obtained using a three-dimensional mechanistic model of the stratosphere. The model is a simplified form of the NCAR CCM (Community Climate Model) in which the troposphere has been replaced with a specified geopotential distribution near the tropical tropopause and most of the physical parameterizations have been removed. A Kelvin wave and a Rossby-gravity wave are forced at the bottom boundary as in previous one- and two-dimensional models. The model reproduces most of the principal features of the observed QBO, as do previous models with lower dimensionality. The principal difference betweenmore » the present model and previous QBO models is that the wave propagation is explicitly represented, allowing wave-wave interactions to take place. It is found that these interactions significantly affect the simulated oscillation. The interaction of the Rossby-gravity waves with the Kelvin waves results in about twice as much easterly compared to westerly forcing being required in order to obtain a QBO. 26 refs., 12 figs.« less

  15. 77 FR 13592 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, Eagle Creek Land...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ...; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, Eagle Creek Land Resources, LLC; Notice... 24, 2012, AER NY-Gen, LLC (transferor), Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources.... Cherry, Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources...

  16. 75 FR 27332 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC; Eagle Creek Water Resources, LLC; Eagle Creek Land...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... 9690-106] AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC; Eagle Creek Water Resources, LLC; Eagle Creek... Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources, LLC (transferees) filed an.... Paul Ho, Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources...

  17. Turbulence of Weak Gravitational Waves in the Early Universe.

    PubMed

    Galtier, Sébastien; Nazarenko, Sergey V

    2017-12-01

    We study the statistical properties of an ensemble of weak gravitational waves interacting nonlinearly in a flat space-time. We show that the resonant three-wave interactions are absent and develop a theory for four-wave interactions in the reduced case of a 2.5+1 diagonal metric tensor. In this limit, where only plus-polarized gravitational waves are present, we derive the interaction Hamiltonian and consider the asymptotic regime of weak gravitational wave turbulence. Both direct and inverse cascades are found for the energy and the wave action, respectively, and the corresponding wave spectra are derived. The inverse cascade is characterized by a finite-time propagation of the metric excitations-a process similar to an explosive nonequilibrium Bose-Einstein condensation, which provides an efficient mechanism to ironing out small-scale inhomogeneities. The direct cascade leads to an accumulation of the radiation energy in the system. These processes might be important for understanding the early Universe where a background of weak nonlinear gravitational waves is expected.

  18. Complementary optical rogue waves in parametric three-wave mixing.

    PubMed

    Chen, Shihua; Cai, Xian-Ming; Grelu, Philippe; Soto-Crespo, J M; Wabnitz, Stefan; Baronio, Fabio

    2016-03-21

    We investigate the resonant interaction of two optical pulses of the same group velocity with a pump pulse of different velocity in a weakly dispersive quadratic medium and report on the complementary rogue wave dynamics which are unique to such a parametric three-wave mixing. Analytic rogue wave solutions up to the second order are explicitly presented and their robustness is confirmed by numerical simulations, in spite of the onset of modulation instability activated by quantum noise.

  19. Interactions of large amplitude solitary waves in viscous fluid conduits

    NASA Astrophysics Data System (ADS)

    Lowman, Nicholas K.; Hoefer, M. A.; El, G. A.

    2014-07-01

    The free interface separating an exterior, viscous fluid from an intrusive conduit of buoyant, less viscous fluid is known to support strongly nonlinear solitary waves due to a balance between viscosity-induced dispersion and buoyancy-induced nonlinearity. The overtaking, pairwise interaction of weakly nonlinear solitary waves has been classified theoretically for the Korteweg-de Vries equation and experimentally in the context of shallow water waves, but a theoretical and experimental classification of strongly nonlinear solitary wave interactions is lacking. The interactions of large amplitude solitary waves in viscous fluid conduits, a model physical system for the study of one-dimensional, truly dissipationless, dispersive nonlinear waves, are classified. Using a combined numerical and experimental approach, three classes of nonlinear interaction behavior are identified: purely bimodal, purely unimodal, and a mixed type. The magnitude of the dispersive radiation due to solitary wave interactions is quantified numerically and observed to be beyond the sensitivity of our experiments, suggesting that conduit solitary waves behave as "physical solitons." Experimental data are shown to be in excellent agreement with numerical simulations of the reduced model. Experimental movies are available with the online version of the paper.

  20. Microalbuminuria among Type 1 and Type 2 diabetic patients of African origin in Dar Es Salaam, Tanzania

    PubMed Central

    Lutale, Janet Joy Kachuchuru; Thordarson, Hrafnkell; Abbas, Zulfiqarali Gulam; Vetvik, Kåre

    2007-01-01

    Background The prevalences and risk factors of microalbuminuria are not full described among black African diabetic patients. This study aimed at determining the prevalence of microalbuminuria among African diabetes patients in Dar es Salaam, Tanzania, and relate to socio-demographic features as well as clinical parameters. Methods Cross sectional study on 91 Type 1 and 153 Type 2 diabetic patients. Two overnight urine samples per patient were analysed. Albumin concentration was measured by an automated immunoturbidity assay. Average albumin excretion rate (AER) was used and were categorised as normalbuminuria (AER < 20 ug/min), microalbuminuria (AER 20–200 ug/min), and macroalbuminuria (AER > 200 ug/min). Information obtained also included age, diabetes duration, sex, body mass index, blood pressure, serum total cholesterol, high-density and low-density lipoprotein cholesterol, triglycerides, serum creatinine, and glycated hemoglobin A1c. Results Overall prevalence of microalbuminuria was 10.7% and macroalbuminuria 4.9%. In Type 1 patients microalbuminuria was 12% and macroalbuminuria 1%. Among Type 2 patients, 9.8% had microalbuminuria, and 7.2% had macroalbuminuria. Type 2 patients with abnormal albumin excretion rate had significantly longer diabetes duration 7.5 (0.2–24 yrs) than those with normal albumin excretion rate 3 (0–25 yrs), p < 0.001. Systolic and diastolic blood pressure among Type 2 patients with abnormal albumin excretion rate were significantly higher than in those with normal albumin excretion rate, (p < 0.001). No significant differences in body mass index, glycaemic control, and cholesterol levels was found among patients with normal compared with those with elevated albumin excretion rate either in Type 1 or Type 2 patients. A stepwise multiple linear regression analysis among Type 2 patients, revealed AER (natural log AER) as the dependent variable to be predicted by [odds ratio (95% confidence interval)] diabetes duration 0.090 (0.049, 0.131), p < 0.0001, systolic blood pressure 0.012 (0.003–0.021), p < 0.010 and serum creatinine 0.021 (0.012, 0.030). Conclusion The prevalence of micro and macroalbuminuria is higher among African Type 1 patients with relatively short diabetes duration compared with prevalences among Caucasians. In Type 2 patients, the prevalence is in accordance with findings in Caucasians. The present study detects, however, a much lower prevalence than previously demonstrated in studies from sub-Saharan Africa. Abnormal AER was significantly related to diabetes duration and systolic blood pressure. PMID:17224056

  1. VLF wave-wave interaction experiments in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Chang, D. C. D.

    1978-01-01

    VLF wave-wave interaction experiments were carried out by injecting various forms of VLF pulses into the magnetosphere from a 21.2 km dipole antenna at Siple, Antarctica. The injected signals propagate along a geomagnetic field line and often interact strongly with energetic electrons trapped in the radiation belts near the equator. Signals may be amplified and trigger emissions. These signals may then interact with one another through these energetic electrons. This report is divided into three parts. In the first part, simulations of VLF pulses propagating in the magnetosphere are carried out. In the second part, it is found for the first time that a 10 ms gap in a triggering wave can induce emission, which may then interact with the post-gap signals. In the third part, sideband triggering is reported for the first time.

  2. An experimental study of a three-dimensional shock wave/turbulent boundary-layer interaction at a hypersonic Mach number

    NASA Technical Reports Server (NTRS)

    Kussoy, M. I.; Horstman, K. C.; Kim, K.-S.

    1991-01-01

    Experimental data for a series of three-dimensional shock-wave/turbulent-boundary-layer interaction flows at Mach 8.2 are presented. The test bodies, composed of sharp fins fastened to a flat-plate test surface, were designed to generate flows with varying degrees of pressure gradient, boundary-layer separation, and turning angle. The data include surface-pressure, heat-transfer, and skin-friction distributions, as well as limited mean flowfield surveys both in the undisturbed and interaction regimes. The data were obtained for the purpose of validating computational models of these hypersonic interactions.

  3. Effects of obliquely opposing and following currents on wave propagation in a new 3D wave-current basin

    NASA Astrophysics Data System (ADS)

    Lieske, Mike; Schlurmann, Torsten

    2016-04-01

    INTRODUCTION & MOTIVATION The design of structures in coastal and offshore areas and their maintenance are key components of coastal protection. Usually, assessments of processes and loads on coastal structures are derived from experiments with flow and wave parameters in separate physical models. However, Peregrin (1976) already points out that processes in natural shallow coastal waters flow and sea state processes do not occur separately, but influence each other nonlinearly. Kemp & Simons (1982) perform 2D laboratory tests and study the interactions between a turbulent flow and following waves. They highlight the significance of wave-induced changes in the current properties, especially in the mean flow profiles, and draw attention to turbulent fluctuations and bottom shear stresses. Kemp & Simons (1983) also study these processes and features with opposing waves. Studies on the wave-current interaction in three-dimensional space for a certain wave height, wave period and water depth were conducted by MacIver et al. (2006). The research focus is set on the investigation of long-crested waves on obliquely opposing and following currents in the new 3D wave-current basin. METHODOLOGY In a first step the flow analysis without waves is carried out and includes measurements of flow profiles in the sweet spot of the basin at predefined measurement positions. Five measuring points in the water column have been delineated in different water depths in order to obtain vertical flow profiles. For the characterization of the undisturbed flow properties in the basin, an uniformly distributed flow was generated in the wave basin. In the second step wave analysis without current, the unidirectional wave propagation and wave height were investigated for long-crested waves in intermediate wave conditions. In the sweet spot of the wave basin waves with three different wave directions, three wave periods and uniform wave steepness were examined. For evaluation, we applied a common 3D wave analysis method, the Bayesian Directional Spectrum method (BDM). BDM was presented by Hashimoto et al. (1988). Lastly, identification of the wave-current interaction, the results from experiment with simultaneous waves and currents are compared with results for only-currents and only-waves in order to identify and exemplify the significance of nonlinear interaction processes. RESULTS The first results of the wave-current interaction show, as expected, a reduction in the wave height in the direction of flow and an increase in wave heights against the flow with unidirectional monochromatic waves. The superposition of current and orbital velocities cannot be conducted linearly. Furthermore, the results show a current domination for low wave periods and wave domination for larger wave periods. The criterion of a current or wave domination will be presented in the presentation. ACKNOWLEDGEMENT The support of the KFKI research project "Seegangsbelastungen (Seele)" (Contract No. 03KIS107) by the German "Federal Ministry of Education and Research (BMBF)" is gratefully acknowledged.

  4. Model Assessment of the Impact on Ozone of Subsonic and Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm; Weisenstein, Debra; Danilin, Michael; Scott, Courtney; Shia, Run-Lie

    2000-01-01

    This is the final report for work performed between June 1999 through May 2000. The work represents continuation of the previous contract which encompasses five areas: (1) continued refinements and applications of the 2-D chemistry-transport model (CTM) to assess the ozone effects from aircraft operation in the stratosphere; (2) studying the mechanisms that determine the evolution of the sulfur species in the aircraft plume and how such mechanisms affect the way aircraft sulfur emissions should be introduced into global models; (3) the development of diagnostics in the AER 3-wave interactive model to assess the importance of the dynamics feedback and zonal asymmetry in model prediction of ozone response to aircraft operation; (4) the development of a chemistry parameterization scheme in support of the global modeling initiative (GMI); and (5) providing assessment results for preparation of national and international reports which include the "Aviation and the Global Atmosphere" prepared by the Intergovernmental Panel on Climate Change, "Assessment of the effects of high-speed aircraft in the stratosphere: 1998" by NASA, and the "Model and Measurements Intercomparison II" by NASA. Part of the work was reported in the final report. We participated in the SAGE III Ozone Loss and Validation Experiment (SOLVE) campaign and we continue with our analyses of the data.

  5. The PpaA/AerR regulators of photosynthesis gene expression from anoxygenic phototrophic proteobacteria contain heme-binding SCHIC domains.

    PubMed

    Moskvin, Oleg V; Gilles-Gonzalez, Marie-Alda; Gomelsky, Mark

    2010-10-01

    The SCHIC domain of the B12-binding domain family present in the Rhodobacter sphaeroides AppA protein binds heme and senses oxygen. Here we show that the predicted SCHIC domain PpaA/AerR regulators also bind heme and respond to oxygen in vitro, despite their low sequence identity with AppA.

  6. Early Urinary Markers of Diabetic Kidney Disease: A Nested Case-Control Study From the Diabetes Control and Complications Trial (DCCT)

    PubMed Central

    Kern, Elizabeth O; Erhard, Penny; Sun, Wanjie; Genuth, Saul; Weiss, Miriam F

    2010-01-01

    Background Urinary markers were tested as predictors of macroalbuminuria or microalbuminuria in type 1 diabetes. Study Design Nested case:control of participants in the Diabetes Control and Complications Trial (DCCT) Setting & Participants Eighty-seven cases of microalbuminuria were matched to 174 controls in a 1:2 ratio, while 4 cases were matched to 4 controls in a 1:1 ratio, resulting in 91 cases and 178 controls for microalbuminuria. Fifty-five cases of macroalbuminuria were matched to 110 controls in a 1:2 ratio. Controls were free of micro/macroalbuminuria when their matching case first developed micro/macroalbuminuria. Predictors Urinary N-acetyl-β-D-glucosaminidase, pentosidine, AGE fluorescence, albumin excretion rate (AER) Outcomes Incident microalbuminuria (two consecutive annual AER > 40 but <= 300 mg/day), or macroalbuminuria (AER > 300 mg/day) Measurements Stored urine samples from DCCT entry, and 1–9 years later when macroalbuminuria or microalbuminuria occurred, were measured for the lysosomal enzyme, N-acetyl-β-D-glucosaminidase, and the advanced glycosylation end-products (AGEs) pentosidine and AGE-fluorescence. AER and adjustor variables were obtained from the DCCT. Results Sub-microalbuminuric levels of AER at baseline independently predicted microalbuminuria (adjusted OR 1.83; p<.001) and macroalbuminuria (adjusted OR 1.82; p<.001). Baseline N-acetyl-β-D-glucosaminidase independently predicted macroalbuminuria (adjusted OR 2.26; p<.001), and microalbuminuria (adjusted OR 1.86; p<.001). Baseline pentosidine predicted macroalbuminuria (adjusted OR 6.89; p=.002). Baseline AGE fluorescence predicted microalbuminuria (adjusted OR 1.68; p=.02). However, adjusted for N-acetyl-β-D-glucosaminidase, pentosidine and AGE-fluorescence lost predictive association with macroalbuminuria and microalbuminuria, respectively. Limitations Use of angiotensin converting-enzyme inhibitors was not directly ascertained, although their use was proscribed during the DCCT. Conclusions Early in type 1 diabetes, repeated measurements of AER and urinary NAG may identify individuals susceptible to future diabetic nephropathy. Combining the two markers may yield a better predictive model than either one alone. Renal tubule stress may be more severe, reflecting abnormal renal tubule processing of AGE-modified proteins, among individuals susceptible to diabetic nephropathy. PMID:20138413

  7. Vorticity Transfer in Shock Wave Interactions with Turbulence and Vortices

    NASA Astrophysics Data System (ADS)

    Agui, J. H.; Andreopoulos, J.

    1998-11-01

    Time-dependent, three-dimensional vorticity measurements of shock waves interacting with grid generated turbulence and concentrated tip vortices were conducted in a large diameter shock tube facility. Two different mesh size grids and a NACA-0012 semi-span wing acting as a tip vortex generator were used to carry out different relative Mach number interactions. The turbulence interactions produced a clear amplification of the lateral and spanwise vorticity rms, while the longitudinal component remained mostly unaffected. By comparison, the tip vortex/shock wave interactions produced a two fold increase in the rms of longitudinal vorticity. Considerable attention was given to the vorticity source terms. The mean and rms of the vorticity stretching terms dominated by 5 to 7 orders of magnitude over the dilitational compression terms in all the interactions. All three signals of the stretching terms manifested very intermittent, large amplitude peak events which indicated the bursting character of the stretching process. Distributions of these signals were characterized by extremely large levels of flatness with varying degrees of skewness. These distribution patterns were found to change only slightly through the turbulence interactions. However, the tip vortex/shock wave interactions brought about significant changes in these distributions which were associated with the abrupt structural changes of the vortex after the interaction.

  8. Kinetic Simulations of Type II Radio Burst Emission Processes

    NASA Astrophysics Data System (ADS)

    Ganse, U.; Spanier, F. A.; Vainio, R. O.

    2011-12-01

    The fundamental emission process of Type II Radio Bursts has been under discussion for many decades. While analytic deliberations point to three wave interaction as the source for fundamental and harmonic radio emissions, sparse in-situ observational data and high computational demands for kinetic simulations have not allowed for a definite conclusion to be reached. A popular model puts the radio emission into the foreshock region of a coronal mass ejection's shock front, where shock drift acceleration can create eletrcon beam populations in the otherwise quiescent foreshock plasma. Beam-driven instabilities are then assumed to create waves, forming the starting point of three wave interaction processes. Using our kinetic particle-in-cell code, we have studied a number of emission scenarios based on electron beam populations in a CME foreshock, with focus on wave-interaction microphysics on kinetic scales. The self-consistent, fully kinetic simulations with completely physical mass-ratio show fundamental and harmonic emission of transverse electromagnetic waves and allow for detailled statistical analysis of all contributing wavemodes and their couplings.

  9. Glomerular structural-functional relationship models of diabetic nephropathy are robust in type 1 diabetic patients.

    PubMed

    Mauer, Michael; Caramori, Maria Luiza; Fioretto, Paola; Najafian, Behzad

    2015-06-01

    Studies of structural-functional relationships have improved understanding of the natural history of diabetic nephropathy (DN). However, in order to consider structural end points for clinical trials, the robustness of the resultant models needs to be verified. This study examined whether structural-functional relationship models derived from a large cohort of type 1 diabetic (T1D) patients with a wide range of renal function are robust. The predictability of models derived from multiple regression analysis and piecewise linear regression analysis was also compared. T1D patients (n = 161) with research renal biopsies were divided into two equal groups matched for albumin excretion rate (AER). Models to explain AER and glomerular filtration rate (GFR) by classical DN lesions in one group (T1D-model, or T1D-M) were applied to the other group (T1D-test, or T1D-T) and regression analyses were performed. T1D-M-derived models explained 70 and 63% of AER variance and 32 and 21% of GFR variance in T1D-M and T1D-T, respectively, supporting the substantial robustness of the models. Piecewise linear regression analyses substantially improved predictability of the models with 83% of AER variance and 66% of GFR variance explained by classical DN glomerular lesions alone. These studies demonstrate that DN structural-functional relationship models are robust, and if appropriate models are used, glomerular lesions alone explain a major proportion of AER and GFR variance in T1D patients. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  10. Fluid-structure interaction simulation of floating structures interacting with complex, large-scale ocean waves and atmospheric turbulence with application to floating offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Calderer, Antoni; Guo, Xin; Shen, Lian; Sotiropoulos, Fotis

    2018-02-01

    We develop a numerical method for simulating coupled interactions of complex floating structures with large-scale ocean waves and atmospheric turbulence. We employ an efficient large-scale model to develop offshore wind and wave environmental conditions, which are then incorporated into a high resolution two-phase flow solver with fluid-structure interaction (FSI). The large-scale wind-wave interaction model is based on a two-fluid dynamically-coupled approach that employs a high-order spectral method for simulating the water motion and a viscous solver with undulatory boundaries for the air motion. The two-phase flow FSI solver is based on the level set method and is capable of simulating the coupled dynamic interaction of arbitrarily complex bodies with airflow and waves. The large-scale wave field solver is coupled with the near-field FSI solver with a one-way coupling approach by feeding into the latter waves via a pressure-forcing method combined with the level set method. We validate the model for both simple wave trains and three-dimensional directional waves and compare the results with experimental and theoretical solutions. Finally, we demonstrate the capabilities of the new computational framework by carrying out large-eddy simulation of a floating offshore wind turbine interacting with realistic ocean wind and waves.

  11. Investigation of Fully Three-Dimensional Helical RF Field Effects on TWT Beam/Circuit Interaction

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    2000-01-01

    A fully three-dimensional (3D), time-dependent, helical traveling wave-tube (TWT) interaction model has been developed using the electromagnetic particle-in-cell (PIC) code MAFIA. The model includes a short section of helical slow-wave circuit with excitation fed by RF input/output couplers, and electron beam contained by periodic permanent magnet (PPM) focusing. All components of the model are simulated in three dimensions allowing the effects of the fully 3D helical fields on RF circuit/beam interaction to be investigated for the first time. The development of the interaction model is presented, and predicted TWT performance using 2.5D and 3D models is compared to investigate the effect of conventional approximations used in TWT analyses.

  12. Three-dimensional instability of standing waves

    NASA Astrophysics Data System (ADS)

    Zhu, Qiang; Liu, Yuming; Yue, Dick K. P.

    2003-12-01

    We investigate the three-dimensional instability of finite-amplitude standing surface waves under the influence of gravity. The analysis employs the transition matrix (TM) approach and uses a new high-order spectral element (HOSE) method for computation of the nonlinear wave dynamics. HOSE is an extension of the original high-order spectral method (HOS) wherein nonlinear wave wave and wave body interactions are retained up to high order in wave steepness. Instead of global basis functions in HOS, however, HOSE employs spectral elements to allow for complex free-surface geometries and surface-piercing bodies. Exponential convergence of HOS with respect to the total number of spectral modes (for a fixed number of elements) and interaction order is retained in HOSE. In this study, we use TM-HOSE to obtain the stability of general three-dimensional perturbations (on a two-dimensional surface) on two classes of standing waves: plane standing waves in a rectangular tank; and radial/azimuthal standing waves in a circular basin. For plane standing waves, we confirm the known result of two-dimensional side-bandlike instability. In addition, we find a novel three-dimensional instability for base flow of any amplitude. The dominant component of the unstable disturbance is an oblique (standing) wave oriented at an arbitrary angle whose frequency is close to the (nonlinear) frequency of the original standing wave. This finding is confirmed by direct long-time simulations using HOSE which show that the nonlinear evolution leads to classical Fermi Pasta Ulam recurrence. For the circular basin, we find that, beyond a threshold wave steepness, a standing wave (of nonlinear frequency Omega) is unstable to three-dimensional perturbations. The unstable perturbation contains two dominant (standing-wave) components, the sum of whose frequencies is close to 2Omega. From the cases we consider, the critical wave steepness is found to generally decrease/increase with increasing radial/azimuthal mode number of the base standing wave. Finally, we show that the instability we find for both two- and three-dimensional standing waves is a result of third-order (quartet) resonance.

  13. Using AER to Improve Teacher Education

    NASA Astrophysics Data System (ADS)

    Ludwig, Randi R.

    2013-06-01

    In many ways, the astronomy education community is uniquely poised to influence pre-service and in-service teacher preparation. Astro101 courses are among those most commonly taken to satisfy general education requirements for non-science majors, including 9-25% education majors (Deming & Hufnagel, 2001; Rudolph et al. 2010). In addition, the astronomy community's numerous observatories and NASA centers engage in many efforts to satisfy demand for in-service teacher professional development (PD). These efforts represent a great laboratory in which we can apply conclusions from astronomy education research (AER) studies in particular and science education research (SER) in general. Foremost, we can work to align typical Astro101 and teacher PD content coverage to heavily hit topics in the Next Generation Science Standards (http://www.nextgenscience.org/) and utilize methods of teaching those topics that have been identified as successful in AER studies. Additionally, we can work to present teacher education using methodology that has been identified by the SER community as effective for lasting learning. In this presentation, I will highlight some of the big ideas from AER and SER that may be most useful in teacher education, many of which we implement at UT Austin in the Hands-on-Science program for pre-service teacher education and in-service teacher PD.

  14. Novel Aeruginosin-865 from Nostoc sp. as a potent anti-inflammatory agent.

    PubMed

    Kapuścik, Aleksandra; Hrouzek, Pavel; Kuzma, Marek; Bártová, Simona; Novák, Petr; Jokela, Jouni; Pflüger, Maren; Eger, Andreas; Hundsberger, Harald; Kopecký, Jiří

    2013-11-25

    Aeruginosin-865 (Aer-865), isolated from terrestrial cyanobacterium Nostoc sp. Lukešová 30/93, is the first aeruginosin-type peptide containing both a fatty acid and a carbohydrate moiety, and is the first aeruginosin to be found in the genus Nostoc. Mass spectrometry, chemical and spectroscopic analysis as well as one- and two-dimensional NMR and chiral HPLC analysis of Marfey derivatives were applied to determine the peptidic sequence: D-Hpla, D-Leu, 5-OH-Choi, Agma, with hexanoic and mannopyranosyl uronic acid moieties linked to Choi. We used an AlphaLISA assay to measure the levels of proinflammatory mediators IL-8 and ICAM-1 in hTNF-α-stimulated HLMVECs. Aer-865 showed significant reduction of both: with EC50 values of (3.5±1.5) μg mL(-1) ((4.0±1.7) μM) and (50.0±13.4) μg mL(-1) ((57.8±15.5) μM), respectively. Confocal laser scanning microscopy revealed that the anti-inflammatory effect of Aer-865 was directly associated with inhibition of NF-κB translocation to the nucleus. Moreover, Aer-865 did not show any cytotoxic effect. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. On Multiple AER Handshaking Channels Over High-Speed Bit-Serial Bidirectional LVDS Links With Flow-Control and Clock-Correction on Commercial FPGAs for Scalable Neuromorphic Systems.

    PubMed

    Yousefzadeh, Amirreza; Jablonski, Miroslaw; Iakymchuk, Taras; Linares-Barranco, Alejandro; Rosado, Alfredo; Plana, Luis A; Temple, Steve; Serrano-Gotarredona, Teresa; Furber, Steve B; Linares-Barranco, Bernabe

    2017-10-01

    Address event representation (AER) is a widely employed asynchronous technique for interchanging "neural spikes" between different hardware elements in neuromorphic systems. Each neuron or cell in a chip or a system is assigned an address (or ID), which is typically communicated through a high-speed digital bus, thus time-multiplexing a high number of neural connections. Conventional AER links use parallel physical wires together with a pair of handshaking signals (request and acknowledge). In this paper, we present a fully serial implementation using bidirectional SATA connectors with a pair of low-voltage differential signaling (LVDS) wires for each direction. The proposed implementation can multiplex a number of conventional parallel AER links for each physical LVDS connection. It uses flow control, clock correction, and byte alignment techniques to transmit 32-bit address events reliably over multiplexed serial connections. The setup has been tested using commercial Spartan6 FPGAs attaining a maximum event transmission speed of 75 Meps (Mega events per second) for 32-bit events at a line rate of 3.0 Gbps. Full HDL codes (vhdl/verilog) and example demonstration codes for the SpiNNaker platform will be made available.

  16. Facilitating adverse drug event detection in pharmacovigilance databases using molecular structure similarity: application to rhabdomyolysis

    PubMed Central

    Vilar, Santiago; Harpaz, Rave; Chase, Herbert S; Costanzi, Stefano; Rabadan, Raul

    2011-01-01

    Background Adverse drug events (ADE) cause considerable harm to patients, and consequently their detection is critical for patient safety. The US Food and Drug Administration maintains an adverse event reporting system (AERS) to facilitate the detection of ADE in drugs. Various data mining approaches have been developed that use AERS to detect signals identifying associations between drugs and ADE. The signals must then be monitored further by domain experts, which is a time-consuming task. Objective To develop a new methodology that combines existing data mining algorithms with chemical information by analysis of molecular fingerprints to enhance initial ADE signals generated from AERS, and to provide a decision support mechanism to facilitate the identification of novel adverse events. Results The method achieved a significant improvement in precision in identifying known ADE, and a more than twofold signal enhancement when applied to the ADE rhabdomyolysis. The simplicity of the method assists in highlighting the etiology of the ADE by identifying structurally similar drugs. A set of drugs with strong evidence from both AERS and molecular fingerprint-based modeling is constructed for further analysis. Conclusion The results demonstrate that the proposed methodology could be used as a pharmacovigilance decision support tool to facilitate ADE detection. PMID:21946238

  17. Single-walled carbon nanotubes as delivery vehicles enhance the immunoprotective effects of a recombinant vaccine against Aeromonas hydrophila.

    PubMed

    Gong, Yu-Xin; Zhu, Bin; Liu, Guang-Lu; Liu, Lei; Ling, Fei; Wang, Gao-Xue; Xu, Xin-Gang

    2015-01-01

    To reduce the economic losses caused by diseases in aquaculture industry, more efficient and economic prophylactic measures should be urgently investigated. In this research, the effects of a novel functionalized single-walled carbon nanotubes (SWCNTs) applied as a delivery vehicle for recombinant Aeromonas hydrophila vaccine administration via bath or injection in juvenile grass carp were studied. The results showed that SWCNT as a vector for the recombinant protein aerA, augmented the production of specific antibodies, apparently stimulated the induction of immune-related genes, and induced higher level of survival rate compared with free aerA subunit vaccine. Furthermore, we compared the routes of bath and intramuscular injection immunization by SWCNTs-aerA vaccine, and found that similar antibody levels induced by SWCNTs-aerA were observed in both immunization routes. Meanwhile, a similar relative percentage survival (approximately 80%) was found in both a 40 mg/L bath immunization group, and a 20 μg injection group. The results indicate that functionalized SWCNTs could be a promising delivery vehicle to potentiate the immune response of recombinant vaccines, and might be used to vaccinate juvenile fish by bath administration method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Vertical migration of aggregated aerobic and anaerobic ammonium oxidizers enhances oxygen uptake in a stagnant water layer.

    PubMed

    Vlaeminck, Siegfried E; Dierick, Katleen; Boon, Nico; Verstraete, Willy

    2007-07-01

    Ammonium can be removed as dinitrogen gas by cooperating aerobic and anaerobic ammonium-oxidizing bacteria (AerAOB and AnAOB). The goal of this study was to verify putative mutual benefits for aggregated AerAOB and AnAOB in a stagnant freshwater environment. In an ammonium fed water column, the biological oxygen consumption rate was, on average, 76 kg O(2) ha(-1) day(-1). As the oxygen transfer rate of an abiotic control column was only 17 kg O(2) ha(-1) day(-1), biomass activity enhanced the oxygen transfer. Increasing the AnAOB gas production increased the oxygen consumption rate with more than 50% as a result of enhanced vertical movement of the biomass. The coupled decrease in dissolved oxygen concentration increased the diffusional oxygen transfer from the atmosphere in the water. Physically preventing the biomass from rising to the upper water layer instantaneously decreased oxygen and ammonium consumption and even led to the occurrence of some sulfate reduction. Floating of the biomass was further confirmed to be beneficial, as this allowed for the development of a higher AerAOB and AnAOB activity, compared to settled biomass. Overall, the results support mutual benefits for aggregated AerAOB and AnAOB, derived from the biomass uplifting effect of AnAOB gas production.

  19. Phenomenological Study of Interaction between Solar Acoustic Waves and Sunspots from Measured Scattered Wavefunctions

    NASA Astrophysics Data System (ADS)

    Yang, Ming-Hsu; Chou, Dean-Yi; Zhao, Hui; Liang, Zhi-Chao

    2012-08-01

    The solar acoustic waves around a sunspot are modified because of the interaction with the sunspot. The interaction can be viewed as that the sunspot, excited by the incident wave, generates the scattered wave, and the scattered wave is added to the incident wave to form the total wave around the sunspot. We define an interaction parameter, which could be complex, describing the interaction between the acoustic waves and the sunspot. The scattered wavefunction on the surface can be expressed as a two-dimensional integral of the product of the Green's function, the wavefunction, and the two-dimensional interaction parameter over the sunspot area for the Born approximation of different orders. We assume a simple model for the two-dimensional interaction parameter distribution: its absolute value is axisymmetric with a Gaussian distribution and its phase is a constant. The measured scattered wavefunctions of various modes for NOAAs 11084 and 11092 are fitted to the theoretical scattered wavefunctions to determine the three model parameters, magnitude, Gaussian radius, and phase, for the Born approximation of different orders. The three model parameters converge to some values at high-order Born approximations. The result of the first-order Born approximation is significantly different from the convergent value in some cases. The rate of convergence depends on the sunspot size and wavelength. It converges more rapidly for the smaller sunspot and longer wavelength. The magnitude increases with mode frequency and degree for each radial order. The Gaussian radius is insensitive to frequency and degree. The spatial range of the interaction parameter is greater than that of the continuum intensity deficit, but smaller than that of the acoustic power deficit of the sunspot. The phase versus phase speed falls into a small range. This suggests that the phase could be a function phase speed. NOAAs 11084 and 11092 have a similar magnitude and phase, although the ratio of their sizes is 0.75.

  20. Non-linear wave interaction in a plasma column

    NASA Technical Reports Server (NTRS)

    Larsen, J.-M.; Crawford, F. W.

    1979-01-01

    Non-linear three-wave interaction is analysed for propagation along a cylindrical plasma column surrounded by an infinite dielectric, in the absence of a static magnetic field. An averaged-Lagrangian method is used, and the results are specialized to parametric interaction and mode conversion, assuming an undepleted pump wave. The theory for these two types of interactions is extended to include imperfect synchronism, and the effects of loss. Computations are presented indicating that parametric growth rates of the order of a fraction of a decibel per centimeter should be obtainable for plausible laboratory plasma column parameters.

  1. Numerical solution to the glancing sidewall oblique shock wave/turbulent boundary layer interaction in three dimension

    NASA Technical Reports Server (NTRS)

    Anderson, B. H.; Benson, T. J.

    1983-01-01

    A supersonic three-dimensional viscous forward-marching computer design code called PEPSIS is used to obtain a numerical solution of the three-dimensional problem of the interaction of a glancing sidewall oblique shock wave and a turbulent boundary layer. Very good results are obtained for a test case that was run to investigate the use of the wall-function boundary-condition approximation for a highly complex three-dimensional shock-boundary layer interaction. Two additional test cases (coarse mesh and medium mesh) are run to examine the question of near-wall resolution when no-slip boundary conditions are applied. A comparison with experimental data shows that the PEPSIS code gives excellent results in general and is practical for three-dimensional supersonic inlet calculations.

  2. Numerical solution to the glancing sidewall oblique shock wave/turbulent boundary layer interaction in three-dimension

    NASA Technical Reports Server (NTRS)

    Anderson, B. H.; Benson, T. J.

    1983-01-01

    A supersonic three-dimensional viscous forward-marching computer design code called PEPSIS is used to obtain a numerical solution of the three-dimensional problem of the interaction of a glancing sidewall oblique shock wave and a turbulent boundary layer. Very good results are obtained for a test case that was run to investigate the use of the wall-function boundary-condition approximation for a highly complex three-dimensional shock-boundary layer interaction. Two additional test cases (coarse mesh and medium mesh) are run to examine the question of near-wall resolution when no-slip boundary conditions are applied. A comparison with experimental data shows that the PEPSIS code gives excellent results in general and is practical for three-dimensional supersonic inlet calculations.

  3. Modeling of Wave Spectrum and Wave Breaking Statistics Based on Balance Equation

    NASA Astrophysics Data System (ADS)

    Irisov, V.

    2012-12-01

    Surface roughness and foam coverage are the parameters determining microwave emissivity of sea surface in a wide range of wind. Existing empirical wave spectra are not associated with wave breaking statistics although physically they are closely related. We propose a model of sea surface based on the balance of three terms: wind input, dissipation, and nonlinear wave-wave interaction. It provides an insight on wave generation, interaction, and dissipation - very important parameters for understanding of wave development under changing oceanic and atmospheric conditions. The wind input term is the best known among all three. For our analysis we assume a wind input term as it was proposed by Plant [1982] and consider modification necessary to do to account for proper interaction of long fast waves with wind. For long gravity waves (longer than 15-30 cm) the dissipation term can be related to the wave breaking with whitecaps, as it was shown by Kudryavtsev et al. [2003], so we assume the cubic dependence of dissipation term on wind. It implies certain limitations on the spectrum shape. The most difficult is to estimate the term describing nonlinear wave-wave interaction. Hasselmann [1962] and Zakharov [1999] developed theory of 4-wave interaction, but the resulting equation requires at least 3-fold integration over wavenumbers at each time step of integration of balance equation, which makes it difficult for direct numerical modeling. It is desirable to use an approximation of wave-wave interaction term, which preserves wave action, energy, and momentum, and can be easily estimated during time integration of balance equation. Zakharov and Pushkarev [1999] proposed the diffusion approximation of the wave interaction term and showed that it can be used for estimate of wave spectrum. We believe their assumption that wave-wave interaction is the dominant factor in forming the wave spectrum does not agree with the observations made by Hwang and Sletten [2008]. Finally we consider modifications of the model equation, which can be done to describe gravity-capillary and capillary waves. An obvious correction is to add viscous dissipation. A little less obvious is a transition from 4-wave to 3-wave interaction. The model allows one to include easily generation of parasitic capillary waves as it was proposed by Kudryavtsev et al. [2003]. A modification of dissipation term can explain an "overshoot" phenomenon observed in JONSWAP spectrum. These examples demonstrate that the proposed model is quite flexible and can be used to account for various physical phenomena. The resulting balance equation is easy to integrate using a personal computer and necessity of its numerical solution is paid by the model flexibility and better physical background compared with empirical spectra. References Hasselmann, K., J. Fluid Mech., 12, pp.481-500, 1962. Hwang, P., and M. Sletten, J. Geophys. Res., 113, doi:10.1029/2007JC004277, 2008. Kudryavtsev, V., et al., J. Geophys. Res., 108 (C3), doi:10.1029/2001JC001003, 2003. Plant, W. J., J. Geophys. Res., vol. 87, pp. 1961-1967, 1982. Zakharov, V., and A. Pushkarev, Nonlinear Processes in Geophysics, 6, pp.1-10, 1999. Zakharov, V., Eur. J. Mech. B/Fluids, 18, pp.327-344, 1999.

  4. Marital Problems, Maternal Gatekeeping Attitudes, and Father-Child Relationships in Adolescence

    PubMed Central

    Stevenson, Matthew M.; Fabricius, William V.; Cookston, Jeffrey T.; Parke, Ross D.; Coltrane, Scott; Braver, Sanford L.; Saenz, Delia S.

    2013-01-01

    We evaluated maternal gatekeeping attitudes as a mediator of the relation between marital problems and father-child relationships in three waves when children were in 7th through 10th grade. We assessed each parent’s contribution to the marital problems experienced by the couple. Findings from mediational and cross-lagged structural equation models revealed that increased marital problem behaviors on the part of mothers at wave 1 predicted increased maternal gatekeeping attitudes at wave 2 which in turn predicted decreased amounts of father-adolescent interaction at wave 3. Decreased amounts of interaction with either parent were associated within each wave with adolescents’ perceptions that they mattered less to that parent. Amount of interaction with fathers at wave 2 positively predicted changes in boys’ perceptions of how much they mattered to their fathers at wave 3, and amount of interaction with mothers at wave 2 positively predicted changes in girls’ perceptions of how much they mattered to their mothers at wave 3. The findings did not differ for European-American versus Mexican-American families, or for biological fathers versus step-fathers. PMID:24364832

  5. WebTOP: A 3D Interactive System for Teaching and Learning Optics

    ERIC Educational Resources Information Center

    Mzoughi, Taha; Herring, S. Davis; Foley, John T.; Morris, Matthew J.; Gilbert, Peter J.

    2007-01-01

    WebTOP is a three-dimensional, Web-based, interactive computer graphics system that helps instructors teach and students learn about waves and optics. Current subject areas include waves, geometrical optics, reflection and refraction, polarization, interference, diffraction, lasers, and scattering. Some of the topics covered are suited for…

  6. Microstructural Evolution of AerMet100 Steel Coating on 300M Steel Fabricated by Laser Cladding Technique

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Li, Jia; Cheng, Xu; Wang, Huaming

    2018-02-01

    In this paper, the process of coating AerMet100 steel on forged 300M steel with laser cladding was investigated, with a thorough analysis of the chemical composition, microstructure, and hardness of the substrate and the cladding layer as well as the transition zone. Results show that the composition and microhardness of the cladding layer are macroscopically homogenous with the uniformly distributed bainite and a small amount of retained austenite in martensite matrix. The transition zone, which spans approximately 100 μm, yields a gradual change of composition from the cladding layer to 300M steel matrix. The heat-affected zone (HAZ) can be divided into three zones: the sufficiently quenched zone (SQZ), the insufficiently quenched zone (IQZ), and the high tempered zone (HTZ). The SQZ consists of martensitic matrix and bainite, as for the IQZ and the HTZ the microstructures are martensite + tempered martensite and tempered martensite + ferrite, respectively. These complicated microstructures in the HAZ are caused by different peak heating temperatures and heterogeneous microstructures of the as-received 300M steel.

  7. Acoustic Interaction Forces and Torques Acting on Suspended Spheres in an Ideal Fluid.

    PubMed

    Lopes, J Henrique; Azarpeyvand, Mahdi; Silva, Glauber T

    2016-01-01

    In this paper, the acoustic interaction forces and torques exerted by an arbitrary time-harmonic wave on a set of N objects suspended in an inviscid fluid are theoretically analyzed. We utilize the partial-wave expansion method with translational addition theorem and re-expansion of multipole series to solve the related multiple scattering problem. We show that the acoustic interaction force and torque can be obtained using the farfield radiation force and torque formulas. To exemplify the method, we calculate the interaction forces exerted by an external traveling and standing plane wave on an arrangement of two and three olive-oil droplets in water. The droplets' radii are comparable to the wavelength (i.e., Mie scattering regime). The results show that the acoustic interaction forces present an oscillatory spatial distribution which follows the pattern formed by interference between the external and rescattered waves. In addition, acoustic interaction torques arise on the absorbing droplets whenever a nonsymmetric wavefront is formed by the external and rescattered waves' interference.

  8. Modeling Water Waves with Smoothed Particle Hydrodynamics

    DTIC Science & Technology

    2013-09-30

    SPH Model for Water Waves and Other Free Surface Flows ...Lagrangian nature of SPH allows the modeling of wave breaking, surf zones, ship waves, and wave-structure interaction, where the free surface becomes...proving to be a competent modeling scheme for free surface flows in three dimensions including the complex flows of the surf zone. As the GPU

  9. An LDA (Laser-Doppler Anemometry) investigation of three-dimensional normal shock wave boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Chriss, R. M.; Hingst, W. R.; Strazisar, A. J.; Keith, T. G., Jr.

    1989-01-01

    Nonintrusive measurements were made of a normal shock wave/boundary layer interaction. Two dimensional measurements were made throughout the interaction region while 3-D measurements were made in the vicinity of the shock wave. The measurements were made in the corner of the test section of a continuous supersonic wind tunnel in which a normal shock wave had been stabilized. Laser Doppler Anemometry, surface pressure measurement and flow visualization techniques were employed for two freestream Mach number test cases: 1.6 and 1.3. The former contained separated flow regions and a system of shock waves. The latter was found to be far less complicated. The results define the flow field structure in detail for each case.

  10. Non-autonomous matter-wave solitons in hybrid atomic-molecular Bose-Einstein condensates with tunable interactions and harmonic potential

    NASA Astrophysics Data System (ADS)

    Wang, Deng-Shan; Liu, Jiang; Wang, Lizhen

    2018-03-01

    In this paper, we investigate matter-wave solitons in hybrid atomic-molecular Bose-Einstein condensates with tunable interactions and external potentials. Three types of time-modulated harmonic potentials are considered and, for each of them, two groups of exact non-autonomous matter-wave soliton solutions of the coupled Gross-Pitaevskii equation are presented. Novel nonlinear structures of these non-autonomous matter-wave solitons are analyzed by displaying their density distributions. It is shown that the time-modulated nonlinearities and external potentials can support exact non-autonomous atomic-molecular matter-wave solitons.

  11. On the coupled evolution of oceanic internal waves and quasi-geostrophic flow

    NASA Astrophysics Data System (ADS)

    Wagner, Gregory LeClaire

    Oceanic motion outside thin boundary layers is primarily a mixture of quasi-geostrophic flow and internal waves with either near-inertial frequencies or the frequency of the semidiurnal lunar tide. This dissertation seeks a deeper understanding of waves and flow through reduced models that isolate their nonlinear and coupled evolution from the Boussinesq equations. Three physical-space models are developed: an equation that describes quasi-geostrophic evolution in an arbitrary and prescribed field of hydrostatic internal waves; a three-component model that couples quasi-geostrophic flow to both near-inertial waves and the near-inertial second harmonic; and a model for the slow evolution of hydrostatic internal tides in quasi-geostrophic flow of near-arbitrary scale. This slow internal tide equation opens the path to a coupled model for the energetic interaction of quasi-geostrophic flow and oceanic internal tides. Four results emerge. First, the wave-averaged quasi-geostrophic equation reveals that finite-amplitude waves give rise to a mean flow that advects quasi-geostrophic potential vorticity. Second is the definition of a new material invariant: Available Potential Vorticity, or APV. APV isolates the part of Ertel potential vorticity available for balanced-flow evolution in Eulerian frames and proves necessary in the separating waves and quasi-geostrophic flow. The third result, hashed out for near-inertial waves and quasi-geostrophic flow, is that wave-flow interaction leads to energy exchange even under conditions of weak nonlinearity. For storm-forced oceanic near-inertial waves the interaction often energizes waves at the expense of flow. We call this extraction of balanced quasi-geostrophic energy 'stimulated generation' since it requires externally-forced rather than spontaneously-generated waves. The fourth result is that quasi-geostrophic flow can encourage or 'catalyze' a nonlinear interaction between a near-inertial wave field and its second harmonic that transfers energy to the small near-inertial vertical scales of wave breaking and mixing.

  12. A theoretical prediction of the acoustic pressure generated by turbulence-flame front interactions

    NASA Technical Reports Server (NTRS)

    Huff, R. G.

    1984-01-01

    The equations of momentum annd continuity are combined and linearized yielding the one dimensional nonhomogeneous acoustic wave equation. Three terms in the non-homogeneous equation act as acoustic sources and are taken to be forcing functions acting on the homogeneous wave equation. The three source terms are: fluctuating entropy, turbulence gradients, and turbulence-flame interactions. Each source term is discussed. The turbulence-flame interaction source is used as the basis for computing the source acoustic pressure from the Fourier transformed wave equation. Pressure fluctuations created in turbopump gas generators and turbines may act as a forcing function for turbine and propellant tube vibrations in Earth to orbit space propulsion systems and could reduce their life expectancy. A preliminary assessment of the acoustic pressure fluctuations in such systems is presented.

  13. A theoretical prediction of the acoustic pressure generated by turbulence-flame front interactions

    NASA Technical Reports Server (NTRS)

    Huff, R. G.

    1984-01-01

    The equations of momentum and continuity are combined and linearized yielding the one dimensional nonhomogeneous acoustic wave equation. Three terms in the non-homogeneous equation act as acoustic sources and are taken to be forcing functions acting on the homogeneous wave equation. The three source terms are: fluctuating entropy, turbulence gradients, and turbulence-flame interactions. Each source term is discussed. The turbulence-flame interaction source is used as the basis for computing the source acoustic pressure from the Fourier transformed wave equation. Pressure fluctuations created in turbopump gas generators and turbines may act as a forcing function for turbine and propellant tube vibrations in earth to orbit space propulsion systems and could reduce their life expectancy. A preliminary assessment of the acoustic pressure fluctuations in such systems is presented.

  14. Documentation of Two- and Three-Dimensional Hypersonic Shock Wave/Turbulent Boundary Layer Interaction Flows

    NASA Technical Reports Server (NTRS)

    Kussoy, Marvin I.; Horstman, Clifford C.

    1989-01-01

    Experimental data for a series of two- and three-dimensional shock wave/turbulent boundary layer interaction flows at Mach 7 are presented. Test bodies, composed of simple geometric shapes, were designed to generate flows with varying degrees of pressure gradient, boundary-layer separation, and turning angle. The data include surface-pressure and heat-transfer distributions as well as limited mean-flow-field surveys in both the undisturbed and the interaction regimes. The data are presented in a convenient form for use in validating existing or future computational models of these generic hypersonic flows.

  15. Coexisting rogue waves within the (2+1)-component long-wave-short-wave resonance.

    PubMed

    Chen, Shihua; Soto-Crespo, Jose M; Grelu, Philippe

    2014-09-01

    The coexistence of two different types of fundamental rogue waves is unveiled, based on the coupled equations describing the (2+1)-component long-wave-short-wave resonance. For a wide range of asymptotic background fields, each family of three rogue wave components can be triggered by using a slight deterministic alteration to the otherwise identical background field. The ability to trigger markedly different rogue wave profiles from similar initial conditions is confirmed by numerical simulations. This remarkable feature, which is absent in the scalar nonlinear Schrödinger equation, is attributed to the specific three-wave interaction process and may be universal for a variety of multicomponent wave dynamics spanning from oceanography to nonlinear optics.

  16. Interferometric data for a shock-wave/boundary-layer interaction

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.; Brown, James L.; Miles, John B.

    1986-01-01

    An experimental study of the axisymmetric shock-wave / boundary-layer strong interaction flow generated in the vicinity of a cylinder-cone intersection was conducted. The study data are useful in the documentation and understanding of compressible turbulent strong interaction flows, and are part of a more general effort to improve turbulence modeling for compressible two- and three-dimensional strong viscous/inviscid interactions. The nominal free stream Mach number was 2.85. Tunnel total pressures of 1.7 and 3.4 atm provided Reynolds number values of 18 x 10(6) and 36 x 10(6) based on model length. Three cone angles were studied giving negligible, incipient, and large scale flow separation. The initial cylinder boundary layer upstream of the interaction had a thickness of 1.0 cm. The subsonic layer of the cylinder boundary layer was quite thin, and in all cases, the shock wave penetrated a significant portion of the boundary layer. Owing to the thickness of the cylinder boundary layer, considerable structural detail was resolved for the three shock-wave / boundary-layer interaction cases considered. The primary emphasis was on the application of the holographic interferometry technique. The density field was deduced from an interferometric analysis based on the Able transform. Supporting data were obtained using a 2-D laser velocimeter, as well as mean wall pressure and oil flow measurements. The attached flow case was observed to be steady, while the separated cases exhibited shock unsteadiness. Comparisons with Navier-Stokes computations using a two-equation turbulence model are presented.

  17. The NS1 Glycoprotein Can Generate Dramatic Antibody-Enhanced Dengue Viral Replication in Normal Out-Bred Mice Resulting in Lethal Multi-Organ Disease

    PubMed Central

    Falconar, Andrew K. I.; Martinez, Fernando

    2011-01-01

    Antibody-enhanced replication (AER) of dengue type-2 virus (DENV-2) strains and production of antibody-enhanced disease (AED) was tested in out-bred mice. Polyclonal antibodies (PAbs) generated against the nonstructural-1 (NS1) glycoprotein candidate vaccine of the New Guinea-C (NG-C) or NSx strains reacted strongly and weakly with these antigens, respectively. These PAbs contained the IgG2a subclass, which cross-reacted with the virion-associated envelope (E) glycoprotein of the DENV-2 NSx strain, suggesting that they could generate its AER via all mouse Fcγ-receptor classes. Indeed, when these mice were challenged with a low dose (<0.5 LD50) of the DENV-2 NSx strain, but not the NG-C strain, they all generated dramatic and lethal DENV-2 AER/AED. These AER/AED mice developed life-threatening acute respiratory distress syndrome (ARDS), displayed by diffuse alveolar damage (DAD) resulting from i) dramatic interstitial alveolar septa-thickening with mononuclear cells, ii) some hyperplasia of alveolar type-II pneumocytes, iii) copious intra-alveolar protein secretion, iv) some hyaline membrane-covered alveolar walls, and v) DENV-2 antigen-positive alveolar macrophages. These mice also developed meningo-encephalitis, with greater than 90,000-fold DENV-2 AER titers in microglial cells located throughout their brain parenchyma, some of which formed nodules around dead neurons. Their spleens contained infiltrated megakaryocytes with DENV-2 antigen-positive red-pulp macrophages, while their livers displayed extensive necrosis, apoptosis and macro- and micro-steatosis, with DENV-2 antigen-positive Kuppfer cells and hepatocytes. Their infections were confirmed by DENV-2 isolations from their lungs, spleens and livers. These findings accord with those reported in fatal human “severe dengue” cases. This DENV-2 AER/AED was blocked by high concentrations of only the NG-C NS1 glycoprotein. These results imply a potential hazard of DENV NS1 glycoprotein-based vaccines, particularly against DENV strains that contain multiple mutations or genetic recombination within or between their DENV E and NS1 glycoprotein-encoding genes. The model provides potential for assessing DENV strain pathogenicity and anti-DENV therapies in normal mice. PMID:21731643

  18. Air exchange rates and migration of VOCs in basements and residences

    PubMed Central

    Du, Liuliu; Batterman, Stuart; Godwin, Christopher; Rowe, Zachary; Chin, Jo-Yu

    2015-01-01

    Basements can influence indoor air quality by affecting air exchange rates (AERs) and by the presence of emission sources of volatile organic compounds (VOCs) and other pollutants. We characterized VOC levels, AERs and interzonal flows between basements and occupied spaces in 74 residences in Detroit, Michigan. Flows were measured using a steady-state multi-tracer system, and 7-day VOC measurements were collected using passive samplers in both living areas and basements. A walkthrough survey/inspection was conducted in each residence. AERs in residences and basements averaged 0.51 and 1.52 h−1, respectively, and had strong and opposite seasonal trends, e.g., AERs were highest in residences during the summer, and highest in basements during the winter. Air flows from basements to occupied spaces also varied seasonally. VOC concentration distributions were right-skewed, e.g., 90th percentile benzene, toluene, naphthalene and limonene concentrations were 4.0, 19.1, 20.3 and 51.0 μg m−3, respectively; maximum concentrations were 54, 888, 1117 and 134 μg m−3. Identified VOC sources in basements included solvents, household cleaners, air fresheners, smoking, and gasoline-powered equipment. The number and type of potential VOC sources found in basements are significant and problematic, and may warrant advisories regarding the storage and use of potentially strong VOCs sources in basements. PMID:25601281

  19. Numerical study on wave loads and motions of two ships advancing in waves by using three-dimensional translating-pulsating source

    NASA Astrophysics Data System (ADS)

    Xu, Yong; Dong, Wen-Cai

    2013-08-01

    A frequency domain analysis method based on the three-dimensional translating-pulsating (3DTP) source Green function is developed to investigate wave loads and free motions of two ships advancing on parallel course in waves. Two experiments are carried out respectively to measure the wave loads and the freemotions for a pair of side-byside arranged ship models advancing with an identical speed in head regular waves. For comparison, each model is also tested alone. Predictions obtained by the present solution are found in favorable agreement with the model tests and are more accurate than the traditional method based on the three dimensional pulsating (3DP) source Green function. Numerical resonances and peak shift can be found in the 3DP predictions, which result from the wave energy trapped in the gap between two ships and the extremely inhomogeneous wave load distribution on each hull. However, they can be eliminated by 3DTP, in which the speed affects the free surface and most of the wave energy can be escaped from the gap. Both the experiment and the present prediction show that hydrodynamic interaction effects on wave loads and free motions are significant. The present solver may serve as a validated tool to predict wave loads and motions of two vessels under replenishment at sea, and may help to evaluate the hydrodynamic interaction effects on the ships safety in replenishment operation.

  20. A three-dimensional numerical study on instability of sinusoidal flame induced by multiple shock waves

    NASA Astrophysics Data System (ADS)

    Chen, Xiao; Dong, Gang; Jiang, Hua

    2017-04-01

    The instabilities of a three-dimensional sinusoidally premixed flame induced by an incident shock wave with Mach = 1.7 and its reshock waves were studied by using the Navier-Stokes (NS) equations with a single-step chemical reaction and a high resolution, 9th-order weighted essentially non-oscillatory scheme. The computational results were validated by the grid independence test and the experimental results in the literature. The computational results show that after the passage of incident shock wave the flame interface develops in symmetric structure accompanied by large-scale transverse vortex structures. After the interactions by successive reshock waves, the flame interface is gradually destabilized and broken up, and the large-scale vortex structures are gradually transformed into small-scale vortex structures. The small-scale vortices tend to be isotropic later. The results also reveal that the evolution of the flame interface is affected by both mixing process and chemical reaction. In order to identify the relationship between the mixing and the chemical reaction, a dimensionless parameter, η , that is defined as the ratio of mixing time scale to chemical reaction time scale, is introduced. It is found that at each interaction stage the effect of chemical reaction is enhanced with time. The enhanced effect of chemical reaction at the interaction stage by incident shock wave is greater than that at the interaction stages by reshock waves. The result suggests that the parameter η can reasonably character the features of flame interface development induced by the multiple shock waves.

  1. Microscopic Lagrangian description of warm plasmas. IV - Macroscopic approximation

    NASA Technical Reports Server (NTRS)

    Kim, H.; Crawford, F. W.

    1983-01-01

    The averaged-Lagrangian method is applied to linear wave propagation and nonlinear three-wave interaction in a warm magnetoplasma, in the macroscopic approximation. The microscopic Lagrangian treated by Kim and Crawford (1977) and by Galloway and Crawford (1977) is first expanded to third order in perturbation. Velocity integration is then carried out, before applying Hamilton's principle to obtain a general description of wave propagation and coupling. The results are specialized to the case of interaction between two electron plasma waves and an Alfven wave. The method is shown to be more powerful than the alternative possibility of working from the beginning with a macroscopic Lagrangian density.

  2. Double Resonances and Spectral Scaling in the Weak Turbulence Theory of Rotating and Stratified Turbulence

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert

    1999-01-01

    In rotating turbulence, stably stratified turbulence, and in rotating stratified turbulence, heuristic arguments concerning the turbulent time scale suggest that the inertial range energy spectrum scales as k(exp -2). From the viewpoint of weak turbulence theory, there are three possibilities which might invalidate these arguments: four-wave interactions could dominate three-wave interactions leading to a modified inertial range energy balance, double resonances could alter the time scale, and the energy flux integral might not converge. It is shown that although double resonances exist in all of these problems, they do not influence overall energy transfer. However, the resonance conditions cause the flux integral for rotating turbulence to diverge logarithmically when evaluated for a k(exp -2) energy spectrum; therefore, this spectrum requires logarithmic corrections. Finally, the role of four-wave interactions is briefly discussed.

  3. Electromyographic activity after latissimus dorsi transfer: testing of coactivation as a simple tool to assess latissimus dorsi motor learning.

    PubMed

    Plath, Johannes E; Seiberl, Wolfgang; Beitzel, Knut; Minzlaff, Philipp; Schwirtz, Ansgar; Imhoff, Andreas B; Buchmann, Stefan

    2014-08-01

    The purpose of this study was to investigate coactivation (CoA) testing as a clinical tool to monitor motor learning after latissimus dorsi tendon transfer. We evaluated 20 patients clinically with the American Shoulder and Elbow Surgeons (ASES) and University of California-Los Angeles (UCLA) outcomes scores, visual analog scale, active external rotation (aER), and isometric strength testing in abduction and external rotation. Measurements of aER were performed while the latissimus dorsi was activated in its new function of external rotation with concomitant activation (coactivation) of its native functions (adduction and extension). Bilateral surface electromyographic (EMG) activity was recorded during aER measurements and the strength testing procedure (EMG activity ratio: with/without CoA). Patients were divided into two groups (excellent/good vs fair/poor) according to the results of the ASES and UCLA scores. The mean follow-up was 57.8 ± 25.2 months. Subdivided by clinical scores, the superior outcome group lost aER with CoA, whereas the inferior outcome group gained aER (UCLA score: -2.2° ± 7.4° vs +4.3° ± 4.1°; P = .031). Patients with inferior outcomes in the ASES score showed higher latissimus dorsi EMG activity ratios (P = .027), suggesting an inadequate motor learning process. Isometric strength testing revealed that the latissimus dorsi transfer had significantly greater activity compared with the contralateral side (external rotation, P = .008; abduction, P = .006) but did not have comparable strength (external rotation, P = .017; abduction, P = .009). Patients with inferior clinical results were more likely to be dependent on CoA to gain external rotation. Therefore, CoA testing may be used as a tool to evaluate the status of postoperative motor learning after latissimus dorsi transfer. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  4. Dynamic Fracture Simulations of Explosively Loaded Cylinders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arthur, Carly W.; Goto, D. M.

    2015-11-30

    This report documents the modeling results of high explosive experiments investigating dynamic fracture of steel (AerMet® 100 alloy) cylinders. The experiments were conducted at Lawrence Livermore National Laboratory (LLNL) during 2007 to 2008 [10]. A principal objective of this study was to gain an understanding of dynamic material failure through the analysis of hydrodynamic computer code simulations. Two-dimensional and three-dimensional computational cylinder models were analyzed using the ALE3D multi-physics computer code.

  5. Wave energy and swimming performance shape coral reef fish assemblages

    PubMed Central

    Fulton, C.J; Bellwood, D.R; Wainwright, P.C

    2005-01-01

    Physical factors often have an overriding influence on the distribution patterns of organisms, and can ultimately shape the long-term structure of communities. Although distribution patterns in sessile marine organisms have frequently been attributed to functional characteristics interacting with wave-induced water motion, similar evidence for mobile organisms is lacking. Links between fin morphology and swimming performance were examined in three diverse coral reef fish families from two major evolutionary lineages. Among-habitat variation in morphology and performance was directly compared with quantitative values of wave-induced water motion from seven coral reef habitats of different depth and wave exposure on the Great Barrier Reef. Fin morphology was strongly correlated with both field and experimental swimming speeds in all three families. The range of observed swimming speeds coincided closely with the magnitude of water velocities commonly found on coral reefs. Distribution patterns in all three families displayed highly congruent relationships between fin morphology and wave-induced water motion. Our findings indicate a general functional relationship between fin morphology and swimming performance in labriform-swimming fishes, and provide quantitative evidence that wave energy may directly influence the assemblage structure of coral reef fishes through interactions with morphology and swimming performance. PMID:15888415

  6. Interaction of Sound with Sound by Novel Mechanisms: Ultrasonic Four-Wave Mixing Mediated by a Suspension and Ultrasonic Three-Wave Mixing at a Free Surface

    NASA Astrophysics Data System (ADS)

    Simpson, Harry Jay

    Two mechanisms of sound interacting with sound are experimentally and theoretically investigated. Ultrasonic four-wave mixing in a dilute particle suspension, analogous to optical four-wave mixing in photorefractive materials, involves the interaction of three ultrasonic wavefields that produces a fourth scattered wavefield. The experimental configuration consists of two ultrasonic (800 kHz) pump waves that are used to produce a grating in a suspension of 25 μm diameter polymer particles in salt water. The pump waves are counter-propagating, which form a standing wavefield in the suspension and the less compressible particles are attracted to the pressure nodes in response to the time averaged radiation pressure. A higher frequency (2-10 MHz) ultrasonic wavefield is used to probe the resulting grating. The ultrasonic Bragg scattering is then measured. The scattering depends strongly on the response to the pump wave and is an unusual class of acoustical nonlinearity. Investigation of very small amplitude gratings are done by studying the temporal response of the Bragg scattering to a sudden turn on of a moderate amplitude pump wavefield in a previously homogeneous particle suspension. The Bragg scattering has been verified experimentally and is modeled for early-time grating formations using a sinusoidal grating. The larger amplitude gratings are studied in equilibrium and are modeled using an Epstein layer approximation. Ultrasonic three-wave mixing at a free surface involves the interaction of a high amplitude 400 kHz plane wavefield incident at 33^circ on a water-air interface with a normally incident high frequency (4.6 MHz) focused wavefield. The 400 kHz "pump" wavefield reflects from the surface and produces an oscillating surface displacement that forms a local traveling phase grating. Simultaneously the 4.6 MHz "probe" wavefield is reflected from the free surface. The grating scatters the focused probe wavefield and produces (or contributes to) spatially and Doppler shifted foci relative to the main focus.

  7. Interaction of sound with sound by novel mechanisms: Ultrasonic four-wave mixing mediated by a suspension and ultrasonic three-wave mixing at a free surface

    NASA Astrophysics Data System (ADS)

    Simpson, Harry Jay

    Two mechanisms of sound interacting with sound are experimentally and theoretically investigated. Ultrasonic four-wave mixing in a dilute particle suspension, analogous to optical four-wave mixing in photorefractive materials, involves the interaction of three ultrasonic wavefields that produces a fourth scattered wavefield. The experimental configuration consists of two ultrasonic (800 kHz) pump waves that are used to produce a grating in a suspension of 25 micron diameter polymer particles in salt water. The pump waves are counter-propagating, which form a standing wavefield in the suspension and the less compressible particles are attracted to the pressure nodes in response to the time averaged radiation pressure. A higher frequency (2 to 10 MHz) ultrasonic wavefield is used to probe the resulting grating. The ultrasonic Bragg scattering is then measured. The scattering depends strongly on the response to the pump wave and is an unusual class of acoustical nonlinearity. Investigation of very small amplitude gratings are done by studying the temporal response of the Bragg scattering to a sudden turn on of a moderate amplitude pump wavefield in a previously homogeneous particle suspension. The Bragg scattering has been verified experimentally and is modeled for early-time grating formations using a sinusoidal grating. The larger amplitude gratings are studied in equilibrium and are modeled using an Epstein layer approximation. Ultrasonic three-wave mixing at a free surface involves the interaction of a high amplitude 400 kHz plane wavefield incident at 33 degrees on a water-air interface with a normally incident high frequency (4.6 MHz) focused wavefield. The 400 kHz 'pump' wavefield reflects from the surface and produces an oscillating surface displacement that forms a local traveling phase grating. Simultaneously the 4.6 MHz 'probe' wavefield is reflected from the free surface. The grating scatters the focused probe wavefield and produces (or contributes to) spatially and Doppler shifted foci relative to the main focus.

  8. Nonlinear Decay of Alfvén Waves Driven by Interplaying Two- and Three-dimensional Nonlinear Interactions

    NASA Astrophysics Data System (ADS)

    Zhao, J. S.; Voitenko, Y.; De Keyser, J.; Wu, D. J.

    2018-04-01

    We study the decay of Alfvén waves in the solar wind, accounting for the joint operation of two-dimensional (2D) scalar and three-dimensional (3D) vector nonlinear interactions between Alfvén and slow waves. These interactions have previously been studied separately in long- and short-wavelength limits where they lead to 2D scalar and 3D vector decays, correspondingly. The joined action of the scalar and vector interactions shifts the transition between 2D and 3D decays to significantly smaller wavenumbers than was predicted by Zhao et al. who compared separate scalar and vector decays. In application to the broadband Alfvén waves in the solar wind, this means that the vector nonlinear coupling dominates in the extended wavenumber range 5 × 10‑4 ≲ ρ i k 0⊥ ≲ 1, where the decay is essentially 3D and nonlocal, generating product Alfvén and slow waves around the ion gyroscale. Here ρ i is the ion gyroradius, and k 0⊥ is the pump Alfvén wavenumber. It appears that, except for the smallest wavenumbers at and below {ρ }i{k}0\\perp ∼ {10}-4 in Channel I, the nonlinear decay of magnetohydrodynamic Alfvén waves propagating from the Sun is nonlocal and cannot generate counter-propagating Alfvén waves with similar scales needed for the turbulent cascade. Evaluation of the nonlinear frequency shift shows that product Alfvén waves can still be approximately described as normal Alfvénic eigenmodes. On the contrary, nonlinearly driven slow waves deviate considerably from normal modes and are therefore difficult to identify on the basis of their phase velocities and/or polarization.

  9. Near-planar TS waves and longitudinal vortices in channel flow: Nonlinear interaction and focusing

    NASA Technical Reports Server (NTRS)

    Hall, P.; Smith, F. T.

    1989-01-01

    The nonlinear interaction between planar or near-planar Tollmien-Schlichting waves and longitudinal vortices, induced or input, is considered theoretically for channel flows at high Reynolds numbers. Several kinds of nonlinear interaction, dependent on the input amplitudes and wavenumbers or on previously occurring interactions, are found and inter-related. The first, Type 1, is studied the most here and it usually produces spanwise focusing of both the wave and the vortex motion, within a finite scaled time, along with enhancement of both their amplitudes. This then points to the nonlinear interaction Type 2 where new interactive effects come into force to drive the wave and the vortex nonlinearly. Types 3, 4 correspond to still higher amplitudes, with 3 being related to 2, while 4 is connected with a larger-scale interaction 5 studied in an allied paper. Both 3, 4 are subsets of the full three-dimensional triple-deck-lie interaction, 6. The strongest nonlinear interactions are those of 4, 5, 6 since they alter the mean-flow profile substantially, i.e., by an 0(1) relative amount. All the types of nonlinear interaction however can result in the formation of focussed responses in the sense of spanwise concentrations and/or amplifications of vorticity and wave amplitude.

  10. Modeling ocean wave propagation under sea ice covers

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Shen, Hayley H.; Cheng, Sukun

    2015-02-01

    Operational ocean wave models need to work globally, yet current ocean wave models can only treat ice-covered regions crudely. The purpose of this paper is to provide a brief overview of ice effects on wave propagation and different research methodology used in studying these effects. Based on its proximity to land or sea, sea ice can be classified as: landfast ice zone, shear zone, and the marginal ice zone. All ice covers attenuate wave energy. Only long swells can penetrate deep into an ice cover. Being closest to open water, wave propagation in the marginal ice zone is the most complex to model. The physical appearance of sea ice in the marginal ice zone varies. Grease ice, pancake ice, brash ice, floe aggregates, and continuous ice sheet may be found in this zone at different times and locations. These types of ice are formed under different thermal-mechanical forcing. There are three classic models that describe wave propagation through an idealized ice cover: mass loading, thin elastic plate, and viscous layer models. From physical arguments we may conjecture that mass loading model is suitable for disjoint aggregates of ice floes much smaller than the wavelength, thin elastic plate model is suitable for a continuous ice sheet, and the viscous layer model is suitable for grease ice. For different sea ice types we may need different wave ice interaction models. A recently proposed viscoelastic model is able to synthesize all three classic models into one. Under suitable limiting conditions it converges to the three previous models. The complete theoretical framework for evaluating wave propagation through various ice covers need to be implemented in the operational ocean wave models. In this review, we introduce the sea ice types, previous wave ice interaction models, wave attenuation mechanisms, the methods to calculate wave reflection and transmission between different ice covers, and the effect of ice floe breaking on shaping the sea ice morphology. Laboratory experiments, field measurements and numerical simulations supporting the fundamental research in wave-ice interaction models are discussed. We conclude with some outlook of future research needs in this field.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiferlein, Katherine E.

    The Annual Energy Review (AER) presents the Energy Information Administration’s historical energy statistics. For many series, statistics are given for every year from 1949 through 2000. The statistics, expressed in either physical units or British thermal units, cover all major energy activities, including consumption, production, trade, stocks, and prices, for all major energy commodities, including fossil fuels, electricity, and renewable energy sources. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the Energy Information Administration under Section 205(a)(2), which states: “The Administrator shall bemore » responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the AER and in other EIA publications.« less

  12. Annual Energy Review 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiferlein, Katherine E.

    1998-07-01

    The Annual Energy Review (AER) presents the Energy Information Administration’s historical energy statistics. For many series, statistics are given for every year from 1949 through 1997. The statistics, expressed in either physical units or British thermal units, cover all major energy activities, including consumption, production, trade, stocks, and prices, for all major energy commodities, including fossil fuels, electricity, and renewable energy sources. Publication of this report is in keeping with responsibilities given to the Energy Information Administration (EIA) in Public Law 95–91 (Department of Energy Organization Act), which states, in part, in Section 205(a)(2) that: “The Administrator shall be responsiblemore » for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the AER and in other EIA publications.« less

  13. Differential profiles in auditory social cognition deficits between adults with autism and schizophrenia spectrum disorders: A preliminary analysis.

    PubMed

    Tobe, Russell H; Corcoran, Cheryl M; Breland, Melissa; MacKay-Brandt, Anna; Klim, Casimir; Colcombe, Stanley J; Leventhal, Bennett L; Javitt, Daniel C

    2016-08-01

    Impairment in social cognition, including emotion recognition, has been extensively studied in both Autism Spectrum Disorders (ASD) and Schizophrenia (SZ). However, the relative patterns of deficit between disorders have been studied to a lesser degree. Here, we applied a social cognition battery incorporating both auditory (AER) and visual (VER) emotion recognition measures to a group of 19 high-functioning individuals with ASD relative to 92 individuals with SZ, and 73 healthy control adult participants. We examined group differences and correlates of basic auditory processing and processing speed. Individuals with SZ were impaired in both AER and VER while ASD individuals were impaired in VER only. In contrast to SZ participants, those with ASD showed intact basic auditory function. Our finding of a dissociation between AER and VER deficits in ASD relative to Sz support modality-specific theories of emotion recognition dysfunction. Future studies should focus on visual system-specific contributions to social cognitive impairment in ASD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Evaluating wave-current interaction in an urban estuary and flooding implications for coastal communities

    NASA Astrophysics Data System (ADS)

    Cifuentes-Lorenzen, A.; O'Donnell, J.; Howard-Strobel, M. M.; Fake, T.; McCardell, G.

    2016-12-01

    Accurate hydrodynamic-wave coupled coastal circulation models aid the prediction of storm impacts, particularly in areas where data is absent, and can inform mitigation options. They are essential everywhere to account for the effects of climate change. Here, the Finite Volume Community Ocean Model (FVCOM) was used to estimate the residual circulation inside a small urban estuary, Long Island Sound, during three severe weather events of different magnitude (i.e. 1/5, 1/25 and 1/50 year events). The effect of including wave coupling using a log-layer bottom boundary and the bottom wave-current coupling, following the approach of Madsen (1994) on the simulated residual circulation was assessed. Significant differences in the solutions were constrained to the near surface (s>-0.3) region. No significant difference in the depth-averaged residual circulation was detected. When the Madsen (1994) bottom boundary layer model for wave-current interaction was employed, differences in residual circulation resulted. The bottom wave-current interaction also plays an important role in the wave dynamics. Significant wave heights along the northern Connecticut shoreline were enhanced by up to 15% when the bottom wave-current interaction was included in the simulations. The wave-induced bottom drag enhancement has a substantial effect on tides in the Sound, possibly because it is nearly resonant at semidiurnal frequencies. This wave-current interaction current leads to severe tidal dampening ( 40% amplitude reduction) at the Western end of the estuary in the modeled sea surface displacement. The potential magnitude of these effects means that wave current interaction should be included and carefully evaluated in models of estuaries that are useful.

  15. Numerical Investigations of Wave-Induced Mixing in Upper Ocean Layer

    NASA Astrophysics Data System (ADS)

    Guan, Changlong

    2017-04-01

    The upper ocean layer is playing an important role in ocean-atmosphere interaction. The typical characteristics depicting the upper ocean layer are the sea surface temperature (SST) and the mixed layer depth (MLD). So far, the existing ocean models tend to over-estimate SST and to under-estimate MLD, due to the inadequate mixing in the mixing layer, which is owing to that several processes related mixing in physics are ignored in these ocean models. The mixing induced by surface gravity wave is expected to be able to enhance the mixing in the upper ocean layer, and therefore the over-estimation of SST and the under-estimate of MLD could be improved by including wave-induced mixing. The wave-induced mixing could be accomplished by the physical mechanisms, such as wave breaking (WB), wave-induced Reynolds stress (WR), and wave-turbulence interaction (WT). The General Ocean Turbulence Model (GOTM) is employed to investigate the effects of the three mechanisms concerning wave-induced mixing. The numerical investigation is carried out for three turbulence closure schemes, say, k-epsilon, k-omega and Mellor-Yamada (1982), with the observational data from OSC Papa station and wave data from ECMWF. The mixing enhancement by various waved-induced mixing mechanisms is investigated and verified.

  16. An Intercomparison of 2-D Models Within a Common Framework

    NASA Technical Reports Server (NTRS)

    Weisenstein, Debra K.; Ko, Malcolm K. W.; Scott, Courtney J.; Jackman, Charles H.; Fleming, Eric L.; Considine, David B.; Kinnison, Douglas E.; Connell, Peter S.; Rotman, Douglas A.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    A model intercomparison among the Atmospheric and Environmental Research (AER) 2-D model, the Goddard Space Flight Center (GSFC) 2-D model, and the Lawrence Livermore National Laboratory 2-D model allows us to separate differences due to model transport from those due to the model's chemical formulation. This is accomplished by constructing two hybrid models incorporating the transport parameters of the GSFC and LLNL models within the AER model framework. By comparing the results from the native models (AER and e.g. GSFC) with those from the hybrid model (e.g. AER chemistry with GSFC transport), differences due to chemistry and transport can be identified. For the analysis, we examined an inert tracer whose emission pattern is based on emission from a High Speed Civil Transport (HSCT) fleet; distributions of trace species in the 2015 atmosphere; and the response of stratospheric ozone to an HSCT fleet. Differences in NO(y) in the upper stratosphere are found between models with identical transport, implying different model representations of atmospheric chemical processes. The response of O3 concentration to HSCT aircraft emissions differs in the models from both transport-dominated differences in the HSCT-induced perturbations of H2O and NO(y) as well as from differences in the model represent at ions of O3 chemical processes. The model formulations of cold polar processes are found to be the most significant factor in creating large differences in the calculated ozone perturbations

  17. Identification and quantification of microbial populations in activated sludge and anaerobic digestion processes.

    PubMed

    Reyes, M; Borrás, L; Seco, A; Ferrer, J

    2015-01-01

    Eight different phenotypes were studied in an activated sludge process (AeR) and anaerobic digester (AnD) in a full-scale wastewater treatment plant by means of fluorescent in situ hybridization (FISH) and automated FISH quantification software. The phenotypes were ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, denitrifying bacteria, phosphate-accumulating organisms (PAO), glycogen-accumulating organisms (GAO), sulphate-reducing bacteria (SRB), methanotrophic bacteria and methanogenic archaea. Some findings were unexpected: (a) Presence of PAO, GAO and denitrifiers in the AeR possibly due to unexpected environmental conditions caused by oxygen deficiencies or its ability to survive aerobically; (b) presence of SRB in the AeR due to high sulphate content of wastewater intake and possibly also due to digested sludge being recycled back into the primary clarifier; (c) presence of methanogenic archaea in the AeR, which can be explained by the recirculation of digested sludge and its ability to survive periods of high oxygen levels; (d) presence of denitrifying bacteria in the AnD which cannot be fully explained because the nitrate level in the AnD was not measured. However, other authors reported the existence of denitrifiers in environments where nitrate or oxygen was not present suggesting that denitrifiers can survive in nitrate-free anaerobic environments by carrying out low-level fermentation; (e) the results of this paper are relevant because of the focus on the identification of nearly all the significant bacterial and archaeal groups of microorganisms with a known phenotype involved in the biological wastewater treatment.

  18. Stochastic three-wave interaction in flaring solar loops

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Sharma, R. R.; Papadopoulos, K.

    1983-01-01

    A model is proposed for the dynamic structure of high-frequency microwave bursts. The dynamic component is attributed to beams of precipitating electrons which generate electrostatic waves in the upper hybrid branch. Coherent upconversion of the electrostatic waves to electromagnetic waves produces an intrinsically stochastic emission component which is superposed on the gyrosynchrotron continuum generated by stably trapped electron fluxes. The role of the density and temperature of the ambient plasma in the wave growth and the transition of the three wave upconversion to stochastic, despite the stationarity of the energy source, are discussed in detail. The model appears to reproduce the observational features for reasonable parameters of the solar flare plasma.

  19. Influence of nonlinear detuning at plasma wavebreaking threshold on backward Raman compression of non-relativistic laser pulses

    NASA Astrophysics Data System (ADS)

    Balakin, A. A.; Fraiman, G. M.; Jia, Q.; Fisch, N. J.

    2018-06-01

    Taking into account the nonlinear dispersion of the plasma wave, the fluid equations for the three-wave (Raman) interaction in plasmas are derived. It is found that, in some parameter regimes, the nonlinear detuning resulting from the plasma wave dispersion during Raman compression limits the plasma wave amplitude to noticeably below the generally recognized wavebreaking threshold. Particle-in-cell simulations confirm the theoretical estimates. For weakly nonlinear dispersion, the detuning effect can be counteracted by pump chirping or, equivalently, by upshifting slightly the pump frequency, so that the frequency-upshifted pump interacts with the seed at the point where the plasma wave enters the nonlinear stage.

  20. Operation TUMBLER-SNAPPER 1952

    DTIC Science & Technology

    1982-06-14

    coordinates are used in this report, as seen in table 1-1. The first three digits refer to I point on an east-west axis, and the second throe digits ...8217icultural ,ech S’tte ’No,. a4inlovvi as t ;’ib i Libary U ’ aerSji ’, T’" Lbra ": 2N L ibrn "Ne•w 5e,•t ’tall I it’ra ’vr Vn Ver t 1 .o0 ,rthl ’a l

  1. The stratigraphy of Mars

    NASA Technical Reports Server (NTRS)

    Tanaka, Kenneth L.

    1986-01-01

    A global stratigraphy of Mars was developed from a global geologic map series derived from Viking images; the stratigraphy is composed of three maps. A new chronostratigraphic classification system which consists of lower, middle, and upper Noachian, Hesperian, and Amazonian systems is described. The crater-density boundaries of the chronostratigraphic units and the absolute ages of the Martian epochs aer estimated. The relative ages of major geologic units and featues are calculated and analyzed. The geologic history of Mars is summarized on the maps in terms of epochs.

  2. The effect of essential oils of basil on the growth of Aeromonas hydrophila and Pseudomonas fluorescens.

    PubMed

    Wan, J; Wilcock, A; Coventry, M J

    1998-02-01

    Basil essential oils, including basil sweet linalool (BSL) and basil methyl chavicol (BMC), were screened for antimicrobial activity against a range of Gram-positive and Gram-negative bacteria, yeasts and moulds using an agar well diffusion method. Both essential oils showed antimicrobial activity against most of the micro-organisms examined except Clostridium sporogenes, Flavimonas oryzihabitans, and three species of Pseudomonas. The minimum inhibitory concentration (MIC) of BMC against Aeromonas hydrophila and Pseudomonas fluorescens in TSYE broth (as determined using an indirect impedance method) was 0.125 and 2% (v/v), respectively; the former was not greatly affected by the increase of challenge inoculum from 10(3) to 10(6) cfu ml-1. Results with resting cells demonstrated that BMC was bactericidal to both Aer. hydrophila and Ps. fluorescens. The growth of Aer. hydrophila in filter-sterilized lettuce extract was completely inhibited by 0.1% (v/v) BMC whereas that of Ps. fluorescens was not significantly affected by 1% (v/v) BMC. In addition, the effectiveness of washing fresh lettuce with 0.1 or 1% (v/v) BMC on survival of natural microbial flora was comparable with that effected by 125 ppm chlorine.

  3. Traveling wave in a three-dimensional array of conformist and contrarian oscillators

    NASA Astrophysics Data System (ADS)

    Hoang, Danh-Tai; Jo, Junghyo; Hong, Hyunsuk

    2015-03-01

    We consider a system of conformist and contrarian oscillators coupled locally in a three-dimensional cubic lattice and explore collective behavior of the system. The conformist oscillators attractively interact with the neighbor oscillators and therefore tend to be aligned with the neighbors' phase. The contrarian oscillators interact repulsively with the neighbors and therefore tend to be out of phase with them. In this paper, we investigate whether many peculiar dynamics that have been observed in the mean-field system with global coupling can emerge even with local coupling. In particular, we pay attention to the possibility that a traveling wave may arise. We find that the traveling wave occurs due to coupling asymmetry and not by global coupling; this observation confirms that the global coupling is not essential to the occurrence of a traveling wave in the system. The traveling wave can be a mechanism for the coherent rhythm generation of the circadian clock or of hormone secretion in biological systems under local coupling.

  4. Lump waves and breather waves for a (3+1)-dimensional generalized Kadomtsev-Petviashvili Benjamin-Bona-Mahony equation for an offshore structure

    NASA Astrophysics Data System (ADS)

    Yin, Ying; Tian, Bo; Wu, Xiao-Yu; Yin, Hui-Min; Zhang, Chen-Rong

    2018-04-01

    In this paper, we investigate a (3+1)-dimensional generalized Kadomtsev-Petviashvili Benjamin-Bona-Mahony equation, which describes the fluid flow in the case of an offshore structure. By virtue of the Hirota method and symbolic computation, bilinear forms, the lump-wave and breather-wave solutions are derived. Propagation characteristics and interaction of lump waves and breather waves are graphically discussed. Amplitudes and locations of the lump waves, amplitudes and periods of the breather waves all vary with the wavelengths in the three spatial directions, ratio of the wave amplitude to the depth of water, or product of the depth of water and the relative wavelength along the main direction of propagation. Of the interactions between the lump waves and solitons, there exist two different cases: (i) the energy is transferred from the lump wave to the soliton; (ii) the energy is transferred from the soliton to the lump wave.

  5. Spin-wave dynamics and exchange interactions in multiferroic NdFe3(BO3)4 explored by inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Golosovsky, I. V.; Ovsyanikov, A. K.; Aristov, D. N.; Matveeva, P. G.; Mukhin, A. A.; Boehm, M.; Regnault, L.-P.; Bezmaternykh, L. N.

    2018-04-01

    Magnetic excitations and exchange interactions in multiferroic NdFe3(BO3)4 were studied by inelastic neutron scattering in the phase with commensurate antiferromagnetic structure. The observed spectra were analyzed in the frame of the linear spin-wave theory. It was shown that only the model, which includes the exchange interactions within eight coordination spheres, describes satisfactorily all observed dispersion curves. The calculation showed that the spin-wave dynamics is governed by the strongest antiferromagnetic intra-chain interaction and three almost the same inter-chain interactions. Other interactions, including ferromagnetic exchange, appeared to be insignificant. The overall energy balance of the antiferromagnetic inter-chain exchange interactions, which couple the moments from the adjacent ferromagnetic layers as well as within a layer, stabilizes ferromagnetic arrangement in the latter. It demonstrates that the pathway geometry plays a crucial role in forming of the magnetic structure.

  6. Computational study of the interaction between a shock and a near-wall vortex using a weighted compact nonlinear scheme

    NASA Astrophysics Data System (ADS)

    Zuo, Zhifeng; Maekawa, Hiroshi

    2014-02-01

    The interaction between a moderate-strength shock wave and a near-wall vortex is studied numerically by solving the two-dimensional, unsteady compressible Navier-Stokes equations using a weighted compact nonlinear scheme with a simple low-dissipation advection upstream splitting method for flux splitting. Our main purpose is to clarify the development of the flow field and the generation of sound waves resulting from the interaction. The effects of the vortex-wall distance on the sound generation associated with variations in the flow structures are also examined. The computational results show that three sound sources are involved in this problem: (i) a quadrupolar sound source due to the shock-vortex interaction; (ii) a dipolar sound source due to the vortex-wall interaction; and (iii) a dipolar sound source due to unsteady wall shear stress. The sound field is the combination of the sound waves produced by all three sound sources. In addition to the interaction of the incident shock with the vortex, a secondary shock-vortex interaction is caused by the reflection of the reflected shock (MR2) from the wall. The flow field is dominated by the primary and secondary shock-vortex interactions. The generation mechanism of the third sound, which is newly discovered, due to the MR2-vortex interaction is presented. The pressure variations generated by (ii) become significant with decreasing vortex-wall distance. The sound waves caused by (iii) are extremely weak compared with those caused by (i) and (ii) and are negligible in the computed sound field.

  7. An instability due to the nonlinear coupling of p-modes to g-modes: Implications for coalescing neutron star binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinberg, Nevin N.; Arras, Phil; Burkart, Joshua, E-mail: nevin@mit.edu

    2013-06-01

    A weakly nonlinear fluid wave propagating within a star can be unstable to three-wave interactions. The resonant parametric instability is a well-known form of three-wave interaction in which a primary wave of frequency ω {sub a} excites a pair of secondary waves of frequency ω {sub b} + ω {sub c} ≅ ω {sub a}. Here we consider a nonresonant form of three-wave interaction in which a low-frequency primary wave excites a high-frequency p-mode and a low-frequency g-mode such that ω {sub b} + ω {sub c} >> ω {sub a}. We show that a p-mode can couple so stronglymore » to a g-mode of similar radial wavelength that this type of nonresonant interaction is unstable even if the primary wave amplitude is small. As an application, we analyze the stability of the tide in coalescing neutron star binaries to p-g mode coupling. We find that the equilibrium tide and dynamical tide are both p-g unstable at gravitational wave frequencies f {sub gw} ≳ 20 Hz and drive short wavelength p-g mode pairs to significant energies on very short timescales (much less than the orbital decay time due to gravitational radiation). Resonant parametric coupling to the tide is, by contrast, either stable or drives modes at a much smaller rate. We do not solve for the saturation of the p-g instability and therefore we cannot say precisely how it influences the evolution of neutron star binaries. However, we show that if even a single daughter mode saturates near its wave breaking amplitude, the p-g instability of the equilibrium tide will (1) induce significant orbital phase errors (Δφ ≳ 1 radian) that accumulate primarily at low frequencies (f {sub gw} ≲ 50 Hz) and (2) heat the neutron star core to a temperature of T ∼ 10{sup 10} K. Since there are at least ∼100 unstable p-g daughter pairs, Δφ and T are potentially much larger than these values. Tides might therefore significantly influence the gravitational wave signal and electromagnetic emission from coalescing neutron star binaries at much larger orbital separations than previously thought.« less

  8. Analytical solution and applications of three qubits in three coupled modes without rotating wave approximation

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Song; Zhang, Liu-Juan; Chen, Ai-Xi; Abdel-Aty, Mahmoud

    2018-06-01

    We study the dynamics of the three-qubit system interacting with multi-mode without rotating wave approximation (RWA). A physical realization of the system without direct qubits interactions with dephasing bath is proposed. It is shown that non-Markovian characters of the purity of the three qubits and the coupling strength of modes are stronger enough the RWA is no longer valid. The influences of the dephasing of qubits and interactions of modes on the dynamics of genuine multipartite entanglement and bipartite correlations of qubits are investigated. The multipartite and bipartite quantum correlations could be generated faster if we increase the coupling strength of modes and the RWA is not valid when the coupling strength is strong enough. The unitary transformations approach adopted here can be extended to other systems such as circuit or cavity quantum electrodynamic systems in the strong coupling regime.

  9. Laboratory Studies of the Nonlinear Interactions of Kink-Unstable Flux Ropes and Shear Alfvén Waves

    NASA Astrophysics Data System (ADS)

    Vincena, S. T.; Tripathi, S.; Gekelman, W. N.; DeHaas, T.; Pribyl, P.

    2017-12-01

    Magnetic flux ropes and shear Alfvén waves occur simultaneously in plasmas ranging from solar prominences, to the solar wind, to planetary magnetospheres. If the flux ropes evolve to become unstable to the kink mode, interactions between the kink oscillations and the shear waves can arise, and may even lead to nonlinear phenomena. Experiments aimed at elucidating such interactions are performed in the upgraded Large Plasma Device at UCLA. Flux ropes are generated using a 20 cm x 20 cm LaB6 cathode-anode discharge (with L = 18 m and β ˜ 0.1.) The ropes are embedded in a larger, otherwise current-free, cylindrical (r = 30cm) ambient plasma produced by a second cathode. Shear Alfvén waves are launched using externally fed antennas having three separate polarizations (azimuthal mode numbers.) The counter-propagating, kink-unstable oscillations and driven shear waves are observed to nonlinearly generate sidebands about the higher, shear wave frequency (evident in power spectra) via three-wave coupling. This is demonstrated though bi-coherence calculations and k-matching. With a fixed kink-mode polarization, a total of six daughter wave patterns are presented. Energy flow is shown to proceed from larger to smaller perpendicular wavelengths. Future work will focus on increasing the plasma beta and wave amplitudes in the quest to observe an evolution to a turbulent state. Work is performed at the US Basic Plasma Science Facility, which is supported by the US Department of Energy and the National Science Foundation.

  10. Head-on collision of the second mode internal solitary waves

    NASA Astrophysics Data System (ADS)

    Terletska, Kateryna; Maderich, Vladimir; Jung, Kyung Tae

    2017-04-01

    Second mode internal waves are widespread in offshore areas, and they frequently follow the first mode internal waves on the oceanic shelf. Large amplitude internal solitary waves (ISW) of second mode containing trapped cores associated with closed streamlines can also transport plankton and nutrients. An interaction of ISWs with trapped cores takes place in a specific manner. It motivated us to carry out a computational study of head-on collision of ISWs of second mode propagating in a laboratory-scale numerical tank using the nonhydrostatic 3D numerical model based on the Navier-Stokes equations for a continuously stratified fluid. Three main classes of ISW of second mode propagating in the pycnocline layer of thickness h between homogeneous deep layers can be identified: (i) the weakly nonlinear waves; (ii) the stable strongly nonlinear waves with trapped cores; and (iii) the shear unstable strongly nonlinear waves (Maderich et al., 2015). Four interaction regimes for symmetric collision were separated from simulation results using this classification: (A) an almost elastic interaction of the weakly nonlinear waves; (B) a non-elastic interaction of waves with trapped cores when ISW amplitudes were close to critical non-dimensional amplitude a/h; (C) an almost elastic interaction of stable strongly nonlinear waves with trapped cores; (D) non-elastic interaction of the unstable strongly nonlinear waves. The unexpected result of simulation was that relative loss of energy due to the collision was maximal for regime B. New regime appeared when ISW of different amplitudes belonged to class (ii) collide. In result of interaction the exchange of mass between ISW occurred: the trapped core of smaller wave was entrained by core of larger ISW without mixing forming a new ISW of larger amplitude whereas in smaller ISW core of smaller wave totally substituted by fluid from larger wave. Overall, the wave characteristics induced by head-on collision agree well with the results of several available laboratory experiments. References [1] V. Maderich, K. T. Jung, K. Terletska, I. Brovchenko, T. Talipova, "Incomplete similarity of internal solitary waves with trapped core," Fluid Dynamics Research 47, 035511 (2015).

  11. Comparing the Robustness of High-Frequency Traveling-Wave Tube Slow-Wave Circuits

    NASA Technical Reports Server (NTRS)

    Chevalier, Christine T.; Wilson, Jeffrey D.; Kory, Carol L.

    2007-01-01

    A three-dimensional electromagnetic field simulation software package was used to compute the cold-test parameters, phase velocity, on-axis interaction impedance, and attenuation, for several high-frequency traveling-wave tube slow-wave circuit geometries. This research effort determined the effects of variations in circuit dimensions on cold-test performance. The parameter variations were based on the tolerances of conventional micromachining techniques.

  12. Celeris: A GPU-accelerated open source software with a Boussinesq-type wave solver for real-time interactive simulation and visualization

    NASA Astrophysics Data System (ADS)

    Tavakkol, Sasan; Lynett, Patrick

    2017-08-01

    In this paper, we introduce an interactive coastal wave simulation and visualization software, called Celeris. Celeris is an open source software which needs minimum preparation to run on a Windows machine. The software solves the extended Boussinesq equations using a hybrid finite volume-finite difference method and supports moving shoreline boundaries. The simulation and visualization are performed on the GPU using Direct3D libraries, which enables the software to run faster than real-time. Celeris provides a first-of-its-kind interactive modeling platform for coastal wave applications and it supports simultaneous visualization with both photorealistic and colormapped rendering capabilities. We validate our software through comparison with three standard benchmarks for non-breaking and breaking waves.

  13. ARTICLES: Nonlinear interaction of infrared waves on a VO2 surface at a semiconductor-metal phase transition

    NASA Astrophysics Data System (ADS)

    Berger, N. K.; Zhukov, E. A.; Novokhatskiĭ, V. V.

    1984-04-01

    The use of a semiconductor-metal phase transition for wavefront reversal of laser radiation was proposed. An investigation was made of nonlinear reflection of CO2 laser radiation at a phase transition in VO2. A three-wave interaction on a VO2 surface was achieved using low-power cw and pulsed CO2 lasers. In the first case, the intensity reflection coefficient was 0.5% for a reference wave intensity of 0.9 W/cm2 and in the second case, it was 42% for a threshold reference wave energy density of 0.6-0.8 mJ/cm2.

  14. Simulation of TunneLadder traveling-wave tube cold-test characteristics: Implementation of the three-dimensional, electromagnetic circuit analysis code micro-SOS

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Wilson, Jeffrey D.

    1993-01-01

    The three-dimensional, electromagnetic circuit analysis code, Micro-SOS, can be used to reduce expensive time-consuming experimental 'cold-testing' of traveling-wave tube (TWT) circuits. The frequency-phase dispersion characteristics and beam interaction impedance of a TunneLadder traveling-wave tube slow-wave structure were simulated using the code. When reasonable dimensional adjustments are made, computer results agree closely with experimental data. Modifications to the circuit geometry that would make the TunneLadder TWT easier to fabricate for higher frequency operation are explored.

  15. Wave-current interaction in Willapa Bay

    USGS Publications Warehouse

    Olabarrieta, Maitane; Warner, John C.; Kumar, Nirnimesh

    2011-01-01

    This paper describes the importance of wave-current interaction in an inlet-estuary system. The three-dimensional, fully coupled, Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system was applied in Willapa Bay (Washington State) from 22 to 29 October 1998 that included a large storm event. To represent the interaction between waves and currents, the vortex-force method was used. Model results were compared with water elevations, currents, and wave measurements obtained by the U.S. Army Corp of Engineers. In general, a good agreement between field data and computed results was achieved, although some discrepancies were also observed in regard to wave peak directions in the most upstream station. Several numerical experiments that considered different forcing terms were run in order to identify the effects of each wind, tide, and wave-current interaction process. Comparison of the horizontal momentum balances results identified that wave-breaking-induced acceleration is one of the leading terms in the inlet area. The enhancement of the apparent bed roughness caused by waves also affected the values and distribution of the bottom shear stress. The pressure gradient showed significant changes with respect to the pure tidal case. During storm conditions the momentum balance in the inlet shares the characteristics of tidal-dominated and wave-dominated surf zone environments. The changes in the momentum balance caused by waves were manifested both in water level and current variations. The most relevant effect on hydrodynamics was a wave-induced setup in the inner part of the estuary.

  16. Planck's constant and the three waves (TWs) of Einstein's covariant ether

    NASA Astrophysics Data System (ADS)

    Kostro, L.

    1985-11-01

    The implications of a three-wave model for elementary particles, satisfying the principles of both quantum mechanics and General Relativity (GR), are discussed. In GR, the ether is the fundamental source of all activity, where particles (waves) arise at singularities. Inertia and gravity are field properties of the ether. In flat regions of the space-time geodesic, wave excitations correspond to the presence of particles. A momentum-carrying excitation which occurs in the ether is a superluminal radiation (phase- or B-waves) which transports neither energy nor mass. Superposition of the B-waves produces soliton-like excitations on the ether to form C-waves, i.e., particles. The particle-waves travel through space-time on D-waves, and experience reflection, refraction and interference only where B-waves have interacted with the ether. The original particles, photons-maximons, existed at the Big Bang and had physical properties which are describable in terms of Planck's quantities.

  17. Investigation of mesoscale meteorological phenomena as observed by geostationary satellite

    NASA Technical Reports Server (NTRS)

    Brundidge, K. C.

    1982-01-01

    Satellite imagery plus conventional synoptic observations were used to examine three mesoscale systems recently observed by the GOES-EAST satellite. The three systems are an arc cloud complex (ACC), mountain lee wave clouds and cloud streets parallel to the wind shear. Possible gravity-wave activity is apparent in all three cases. Of particular interest is the ACC because of its ability to interact with other mesoscale phenomena to produce or enhance convection.

  18. A 3D unstructured grid nearshore hydrodynamic model based on the vortex force formalism

    NASA Astrophysics Data System (ADS)

    Zheng, Peng; Li, Ming; van der A, Dominic A.; van der Zanden, Joep; Wolf, Judith; Chen, Xueen; Wang, Caixia

    2017-08-01

    A new three-dimensional nearshore hydrodynamic model system is developed based on the unstructured-grid version of the third generation spectral wave model SWAN (Un-SWAN) coupled with the three-dimensional ocean circulation model FVCOM to enable the full representation of the wave-current interaction in the nearshore region. A new wave-current coupling scheme is developed by adopting the vortex-force (VF) scheme to represent the wave-current interaction. The GLS turbulence model is also modified to better reproduce wave-breaking enhanced turbulence, together with a roller transport model to account for the effect of surface wave roller. This new model system is validated first against a theoretical case of obliquely incident waves on a planar beach, and then applied to three test cases: a laboratory scale experiment of normal waves on a beach with a fixed breaker bar, a field experiment of oblique incident waves on a natural, sandy barred beach (Duck'94 experiment), and a laboratory study of normal-incident waves propagating around a shore-parallel breakwater. Overall, the model predictions agree well with the available measurements in these tests, illustrating the robustness and efficiency of the present model for very different spatial scales and hydrodynamic conditions. Sensitivity tests indicate the importance of roller effects and wave energy dissipation on the mean flow (undertow) profile over the depth. These tests further suggest to adopt a spatially varying value for roller effects across the beach. In addition, the parameter values in the GLS turbulence model should be spatially inhomogeneous, which leads to better prediction of the turbulent kinetic energy and an improved prediction of the undertow velocity profile.

  19. Expanding Scales and Applications for 2D Spatial Mapping of CO2 using GreenLITE

    NASA Astrophysics Data System (ADS)

    Erxleben, W. H.; Dobler, J. T.; Zaccheo, T. S.; Blume, N.; Braun, M.

    2015-12-01

    The Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE) system is a new measurement approach originally developed under a cooperative agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL), Atmospheric Environmental Sciences (AER) and Exelis Inc. (now part of Harris Corp.). The original system design provides 24/7 monitoring of Ground Carbon Storage (GCS) sites, in order to help ensure worker safety and verify 99% containment. The first generation was designed to cover up to 1km2 area, and employs the Exelis Continuous Wave (CW) Intensity Modulated (IM) approach to measure differential transmission. A pair of scanning transceivers was built and combined with a series of retro reflectors, and a local weather station to provide the information required for producing estimates of the atmospheric CO2 concentration over a number of overlapping lines-of-site. The information from the transceivers, and weather station, are sent remotely to a web-based processing and storage tool, which in-turn uses the data to generate estimates of the 2D spatial distribution over the area of coverage and disseminate that information near real-time via a secure web interface. Recently, in 2015, Exelis and AER have invested in the expansion of the GreenLITE transceiver system to 5 km range, enabling areas up to 25 km2 to be evaluated with this technology, and opening new possibilities for applications such as urban scale monitoring. The 5 km system is being tested in conjunction with the National Institute of Standards and Technology at the Boulder Atmospheric Observatory in August of this year. This talk will review the initial GreenLITE system, testing and deployment of that system, and the more recent development, expansion and testing of the 5 km system.

  20. Indoor transient SOA formation from ozone + α-pinene reactions: Impacts of air exchange and initial product concentrations, and comparison to limonene ozonolysis

    NASA Astrophysics Data System (ADS)

    Youssefi, Somayeh; Waring, Michael S.

    2015-07-01

    The ozonolysis of reactive organic gases (ROG), e.g. terpenes, generates secondary organic aerosol (SOA) indoors. The SOA formation strength of such reactions is parameterized by the aerosol mass fraction (AMF), a.k.a. SOA yield, which is the mass ratio of generated SOA to oxidized ROG. AMFs vary in magnitude both among and for individual ROGs. Here, we quantified dynamic SOA formation from the ozonolysis of α-pinene with 'transient AMFs,' which describe SOA formation due to pulse emission of a ROG in an indoor space with air exchange, as is common when consumer products are intermittently used in ventilated buildings. We performed 19 experiments at low, moderate, and high (0.30, 0.52, and 0.94 h-1, respectively) air exchange rates (AER) at varying concentrations of initial reactants. Transient AMFs as a function of peak SOA concentrations ranged from 0.071 to 0.25, and they tended to increase as the AER and product of the initial reactant concentrations increased. Compared to our similar research on limonene ozonolysis (Youssefi and Waring, 2014), for which formation strength was driven by secondary ozone reactions, the AER impact for α-pinene was opposite in direction and weaker, while the initial reactant product impact was in the same direction but stronger for α-pinene than for limonene. Linear fits of AMFs for α-pinene ozonolysis as a function of the AER and initial reactant concentrations are provided so that future indoor models can predict SOA formation strength.

  1. Modeling Water Waves with Smoothed Particle Hydrodynamics

    DTIC Science & Technology

    2011-09-30

    Lagrangian nature of SPH allows the modeling of wave breaking, surf zones, ship waves, and wave-structure interaction, where the free surface becomes...particle detection--To study free surface flows and analyze their complex deformations, we need to know which particles are located on the free surface ...Hydrodynamics is proving to be a competent modeling scheme for free surface flows in two and three dimensions. As the GPU hardware improves, it is

  2. Solitons, Bäcklund transformation and Lax pair for a (2+1)-dimensional B-type Kadomtsev-Petviashvili equation in the fluid/plasma mechanics

    NASA Astrophysics Data System (ADS)

    Lan, Zhong-Zhou; Gao, Yi-Tian; Yang, Jin-Wei; Su, Chuan-Qi; Wang, Qi-Min

    2016-09-01

    Under investigation in this paper is a (2+1)-dimensional B-type Kadomtsev-Petviashvili equation for the shallow water wave in a fluid or electrostatic wave potential in a plasma. Bilinear form, Bäcklund transformation and Lax pair are derived based on the binary Bell polynomials. Multi-soliton solutions are constructed via the Hirota’s method. Propagation and interaction of the solitons are illustrated graphically: (i) Through the asymptotic analysis, elastic and inelastic interactions between the two solitons are discussed analytically and graphically, respectively. The elastic interaction, amplitudes, velocities and shapes of the two solitons remain unchanged except for a phase shift. However, in the area of the inelastic interaction, amplitudes of the two solitons have a linear superposition. (ii) Elastic interactions among the three solitons indicate that the properties of the elastic interactions among the three solitons are similar to those between the two solitons. Moreover, oblique and overtaking interactions between the two solitons are displayed. Oblique interactions among the three solitons and interactions among the two parallel solitons and a single one are presented as well. (iii) Inelastic-elastic interactions imply that the interaction between the inelastic region and another one is elastic.

  3. Analysis of Dynamic Avalanche Phenomenon in SOI Lateral High-speed Diode during Reverse Recovery and Development of a Novel Device Structure for Suppressing Dynamic Avalanche

    NASA Astrophysics Data System (ADS)

    Tokura, Norihito; Yamamoto, Takao; Kato, Hisato; Nakagawa, Akio

    We have studied the dynamic avalanche phenomenon in an SOI lateral diode during reverse recovery by using a mixed-mode device simulation. In the study, it has been found that local impact ionization occurs near an anode-side field oxide edge, where a high-density hole current flows and a high electric field appears simultaneously. We propose that a p-type anode extension region (AER) along a trench side wall effectively sweeps out stored carriers beneath an anode p-diffusion layer during reverse recovery, resulting in reduction of the electric field and remarkable suppression of the dynamic avalanche. The AER reduces the total recovery charge and does not cause any increase in the total stored charge under a forward bias operation. This effect is verified experimentally by the fabricated device with AER. Thus, the developed SOI lateral diode is promising as a high-speed and highly rugged free-wheeling diode, which can be integrated into next-generation SOI microinverters.

  4. Cognitive and evoked response measures of information processing in schizophrenics with and without a family history of schizophrenia.

    PubMed

    Asarnow, R F; Cromwell, R L; Rennick, P M

    1978-10-01

    Twenty-four male schizophrenics, 12 (SFH) with schizophrenia in the immediate family and 12 (SNFH) with no evidence of schizophrenia in the family background, and 24 male control subjects, 12 highly educated (HEC), and 12 minimally educated (MEC), were assessed for premorbid social adjustment and were administered the Digit Symbol Substitution Test, a size estimation task, and the EEG average evoked response (AER) at different levels of stimulus intensity. As predicted from the stimulus redundancy formulation, the SFH patients were poorer in premorbid adjustment, were less often paranoid, functioned at a lower level of cognitive efficiency (poor digit symbol and greater absolute error on size estimation), were more chronic, and, in some respects, had size estimation indices of minimal scanning. Contrary to prediction, the SFH group had the strongest and most sustained augmenting response on AER, while the SNFH group shifted from an augmenting to a reducing pattern of response. The relationship between an absence of AER reducing and the presence of cognitive impairment in the SFH group was a major focus of discussion.

  5. Building a knowledge base of severe adverse drug events based on AERS reporting data using semantic web technologies.

    PubMed

    Jiang, Guoqian; Wang, Liwei; Liu, Hongfang; Solbrig, Harold R; Chute, Christopher G

    2013-01-01

    A semantically coded knowledge base of adverse drug events (ADEs) with severity information is critical for clinical decision support systems and translational research applications. However it remains challenging to measure and identify the severity information of ADEs. The objective of the study is to develop and evaluate a semantic web based approach for building a knowledge base of severe ADEs based on the FDA Adverse Event Reporting System (AERS) reporting data. We utilized a normalized AERS reporting dataset and extracted putative drug-ADE pairs and their associated outcome codes in the domain of cardiac disorders. We validated the drug-ADE associations using ADE datasets from SIDe Effect Resource (SIDER) and the UMLS. We leveraged the Common Terminology Criteria for Adverse Event (CTCAE) grading system and classified the ADEs into the CTCAE in the Web Ontology Language (OWL). We identified and validated 2,444 unique Drug-ADE pairs in the domain of cardiac disorders, of which 760 pairs are in Grade 5, 775 pairs in Grade 4 and 2,196 pairs in Grade 3.

  6. Analytical model for vibration prediction of two parallel tunnels in a full-space

    NASA Astrophysics Data System (ADS)

    He, Chao; Zhou, Shunhua; Guo, Peijun; Di, Honggui; Zhang, Xiaohui

    2018-06-01

    This paper presents a three-dimensional analytical model for the prediction of ground vibrations from two parallel tunnels embedded in a full-space. The two tunnels are modelled as cylindrical shells of infinite length, and the surrounding soil is modelled as a full-space with two cylindrical cavities. A virtual interface is introduced to divide the soil into the right layer and the left layer. By transforming the cylindrical waves into the plane waves, the solution of wave propagation in the full-space with two cylindrical cavities is obtained. The transformations from the plane waves to cylindrical waves are then used to satisfy the boundary conditions on the tunnel-soil interfaces. The proposed model provides a highly efficient tool to predict the ground vibration induced by the underground railway, which accounts for the dynamic interaction between neighbouring tunnels. Analysis of the vibration fields produced over a range of frequencies and soil properties is conducted. When the distance between the two tunnels is smaller than three times the tunnel diameter, the interaction between neighbouring tunnels is highly significant, at times in the order of 20 dB. It is necessary to consider the interaction between neighbouring tunnels for the prediction of ground vibrations induced underground railways.

  7. Geometric calculus-based postulates for the derivation and extension of the Maxwell equations

    NASA Astrophysics Data System (ADS)

    McClellan, Gene E.

    2012-09-01

    Clifford analysis, particularly application of the geometric algebra of three-dimensional physical space and its associated geometric calculus, enables a compact formulation of Maxwell's electromagnetic (EM) equations from a set of physically relevant and mathematically pleasing postulates. This formulation results in a natural extension of the Maxwell equations yielding wave solutions in addition to the usual EM waves. These additional solutions do not contradict experiment and have three properties in common with the apparent properties of dark energy. These three properties are that the wave solutions 1) propagate at the speed of light, 2) do not interact with ordinary electric charges or currents, and 3) possess retrograde momentum. By retrograde momentum, we mean that the momentum carried by such a wave is directed oppositely to the direction of energy transport. A "gas" of such waves generates negative pressure.

  8. A Self-Consistent Model of the Interacting Ring Current Ions and Electromagnetic ICWs. Initial Results: Waves and Precipitation Fluxes

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Initial results from the new developed model of the interacting ring current ions and ion cyclotron waves are presented. The model described by the system of two bound kinetic equations: one equation describes the ring current ion dynamics, and another one gives wave evolution. Such system gives a self-consistent description of the ring current ions and ion cyclotron waves in a quasilinear approach. Calculating ion-wave relationships, on a global scale under non steady-state conditions during May 2-5, 1998 storm, we presented the data at three time cuts around initial, main, and late recovery phases of May 4, 1998 storm phase. The structure and dynamics of the ring current proton precipitating flux regions and the wave active ones are discussed in detail.

  9. The effect of wave current interactions on the storm surge and inundation in Charleston Harbor during Hurricane Hugo 1989

    NASA Astrophysics Data System (ADS)

    Xie, Lian; Liu, Huiqing; Peng, Machuan

    The effects of wave-current interactions on the storm surge and inundation induced by Hurricane Hugo in and around the Charleston Harbor and its adjacent coastal regions are examined by using a three-dimensional (3-D) wave-current coupled modeling system. The 3-D storm surge and inundation modeling component of the coupled system is based on the Princeton ocean model (POM), whereas the wave modeling component is based on the third-generation wave model, simulating waves nearshore (SWAN). The results indicate that the effects of wave-induced surface, bottom, and radiation stresses can separately or in combination produce significant changes in storm surge and inundation. The effects of waves vary spatially. In some areas, the contribution of waves to peak storm surge during Hurricane Hugo reached as high as 0.76 m which led to substantial changes in the inundation and drying areas simulated by the storm surge model.

  10. Effect of bottom slope on the nonlinear triad interactions in shallow water

    NASA Astrophysics Data System (ADS)

    Chen, Hongzhou; Tang, Xiaocheng; Zhang, Ri; Gao, Junliang

    2018-05-01

    This paper aims at investigating the effect of bottom slope to the nonlinear triad interactions for irregular waves propagating in shallow water. The physical experiments are conducted in a wave flume with respect to the transformation of waves propagating on three bottom slopes ( β = 1/15, 1/30, and 1/45). Irregular waves with different type of breaking that are mechanically generated based on JONSWAP spectra are used for the test. The obviously different variations of spectra measured on each bottom reveal a crucial role of slope effect in the energy transfer between harmonics. The wavelet-based bispectrum were used to examine the bottom slope effect on the nonlinear triad interactions. Results show that the different bottom slopes which waves are propagated on will cause a significant discrepancy of triad interactions. Then, the discussions on the summed bicoherence which denote the distribution of phase coupling on each frequency further clarify the effect of bottom slope. Furthermore, the summed of the real and imaginary parts of bispectrum which could reflect the intensity of frequency components participating in the wave skewness and asymmetry were also investigated. Results indicate that the value of these parameters will increase as the bottom slope gets steeper.

  11. Optical rogue waves for the inhomogeneous generalized nonlinear Schrödinger equation.

    PubMed

    Loomba, Shally; Kaur, Harleen

    2013-12-01

    We present optical rogue wave solutions for a generalized nonlinear Schrodinger equation by using similarity transformation. We have predicted the propagation of rogue waves through a nonlinear optical fiber for three cases: (i) dispersion increasing (decreasing) fiber, (ii) periodic dispersion parameter, and (iii) hyperbolic dispersion parameter. We found that the rogue waves and their interactions can be tuned by properly choosing the parameters. We expect that our results can be used to realize improved signal transmission through optical rogue waves.

  12. Numerical investigation of the interaction between a planar shock wave with square and triangular bubbles containing different gases

    NASA Astrophysics Data System (ADS)

    Igra, Dan; Igra, Ozer

    2018-05-01

    The interaction between a planar shock wave and square and triangular bubbles containing either SF6, He, Ar, or CO2 is studied numerically. It is shown that, due to the existing large differences in the molecular weight, the specific heat ratio, and the acoustic impedance between these gases, different wave patterns and pressure distribution inside the bubbles are developed during the interaction process. In the case of heavy gases, the velocity of the shock wave propagating along the bubble inner surface is always less than that of the incident shock wave and higher than that of the transmitted shock wave. However, in the case of the light gas (He), the fastest one is the transmitted shock wave and the slowest one is the incident shock wave. The largest pressure jump is witnessed in the SF6 case, while the smallest pressure jump is seen in the helium case. There are also pronounced differences in the deformation of the investigated bubbles; while triangular bubbles filled with either Ar, CO2, or SF6 were deformed to a crescent shape, the helium bubble is deformed to a trapezoidal shape with three pairs of vortices emanating from its surface.

  13. Load-Unload Response Ratio (LURR), Accelerating Moment/Energy Release (AM/ER) and State Vector Saltation as Precursors to Failure of Rock Specimens

    NASA Astrophysics Data System (ADS)

    Yin, Xiang-Chu; Yu, Huai-Zhong; Kukshenko, Victor; Xu, Zhao-Yong; Wu, Zhishen; Li, Min; Peng, Keyin; Elizarov, Surgey; Li, Qi

    2004-12-01

    In order to verify some precursors such as LURR (Load/Unload Response Ratio) and AER (Accelerating Energy Release) before large earthquakes or macro-fracture in heterogeneous brittle media, four acoustic emission experiments involving large rock specimens under tri-axial stress, have been conducted. The specimens were loaded in two ways: monotonous or cycling. The experimental results confirm that LURR and AER are precursors of macro-fracture in brittle media. A new measure called the state vector has been proposed to describe the damage evolution of loaded rock specimens.

  14. Neuron array with plastic synapses and programmable dendrites.

    PubMed

    Ramakrishnan, Shubha; Wunderlich, Richard; Hasler, Jennifer; George, Suma

    2013-10-01

    We describe a novel neuromorphic chip architecture that models neurons for efficient computation. Traditional architectures of neuron array chips consist of large scale systems that are interfaced with AER for implementing intra- or inter-chip connectivity. We present a chip that uses AER for inter-chip communication but uses fast, reconfigurable FPGA-style routing with local memory for intra-chip connectivity. We model neurons with biologically realistic channel models, synapses and dendrites. This chip is suitable for small-scale network simulations and can also be used for sequence detection, utilizing directional selectivity properties of dendrites, ultimately for use in word recognition.

  15. REFSIM Handbook of Variable Names.

    DTIC Science & Technology

    1982-11-04

    INT2 LREFSEEK R /AERO/ INT4 L: REFSEEK D2THET missile pitch acceleration in degrees/R /AERO/ AER02 M CREFAIR second**2. R /AERO/ AER03 M LREFAIR R...LREFSEEK R /INTERP/ AWM’l L REFSEEK R /INTERP/ ANMh2 CREFSEEK DELA Peak magnitude difference at port and R /CSAS/ AMERCS LREFENW4T starboard. (db/m**2) R...ASE/ GLINT2 L REFD1VMT R /ASE/ INIiT M LIREFSEEK, R /ASE,/ INT2 REFSEEK R /ASE/ INT4 L-RE’SEEK R /ASE/ LOCK2 L-EFSEEK R /ASE/ 1’tLOCK LIREFSEEK DELUhP

  16. Planning and Execution for an Autonomous Aerobot

    NASA Technical Reports Server (NTRS)

    Gaines, Daniel M.; Estlin, Tara A.; Schaffer, Steven R.; Chouinard, Caroline M.

    2010-01-01

    The Aerial Onboard Autonomous Science Investigation System (AerOASIS) system provides autonomous planning and execution capabilities for aerial vehicles (see figure). The system is capable of generating high-quality operations plans that integrate observation requests from ground planning teams, as well as opportunistic science events detected onboard the vehicle while respecting mission and resource constraints. AerOASIS allows an airborne planetary exploration vehicle to summarize and prioritize the most scientifically relevant data; identify and select high-value science sites for additional investigation; and dynamically plan, schedule, and monitor the various science activities being performed, even during extended communications blackout periods with Earth.

  17. Event generators for address event representation transmitters

    NASA Astrophysics Data System (ADS)

    Serrano-Gotarredona, Rafael; Serrano-Gotarredona, Teresa; Linares Barranco, Bernabe

    2005-06-01

    Address Event Representation (AER) is an emergent neuromorphic interchip communication protocol that allows for real-time virtual massive connectivity between huge number neurons located on different chips. By exploiting high speed digital communication circuits (with nano-seconds timings), synaptic neural connections can be time multiplexed, while neural activity signals (with mili-seconds timings) are sampled at low frequencies. Also, neurons generate 'events' according to their activity levels. More active neurons generate more events per unit time, and access the interchip communication channel more frequently, while neurons with low activity consume less communication bandwidth. In a typical AER transmitter chip, there is an array of neurons that generate events. They send events to a peripheral circuitry (let's call it "AER Generator") that transforms those events to neurons coordinates (addresses) which are put sequentially on an interchip high speed digital bus. This bus includes a parallel multi-bit address word plus a Rqst (request) and Ack (acknowledge) handshaking signals for asynchronous data exchange. There have been two main approaches published in the literature for implementing such "AER Generator" circuits. They differ on the way of handling event collisions coming from the array of neurons. One approach is based on detecting and discarding collisions, while the other incorporates arbitration for sequencing colliding events . The first approach is supposed to be simpler and faster, while the second is able to handle much higher event traffic. In this article we will concentrate on the second arbiter-based approach. Boahen has been publishing several techniques for implementing and improving the arbiter based approach. Originally, he proposed an arbitration squeme by rows, followed by a column arbitration. In this scheme, while one neuron was selected by the arbiters to transmit his event out of the chip, the rest of neurons in the array were freezed to transmit any further events during this time window. This limited the maximum transmission speed. In order to improve this speed, Boahen proposed an improved 'burst mode' scheme. In this scheme after the row arbitration, a complete row of events is pipelined out of the array and arbitered out of the chip at higher speed. During this single row event arbitration, the array is free to generate new events and communicate to the row arbiter, in a pipelined mode. This scheme significantly improves maximum event transmission speed, specially for high traffic situations were speed is more critical. We have analyzed and studied this approach and have detected some shortcomings in the circuits reported by Boahen, which may render some false situations under some statistical conditions. The present paper proposes some improvements to overcome such situations. The improved "AER Generator" has been implemented in an AER transmitter system

  18. Whistlers in space plasma, their role for particle populations in the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Shklyar, David

    Of many wave modes, which propagate in the plasmaspheric region of the magnetosphere, whistler waves play the most important role in the dynamics of energetic particles (chiefly elec-trons, but not excepting protons), as their resonant interactions are very efficient. There are three main sources of whistler mode waves in the magnetosphere, namely, lightning strokes, VLF transmitter signals, and far and away various kinds of kinetic instabilities leading to generation of whistler mode waves. Resonant interactions of energetic electrons with whistlers may lead to electron acceleration, scattering into loss-cone, and consequent precipitation into the iono-sphere and atmosphere. While electron resonant interaction with lightning-induced whistlers and VLF transmitter signals may, to a certain approximation, be considered as particle dy-namics in given electromagnetic fields, resonant wave-particle interaction in the case of plasma instability is intrinsically a self-consistent process. An important aspect of whistler-electron interactions (particularly in the case of plasma instability) is the possibility of energy exchange between different energetic electron populations. Thus, in many cases, whistler wave growth rate is determined by "competition" between the first cyclotron and Cerenkov resonances, one (depending on energetic electron distribution) leading to wave growth and the other one to wave damping. Since particles which give rise to wave growth loose their energy, while parti-cles which lead to wave damping gain energy at the expense of the wave, and since the first cyclotron and Cerenkov resonances correspond to different particle energies, wave generation as the result of plasma instability may lead, at the same time, to energy exchange between two populations of energetic particles. While the role of whistlers in dynamics of energetic electrons in the magnetosphere is gener-ally recognized, their role for protons seems to be underestimated. At the same time, quasi-electrostatic lower-hybrid resonance (LHR) waves (to which non-ducted whistler mode waves originating from lightning strokes naturally evolve while propagating in the magnetosphere) may efficiently interact with energetic protons at higher order cyclotron resonances. Thus, whistler mode waves may mediate energy transfer not only between different populations of energetic electrons, but also between various plasma species. Theoretical discussion of various aspects of resonant wave-particle interactions in the magne-tosphere, those mentioned above and others, will be the subject of the report.

  19. Utilization of UARS Data in Validation of Photochemical and Dynamical Mechanism in Stratospheric Models

    NASA Technical Reports Server (NTRS)

    Rodriquez, Jose M.; Hu, Wenjie; Ko, Malcolm K. W.

    1995-01-01

    We proposed model-data intercomparison studies for UARS data. In the past three months, we have been working on constructing analysis tools to diagnose the UARS data. The 'Trajectory mapping' technique, which was developed by Morris (1994), is adaptable to generate synoptic maps of trace gas data from asynoptic observations. An in-house trajectory model (kinematic methods following Merrill et al., 1986 and Pickering et al., 1994) has been developed in AER under contract with NASA/ACMAP and the trajectory mapping tool has been applied to analyze UARS measurement.

  20. Diagnosis of brucellosis by using blood cultures.

    PubMed Central

    Ruiz, J; Lorente, I; Pérez, J; Simarro, E; Martínez-Campos, L

    1997-01-01

    The performances of three blood culture systems, Hemoline performance diphasic medium (bioMérieux, Marcy l'Etoile, France), Bactec Plus Aerobic/F* (Becton Dickinson, Paramus, N.J.), and Vital Aer (bioMérieux), were compared for the diagnosis of 17 cases of brucellosis. By using a 5-day incubation protocol, positive results were 52.9, 82.4, and 11.8%, respectively. When the protocol was extended to 7 days, the results were 76.5, 94.1, and 47.1%, respectively. Bactec was the fastest system (P < 0.05). PMID:9276429

  1. Nonlinear Brillouin amplification of finite-duration seeds in the strong coupling regime

    NASA Astrophysics Data System (ADS)

    Lehmann, G.; Spatschek, K. H.

    2013-07-01

    Parametric plasma processes received renewed interest in the context of generating ultra-intense and ultra-short laser pulses up to the exawatt-zetawatt regime. Both Raman as well as Brillouin amplifications of seed pulses were proposed. Here, we investigate Brillouin processes in the one-dimensional (1D) backscattering geometry with the help of numerical simulations. For optimal seed amplification, Brillouin scattering is considered in the so called strong coupling (sc) regime. Special emphasis lies on the dependence of the amplification process on the finite duration of the initial seed pulses. First, the standard plane-wave instability predictions are generalized to pulse models, and the changes of initial seed pulse forms due to parametric instabilities are investigated. Three-wave-interaction results are compared to predictions by a new (kinetic) Vlasov code. The calculations are then extended to the nonlinear region with pump depletion. Generation of different seed layers is interpreted by self-similar solutions of the three-wave interaction model. Similar to Raman amplification, shadowing of the rear layers by the leading layers of the seed occurs. The shadowing is more pronounced for initially broad seed pulses. The effect is quantified for Brillouin amplification. Kinetic Vlasov simulations agree with the three-wave interaction predictions and thereby affirm the universal validity of self-similar layer formation during Brillouin seed amplification in the strong coupling regime.

  2. Guided solitary waves.

    PubMed

    Miles, J

    1980-04-01

    Transversely periodic solitary-wave solutions of the Boussinesq equations (which govern wave propagation in a weakly dispersive, weakly nonlinear physical system) are determined. The solutions for negative dispersion (e.g., gravity waves) are singular and therefore physically unacceptable. The solutions for positive dispersion (e.g., capillary waves or magnetosonic waves in a plasma) are physically acceptable except in a limited parametric interval, in which they are complex. The two end points of this interval are associated with (two different) resonant interactions among three basic solitary waves, two of which are two-dimensional complex conjugates and the third of which is one-dimensional and real.

  3. Interacting Multiscale Acoustic Vortices as Coherent Excitations in Dust Acoustic Wave Turbulence

    NASA Astrophysics Data System (ADS)

    Lin, Po-Cheng; I, Lin

    2018-03-01

    In this work, using three-dimensional intermittent dust acoustic wave turbulence in a dusty plasma as a platform and multidimensional empirical mode decomposition into different-scale modes in the 2 +1 D spatiotemporal space, we demonstrate the experimental observation of the interacting multiscale acoustic vortices, winding around wormlike amplitude hole filaments coinciding with defect filaments, as the basic coherent excitations for acoustic-type wave turbulence. For different decomposed modes, the self-similar rescaled stretched exponential lifetime histograms of amplitude hole filaments, and the self-similar power spectra of dust density fluctuations, indicate that similar dynamical rules are followed over a wide range of scales. In addition to the intermode acoustic vortex pair generation, propagation, or annihilation, the intra- and intermode interactions of acoustic vortices with the same or opposite helicity, their entanglement and synchronization, are found to be the key dynamical processes in acoustic wave turbulence, akin to the interacting multiscale vortices around wormlike cores observed in hydrodynamic turbulence.

  4. Three-Dimensional Simulation of Traveling-Wave Tube Cold-Test Characteristics Using MAFIA

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Wilson, Jeffrey D.

    1995-01-01

    The three-dimensional simulation code MAFIA was used to compute the cold-test parameters - frequency-phase dispersion, beam on-axis interaction impedance, and attenuation - for two types of traveling-wave tube (TWT) slow-wave circuits. The potential for this electromagnetic computer modeling code to reduce the time and cost of TWT development is demonstrated by the high degree of accuracy achieved in calculating these parameters. Generalized input files were developed for ferruled coupled-cavity and TunneLadder slow-wave circuits. These files make it easy to model circuits of arbitrary dimensions. The utility of these files was tested by applying each to a specific TWT slow-wave circuit and comparing the results with experimental data. Excellent agreement was obtained.

  5. Generalized three-dimensional simulation of ferruled coupled-cavity traveling-wave-tube dispersion and impedance characteristics

    NASA Technical Reports Server (NTRS)

    Maruschek, Joseph W.; Kory, Carol L.; Wilson, Jeffrey D.

    1993-01-01

    The frequency-phase dispersion and Pierce on-axis interaction impedance of a ferruled, coupled-cavity, traveling-wave tube (TWT), slow-wave circuit were calculated using the three-dimensional simulation code Micro-SOS. The utilization of the code to reduce costly and time-consuming experimental cold tests is demonstrated by the accuracy achieved in calculating these parameters. A generalized input file was developed so that ferruled coupled-cavity TWT slow-wave circuits of arbitrary dimensions could be easily modeled. The practicality of the generalized input file was tested by applying it to the ferruled coupled-cavity slow-wave circuit of the Hughes Aircraft Company model 961HA TWT and by comparing the results with experimental results.

  6. Wave-Current Interaction in Coastal Inlets and River Mouths

    DTIC Science & Technology

    2013-09-30

    Astoria Canyon buoy operated by the Coastal Data Information Program ( CDIP , buoy # 46248). Three-dimensional current fields and bathymetry were...The model was initialized with wave measurements from CDIP buoy 46248 located at the tip of the Astoria Canyon, and uses modeled current fields

  7. The Demonstration and Science Experiments (DSX) Mission

    NASA Astrophysics Data System (ADS)

    McCollough, J. P., II; Johnston, W. R.; Starks, M. J.; Albert, J.

    2015-12-01

    In 2016, the Air Force Research Laboratory will launch its Demonstration and Science Experiments mission to investigate wave-particle interactions and the particle and space environment in medium Earth orbit (MEO). The DSX spacecraft includes three experiment packages. The Wave Particle Interaction Experiment (WPIx) will perform active and passive investigations involving VLF waves and their interaction with plasma and energetic electrons in MEO. The Space Weather Experiment (SWx) includes five particle instruments to survey the MEO electron and proton environment. The Space Environmental Effects Experiment (SFx) will investigate effects of the MEO environment on electronics and materials. We will describe the capabilities of the DSX science payloads, science plans, and opportunities for collaborative studies such as conjunction observations and far-field measurements.

  8. Magnetic Interaction in the Geometrically Frustrated Triangular LatticeAntiferromagnet CuFeO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Feng; Fernandez-Baca, Jaime A; Fishman, Randy Scott

    2007-01-01

    The spin wave excitations of the geometrically frustrated triangular lattice antiferromagnet (TLA) CuFeO2 have been measured using high resolution inelastic neutron scattering. Antiferromagnetic interactions up to third nearest neighbors in the ab plane (J1, J2, J3, with J2=J1 0:44 and J3=J1 0:57), as well as out-of-plane coupling (Jz, with Jz=J1 0:29) are required to describe the spin wave dispersion relations, indicating a three dimensional character of the magnetic interactions. Two energy deeps in the spin wave dispersion occur at the incommensurate wavevectors associated with multiferroic phase, and can be interpreted as dynamic precursors to the magnetoelectric behavior in this system.

  9. Skin-Friction Measurements in a 3-D, Supersonic Shock-Wave/Boundary-Layer Interaction

    NASA Technical Reports Server (NTRS)

    Wideman, J. K.; Brown, J. L.; Miles, J. B.; Ozcan, O.

    1994-01-01

    The experimental documentation of a three-dimensional shock-wave/boundary-layer interaction in a nominal Mach 3 cylinder, aligned with the free-stream flow, and 20 deg. half-angle conical flare offset 1.27 cm from the cylinder centerline. Surface oil flow, laser light sheet illumination, and schlieren were used to document the flow topology. The data includes surface-pressure and skin-friction measurements. A laser interferometric skin friction data. Included in the skin-friction data are measurements within separated regions and three-dimensional measurements in highly-swept regions. The skin-friction data will be particularly valuable in turbulence modeling and computational fluid dynamics validation.

  10. Development of a coupled wave-flow-vegetation interaction model

    USGS Publications Warehouse

    Beudin, Alexis; Kalra, Tarandeep S.; Ganju, Neil K.; Warner, John C.

    2017-01-01

    Emergent and submerged vegetation can significantly affect coastal hydrodynamics. However, most deterministic numerical models do not take into account their influence on currents, waves, and turbulence. In this paper, we describe the implementation of a wave-flow-vegetation module into a Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system that includes a flow model (ROMS) and a wave model (SWAN), and illustrate various interacting processes using an idealized shallow basin application. The flow model has been modified to include plant posture-dependent three-dimensional drag, in-canopy wave-induced streaming, and production of turbulent kinetic energy and enstrophy to parameterize vertical mixing. The coupling framework has been updated to exchange vegetation-related variables between the flow model and the wave model to account for wave energy dissipation due to vegetation. This study i) demonstrates the validity of the plant posture-dependent drag parameterization against field measurements, ii) shows that the model is capable of reproducing the mean and turbulent flow field in the presence of vegetation as compared to various laboratory experiments, iii) provides insight into the flow-vegetation interaction through an analysis of the terms in the momentum balance, iv) describes the influence of a submerged vegetation patch on tidal currents and waves separately and combined, and v) proposes future directions for research and development.

  11. Incorporating High-Throughput Exposure Predictions with ...

    EPA Pesticide Factsheets

    We previously integrated dosimetry and exposure with high-throughput screening (HTS) to enhance the utility of ToxCast™ HTS data by translating in vitro bioactivity concentrations to oral equivalent doses (OEDs) required to achieve these levels internally. These OEDs were compared against regulatory exposure estimates, providing an activity-to-exposure ratio (AER) useful for a risk-based ranking strategy. As ToxCast™ efforts expand (i.e., Phase II) beyond food-use pesticides towards a wider chemical domain that lacks exposure and toxicity information, prediction tools become increasingly important. In this study, in vitro hepatic clearance and plasma protein binding were measured to estimate OEDs for a subset of Phase II chemicals. OEDs were compared against high-throughput (HT) exposure predictions generated using probabilistic modeling and Bayesian approaches generated by the U.S. EPA ExpoCast™ program. This approach incorporated chemical-specific use and national production volume data with biomonitoring data to inform the exposure predictions. This HT exposure modeling approach provided predictions for all Phase II chemicals assessed in this study whereas estimates from regulatory sources were available for only 7% of chemicals. Of the 163 chemicals assessed in this study, three or 13 chemicals possessed AERs <1 or <100, respectively. Diverse bioactivities y across a range of assays and concentrations was also noted across the wider chemical space su

  12. Both resistance training and aerobic training reduce hepatic fat content in type 2 diabetic subjects with nonalcoholic fatty liver disease (the RAED2 Randomized Trial).

    PubMed

    Bacchi, Elisabetta; Negri, Carlo; Targher, Giovanni; Faccioli, Niccolò; Lanza, Massimo; Zoppini, Giacomo; Zanolin, Elisabetta; Schena, Federico; Bonora, Enzo; Moghetti, Paolo

    2013-10-01

    Although lifestyle interventions are considered the first-line therapy for nonalcoholic fatty liver disease (NAFLD), which is extremely common in people with type 2 diabetes, no intervention studies have compared the effects of aerobic (AER) or resistance (RES) training on hepatic fat content in type 2 diabetic subjects with NAFLD. In this randomized controlled trial, we compared the 4-month effects of either AER or RES training on insulin sensitivity (by hyperinsulinemic euglycemic clamp), body composition (by dual-energy X-ray absorptiometry), as well as hepatic fat content and visceral (VAT), superficial (SSAT), and deep (DSAT) subcutaneous abdominal adipose tissue (all quantified by an in-opposed-phase magnetic resonance imaging technique) in 31 sedentary adults with type 2 diabetes and NAFLD. After training, hepatic fat content was markedly reduced (P < 0.001), to a similar extent, in both the AER and the RES training groups (mean relative reduction from baseline [95% confidence interval] -32.8% [-58.20 to -7.52] versus -25.9% [-50.92 to -0.94], respectively). Additionally, hepatic steatosis (defined as hepatic fat content >5.56%) disappeared in about one-quarter of the patients in each intervention group (23.1% in the AER group and 23.5% in the RES group). Insulin sensitivity during euglycemic clamp was increased, whereas total body fat mass, VAT, SSAT, and hemoglobin A1c were reduced comparably in both intervention groups. This is the first randomized controlled study to demonstrate that resistance training and aerobic training are equally effective in reducing hepatic fat content among type 2 diabetic patients with NAFLD. Copyright © 2013 by the American Association for the Study of Liver Diseases.

  13. Statin-associated muscular and renal adverse events: data mining of the public version of the FDA adverse event reporting system.

    PubMed

    Sakaeda, Toshiyuki; Kadoyama, Kaori; Okuno, Yasushi

    2011-01-01

    Adverse event reports (AERs) submitted to the US Food and Drug Administration (FDA) were reviewed to assess the muscular and renal adverse events induced by the administration of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) and to attempt to determine the rank-order of the association. After a revision of arbitrary drug names and the deletion of duplicated submissions, AERs involving pravastatin, simvastatin, atorvastatin, or rosuvastatin were analyzed. Authorized pharmacovigilance tools were used for quantitative detection of signals, i.e., drug-associated adverse events, including the proportional reporting ratio, the reporting odds ratio, the information component given by a Bayesian confidence propagation neural network, and the empirical Bayes geometric mean. Myalgia, rhabdomyolysis and an increase in creatine phosphokinase level were focused on as the muscular adverse events, and acute renal failure, non-acute renal failure, and an increase in blood creatinine level as the renal adverse events. Based on 1,644,220 AERs from 2004 to 2009, signals were detected for 4 statins with respect to myalgia, rhabdomyolysis, and an increase in creatine phosphokinase level, but these signals were stronger for rosuvastatin than pravastatin and atorvastatin. Signals were also detected for acute renal failure, though in the case of atorvastatin, the association was marginal, and furthermore, a signal was not detected for non-acute renal failure or for an increase in blood creatinine level. Data mining of the FDA's adverse event reporting system, AERS, is useful for examining statin-associated muscular and renal adverse events. The data strongly suggest the necessity of well-organized clinical studies with respect to statin-associated adverse events.

  14. A digital pixel cell for address event representation image convolution processing

    NASA Astrophysics Data System (ADS)

    Camunas-Mesa, Luis; Acosta-Jimenez, Antonio; Serrano-Gotarredona, Teresa; Linares-Barranco, Bernabe

    2005-06-01

    Address Event Representation (AER) is an emergent neuromorphic interchip communication protocol that allows for real-time virtual massive connectivity between huge number of neurons located on different chips. By exploiting high speed digital communication circuits (with nano-seconds timings), synaptic neural connections can be time multiplexed, while neural activity signals (with mili-seconds timings) are sampled at low frequencies. Also, neurons generate events according to their information levels. Neurons with more information (activity, derivative of activities, contrast, motion, edges,...) generate more events per unit time, and access the interchip communication channel more frequently, while neurons with low activity consume less communication bandwidth. AER technology has been used and reported for the implementation of various type of image sensors or retinae: luminance with local agc, contrast retinae, motion retinae,... Also, there has been a proposal for realizing programmable kernel image convolution chips. Such convolution chips would contain an array of pixels that perform weighted addition of events. Once a pixel has added sufficient event contributions to reach a fixed threshold, the pixel fires an event, which is then routed out of the chip for further processing. Such convolution chips have been proposed to be implemented using pulsed current mode mixed analog and digital circuit techniques. In this paper we present a fully digital pixel implementation to perform the weighted additions and fire the events. This way, for a given technology, there is a fully digital implementation reference against which compare the mixed signal implementations. We have designed, implemented and tested a fully digital AER convolution pixel. This pixel will be used to implement a full AER convolution chip for programmable kernel image convolution processing.

  15. Effect of temperature on the standard metabolic rates of juvenile and adult Exopalaemon carinicauda

    NASA Astrophysics Data System (ADS)

    Zhang, Chengsong; Li, Fuhua; Xiang, Jianhai

    2015-03-01

    Ridgetail white prawn ( Exopalaemon carinicauda) are of significant economic importance in China where they are widely cultured. However, there is little information on the basic biology of this species. We evaluated the effect of temperature (16, 19, 22, 25, 28, 31, and 34°C) on the standard metabolic rates (SMRs) of juvenile and adult E. carinicauda in the laboratory under static conditions. The oxygen consumption rate (OCR), ammonia-N excretion rate (AER), and atomic ratio of oxygen consumed to nitrogen consumed (O:N ratio) of juvenile and adult E. carinicauda were significantly influenced by temperature ( P < 0.05). Both the OCR and AER of juveniles increased significantly with increasing temperature from 16 to 34°C, but the maximum OCR for adults was at 31°C. Juvenile shrimp exhibited a higher OCR than the adults from 19 to 34°C. There was no significant difference between the AERs of the two life-stages from 16 to 31°C ( P >0.05). The O:N ratio in juveniles was significantly higher than that in the adults over the entire temperature range ( P <0.05). The temperature coefficient ( Q 10) of OCR and AER ranged from 5.03 to 0.86 and 6.30 to 0.85 for the adults, respectively, and from 6.09-1.03 and 3.66-1.80 for the juveniles, respectively. The optimal temperature range for growth of the juvenile and adult shrimp was from 28 to 31°C, based on Q 10 and SMR values. Results from the present study may be used to guide pond culture production of E. carinicauda.

  16. Development of the Test Of Astronomy STandards (TOAST) Assessment Instrument

    NASA Astrophysics Data System (ADS)

    Slater, Timothy F.; Slater, S. J.

    2008-05-01

    Considerable effort in the astronomy education research (AER) community over the past several years has focused on developing assessment tools in the form of multiple-choice conceptual diagnostics and content knowledge surveys. This has been critically important in advancing the AER discipline so that researchers could establish the initial knowledge state of students as well as to attempt measure some of the impacts of innovative instructional interventions. Unfortunately, few of the existing instruments were constructed upon a solid list of clearly articulated and widely agreed upon learning objectives. This was not done in oversight, but rather as a result of the relative youth of AER as a discipline. Now that several important science education reform documents exist and are generally accepted by the AER community, we are in a position to develop, validate, and disseminate a new assessment instrument which is tightly aligned to the consensus learning goals stated by the American Astronomical Society - Chair's Conference on ASTRO 101, the American Association of the Advancement of Science's Project 2061 Benchmarks, and the National Research Council's National Science Education Standards. In response, researchers from the Cognition in Astronomy, Physics and Earth sciences Research (CAPER) Team at the University of Wyoming's Science & Math Teaching Center (UWYO SMTC) have designed a criterion-referenced assessment tool, called the Test Of Astronomy STandards (TOAST). Through iterative development, this instrument has a high degree of reliability and validity for instructors and researchers needing information on students’ initial knowledge state at the beginning of a course and can be used, in aggregate, to help measure the impact of course-length duration instructional strategies for courses with learning goals tightly aligned to the consensus goals of our community.

  17. Molecular Detection, Quantification, and Toxigenicity Profiling of Aeromonas spp. in Source- and Drinking-Water

    PubMed Central

    Robertson, Boakai K; Harden, Carol; Selvaraju, Suresh B; Pradhan, Suman; Yadav, Jagjit S

    2014-01-01

    Aeromonas is ubiquitous in aquatic environments and has been associated with a number of extra-gastrointestinal and gastrointestinal illnesses. This warrants monitoring of raw and processed water sources for pathogenic and toxigenic species of this human pathogen. In this study, a total of 17 different water samples [9 raw and 8 treated samples including 4 basin water (partial sand filtration) and 4 finished water samples] were screened for Aeromonas using selective culturing and a genus-specific real-time quantitative PCR assay. The selective culturing yielded Aeromonas counts ranging 0 – 2 x 103CFU/ml and 15 Aeromonas isolates from both raw and treated water samples. The qPCR analysis indicated presence of a considerable nonculturable population (3.4 x 101 – 2.4 x 104 cells/ml) of Aeromonas in drinking water samples. Virulence potential of the Aeromonas isolates was assessed by multiplex/singleplex PCR-based profiling of the hemolysin and enterotoxin genes viz cytotoxic heat-labile enterotoxin (act), heat-labile cytotonic enterotoxin (alt), heat-stable cytotonic enterotoxin (ast), and aerolysin (aerA) genes. The water isolates yielded five distinct toxigenicity profiles, viz. act, alt, act+alt, aerA+alt, and aerA+alt+act. The alt gene showed the highest frequency of occurrence (40%), followed by the aerA (20%), act (13%), and ast (0%) genes. Taken together, the study demonstrated the occurrence of a considerable population of nonculturable Aeromonads in water and prevalence of toxigenic Aeromonas spp. potentially pathogenic to humans. This emphasizes the importance of routine monitoring of both source and drinking water for this human pathogen and role of the developed molecular approaches in improving the Aeromonas monitoring scheme for water. PMID:24949108

  18. Nonlinear interaction of an intense radio wave with ionospheric D/E layer plasma

    NASA Astrophysics Data System (ADS)

    Sodha, Mahendra Singh; Agarwal, Sujeet Kumar

    2018-05-01

    This paper considers the nonlinear interaction of an intense electromagnetic wave with the D/E layer plasma in the ionosphere. A simultaneous solution of the electromagnetic wave equation and the equations describing the kinetics of D/E layer plasma is obtained; the phenomenon of ohmic heating of electrons by the electric field of the wave causes enhanced collision frequency and ionization of neutral species. Electron temperature dependent recombination of electrons with ions, electron attachment to O 2 molecules, and detachment of electrons from O2 - ions has also been taken into account. The dependence of the plasma parameters on the square of the electric vector of the wave E0 2 has been evaluated for three ionospheric heights (viz., 90, 100, and 110 km) corresponding to the mid-latitude mid-day ionosphere and discussed; these results are used to investigate the horizontal propagation of an intense radio wave at these heights.

  19. Guided Wave Propagation Study on Laminated Composites by Frequency-Wavenumber Technique

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Yu, Lingyu; Leckey, Cara A. C.

    2014-01-01

    Toward the goal of delamination detection and quantification in laminated composites, this paper examines guided wave propagation and wave interaction with delamination damage in laminated carbon fiber reinforced polymer (CFRP) composites using frequency-wavenumber (f-kappa) analysis. Three-dimensional elastodynamic finite integration technique (EFIT) is used to acquire simulated time-space wavefields for a CFRP composite. The time-space wavefields show trapped waves in the delamination region. To unveil the wave propagation physics, the time-space wavefields are further analyzed by using two-dimensional (2D) Fourier transforms (FT). In the analysis results, new f-k components are observed when the incident guided waves interact with the delamination damage. These new f-kappa components in the simulations are experimentally verified through data obtained from scanning laser Doppler vibrometer (SLDV) tests. By filtering the new f-kappa components, delamination damage is detected and quantified.

  20. Plume and Shock Interaction Effects on Sonic Boom in the 1-foot by 1-foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Elmiligui, Alaa; Cliff, Susan; Winski, Courtney

    2015-01-01

    The desire to reduce or eliminate the operational restrictions of supersonic aircraft over populated areas has led to extensive research at NASA. Restrictions are due to the disturbance of the sonic boom, caused by the coalescence of shock waves formed by the aircraft. A study has been performed focused on reducing the magnitude of the sonic boom N-wave generated by airplane components with a focus on shock waves caused by the exhaust nozzle plume. Testing was completed in the 1-foot by 1-foot supersonic wind tunnel to study the effects of an exhaust nozzle plume and shock wave interaction. The plume and shock interaction study was developed to collect data for computational fluid dynamics (CFD) validation of a nozzle plume passing through the shock generated from the wing or tail of a supersonic vehicle. The wing or tail was simulated with a wedgeshaped shock generator. This test entry was the first of two phases to collect schlieren images and off-body static pressure profiles. Three wedge configurations were tested consisting of strut-mounted wedges of 2.5- degrees and 5-degrees. Three propulsion configurations were tested simulating the propulsion pod and aft deck from a low boom vehicle concept, which also provided a trailing edge shock and plume interaction. Findings include how the interaction of the jet plume caused a thickening of the shock generated by the wedge (or aft deck) and demonstrate how the shock location moved with increasing nozzle pressure ratio.

  1. The Generalized Uncertainty Principle and Harmonic Interaction in Three Spatial Dimensions

    NASA Astrophysics Data System (ADS)

    Hassanabadi, H.; Hooshmand, P.; Zarrinkamar, S.

    2015-01-01

    In three spatial dimensions, the generalized uncertainty principle is considered under an isotropic harmonic oscillator interaction in both non-relativistic and relativistic regions. By using novel transformations and separations of variables, the exact analytical solution of energy eigenvalues as well as the wave functions is obtained. Time evolution of the non-relativistic region is also reported.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trubilko, A. I., E-mail: trubilko.andrey@gmail.com

    Coherent scattering of a two-level atom in the field of a quantized standing wave of a micromaser is considered under conditions of initial quantum correlation between the atom and the field. Such a correlation can be produced by a broadband parametric source. The interaction leading to scattering of the atom from the nonuniform field occurs in the dispersion limit or in the wing of the absorption line of the atom. Apart from the quantized field, the atom simultaneously interacts with two classical counterpropagating waves with different frequencies, which are acting in the plane perpendicular to the atom’s propagation velocity andmore » to the wavevector of the standing wave. Joint action of the quantized field and two classical waves induces effective two-photon and Raman resonance interaction on the working transition. The effective Hamiltonian of the interaction is derived using the unitary transformation method developed for a moving atom. A strong effect is detected, which makes it possible to distinguish the correlated initial state of the atom and the field in the scattering of atom from the state of independent systems. For all three waves, scattering is not observed when systems with quantum correlation are prepared using a high-intensity parametric source. Conversely, when the atom interacts only with the nonuniform field of the standing wave, scattering is not observed in the case of the initial factorized state.« less

  3. Impact of ozonation, anion exchange resin and UV/H2O2 pre-treatments to control fouling of ultrafiltration membrane for drinking water treatment.

    PubMed

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Sarker, Dipok Chandra; Suja, Fatihah

    2017-06-01

    The effects of ozonation, anion exchange resin (AER) and UV/H 2 O 2 were investigated as a pre-treatment to control organic fouling (OF) of ultrafiltration membrane in the treatment of drinking water. It was found that high molecular weight (MW) organics such as protein and polysaccharide substances were majorly responsible for reversible fouling which contributed to 90% of total fouling. The decline rate increased with successive filtration cycles due to deposition of protein content over time. All pre-treatment could reduce the foulants of a Ultrafiltration membrane which contributed to the improvement in flux, and there was a greater improvement of flux by UV/H 2 O 2 (61%) than ozonation (43%) which in turn was greater than AER (23%) treatment. This was likely due to the effective removal/breakdown of high MW organic content. AER gave greater removal of biofouling potential components (such as biodegradable dissolved organic carbon and assimilable organic carbon contents) compared to UV/H 2 O 2 and ozonation treatment. Overall, this study demonstrated the potential of pre-treatments for reducing OF of ultrafiltration for the treatment of drinking water.

  4. Embryology meets molecular biology: Deciphering the apical ectodermal ridge.

    PubMed

    Verheyden, Jamie M; Sun, Xin

    2017-09-15

    More than sixty years ago, while studying feather tracks on the shoulder of the chick embryo, Dr. John Saunders used Nile Blue dye to stain the tissue. There, he noticed a darkly stained line of cells that neatly rims the tip of the growing limb bud. Rather than ignoring this observation, he followed it up by removing this tissue and found that it led to a striking truncation of the limb skeletons. This landmark experiment marks the serendipitous discovery of the apical ectodermal ridge (AER), the quintessential embryonic structure that drives the outgrowth of the limb. Dr. Saunders continued to lead the limb field for the next fifty years, not just through his own work, but also by inspiring the next generation of researchers through his infectious love of science. Together, he and those who followed ushered in the discovery of fibroblast growth factor (FGF) as the AER molecule. The seamless marriage of embryology and molecular biology that led to the decoding of the AER serves as a shining example of how discoveries are made for the rest of the developmental biology field. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. A dedicated fungal culture medium is useful in the diagnosis of fungemia: a retrospective cross-sectional study.

    PubMed

    Zheng, Shuwei; Ng, Tong Yong; Li, Huihua; Tan, Ai Ling; Tan, Thuan Tong; Tan, Ban Hock

    2016-01-01

    Mortality for candidemia ranges from 15% to 35%. Current guidelines recommend inoculating blood into three aerobic and three anaerobic blood culture bottles when candidemia is suspected, without mention of a fungal blood culture bottle. To determine the value of the BACTEC Myco/F Lytic blood culture media in the diagnosis of fungemia. A two-year retrospective cross-sectional study was performed for patients who had fungemia with submitted BACTEC Plus Aerobic/F (Aer), BACTEC Plus Anaerobic/F (Anaer) or Myco/F Lytic (Myco) blood culture bottles. The detection rate of fungemia was 77.4% in 93 patients with contemporaneously submitted blood culture bottles when limited to only Aer/Anaer culture results. The detection rate improved significantly with the addition of the Myco culture bottle results (p<0.0001). A logistic regression model showed that Myco culture bottle submissions were less useful for patients with appropriate anti-fungal therapy administered within 48 hours [OR = 0.18, 95% CI = (0.06, 0.49), p = 0.001] and those with fungal growth detected within 48 hours [OR = 0.33, 95% CI = (0.12, 0.89), p = 0.001]. Among a subset of patients with concordant blood culture results, those with Myco culture bottles submission allowed earlier fungal detection and speciation by at least one day in 27.5% and 25.0% of the cases respectively. Our study highlights the importance of a dedicated fungal blood culture when fungemia is clinically suspected. Nearly a quarter of fungemias may be missed if a fungal blood culture is not performed.

  6. Experimental Characterization of Guided Waves by Their Surface Displacement Vector Field

    NASA Astrophysics Data System (ADS)

    Barth, M.; Köhler, B.; Schubert, L.

    2009-03-01

    The development new nondestructive evaluation (NDE) and structural health monitoring (SHM) methods utilizing guided elastic waves needs a good understanding of wave propagation properties and the interaction of the waves with structures and defects. If the geometrical and stiffness properties of the components are well known, these effects can be studied very efficiently by numerical modeling. But very often there is a lack of precise knowledge of all necessary elastic properties; accurate and non-disturbing measurements are without alternative in these cases. The mapping of wave fields can be done by scanning laser vibrometers as demonstrated in a number of cases. Originally, a laser vibrometer provides only information from one displacement component. To get all three displacement components, the simultaneous measurement with three vibrometers is offered commercially. This is a very expensive approach. The paper describes a method which uses only one vibrometer sequentially for getting all three vector components. It allows determining additional parameters for characterizing wave modes as e.g. the ellipticity. The capability of this approach is demonstrated for the characterization of Lamb waves.

  7. Thermospheric Extension of the Quasi 6-day Wave Observed by the TIMED Satellite

    NASA Astrophysics Data System (ADS)

    Gan, Q.; Oberheide, J.

    2017-12-01

    The quasi 6-day wave is one of the most prevailing planetary waves in the mesosphere and lower thermosphere (MLT) region. Its peak amplitude can attain 20-30 m/s in low-latitude zonal winds at around equinoxes. Consequently, it is anticipated that the 6-day wave can induce not only significantly dynamic effects (via wave-mean flow and wave-wave interactions) in the MLT, but also have significant impacts on the Thermosphere and Ionosphere (T-I). The understanding of the 6-day wave impact on the T-I system has been advanced a lot due to the recent development of whole atmosphere models and new satellite observations. Three pathways were widely proposed to explain the upward coupling due to the 6-day wave: E-region dynamo modulation, dissipation and nonlinear interaction with thermal tides. The current work aims to show a comprehensive pattern of the 6-day wave from the mesosphere up to the thermosphere/ionosphere in neutral fields (temperature, 3-D winds and density) and plasma drifts. To achieve this goal, we carry out the 6-day wave diagnostics by two different means. Firstly, the output of a one-year WACCM+DART run with data assimilation is analyzed to show the global structure of the 6-day wave in the MLT, followed by E-P flux diagnostics to elucidate the 6-day wave source and wave-mean flow interactions. Secondly, we produce observation-based 6-day wave patterns throughout the whole thermosphere by constraining modeled (TIME-GCM) 6-day wave patterns with observed 6-day wave patterns from SABER and TIDI in the MLT region. This allows us to fill the 110-400 km gap between remote sensing and in-situ satellites, and to obtain more realistic 6-day wave plasma drift patterns.

  8. Users' manual for computer program for three-dimensional analysis of coupler-cavity traveling wave tubes

    NASA Technical Reports Server (NTRS)

    Omalley, T. A.

    1984-01-01

    The use of the coupled cavity traveling wave tube for space communications has led to an increased interest in improving the efficiency of the basic interaction process in these devices through velocity resynchronization and other methods. A flexible, three dimensional, axially symmetric, large signal computer program was developed for use on the IBM 370 time sharing system. A users' manual for this program is included.

  9. Low-Frequency Waves in Cold Three-Component Plasmas

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Tang, Ying; Zhao, Jinsong; Lu, Jianyong

    2016-09-01

    The dispersion relation and electromagnetic polarization of the plasma waves are comprehensively studied in cold electron, proton, and heavy charged particle plasmas. Three modes are classified as the fast, intermediate, and slow mode waves according to different phase velocities. When plasmas contain positively-charged particles, the fast and intermediate modes can interact at the small propagating angles, whereas the two modes are separate at the large propagating angles. The near-parallel intermediate and slow waves experience the linear polarization, circular polarization, and linear polarization again, with the increasing wave number. The wave number regime corresponding to the above circular polarization shrinks as the propagating angle increases. Moreover, the fast and intermediate modes cause the reverse change of the electromagnetic polarization at the special wave number. While the heavy particles carry the negative charges, the dispersion relations of the fast and intermediate modes are always separate, being independent of the propagating angles. Furthermore, this study gives new expressions of the three resonance frequencies corresponding to the highly-oblique propagation waves in the general three-component plasmas, and shows the dependence of the resonance frequencies on the propagating angle, the concentration of the heavy particle, and the mass ratio among different kinds of particles. supported by National Natural Science Foundation of China (Nos. 11303099, 41531071 and 41574158), and the Youth Innovation Promotion Association CAS

  10. Excitations of breathers and rogue wave in the Heisenberg spin chain

    NASA Astrophysics Data System (ADS)

    Qi, Jian-Wen; Duan, Liang; Yang, Zhan-Ying; Yang, Wen-Li

    2018-01-01

    We study the excitations of breathers and rogue wave in a classical Heisenberg spin chain with twist interaction, which is governed by a fourth-order integrable nonlinear Schrödinger equation. The dynamics of these waves have been extracted from an exact solution. In particular, the corresponding existence conditions based on the parameters of perturbation wave number K, magnon number N, background wave vector ks and amplitude c are presented explicitly. Furthermore, the characteristics of magnetic moment distribution corresponding to these nonlinear waves are also investigated in detail. Finally, we discussed the state transition of three types nonlinear localized waves under the different excitation conditions.

  11. On the dimensionally correct kinetic theory of turbulence for parallel propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaelzer, R., E-mail: rudi.gaelzer@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: 007gasun@khu.ac.kr, E-mail: luiz.ziebell@ufrgs.br; Ziebell, L. F., E-mail: rudi.gaelzer@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: 007gasun@khu.ac.kr, E-mail: luiz.ziebell@ufrgs.br; Yoon, P. H., E-mail: rudi.gaelzer@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: 007gasun@khu.ac.kr, E-mail: luiz.ziebell@ufrgs.br

    2015-03-15

    Yoon and Fang [Phys. Plasmas 15, 122312 (2008)] formulated a second-order nonlinear kinetic theory that describes the turbulence propagating in directions parallel/anti-parallel to the ambient magnetic field. Their theory also includes discrete-particle effects, or the effects due to spontaneously emitted thermal fluctuations. However, terms associated with the spontaneous fluctuations in particle and wave kinetic equations in their theory contain proper dimensionality only for an artificial one-dimensional situation. The present paper extends the analysis and re-derives the dimensionally correct kinetic equations for three-dimensional case. The new formalism properly describes the effects of spontaneous fluctuations emitted in three-dimensional space, while the collectivelymore » emitted turbulence propagates predominantly in directions parallel/anti-parallel to the ambient magnetic field. As a first step, the present investigation focuses on linear wave-particle interaction terms only. A subsequent paper will include the dimensionally correct nonlinear wave-particle interaction terms.« less

  12. On the three dimensional structure of stratospheric material transport associated with various types of waves

    NASA Astrophysics Data System (ADS)

    Kinoshita, T.; Sato, K.

    2016-12-01

    The Transformed Eulerian-Mean (TEM) equations were derived by Andrews and McIntyre (1976, 1978) and have been widely used to examine wave-mean flow interaction in the meridional cross section. According to previous studies, the Brewer-Dobson circulation in the stratosphere is driven by planetary waves, baroclinic waves, and inertia-gravity waves, and that the meridional circulation from the summer hemisphere to the winter hemisphere in the mesosphere is mainly driven by gravity waves (e.g., Garcia and Boville 1994; Plumb and Semeniuk 2003; Watanabe et al. 2008; Okamoto et al. 2011). However, the TEM equations do not provide the three-dimensional view of the transport, so that the three dimensional TEM equations have been formulated (Hoskins et al. 1983, Trenberth 1986, Plumb 1985, 1986, Takaya and Nakamura 1997, 2001, Miyahara 2006, Kinoshita et al. 2010, Noda 2010, Kinoshita and Sato 2013a, b, and Noda 2014). On the other hand, the TEM equations cannot properly treat the lower boundary and unstable waves. The Mass-weighted Isentropic Mean (MIM) equations derived by Iwasaki (1989, 1990) are the equations that overcome those problems and the formulation of three-dimensional MIM equations have been studied. The present study applies the three-dimensional TEM and MIM equations to the ERA-Interim reanalysis data and examines the climatological character of three-dimensional structure of Stratospheric Brewer-Dobson circulation. Next, we will discuss how to treat the flow associated with spatial structure of stationary waves.

  13. Interaction of Supernova Blast Waves with Wind-Driven Shells: Formation of "Jets", "Bullets", "Ears", Etc.

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    Most of middle-aged supernova remnants (SNRs) have a distorted and complicated appearance which cannot be explained in the framework of the Sedov-Taylor model. We consider three typical examples of such SNRs (Vela SNR, MSH15-52, G309.2-00.6) and show that their structure could be explained as a result of interaction of a supernova (SN) blast wave with the ambient medium preprocessed by the action of the SN progenitor's wind and ionized emission.

  14. PLANET-DISK INTERACTION IN THREE DIMENSIONS: THE IMPORTANCE OF BUOYANCY WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Zhaohuan; Stone, James M.; Rafikov, Roman R., E-mail: zhzhu@astro.princeton.edu, E-mail: jstone@astro.princeton.edu, E-mail: rrr@astro.princeton.edu

    2012-10-20

    We carry out local three-dimensional (3D) hydrodynamic simulations of planet-disk interaction in stratified disks with varied thermodynamic properties. We find that whenever the Brunt-Vaeisaelae frequency (N) in the disk is non-zero, the planet exerts a strong torque on the disk in the vicinity of the planet, with a reduction in the traditional 'torque cutoff'. In particular, this is true for adiabatic perturbations in disks with isothermal density structure, as should be typical for centrally irradiated protoplanetary disks. We identify this torque with buoyancy waves, which are excited (when N is non-zero) close to the planet, within one disk scale heightmore » from its orbit. These waves give rise to density perturbations with a characteristic 3D spatial pattern which is in close agreement with the linear dispersion relation. The torque due to these waves can amount to as much as several tens of percent of the total planetary torque, which is not expected based on analytical calculations limited to axisymmetric or low-m modes. Buoyancy waves should be ubiquitous around planets in the inner, dense regions of protoplanetary disks, where they might possibly affect planet migration.« less

  15. Three-wave scattering in magnetized plasmas: From cold fluid to quantized Lagrangian

    DOE PAGES

    Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.

    2017-08-14

    Large amplitude waves in magnetized plasmas, generated either by external pumps or internal instabilities, can scatter via three-wave interactions. While three-wave scattering is well known in collimated geometry, what happens when waves propagate at angles with one another in magnetized plasmas remains largely unknown, mainly due to the analytical difficulty of this problem. In this study, we overcome this analytical difficulty and find a convenient formula for three-wave coupling coefficient in cold, uniform, magnetized, and collisionless plasmas in the most general geometry. This is achieved by systematically solving the fluid-Maxwell model to second order using a multiscale perturbative expansion. Themore » general formula for the coupling coefficient becomes transparent when we reformulate it as the scattering matrix element of a quantized Lagrangian. Using the quantized Lagrangian, it is possible to bypass the perturbative solution and directly obtain the nonlinear coupling coefficient from the linear response of the plasma. To illustrate how to evaluate the cold coupling coefficient, we give a set of examples where the participating waves are either quasitransverse or quasilongitudinal. In these examples, we determine the angular dependence of three-wave scattering, and demonstrate that backscattering is not necessarily the strongest scattering channel in magnetized plasmas, in contrast to what happens in unmagnetized plasmas. Finally, our approach gives a more complete picture, beyond the simple collimated geometry, of how injected waves can decay in magnetic confinement devices, as well as how lasers can be scattered in magnetized plasma targets.« less

  16. Three-wave scattering in magnetized plasmas: From cold fluid to quantized Lagrangian.

    PubMed

    Shi, Yuan; Qin, Hong; Fisch, Nathaniel J

    2017-08-01

    Large amplitude waves in magnetized plasmas, generated either by external pumps or internal instabilities, can scatter via three-wave interactions. While three-wave scattering is well known in collimated geometry, what happens when waves propagate at angles with one another in magnetized plasmas remains largely unknown, mainly due to the analytical difficulty of this problem. In this paper, we overcome this analytical difficulty and find a convenient formula for three-wave coupling coefficient in cold, uniform, magnetized, and collisionless plasmas in the most general geometry. This is achieved by systematically solving the fluid-Maxwell model to second order using a multiscale perturbative expansion. The general formula for the coupling coefficient becomes transparent when we reformulate it as the scattering matrix element of a quantized Lagrangian. Using the quantized Lagrangian, it is possible to bypass the perturbative solution and directly obtain the nonlinear coupling coefficient from the linear response of the plasma. To illustrate how to evaluate the cold coupling coefficient, we give a set of examples where the participating waves are either quasitransverse or quasilongitudinal. In these examples, we determine the angular dependence of three-wave scattering, and demonstrate that backscattering is not necessarily the strongest scattering channel in magnetized plasmas, in contrast to what happens in unmagnetized plasmas. Our approach gives a more complete picture, beyond the simple collimated geometry, of how injected waves can decay in magnetic confinement devices, as well as how lasers can be scattered in magnetized plasma targets.

  17. Three-wave scattering in magnetized plasmas: From cold fluid to quantized Lagrangian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.

    Large amplitude waves in magnetized plasmas, generated either by external pumps or internal instabilities, can scatter via three-wave interactions. While three-wave scattering is well known in collimated geometry, what happens when waves propagate at angles with one another in magnetized plasmas remains largely unknown, mainly due to the analytical difficulty of this problem. In this study, we overcome this analytical difficulty and find a convenient formula for three-wave coupling coefficient in cold, uniform, magnetized, and collisionless plasmas in the most general geometry. This is achieved by systematically solving the fluid-Maxwell model to second order using a multiscale perturbative expansion. Themore » general formula for the coupling coefficient becomes transparent when we reformulate it as the scattering matrix element of a quantized Lagrangian. Using the quantized Lagrangian, it is possible to bypass the perturbative solution and directly obtain the nonlinear coupling coefficient from the linear response of the plasma. To illustrate how to evaluate the cold coupling coefficient, we give a set of examples where the participating waves are either quasitransverse or quasilongitudinal. In these examples, we determine the angular dependence of three-wave scattering, and demonstrate that backscattering is not necessarily the strongest scattering channel in magnetized plasmas, in contrast to what happens in unmagnetized plasmas. Finally, our approach gives a more complete picture, beyond the simple collimated geometry, of how injected waves can decay in magnetic confinement devices, as well as how lasers can be scattered in magnetized plasma targets.« less

  18. If EM waves don't interfere, what causes interferograms?

    NASA Astrophysics Data System (ADS)

    Wellard, Stanley J.

    2012-10-01

    Photonics engineers involved in designing and operating Fourier transform spectrometers (FTS) often rely on Maxwell's wave equations and time-frequency (distance-wavenumber) Fourier theory as models to understand and predict the conversion of optical energy to electrical signals in their instruments. Dr. Chandrasekhar Roychoudhuri and his colleagues, at last year's conference, presented three significant concepts that might completely change the way we comprehend the interaction of light and matter and the way interference information is generated. The first concept is his non-interaction of waves (NIW) formulation, which puts in place an optical wave description that more accurately describe the properties of the finite time and spatial signals of an optical system. The second is a new description for the cosmic EM environment that recognizes that space is really filled with the ether of classical electromagnetics. The third concept is a new metaphysics or metaphotonics that compares the photon as a particle in a void against the photon as a wave in a medium to see which best explain the twelve different aspects of light. Dr. Henry Lindner presents a compelling case that photons are waves in a medium and particles (electrons, protons, atoms) are wave-structures embedded in the new ether. Discussion of the three new principles is intended to increase the curiosity of photonics engineers to investigate these changes in the nature of light and matter.

  19. Navier-Stokes simulations of unsteady transonic flow phenomena

    NASA Technical Reports Server (NTRS)

    Atwood, C. A.

    1992-01-01

    Numerical simulations of two classes of unsteady flows are obtained via the Navier-Stokes equations: a blast-wave/target interaction problem class and a transonic cavity flow problem class. The method developed for the viscous blast-wave/target interaction problem assumes a laminar, perfect gas implemented in a structured finite-volume framework. The approximately factored implicit scheme uses Newton subiterations to obtain the spatially and temporally second-order accurate time history of the blast-waves with stationary targets. The inviscid flux is evaluated using either of two upwind techniques, while the full viscous terms are computed by central differencing. Comparisons of unsteady numerical, analytical, and experimental results are made in two- and three-dimensions for Couette flows, a starting shock-tunnel, and a shock-tube blockage study. The results show accurate wave speed resolution and nonoscillatory discontinuity capturing of the predominantly inviscid flows. Viscous effects were increasingly significant at large post-interaction times. While the blast-wave/target interaction problem benefits from high-resolution methods applied to the Euler terms, the transonic cavity flow problem requires the use of an efficient scheme implemented in a geometrically flexible overset mesh environment. Hence, the Reynolds averaged Navier-Stokes equations implemented in a diagonal form are applied to the cavity flow class of problems. Comparisons between numerical and experimental results are made in two-dimensions for free shear layers and both rectangular and quieted cavities, and in three-dimensions for Stratospheric Observatory For Infrared Astronomy (SOFIA) geometries. The acoustic behavior of the rectangular and three-dimensional cavity flows compare well with experiment in terms of frequency, magnitude, and quieting trends. However, there is a more rapid decrease in computed acoustic energy with frequency than observed experimentally owing to numerical dissipation. In addition, optical phase distortion due to the time-varying density field is modelled using geometrical constructs. The computed optical distortion trends compare with the experimentally inferred result, but underpredicts the fluctuating phase difference magnitude.

  20. Statistical analysis of dispersion relations in turbulent solar wind fluctuations using Cluster data

    NASA Astrophysics Data System (ADS)

    Perschke, C.; Narita, Y.

    2012-12-01

    Multi-spacecraft measurements enable us to resolve three-dimensional spatial structures without assuming Taylor's frozen-in-flow hypothesis. This is very useful to study frequency-wave vector diagram in solar wind turbulence through direct determination of three-dimensional wave vectors. The existence and evolution of dispersion relation and its role in fully-developed plasma turbulence have been drawing attention of physicists, in particular, if solar wind turbulence represents kinetic Alfvén or whistler mode as the carrier of spectral energy among different scales through wave-wave interactions. We investigate solar wind intervals of Cluster data for various flow velocities with a high-resolution wave vector analysis method, Multi-point Signal Resonator technique, at the tetrahedral separation about 100 km. Magnetic field data and ion data are used to determine the frequency- wave vector diagrams in the co-moving frame of the solar wind. We find primarily perpendicular wave vectors in solar wind turbulence which justify the earlier discussions about kinetic Alfvén or whistler wave. The frequency- wave vector diagrams confirm (a) wave vector anisotropy and (b) scattering in frequencies.

  1. A scalable method for computing quadruplet wave-wave interactions

    NASA Astrophysics Data System (ADS)

    Van Vledder, Gerbrant

    2017-04-01

    Non-linear four-wave interactions are a key physical process in the evolution of wind generated ocean waves. The present generation operational wave models use the Discrete Interaction Approximation (DIA), but it accuracy is poor. It is now generally acknowledged that the DIA should be replaced with a more accurate method to improve predicted spectral shapes and derived parameters. The search for such a method is challenging as one should find a balance between accuracy and computational requirements. Such a method is presented here in the form of a scalable and adaptive method that can mimic both the time consuming exact Snl4 approach and the fast but inaccurate DIA, and everything in between. The method provides an elegant approach to improve the DIA, not by including more arbitrarily shaped wave number configurations, but by a mathematically consistent reduction of an exact method, viz. the WRT method. The adaptiveness is to adapt the abscissa of the locus integrand in relation to the magnitude of the known terms. The adaptiveness is extended to the highest level of the WRT method to select interacting wavenumber configurations in a hierarchical way in relation to their importance. This adaptiveness results in a speed-up of one to three orders of magnitude depending on the measure of accuracy. This definition of accuracy should not be expressed in terms of the quality of the transfer integral for academic spectra but rather in terms of wave model performance in a dynamic run. This has consequences for the balance between the required accuracy and the computational workload for evaluating these interactions. The performance of the scalable method on different scales is illustrated with results from academic spectra, simple growth curves to more complicated field cases using a 3G-wave model.

  2. A Self-Consistent Model of the Interacting Ring Current Ions with Electromagnetic ICWs

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Initial results from a newly developed model of the interacting ring current ions and ion cyclotron waves are presented. The model is based on the system of two bound kinetic equations: one equation describes the ring current ion dynamics, and another equation describes wave evolution. The system gives a self-consistent description of ring current ions and ion cyclotron waves in a quasilinear approach. These two equations were solved on a global scale under non steady-state conditions during the May 2-5, 1998 storm. The structure and dynamics of the ring current proton precipitating flux regions and the wave active zones at three time cuts around initial, main, and late recovery phases of the May 4, 1998 storm phase are presented and discussed in detail. Comparisons of the model wave-ion data with the Polar/HYDRA and Polar/MFE instruments results are presented..

  3. Solitary water wave interactions

    NASA Astrophysics Data System (ADS)

    Craig, W.; Guyenne, P.; Hammack, J.; Henderson, D.; Sulem, C.

    2006-05-01

    This article concerns the pairwise nonlinear interaction of solitary waves in the free surface of a body of water lying over a horizontal bottom. Unlike solitary waves in many completely integrable model systems, solitary waves for the full Euler equations do not collide elastically; after interactions, there is a nonzero residual wave that trails the post-collision solitary waves. In this report on new numerical and experimental studies of such solitary wave interactions, we verify that this is the case, both in head-on collisions (the counterpropagating case) and overtaking collisions (the copropagating case), quantifying the degree to which interactions are inelastic. In the situation in which two identical solitary waves undergo a head-on collision, we compare the asymptotic predictions of Su and Mirie [J. Fluid Mech. 98, 509 (1980)] and Byatt-Smith [J. Fluid Mech. 49, 625 (1971)], the wavetank experiments of Maxworthy [J. Fluid Mech. 76, 177 (1976)], and the numerical results of Cooker, Weidman, and Bale [J. Fluid Mech. 342, 141 (1997)] with independent numerical simulations, in which we quantify the phase change, the run-up, and the form of the residual wave and its Fourier signature in both small- and large-amplitude interactions. This updates the prior numerical observations of inelastic interactions in Fenton and Rienecker [J. Fluid Mech. 118, 411 (1982)]. In the case of two nonidentical solitary waves, our precision wavetank experiments are compared with numerical simulations, again observing the run-up, phase lag, and generation of a residual from the interaction. Considering overtaking solitary wave interactions, we compare our experimental observations, numerical simulations, and the asymptotic predictions of Zou and Su [Phys. Fluids 29, 2113 (1986)], and again we quantify the inelastic residual after collisions in the simulations. Geometrically, our numerical simulations of overtaking interactions fit into the three categories of Korteweg-deVries two-soliton solutions defined in Lax [Commun. Pure Appl. Math. 21, 467 (1968)], with, however, a modification in the parameter regime. In all cases we have considered, collisions are seen to be inelastic, although the degree to which interactions depart from elastic is very small. Finally, we give several theoretical results: (i) a relationship between the change in amplitude of solitary waves due to a pairwise collision and the energy carried away from the interaction by the residual component, and (ii) a rigorous estimate of the size of the residual component of pairwise solitary wave collisions. This estimate is consistent with the analytic results of Schneider and Wayne [Commun. Pure Appl. Math. 53, 1475 (2000)], Wright [SIAM J. Math. Anal. 37, 1161 (2005)], and Bona, Colin, and Lannes [Arch. Rat. Mech. Anal. 178, 373 (2005)]. However, in light of our numerical data, both (i) and (ii) indicate a need to reevaluate the asymptotic results in Su and Mirie [J. Fluid Mech. 98, 509 (1980)] and Zou and Su [Phys. Fluids 29, 2113 (1986)].

  4. Predator prey oscillations in a simple cascade model of drift wave turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berionni, V.; Guercan, Oe. D.

    2011-11-15

    A reduced three shell limit of a simple cascade model of drift wave turbulence, which emphasizes nonlocal interactions with a large scale mode, is considered. It is shown to describe both the well known predator prey dynamics between the drift waves and zonal flows and to reduce to the standard three wave interaction equations. Here, this model is considered as a dynamical system whose characteristics are investigated. The analytical solutions for the purely nonlinear limit are given in terms of the Jacobi elliptic functions. An approximate analytical solution involving Jacobi elliptic functions and exponential growth is computed using scale separationmore » for the case of unstable solutions that are observed when the energy injection rate is high. The fixed points of the system are determined, and the behavior around these fixed points is studied. The system is shown to display periodic solutions corresponding to limit cycle oscillations, apparently chaotic phase space orbits, as well as unstable solutions that grow slowly while oscillating rapidly. The period doubling route to transition to chaos is examined.« less

  5. Statistics of extreme waves in the framework of one-dimensional Nonlinear Schrodinger Equation

    NASA Astrophysics Data System (ADS)

    Agafontsev, Dmitry; Zakharov, Vladimir

    2013-04-01

    We examine the statistics of extreme waves for one-dimensional classical focusing Nonlinear Schrodinger (NLS) equation, iΨt + Ψxx + |Ψ |2Ψ = 0, (1) as well as the influence of the first nonlinear term beyond Eq. (1) - the six-wave interactions - on the statistics of waves in the framework of generalized NLS equation accounting for six-wave interactions, dumping (linear dissipation, two- and three-photon absorption) and pumping terms, We solve these equations numerically in the box with periodically boundary conditions starting from the initial data Ψt=0 = F(x) + ?(x), where F(x) is an exact modulationally unstable solution of Eq. (1) seeded by stochastic noise ?(x) with fixed statistical properties. We examine two types of initial conditions F(x): (a) condensate state F(x) = 1 for Eq. (1)-(2) and (b) cnoidal wave for Eq. (1). The development of modulation instability in Eq. (1)-(2) leads to formation of one-dimensional wave turbulence. In the integrable case the turbulence is called integrable and relaxes to one of infinite possible stationary states. Addition of six-wave interactions term leads to appearance of collapses that eventually are regularized by the dumping terms. The energy lost during regularization of collapses in (2) is restored by the pumping term. In the latter case the system does not demonstrate relaxation-like behavior. We measure evolution of spectra Ik =< |Ψk|2 >, spatial correlation functions and the PDFs for waves amplitudes |Ψ|, concentrating special attention on formation of "fat tails" on the PDFs. For the classical integrable NLS equation (1) with condensate initial condition we observe Rayleigh tails for extremely large waves and a "breathing region" for middle waves with oscillations of the frequency of waves appearance with time, while nonintegrable NLS equation with dumping and pumping terms (2) with the absence of six-wave interactions α = 0 demonstrates perfectly Rayleigh PDFs without any oscillations with time. In case of the cnoidal wave initial condition we observe severely non-Rayleigh PDFs for the classical NLS equation (1) with the regions corresponding to 2-, 3- and so on soliton collisions clearly seen of the PDFs. Addition of six-wave interactions in Eq. (2) for condensate initial condition results in appearance of non-Rayleigh addition to the PDFs that increase with six-wave interaction constant α and disappears with the absence of six-wave interactions α = 0. References: [1] D.S. Agafontsev, V.E. Zakharov, Rogue waves statistics in the framework of one-dimensional Generalized Nonlinear Schrodinger Equation, arXiv:1202.5763v3.

  6. Repetitive extracorporeal shock wave applications are superior in inducing angiogenesis after full thickness burn compared to single application.

    PubMed

    Goertz, O; von der Lohe, L; Lauer, H; Khosrawipour, T; Ring, A; Daigeler, A; Lehnhardt, M; Kolbenschlag, J

    2014-11-01

    Burn wounds remain a challenge due to subsequent wound infection and septicemia, which can be prevented by acceleration of wound healing. The aim of the study was to analyze microcirculation and leukocyte endothelium interaction with particular focus on angiogenesis after full-thickness burn using three different repetitions of low energy shock waves. Full-thickness burns were inflicted to the ears of hairless mice (n=44; area: 1.6±0.05 mm2 (mean±SEM)). Mice were randomized into four groups: the control group received a burn injury but no shock waves; group A received ESWA (0.03 mJ/mm2) on day one after burn injury; group B received shock waves on day one and day three after burn injury; group C ESWA on day one, three and seven after burn injury. Intravital fluorescent microscopy was used to assess microcirculatory parameters, angiogenesis and leukocyte interaction. Values were obtained before burn (baseline value) immediately after and on days 1, 3, 7 and 12 after burn. Shock-wave treated groups showed significantly accelerated angiogenesis compared to the control group. The non-perfused area (NPA) is regarded as a parameter for angiogenesis and showed the following data on day 12 2.7±0.4% (group A, p=0.001), 1.4±0.5% (group B, p<0.001), 1.0±0.3% (group C, p<0.001), 6.1±0.9% (control group). Edema formation is positively correlated with the number of shock wave applications: day 12: group A: 173.2±9.8%, group B: 184.2±6.6%, group C: 201.1±6.9%, p=0.009 vs. control: 162.3±8.7% (all data: mean±SEM). According to our data shock waves positively impact the wound healing process following burn injury. Angiogenesis showed significantly improved activity after shock wave application. In all three treatment groups angiogenesis was higher compared to the control group. Within the ESWA groups, double applications showed better results than single application and three applications showed better results than single or double applications. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  7. Stability of Planar Rarefaction Wave to 3D Full Compressible Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Li, Lin-an; Wang, Teng; Wang, Yi

    2018-05-01

    We prove time-asymptotic stability toward the planar rarefaction wave for the three-dimensional full, compressible Navier-Stokes equations with the heat-conductivities in an infinite long flat nozzle domain {R × T^2} . Compared with one-dimensional case, the proof here is based on our new observations on the cancellations on the flux terms and viscous terms due to the underlying wave structures, which are crucial for overcoming the difficulties due to the wave propagation in the transverse directions x 2 and x 3 and its interactions with the planar rarefaction wave in x 1 direction.

  8. Using Wave-Current Observations to Predict Bottom Sediment Processes on Muddy Beaches

    DTIC Science & Technology

    2012-09-30

    Hill and Foda , 1999; Chan and Liu, 2009; Holland et al., 2009; and others). Many theoretical models of wave-mud interaction have been proposed...transformation (see Section Figure 5) emerges from the analysis Sheremet et al., 2005; Jaramillo et al., 2008; Robillard, 2009; ?; ?. Under energetic waves, the...et al., 2010). The ongoing work has three directions of research: Data analysis : reconstruct the sequence of bed states in storms captured in the

  9. Role of secondary flows on flow separation induced by shock/boundary layer interaction in supersonic inlets

    NASA Astrophysics Data System (ADS)

    Morajkar, Rohan

    Flow separation in the scramjet air intakes is one of the reasons of failure of these engines which rely on shock waves to achieve flow compression. The shock waves interact with the boundary layers (Shock/ Boundary Layer Interaction or SBLI) on the intake walls inducing adverse pressure gradients causing flow separation. In this experimental study we investigate the role of secondary flows associated with the corners of ducted flows and identify the mechanisms by which they affect flow separation induced by a shock wave interacting with the boundary layers developing along supersonic inlets. The coupling between flow three-dimensionality, shock waves and secondary flows is in fact a key aspect that limits the performance and control of supersonic inlets. The study is conducted at the University of Michigan Glass Supersonic Wind Tunnel (GSWT). This facility replicates some of the features of the three-dimensional (3D) flow-field in a low aspect ratio supersonic inlet. The study uses stereoscopic particle image velocimetry (SPIV) to measure the three-component (3C) velocity field on several orthogonal planes, and thus allows us to identify the length scales of separation, its locations and statistical properties. Furthermore, these measurements allow us to extract the 3D structure of the underlying vortical features, which are important in determining the overall structure of separated regions and their dynamics. The measurements and tools developed are used to study flow fields of three cases: (1) Moderately strong SBLI (Mach 2.75 with 6° deflection), (2) weak SBLI (Mach 2.75 with 4.6° deflection) and (3) secondary corner flows in empty channels. In the configuration of the initial work (moderately strong SBLI), the shock wave system interacts with the boundary layers on the sidewall and the floor of the duct (inlet), thus generating both a swept-shock and an incident-shock interactions. Furthermore, the swept-shock interaction taking place on the sidewalls interacts with the secondary flows in the corners of the tunnel, which are prone to separation. This interaction causes major flow separation on the sidewall as fluid is swept from the sidewall. Flow separation on the floor should be expected given the strength of the SBLI (moderately strong case), but it is instead not observed in the mean flow fields. Our hypothesis is that interacting secondary flows are one of the factors responsible for the sidewall separation and directing the incoming flow towards the center-plane to stabilize and energize the flow on the center of the duct, thus preventing or at least reducing, flow separation on the floor. The secondary flows in an empty tunnel are then investigated to study their evolution and effects on the primary flow field to identify potential separation sites. The results from the empty tunnel experiments are then used to predict locations of flow separations in the moderately strong and weak SBLIs. The predictions were found to be in agreement with the observations.

  10. A More Accurate and Efficient Technique Developed for Using Computational Methods to Obtain Helical Traveling-Wave Tube Interaction Impedance

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1999-01-01

    The phenomenal growth of commercial communications has created a great demand for traveling-wave tube (TWT) amplifiers. Although the helix slow-wave circuit remains the mainstay of the TWT industry because of its exceptionally wide bandwidth, until recently it has been impossible to accurately analyze a helical TWT using its exact dimensions because of the complexity of its geometrical structure. For the first time, an accurate three-dimensional helical model was developed that allows accurate prediction of TWT cold-test characteristics including operating frequency, interaction impedance, and attenuation. This computational model, which was developed at the NASA Lewis Research Center, allows TWT designers to obtain a more accurate value of interaction impedance than is possible using experimental methods. Obtaining helical slow-wave circuit interaction impedance is an important part of the design process for a TWT because it is related to the gain and efficiency of the tube. This impedance cannot be measured directly; thus, conventional methods involve perturbing a helical circuit with a cylindrical dielectric rod placed on the central axis of the circuit and obtaining the difference in resonant frequency between the perturbed and unperturbed circuits. A mathematical relationship has been derived between this frequency difference and the interaction impedance (ref. 1). However, because of the complex configuration of the helical circuit, deriving this relationship involves several approximations. In addition, this experimental procedure is time-consuming and expensive, but until recently it was widely accepted as the most accurate means of determining interaction impedance. The advent of an accurate three-dimensional helical circuit model (ref. 2) made it possible for Lewis researchers to fully investigate standard approximations made in deriving the relationship between measured perturbation data and interaction impedance. The most prominent approximations made in the analysis were addressed and fully investigated for their accuracy by using the three-dimensional electromagnetic simulation code MAFIA (Solution of Maxwell's Equations by the Finite Integration Algorithm) (refs. 3 and 4). We found that several approximations introduced significant error (ref. 5).

  11. Free energy and phase transition of the matrix model on a plane wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadizadeh, Shirin; Ramadanovic, Bojan; Semenoff, Gordon W.

    2005-03-15

    It has recently been observed that the weakly coupled plane-wave matrix model has a density of states which grows exponentially at high energy. This implies that the model has a phase transition. The transition appears to be of first order. However, its exact nature is sensitive to interactions. In this paper, we analyze the effect of interactions by computing the relevant parts of the effective potential for the Polyakov loop operator in the finite temperature plane-wave matrix model to three-loop order. We show that the phase transition is indeed of first order. We also compute the correction to the Hagedornmore » temperature to order two loops.« less

  12. Dynamics of lumps and dark-dark solitons in the multi-component long-wave-short-wave resonance interaction system.

    PubMed

    Rao, Jiguang; Porsezian, Kuppuswamy; He, Jingsong; Kanna, Thambithurai

    2018-01-01

    General semi-rational solutions of an integrable multi-component (2+1)-dimensional long-wave-short-wave resonance interaction system comprising multiple short waves and a single long wave are obtained by employing the bilinear method. These solutions describe the interactions between various types of solutions, including line rogue waves, lumps, breathers and dark solitons. We only focus on the dynamical behaviours of the interactions between lumps and dark solitons in this paper. Our detailed study reveals two different types of excitation phenomena: fusion and fission. It is shown that the fundamental (simplest) semi-rational solutions can exhibit fission of a dark soliton into a lump and a dark soliton or fusion of one lump and one dark soliton into a dark soliton. The non-fundamental semi-rational solutions are further classified into three subclasses: higher-order, multi- and mixed-type semi-rational solutions. The higher-order semi-rational solutions show the process of annihilation (production) of two or more lumps into (from) one dark soliton. The multi-semi-rational solutions describe N ( N ≥2) lumps annihilating into or producing from N -dark solitons. The mixed-type semi-rational solutions are a hybrid of higher-order semi-rational solutions and multi-semi-rational solutions. For the mixed-type semi-rational solutions, we demonstrate an interesting dynamical behaviour that is characterized by partial suppression or creation of lumps from the dark solitons.

  13. Dynamics of lumps and dark-dark solitons in the multi-component long-wave-short-wave resonance interaction system

    NASA Astrophysics Data System (ADS)

    Rao, Jiguang; Porsezian, Kuppuswamy; He, Jingsong; Kanna, Thambithurai

    2018-01-01

    General semi-rational solutions of an integrable multi-component (2+1)-dimensional long-wave-short-wave resonance interaction system comprising multiple short waves and a single long wave are obtained by employing the bilinear method. These solutions describe the interactions between various types of solutions, including line rogue waves, lumps, breathers and dark solitons. We only focus on the dynamical behaviours of the interactions between lumps and dark solitons in this paper. Our detailed study reveals two different types of excitation phenomena: fusion and fission. It is shown that the fundamental (simplest) semi-rational solutions can exhibit fission of a dark soliton into a lump and a dark soliton or fusion of one lump and one dark soliton into a dark soliton. The non-fundamental semi-rational solutions are further classified into three subclasses: higher-order, multi- and mixed-type semi-rational solutions. The higher-order semi-rational solutions show the process of annihilation (production) of two or more lumps into (from) one dark soliton. The multi-semi-rational solutions describe N(N≥2) lumps annihilating into or producing from N-dark solitons. The mixed-type semi-rational solutions are a hybrid of higher-order semi-rational solutions and multi-semi-rational solutions. For the mixed-type semi-rational solutions, we demonstrate an interesting dynamical behaviour that is characterized by partial suppression or creation of lumps from the dark solitons.

  14. Generation of Highly Oblique Lower Band Chorus Via Nonlinear Three-Wave Resonance

    DOE PAGES

    Fu, Xiangrong; Gary, Stephen Peter; Reeves, Geoffrey D.; ...

    2017-09-05

    Chorus in the inner magnetosphere has been observed frequently at geomagnetically active times, typically exhibiting a two-band structure with a quasi-parallel lower band and an upper band with a broad range of wave normal angles. But recent observations by Van Allen Probes confirm another type of lower band chorus, which has a large wave normal angle close to the resonance cone angle. It has been proposed that these waves could be generated by a low-energy beam-like electron component or by temperature anisotropy of keV electrons in the presence of a low-energy plateau-like electron component. This paper, however, presents an alternativemore » mechanism for generation of this highly oblique lower band chorus. Through a nonlinear three-wave resonance, a quasi-parallel lower band chorus wave can interact with a mildly oblique upper band chorus wave, producing a highly oblique quasi-electrostatic lower band chorus wave. This theoretical analysis is confirmed by 2-D electromagnetic particle-in-cell simulations. Furthermore, as the newly generated waves propagate away from the equator, their wave normal angle can further increase and they are able to scatter low-energy electrons to form a plateau-like structure in the parallel velocity distribution. As a result, the three-wave resonance mechanism may also explain the generation of quasi-parallel upper band chorus which has also been observed in the magnetosphere.« less

  15. Cases Study of Nonlinear Interaction Between Near-Inertial Waves Induced by Typhoon and Diurnal Tides Near the Xisha Islands

    NASA Astrophysics Data System (ADS)

    Liu, Junliang; He, Yinghui; Li, Juan; Cai, Shuqun; Wang, Dongxiao; Huang, Yandan

    2018-04-01

    Nonlinear interaction between near-inertial waves (NIWs) and diurnal tides (DTs) after nine typhoons near the Xisha Islands of the northwestern South China Sea (SCS) were investigated using three-year in situ mooring observation data. It was found that a harmonic wave (f + D1, hereafter referred to as fD1 wave), with a frequency equal to the sum of frequencies of NIWs and DTs (hereafter referred to as f and D1, respectively), was generated via nonlinear interaction between typhoon-induced NIWs and DTs after each typhoon. The fD1 wave mainly concentrates in the subsurface layer, and is mainly induced by the first component of the vertical nonlinear momentum term, the product of the vertical velocity of DT and vertical shear of near-inertial current (hereafter referred to as Component 1), in which the vertical shear of the near-inertial current greatly affects the strength of the fD1 current. The larger the Component 1, the stronger the fD1 currents. The background preexisting mesoscale anticyclonic eddy near the mooring site may also enhance the vertical velocity of DT and thus Component 1, which subsequently facilitates the nonlinear interaction-induced energy transfer to the fD1 wave and enhances the fD1 currents after the passage of a typhoon.

  16. Effect of inorganic regenerant properties on pharmaceutical adsorption and desorption performance on polymer anion exchange resin.

    PubMed

    Zheng, Shaokui; Li, Xiaofeng; Zhang, Xueyu; Wang, Wei; Yuan, Shengliu

    2017-09-01

    This study investigated the potential effect of four frequently used inorganic regenerant properties (i.e., ionic strength, cation type, anion type, and regeneration solution volume) on the desorption and adsorption performance of 14 pharmaceuticals, belonging to 12 therapeutic classes with different predominant chemical forms and hydrophobicities, using polymeric anion exchange resin (AER)-packed fixed-bed column tests. After preconditioning with NaCl, NaOH, or saline-alkaline (SA) solutions, all resulting mobile counterion types of AERs effectively adsorbed all 14 pharmaceuticals, where the preferential magnitude of OH - -type = Cl -  + OH - -type > Cl - -type. During regeneration, ionic strength (1 M versus 3 M NaCl) had no significant influence on desorption performance for any of the 14 pharmaceuticals, while no regenerant cation (HCl versus NaCl) or anion type (NaCl versus NaOH and SA) achieved higher desorption efficiencies for all pharmaceuticals. A volumetric increase in 1 M or 3 M NaCl solutions significantly improved the desorption efficiencies of most pharmaceuticals, irrespective of ionic strength. The results indicate that regeneration protocols, including regenerant cation type, anion type and volume, should be optimized to improve pharmaceutical removal by AERs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. General multicomponent Yajima-Oikawa system: Painlevé analysis, soliton solutions, and energy-sharing collisions.

    PubMed

    Kanna, T; Sakkaravarthi, K; Tamilselvan, K

    2013-12-01

    We consider the multicomponent Yajima-Oikawa (YO) system and show that the two-component YO system can be derived in a physical setting of a three-coupled nonlinear Schrödinger (3-CNLS) type system by the asymptotic reduction method. The derivation is further generalized to the multicomponent case. This set of equations describes the dynamics of nonlinear resonant interaction between a one-dimensional long wave and multiple short waves. The Painlevé analysis of the general multicomponent YO system shows that the underlying set of evolution equations is integrable for arbitrary nonlinearity coefficients which will result in three different sets of equations corresponding to positive, negative, and mixed nonlinearity coefficients. We obtain the general bright N-soliton solution of the multicomponent YO system in the Gram determinant form by using Hirota's bilinearization method and explicitly analyze the one- and two-soliton solutions of the multicomponent YO system for the above mentioned three choices of nonlinearity coefficients. We also point out that the 3-CNLS system admits special asymptotic solitons of bright, dark, anti-dark, and gray types, when the long-wave-short-wave resonance takes place. The short-wave component solitons undergo two types of energy-sharing collisions. Specifically, in the two-component YO system, we demonstrate that two types of energy-sharing collisions-(i) energy switching with opposite nature for a particular soliton in two components and (ii) similar kind of energy switching for a given soliton in both components-result for two different choices of nonlinearity coefficients. The solitons appearing in the long-wave component always exhibit elastic collision whereas those of short-wave components exhibit standard elastic collisions only for a specific choice of parameters. We have also investigated the collision dynamics of asymptotic solitons in the original 3-CNLS system. For completeness, we explore the three-soliton interaction and demonstrate the pairwise nature of collisions and unravel the fascinating state restoration property.

  18. Effect of Surface Waviness on Transition in Three-Dimensional Boundary-Layer Flow

    NASA Technical Reports Server (NTRS)

    Masad, Jamal A.

    1996-01-01

    The effect of a surface wave on transition in three-dimensional boundary-layer flow over an infinite swept wing was studied. The mean flow computed using interacting boundary-layer theory, and transition was predicted using linear stability theory coupled with the empirical eN method. It was found that decreasing the wave height, sweep angle, or freestream unit Reynolds number, and increasing the freestream Mach number or suction level all stabilized the flow and moved transition onset to downstream locations.

  19. Propagation of large-amplitude waves on dielectric liquid sheets in a tangential electric field: exact solutions in three-dimensional geometry.

    PubMed

    Zubarev, Nikolay M; Zubareva, Olga V

    2010-10-01

    Nonlinear waves on sheets of dielectric liquid in the presence of an external tangential electric field are studied theoretically. It is shown that waves of arbitrary shape in three-dimensional geometry can propagate along (or against) the electric field direction without distortion, i.e., the equations of motion admit a wide class of exact traveling wave solutions. This unusual situation occurs for nonconducting ideal liquids with high dielectric constants in the case of a sufficiently strong field strength. Governing equations for evolution of plane symmetric waves on fluid sheets are derived using conformal variables. A dispersion relation for the evolution of small perturbations of the traveling wave solutions is obtained. It follows from this relation that, regardless of the wave shape, the amplitudes of small-scale perturbations do not increase with time and, hence, the traveling waves are stable. We also study the interaction of counterpropagating symmetric waves with small but finite amplitudes. The corresponding solution of the equations of motion describes the nonlinear superposition of the oppositely directed waves. The results obtained are applicable for the description of long waves on fluid sheets in a horizontal magnetic field.

  20. Acute Kidney Injury and Bisphosphonate Use in Cancer: A Report From the Research on Adverse Drug Events and Reports (RADAR) Project

    PubMed Central

    Edwards, Beatrice J.; Usmani, Sarah; Raisch, Dennis W.; McKoy, June M.; Samaras, Athena T.; Belknap, Steven M.; Trifilio, Steven M.; Hahr, Allison; Bunta, Andrew D.; Abu-Alfa, Ali; Langman, Craig B.; Rosen, Steve T.; West, Dennis P.

    2013-01-01

    Purpose: To determine whether acute kidney injury (AKI) is identified within the US Food and Drug Administration's Adverse Events and Reporting System (FDA AERS) as an adverse event resulting from bisphosphonate (BP) use in cancer therapy. Methods: A search of the FDA AERS records from January 1998 through June 2009 was performed; search terms were “renal problems” and all drug names for BPs. The search resulted in 2,091 reports. We analyzed for signals of disproportional association by calculating the proportional reporting ratio for zoledronic acid (ZOL) and pamidronate. Literature review of BP-associated renal injury within the cancer setting was conducted. Results: Four hundred eighty cases of BP-associated acute kidney injury (AKI) were identified in patients with cancer. Two hundred ninety-eight patients (56%) were female; mean age was 66 ± 10 years. Multiple myeloma (n = 220, 46%), breast cancer (n = 98, 20%), and prostate cancer (n = 24, 5%) were identified. Agents included ZOL (n = 411, 87.5%), pamidronate (n = 8, 17%), and alendronate (n = 36, 2%). Outcomes included hospitalization (n = 304, 63.3%) and death (n = 68, 14%). The proportional reporting ratio for ZOL was 1.22 (95% CI, 1.13 to 1.32) and for pamidronate was 1.55 (95% CI, 1.25 to 1.65), reflecting a nonsignificant safety signal for both drugs. Conclusion: AKI was identified in BP cancer clinical trials, although a safety signal for BPs and AKI within the FDA AERS was not detected. Our findings may be attributed, in part, to clinicians who believe that AKI occurs infrequently; ascribe the AKI to underlying premorbid disease, therapy, or cancer progression; or consider that AKI is a known adverse drug reaction of BPs and thus under-report AKI to the AERS. PMID:23814519

  1. Differences in Antipsychotic-Related Adverse Events in Adult, Pediatric, and Geriatric Populations.

    PubMed

    Sagreiya, Hersh; Chen, Yi-Ren; Kumarasamy, Narmadan A; Ponnusamy, Karthik; Chen, Doris; Das, Amar K

    2017-02-26

    In recent years, antipsychotic medications have increasingly been used in pediatric and geriatric populations, despite the fact that many of these drugs were approved based on clinical trials in adult patients only. Preliminary studies have shown that the "off-label" use of these drugs in pediatric and geriatric populations may result in adverse events not found in adults. In this study, we utilized the large-scale U.S. Food and Drug Administration (FDA) Adverse Events Reporting System (AERS) database to look at differences in adverse events from antipsychotics among adult, pediatric, and geriatric populations. We performed a systematic analysis of the FDA AERS database using MySQL by standardizing the database using structured terminologies and ontologies. We compared adverse event profiles of atypical versus typical antipsychotic medications among adult (18-65), pediatric (age < 18), and geriatric (> 65) populations. We found statistically significant differences between the number of adverse events in the pediatric versus adult populations with aripiprazole, clozapine, fluphenazine, haloperidol, olanzapine, quetiapine, risperidone, and thiothixene, and between the geriatric versus adult populations with aripiprazole, chlorpromazine, clozapine, fluphenazine, haloperidol, paliperidone, promazine, risperidone, thiothixene, and ziprasidone (p < 0.05, with adjustment for multiple comparisons). Furthermore, the particular types of adverse events reported also varied significantly between each population for aripiprazole, clozapine, haloperidol, olanzapine, quetiapine, risperidone, and ziprasidone (Chi-square, p < 10 -6 ). Diabetes was the most commonly reported side effect in the adult population, compared to behavioral problems in the pediatric population and neurologic symptoms in the geriatric population. We also found discrepancies between the frequencies of reports in AERS and in the literature. Our analysis of the FDA AERS database shows that there are significant differences in both the numbers and types of adverse events among these age groups and between atypical and typical antipsychotics. It is important for clinicians to be mindful of these differences when prescribing antipsychotics, especially when prescribing medications off-label.

  2. The use of the Micral-Test strip to identify the presence of microalbuminuria in people with insulin dependent diabetes mellitus (IDDM) participating in the EUCLID study.

    PubMed

    Webb, D J; Newman, D J; Chaturvedi, N; Fuller, J H

    1996-03-01

    In IDDM, microalbuminuria (urinary albumin excretion rate (AER) of 20-200 micrograms/min) is a predictor of persistent proteinuria and diabetic nephropathy. Early intervention may prevent or reduce the rate of progression of renal complications. The Micral-Test strip can be used to establish a semi-quantitative estimate of AER. We assessed the field performance of the Micral-Test strip in detecting microalbuminuria in the EUCLID study, an European wide, 18 centre study of 530 IDDM participants, aged 20 to 59 years. People with macroalbuminuria were excluded. On entry, all participants had albumin concentrations from two overnight urine collections measured by a central laboratory, and the corresponding Micral-Test performed on the two collections locally. a cut off of > or = mg/l albumin from the first Micral-Test, to detect a centrally measured albumin concentration > or = 20 mg/l, yielded 29 (5.8%) false negative results and 58 (11.6%) false positive results (sensitivity 70%, specificity 87%). The mean AER, from two collections, was compared with the corresponding 'pooled' Micral-Test results (mean of the two readings). Receiver Operating Characteristic (ROC) curves were used to assess if there was a suitable 'pooled' Micral-Test result for screening microalbuminuria. A 'pooled' Micral-Test result (> or = 15 mg/l) was used to detect mean AER > or = 20 micrograms/min (sensitivity 78%, specificity 77%). This 'pooled cut-off' had already been used for screening on to the study and led to an over-estimate (154 vs. 77) of the true number of microalbuminuric participants on the study. In conclusion, our findings suggest that the Micral-Test strip is not an effective screening tool for microalbuminuria, using the 'pooled' result from two measurements did not improve the sensitivity of the test.

  3. Effects of aerobic or resistance exercise training on cardiovascular autonomic function of subjects with type 2 diabetes: A pilot study.

    PubMed

    Bellavere, F; Cacciatori, V; Bacchi, E; Gemma, M L; Raimondo, D; Negri, C; Thomaseth, K; Muggeo, M; Bonora, E; Moghetti, P

    2018-03-01

    Both aerobic (AER) and resistance (RES) training improve metabolic control in patients with type 2 diabetes (T2DM). However, information on the effects of these training modalities on cardiovascular autonomic control is limited. Our aim was to compare the effects of AER and RES training on cardiovascular autonomic function in these subjects. Cardiovascular autonomic control was assessed by Power Spectral Analysis (PSA) of Heart Rate Variability (HRV) and baroreceptors function indexes in 30 subjects with T2DM, randomly assigned to aerobic or resistance training for 4 months. In particular, PSA of HRV measured the Low Frequency (LF) and High Frequency (HF) bands of RR variations, expression of prevalent sympathetic and parasympathetic drive, respectively. Furthermore, we measured the correlation occurring between systolic blood pressure and heart rate during a standardized Valsalva maneuver using two indexes, b2 and b4, considered an expression of baroreceptor sensitivity and peripheral vasoactive adaptations during predominant sympathetic and parasympathetic drive, respectively. After training, the LF/HF ratio, which summarizes the sympatho-vagal balance in HRV control, was similarly decreased in the AER and RES groups. After AER, b2 and b4 significantly improved. After RES, changes of b2 were of borderline significance, whereas changes of b4 did not reach statistical significance. However, comparison of changes in baroreceptor sensitivity indexes between groups did not show statistically significant differences. Both aerobic and resistance training improve several indices of the autonomic control of the cardiovascular system in patients with T2DM. Although these improvements seem to occur to a similar extent in both training modalities, some differences cannot be ruled out. NCT01182948, clinicaltrials.gov. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  4. Thrombotic events associated with C1 esterase inhibitor products in patients with hereditary angioedema: investigation from the United States Food and Drug Administration adverse event reporting system database.

    PubMed

    Gandhi, Pranav K; Gentry, William M; Bottorff, Michael B

    2012-10-01

    To investigate reports of thrombotic events associated with the use of C1 esterase inhibitor products in patients with hereditary angioedema in the United States. Retrospective data mining analysis. The United States Food and Drug Administration (FDA) adverse event reporting system (AERS) database. Case reports of C1 esterase inhibitor products, thrombotic events, and C1 esterase inhibitor product-associated thrombotic events (i.e., combination cases) were extracted from the AERS database, using the time frames of each respective product's FDA approval date through the second quarter of 2011. Bayesian statistical methodology within the neural network architecture was implemented to identify potential signals of a drug-associated adverse event. A potential signal is generated when the lower limit of the 95% 2-sided confidence interval of the information component, denoted by IC₀₂₅ , is greater than zero. This suggests that the particular drug-associated adverse event was reported to the database more often than statistically expected from reports available in the database. Ten combination cases of thrombotic events associated with the use of one C1 esterase inhibitor product (Cinryze) were identified in patients with hereditary angioedema. A potential signal demonstrated by an IC₀₂₅ value greater than zero (IC₀₂₅ = 2.91) was generated for these combination cases. The extracted cases from the AERS indicate continuing reports of thrombotic events associated with the use of one C1 esterase inhibitor product among patients with hereditary angioedema. The AERS is incapable of establishing a causal link and detecting the true frequency of an adverse event associated with a drug; however, potential signals of C1 esterase inhibitor product-associated thrombotic events among patients with hereditary angioedema were identified in the extracted combination cases. © 2012 Pharmacotherapy Publications, Inc.

  5. A Continuum of Renin-Independent Aldosteronism in Normotension

    PubMed Central

    Baudrand, Rene; Guarda, Francisco J.; Fardella, Carlos; Hundemer, Gregory; Brown, Jenifer; Williams, Gordon; Vaidya, Anand

    2017-01-01

    Primary aldosteronism (PA) is a severe form of autonomous aldosteronism. Milder forms of autonomous and renin-independent aldosteronism may be common, even in normotension. We characterized aldosterone secretion in 210 normotensives who had suppressed plasma renin activity (PRA<1.0 ng/mL/h), completed an oral sodium suppression test, received an infusion of angiotensin II (AngII), and had measurements of blood pressure (BP) and renal plasma flow (RPF). Continuous associations between urinary aldosterone excretion rate (AER), renin, and potassium handling were investigated. Severe autonomous aldosterone secretion that was consistent with confirmed PA was defined based on accepted criteria of an AER >12 mcg/24h with urinary sodium excretion >200 mmol/24h. Across the population, there were strong and significant associations between higher AER and higher urinary potassium excretion, higher AngII-stimulated aldosterone, and lower PRA, suggesting a continuum of renin-independent aldosteronism and mineralocorticoid receptor activity. Autonomous aldosterone secretion that fulfilled confirmatory criteria for PA was detected in 29 participants (14%). Normotensives with evidence suggestive of confirmed PA had higher 24h urinary AER (20.2±12.2 vs. 6.2±2.9 mcg/24h, P<0.001) as expected, but also higher AngII-stimulated aldosterone (12.4±8.6 vs. 6.6±4.3 ng/dL, P<0.001) and lower 24h urinary sodium-to-potassium excretion (2.69±0.65 vs. 3.69±1.50 mmol/mmol, P=0.001); however, there were no differences in age, aldosterone-to-renin ratio, BP, or RPF between the two groups. These findings indicate a continuum of renin-independent aldosteronism and mineralocorticoid receptor activity in normotension that ranges from subtle to overtly dysregulated and autonomous. Longitudinal studies are needed to determine whether this spectrum of autonomous aldosterone secretion contributes to hypertension and cardiovascular disease. PMID:28289182

  6. Self-Consistent Model of Magnetospheric Ring Current and Electromagnetic Ion Cyclotron Waves: The 2-7 May 1998 Storm

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.

    2003-01-01

    A complete description of a self-consistent model of magnetospheric ring current interacting with electromagnetic ion cyclotron waves is presented. The model is based on the system of two kinetic equations; one equation describes the ring current ion dynamics, and another equation describes the wave evolution. The effects on ring current ions interacting with electromagnetic ion cyclotron waves and back on waves are considered self-consistently by solving both equations on a global magnetospheric scale under nonsteady state conditions. The developed model is employed to simulate the entire 2-7 May 1998 storm period. First, the trapped number fluxes of the ring current protons are calculated and presented along with comparison with the data measured by the three- dimensional hot plasma instrument Polar/HYDRA. Incorporating in the model the wave-particle interaction leads to much better agreement between the experimental data and the model results. Second, examining of the wave (MLT, L shell) distributions produced by the model during the storm progress reveals an essential intensification of the wave emission about 2 days after the main phase of the storm. This result is well consistent with the earlier ground-based observations. Finally, the theoretical shapes and the occurrence rates of the wave power spectral densities are studied. It is found that about 2 days after the storm s main phase on 4 May, mainly non-Gaussian shapes of power spectral densities are produced.

  7. Surface spin-electron acoustic waves in magnetically ordered metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru; Kuz'menkov, L. S., E-mail: lsk@phys.msu.ru

    2016-05-09

    Degenerate plasmas with motionless ions show existence of three surface waves: the Langmuir wave, the electromagnetic wave, and the zeroth sound. Applying the separated spin evolution quantum hydrodynamics to half-space plasma, we demonstrate the existence of the surface spin-electron acoustic wave (SSEAW). We study dispersion of the SSEAW. We show that there is hybridization between the surface Langmuir wave and the SSEAW at rather small spin polarization. In the hybridization area, the dispersion branches are located close to each other. In this area, there is a strong interaction between these waves leading to the energy exchange. Consequently, generating the Langmuirmore » waves with the frequencies close to hybridization area we can generate the SSEAWs. Thus, we report a method of creation of the spin-electron acoustic waves.« less

  8. A comparative study of the mechanisms of migrating diurnal tidal variability due to interaction with propagating planetary waves

    NASA Astrophysics Data System (ADS)

    Chang, Loren; Palo, Scott; Liu, Hanli

    The migrating diurnal tide is one of the dominant dynamical features of the Earth's Mesosphere and Lower Thermosphere (MLT) region, particularly at low latitudes. As an actively forced disturbance with a period of 24 hours and westward zonal wave number 1, the migrating diurnal tide represents the atmospheric response to the largest component of solar forcing, propagating upwards from excitation regions in the lower atmosphere. While the seasonal evolution of the migrating diurnal tide has been well explored, ground-based observations of the tide have exhibited a modulation of tidal amplitudes at periods related to those of propagating planetary waves generally present in the region, as well as a decrease in tidal amplitudes during large planetary wave events. Past studies have attributed tidal amplitude modulation to the presence of child waves generated as a byproduct of nonlinear wave-tide interactions. The resulting child waves have frequencies and wavenumbers that are the sum and difference of those of the parent waves. Many questions still remain about the nature and physical drivers responsible for such interactions. The conditions under which various planetary waves may or may not interact with the atmospheric tides, the overall effect on the tidal response, as well as the physical mechanisms coupling the planetary wave and the tide interaction, which has not clearly been determined. These questions are addressed in a recent modeling study, by examining two general categories of planetary waves that are known to attain significant amplitudes in the low latitude and equa-torial region where the migrating diurnal tide is dominant. These are the eastward propagating class of ultra fast Kelvin (UFK) waves with periods near three days which attain their largest amplitudes in the temperature and zonal wind fields of the equatorial lower thermosphere. The second wave examined is the quasi-two day wave (QTDW) which is a westward propagating Rossby wave and can amplify raplidly due to a nonlinear interaction with the mean flow and attain large amplitudes in both components of the wind field and the temperature field in the summer hemisphere over a period of a few days during post-solstice periods. The NCAR Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM) and Whole Atmosphere Community Climate Model (WACCM) are both state of the art general circulation models and are utilized to simulate the aforementioned planetary waves. The goal of this study is to identify specific changes in the structure of the migrat-ing diurnal tide due to interaction with these planetary waves and to understand the driving processes. The physical mechanisms that serve to couple the tide and the planetary waves are identified through analysis of the tidal momentum tendencies, the background atmosphere, as well as changes in tidal propagation. Results showing the impact of these planetary waves on the structure and evolution of the migrating diurnal tide will be presented.

  9. Instability of the sliding Luttinger liquid

    NASA Astrophysics Data System (ADS)

    Fleurov, V.; Kagalovsky, V.; Lerner, I. V.; Yurkevich, I. V.

    2018-05-01

    We revise a phase diagram for the sliding Luttinger liquid (SLL) of coupled one-dimensional quantum wires packed in two- or three-dimensional arrays in the absence of a magnetic field. We analyse whether physically justifiable (reasonable) inter-wire interactions, i.e. either the screened Coulomb or ‘Coulomb-blockade’ type interactions, stabilise the SLL phase. Calculating the scaling dimensions of the most relevant perturbations (the inter-wire single-particle hybridisation, charge-density wave, and superconducting inter-wire couplings), we find that their combination always destroys the SLL phase for the repulsive intra-wire interaction. However, suppressing the inter-wire tunnelling of repulsive fermions (when the charge-density wave is the only remaining perturbation), one can observe a stability region emerging due to the inter-wire forward scattering interaction.

  10. GreenLITE™: a novel approach for quantification of atmospheric methane concentrations, 2-D spatial distribution, and flux

    NASA Astrophysics Data System (ADS)

    Dobler, J. T.; Blume, N.; Pernini, T.; Zaccheo, T. S.; Braun, M.

    2017-12-01

    The Greenhouse Gas Laser Imaging Tomography Experiment (GreenLITE™) was originally developed by Harris and Atmospheric and Environmental Research (AER) under a cooperative agreement with the National Energy Technology Laboratory of the Department of Energy. The system, initially conceived in 2013, used a pair of high-precision intensity modulated continuous wave (IMCW) transceivers and a series of retroreflectors to generate overlapping atmospheric density measurements of carbon dioxide (CO2) for continuous monitoring of ground carbon storage sites. The overlapping measurements provide an estimate of the two-dimensional (2-D) spatial distribution of the gas within the area of interest using sparsely sampled tomography methods. GreenLITE™ is a full end-to-end system that utilizes standard 4G connectivity and an all cloud-based data storage, processing, and dissemination suite to provide autonomous, near-real-time data via a web-based user interface. The system has been demonstrated for measuring and mapping CO2 over areas from approximately 0.04 km2 to 25 km2 ( 200 m X 200 m, up to 5 km X 5 km), including a year-long demonstration over the city of Paris, France. In late 2016, the GreenLITE™ system was converted by Harris and AER to provide similar measurement capabilities for methane (CH4). Recent experiments have shown that GreenLITE™ CH4 retrieved concentrations agree with a Picarro cavity ring-down spectrometer, calibrated with World Meteorological Organization traceable gas, to within approximately 0.5% of background or 10-15 parts per billion. The system has been tested with several controlled releases over the past year, including a weeklong experiment at an industrial oil and gas facility. Recent experiments have been exploring the use of a box model-based approach for estimating flux, and the initial results are very promising. We will present a description of the instrument, share some recent methane experimental results, and describe the flux estimation process and results of testing to date.

  11. Are Medications Involved in Vision and Intracrancial Pressure Changes Seen in Spaceflight?

    NASA Technical Reports Server (NTRS)

    Faust, K. M.; Wotring, V. E.

    2014-01-01

    The Food and Drug Association Adverse Event Reports (FDA AER) from 2009-2011 were used to create a database from millions of known and suspected medication-related adverse events among the general public. Vision changes, sometimes associated with intracranial pressure changes (VIIP), have been noted in some long duration crewmembers. Changes in vision and blood pressure (which can subsequently affect intracranial pressure) are fairly common side effects of medications. The purpose of this study was to explore the possibility of medication involvement in crew VIIP symptoms. Reports of suspected medication-related adverse events may be filed with the Food and Drug Administration (FDA) by medical professionals or consumers. Quarterly compilations of these reports are available for public download. Adverse Event Reporting System (AERS) reports from 1/1/2009- 6/30/2012 were downloaded and compiled into a searchable database for this study. Reports involving individuals under the age of 18 and older than 65 were excluded from this analysis. Case reports involving chronic diseases such as cancer, diabetes, multiple sclerosis and other serious conditions were also excluded. A scan of the medical literature for medication-related VIIP-like adverse events was used to create a list of suspect medications. These medications, as well as certain medications used frequently by ISS crew, were used to query the database. Queries for use of suspected medications were run, and the nature of the symptoms reported in those cases were tabulated. Symptoms searched in the FDA AERS were chosen to include the typical symptoms noted in crewmembers with VIIP. Vision symptoms searched were: visual acuity reduced, visual impairment, and vitreous floaters. Pressure changes included: abnormal sensation in eye, intracranial pressure increased, intraocular pressure increased, optic neuritis, optic neuropathy, and papilloedema. Limited demographic information is included with the FDA AERS; relevant data were also sorted by age and sex from each report. RESULTS Steroid-containing oral contraceptives had the highest number of reports associated with vision (n=166) and pressure symptoms (n=54). Corticosteroid-containing medications were also high; prednisone, for example, had 137 reports of vision issues and 79 of pressure issues. Pain relievers were also a medication class with vision and pressure-related adverse events reported. Common over-the-counter medications such as acetaminophen, aspirin and ibuprofen each had multiple reports for both vision and pressure symptoms. Antimicrobial medications ciprofloxacin and diflucan were also associated with a number of vision and pressure-related AERS. Unexpectedly, pseudoephedrine and promethazine were mentioned in fewer than 20 reports each over the 3.5 years of data examined. The FDA AERS represents a wealth of data, but there are several limitations to its use. The data are entered by the public or medical professionals, but are not checked for accuracy or completeness and may even be entered multiple times. The causal relationship between a particular adverse event and a particular medication is not tested. The cases represent a broad spectrum of demographics, occupations, and health histories, and thus do not model the astronaut population well. There is no information on the frequency of use of a medication for comparison purposes; it is not possible to assign a rate for any particular adverse event. Nonetheless, there are compelling trends. Use of corticosteroid-containing medications, pain relievers (even over-the-counter), and oral contraceptives were associated with higher numbers of vision- or intracranial pressure-related adverse events. In general, there were more vision problems than pressure problems reported. Certain medications that were once suspected of playing a role in the crew VIIP syndrome, namely pseudoephedrine and promethazine, were found to have extremely low numbers of VIIP-like AERS in the FDA data. However, crew use of corticosteroid-containing medications and pain relievers may warrant additional investigation

  12. Compact two-electron wave function for bond dissociation and Van der Waals interactions: a natural amplitude assessment.

    PubMed

    Giesbertz, Klaas J H; van Leeuwen, Robert

    2014-05-14

    Electron correlations in molecules can be divided in short range dynamical correlations, long range Van der Waals type interactions, and near degeneracy static correlations. In this work, we analyze for a one-dimensional model of a two-electron system how these three types of correlations can be incorporated in a simple wave function of restricted functional form consisting of an orbital product multiplied by a single correlation function f (r12) depending on the interelectronic distance r12. Since the three types of correlations mentioned lead to different signatures in terms of the natural orbital (NO) amplitudes in two-electron systems, we make an analysis of the wave function in terms of the NO amplitudes for a model system of a diatomic molecule. In our numerical implementation, we fully optimize the orbitals and the correlation function on a spatial grid without restrictions on their functional form. Due to this particular form of the wave function, we can prove that none of the amplitudes vanishes and moreover that it displays a distinct sign pattern and a series of avoided crossings as a function of the bond distance in agreement with the exact solution. This shows that the wave function ansatz correctly incorporates the long range Van der Waals interactions. We further show that the approximate wave function gives an excellent binding curve and is able to describe static correlations. We show that in order to do this the correlation function f (r12) needs to diverge for large r12 at large internuclear distances while for shorter bond distances it increases as a function of r12 to a maximum value after which it decays exponentially. We further give a physical interpretation of this behavior.

  13. Swept shock/boundary layer interaction experiments in support of CFD code validation

    NASA Technical Reports Server (NTRS)

    Settles, G. S.; Lee, Y.

    1992-01-01

    Research on the topic of shock wave/turbulent boundary-layer interaction was carried out during the past three years at the Penn State Gas Dynamics Laboratory. This report describes the experimental research program which provides basic knowledge and establishes new data on heat transfer in swept shock wave/boundary-layer interactions. An equilibrium turbulent boundary-layer on a flat plate is subjected to impingement by swept planar shock waves generated by a sharp fin. Five different interactions with fin angle ranging from 10 deg to 20 deg at freestream Mach numbers of 3.0 and 4.0 produce a variety of interaction strengths from weak to very strong. A foil heater generates a uniform heat flux over the flat plate surface, and miniature thin-film-resistance sensors mounted on it are used to measure the local surface temperature. The heat convection equation is then solved for the heat transfer distribution within an interaction, yielding a total uncertainty of about +/- 10 percent. These experimental data are compared with the results of numerical Navier-Stokes solutions which employ a k-epsilon turbulence model. Finally, a simplified form of the peak heat transfer correlation for fin interactions is suggested.

  14. Wave-Current Interaction in Coastal Inlets and River Mouths

    DTIC Science & Technology

    2014-09-30

    the Astoria Canyon buoy operated by the Coastal Data Information Program ( CDIP , buoy # 46248). Three-dimensional current fields and bathymetry were...bar show considerable differences. The SWAN model uses observations from CDIP buoy # 46248 as boundary condition; three- dimensional current data and

  15. The aortic reservoir-wave as a paradigm for arterial haemodynamics: insights from three-dimensional fluid-structure interaction simulations in a model of aortic coarctation.

    PubMed

    Segers, Patrick; Taelman, Liesbeth; Degroote, Joris; Bols, Joris; Vierendeels, Jan

    2015-03-01

    The reservoir-wave paradigm considers aortic pressure as the superposition of a 'reservoir pressure', directly related to changes in reservoir volume, and an 'excess' component ascribed to wave dynamics. The change in reservoir pressure is assumed to be proportional to the difference between aortic inflow and outflow (i.e. aortic volume changes), an assumption that is virtually impossible to validate in vivo. The aim of this study is therefore to apply the reservoir-wave paradigm to aortic pressure and flow waves obtained from three-dimensional fluid-structure interaction simulations in a model of a normal aorta, aortic coarctation (narrowed descending aorta) and stented coarctation (stiff segment in descending aorta). We found no unequivocal relation between the intraaortic volume and the reservoir pressure for any of the simulated cases. When plotted in a pressure-volume diagram, hysteresis loops are found that are looped in a clockwise way indicating that the reservoir pressure is lower than the pressure associated with the change in volume. The reservoir-wave analysis leads to very high excess pressures, especially for the coarctation models, but to surprisingly little changes of the reservoir component despite the impediment of the buffer capacity of the aorta. With the observation that reservoir pressure is not related to the volume in the aortic reservoir in systole, an intrinsic assumption in the wave-reservoir concept is invalidated and, consequently, also the assumption that the excess pressure is the component of pressure that can be attributed to wave travel and reflection.

  16. The interaction of sound with a poroelastic ground

    NASA Astrophysics Data System (ADS)

    Hickey, C. J.

    2012-12-01

    An airborne acoustic wave impinging on the surface of the ground provides a good mechanical source for investigating the near surface. Since the ground is porous, the impinging sound wave induces motion of the fluid within the pores as well as vibrating the solid framework. The most complete understanding of the interaction of airborne sound with the ground is to treat the ground as a poroelastic or poroviscoelastic medium. This treatment predicts that three types of waves can propagate in a ground with a deformable framework: two compressional waves, the fast or Type I and slow or Type II wave and one shear wave. Model calculations of the energy partition and an air-soil interface predict that most of the energy is partitioned into the Type II compressional wave, less into the Type I compressional wave, and little energy is partitioned into the shear wave. However, when measuring the solid motion of the soil one must consider how much of that wave energy is in terms of solid velocity. The deformation associated with Type II compressional wave has only a small contribution from the solid component whereas the bulk deformation of the Type I compressional wave has a solid to fluid deformation ratio of approximately one. This modeling suggests that the soil solid velocity induced by an acoustic source is associated with the Type I compressional wave. In other words, the airborne source is simply an inefficient seismic source.

  17. Calculation of Seismic Waves from Explosions with Tectonic Stresses and Topography

    NASA Astrophysics Data System (ADS)

    Stevens, J. L.; O'Brien, M.

    2017-12-01

    We investigate the effects of explosion depth, tectonic stresses and topography on seismic waves from underground nuclear explosions. We perform three-dimensional nonlinear calculations of an explosion at several depths in the topography of the North Korean test site. We also perform a large number of two-dimensional axisymmetric calculations of explosions at depths from 150 to 1000 meters in four earth structures, with compressive and tensile tectonic stresses and with no tectonic stresses. We use the representation theorem to propagate the results of these calculations and calculate seismic waves at regional and teleseismic distances. We find that P-waves are not strongly affected by any of these effects because the initial downgoing P-wave is unaffected by interaction with the free surface. Surface waves, however, are strongly affected by all of these effects. There is an optimal depth at which surface waves are maximized at the base of a mountain and at or slightly below normal containment depth. At deeper depths, increasing overburden pressure reduces the surface waves. At shallower depths, interaction with the free surface reduces the surface waves. For explosions inside a mountain, displacement of the sides of the mountain reduces surface waves. Compressive prestress reduces surface waves substantially, while tensile prestress increases surface waves. The North Korean explosions appear to be at an optimal depth, in a region of extension, and beneath a mountain, all of which increase surface wave amplitudes.

  18. Role of helmet in the mechanics of shock wave propagation under blast loading conditions.

    PubMed

    Ganpule, S; Gu, L; Alai, A; Chandra, N

    2012-01-01

    The effectiveness of helmets in extenuating the primary shock waves generated by the explosions of improvised explosive devices is not clearly understood. In this work, the role of helmet on the overpressurisation and impulse experienced by the head were examined. The shock wave-head interactions were studied under three different cases: (i) unprotected head, (ii) head with helmet but with varying head-helmet gaps and (iii) head covered with helmet and tightly fitting foam pads. The intensification effect was discussed by examining the shock wave flow pattern and verified with experiments. A helmet with a better protection against shock wave is suggested.

  19. Simulation of Wave-Current Interaction Using a Three-Dimensional Hydrodynamic Model Coupled With a Phase Averaged Wave Model

    NASA Astrophysics Data System (ADS)

    Marsooli, R.; Orton, P. M.; Georgas, N.; Blumberg, A. F.

    2016-02-01

    The Stevens Institute of Technology Estuarine and Coastal Ocean Model (sECOM) has been coupled with a more advanced surface wave model to simulate wave‒current interaction, and results have been validated in estuarine and nearshore waters. sECOM is a three‒dimensional, hydrostatic, free surface, primitive equation model. It solves the Navier‒Stokes equations and the conservation equations for temperature and salinity using a finite‒difference method on an Arakawa C‒grid with a terrain‒following (sigma) vertical coordinate and orthogonal curvilinear horizontal coordinate system. The model is coupled with the surface wave model developed by Mellor et al. (2008), which solves the spectral equation and takes into account depth and current refraction, and deep and shallow water. The wave model parameterizes the energy distribution in frequency space and the wave‒wave interaction process by using a specified spectrum shape. The coupled wave‒hydrodynamic model considers the wave‒current interaction through wave‒induced bottom stress, depth‒dependent radiation stress, and wave effects on wind‒induced surface stress. The model is validated using the data collected at a natural sandy beach at Duck, North Carolina, during the DUCK94 experiment. This test case reveals the capability of the model to simulate the wave‒current interaction in nearshore coastal systems. The model is further validated using the data collected in Jamaica Bay, a semi‒enclosed body of water located in New York City region. This test reveals the applicability of the model to estuarine systems. These validations of the model and comparisons to its prior wave model, the Great Lakes Environmental Research Laboratory (GLERL) wave model (Donelan 1977), are presented and discussed. ReferencesG.L. Mellor, M.A. Donelan, and L‒Y. Oey, 2008, A Surface Wave Model for Coupling with Numerical Ocean Circulation Models. J. Atmos. Oceanic Technol., 25, 1785‒1807.Donelan, M. A 1977. A simple numerical model for wave and wind stress application. Report, National Water Research Institute, Burlington, Ontario, Canada, 28 pp.

  20. Goal conflict and the moderating effects of intention stability in intention-behavior relations: physical activity among Hong Kong chinese.

    PubMed

    Li, Kin-Kit; Chan, Darius K S

    2008-02-01

    This study examined how goal conflict influences the pattern of the moderating effects of intention stability on the intention-behavior relations in the context of physical activity participation. A longitudinal study of 136 young adult students with three waves of data collection (a 2-week interval between waves) was conducted. Results showed a significant three-way interaction among intention, goal conflict,& intention stability in explaining vigorous-intensity physical activity (Beta = -.25, p < .05). Consistent with our expectation, the pattern of the three-way interaction revealed that when the level of goal conflict was low, the intention-behavior relations were stronger with stable intentions and weaker with unstable intentions. However, when the level of goal conflict was high, the intention-behavior relations were weaker with stable intentions and stronger with unstable intentions. Possible underlying processes of goal conflict and intention stability on the intention-behavior relations are discussed.

  1. Initiation of Insensitive High Explosives Using Multiple Wave Interactions

    NASA Astrophysics Data System (ADS)

    Francois, Elizabeth

    Insensitive High Explosives (IHEs) increase safety in many types of weapons. However, the safety comes at the cost of performance. Initiation of IHE requires large boosters and powerful detonators as well. Multipoint initiation is being utilized to exploit explosive wave interactions to create overdriven states, greatly facilitating the initiation of IHEs. This presentation will focus on recent explosive experiments where the minimum spot size for single-point initiation in PBX 9502 was determined. Below this threshold, PBX 9502 could not be initiated. This was then expanded to three initiation points, which were smaller this threshold. Measurements of the velocity and pressure of the wave interactions were measured using Photon Doppler Velocimetry (PDV). Initiation was observed, and the resulting pressures at the double and triple points were found to be above the CJ state for PBX 9502. Further testing will be performed using cutback experiments to isolate the overdriven state, and quantify the duration of the phenomenon.

  2. Investigations of the structure and electromagnetic interactions of few body systems

    NASA Astrophysics Data System (ADS)

    Harper, E. P.; Lehman, D. R.; Prats, F.

    The structure and electromagnetic interactions of few-body systems were investigated. The structural properties of the very light nuclei are examined by developing theoretical models that begin from the basic interactions between the constituents and that are solved exactly (numerically), i.e., full three- or four-body dynamics. Such models are then used in an attempt to understand the details of the strong and electromagnetic interactions of the few-nucleon nuclei after the basic underlying reaction mechanisms are understood with simpler models. Topics included: (1) set up the equations for the low-energy photodisintegration of (3)He and (3)H including final-state interactions and the E1 plus E2 operators; (2) develop a unified picture of the p + d (YIELDS) (3)He + (GAMMA), p + d (YIELDS) (3)He + (PI) (0), p + d (YIELDS) (3)H + (PI) (+) reactions at intermediate energies; (3) calculate the elastic and inelastic (1(+) (YIELDS) 0 (+)) form factors for (6)Li with three-body ((ALPHA)NN) wave functions; (4) calculate static properties (RMS radius, magnetic moment, and quadrupole moment) of (6)Li with three-body wave functions; and (5) develop the theory for the coincidence reactions (6)Li(p,2p)n(ALPHA), (6)Li(e,e'p)n(ALPHA), and (6)Li(e,e'd)(ALPHA).

  3. Optimal Control of Shock Wave Turbulent Boundary Layer Interactions Using Micro-Array Actuation

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Tinapple, Jon; Surber, Lewis

    2006-01-01

    The intent of this study on micro-array flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to determine optimal designs of micro-array actuation for controlling the shock wave turbulent boundary layer interactions within supersonic inlets and compare these concepts to conventional bleed performance. The term micro-array refers to micro-actuator arrays which have heights of 25 to 40 percent of the undisturbed supersonic boundary layer thickness. This study covers optimal control of shock wave turbulent boundary layer interactions using standard micro-vane, tapered micro-vane, and standard micro-ramp arrays at a free stream Mach number of 2.0. The effectiveness of the three micro-array devices was tested using a shock pressure rise induced by the 10 shock generator, which was sufficiently strong as to separate the turbulent supersonic boundary layer. The overall design purpose of the micro-arrays was to alter the properties of the supersonic boundary layer by introducing a cascade of counter-rotating micro-vortices in the near wall region. In this manner, the impact of the shock wave boundary layer (SWBL) interaction on the main flow field was minimized without boundary bleed.

  4. Coupled effects of chemotaxis and growth on traveling bacterial waves.

    PubMed

    Yan, Zhifeng; Bouwer, Edward J; Hilpert, Markus

    2014-08-01

    Traveling bacterial waves are capable of improving contaminant remediation in the subsurface. It is fairly well understood how bacterial chemotaxis and growth separately affect the formation and propagation of such waves. However, their interaction is not well understood. We therefore perform a modeling study to investigate the coupled effects of chemotaxis and growth on bacterial migration, and examine their effects on contaminant remediation. We study the waves by using different initial electron acceptor concentrations for different bacteria and substrate systems. Three types of traveling waves can occur: a chemotactic wave due to the biased movement of chemotactic bacteria resulting from metabolism-generated substrate concentration gradients; a growth/decay/motility wave due to a dynamic equilibrium between bacterial growth, decay and random motility; and an integrated wave due to the interaction between bacterial chemotaxis and growth. Chemotaxis hardly enhances the bacterial propagation if it is too weak to form a chemotactic wave or its wave speed is less than half of the growth/decay/motility wave speed. However, chemotaxis significantly accelerates bacterial propagation once its wave speed exceeds the growth/decay/motility wave speed. When convection occurs, it speeds up the growth/decay/motility wave but slows down or even eliminates the chemotactic wave due to the dispersion. Bacterial survival proves particularly important for bacterial propagation. Therefore we develop a conceptual model to estimate the speed of growth/decay/motility waves. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Soliton triads ensemble in frequency conversion: from inverse scattering theory to experimental observation.

    PubMed

    Baronio, Fabio; Andreana, Marco; Conforti, Matteo; Manili, Gabriele; Couderc, Vincent; De Angelis, Costantino; Barthélémy, Alain

    2011-07-04

    We consider the spectral theory of three-wave interactions to predict the initiation, formation and dynamics of an ensemble of bright-dark-bright soliton triads in frequency conversion processes. Spatial observation of non-interacting triads ensemble in a KTP crystal confirms theoretical prediction and numerical simulations.

  6. Mechanism for Spiral Wave Breakup in Excitable and Oscillatory Media

    NASA Astrophysics Data System (ADS)

    Yang, Junzhong; Xie, Fagen; Qu, Zhilin; Garfinkel, Alan

    2003-10-01

    We study spiral wave breakup using a Fitzhugh-Nagumo type system. We find that spiral wave breakup can occur near the core or far from it in both excitable and oscillatory regimes. There is a faraway breakup scenario in both excitable and oscillatory media that depends on long wavelength modulation modes. We observed three distinct scenarios, including one that involves breakup that does not develop into turbulence. However, we find that the mechanisms behind these three scenarios are the same: they are caused by the interaction between the dispersion relation and the asymptotic behavior of the modulation mode. The difference in phenomenology is due to the asymptotic behavior of the modulation mode.

  7. Three-Body Recombination near a Narrow Feshbach Resonance in Li 6

    NASA Astrophysics Data System (ADS)

    Li, Jiaming; Liu, Ji; Luo, Le; Gao, Bo

    2018-05-01

    We experimentally measure and theoretically analyze the three-atom recombination rate, L3, around a narrow s -wave magnetic Feshbach resonance of Li 6 - Li 6 at 543.3 G. By examining both the magnetic field dependence and, especially, the temperature dependence of L3 over a wide range of temperatures from a few μ K to above 200 μ K , we show that three-atom recombination through a narrow resonance follows a universal behavior determined by the long-range van der Waals potential and can be described by a set of rate equations in which three-body recombination proceeds via successive pairwise interactions. We expect the underlying physical picture to be applicable not only to narrow s wave resonances, but also to resonances in nonzero partial waves, and not only at ultracold temperatures, but also at much higher temperatures.

  8. Secondary Bifurcation and Change of Type for Three Dimensional Standing Waves in Shallow Water.

    DTIC Science & Technology

    1986-02-01

    field of standing K-P waves. A set of two non-interacting (to first order) solutions of the K-P equation ( Kadomtsev - Petviashvili 1970). The K-P equation ...P equation was first derived by Kadomtsev & Petviashvili (1970) in their study of the stability of solitary waves to transverse perturbations. A...Scientists, Springer-Verlag 6. B.A. Dubrovin (1981), "Theta Functions and Non-linear Equations ", Russian Mat. Surveys, 36, 11-92 7 B.B. Kadomtsev

  9. The ISEE-C plasma wave investigation

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.; Fredricks, R. W.; Gurnett, D. A.; Smith, E. J.

    1978-01-01

    The ISEE-C plasma wave investigation is designed to provide comprehensive information on interplanetary wave-particle interactions. Three spectrum analyzers with a total of 19 bandpass channels cover the frequency range 0.3 Hz to 100 kHz. The main analyzer, which uses 16 continuously active amplifiers, gives two complete spectral scans per second in each of 16 filter channels. The instrument sensors include a high-sensitivity magnetic search coil, and electric antennas with effective lengths of 0.6 and 45 m.

  10. The human mirror neuron system: A link between action observation and social skills

    PubMed Central

    Pineda, Jaime A.; Ramachandran, Vilayanur S.

    2007-01-01

    The discovery of the mirror neuron system (MNS) has led researchers to speculate that this system evolved from an embodied visual recognition apparatus in monkey to a system critical for social skills in humans. It is accepted that the MNS is specialized for processing animate stimuli, although the degree to which social interaction modulates the firing of mirror neurons has not been investigated. In the current study, EEG mu wave suppression was used as an index of MNS activity. Data were collected while subjects viewed four videos: (1) Visual White Noise: baseline, (2) Non-interacting: three individuals tossed a ball up in the air to themselves, (3) Social Action, Spectator: three individuals tossed a ball to each other and (4) Social Action, Interactive: similar to video 3 except occasionally the ball would be thrown off the screen toward the viewer. The mu wave was modulated by the degree of social interaction, with the Non-interacting condition showing the least suppression, followed by the Social Action, Spectator condition and the Social Action, Interactive condition showing the most suppression. These data suggest that the human MNS is specialized not only for processing animate stimuli, but specifically stimuli with social relevance. PMID:18985120

  11. Progress on wave-ice interactions: satellite observations and model parameterizations

    NASA Astrophysics Data System (ADS)

    Ardhuin, Fabrice; Boutin, Guillaume; Dumont, Dany; Stopa, Justin; Girard-Ardhuin, Fanny; Accensi, Mickael

    2017-04-01

    In the open ocean, numerical wave models have their largest errors near sea ice, and, until recently, virtually no wave data was available in the sea ice to. Further, wave-ice interaction processes may play an important role in the Earth system. In particular, waves may break up an ice layer into floes, with significant impact on air-sea fluxes. With thinner Arctic ice, this process may contribut to the growing similarity between Arctic and Antarctic sea ice. In return, the ice has a strong damping impact on the waves that is highly variable and not understood. Here we report progress on parameterizations of waves interacting with a single ice layer, as implemented in the WAVEWATCH III model (WW3 Development Group, 2016), and based on few in situ observations, but extensive data derived from Synthetic Aperture Radars (SARs). Our parameterizations combine three processes. First a parameterization for the energy-conserving scattering of waves by ice floes (assuming isotropic back-scatter), which has very little effect on dominant waves of periods larger than 7 s, consistent with the observed narrow directional spectra and short travel times. Second, we implemented a basal friction below the ice layer (Stopa et al. The Cryosphere, 2016). Third, we use a secondary creep associated with ice flexure (Cole et al. 1998) adapted to random waves. These three processes (scattering, friction and creep) are strongly dependent on the maximum floe size. We have thus included an estimation of the potential floe size based on an ice flexure failure estimation adapted from Williams et al. (2013). This combination of dissipation and scattering is tested against measured patterns of wave height and directional spreading, and evidence of ice break-up, all obtained from SAR imagery (Ardhuin et al. 2017), and some in situ data (Collins et al. 2015). The combination of creep and friction is required to reproduce a strong reduction in wave attenuation in broken ice as observed by Collins et al. (2015). Ongoing developments include the coupling of WAVEWATCH III to the NEMO-LIM3 and NEMO-CICE models using the OASIS3-MCT communicator. This coupled system will provide a meaningful memory of the ice floe sizes, as the ice is advected. It will also make possible the investigation of feedback processes on the ice.

  12. On the quasi-conical flowfield structure of the swept shock wave-turbulent boundary layer interaction

    NASA Technical Reports Server (NTRS)

    Knight, Doyle D.; Badekas, Dias

    1991-01-01

    The swept oblique shock-wave/turbulent-boundary-layer interaction generated by a 20-deg sharp fin at Mach 4 and Reynolds number 21,000 is investigated via a series of computations using both conical and three-dimensional Reynolds-averaged Navier-Stokes equations with turbulence incorporated through the algebraic turbulent eddy viscosity model of Baldwin-Lomax. Results are compared with known experimental data, and it is concluded that the computed three-dimensional flowfield is quasi-conical (in agreement with the experimental data), the computed three-dimensional and conical surface pressure and surface flow direction are in good agreement with the experiment, and the three-dimensional and conical flows significantly underpredict the peak experimental skin friction. It is pointed out that most of the features of the conical flowfield model in the experiment are observed in the conical computation which also describes the complete conical streamline pattern not included in the model of the experiment.

  13. Oblique collision of dust acoustic solitons in a strongly coupled dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boruah, A.; Sharma, S. K., E-mail: sumita-sharma82@yahoo.com; Bailung, H.

    2015-09-15

    The oblique collision between two equal amplitude dust acoustic solitons is observed in a strongly coupled dusty plasma. The solitons are subjected to oblique interaction at different colliding angles. We observe a resonance structure during oblique collision at a critical colliding angle which is described by the idea of three wave resonance interaction modeled by Kadomtsev-Petviashvili equation. After collision, the solitons preserve their identity. The amplitude of the resultant wave formed during interaction is measured for different collision angles as well as for different colliding soliton amplitudes. At resonance, the maximum amplitude of the new soliton formed is nearly 3.7more » times the initial soliton amplitude.« less

  14. Bäcklund transformation, infinitely-many conservation laws, solitary and periodic waves of an extended (3 + 1)-dimensional Jimbo-Miwa equation with time-dependent coefficients

    NASA Astrophysics Data System (ADS)

    Deng, Gao-Fu; Gao, Yi-Tian; Gao, Xin-Yi

    2018-07-01

    In this paper, an extended (3+1)-dimensional Jimbo-Miwa equation with time-dependent coefficients is investigated, which comes from the second member of the Kadomtsev-Petviashvili hierarchy and is shown to be conditionally integrable. Bilinear form, Bäcklund transformation, Lax pair and infinitely-many conservation laws are derived via the binary Bell polynomials and symbolic computation. With the help of the bilinear form, one-, two- and three-soliton solutions are obtained via the Hirota method, one-periodic wave solutions are constructed via the Riemann theta function. Additionally, propagation and interaction of the solitons are investigated analytically and graphically, from which we find that the interaction between the solitons is elastic and the time-dependent coefficients can affect the soliton velocities, but the soliton amplitudes remain unchanged. One-periodic waves approach the one-solitary waves with the amplitudes vanishing and can be viewed as a superposition of the overlapping solitary waves, placed one period apart.

  15. Areal Mass Oscillations in Planar Targets Due to Feedout: Theory and Simulations.

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Schmitt, A. J.; Karasik, M.; Obenschain, S. P.; Serlin, V.; Pawley, C. J.; Gardner, J. H.; Aglitskiy, Y.; Metzler, N.

    2001-10-01

    When a planar shock wave breaks out at a rippled rear surface of a laser-driven target, the lateral pressure gradient in a rippled rarefaction wave propagating back to the front surface causes a lateral mass redistribution that reverses the phase of mass variation. If the driving laser pulse has no foot, then the RT growth, starting when the rarefaction wave reaches the front surface, causes the second phase reversal of mass variation, and continues at the initial phase, as consistently observed in feedout experiments on Nike. A foot of the laser pulse can cause an early phase reversal of mass variation, making the strong shock wave driven by the main pulse interact with a density variation in a rippled rarefaction wave rather than with static rear surface ripples. Theory and simulations predict that this interaction can make the phase of mass variation reverse one or three times. Then the phase of the RT growing mode would be opposite to that of the initial mass variation.

  16. Evolution of scalar and velocity dynamics in planar shock-turbulence interaction

    NASA Astrophysics Data System (ADS)

    Boukharfane, R.; Bouali, Z.; Mura, A.

    2018-01-01

    Due to the short residence time of air in supersonic combustors, achieving efficient mixing in compressible turbulent reactive flows is crucial for the design of supersonic ramjet (Scramjet) engines. In this respect, improving the understanding of shock-scalar mixing interactions is of fundamental importance for such supersonic combustion applications. In these compressible flows, the interaction between the turbulence and the shock wave is reciprocal, and the coupling between them is very strong. A basic understanding of the physics of such complex interactions has already been obtained through the analysis of relevant simplified flow configurations, including propagation of the shock wave in density-stratified media, shock-wave-mixing-layer interaction, and shock-wave-vortex interaction. Amplification of velocity fluctuations and substantial changes in turbulence characteristic length scales are the most well-known outcomes of shock-turbulence interaction, which may also deeply influence scalar mixing between fuel and oxidizer. The effects of the shock wave on the turbulence have been widely characterized through the use of so-called amplification factors, and similar quantities are introduced herein to characterize the influence of the shock wave on scalar mixing. One of the primary goals of the present study is indeed to extend previous analyses to the case of shock-scalar mixing interaction, which is directly relevant to supersonic combustion applications. It is expected that the shock wave will affect the scalar dissipation rate (SDR) dynamics. Special emphasis is placed on the modification of the so-called turbulence-scalar interaction as a leading-order contribution to the production of mean SDR, i.e., a quantity that defines the mixing rate and efficiency. To the best of the authors' knowledge, this issue has never been addressed in detail in the literature, and the objective of the present study is to scrutinize this influence. The turbulent mixing of a passive (i.e., chemically inert) scalar in the presence of a shock wave is thus investigated using high-resolution numerical simulations. The starting point of the analysis relies on the transport equations of the variance of the mixture fraction, i.e., a fuel inlet tracer that quantifies the mixing between fuel and oxidizer. The influence of the shock wave is investigated for three distinct values of the shock Mach number M, and the obtained results are compared to reference solutions featuring no shock wave. The computed solutions show that the shock wave significantly modifies the scalar field topology. The larger the value of M, the stronger is the amplification of the alignment of the scalar gradient with the most compressive principal direction of the strain-rate tensor, which signifies the enhancement of scalar mixing with the shock Mach number.

  17. Versatile rogue waves in scalar, vector, and multidimensional nonlinear systems

    NASA Astrophysics Data System (ADS)

    Chen, Shihua; Baronio, Fabio; Soto-Crespo, Jose M.; Grelu, Philippe; Mihalache, Dumitru

    2017-11-01

    This review is dedicated to recent progress in the active field of rogue waves, with an emphasis on the analytical prediction of versatile rogue wave structures in scalar, vector, and multidimensional integrable nonlinear systems. We first give a brief outline of the historical background of the rogue wave research, including referring to relevant up-to-date experimental results. Then we present an in-depth discussion of the scalar rogue waves within two different integrable frameworks—the infinite nonlinear Schrödinger (NLS) hierarchy and the general cubic-quintic NLS equation, considering both the self-focusing and self-defocusing Kerr nonlinearities. We highlight the concept of chirped Peregrine solitons, the baseband modulation instability as an origin of rogue waves, and the relation between integrable turbulence and rogue waves, each with illuminating examples confirmed by numerical simulations. Later, we recur to the vector rogue waves in diverse coupled multicomponent systems such as the long-wave short-wave equations, the three-wave resonant interaction equations, and the vector NLS equations (alias Manakov system). In addition to their intriguing bright-dark dynamics, a series of other peculiar structures, such as coexisting rogue waves, watch-hand-like rogue waves, complementary rogue waves, and vector dark three sisters, are reviewed. Finally, for practical considerations, we also remark on higher-dimensional rogue waves occurring in three closely-related (2  +  1)D nonlinear systems, namely, the Davey-Stewartson equation, the composite (2  +  1)D NLS equation, and the Kadomtsev-Petviashvili I equation. As an interesting contrast to the peculiar X-shaped light bullets, a concept of rogue wave bullets intended for high-dimensional systems is particularly put forward by combining contexts in nonlinear optics.

  18. Feasibility study for using an extended three-wave model to simulate plasma-based backward Raman amplification in one spatial dimension

    NASA Astrophysics Data System (ADS)

    Wang, T.-L.; Michta, D.; Lindberg, R. R.; Charman, A. E.; Martins, S. F.; Wurtele, J. S.

    2009-12-01

    Results are reported of a one-dimensional simulation study comparing the modeling capability of a recently formulated extended three-wave model [R. R. Lindberg, A. E. Charman, and J. S. Wurtele, Phys. Plasmas 14, 122103 (2007); Phys. Plasmas 15, 055911 (2008)] to that of a particle-in-cell (PIC) code, as well as to a more conventional three-wave model, in the context of the plasma-based backward Raman amplification (PBRA) [G. Shvets, N. J. Fisch, A. Pukhov et al., Phys. Rev. Lett. 81, 4879 (1998); V. M. Malkin, G. Shvets, and N. J. Fisch, Phys. Rev. Lett. 82, 4448 (1999); Phys. Rev. Lett. 84, 1208 (2000)]. The extended three-wave model performs essentially as well as or better than a conventional three-wave description in all temperature regimes tested, and significantly better at the higher temperatures studied, while the computational savings afforded by the extended three-wave model make it a potentially attractive tool that can be used prior to or in conjunction with PIC simulations to model the kinetic effects of PBRA for nonrelativistic laser pulses interacting with underdense thermal plasmas. Very fast but reasonably accurate at moderate plasma temperatures, this model may be used to perform wide-ranging parameter scans or other exploratory analyses quickly and efficiently, in order to guide subsequent simulation via more accurate if intensive PIC techniques or other algorithms approximating the full Vlasov-Maxwell equations.

  19. Localised Nonlinear Waves in the Three-Component Coupled Hirota Equations

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Chen, Yong

    2017-10-01

    We construct the Lax pair and Darboux transformation for the three-component coupled Hirota equations including higher-order effects such as third-order dispersion, self-steepening, and stimulated Raman scattering. A special vector solution of the Lax pair with 4×4 matrices for the three-component Hirota system is elaborately generated, based on this vector solution, various types of mixed higher-order localised waves are derived through the generalised Darboux transformation. Instead of considering various arrangements of the three potential functions q1, q2, and q3, here, the same combination is considered as the same type solution. The first- and second-order localised waves are mainly discussed in six mixed types: (1) the hybrid solutions degenerate to the rational ones and three components are all rogue waves; (2) two components are hybrid solutions between rogue wave (RW) and breather (RW+breather), and one component is interactional solution between RW and dark soliton (RW+dark soliton); (3) two components are RW+dark soliton, and one component is RW+bright soliton; (4) two components are RW+breather, and one component is RW+bright soliton; (5) two components are RW+dark soliton, and one component is RW+bright soliton; (6) three components are all RW+breather. Moreover, these nonlinear localised waves merge with each other by increasing the absolute values of two free parameters α, β. These results further uncover some striking dynamic structures in the multicomponent coupled system.

  20. Composite nonlinear structure within the magnetosonic soliton interactions in a spin-1/2 degenerate quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jiu-Ning, E-mail: hanjiuning@126.com; Luo, Jun-Hua; Li, Jun-Xiu

    2015-06-15

    We study the basic physical properties of composite nonlinear structure induced by the head-on collision of magnetosonic solitons. Solitary waves are assumed to propagate in a quantum electron-ion magnetoplasma with spin-1/2 degenerate electrons. The main interest of the present work is to investigate the time evolution of the merged composite structure during a specific time interval of the wave interaction process. We consider three cases of colliding-situation, namely, compressive-rarefactive solitons interaction, compressive-compressive solitons interaction, and rarefactive-rarefactive solitons interaction, respectively. Compared with the last two colliding cases, the changing process of the composite structure is more complex for the first situation.more » Moreover, it is found that they are obviously different for the last two colliding cases.« less

  1. A convergent series expansion for hyperbolic systems of conservation laws

    NASA Technical Reports Server (NTRS)

    Harabetian, E.

    1985-01-01

    The discontinuities piecewise analytic initial value problem for a wide class of conservation laws is considered which includes the full three-dimensional Euler equations. The initial interaction at an arbitrary curved surface is resolved in time by a convergent series. Among other features the solution exhibits shock, contact, and expansion waves as well as sound waves propagating on characteristic surfaces. The expansion waves correspond to he one-dimensional rarefactions but have a more complicated structure. The sound waves are generated in place of zero strength shocks, and they are caused by mismatches in derivatives.

  2. On the Mathematical Modeling of Single and Multiple Scattering of Ultrasonic Guided Waves by Small Scatterers: A Structural Health Monitoring Measurement Model

    NASA Astrophysics Data System (ADS)

    Strom, Brandon William

    In an effort to assist in the paradigm shift from schedule based maintenance to conditioned based maintenance, we derive measurement models to be used within structural health monitoring algorithms. Our models are physics based, and use scattered Lamb waves to detect and quantify pitting corrosion. After covering the basics of Lamb waves and the reciprocity theorem, we develop a technique for the scattered wave solution. The first application is two-dimensional, and is employed in two different ways. The first approach integrates a traction distribution and replaces it by an equivalent force. The second approach is higher order and uses the actual traction distribution. We find that the equivalent force version of the solution technique holds well for small pits at low frequencies. The second application is three-dimensional. The equivalent force caused by the scattered wave of an arbitrary equivalent force is calculated. We obtain functions for the scattered wave displacements as a function of equivalent forces, equivalent forces as a function of incident wave, and scattered wave amplitudes as a function of incident amplitude. The third application uses self-consistency to derive governing equations for the scattered waves due to multiple corrosion pits. We decouple the implicit set of equations and solve explicitly by using a recursive series solution. Alternatively, we solve via an undetermined coefficient method which results in an interaction operator and solution via matrix inversion. The general solution is given for N pits including mode conversion. We show that the two approaches are equivalent, and give a solution for three pits. Various approximations are advanced to simplify the problem while retaining the leading order physics. As a final application, we use the multiple scattering model to investigate resonance of Lamb waves. We begin with a one-dimensional problem and progress to a three-dimensional problem. A directed graph enables interpretation of the interaction operator, and we show that a series solution converges due to loss of energy in the system. We see that there are four causes of resonance and plot the modulation depth as a function of spacing between the pits.

  3. Interaction Solutions for Lump-line Solitons and Lump-kink Waves of the Dimensionally Reduced Generalised KP Equation

    NASA Astrophysics Data System (ADS)

    Ahmed, Iftikhar

    2017-09-01

    In this work, we investigate dimensionally reduced generalised Kadomtsev-Petviashvili equation, which can describe many nonlinear phenomena in fluid dynamics. Based on the bilinear formalism, direct Maple symbolic computations are used with an ansätz function to construct three classes of interaction solutions between lump and line solitons. Furthermore, the dynamics of interaction phenomena is explained with 3D plots and 2D contour plots. For the first class of interaction solutions, lump appeared at t=0, and there was a normal interaction between lump and line solitons at t=1, 2, 5, and 10. For the second class of interaction solutions, lump appeared from one side of line soliton at t=0, but it started moving downward at t=1, 2, and 5. Finally, at t=10, this lump was completely swallowed by other side. By contrast, for the third class of interaction solutions, lump appeared from one side of line soliton at t=0, but it started moving upward at t=1, 2, and 5. Finally, at t=10, this lump was completely swallowed by other side. Furthermore, interaction solutions between lump solutions and kink wave are also investigated. These results might be helpful to understand the propagation processes for nonlinear waves in fluid mechanics.

  4. Analysis of the interaction of a weak normal shock wave with a turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Melnik, R. E.; Grossman, B.

    1974-01-01

    The method of matched asymptotic expansions is used to analyze the interaction of a normal shock wave with an unseparated turbulent boundary layer on a flat surface at transonic speeds. The theory leads to a three-layer description of the interaction in the double limit of Reynolds number approaching infinity and Mach number approaching unity. The interaction involves an outer, inviscid rotational layer, a constant shear-stress wall layer, and a blending region between them. The pressure distribution is obtained from a numerical solution of the outer-layer equations by a mixed-flow relaxation procedure. An analytic solution for the skin friction is determined from the inner-layer equations. The significance of the mathematical model is discussed with reference to existing experimental data.

  5. Nonlinear saturation of wave packets excited by low-energy electron horseshoe distributions.

    PubMed

    Krafft, C; Volokitin, A

    2013-05-01

    Horseshoe distributions are shell-like particle distributions that can arise in space and laboratory plasmas when particle beams propagate into increasing magnetic fields. The present paper studies the stability and the dynamics of wave packets interacting resonantly with electrons presenting low-energy horseshoe or shell-type velocity distributions in a magnetized plasma. The linear instability growth rates are determined as a function of the ratio of the plasma to the cyclotron frequencies, of the velocity and the opening angle of the horseshoe, and of the relative thickness of the shell. The nonlinear stage of the instability is investigated numerically using a symplectic code based on a three-dimensional Hamiltonian model. Simulation results show that the dynamics of the system is mainly governed by wave-particle interactions at Landau and normal cyclotron resonances and that the high-order normal cyclotron resonances play an essential role. Specific features of the dynamics of particles interacting simultaneously with two or more waves at resonances of different natures and orders are discussed, showing that such complex processes determine the main characteristics of the wave spectrum's evolution. Simulations with wave packets presenting quasicontinuous spectra provide a full picture of the relaxation of the horseshoe distribution, revealing two main phases of the evolution: an initial stage of wave energy growth, characterized by a fast filling of the shell, and a second phase of slow damping of the wave energy, accompanied by final adjustments of the electron distribution. The influence of the density inhomogeneity along the horseshoe on the wave-particle dynamics is also discussed.

  6. Three-dimensional vector modeling and restoration of flat finite wave tank radiometric measurements

    NASA Technical Reports Server (NTRS)

    Truman, W. M.; Balanis, C. A.

    1977-01-01

    The three-dimensional vector interaction between a microwave radiometer and a wave tank was modeled. Computer programs for predicting the response of the radiometer to the brightness temperature characteristics of the surroundings were developed along with a computer program that can invert (restore) the radiometer measurements. It is shown that the computer programs can be used to simulate the viewing of large bodies of water, and is applicable to radiometer measurements received from satellites monitoring the ocean. The water temperature, salinity, and wind speed can be determined.

  7. Effects of Aerobic Exercise Based upon Heart Rate at Aerobic Threshold in Obese Elderly Subjects with Type 2 Diabetes

    PubMed Central

    Donini, Lorenzo Maria

    2015-01-01

    In obese diabetic subjects, a correct life style, including diet and physical activity, is part of a correct intervention protocol. Thus, the aim of this study was to evaluate the effects of aerobic training intervention, based on heart rate at aerobic gas exchange threshold (AerTge), on clinical and physiological parameters in obese elderly subjects with type 2 diabetes (OT2DM). Thirty OT2DM subjects were randomly assigned to an intervention (IG) or control group (CG). The IG performed a supervised aerobic exercise training based on heart rate at AerTge whereas CG maintained their usual lifestyle. Anthropometric measures, blood analysis, peak oxygen consumption (V˙O2peak), metabolic equivalent (METpeak), work rate (WRpeak), and WRAerTge were assessed at baseline and after intervention. After training, patients enrolled in the IG had significantly higher (P < 0.001) V˙O2peak, METpeak, WRpeak, and WRAerTge and significantly lower (P < 0.005) weight, BMI, %FM, and waist circumference than before intervention. Both IG and CG subjects had lower glycated haemoglobin levels after intervention period. No significant differences were found for all the other parameters between pre- and posttraining and between groups. Aerobic exercise prescription based upon HR at AerTge could be a valuable physical intervention tool to improve the fitness level and metabolic equilibrium in OT2DM patients. PMID:26089890

  8. Large-eddy simulation of a turbulent flow over the DrivAer fastback vehicle model

    NASA Astrophysics Data System (ADS)

    Ruettgers, Mario; Park, Junshin; You, Donghyun

    2017-11-01

    In 2012 the Technical University of Munich (TUM) made realistic generic car models called DrivAer available to the public. These detailed models allow a precise calculation of the flow around a lifelike car which was limited to simplified geometries in the past. In the present study, the turbulent flow around one of the models, the DrivAer Fastback model, is simulated using large-eddy simulation (LES). The goal of the study is to give a deeper physical understanding of highly turbulent regions around the car, like at the side mirror or at the rear end. For each region the contribution to the total drag is worked out. The results have shown that almost 35% of the drag is generated from the car wheels whereas the side mirror only contributes 4% of the total drag. Detailed frequency analysis on velocity signals in each wake region have also been conducted and found 3 dominant frequencies which correspond to the dominant frequency of the total drag. Furthermore, vortical structures are visualized and highly energetic points are identified. This work was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korea government(Ministry of Science, ICT and Future Planning) (No. 2014R1A2A1A11049599, No. 2015R1A2A1A15056086, No. 2016R1E1A2A01939553).

  9. Neuro-Inspired Spike-Based Motion: From Dynamic Vision Sensor to Robot Motor Open-Loop Control through Spike-VITE

    PubMed Central

    Perez-Peña, Fernando; Morgado-Estevez, Arturo; Linares-Barranco, Alejandro; Jimenez-Fernandez, Angel; Gomez-Rodriguez, Francisco; Jimenez-Moreno, Gabriel; Lopez-Coronado, Juan

    2013-01-01

    In this paper we present a complete spike-based architecture: from a Dynamic Vision Sensor (retina) to a stereo head robotic platform. The aim of this research is to reproduce intended movements performed by humans taking into account as many features as possible from the biological point of view. This paper fills the gap between current spike silicon sensors and robotic actuators by applying a spike processing strategy to the data flows in real time. The architecture is divided into layers: the retina, visual information processing, the trajectory generator layer which uses a neuroinspired algorithm (SVITE) that can be replicated into as many times as DoF the robot has; and finally the actuation layer to supply the spikes to the robot (using PFM). All the layers do their tasks in a spike-processing mode, and they communicate each other through the neuro-inspired AER protocol. The open-loop controller is implemented on FPGA using AER interfaces developed by RTC Lab. Experimental results reveal the viability of this spike-based controller. Two main advantages are: low hardware resources (2% of a Xilinx Spartan 6) and power requirements (3.4 W) to control a robot with a high number of DoF (up to 100 for a Xilinx Spartan 6). It also evidences the suitable use of AER as a communication protocol between processing and actuation. PMID:24264330

  10. Gain-of-function Mutations Cluster in Distinct Regions Associated with the Signaling Pathway in the PAS Domain of the Aerotaxis Receptor, Aer

    PubMed Central

    Campbell, Asharie J.; Watts, Kylie J.; Johnson, Mark S.; Taylor, Barry L.

    2010-01-01

    Summary The Aer receptor monitors internal energy (redox) levels in Escherichia coli with an FAD-containing PAS domain. Here, we randomly mutagenized the region encoding residues 14 to 119 of the PAS domain and found 72 aerotaxis-defective mutants, 24 of which were gain-of-function, signal-on mutants. The mutations were mapped onto an Aer homology model based on the structure of the PAS-FAD domain in NifL from Azotobacter vinlandii. Signal-on lesions clustered in the FAD binding pocket, the β-scaffolding and in the N-cap loop. We suggest that the signal-on lesions mimic the “signal-on” state of the PAS domain, and therefore may be markers for the signal-in and signal-out regions of this domain. We propose that the reduction of FAD rearranges the FAD binding pocket in a way that repositions the β-scaffolding and the N-cap loop. The resulting conformational changes are likely to be conveyed directly to the HAMP domain, and on to the kinase control module. In support of this hypothesis, we demonstrated disulfide band formation between cysteines substituted at residues N98C or I114C in the PAS β-scaffold and residue Q248C in the HAMP AS-2 helix. PMID:20545849

  11. Neuro-inspired spike-based motion: from dynamic vision sensor to robot motor open-loop control through spike-VITE.

    PubMed

    Perez-Peña, Fernando; Morgado-Estevez, Arturo; Linares-Barranco, Alejandro; Jimenez-Fernandez, Angel; Gomez-Rodriguez, Francisco; Jimenez-Moreno, Gabriel; Lopez-Coronado, Juan

    2013-11-20

    In this paper we present a complete spike-based architecture: from a Dynamic Vision Sensor (retina) to a stereo head robotic platform. The aim of this research is to reproduce intended movements performed by humans taking into account as many features as possible from the biological point of view. This paper fills the gap between current spike silicon sensors and robotic actuators by applying a spike processing strategy to the data flows in real time. The architecture is divided into layers: the retina, visual information processing, the trajectory generator layer which uses a neuroinspired algorithm (SVITE) that can be replicated into as many times as DoF the robot has; and finally the actuation layer to supply the spikes to the robot (using PFM). All the layers do their tasks in a spike-processing mode, and they communicate each other through the neuro-inspired AER protocol. The open-loop controller is implemented on FPGA using AER interfaces developed by RTC Lab. Experimental results reveal the viability of this spike-based controller. Two main advantages are: low hardware resources (2% of a Xilinx Spartan 6) and power requirements (3.4 W) to control a robot with a high number of DoF (up to 100 for a Xilinx Spartan 6). It also evidences the suitable use of AER as a communication protocol between processing and actuation.

  12. Indoor environmental quality in French dwellings and building characteristics

    NASA Astrophysics Data System (ADS)

    Langer, Sarka; Ramalho, Olivier; Derbez, Mickaël; Ribéron, Jacques; Kirchner, Severine; Mandin, Corinne

    2016-03-01

    A national survey on indoor environmental quality covering 567 residences in mainland France was performed during 2003-2005. The measured parameters were temperature, relative humidity, CO2, and the indoor air pollutants: fourteen individual volatile organic compounds (VOC), four aldehydes and particulate matter PM10 and PM2.5. The measured indoor concentrations were analyzed for correlations with the building characteristics: type of dwelling, period of construction, dwelling location, type of ventilation system, building material, attached garage and retrofitting. The median night time air exchange rate (AER) for all dwellings was 0.44 h-1. The night time AER was higher in apartments (median = 0.49 h-1) than in single-family houses (median = 0.41 h-1). Concentration of formaldehyde was approximately 30% higher in dwellings built after 1990 compared with older ones; it was higher in dwellings with mechanical ventilation and in concrete buildings. The VOC concentrations depended on the building characteristics to various extents. The sampling season influenced the majority of the indoor climate parameters and the concentrations of the air pollutants to a higher degree than the building characteristics. Multivariate linear regression models revealed that the indoor-outdoor difference in specific humidity, a proxy for number of occupants and their indoor activities, remained a significant predictor for most gaseous and particulate air pollutants. The other strong predictors were outdoor concentration, smoking, attached garage and AER (in descending order).

  13. Forcing a three-dimensional, hydrostatic, primitive-equation model for application in the surf zone: 2. Application to DUCK94

    NASA Astrophysics Data System (ADS)

    Newberger, P. A.; Allen, J. S.

    2007-08-01

    A three-dimensional primitive-equation model for application to the nearshore surf zone has been developed. This model, an extension of the Princeton Ocean Model (POM), predicts the wave-averaged circulation forced by breaking waves. All of the features of the original POM are retained in the extended model so that applications can be made to regions where breaking waves, stratification, rotation, and wind stress make significant contributions to the flow behavior. In this study we examine the effects of breaking waves and wind stress. The nearshore POM circulation model is embedded within the NearCom community model and is coupled with a wave model. This combined modeling system is applied to the nearshore surf zone off Duck, North Carolina, during the DUCK94 field experiment of October 1994. Model results are compared to observations from this experiment, and the effects of parameter choices are examined. A process study examining the effects of tidal depth variation on depth-dependent wave-averaged currents is carried out. With identical offshore wave conditions and model parameters, the strength and spatial structure of the undertow and of the alongshore current vary systematically with water depth. Some three-dimensional solutions show the development of shear instabilities of the alongshore current. Inclusion of wave-current interactions makes an appreciable difference in the characteristics of the instability.

  14. Non-equilibrium effects of diatomic and polyatomic gases on the shock-vortex interaction based on the second-order constitutive model of the Boltzmann-Curtiss equation

    NASA Astrophysics Data System (ADS)

    Singh, S.; Karchani, A.; Myong, R. S.

    2018-01-01

    The rotational mode of molecules plays a critical role in the behavior of diatomic and polyatomic gases away from equilibrium. In order to investigate the essence of the non-equilibrium effects, the shock-vortex interaction problem was investigated by employing an explicit modal discontinuous Galerkin method. In particular, the first- and second-order constitutive models for diatomic and polyatomic gases derived rigorously from the Boltzmann-Curtiss kinetic equation were solved in conjunction with the physical conservation laws. As compared with a monatomic gas, the non-equilibrium effects result in a substantial change in flow fields in both macroscale and microscale shock-vortex interactions. Specifically, the computational results showed three major effects of diatomic and polyatomic gases on the shock-vortex interaction: (i) the generation of the third sound waves and additional reflected shock waves with strong and enlarged expansion, (ii) the dominance of viscous vorticity generation, and (iii) an increase in enstrophy with increasing bulk viscosity, related to the rotational mode of gas molecules. Moreover, it was shown that there is a significant discrepancy in flow fields between the microscale and macroscale shock-vortex interactions in diatomic and polyatomic gases. The quadrupolar acoustic wave source structures, which are typically observed in macroscale shock-vortex interactions, were not found in any microscale shock-vortex interactions. The physics of the shock-vortex interaction was also investigated in detail to examine vortex deformation and evolution dynamics over an incident shock wave. A comparative study of first- and second-order constitutive models was also conducted for the enstrophy and dissipation rate. Finally, the study was extended to the shock-vortex pair interaction case to examine the effects of pair interaction on vortex deformation and evolution dynamics.

  15. Ectopic expression of Msx-2 in posterior limb bud mesoderm impairs limb morphogenesis while inducing BMP-4 expression, inhibiting cell proliferation, and promoting apoptosis.

    PubMed

    Ferrari, D; Lichtler, A C; Pan, Z Z; Dealy, C N; Upholt, W B; Kosher, R A

    1998-05-01

    During early stages of chick limb development, the homeobox-containing gene Msx-2 is expressed in the mesoderm at the anterior margin of the limb bud and in a discrete group of mesodermal cells at the midproximal posterior margin. These domains of Msx-2 expression roughly demarcate the anterior and posterior boundaries of the progress zone, the highly proliferating posterior mesodermal cells underneath the apical ectodermal ridge (AER) that give rise to the skeletal elements of the limb and associated structures. Later in development as the AER loses its activity, Msx-2 expression expands into the distal mesoderm and subsequently into the interdigital mesenchyme which demarcates the developing digits. The domains of Msx-2 expression exhibit considerably less proliferation than the cells of the progress zone and also encompass several regions of programmed cell death including the anterior and posterior necrotic zones and interdigital mesenchyme. We have thus suggested that Msx-2 may be in a regulatory network that delimits the progress zone by suppressing the morphogenesis of the regions of the limb mesoderm in which it is highly expressed. In the present study we show that ectopic expression of Msx-2 via a retroviral expression vector in the posterior mesoderm of the progress zone from the time of initial formation of the limb bud severely impairs limb morphogenesis. Msx-2-infected limbs are typically very narrow along the anteroposterior axis, are occasionally truncated, and exhibit alterations in the pattern of formation of skeletal elements, indicating that as a consequence of ectopic Msx-2 expression the morphogenesis of large portions of the posterior mesoderm has been suppressed. We further show that Msx-2 impairs limb morphogenesis by reducing cell proliferation and promoting apoptosis in the regions of the posterior mesoderm in which it is ectopically expressed. The domains of ectopic Msx-2 expression in the posterior mesoderm also exhibit ectopic expression of BMP-4, a secreted signaling molecule that is coexpressed with Msx-2 during normal limb development in the anterior limb mesoderm, the posterior necrotic zone, and interdigital mesenchyme. This indicates that Msx-2 regulates BMP-4 expression and that the suppressive effects of Msx-2 on limb morphogenesis might be mediated in part by BMP-4. These studies indicate that during normal limb development Msx-2 is a key component of a regulatory network that delimits the boundaries of the progress zone by suppressing the morphogenesis of the regions of the limb mesoderm in which it is highly expressed, thus restricting the outgrowth and formation of skeletal elements and associated structures to the progress zone. We also report that rather large numbers of apoptotic cells as well as proliferating cells are present throughout the AER during all stages of normal limb development we have examined, indicating that many of the cells of the AER are continuously undergoing programmed cell death at the same time that new AER cells are being generated by cell proliferation. Thus, a balance between cell proliferation and programmed cell death may play a very important role in maintaining the activity of the AER. Copyright 1998 Academic Press.

  16. On the nonintegrability of equations for long- and short-wave interactions

    NASA Astrophysics Data System (ADS)

    Deconinck, Bernard; Upsal, Jeremy

    2018-07-01

    We examine the integrability of two models used for the interaction of long and short waves in dispersive media. One is more classical but arguably cannot be derived from the underlying water wave equations, while the other one was recently derived. We use the method of Zakharov and Schulman to attempt to construct conserved quantities for these systems at different orders in the magnitude of the solutions. The coupled KdV-NLS model is shown to be nonintegrable, due to the presence of fourth-order resonances. A coupled real KdV-complex KdV system is shown to suffer the same fate, except for three special choices of the coefficients, where higher-order calculations or a different approach are necessary to conclude integrability or the absence thereof.

  17. Non-linear wave interaction in a magnetoplasma column. I - Theory. II Experiment

    NASA Technical Reports Server (NTRS)

    Larsen, J.-M.; Crawford, F. W.

    1979-01-01

    The paper presents an analysis of non-linear three-wave interaction for propagation along a cylindrical plasma column surrounded either by a metallic boundary, or by an infinite dielectric, and immersed in an infinite, static, axial magnetic field. An averaged Lagrangian method is used and the results are specialized to parametric amplification and mode conversion, assuming an undepleted pump wave. Computations are presented for a magneto-plasma column surrounded by free space, indicating that parametric growth rates of the order of a fraction of a decibel per centimeter should be obtainable for plausible laboratory plasma parameters. In addition, experiments on non-linear mode conversion in a cylindrical magnetoplasma column are described. The results are compared with the theoretical predictions and good qualitative agreement is demonstrated.

  18. Advanced DPSM approach for modeling ultrasonic wave scattering in an arbitrary geometry

    NASA Astrophysics Data System (ADS)

    Yadav, Susheel K.; Banerjee, Sourav; Kundu, Tribikram

    2011-04-01

    Several techniques are used to diagnose structural damages. In the ultrasonic technique structures are tested by analyzing ultrasonic signals scattered by damages. The interpretation of these signals requires a good understanding of the interaction between ultrasonic waves and structures. Therefore, researchers need analytical or numerical techniques to have a clear understanding of the interaction between ultrasonic waves and structural damage. However, modeling of wave scattering phenomenon by conventional numerical techniques such as finite element method requires very fine mesh at high frequencies necessitating heavy computational power. Distributed point source method (DPSM) is a newly developed robust mesh free technique to simulate ultrasonic, electrostatic and electromagnetic fields. In most of the previous studies the DPSM technique has been applied to model two dimensional surface geometries and simple three dimensional scatterer geometries. It was difficult to perform the analysis for complex three dimensional geometries. This technique has been extended to model wave scattering in an arbitrary geometry. In this paper a channel section idealized as a thin solid plate with several rivet holes is formulated. The simulation has been carried out with and without cracks near the rivet holes. Further, a comparison study has been also carried out to characterize the crack. A computer code has been developed in C for modeling the ultrasonic field in a solid plate with and without cracks near the rivet holes.

  19. Nonlinear beat excitation of low frequency wave in degenerate plasmas

    NASA Astrophysics Data System (ADS)

    Mir, Zahid; Shahid, M.; Jamil, M.; Rasheed, A.; Shahbaz, A.

    2018-03-01

    The beat phenomenon due to the coupling of two signals at slightly different frequencies that generates the low frequency signal is studied. The linear dispersive properties of the pump and sideband are analyzed. The modified nonlinear dispersion relation through the field coupling of linear modes against the beat frequency is derived in the homogeneous quantum dusty magnetoplasmas. The dispersion relation is used to derive the modified growth rate of three wave parametric instability. Moreover, significant quantum effects of electrons through the exchange-correlation potential, the Bohm potential, and the Fermi pressure evolved in macroscopic three wave interaction are presented. The analytical results are interpreted graphically describing the significance of the work. The applications of this study are pointed out at the end of introduction.

  20. Three-dimensional vector modeling and restoration of flat finite wave tank radiometric measurements

    NASA Technical Reports Server (NTRS)

    Truman, W. M.; Balanis, C. A.; Holmes, J. J.

    1977-01-01

    In this paper, a three-dimensional Fourier transform inversion method describing the interaction between water surface emitted radiation from a flat finite wave tank and antenna radiation characteristics is reported. The transform technique represents the scanning of the antenna mathematically as a correlation. Computation time is reduced by using the efficient and economical fast Fourier transform algorithm. To verify the inversion method, computations have been made and compared with known data and other available results. The technique has been used to restore data of the finite wave tank system and other available antenna temperature measurements made at the Cape Cod Canal. The restored brightness temperatures serve as better representations of the emitted radiation than the measured antenna temperatures.

  1. The impact of vorticity waves on the shock dynamics in core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Huete, César; Abdikamalov, Ernazar; Radice, David

    2018-04-01

    Convective perturbations arising from nuclear shell burning can play an important role in propelling neutrino-driven core-collapse supernova explosions. In this work, we analyse the impact of vorticity waves on the shock dynamics, and subsequently on the post-shock flow, using the solution of the linear hydrodynamics equations. As a result of the interaction with the shock wave, vorticity waves increase their kinetic energy, and a new set of entropic and acoustic waves is deposited in the post-shock region. These perturbations interact with the neutrino-driven turbulent convection that develops in that region. Although both vorticity and acoustic waves inject non-radial motion into the gain region, the contribution of the acoustic waves is found to be negligibly small in comparison to that of the vorticity waves. On the other hand, entropy waves become buoyant and trigger more convection. Using the concept of critical neutrino luminosity, we assess the impact of these modes on the explosion conditions. While the direct injection of non-radial motion reduces the critical neutrino luminosity by ˜ 12 per cent for typical problem parameters, the buoyancy-driven convection triggered by entropy waves reduces the critical luminosity by ˜ 17-24 per cent, which approximately agrees with the results of three-dimensional neutrino-hydrodynamics simulations. Finally, we discuss the limits of validity of the assumptions employed.

  2. Evolution of a localized Langmuir packet in the solar wind and on auroral field lines

    NASA Technical Reports Server (NTRS)

    Roth, I.; Muschietti, L.; Brown, E. F.; Gray, P. C.

    1994-01-01

    Langmuir emissions in space are reported to be clumpy and intermittent. The high-frequency wave power appears concentrated in spatial packets, whether amidst the solar wind or on auroral field lines. Due to the plasma motion relative to the spacecraft, determining the source for the wave free energy in the three-dimensional electron distribution function has always been difficult, since the unstable features pass by the detector in presumably too short time to be measured. The range of unstable phase velocities and growth rates have generally been estimated rather than determined by unequivocal measurements. The analysis of wave-particle interactions in a space environment has taken recently a new turn with the development of wave correlators on board rockets and satellites. Such instruments seek to identify correlations between the phase of the wave-field and the fluxes of energetic particles. The data interpretation is complex, however, it must be backed by a detailed theoretical understanding of the wave-particle interaction, including the phase relation for inhomogeneous packets. To this end Langmuir packets interacting with fast electrons can be studied in the appropriate regime by means of particle-in-cell simulations, provided that one succeeds in reducing the level of the fluctuations, enhancing the signal-to-noise ratio, and incorporating the appropriate boundary conditions. The first results of such simulations are presented here as a test and expansion of previous analysis.

  3. Nonlinear shallow ocean-wave soliton interactions on flat beaches.

    PubMed

    Ablowitz, Mark J; Baldwin, Douglas E

    2012-09-01

    Ocean waves are complex and often turbulent. While most ocean-wave interactions are essentially linear, sometimes two or more waves interact in a nonlinear way. For example, two or more waves can interact and yield waves that are much taller than the sum of the original wave heights. Most of these shallow-water nonlinear interactions look like an X or a Y or two connected Ys; at other times, several lines appear on each side of the interaction region. It was thought that such nonlinear interactions are rare events: they are not. Here we report that such nonlinear interactions occur every day, close to low tide, on two flat beaches that are about 2000 km apart. These interactions are closely related to the analytic, soliton solutions of a widely studied multidimensional nonlinear wave equation. On a much larger scale, tsunami waves can merge in similar ways.

  4. On the dynamics of the Mouth of the Columbia River: Results from a three-dimensional fully coupled wave-current interaction model

    NASA Astrophysics Data System (ADS)

    Akan, Çiǧdem; Moghimi, Saeed; Özkan-Haller, H. Tuba; Osborne, John; Kurapov, Alexander

    2017-07-01

    Numerical simulations were performed using a 3-D ocean circulation model (ROMS) two-way coupled to a phase-averaged wave propagation model (SWAN), to expand our understanding of the dynamics of wave-current interactions at the Mouth of the Columbia River (MCR). First, model results are compared with water elevations, currents, temperature, salinity, and wave measurements obtained by the U.S. Army Corp of Engineers during the Mega-Transect Experiment in 2005. We then discuss the effects of the currents on the waves and vice versa. Results show that wave heights are intensified notably at the entrance of the mouth in the presence of the tidal currents, especially in ebb flows. We also find nonlocal modifications to the wave field because of wave focusing processes that redirect wave energy toward the inlet mouth from adjacent areas, resulting in the presence of a tidal signatures in areas where local currents are weak. The model also suggests significant wave amplification at the edge of the expanding plume in the later stages of ebb, some tens of kilometers offshore of the inlet mouth, with potential implications for navigation safety. The effect of waves on the location of the plume is also analyzed, and results suggest that the plume is shifted in the down-wave direction when wave effects are considered, and that this shift is more pronounced for larger waves, and consistent with the presence of alongshore advection terms in the salt advection equation, which are related to the Stokes velocities associated with waves.

  5. GEOPHYSICS, ASTRONOMY AND ASTROPHYSICS: Numerical method of studying nonlinear interactions between long waves and multiple short waves

    NASA Astrophysics Data System (ADS)

    Xie, Tao; Kuang, Hai-Lan; William, Perrie; Zou, Guang-Hui; Nan, Cheng-Feng; He, Chao; Shen, Tao; Chen, Wei

    2009-07-01

    Although the nonlinear interactions between a single short gravity wave and a long wave can be solved analytically, the solution is less tractable in more general cases involving multiple short waves. In this work we present a numerical method of studying nonlinear interactions between a long wave and multiple short harmonic waves in infinitely deep water. Specifically, this method is applied to the calculation of the temporal and spatial evolutions of the surface elevations in which a given long wave interacts with several short harmonic waves. Another important application of our method is to quantitatively analyse the nonlinear interactions between an arbitrary short wave train and another short wave train. From simulation results, we obtain that the mechanism for the nonlinear interactions between one short wave train and another short wave train (expressed as wave train 2) leads to the energy focusing of the other short wave train (expressed as wave train 3). This mechanism occurs on wave components with a narrow frequency bandwidth, whose frequencies are near that of wave train 3.

  6. Teleseismic body waves from dynamically rupturing shallow thrust faults: Are they opaque for surface-reflected phases?

    USGS Publications Warehouse

    Smith, D.E.; Aagaard, Brad T.; Heaton, T.H.

    2005-01-01

    We investigate whether a shallow-dipping thrust fault is prone to waveslip interactions via surface-reflected waves affecting the dynamic slip. If so, can these interactions create faults that are opaque to radiated energy? Furthermore, in this case of a shallow-dipping thrust fault, can incorrectly assuming a transparent fault while using dislocation theory lead to underestimates of seismic moment? Slip time histories are generated in three-dimensional dynamic rupture simulations while allowing for varying degrees of wave-slip interaction controlled by fault-friction models. Based on the slip time histories, P and SH seismograms are calculated for stations at teleseismic distances. The overburdening pressure caused by gravity eliminates mode I opening except at the tip of the fault near the surface; hence, mode I opening has no effect on the teleseismic signal. Normalizing by a Haskell-like traditional kinematic rupture, we find teleseismic peak-to-peak displacement amplitudes are approximately 1.0 for both P and SH waves, except for the unrealistic case of zero sliding friction. Zero sliding friction has peak-to-peak amplitudes of 1.6 for P and 2.0 for SH waves; the fault slip oscillates about its equilibrium value, resulting in a large nonzero (0.08 Hz) spectral peak not seen in other ruptures. These results indicate wave-slip interactions associated with surface-reflected phases in real earthquakes should have little to no effect on teleseismic motions. Thus, Haskell-like kinematic dislocation theory (transparent fault conditions) can be safety used to simulate teleseismic waveforms in the Earth.

  7. Mechanisms underlying rhythmic locomotion: interactions between activation, tension and body curvature waves

    PubMed Central

    Chen, Jun; Friesen, W. Otto; Iwasaki, Tetsuya

    2012-01-01

    SUMMARY Undulatory animal locomotion arises from three closely related propagating waves that sweep rostrocaudally along the body: activation of segmental muscles by motoneurons (MNs), strain of the body wall, and muscle tension induced by activation and strain. Neuromechanical models that predict the relative propagation speeds of neural/muscle activation, muscle tension and body curvature can reveal crucial underlying control features of the central nervous system and the power-generating mechanisms of the muscle. We provide an analytical explanation of the relative speeds of these three waves based on a model of neuromuscular activation and a model of the body–fluid interactions for leech anguilliform-like swimming. First, we deduced the motoneuron spike frequencies that activate the muscle and the resulting muscle tension during swimming in intact leeches from muscle bending moments. Muscle bending moments were derived from our video-recorded kinematic motion data by our body–fluid interaction model. The phase relationships of neural activation and muscle tension in the strain cycle were then calculated. Our study predicts that the MN activation and body curvature waves have roughly the same speed (the ratio of curvature to MN activation speed ≈0.84), whereas the tension wave travels about twice as fast. The high speed of the tension wave resulting from slow MN activation is explained by the multiplicative effects of MN activation and muscle strain on tension development. That is, the product of two slower waves (activation and strain) with appropriate amplitude, bias and phase can generate a tension wave with twice the propagation speed of the factors. Our study predicts that (1) the bending moment required for swimming is achieved by minimal MN spike frequency, rather than by minimal muscle tension; (2) MN activity is greater in the mid-body than in the head and tail regions; (3) inhibitory MNs not only accelerate the muscle relaxation but also reduce the intrinsic tonus tension during one sector of the swim cycle; and (4) movements of the caudal end are passive during swimming. These predictions await verification or rejection through further experiments on swimming animals. PMID:22189764

  8. Mechanisms underlying rhythmic locomotion: interactions between activation, tension and body curvature waves.

    PubMed

    Chen, Jun; Friesen, W Otto; Iwasaki, Tetsuya

    2012-01-15

    Undulatory animal locomotion arises from three closely related propagating waves that sweep rostrocaudally along the body: activation of segmental muscles by motoneurons (MNs), strain of the body wall, and muscle tension induced by activation and strain. Neuromechanical models that predict the relative propagation speeds of neural/muscle activation, muscle tension and body curvature can reveal crucial underlying control features of the central nervous system and the power-generating mechanisms of the muscle. We provide an analytical explanation of the relative speeds of these three waves based on a model of neuromuscular activation and a model of the body-fluid interactions for leech anguilliform-like swimming. First, we deduced the motoneuron spike frequencies that activate the muscle and the resulting muscle tension during swimming in intact leeches from muscle bending moments. Muscle bending moments were derived from our video-recorded kinematic motion data by our body-fluid interaction model. The phase relationships of neural activation and muscle tension in the strain cycle were then calculated. Our study predicts that the MN activation and body curvature waves have roughly the same speed (the ratio of curvature to MN activation speed ≈0.84), whereas the tension wave travels about twice as fast. The high speed of the tension wave resulting from slow MN activation is explained by the multiplicative effects of MN activation and muscle strain on tension development. That is, the product of two slower waves (activation and strain) with appropriate amplitude, bias and phase can generate a tension wave with twice the propagation speed of the factors. Our study predicts that (1) the bending moment required for swimming is achieved by minimal MN spike frequency, rather than by minimal muscle tension; (2) MN activity is greater in the mid-body than in the head and tail regions; (3) inhibitory MNs not only accelerate the muscle relaxation but also reduce the intrinsic tonus tension during one sector of the swim cycle; and (4) movements of the caudal end are passive during swimming. These predictions await verification or rejection through further experiments on swimming animals.

  9. Some observations on mesh refinement schemes applied to shock wave phenomena

    NASA Technical Reports Server (NTRS)

    Quirk, James J.

    1995-01-01

    This workshop's double-wedge test problem is taken from one of a sequence of experiments which were performed in order to classify the various canonical interactions between a planar shock wave and a double wedge. Therefore to build up a reasonably broad picture of the performance of our mesh refinement algorithm we have simulated three of these experiments and not just the workshop case. Here, using the results from these simulations together with their experimental counterparts, we make some general observations concerning the development of mesh refinement schemes for shock wave phenomena.

  10. Multiple periodic-soliton solutions of the (3+1)-dimensional generalised shallow water equation

    NASA Astrophysics Data System (ADS)

    Li, Ye-Zhou; Liu, Jian-Guo

    2018-06-01

    Based on the extended variable-coefficient homogeneous balance method and two new ansätz functions, we construct auto-Bäcklund transformation and multiple periodic-soliton solutions of (3 {+} 1)-dimensional generalised shallow water equations. Completely new periodic-soliton solutions including periodic cross-kink wave, periodic two-solitary wave and breather type of two-solitary wave are obtained. In addition, cross-kink three-soliton and cross-kink four-soliton solutions are derived. Furthermore, propagation characteristics and interactions of the obtained solutions are discussed and illustrated in figures.

  11. A statistical study of atypical wave modes in the Earth's foreshock region

    NASA Astrophysics Data System (ADS)

    Hsieh, W.; Shue, J.; Lee, B.

    2010-12-01

    The Earth's foreshock, the region upstream the Earth’s bow shock, is filled with back-streaming particles and ultra-low frequency waves. Three different wave modes have been identified in the region, including 30-sec waves, 3-sec waves, and shocklets. Time History of Events and Macroscale Interactions during Substorms (THEMIS), a satellite mission that consists of five probes, provides multiple measuements of the Earth’s foreshock region. The method of Hilbert-Huang transform (HHT) includes the procedures of empirical mode decomposition and instantaneous frequency calculation. In this study, we use HHT to decompose intrinsic wave modes and perform a wave analysis of chaotic magnetic fields in the Earth's foreshock region. We find that some individual atypical wave modes other than 30-sec and 3-sec appear in the region. In this presentation, we will show the statistical characteristics, such as wave frequency, wave amplitude, and wave polarization of the atypical intrinsic wave modes, with respect to different locations in the foreshock region and to different solar wind conditions.

  12. Optical Emissions Enhanced by O and X Mode Ionosphere HF Pumping: Similarities and Differences

    NASA Astrophysics Data System (ADS)

    Sergienko, T.; Brandstrom, U.; Gustavsson, B.; Blagoveshchenskaya, N. F.

    2013-12-01

    Strong enhancement of the optical emissions with excitation thresholds from 1.96 eV up to 18.75 eV have been observed during experiments of ionosphere modification by high power HF radio waves since the early 1970s. Up to now all these emissions were observed only during the interaction of the O-mode HF radio wave with the ionospheric plasma. On 19 October 2012, during an EISCAT heating experiment, strong optical emissions were observed by ALIS, in first time, for X-mode ionosphere pumping. While for O-mode heating the optical emission enhancements can be explained by the ionospheric electron heating and acceleration due to the nonlinear interaction of the powerful radio wave with ionosphere, the mechanism responsible for the emission enhancements during the X-mode heating is not known. In the experiment optical emissions have been measured in three different wave-lengths simultaneously from four ALIS stations. The emission intensity ratios as well as the characteristics of the spatial distribution of the enhanced optical emissions provide important information on the possible mechanisms of the radio wave - ionosphere interaction. In this report we present the results of comparison of the characteristics of the optical emissions caused by X-mode heating with the characteristics of the emissions enhanced by O-mode measured during same experiment.

  13. Accurate Cold-Test Model of Helical TWT Slow-Wave Circuits

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Dayton, James A., Jr.

    1997-01-01

    Recently, a method has been established to accurately calculate cold-test data for helical slow-wave structures using the three-dimensional electromagnetic computer code, MAFIA. Cold-test parameters have been calculated for several helical traveling-wave tube (TWT) slow-wave circuits possessing various support rod configurations, and results are presented here showing excellent agreement with experiment. The helical models include tape thickness, dielectric support shapes and material properties consistent with the actual circuits. The cold-test data from this helical model can be used as input into large-signal helical TWT interaction codes making it possible, for the first time, to design a complete TWT via computer simulation.

  14. Three-dimensional simulation of helix traveling-wave tube cold-test characteristics using MAFIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kory, C.L.

    1996-12-31

    A critically important step in the traveling-wave tube (TWT) design process is the cold-testing of the slow-wave circuit for dispersion, beam interaction impedance and RF losses. Experimental cold-tests can be very time-consuming and expensive, thus limiting the freedom to examine numerous variations to the test circuit. This makes the need for computational methods crucial as they can lower cost, reduce tube development time and allow the freedom to introduce novel and improved designs. The cold-test parameters have been calculated for a C-Band Northrop-Grumman helix TWT slow-wave circuit using MAFIA, the three-dimensional electromagnetic finite-integration computer code. Measured and simulated cold-test datamore » for the Northrop-Grumman helix TWT including dispersion, impedance and attenuation will be presented. Close agreement between simulated and measured values of the dispersion, impedance and attenuation has been obtained.« less

  15. Cardiovascular Disease Mortality After Chemotherapy or Surgery for Testicular Nonseminoma: A Population-Based Study

    PubMed Central

    Fung, Chunkit; Fossa, Sophie D.; Milano, Michael T.; Sahasrabudhe, Deepak M.; Peterson, Derick R.; Travis, Lois B.

    2015-01-01

    Purpose Increased risks of incident cardiovascular disease (CVD) in patients with testicular cancer (TC) given chemotherapy in European studies were largely restricted to long-term survivors and included patients from the 1960s. Few population-based investigations have quantified CVD mortality during, shortly after, and for two decades after TC diagnosis in the era of cisplatin-based chemotherapy. Patients and Methods Standardized mortality ratios (SMRs) for CVD and absolute excess risks (AERs; number of excess deaths per 10,000 person-years) were calculated for 15,006 patients with testicular nonseminoma reported to the population-based Surveillance, Epidemiology, and End Results program (1980 to 2010) who initially received chemotherapy (n = 6,909) or surgery (n = 8,097) without radiotherapy and accrued 60,065 and 81,227 person-years of follow-up, respectively. Multivariable modeling evaluated effects of age, treatment, extent of disease, and other factors on CVD mortality. Results Significantly increased CVD mortality occurred after chemotherapy (SMR, 1.36; 95% CI, 1.03 to 1.78; n = 54) but not surgery (SMR, 0.81; 95% CI, 0.60 to 1.07; n = 50). Significant excess deaths after chemotherapy were restricted to the first year after TC diagnosis (SMR, 5.31; AER, 13.90; n = 11) and included cerebrovascular disease (SMR, 21.72; AER, 7.43; n = 5) and heart disease (SMR, 3.45; AER, 6.64; n = 6). In multivariable analyses, increased CVD mortality after chemotherapy was confined to the first year after TC diagnosis (hazard ratio, 4.86; 95% CI, 1.25 to 32.08); distant disease (P < .05) and older age at diagnosis (P < .01) were independent risk factors. Conclusion This is the first population-based study, to our knowledge, to quantify short- and long-term CVD mortality after TC diagnosis. The increased short-term risk of CVD deaths should be further explored in analytic studies that enumerate incident events and can serve to develop comprehensive evidence-based approaches for risk stratification and application of preventive and interventional efforts. PMID:26240226

  16. Analysis of benzonatate overdoses among adults and children from 1969-2010 by the United States Food and Drug Administration.

    PubMed

    McLawhorn, Melinda W; Goulding, Margie R; Gill, Rajdeep K; Michele, Theresa M

    2013-01-01

    To augment the December 2010 United States Food and Drug Administration (FDA) Drug Safety Communication on accidental ingestion of benzonatate in children less than 10 years old by summarizing data on emergency department visits, benzonatate exposure, and reports of benzonatate overdoses from several data sources. Retrospective review of adverse-event reports and drug utilization data of benzonatate. The FDA Adverse Event Reporting System (AERS) database (1969-2010), the National Electronic Injury Surveillance System-Cooperative Adverse Drug Event Surveillance Project (NEISS-CADES, 2004-2009), and the IMS commercial data vendor (2004-2009). Any patient who reported an adverse event with benzonatate captured in the AERS or NEISS-CADES database or received a prescription for benzonatate according to the IMS commercial data vendor. Postmarketing adverse events with benzonatate were collected from the AERS database, emergency department visits due to adverse events with benzonatate were collected from the NEISS-CADES database, and outpatient drug utilization data were collected from the IMS commercial data vendor. Of 31 overdose cases involving benzonatate reported in the AERS database, 20 had a fatal outcome, and five of these fatalities occurred from accidental ingestions in children 2 years of age and younger. The NEISS-CADES database captured emergency department visits involving 12 cases of overdose from accidental benzonatate ingestions in children aged 1-3 years. Signs and symptoms of overdose included seizures, cardiac arrest, coma, brain edema or anoxic encephalopathy, apnea, tachycardia, and respiratory arrest and occurred in some patients within 15 minutes of ingestion. Dispensed benzonatate prescriptions increased by approximately 52% from 2004 to 2009. Although benzonatate has a long history of safe use, accumulating cases of fatal overdose, especially in children, prompted the FDA to notify health care professionals about the risks of benzonatate overdose. Pharmacists may have a role in preventing benzonatate overdoses by counseling patients on signs and symptoms of benzonatate overdose, the need for immediate medical care, and safe storage and disposal of benzonatate. © 2013 Pharmacotherapy Publications, Inc.

  17. Controlled formation and reflection of a bright solitary matter-wave

    PubMed Central

    Marchant, A. L.; Billam, T. P.; Wiles, T. P.; Yu, M. M. H.; Gardiner, S. A.; Cornish, S. L.

    2013-01-01

    Bright solitons are non-dispersive wave solutions, arising in a diverse range of nonlinear, one-dimensional systems, including atomic Bose–Einstein condensates with attractive interactions. In reality, cold-atom experiments can only approach the idealized one-dimensional limit necessary for the realization of true solitons. Nevertheless, it remains possible to create bright solitary waves, the three-dimensional analogue of solitons, which maintain many of the key properties of their one-dimensional counterparts. Such solitary waves offer many potential applications and provide a rich testing ground for theoretical treatments of many-body quantum systems. Here we report the controlled formation of a bright solitary matter-wave from a Bose–Einstein condensate of 85Rb, which is observed to propagate over a distance of ∼1.1 mm in 150 ms with no observable dispersion. We demonstrate the reflection of a solitary wave from a repulsive Gaussian barrier and contrast this to the case of a repulsive condensate, in both cases finding excellent agreement with theoretical simulations using the three-dimensional Gross–Pitaevskii equation. PMID:23673650

  18. Electromechanical vortex filaments during cardiac fibrillation

    NASA Astrophysics Data System (ADS)

    Christoph, J.; Chebbok, M.; Richter, C.; Schröder-Schetelig, J.; Bittihn, P.; Stein, S.; Uzelac, I.; Fenton, F. H.; Hasenfuß, G.; Gilmour, R. F., Jr.; Luther, S.

    2018-03-01

    The self-organized dynamics of vortex-like rotating waves, which are also known as scroll waves, are the basis of the formation of complex spatiotemporal patterns in many excitable chemical and biological systems. In the heart, filament-like phase singularities that are associated with three-dimensional scroll waves are considered to be the organizing centres of life-threatening cardiac arrhythmias. The mechanisms that underlie the onset, maintenance and control of electromechanical turbulence in the heart are inherently three-dimensional phenomena. However, it has not previously been possible to visualize the three-dimensional spatiotemporal dynamics of scroll waves inside cardiac tissues. Here we show that three-dimensional mechanical scroll waves and filament-like phase singularities can be observed deep inside the contracting heart wall using high-resolution four-dimensional ultrasound-based strain imaging. We found that mechanical phase singularities co-exist with electrical phase singularities during cardiac fibrillation. We investigated the dynamics of electrical and mechanical phase singularities by simultaneously measuring the membrane potential, intracellular calcium concentration and mechanical contractions of the heart. We show that cardiac fibrillation can be characterized using the three-dimensional spatiotemporal dynamics of mechanical phase singularities, which arise inside the fibrillating contracting ventricular wall. We demonstrate that electrical and mechanical phase singularities show complex interactions and we characterize their dynamics in terms of trajectories, topological charge and lifetime. We anticipate that our findings will provide novel perspectives for non-invasive diagnostic imaging and therapeutic applications.

  19. Density functional study of molecular interactions in secondary structures of proteins.

    PubMed

    Takano, Yu; Kusaka, Ayumi; Nakamura, Haruki

    2016-01-01

    Proteins play diverse and vital roles in biology, which are dominated by their three-dimensional structures. The three-dimensional structure of a protein determines its functions and chemical properties. Protein secondary structures, including α-helices and β-sheets, are key components of the protein architecture. Molecular interactions, in particular hydrogen bonds, play significant roles in the formation of protein secondary structures. Precise and quantitative estimations of these interactions are required to understand the principles underlying the formation of three-dimensional protein structures. In the present study, we have investigated the molecular interactions in α-helices and β-sheets, using ab initio wave function-based methods, the Hartree-Fock method (HF) and the second-order Møller-Plesset perturbation theory (MP2), density functional theory, and molecular mechanics. The characteristic interactions essential for forming the secondary structures are discussed quantitatively.

  20. Quantum Monte Carlo calculations of light nuclei with local chiral two- and three-nucleon interactions

    DOE PAGES

    Lynn, J. E.; Tews, I.; Carlson, J.; ...

    2017-11-30

    Local chiral effective field theory interactions have recently been developed and used in the context of quantum Monte Carlo few- and many-body methods for nuclear physics. In this paper, we go over detailed features of local chiral nucleon-nucleon interactions and examine their effect on properties of the deuteron, paying special attention to the perturbativeness of the expansion. We then turn to three-nucleon interactions, focusing on operator ambiguities and their interplay with regulator effects. We then discuss the nuclear Green's function Monte Carlo method, going over both wave-function correlations and approximations for the two- and three-body propagators. Finally, following this, wemore » present a range of results on light nuclei: Binding energies and distribution functions are contrasted and compared, starting from several different microscopic interactions.« less

  1. Magnetic helicity conservation and inverse energy cascade in electron magnetohydrodynamic wave packets.

    PubMed

    Cho, Jungyeon

    2011-05-13

    Electron magnetohydrodynamics (EMHD) provides a fluidlike description of small-scale magnetized plasmas. An EMHD wave propagates along magnetic field lines. The direction of propagation can be either parallel or antiparallel to the magnetic field lines. We numerically study propagation of three-dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results. (1) Unlike its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this, EMHD wave packets traveling in one direction create opposite-traveling wave packets via self-interaction and cascade energy to smaller scales. (2) EMHD wave packets traveling in one direction clearly exhibit inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare inverse energy cascade in 3D EMHD turbulence and two-dimensional (2D) hydrodynamic turbulence.

  2. An experimental study of three-dimensional shock wave/boundary layer interactions generated by sharp fins

    NASA Technical Reports Server (NTRS)

    Lu, F. K.; Settles, G. S.; Bogdonoff, S. M.

    1983-01-01

    The interaction between a turbulent boundary layer and a shock wave generated by a sharp fin with leading edge sweepback was investigated. The incoming flow was at Mach 2.96 and at a unit Reynolds number of 63 x 10 to the 6th power 0.1 m. The approximate incoming boundary layer thickness was either 4 mm or 17 mm. The fins used were at 5 deg, 9 deg and 15 deg incidence and had leading edge sweepback from 0 deg to 65 deg. The tests consisted of surface kerosene lampblack streak visualization, surface pressure measurements, shock wave shape determination by shadowgraphs, and localized vapor screen visualization. The upstream influence lengths of the fin interactions were correlated using viscous and inviscid flow parameters. The parameters affecting the surface features close to the fin and way from the fin were also identified. Essentially, the surface features in the farfield were found to be conical.

  3. Initiation of Insensitive High Explosives Using Multiple Wave Interactions

    NASA Astrophysics Data System (ADS)

    Francois, Elizabeth; Burritt, Rosmary; Biss, Matt; Bowden, Patrick

    2017-06-01

    Insensitive High Explosives (IHEs) increase safety in many types of weapons. However, the safety comes at the cost of performance. Initiation of IHE requires large boosters and powerful detonators as well. Multipoint initiation is being utilized to exploit explosive wave interactions to create overdriven states, greatly facilitating the initiation of IHEs. This presentation will build from recent explosive experiments where the minimum spot size for single-point initiation in PBX 9502 was determined. Below this threshold, PBX 9502 could not be initiated. This was then expanded to three initiation points, which were smaller this threshold. Measurements of the velocity and pressure of the wave interactions were measured using Photon Doppler Velocimetry (PDV). Initiation was observed, and the resulting pressures at the double and triple points were found to be above the CJ state for PBX 9502. Based on these results, further tests were conducted to isolate and measure the longevity and pressure of this phenomenon using cut-back tests. All results will be presented and discussed.

  4. Daily communication, conflict resolution, and marital quality in Chinese marriage: A three-wave, cross-lagged analysis.

    PubMed

    Li, Xiaomin; Cao, Hongjian; Zhou, Nan; Ju, Xiaoyan; Lan, Jing; Zhu, Qinyi; Fang, Xiaoyi

    2018-05-17

    Based on three annual waves of data obtained from 268 Chinese couples in the early years of marriage and using a three-wave, cross-lagged approach, the present study examined the associations among daily marital communication, marital conflict resolution, and marital quality. Results indicated unidirectional associations linking daily marital communication or marital conflict resolution to marital quality (instead of reciprocal associations); and when considered simultaneously in a single model, daily marital communication and marital conflict resolution explained variance in marital quality above and beyond each other. Furthermore, the authors also found a significant longitudinal, indirect association linking husbands' daily marital communication at Wave 1 to husbands' marital quality at Wave 3 via husbands' marital conflict resolution at Wave 2. Taken altogether, the current study adds to an emerging body of research aimed at clarifying: (a) the directionality of the associations between couple interactive processes and marital well-being; (b) the unique roles of daily marital communication and marital conflict resolution in predicting marital outcomes; and (c) how daily marital communication and marital conflict resolution may operate in conjunction with each other to shape the development of couple relationship well-being. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  5. Magnetic susceptibility of alkali-tetracyanoquinodimethane salts and extended Hubbard models with bond order and charge density wave phases

    NASA Astrophysics Data System (ADS)

    Kumar, Manoranjan; Topham, Benjamin J.; Yu, RuiHui; Ha, Quoc Binh Dang; Soos, Zoltán G.

    2011-06-01

    The molar spin susceptibilities χ(T) of Na-tetracyanoquinodimethane (TCNQ), K-TCNQ, and Rb-TCNQ(II) are fit quantitatively to 450 K in terms of half-filled bands of three one-dimensional Hubbard models with extended interactions using exact results for finite systems. All three models have bond order wave (BOW) and charge density wave (CDW) phases with boundary V = Vc(U) for nearest-neighbor interaction V and on-site repulsion U. At high T, all three salts have regular stacks of TCNQ^- anion radicals. The χ(T) fits place Na and K in the CDW phase and Rb(II) in the BOW phase with V ≈ Vc. The Na and K salts have dimerized stacks at T < Td while Rb(II) has regular stacks at 100 K. The χ(T) analysis extends to dimerized stacks and to dimerization fluctuations in Rb(II). The three models yield consistent values of U, V, and transfer integrals t for closely related TCNQ^- stacks. Model parameters based on χ(T) are smaller than those from optical data that in turn are considerably reduced by electronic polarization from quantum chemical calculation of U, V, and t of adjacent TCNQ^- ions. The χ(T) analysis shows that fully relaxed states have reduced model parameters compared to optical or vibration spectra of dimerized or regular TCNQ^- stacks.

  6. Impact of Ocean Surface Waves on Air-Sea Momentum Flux

    NASA Astrophysics Data System (ADS)

    Tamura, H.; Drennan, W. M.; Collins, C. O., III; Graber, H. C.

    2016-02-01

    In this study, we investigated the structure of turbulent air flow over ocean waves. Observations of wind and waves were retrieved by air-sea interaction spar (ASIS) buoys during the shoaling waves experiment (SHOWEX) in Duck, NC in 1999. It is shown that the turbulent velocity spectra and co-spectra for pure wind sea conditions follow the universal forms estimated by Miyake et al [1970]. In the presence of strong swells, the wave boundary layer was extended and the universal spectral scaling of u'w' broke down [Drennan et al, 1999]. On the other hand, the use of the peak wave frequency (fp) to reproduce the "universal spectra" succeeded at explaining the spectral structure of turbulent flow field. The u'w' co-spectra become negative near the fp, which suggests the upward momentum transport (i.e., negative wind stress) induced by ocean waves. Finally, we propose three turbulent flow structures for different wind-wave regimes.

  7. Discordant U waves in the setting of hyperkalaemia.

    PubMed

    Chhabra, Lovely; Spodick, David H

    2013-07-04

    Physiological U wave genesis occurs likely secondary to either late repolarisation of Purkinje fibres, or late repolarisation of some myocardial cells and/or delayed after depolarisation of the ventricular wall occurring during ventricular filling. Hypokalaemia has a well-known association with pathological 'U wave' which actually combines with the T wave (TU complex) and results from slowing of phase 3 of the action potential with resultant electrical interaction between the three myocardial layers. U waves usually tend to disappear in the setting of hyperkalaemia. We report an unusual case where hyperkalaemia and discordant U waves coexisted. We believe that this may have occurred as a result of partial clinical adaptation of cardiac myocytes to the long-standing effects of hyperkalaemia as the patient had underlying history of chronic kidney disease. We also discuss the possible mechanisms of the U wave genesis and the importance of different U wave morphologies encountered in the real clinical practice.

  8. Application of hyperspherical harmonics expansion method to the low-lying bound S-states of exotic two-muon three-body systems

    NASA Astrophysics Data System (ADS)

    Khan, Md. Abdul

    2014-09-01

    In this paper, energies of the low-lying bound S-states (L = 0) of exotic three-body systems, consisting a nuclear core of charge +Ze (Z being atomic number of the core) and two negatively charged valence muons, have been calculated by hyperspherical harmonics expansion method (HHEM). The three-body Schrödinger equation is solved assuming purely Coulomb interaction among the binary pairs of the three-body systems XZ+μ-μ- for Z = 1 to 54. Convergence pattern of the energies have been checked with respect to the increasing number of partial waves Λmax. For available computer facilities, calculations are feasible up to Λmax = 28 partial waves, however, calculation for still higher partial waves have been achieved through an appropriate extrapolation scheme. The dependence of bound state energies has been checked against increasing nuclear charge Z and finally, the calculated energies have been compared with the ones of the literature.

  9. Exotic superconductivity with enhanced energy scales in materials with three band crossings

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Ping; Nandkishore, Rahul M.

    2018-04-01

    Three band crossings can arise in three-dimensional quantum materials with certain space group symmetries. The low energy Hamiltonian supports spin one fermions and a flat band. We study the pairing problem in this setting. We write down a minimal BCS Hamiltonian and decompose it into spin-orbit coupled irreducible pairing channels. We then solve the resulting gap equations in channels with zero total angular momentum. We find that in the s-wave spin singlet channel (and also in an unusual d-wave `spin quintet' channel), superconductivity is enormously enhanced, with a possibility for the critical temperature to be linear in interaction strength. Meanwhile, in the p-wave spin triplet channel, the superconductivity exhibits features of conventional BCS theory due to the absence of flat band pairing. Three band crossings thus represent an exciting new platform for realizing exotic superconducting states with enhanced energy scales. We also discuss the effects of doping, nonzero temperature, and of retaining additional terms in the k .p expansion of the Hamiltonian.

  10. Observation of three-photon bound states in a quantum nonlinear medium

    NASA Astrophysics Data System (ADS)

    Liang, Qi-Yu; Venkatramani, Aditya V.; Cantu, Sergio H.; Nicholson, Travis L.; Gullans, Michael J.; Gorshkov, Alexey V.; Thompson, Jeff D.; Chin, Cheng; Lukin, Mikhail D.; Vuletić, Vladan

    2018-02-01

    Bound states of massive particles, such as nuclei, atoms, or molecules, constitute the bulk of the visible world around us. By contrast, photons typically only interact weakly. We report the observation of traveling three-photon bound states in a quantum nonlinear medium where the interactions between photons are mediated by atomic Rydberg states. Photon correlation and conditional phase measurements reveal the distinct bunching and phase features associated with three-photon and two-photon bound states. Such photonic trimers and dimers possess shape-preserving wave functions that depend on the constituent photon number. The observed bunching and strongly nonlinear optical phase are described by an effective field theory of Rydberg-induced photon-photon interactions. These observations demonstrate the ability to realize and control strongly interacting quantum many-body states of light.

  11. Shock wave interactions between slender bodies. Some aspects of three-dimensional shock wave diffraction

    NASA Astrophysics Data System (ADS)

    Hooseria, S. J.; Skews, B. W.

    2017-01-01

    A complex interference flowfield consisting of multiple shocks and expansion waves is produced when high-speed slender bodies are placed in close proximity. The disturbances originating from a generator body impinge onto the adjacent receiver body, modifying the local flow conditions over the receiver. This paper aims to uncover the basic gas dynamics produced by two closely spaced slender bodies in a supersonic freestream. Experiments and numerical simulations were used to interpret the flowfield, where good agreement between the predictions and measurements was observed. The numerical data were then used to characterise the attenuation associated with shock wave diffraction, which was found to be interdependent with the bow shock contact perimeter over the receiver bodies. Shock-induced boundary layer separation was observed over the conical and hemispherical receiver bodies. These strong viscous-shock interactions result in double-reflected, as well as double-diffracted shock wave geometries in the interference region, and the diffracting waves progress over the conical and hemispherical receivers' surfaces in "lambda" type configurations. This gives evidence that viscous effects can have a substantial influence on the local bow shock structure surrounding high-speed slender bodies in close proximity.

  12. Genesis of Twin Tropical Cyclones as Revealed by a Global Mesoscale Model: The Role of Mixed Rossby Gravity Waves

    NASA Technical Reports Server (NTRS)

    Shen, Bo-Wen; Tao, Wei-Kuo; Lin, Yuh-Lang; Laing, Arlene

    2012-01-01

    In this study, it is proposed that twin tropical cyclones (TCs), Kesiny and 01A, in May 2002 formed in association with the scale interactions of three gyres that appeared as a convectively-coupled mixed Rossby gravity (ccMRG) wave during an active phase of the Madden-Julian Oscillation (MJO). This is shown by analyzing observational data and performing simulations using a global mesoscale model. A 10-day control run is initialized at 0000 UTC 1 May 2002 with grid-scale condensation but no cumulus parameterizations. The ccMRG wave was identified as encompassing two developing and one non-developing gyres, the first two of which intensified and evolved into the twin TCs. The control run is able to reproduce the evolution of the ccMRG wave and the formation of the twin TCs about two and five days in advance as well as their subsequent intensity evolution and movement within an 8-10 day period. Five additional 10-day sensitivity experiments with different model configurations are conducted to help understand the interaction of the three gyres. These experiments suggest the improved lead time in the control run may be attributed to the realistic simulation of the ccMRG wave with the following processes: (I) wave deepening associated with wave shortening and/or the intensification of individual gyres, (2) poleward movement of gyres that may be associated with bOlll1dary layer processes, (3) realistic simulation of moist processes at regional scales in association with each of the gyres, and (4) the vertical phasing of low- and mid-level cyclonic circulations associated with a specific gyre.

  13. The polarized Debye sheath effect on Kadomtsev-Petviashvili electrostatic structures in strongly coupled dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahmansouri, M.; Alinejad, H.

    2015-04-15

    We give a theoretical investigation on the dynamics of nonlinear electrostatic waves in a strongly coupled dusty plasma with strong electrostatic interaction between dust grains in the presence of the polarization force (i.e., the force due to the polarized Debye sheath). Adopting a reductive perturbation method, we derived a three-dimensional Kadomtsev-Petviashvili equation that describes the evolution of weakly nonlinear electrostatic localized waves. The energy integral equation is used to study the existence domains of the localized structures. The analysis provides the localized structure existence region, in terms of the effects of strong interaction between the dust particles and polarization force.

  14. Split-Hand/Split-Foot Malformation Is Caused by Mutations in the p63 Gene on 3q27

    PubMed Central

    Ianakiev, Peter; Kilpatrick, Michael W.; Toudjarska, Iva; Basel, Donald; Beighton, Peter; Tsipouras, Petros

    2000-01-01

    Split-hand/split-foot malformation (SHFM), a limb malformation involving the central rays of the autopod and presenting with syndactyly, median clefts of the hands and feet, and aplasia and/or hypoplasia of the phalanges, metacarpals, and metatarsals, is phenotypically analogous to the naturally occurring murine Dactylaplasia mutant (Dac). Results of recent studies have shown that, in heterozygous Dac embryos, the central segment of the apical ectodermal ridge (AER) degenerates, leaving the anterior and posterior segments intact; this finding suggests that localized failure of ridge maintenance activity is the fundamental developmental defect in Dac and, by inference, in SHFM. Results of gene-targeting studies have demonstrated that p63, a homologue of the cell-cycle regulator TP53, plays a critically important role in regulation of the formation and differentiation of the AER. Two missense mutations, 724A→G, which predicts amino acid substitution K194E, and 982T→C, which predicts amino acid substitution R280C, were identified in exons 5 and 7, respectively, of the p63 gene in two families with SHFM. Two additional mutations (279R→H and 304R→Q) were identified in families with EEC (ectrodactyly, ectodermal dysplasia, and facial cleft) syndrome. All four mutations are found in exons that fall within the DNA-binding domain of p63. The two amino acids mutated in the families with SHFM appear to be primarily involved in maintenance of the overall structure of the domain, in contrast to the p63 mutations responsible for EEC syndrome, which reside in amino acid residues that directly interact with the DNA. PMID:10839977

  15. Association between Concomitant Use of Acyclovir or Valacyclovir with NSAIDs and an Increased Risk of Acute Kidney Injury: Data Mining of FDA Adverse Event Reporting System.

    PubMed

    Yue, Zhihua; Shi, Jinhai; Li, Haona; Li, Huiyi

    2018-02-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are likely to be used concomitantly with acyclovir or valacyclovir in clinical practice, but the study on the safety of such combinations was seldom reported. The objective of the study was to investigate reports of acute kidney injury (AKI) events associated with the concomitant use of oral acyclovir or valacyclovir with an NSAID by using the United States Food and Drug Administration (FDA) Adverse Event Reporting System (AERS) database between January 2004 and June 2012. The frequency of AKI events in patients while simultaneously taking either acyclovir or valacyclovir and an NSAID was compared using the Chi-square test. The effect of concomitant use of acyclovir or valacyclovir and individual NSAIDs on AKI was analyzed by the reporting odds ratio (ROR). The results showed that AKI was reported as the adverse event in 8.6% of the 10923 patients taking valacyclovir compared with 8.7% of the 2556 patients taking acyclovir (p=NS). However, AKI was significantly more frequently reported in patients simultaneously taking valacyclovir and an NSAID (19.4%) than in patients simultaneously taking acyclovir and an NSAID (10.5%) (p<0.01). The results also suggested that increased risk of AKI was likely associated with the concomitant use of valacyclovir and some NSAIDs such as loxoprofen, diclofenac, etodolac, ketorolac, piroxicam or lornoxicam. The case series from the AERS indicated that compared with acyclovir, valacyclovir is more likely to be affected by NSAIDs, and the concomitant use of valacyclovir with some NSAIDs might be associated with increased risk of AKI. The drug interactions with this specific combination of medications are worth exploring further.

  16. Functional and phylogenetic analysis shows that Fgf8 is a marker of genital induction in mammals but is not required for external genital development

    PubMed Central

    Seifert, Ashley W.; Yamaguchi, Terry; Cohn, Martin J.

    2009-01-01

    Summary In mammalian embryos, male and female external genitalia develop from the genital tubercle. Outgrowth of the genital tubercle is maintained by the urethral epithelium, and it has been reported that Fgf8 mediates this activity. To test directly whether Fgf8 is required for external genital development, we conditionally removed Fgf8 from the cloacal/urethral epithelium. Surprisingly, Fgf8 is not necessary for initiation, outgrowth or normal patterning of the external genitalia. In early genital tubercles, we found no redundant Fgf expression in the urethral epithelium, which contrasts with the situation in the apical ectodermal ridge (AER) of the limb. Analysis of Fgf8 pathway activity showed that four putative targets are either absent from early genital tubercles or are not regulated by Fgf8. We therefore examined the distribution of Fgf8 protein and report that, although it is present in the AER, Fgf8 is undetectable in the genital tubercle. Thus, Fgf8 is transcribed, but the signaling pathway is not activated during normal genital development. A phylogenetic survey of amniotes revealed Fgf8 expression in genital tubercles of eutherian and metatherian mammals, but not turtles or alligators, indicating that Fgf8 expression is neither a required nor a conserved feature of amniote external genital development. The results indicate that Fgf8 expression is an early readout of the genital initiation signal rather than the signal itself. We propose that induction of external genitalia involves an epithelial-epithelial interaction at the cloacal membrane, and suggest that the cloacal ectoderm may be the source of the genital initiation signal. PMID:19592577

  17. Effect of paricalcitol on renin and albuminuria in non-diabetic stage III-IV chronic kidney disease: a randomized placebo-controlled trial

    PubMed Central

    2013-01-01

    Background Vitamin D receptor activators reduce albuminuria, and may improve survival in chronic kidney disease (CKD). Animal studies suggest that these pleiotropic effects of vitamin D may be mediated by suppression of renin. However, randomized trials in humans have yet to establish this relationship. Methods In a randomized, placebo-controlled, double-blinded crossover study, the effect of oral paricalcitol (2 μg/day) was investigated in 26 patients with non-diabetic, albuminuric stage III-IV CKD. After treatment, plasma concentrations of renin (PRC), angiotensin II (AngII) and aldosterone (Aldo) were measured. GFR was determined by 51Cr-EDTA clearance. Assessment of renal NO dependency was performed by infusion of NG-monomethyl-L-arginine (L-NMMA). Albumin excretion rate (AER) was analyzed in 24-h urine and during 51Cr-EDTA clearance. Results Paricalcitol did not alter plasma levels of renin, AngII, Aldo, or urinary excretion of sodium and potassium. A modest reduction of borderline significance was observed in AER, and paricalcitol abrogated the albuminuric response to L-NMMA. Conclusions In this randomized, placebo-controlled trial paricalcitol only marginally decreased AER and did not alter circulating levels of renin, AngII or Aldo. The abrogation of the rise in albumin excretion by paricalcitol during NOS blockade may indicate that favourable modulation of renal NO dependency could be involved in mediating reno-protection and survival benefits in CKD. Trial registration ClinicalTrials.gov identifier: NCT01136564 PMID:23889806

  18. Nodal surfaces and interdimensional degeneracies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loos, Pierre-François, E-mail: pf.loos@anu.edu.au; Bressanini, Dario, E-mail: dario.bressanini@uninsubria.it

    2015-06-07

    The aim of this paper is to shed light on the topology and properties of the nodes (i.e., the zeros of the wave function) in electronic systems. Using the “electrons on a sphere” model, we study the nodes of two-, three-, and four-electron systems in various ferromagnetic configurations (sp, p{sup 2}, sd, pd, p{sup 3}, sp{sup 2}, and sp{sup 3}). In some particular cases (sp, p{sup 2}, sd, pd, and p{sup 3}), we rigorously prove that the non-interacting wave function has the same nodes as the exact (yet unknown) wave function. The number of atomic and molecular systems for whichmore » the exact nodes are known analytically is very limited and we show here that this peculiar feature can be attributed to interdimensional degeneracies. Although we have not been able to prove it rigorously, we conjecture that the nodes of the non-interacting wave function for the sp{sup 3} configuration are exact.« less

  19. Effect of Prestresses on the Dispersion of Quasi-Lamb Waves in the System Consisting of an Ideal Liquid Layer and a Compressible Elastic Layer

    NASA Astrophysics Data System (ADS)

    Bagno, A. M.

    2017-03-01

    The propagation of quasi-Lamb waves in a prestrained compressible elastic layer interacting with a layer of an ideal compressible fluid is studied. The three-dimensional equations of linearized elasticity and the assumption of finite strains for the elastic layer and the three-dimensional linearized Euler equations for the fluid are used. The dispersion curves for the quasi-Lamb modes are plotted over a wide frequency range. The effect of prestresses and the thickness of the elastic and liquid layers on the frequency spectrum of normal quasi-Lamb waves is analyzed. The localization properties of the lower quasi-Lamb modes in the elastic-fluid waveguides are studied. The numerical results are presented in the form of graphs and analyzed

  20. Helicon modes in uniform plasmas. III. Angular momentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenzel, R. L.; Urrutia, J. M.

    Helicons are electromagnetic waves with helical phase fronts propagating in the whistler mode in magnetized plasmas and solids. They have similar properties to electromagnetic waves with angular momentum in free space. Helicons are circularly polarized waves carrying spin angular momentum and orbital angular momentum due to their propagation around the ambient magnetic field B{sub 0}. These properties have not been considered in the community of researchers working on helicon plasma sources, but are the topic of the present work. The present work focuses on the field topology of helicons in unbounded plasmas, not on helicon source physics. Helicons are excitedmore » in a large uniform laboratory plasma with a magnetic loop antenna whose dipole axis is aligned along or across B{sub 0}. The wave fields are measured in orthogonal planes and extended to three dimensions (3D) by interpolation. Since density and B{sub 0} are uniform, small amplitude waves from loops at different locations can be superimposed to generate complex antenna patterns. With a circular array of phase shifted loops, whistler modes with angular and axial wave propagation, i.e., helicons, are generated. Without boundaries radial propagation also arises. The azimuthal mode number m can be positive or negative while the field polarization remains right-hand circular. The conservation of energy and momentum implies that these field quantities are transferred to matter which causes damping or reflection. Wave-particle interactions with fast electrons are possible by Doppler shifted resonances. The transverse Doppler shift is demonstrated. Wave-wave interactions are also shown by showing collisions between different helicons. Whistler turbulence does not always have to be created by nonlinear wave-interactions but can also be a linear superposition of waves from random sources. In helicon collisions, the linear and/or orbital angular momenta can be canceled, which results in a great variety of field topologies. The work will be contrasted to the research on helicon plasma sources.« less

  1. On the Origin of Whistler Mode Radiation in the Plasmasphere

    NASA Technical Reports Server (NTRS)

    Green, James L.; Boardsen, Scott; Garcia, Leonard; Taylor, W. W. L.; Fung, Shing F.; Reinisch, B. W.

    2004-01-01

    The origin of whistler mode radiation in the plasmasphere is examined from three years of plasma wave observations from the Dynamics Explorer and three years from the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) spacecraft. These data are used to construct plasma wave intensity maps of whistler mode radiation in the plasmasphere. The highest average intensities of the radiation in the wave maps show source locations and/or sites of wave amplification. Each type of emission is classified based on its magnetic latitude and longitude rather than any spectral feature. Equatorial electromagnetic (EM) emissions (approx. 30-330 Hz), plasmaspheric hiss (approx. 330 Hz - 3.3 kHz), chorus (approx. 2 kHz - 6 kHz), and VLF transmitters (approx. 10-50 kHz) are the main types of waves that are clearly delineated in the plasma wave maps. Observations of the equatorial EM emissions show that the most intense region is on or near the magnetic equator in the afternoon sector and that during times of negative B(sub z) (interplanetary magnetic field),the maximum intensity moves from L values of 3 to less than 2. These observations are consistent with the origin of this emission being particle-wave interactions in or near the magnetic equator. Plasmaspheric hiss shows high intensity at high latitudes and low altitudes (L shells from 2 to 4) and in the magnetic equator over L values from 2 to 3 in the early afternoon sector. The longitudinal distribution of the hiss intensity (excluding the enhancement at the equator) is similar to the distribution of lightning: stronger over continents than over the ocean, stronger in the summer than winter, and stronger on the dayside than nightside. These observations strongly support lightning as the dominant source for plasmaspheric hiss, which through particle-wave interactions, maintains the slot region in the radiation belts. The enhancement of hiss at the magnetic equator is consistent with particle-wave interactions. The chorus emissions are most intense on the morning side as previously reported. At frequencies from approx. 10-50 kHz VLF transmitters dominate the spectrum. The maximum intensity of the VLF transmitters is in the late evening or early morning with enhancements all along L shells from 1.8 to 3.

  2. Interaction of Bio-Aerosols with Shock/Blast Waves: Dispersion, Activation, and Destruction of Airborne Biological Threats

    DTIC Science & Technology

    2011-05-01

    laboratory protocol was used to investigate the post-shock-heating survival of three strains of endospores ( Bacillus atrophaeus, Bacillus subtilis ...investigate the post-shock-heating survival of three strains of endospores ( Bacillus atrophaeus, Bacillus subtilis and Bacillus thuringiensis, Al Hakam...investigated: Bacillus subtilis , Bacillus atrophaeus and Bacillus thuringiensis (Al Hakam). The exposporium on these three strains are radically different

  3. Wave interactions in a three-dimensional attachment line boundary layer

    NASA Technical Reports Server (NTRS)

    Hall, Philip; Mackerrell, Sharon O.

    1988-01-01

    The 3-D boundary layer on a swept wing can support different types of hydrodynamic instability. Attention is focused on the so-called spanwise contamination problem, which occurs when the attachment line boundary layer on the leading edge becomes unstable to Tollmien-Schlichting waves. In order to gain insight into the interactions important in that problem, a simplified basic state is considered. This simplified flow corresponds to the swept attachment line boundary layer on an infinite flat plate. The basic flow here is an exact solution of the Navier-Stokes equations and its stability to 2-D waves propagating along the attachment can be considered exactly at finite Reynolds number. This has been done in the linear and weakly nonlinear regimes. The corresponding problem is studied for oblique waves and their interaction with 2-D waves is investigated. In fact, oblique modes cannot be described exactly at finite Reynolds number so it is necessary to make a high Reynolds number approximation and use triple deck theory. It is shown that there are two types of oblique wave which, if excited, cause the destabilization of the 2-D mode and the breakdown of the disturbed flow at a finite distance from the leading edge. First, a low frequency mode related to the viscous stationary crossflow mode is a possible cause of breakdown. Second, a class of oblique wave with frequency comparable with that of the 2-D mode is another cause of breakdown. It is shown that the relative importance of the modes depends on the distance from the attachment line.

  4. Understanding the destabilizing role for surface tension in planar shear flows in terms of wave interaction

    NASA Astrophysics Data System (ADS)

    Biancofiore, L.; Heifetz, E.; Hoepffner, J.; Gallaire, F.

    2017-10-01

    Both surface tension and buoyancy force in stable stratification act to restore perturbed interfaces back to their initial positions. Hence, both are intuitively considered as stabilizing agents. Nevertheless, the Taylor-Caulfield instability is a counterexample in which the presence of buoyancy forces in stable stratification destabilize shear flows. An explanation for this instability lies in the fact that stable stratification supports the existence of gravity waves. When two vertically separated gravity waves propagate horizontally against the shear, they may become phase locked and amplify each other to form a resonance instability. Surface tension is similar to buoyancy but its restoring mechanism is more efficient at small wavelengths. Here, we show how a modification of the Taylor-Caulfield configuration, including two interfaces between three stably stratified immiscible fluids, supports interfacial capillary gravity whose interaction yields resonance instability. Furthermore, when the three fluids have the same density, an instability arises solely due to a pure counterpropagating capillary wave resonance. The linear stability analysis predicts a maximum growth rate of the pure capillary wave instability for an intermediate value of surface tension corresponding to We-1=5 , where We denotes the Weber number. We perform direct numerical nonlinear simulation of this flow and find nonlinear destabilization when 2 ≤We-1≤10 , in good agreement with the linear stability analysis. The instability is present also when viscosity is introduced, although it is gradually damped and eventually quenched.

  5. Nonlinear Wave Propagation.

    DTIC Science & Technology

    1987-11-23

    e.g. the Kadomtsev - Petviashvili . Davey-Stewartson, and three-wave interaction equations -see for example the review [11]). little progress has been made... equations for our purposes will be the Korteweg-deVries (KdV) equation u, - 6uu., + u, =0 ( ) in one spatial dimension, and the Kadomtsev - Petviashvili (KP...similarities with KP [4] than with u, =sin u, (2) KdV (the IST for (5) has been recently considered and the Kadomtsev - Petviashvili (KP) equation in ref. [ 5

  6. Dalitz plot analysis of three-body charmonium decays at BABAR

    NASA Astrophysics Data System (ADS)

    Palano, Antimo

    2016-05-01

    We present preliminary results on the measurement of the I=1/2 Kπ S-wave through a model independent partial wave analysis of ηc decays to KS0 K+π- and K+ K-π0 produced in two-photon interactions. We also perform a Dalitz plot analysis of the J/ψ decays to π+π-π0 and K+ K-π0 produced in the initial state radiation process.

  7. A numerical study of wave-current interaction through surface and bottom stresses: Coastal ocean response to Hurricane Fran of 1996

    NASA Astrophysics Data System (ADS)

    Xie, L.; Pietrafesa, L. J.; Wu, K.

    2003-02-01

    A three-dimensional wave-current coupled modeling system is used to examine the influence of waves on coastal currents and sea level. This coupled modeling system consists of the wave model-WAM (Cycle 4) and the Princeton Ocean Model (POM). The results from this study show that it is important to incorporate surface wave effects into coastal storm surge and circulation models. Specifically, we find that (1) storm surge models without coupled surface waves generally under estimate not only the peak surge but also the coastal water level drop which can also cause substantial impact on the coastal environment, (2) introducing wave-induced surface stress effect into storm surge models can significantly improve storm surge prediction, (3) incorporating wave-induced bottom stress into the coupled wave-current model further improves storm surge prediction, and (4) calibration of the wave module according to minimum error in significant wave height does not necessarily result in an optimum wave module in a wave-current coupled system for current and storm surge prediction.

  8. Exhaust Nozzle Plume and Shock Wave Interaction

    NASA Technical Reports Server (NTRS)

    Castner, Raymond S.; Elmiligui, Alaa; Cliff, Susan

    2013-01-01

    Fundamental research for sonic boom reduction is needed to quantify the interaction of shock waves generated from the aircraft wing or tail surfaces with the exhaust plume. Both the nozzle exhaust plume shape and the tail shock shape may be affected by an interaction that may alter the vehicle sonic boom signature. The plume and shock interaction was studied using Computational Fluid Dynamics simulation on two types of convergent-divergent nozzles and a simple wedge shock generator. The nozzle plume effects on the lower wedge compression region are evaluated for two- and three-dimensional nozzle plumes. Results show that the compression from the wedge deflects the nozzle plume and shocks form on the deflected lower plume boundary. The sonic boom pressure signature of the wedge is modified by the presence of the plume, and the computational predictions show significant (8 to 15 percent) changes in shock amplitude.

  9. On analyticity of linear waves scattered by a layered medium

    NASA Astrophysics Data System (ADS)

    Nicholls, David P.

    2017-10-01

    The scattering of linear waves by periodic structures is a crucial phenomena in many branches of applied physics and engineering. In this paper we establish rigorous analytic results necessary for the proper numerical analysis of a class of High-Order Perturbation of Surfaces methods for simulating such waves. More specifically, we prove a theorem on existence and uniqueness of solutions to a system of partial differential equations which model the interaction of linear waves with a multiply layered periodic structure in three dimensions. This result provides hypotheses under which a rigorous numerical analysis could be conducted for recent generalizations to the methods of Operator Expansions, Field Expansions, and Transformed Field Expansions.

  10. First Observation of Bright Solitons in Bulk Superfluid ^{4}He.

    PubMed

    Ancilotto, Francesco; Levy, David; Pimentel, Jessica; Eloranta, Jussi

    2018-01-19

    The existence of bright solitons in bulk superfluid ^{4}He is demonstrated by time-resolved shadowgraph imaging experiments and density functional theory (DFT) calculations. The initial liquid compression that leads to the creation of nonlinear waves is produced by rapidly expanding plasma from laser ablation. After the leading dissipative period, these waves transform into bright solitons, which exhibit three characteristic features: dispersionless propagation, negligible interaction in a two-wave collision, and direct dependence between soliton amplitude and the propagation velocity. The experimental observations are supported by DFT calculations, which show rapid evolution of the initially compressed liquid into bright solitons. At high amplitudes, solitons become unstable and break down into dispersive shock waves.

  11. Ferruleless coupled-cavity traveling-wave tube cold-test characteristics simulated with micro-SOS

    NASA Technical Reports Server (NTRS)

    Schroeder, Dana L.; Wilson, Jeffrey D.

    1993-01-01

    The three-dimensional, electromagnetic circuit analysis code, Micro-SOS, can be used to reduce expensive and time consuming experimental 'cold-testing' of traveling-wave tube (TWT) circuits. The frequency-phase dispersion and beam interaction impedance characteristics of a ferruleless coupled-cavity traveling-wave tube slow-wave circuit were simulated using the code. Computer results agree closely with experimental data. Variations in the cavity geometry dimensions of period length and gap-to-period ratio were modeled. These variations can be used in velocity taper designs to reduce the radiofrequency (RF) phase velocity in synchronism with the decelerating electron beam. Such circuit designs can result in enhanced TWT power and efficiency.

  12. Wave-number spectra and intermittency in the terrestrial foreshock region.

    PubMed

    Narita, Y; Glassmeier, K-H; Treumann, R A

    2006-11-10

    Wave-number spectra of magnetic field fluctuations are directly determined in the terrestrial foreshock region (upstream of a quasiparallel collisionless shock wave) using four-point Cluster spacecraft measurements. The spectral curve is characterized by three ranges reminiscent of turbulence: energy injection, inertial, and dissipation range. The spectral index for the inertial range spectrum is close to Kolmogorov's slope, -5/3. On the other hand, the fluctuations are highly anisotropic and intermittent perpendicular to the mean magnetic field direction. These results suggest that the foreshock is in a weakly turbulent and intermittent state in which parallel propagating Alfvén waves interact with one another, resulting in the phase coherence or the intermittency.

  13. Efficient techniques for wave-based sound propagation in interactive applications

    NASA Astrophysics Data System (ADS)

    Mehra, Ravish

    Sound propagation techniques model the effect of the environment on sound waves and predict their behavior from point of emission at the source to the final point of arrival at the listener. Sound is a pressure wave produced by mechanical vibration of a surface that propagates through a medium such as air or water, and the problem of sound propagation can be formulated mathematically as a second-order partial differential equation called the wave equation. Accurate techniques based on solving the wave equation, also called the wave-based techniques, are too expensive computationally and memory-wise. Therefore, these techniques face many challenges in terms of their applicability in interactive applications including sound propagation in large environments, time-varying source and listener directivity, and high simulation cost for mid-frequencies. In this dissertation, we propose a set of efficient wave-based sound propagation techniques that solve these three challenges and enable the use of wave-based sound propagation in interactive applications. Firstly, we propose a novel equivalent source technique for interactive wave-based sound propagation in large scenes spanning hundreds of meters. It is based on the equivalent source theory used for solving radiation and scattering problems in acoustics and electromagnetics. Instead of using a volumetric or surface-based approach, this technique takes an object-centric approach to sound propagation. The proposed equivalent source technique generates realistic acoustic effects and takes orders of magnitude less runtime memory compared to prior wave-based techniques. Secondly, we present an efficient framework for handling time-varying source and listener directivity for interactive wave-based sound propagation. The source directivity is represented as a linear combination of elementary spherical harmonic sources. This spherical harmonic-based representation of source directivity can support analytical, data-driven, rotating or time-varying directivity function at runtime. Unlike previous approaches, the listener directivity approach can be used to compute spatial audio (3D audio) for a moving, rotating listener at interactive rates. Lastly, we propose an efficient GPU-based time-domain solver for the wave equation that enables wave simulation up to the mid-frequency range in tens of minutes on a desktop computer. It is demonstrated that by carefully mapping all the components of the wave simulator to match the parallel processing capabilities of the graphics processors, significant improvement in performance can be achieved compared to the CPU-based simulators, while maintaining numerical accuracy. We validate these techniques with offline numerical simulations and measured data recorded in an outdoor scene. We present results of preliminary user evaluations conducted to study the impact of these techniques on user's immersion in virtual environment. We have integrated these techniques with the Half-Life 2 game engine, Oculus Rift head-mounted display, and Xbox game controller to enable users to experience high-quality acoustics effects and spatial audio in the virtual environment.

  14. Critical anisotropies of a geometrically frustrated triangular-lattice antiferromagnet

    NASA Astrophysics Data System (ADS)

    Swanson, M.; Haraldsen, J. T.; Fishman, R. S.

    2009-05-01

    This work examines the critical anisotropy required for the local stability of the collinear ground states of a geometrically frustrated triangular-lattice antiferromagnet (TLA). Using a Holstein-Primakoff expansion, we calculate the spin-wave frequencies for the one-, two-, three-, four-, and eight-sublattice (SL) ground states of a TLA with up to third neighbor interactions. Local stability requires that all spin-wave frequencies are real and positive. The two-, four-, and eight-SL phases break up into several regions where the critical anisotropy is a different function of the exchange parameters. We find that the critical anisotropy is a continuous function everywhere except across the two-SL/three-SL and three-SL/four-SL phase boundaries, where the three-SL phase has the higher critical anisotropy.

  15. Regional seismic wavefield computation on a 3-D heterogeneous Earth model by means of coupled traveling wave synthesis

    USGS Publications Warehouse

    Pollitz, F.F.

    2002-01-01

    I present a new algorithm for calculating seismic wave propagation through a three-dimensional heterogeneous medium using the framework of mode coupling theory originally developed to perform very low frequency (f < ???0.01-0.05 Hz) seismic wavefield computation. It is a Greens function approach for multiple scattering within a defined volume and employs a truncated traveling wave basis set using the locked mode approximation. Interactions between incident and scattered wavefields are prescribed by mode coupling theory and account for the coupling among surface waves, body waves, and evanescent waves. The described algorithm is, in principle, applicable to global and regional wave propagation problems, but I focus on higher frequency (typically f ??????0.25 Hz) applications at regional and local distances where the locked mode approximation is best utilized and which involve wavefields strongly shaped by propagation through a highly heterogeneous crust. Synthetic examples are shown for P-SV-wave propagation through a semi-ellipsoidal basin and SH-wave propagation through a fault zone.

  16. Unsteady self-sustained detonation in flake aluminum dust/air mixtures

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Li, S.; Huang, J.; Zhang, Y.

    2017-07-01

    Self-sustained detonation waves in flake aluminum dust/air mixtures have been studied in a tube of diameter 199 mm and length 32.4 m. A pressure sensor array of 32 sensors mounted around certain circumferences of the tube was used to measure the shape of the detonation front in the circumferential direction and pressure histories of the detonation wave. A two-head spin detonation wave front was observed for the aluminum dust/air mixtures, and the cellular structure resulting from the spinning movement of the triple point was analyzed. The variations in velocity and overpressure of the detonation wave with propagation distance in a cell were studied. The interactions of waves in triple-point configurations were analyzed and the flow-field parameters were calculated. Three types of triple-point configuration have been found in the wave front of the detonation wave of an aluminum dust/air mixture. Both strong and weak transverse waves exist in the unstable self-sustained detonation wave.

  17. Experimental observation of standing interfacial waves induced by surface waves in muddy water

    NASA Astrophysics Data System (ADS)

    Maxeiner, Eric; Dalrymple, Robert A.

    2011-09-01

    A striking feature has been observed in a laboratory wave tank with a thin layer of clear water overlying a layer of mud. A piston-type wave maker is used to generate long monochromatic surface waves in a tank with a layer of kaolinite clay at the bottom. The wave action on the mud causes the clay particles to rise from the bottom into the water column, forming a lutocline. As the lutocline approaches the water surface, a set of standing interfacial waves form on the lutocline. The interfacial wave directions are oriented nearly orthogonal to the surface wave direction. The interfacial waves, which sometimes cover the entire length and width of the tank, are also temporally subharmonic as the phase of the interfacial wave alternates with each passing surface wave crest. These interfacial waves are the result of a resonant three-wave interaction involving the surface wave train and the two interfacial wave trains. The interfacial waves are only present when the lutocline is about 3 cm of the water surface and they can be sufficiently nonlinear as to exhibit superharmonics and a breaking-type of instability.

  18. Rogue waves in the multicomponent Mel'nikov system and multicomponent Schrödinger-Boussinesq system

    NASA Astrophysics Data System (ADS)

    Sun, Baonan; Lian, Zhan

    2018-02-01

    By virtue of the bilinear method and the KP hierarchy reduction technique, exact explicit rational solutions of the multicomponent Mel'nikov equation and the multicomponent Schrödinger-Boussinesq equation are constructed, which contain multicomponent short waves and single-component long wave. For the multicomponent Mel'nikov equation, the fundamental rational solutions possess two different behaviours: lump and rogue wave. It is shown that the fundamental (simplest) rogue waves are line localised waves which arise from the constant background with a line profile and then disappear into the constant background again. The fundamental line rogue waves can be classified into three: bright, intermediate and dark line rogue waves. Two subclasses of non-fundamental rogue waves, i.e., multirogue waves and higher-order rogue waves are discussed. The multirogue waves describe interaction of several fundamental line rogue waves, in which interesting wave patterns appear in the intermediate time. Higher-order rogue waves exhibit dynamic behaviours that the wave structures start from lump and then retreat back to it. Moreover, by taking the parameter constraints further, general higher-order rogue wave solutions for the multicomponent Schrödinger-Boussinesq system are generated.

  19. Latent Class Analysis of Antisocial Behavior: Interaction of Serotonin Transporter Genotype and Maltreatment

    PubMed Central

    Li, James J.

    2010-01-01

    To improve understanding about genetic and environmental influences on antisocial behavior (ASB), we tested the association of the 44-base pair polymorphism of the serotonin transporter gene (5-HTTLPR) and maltreatment using latent class analysis in 2,488 boys and girls from Wave 1 of the National Longitudinal Study of Adolescent Health. In boys, ASB was defined by three classes (Exclusive Covert, Mixed Covert and Overt, and No Problems) whereas in girls, ASB was defined by two classes (Exclusive Covert, No Problems). In boys, 5-HTTLPR and maltreatment were not significantly related to ASB. However, in girls, maltreatment, but not 5-HTTLPR, was significantly associated with ASB. A significant interaction between 5-HTTLPR and maltreatment was also observed, where maltreated girls homozygous for the short allele were 12 times more likely to be classified in the Exclusive Covert group than in the No Problems group. Structural differences in the latent structure of ASB at Wave 2 and Wave 3 prevented repeat LCA modeling. However, using counts of ASB, 5-HTTLPR, maltreatment, and its interaction were unrelated to overt and covert ASB at Wave 2 and only maltreatment was related to covert ASB at Wave 3. We discuss these findings within the context of sex differences in ASB and relevant models of gene-environment interplay across developmental periods. PMID:20405199

  20. Neocolonialism and Health Care Access among Marshall Islanders in the United States.

    PubMed

    Duke, Michael R

    2017-09-01

    In the Marshall Islands, a history of extensive nuclear weapons testing and covert biomedical research, coupled with the U.S.'s ongoing military presence in the country, has severely compromised the health of the local population. Despite the U.S.'s culpability in producing ill health along with high rates of emigration from the islands to the mainland United States, the large portion of Marshallese who reside in the United States face substantial barriers to accessing health care. Drawing from ongoing field research with a Marshallese community in Arkansas, this article explores the multifaceted impediments that U.S.-based Marshall Islanders face in receiving medical treatment. Calling on an expansive and inclusive notion of neocolonialism, I argue that Marshallese structural vulnerability with regard to health and health care treatment derives from their status as neocolonial subjects and from their limited claims to health-related deservingness associated with this status. [Marshall Islanders, health care access, neocolonialism, radiation exposure, immigrant health] L̗ōmn̗ak ko rōttin̗o: Ilo M̗ajel̗, juon bwebwenato kōn kōmmālmel im nuclear baam̗ ko im ekkatak ko rōttin̗o̗ kōn wāwein an baijin ko jelōt armej, barāinwōt an to an ri tarinae ro an Amedka pād ilo aelōn̄ kein, em̗ōj an jelōt ājmour an armej ro ilo aelōn̄ kein. Men̄e alikkar bwe Amedka in ear jino nan̄inmej kein im ej un eo armej rein rej em̗m̗akūt jān āne kein āne er n̄an ioon Amedka, elōn̄ iaan ri M̗ajel̗ rein rej jelm̗ae elōn̄ apan̄ ko n̄an aer del̗o̗n̄e jikin ājmour ko. Jān ekkatak eo ej bōk jikin kiō, jerbal in ej etali kabōjrak rak kein rōlōn̄ im armej in M̗ajel̗ ro ioon Amedka in rej jelm̗ae ilo aer jibadōk lo̗k jikin taktō. Ilo an kar Amedka jibadōk juon jea eo eutiej imejān lal̗ in, ij kwal̗ok juon aō akweelel bwe apan̄ ko an armej in M̗ajel̗ ikijjeen ājmour im jikin taktō ej itok jān aer kar ri kōm̗akoko ilo an kar Amedka lelōn̄ l̗o̗k etan ilo mejān lal̗ im jān aer jab pukot jipan kein ej aer bwe kōn jōkjōk in. © 2017 by the American Anthropological Association.

  1. Mitigation of Adverse Effects Caused by Shock Wave Boundary Layer Interactions Through Optimal Wall Shaping

    NASA Technical Reports Server (NTRS)

    Liou, May-Fun; Lee, Byung Joon

    2013-01-01

    It is known that the adverse effects of shock wave boundary layer interactions in high speed inlets include reduced total pressure recovery and highly distorted flow at the aerodynamic interface plane (AIP). This paper presents a design method for flow control which creates perturbations in geometry. These perturbations are tailored to change the flow structures in order to minimize shock wave boundary layer interactions (SWBLI) inside supersonic inlets. Optimizing the shape of two dimensional micro-size bumps is shown to be a very effective flow control method for two-dimensional SWBLI. In investigating the three dimensional SWBLI, a square duct is employed as a baseline. To investigate the mechanism whereby the geometric elements of the baseline, i.e. the bottom wall, the sidewall and the corner, exert influence on the flow's aerodynamic characteristics, each element is studied and optimized separately. It is found that arrays of micro-size bumps on the bottom wall of the duct have little effect in improving total pressure recovery though they are useful in suppressing the incipient separation in three-dimensional problems. Shaping sidewall geometry is effective in re-distributing flow on the side wall and results in a less distorted flow at the exit. Subsequently, a near 50% reduction in distortion is achieved. A simple change in corner geometry resulted in a 2.4% improvement in total pressure recovery.

  2. Manipulating matter rogue waves and breathers in Bose-Einstein condensates.

    PubMed

    Manikandan, K; Muruganandam, P; Senthilvelan, M; Lakshmanan, M

    2014-12-01

    We construct higher-order rogue wave solutions and breather profiles for the quasi-one-dimensional Gross-Pitaevskii equation with a time-dependent interatomic interaction and external trap through the similarity transformation technique. We consider three different forms of traps: (i) the time-independent expulsive trap, (ii) time-dependent monotonous trap, and (iii) time-dependent periodic trap. Our results show that when we change a parameter appearing in the time-independent or time-dependent trap the second- and third-order rogue waves transform into the first-order-like rogue waves. We also analyze the density profiles of breather solutions. Here we also show that the shapes of the breathers change when we tune the strength of the trap parameter. Our results may help to manage rogue waves experimentally in a BEC system.

  3. The ISEE-1 and ISEE-2 plasma wave investigation

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Scarf, F. L.; Fredricks, R. W.; Smith, E. J.

    1978-01-01

    The ISEE-1 and ISEE-2 plasma wave experiments are designed to provide basic information on wave-particle interactions in the earth's magnetosphere and in the solar wind. The ISEE-1 plasma wave instrument uses three electric dipole antennas with lengths of 215, 73.5 and 0.61 m for electric field measurements, and a triaxial search coil antenna for magnetic field measurements. The ISEE-2 instrument uses two electric dipole antennas with lengths of 30 and 0.61 m for electric field measurements and a single-axis search coil antenna for magnetic field measurements. The primary scientific objectives of the experiments are described, including the resolution of space-time relationships of plasma wave phenomena and VLBI studies. The instrumentation is described, with emphasis on the antennas and the electronics.

  4. Exchange interaction effects on waves in magnetized quantum plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trukhanova, Mariya Iv., E-mail: mar-tiv@yandex.ru; Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru

    2015-02-15

    We have applied the many-particle quantum hydrodynamics that includes the Coulomb exchange interaction to magnetized quantum plasmas. We considered a number of wave phenomena that are affected by the Coulomb exchange interaction. Since the Coulomb exchange interaction affects the longitudinal and transverse-longitudinal waves, we focused our attention on the Langmuir waves, the Trivelpiece-Gould waves, the ion-acoustic waves in non-isothermal magnetized plasmas, the dispersion of the longitudinal low-frequency ion-acoustic waves, and low-frequency electromagnetic waves at T{sub e} ≫ T{sub i}. We have studied the dispersion of these waves and present the numeric simulation of their dispersion properties.

  5. Changes in Conjunctival Hemodynamics Predict Albuminuria in Sickle Cell Nephropathy

    PubMed Central

    Valeshabad, Ali Kord; Wanek, Justin; Saraf, Santosh L.; Gaynes, Bruce I.; Gordeuk, Victor R.; Molokie, Robert E.; Shahidi, Mahnaz

    2015-01-01

    Background Albuminuria is an early manifestation of deterioration in renal function in subjects with sickle cell disease (SCD). Hyperfiltration may be an early mechanism for kidney damage in SCD. The purpose of the current study was to determine the association between conjunctival hemodynamics and albuminuria in SCD subjects with preserved glomerular filtration rate. Methods Conjunctival microcirculation imaging was performed to measure conjunctival diameter (D) and axial blood velocity (V) in 35 SCD and 10 healthy control subjects. Albuminuria, defined as albumin excretion ratio (AER) was obtained from the medical charts. Based on the 95% confidence interval of conjunctival V in control subjects (0.40 - 0.60 mm/s), SCD subjects were allocated to three groups: V1 < 0.40 mm/s (N = 7), V2 of 0.40 – 0.60 mm/s (N = 18), and V3 ≥ 0.60 mm/s (N = 10). Results Mean log(AER) measurements in the V1, V2, and V3 groups were 1.08 ± 0.67 mg/g creatinine, 1.39 ± 0.59 mg/g creatinine, and 2.00 ± 0.91 mg/g creatinine, respectively, and followed a positive linear trend from the V1 to V3 groups (p = 0.01). By multivariate linear regression analysis, conjunctival V significantly correlated with albuminuria (p = 0.01) independent of age, blood pressure, α-thalassemia, hematocrit, white blood cell count, and lactate dehydrogenase concentration. Conclusions Increased conjunctival velocity is associated with albuminuria in sickle cell subjects. Assessment of conjunctival microvascular hemodynamics may improve our understanding of the pathophysiology and clinical course of sickle cell nephropathy. PMID:26278102

  6. Validity of 24-h recalls in (pre-)school aged children: comparison of proxy-reported energy intakes with measured energy expenditure.

    PubMed

    Börnhorst, C; Bel-Serrat, S; Pigeot, I; Huybrechts, I; Ottavaere, C; Sioen, I; De Henauw, S; Mouratidou, T; Mesana, M I; Westerterp, K; Bammann, K; Lissner, L; Eiben, G; Pala, V; Rayson, M; Krogh, V; Moreno, L A

    2014-02-01

    Little is known about the validity of repeated 24-h dietary recalls (24-HDR) as a measure of total energy intake (EI) in young children. This study aimed to evaluate the validity of proxy-reported EI by comparison with total energy expenditure (TEE) measured by the doubly labeled water (DLW) technique. The agreement between EI and TEE was investigated in 36 (47.2% boys) children aged 4-10 years from Belgium and Spain using subgroup analyses and Bland-Altman plots. Low-energy-reporters (LER), adequate-energy-reporters (AER) and high-energy-reporters (HER) were defined from the ratio of EI over TEE by application of age- and sex-specific cut-off values. There was good agreement between means of EI (1500 kcal/day) and TEE (1523 kcal/day) at group level though in single children, i.e. at the individual level, large differences were observed. Almost perfect agreement between EI and TEE was observed in thin/normal weight children (EI: 1511 kcal/day; TEE: 1513 kcal/day). Even in overweight/obese children the mean difference between EI and TEE was only -86 kcal/day. Among the participants, 28 (78%) were classified as AER, five (14%) as HER and three (8%) as LER. Two proxy-reported 24-HDRs were found to be a valid instrument to assess EI on group level but not on the individual level. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  7. Solitons and rogue waves in spinor Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Li, Sitai; Prinari, Barbara; Biondini, Gino

    2018-02-01

    We present a general classification of one-soliton solutions as well as families of rogue-wave solutions for F =1 spinor Bose-Einstein condensates (BECs). These solutions are obtained from the inverse scattering transform for a focusing matrix nonlinear Schrödinger equation which models condensates in the case of attractive mean-field interactions and ferromagnetic spin-exchange interactions. In particular, we show that when no background is present, all one-soliton solutions are reducible via unitary transformations to a combination of oppositely polarized solitonic solutions of single-component BECs. On the other hand, we show that when a nonzero background is present, not all matrix one-soliton solutions are reducible to a simple combination of scalar solutions. Finally, by taking suitable limits of all the solutions on a nonzero background we also obtain three families of rogue-wave (i.e., rational) solutions.

  8. Solitons and rogue waves in spinor Bose-Einstein condensates.

    PubMed

    Li, Sitai; Prinari, Barbara; Biondini, Gino

    2018-02-01

    We present a general classification of one-soliton solutions as well as families of rogue-wave solutions for F=1 spinor Bose-Einstein condensates (BECs). These solutions are obtained from the inverse scattering transform for a focusing matrix nonlinear Schrödinger equation which models condensates in the case of attractive mean-field interactions and ferromagnetic spin-exchange interactions. In particular, we show that when no background is present, all one-soliton solutions are reducible via unitary transformations to a combination of oppositely polarized solitonic solutions of single-component BECs. On the other hand, we show that when a nonzero background is present, not all matrix one-soliton solutions are reducible to a simple combination of scalar solutions. Finally, by taking suitable limits of all the solutions on a nonzero background we also obtain three families of rogue-wave (i.e., rational) solutions.

  9. -> Air entrainment and bubble statistics in three-dimensional breaking waves

    NASA Astrophysics Data System (ADS)

    Deike, L.; Popinet, S.; Melville, W. K.

    2016-02-01

    Wave breaking in the ocean is of fundamental importance for quantifying wave dissipation and air-sea interaction, including gas and momentum exchange, and for improving air-sea flux parametrizations for weather and climate models. Here we investigate air entrainment and bubble statistics in three-dimensional breaking waves through direct numerical simulations of the two-phase air-water flow using the Open Source solver Gerris. As in previous 2D simulations, the dissipation due to breaking is found to be in good agreement with previous experimental observations and inertial-scaling arguments. For radii larger than the Hinze scale, the bubble size distribution is found to follow a power law of the radius, r-10/3 and to scale linearly with the time dependent turbulent dissipation rate during the active breaking stage. The time-averaged bubble size distribution is found to follow the same power law of the radius and to scale linearly with the wave dissipation rate per unit length of breaking crest. We propose a phenomenological turbulent bubble break-up model that describes the numerical results and existing experimental results.

  10. Hierarchical Address Event Routing for Reconfigurable Large-Scale Neuromorphic Systems.

    PubMed

    Park, Jongkil; Yu, Theodore; Joshi, Siddharth; Maier, Christoph; Cauwenberghs, Gert

    2017-10-01

    We present a hierarchical address-event routing (HiAER) architecture for scalable communication of neural and synaptic spike events between neuromorphic processors, implemented with five Xilinx Spartan-6 field-programmable gate arrays and four custom analog neuromophic integrated circuits serving 262k neurons and 262M synapses. The architecture extends the single-bus address-event representation protocol to a hierarchy of multiple nested buses, routing events across increasing scales of spatial distance. The HiAER protocol provides individually programmable axonal delay in addition to strength for each synapse, lending itself toward biologically plausible neural network architectures, and scales across a range of hierarchies suitable for multichip and multiboard systems in reconfigurable large-scale neuromorphic systems. We show approximately linear scaling of net global synaptic event throughput with number of routing nodes in the network, at 3.6×10 7 synaptic events per second per 16k-neuron node in the hierarchy.

  11. Effects of engine emissions from high-speed civil transport aircraft: A two-dimensional modeling study, part 1

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Weisenstein, Debra K.; Sze, Nein Dak; Rodriguez, Jose M.; Heisey, Curtis

    1991-01-01

    The AER two-dimensional chemistry-transport model is used to study the effect on stratospheric ozone (O3) from operations of supersonic and subsonic aircraft. The study is based on six emission scenarios provided to AER. The study showed that: (1) the O3 response is dominated by the portion of the emitted nitrogen compounds that is entrained in the stratosphere; (2) the entrainment is a sensitive function of the altitude at which the material is injected; (3) the O3 removal efficiency of the emitted material depends on the concentrations of trace gases in the background atmosphere; and (4) evaluation of the impact of fleet operations in the future atmosphere must take into account the expected changes in trace gas concentrations from other activities. Areas for model improvements in future studies are also discussed.

  12. Majorana Kramers pairs in Rashba double nanowires with interactions and disorder

    NASA Astrophysics Data System (ADS)

    Thakurathi, Manisha; Simon, Pascal; Mandal, Ipsita; Klinovaja, Jelena; Loss, Daniel

    2018-01-01

    We analyze the effects of electron-electron interactions and disorder on a Rashba double-nanowire setup coupled to an s -wave superconductor, which has been recently proposed as a versatile platform to generate Kramers pairs of Majorana bound states in the absence of magnetic fields. We identify the regime of parameters for which these Kramers pairs are stable against interaction and disorder effects. We use bosonization, perturbative renormalization group, and replica techniques to derive the flow equations for various parameters of the model and evaluate the corresponding phase diagram with topological and disorder-dominated phases. We confirm aforementioned results by considering a more microscopic approach, which starts from the tunneling Hamiltonian between the three-dimensional s -wave superconductor and the nanowires. We find again that the interaction drives the system into the topological phase and, as the strength of the source term coming from the tunneling Hamiltonian increases, strong electron-electron interactions are required to reach the topological phase.

  13. Numerical study on the interaction of a weak shock wave with an elliptic gas cylinder

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Zou, L.; Zheng, X.; Wang, B.

    2018-05-01

    The interaction of a weak shock wave with a heavy elliptic gas cylinder is investigated by solving the Eulerian equations in two-dimensional Cartesian coordinates. An interface-capturing algorithm based on the γ -model and the finite volume weighed essential non-oscillatory scheme is employed to trace the motion of the discontinuous interface. Three gas pairs with different Atwood numbers ranging from 0.21 to 0.91 are considered, including carbon dioxide cylinder in air (air-CO_2 ), sulfur hexafluoride cylinder in air (air-SF_6 ), and krypton cylinder in helium (He-Kr). For each gas pair, the elliptic cylinder aspect ratio ranging from 1/4 to 4 is defined as the ratio of streamwise axis length to spanwise axis length. Special attention is given to the aspect ratio effects on wave patterns and circulation. With decreasing aspect ratio, the wave patterns in the interaction are summarized as transmitted shock reflection, regular interaction, and transmitted shock splitting. Based on the scaling law model of Samtaney and Zabusky (J Fluid Mech 269:45-78, 1994), a theoretical approach is developed for predicting the circulation at the time when the fastest shock wave reaches the leeward pole of the gas cylinder (i.e., the primary deposited circulation). For both prolate (i.e., the minor axis of the ellipse is along the streamwise direction) and oblate (i.e., the minor axis of the ellipse is along the spanwise direction) cases, the proposed approach is found to estimate the primary deposited circulation favorably.

  14. Ocean-ice interaction in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Peng, Chich Y.

    1994-01-01

    Ocean ice interaction processes in the Marginal Ice Zone (MIZ) by wind, waves, and mesoscale features, such as upwelling and eddies, are studied using ERS-1 Synthetic Aperture Radar (SAR) images and ocean ice interaction model. A sequence of SAR images of the Chukchi Sea MIZ with three days interval are studied for ice edge advance/retreat. Simultaneous current measurements from the northeast Chukchi Sea as well as the Barrow wind record are used to interpret the MIZ dynamics.

  15. Multi-Species Test of Ion Cyclotron Resonance Heating at High Altitudes

    NASA Technical Reports Server (NTRS)

    Persoon, A. M.; Peterson, W. K.; Andre, M.; Chang, T.; Gurnett, D. A.; Retterer, J. M.; Crew, G. B.

    1997-01-01

    Observations of ion distributions and plasma waves obtained by the Dynamics Explorer 1 satellite in the high-altitude, nightside auroral zone are used to study ion energization for three ion species. A number of theoretical models have been proposed to account for the transverse heating of these ion populations. One of these, the ion cyclotron resonance heating (ICRH) mechanism, explains ion conic formation through ion cyclotron resonance with broadband electromagnetic wave turbulence in the vicinity of the characteristic ion cyclotron frequency. The cyclotron resonant heating of the ions by low- frequency electromagnetic waves is an important energy source for the transport of ions from the ionosphere to the magnetosphere. In this paper we test the applicability of the ICRH mechanism to three simultaneously heated and accelerated ion species by modelling the ion conic formation in terms of a resonant wave-particle interaction in which the ions extract energy from the portion of the broadband electromagnetic wave spectrum which includes the ion cyclotron frequency. Using a Monte Carlo technique we evaluate the ion heating produced by the electromagnetic turbulence at low frequencies and find that the wave amplitudes near the ion cyclotron frequencies are sufficient to explain the observed ion energies.

  16. Multi-Species Test of Ion Cyclotron Resonance Heating at High Altitudes

    NASA Technical Reports Server (NTRS)

    Persoon, A. M.; Peterson, W. K.; Andre, M.; Chang, T.; Gurnett, D. A.; Retterer, J. M.; Crew, G. B.

    1997-01-01

    Observations of ion distributions and plasma waves obtained by the Dynamics Explorer 1 satellite in the high-altitude, nightside auroral zone are used to study ion energization for three ion species. A number of theoretical models have been proposed to account for the transverse heating of these ion populations. One of these, the ion cyclotron resonance heating (ICRH) mechanism, explains ion conic formation through ion cyclotron resonance with broadband electromagnetic wave turbulence in the vicinity of the characteristic ion cyclotron frequency. The cyclotron resonant heating of the ions by low-frequency electromagnetic waves is an important energy source for the transport of ions from the ionosphere to the magnetosphere. In this paper we test the applicability of the ICRH mechanism to three simultaneously heated and accelerated ion species by modelling the ion conic formation in terms of a resonant wave-particle interaction in which the ions extract energy from the portion of the broadband electromagnetic wave spectrum which includes the ion cyclotron frequency. Using a Monte Carlo technique we evaluate the ion heating produced by the electromagnetic turbulence at low frequencies and find that the wave amplitudes near the ion cyclotron frequencies are sufficient to explain the observed ion energies.

  17. An impedance analysis of double-stream interaction in semiconductors

    NASA Technical Reports Server (NTRS)

    Chen, P. W.; Durney, C. H.

    1972-01-01

    The electromagnetic waves propagating through a drifting semiconductor plasma are studied from a macroscopic point of view in terms of double-stream interaction. The possible existing waves (helicon waves, longitudinal waves, ordinary waves, and pseudolongitudinal waves) which depend upon the orientation of the dc external magnetic field are derived. A powerful impedance concept is introduced to investigate the wave behavior of longitudinal (space charge) waves or pseudolongitudinal waves in a semiconductor plasma. The impedances due to one- and two-carrier stream interactions were calculated theoretically.

  18. Optical properties of β-BBO and potential for THz applications

    NASA Astrophysics Data System (ADS)

    Nikolaev, N. A.; Andreev, Yu. M.; Antsygin, V. D.; Bekker, T. B.; Ezhov, D. M.; Kokh, A. E.; Kokh, K. A.; Lanskii, G. V.; Mamrashev, A. A.; Svetlichnyi, V. A.

    2018-01-01

    The anisotropy of optical properties of high quality beta barium borate crystal (β-BaB2O4, β-BBO) was studied in the main transparency window by using classic spectroscopic methods and in the range of 0.2 - 2 THz by using THz time-domain spectroscopy. β-BBO crystals were grown by the top-seeded solution technique in a highly resistive furnace with a heat field of 3-fold axis symmetry. At room temperature (RT), absorption coefficient in the maximal transparency window in grown crystals did not exceed 0.05 cm-1. Strong absorption anisotropy was observed in 3 - 5 μm and the THz range. At 1 THz absorption coefficients for e and o wave were, respectively, 7 cm-1 and 21 cm-1 at RT; 2 cm-1 and 10 cm-1 at 81 K. At the most attractive for out-of-door applications range < 0.4 THz the absorption coefficient is found to be very low: below 0.2 cm-1 at RT and 1 cm-1 at 81 K. Refractive indices dispersions measured by THz-TDS were approximated in the form of Sellmeier equations. Birefringence is found quite large for phase matched difference frequency generation (DFG) or down-conversion into the THz range (THz-DFG) under near IR pump at RT and 81 K. Type II (oe-o and eo-o), and type I (ee-e) three wave interactions can be realized at RT. THz-DFG of Nd:YAG laser and KTP OPO can be realized by type II (oe-o) three-wave interaction. For selected spectral ranges of femtosecond Ti:Sapphire laser efficient phase matched and group velocity matched optical rectification can be realized by another two types of three wave interactions. Accounting other well-known attractive physical properties of β-BBO crystal, wide application in THz technique can be forecasted.

  19. Transonic blade-vortex interactions - The far field

    NASA Astrophysics Data System (ADS)

    Lyrintzis, A. S.; George, A. R.

    Numerical techniques are developed to predict midfield and far-field helicopter noise due to main-rotor blade-vortex interaction (BVI). The extension of the two-dimensional small-disturbance transonic flow code VTRAN2 (George and Chang, 1983) to the three-dimensional far field (via the Green-function approach of Kirchhoff) is described, and the treatment of oblique BVIs is discussed. Numerical results for a NACA 64A006 airfoil at Mach 0.82 are presented in extensive graphs and characterized in detail. The far-field BVI signature is shown to begin with a strongly forward-directed primary wave (from the original BVI), with an additional downward-directed wave in the case of type C shock motion on the blade.

  20. Electromagnetic waves in a model with Chern-Simons potential.

    PubMed

    Pis'mak, D Yu; Pis'mak, Yu M; Wegner, F J

    2015-07-01

    We investigated the appearance of Chern-Simons terms in electrodynamics at the surface or interface of materials. The requirement of locality, gauge invariance, and renormalizability in this model is imposed. Scattering and reflection of electromagnetic waves in three different homogeneous layers of media is determined. Snell's law is preserved. However, the transmission and reflection coefficient depend on the strength of the Chern-Simons interaction (connected with Hall conductance), and parallel and perpendicular components are mixed.

  1. A Comparison of Three-Dimensional Simulations of Traveling-Wave Tube Cold-Test Characteristics Using CST MICROWAVE STUDIO and MAFIA

    NASA Technical Reports Server (NTRS)

    Chevalier, C. T.; Herrmann, K. A.; Kory, C. L.; Wilson, J. D.; Cross, A. W.; Williams, W. D. (Technical Monitor)

    2001-01-01

    Previously, it was shown that MAFIA (solutions of Maxwell's equations by the Finite Integration Algorithm), a three-dimensional simulation code, can be used to produce accurate cold-test characteristics including frequency-phase dispersion, interaction impedance, and attenuation for traveling-wave tube (TWT) slow-wave structures. In an effort to improve user-friendliness and simulation time, a model was developed to compute the cold-test parameters using the electromagnetic field simulation software package CST MICROWAVE STUDIO (MWS). Cold-test parameters were calculated for several slow-wave circuits including a ferruled coupled-cavity, a folded waveguide, and a novel finned-ladder circuit using both MWS and MAFIA. Comparisons indicate that MWS provides more accurate cold-test data with significantly reduced simulation times. Both MAFIA and MWS are based on the finite integration (FI) method; however, MWS has several advantages over MAFIA. First, it has a Windows based interface for PC operation, making it very user-friendly, whereas MAFIA is UNIX based. MWS uses a new Perfect Boundary Approximation (PBA), which increases the accuracy of the simulations by avoiding stair step approximations associated with MAFIA's representation of structures. Finally, MWS includes a Visual Basic for Applications (VBA) compatible macro language that enables the simulation process to be automated and allows for the optimization of user-defined goal functions, such as interaction impedance.

  2. Three-dimensional disc-satellite interaction: torques, migration, and observational signatures

    NASA Astrophysics Data System (ADS)

    Arzamasskiy, Lev; Zhu, Zhaohuan; Stone, James M.

    2018-04-01

    The interaction of a satellite with a gaseous disc results in the excitation of spiral density waves, which remove angular momentum from the orbit. In addition, if the orbit is not coplanar with the disc, three-dimensional effects will excite bending and eccentricity waves. We perform three-dimensional hydrodynamic simulations to study nonlinear disc-satellite interaction in inviscid protoplanetary discs for a variety of orbital inclinations from 0° to 180°. It is well known that three-dimensional effects are important even for zero inclination. In this work, we (1) show that for planets with small inclinations (as in the Solar system), effects such as the total torque and migration rate strongly depend on the inclination and are significantly different (about 2.5 times smaller) from the two-dimensional case, (2) give formulae for the migration rate, inclination damping, and precession rate of planets with different inclination angles in disc with different scale heights, and (3) present the observational signatures of a planet on an inclined orbit with respect to the protoplanetary disc. For misaligned planets, we find good agreement with linear theory in the limit of small inclinations, and with dynamical friction estimates for intermediate inclinations. We find that in the latter case, the dynamical friction force is not parallel to the relative planetary velocity. Overall, the derived formulae will be important for studying exoplanets with obliquity.

  3. Genesis of Twin Tropical Cyclones as Revealed by a Global Mesoscale Model: The Role of Mixed Rossby Gravity Waves

    NASA Technical Reports Server (NTRS)

    Shen, Bo-Wen; Tao, Wei-Kuo; Lin, Yuh-Lang; Laing, Arlene

    2012-01-01

    In this study, it is proposed that twin tropical cyclones (TCs), Kesiny and 01A, in May 2002 formed in association with the scale interactions of three gyres that appeared as a convectively coupled mixed Rossby gravity (ccMRG) wave during an active phase of the Madden-Julian Oscillation (MJO). This is shown by analyzing observational data, including NCEP reanalysis data and METEOSAT 7 IR satellite imagery, and performing numerical simulations using a global mesoscale model. A 10-day control run is initialized at 0000 UTC 1 May 2002 with grid-scale condensation but no sub-grid cumulus parameterizations. The ccMRG wave was identified as encompassing two developing and one non-developing gyres, the first two of which intensified and evolved into the twin TCs. The control run is able to reproduce the evolution of the ccMRG wave and thus the formation of the twin TCs about two and five days in advance as well as their subsequent intensity evolution and movement within an 8-10 day period. Five additional 10-day sensitivity experiments with different model configurations are conducted to help understand the interaction of the three gyres, leading to the formation of the TCs. These experiments suggest the improved lead time in the control run may be attributed to the realistic simulation of the ccMRG wave with the following processes: (1) wave deepening (intensification) associated with a reduction in wavelength and/or the intensification of individual gyres, (2) poleward movement of gyres that may be associated with boundary layer processes, (3) realistic simulation of moist processes at regional scales in association with each of the gyres, and (4) the vertical phasing of low- and mid-level cyclonic circulations associated with a specific gyre.

  4. A Comparative Study of Simulated and Measured Gear-Flap Flow Interaction

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Mineck, Raymond E.; Yao, Chungsheng; Jenkins, Luther N.; Fares, Ehab

    2015-01-01

    The ability of two CFD solvers to accurately characterize the transient, complex, interacting flowfield asso-ciated with a realistic gear-flap configuration is assessed via comparison of simulated flow with experimental measurements. The simulated results, obtained with NASA's FUN3D and Exa's PowerFLOW® for a high-fidelity, 18% scale semi-span model of a Gulfstream aircraft in landing configuration (39 deg flap deflection, main landing gear on and off) are compared to two-dimensional and stereo particle image velocimetry measurements taken within the gear-flap flow interaction region during wind tunnel tests of the model. As part of the bench-marking process, direct comparisons of the mean and fluctuating velocity fields are presented in the form of planar contour plots and extracted line profiles at measurement planes in various orientations stationed in the main gear wake. The measurement planes in the vicinity of the flap side edge and downstream of the flap trailing edge are used to highlight the effects of gear presence on tip vortex development and the ability of the computational tools to accurately capture such effects. The present study indicates that both computed datasets contain enough detail to construct a relatively accurate depiction of gear-flap flow interaction. Such a finding increases confidence in using the simulated volumetric flow solutions to examine the behavior of pertinent aer-odynamic mechanisms within the gear-flap interaction zone.

  5. c-Abl interacts with the WAVE2 signaling complex to induce membrane ruffling and cell spreading.

    PubMed

    Stuart, Jeremy R; Gonzalez, Francis H; Kawai, Hidehiko; Yuan, Zhi-Min

    2006-10-20

    The Wiskott-Aldrich syndrome-related protein WAVE2 promotes Arp2/3-dependent actin polymerization downstream of Rho-GTPase activation. The Abelson-interacting protein-1 (Abi-1) forms the core of the WAVE2 complex and is necessary for proper stimulation of WAVE2 activity. Here we have shown that the Abl-tyrosine kinase interacts with the WAVE2 complex and that Abl kinase activity facilitates interaction between Abl and WAVE2 complex members. We have characterized various interactions between Abl and members of the WAVE2 complex and revealed that Abi-1 promotes interaction between Abl and WAVE2 members. We have demonstrated that Abl-dependent phosphorylation of WAVE2 is necessary for its activation in vivo, which is highlighted by the findings that RNA interference of WAVE2 expression in Abl/Arg-/- cells has no additive effect on the amount of membrane ruffling. Furthermore, Abl phosphorylates WAVE2 on tyrosine 150, and WAVE2-deficient cells rescued with a Y150F mutant fail to regain their ability to ruffle and form microspikes, unlike cells rescued with wild-type WAVE2. Together, these data show that c-Abl activates WAVE2 via tyrosine phosphorylation to promote actin remodeling in vivo and that Abi-1 forms the crucial link between these two factors.

  6. Exploring Wave-Wave Interactions in a General Circulation Model

    NASA Astrophysics Data System (ADS)

    Nystrom, Virginia; Gasperini, Federico; Forbes, Jeffrey M.; Hagan, Maura E.

    2018-01-01

    Nonlinear interactions involving Kelvin waves with (periods, zonal wave numbers) = (3.7d, s =- 1) (UFKW1) and = (2.4d, s =- 1) (UFKW2) and s = 0 and s = 1 quasi 9 day waves (Q9DW) with diurnal tides DW1, DW2, DW3, DE2, and DE3 are explored within a National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM) simulation driven at its ˜30 km lower boundary by interpolated 3-hourly output from Modern-Era Retrospective Analysis for Research and Applications (MERRA). The existence of nonlinear wave-wave interactions between the above primary waves is determined by the presence of secondary waves (SWs) with frequencies and zonal wave numbers that are the sums and differences of those of the primary (interacting) waves. Focus is on 10-21 April 2009, when the nontidal dynamics in the mesosphere-lower thermosphere (MLT) region is dominated by UFKW and when identification of SW is robust. Fifteen SWs are identified in all. An interesting triad is identified involving UFKW1, DE3, and a secondary UFKW4 = (1.5d, s =- 2): The UFKW1-DE3 interaction produces UFKW4, the UFKW4-DE3 interaction produces UFKW1, and the UFKW1 interaction with UFKW4 produces DE3. At 120 km the dynamic range of the reconstructed latitude-longitude zonal wind field due to all of the SW is roughly half that of the primary waves, which produced them. This suggests that nonlinear wave-wave interactions could significantly modify the way that the lower atmosphere couples with the ionosphere.

  7. Efficacy of low-dose oral sulodexide in the management of diabetic nephropathy.

    PubMed

    Blouza, Samira; Dakhli, Sabeur; Abid, Hafaoua; Aissaoui, Mohamed; Ardhaoui, Ilhem; Ben Abdallah, Nejib; Ben Brahim, Samir; Ben Ghorbel, Imed; Ben Salem, Nabila; Beji, Soumaya; Chamakhi, Said; Derbel, Adnene; Derouiche, Fethi; Djait, Faycal; Doghri, Taieb; Fourti, Yamina; Gharbi, Faycel; Jellouli, Kamel; Jellazi, Nabil; Kamoun, Kamel; Khedher, Adel; Letaief, Amel; Limam, Ridha; Mekaouer, Awatef; Miledi, Riadh; Nagati, Khemaies; Naouar, Meriem; Sellem, Sami; Tarzi, Hichem; Turki, Selma; Zidi, Borni; Achour, Abdellatif

    2010-01-01

    Diabetic nephropathy (DN) is the single greatest cause of end-stage renal disease (ESRD). Without specific interventions, microalbuminuria (incipient nephropathy) gradually progresses to macroalbuminuria (overt nephropathy) within 10-15 years in about 80% of type 1 and 30% of type 2 diabetic patients, and to ESRD within further 20 years in about 75% and 20%, respectively. A primary alteration in DN consists of decreased concentration of glycosaminoglycans (GAGs) in the glomerular extracellular matrix. This evidence has prompted interest in using exogenous GAGs and specifically sulodexide in DN treatment. In this uncontrolled multicenter study, diabetic patients with albumin excretion rate (AER) >or=30 mg/24 hours were treated with oral sulodexide 50 mg/day for 6 months, while receiving concomitant medication as required. Two hundred thirty-seven patients (54% males and 46% females, mean age 55 years, mean diabetes duration 11 years) were evaluated; 89% had type 2 and 11% type 1 diabetes mellitus, 67% microalbuminuria and 33% macroalbuminuria. AER was significantly and progressively reduced during sulodexide treatment (p<0.0001): geometric mean after 3 and 6 months was 63.7% (95% confidence interval [95% CI], 59.3%-68.4%) and 42.7% (95% CI, 37.8%-48.2%) of baseline, respectively. The reduction was similar in type 1 and type 2 diabetes and was slightly greater in macroalbuminuric than in microalbuminuric patients. Blood pressure was slightly lowered, while fasting glucose and glycosylated hemoglobin were moderately reduced. Adverse effects were observed in 5.5% of patients, including gastrointestinal in 3.8%. Sulodexide therapy was shown to reduce AER in patients with DN.

  8. Monitoring of endoscope reprocessing with an adenosine triphosphate (ATP) bioluminescence method.

    PubMed

    Parohl, Nina; Stiefenhöfer, Doris; Heiligtag, Sabine; Reuter, Henning; Dopadlik, Dana; Mosel, Frank; Gerken, Guido; Dechêne, Alexander; Heintschel von Heinegg, Evelyn; Jochum, Christoph; Buer, Jan; Popp, Walter

    2017-01-01

    Background: The arising challenges over endoscope reprocessing quality proposes to look for possibilities to measure and control the process of endoscope reprocessing. Aim: The goal of this study was to evaluate the feasibility of monitoring endoscope reprocessing with an adenosine triphosphate (ATP) based bioluminescence system. Methods: 60 samples of eight gastroscopes have been assessed from routine clinical use in a major university hospital in Germany. Endoscopes have been assessed with an ATP system and microbial cultures at different timepoints during the reprocessing. Findings: After the bedside flush the mean ATP level in relative light units (RLU) was 19,437 RLU, after the manual cleaning 667 RLU and after the automated endoscope reprocessor (AER) 227 RLU. After the manual cleaning the mean total viable count (TVC) per endoscope was 15.3 CFU/10 ml, and after the AER 5.7 CFU/10 ml. Our results show that there are reprocessing cycles which are not able to clean a patient used endoscope. Conclusion: Our data suggest that monitoring of flexible endoscope with ATP can identify a number of different influence factors, like the endoscope condition and the endoscopic procedure, or especially the quality of the bedside flush and manual cleaning before the AER. More process control is one option to identify and improve influence factors to finally increase the overall reprocessing quality, best of all by different methods. ATP measurement seems to be a valid technique that allows an immediate repeat of the manual cleaning if the ATP results after manual cleaning exceed the established cutoff of 200 RLU.

  9. [Virulence markers of Escherichia coli O1 strains].

    PubMed

    Makarova, M A; Kaftyreva, L A; Grigor'eva, N S; Kicha, E V; Lipatova, L A

    2011-01-01

    To detect virulence genes in clinical isolates of Escherichia coli O1 using polymerase chain reaction (PCR). One hundred and twenty strains of E.coli O1 strains isolated from faeces of patients with acute diarrhea (n = 45) and healthy persons (n = 75) were studied. PCR with primers for rfb and fliC genes, which control synthesis of O- and H- antigens respectively, was used. Fourteen virulence genes (pap, aaf, sfa, afa, eaeA, bfpA, ial, hly, cnf, stx1, stx2, lt, st, and aer) were detected by PCR primers. K1-antigen was determined by Pastorex Meningo B/E. coli O1 kit (Bio-Rad). rfb gene controlling O-antigen synthesis in serogroup O1 as well as fliC gene controlling synthesis of H7 and K1 antigens were detected in all strains. Thus all E. coli strains had antigenic structure O1:K1 :H-:F7. Virulence genes aafl, sfa, afa, eaeA, bfpA, ial, hly, cnf, stx1, stx2, lt, and st were not detected. All strains owned pap and aer genes regardless of the presence of acute diarrhea symptoms. It was shown that E. coli O1:KI:H-:F7 strains do not have virulence genes which are characteristic for diarrhea-causing Escherichia. In accordance with the presence of pap and aer genes they could be attributed to uropathogenic Escherichia (UPEC) or avian-pathogenic Escherichia (APEC). It is necessary to detect virulence factors in order to determine E. coli as a cause of intestinal infection.

  10. A theoretical formulation of wave-vortex interactions

    NASA Technical Reports Server (NTRS)

    Wu, J. Z.; Wu, J. M.

    1989-01-01

    A unified theoretical formulation for wave-vortex interaction, designated the '(omega, Pi) framework,' is presented. Based on the orthogonal decomposition of fluid dynamic interactions, the formulation can be used to study a variety of problems, including the interaction of a longitudinal (acoustic) wave and/or transverse (vortical) wave with a main vortex flow. Moreover, the formulation permits a unified treatment of wave-vortex interaction at various approximate levels, where the normal 'piston' process and tangential 'rubbing' process can be approximated dfferently.

  11. Violent transient sloshing-wave interaction with a baffle in a three-dimensional numerical tank

    NASA Astrophysics Data System (ADS)

    Xue, Mi-An; Zheng, Jinhai; Lin, Pengzhi; Xiao, Zhong

    2017-08-01

    A finite difference model for solving Navier Stokes equations with turbulence taken into account is used to investigate viscous liquid sloshing-wave interaction with baffles in a tank. The volume-of-fluid and virtual boundary force methods are employed to simulate free surface flow interaction with structures. A liquid sloshing experimental apparatus was established to evaluate the accuracy of the proposed model, as well as to study nonlinear sloshing in a prismatic tank with the baffles. Damping effects of sloshing in a rectangular tank with bottom-mounted vertical baffles and vertical baffles touching the free surface are studied numerically and experimentally. Good agreement is obtained between the present numerical results and experimental data. The numerical results match well with the current experimental data for strong nonlinear sloshing with large free surface slopes. The reduction in sloshing-wave elevation and impact pressure induced by the bottom-mounted vertical baffle and the vertical baffle touching the free surface is estimated by varying the external excitation frequency and the location and height of the vertical baffle under horizontal excitation.

  12. An analytically solvable three-body break-up model problem in hyperspherical coordinates

    NASA Astrophysics Data System (ADS)

    Ancarani, L. U.; Gasaneo, G.; Mitnik, D. M.

    2012-10-01

    An analytically solvable S-wave model for three particles break-up processes is presented. The scattering process is represented by a non-homogeneous Coulombic Schrödinger equation where the driven term is given by a Coulomb-like interaction multiplied by the product of a continuum wave function and a bound state in the particles coordinates. The closed form solution is derived in hyperspherical coordinates leading to an analytic expression for the associated scattering transition amplitude. The proposed scattering model contains most of the difficulties encountered in real three-body scattering problem, e.g., non-separability in the electrons' spherical coordinates and Coulombic asymptotic behavior. Since the coordinates' coupling is completely different, the model provides an alternative test to that given by the Temkin-Poet model. The knowledge of the analytic solution provides an interesting benchmark to test numerical methods dealing with the double continuum, in particular in the asymptotic regions. An hyperspherical Sturmian approach recently developed for three-body collisional problems is used to reproduce to high accuracy the analytical results. In addition to this, we generalized the model generating an approximate wave function possessing the correct radial asymptotic behavior corresponding to an S-wave three-body Coulomb problem. The model allows us to explore the typical structure of the solution of a three-body driven equation, to identify three regions (the driven, the Coulombic and the asymptotic), and to analyze how far one has to go to extract the transition amplitude.

  13. Dimensional Effects on the Charge Density Waves in Ultrathin Films of TiSe 2

    DOE PAGES

    Chen, P.; Chan, Y. -H.; Wong, M. -H.; ...

    2016-09-20

    Charge density wave (CDW) formation in solids is a critical phenomenon involving the collective reorganization of the electrons and atoms in the system into a wave structure, and it is expected to be sensitive to the geometric constraint of the system at the nanoscale. Here, we study the CDW transition in TiSe 2, a quasi-two-dimensional layered material, to determine the effects of quantum confinement and changing dimensions in films ranging from a single layer to multilayers. Of key interest is the characteristic length scale for the transformation from a two-dimensional case to the three-dimensional limit. Angle-resolved photoemission (ARPES) measurements ofmore » films with thicknesses up to six layers reveal substantial variations in the energy structure of discrete quantum well states; however, the temperature-dependent band-gap renormalization converges at just three layers. The results indicate a layer-dependent mixture of two transition temperatures and a very-short-range CDW interaction within a three-dimensional framework.« less

  14. Asymmetries in surface waves and reflection/transmission characteristics associated with topological insulators

    NASA Astrophysics Data System (ADS)

    Mackay, Tom G.; Chiadini, Francesco; Fiumara, Vincenzo; Scaglione, Antonio; Lakhtakia, Akhlesh

    2017-08-01

    Three numerical studies were undertaken involving the interactions of plane waves with topological insulators. In each study, the topologically insulating surface states of the topological insulator were represented through a surface admittance. Canonical boundary-value problems were solved for the following cases: (i) Dyakonov surface-wave propagation guided by the planar interface of a columnar thin film and an isotropic dielectric topological insulator; (ii) Dyakonov-Tamm surface-wave propagation guided by the planar interface of a structurally chiral material and an isotropic dielectric topological insulator; and (iii) reflection and transmission due to the planar interface of a topologically insulating columnar thin film and vacuum. The nonzero surface admittance resulted in asymmetries in the wave speeds and decay constants of the surface waves in studies (i) and (ii). The nonzero surface admittance resulted in asymmetries in the reflectances and transmittances in study (iii).

  15. mDia1 and WAVE2 proteins interact directly with IRSp53 in filopodia and are involved in filopodium formation.

    PubMed

    Goh, Wah Ing; Lim, Kim Buay; Sudhaharan, Thankiah; Sem, Kai Ping; Bu, Wenyu; Chou, Ai Mei; Ahmed, Sohail

    2012-02-10

    Filopodia are dynamic actin-rich cell surface protrusions involved in cell migration, axon guidance, and wound healing. The RhoGTPase Cdc42 generates filopodia via IRSp53, a multidomain protein that links the processes of plasma membrane deformation and actin dynamics required for their formation in mammalian cells. The Src homology 3 domain of IRSp53 binds to the actin regulators Mena, Eps8, WAVE1, WAVE2, mDia1, and mDia2. We show that mDia1 and WAVE2 synergize with IRSp53 to form filopodia. IRSp53 also interacts directly with these two proteins within filopodia, as observed in acceptor photobleaching FRET studies. Measurement of filopodium formation by time-lapse imaging of live cells also revealed that depleting neuronal cells of either mDia1 or WAVE2 protein decreases the ability of IRSp53 to induce filopodia. In contrast, IRSp53 does not appear to partner WAVE1 or mDia2 to give rise to these structures. In addition, although all three isoforms of mDia are capable of inducing filopodia, IRSp53 requires only mDia1 to do so. These findings suggest that mDia1 and WAVE2 are important Src homology 3 domain partners of IRSp53 in forming filopodia.

  16. mDia1 and WAVE2 Proteins Interact Directly with IRSp53 in Filopodia and Are Involved in Filopodium Formation

    PubMed Central

    Goh, Wah Ing; Lim, Kim Buay; Sudhaharan, Thankiah; Sem, Kai Ping; Bu, Wenyu; Chou, Ai Mei; Ahmed, Sohail

    2012-01-01

    Filopodia are dynamic actin-rich cell surface protrusions involved in cell migration, axon guidance, and wound healing. The RhoGTPase Cdc42 generates filopodia via IRSp53, a multidomain protein that links the processes of plasma membrane deformation and actin dynamics required for their formation in mammalian cells. The Src homology 3 domain of IRSp53 binds to the actin regulators Mena, Eps8, WAVE1, WAVE2, mDia1, and mDia2. We show that mDia1 and WAVE2 synergize with IRSp53 to form filopodia. IRSp53 also interacts directly with these two proteins within filopodia, as observed in acceptor photobleaching FRET studies. Measurement of filopodium formation by time-lapse imaging of live cells also revealed that depleting neuronal cells of either mDia1 or WAVE2 protein decreases the ability of IRSp53 to induce filopodia. In contrast, IRSp53 does not appear to partner WAVE1 or mDia2 to give rise to these structures. In addition, although all three isoforms of mDia are capable of inducing filopodia, IRSp53 requires only mDia1 to do so. These findings suggest that mDia1 and WAVE2 are important Src homology 3 domain partners of IRSp53 in forming filopodia. PMID:22179776

  17. Cloud Forming Potential of Aerosol from Light-duty Gasoline Direct Injection Vehicles

    DOT National Transportation Integrated Search

    2017-12-01

    In this study, we evaluate the hygroscopicity and droplet kinetics of fresh and aged emissions from new generation gasoline direct injector engines retrofitted with a gasoline particulate filter (GPF). Furthermore, ageing and subsequent secondary aer...

  18. The interaction between a propagating coastal vortex and topographic waves

    NASA Astrophysics Data System (ADS)

    Parry, Simon Wyn

    This thesis investigates the motion of a point vortex near coastal topography in a rotating frame of reference at constant latitude (f-plane) in the linear and weakly nonlinear limits. Topography is considered in the form of an infinitely long escarpment running parallel to a wall. The vortex motion and topographic waves are governed by the conservation of quasi-geostrophic potential vorticity in shallow water, from which a nonlinear system of equations is derived. First the linear limit is studied for three cases; a weak vortex on- and off-shelf and a weak vortex close to the wall. For the first two cases it is shown that to leading order the vortex motion is stationary and a solution for the topographic waves at the escarpment can be found in terms of Fourier integrals. For a weak vortex close to a wall, the leading order solution is a steadily propagating vortex with a topographic wavetrain at the step. Numerical results for the higher order interactions are also presented and explained in terms of conservation of momentum in the along-shore direction. For the second case a resonant interaction between the vortex and the waves occurs when the vortex speed is equal to the maximum group velocity of the waves and the linear response becomes unbounded at large times. Thus it becomes necessary to examine the weakly nonlinear near-resonant case. Using a long wave approximation a nonlinear evolution equation for the interface separating the two regions of differing relative potential vorticity is derived and has similar form to the BDA (Benjamin, Davies, Acrivos 1967) equation. Results for the leading order steadily propagating vortex and for the vortex-wave feedback problem are calculated numerically using spectral multi-step Adams methods.

  19. Influences of periodic mechanical deformation on pinned spiral waves

    NASA Astrophysics Data System (ADS)

    Chen, Jiang-Xing; Peng, Liang; Zheng, Qiang; Zhao, Ye-Hua; Ying, He-Ping

    2014-09-01

    In a generic model of excitable media, we study the behavior of spiral waves interacting with obstacles and their dynamics under the influences of simple periodic mechanical deformation (PMD). Depending on the characteristics of the obstacles, i.e., size and excitability, the rotation of a pinned spiral wave shows different scenarios, e.g., embedding into or anchoring on an obstacle. Three different drift phenomena induced by PMD are observed: scattering on small partial-excitable obstacles, meander-induced unpinning on big partial-excitable obstacles, and drifting around small unexcitable obstacles. Their underlying mechanisms are discussed. The dependence of the threshold amplitude of PMD on the characteristics of the obstacles to successfully remove pinned spiral waves on big partial-excitable obstacles is studied.

  20. 3D multicellular model of shock wave-cell interaction.

    PubMed

    Li, Dongli; Hallack, Andre; Cleveland, Robin O; Jérusalem, Antoine

    2018-05-01

    Understanding the interaction between shock waves and tissue is critical for ad- vancing the use of shock waves for medical applications, such as cancer therapy. This work aims to study shock wave-cell interaction in a more realistic environment, relevant to in vitro and in vivo studies, by using 3D computational models of healthy and cancerous cells. The results indicate that for a single cell embedded in an extracellular environment, the cellular geometry does not influence significantly the membrane strain but does influence the von Mises stress. On the contrary, the presence of neighbouring cells has a strong effect on the cell response, by increasing fourfold both quantities. The membrane strain response of a cell converges with more than three neighbouring cell layers, indicating that a cluster of four layers of cells is sufficient to model the membrane strain in a large domain of tissue. However, a full 3D tissue model is needed if the stress evaluation is of main interest. A tumour mimicking multicellular spheroid model is also proposed to study mutual interaction between healthy and cancer cells and shows that cancer cells can be specifically targeted in an early stage tumour-mimicking environment. This work presents 3D computational models of shock-wave/cell interaction in a biophysically realistic environment using real cell morphology in tissue-mimicking phantom and multicellular spheroid. Results show that cell morphology does not strongly influence the membrane strain but influences the von Mises stress. While the presence of neighbouring cells significantly increases the cell response, four cell layers are enough to capture the membrane strain change in tissue. However, a full tissue model is necessary if accurate stress analysis is needed. The work also shows that cancer cells can be specifically targetted in early stage tumourmimicking environment. This work is a step towards realistic modelling of shock-wave/cell interactions in tissues and provides insight on the use of 3D models for different scenarios. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Theory of ITG turbulent saturation in stellarators: identifying mechanisms to reduce turbulent transport

    DOE PAGES

    Hegna, Chris C.; Terry, Paul W.; Faber, Ben J.

    2018-02-01

    A three-field fluid model that allows for general three-dimensional equilibrium geometry is developed to describe ion temperature gradient turbulent saturation processes in stellarators. The theory relies on the paradigm of nonlinear transfer of energy from unstable to damped modes at comparable wavelength as the dominant saturation mechanism. The unstable-to-damped mode interaction is enabled by a third mode that for dominant energy transfer channels primarily serves as a regulator of the nonlinear energy transfer rate. The identity of the third wave in the interaction defines different scenarios for turbulent saturation with the dominant scenario depending upon the properties of the 3Dmore » geometry. The nonlinear energy transfer physics is quantified by the product of a turbulent correlation lifetime and a geometric coupling coefficient. The turbulent correlation time is determined by a three-wave frequency mismatch, which at long wavelength can be calculated from the sum of the linear eigenfrequencies of the three modes. Larger turbulent correlation times denote larger levels of nonlinear energy transfer and hence smaller turbulent transport. The theory provides an analytic prediction for how 3D shaping can be tuned to lower turbulent transport through saturation processes.« less

  2. Theory of ITG turbulent saturation in stellarators: identifying mechanisms to reduce turbulent transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hegna, Chris C.; Terry, Paul W.; Faber, Ben J.

    A three-field fluid model that allows for general three-dimensional equilibrium geometry is developed to describe ion temperature gradient turbulent saturation processes in stellarators. The theory relies on the paradigm of nonlinear transfer of energy from unstable to damped modes at comparable wavelength as the dominant saturation mechanism. The unstable-to-damped mode interaction is enabled by a third mode that for dominant energy transfer channels primarily serves as a regulator of the nonlinear energy transfer rate. The identity of the third wave in the interaction defines different scenarios for turbulent saturation with the dominant scenario depending upon the properties of the 3Dmore » geometry. The nonlinear energy transfer physics is quantified by the product of a turbulent correlation lifetime and a geometric coupling coefficient. The turbulent correlation time is determined by a three-wave frequency mismatch, which at long wavelength can be calculated from the sum of the linear eigenfrequencies of the three modes. Larger turbulent correlation times denote larger levels of nonlinear energy transfer and hence smaller turbulent transport. The theory provides an analytic prediction for how 3D shaping can be tuned to lower turbulent transport through saturation processes.« less

  3. Computation of viscous blast wave flowfields

    NASA Technical Reports Server (NTRS)

    Atwood, Christopher A.

    1991-01-01

    A method to determine unsteady solutions of the Navier-Stokes equations was developed and applied. The structural finite-volume, approximately factored implicit scheme uses Newton subiterations to obtain the spatially and temporally second-order accurate time history of the interaction of blast-waves with stationary targets. The inviscid flux is evaluated using MacCormack's modified Steger-Warming flux or Roe flux difference splittings with total variation diminishing limiters, while the viscous flux is computed using central differences. The use of implicit boundary conditions in conjunction with a telescoping in time and space method permitted solutions to this strongly unsteady class of problems. Comparisons of numerical, analytical, and experimental results were made in two and three dimensions. These comparisons revealed accurate wave speed resolution with nonoscillatory discontinuity capturing. The purpose of this effort was to address the three-dimensional, viscous blast-wave problem. Test cases were undertaken to reveal these methods' weaknesses in three regimes: (1) viscous-dominated flow; (2) complex unsteady flow; and (3) three-dimensional flow. Comparisons of these computations to analytic and experimental results provided initial validation of the resultant code. Addition details on the numerical method and on the validation can be found in the appendix. Presently, the code is capable of single zone computations with selection of any permutation of solid wall or flow-through boundaries.

  4. Planetary Wave-Tide Interactions in Atmosphere-Ionosphere Coupling, Xiaoli Zhang, Jeffrey M. Forbes, Astrid Maute, and Maura E. Hagan

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Forbes, J. M.; Maute, A. I.

    2017-12-01

    Planetary Wave-Tide Interactions in Atmosphere-Ionosphere Coupling Xiaoli Zhang, Jeffrey M. Forbes, Astrid Maute, and Maura E. Hagan The existence of secondary waves in the mesosphere and thermosphere due to nonlinear interactions between atmospheric tides and longer-period waves have been revealed in both satellite data and in the National Center for Atmospheric Research (NCAR) Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM). The longer-period waves include the quasi-2-day and 6-day westward-propagating "normal modes" of the atmosphere, and eastward-propagating ultra-fast Kelvin waves with periods between 2 and 4 days. The secondary waves add to both the temporal and longitude variability of the atmosphere beyond that associated with the linear superposition of the interacting waves, thus adding "complexity" to the system. Based on our knowledge of the processes governing atmosphere-ionosphere interactions, similar revelations are expected to occur in electric fields, vertical plasma drifts and F-region electron densities. Towards this end, examples of such ionospheric manifestations of wave-wave interactions in TIE-GCM simulations will be presented.

  5. Role of helicity in triad interactions in three-dimensional turbulence investigated by a new shell model

    NASA Astrophysics Data System (ADS)

    Rathmann, Nicholas M.; Ditlevsen, Peter D.

    2016-09-01

    Fully developed homogeneous isotropic turbulence in two dimensions is fundamentally different from that in three dimensions. In two dimensions, the simultaneous inviscid conservation of both kinetic energy and enstrophy within the inertial range of scales leads to a forward cascade of enstrophy and a reverse cascade of energy. In three dimensions, helicity, the integral of the scalar product of velocity and vorticity, is also an inviscid flow invariant along with the energy. Unlike the enstrophy, however, the helicity does not block the forward cascade of energy to small scales. Energy and helicity are conserved not only globally but also within each nonlinear triadic interaction between three plane waves in the spectral form of the Navier-Stokes equation (NSE). By decomposing each plane wave into two helical modes of opposite helicities, each triadic interaction is split into a set of eight helical triadic interactions between helical modes [F. Waleffe, Phys. Fluids A 4, 350 (1992), 10.1063/1.858309]. Recently it was found that a subset of these helical interactions, which render both signs of helicity separately conserved (enstrophy-like), leads to an inverse cascade of (part of) the energy [L. Biferale et al., Phys. Rev. Lett. 108, 164501 (2012), 10.1103/PhysRevLett.108.164501]. Motivated by this finding we introduce a new shell model, obtained from the NSE expressed in the helical basis, allowing the eight helical interactions to be coupled as in the NSE and their relative contributions evaluated as a function of both the net helicity input and triad geometry. By numerically integrating the new model, we find that the intermittency of the energy cascade decreases with the net helicity input. Studying the partitioning of the energy cascade between the eight helical interactions, we find that the decrease in intermittency is related to a shift in the dominating helical interactions when helically forced, two of which exhibit a larger cascade intermittency than the other six interactions. Among the relatively local triad geometries considered here, the partitioning of the energy and helicity cascades between the eight helical interactions shows no sign of change with triad geometry.

  6. The time variability of Jupiter's synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Bolton, Scott Jay

    1991-02-01

    The time variability of the Jovian synchrotron emission is investigated by analyzing radio observations of Jupiter at decimetric wavelengths. The observations are composed from two distinct sets of measurements addressing both short term (days to weeks) and long term (months to years) variability. The study of long term variations utilizes a set of measurements made several times each month with the NASA Deep Space Network (DNS) antennas operating at 2295 MHz (13.1 cm). The DSN data set, covering 1971 through 1985, is compared with a set of measurements of the solar wind from a number of Earth orbiting spacecraft. The analysis indicates a maximum correlation between the synchrotron emission and the solar wind ram pressure with a two year time lag. Physical mechanisms affecting the synchrotron emission are discussed with an emphasis on radial diffusion. Calculations are performed that suggest the correlation is consistent with inward adiabatic diffusion of solar wind particles driven by Brice's model of ionospheric neutral wind convection (Brice 1972). The implication is that the solar wind could be a source of particles of Jupiter's radiation belts. The investigation of short term variability focuses on a three year Jupiter observing program using the University of California's Hat Creek radio telescope operating at 1400 MHz (21 cm). Measurements are made every two days during the months surrounding opposition. Results from the three year program suggest short term variability near the 10-20 percent level but should be considered inconclusive due to scheduling and observational limitations. A discussion of magneto-spheric processes on short term timescales identifies wave-particle interactions as a candidate source. Further analysis finds that the short term variations could be related to whistler mode wave-particles interactions in the radiation belts associated with atmospheric lightning on Jupiter. However, theoretical calculations on wave particle interactions imply thought if whistler mode waves are to interact with the synchrotron emitting electrons.

  7. Evaluation of major heat waves' mechanisms in EURO-CORDEX RCMs over Central Europe

    NASA Astrophysics Data System (ADS)

    Lhotka, Ondřej; Kyselý, Jan; Plavcová, Eva

    2018-06-01

    The main aim of the study is to evaluate the capability of EURO-CORDEX regional climate models (RCMs) to simulate major heat waves in Central Europe and their associated meteorological factors. Three reference major heat waves (1994, 2006, and 2015) were identified in the E-OBS gridded data set, based on their temperature characteristics, length and spatial extent. Atmospheric circulation, precipitation, net shortwave radiation, and evaporative fraction anomalies during these events were assessed using the ERA-Interim reanalysis. The analogous major heat waves and their links to the aforementioned factors were analysed in an ensemble of EURO-CORDEX RCMs driven by various global climate models in the 1970-2016 period. All three reference major heat waves were associated with favourable circulation conditions, precipitation deficit, reduced evaporative fraction and increased net shortwave radiation. This joint contribution of large-scale circulation and land-atmosphere interactions is simulated with difficulties in majority of the RCMs, which affects the magnitude of modelled major heat waves. In some cases, the seemingly good reproduction of major heat waves' magnitude is erroneously achieved through extremely favourable circulation conditions compensated by a substantial surplus of soil moisture or vice versa. These findings point to different driving mechanisms of major heat waves in some RCMs compared to observations, which should be taken into account when analysing and interpreting future projections of these events.

  8. Technique to measure wavenumber mismatch between quadratically interacting modes

    NASA Astrophysics Data System (ADS)

    Hajj, M. R.; Davila, J. B.; Miksad, R. W.; Powers, E. J.

    1995-02-01

    Nonlinear energy cascade by means of three-wave resonant interactions is a characteristic feature of transitioning and turbulent flows. Resonant wavenumber mismatch between these interacting modes can arise from the dispersive characteristics of the interacting waves and from spectral broadening due to random effects. In this paper, a general technique is presented to estimate the average level of instantaneous wavenumber mismatch, (Delta k) = (k(sub m) - k(sub i) - k(sub j)), between components whose frequencies obey the resonant selection condition, f(sub m) - f(sub i) - f(sub j) = 0. Cross-correlation of the auto-bispectrum is used to quantify the level of mismatch. The concept of bispectrum coupling coherency is introduced to determine the confidence level in the wavenumber mismatch estimates. These techniques are then applied to measure wavenumber mismatch in the transitioning field of a plane wake. The results show that the average of the instantaneous mismatch between the actual interacting modes (k(sub m) - k(sub i) - k(sub j)) is in general not equal to the mismatch between the average wavenumbers of each interacting mode (k(sub m) - (k(sub i)) - (k(sub j)).

  9. Spin and Pseudospin Symmetries of Hellmann Potential with Three Tensor Interactions Using Nikiforov-Uvarov Method

    NASA Astrophysics Data System (ADS)

    Akpan, N. Ikot; Hassan, Hassanabadi; Tamunoimi, M. Abbey

    2015-12-01

    The Dirac equation with Hellmann potential is presented in the presence of Coulomb-like tensor (CLT), Yukawa-like tensor (YLT), and Hulthen-type tensor (HLT) interactions by using Nikiforov-Uvarov method. The bound state energy spectra and the radial wave functions are obtained approximately within the framework of spin and pseudospin symmetries limit. We have also reported some numerical results and figures to show the effects of the tensor interactions. Special cases of the potential are also discussed.

  10. Second harmonic generation at fatigue cracks by low-frequency Lamb waves: Experimental and numerical studies

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Ng, Ching-Tai; Kotousov, Andrei; Sohn, Hoon; Lim, Hyung Jin

    2018-01-01

    This paper presents experimental and theoretical analyses of the second harmonic generation due to non-linear interaction of Lamb waves with a fatigue crack. Three-dimensional (3D) finite element (FE) simulations and experimental studies are carried out to provide physical insight into the mechanism of second harmonic generation. The results demonstrate that the 3D FE simulations can provide a reasonable prediction on the second harmonic generated due to the contact nonlinearity at the fatigue crack. The effect of the wave modes on the second harmonic generation is also investigated in detail. It is found that the magnitude of the second harmonic induced by the interaction of the fundamental symmetric mode (S0) of Lamb wave with the fatigue crack is much higher than that by the fundamental anti-symmetric mode (A0) of Lamb wave. In addition, a series of parametric studies using 3D FE simulations are conducted to investigate the effect of the fatigue crack length to incident wave wavelength ratio, and the influence of the excitation frequency on the second harmonic generation. The outcomes show that the magnitude and directivity pattern of the generated second harmonic depend on the fatigue crack length to incident wave wavelength ratio as well as the ratio of S0 to A0 incident Lamb wave amplitude. In summary, the findings of this study can further advance the use of second harmonic generation in damage detection.

  11. Experimental Studies on Wave Interactions of Partially Perforated Wall under Obliquely Incident Waves

    PubMed Central

    Lee, Jong-In; Kim, Young-Taek; Shin, Sungwon

    2014-01-01

    This study presents wave height distribution in terms of stem wave evolution phenomena on partially perforated wall structures through three-dimensional laboratory experiments. The plain and partially perforated walls were tested to understand their effects on the stem wave evolution under the monochromatic and random wave cases with the various wave conditions, incident angle (from 10 to 40 degrees), and configurations of front and side walls. The partially perforated wall reduced the relative wave heights more effectively compared to the plain wall structure. Partially perforated walls with side walls showed a better performance in terms of wave height reduction compared to the structure without the side wall. Moreover, the relative wave heights along the wall were relatively small when the relative chamber width is large, within the range of the chamber width in this study. The wave spectra showed a frequency dependency of the wave energy dissipation. In most cases, the existence of side wall is a more important factor than the porosity of the front wall in terms of the wave height reduction even if the partially perforated wall was still effective compared to the plain wall. PMID:25254260

  12. Experimental studies on wave interactions of partially perforated wall under obliquely incident waves.

    PubMed

    Lee, Jong-In; Kim, Young-Taek; Shin, Sungwon

    2014-01-01

    This study presents wave height distribution in terms of stem wave evolution phenomena on partially perforated wall structures through three-dimensional laboratory experiments. The plain and partially perforated walls were tested to understand their effects on the stem wave evolution under the monochromatic and random wave cases with the various wave conditions, incident angle (from 10 to 40 degrees), and configurations of front and side walls. The partially perforated wall reduced the relative wave heights more effectively compared to the plain wall structure. Partially perforated walls with side walls showed a better performance in terms of wave height reduction compared to the structure without the side wall. Moreover, the relative wave heights along the wall were relatively small when the relative chamber width is large, within the range of the chamber width in this study. The wave spectra showed a frequency dependency of the wave energy dissipation. In most cases, the existence of side wall is a more important factor than the porosity of the front wall in terms of the wave height reduction even if the partially perforated wall was still effective compared to the plain wall.

  13. Qualitative numerical studies of the modification of the pitch angle distribution of test particles by alfvènic wave activity

    NASA Astrophysics Data System (ADS)

    Keilbach, D.; Drews, C.; Berger, L.; Marsch, E.; Wimmer-Schweingruber, R. F.

    2017-12-01

    Using a test particle approach we have investigated, how an oxygen pickup ion torus velocity distribution is modified by continuous and intermittent alfvènic waves on timescales, where the gyro trajectory of each particle can be traced.We have therefore exposed the test particles to mono frequent waves, which expanded through the whole simulation in time and space. The general behavior of the pitch angle distribution is found to be stationary and a nonlinear function of the wave frequency, amplitude and the initial angle between wave elongation and field-perpendicular particle velocity vector. The figure shows the time-averaged pitch angle distributions as a function of the Doppler shifted wave frequency (where the Doppler shift was calculated with respect to the particles initial velocity) for three different wave amplitudes (labeled in each panel). The background field is chosen to be 5 nT and the 500 test particles were initially distributed on a torus with 120° pitch angle at a solar wind velocity of 450 km/s. Each y-slice of the histogram (which has been normalized to it's respective maximum) represents an individual run of the simulation.The frequency-dependent behavior of the test particles is found to be classifiable into the regimes of very low/high frequencies and frequencies close to first order resonance. We have found, that only in the latter regime the particles interact strongly with the wave, where in the time averaged histograms a branch structure is found, which was identified as a trace of particles co-moving with the wave phase. The magnitude of pitch angle change of these particles is as well as the frequency margin, where the branch structure is found, an increasing function with the wave amplitude.We have also investigated the interaction with mono frequent intermittent waves. Exposed to such waves a torus distribution is scattered in pitch angle space, whereas the pitch angle distribution is broadened systematically over time similar to pitch angle diffusion.The framework of our simulations is a first step toward understanding wave particle interactions at the most basic level and is readily expandable to e.g. the inclusion of multiple wave frequencies, intermittent wave activity, gradients in the background magnetic field or collisions with solar wind particles.

  14. Simulation of asteroid impact on ocean surfaces, subsequent wave generation and the effect on US shorelines

    DOE PAGES

    Ezzedine, Souheil M.; Lomov, Ilya; Miller, Paul L.; ...

    2015-05-19

    As part of a larger effort involving members of several other organizations, we have conducted numerical simulations in support of emergency-response exercises of postulated asteroid ocean impacts. We have addressed the problem from source (asteroid entry) to ocean impact (splash) to wave generation, propagation and interaction with the U.S. shoreline. We simulated three impact sites. The first site is located off the east coast by Maryland's shoreline. The second site is located off of the West coast, the San Francisco bay. The third set of sites are situated in the Gulf of Mexico. Asteroid impacts on the ocean surface aremore » conducted using LLNL's hydrocode GEODYN to create the impact wave source for the shallow water wave propagation code, SWWP, a shallow depth averaged water wave code.« less

  15. A Biologically Constrained, Mathematical Model of Cortical Wave Propagation Preceding Seizure Termination

    PubMed Central

    González-Ramírez, Laura R.; Ahmed, Omar J.; Cash, Sydney S.; Wayne, C. Eugene; Kramer, Mark A.

    2015-01-01

    Epilepsy—the condition of recurrent, unprovoked seizures—manifests in brain voltage activity with characteristic spatiotemporal patterns. These patterns include stereotyped semi-rhythmic activity produced by aggregate neuronal populations, and organized spatiotemporal phenomena, including waves. To assess these spatiotemporal patterns, we develop a mathematical model consistent with the observed neuronal population activity and determine analytically the parameter configurations that support traveling wave solutions. We then utilize high-density local field potential data recorded in vivo from human cortex preceding seizure termination from three patients to constrain the model parameters, and propose basic mechanisms that contribute to the observed traveling waves. We conclude that a relatively simple and abstract mathematical model consisting of localized interactions between excitatory cells with slow adaptation captures the quantitative features of wave propagation observed in the human local field potential preceding seizure termination. PMID:25689136

  16. Simulation of asteroid impact on ocean surfaces, subsequent wave generation and the effect on US shorelines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ezzedine, Souheil M.; Lomov, Ilya; Miller, Paul L.

    As part of a larger effort involving members of several other organizations, we have conducted numerical simulations in support of emergency-response exercises of postulated asteroid ocean impacts. We have addressed the problem from source (asteroid entry) to ocean impact (splash) to wave generation, propagation and interaction with the U.S. shoreline. We simulated three impact sites. The first site is located off the east coast by Maryland's shoreline. The second site is located off of the West coast, the San Francisco bay. The third set of sites are situated in the Gulf of Mexico. Asteroid impacts on the ocean surface aremore » conducted using LLNL's hydrocode GEODYN to create the impact wave source for the shallow water wave propagation code, SWWP, a shallow depth averaged water wave code.« less

  17. Observations and Simulations of the Impact of Wave-Current Interaction on Wave Direction in the Surf Zone

    NASA Astrophysics Data System (ADS)

    Hopkins, Julia; Elgar, Steve; Raubenheimer, Britt

    2017-04-01

    Accurately characterizing the interaction of waves and currents can improve predictions of wave propagation and subsequent sediment transport in the nearshore. Along the southern shoreline of Martha's Vineyard, MA, waves propagate across strong tidal currents as they shoal, providing an ideal environment for investigating wave-current interaction. Wave directions and mean currents observed for two 1-month-long periods in 7- and 2-m water depths along 11 km of the Martha's Vineyard shoreline have strong tidal modulations. Wave directions shift by as much as 70 degrees over a tidal cycle in 7 m depth, and by as much as 25 degrees in 2 m depth. The magnitude of the tidal modulations in the wave field decreases alongshore to the west, consistent with the observed decrease in tidal currents from 2.1 to 0.2 m/s. The observations are reproduced accurately by a numerical model (SWAN and Deflt3D-FLOW) that simulates waves and currents over the observed bathymetry. Model simulations with and without wave-current interaction and tidal depth changes demonstrate that the observed tidal modulations of the wave field primarily are caused by wave-current interaction and not by tidal changes to water depths over the nearby complex shoals. Sediment transport estimates from simulated wave conditions using a range of tidal currents and offshore wave fields indicate that the modulation of the wave field at Martha's Vineyard can impact the direction of wave-induced alongshore sediment transport, sometimes driving transport opposing the direction of the offshore incident wave field. As such, the observations and model simulations suggest the importance of wave-current interaction to tidally averaged transport in mixed-energy wave-and-current nearshore environments. Supported by ASD(R&E), NSF, NOAA (Sea Grant), and ONR.

  18. Estimating and Valuing Morbidity in a Policy Context: Proceedings of June 1989 AERE Workshop (1989)

    EPA Pesticide Factsheets

    Contains the proceedings for the 1989 Association of Environmental and Resource Economists Workshop on valuing reductions in human health morbidity risks. Series of papers and discussions were collected and reported in the document.

  19. Nonlinear interaction of near-planar TS waves and longitudinal vortices in boundary-layer transition

    NASA Technical Reports Server (NTRS)

    Smith, F. T.

    1988-01-01

    The nonlinear interactions that evolve between a planar or nearly planar Tollmien-Schlichting (TS) wave and the associated longitudinal vortices are considered theoretically for a boundary layer at high Reynolds number. The vortex flow is either induced by the TS nonlinear forcing or is input upstream, and similarly for the nonlinear wave development. Three major kinds of nonlinear spatial evolution, Types 1-3, are found. Each can start from secondary instability and then become nonlinear, Type 1 proving to be relatively benign but able to act as a pre-cursor to the Types 2, 3 which turn out to be very powerful nonlinear interactions. Type 2 involves faster stream-wise dependence and leads to a finite-distance blow-up in the amplitudes, which then triggers the full nonlinear 3-D triple-deck response, thus entirely altering the mean-flow profile locally. In contrast, Type 3 involves slower streamwise dependence but a faster spanwise response, with a small TS amplitude thereby causing an enhanced vortex effect which, again, is substantial enough to entirely alter the meanflow profile, on a more global scale. Streak-like formations in which there is localized concentration of streamwise vorticity and/or wave amplitude can appear, and certain of the nonlinear features also suggest by-pass processes for transition and significant changes in the flow structure downstream. The powerful nonlinear 3-D interactions 2, 3 are potentially very relevant to experimental findings in transition.

  20. Basis convergence of range-separated density-functional theory.

    PubMed

    Franck, Odile; Mussard, Bastien; Luppi, Eleonora; Toulouse, Julien

    2015-02-21

    Range-separated density-functional theory (DFT) is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. We study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whereas it is polynomial for the case of the Coulomb interaction. We also study the convergence of the long-range second-order Møller-Plesset correlation energy of four systems (He, Ne, N2, and H2O) with cardinal number X of the Dunning basis sets cc - p(C)V XZ and find that the error in the correlation energy is best fitted by an exponential in X. This leads us to propose a three-point complete-basis-set extrapolation scheme for range-separated density-functional theory based on an exponential formula.

Top