Science.gov

Sample records for aerial application operations

  1. Application of solid state lighting in aerial refueling operations

    NASA Astrophysics Data System (ADS)

    Mangum, Scott; Singer, Jeffrey; Walker, Richard; Ferguson, Joseph; Kemp, Richard

    2005-09-01

    Operating at altitude and often in turbulent, low visibility conditions, in-flight refueling of aircraft is a challenging endeavor, even for seasoned aviators. The receiving aircraft must approach a large airborne tanker; take position within a "reception window" beneath and/or behind the tanker and, dependent upon the type of receiving aircraft, mate with an extended refueling boom or hose and drogue. Light is used to assist in the approach, alignment and refuel process of the aircraft. Robust solid state light emitting diodes (LEDs) are an appropriate choice for use in the challenging environments that these aircraft operate within. This paper examines how LEDs are incorporated into several unique lighting applications associated with such aerial refueling operations. We will discuss the design requirements, both environmental and photometric that defined the selection of different LED packages for use in state-of-the-art airborne refueling aircraft Formation Lights, Hose Drum/Drogue Unit lights and Pilot Director Lights.

  2. Risk and safety analysis for Florida commercial aerial application operations

    NASA Astrophysics Data System (ADS)

    Robbins, John Michael

    The purpose of this study was to determine self-reported perceptions in the areas of agroterrorism, bioterrorism, chemical exposure and Federal Aviation Administration (FAA) oversight. The aerial application industry has been in existence since the 1920's with a gamut of issues ranging from pesticide drift to counterterrorism. The attacks of September 11th, 2001, caused a paradigm shift in the way the United States views security and, more importantly, the prevention of malicious activity. Through the proper implementation and dissemination of educational materials dealing with industry specific concerns, it is imperative that everyone has the proper level of resources and training to effectively manage terrorist threats. This research study was designed to interpret how aerial applicators view these topics of concern and how they perceive the current threat level of terrorism in the industry. Research results were consistent, indicating that a high number of aerial applicators in the state of Florida are concerned with these topics. As a result, modifications need to be made with respect to certain variables. The aerial application industry works day in and day out to provide a professional service that helps maintain the integrity of the food and commodities that we need to survive. They are a small percentage of the aviation community that we all owe a great deal for the vital and necessary services they provide.

  3. Evaluation of Application Accuracy and Performance of a Hydraulically Operated Variable-Rate Aerial Application System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An aerial variable-rate application system consisting of a DGPS-based guidance system, automatic flow controller, and hydraulically controlled pump/valve was evaluated for response time to rapidly changing flow requirements and accuracy of application. Spray deposition position error was evaluated ...

  4. Modeling aerial refueling operations

    NASA Astrophysics Data System (ADS)

    McCoy, Allen B., III

    Aerial Refueling (AR) is the act of offloading fuel from one aircraft (the tanker) to another aircraft (the receiver) in mid flight. Meetings between tanker and receiver aircraft are referred to as AR events and are scheduled to: escort one or more receivers across a large body of water; refuel one or more receivers; or train receiver pilots, tanker pilots, and boom operators. In order to efficiently execute the Aerial Refueling Mission, the Air Mobility Command (AMC) of the United States Air Force (USAF) depends on computer models to help it make tanker basing decisions, plan tanker sorties, schedule aircraft, develop new organizational doctrines, and influence policy. We have worked on three projects that have helped AMC improve its modeling and decision making capabilities. Optimal Flight Planning. Currently Air Mobility simulation and optimization software packages depend on algorithms which iterate over three dimensional fuel flow tables to compute aircraft fuel consumption under changing flight conditions. When a high degree of fidelity is required, these algorithms use a large amount of memory and CPU time. We have modeled the rate of aircraft fuel consumption with respect to AC GrossWeight, Altitude and Airspeed. When implemented, this formula will decrease the amount of memory and CPU time needed to compute sortie fuel costs and cargo capacity values. We have also shown how this formula can be used in optimal control problems to find minimum costs flight plans. Tanker Basing Demand Mismatch Index. Since 1992, AMC has relied on a Tanker Basing/AR Demand Mismatch Index which aggregates tanker capacity and AR demand data into six regions. This index was criticized because there were large gradients along regional boundaries. Meanwhile tankers frequently cross regional boundaries to satisfy the demand for AR support. In response we developed continuous functions to score locations with respect to their proximity to demand for AR support as well as their

  5. Unmanned Aerial Vehicle (UAV) operated spectral camera system for forest and agriculture applications

    NASA Astrophysics Data System (ADS)

    Saari, Heikki; Pellikka, Ismo; Pesonen, Liisa; Tuominen, Sakari; Heikkilä, Jan; Holmlund, Christer; Mäkynen, Jussi; Ojala, Kai; Antila, Tapani

    2011-11-01

    VTT Technical Research Centre of Finland has developed a Fabry-Perot Interferometer (FPI) based hyperspectral imager compatible with the light weight UAV platforms. The concept of the hyperspectral imager has been published in the SPIE Proc. 7474 and 7668. In forest and agriculture applications the recording of multispectral images at a few wavelength bands is in most cases adequate. The possibility to calculate a digital elevation model of the forest area and crop fields provides means to estimate the biomass and perform forest inventory. The full UAS multispectral imaging system will consist of a high resolution false color imager and a FPI based hyperspectral imager which can be used at resolutions from VGA (480 x 640 pixels) up to 5 Mpix at wavelength range 500 - 900 nm at user selectable spectral resolutions in the range 10...40 nm @ FWHM. The resolution is determined by the order at which the Fabry- Perot interferometer is used. The overlap between successive images of the false color camera is 70...80% which makes it possible to calculate the digital elevation model of the target area. The field of view of the false color camera is typically 80 degrees and the ground pixel size at 150 m flying altitude is around 5 cm. The field of view of the hyperspectral imager is presently is 26 x 36 degrees and ground pixel size at 150 m flying altitude is around 3.5 cm. The UAS system has been tried in summer 2011 in Southern Finland for the forest and agricultural areas. During the first test campaigns the false color camera and hyperspectral imager were flown over the target areas at separate flights. The design and calibration of the hyperspectral imager will be shortly explained. The test flight campaigns on forest and crop fields and their preliminary results are also presented in this paper.

  6. Applicator Training Manual for: Aerial Application of Pesticides.

    ERIC Educational Resources Information Center

    Overhults, Douglas G.

    This training manual discusses both the advantages and limitations of aerial application of pesticides. Other topics included are: agricultural aircraft equipment, dispersal accessories, drift control, calibration, spray testing, granular materials testing, operations, and personal safety. Safety check lists are given for pilots, ground crew, and…

  7. AERIAL PHOTOGRAPHY AND LEGAL APPLICATIONS

    EPA Science Inventory

    Aerial photographic interpretation is the process of examining objects on aerial photographs and determining their significance. t is often defined as both art and science because the process, and the quality of the derived information, is often a qualitative nature and much depe...

  8. Unmanned Aerial Vehicle (UAV) Dynamic-Tracking Directional Wireless Antennas for Low Powered Applications that Require Reliable Extended Range Operations in Time Critical Scenarios

    SciTech Connect

    Scott G. Bauer; Matthew O. Anderson; James R. Hanneman

    2005-10-01

    The proven value of DOD Unmanned Aerial Vehicles (UAVs) will ultimately transition to National and Homeland Security missions that require real-time aerial surveillance, situation awareness, force protection, and sensor placement. Public services first responders who routinely risk personal safety to assess and report a situation for emergency actions will likely be the first to benefit from these new unmanned technologies. ‘Packable’ or ‘Portable’ small class UAVs will be particularly useful to the first responder. They require the least amount of training, no fixed infrastructure, and are capable of being launched and recovered from the point of emergency. All UAVs require wireless communication technologies for real- time applications. Typically on a small UAV, a low bandwidth telemetry link is required for command and control (C2), and systems health monitoring. If the UAV is equipped with a real-time Electro-Optical or Infrared (EO/Ir) video camera payload, a dedicated high bandwidth analog/digital link is usually required for reliable high-resolution imagery. In most cases, both the wireless telemetry and real-time video links will be integrated into the UAV with unity gain omni-directional antennas. With limited on-board power and payload capacity, a small UAV will be limited with the amount of radio-frequency (RF) energy it transmits to the users. Therefore, ‘packable’ and ‘portable’ UAVs will have limited useful operational ranges for first responders. This paper will discuss the limitations of small UAV wireless communications. The discussion will present an approach of utilizing a dynamic ground based real-time tracking high gain directional antenna to provide extend range stand-off operation, potential RF channel reuse, and assured telemetry and data communications from low-powered UAV deployed wireless assets.

  9. ENVIRONMENTAL APPLICATION OF LOW ALTITUDE AERIAL PHOTOGRAPHY

    EPA Science Inventory

    The most practical avenue for development of these goals is to continue to use the LAAPS system at field sites that require aerial imaging. For the sake of convenience, I believe that the local field sites can provide a convenient location to develop new applications and test enh...

  10. Analysis of Operation PLUMBBOB nuclear test smoky aerial radiological data

    SciTech Connect

    Steadman, C.R. Jr.; Kennedy, N.C.; Quinn, V.E.

    1984-03-01

    This report describes the Weather Service Nuclear Support Office (WSNSO) analysis of the aerial radiological data collected following the SMOKY nuclear test of Operation PLUMBBOB. The methods of converting these aerial data to exposure rates compatible with those measured by ground-level monitors are discussed. A fallout pattern, based upon the resulting aerial exposure-rate values, is presented for the downwind area where no ground-level exposure-rate measurements were made. This WSNSO extended fallout pattern is compared with a similar analysis prepared in the late 1950s. An evaluation of the enhanced fallout areas shown in the extended pattern is made. The appendices contain discussions of the aerial data collection and analysis procedures, and contain tabulated radiological data used in the extended fallout pattern analysis. 7 references, 6 figures, 3 tables.

  11. AERIAL OVERVIEW, LOOKING WEST TOWARD PRATT CITY, WITH EXTRACTION OPERATIONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL OVERVIEW, LOOKING WEST TOWARD PRATT CITY, WITH EXTRACTION OPERATIONS (BOTTOM LEFT AND CENTER), COKE BY-PRODUCT PLANT (CENTER), AND THE FORMER THOMAS FURNACE COMMUNITY, NOW THE THOMAS NATIONAL REGISTER HISTORIC DISTRICT (CENTER RIGHT). - Wade Sand & Gravel Company, AL 78, Thomas, Jefferson County, AL

  12. Effects of pesticides aerial applications on rice quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerial application of pesticides has become an important research topic in recent years. This research investigated the effects of two types of commercial pesticides on the rice quality under low volume aerial application. It could provide guidance for the pesticide application and choose the right ...

  13. Development of Air Force aerial spray night operations: High altitude swath characterization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multiple trials were conducted from 2006 to 2014 in an attempt to validate aerial spray efficacy at altitudes conducive to night spray operations using night vision goggles (NVG). Higher altitude application of pesticide (>400 feet above ground level [AGL]) suggested that effective vector control mi...

  14. Precision aerial application for site-specific rice crop management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision agriculture includes different technologies that allow agricultural professional to use information management tools to optimize agriculture production. The new technologies allow aerial application applicators to improve application accuracy and efficiency, which saves time and money for...

  15. Aerial application methods for increasing spray deposition on wheat heads

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB) is a major disease of wheat and barley in several small grain production areas in the United States and, as such, the development and evaluation of aerial application technologies that enhance the efficacy of fungicides with aerial spray applications is critical to its man...

  16. The US Air Force Aerial Spray Unit: a history of large area disease vector control operations, WWII through Katrina.

    PubMed

    Breidenbaugh, Mark; Haagsma, Karl

    2008-01-01

    The US Air Force has had a long history of aerial applications of pesticides to fulfill a variety of missions, the most important being the protection of troops through the minimization of arthropod vectors capable of disease transmission. Beginning in World War II, aerial application of pesticides by the military has effectively controlled vector and nuisance pest populations in a variety of environments. Currently, the military aerial spray capability resides in the US Air Force Reserve (USAFR), which operates and maintains C-130 airplanes capable of a variety of missions, including ultra low volume applications for vector and nuisance pests, as well as higher volume aerial applications of herbicides and oil-spill dispersants. The USAFR aerial spray assets are the only such fixed-wing aerial spray assets within the Department of Defense. In addition to troop protection, the USAFR Aerial Spray Unit has participated in a number of humanitarian/relief missions, most recently in the response to the 2005 Hurricanes Katrina and Rita, which heavily damaged the Gulf Coasts of Louisiana, Mississippi, and Texas. This article provides historical background on the Air Force Aerial Spray Unit and describes the operations in Louisiana in the aftermath of Hurricane Katrina. PMID:20088030

  17. Aerial applications dispersal systems control requirements study. [agriculture

    NASA Technical Reports Server (NTRS)

    Bauchspies, J. S.; Cleary, W. L.; Rogers, W. F.; Simpson, W.; Sanders, G. S.

    1980-01-01

    Performance deficiencies in aerial liquid and dry dispersal systems are identified. Five control system concepts are explored: (1) end of field on/off control; (2) manual control of particle size and application rate from the aircraft; (3) manual control of deposit rate on the field; (4) automatic alarm and shut-off control; and (5) fully automatic control. Operational aspects of the concepts and specifications for improved control configurations are discussed in detail. A research plan to provide the technology needed to develop the proposed improvements is presented along with a flight program to verify the benefits achieved.

  18. Spread spectrum applications in unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Bess, Philip K.

    1994-06-01

    This thesis is part of an ongoing Naval Postgraduate School research project to develop unmanned aerial vehicles (UAV's) using current off the shelf (COTS) technology. This thesis specifically evaluated a spread spectrum UHF data link between a UAV and ground terminal. The command and control (C2) process and its role as the fundamental premise of the warfare commander were discussed. A review of the Pioneer remotely piloted vehicle (RPV), which gained such wide recognition during Operations Desert Storm and Desert Shield, was provided to the reader for familiarization with the workings of a generic UAV. An investigation of two common spread spectrum techniques and their associated benefits was made. A link budget calculation was made. The choice of a spread spectrum radio transceiver was reviewed. The requirements and design of the UAV and ground terminal antenna were discussed. A link budget analysis was performed. An atmospheric path propagation prediction was performed. The details of an actual flight test and the data gathered were examined. Future changes to enhance the data link performance and increase its capabilities were introduced. The COTS spread spectrum data link will enhance the role of the UAV in its command and control mission for the warfare commander.

  19. 23. AERIAL VIEW LOOKING SOUTHEAST AT THE PLUTONIUM OPERATION BUILDINGS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. AERIAL VIEW LOOKING SOUTHEAST AT THE PLUTONIUM OPERATION BUILDINGS 771, 776/777, AND 707. BUILDING 771, IN THE FOREGROUND, WAS BUILT IN 1952 TO HOUSE ALL PLUTONIUM OPERATIONS. BY 1956, BUILDING 771 WAS NO LONGER ADEQUATE FOR PRODUCTION DEMANDS. BUILDING 776/777, TO THE SOUTH OF BUILDING 771, WAS CONSTRUCTED TO HOUSE PLUTONIUM FABRICATION AND FOUNDRY OPERATIONS. PLUTONIUM RECOVERY REMAINED IN BUILDING 771. BY 1967, CONSTRUCTION ON BUILDING 707, TO THE SOUTH OF BUILDING 776/777, BEGAN AS PRODUCTION LEVELS CONTINUED TO EXPAND NECESSITATING THE NEED FOR ADDITIONAL PLUTONIUM FABRICATION SPACE (7/1/69). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  20. Development of Air Force Aerial Spray Night Operations: High Altitude Swath Characterizations.

    PubMed

    Haagsma, Karl A; Breidenbaugh, Mark S; Linthicum, Kenneth J; Aldridge, Robert L; Britch, Seth C

    2015-01-01

    Multiple trials were conducted from 2006 to 2014 in an attempt to validate aerial spray efficacy at altitudes conducive to night spray operations using night vision goggles (NVGs). Higher altitude application of pesticide (more than 400 ft (121.9 m) above ground level (AGL)) suggested that effective vector control might be possible under ideal meteorological conditions. A series of lower altitude daytime applications (300 ft (91.4 m) AGL) demonstrated effective and repeatable mortality of target sentinel insects more than 5,000 ft (1,524 m) downwind, and control of natural vector populations. From these results we believe further pursuit of aerial night applications of pesticide using NVGs at 300 ft (91.4 m) AGL by this group is warranted. PMID:26276945

  1. Aerial color infrared photography applications to citriculture

    NASA Technical Reports Server (NTRS)

    Blazquez, C. H.; Horn, F. W., Jr.

    1980-01-01

    Results of a one-year experimental study on the use of aerial color infrared photography in citrus grove management are presented. It is found that the spring season, when trees are in flush (have young leaves), is the best season to photograph visible differences between healthy and diseased trees. It is also shown that the best photography can be obtained with a 12-in. focal length lens. The photographic scale that allowed good photo interpretation with simple inexpensive equipment was 1 in. = 330 ft. The use of a window-overlay transparency method allowed rapid photo interpretation and data recording in computer-compatible forms. Aerial color infrared photography carried out during the spring season revealed a more accurate status of tree condition than visual inspection.

  2. Expansion of the USDA ARS Aerial Application spray atomization models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An effort is underway to update the USDA ARS aerial spray nozzle models using new droplet sizing instrumen-tation and measurement techniques. As part of this effort, the applicable maximum airspeed is being increased from 72 to 80 m/s to provide guidance to applicators when using new high speed air...

  3. Aerial thermography in archaeological prospection: Applications & processing

    NASA Astrophysics Data System (ADS)

    Cool, Autumn Chrysantha

    Aerial thermography is one of the least utilized archaeological prospection methods, yet it has great potential for detecting anthropogenic anomalies. Thermal infrared radiation is absorbed and reemitted at varying rates by all objects on and within the ground depending upon their density, composition, and moisture content. If an area containing archaeological features is recorded at the moment when their thermal signatures most strongly contrast with that of the surrounding matrix, they can be visually identified in thermal images. Research conducted in the 1960s and 1970s established a few basic rules for conducting thermal survey, but the expense associated with the method deterred most archaeologists from using this technology. Subsequent research was infrequent and almost exclusively appeared in the form of case studies. However, as the current proliferation of unmanned aerial vehicles (UAVs) and compact thermal cameras draws renewed attention to aerial thermography as an attractive and exciting form of survey, it is appropriate and necessary to reevaluate our approach. In this thesis I have taken a two-pronged approach. First, I built upon the groundwork of earlier researchers and created an experiment to explore the impact that different environmental and climatic conditions have on the success or failure of thermal imaging. I constructed a test site designed to mimic a range of archaeological features and imaged it under a variety of conditions to compare and contrast the results. Second, I explored a new method for processing thermal data that I hope will lead to a means of reducing noise and increasing the clarity of thermal images. This step was done as part of a case study so that the effectiveness of the processing method could be evaluated by comparison with the results of other geophysical surveys.

  4. Aerial ULV application of Dibrom against Aedes aegypti in simulated urban and rural residences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reaching endophilic Aedes aegypti mosquito vectors of dengue located in human residences with aerial ULV pesticide applications is a prominent complication in operational wide area public health mosquito control activities. We conducted separate trials with a military C-130 fixed wing aircraft fitte...

  5. A review of the meteorological parameters which affect aerial application

    NASA Technical Reports Server (NTRS)

    Christensen, L. S.; Frost, W.

    1979-01-01

    The ambient wind field and temperature gradient were found to be the most important parameters. Investigation results indicated that the majority of meteorological parameters affecting dispersion were interdependent and the exact mechanism by which these factors influence the particle dispersion was largely unknown. The types and approximately ranges of instrumented capabilities for a systematic study of the significant meteorological parameters influencing aerial applications were defined. Current mathematical dispersion models were also briefly reviewed. Unfortunately, a rigorous dispersion model which could be applied to aerial application was not available.

  6. Application of Adaptive Autopilot Designs for an Unmanned Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Shin, Yoonghyun; Calise, Anthony J.; Motter, Mark A.

    2005-01-01

    This paper summarizes the application of two adaptive approaches to autopilot design, and presents an evaluation and comparison of the two approaches in simulation for an unmanned aerial vehicle. One approach employs two-stage dynamic inversion and the other employs feedback dynamic inversions based on a command augmentation system. Both are augmented with neural network based adaptive elements. The approaches permit adaptation to both parametric uncertainty and unmodeled dynamics, and incorporate a method that permits adaptation during periods of control saturation. Simulation results for an FQM-117B radio controlled miniature aerial vehicle are presented to illustrate the performance of the neural network based adaptation.

  7. Power Sprayers, Power Dusters, and Aerial Equipment for Pesticide Application.

    ERIC Educational Resources Information Center

    Cole, Herbert, Jr.

    This agriculture extension service publication from Pennsylvania State University discusses agricultural pesticide application equipment. The three sections of the publication are Power Sprayers, Power Dusters, and Aerial Equipment. In the section discussing power sprayers, subtopics include hydraulic sprayers, component parts, multi-purpose farm…

  8. Field Assessment of A Variable-rate Aerial Application System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several experiments were conducted to evaluate the system response of a variable-rate aerial application controller to changing flow rates. The research is collaboration between the USDA, ARS, APTRU and Houma Avionics, USA, manufacturer of a widely used flow controller designed for agricultural airc...

  9. A Low-Cost Imaging System for Aerial Applicators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural aircraft provide a readily available and versatile platform for airborne remote sensing. Although various airborne imaging systems are being used for research and commercial applications, most of these systems are either too expensive or too complex to be of practical use for aerial app...

  10. Aerospace toxicology overview: aerial application and cabin air quality.

    PubMed

    Chaturvedi, Arvind K

    2011-01-01

    Aerospace toxicology is a rather recent development and is closely related to aerospace medicine. Aerospace toxicology can be defined as a field of study designed to address the adverse effects of medications, chemicals, and contaminants on humans who fly within or outside the atmosphere in aviation or on space flights. The environment extending above and beyond the surface of the Earth is referred to as aerospace. The term aviation is frequently used interchangeably with aerospace. The focus of the literature review performed to prepare this paper was on aerospace toxicology-related subject matters, aerial application and aircraft cabin air quality. Among the important topics addressed are the following: · Aerial applications of agricultural chemicals, pesticidal toxicity, and exposures to aerially applied mixtures of chemicals and their associated formulating solvents/surfactants The safety of aerially encountered chemicals and the bioanalytical methods used to monitor exposures to some of them · The presence of fumes and smoke, as well as other contaminants that may generally be present in aircraft/space vehicle cabin air · And importantly, the toxic effects of aerially encountered contaminants, with emphasis on the degradation products of oils, fluids, and lubricants used in aircraft, and finally · Analytical methods used for monitoring human exposure to CO and HCN are addressed in the review, as are the signs and symptoms associated with exposures to these combustion gases. Although many agricultural chemical monitoring studies have been published, few have dealt with the occurrence of such chemicals in aircraft cabin air. However, agricultural chemicals do appear in cabin air; indeed, attempts have been made to establish maximum allowable concentrations for several of the more potentially toxic ones that are found in aircraft cabin air. In this article, I emphasize the need for precautionary measures to be taken to minimize exposures to aerially

  11. Unmanned Aerial Vehicles (UAVs): a new tool in counterterrorism operations?

    NASA Astrophysics Data System (ADS)

    Dörtbudak, Mehmet F.

    2015-05-01

    Terrorism is not a new phenomenon to the world, yet it remains difficult to define and counter. Countering terrorism requires several measures that must be taken simultaneously; however, counterterrorism strategies of many countries mostly depend on military measures. In the aftermath of the 2001 terrorist attack on the Twin Towers of the World Trade Center, the United States (U.S.) has started and led the campaign of Global War on Terrorism. They have invaded Afghanistan and Iraq and have encountered insurgencies run by terrorist organizations, such as al-Qaeda and its affiliates. The U.S. made the utilization of Air and Space Power very intensively during these operations. In order to implement operations; Intelligence, Surveillance, and Reconnaissance (ISR) assets were used to collect the necessary information. Before the successful insertion of a small number of U.S. Special Operation Force (SOF) teams into Afghanistan, the U.S. Air Force attacked al-Qaeda and Taliban's targets such as infrastructure, airfields, ground forces, command-control facilities etc. As soon as the U.S. troops got on the ground and started to marshal to Kabul, the Air Force supported them by attacking jointly determined targets. The Air Force continued to carry out the missions and played a significant role to achieve the objective of operation during all the time. This is not the only example of utilization of Air and Space Power in counterterrorism and counterinsurgency operations. All around the world, many countries have also made the utilization of Air Power in different missions ranging from ISR to attacking. Thinking that terrorism has a psychological dimension and losing a pilot during operations may result in decreasing the population support to operations, Unmanned Aerial Vehicles (UAVs) started to be used by practitioners and took priority over other assets. Although UAVs have been on the theatre for a long time used for ISR mission in conventional conflicts, with the advent

  12. Current status and future directions of precision agriculture for aerial application in the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision aerial application in the USA is less than a decade old since the development of the first variable-rate aerial application system. Many areas of the United States rely on readily available agricultural airplanes or helicopters for pest management. Variable-rate aerial application provides...

  13. Unmanned Aerial System (UAS) Traffic Management (UTM): Enabling Low-Altitude Airspace and UAS Operations

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal H.

    2014-01-01

    Many civilian applications of Unmanned Aerial Systems (UAS) have been imagined ranging from remote to congested urban areas, including goods delivery, infrastructure surveillance, agricultural support, and medical services delivery. Further, these UAS will have different equipage and capabilities based on considerations such as affordability, and mission needs applications. Such heterogeneous UAS mix, along with operations such as general aviation, helicopters, gliders must be safely accommodated at lower altitudes. However, key infrastructure to enable and safely manage widespread use of low-altitude airspace and UAS operations therein does not exist. Therefore, NASA is exploring functional design, concept and technology development, and a prototype UAS Traffic Management (UTM) system. UTM will support safe and efficient UAS operations for the delivery of goods and services

  14. Environmental applications utilizing digital aerial imagery

    SciTech Connect

    Monday, H.M.

    1995-06-01

    This paper discusses the use of satellite imagery, aerial photography, and computerized airborne imagery as applied to environmental mapping, analysis, and monitoring. A project conducted by the City of Irving, Texas involves compliance with national pollutant discharge elimination system (NPDES) requirements stipulated by the Environmental Protection Agency. The purpose of the project was the development and maintenance of a stormwater drainage utility. Digital imagery was collected for a portion of the city to map the City`s porous and impervious surfaces which will then be overlaid with property boundaries in the City`s existing Geographic information System (GIS). This information will allow the City to determine an equitable tax for each land parcel according to the amount of water each parcel is contributing to the stormwater system. Another project involves environmental compliance for warm water discharges created by utility companies. Environmental consultants are using digital airborne imagery to analyze thermal plume affects as well as monitoring power generation facilities. A third project involves wetland restoration. Due to freeway and other forms of construction, plus a major reduction of fresh water supplies, the Southern California coastal wetlands are being seriously threatened. These wetlands, rich spawning grounds for plant and animal life, are home to thousands of waterfowl and shore birds who use this habitat for nesting and feeding grounds. Under the leadership of Southern California Edison (SCE) and CALTRANS (California Department of Transportation), several wetland areas such as the San Dieguito Lagoon (Del Mar, California), the Sweetwater Marsh (San Diego, California), and the Tijuana Estuary (San Diego, California) are being restored and closely monitored using digital airborne imagery.

  15. Application of Artificial Intelligence Techniques in Uninhabited Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA Southeastearn University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  16. Application of Artificial Intelligence Techniques in Uninhabitated Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA southeastern University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  17. Ethyl parathion in wetlands following aerial application to sunflowers in North Dakota

    USGS Publications Warehouse

    Tome, M.W.; Grue, C.E.; DeWeese, L.R.

    1991-01-01

    An operational aerial application of parathion to sunflower fields resulted in greater or equal spray deposit in wetlands adjacent to or surrounded by sunflower fields than in the sunflower fields. In another application, when the applicator attempted to avoid contamination of the wetlands, parathion still drifted into wetlands in detectable amounts; in 2 of 4 comparisons, spray deposit in wetlands and sunflower fields did not differ. Weather during both spray operations was ideal for North Dakota, Le., wind speeds <16 km/ hour, excellent visibility, and temperature <24 C. We review how spray droplet size, weather, terrain, and type of application equipment interact to determine the amount of drift from any application of pesticide. With this information, wildlife managers should be able to make decisions pertaining to insecticide applications that will minimize drift and reduce negative impacts to nontarget organisms

  18. A semi-operational agricultural inventory using small scale aerial photography

    NASA Technical Reports Server (NTRS)

    Draeger, W. C.; Pettinger, L. R.

    1970-01-01

    The feasibility of performing inventories of agricultural resources using very small scale aerial or space photography was studied. The results were encouraging on two counts: (1) The very practical problems of an operational survey are being faced and solutions are being found. (2) It seems that a fully operational agricultural inventory using space photography is not beyond the scope of present technology.

  19. APPLICATION OF THE AERIAL PROFILING OF TERRAIN SYSTEM.

    USGS Publications Warehouse

    Cyran, Edward J.

    1985-01-01

    The U. S. Geological Survey has completed the performance evaluation flight tests of the Aerial Profiling of Terrain System (APTS) and is now performing a series of application tests to determine its effectiveness and efficiency as an earth-science data collection tool. These tests are designed to evaluate the APTS at such tasks as positioning water wells, testing reliability of older maps, measuring elevations of kettle ponds, and profiling stream valleys for flood studies. The results of three application tests in Massachusetts are discussed: positioning water wells and measuring elevations along the Charles River; testing four older 1:24,000-scale quadrangle maps in the Plymouth area; and measuring elevations of several hundred kettle ponds near the Cape Cod Canal.

  20. Biological responses to glyphosate drift from aerial application in non-glyphosate-resistant corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate drift from aerial application onto susceptible crops is inevitable, yet the biological responses to glyphosate drift in crops are not well characterized. The objectives of this research were to determine the effects of glyphosate drift from a single aerial application (18.3 m swath, 866 ...

  1. 75 FR 52713 - Nationwide Aerial Application of Fire Retardant on National Forest System Lands

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ... Forest Service Nationwide Aerial Application of Fire Retardant on National Forest System Lands AGENCY... aerial application of fire retardant on National Forest System lands. The responsible official for this.... Comments may also be sent via e- mail to FireRetardantEIS@fs.fed.us . FOR FURTHER INFORMATION CONTACT:...

  2. Aerial ULV application of permethrin against adult mosquitoes in an extreme hot-arid zone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerial ULV insecticide application is an established strategy for adult mosquito control in tropical, hot-humid, or temperate environments. However, not enough is known regarding the efficacy of aerial applications in hot-arid environments similar to those encountered by US military personnel, where...

  3. Unplanned releases and injuries associated with aerial application of chemicals, 1995-2002.

    PubMed

    Rice, Nancy; Messing, Rita; Souther, Larry; Berkowitz, Zahava

    2005-11-01

    For this article, records of the Hazardous Substances Emergency Events Surveillance (HSEES) system were reviewed to identify and describe acute, unplanned releases of agricultural chemicals and associated injuries related to aerial application during 1995-2002. Records of aerial-application accidents from the National Transportation Safety Board were also reviewed. Of the 54,090 events in the HSEES system for 1995-2002, 91 were identified as aerial-application events. The most commonly released substance was malathion. There were 56 victims; 12 died, and 34 required treatment at a hospital. A higher percentage of HSEES aerial-applicator events involved injury and death than did other HSEES transportation events. The relatively high number of injuries and fatalities underscores the need for precautions such as monitoring and limiting pilot cumulative exposures to pesticides, and using appropriate personal protective equipment and decontamination equipment. Emergency responders should be educated about the hazards associated with chemicals at aerial-application crash sites. PMID:16334093

  4. Wind-tunnel tests and modeling indicate that aerial dispersant delivery operations are highly accurate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The United States Department of Agriculture’s high-speed wind tunnel facility in College Station, Texas, USA was used to determine droplet size distributions generated by dispersant delivery nozzles at wind speeds comparable to those used in aerial dispersant application. A laser particle size anal...

  5. Application of Artificial Intelligence Techniques in Unmanned Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H. (Technical Monitor); Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in Artificial Intelligence (AI) at Nova southeastern University and as an adjunct to a project at NASA Goddard Space Flight Center's Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an AI method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed. A low cost approach was taken using freeware, gnu, software, and demo programs. The focus of this research has been to outline some of the AI techniques used for UAV flight control and discuss some of the tools used to apply AI techniques. The intent is to succeed with the implementation of applying AI techniques to actually control different aspects of the flight of an UAV.

  6. Meteorological and Remote Sensing Applications of High Altitude Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Schoenung, S. M.; Wegener, S. S.

    1999-01-01

    Unmanned aerial vehicles (UAVs) are maturing in performance and becoming available for routine use in environmental applications including weather reconnaissance and remote sensing. This paper presents a discussion of UAV characteristics and unique features compared with other measurement platforms. A summary of potential remote sensing applications is provided, along with details for four types of tropical cyclone missions. Capabilities of platforms developed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program are reviewed, including the Altus, Perseus, and solar- powered Pathfinder, all of which have flown to over 57,000 ft (17 km). In many scientific missions, the science objectives drive the experimental design, thus defining the sensor payload, aircraft performance, and operational requirements. Some examples of science missions and the requisite UAV / payload system are given. A discussion of technology developments needed to fully mature UAV systems for routine operational use is included, along with remarks on future science and commercial UAV business opportunities.

  7. Determination of Cotton Plant Injury by Aerial Application of Glyphosate Using Remote Sensing and Spray Drift Sampling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Off-target drift of aerially applied glyphosate can cause plant injury, which is of great concern to farmers and aerial applicators. To determine the extent of crop injury due to near-field drift, an experiment was conducted from a single aerial application of glyphosate. For a larger-scoped project...

  8. Effects on birds of fenthion aerial application for mosquito control

    USGS Publications Warehouse

    DeWeese, L.R.; McEwen, L.C.; Settimi, L.A.; Deblinger, R.D.

    1983-01-01

    Effects on birds of an aerial application of fenthion, a potent organophosphorus cholinesterase (ChE)-inhibiting insecticide, were assessed on four study sites 1.8 to 3.6 km2 in size. These sites were located within 121.5 km2 of wet meadows treated with 47 g of fenthion (AI) per ha in ultralow- volume formulation. Assessment methods were searches for sick or dead birds, measurements of brain ChE activity in specimens found dead or collected alive at different time intervals, and counts of bird populations. After treatment, 99 birds and 15 mammals were found sick or dead; 106 of these were on one site. Brain ChE activity in dead birds was depressed sufficiently to indicate that death was caused by an anti-ChE substance. Brain ChE activity in three common bird species collected alive showed the greatest reduction 2 days postspray. Two of these species had ChE activity that was still significantly (P<0.05) depressed 15 days postspray. Bird populations declined most where mortality was heaviest. Fenthion sprayed for mosquito control was life threatening to many birds inhabiting treated meadows.

  9. A framework for autonomous and continuous aerial intelligence, surveillance, and reconnaissance operations

    NASA Astrophysics Data System (ADS)

    Korpela, Christopher; Root, Philip; Kim, Jinho; Wilkerson, Stephen; Gadsden, S. Andrew

    2016-05-01

    We propose a framework for intelligence, reconnaissance, and surveillance using an aerial vehicle with multiple sensor payloads to provide autonomous and continuous security operations at a fixed location. A control scheme and a graphical user interface between the vehicle and operator is strictly mandated for tasks requiring remote and unattended inspection. By leveraging existing navigation and path planning algorithms, the system can autonomously patrol large areas, automatically recharge when required, and relay on-demand data back to the user. This paper presents recent validation results of the system and its sensors using the proposed framework.

  10. Mapping Crop Status from AN Unmanned Aerial Vehicle for Precision Agriculture Applications

    NASA Astrophysics Data System (ADS)

    Guo, T.; Kujirai, T.; Watanabe, T.

    2012-07-01

    Remote sensing system mounted on unmanned aerial vehicle (UAV) could provide a complementary means to the conventional satellite and aerial remote sensing solutions especially for the applications of precision agriculture. UAV remote sensing offers a great flexibility to quickly acquire field data in sufficient spatial and spectral resolution at low cost. However a major problem of UAV is the high instability due to the low-end equipments and difficult environment situation, and this leads to image sensor being mostly operated under a highly uncertain configuration. Thus UAV images exhibit considerable derivation in spatial orientation, large geometric and spectral distortion, and low signal-to-noise ratio (SNR). To achieve the objectives of agricultural mapping from UAV, we apply a micro-helicopter UAV with a multiple spectral camera mounted and develop a framework to process UAV images. A very important processing is to generate mosaic image which can be aligned with maps for later GIS integration. With appropriate geometric calibration applied, we first decompose a homography of consecutive image pairs into a rotational component and a simple perspective component, and apply a linear interpolation to the angle of the rotational component, followed by a linear matrix interpolation operator to the perspective component, and this results in an equivalent transformation but ensures a smooth evolution between two images. Lastly to demonstrate the potential of UAV images to precision agriculture application, we perform spectral processing to derive vegetation indices (VIs) maps of crop, and also show the comparison with satellite imagery. Through this paper, we demonstrate that it is highly feasible to generate quantitative mapping products such as crop stress maps from UAV images, and suggest that UAV remote sensing is very valuable for the applications of precision agriculture.

  11. Application of genetic algorithms to autopiloting in aerial combat simulation

    NASA Astrophysics Data System (ADS)

    Kim, Dai Hyun; Erwin, Daniel A.; Kostrzewski, Andrew A.; Kim, Jeongdal; Savant, Gajendra D.

    1998-10-01

    An autopilot algorithm that controls a fighter aircraft in simulated aerial combat is presented. A fitness function, whose arguments are the control settings of the simulated fighter, is continuously maximized by a fuzzied genetic algorithm. Results are presented for one-to-one combat simulated on a personal computer. Generalization to many-to-many combat is discussed.

  12. Development of an airborne remote sensing system for aerial applicators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An airborne remote sensing system was developed and tested for recording aerial images of field crops, which were analyzed for variations of crop health or pest infestation. The multicomponent system consists of a multi-spectral camera system, a camera control system, and a radiometer for normalizi...

  13. Characterization of spray deposition and drift from a low drift nozzle for aerial application at different application altitudes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A complex interaction of controllable and uncontrollable factors is involved in aerial application of crop production and protection materials. Although it is difficult to completely characterize spray deposition and drift, these important factors can be estimated with appropriate sampling protocol ...

  14. Spray Deposition and Drift Characteristics of a Low Drift Nozzle for Aerial Application at Different Application Altitudes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A complex interaction of controllable and uncontrollable factors is involved in aerial application of crop production and protection materials. Although it is difficult to completely characterize spray deposition and drift, these important factors can be estimated with appropriate sampling protocol ...

  15. Moments of Inertia - Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID)

    NASA Technical Reports Server (NTRS)

    Haro, Helida C.

    2010-01-01

    The objective of this research effort is to determine the most appropriate, cost efficient, and effective method to utilize for finding moments of inertia for the Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID). A moment is a measure of the body's tendency to turn about its center of gravity (CG) and inertia is the resistance of a body to changes in its momentum. Therefore, the moment of inertia (MOI) is a body's resistance to change in rotation about its CG. The inertial characteristics of an UAV have direct consequences on aerodynamics, propulsion, structures, and control. Therefore, it is imperative to determine the precise inertial characteristics of the DROID.

  16. Moments of Inertia: Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID)

    NASA Technical Reports Server (NTRS)

    Haro, Helida C.

    2010-01-01

    The objective of this research effort is to determine the most appropriate, cost efficient, and effective method to utilize for finding moments of inertia for the Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID). A moment is a measure of the body's tendency to turn about its center of gravity (CG) and inertia is the resistance of a body to changes in its momentum. Therefore, the moment of inertia (MOI) is a body's resistance to change in rotation about its CG. The inertial characteristics of an UAV have direct consequences on aerodynamics, propulsion, structures, and control. Therefore, it is imperative to determine the precise inertial characteristics of the DROID.

  17. Applicability Evaluation of Object Detection Method to Satellite and Aerial Imageries

    NASA Astrophysics Data System (ADS)

    Kamiya, K.; Fuse, T.; Takahashi, M.

    2016-06-01

    Since satellite and aerial imageries are recently widely spread and frequently observed, combination of them are expected to complement spatial and temporal resolution each other. One of the prospective applications is traffic monitoring, where objects of interest, or vehicles, need to be recognized automatically. Techniques that employ object detection before object recognition can save a computational time and cost, and thus take a significant role. However, there is not enough knowledge whether object detection method can perform well on satellite and aerial imageries. In addition, it also has to be studied how characteristics of satellite and aerial imageries affect the object detection performance. This study employ binarized normed gradients (BING) method that runs significantly fast and is robust to rotation and noise. For our experiments, 11-bits BGR-IR satellite imageries from WorldView-3, and BGR-color aerial imageries are used respectively, and we create thousands of ground truth samples. We conducted several experiments to compare the performances with different images, to verify whether combination of different resolution images improved the performance, and to analyze the applicability of mixing satellite and aerial imageries. The results showed that infrared band had little effect on the detection rate, that 11-bit images performed less than 8-bit images and that the better spatial resolution brought the better performance. Another result might imply that mixing higher and lower resolution images for training dataset could help detection performance. Furthermore, we found that aerial images improved the detection performance on satellite images.

  18. UAV using the open-source flight-control-system in the application of aerial survey

    NASA Astrophysics Data System (ADS)

    Huang, Ji-chen; Ru, Chen

    2015-12-01

    The aerial survey as one of the branches of the Space Information Technology system, has an important application in data acquisition of the earth's surface. In recent years, the trend of UVA (unmanned aerial vehicle) to replace traditional survey aircraft has become increasingly obvious with the progress of science and technology. At present, the price of the commercial UAV Flight Control System is higher, limiting the application of UVA. This paper mainly discusses the possibility that the open-source's flight-control-system take the place of the commercial one. Result is that the costs of UVA are reduced, and make the application more widely.

  19. Applicability of New Approaches of Sensor Orientation to Micro Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Rehak, M.; Skaloud, J.

    2016-06-01

    This study highlights the benefits of precise aerial position and attitude control in the context of mapping with Micro Aerial Vehicles (MAVs). Accurate mapping with MAVs is gaining importance in applications such as corridor mapping, road and pipeline inspections or mapping of large areas with homogeneous surface structure, e.g. forests or agricultural fields. There, accurate aerial control plays a major role in successful terrain reconstruction and artifact-free ortophoto generation. The presented experiments focus on new approaches of aerial control. We confirm practically that the relative aerial position and attitude control can improve accuracy in difficult mapping scenarios. Indeed, the relative orientation method represents an attractive alternative in the context of MAVs for two reasons. First, the procedure is somewhat simplified, e.g. the angular misalignment, so called boresight, between the camera and the inertial measurement unit (IMU) does not have to be determined and, second, the effect of possible systematic errors in satellite positioning (e.g. due to multipath and/or incorrect recovery of differential carrier-phase ambiguities) is mitigated. First, we present a typical mapping project over an agricultural field and second, we perform a corridor road mapping. We evaluate the proposed methods in scenarios with and without automated image observations. We investigate a recently proposed concept where adjustment is performed using image observations limited to ground control and check points, so called fast aerial triangulation (Fast AT). In this context we show that accurate aerial control (absolute or relative) together with a few image observations can deliver accurate results comparable to classical aerial triangulation with thousands of image measurements. This procedure in turns reduces the demands on processing time and the requirements on the existence of surface texture. Finally, we compare the above mentioned procedures with direct sensor

  20. Application of Digital Image Correlation Method to Improve the Accuracy of Aerial Photo Stitching

    NASA Astrophysics Data System (ADS)

    Tung, Shih-Heng; Jhou, You-Liang; Shih, Ming-Hsiang; Hsiao, Han-Wei; Sung, Wen-Pei

    2016-04-01

    Satellite images and traditional aerial photos have been used in remote sensing for a long time. However, there are some problems with these images. For example, the resolution of satellite image is insufficient, the cost to obtain traditional images is relatively high and there is also human safety risk in traditional flight. These result in the application limitation of these images. In recent years, the control technology of unmanned aerial vehicle (UAV) is rapidly developed. This makes unmanned aerial vehicle widely used in obtaining aerial photos. Compared to satellite images and traditional aerial photos, these aerial photos obtained using UAV have the advantages of higher resolution, low cost. Because there is no crew in UAV, it is still possible to take aerial photos using UAV under unstable weather conditions. Images have to be orthorectified and their distortion must be corrected at first. Then, with the help of image matching technique and control points, these images can be stitched or used to establish DEM of ground surface. These images or DEM data can be used to monitor the landslide or estimate the volume of landslide. For the image matching, we can use such as Harris corner method, SIFT or SURF to extract and match feature points. However, the accuracy of these methods for matching is about pixel or sub-pixel level. The accuracy of digital image correlation method (DIC) during image matching can reach about 0.01pixel. Therefore, this study applies digital image correlation method to match extracted feature points. Then the stitched images are observed to judge the improvement situation. This study takes the aerial photos of a reservoir area. These images are stitched under the situations with and without the help of DIC. The results show that the misplacement situation in the stitched image using DIC to match feature points has been significantly improved. This shows that the use of DIC to match feature points can actually improve the accuracy of

  1. Rangeland remote sensing applications with unmanned aerial systems (UAS) in the national airspace: challenges and experiences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, civilian applications of unmanned aerial systems (UAS) have increased considerably due to their greater availability and the miniaturization of sensors, GPS, inertial measurement units, and other hardware. UAS are well suited for rangeland remote sensing applications, because of the...

  2. Aerial Thermography - Cartographic Presentation Of Thermographic Data For Building Applications

    NASA Astrophysics Data System (ADS)

    Ljungberg, Sven-Ake

    1989-03-01

    When using aerial thermography to indicate energy-related conditions of buildings in a large investigation area the question arises how to store and present the final product of classified, energy-related data. A full scale study of 7000 buildings demonstrated the need fur computerbased systems and cartographic methods to store, to arrange and to illustrate thermograpic data. A data base was created including aerial thermograpic data, technical data on the buildings and information on energy consumption of each building. The data base consisted of 100 variables. The key-code for the data base was the real estate name and number. The position of each building was given in terms of coordinates of the real estate. The main purpose of the study was to create an energy-related data base to be used for assigning a priority to measurements within the local energy conservation program. The thermographic data was collected with a longwave airborne infrared line-scanner (3-14 um). The technical data on the buildings and their energy consumption were gathered from existing data bases and from field investigations. Thermograpic data, technical data of the buildings and information on energy consumption was classified and different symbols were used to identify the classes presented on thematic maps. Results from this study implies that computerbased cartography is a favorable method to present and illustrate thermographic information on buildings in large investigation areas. The paper deals mainly with the aspect of carthography for presentation of thermographic and energy-related data.

  3. Current status and future directions of precision aerial application for site-specific crop management in the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The first variable-rate aerial application system was developed about a decade ago in the USA and since then, aerial application has benefitted from these technologies. Many areas of the United States rely on readily available agricultural airplanes or helicopters for pest management, and variable-...

  4. Aerial applications of insecticides for tsetse fly control in East Africa

    PubMed Central

    Lee, C. W.

    1969-01-01

    Since 1948, research has progressed in East Africa on the control of tsetse flies by aeria, applications of insecticides. Initial experiments proved that residual spray treatments were ineffective while repeated applications of coarse aerosols gave promising fly mortalities. In recent years, with the development of more toxic insecticides used in conjunction with improved thermal exhaust equipment and modified rotary atomizers, sprays with fine aerosol characteristics have been produced at considerably reduced cost. Aerial applications of aerosols are confined to early morning and late afternoon when weather conditions are stable, but large areas can be treated during these short intervals, and the technique is efficient and economical. Control of tsetse flies has been good; where complete isolation of an area has been possible, eradication has been achieved. It would be economically worth while to assess the possibility of increasing spray swath widths, and also to continue with research into the biological effectiveness of pyrethrum, primarily because of its absolute safety in use. There is a need for a simple method for the determination of tsetse fly populations in woodland and savanna habitats. Finally, it is recommended that the results of research to date should be brought more forcefully to the attention of government bodies and commercial airspray operators so that the techniques be more fully exploited. PMID:5308701

  5. Safely Enabling Civilian Unmanned Aerial System (UAS) Operations in Low-Altitude Airspace by Unmanned Aerial System Traffic Management (UTM)

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal Hemchandra

    2015-01-01

    Many UAS will operate at lower altitude (Class G, below 2000 feet). There is an urgent need for a system for civilian low-altitude airspace and UAS operations. Stakeholders want to work with NASA to enable safe operations.

  6. Safely Enabling Civilian Unmanned Aerial System (UAS) Operations In Low-Altitude Airspace By Unmanned Aerial System Traffic Management (UTM)

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal H.

    2015-01-01

    Many UAS will operate at lower altitude (Class G, below 2000 feet)There is urgent need for a system for civilian low-altitude airspace and UAS operations. Stakeholders want to work with NASA to enable safe operations.

  7. SPERTI/PBF. Contextual aerial view after PBF had begun operating, but ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPERT-I/PBF. Contextual aerial view after PBF had begun operating, but prior to expansion of southwest corner of Reactor Building (PER-620). Camera facing northeast. Reactor Building in center of view. Cooling Tower (PER-720) to its left. Warehouse (PER-625) at lower left was built in 1966. SPERT-I Reactor Building (PER-605) and Instrument Cell Building (PER-604) at right of view. Buried cables and piping proceed from PBF toward lower edge of view to Control Building further south and out of view. Photographer: Farmer. Date: March 26, 1976. INEEL negative no. 76-1344 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  8. Determination of differences in crop injury from aerial application of glyphosate using vegetation indices and geostatistics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Injury to crops caused by off-target drift of glyphosate can seriously reduce growth and yield, and is of great concern to farmers and aerial applicators. Determining an indirect method for assessing the levels and extent of crop injury could support management decisions. The objectives of this stud...

  9. Field scale evaluation of spray drift reduction technologies from ground and aerial application systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this work is to evaluate a proposed Test Plan for the validation testing of pesticide spray drift reduction technologies for row and field crops, focusing on the testing of ground and aerial application systems under full-scale field evaluations. The measure of performance for a gi...

  10. Progress and Field Evaluation of Aerial Variable-Rate Systems for Liquid Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flow control systems for aerial spraying have been evaluated at the USDA, ARS, CPSRU over the past 12 years. Early experiments were designed to evaluate the ability of flow controllers to provide a desired application rate regardless of changes in ground speed. More recent testing has focused on var...

  11. Wind tunnel and field evaluation of drift from aerial spray applications with multiple spray formulations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of different spray tank modifiers into an active ingredient spray mixture on spray atomization and in-field behavior under aerial application conditions were examined. Wind tunnel tests demonstrated that active ingredient solutions potentially results in significantly different atomizati...

  12. EFFECTS OF AERIAL THERMAL FOG APPLICATIONS OF FENTHION ON CAGED PINK SHRIMP, MYSIDS AND SHEEPSHEAD MINNOWS

    EPA Science Inventory

    Mosquito control applications of fenthion by aerial thermal fog equipment were studied at two sites in Collier County, FL, for sprays that occurred on 20 and 23 June 1984. Acute, lethal effects of fenthion deposited in these estuarine habitats were assessed for caged pink shrimp ...

  13. A two-camera imaging system for pest detection and aerial application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This presentation reports on the design and testing of an airborne two-camera imaging system for pest detection and aerial application assessment. The system consists of two digital cameras with 5616 x 3744 effective pixels. One camera captures normal color images with blue, green and red bands, whi...

  14. Reducing pesticide drift by considering propeller rotation effects from aerial application and near buffer zones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Off-target drift of chemical from agricultural spraying can damage sensitive crops, destroy beneficial insects, and intrude on human and domestic animal habitats, threatening environmental quality. Reduction of drift from aerial application can be facilitated at the edge of a field by offsetting spr...

  15. Improving Flow Response of a Variable-rate Aerial Application System by Interactive Refinement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were conducted to evaluate response of a variable-rate aerial application controller to changing flow rates and to improve its response at correspondingly varying system pressures. System improvements have been made by refinement of the control algorithms over time in collaboration with ...

  16. Determination of differences in crop injury from aerial application of glyphosate using vegetation indices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop injury caused by off-target drift of herbicide can seriously reduce growth and yield and is of great concern to farmers and aerial applicators. Farmers can benefit from identifying an indirect method for assessing the levels and extent of crop injury. This study evaluates the combined use of ge...

  17. Development of a new modular aerial spray system and night application capability for the U.S. Air Force

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. Air Force maintains a capability with the C130 aircraft to conduct aerial spray operations over large areas for controlling insects of medical importance. The current modular aerial spray system (MASS) is custom designed to support a variety of configurations from ultralow volume space spra...

  18. Accurate Optical Target Pose Determination for Applications in Aerial Photogrammetry

    NASA Astrophysics Data System (ADS)

    Cucci, D. A.

    2016-06-01

    We propose a new design for an optical coded target based on concentric circles and a position and orientation determination algorithm optimized for high distances compared to the target size. If two ellipses are fitted on the edge pixels corresponding to the outer and inner circles, quasi-analytical methods are known to obtain the coordinates of the projection of the circles center. We show the limits of these methods for quasi-frontal target orientations and in presence of noise and we propose an iterative refinement algorithm based on a geometric invariant. Next, we introduce a closed form, computationally inexpensive, solution to obtain the target position and orientation given the projected circle center and the parameters of the outer circle projection. The viability of the approach is demonstrated based on aerial pictures taken by an UAV from elevations between 10 to 100 m. We obtain a distance RMS below 0.25 % under 50 m and below 1 % under 100 m with a target size of 90 cm, part of which is a deterministic bias introduced by image exposure.

  19. Airspeed and orifice size affect spray droplet spectra from an aerial electrostatic nozzle for rotary-wing applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aerial electrostatic spraying system patented by the USDA-ARS is a unique aerial application system which inductively charges spray droplets for the purpose of increasing deposition and efficacy. While this system has many potential benefits, no published data exits which describe how changes i...

  20. Airspeed and orifice size affect spray droplet spectrum from an aerial electrostatic nozzle for fixed-wing applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aerial electrostatic spraying system patented by the USDA ARS is a unique aerial application system which inductively charges spray particles for the purpose of increasing deposition and efficacy. While this system has many potential benefits, very little is known about how changes in airspeed o...

  1. The application of GPS precise point positioning technology in aerial triangulation

    NASA Astrophysics Data System (ADS)

    Yuan, Xiuxiao; Fu, Jianhong; Sun, Hongxing; Toth, Charles

    In traditional GPS-supported aerotriangulation, differential GPS (DGPS) positioning technology is used to determine the 3-dimensional coordinates of the perspective centers at exposure time with an accuracy of centimeter to decimeter level. This method can significantly reduce the number of ground control points (GCPs). However, the establishment of GPS reference stations for DGPS positioning is not only labor-intensive and costly, but also increases the implementation difficulty of aerial photography. This paper proposes aerial triangulation supported with GPS precise point positioning (PPP) as a way to avoid the use of the GPS reference stations and simplify the work of aerial photography. Firstly, we present the algorithm for GPS PPP in aerial triangulation applications. Secondly, the error law of the coordinate of perspective centers determined using GPS PPP is analyzed. Thirdly, based on GPS PPP and aerial triangulation software self-developed by the authors, four sets of actual aerial images taken from surveying and mapping projects, different in both terrain and photographic scale, are given as experimental models. The four sets of actual data were taken over a flat region at a scale of 1:2500, a mountainous region at a scale of 1:3000, a high mountainous region at a scale of 1:32000 and an upland region at a scale of 1:60000 respectively. In these experiments, the GPS PPP results were compared with results obtained through DGPS positioning and traditional bundle block adjustment. In this way, the empirical positioning accuracy of GPS PPP in aerial triangulation can be estimated. Finally, the results of bundle block adjustment with airborne GPS controls from GPS PPP are analyzed in detail. The empirical results show that GPS PPP applied in aerial triangulation has a systematic error of half-meter level and a stochastic error within a few decimeters. However, if a suitable adjustment solution is adopted, the systematic error can be eliminated in GPS

  2. Evaluation of aerial spray technologies for adult mosquito control applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spray droplet size has long been recognized as an important variable that applicators of vector control sprays must be aware of to make the most effective spray applications. Researchers and applicators have several different techniques available to assess spray droplet size from spray nozzles. The...

  3. Accuracy Potential and Applications of MIDAS Aerial Oblique Camera System

    NASA Astrophysics Data System (ADS)

    Madani, M.

    2012-07-01

    Airborne oblique cameras such as Fairchild T-3A were initially used for military reconnaissance in 30s. A modern professional digital oblique camera such as MIDAS (Multi-camera Integrated Digital Acquisition System) is used to generate lifelike three dimensional to the users for visualizations, GIS applications, architectural modeling, city modeling, games, simulators, etc. Oblique imagery provide the best vantage for accessing and reviewing changes to the local government tax base, property valuation assessment, buying & selling of residential/commercial for better decisions in a more timely manner. Oblique imagery is also used for infrastructure monitoring making sure safe operations of transportation, utilities, and facilities. Sanborn Mapping Company acquired one MIDAS from TrackAir in 2011. This system consists of four tilted (45 degrees) cameras and one vertical camera connected to a dedicated data acquisition computer system. The 5 digital cameras are based on the Canon EOS 1DS Mark3 with Zeiss lenses. The CCD size is 5,616 by 3,744 (21 MPixels) with the pixel size of 6.4 microns. Multiple flights using different camera configurations (nadir/oblique (28 mm/50 mm) and (50 mm/50 mm)) were flown over downtown Colorado Springs, Colorado. Boresight fights for 28 mm nadir camera were flown at 600 m and 1,200 m and for 50 mm nadir camera at 750 m and 1500 m. Cameras were calibrated by using a 3D cage and multiple convergent images utilizing Australis model. In this paper, the MIDAS system is described, a number of real data sets collected during the aforementioned flights are presented together with their associated flight configurations, data processing workflow, system calibration and quality control workflows are highlighted and the achievable accuracy is presented in some detail. This study revealed that the expected accuracy of about 1 to 1.5 GSD (Ground Sample Distance) for planimetry and about 2 to 2.5 GSD for vertical can be achieved. Remaining systematic

  4. Combination ground and aerial adulticide applications against mosquitoes in an Arkansas riceland community.

    PubMed

    Weathersbee, A A; Meisch, M V; Sandoski, C A; Finch, M F; Dame, D A; Olson, J K; Inman, A

    1986-12-01

    Simultaneous ground and aerial adulticide applications were evaluated against riceland mosquitoes in Stuttgart, AR, during July 1985. Naled was aerially applied at 52.6 ml/ha over 10.4 km2 surrounding the city. Ground ULV applications of a mixture of malathion, HAN and resmethrin/PBO (1:1:0.0625) were applied within the city at a rate of 221.8 ml/min at 24 kph. Adult populations of Anopheles quadrimaculatus and Psorophora columbiae were reduced at 24 hr but resurgence of Ps. columbiae was evident at 48 hr posttreatment. Posttreatment data indicated that movement of both mosquitoes occurred along the path of prevailing wind. PMID:2906984

  5. Unmanned Aerial Systems and Spectroscopy for Remote Sensing Applications in Archaeology

    NASA Astrophysics Data System (ADS)

    Themistocleous, K.; Agapiou, A.; Cuca, B.; Hadjimitsis, D. G.

    2015-04-01

    Remote sensing has open up new dimensions in archaeological research. Although there has been significant progress in increasing the resolution of space/aerial sensors and image processing, the detection of the crop (and soil marks) formations, which relate to buried archaeological remains, are difficult to detect since these marks may not be visible in the images if observed over different period or at different spatial/spectral resolution. In order to support the improvement of earth observation remote sensing technologies specifically targeting archaeological research, a better understanding of the crop/soil marks formation needs to be studied in detail. In this paper the contribution of both Unmanned Aerial Systems as well ground spectroradiometers is discussed in a variety of examples applied in the eastern Mediterranean region (Cyprus and Greece) as well in Central Europe (Hungary). In- situ spectroradiometric campaigns can be applied for the removal of atmospheric impact to simultaneous satellite overpass images. In addition, as shown in this paper, the systematic collection of ground truth data prior to the satellite/aerial acquisition can be used to detect the optimum temporal and spectral resolution for the detection of stress vegetation related to buried archaeological remains. Moreover, phenological studies of the crops from the area of interest can be simulated to the potential sensors based on their Relative Response Filters and therefore prepare better the satellite-aerial campaigns. Ground data and the use of Unmanned Aerial Systems (UAS) can provide an increased insight for studying the formation of crop and soil marks. New algorithms such as vegetation indices and linear orthogonal equations for the enhancement of crop marks can be developed based on the specific spectral characteristics of the area. As well, UAS can be used for remote sensing applications in order to document, survey and model cultural heritage and archaeological sites.

  6. Concept and realization of unmanned aerial system with different modes of operation

    SciTech Connect

    Czyba, Roman; Szafrański, Grzegorz; Janusz, Wojciech; Niezabitowski, Michał; Czornik, Adam; Błachuta, Marian

    2014-12-10

    In this paper we describe the development process of unmanned aerial system, its mechanical components, electronics and software solutions. During the stage of design, we have formulated some necessary requirements for the multirotor vehicle and ground control station in order to build an optimal system which can be used for the reconnaissance missions. Platform is controlled by use of the ground control station (GCS) and has possibility of accomplishing video based observation tasks. In order to fulfill this requirement the on-board payload consists of mechanically stabilized camera augmented with machine vision algorithms to enable object tracking tasks. Novelty of the system are four modes of flight, which give full functionality of the developed UAV system. Designed ground control station is consisted not only of the application itself, but also a built-in dedicated components located inside the chassis, which together creates an advanced UAV system supporting the control and management of the flight. Mechanical part of quadrotor is designed to ensure its robustness while meeting objectives of minimizing weight of the platform. Finally the designed electronics allows for implementation of control and estimation algorithms without the needs for their excessive computational optimization.

  7. Concept and realization of unmanned aerial system with different modes of operation

    NASA Astrophysics Data System (ADS)

    Czyba, Roman; Szafrański, Grzegorz; Janusz, Wojciech; Niezabitowski, Michał; Czornik, Adam; Błachuta, Marian

    2014-12-01

    In this paper we describe the development process of unmanned aerial system, its mechanical components, electronics and software solutions. During the stage of design, we have formulated some necessary requirements for the multirotor vehicle and ground control station in order to build an optimal system which can be used for the reconnaissance missions. Platform is controlled by use of the ground control station (GCS) and has possibility of accomplishing video based observation tasks. In order to fulfill this requirement the on-board payload consists of mechanically stabilized camera augmented with machine vision algorithms to enable object tracking tasks. Novelty of the system are four modes of flight, which give full functionality of the developed UAV system. Designed ground control station is consisted not only of the application itself, but also a built-in dedicated components located inside the chassis, which together creates an advanced UAV system supporting the control and management of the flight. Mechanical part of quadrotor is designed to ensure its robustness while meeting objectives of minimizing weight of the platform. Finally the designed electronics allows for implementation of control and estimation algorithms without the needs for their excessive computational optimization.

  8. Aerial application of pheromones for mating disruption of an invasive moth as a potential eradication tool.

    PubMed

    Brockerhoff, Eckehard G; Suckling, David M; Kimberley, Mark; Richardson, Brian; Coker, Graham; Gous, Stefan; Kerr, Jessica L; Cowan, David M; Lance, David R; Strand, Tara; Zhang, Aijun

    2012-01-01

    Biological invasions can cause major ecological and economic impacts. During the early stages of invasions, eradication is desirable but tactics are lacking that are both effective and have minimal non-target effects. Mating disruption, which may meet these criteria, was initially chosen to respond to the incursion of light brown apple moth, Epiphyas postvittana (LBAM; Lepidoptera: Tortricidae), in California. The large size and limited accessibility of the infested area favored aerial application. Moth sex pheromone formulations for potential use in California or elsewhere were tested in a pine forest in New Zealand where LBAM is abundant. Formulations were applied by helicopter at a target rate of 40 g pheromone per ha. Trap catch before and after application was used to assess the efficacy and longevity of formulations, in comparison with plots treated with ground-applied pheromone dispensers and untreated control plots. Traps placed at different heights showed LBAM was abundant in the upper canopy of tall trees, which complicates control attempts. A wax formulation and polyethylene dispensers were most effective and provided trap shut-down near ground level for 10 weeks. Only the wax formulation was effective in the upper canopy. As the pheromone blend contained a behavioral antagonist for LBAM, 'false trail following' could be ruled out as a mechanism explaining trap shutdown. Therefore, 'sensory impairment' and 'masking of females' are the main modes of operation. Mating disruption enhances Allee effects which contribute to negative growth of small populations and, therefore, it is highly suitable for area-wide control and eradication of biological invaders. PMID:22937092

  9. Aerocrane: A hybrid LTA aircraft for aerial crane applications

    NASA Technical Reports Server (NTRS)

    Perkins, R. G., Jr.; Doolittle, D. B.

    1975-01-01

    The Aerocrane, a hybrid aircraft, combines rotor lift with buoyant lift to offer VTOL load capability greatly in excess of helicopter technology while eliminating the airship problem of ballast transfer. In addition, the Aerocrane concept sharply reduces the mooring problem of airships and provides 360 deg vectorable thrust to supply a relatively large force component for control of gust loads. Designed for use in short range, ultra heavy lift missions, the Aerocrane operates in a performance envelope unsuitable for either helicopters or airships. Basic design considerations and potential problem areas of the concept are addressed.

  10. Effects of aerial applications of naled on nontarget insects at Parris Island, South Carolina.

    PubMed

    Breidenbaugh, M S; de Szalay, F A

    2010-04-01

    Testing impacts of large-scale aerial spraying to control public health pests under realistic field conditions are needed to understand impacts on natural populations of nontarget insects. Responses of terrestrial insects to aerial applications of an organophosphate insecticide, naled, used for mosquito and biting midge control were studied on Parris Island Marine Corps Recruit Depot, Parris Island, SC. Aerial applications were made with C-130 aircraft at dusk in 2003 and in 2005. In 2003, we sampled two locations on Parris Island with Malaise traps before and after spraying, and used Before-After analyses to examine changes in terrestrial insect diversity and abundance. In 2005, we sampled insects with yellow pan traps at three locations on Parris Island and at an untreated control site. A Before-After Control-Impact analysis at each location was conducted to compare changes. In 2003, numbers of four of 12 common taxa (Dolichopodidae, Sarcophagidae, Syrphidae, Tachinidae) were lower after sprays. However, there were no significant changes in numbers of common taxa or total numbers in 2005. Shannon diversities (H') were not different in either year indicating that sprays had minimal impact on overall community biodiversity. In contrast, populations of pestiferous biting midges (Culicoides spp.) collected in CDC-style traps were reduced by 94-99% after spraying in both years; mosquito numbers declined by 88.2% in 2003 and 92.5% in 2005, after sprays. PMID:20388292

  11. Data Acquisition (DAQ) system dedicated for remote sensing applications on Unmanned Aerial Vehicles (UAV)

    NASA Astrophysics Data System (ADS)

    Keleshis, C.; Ioannou, S.; Vrekoussis, M.; Levin, Z.; Lange, M. A.

    2014-08-01

    Continuous advances in unmanned aerial vehicles (UAV) and the increased complexity of their applications raise the demand for improved data acquisition systems (DAQ). These improvements may comprise low power consumption, low volume and weight, robustness, modularity and capability to interface with various sensors and peripherals while maintaining the high sampling rates and processing speeds. Such a system has been designed and developed and is currently integrated on the Autonomous Flying Platforms for Atmospheric and Earth Surface Observations (APAESO/NEA-YΠOΔOMH/NEKΠ/0308/09) however, it can be easily adapted to any UAV or any other mobile vehicle. The system consists of a single-board computer with a dual-core processor, rugged surface-mount memory and storage device, analog and digital input-output ports and many other peripherals that enhance its connectivity with various sensors, imagers and on-board devices. The system is powered by a high efficiency power supply board. Additional boards such as frame-grabbers, differential global positioning system (DGPS) satellite receivers, general packet radio service (3G-4G-GPRS) modems for communication redundancy have been interfaced to the core system and are used whenever there is a mission need. The onboard DAQ system can be preprogrammed for automatic data acquisition or it can be remotely operated during the flight from the ground control station (GCS) using a graphical user interface (GUI) which has been developed and will also be presented in this paper. The unique design of the GUI and the DAQ system enables the synchronized acquisition of a variety of scientific and UAV flight data in a single core location. The new DAQ system and the GUI have been successfully utilized in several scientific UAV missions. In conclusion, the novel DAQ system provides the UAV and the remote-sensing community with a new tool capable of reliably acquiring, processing, storing and transmitting data from any sensor integrated

  12. Historical pesticide applications coincided with an altered diet of aerially foraging insectivorous chimney swifts

    PubMed Central

    Nocera, Joseph J.; Blais, Jules M.; Beresford, David V.; Finity, Leah K.; Grooms, Christopher; Kimpe, Lynda E.; Kyser, Kurt; Michelutti, Neal; Reudink, Matthew W.; Smol, John P.

    2012-01-01

    Numerous environmental pressures have precipitated long-term population reductions of many insect species. Population declines in aerially foraging insectivorous birds have also been detected, but the cause remains unknown partly because of a dearth of long-term monitoring data on avian diets. Chimney swifts (Chaetura pelagica) are a model aerial insectivore to fill such information gaps because their roosting behaviour makes them easy to sample in large numbers over long time periods. We report a 48-year-long (1944–1992) dietary record for the chimney swift, determined from a well-preserved deposit of guano and egested insect remains in Ontario (Canada). This unique archive of palaeo-environmental data reflecting past chimney swift diets revealed a steep rise in dichlorodiphenyltrichloroethane (DDT) and metabolites, which were correlated with a decrease in Coleoptera remains and an increase in Hemiptera remains, indicating a significant change in chimney swift prey. We argue that DDT applications decimated Coleoptera populations and dramatically altered insect community structure by the 1960s, triggering nutritional consequences for swifts and other aerial insectivores. PMID:22513860

  13. Extracting roads based on Retinex and improved Canny operator with shape criteria in vague and unevenly illuminated aerial images

    NASA Astrophysics Data System (ADS)

    Ronggui, Ma; Weixing, Wang; Sheng, Liu

    2012-01-01

    An automatic road extraction method for vague aerial images is proposed in this paper. First, a high-resolution but low-contrast image is enhanced by using a Retinex-based algorithm. Then, the enhanced image is segmented with an improved Canny edge detection operator that can automatically threshold the image into a binary edge image. Subsequently, the linear and curved road segments are regulated by the Hough line transform and extracted based on several thresholds of road size and shapes, in which a number of morphological operators are used such as thinning (skeleton), junction detection, and endpoint detection. In experiments, a number of vague aerial images with bad uniformity are selected for testing. Similarity and discontinuation-based algorithms, such as Otsu thresholding, merge and split, edge detection-based algorithms, and the graph-based algorithm are compared with the new method. The experiment and comparison results show that the studied method can enhance vague, low-contrast, and unevenly illuminated color aerial road images; it can detect most road edges with fewer disturb elements and trace roads with good quality. The method in this study is promising.

  14. Aerial Neutron Detection: Neutron Signatures for Nonproliferation and Emergency Response Applications

    SciTech Connect

    Maurer, Richard J.; Stampahar, Thomas G.; Smith, Ethan X.; Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Rourke, Timothy J.; LeDonne, Jeffrey P.; Avaro, Emanuele; Butler, D. Andre; Borders, Kevin L.; Stampahar, Jezabel; Schuck, William H.; Selfridge, Thomas L.; McKissack, Thomas M.; Duncan, William W.; Hendricks, Thane J.

    2012-10-17

    From 2007 to the present, the Remote Sensing Laboratory has been conducting a series of studies designed to expand our fundamental understanding of aerial neutron detection with the goal of designing an enhanced sensitivity detection system for long range neutron detection. Over 35 hours of aerial measurements in a helicopter were conducted for a variety of neutron emitters such as neutron point sources, a commercial nuclear power reactor, nuclear reactor spent fuel in dry cask storage, depleted uranium hexafluoride and depleted uranium metal. The goals of the project were to increase the detection sensitivity of our instruments such that a 5.4 × 104 neutron/second source could be detected at 100 feet above ground level at a speed of 70 knots and to enhance the long-range detection sensitivity for larger neutron sources, i.e., detection ranges above 1000 feet. In order to increase the sensitivity of aerial neutron detection instruments, it is important to understand the dynamics of the neutron background as a function of altitude. For aerial neutron detection, studies have shown that the neutron background primarily originates from above the aircraft, being produced in the upper atmosphere by galactic cosmic-ray interactions with air molecules. These interactions produce energetic neutrons and charged particles that cascade to the earth’s surface, producing additional neutrons in secondary collisions. Hence, the neutron background increases as a function of altitude which is an impediment to long-range neutron detection. In order to increase the sensitivity for long range detection, it is necessary to maintain a low neutron background as a function of altitude. Initial investigations show the variation in the neutron background can be decreased with the application of a cosmic-ray shield. The results of the studies along with a representative data set are presented.

  15. Accuracy Assessment of Direct Georeferencing for Photogrammetric Applications on Small Unmanned Aerial Platforms

    NASA Astrophysics Data System (ADS)

    Mian, O.; Lutes, J.; Lipa, G.; Hutton, J. J.; Gavelle, E.; Borghini, S.

    2016-03-01

    Efficient mapping from unmanned aerial platforms cannot rely on aerial triangulation using known ground control points. The cost and time of setting ground control, added to the need for increased overlap between flight lines, severely limits the ability of small VTOL platforms, in particular, to handle mapping-grade missions of all but the very smallest survey areas. Applanix has brought its experience in manned photogrammetry applications to this challenge, setting out the requirements for increasing the efficiency of mapping operations from small UAVs, using survey-grade GNSS-Inertial technology to accomplish direct georeferencing of the platform and/or the imaging payload. The Direct Mapping Solution for Unmanned Aerial Vehicles (DMS-UAV) is a complete and ready-to-integrate OEM solution for Direct Georeferencing (DG) on unmanned aerial platforms. Designed as a solution for systems integrators to create mapping payloads for UAVs of all types and sizes, the DMS produces directly georeferenced products for any imaging payload (visual, LiDAR, infrared, multispectral imaging, even video). Additionally, DMS addresses the airframe's requirements for high-accuracy position and orientation for such tasks as precision RTK landing and Precision Orientation for Air Data Systems (ADS), Guidance and Control. This paper presents results using a DMS comprised of an Applanix APX-15 UAV with a Sony a7R camera to produce highly accurate orthorectified imagery without Ground Control Points on a Microdrones md4-1000 platform conducted by Applanix and Avyon. APX-15 UAV is a single-board, small-form-factor GNSS-Inertial system designed for use on small, lightweight platforms. The Sony a7R is a prosumer digital RGB camera sensor, with a 36MP, 4.9-micron CCD producing images at 7360 columns by 4912 rows. It was configured with a 50mm AF-S Nikkor f/1.8 lens and subsequently with a 35mm Zeiss Sonnar T* FE F2.8 lens. Both the camera/lens combinations and the APX-15 were mounted to a

  16. Accuracy Assessment of Direct Georeferencing for Photogrammetric Applications on Small Unmanned Aerial Platforms

    NASA Astrophysics Data System (ADS)

    Mian, O.; Lutes, J.; Lipa, G.; Hutton, J. J.; Gavelle, E.; Borghini, S.

    2016-03-01

    Efficient mapping from unmanned aerial platforms cannot rely on aerial triangulation using known ground control points. The cost and time of setting ground control, added to the need for increased overlap between flight lines, severely limits the ability of small VTOL platforms, in particular, to handle mapping-grade missions of all but the very smallest survey areas. Applanix has brought its experience in manned photogrammetry applications to this challenge, setting out the requirements for increasing the efficiency of mapping operations from small UAVs, using survey-grade GNSS-Inertial technology to accomplish direct georeferencing of the platform and/or the imaging payload. The Direct Mapping Solution for Unmanned Aerial Vehicles (DMS-UAV) is a complete and ready-to-integrate OEM solution for Direct Georeferencing (DG) on unmanned aerial platforms. Designed as a solution for systems integrators to create mapping payloads for UAVs of all types and sizes, the DMS produces directly georeferenced products for any imaging payload (visual, LiDAR, infrared, multispectral imaging, even video). Additionally, DMS addresses the airframe's requirements for high-accuracy position and orientation for such tasks as precision RTK landing and Precision Orientation for Air Data Systems (ADS), Guidance and Control. This paper presents results using a DMS comprised of an Applanix APX-15 UAV with a Sony a7R camera to produce highly accurate orthorectified imagery without Ground Control Points on a Microdrones md4-1000 platform conducted by Applanix and Avyon. APX-15 UAV is a single-board, small-form-factor GNSS-Inertial system designed for use on small, lightweight platforms. The Sony a7R is a prosumer digital RGB camera sensor, with a 36MP, 4.9-micron CCD producing images at 7360 columns by 4912 rows. It was configured with a 50mm AF-S Nikkor f/1.8 lens and subsequently with a 35mm Zeiss Sonnar T* FE F2.8 lens. Both the camera/lens combinations and the APX-15 were mounted to a

  17. Impact of low aerial application rates of Dibrom 14 on potential vectors.

    PubMed

    Brown, James R; Rutledge, Cynthia R; Reynolds, William; Dame, David A

    2006-03-01

    Aerial applications designed to assess the impact of low application rates of naled (Dibrom 14) on potential vector species were conducted in 2003 with caged adult Anopheles quadrimaculatus in open grassland at Cecil Airfield in Jacksonville, FL. Offset flight paths of 2,000-6,000 (calculated by the AgDisp aerial application model) and 1,000-ft swath widths were conducted with a Micronair AU4000 rotary atomizer, which provides a several-fold increase in droplets between 7 and 22 microm. Mean volume median diameters of 8.0, 7.8, and 9.4 microm and 290, 506, and 192 droplets per sq cm were observed in the target area with application rates of 0.125, 0.25, and 0.5 fl oz per acre, respectively. The observed mean mortality of caged mosquitoes 12 h posttreatment, corrected for mortality in untreated controls, was 14%, 80%, and 99% at 0.125, 0.25, and 0.5 fl oz per acre, respectively. These results indicate that applications at 0.25 fl oz per acre or less should be avoided and rates greater than 0.5 fl oz may be required for adequate control in canopied habitats and less-than-optimum terrains. PMID:16646327

  18. Research applications of night-time aerial photography, from local to global scales

    NASA Astrophysics Data System (ADS)

    Hale, J.; Sadler, J.

    2012-12-01

    Artificial lighting of the earth's surface is changing at a global scale, with numerous social, economic and environmental implications. In many regions, the extent, brightness and spectral range of lighting is increasing, reflecting economic and technological development, population growth and urbanization. Its benefits include improving the perception of neighbourhood safety and increasing people's options for when activities can take place. Impacts range from the disruption of sleep patterns by a single street lamp to obscured views of the night sky for tens of kilometers surrounding an urban area. There is therefore a need to secure baseline maps of artificial lighting, and to detect changes in their extent and quality over time. Considerable success has been achieved in generating global lighting datasets from Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) data, which have been used to support a broad range of research and policy applications. However, their coarse spatial and spectral resolution and difficulties in radiance calibration have been recognised as barriers to some potential applications. We present the first multi-spectral radiance calibrated lighting data for cities at a fine spatial resolution (10cm). We then illustrate how these data can be effective for exploring relationships between lighting and urban form, and that they can support the radiance calibration of lighting datasets with much greater spatial extents. Color night photography was collected for two major English cities - Birmingham and London. Ground photometry and radiometry surveys were undertaken, permitting the reclassification of the images to represent incident lux and the identification and classification of individual lamps. Total illuminated area and lamp density both correlated positively with percentage built surface cover, although the strength of these relationships differed between cities. This suggests that artificial lighting may

  19. Semantic Segmentation and Difference Extraction via Time Series Aerial Video Camera and its Application

    NASA Astrophysics Data System (ADS)

    Amit, S. N. K.; Saito, S.; Sasaki, S.; Kiyoki, Y.; Aoki, Y.

    2015-04-01

    Google earth with high-resolution imagery basically takes months to process new images before online updates. It is a time consuming and slow process especially for post-disaster application. The objective of this research is to develop a fast and effective method of updating maps by detecting local differences occurred over different time series; where only region with differences will be updated. In our system, aerial images from Massachusetts's road and building open datasets, Saitama district datasets are used as input images. Semantic segmentation is then applied to input images. Semantic segmentation is a pixel-wise classification of images by implementing deep neural network technique. Deep neural network technique is implemented due to being not only efficient in learning highly discriminative image features such as road, buildings etc., but also partially robust to incomplete and poorly registered target maps. Then, aerial images which contain semantic information are stored as database in 5D world map is set as ground truth images. This system is developed to visualise multimedia data in 5 dimensions; 3 dimensions as spatial dimensions, 1 dimension as temporal dimension, and 1 dimension as degenerated dimensions of semantic and colour combination dimension. Next, ground truth images chosen from database in 5D world map and a new aerial image with same spatial information but different time series are compared via difference extraction method. The map will only update where local changes had occurred. Hence, map updating will be cheaper, faster and more effective especially post-disaster application, by leaving unchanged region and only update changed region.

  20. Integrating Spray Plane-Based Remote Sensing and Rapid Image Processing with Variable-Rate Aerial Application.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A remote sensing and variable rate application system was configured for agricultural aircraft. This combination system has the potential of providing a completely integrated solution for all aspects of aerial site-specific application and includes remote sensing, image processing and georegistratio...

  1. Application of aerial photography to water-related programs in Michigan

    NASA Technical Reports Server (NTRS)

    Enslin, W. R.; Hill-Rowley, R.; Tilmann, S. E.

    1977-01-01

    The paper describes the use of aerial photography and information system technology in the provision of information required for the effective operation of three water-related programs in Michigan. Potential mosquito breeding sites were identified from specially acquired low altitude 70 mm color photography for the City of Lansing Vector Control Area. A comprehensive inventory of surface water sources and potential access sites was prepared to assist fire departments in Antrim County with fire truck water-recharge operations. Remotely-sensed land cover/use data for Windsor Township, Eaton County were integrated with other resource data into a computer-based information system for regional water quality studies. Eleven thematic maps specifically focussed on landscape features affecting non-point water pollution and waste disposal were generated from analyses of a four-hectare grid-based data file containing land cover/use, soils, topographic and geologic (well-log) data.

  2. Application of aerial photography to water-related programs in Michigan

    NASA Technical Reports Server (NTRS)

    Enslin, W. R.; Hill-Rowley, R.; Tilmann, S. E.

    1977-01-01

    Aerial photography and information system technology were used to generate information required for the effective operation of three water-related programs in Michigan. Potential mosquito breeding sites were identified from specially acquired low altitude 70 mm color photography for the city of Lansing; the inventory identified 35% more surface water areas than indicated on existing field maps. A comprehensive inventory of surface water sources and potential access sites was prepared to assist fire departments in Antrim County with fire truck water-recharge operations. Remotely-sensed land cover/use data for Windsor Township, Eaton County, were integrated with other resource data into a computer-based information system for regional water quality studies. Eleven thematic maps focusing on landscape features affecting non-point water pollution and waste disposal were generated from analyses of a four-hectare grid-based data file containing land cover/use, soils, topographic and geologic (well-log) data.

  3. Aerial Image Systems

    NASA Astrophysics Data System (ADS)

    Clapp, Robert E.

    1987-09-01

    Aerial images produce the best stereoscopic images of the viewed world. Despite the fact that every optic in existence produces an aerial image, few persons are aware of their existence and possible uses. Constant reference to the eye and other optical systems have produced a psychosis of design that only considers "focal planes" in the design and analysis of optical systems. All objects in the field of view of the optical device are imaged by the device as an aerial image. Use of aerial images in vision and visual display systems can provide a true stereoscopic representation of the viewed world. This paper discusses aerial image systems - their applications and designs and presents designs and design concepts that utilize aerial images to obtain superior visual displays, particularly with application to visual simulation.

  4. Post-hurricane Rita mosquito surveillance and the efficacy of Air Force aerial applications for mosquito control in east Texas.

    PubMed

    Breidenbaugh, Mark S; Haagsma, Karl A; Walker, Wes W; Sanders, David M

    2008-06-01

    Post-Hurricane Rita mosquito surveillance was carried out in 4 east Texas counties to determine mosquito abundance, species composition, and need for mosquito control. Subsequently, aerial applications of naled (Dibrom) for mosquito control were made by the Air Force Aerial Spray Flight, while continued surveillance documented the efficacy of the applications. Psorophora columbiae was the predominant species in landing counts. Twenty-two mosquito species were represented in light trap collections with Aedes atlanitcus/tormentor, Culex nigripalpus, Ae. vexans, and Ps. columbiae making up 91% of the total. A total of 102,001 ha (252,052 acres) were aerially treated based on high mosquito abundance, exposure of first responders and residents to nuisance biting, and local interruption of electric utilities. A significant 90% decline in mosquito abundance was observed posttreatment. PMID:18666545

  5. Performance Analysis of the SIFT Operator for Automatic Feature Extraction and Matching in Photogrammetric Applications.

    PubMed

    Lingua, Andrea; Marenchino, Davide; Nex, Francesco

    2009-01-01

    In the photogrammetry field, interest in region detectors, which are widely used in Computer Vision, is quickly increasing due to the availability of new techniques. Images acquired by Mobile Mapping Technology, Oblique Photogrammetric Cameras or Unmanned Aerial Vehicles do not observe normal acquisition conditions. Feature extraction and matching techniques, which are traditionally used in photogrammetry, are usually inefficient for these applications as they are unable to provide reliable results under extreme geometrical conditions (convergent taking geometry, strong affine transformations, etc.) and for bad-textured images. A performance analysis of the SIFT technique in aerial and close-range photogrammetric applications is presented in this paper. The goal is to establish the suitability of the SIFT technique for automatic tie point extraction and approximate DSM (Digital Surface Model) generation. First, the performances of the SIFT operator have been compared with those provided by feature extraction and matching techniques used in photogrammetry. All these techniques have been implemented by the authors and validated on aerial and terrestrial images. Moreover, an auto-adaptive version of the SIFT operator has been developed, in order to improve the performances of the SIFT detector in relation to the texture of the images. The Auto-Adaptive SIFT operator (A(2) SIFT) has been validated on several aerial images, with particular attention to large scale aerial images acquired using mini-UAV systems. PMID:22412336

  6. Performance Analysis of the SIFT Operator for Automatic Feature Extraction and Matching in Photogrammetric Applications

    PubMed Central

    Lingua, Andrea; Marenchino, Davide; Nex, Francesco

    2009-01-01

    In the photogrammetry field, interest in region detectors, which are widely used in Computer Vision, is quickly increasing due to the availability of new techniques. Images acquired by Mobile Mapping Technology, Oblique Photogrammetric Cameras or Unmanned Aerial Vehicles do not observe normal acquisition conditions. Feature extraction and matching techniques, which are traditionally used in photogrammetry, are usually inefficient for these applications as they are unable to provide reliable results under extreme geometrical conditions (convergent taking geometry, strong affine transformations, etc.) and for bad-textured images. A performance analysis of the SIFT technique in aerial and close-range photogrammetric applications is presented in this paper. The goal is to establish the suitability of the SIFT technique for automatic tie point extraction and approximate DSM (Digital Surface Model) generation. First, the performances of the SIFT operator have been compared with those provided by feature extraction and matching techniques used in photogrammetry. All these techniques have been implemented by the authors and validated on aerial and terrestrial images. Moreover, an auto-adaptive version of the SIFT operator has been developed, in order to improve the performances of the SIFT detector in relation to the texture of the images. The Auto-Adaptive SIFT operator (A2 SIFT) has been validated on several aerial images, with particular attention to large scale aerial images acquired using mini-UAV systems. PMID:22412336

  7. DYNAMIC TESTING OF GPS RECEIVERS ON AGRICULTURAL AIRCRAFT FOR REMOTE SENSING AND VARIABLE-RATE AERIAL APPLICATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global Positioning System (GPS) receivers and GPS-based swath guidance systems are used on agricultural aircraft for remote sensing, airplane guidance, and to support variable-rate aerial application of crop inputs such as insecticides, cotton growth regulators, and defoliants. Agricultural aircraf...

  8. Use of aerial videography to evaluate the effects of Flaming Gorge Dam operations on natural resources of the Green River

    SciTech Connect

    Snider, M.A.; Hayse, J.W.; Hlohowskyj, I.; LaGory, K.E.; Greaney, M.M.; Kuiper, J.A.; Van Lonkhuyzen, R.A.

    1993-07-01

    Peaking hydropower operations can profoundly alter natural stream flow and thereby affect the natural resources dependent on these flows. In this paper, we describe how aerial videography was used to collect environmental data and evaluate impacts of hydropower operations at Flaming Gorge Dam on natural resources of the Green River. An airborne multispectral video/radiometer remote sensing system was used to collect resource data under four different flow conditions from seven sites (each about one mile in length) located downstream from the dam. Releases from Flaming Gorge Dam during data collection ranged from approximately 800 to 4,000 cubic feet/sec (cfs), spanning most of the normal operating range for this facility. For each site a series of contiguous, non-overlapping images was prepared from the videotapes and used to quantify surface water area, backwater habitats, and areas of riparian vegetation under varying flow conditions. From this information, relationships between flow and habitat parameters were developed and used in conjunction with hydrologic modeling and ecological information to evaluate impacts of various modes of operation.

  9. Spaceborne application multiprocessor operating system

    NASA Astrophysics Data System (ADS)

    Grisbeck, Gary S.; Webber, Wesley D.

    1992-03-01

    The Operational Kernel (OK) system for the Spaceborne Processor Array-1 (SPA-1) software development environment is described. The OK system demonstration featured fully autonomous onboard control of data movement, fault detection, fault isolation, hardware reconfiguration, application restart, and load balancing. Random nodal or processing hardware was caused to fail by selection of switches on a fault injection panel. The SPA-1 based on the OK written in Ada detected that a failure had occurred, isolated it, redistributed the processing load, and continued with the application processing.

  10. Unmanned Aerial Systems Traffic Management (UTM): Safely Enabling UAS Operations in Low-Altitude Airspace

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal H.; Jung, Jaewoo

    2016-01-01

    Flexibility where possible, and structure where necessary. Consider the needs of national security, safe airspace operations, economic opportunities, and emerging technologies. Risk-based approach based on population density, assets on the ground, density of operations, etc. Digital, virtual, dynamic, and as needed UTM services to manage operations.

  11. Unmanned Aerial Systems Traffic Management (UTM): Safely Enabling UAS Operations in Low-Altitude Airspace

    NASA Technical Reports Server (NTRS)

    Cavolowsky, John; Kopardekar, Parimal Hemchandra

    2015-01-01

    Flexibility where possible, and structure where necessary. Consider the needs of national security, safe airspace operations, economic opportunities, and emerging technologies. Risk-based approach based on population density, assets on the ground, density of operations, etc. Digital, virtual, dynamic, and as needed UTM services to manage operations.

  12. Operational applications of satellite snowcover observations and LANDSAT data collection systems operations in central Arizona

    NASA Technical Reports Server (NTRS)

    Schumann, H. H.

    1975-01-01

    Repetitive LANDSAT and NOAA-4 satellite imagery together with aerial surveys are being evaluated to develop an operational capability for mapping snowcover distributions on the Salt-Verde watershed of central Arizona. Satellite telemetry is also being used for near-real time relay of hydrologic data to aid in the management and operation of reservoirs on the Salt and Verde Rivers. Aerial reconnaissance flights were conducted to collect information on the depth and distribution of snowcover to provide ground truth for use in the analysis of the satellite imagery. A technique for rapid and economical determination of snow depths, using oblique aerial photography of snow markers, was developed.

  13. Enabling Civilian Low-Altitude Airspace and Unmanned Aerial System (UAS) Operations

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal

    2014-01-01

    UAS operations will be safer if a UTM system is available to support the functions associated with Airspace management and geo-fencing (reduce risk of accidents, impact to other operations, and community concerns); Weather and severe wind integration (avoid severe weather areas based on prediction); Predict and manage congestion (mission safety);Terrain and man-made objects database and avoidance; Maintain safe separation (mission safety and assurance of other assets); Allow only authenticated operations (avoid unauthorized airspace use).

  14. Safely Enabling Low-Altitude Airspace Operations: Unmanned Aerial System Traffic Management (UTM)

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal

    2015-01-01

    Near-term Goal Enable initial low-altitude airspace and UAS operations with demonstrated safety as early as possible, within 5 years Long-term Goal Accommodate increased UAS operations with highest safety, efficiency, and capacity as much autonomously as possible (10-15 years).

  15. Adaptive mode transition control architecture with an application to unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Gutierrez Zea, Luis Benigno

    In this thesis, an architecture for the adaptive mode transition control of unmanned aerial vehicles (UAV) is presented. The proposed architecture consists of three levels: the highest level is occupied by mission planning routines where information about way points the vehicle must follow is processed. The middle level uses a trajectory generation component to coordinate the task execution and provides set points for low-level stabilizing controllers. The adaptive mode transitioning control algorithm resides at the lowest level of the hierarchy consisting of a mode transitioning controller and the accompanying adaptation mechanism. The mode transition controller is composed of a mode transition manager, a set of local controllers, a set of active control models, a set point filter, a state filter, an automatic trimming mechanism and a dynamic compensation filter. Local controllers operate in local modes and active control models operate in transitions between two local modes. The mode transition manager determines the actual mode of operation of the vehicle based on a set of mode membership functions and activates a local controller or an active control model accordingly. The adaptation mechanism uses an indirect adaptive control methodology to adapt the active control models. For this purpose, a set of plant models based on fuzzy neural networks is trained based on input/output information from the vehicle and used to compute sensitivity matrices providing the linearized models required by the adaptation algorithms. The effectiveness of the approach is verified through software-in-the-loop simulations, hardware-in-the-loop simulations and flight testing.

  16. Low altitude aerial photogrammetry application to braided river systems. Example of the Buech River, Alps, France.

    NASA Astrophysics Data System (ADS)

    Jules Fleury, Thomas; Pothin, Virginie; Vella, Claude; Dussouillez, Philippe; Izem, Abdelkoddouss

    2015-04-01

    Low-altitude aerial photogrammetry offers new opportunities for geomorphology and other fields requiring very high-resolution topographic data. It combines the advantages of the reproducibility of GPS topographic surveys with the high accuracy of LIDAR, but at relatively low-cost, easy-to-deploy and with the synaptic advantage of remote sensing. In order to evaluate the potential of photogrammetry on river systems and to assess river-bed changes and erosion-accretion processes, we conducted several surveys over the period of one year on the Buech river, a gravel-bed braided river located in the French Southern Alps. The study area is located directly upstream of a gravel pit and there is an interest in evaluating its effects on the riverbed. Our field protocol was comprised of vertical aerial photographs taken from a microlight aircraft flying approximately 300 ft above the ground. The equipment used was a full-frame DSLR with a wide angle lense, synchronised with a DGPS onboard. Fourty 40cm wide targets were placed on the ground and georeferenced by RTK DGPS with an accuracy of 2cm. In addition, close to one thousand Ground Control Points (GCPs) were measured within the different types of ground surfaces (vegetated, water, gravels) in order to assess the Digital Terrain Model (DTM) accuracy. We operated the production of the 3D model and its derived products: Digital Surface Model (DSM) and orthophotography, with user-friendly Agisoft (c) Photoscan Professional software. The processing of several hundred pictures with 2.5 cm ground resolution resulted in a DSM with a resolution of 10 cm and a vertical accuracy within 5 cm. As is expected, accuracy was best on bare bars and decreased with increasing vegetation density. To complement the DSM in the wetted channels, we used the orthophotos to establish a relationship between water color and flow depth using statistical multivariate regressions. Merging the bathymetric model and the DSM produced a DTM with a vertical

  17. On the quality of prairie-pothole wetlands for adult and juvenile waterfowl following aerial application of insecticides

    USGS Publications Warehouse

    Grue, C.E.; Tome, M.W.; Swanson, G.A.; Borthwick, S.M.; DeWeese, L.R.

    1990-01-01

    In 1987 the impact of aerial application of ethyl parathion to waterfowl on small prairie wetlands adjacent to sunflower fields in North Dakota was assessed by studying 5 fenced wetlands surrounded by sunflowers and 5 fenced controls. By 3 days post-spray, 4 of 104 ducklings released onto the wetlands were alive, compared to 52% of 105 control ducklings. Brain ChE activity was depressed > 50% in all but one of the 50 ducklings found dead post-spray. Survival of amphipods in enclosures within the contaminated wetlands was reduced for 25 days. Naturally-occurring broods on unfenced wetlands and free-living aquatic invertebrates in the fenced wetlands were also severely affected. The results suggest aerial application of insecticides may have significant direct and indirect impacts on the survival of adult and juvenile waterfowl within the prairie-pothole region.

  18. The application of the unmanned aerial vehicle remote sensing technology in the FAST project construction

    NASA Astrophysics Data System (ADS)

    Zhu, Boqin

    2015-08-01

    The purpose of using unmanned aerial vehicle (UAV) remote sensing application in Five-hundred-meter aperture spherical telescope (FAST) project is to dynamically record the construction process with high resolution image, monitor the environmental impact, and provide services for local environmental protection and the reserve immigrants. This paper introduces the use of UAV remote sensing system and the course design and implementation for the FAST site. Through the analysis of the time series data, we found that: (1) since the year 2012, the project has been widely carried out; (2) till 2013, the internal project begun to take shape;(3) engineering excavation scope was kept stable in 2014, and the initial scale of the FAST engineering construction has emerged as in the meantime, the vegetation recovery went well on the bare soil area; (4) in 2015, none environmental problems caused by engineering construction and other engineering geological disaster were found in the work area through the image interpretation of UAV images. This paper also suggested that the UAV technology need some improvements to fulfill the requirements of surveying and mapping specification., including a new data acquisition and processing measures assigned with the background of highly diverse elevation, usage of telephoto camera, hierarchical photography with different flying height, and adjustment with terrain using the joint empty three settlement method.

  19. An Overview of Small Unmanned Aerial Vehicles for Air Quality Measurements: Present Applications and Future Prospectives

    PubMed Central

    Villa, Tommaso Francesco; Gonzalez, Felipe; Miljievic, Branka; Ristovski, Zoran D.; Morawska, Lidia

    2016-01-01

    Assessment of air quality has been traditionally conducted by ground based monitoring, and more recently by manned aircrafts and satellites. However, performing fast, comprehensive data collection near pollution sources is not always feasible due to the complexity of sites, moving sources or physical barriers. Small Unmanned Aerial Vehicles (UAVs) equipped with different sensors have been introduced for in-situ air quality monitoring, as they can offer new approaches and research opportunities in air pollution and emission monitoring, as well as for studying atmospheric trends, such as climate change, while ensuring urban and industrial air safety. The aims of this review were to: (1) compile information on the use of UAVs for air quality studies; and (2) assess their benefits and range of applications. An extensive literature review was conducted using three bibliographic databases (Scopus, Web of Knowledge, Google Scholar) and a total of 60 papers was found. This relatively small number of papers implies that the field is still in its early stages of development. We concluded that, while the potential of UAVs for air quality research has been established, several challenges still need to be addressed, including: the flight endurance, payload capacity, sensor dimensions/accuracy, and sensitivity. However, the challenges are not simply technological, in fact, policy and regulations, which differ between countries, represent the greatest challenge to facilitating the wider use of UAVs in atmospheric research. PMID:27420065

  20. An Examination of Drag Reduction Mechanisms in Marine Animals, with Potential Applications to Uninhabited Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Musick, John A.; Patterson, Mark R.; Dowd, Wesley W.

    2002-01-01

    Previous engineering research and development has documented the plausibility of applying biomimetic approaches to aerospace engineering. Past cooperation between the Virginia Institute of Marine Science (VIMS) and NASA focused on the drag reduction qualities of the microscale dermal denticles of shark skin. This technology has subsequently been applied to submarines and aircraft. The present study aims to identify and document the three-dimensional geometry of additional macroscale morphologies that potentially confer drag reducing hydrodynamic qualities upon marine animals and which could be applied to enhance the range and endurance of Uninhabited Aerial Vehicles (UAVs). Such morphologies have evolved over eons to maximize organismal energetic efficiency by reducing the energetic input required to maintain cruising speeds in the viscous marine environment. These drag reduction qualities are manifested in several groups of active marine animals commonly encountered by ongoing VIMS research programs: namely sharks, bony fishes such as tunas, and sea turtles. Through spatial data acquired by molding and digital imagery analysis of marine specimens provided by VIMS, NASA aims to construct scale models of these features and to test these potential drag reduction morphologies for application to aircraft design. This report addresses the efforts of VIMS and NASA personnel on this project between January and November 2001.

  1. An Overview of Small Unmanned Aerial Vehicles for Air Quality Measurements: Present Applications and Future Prospectives.

    PubMed

    Villa, Tommaso Francesco; Gonzalez, Felipe; Miljievic, Branka; Ristovski, Zoran D; Morawska, Lidia

    2016-01-01

    Assessment of air quality has been traditionally conducted by ground based monitoring, and more recently by manned aircrafts and satellites. However, performing fast, comprehensive data collection near pollution sources is not always feasible due to the complexity of sites, moving sources or physical barriers. Small Unmanned Aerial Vehicles (UAVs) equipped with different sensors have been introduced for in-situ air quality monitoring, as they can offer new approaches and research opportunities in air pollution and emission monitoring, as well as for studying atmospheric trends, such as climate change, while ensuring urban and industrial air safety. The aims of this review were to: (1) compile information on the use of UAVs for air quality studies; and (2) assess their benefits and range of applications. An extensive literature review was conducted using three bibliographic databases (Scopus, Web of Knowledge, Google Scholar) and a total of 60 papers was found. This relatively small number of papers implies that the field is still in its early stages of development. We concluded that, while the potential of UAVs for air quality research has been established, several challenges still need to be addressed, including: the flight endurance, payload capacity, sensor dimensions/accuracy, and sensitivity. However, the challenges are not simply technological, in fact, policy and regulations, which differ between countries, represent the greatest challenge to facilitating the wider use of UAVs in atmospheric research. PMID:27420065

  2. Efficacy of aerial spray applications using fuselage booms on Air Force C-130H aircraft against mosquitoes and biting midges.

    PubMed

    Breidenbaugh, Mark S; Haagsma, Karl A; Wojcik, George M; De Szalay, Ferenc A

    2009-12-01

    The effectiveness of a novel fuselage boom configuration was tested with flat-fan nozzles on U.S. Air Force C-130H aircraft to create ultra-low volume sprays to control mosquitoes (Culicidae) and biting midges (Ceratopogonidae). The mortality of mosquitoes and biting midges in bioassay cages and natural populations, using the organophosphate adulticide, naled, was measured. Mosquitoes in bioassay cages had 100% mortality at 639 m downwind in all single-pass spray trials, and most trials had >90% mortality up to 1491 m downwind. Mosquito mortality was negatively correlated with distance from the spray release point (r2 = 0.38, P < 0.001). The volume median diam of droplets collected was 44 tm at 213 m and decreased to 11 microm at 2130 m downwind of the release point. Droplet density decreased from an average of 18.4 drops/cm2 at 213 m to 2 drops/cm2 at 2130 m. Droplet densities of 10-18 droplets/cm2 were recorded at sampling stations with high mosquito mortality rates (>90%). In wide-area operational applications, numbers of mosquitoes from natural populations 1 wk postspray were 83% (range 55%-95%), lower than prespray numbers (P < 0.05). Biting midge numbers were reduced by 86% (range 53%-97%) on average (P = 0.051) after 7 days. The results of these field trials indicate that the fuselage boom configuration on C-130H aircraft are an effective method to conduct large-scale aerial sprays during military operations and public health emergencies. PMID:20099594

  3. Three-dimensional imaging applications in Earth Sciences using video data acquired from an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    McLeod, Tara

    For three dimensional (3D) aerial images, unmanned aerial vehicles (UAVs) are cheaper to operate and easier to fly than the typical manned craft mounted with a laser scanner. This project explores the feasibility of using 2D video images acquired with a UAV and transforming them into 3D point clouds. The Aeryon Scout -- a quad-copter micro UAV -- flew two missions: the first at York University Keele campus and the second at the Canadian Wollastonite Mine Property. Neptec's ViDAR software was used to extract 3D information from the 2D video using structure from motion. The resulting point clouds were sparsely populated, yet captured vegetation well. They were used successfully to measure fracture orientation in rock walls. Any improvement in the video resolution would cascade through the processing and improve the overall results.

  4. Development of test methods for scale model simulation of aerial applications in the NASA Langley Vortex Research Facility. [agricultural aircraft

    NASA Technical Reports Server (NTRS)

    Jordan, F. L., Jr.

    1980-01-01

    As part of basic research to improve aerial applications technology, methods were developed at the Langley Vortex Research Facility to simulate and measure deposition patterns of aerially-applied sprays and granular materials by means of tests with small-scale models of agricultural aircraft and dynamically-scaled test particles. Interactions between the aircraft wake and the dispersed particles are being studied with the objective of modifying wake characteristics and dispersal techniques to increase swath width, improve deposition pattern uniformity, and minimize drift. The particle scaling analysis, test methods for particle dispersal from the model aircraft, visualization of particle trajectories, and measurement and computer analysis of test deposition patterns are described. An experimental validation of the scaling analysis and test results that indicate improved control of chemical drift by use of winglets are presented to demonstrate test methods.

  5. Aerial Explorers

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg; Ippolito, Corey

    2005-01-01

    This paper presents recent results from a mission architecture study of planetary aerial explorers. In this study, several mission scenarios were developed in simulation and evaluated on success in meeting mission goals. This aerial explorer mission architecture study is unique in comparison with previous Mars airplane research activities. The study examines how aerial vehicles can find and gain access to otherwise inaccessible terrain features of interest. The aerial explorer also engages in a high-level of (indirect) surface interaction, despite not typically being able to takeoff and land or to engage in multiple flights/sorties. To achieve this goal, a new mission paradigm is proposed: aerial explorers should be considered as an additional element in the overall Entry, Descent, Landing System (EDLS) process. Further, aerial vehicles should be considered primarily as carrier/utility platforms whose purpose is to deliver air-deployed sensors and robotic devices, or symbiotes, to those high-value terrain features of interest.

  6. Iowa Commercial Pesticide Applicator Manual, Category 11: Aerial Applicators. CS-26.

    ERIC Educational Resources Information Center

    DeWitt, Jerald R., Ed.

    This manual provides information needed to meet specific standards for certification as a pesticide applicator. The text is concerned with the calibration and application of pesticides/herbicides by aircraft. Special attention is given to the field flight patterns and safety precautions which must be considered for the pilot, ground crews and the…

  7. Small Unmanned Aerial Vehicles in coastal areas: lessons learned from applications in Liguria, NW Mediterranean.

    NASA Astrophysics Data System (ADS)

    Rovere, A.; Casella, E.; Pedroncini, A.; Mucerino, L.; Casella, M.; Cusati, L. A.; Vacchi, M.; Ferrari, M.; Firpo, M.

    2014-12-01

    In 2013 we started to apply small UAVs to the study of coastal areas in Liguria, NW Mediterranean Sea. In this region monitoring coastal evolution and the impact of sea storms is a primary administrative need, as a large part of the economic income derives from summer tourism. In two years, we accumulated almost 200 hours of flight with two different UAVs, a professional-grade Mikrokopter Okto and a consumer-grade Phantom DJI. We used photogrammetric and orthorectification techniques to obtain Digital Elevation Models (DEMs) and orthophotos of different beaches in the region. Data from UAVs allowed us to answer several questions. What is the accuracy of DEMs obtained from UAVs in low-relief areas such as beaches? What are the problems encountered in the photogrammetric procedure near the shoreline? Are the results obtained with consumer-grade UAVs comparable to those obtained with professional-grade ones? Aside from these technical questions, we used the data obtained from UAVs for different local studies aimed at giving management tools to the local administrations. We used the cloudpoint obtained from DEMs and the orthophotos to set up a runup modelling chain, to detect short-term changes in the coastal zone, and to give a first estimate of the debris deposited on the beach after a major storm. As stated by Watts et al., 2012 (Remote Sensing 4, 1671-1692) the application of Unmanned Aerial Vehicles and photogrammetry techniques in earth sciences is flourishing, and has the potential to revolutionize the study of geomorphology. Surely, UAVs opened new research perspectives for our group, which has been actively working on coastal changes in Liguria for almost 25 years.

  8. Application of concurrent engineering methods to the design of an autonomous aerial robot

    NASA Astrophysics Data System (ADS)

    Ingalls, Stephen A.

    1991-12-01

    This paper documents the year-long efforts of a multidisciplinary design team to design, build, and support an autonomous aerial robotics system. The system was developed to participate in the Association for Unmanned Vehicle System's (AUVS) First International Aerial Robotics Competition which was held in Atlanta, Georgia on the Georgia Tech campus on July 29th, 1991. As development time and budget were extremely limited, the team elected to attempt the design using concurrent engineering design methods. These methods were validated in an IDA study by Winner 1 in the late- 1980's to be particularly adept at handling the difficulties to design presented by these limitations.

  9. The use of Unmanned Aerial Vehicles in monitoring applications and management of natural hazards

    NASA Astrophysics Data System (ADS)

    Piras, Marco; Aicardi, Irene; Lingua, Andrea; Noardo, Francesca; Chiabrando, Filiberto

    2015-04-01

    In the last years following the damages derived by the climate change (such as flooding and so on) it is growing the necessity to monitor the watercourses with effective and quickly method, where low cost solutions are particularly interested. In some cases, it is essential to have information about the riverbed, the river banks and to analyze the springs and the way in which the water moves. For the terrestrial point of view this knowledge can be acquired through GNSS and topographic methods, but they are still too manually so that they are time-consuming with respect the acquisition of information about the entire area. Another possibility is to perform a laser scanner survey, but the most common instruments (economically sustainable) have some problems to acquire information of sub-water-layer. Moreover, terrestrial surveys from cameras (such as visible, thermic or hyperspectral sensors) can't always offer a useful view of the case study due to the fact that they have a limited range of possible points of acquisition. For these reasons, it can be more effective to have an aerial point of view of the river, for example using UAVs (Unmanned Aerial Vehicles), which have been experimented in these last years for environmental investigations. The proposed studies include photogrammetric and thermographic applications in order to investigate a new post-flooding riverbed arrangement and to identify some sub-riverbed springs inside a stream in order to monitor the behavior of two studied watercourses. The tests have been carried out with a customized low-cost mini-UAV based on the Mikrokopter Hexakopter solution embedded with a navigation system for the autonomous flight (GNSS/IMU) and with the possibility to house different kind of sensors, such as a camera, a GNSS receiver, a LiDAR sensor, a thermographic camera and more other sensors, but with the limitation of a 1.2 Kg payload. The most significant innovation is the possibility to perform quickly and economical

  10. A study of large scale gust generation in a small scale atmospheric wind tunnel with applications to Micro Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Roadman, Jason Markos

    Modern technology operating in the atmospheric boundary layer can always benefit from more accurate wind tunnel testing. While scaled atmospheric boundary layer tunnels have been well developed, tunnels replicating portions of the atmospheric boundary layer turbulence at full scale are a comparatively new concept. Testing at full-scale Reynolds numbers with full-scale turbulence in an "atmospheric wind tunnel" is sought. Many programs could utilize such a tool including Micro Aerial Vehicle(MAV) development, the wind energy industry, fuel efficient vehicle design, and the study of bird and insect flight, to name just a few. The small scale of MAVs provide the somewhat unique capability of full scale Reynolds number testing in a wind tunnel. However, that same small scale creates interactions under real world flight conditions, atmospheric gusts for example, that lead to a need for testing under more complex flows than the standard uniform flow found in most wind tunnels. It is for these reasons that MAVs are used as the initial testing application for the atmospheric gust tunnel. An analytical model for both discrete gusts and a continuous spectrum of gusts is examined. Then, methods for generating gusts in agreement with that model are investigated. Previously used methods are reviewed and a gust generation apparatus is designed. Expected turbulence and gust characteristics of this apparatus are compared with atmospheric data. The construction of an active "gust generator" for a new atmospheric tunnel is reviewed and the turbulence it generates is measured utilizing single and cross hot wires. Results from this grid are compared to atmospheric turbulence and it is shown that various gust strengths can be produced corresponding to weather ranging from calm to quite gusty. An initial test is performed in the atmospheric wind tunnel whereby the effects of various turbulence conditions on transition and separation on the upper surface of a MAV wing is investigated

  11. Comparison of drop size data from ground and aerial application nozzles at three testing laboratories

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spray drop size is a critical factor in the performance of any agrochemical solution and is a function of spray solution, nozzle selection, and nozzle operation. Applicators generally base their selection of a particular nozzle based on the drop size reported by manufacturers and researchers. Like m...

  12. AGDRIFT: A MODEL FOR ESTIMATING NEAR-FIELD SPRAY DRIFT FROM AERIAL APPLICATIONS

    EPA Science Inventory

    The aerial spray prediction model AgDRIFT(R) embodies the computational engine found in the near-wake Lagrangian model AGricultural DISPersal (AGDISP) but with several important features added that improve the speed and accuracy of its predictions. This article summarizes those c...

  13. 7 CFR 1755.704 - Requirements applicable to both CCSR and NMR aerial service wires.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of ANSI/ICEA S-89-648-1993 are available for...; (vii) Impact, abrasion, static load, elongation, and plasticizer compatibility tests; and (viii) Cold... to the insulation of CCSR aerial service wires are not permitted in wires supplied to end users...

  14. Application of high resolution images from unmanned aerial vehicles for hydrology and range science

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A common problem in many natural resource disciplines is the lack of high-enough spatial resolution images that can be used for monitoring and modeling purposes. Advances have been made in the utilization of Unmanned Aerial Vehicles (UAVs) in hydrology and rangeland science. By utilizing low fligh...

  15. A low-cost dual-camera imaging system for aerial applicators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural aircraft provide a readily available remote sensing platform as low-cost and easy-to-use consumer-grade cameras are being increasingly used for aerial imaging. In this article, we report on a dual-camera imaging system we recently assembled that can capture RGB and near-infrared (NIR) i...

  16. Satellite and Aerial Remote Sensing in Support of Disaster Response Operations Conducted by the Texas Division of Emergency Management

    NASA Astrophysics Data System (ADS)

    Wells, G. L.; Tapley, B. D.; Bettadpur, S. V.; Howard, T.; Porter, B.; Smith, S.; Teng, L.; Tapley, C.

    2014-12-01

    The effective use of remote sensing products as guidance to emergency managers and first responders during field operations requires close coordination and communication with state-level decision makers, incident commanders and the leaders of individual strike teams. Information must be tailored to meet the needs of different emergency support functions and must contain current (ideally near real-time) data delivered in standard formats in time to influence decisions made under rapidly changing conditions. Since 2003, a representative of the University of Texas Center for Space Research (CSR) has served as a member of the Governor's Emergency Management Council and has directed the flow of information from remote sensing observations and high performance computing modeling and simulations to the Texas Division of Emergency Management in the State Operations Center. The CSR team has supported response and recovery missions resulting from hurricanes, tornadoes, flash floods, wildfires, oil spills and other natural and man-made disasters in Texas and surrounding states. Through web mapping services, state emergency managers and field teams have received threat model forecasts, real-time vehicle tracking displays and imagery to support search-and-clear operations before hurricane landfall, search-and-rescue missions following floods, tactical wildfire suppression, pollution monitoring and hazardous materials detection. Data servers provide near real-time satellite imagery collected by CSR's direct broadcast receiving system and post data products delivered during activations of the United Nations International Charter on Space and Major Disasters. In the aftermath of large-scale events, CSR is charged with tasking state aviation resources, including the Air National Guard and Texas Civil Air Patrol, to acquire geolocated aerial photography of the affected region for wide area damage assessment. A data archive for each disaster is available online for years following

  17. Application of high resolution images from unmanned aerial vehicles for hydrology and rangeland science

    NASA Astrophysics Data System (ADS)

    Rango, A.; Vivoni, E. R.; Anderson, C. A.; Perini, N. A.; Saripalli, S.; Laliberte, A.

    2012-12-01

    A common problem in many natural resource disciplines is the lack of high-enough spatial resolution images that can be used for monitoring and modeling purposes. Advances have been made in the utilization of Unmanned Aerial Vehicles (UAVs) in hydrology and rangeland science. By utilizing low flight altitudes and velocities, UAVs are able to produce high resolution (5 cm) images as well as stereo coverage (with 75% forward overlap and 40% sidelap) to extract digital elevation models (DEM). Another advantage of flying at low altitude is that the potential problems of atmospheric haze obscuration are eliminated. Both small fixed-wing and rotary-wing aircraft have been used in our experiments over two rangeland areas in the Jornada Experimental Range in southern New Mexico and the Santa Rita Experimental Range in southern Arizona. The fixed-wing UAV has a digital camera in the wing and six-band multispectral camera in the nose, while the rotary-wing UAV carries a digital camera as payload. Because we have been acquiring imagery for several years, there are now > 31,000 photos at one of the study sites, and 177 mosaics over rangeland areas have been constructed. Using the DEM obtained from the imagery we have determined the actual catchment areas of three watersheds and compared these to previous estimates. At one site, the UAV-derived watershed area is 4.67 ha which is 22% smaller compared to a manual survey using a GPS unit obtained several years ago. This difference can be significant in constructing a watershed model of the site. From a vegetation species classification, we also determined that two of the shrub types in this small watershed(mesquite and creosote with 6.47 % and 5.82% cover, respectively) grow in similar locations(flat upland areas with deep soils), whereas the most predominant shrub(mariola with 11.9% cover) inhabits hillslopes near stream channels(with steep shallow soils). The positioning of these individual shrubs throughout the catchment using

  18. Application of DOAS Instruments for Trace Gas Measurements on Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Horbanski, M.; Pöhler, D.; Mahr, T.; Wagner, T.; Platt, U.

    2012-04-01

    Unmanned Aerial Systems (UAS) are a new powerful tool for observations in the atmospheric boundary layer. Recent developments in measuring technology allow the construction of compact and sensitive active and passive DOAS instruments which can fit the space and weight constraints on Unmanned Aircraft Systems. This opens new possibilities for trace gas measurements in the lower troposphere, especially in areas which are not accessible to manned aviation e.g. volcanic plumes or which should be monitored regularly (e.g. industrial emissions of a stack). Two DOAS instruments for the APAESO platform of the Energy, Environment and Water Research Centre (EEWRC) at the Cyprus Institute are presented. Our first system is a passive DOAS for remote sensing applications which measures scattered sunlight and light reflected by the surface. It is equipped with telescopes for observations in downward (nadir) and horizontal (limb) viewing direction. Thus it allows determining height profiles and the spatial distribution of trace gases. For this the light is analysed by a compact spectrometer which covers the UV-blue range allowing to measure a broad variety of atmospheric trace gases (e.g. NO2, SO2, BrO, IO, H2O ...) and aerosol properties via O4 absorption. Additionally, the nadir direction is equipped with a system for the observation of surface properties. It will be used to measure and analyse reflection of different types of vegetation. The spectra will serve as reference spectra for satellite measurements to create global maps. The instrumental setup and the results of first test flights are shown. The second instrument which is currently under development is a Cavity Enhanced (CE-) DOAS for in situ measurements of NO3. In contrast to the passive DOAS it is able to perform night time measurements as it uses an active LED light source. This is important for studies of NO3 since it plays an important role in night time chemistry while it is rapidly photolysed during daytime

  19. Application of machine learning for the evaluation of turfgrass plots using aerial images

    NASA Astrophysics Data System (ADS)

    Ding, Ke; Raheja, Amar; Bhandari, Subodh; Green, Robert L.

    2016-05-01

    Historically, investigation of turfgrass characteristics have been limited to visual ratings. Although relevant information may result from such evaluations, final inferences may be questionable because of the subjective nature in which the data is collected. Recent advances in computer vision techniques allow researchers to objectively measure turfgrass characteristics such as percent ground cover, turf color, and turf quality from the digital images. This paper focuses on developing a methodology for automated assessment of turfgrass quality from aerial images. Images of several turfgrass plots of varying quality were gathered using a camera mounted on an unmanned aerial vehicle. The quality of these plots were also evaluated based on visual ratings. The goal was to use the aerial images to generate quality evaluations on a regular basis for the optimization of water treatment. Aerial images are used to train a neural network so that appropriate features such as intensity, color, and texture of the turfgrass are extracted from these images. Neural network is a nonlinear classifier commonly used in machine learning. The output of the neural network trained model is the ratings of the grass, which is compared to the visual ratings. Currently, the quality and the color of turfgrass, measured as the greenness of the grass, are evaluated. The textures are calculated using the Gabor filter and co-occurrence matrix. Other classifiers such as support vector machines and simpler linear regression models such as Ridge regression and LARS regression are also used. The performance of each model is compared. The results show encouraging potential for using machine learning techniques for the evaluation of turfgrass quality and color.

  20. Selected reading in agricultural applications of small-format aerial photography

    USGS Publications Warehouse

    1980-01-01

    This collection of material has been assembled in response to a growing.interest in the use of low-cost, small-format aerial photography in the management of agricultural resources. Together, these articles serve to document the prevailing level of interest in the subject and provide an insight as to what can reasonably be expected from the use of this powerful agricultural management tool. 

  1. Aerial ULV application of permethrin against adult mosquitoes over open field and medium density canopy habitat in a hot-temperate zone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although aerial ULV application of adulticides is a common adult mosquito control strategy, not enough is known about the fate of the pesticide or its efficacy over different habitats. Dye labeling of droplets is used to evaluate ULV applications, and, by inference, their efficacy. Placement of cage...

  2. Application possibilities of aerial and terrain data evaluation in particulate pollution effects

    NASA Astrophysics Data System (ADS)

    Kozma-Bognar, V.; Berke, J.; Martin, G.

    2012-04-01

    Recently, remote sensing has become a widely used technology in order to acquire information about our environment. Data collected using remote sensing technology indispensible criteria to recognise and monitor environmental problems caused by contamination from various human activities. According to great technological change and development in the previous decade high spectral and geometric resolution sensors are more often used. The higher resolution technology allows getting more accurate and reliable results in the research processes of the environmental pollution impacts. At University of Pannonia, Georgikon Faculty (Hungary) plant-soil-atmosphere system analyses are carried out for detecting the potential harmful effects of heavy metal pollution originated from vehicle industry. Related to this research at the Department of Meteorology and Water Management, black carbon and cadmium pollution effects are being analysed on maize crops. Testing area is situated at Agro-meteorological Research Station in Keszthely, where the first time in 2011 aerial imaging technology was used in parallel with field analyses. The experiment aims to analyses correlation of the field data with aerial data. During aerial photography were taken in different spectral bands (Visible, Near Infrared, Far Infrared). High intensity, spectral and spatial resolution data was an important part of the multitemporal imagine sensing and evaluating technology, therefore original technical solutions were applied. These resolutions served accurate plot-level evaluation. Fractal structure and intensity measurement evaluation methods were applied to examine black carbon and cadmium polluted and control maize canopy after data pre-processing. Research also focused on the examination of potential negative or positive effects of irrigation so that differences between irrigated and non-irrigated maize was investigated. For the period of growing season of 2011 time-series analyses were carried out in

  3. Application of high-performance steel in mobile hydraulic cranes and aerial work platforms

    SciTech Connect

    Pike, G.S.

    1995-12-31

    The market for mobile hydraulic cranes and aerial work platforms is highly competitive and customers continue to demand increased lift capacity and heights with decreased cost and vehicle weight. As Grove designers strive to optimize these parameters, the Materials and Welding Engineering Department must provide them with materials that surpass the capabilities of materials covered by established industry standards such as ASTM. These industry standards, due to their consensus nature, do not keep pace with the latest steel-making technology, which is often proprietary in nature. Therefore, Grove works with suppliers to support development of high performance steels by providing performance goals, fabrication testing, and a market for these new materials.

  4. Unsupervised and stable LBG algorithm for data classification: application to aerial multicomponent images

    NASA Astrophysics Data System (ADS)

    Taher, A.; Chehdi, K.; Cariou, C.

    2015-10-01

    In this paper a stable and unsupervised Linde-Buzo-Gray (LBG) algorithm named LBGO is presented. The originality of the proposed algorithm relies: i) on the utilization of an adaptive incremental technique to initialize the class centres that calls into question the intermediate initializations; this technique makes the algorithm stable and deterministic, and the classification results do not vary from a run to another, and ii) on the unsupervised evaluation criteria of the intermediate classification result to estimate the optimal number of classes; this makes the algorithm unsupervised. The efficiency of this optimized version of LBG is shown through some experimental results on synthetic and real aerial hyperspectral data. More precisely we have tested our proposed classification approach regarding three aspects: firstly for its stability, secondly for its correct classification rate, and thirdly for the correct estimation of number of classes.

  5. Understanding signal design during the pursuit of aerial insects by echolocating bats: tools and applications.

    PubMed

    Holderied, Marc W; Baker, Chris J; Vespe, Michele; Jones, Gareth

    2008-07-01

    Bats are among the few predators that can exploit the large quantities of aerial insects active at night. They do this by using echolocation to detect, localize, and classify targets in the dark. Echolocation calls are shaped by natural selection to match ecological challenges. For example, bats flying in open habitats typically emit calls of long duration, with long pulse intervals, shallow frequency modulation, and containing low frequencies-all these are adaptations for long-range detection. As obstacles or prey are approached, call structure changes in predictable ways for several reasons: calls become shorter, thereby reducing overlap between pulse and echo, and calls change in shape in ways that minimize localization errors. At the same time, such changes are believed to support recognition of objects. Echolocation and flight are closely synchronized: we have monitored both features simultaneously by using stereo photogrammetry and videogrammetry, and by acoustic tracking of flight paths. These methods have allowed us to quantify the intensity of signals used by free-living bats, and illustrate systematic changes in signal design in relation to obstacle proximity. We show how signals emitted by aerial feeding bats can be among the most intense airborne sounds in nature. Wideband ambiguity functions developed in the processing of signals produce two-dimensional functions showing trade-offs between resolution of time and velocity, and illustrate costs and benefits associated with Doppler sensitivity and range resolution in echolocation. Remarkably, bats that emit broadband calls can adjust signal design so that Doppler-related overestimation of range compensates for underestimation of range caused by the bat's movement in flight. We show the potential of our methods for understanding interactions between echolocating bats and those prey that have evolved ears that detect bat calls. PMID:21669774

  6. Miniaturized 320x256 indium gallium arsenide SWIR camera for robotic and unmanned aerial vehicle applications

    NASA Astrophysics Data System (ADS)

    Ettenberg, Martin H.; O'Grady, Matthew T.; Huang, Shih-Che; Cohen, Marshall J.

    2003-09-01

    We describe a new InGaAs SWIR microcamera developed for robotic and UAV applications. The camera has a volume less than 27 cm3, weighs less than 100 g, and consumes less than 1.4 W. The camera operates with the focal plane array at room temperature and is sensitive to the 0.9 μm to 1.7 μm SWIR band with a detectivity, D*, greater than (formula available in paper). The InGaAs focal plane array has 320x256 pixels on a 25 μm pitch. It features snapshot-mode integration with a minimum exposure time of 500 ns making it ideally suited for all-solid-state range-gated imaging. The full-frame readout rate is greater than 400 frames per second. The built-in windowing feature is highly flexible with as many as 8 arbitrarily shaped regions-of-interest can be located anywhere (including overlapping) on the imager. Eight 64 x 64 regions of interest (ROIs), for example, can be read out faster than 1000 frames per second with a single 64 x 64 ROI read out faster than 5000 frames per second enabling high speed target acquisition and tracking applications.

  7. Dry borax applicator operator's manual.

    SciTech Connect

    Karsky, Richard, J.

    1999-01-01

    Annosum root rot affects conifers throughout the Northern Hemisphere, infecting their roots and eventually killing the trees. The fungus Heterobasidion annosum causes annosum root rot. The fungus colonizes readily on freshly cut stumps. Partially cut stands have a high risk of infestation because the fungus can colonize on each of the stumps and potentially infect the neighboring trees. Wind and rain carry the annosum spores. Spores that land on freshly cut stumps grow down the stump's root system where they can infect living trees through root grafts or root contacts. Once annosum becomes established, it can remain active for many years in the Southern United States and for several decades in the north. About 7% of the trees that become infected die. When thinning, stumps can be treated successfully using a competing fungus, Phlebia gigantea, and with ''Tim-Bor'' in liquid formulations. These liquid products are no longer approved in the United States. Only the dry powder form is registered and approved by the EPA. Stumps can be treated with a dry formula of borax, (Sporax), significantly reducing one of the primary routes by which Heterobasidion annosum infects a stand of trees. Sporax is used by the USDA Forest Service to control annosum root rot. Sporax is now applied by hand, but once the felled trees are skidded it becomes very hard to locate the stumps. A stump applicator will reduce error, labor costs, and hazards to workers.

  8. Characterization of in-swath spray deposition for CP-11TT flat-fan nozzles used in low volume aerial application of crop production and protection materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For aerial application of crop production and protection materials, a complex interaction of controllable and uncontrollable factors is involved. It is difficult to completely characterize spray drift and deposition, but estimates can be made with appropriate sampling protocol and analysis. With c...

  9. Improved chemical control for the Mexican rice borer (Lepidoptera: Crambidae) in sugarcane: Larval exposure, a novel scouting method, and efficacy of a single aerial insecticide application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A three-treatment aerial application insecticide experiment was conducted in five commercial sugarcane, Saccharum spp., fields in south Texas to evaluate the use of pheromone traps for improving chemical control of the Mexican rice borer, Eoreuma loftini (Dyar), in 2009 and 2010. A threshold of 20 m...

  10. Application of color infrared aerial photography to assess macroalgal distribution in an eutrophic estuary, Upper Newport Bay, California

    NASA Astrophysics Data System (ADS)

    Stein, E. D.; Nezlin, N. P.; Kamer, K.

    2007-05-01

    Newport Bay is a large estuary in southern California that is subject to anthropogenic nutrient loading, eutrophication and hypoxia. Traditional ground-based methods of assessing algal extent for monitoring and management are limited in that they cannot provide a synoptic view of algal distribution over comparatively large areas. The goal of this study was to explore the application of color infrared aerial photography as an alternative for analyzing the changes in the abundance of macroalgae. Three surveys combining remote sensing (false-color infrared aerial photography) and traditional (ground-based quadrats) sampling methods to quantify macroalgal mat coverage were carried out in Upper Newport Bay (UNB) between July and October 2005. Airborne photographs (scale 1:6000) collected during daytime low tides, clear skies and appropriate sun angle were orthorectified, georegistered and combined into three mosaic composite images, one for each survey. During each aerial photography survey, macroalgal percent cover was measured on the ground at ~30 locations randomly scattered throughout the intertidal mudflat area; these ground data were used for calibration of classification schemes developed for each of the composite images. Using a cluster-analysis classification method, ground samples from each survey were classified into three or four classes, based on similarity of their optical signatures. Before classification, each digital image was transformed by the Minimum Noise Fraction Rotation method to remove noise and enhance contrast between the classes. For classification, the Spectral Angle Mapper scheme was used. All pixels in the images were attributed to classes and the areal extent of each class was estimated. For each class, the averaged percent cover by different substrates was estimated from ground sample data. The total coverage by different substrates was calculated by multiplying the within-cluster percent coverage by cluster areas. This analysis showed

  11. Applicability of Aerial Green LiDAR to a Large River in the Western United States

    NASA Astrophysics Data System (ADS)

    Conner, J. T.; Welcker, C. W.; Cooper, C.; Faux, R.; Butler, M.; Nayegandhi, A.

    2013-12-01

    In October 2012, aerial green LiDAR data were collected in the Snake River (within Idaho and Oregon) to test this emerging technology in a large river with poor water clarity. Six study areas (total of 30 river miles spread out over 250 river miles) were chosen to represent a variety of depths, channel types, and surface conditions to test the accuracy, depth penetration, data density of aerial green LiDAR. These characteristics along with cost and speed of acquisition were compared to other bathymetric survey techniques including rod surveys (total station and RTK-GPS), single-beam sonar, and multibeam echosounder (MBES). The green LiDAR system typically measured returns from the riverbed through 1-2 meters of water, which was less than one Secchi depth. However, in areas with steep banks or aquatic macrophytes, LiDAR returns from the riverbed were less frequent or non-existent. In areas of good return density, depths measured from green LiDAR data corresponded well with previously collected data sets from traditional bathymetric survey techniques. In such areas, the green LiDAR point density was much higher than both rod and single beam sonar surveys, yet lower than MBES. The green LiDAR survey was also collected more efficiently than all other methods. In the Snake River, green LiDAR does not provide a method to map the entire riverbed as it only receives bottom returns in shallow water, typically at the channel margins. However, green LiDAR does provide survey data that is an excellent complement to MBES, which is more effective at surveying the deeper portions of the channel. In some cases, the green LiDAR was able to provide data in areas that the MBES could not, often due to issues with navigating the survey boat in shallow water. Even where both MBES and green LiDAR mapped the river bottom, green LiDAR often provides more accurate data through a better angle of incidence and less shadowing than the MBES survey. For one MBES survey in 2013, the green Li

  12. An application of aerial remote sensing to monitor salinization at Xinding Basin

    NASA Astrophysics Data System (ADS)

    Qiao, Yu-Liang

    In this paper, a method to interpret the high, mid, low salinized ploughland and the salinized wasteland using comprehensive aerophoto interpretation principles will be described for Xinding Basin, Shanxi Province. The dynamic change of salinized soil during 7 years from 1980 to 1987 will be compared with the typical Dingxiang County. The map and data obtained, with an accuracy of more than 90%, are provided to the local government as the scientific grounds to instruct agricultural productivity. Soil salinization is a worldwide problem. With the sharp increase in world population and modern industrialisation development, the natural resource consumption is increasing day and day, and bringing about a lack of land resource worldwide. As a kind of back-up land resource, salinized land has not only attracted the concern and study of the agricultural scientists in all countries, but also by the whole society. Shanxi is such a province in China where more than 1/3 of its total area of irrigation land is salinized. The statistics used to monitor this salinized area lack objectivity and accuracy. In 1987, the government of Shanxi Province began to investigate the salinized area of the whole province, using remote sensing technology. We selected the Xinding Basin in central Shanxi as the test district to perform the aerial remote sensing investigation, and, at the same time, studied the salinization dynamic change on the Dingxiang County used as the typical district.

  13. Comparison and application of wind retrieval algorithms for small unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Bonin, T. A.; Chilson, P. B.; Zielke, B. S.; Klein, P. M.; Leeman, J. R.

    2013-07-01

    Recently, there has been an increase in use of Unmanned Aerial Systems (UASs) as platforms for conducting fundamental and applied research in the lower atmosphere due to their relatively low cost and ability to collect samples with high spatial and temporal resolution. Concurrent with this development comes the need for accurate instrumentation and measurement methods suitable for small meteorological UASs. Moreover, the instrumentation to be integrated into such platforms must be small and lightweight. Whereas thermodynamic variables can be easily measured using well-aspirated sensors onboard, it is much more challenging to accurately measure the wind with a UAS. Several algorithms have been developed that incorporate GPS observations as a means of estimating the horizontal wind vector, with each algorithm exhibiting its own particular strengths and weaknesses. In the present study, the performance of three such GPS-based wind-retrieval algorithms has been investigated and compared with wind estimates from rawinsonde and sodar observations. Each of the algorithms considered agreed well with the wind measurements from sounding and sodar data. Through the integration of UAS-retrieved profiles of thermodynamic and kinematic parameters, one can investigate the static and dynamic stability of the atmosphere and relate them to the state of the boundary layer across a variety of times and locations, which might be difficult to access using conventional instrumentation.

  14. Efficient Forest Fire Detection Index for Application in Unmanned Aerial Systems (UASs)

    PubMed Central

    Cruz, Henry; Eckert, Martina; Meneses, Juan; Martínez, José-Fernán

    2016-01-01

    This article proposes a novel method for detecting forest fires, through the use of a new color index, called the Forest Fire Detection Index (FFDI), developed by the authors. The index is based on methods for vegetation classification and has been adapted to detect the tonalities of flames and smoke; the latter could be included adaptively into the Regions of Interest (RoIs) with the help of a variable factor. Multiple tests have been performed upon database imagery and present promising results: a detection precision of 96.82% has been achieved for image sizes of 960 × 540 pixels at a processing time of 0.0447 seconds. This achievement would lead to a performance of 22 f/s, for smaller images, while up to 54 f/s could be reached by maintaining a similar detection precision. Additional tests have been performed on fires in their early stages, achieving a precision rate of p = 96.62%. The method could be used in real-time in Unmanned Aerial Systems (UASs), with the aim of monitoring a wider area than through fixed surveillance systems. Thus, it would result in more cost-effective outcomes than conventional systems implemented in helicopters or satellites. UASs could also reach inaccessible locations without jeopardizing people’s safety. On-going work includes implementation into a commercially available drone. PMID:27322264

  15. Efficient Forest Fire Detection Index for Application in Unmanned Aerial Systems (UASs).

    PubMed

    Cruz, Henry; Eckert, Martina; Meneses, Juan; Martínez, José-Fernán

    2016-01-01

    This article proposes a novel method for detecting forest fires, through the use of a new color index, called the Forest Fire Detection Index (FFDI), developed by the authors. The index is based on methods for vegetation classification and has been adapted to detect the tonalities of flames and smoke; the latter could be included adaptively into the Regions of Interest (RoIs) with the help of a variable factor. Multiple tests have been performed upon database imagery and present promising results: a detection precision of 96.82% has been achieved for image sizes of 960 × 540 pixels at a processing time of 0.0447 seconds. This achievement would lead to a performance of 22 f/s, for smaller images, while up to 54 f/s could be reached by maintaining a similar detection precision. Additional tests have been performed on fires in their early stages, achieving a precision rate of p = 96.62%. The method could be used in real-time in Unmanned Aerial Systems (UASs), with the aim of monitoring a wider area than through fixed surveillance systems. Thus, it would result in more cost-effective outcomes than conventional systems implemented in helicopters or satellites. UASs could also reach inaccessible locations without jeopardizing people's safety. On-going work includes implementation into a commercially available drone. PMID:27322264

  16. Effects on wildlife of aerial applications of strobane, DDT, and BHC to tidal marshes in Delaware

    USGS Publications Warehouse

    George, J.L.; Darsie, R.F.; Springer, P.F.

    1957-01-01

    The principal purpose of this study was to ascertain what effect on wildlife, if any, would result from the use of the new insecticide, Strobane, for mosquito control on tideland areas. Comparisons were made with DDT and BHC (43 per cent gamma isomer) commonly used in control operations. The investigation was carried out on the tidal marshes of Bombay Hook National Wildlife Refuge near Smyrna, Delaware. Four areas, all similar in habitat, were chosen-three as test plots for Strobane, BHC, and DDT, respectively, and the fourth as an untreated check. The insecticides in oil solution were applied by airplane at the rates of 0.1, 0.2, and 0.3 pound per acre for gamma isomer of BHC, DDT, and Strobane, respectively. The first application was made on the morning of July 27; and the second, on the evening of August 23, 1955. To assay the results of spraying, 14 testing devices were set up in each area. They consisted of cages, traps, and microscope slides placed in the streams and ponds. The estuarine fishes, Fundulus heteroclitus, Cyprinodon variegatus, Leiostornus xanthurus, and Ailugil curemu; blue crabs, Callinectes sapidus; fiddler crabs, Uca pugnux, Uca minux, and Sesarma reticulaturn; and certain sessile organisms were included in the tests. Analyses of variance on fish and blue crabs showed no significant difference between deaths occurring in treated and control plots, nor among the three treatments. Differential mortalities were suffered by fish caged in streams and ponds. Greater numbers died in the BHC-treated streams and in the DDT-treated ponds. Local concentrations of insecticide appeared to be the cause, although the magnitude of kill was not significantly greater than in control areas. Field observations and crab-pot counts showed that both the fish and blue crabs avoided the sites of high insecticide concentration. Certainly the majority of the free-living individuals in the treated areas were able to survive the sprays, and at the level tested showed no

  17. The application of unmanned aerial systems (UAS) in geophysical investigations of geothermal systems

    NASA Astrophysics Data System (ADS)

    Glen, J. M.; Egger, A. E.; Ippolito, C.; Phelps, G. A.; Berthold, R.; Lee, R.; Spritzer, J. M.; Tchernychev, M.

    2012-12-01

    Investigations of geothermal systems typically involve ground-based geological and geophysical studies in order to map structures that control and facilitate fluid flow. The spatial extent of ground-based investigations can be limited, however, by surficial hot springs, dense foliage, and roadless or private lands. This can result in data gaps in key areas, particularly around active hydrothermal springs. Manned aircraft can provide access to these areas and can yield broad and uniform data coverage, but high-resolution surveys are costly and relatively inflexible to changes in the survey specifications that may arise as data are collected. Unmanned aerial systems (UAS) are well suited for conducting these surveys, but until recently, various factors (scientific instrumentation requirements, platform limitations, and size of the survey area) have required the use of large UAS platforms, rendering unmanned aerial surveys unsuitable for most investigations. We have developed and tested a new cesium magnetometer system to collect magnetic data using two different small-platform UAS that overcomes many of the challenges described above. We are deploying this new system in Surprise Valley, CA, to study the area's active geothermal field. Surprise Valley is ideally suited to testing UAS due to its low population density, accessible airspace, and broad playa that provides ample opportunity to safely land the aircraft. In combination with gravity and topographic data, magnetic data are particularly useful for identifying buried, intra-basin structures, especially in areas such as Surprise Valley where highly magnetic, dense mafic volcanic rocks are interbedded with and faulted against less magnetic, less dense sedimentary rock. While high-resolution gravity data must be collected at point locations on the ground, high-resolution magnetic data can be obtained by UAS that provide continuous coverage. Once acquired, the magnetic data obtained by the UAS will be combined with

  18. Deposition of pyrethrins and piperonyl butoxide following aerial ultra-low volume applications in the Coachella Valley, California.

    PubMed

    Lothrop, H D; Huang, H Z; Lothrop, B B; Gee, S; Gomsi, D E; Reisen, W K

    2007-06-01

    Data on adulticide deposition were collected during studies optimizing aerial ultra-low volume applications and droplet size in the desert environment of the Coachella Valley, Riverside County, California. Pyrenone 25-5 and BVA Spray 13 oil were applied by a single-engine, fixed wing aircraft equipped with 2 Micronair AU5000 atomizers. Data recorded by a portable weather station documented that weather conditions were suitable for application. Adulticide residue was collected using 24-cm-diameter filter papers positioned along 2-3 transects, with 3 positive controls held outside of the treated zone. The trace amounts of 2 major insecticidal components (pyrethrin I and II) and the synergist piperonyl butoxide (PBO) were detected from samples near the center of the spray zone by high-performance liquid chromatography (HPLC); pyrethrin deposition was highest at the center, 156 microg/m2, and it was not detectable 60 m beyond the center of the transect, whereas PBO deposition was 5,000 microg/m2 at the center but was not detectable beyond 150 m. Droplet diameters on spinning Teflon slides were larger than expected for the rated output of the atomizers. For these single swath trials, the lack of swath overlap due to drift resulted in low mortality in sentinel mosquitoes. Detection of residues was limited to the centroid of droplet densities on spinning glass slides and with mortality among sentinel mosquitoes, indicating HPLC may be useful in detecting postspray residues. PMID:17847856

  19. AERIAL MEASURING SYSTEM IN JAPAN

    SciTech Connect

    Lyons, Craig; Colton, David

    2012-01-01

    The U.S. Department of Energy National Nuclear Security Agency’s Aerial Measuring System deployed personnel and equipment to partner with the U.S. Air Force in Japan to conduct multiple aerial radiological surveys. These were the first and most comprehensive sources of actionable information for U.S. interests in Japan and provided early confirmation to the government of Japan as to the extent of the release from the Fukushima Daiichi Nuclear Power Generation Station. Many challenges were overcome quickly during the first 48 hours; including installation and operation of Aerial Measuring System equipment on multiple U.S. Air Force Japan aircraft, flying over difficult terrain, and flying with talented pilots who were unfamiliar with the Aerial Measuring System flight patterns. These all combined to make for a dynamic and non-textbook situation. In addition, the data challenges of the multiple and on-going releases, and integration with the Japanese government to provide valid aerial radiological survey products that both military and civilian customers could use to make informed decisions, was extremely complicated. The Aerial Measuring System Fukushima response provided insight in addressing these challenges and gave way to an opportunity for the expansion of the Aerial Measuring System’s mission beyond the borders of the US.

  20. Object and activity detection from aerial video

    NASA Astrophysics Data System (ADS)

    Se, Stephen; Shi, Feng; Liu, Xin; Ghazel, Mohsen

    2015-05-01

    Aerial video surveillance has advanced significantly in recent years, as inexpensive high-quality video cameras and airborne platforms are becoming more readily available. Video has become an indispensable part of military operations and is now becoming increasingly valuable in the civil and paramilitary sectors. Such surveillance capabilities are useful for battlefield intelligence and reconnaissance as well as monitoring major events, border control and critical infrastructure. However, monitoring this growing flood of video data requires significant effort from increasingly large numbers of video analysts. We have developed a suite of aerial video exploitation tools that can alleviate mundane monitoring from the analysts, by detecting and alerting objects and activities that require analysts' attention. These tools can be used for both tactical applications and post-mission analytics so that the video data can be exploited more efficiently and timely. A feature-based approach and a pixel-based approach have been developed for Video Moving Target Indicator (VMTI) to detect moving objects at real-time in aerial video. Such moving objects can then be classified by a person detector algorithm which was trained with representative aerial data. We have also developed an activity detection tool that can detect activities of interests in aerial video, such as person-vehicle interaction. We have implemented a flexible framework so that new processing modules can be added easily. The Graphical User Interface (GUI) allows the user to configure the processing pipeline at run-time to evaluate different algorithms and parameters. Promising experimental results have been obtained using these tools and an evaluation has been carried out to characterize their performance.

  1. Development of an unmanned agricultural robotics system for measuring crop conditions for precision aerial application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Unmanned Agricultural Robotics System (UARS) is acquired, rebuilt with desired hardware, and operated in both classrooms and field. The UARS includes crop height sensor, crop canopy analyzer, normalized difference vegetative index (NDVI) sensor, multispectral camera, and hyperspectral radiometer...

  2. A Space-Time Network-Based Modeling Framework for Dynamic Unmanned Aerial Vehicle Routing in Traffic Incident Monitoring Applications

    PubMed Central

    Zhang, Jisheng; Jia, Limin; Niu, Shuyun; Zhang, Fan; Tong, Lu; Zhou, Xuesong

    2015-01-01

    It is essential for transportation management centers to equip and manage a network of fixed and mobile sensors in order to quickly detect traffic incidents and further monitor the related impact areas, especially for high-impact accidents with dramatic traffic congestion propagation. As emerging small Unmanned Aerial Vehicles (UAVs) start to have a more flexible regulation environment, it is critically important to fully explore the potential for of using UAVs for monitoring recurring and non-recurring traffic conditions and special events on transportation networks. This paper presents a space-time network- based modeling framework for integrated fixed and mobile sensor networks, in order to provide a rapid and systematic road traffic monitoring mechanism. By constructing a discretized space-time network to characterize not only the speed for UAVs but also the time-sensitive impact areas of traffic congestion, we formulate the problem as a linear integer programming model to minimize the detection delay cost and operational cost, subject to feasible flying route constraints. A Lagrangian relaxation solution framework is developed to decompose the original complex problem into a series of computationally efficient time-dependent and least cost path finding sub-problems. Several examples are used to demonstrate the results of proposed models in UAVs’ route planning for small and medium-scale networks. PMID:26076404

  3. A Space-Time Network-Based Modeling Framework for Dynamic Unmanned Aerial Vehicle Routing in Traffic Incident Monitoring Applications.

    PubMed

    Zhang, Jisheng; Jia, Limin; Niu, Shuyun; Zhang, Fan; Tong, Lu; Zhou, Xuesong

    2015-01-01

    It is essential for transportation management centers to equip and manage a network of fixed and mobile sensors in order to quickly detect traffic incidents and further monitor the related impact areas, especially for high-impact accidents with dramatic traffic congestion propagation. As emerging small Unmanned Aerial Vehicles (UAVs) start to have a more flexible regulation environment, it is critically important to fully explore the potential for of using UAVs for monitoring recurring and non-recurring traffic conditions and special events on transportation networks. This paper presents a space-time network- based modeling framework for integrated fixed and mobile sensor networks, in order to provide a rapid and systematic road traffic monitoring mechanism. By constructing a discretized space-time network to characterize not only the speed for UAVs but also the time-sensitive impact areas of traffic congestion, we formulate the problem as a linear integer programming model to minimize the detection delay cost and operational cost, subject to feasible flying route constraints. A Lagrangian relaxation solution framework is developed to decompose the original complex problem into a series of computationally efficient time-dependent and least cost path finding sub-problems. Several examples are used to demonstrate the results of proposed models in UAVs' route planning for small and medium-scale networks. PMID:26076404

  4. A prospective study of the effects of ultralow volume (ULV) aerial application of malathion on epidemic Plasmodium falciparum malaria. III. Ecologic aspects.

    PubMed

    McLean, R G; Spillane, J T; Miles, J W

    1975-03-01

    The effects of aerial ultralow volume (ULV) malathion on selected species of nontarget animals in Haiti are reported. Mortality of certain groups of insects such as bees, flies, beetles, and butterflies was observed immediately following spray application. Minor fish mortality occurred only in shallow water exposed to direct spray. The brain acetylcholine esterase levels of living fish, tree lizards, birds and bats collected from treated areas were not significantly reduced. No ill or dead animals, besides the few fish, were seen even when maximum exposure occurred. Only minor changes in the feeding behavior of some insectivorous birds were observed. The relative bird density decreased substantially for only one species during the study, and other factors besides treatment were considered to be the reasons for the decline. Aerial applications of ULV malathion at dosages sufficient to dramatically reduce anopheline populations did not significantly affect nontarget vertebrates in this tropical environment. PMID:1091169

  5. Spread of a Gammabaculovirus within Larval Populations of Its Natural Balsam Fir Sawfly (Neodiprion abietis) Host Following Its Aerial Application.

    PubMed

    Graves, Roger; Lucarotti, Christopher J; Quiring, Dan T

    2012-01-01

    Field trials and assessments of the balsam fir sawfly (Neodiprion abietis) nucleopolyhedrovirus (NeabNPV: Baculoviridae, Gammabaculovirus) against its natural host were conducted in July and August 2002 near Corner Brook, Newfoundland and Labrador, Canada, in naturally regenerated, precommercially thinned stands dominated by balsam fir (Abies balsamea). Two experimental blocks, each with its own untreated control, were established. The purpose of the Island Pond block was to examine the spread of NeabNPV from a 313-ha aerial treatment block out into adjacent populations of balsam fir sawflies. The purpose of the Old Man's Pond block (2,093 ha) was to determine whether NeabNPV could disperse into populations of balsam fir sawflies within a 200-m zone between spray swaths. NeabNPV was applied to treatment blocks by a Cessna 188B AgTruck aircraft equipped with MicronAir AU4000 rotary atomizers at an application rate equivalent to 1 × 10⁸ NeabNPV occlusion bodies/ha in 2.5 L of 20% aqueous molasses. At Island Pond, NeabNPV infection increased with time following the spray, especially for individuals close to the treatment block, and infection rate decreased to a measured distance of 400 m from the treatment block. At Old Man's Pond, NeabNPV infection rose higher (80% vs. 15%) and sawfly densities declined more (84% vs. 60%) in the area between spray swaths than in the control block. PMID:26466719

  6. Mirex residues in bobwhite quail after aerial application of bait for fire ant control, South Carolina--1975-76.

    PubMed

    Kendall, R J; Noblet, R; Hair, J D; Jackson, H B

    1977-09-01

    Mirex, the organochlorine compound used for control of the imported fire ant (Solenopsis invicta Buren), was applied aerially under supervision of the South Carolina Plant Pest Regulatory Service in October 1975 to a game management area in Hampton County, S.C. Influenced by recent reports indicating that low levels of mirex were toxic to certain nontarget organisms in laboratory studies, authors initiated a program for monitoring mirex residues in bobwhite quail (Colinus virginianus). Pretreatment residues were recorded on a dry-weight basis in bobwhite quail breast and adipose tissue; conversion factors for determining wet-weight concentrations are approximately as follows: fat, 0.77; and breast, 0.29. Residues ranged from 0.000-0.178 ppm and 0.247-2.763 ppm, respectively. Mirex residues in quail adipose tissue showed up to five-fold increase within the first month after treatment and declined thereafter. A residue peak was noticed the spring following mirex treatment, corresponding with insect emergence. Mirex residues in quail collected in summer 1976 following a fall bait application showed slightly higher residue levels than had birds taken in summer 1975; however, little, if any, human food chain contamination would result in the consumption of birds with residue levels found in this study. PMID:600676

  7. Remote sensing in environmental police investigations: aerial platforms and an innovative application of thermography to detect several illegal activities.

    PubMed

    Lega, M; Ferrara, C; Persechino, G; Bishop, P

    2014-12-01

    Being able to identify the environmental crimes and the guilty parties is central to police investigations, and new technologies enable the authorities to do this faster and more accurately than ever before. In recent years, our research team has introduced the use of a range of aerial platforms and an innovative application of thermography to detect several illegal activities; for example, illegal sanitary sewer and storm-drain connections, illicit wastewater discharges, and other "anomalies" on surface waters can be easily identified using their thermal infrared signatures. It can also be used to detect illegal solid/liquid waste dumps or illicit air discharges. This paper introduces first results of a Thermal Pattern and Thermal Tracking approach that can be used to identify different phenomena and several pollutants. The aims of this paper were to introduce a fingerprint paradigm for environmental police investigations, defining several specific signatures (patterns) that permit the identification of an illicit/anomalous activity, and establish a procedure to use this information to find the correlation (tracking) between the crime and the culprit or the source and the target. PMID:25154683

  8. Hanford Site air operating permit application

    SciTech Connect

    1995-05-01

    The Clean Air Act Amendments of 1990, which amended the Federal Clean Air Act of 1977, required that the US Environmental Protection Agency develop a national Air Operating Permit Program, which in turn would require each state to develop an Air Operating Permit Program to identify all sources of ``regulated`` pollutants. Regulated pollutants include ``criteria`` pollutants (oxides of nitrogen, sulfur oxides, total suspended particulates, carbon monoxide, particulate matter greater than 10 micron, lead) plus 189 other ``Hazardous`` Air Pollutants. The Hanford Site, owned by the US Government and operated by the US Department of Energy, Richland Operations Office, is located in southcentral Washington State and covers 560 square miles of semi-arid shrub and grasslands located just north of the confluence of the Snake and Yakima Rivers with the Columbia River. This land, with restricted public access, provides a buffer for the smaller areas historically used for the production of nuclear materials, waste storage, and waste disposal. About 6 percent of the land area has been disturbed and is actively used. The Hanford Site Air Operating Permit Application consists of more than 1,100 sources and in excess of 300 emission points. Before January 1995, the maintenance and operations contractor and the environmental restoration contractor for the US Department of Energy completed an air emission inventory on the Hanford Site. The inventory has been entered into a database so that the sources and emission points can be tracked and updated information readily can be retrieved. The Hanford Site Air Operating Permit Application contains information current as of April 19, 1995.

  9. Unmanned Aircraft System (UAS) Traffic Management (UTM): Enabling Civilian Low-Altitude Airspace and Unmanned Aerial System Operations

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal Hemchandra

    2016-01-01

    Just a year ago we laid out the UTM challenges and NASA's proposed solutions. During the past year NASA's goal continues to be to conduct research, development and testing to identify airspace operations requirements to enable large-scale visual and beyond visual line-of-sight UAS operations in the low-altitude airspace. Significant progress has been made, and NASA is continuing to move forward.

  10. Results of Laboratory Testing for Diphacinone in Seawater, Fish, Invertebrates, and Soil Following Aerial Application of Rodenticide on Lehua Island, Kauai County, Hawaii, January 2009

    USGS Publications Warehouse

    Orazio, Carl E.; Tanner, Michael J.; Swenson, Chris; Herod, Jeffrey J.; Dunlevy, Peter; Gale, Robert W.

    2009-01-01

    In January 2009, rodenticide bait (Ramik Green pellets) containing the active ingredient diphacinone was aerially applied to Lehua Island. Reported herein are the results of laboratory analyses to determine diphacinone concentrations in samples of seawater, fillet of fish, soft tissue of limpets (opihi), whole-body crabs, and soil collected from Lehua Island, Kauai County, Hawaii, after aerial application of the rodenticide bait. Diphacinone was specifically chosen because of its low toxicity to nontarget organisms. Its use on Lehua Island is the second time it has ever been used for an aerial application to eradicate rodents. Testing of the Lehua Island samples for diphacinone utilized high-performance liquid chromatography with photodiode array detection. No detectable concentrations of diphacinone were found in any of the samples from Lehua Island. The limits of detection for diphacinone were 0.4 nanograms per milliliter (parts per billion) seawater, 15 nanograms per gram (dry weight) soil, 20 nanograms per gram (parts per billion) fish fillet, 13 nanograms per gram whole crab, and 34 nanograms per gram soft tissue limpet.

  11. Aerial Video Imaging

    NASA Technical Reports Server (NTRS)

    1991-01-01

    When Michael Henry wanted to start an aerial video service, he turned to Johnson Space Center for assistance. Two NASA engineers - one had designed and developed TV systems in Apollo, Skylab, Apollo- Soyuz and Space Shuttle programs - designed a wing-mounted fiberglass camera pod. Camera head and angles are adjustable, and the pod is shaped to reduce vibration. The controls are located so a solo pilot can operate the system. A microprocessor displays latitude, longitude, and bearing, and a GPS receiver provides position data for possible legal references. The service has been successfully utilized by railroads, oil companies, real estate companies, etc.

  12. Fluorescence Lyman-Alpha Stratospheric Hygrometer (FLASH): application on meteorological balloons, long duration balloons and unmanned aerial vehicles.

    NASA Astrophysics Data System (ADS)

    Lykov, Alexey; Khaykin, Sergey; Yushkov, Vladimir; Efremov, Denis; Formanyuk, Ivan; Astakhov, Valeriy

    The FLASH instrument is based on the fluorescent method, which uses H2O molecules photodissociation at a wavelength lambda=121.6 nm (Lalpha - hydrogen emission) followed by the measurement of the fluorescence of excited OH radicals. The source of Lyman-alpha radiation is a hydrogen discharge lamp while the detector of OH fluorescence at 308 -316 nm is a photomultiplier run in photon counting mode. The intensity of the fluorescent light as well as the instrument readings is directly proportional to the water vapor mixing ratio under stratospheric conditions with negligible oxygen absorption. Initially designed for rocket-borne application, FLASH has evolved into a light-weight balloon sonde (FLASH-B) for measurements in the upper troposphere and stratosphere on board meteorological and small plastic balloons. This configuration has been used in over 100 soundings at numerous tropical mid-latitude and polar locations within various international field campaigns. An airborne version of FLASH instrument is successfully utilized onboard stratospheric M55-Geophysica aircraft and tropospheric airborne laboratory YAK42-Roshydromet. The hygrometer was modified for application onboard stratospheric long-duration balloons (FLASH-LDB version). This version was successfully used onboard CNES super-pressure balloon launched from SSC Esrange in March 2007 and flown during 10 days. Special design for polar long duration balloon PoGOLite was created for testing work during polar day in June 2013. Installation and measurement peculiarities as well as observational results are presented. Observations of water vapour using FLASH-B instrument, being of high quality are rather costly as the payload recovery is often complicated and most of the time impossible. Following the goal to find a cost-efficient solution, FLASH was adapted for use onboard Unmanned Aerial Vehicles (UAV). This solution was only possible thanks to compactness and light-weight (0.5 kg) of FLASH instrument. The

  13. Novaluron as an ovicide for bollworm on cotton: Deposition and efficacy of field-scale aerial applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novaluron, Diamond 0.83 EC, was evaluated for deposition on cotton and ovicidal efficacy against bollworm, Helicoverpa zea (Boddie), because of the need to use insecticides with modes of action different than synthetic pyrethroids. Novaluron at the lowest label recommended rate was aerially-applied...

  14. Fusion of Multi-View and Multi-Scale Aerial Imagery for Real-Time Situation Awareness Applications

    NASA Astrophysics Data System (ADS)

    Zhuo, X.; Kurz, F.; Reinartz, P.

    2015-08-01

    Manned aircraft has long been used for capturing large-scale aerial images, yet the high costs and weather dependence restrict its availability in emergency situations. In recent years, MAV (Micro Aerial Vehicle) emerged as a novel modality for aerial image acquisition. Its maneuverability and flexibility enable a rapid awareness of the scene of interest. Since these two platforms deliver scene information from different scale and different view, it makes sense to fuse these two types of complimentary imagery to achieve a quick, accurate and detailed description of the scene, which is the main concern of real-time situation awareness. This paper proposes a method to fuse multi-view and multi-scale aerial imagery by establishing a common reference frame. In particular, common features among MAV images and geo-referenced airplane images can be extracted by a scale invariant feature detector like SIFT. From the tie point of geo-referenced images we derive the coordinate of corresponding ground points, which are then utilized as ground control points in global bundle adjustment of MAV images. In this way, the MAV block is aligned to the reference frame. Experiment results show that this method can achieve fully automatic geo-referencing of MAV images even if GPS/IMU acquisition has dropouts, and the orientation accuracy is improved compared to the GPS/IMU based georeferencing. The concept for a subsequent 3D classification method is also described in this paper.

  15. Unmanned Aerial Vehicles unique cost estimating requirements

    NASA Astrophysics Data System (ADS)

    Malone, P.; Apgar, H.; Stukes, S.; Sterk, S.

    Unmanned Aerial Vehicles (UAVs), also referred to as drones, are aerial platforms that fly without a human pilot onboard. UAVs are controlled autonomously by a computer in the vehicle or under the remote control of a pilot stationed at a fixed ground location. There are a wide variety of drone shapes, sizes, configurations, complexities, and characteristics. Use of these devices by the Department of Defense (DoD), NASA, civil and commercial organizations continues to grow. UAVs are commonly used for intelligence, surveillance, reconnaissance (ISR). They are also use for combat operations, and civil applications, such as firefighting, non-military security work, surveillance of infrastructure (e.g. pipelines, power lines and country borders). UAVs are often preferred for missions that require sustained persistence (over 4 hours in duration), or are “ too dangerous, dull or dirty” for manned aircraft. Moreover, they can offer significant acquisition and operations cost savings over traditional manned aircraft. Because of these unique characteristics and missions, UAV estimates require some unique estimating methods. This paper describes a framework for estimating UAV systems total ownership cost including hardware components, software design, and operations. The challenge of collecting data, testing the sensitivities of cost drivers, and creating cost estimating relationships (CERs) for each key work breakdown structure (WBS) element is discussed. The autonomous operation of UAVs is especially challenging from a software perspective.

  16. 30 CFR 778.11 - Providing applicant and operator information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SYSTEMS UNDER REGULATORY PROGRAMS PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR LEGAL, FINANCIAL, COMPLIANCE, AND RELATED INFORMATION § 778.11 Providing applicant and operator information. (a) You,...

  17. 30 CFR 778.11 - Providing applicant and operator information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SYSTEMS UNDER REGULATORY PROGRAMS PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR LEGAL, FINANCIAL, COMPLIANCE, AND RELATED INFORMATION § 778.11 Providing applicant and operator information. (a) You,...

  18. 30 CFR 778.11 - Providing applicant and operator information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SYSTEMS UNDER REGULATORY PROGRAMS PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR LEGAL, FINANCIAL, COMPLIANCE, AND RELATED INFORMATION § 778.11 Providing applicant and operator information. (a) You,...

  19. 30 CFR 778.11 - Providing applicant and operator information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SYSTEMS UNDER REGULATORY PROGRAMS PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR LEGAL, FINANCIAL, COMPLIANCE, AND RELATED INFORMATION § 778.11 Providing applicant and operator information. (a) You,...

  20. 30 CFR 778.11 - Providing applicant and operator information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SYSTEMS UNDER REGULATORY PROGRAMS PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR LEGAL, FINANCIAL, COMPLIANCE, AND RELATED INFORMATION § 778.11 Providing applicant and operator information. (a) You,...

  1. Demonstration of rapid-scan two-dimensional laser velocimetry in the Langley Vortex Research Facility for research in aerial applications

    NASA Technical Reports Server (NTRS)

    Gartrell, L. R.; Jordan, F. L., Jr.

    1977-01-01

    Tests were conducted to demonstrate a rapid scan two dimensional laser velocimeter (LV) measurement technique for aerial applications research. The LV system is capable of simultaneously measuring both vertical and axial flow velocity components in a near or far field vortex system. Velocity profiles were successfully measured in the wake vortex of a representative agricultural aircraft model, with the vortex system rapidly transporting in ground effect. Results indicate that the laser velocimetry technique can provide quantitative information of wake vortex characteristics in ground effect.

  2. Heuristic approach to the development of ratings and tactics applicable to the one-on-one aerial combat (dogfight) encounter

    NASA Technical Reports Server (NTRS)

    Hague, D. S.

    1977-01-01

    Computer simulations of the one-on-one aerial combat encounter are generated under the control of specified guidance laws. Given an initial state, the vehicle and atmospheric characteristics, and the guidance laws, the aerial combat encounter is simulated by forward integration of the two vehicles' motions. The development of a combat guidance law which converts positional advantage into an improved firing opportunity is reported. A combination of lag, line of sight, and lead pursuit steering paths are followed in the guidance law. The law is based on steering error, target angle-off and the relative velocities. It readily is automated either as an onboard aid to manned aircraft pilots or as a combat guidance law for unmanned vehicles.

  3. 47 CFR 1.83 - Applications for radio operator licenses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Applications for radio operator licenses. 1.83... Rules of Practice and Procedure Miscellaneous Proceedings § 1.83 Applications for radio operator licenses. (a) Application filing procedures for amateur radio operator licenses are set forth in part 97...

  4. 47 CFR 1.83 - Applications for radio operator licenses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Applications for radio operator licenses. 1.83... Rules of Practice and Procedure Miscellaneous Proceedings § 1.83 Applications for radio operator licenses. (a) Application filing procedures for amateur radio operator licenses are set forth in part 97...

  5. 47 CFR 1.83 - Applications for radio operator licenses.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Applications for radio operator licenses. 1.83... Rules of Practice and Procedure Miscellaneous Proceedings § 1.83 Applications for radio operator licenses. (a) Application filing procedures for amateur radio operator licenses are set forth in part 97...

  6. 47 CFR 1.83 - Applications for radio operator licenses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Applications for radio operator licenses. 1.83... Rules of Practice and Procedure Miscellaneous Proceedings § 1.83 Applications for radio operator licenses. (a) Application filing procedures for amateur radio operator licenses are set forth in part 97...

  7. 47 CFR 1.83 - Applications for radio operator licenses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Applications for radio operator licenses. 1.83... Rules of Practice and Procedure Miscellaneous Proceedings § 1.83 Applications for radio operator licenses. (a) Application filing procedures for amateur radio operator licenses are set forth in part 97...

  8. Dynamics of aerial target pursuit

    NASA Astrophysics Data System (ADS)

    Pal, S.

    2015-12-01

    During pursuit and predation, aerial species engage in multitasking behavior that involve simultaneous target detection, tracking, decision-making, approach and capture. The mobility of the pursuer and the target in a three dimensional environment during predation makes the capture task highly complex. Many researchers have studied and analyzed prey capture dynamics in different aerial species such as insects and bats. This article focuses on reviewing the capture strategies adopted by these species while relying on different sensory variables (vision and acoustics) for navigation. In conclusion, the neural basis of these capture strategies and some applications of these strategies in bio-inspired navigation and control of engineered systems are discussed.

  9. Application of modified complex Tremblay operator

    NASA Astrophysics Data System (ADS)

    Esa, Zainab; Kilicman, Adem; Ibrahim, Rabha W.; Ismail, Mat Rofa; Husain, Sharifah Kartini Said

    2016-06-01

    In this paper, we introduce a new fractional integral operator defined by modified fractional derivative Tremblay operator of analytic functions and show that the univalence of this integral operator is preserved under certain sufficient conditions in complex domain

  10. Preliminary applications of Landsat images and aerial photography for determining land-use, geologic, and hydrologic characteristics, Yampa River basin, Colorado and Wyoming

    USGS Publications Warehouse

    Heimes, F.J.; Moore, G.K.; Steele, T.D.

    1978-01-01

    Expanded energy- and recreation-related activities in the Yampa River basin, Colorado and Wyoming, have caused a rapid increase in economic development which will result in increased demand and competition for natural resources. In planning for efficient allocation of the basin 's natural resources, Landsat images and small-scale color and color-infrared photographs were used for selected geologic, hydrologic and land-use applications within the Yampa River basin. Applications of Landsat data included: (1) regional land-use classification and mapping, (2) lineament mapping, and (3) areal snow-cover mapping. Results from the Landsat investigations indicated that: (1) Landsat land-use classification maps, at a regional level, compared favorably with areal land-use patterns that were defined from available ground information, (2) lineaments were mapped in sufficient detail using recently developed techniques for interpreting aerial photographs, (3) snow cover generally could be mapped for large areas with the exception of some densely forested areas of the basin and areas having a large percentage of winter-season cloud cover. Aerial photographs were used for estimation of turbidity for eight stream locations in the basin. Spectral reflectance values obtained by digitizing photographs were compared with measured turbidity values. Results showed strong correlations (variances explained of greater than 90 percent) between spectral reflectance obtained from color photographs and measured turbidity values. (Woodard-USGS)

  11. Aerial radiation surveys

    SciTech Connect

    Jobst, J.

    1980-01-01

    A recent aerial radiation survey of the surroundings of the Vitro mill in Salt Lake City shows that uranium mill tailings have been removed to many locations outside their original boundary. To date, 52 remote sites have been discovered within a 100 square kilometer aerial survey perimeter surrounding the mill; 9 of these were discovered with the recent aerial survey map. Five additional sites, also discovered by aerial survey, contained uranium ore, milling equipment, or radioactive slag. Because of the success of this survey, plans are being made to extend the aerial survey program to other parts of the Salt Lake valley where diversions of Vitro tailings are also known to exist.

  12. Rangeland monitoring with unmanned aerial vehicles (UAVs)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned aerial vehicles (UAVs) have great potential for rangeland management applications, such as monitoring vegetation change, developing grazing strategies, determining rangeland health, and assessing remediation treatment effectiveness. UAVs have several advantages: they can be deployed quickly...

  13. A practical interpretation and use of the USDA aerial fixed-wing nozzle models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proper selection and operation of spray nozzles associated with aerial applications is critical to insuring efficacy while mitigating off-target movement. Labels for most agrochemical products applied in the U.S. specifically define the droplet size or spray classification that can be used to apply...

  14. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring.

    PubMed

    Gillan, Jeffrey K; Karl, Jason W; Duniway, Michael; Elaksher, Ahmed

    2014-11-01

    Vertical vegetation structure in rangeland ecosystems can be a valuable indicator for assessing rangeland health and monitoring riparian areas, post-fire recovery, available forage for livestock, and wildlife habitat. Federal land management agencies are directed to monitor and manage rangelands at landscapes scales, but traditional field methods for measuring vegetation heights are often too costly and time consuming to apply at these broad scales. Most emerging remote sensing techniques capable of measuring surface and vegetation height (e.g., LiDAR or synthetic aperture radar) are often too expensive, and require specialized sensors. An alternative remote sensing approach that is potentially more practical for managers is to measure vegetation heights from digital stereo aerial photographs. As aerial photography is already commonly used for rangeland monitoring, acquiring it in stereo enables three-dimensional modeling and estimation of vegetation height. The purpose of this study was to test the feasibility and accuracy of estimating shrub heights from high-resolution (HR, 3-cm ground sampling distance) digital stereo-pair aerial images. Overlapping HR imagery was taken in March 2009 near Lake Mead, Nevada and 5-cm resolution digital surface models (DSMs) were created by photogrammetric methods (aerial triangulation, digital image matching) for twenty-six test plots. We compared the heights of individual shrubs and plot averages derived from the DSMs to field measurements. We found strong positive correlations between field and image measurements for several metrics. Individual shrub heights tended to be underestimated in the imagery, however, accuracy was higher for dense, compact shrubs compared with shrubs with thin branches. Plot averages of shrub height from DSMs were also strongly correlated to field measurements but consistently underestimated. Grasses and forbs were generally too small to be detected with the resolution of the DSMs. Estimates of

  15. Effects of aerial applications of esfenvalerate on small mammals and birds in Douglas-fir seed orchards

    USGS Publications Warehouse

    Blus, L.J.; Henny, C.J.; Rice, C.P.; Grove, R.A.

    1992-01-01

    Although no adverse effects were documented, this study did not provide data sufficient to adequately test for effects of aerial spraying of esfenvalerate on small mammal populations or nesting of birds in Douglas-fir seed orchards. Small mammal trapping data were too sparse to provide statistical testing with reasonable power. Residues of the R and S forms of fenvalerate were low with maxima of 0.56 and 1.72 ?g/g, respectively in pelage of a deer mouse. No diagnostic residue data are available to interpret our results.

  16. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring

    USGS Publications Warehouse

    Gillan, Jeffrey K.; Karl, Jason W.; Duniway, Michael; Elaksher, Ahmed

    2014-01-01

    Vertical vegetation structure in rangeland ecosystems can be a valuable indicator for assessing rangeland health and monitoring riparian areas, post-fire recovery, available forage for livestock, and wildlife habitat. Federal land management agencies are directed to monitor and manage rangelands at landscapes scales, but traditional field methods for measuring vegetation heights are often too costly and time consuming to apply at these broad scales. Most emerging remote sensing techniques capable of measuring surface and vegetation height (e.g., LiDAR or synthetic aperture radar) are often too expensive, and require specialized sensors. An alternative remote sensing approach that is potentially more practical for managers is to measure vegetation heights from digital stereo aerial photographs. As aerial photography is already commonly used for rangeland monitoring, acquiring it in stereo enables three-dimensional modeling and estimation of vegetation height. The purpose of this study was to test the feasibility and accuracy of estimating shrub heights from high-resolution (HR, 3-cm ground sampling distance) digital stereo-pair aerial images. Overlapping HR imagery was taken in March 2009 near Lake Mead, Nevada and 5-cm resolution digital surface models (DSMs) were created by photogrammetric methods (aerial triangulation, digital image matching) for twenty-six test plots. We compared the heights of individual shrubs and plot averages derived from the DSMs to field measurements. We found strong positive correlations between field and image measurements for several metrics. Individual shrub heights tended to be underestimated in the imagery, however, accuracy was higher for dense, compact shrubs compared with shrubs with thin branches. Plot averages of shrub height from DSMs were also strongly correlated to field measurements but consistently underestimated. Grasses and forbs were generally too small to be detected with the resolution of the DSMs. Estimates of

  17. Automatic Sea Bird Detection from High Resolution Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Mader, S.; Grenzdörffer, G. J.

    2016-06-01

    Great efforts are presently taken in the scientific community to develop computerized and (fully) automated image processing methods allowing for an efficient and automatic monitoring of sea birds and marine mammals in ever-growing amounts of aerial imagery. Currently the major part of the processing, however, is still conducted by especially trained professionals, visually examining the images and detecting and classifying the requested subjects. This is a very tedious task, particularly when the rate of void images regularly exceeds the mark of 90%. In the content of this contribution we will present our work aiming to support the processing of aerial images by modern methods from the field of image processing. We will especially focus on the combination of local, region-based feature detection and piecewise global image segmentation for automatic detection of different sea bird species. Large image dimensions resulting from the use of medium and large-format digital cameras in aerial surveys inhibit the applicability of image processing methods based on global operations. In order to efficiently handle those image sizes and to nevertheless take advantage of globally operating segmentation algorithms, we will describe the combined usage of a simple performant feature detector based on local operations on the original image with a complex global segmentation algorithm operating on extracted sub-images. The resulting exact segmentation of possible candidates then serves as a basis for the determination of feature vectors for subsequent elimination of false candidates and for classification tasks.

  18. Magnet operating experience review for fusion applications

    SciTech Connect

    Cadwallader, L.C.

    1991-11-01

    This report presents a review of magnet operating experiences for normal-conducting and superconducting magnets from fusion, particle accelerator, medical technology, and magnetohydrodynamics research areas. Safety relevant magnet operating experiences are presented to provide feedback on field performance of existing designs and to point out the operational safety concerns. Quantitative estimates of magnet component failure rates and accident event frequencies are also presented, based on field experience and on performance of similar components in other industries.

  19. Space Operations Learning Center Facebook Application

    NASA Technical Reports Server (NTRS)

    Lui, Ben; Milner, Barbara; Binebrink, Dan; Kuok, Heng

    2012-01-01

    The proposed Space Operations Learning Center (SOLC) Facebook module, initially code-named Spaceville, is intended to be an educational online game utilizing the latest social networking technology to reach a broad audience base and inspire young audiences to be interested in math, science, and engineering. Spaceville will be a Facebook application/ game with the goal of combining learning with a fun game and social environment. The mission of the game is to build a scientific outpost on the Moon or Mars and expand the colony. Game activities include collecting resources, trading resources, completing simple science experiments, and building architectures such as laboratories, habitats, greenhouses, machine shops, etc. The player is awarded with points and achievement levels. The player s ability increases as his/her points and levels increase. A player can interact with other players using multiplayer Facebook functionality. As a result, a player can discover unexpected treasures through scientific missions, engineering, and working with others. The player creates his/her own avatar with his/her selection of its unique appearance, and names the character. The player controls the avatar to perform activities such as collecting oxygen molecules or building a habitat. From observations of other successful social online games such as Farmville and Restaurant City, a common element of these games is having eye-catching and cartoonish characters, and interesting animations for all activities. This will create a fun, educational, and rewarding environment. The player needs to accumulate points in order to be awarded special items needed for advancing to higher levels. Trophies will be awarded to the player when certain goals are reached or tasks are completed. In order to acquire some special items needed for advancement in the game, the player will need to visit his/her neighboring towns to discover the items. This is the social aspect of the game that requires the

  20. Design and Development of a Low-Cost Aerial Mobile Mapping System for Multi-Purpose Applications

    NASA Astrophysics Data System (ADS)

    Acevedo Pardo, C.; Farjas Abadía, M.; Sternberg, H.

    2015-08-01

    The research project with the working title "Design and development of a low-cost modular Aerial Mobile Mapping System" was formed during the last year as the result from numerous discussions and considerations with colleagues from the HafenCity University Hamburg, Department Geomatics. The aim of the project is to design a sensor platform which can be embedded preferentially on an UAV, but also can be integrated on any adaptable vehicle. The system should perform a direct scanning of surfaces with a laser scanner and supported through sensors for determining the position and attitude of the platform. The modular design allows his extension with other sensors such as multispectral cameras, digital cameras or multiple cameras systems.

  1. Aerial-broadcast application of diphacinone bait for rodent control in Hawai`i: Efficacy and non-target species risk assessment

    USGS Publications Warehouse

    Foote, David; Spurr, Eric B.; Lindsey, Gerald D.; Forbes Perry, Charlotte

    2015-01-01

    Introduced rats (Rattus rattus, R. exulans, and R. norvegicus) have been implicated in the decline or extinction of numerous species of plants and animals in Hawai‘i. This study investigated the efficacy of aerial-broadcast application of Ramik® Green baits containing 50 ppm (0.005%) diphacinone in reducing rat and mouse populations and the risk to non-target species. The study was undertaken in paired 45.56-ha treatment and non-treatment plots in Hawai‘i Volcanoes National Park. All 21 radio-collared rats in the treatment plot died within nine days of bait application, whereas none of the 18 radio-collared rats in the non-treatment plot died. There was a 99% drop in both the rat capture rate and percentage of non-toxic census bait blocks gnawed by rats in the treatment plot relative to the non-treatment plot three weeks after bait application. The only rat captured in the treatment plot three weeks after bait application was not ear-tagged (i.e., it was not a recapture), whereas 44% of the 52 rats captured in the non-treatment plot were ear-tagged. Most of the bait had disappeared from the forest floor within about one month of application. No birds likely to have eaten bait were found dead, although residues of diphacinone were found in the livers of three species of introduced seed-eating/omnivorous birds captured alive after bait application. No predatory birds were found dead one month or three months after bait application. The remains of a Hawaiian hawk (Buteo solitarius) were found six months after bait application, but it was not possible to determine the cause of death. This study demonstrated the efficacy of aerially broadcast diphacinone bait for control of rats and mice in Hawaiian montane forests, and was part of the dataset submitted to the U.S. Environmental Protection Agency for the national registration of a diphacinone bait for the control of rat populations in conservation areas.

  2. Reliable aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.; Bowman, R. L.

    1981-01-01

    A method for energy conservation, the aerial thermography survey, is discussed. It locates sources of energy losses and wasteful energy management practices. An operational map is presented for clear sky conditions. The map outlines the key environmental conditions conductive to obtaining reliable aerial thermography. The map is developed from defined visual and heat loss discrimination criteria which are quantized based on flat roof heat transfer calculations.

  3. PCOS - An operating system for modular applications

    NASA Technical Reports Server (NTRS)

    Tharp, V. P.

    1986-01-01

    This paper is an introduction to the PCOS operating system for the MC68000 family processors. Topics covered are: development history; development support; rational for development of PCOS and salient characteristics; architecture; and a brief comparison of PCOS to UNIX.

  4. Operational Applications of Satellite Snowcover Observations

    NASA Technical Reports Server (NTRS)

    Rango, A. (Editor); Peterson, R. (Editor)

    1980-01-01

    The history of remote sensing of snow cover is reviewed and the following topics are covered: various techniques for interpreting LANDSAT and NOAA satellite data; the status of future systems for continuing snow hydrology applications; the use of snow cover observations in streamflow forecasts by Applications Systems Verification and Transfer participants and selected foreign investigators; and the benefits of using satellite snow cover data in runoff prediction.

  5. Community aerial mosquito control and naled exposure.

    PubMed

    Duprey, Zandra; Rivers, Samantha; Luber, George; Becker, Alan; Blackmore, Carina; Barr, Dana; Weerasekera, Gayanga; Kieszak, Stephanie; Flanders, W Dana; Rubin, Carol

    2008-03-01

    In October 2004, the Florida Department of Health (FLDOH) and the Centers for Disease Control and Prevention (CDC) assessed human exposure to ultra-low volume (ULV) aerial application of naled. Teams administered activity questionnaires regarding pesticide exposure and obtained baseline urine samples to quantify prespray naled metabolite levels. Following the spray event, participants were asked to collect postspray urine specimens within 12 h of the spray event and at 8-h intervals for up to 40 h. Upon completion, a postspray activity questionnaire was administered to study participants. Two hundred five (87%) participants completed the study. The urine analysis showed that although 67% of prespray urine samples had detectable levels of a naled metabolite, the majority of postspray samples were below the limit of detection (< LOD). Only at the "postspray 6" time period, which corresponds to a time greater than 5 half-lives (> 40 h) following exposure, the number of samples with detectable levels exceeded 50%. There was a significant decrease in naled metabolites from prespray to postspray (= .02), perhaps associated with a significant reduction (< or = 0.05) in some participants that may have resulted in pesticide exposure by means other than the mosquito control operations. These data suggest that aerial spraying of naled does not result in increased levels of naled in humans, provided the naled is used according to label instructions. PMID:18437813

  6. Moving Obstacle Avoidance for Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Lin, Yucong

    There has been a vast increase in applications of Unmanned Aerial Vehicles (UAVs) in civilian domains. To operate in the civilian airspace, a UAV must be able to sense and avoid both static and moving obstacles for flight safety. While indoor and low-altitude environments are mainly occupied by static obstacles, risks in space of higher altitude primarily come from moving obstacles such as other aircraft or flying vehicles in the airspace. Therefore, the ability to avoid moving obstacles becomes a necessity for Unmanned Aerial Vehicles. Towards enabling a UAV to autonomously sense and avoid moving obstacles, this thesis makes the following contributions. Initially, an image-based reactive motion planner is developed for a quadrotor to avoid a fast approaching obstacle. Furthermore, A Dubin's curve based geometry method is developed as a global path planner for a fixed-wing UAV to avoid collisions with aircraft. The image-based method is unable to produce an optimal path and the geometry method uses a simplified UAV model. To compensate these two disadvantages, a series of algorithms built upon the Closed-Loop Rapid Exploratory Random Tree are developed as global path planners to generate collision avoidance paths in real time. The algorithms are validated in Software-In-the-Loop (SITL) and Hardware-In-the-Loop (HIL) simulations using a fixed-wing UAV model and in real flight experiments using quadrotors. It is observed that the algorithm enables a UAV to avoid moving obstacles approaching to it with different directions and speeds.

  7. Aerial Application of Mancozeb and Urinary Ethylene Thiourea (ETU) Concentrations among Pregnant Women in Costa Rica: The Infants’ Environmental Health Study (ISA)

    PubMed Central

    Mora, Ana María; Córdoba, Leonel; Cano, Juan Camilo; Quesada, Rosario; Faniband, Moosa; Wesseling, Catharina; Ruepert, Clemens; Öberg, Mattias; Eskenazi, Brenda; Mergler, Donna; Lindh, Christian H.

    2014-01-01

    Background: Mancozeb and its main metabolite ethylene thiourea (ETU) may alter thyroid function; thyroid hormones are essential for fetal brain development. In Costa Rica, mancozeb is aerially sprayed at large-scale banana plantations on a weekly basis. Objectives: Our goals were to evaluate urinary ETU concentrations in pregnant women living near large-scale banana plantations, compare their estimated daily intake (EDI) with established reference doses (RfDs), and identify factors that predict their urinary ETU concentrations. Methods: We enrolled 451 pregnant women from Matina County, Costa Rica, which has large-scale banana production. We visited 445 women up to three times during pregnancy to obtain urine samples (n = 872) and information on factors that possibly influence exposure. We determined urinary ETU concentrations using liquid chromatography mass spectrometry. Results: Pregnant women’s median urinary ETU concentrations were more than five times higher than those reported for other general populations. Seventy-two percent of the women had EDIs above the RfD. Women who lived closest (1st quartile, < 48 m) to banana plantations on average had a 45% (95% CI: 23, 72%) higher urinary ETU compared with women who lived farthest away (4th quartile, ≥ 565 m). Compared with the other women, ETU was also higher in women who washed agricultural work clothes on the day before sampling (11%; 95% CI: 4.9, 17%), women who worked in agriculture during pregnancy (19%; 95% CI: 9.3, 29%), and immigrant women (6.2%; 95% CI: 1.0, 13%). Conclusions: The pregnant women’s urinary ETU concentrations are of concern, and the principal source of exposure is likely to be aerial spraying of mancozeb. The factors predicting ETU provide insight into possibilities for exposure reduction. Citation: van Wendel de Joode B, Mora AM, Córdoba L, Cano JC, Quesada R, Faniband M, Wesseling C, Ruepert C, Öberg M, Eskenazi B, Mergler D, Lindh CH. 2014. Aerial application of mancozeb and

  8. Integrated Launch Operations Applications Remote Display Developer

    NASA Technical Reports Server (NTRS)

    Flemming, Cedric M., II

    2014-01-01

    This internship provides the opportunity to support the creation and use of Firing Room Displays and Firing Room Applications that use an abstraction layer called the Application Control Language (ACL). Required training included video watching, reading assignments, face-to-face instruction and job shadowing other Firing Room software developers as they completed their daily duties. During the training period various computer and access rights needed for creating the applications were obtained. The specific ground subsystems supported are the Cryogenics Subsystems, Liquid Hydrogen (LH2) and Liquid Oxygen (LO2). The cryogenics team is given the task of finding the best way to handle these very volatile liquids that are used to fuel the Space Launch System (SLS) and the Orion flight vehicles safely.

  9. Mapping bare soil in South West Wales, UK, using high resolution colour infra-red aerial photography for water quality and flood risk management applications

    NASA Astrophysics Data System (ADS)

    Sykes, Helena; Neale, Simon; Coe, Sarah

    2016-04-01

    Natural Resources Wales is a UK government body responsible for environmental regulation, among other areas. River walks in Water Framework Directive (WFD) priority catchments in South West Wales, UK, identified soil entering water courses due to poaching and bank erosion, leading to deterioration in the water quality and jeopardising the water quality meeting legal minimum standards. Bare soil has also been shown to cause quicker and higher hydrograph peaks in rural catchments than if those areas were vegetated, which can lead to flooding of domestic properties during peak storm flows. The aim was to target farm visits by operational staff to advise on practices likely to improve water quality and to identify areas where soft engineering solutions such as revegetation could alleviate flood risk in rural areas. High resolution colour-infrared aerial photography, 25cm in the three colour bands and 50cm in the near infrared band, was used to map bare soil in seven catchments using supervised classification of a five band stack including the Normalised Difference Vegetation Index (NDVI). Mapping was combined with agricultural land use and field boundary data to filter out arable fields, which are supposed to bare soil for part of their cycle, and was very successful when compared to ground truthing, with the exception of silage fields which contained sparse, no or unproductive vegetation at the time the imagery was acquired leading to spectral similarity to bare soil. A raindrop trace model was used to show the path sediment from bare soil areas would take when moving through the catchment to a watercourse, with hedgerows inserted as barriers following our observations from ground truthing. The findings have been used to help farmers gain funding for improvements such as fencing to keep animals away from vulnerable river banks. These efficient and automated methods can be rolled out to more catchments in Wales and updated using aerial imagery acquired more recently to

  10. Aerial photographic reproductions

    USGS Publications Warehouse

    U.S. Geological Survey

    1975-01-01

    The National Cartographic Information Center of the U.S. Geological Survey maintains records of aerial photographic coverage of the United States and its Territories, based on reports from other Federal agencies as well as State governmental agencies and commercial companies. From these records, the Center furnishes data to prospective purchasers on available photography and the agency holding the aerial film.

  11. A minicomputer interface for realtime operations: an application to operant conditioning.

    PubMed

    Mayor, S J; Wilson, J

    1975-09-01

    A PDP-12 interface was designed, constructed, and tested for realtime imput and output of binary information. Within limits this interface can be used with any peripheral device which operates in the binary mode. In addition to its generality of application the interface features include ease of expansion and low cost. A description of its design and operation is give here is terms of a typical application: the control of behavioral equipment (i.e. "Skinner Boxes") for operant conditioning. PMID:1164844

  12. LOCSET Phase Locking: Operation, Diagnostics, and Applications

    NASA Astrophysics Data System (ADS)

    Pulford, Benjamin N.

    The aim of this dissertation is to discuss the theoretical and experimental work recently done with the Locking of Optical Coherence via Single-detector Electronic-frequency Tagging (LOCSET) phase locking technique developed and employed here are AFRL. The primary objectives of this effort are to detail the fundamental operation of the LOCSET phase locking technique, recognize the conditions in which the LOCSET control electronics optimally operate, demonstrate LOCSET phase locking with higher channel counts than ever before, and extend the LOCSET technique to correct for low order, atmospherically induced, phase aberrations introduced to the output of a tiled array of coherently combinable beams. The experimental work performed for this effort resulted in the coherent combination of 32 low power optical beams operating with unprecedented LOCSET phase error performance of lambda/71 RMS in a local loop beam combination configuration. The LOCSET phase locking technique was also successfully extended, for the first time, into an Object In the Loop (OIL) configuration by utilizing light scattered off of a remote object as the optical return signal for the LOCSET phase control electronics. Said LOCSET-OIL technique is capable of correcting for low order phase aberrations caused by atmospheric turbulence disturbances applied across a tiled array output.

  13. Human Systems Integration and Automation Issues in Small Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    McCauley, Michael E.; Matsangas, Panagiotis

    2004-01-01

    The goal of this report is to identify Human System Integration (HSI) and automation issues that contribute to improved effectiveness and efficiency in the operation of U.S. military Small Unmanned Aerial Vehicles (SUAVs). HSI issues relevant to SUAV operations are reviewed and observations from field trials are summarized. Short-term improvements are suggested research issues are identified and an overview is provided of automation technologies applicable to future SUAV design.

  14. Application of adjoint operators to neural learning

    NASA Technical Reports Server (NTRS)

    Barhen, J.; Toomarian, N.; Gulati, S.

    1990-01-01

    A technique for the efficient analytical computation of such parameters of the neural architecture as synaptic weights and neural gain is presented as a single solution of a set of adjoint equations. The learning model discussed concentrates on the adiabatic approximation only. A problem of interest is represented by a system of N coupled equations, and then adjoint operators are introduced. A neural network is formalized as an adaptive dynamical system whose temporal evolution is governed by a set of coupled nonlinear differential equations. An approach based on the minimization of a constrained neuromorphic energylike function is applied, and the complete learning dynamics are obtained as a result of the calculations.

  15. Automatic geolocation of targets tracked by aerial imaging platforms using satellite imagery

    NASA Astrophysics Data System (ADS)

    Shukla, P. K.; Goel, S.; Singh, P.; Lohani, B.

    2014-11-01

    Tracking of targets from aerial platforms is an important activity in several applications, especially surveillance. Knowled ge of geolocation of these targets adds additional significant and useful information to the application. This paper determines the geolocation of a target being tracked from an aerial platform using the technique of image registration. Current approaches utilize a POS to determine the location of the aerial platform and then use the same for geolocation of the targets using the principle of photogrammetry. The constraints of cost and low-payload restrict the applicability of this approach using UAV platforms. This paper proposes a methodology for determining the geolocation of a target tracked from an aerial platform in a partially GPS devoid environment. The method utilises automatic feature based registration technique of a georeferenced satellite image with an ae rial image which is already stored in UAV's database to retrieve the geolocation of the target. Since it is easier to register subsequent aerial images due to similar viewing parameters, the subsequent overlapping images are registered together sequentially thus resulting in the registration of each of the images with georeferenced satellite image thus leading to geolocation of the target under interest. Using the proposed approach, the target can be tracked in all the frames in which it is visible. The proposed concept is verified experimentally and the results are found satisfactory. Using the proposed method, a user can obtain location of target of interest as well features on ground without requiring any POS on-board the aerial platform. The proposed approach has applications in surveillance for target tracking, target geolocation as well as in disaster management projects like search and rescue operations.

  16. The application of CRM to military operations

    NASA Technical Reports Server (NTRS)

    Cavanagh, Dale E.; Williams, Kenneth R.

    1987-01-01

    The detailed content of the CRM training component of the C-5 Aircrew Training System (ATS) was left to the discretion of the contractor. As a part of determining what the content should be, United Airlines Services Corporation has made an effort to understand how the needs of MAC crews compare with those of civilian airline crews. There are distinct similarities between the crew roles in the cockpits of civilian airliners and military air transports. Many of the attitudes and behaviors exhibited by civil and military crew members are comparable, hence much of the training in the field referred to as Cockpit Resource Management (CRM) is equally appropriate to civil or military aircrews. At the same time, there are significant differences which require assessment to determine if modifications to what might be termed generic CRM are necessary. The investigation enabled the definition and specification of CRM training which is believed to address the needs of the C-5 operational community. The study has concentrated largely on military airlift, but the training objectives and course content of the CRM training are readily adaptable to a wider range of military cockpits than are found in strategic airlift. For instance, CRM training focusing on communication, leadership, situational awareness, and crew coordination is just as appropriate, with some modification, to the pilots manning a flight to Tactical Airlift Command A-7's as it is to the pilots, flight engineers, and loadmasters crewing a C-5.

  17. Application of a wireless sensor node to health monitoring of operational wind turbine blades

    SciTech Connect

    Taylor, Stuart G; Farinholt, Kevin M; Park, Gyuhae; Farrar, Charles R; Todd, Michael D

    2009-01-01

    Structural health monitoring (SHM) is a developing field of research with a variety of applications including civil structures, industrial equipment, and energy infrastructure. An SHM system requires an integrated process of sensing, data interrogation and statistical assessment. The first and most important stage of any SHM system is the sensing system, which is traditionally composed of transducers and data acquisition hardware. However, such hardware is often heavy, bulky, and difficult to install in situ. Furthermore, physical access to the structure being monitored may be limited or restricted, as is the case for rotating wind turbine blades or unmanned aerial vehicles, requiring wireless transmission of sensor readings. This study applies a previously developed compact wireless sensor node to structural health monitoring of rotating small-scale wind turbine blades. The compact sensor node collects low-frequency structural vibration measurements to estimate natural frequencies and operational deflection shapes. The sensor node also has the capability to perform high-frequency impedance measurements to detect changes in local material properties or other physical characteristics. Operational measurements were collected using the wireless sensing system for both healthy and damaged blade conditions. Damage sensitive features were extracted from the collected data, and those features were used to classify the structural condition as healthy or damaged.

  18. Impact of naled on honey bee Apis mellifera L. survival and productivity: aerial ULV application using a flat-fan nozzle system.

    PubMed

    Zhong, H; Latham, M; Hester, P G; Frommer, R L; Brock, C

    2003-08-01

    A study was conducted to evaluate the impact of naled on honey bees as a result of their exposure to aerial ULV applications of this insecticide during three routine mosquito spray missions by Manatee County Mosquito Control District in Florida during the summer of 1999. Naled deposits were collected on filter paper and subsequently analyzed by gas chromatography. Mortality of adult honey bees Apis mellifera L. was estimated based on numbers from dead bee collectors placed in front of the entrance of the beehives. We found that honey bees clustering outside of the beehives were subject to naled exposure. Bee mortality increased when higher naled residues were found around the hives. The highest average naled deposit was 6,227 +/- 696 microg/m2 at the site 1 forest area following the mosquito spray mission on July 15, 1999. The range of naled deposition for this application was 2,818-7,101 microg/m2. The range of dead bees per hive was 0-39 prior to spraying and 9-200 within 24 h following this spray mission. The average yield of honey per hive was significantly lower (p < 0.05) for naled-exposed hives compared with unexposed hives. Because reduction of honey yield also may be affected by other factors, such as location of the hives relative to a food source and vigor of the queen bee, the final assessment of honey yield was complicated. PMID:14565579

  19. Assessing crop injury caused by aerially applied glyphosate drift using spray sampling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop injury caused by off-target drift of aerially applied glyphosate is of great concern to farmers and aerial applicators. An experiment was conducted in 2009 to determine the extent of injury due to near-field glyphosate drift from aerial application to glyphosate-sensitive cotton, corn and soybe...

  20. Telemetry of Aerial Radiological Measurements

    SciTech Connect

    H. W. Clark, Jr.

    2002-10-01

    Telemetry has been added to National Nuclear Security Administration's (NNSA's) Aerial Measuring System (AMS) Incident Response aircraft to accelerate availability of aerial radiological mapping data. Rapid aerial radiological mapping is promptly performed by AMS Incident Response aircraft in the event of a major radiological dispersal. The AMS airplane flies the entire potentially affected area, plus a generous margin, to provide a quick look at the extent and severity of the event. The primary result of the AMS Incident Response over flight is a map of estimated exposure rate on the ground along the flight path. Formerly, it was necessary to wait for the airplane to land before the map could be seen. Now, while the flight is still in progress, data are relayed via satellite directly from the aircraft to an operations center, where they are displayed and disseminated. This permits more timely utilization of results by decision makers and redirection of the mission to optimize its value. The current telemetry capability can cover all of North America. Extension to a global capability is under consideration.

  1. Application of High-resolution Aerial LiDAR Data in Calibration of a Two-dimensional Urban Flood Simulation

    NASA Astrophysics Data System (ADS)

    Piotrowski, J.; Goska, R.; Chen, B.; Krajewski, W. F.; Young, N.; Weber, L.

    2009-12-01

    In June 2008, the state of Iowa experienced an unprecedented flood event which resulted in an economic loss of approximately $2.88 billion. Flooding in the Iowa River corridor, which exceeded the previous flood of record by 3 feet, devastated several communities, including Coralville and Iowa City, home to the University of Iowa. Recognizing an opportunity to capture a unique dataset detailing the impacts of the historic flood, the investigators contacted the National Center for Airborne Laser Mapping (NCALM), which performed an aerial Light Detection and Ranging (LiDAR) survey along the Iowa River. The survey, conducted immediately following the flood peak, provided coverage of a 60-mile reach. The goal of the present research is to develop a process by which flood extents and water surface elevations can be accurately extracted from the LiDAR data set and to evaluate the benefit of such data in calibrating one- and two-dimensional hydraulic models. Whereas data typically available for model calibration include sparsely distributed point observations and high water marks, the LiDAR data used in the present study provide broad-scale, detailed, and continuous information describing the spatial extent and depth of flooding. Initial efforts were focused on a 10-mile, primarily urban reach of the Iowa River extending from Coralville Reservoir, a United States Army Corps of Engineers flood control project, downstream through the Coralville and Iowa City. Spatial extent and depth of flooding were estimated from the LiDAR data. At a given cross-sectional location, river channel and floodplain measurements were compared. When differences between floodplain and river channel measurements were less than a standard deviation of the vertical uncertainty in the LiDAR survey, floodplain measurements were classified as flooded. A flood water surface DEM was created using measurements classified as flooded. A two-dimensional, depth-averaged numerical model of a 10-mile reach of

  2. Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion

    PubMed Central

    2014-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored. PMID:24600326

  3. Fuel cells: a real option for Unmanned Aerial Vehicles propulsion.

    PubMed

    González-Espasandín, Óscar; Leo, Teresa J; Navarro-Arévalo, Emilio

    2014-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored. PMID:24600326

  4. In-Swath Spray Deposition Characteristics of a Low Drift Nozzle for Low Volume Aerial Application - Preliminary Results.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CP flat-fan nozzles with selectable tips were evaluated for droplet spectra and coverage using water sensitive papers placed in the spray swath. This study used low application volumes (1, 2, and 3 GPA) at a certain spray application height as measured precisely by laser mounted in the aircraft. No...

  5. Development of an unmanned aerial vehicle-based spray system for highly accurate site-specific application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of crop production and protection materials is a crucial component in the high productivity of American agriculture. Agricultural chemical application is frequently needed at a specific time and location for accurate site-specific management of crop pests. Piloted aircrafts that carry ...

  6. Operational applications of NOAA-VHRR imagery in Alaska

    NASA Technical Reports Server (NTRS)

    Seifert, R. D.; Carlson, R. F.; Kane, D. L.

    1975-01-01

    Near-real time operational applications of NOAA satellite enhanced thermal infrared imagery to snow monitoring for river flood forecasts, and a photographic overlay technique of imagery to enhance snowcover are presented. Ground truth comparisons show a thermal accuracy of approximately + or - 1 C for detection of surface radiative temperatures. The application of NOAA imagery to flood mapping is also presented.

  7. 36 CFR 1194.21 - Software applications and operating systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Software applications and... Standards § 1194.21 Software applications and operating systems. (a) When software is designed to run on a...) Software shall not use flashing or blinking text, objects, or other elements having a flash or...

  8. 36 CFR 1194.21 - Software applications and operating systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Software applications and... Standards § 1194.21 Software applications and operating systems. (a) When software is designed to run on a...) Software shall not use flashing or blinking text, objects, or other elements having a flash or...

  9. Artificial intelligence program in a computer application supporting reactor operations

    SciTech Connect

    Stratton, R.C.; Town, G.G.

    1985-01-01

    Improving nuclear reactor power plant operability is an ever-present concern for the nuclear industry. The definition of plant operability involves a complex interaction of the ideas of reliability, safety, and efficiency. This paper presents observations concerning the issues involved and the benefits derived from the implementation of a computer application which combines traditional computer applications with artificial intelligence (AI) methodologies. A system, the Component Configuration Control System (CCCS), is being installed to support nuclear reactor operations at the Experimental Breeder Reactor II.

  10. Operation and Applications of the Boron Cathodic Arc Ion Source

    NASA Astrophysics Data System (ADS)

    Williams, J. M.; Klepper, C. C.; Chivers, D. J.; Hazelton, R. C.; Freeman, J. H.

    2008-11-01

    The boron cathodic arc ion source has been developed with a view to several applications, particularly the problem of shallow junction doping in semiconductors. Research has included not only development and operation of the boron cathode, but other cathode materials as well. Applications have included a large deposition directed toward development of a neutron detector and another deposition for an orthopedic coating, as well as the shallow ion implantation function. Operational experience is described and information pertinent to commercial operation, extracted from these experiments, is presented.

  11. Operation and Applications of the Boron Cathodic Arc Ion Source

    SciTech Connect

    Williams, J. M.; Freeman, J. H.; Klepper, C. C.; Chivers, D. J.; Hazelton, R. C.

    2008-11-03

    The boron cathodic arc ion source has been developed with a view to several applications, particularly the problem of shallow junction doping in semiconductors. Research has included not only development and operation of the boron cathode, but other cathode materials as well. Applications have included a large deposition directed toward development of a neutron detector and another deposition for an orthopedic coating, as well as the shallow ion implantation function. Operational experience is described and information pertinent to commercial operation, extracted from these experiments, is presented.

  12. Toward autonomous avian-inspired grasping for micro aerial vehicles.

    PubMed

    Thomas, Justin; Loianno, Giuseppe; Polin, Joseph; Sreenath, Koushil; Kumar, Vijay

    2014-06-01

    Micro aerial vehicles, particularly quadrotors, have been used in a wide range of applications. However, the literature on aerial manipulation and grasping is limited and the work is based on quasi-static models. In this paper, we draw inspiration from agile, fast-moving birds such as raptors, that are able to capture moving prey on the ground or in water, and develop similar capabilities for quadrotors. We address dynamic grasping, an approach to prehensile grasping in which the dynamics of the robot and its gripper are significant and must be explicitly modeled and controlled for successful execution. Dynamic grasping is relevant for fast pick-and-place operations, transportation and delivery of objects, and placing or retrieving sensors. We show how this capability can be realized (a) using a motion capture system and (b) without external sensors relying only on onboard sensors. In both cases we describe the dynamic model, and trajectory planning and control algorithms. In particular, we present a methodology for flying and grasping a cylindrical object using feedback from a monocular camera and an inertial measurement unit onboard the aerial robot. This is accomplished by mapping the dynamics of the quadrotor to a level virtual image plane, which in turn enables dynamically-feasible trajectory planning for image features in the image space, and a vision-based controller with guaranteed convergence properties. We also present experimental results obtained with a quadrotor equipped with an articulated gripper to illustrate both approaches. PMID:24852023

  13. A Study of the Effects of Large Scale Gust Generation in a Small Scale Atmospheric Wind Tunnel: Application to Micro Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Roadman, Jason; Mohseni, Kamran

    2009-11-01

    Modern technology operating in the atmospheric boundary layer could benefit from more accurate wind tunnel testing. While scaled atmospheric boundary layer tunnels have been well developed, tunnels replicating portions of the turbulence of the atmospheric boundary layer at full scale are a comparatively new concept. Testing at full-scale Reynolds numbers with full-scale turbulence in an ``atmospheric wind tunnel'' is sought. Many programs could utilize such a tool including that of Micro Aerial Vehicles (MAVs) and other unmanned aircraft, the wind energy industry, fuel efficient vehicles, and the study of bird and insect fight. The construction of an active ``gust generator'' for a new atmospheric tunnel is reviewed and the turbulence it generates is measured utilizing single and cross hot wires. Results from this grid are compared to atmospheric turbulence and it is shown that various gust strengths can be produced corresponding to days ranging from calm to quite gusty. An initial test is performed in the atmospheric wind tunnel whereby the effects of various turbulence conditions on transition and separation on the upper surface of a MAV wing is investigated using oil flow visualization.

  14. Application of AI technology to nuclear plant operations

    SciTech Connect

    Sackett, J.I.

    1988-01-01

    In this paper, applications of Artificial Intelligence (AI) Technology to nuclear-power plant operation are reviewed. AI Technology is advancing rapidly and in the next five years is expected to enjoy widespread application to operation, maintenance, management and safety. Near term emphasis on a sensor validation, scheduling, alarm handling, and expert systems for procedural assistance. Ultimate applications are envisioned to culminate in autonomous control such as would be necessary for a power system in space, where automatic control actions are taken based upon reasoned conclusions regarding plant conditions, capability and control objectives.

  15. Aerial ultra-low-volume application of naled: impact on nontarget imperiled butterfly larvae (Cyclargus thomasi bethunebakeri) and efficacy against adult mosquitoes (Aedes taeniorhynchus).

    PubMed

    Zhong, H; Hribar, L J; Daniels, J C; Feken, M A; Brock, C; Trager, M D

    2010-12-01

    We assessed the exposure and acute toxicity of naled, applied aerially as an ultra-low-volume spray for mosquito control, on late instar larvae of the Miami blue (Cyclargus thomasi bethunebakeri) (Comstock and Huntington 1943) (Lepidoptera: Lycaenidae), an imperiled South Florida butterfly. We concurrently evaluated the control efficacy against caged adult female salt-marsh mosquitoes (Aedes taeniorhynchus) (Wiedemann 1821) (Diptera: Culicidae). This 3-yr study was conducted in north Key Largo (Monroe County, FL) beginning in 2006. The field trials incorporated 15 sampling stations: nine in the target spray zone, three in the spray drift zone at varying distances from the target zone, and three in the control zone not subjected to naled spray drift. A total of six field spray trials were completed, three at an altitude of 30.5 m (100 feet), and three at 45.7 m (150 feet). For all trials, the ultra-low-volume application of Trumpet EC insecticide (78% naled) at a rate of 54.8 ml/ha (0.75 fl. oz/acre) was effective in killing caged adult mosquitoes in the target zone. Butterfly larvae survival was significantly reduced in the spray zone compared with drift and control zones. Analysis of insecticide residue data revealed that the mortality of the late instar butterfly larvae was a result of exposure to excess residues of naled. Additional research is needed to determine mitigation strategies that can limit exposure of sensitive butterflies to naled while maintaining mosquito control efficacy. PMID:22182563

  16. Minimizing the impact of the mosquito adulticide naled on honey bees, Apis mellifera (Hymenoptera: Apidae): aerial ultra-low-volume application using a high-pressure nozzle system.

    PubMed

    Zhong, He; Latham, Mark; Payne, Steve; Brock, Cate

    2004-02-01

    The impact of the mosquito adulticide naled on honey bees, Apis mellifera L., was evaluated by exposing test beehives to nighttime aerial ultra-low-volume (ULV) applications using a high-pressure nozzle system. The tests were conducted during routine mosquito control missions at Manatee County, Florida, in summer 2000. Two treatment sites were sprayed a total of four times over a 10-wk period. Honey bees, which clustered outside of the hive entrances, were subjected to naled exposure during these mosquito control sprays. The highest average naled ground deposition was 2,688 microg/m2 at the Port Manatee site, which resulted in statistically significant bee mortality (118) compared with the controls. At the Terra Ceia Road site, an intermediate level of naled deposition was found (1,435 microg/m2). For this spray mission, the range of dead bees per hive at Terra Ceia was 2 to 9 before spraying and 5 to 36 after naled application. Means of all other naled ground depositions were < 850 microl/m2. We concluded that substantial bee mortality (> 100 dead bees) resulted when naled residue levels were > 2,000 kg/m2 and honey bees were clustered outside of the hive entrances during mosquito adulticide applications. Compared with the flat-fan nozzle systems currently used by most of Florida's mosquito control programs, the high-pressure nozzle system used in this experiment substantially reduced environmental insecticide contamination and lead to decreased bee mortality. Statistical analysis also showed that average honey yield at the end of the season was not significantly reduced for those hives that were exposed to the insecticide. PMID:14998120

  17. The Application of Architecture Frameworks to Modelling Exploration Operations Costs

    NASA Technical Reports Server (NTRS)

    Shishko, Robert

    2006-01-01

    Developments in architectural frameworks and system-of-systems thinking have provided useful constructs for systems engineering. DoDAF concepts, language, and formalisms, in particular, provide a natural way of conceptualizing an operations cost model applicable to NASA's space exploration vision. Not all DoDAF products have meaning or apply to a DoDAF inspired operations cost model, but this paper describes how such DoDAF concepts as nodes, systems, and operational activities relate to the development of a model to estimate exploration operations costs. The paper discusses the specific implementation to the Mission Operations Directorate (MOD) operational functions/activities currently being developed and presents an overview of how this powerful representation can apply to robotic space missions as well.

  18. Application of System Operational Effectiveness Methodology to Space Launch Vehicle Development and Operations

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Kelley, Gary W.

    2012-01-01

    The Department of Defense (DoD) defined System Operational Effectiveness (SOE) model provides an exceptional framework for an affordable approach to the development and operation of space launch vehicles and their supporting infrastructure. The SOE model provides a focal point from which to direct and measure technical effectiveness and process efficiencies of space launch vehicles. The application of the SOE model to a space launch vehicle's development and operation effort leads to very specific approaches and measures that require consideration during the design phase. This paper provides a mapping of the SOE model to the development of space launch vehicles for human exploration by addressing the SOE model key points of measurement including System Performance, System Availability, Technical Effectiveness, Process Efficiency, System Effectiveness, Life Cycle Cost, and Affordable Operational Effectiveness. In addition, the application of the SOE model to the launch vehicle development process is defined providing the unique aspects of space launch vehicle production and operations in lieu of the traditional broader SOE context that examines large quantities of fielded systems. The tailoring and application of the SOE model to space launch vehicles provides some key insights into the operational design drivers, capability phasing, and operational support systems.

  19. Aerial Photography Summary Record System

    USGS Publications Warehouse

    U.S. Geological Survey

    1998-01-01

    The Aerial Photography Summary Record System (APSRS) describes aerial photography projects that meet specified criteria over a given geographic area of the United States and its territories. Aerial photographs are an important tool in cartography and a number of other professions. Land use planners, real estate developers, lawyers, environmental specialists, and many other professionals rely on detailed and timely aerial photographs. Until 1975, there was no systematic approach to locate an aerial photograph, or series of photographs, quickly and easily. In that year, the U.S. Geological Survey (USGS) inaugurated the APSRS, which has become a standard reference for users of aerial photographs.

  20. InkTag: Secure Applications on an Untrusted Operating System.

    PubMed

    Hofmann, Owen S; Kim, Sangman; Dunn, Alan M; Lee, Michael Z; Witchel, Emmett

    2013-01-01

    InkTag is a virtualization-based architecture that gives strong safety guarantees to high-assurance processes even in the presence of a malicious operating system. InkTag advances the state of the art in untrusted operating systems in both the design of its hypervisor and in the ability to run useful applications without trusting the operating system. We introduce paraverification, a technique that simplifies the InkTag hypervisor by forcing the untrusted operating system to participate in its own verification. Attribute-based access control allows trusted applications to create decentralized access control policies. InkTag is also the first system of its kind to ensure consistency between secure data and metadata, ensuring recoverability in the face of system crashes. PMID:24429939

  1. InkTag: Secure Applications on an Untrusted Operating System

    PubMed Central

    Hofmann, Owen S.; Kim, Sangman; Dunn, Alan M.; Lee, Michael Z.; Witchel, Emmett

    2014-01-01

    InkTag is a virtualization-based architecture that gives strong safety guarantees to high-assurance processes even in the presence of a malicious operating system. InkTag advances the state of the art in untrusted operating systems in both the design of its hypervisor and in the ability to run useful applications without trusting the operating system. We introduce paraverification, a technique that simplifies the InkTag hypervisor by forcing the untrusted operating system to participate in its own verification. Attribute-based access control allows trusted applications to create decentralized access control policies. InkTag is also the first system of its kind to ensure consistency between secure data and metadata, ensuring recoverability in the face of system crashes. PMID:24429939

  2. Space operations center applications of satellite service equipment

    NASA Technical Reports Server (NTRS)

    Mccaffrey, R. W.

    1982-01-01

    Satellite servicing requirements for a continuously manned Space Operations Center (SOC) are discussed. Applications for Orbiter developed service equipment are described, together with representative satellite servicing operations for use on SOC. These services cover the full mission cycle from orbital deployment to on-orbit maintenance/repair and, eventually, removal from orbit. An orbiting base, such as the SOC, can provide many of the same services at less cost than the Space Shuttle transportation system.

  3. Evaluation of the Trajectory Operations Applications Software Task (TOAST)

    NASA Technical Reports Server (NTRS)

    Perkins, Sharon; Martin, Andrea; Bavinger, Bill

    1990-01-01

    The Trajectory Operations Applications Software Task (TOAST) is a software development project under the auspices of the Mission Operations Directorate. Its purpose is to provide trajectory operation pre-mission and real-time support for the Space Shuttle program. As an Application Manager, TOAST provides an isolation layer between the underlying Unix operating system and the series of user programs. It provides two main services: a common interface to operating system functions with semantics appropriate for C or FORTRAN, and a structured input and output package that can be utilized by user application programs. In order to evaluate TOAST as an Application Manager, the task was to assess current and planned capabilities, compare capabilities to functions available in commercially-available off the shelf (COTS) and Flight Analysis Design System (FADS) users for TOAST implementation. As a result of the investigation, it was found that the current version of TOAST is well implemented and meets the needs of the real-time users. The plans for migrating TOAST to the X Window System are essentially sound; the Executive will port with minor changes, while Menu Handler will require a total rewrite. A series of recommendations for future TOAST directions are included.

  4. Off-the-Wall Project Brings Aerial Mapping down to Earth

    ERIC Educational Resources Information Center

    Davidhazy, Andrew

    2008-01-01

    The technology of aerial photography, photogrametry, has widespread applications in mapping and aerial surveying. A multi-billion-dollar industry, aerial surveying and mapping is "big business" in both civilian and military sectors. While the industry has grown increasingly automated, employment opportunities still exist for people with a basic…

  5. Ground-based spectral reflectance measurements for evaluating the efficacy of aerially-applied glyphosate treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerial application of herbicides is a common tool in agricultural field management. The objective of this study was to evaluate the efficacy of glyphosate herbicide applied aerially with both conventional and emerging aerial nozzle technologies. A Texas A&M University Plantation weed field was set...

  6. Ground-based spectral reflectance measurements for efficacy evaluation of aerially applied glyphosate treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerial application of herbicides is a common tool in agricultural field management. The objective of this study was to evaluate the efficacy of glyphosate herbicide applied aerially with both conventional and emerging aerial nozzle technologies. A Texas A&M University Plantation weed field was set u...

  7. Status of aerial applications research in the Langley vortex research facility and the Langley full-scale wind tunnel

    NASA Technical Reports Server (NTRS)

    Jordan, F. L., Jr.; Mclemore, H. C.; Bragg, M. B.

    1978-01-01

    Small scale models of agricultural airplanes were tested and numerical methods were utilized to study interactions between the airplane wake and the dispersed spray and granular materials. Methods were developed to measure and predict dispersal transport and wake characteristics and dispersal techniques to obtain interactions more favorable to wide, uniform deposition patterns and reduced drift. In the full scale wind tunnel, full scale agricultural airplanes and dispersal systems for both liquid and solid applications were evaluated to improve aircraft aerodynamics and dispersal systems efficiency. The program status in these two facilities is reported with emphasis on wake interactions and dispersal systems research.

  8. Fire protection system operating experience review for fusion applications

    SciTech Connect

    Cadwallader, L.C.

    1995-12-01

    This report presents a review of fire protection system operating experiences from particle accelerator, fusion experiment, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of fire protection system component failure rates and fire accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with these systems are discussed, including spurious operation. This information should be useful to fusion system designers and safety analysts, such as the team working on the Engineering Design Activities for the International Thermonuclear Experimental Reactor.

  9. Web Application Software for Ground Operations Planning Database (GOPDb) Management

    NASA Technical Reports Server (NTRS)

    Lanham, Clifton; Kallner, Shawn; Gernand, Jeffrey

    2013-01-01

    A Web application facilitates collaborative development of the ground operations planning document. This will reduce costs and development time for new programs by incorporating the data governance, access control, and revision tracking of the ground operations planning data. Ground Operations Planning requires the creation and maintenance of detailed timelines and documentation. The GOPDb Web application was created using state-of-the-art Web 2.0 technologies, and was deployed as SaaS (Software as a Service), with an emphasis on data governance and security needs. Application access is managed using two-factor authentication, with data write permissions tied to user roles and responsibilities. Multiple instances of the application can be deployed on a Web server to meet the robust needs for multiple, future programs with minimal additional cost. This innovation features high availability and scalability, with no additional software that needs to be bought or installed. For data governance and security (data quality, management, business process management, and risk management for data handling), the software uses NAMS. No local copy/cloning of data is permitted. Data change log/tracking is addressed, as well as collaboration, work flow, and process standardization. The software provides on-line documentation and detailed Web-based help. There are multiple ways that this software can be deployed on a Web server to meet ground operations planning needs for future programs. The software could be used to support commercial crew ground operations planning, as well as commercial payload/satellite ground operations planning. The application source code and database schema are owned by NASA.

  10. Astronomical Methods in Aerial Navigation

    NASA Technical Reports Server (NTRS)

    Beij, K Hilding

    1925-01-01

    The astronomical method of determining position is universally used in marine navigation and may also be of service in aerial navigation. The practical application of the method, however, must be modified and adapted to conform to the requirements of aviation. Much of this work of adaptation has already been accomplished, but being scattered through various technical journals in a number of languages, is not readily available. This report is for the purpose of collecting under one cover such previous work as appears to be of value to the aerial navigator, comparing instruments and methods, indicating the best practice, and suggesting future developments. The various methods of determining position and their application and value are outlined, and a brief resume of the theory of the astronomical method is given. Observation instruments are described in detail. A complete discussion of the reduction of observations follows, including a rapid method of finding position from the altitudes of two stars. Maps and map cases are briefly considered. A bibliography of the subject is appended.

  11. Aerial Explorers and Robotic Ecosystems

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg

    2004-01-01

    A unique bio-inspired approach to autonomous aerial vehicle, a.k.a. aerial explorer technology is discussed. The work is focused on defining and studying aerial explorer mission concepts, both as an individual robotic system and as a member of a small robotic "ecosystem." Members of this robotic ecosystem include the aerial explorer, air-deployed sensors and robotic symbiotes, and other assets such as rovers, landers, and orbiters.

  12. Meteorological influences on mass accountability of aerially applied sprays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The deposition and drift of aerially applied crop protection materials is influenced by a number of factors including equpment setup and operational parameters, spray material characteristics, and meteorological effects. This work examines the meteorological influences that effect the ultimate fate...

  13. 80. PHOTOCOPY OF 1976 AERIAL PHOTO OF BULLFROG MINE. From ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    80. PHOTOCOPY OF 1976 AERIAL PHOTO OF BULLFROG MINE. From National Park Service Environmental Review and Analysis, Bullfrog Mine Plan of Operations, Death Valley Nat'l Monument (24 March 1976) - Bullfrog Mine, Rhyolite, Nye County, NV

  14. 81. PHOTOCOPY OF 1978 AERIAL PHOTO OF BULLFROG MINE. From ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    81. PHOTOCOPY OF 1978 AERIAL PHOTO OF BULLFROG MINE. From National Park Service Environmental Review and Analysis, BullfroG Mine Plan of Operations, Death Valley Nat'l Monument (24 August 1978) - Bullfrog Mine, Rhyolite, Nye County, NV

  15. 208. AERIAL VIEW OF POTOMAC AND AREA TO BE FILLED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    208. AERIAL VIEW OF POTOMAC AND AREA TO BE FILLED WITH DREDGING OPERATION IN LOWER RIGHT CORNER, 1930. - George Washington Memorial Parkway, Along Potomac River from McLean to Mount Vernon, VA, Mount Vernon, Fairfax County, VA

  16. Operational Application of Envisat ASAR in Tropical Production Forest

    NASA Astrophysics Data System (ADS)

    Raimadoya, M.; Trisasongko, B.

    2003-04-01

    A joint research between European Space Agency (ESA) and Bogor Agricultural University (IPB), Indonesia, has been approved under Envisat AO (AO-ID 869). The research is intended to study the operational application of Advanced Synthetic-Aperture Radar (ASAR) for production forest management in Indonesia. Two test sites in forest plantation area of PT Riau Andalan Pulp and Paper (Riaupulp) in Riau Province, Central Sumatera, Indonesia, have been selected recently for the implementation of this joint research. This paper briefs the recent progress of this two-year research (2002-2004) activity. The main objective is to explore the potential of ASAR image analysis application, including POLINSAR, for better and more efficient operational management of tropical plantation forest and its environment. Several interesting operational applications have been identified for the test sites. First application is vegetative cover classification of Acacias, mixed hardwoods, shrubs, oil palms and bare lands. The second is biomass-related application, which study Envisat data on biomass monitoring related to forest plantation. The third is environmental study particularly for site degradation, including issues on monitoring of water bodies and burn site.

  17. A Spherical Aerial Terrestrial Robot

    NASA Astrophysics Data System (ADS)

    Dudley, Christopher J.

    This thesis focuses on the design of a novel, ultra-lightweight spherical aerial terrestrial robot (ATR). The ATR has the ability to fly through the air or roll on the ground, for applications that include search and rescue, mapping, surveillance, environmental sensing, and entertainment. The design centers around a micro-quadcopter encased in a lightweight spherical exoskeleton that can rotate about the quadcopter. The spherical exoskeleton offers agile ground locomotion while maintaining characteristics of a basic aerial robot in flying mode. A model of the system dynamics for both modes of locomotion is presented and utilized in simulations to generate potential trajectories for aerial and terrestrial locomotion. Details of the quadcopter and exoskeleton design and fabrication are discussed, including the robot's turning characteristic over ground and the spring-steel exoskeleton with carbon fiber axle. The capabilities of the ATR are experimentally tested and are in good agreement with model-simulated performance. An energy analysis is presented to validate the overall efficiency of the robot in both modes of locomotion. Experimentally-supported estimates show that the ATR can roll along the ground for over 12 minutes and cover the distance of 1.7 km, or it can fly for 4.82 minutes and travel 469 m, on a single 350 mAh battery. Compared to a traditional flying-only robot, the ATR traveling over the same distance in rolling mode is 2.63-times more efficient, and in flying mode the system is only 39 percent less efficient. Experimental results also demonstrate the ATR's transition from rolling to flying mode.

  18. LBB application in the US operating and advanced reactors

    SciTech Connect

    Wichman, K.; Tsao, J.; Mayfield, M.

    1997-04-01

    The regulatory application of leak before break (LBB) for operating and advanced reactors in the U.S. is described. The U.S. Nuclear Regulatory Commission (NRC) has approved the application of LBB for six piping systems in operating reactors: reactor coolant system primary loop piping, pressurizer surge, safety injection accumulator, residual heat removal, safety injection, and reactor coolant loop bypass. The LBB concept has also been applied in the design of advanced light water reactors. LBB applications, and regulatory considerations, for pressurized water reactors and advanced light water reactors are summarized in this paper. Technology development for LBB performed by the NRC and the International Piping Integrity Research Group is also briefly summarized.

  19. Aerial photographic reproductions

    USGS Publications Warehouse

    U.S. Geological Survey

    1971-01-01

    Geological Survey vertical aerial photography is obtained primarily for topographic and geologic mapping. Reproductions from this photography are usually satisfactory for general use. Because reproductions are not stocked, but are custom processed for each order, they cannot be returned for credit or refund.

  20. Aerial of the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Even in this aerial view at KSC, the Vehicle Assembly Building is imposing. In front of it is the Launch Control Center. In the background is the Rotation/Processing Facility, next to the Banana Creek. In the foreground is the Saturn Causeway that leads to Launch Pads 39A and 39B.

  1. Aerial Perspective Artistry

    ERIC Educational Resources Information Center

    Wolfe, Linda

    2010-01-01

    This article presents a lesson centering on aerial perspective artistry of students and offers suggestions on how art teachers should carry this project out. This project serves to develop students' visual perception by studying reproductions by famous artists. This lesson allows one to imagine being lured into a landscape capable of captivating…

  2. Operating principles of an electrothermal vibrometer for optical switching applications

    NASA Astrophysics Data System (ADS)

    Pai, Min-fan; Tien, Norman C.

    1999-09-01

    A compact polysilicon surface-micromachined microactuator designed for optical switching applications is described. This actuator is fabricated using the foundry MUMPs process provided by Cronos Integrated Microsystems Inc. Actuated electrothermally, the microactuator allows fast switching speeds and can be operated with a low voltage square-wave signal. The design, operation mechanisms for this long-range and high frequency thermal actuation are described. A vertical micromirror integrated with this actuator can be operated with a 10.5 V, 20 kHz 15% duty-cycle pulse signal, achieving a lateral moving speed higher than 15.6 mm/sec. The optical switch has been operated to frequencies as high as 30 kHz.

  3. BEACON: An application of nodal methods for operational support

    SciTech Connect

    Boyd, W.A.; Nguyen, T.Q. )

    1992-01-01

    A practical application of nodal methods is on-line plant operational support. However, to enable plant personnel to take full advantage of a nodal model to support plant operations, (a) a core nodal model must always be up to date with the current core history and conditions, (b) the nodal methods must be fast enough to allow numerous core calculations to be performed in minutes to support engineering decisions, and (c) the system must be easily accessible to engineering personnel at the reactor, their offices, or any other location considered appropriate. A core operational support package developed by Westinghouse called BEACON (best estimate analysis of core operations - nuclear) has been installed at several plants. Results from these plants and numerous in-core flux maps analyzed have demonstrated the accuracy of the model and the effectiveness of the methodology

  4. Microcomputer applications for concurrent aggregate mine operation and reclamation planning

    SciTech Connect

    Culp, B.K.

    1990-02-01

    As ever increasing need exists for the planning of aggregate mine operations and reclamation. The purpose of this thesis is to investigate microcomputer applications to assist in the development of a concurrent aggregate mine operation and reclamation plan. The thesis is divided into sections that encompassed three aspects. The first, Section 1 -- concurrent Aggregate Mine Operation and Reclamation Planning, examines the possibility of organizing the operation and reclamation of aggregate mining into a single plan or set of plans. The second section of the thesis, Section 2 -- Microcomputer Applications, describes the use of microcomputers within the mining industry and the landscape architecture profession. This section contains a review of the current types of programs and how they are used. The programs that were used for the case study and their applications and characteristics are also explored. The third and final section of the thesis, Section 3 -- Alden Quarry Case Study, applies the concepts of the first two sections to a practical situation. 35 refs., 49 figs., 7 tabs.

  5. Comparison of operator exposure for five different greenhouse spraying applications.

    PubMed

    Nuyttens, D; Windey, S; Sonck, B

    2004-08-01

    The European Crop Protection Association (ECPA) and the Agricultural Research Center (CLO-DVL) joined forces in a project to stimulate the safe use of pesticides in southern European countries. CLO-DVL optimized a method using mineral chelates as tracers on collectors. This quantitative method to evaluate spray deposits was used to compare operator exposure from several greenhouse spraying techniques. Operator exposure measurements were of a comparative nature. Five application methods were investigated: a standard spray gun with an operator walking forwards, a spray lance with an operator walking forwards and backwards, a trolley, and a vehicle, both with vertical spray booms. The exposure was measured with patches at 15 places on operators' coveralls and gloves, using mineral chelates as tracer elements. The difference in exposure of the patches between the different techniques was very high. Walking backwards reduced exposure by a factor of 7. The exposures with the trolley and the vehicle, two innovative spraying techniques, were respectively 25 and 100 times lower compared to exposure with the standard spray gun. Operator exposure while walking forward with the spray lance was about two times higher than with the spray gun. Besides very large differences in exposure among the five techniques, there were also large differences in exposure among various parts of the body. All of this is important in consideration of operator safety and for the parts of the body that need to be protected most. PMID:15461135

  6. 14 CFR 119.36 - Additional certificate application requirements for commercial operators.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... requirements for commercial operators. 119.36 Section 119.36 Aeronautics and Space FEDERAL AVIATION...: CERTIFICATION AND OPERATIONS CERTIFICATION: AIR CARRIERS AND COMMERCIAL OPERATORS Certification, Operations... Chapter § 119.36 Additional certificate application requirements for commercial operators. (a)...

  7. 14 CFR 119.36 - Additional certificate application requirements for commercial operators.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... requirements for commercial operators. 119.36 Section 119.36 Aeronautics and Space FEDERAL AVIATION...: CERTIFICATION AND OPERATIONS CERTIFICATION: AIR CARRIERS AND COMMERCIAL OPERATORS Certification, Operations... Chapter § 119.36 Additional certificate application requirements for commercial operators. (a)...

  8. 14 CFR 119.36 - Additional certificate application requirements for commercial operators.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... requirements for commercial operators. 119.36 Section 119.36 Aeronautics and Space FEDERAL AVIATION...: CERTIFICATION AND OPERATIONS CERTIFICATION: AIR CARRIERS AND COMMERCIAL OPERATORS Certification, Operations... Chapter § 119.36 Additional certificate application requirements for commercial operators. (a)...

  9. 14 CFR 119.36 - Additional certificate application requirements for commercial operators.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... requirements for commercial operators. 119.36 Section 119.36 Aeronautics and Space FEDERAL AVIATION...: CERTIFICATION AND OPERATIONS CERTIFICATION: AIR CARRIERS AND COMMERCIAL OPERATORS Certification, Operations... Chapter § 119.36 Additional certificate application requirements for commercial operators. (a)...

  10. Underwater application of nasal decongestants: method for special operations.

    PubMed

    Mutzbauer, T S; Mueller, P H; Sigg, O; Tetzlaff, K; Neubauer, B

    2000-11-01

    A simple method of emergency underwater application of a nasal decongestant in divers to prevent diving-related accidents or even fatalities attributable to sequelae of middle-ear and sinus barotrauma of ascent was evaluated. Eleven military divers had to inject 1 mL of 0.02% methylene blue into a central venous catheter after having inserted the tip between their upper lip and the mask at 1 m depth in a pool. After injection, the head had to be reclined. Blue liquid flowing from a diver's nostril and a "bitter" taste sensation reported immediately after surfacing indicated successful application. All divers were observed to have had blue liquid flowing from the nostril of application, and one diver could not describe the taste. This method of underwater application of nasal decongestants may be useful for emergency prevention in divers, especially during covert operations. Underwater availability of the system in a special kit carried by divers would be required. PMID:11143432

  11. Cryogenic system operating experience review for fusion applications

    SciTech Connect

    Cadwallader, L.C.

    1992-01-01

    This report presents a review of cryogenic system operating experiences, from particle accelerator, fusion experiment, space research, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of cryogenic component failure rates and accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with cryogenic systems are discussed, including ozone formation, effects of spills, and modeling spill behavior. This information should be useful to fusion system designers and safety analysts, such as the team working on the International Thermonuclear Experimental Reactor design.

  12. Application of trajectory optimization principles to minimize aircraft operating costs

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Morello, S. A.; Erzberger, H.

    1979-01-01

    This paper summarizes various applications of trajectory optimization principles that have been or are being devised by both government and industrial researchers to minimize aircraft direct operating costs (DOC). These costs (time and fuel) are computed for aircraft constrained to fly over a fixed range. Optimization theory is briefly outlined, and specific algorithms which have resulted from application of this theory are described. Typical results which demonstrate use of these algorithms and the potential savings which they can produce are given. Finally, need for further trajectory optimization research is presented.

  13. Generalized complement operators and applications in some semirings

    NASA Astrophysics Data System (ADS)

    Bijev, G.

    2013-12-01

    Generalized complement operators on the semiring of all Boolean matrices as semilattice homomorphisms are considered. Some applications in solving equations on the set Bn of all binary relations are developed. In particular the structure of B3 is investigated by computer methods. Specific properties of the subsemigroup generated by all irregular relations in B3 are found. Stochastic experiments on the monoid Bn were made. The frequency of irregular elements as well as those of solvable equations depending on n is examined.

  14. Centrifugal microfluidic platforms: advanced unit operations and applications.

    PubMed

    Strohmeier, O; Keller, M; Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N

    2015-10-01

    Centrifugal microfluidics has evolved into a mature technology. Several major diagnostic companies either have products on the market or are currently evaluating centrifugal microfluidics for product development. The fields of application are widespread and include clinical chemistry, immunodiagnostics and protein analysis, cell handling, molecular diagnostics, as well as food, water, and soil analysis. Nevertheless, new fluidic functions and applications that expand the possibilities of centrifugal microfluidics are being introduced at a high pace. In this review, we first present an up-to-date comprehensive overview of centrifugal microfluidic unit operations. Then, we introduce the term "process chain" to review how these unit operations can be combined for the automation of laboratory workflows. Such aggregation of basic functionalities enables efficient fluidic design at a higher level of integration. Furthermore, we analyze how novel, ground-breaking unit operations may foster the integration of more complex applications. Among these are the storage of pneumatic energy to realize complex switching sequences or to pump liquids radially inward, as well as the complete pre-storage and release of reagents. In this context, centrifugal microfluidics provides major advantages over other microfluidic actuation principles: the pulse-free inertial liquid propulsion provided by centrifugal microfluidics allows for closed fluidic systems that are free of any interfaces to external pumps. Processed volumes are easily scalable from nanoliters to milliliters. Volume forces can be adjusted by rotation and thus, even for very small volumes, surface forces may easily be overcome in the centrifugal gravity field which enables the efficient separation of nanoliter volumes from channels, chambers or sensor matrixes as well as the removal of any disturbing bubbles. In summary, centrifugal microfluidics takes advantage of a comprehensive set of fluidic unit operations such as

  15. On-line task scheduling and trajectory planning techniques for reconnaissance missions with multiple unmanned aerial vehicles supervised by a single human operator

    NASA Astrophysics Data System (ADS)

    Ortiz Rubiano, Andres Eduardo

    The problem of a single human operator monitoring multiple UAVs in reconnaissance missions is addressed in this work. In such missions, the operator inspects and classifies targets as they appear on video feeds from the various UAVs. In parallel, the aircraft autonomously execute a flight plan and transmit real-time video of an unknown terrain. The main contribution of this work is the development of a system that autonomously schedules the display of video feeds such that the human operator is able to inspect each target in real time (i.e., no video data is recorded and queued for later inspection). The construction of this non-overlapping schedule is made possible by commanding changes to the flight plan of the UAVs. These changes are constructed such that the impact on the mission time is minimized. The development of this system is addressed in the context of both fixed and arbitrary target inspection times. Under the assumption that the inspection time is constant, a Linear Program (LP) formulation is used to optimally solve the display scheduling problem in the time domain. The LP solution is implemented in the space domain via velocity and trajectory modifications to the flight plan of the UAVs. An online algorithm is proposed to resolve scheduling conflicts between multiple video feeds as targets are discovered by the UAVs. Properties of this algorithm are studied to develop conflict resolution strategies that ensure correctness regardless of the target placement. The effect of such strategies on the mission time is evaluated via numerical simulations. In the context of arbitrary inspection time, the human operator indicates the end of target inspection in real time. A set of maneuvers is devised that enable the operator to inspect each target uninterruptedly and indefinitely. In addition, a cuing mechanism is proposed to increase the situational awareness of the operator and potentially reduce the inspection times. The benefits of operator cuing on mission

  16. Ventilation Systems Operating Experience Review for Fusion Applications

    SciTech Connect

    Cadwallader, Lee Charles

    1999-12-01

    This report is a collection and review of system operation and failure experiences for air ventilation systems in nuclear facilities. These experiences are applicable for magnetic and inertial fusion facilities since air ventilation systems are support systems that can be considered generic to nuclear facilities. The report contains descriptions of ventilation system components, operating experiences with these systems, component failure rates, and component repair times. Since ventilation systems have a role in mitigating accident releases in nuclear facilities, these data are useful in safety analysis and risk assessment of public safety. An effort has also been given to identifying any safety issues with personnel operating or maintaining ventilation systems. Finally, the recommended failure data were compared to an independent data set to determine the accuracy of individual values. This comparison is useful for the International Energy Agency task on fusion component failure rate data collection.

  17. Remote sensing and aerial application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the increasing need for global food production in the presence of dwindling productive acres, the business of modern agriculture needs to use all possible information available to maximize production. One tool that is being used to obtain this information is remote sensing. Any crop disease o...

  18. Aerial networking communication solutions using Micro Air Vehicle (MAV)

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Shyam; de Graaf, Maurits; Hoekstra, Gerard; Corporaal, Henk; Wijtvliet, Mark; Cuadros Linde, Javier

    2014-10-01

    The application of a Micro Air Vehicle (MAV) for wireless networking is slowly gaining significance in the field of network robotics. Aerial transport of data requires efficient network protocols along with accurate positional adjustment of the MAV to minimize transaction times. In our proof of concept, we develop an Aerial networking protocol for data transfer using the technology of Disruption Tolerant Networks (DTN), a store-and-forward approach for environments that deals with disrupted connectivity. Our results show that close interaction between networking and flight behavior helps in efficient data exchange. Potential applications are in areas where network infrastructure is minimal or unavailable and distances may be large. For example, forwarding video recordings during search and rescue, agriculture, swarm communication, among several others. A practical implementation and validation, as described in this paper, presents the complex dynamics of wireless environments and poses new challenges that are not addressed in earlier work on this topic. Several tests are evaluated in a practical setup to display the networking MAV behavior during such an operation.

  19. AERIAL RADIOLOGICAL SURVEYS

    SciTech Connect

    Proctor, A.E.

    1997-06-09

    Measuring terrestrial gamma radiation from airborne platforms has proved to be a useful method for characterizing radiation levels over large areas. Over 300 aerial radiological surveys have been carried out over the past 25 years including U.S. Department of Energy (DOE) sites, commercial nuclear power plants, Formerly Utilized Sites Remedial Action Program/Uranium Mine Tailing Remedial Action Program (FUSRAP/UMTRAP) sites, nuclear weapons test sites, contaminated industrial areas, and nuclear accident sites. This paper describes the aerial measurement technology currently in use by the Remote Sensing Laboratory (RSL) for routine environmental surveys and emergency response activities. Equipment, data-collection and -analysis methods, and examples of survey results are described.

  20. Aerial infrared surveys in the investigation of geothermal and volcanic heat sources

    USGS Publications Warehouse

    U.S. Geological Survey

    1995-01-01

    This factsheet briefly summarizes and clarifies the application of aerial infrared surveys in geophysical exploration for geothermal energy sources and environmental monitoring for potential volcanic hazards.

  1. SMES application for frequency control during islanded microgrid operation

    NASA Astrophysics Data System (ADS)

    Kim, A.-Rong; Kim, Gyeong-Hun; Heo, Serim; Park, Minwon; Yu, In-Keun; Kim, Hak-Man

    2013-01-01

    This paper analyzes the operating characteristics of a superconducting magnetic energy storage (SMES) for the frequency control of an islanded microgrid operation. In the grid-connected mode of a microgrid, an imbalance between power supply and demand is solved by a power trade with the upstream power grid. The difference in the islanded mode is a critical problem because the microgrid is isolated from any power grid. For this reason, the frequency control during islanded microgrid operation is a challenging issue. A test microgrid in this paper consisted of a wind power generator, a PV generation system, a diesel generator and a load to test the feasibility of the SMES for controlling frequency during islanded operation as well as the transient state varying from the grid-connected mode to the islanded mode. The results show that the SMES contributes well for frequency control in the islanded operation. In addition, a dual and a single magnet type of SMES have been compared to demonstrate the control performance. The dual magnet has the same energy capacity as the single magnet, but there are two superconducting coils and each coil has half inductance of the single magnet. The effectiveness of the SMES application with the simulation results is discussed in detail.

  2. The DOE ARM Aerial Facility

    SciTech Connect

    Schmid, Beat; Tomlinson, Jason M.; Hubbe, John M.; Comstock, Jennifer M.; Mei, Fan; Chand, Duli; Pekour, Mikhail S.; Kluzek, Celine D.; Andrews, Elisabeth; Biraud, S.; McFarquhar, Greg

    2014-05-01

    The Department of Energy Atmospheric Radiation Measurement (ARM) Program is a climate research user facility operating stationary ground sites that provide long-term measurements of climate relevant properties, mobile ground- and ship-based facilities to conduct shorter field campaigns (6-12 months), and the ARM Aerial Facility (AAF). The airborne observations acquired by the AAF enhance the surface-based ARM measurements by providing high-resolution in-situ measurements for process understanding, retrieval-algorithm development, and model evaluation that are not possible using ground- or satellite-based techniques. Several ARM aerial efforts were consolidated into the AAF in 2006. With the exception of a small aircraft used for routine measurements of aerosols and carbon cycle gases, AAF at the time had no dedicated aircraft and only a small number of instruments at its disposal. In this "virtual hangar" mode, AAF successfully carried out several missions contracting with organizations and investigators who provided their research aircraft and instrumentation. In 2009, AAF started managing operations of the Battelle-owned Gulfstream I (G-1) large twin-turboprop research aircraft. Furthermore, the American Recovery and Reinvestment Act of 2009 provided funding for the procurement of over twenty new instruments to be used aboard the G-1 and other AAF virtual-hangar aircraft. AAF now executes missions in the virtual- and real-hangar mode producing freely available datasets for studying aerosol, cloud, and radiative processes in the atmosphere. AAF is also engaged in the maturation and testing of newly developed airborne sensors to help foster the next generation of airborne instruments.

  3. AERICOMP: an aerial photo comparison system

    NASA Astrophysics Data System (ADS)

    Grewe, Lynne L.; Rowe, Neil; Baer, Wolfgang

    2000-08-01

    This paper describes a system, which compares aerial photographs of the same terrain taken at different times and tires to recognize straight-edged cultural features that have changed. This work is intended to be highly robust, handling very different lighting conditions, weather, times of year, camera, and film between the images to be compared. Our system AERICOMP is designed to facilitate battlefield terrain modeling by permitting automatic updates form new images. AERICOMP does coarse registration, image correction, feature detection, automatic refined registration, feature difference detection and reduction, feature difference presentation and operator acceptance, difference identification, and database update. It emphasizes line segments for comparisons because differences in them are more robust for photometric changes between terrain images. In addition, line segment comparisons require less computation than pixel comparisons and are more compatible with identification tasks. For our intended application of battlefield terrain modeling, detecting changes in man-made structures is of much greater importance than changes in vegetation, and line segments are the key to identifying such structures. We show results involving change analysis between color IR and black/white USGS photographs of the same area six years apart. Even a mostly automatic system benefits form user interacting at key points. AERICOMP exploits user judgements at the beginning and end of its processing to assist in coarse registration and to approve the significance of any differences found. AERICOMP is currently under development at the Naval Postgraduate School, and is supported by the TENCAPS project under the US Navy.

  4. Application of Technical Measures and Software in Constructing Photorealistic 3D Models of Historical Building Using Ground-Based and Aerial (UAV) Digital Images

    NASA Astrophysics Data System (ADS)

    Zarnowski, Aleksander; Banaszek, Anna; Banaszek, Sebastian

    2015-12-01

    Preparing digital documentation of historical buildings is a form of protecting cultural heritage. Recently there have been several intensive studies using non-metric digital images to construct realistic 3D models of historical buildings. Increasingly often, non-metric digital images are obtained with unmanned aerial vehicles (UAV). Technologies and methods of UAV flights are quite different from traditional photogrammetric approaches. The lack of technical guidelines for using drones inhibits the process of implementing new methods of data acquisition. This paper presents the results of experiments in the use of digital images in the construction of photo-realistic 3D model of a historical building (Raphaelsohns' Sawmill in Olsztyn). The aim of the study at the first stage was to determine the meteorological and technical conditions for the acquisition of aerial and ground-based photographs. At the next stage, the technology of 3D modelling was developed using only ground-based or only aerial non-metric digital images. At the last stage of the study, an experiment was conducted to assess the possibility of 3D modelling with the comprehensive use of aerial (UAV) and ground-based digital photographs in terms of their labour intensity and precision of development. Data integration and automatic photo-realistic 3D construction of the models was done with Pix4Dmapper and Agisoft PhotoScan software Analyses have shown that when certain parameters established in an experiment are kept, the process of developing the stock-taking documentation for a historical building moves from the standards of analogue to digital technology with considerably reduced cost.

  5. Methods development and applications evaluations of NURE aerial reconnaissance survey data for uranium resource evaluation: Beeville/Bay City and Crystal City quadrangles, Texas

    SciTech Connect

    Adams, J.A.S.; Harrill, S.F.; Oddo, J.E.

    1981-04-01

    The area studied covers some 50,000 square kilometers of land area in south Texas and is designated the Beeville/Bay City and Crystal City quadrangles, which are bounded by north latitude lines 28/sup 0/ and 29/sup 0/ and west longitude lines 94/sup 0/ and 100/sup 0/. The NURE open-file reports on the aerial gamma spectrometric, hydrologic, and stream-sediment surveys of this area were studied in regard to their utility in identifying regions of high or higher favorability for uranium deposits. The investigation concentrated on six formations, three of which were assumed to be favorable and three unfavorable. Traversing a few stationary ground gamma spectrometric determinations were made in connection with the present work. In addition to the 35 new ground determinations on the Beaumont formation, 1500 spectra previously obtained by a helicopter survey from an altitude of 15 meters around the South Texas Nuclear Power Plant Site near Bay City were used in the present study. There is substantial agreement between the NURE aerial data and the ground and helicopter data as regards the general radioelement distributions in the stratigraphic units described above. The vehicle-mounted gamma-ray spectrometer used in this work systematically gave some 30 percent higher thorium concentration estimates when compared with those from the NURE aerial data. The NURE aerial data are adequate in number to characterize the major stratigraphic units, but they may not be quantitative enough for detailed comparisons from one quadrangle to another, and the optimum sampling area for each formation is not known.The development or refinement of a unique geochemical model for the formation of south Texas-type sandstone uranium deposits was not achieved starting with the NURE open-file data and the published literature.

  6. Analysis of cyberattacks on unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Shull, Andrew M.

    With the increasing power and convenience offered by the use of embedded systems in control applications, such systems will undoubtedly continue to be developed and deployed. Recently, however, a focus on data-centric systems and developing network-enabled control systems has emerged, allowing for greater performance, safety, and resource allocation in systems such as smart power grids and unmanned military aircraft. However, this increase in connectivity also introduces vulnerabilities into these systems, potentially providing access to malicious parties seeking to disrupt the operation of those systems or to cause damage. Given the high potential cost of a failure in these systems in terms of property, sensitive information, and human safety, steps need to be taken to secure these systems. In order to analyze the vulnerabilities of unmanned aerial systems (UASs) specifically, a simulation testbed is developed to perform high-fidelity simulations of UAS operations using both software models and the actual vehicle hardware. Then, potential attacks against the control system and their corresponding intents are identified and introduced into these simulations. Failure conditions are defined, and extensive simulation of attacks in different combinations and magnitudes are performed in both software and hardware in order to identify particularly successful attacks, including attacks that are difficult to detect. From these results, vulnerabilities of the system can be determined so that appropriate remedies can be designed. Additionally, stealthy false data injection attacks against linear feedback systems are considered. The identification of these attacks is formed as an optimization problem constrained by the ability of monitoring systems to detect the attack. The optimal attack input is then determined for an example application so that the worst case system performance can be identified and, if needed, improved.

  7. MIRIADS: miniature infrared imaging applications development system description and operation

    NASA Astrophysics Data System (ADS)

    Baxter, Christopher R.; Massie, Mark A.; McCarley, Paul L.; Couture, Michael E.

    2001-10-01

    A cooperative effort between the U.S. Air Force Research Laboratory, Nova Research, Inc., the Raytheon Infrared Operations (RIO) and Optics 1, Inc. has successfully produced a miniature infrared camera system that offers significant real-time signal and image processing capabilities by virtue of its modular design. This paper will present an operational overview of the system as well as results from initial testing of the 'Modular Infrared Imaging Applications Development System' (MIRIADS) configured as a missile early-warning detection system. The MIRIADS device can operate virtually any infrared focal plane array (FPA) that currently exists. Programmable on-board logic applies user-defined processing functions to the real-time digital image data for a variety of functions. Daughterboards may be plugged onto the system to expand the digital and analog processing capabilities of the system. A unique full hemispherical infrared fisheye optical system designed and produced by Optics 1, Inc. is utilized by the MIRIADS in a missile warning application to demonstrate the flexibility of the overall system to be applied to a variety of current and future AFRL missions.

  8. User guide for the USGS aerial camera Report of Calibration.

    USGS Publications Warehouse

    Tayman, W.P.

    1984-01-01

    Calibration and testing of aerial mapping cameras includes the measurement of optical constants and the check for proper functioning of a number of complicated mechanical and electrical parts. For this purpose the US Geological Survey performs an operational type photographic calibration. This paper is not strictly a scientific paper but rather a 'user guide' to the USGS Report of Calibration of an aerial mapping camera for compliance with both Federal and State mapping specifications. -Author

  9. Comonotonicity and Choquet integrals of Hermitian operators and their applications

    NASA Astrophysics Data System (ADS)

    Vourdas, A.

    2016-04-01

    In a quantum system with d-dimensional Hilbert space, the Q-function of a Hermitian positive semidefinite operator θ, is defined in terms of the d 2 coherent states in this system. The Choquet integral {{ C }}Q(θ ) of the Q-function of θ, is introduced using a ranking of the values of the Q-function, and Möbius transforms which remove the overlaps between coherent states. It is a figure of merit of the quantum properties of Hermitian operators, and it provides upper and lower bounds to various physical quantities in terms of the Q-function. Comonotonicity is an important concept in the formalism, which is used to formalize the vague concept of physically similar operators. Comonotonic operators are shown to be bounded, with respect to an order based on Choquet integrals. Applications of the formalism to the study of the ground state of a physical system, are discussed. Bounds for partition functions, are also derived.

  10. Vacuum system operating experience review for fusion applications

    SciTech Connect

    Cadwallader, L.C.

    1994-03-01

    This report presents a review of vacuum system operating experiences from particle accelerator, fusion experiment, space simulation chamber, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of vacuum system component failure rates and accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with vacuum systems are discussed, including personnel safety, foreign material intrusion, and factors relevant to vacuum systems being the primary confinement boundary for tritium and activated dusts. This information should be useful to fusion system designers and safety analysts, such as the team working on the Engineering Design Activities for the International Thermonuclear Experimental Reactor.

  11. Arbitrarily Applicable Comparative Relations: Experimental Evidence for a Relational Operant

    PubMed Central

    Berens, Nicholas M; Hayes, Steven C

    2007-01-01

    Arbitrarily applicable derived relational responding has been argued by relational frame theorists to be a form of operant behavior. The present study examined this idea with 4 female participants, ages 4 to 5 years old, who could not perform a series of problem-solving tasks involving arbitrary more than and less than relations. In a combined multiple baseline (across responses and participants) and multiple probe design (with trained and untrained stimuli), it was shown that reinforced multiple-exemplar training facilitated the development of arbitrary comparative relations, and that these skills generalized not just across stimuli but also across trial types. The sequence of training identified potential prerequisites in the development of comparative relations (e.g., nonarbitrary comparative relations). Taken as a whole, the present data, along with previous work by others in this area, suggest that relating arbitrary events comparatively is an operant. The implications of this conclusion for the analysis of complex behavior are discussed. PMID:17471793

  12. Test Waveform Applications for JPL STRS Operating Environment

    NASA Technical Reports Server (NTRS)

    Lux, James P.; Peters, Kenneth J.; Taylor, Gregory H.; Lang, Minh; Stern, Ryan A.; Duncan, Courtney B.

    2013-01-01

    This software demonstrates use of the JPL Space Telecommunications Radio System (STRS) Operating Environment (OE), tests APIs (application programming interfaces) presented by JPL STRS OE, and allows for basic testing of the underlying hardware platform. This software uses the JPL STRS Operating Environment ["JPL Space Tele com - munications Rad io System Operating Environment,"(NPO-4776) NASA Tech Briefs, commercial edition, Vol. 37, No. 1 (January 2013), p. 47] to interact with the JPL-SDR Software Defined Radio developed for the CoNNeCT (COmmunications, Navigation, and Networking rEconfigurable Testbed) Project as part of the SCaN Testbed installed on the International Space Station (ISS). These are the first applications that are compliant with the new NASA STRS Architecture Standard. Several example waveform applications are provided to demonstrate use of the JPL STRS OE for the JPL-SDR platform used for the CoNNeCT Project. The waveforms provide a simple digitizer and playback capability for the SBand RF slice, and a simple digitizer for the GPS slice [CoNNeCT Global Positioning System RF Module, (NPO-47764) NASA Tech Briefs, commercial edition, Vol. 36, No. 3 (March 2012), p. 36]. These waveforms may be used for hardware test, as well as for on-orbit or laboratory checkout. Additional example waveforms implement SpaceWire and timer modules, which can be used for time transfer and demonstration of communication between the two Xilinx FPGAs in the JPLSDR. The waveforms are also compatible with ground-based use of the JPL STRS OE on radio breadboards and Linux.

  13. Unmanned Aerial Vehicle Systems for Disaster Relief: Tornado Alley

    NASA Technical Reports Server (NTRS)

    DeBusk, Wesley M.

    2009-01-01

    Unmanned aerial vehicle systems are currently in limited use for public service missions worldwide. Development of civil unmanned technology in the United States currently lags behind military unmanned technology development in part because of unresolved regulatory and technological issues. Civil unmanned aerial vehicle systems have potential to augment disaster relief and emergency response efforts. Optimal design of aerial systems for such applications will lead to unmanned vehicles which provide maximum potentiality for relief and emergency response while accounting for public safety concerns and regulatory requirements. A case study is presented that demonstrates application of a civil unmanned system to a disaster relief mission with the intent on saving lives. The concept utilizes unmanned aircraft to obtain advanced warning and damage assessments for tornados and severe thunderstorms. Overview of a tornado watch mission architecture as well as commentary on risk, cost, need for, and design tradeoffs for unmanned aerial systems are provided.

  14. Application of human error analysis to aviation and space operations

    SciTech Connect

    Nelson, W.R.

    1998-03-01

    For the past several years at the Idaho National Engineering and Environmental Laboratory (INEEL) the authors have been working to apply methods of human error analysis to the design of complex systems. They have focused on adapting human reliability analysis (HRA) methods that were developed for Probabilistic Safety Assessment (PSA) for application to system design. They are developing methods so that human errors can be systematically identified during system design, the potential consequences of each error can be assessed, and potential corrective actions (e.g. changes to system design or procedures) can be identified. The primary vehicle the authors have used to develop and apply these methods has been a series of projects sponsored by the National Aeronautics and Space Administration (NASA) to apply human error analysis to aviation operations. They are currently adapting their methods and tools of human error analysis to the domain of air traffic management (ATM) systems. Under the NASA-sponsored Advanced Air Traffic Technologies (AATT) program they are working to address issues of human reliability in the design of ATM systems to support the development of a free flight environment for commercial air traffic in the US. They are also currently testing the application of their human error analysis approach for space flight operations. They have developed a simplified model of the critical habitability functions for the space station Mir, and have used this model to assess the affects of system failures and human errors that have occurred in the wake of the collision incident last year. They are developing an approach so that lessons learned from Mir operations can be systematically applied to design and operation of long-term space missions such as the International Space Station (ISS) and the manned Mars mission.

  15. Leak before break application in French PWR plants under operation

    SciTech Connect

    Faidy, C.

    1997-04-01

    Practical applications of the leak-before break concept are presently limited in French Pressurized Water Reactors (PWR) compared to Fast Breeder Reactors. Neithertheless, different fracture mechanic demonstrations have been done on different primary, auxiliary and secondary PWR piping systems based on similar requirements that the American NUREG 1061 specifications. The consequences of the success in different demonstrations are still in discussion to be included in the global safety assessment of the plants, such as the consequences on in-service inspections, leak detection systems, support optimization,.... A large research and development program, realized in different co-operative agreements, completes the general approach.

  16. Ground Operations Aerospace Language (GOAL). Volume 5: Application Studies

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The Ground Operations Aerospace Language (GOAL) was designed to be used by test oriented personnel to write procedures which would be executed in a test environment. A series of discussions between NASA LV-CAP personnel and IBM resulted in some peripheral tasks which would aid in evaluating the applicability of the language in this environment, and provide enhancement for future applications. The results of these tasks are contained within this volume. The GOAL vocabulary provides a high degree of readability and retainability. To achieve these benefits, however, the procedure writer utilizes words and phrases of considerable length. Brief form study was undertaken to determine a means of relieving this burden. The study resulted in a version of GOAL which enables the writer to develop a dialect suitable to his needs and satisfy the syntax equations. The output of the compiler would continue to provide readability by printing out the standard GOAL language. This task is described.

  17. The Aeronautics Education, Research, and Industry Alliance (AERIAL) 2002 Report

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Fink, Mary M.; Nickerson, Jocelyn S.

    2002-01-01

    This report presents and overview of the Aeronautics Education, Research, and Industry Alliance (AERIAL). It covers the University of Nebraska's areas of research, and its outreach to students at Native American schools as part of AERIAL. The report contains three papers: "Airborne Remote Sensing (ARS) for Agricultural Research and Commercialization Application" (White Paper), "Validated Numerical Models for the Convective Extinction of Fuel Droplets (CEFD)", and "The Small Aircraft Transportation System (SATS): Research Collaborations with the NASA Langley Research Center".

  18. 47 CFR 90.137 - Applications for operation at temporary locations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Applications and Authorizations § 90.137 Applications for operation at temporary locations. (a) An application for authority to operate a base or a...) The application must specify the general geographic area within which the operation will be...

  19. 47 CFR 90.137 - Applications for operation at temporary locations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Applications and Authorizations § 90.137 Applications for operation at temporary locations. (a) An application for authority to operate a base or a...) The application must specify the general geographic area within which the operation will be...

  20. 47 CFR 90.137 - Applications for operation at temporary locations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Applications and Authorizations § 90.137 Applications for operation at temporary locations. (a) An application for authority to operate a base or a...) The application must specify the general geographic area within which the operation will be...

  1. 47 CFR 90.137 - Applications for operation at temporary locations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Applications and Authorizations § 90.137 Applications for operation at temporary locations. (a) An application for authority to operate a base or a...) The application must specify the general geographic area within which the operation will be...

  2. 47 CFR 90.137 - Applications for operation at temporary locations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Applications and Authorizations § 90.137 Applications for operation at temporary locations. (a) An application for authority to operate a base or a...) The application must specify the general geographic area within which the operation will be...

  3. Building and road detection from large aerial imagery

    NASA Astrophysics Data System (ADS)

    Saito, Shunta; Aoki, Yoshimitsu

    2015-02-01

    Building and road detection from aerial imagery has many applications in a wide range of areas including urban design, real-estate management, and disaster relief. The extracting buildings and roads from aerial imagery has been performed by human experts manually, so that it has been very costly and time-consuming process. Our goal is to develop a system for automatically detecting buildings and roads directly from aerial imagery. Many attempts at automatic aerial imagery interpretation have been proposed in remote sensing literature, but much of early works use local features to classify each pixel or segment to an object label, so that these kind of approach needs some prior knowledge on object appearance or class-conditional distribution of pixel values. Furthermore, some works also need a segmentation step as pre-processing. Therefore, we use Convolutional Neural Networks(CNN) to learn mapping from raw pixel values in aerial imagery to three object labels (buildings, roads, and others), in other words, we generate three-channel maps from raw aerial imagery input. We take a patch-based semantic segmentation approach, so we firstly divide large aerial imagery into small patches and then train the CNN with those patches and corresponding three-channel map patches. Finally, we evaluate our system on a large-scale road and building detection datasets that is publicly available.

  4. Medical Applications of White LEDs for Surgical Operation

    NASA Astrophysics Data System (ADS)

    Shimada, Junichi; Kawakami, Yoichi

    Everywhere in the world, the highest quality and quantity of lighting is required during the surgical operations. However, the surgical approach has had many types and various angles, common ceiling surgical halogen lighting system cannot provide an adequate amount of beams because the surgeons' heads hinder the illuminations from reaching the operation field. The evolution of solid-state-lighting is currently going to be developed due to the progress of white light emitting diodes (LEDs). We proposed and developed the new lighting equipment that is a surgical lighting goggle composed of InGaN-YAG (yttrium aluminum garnet):Ce3+-based white LEDs. Here, we newly design surgical lighting system composed of white LEDs equipped on both sides of goggles. In fact, we have succeeded in the first internal shunt operation in the left forearm using the surgical LED lighting system on 11th Sept 2000. Since the white LEDs used were composed of InGaN-blue-emitters and YAG-yellow-phosphors, the color rendering property was not sufficient in the reddish colors. After our first challenge for medical application of white LEDs, we have been trying to improve the luminance power of white LED, the color rendering in red colors and the spectral distribution of white LED to render inherent color of raw flesh such as skin, blood, fat tissue and internal organs. We have produced new concepts for LED lighting sources and new several generations of LED lighting goggles.

  5. Analysis operator learning and its application to image reconstruction.

    PubMed

    Hawe, Simon; Kleinsteuber, Martin; Diepold, Klaus

    2013-06-01

    Exploiting a priori known structural information lies at the core of many image reconstruction methods that can be stated as inverse problems. The synthesis model, which assumes that images can be decomposed into a linear combination of very few atoms of some dictionary, is now a well established tool for the design of image reconstruction algorithms. An interesting alternative is the analysis model, where the signal is multiplied by an analysis operator and the outcome is assumed to be sparse. This approach has only recently gained increasing interest. The quality of reconstruction methods based on an analysis model severely depends on the right choice of the suitable operator. In this paper, we present an algorithm for learning an analysis operator from training images. Our method is based on l(p)-norm minimization on the set of full rank matrices with normalized columns. We carefully introduce the employed conjugate gradient method on manifolds, and explain the underlying geometry of the constraints. Moreover, we compare our approach to state-of-the-art methods for image denoising, inpainting, and single image super-resolution. Our numerical results show competitive performance of our general approach in all presented applications compared to the specialized state-of-the-art techniques. PMID:23412611

  6. Operational and design aspects of accelerators for medical applications

    NASA Astrophysics Data System (ADS)

    Schippers, Jacobus Maarten; Seidel, Mike

    2015-03-01

    Originally, the typical particle accelerators as well as their associated beam transport equipment were designed for particle and nuclear physics research and applications in isotope production. In the past few decades, such accelerators and related equipment have also been applied for medical use. This can be in the original physics laboratory environment, but for the past 20 years also in hospital-based or purely clinical environments for particle therapy. The most important specific requirements of accelerators for radiation therapy with protons or ions will be discussed. The focus will be on accelerator design, operational, and formal aspects. We will discuss the special requirements to reach a high reliability for patient treatments as well as an accurate delivery of the dose at the correct position in the patient using modern techniques like pencil beam scanning. It will be shown that the technical requirements, safety aspects, and required reliability of the accelerated beam differ substantially from those in a nuclear physics laboratory. It will be shown that this difference has significant implications on the safety and interlock systems. The operation of such a medical facility should be possible by nonaccelerator specialists at different operating sites (treatment rooms). The organization and role of the control and interlock systems can be considered as being the most crucially important issue, and therefore a special, dedicated design is absolutely necessary in a facility providing particle therapy.

  7. 14 CFR 119.1 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... training flights; (4) Aerial work operations, including— (i) Crop dusting, seeding, spraying, and bird chasing; (ii) Banner towing; (iii) Aerial photography or survey; (iv) Fire fighting; (v)...

  8. 14 CFR 119.1 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... training flights; (4) Aerial work operations, including— (i) Crop dusting, seeding, spraying, and bird chasing; (ii) Banner towing; (iii) Aerial photography or survey; (iv) Fire fighting; (v)...

  9. 14 CFR 119.1 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... training flights; (4) Aerial work operations, including— (i) Crop dusting, seeding, spraying, and bird chasing; (ii) Banner towing; (iii) Aerial photography or survey; (iv) Fire fighting; (v)...

  10. Infrared film for aerial photography

    USGS Publications Warehouse

    Anderson, William H.

    1979-01-01

    Considerable interest has developed recently in the use of aerial photographs for agricultural management. Even the simplest hand-held aerial photographs, especially those taken with color infrared film, often provide information not ordinarily available through routine ground observation. When fields are viewed from above, patterns and variations become more apparent, often allowing problems to be spotted which otherwise may go undetected.

  11. Application of thermospheric general circulation models for space weather operations

    NASA Astrophysics Data System (ADS)

    Fuller-Rowell, T.; Minter, C.; Codrescu, M.

    Solar irradiance is the dominant source of heat, ionization, and dissociation of the thermosphere, and to a large extent drives the global dynamics, and controls the neutral composition and density structure. Neutral composition is important for space weather applications because of its impact on ionospheric loss rates, and neutral density is critical for satellite drag prediction. The future for thermospheric general circulation models for space weather operations lies in their use as state propagators in data assimilation techniques. The physical models can match empirical models in accuracy provided accurate drivers are available, but their true value comes when combined with data in an optimal way. Two such applications have recently been developed. The first utilizes a Kalman filter to combine space-based observation of airglow with physical model predictions to produce global maps of neutral composition. The output of the filter will be used within the GAIM (Global Assimilation of Ionospheric Measurement) model developed under a parallel effort. The second filter uses satellite tracking and remote sensing data for specification of neutral density. Both applications rely on accurate estimates of the solar EUV and magnetospheric drivers.

  12. Network latency and operator performance in teleradiology applications.

    PubMed

    Stahl, J N; Tellis, W; Huang, H K

    2000-08-01

    Teleradiology applications often use an interactive conferencing mode with remote control mouse pointers. When a telephone is used for voice communication, latencies of the data network can create a temporal discrepancy between the position of the mouse pointer and the verbal communication. To assess the effects of this dissociation, we examined the performance of 5 test persons carrying out simple teleradiology tasks under varying simulated network conditions. When the network latency exceeded 400 milliseconds, the performance of the test persons dropped, and an increasing number of errors were made. This effect was the same for constant latencies, which can occur on the network path, and for variable delays caused by the Nagle algorithm, an internal buffering scheme used by the TCP/IP protocol. Because the Nagle algorithm used in typical TCP/IP implementations causes a latency of about 300 milliseconds even before a data packet is sent, any additional latency in the network of 100 milliseconds or more will result in a decreased operator performance in teleradiology applications. These conditions frequently occur on the public Internet or on overseas connections. For optimal performance, the authors recommend bypassing the Nagle algorithm in teleradiology applications. PMID:15359750

  13. GIS applications for military operations in coastal zones

    NASA Astrophysics Data System (ADS)

    Fleming, S.; Jordan, T.; Madden, M.; Usery, E. L.; Welch, R.

    In order to successfully support current and future US military operations in coastal zones, geospatial information must be rapidly integrated and analyzed to meet ongoing force structure evolution and new mission directives. Coastal zones in a military-operational environment are complex regions that include sea, land and air features that demand high-volume databases of extreme detail within relatively narrow geographic corridors. Static products in the form of analog maps at varying scales traditionally have been used by military commanders and their operational planners. The rapidly changing battlefield of 21st Century warfare, however, demands dynamic mapping solutions. Commercial geographic information system (GIS) software for military-specific applications is now being developed and employed with digital databases to provide customized digital maps of variable scale, content and symbolization tailored to unique demands of military units. Research conducted by the Center for Remote Sensing and Mapping Science at the University of Georgia demonstrated the utility of GIS-based analysis and digital map creation when developing large-scale (1:10,000) products from littoral warfare databases. The methodology employed-selection of data sources (including high resolution commercial images and Lidar), establishment of analysis/modeling parameters, conduct of vehicle mobility analysis, development of models and generation of products (such as a continuous sea-land DEM and geo-visualization of changing shorelines with tidal levels)-is discussed. Based on observations and identified needs from the National Geospatial-Intelligence Agency, formerly the National Imagery and Mapping Agency, and the Department of Defense, prototype GIS models for military operations in sea, land and air environments were created from multiple data sets of a study area at US Marine Corps Base Camp Lejeune, North Carolina. Results of these models, along with methodologies for developing large

  14. Locating buildings in aerial photos

    NASA Technical Reports Server (NTRS)

    Green, James S.

    1994-01-01

    Algorithms and techniques for use in the identification and location of large buildings in digitized copies of aerial photographs are developed and tested. The building data would be used in the simulation of objects located in the vicinity of an airport that may be detected by aircraft radar. Two distinct approaches are considered. Most building footprints are rectangular in form. The first approach studied is to search for right-angled corners that characterize rectangular objects and then to connect these corners to complete the building. This problem is difficult because many nonbuilding objects, such as street corners, parking lots, and ballparks often have well defined corners which are often difficult to distinguish from rooftops. Furthermore, rooftops come in a number of shapes, sizes, shadings, and textures which also limit the discrimination task. The strategy used linear sequences of different samples to detect straight edge segments at multiple angles and to determine when these segments meet at approximately right-angles with respect to each other. This technique is effective in locating corners. The test image used has a fairly rectangular block pattern oriented about thirty degrees clockwise from a vertical alignment, and the overall measurement data reflect this. However, this technique does not discriminate between buildings and other objects at an operationally suitable rate. In addition, since multiple paths are tested for each image pixel, this is a time consuming task. The process can be speeded up by preprocessing the image to locate the more optimal sampling paths. The second approach is to rely on a human operator to identify and select the building objects and then to have the computer determine the outline and location of the selected structures. When presented with a copy of a digitized aerial photograph, the operator uses a mouse and cursor to select a target building. After a button on the mouse is pressed, with the cursor fully within

  15. Unmanned aerial vehicles (UAV) in atmospheric research and satellite validation

    NASA Astrophysics Data System (ADS)

    Sitnikov, Nikolay; Borisov, Yuriy; Akmulin, Dimitry; Chekulaev, Igor; Efremov, Denis; Sitnikova, Vera; Ulanovsky, Alexey; Popovicheva, Olga

    The perspectives of the development of methods and facilities based on UAV for atmospheric investigations are considered. Some aspects of these methods applications are discussed. Developments of the experimental samples of UAV onboard equipment for measurements of atmospheric parameters carried out in Central Aerological Observatory are presented. Hardware system for the UAV is developed. The results of measurements of the spatial distributions of the thermodynamic parameters and the concentrations of some gas species onboard of remotely piloted and unmanned aerial vehicles obtained in field tests are presented. The development can be used for satellite data validation, as well as operative environmental monitoring of contaminated areas in particular, chemical plants, natural and industrial disasters territories, areas and facilities for space purposes , etc.

  16. Aerial Terrain Mapping Using Unmanned Aerial Vehicle Approach

    NASA Astrophysics Data System (ADS)

    Tahar, K. N.

    2012-08-01

    This paper looks into the latest achievement in the low-cost Unmanned Aerial Vehicle (UAV) technology in their capacity to map the semi-development areas. The objectives of this study are to establish a new methodology or a new algorithm in image registration during interior orientation process and to determine the accuracy of the photogrammetric products by using UAV images. Recently, UAV technology has been used in several applications such as mapping, agriculture and surveillance. The aim of this study is to scrutinize the usage of UAV to map the semi-development areas. The performance of the low cost UAV mapping study was established on a study area with two image processing methods so that the results could be comparable. A non-metric camera was attached at the bottom of UAV and it was used to capture images at both sites after it went through several calibration steps. Calibration processes were carried out to determine focal length, principal distance, radial lens distortion, tangential lens distortion and affinity. A new method in image registration for a non-metric camera is discussed in this paper as a part of new methodology of this study. This method used the UAV Global Positioning System (GPS) onboard to register the UAV image for interior orientation process. Check points were established randomly at both sites using rapid static Global Positioning System. Ground control points are used for exterior orientation process, and check point is used for accuracy assessment of photogrammetric product. All acquired images were processed in a photogrammetric software. Two methods of image registration were applied in this study, namely, GPS onboard registration and ground control point registration. Both registrations were processed by using photogrammetric software and the result is discussed. Two results were produced in this study, which are the digital orthophoto and the digital terrain model. These results were analyzed by using the root mean square

  17. An operational global ocean forecast system and its applications

    NASA Astrophysics Data System (ADS)

    Mehra, A.; Tolman, H. L.; Rivin, I.; Rajan, B.; Spindler, T.; Garraffo, Z. D.; Kim, H.

    2012-12-01

    A global Real-Time Ocean Forecast System (RTOFS) was implemented in operations at NCEP/NWS/NOAA on 10/25/2011. This system is based on an eddy resolving 1/12 degree global HYCOM (HYbrid Coordinates Ocean Model) and is part of a larger national backbone capability of ocean modeling at NWS in strong partnership with US Navy. The forecast system is run once a day and produces a 6 day long forecast using the daily initialization fields produced at NAVOCEANO using NCODA (Navy Coupled Ocean Data Assimilation), a 3D multi-variate data assimilation methodology. As configured within RTOFS, HYCOM has a horizontal equatorial resolution of 0.08 degrees or ~9 km. The HYCOM grid is on a Mercator projection from 78.64 S to 47 N and north of this it employs an Arctic dipole patch where the poles are shifted over land to avoid a singularity at the North Pole. This gives a mid-latitude (polar) horizontal resolution of approximately 7 km (3.5 km). The coastline is fixed at 10 m isobath with open Bering Straits. This version employs 32 hybrid vertical coordinate surfaces with potential density referenced to 2000 m. Vertical coordinates can be isopycnals, often best for resolving deep water masses, levels of equal pressure (fixed depths), best for the well mixed unstratified upper ocean and sigma-levels (terrain-following), often the best choice in shallow water. The dynamic ocean model is coupled to a thermodynamic energy loan ice model and uses a non-slab mixed layer formulation. The forecast system is forced with 3-hourly momentum, radiation and precipitation fluxes from the operational Global Forecast System (GFS) fields. Results include global sea surface height and three dimensional fields of temperature, salinity, density and velocity fields used for validation and evaluation against available observations. Several downstream applications of this forecast system will also be discussed which include search and rescue operations at US Coast Guard, navigation safety information

  18. Application of diagnostics to determine motor-operated valve operational readiness

    SciTech Connect

    Eissenberg, D.M.

    1986-01-01

    ORNL has been carrying out an aging assessment of motor-operated valves (MOVs) with the primary objective of recommending diagnostic methods for detecting and trending aging. As a result of experimental investigations at ORNL, it was discovered that the motor current during a valve stroke was a very useful diagnostic parameter for detecting and trending many MOV drive train load variations. The motor curent signatures were analyzed at four levels: mean value for a stroke, gross trends during a stroke, transients, and noise frequency spectra. Examples illustrating the use of this technique are presented. The use of motor current signature analysis was also shown to apply to other electric motor driven equipment. Future work includes developing a data base of MOV diagnostics, including criteria for determining the extent of degradation and application of the technique to other LWR motor driven safety equipment.

  19. Remotely deployable aerial inspection using tactile sensors

    NASA Astrophysics Data System (ADS)

    MacLeod, C. N.; Cao, J.; Pierce, S. G.; Sullivan, J. C.; Pipe, A. G.; Dobie, G.; Summan, R.

    2014-02-01

    For structural monitoring applications, the use of remotely deployable Non-Destructive Evaluation (NDE) inspection platforms offer many advantages, including improved accessibility, greater safety and reduced cost, when compared to traditional manual inspection techniques. The use of such platforms, previously reported by researchers at the University Strathclyde facilitates the potential for rapid scanning of large areas and volumes in hazardous locations. A common problem for both manual and remote deployment approaches lies in the intrinsic stand-off and surface coupling issues of typical NDE probes. The associated complications of these requirements are obviously significantly exacerbated when considering aerial based remote inspection and deployment, resulting in simple visual techniques being the preferred sensor payload. Researchers at Bristol Robotics Laboratory have developed biomimetic tactile sensors modelled on the facial whiskers (vibrissae) of animals such as rats and mice, with the latest sensors actively sweeping their tips across the surface in a back and forth motion. The current work reports on the design and performance of an aerial inspection platform and the suitability of tactile whisking sensors to aerial based surface monitoring applications.

  20. Remotely deployable aerial inspection using tactile sensors

    SciTech Connect

    MacLeod, C. N.; Cao, J.; Pierce, S. G.; Dobie, G.; Summan, R.; Sullivan, J. C.; Pipe, A. G.

    2014-02-18

    For structural monitoring applications, the use of remotely deployable Non-Destructive Evaluation (NDE) inspection platforms offer many advantages, including improved accessibility, greater safety and reduced cost, when compared to traditional manual inspection techniques. The use of such platforms, previously reported by researchers at the University Strathclyde facilitates the potential for rapid scanning of large areas and volumes in hazardous locations. A common problem for both manual and remote deployment approaches lies in the intrinsic stand-off and surface coupling issues of typical NDE probes. The associated complications of these requirements are obviously significantly exacerbated when considering aerial based remote inspection and deployment, resulting in simple visual techniques being the preferred sensor payload. Researchers at Bristol Robotics Laboratory have developed biomimetic tactile sensors modelled on the facial whiskers (vibrissae) of animals such as rats and mice, with the latest sensors actively sweeping their tips across the surface in a back and forth motion. The current work reports on the design and performance of an aerial inspection platform and the suitability of tactile whisking sensors to aerial based surface monitoring applications.

  1. Delivery of Unmanned Aerial Vehicle Data

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Sullivan, Donald V.

    2011-01-01

    To support much of NASA's Upper Atmosphere Research Program science, NASA has acquired two Global Hawk Unmanned Aerial Vehicles (UAVs). Two major missions are currently planned using the Global Hawk: the Global Hawk Pacific (GloPac) and the Genesis and Rapid Intensification Processes (GRIP) missions. This paper briefly describes GloPac and GRIP, the concept of operations and the resulting requirements and communication architectures. Also discussed are requirements for future missions that may use satellite systems and networks owned and operated by third parties.

  2. Experience of Pseudospark Switch Operation in Pulse Power Applications

    NASA Astrophysics Data System (ADS)

    Voitenko, N. V.; Yudin, A. S.; Kuznetsova, N. S.; Bochkov, V. D.

    2015-11-01

    The paper demonstrates the results of TDIl-200k/25SN-P pseudospark switch (PSS) developed by Russian company "Pulsed Technologies Ltd" application. PSS was used in pulsed power unit intended for electric-discharge fracture of rocks and concrete blocks and splitting off from monolith. The pulsed power unit has a pulse current generator with the capacity of 560 μF, stored energy of up to 63 kJ, operating voltage of up to15 kV, current pulse amplitude of up to 200 kA and pulse duration more than 200 μsec. The study also shows the current waveforms determined in the short-circuit experiment of the pulse current generator and in the experiments of the electric-discharge fragmentation of concrete at the charging voltage of 13 kV. PSS was operated in ringing single-pulse mode with the exceedance of more than two maximum permissible parameters: current pulse amplitude, current pulse duration and maximum pulse energy. Internal electrode erosion of PSS is shown and possible reasons of asymmetric current feed are discussed.

  3. Operational Applications from the Suomi Npp and Jpss Satellites

    NASA Astrophysics Data System (ADS)

    Goldberg, M.; Furgerson, J.; Sjoberg, W.; Weng, F.; Csiszar, I. A.; Kilcoyne, H.; Gleason, J. F.

    2012-12-01

    relay distress signals from aviators, mariners or land-based users in distress. This system assists in the rescue of hundreds on an annual basis. At the AGU conference, we will discuss in detail the operational applications of JPSS data and early demonstrations provided by SUOMI NPP. Examples will include improvements in weather forecasting, monitoring of coastal water quality (e.g. harmful algal blooms), marine resources, forest fires, volcanic eruptions and smoke/dust plumes, and monitoring of droughts, snow and ice cover. The quality of JPSS data for climate monitoring will also be discussed.

  4. GIS applications for military operations in coastal zones

    USGS Publications Warehouse

    Fleming, S.; Jordan, T.; Madden, M.; Usery, E.L.; Welch, R.

    2009-01-01

    In order to successfully support current and future US military operations in coastal zones, geospatial information must be rapidly integrated and analyzed to meet ongoing force structure evolution and new mission directives. Coastal zones in a military-operational environment are complex regions that include sea, land and air features that demand high-volume databases of extreme detail within relatively narrow geographic corridors. Static products in the form of analog maps at varying scales traditionally have been used by military commanders and their operational planners. The rapidly changing battlefield of 21st Century warfare, however, demands dynamic mapping solutions. Commercial geographic information system (GIS) software for military-specific applications is now being developed and employed with digital databases to provide customized digital maps of variable scale, content and symbolization tailored to unique demands of military units. Research conducted by the Center for Remote Sensing and Mapping Science at the University of Georgia demonstrated the utility of GIS-based analysis and digital map creation when developing large-scale (1:10,000) products from littoral warfare databases. The methodology employed-selection of data sources (including high resolution commercial images and Lidar), establishment of analysis/modeling parameters, conduct of vehicle mobility analysis, development of models and generation of products (such as a continuous sea-land DEM and geo-visualization of changing shorelines with tidal levels)-is discussed. Based on observations and identified needs from the National Geospatial-Intelligence Agency, formerly the National Imagery and Mapping Agency, and the Department of Defense, prototype GIS models for military operations in sea, land and air environments were created from multiple data sets of a study area at US Marine Corps Base Camp Lejeune, North Carolina. Results of these models, along with methodologies for developing large

  5. Cooperative Lander-Surface/Aerial Microflyer Missions for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita; Lay, Norman; Hine, Butler; Zornetzer, Steven

    2004-01-01

    mitigation in the traverse of the long-distance surface explorer/rover. The basic requirements of design and operation of BEES to implement the scenarios are discussed. Terrestrial applications of such concepts include distributed aerial/surface measurements of meteorological events, i.e., storm watch, seismic monitoring, reconnaissance, biological chemical sensing, search and rescue, surveillance, autonomous security/ protection agents, and/or delivery and lateral distribution of agents (sensors, surface/subsurface crawlers, clean-up agents). Figure 2 illustrates an Earth demonstration that is in development, and its implementation will illustrate the value of these biomorphic mission concepts.

  6. The application of hydrometeorological data obtained by remote sensing techniques for multipurpose reservoir operations. [Arizona

    NASA Technical Reports Server (NTRS)

    Warskow, W. L.; Wilson, T. T., Jr.; Kirdar, K.

    1975-01-01

    Watershed snowpack and streamflow data obtained and transmitted by (ERTS) satellite were used in the operational and water management decisions in the Salt River Project. Located in central Arizona, the Project provides water and electric power for the more than 1.1 million residents of the Salt River Valley. The water supply source is a 33,670 square kilometer (13,000 square mile) watershed and 250 deep well pumps. Six storage reservoirs, four of which have hydroelectric capability, located on two river systems have a storage capacity of over 246,600 hectare-meters (2,000,000 AF.). Information from the watershed during the normal runoff period of December to May and more especially during critical periods of high runoff and minimum reservoir storage capacity is necessary for the reservoir operation regimen. Extent of the snowpack, depth of snow, and the condition of the pack were observed in aerial flights over the watershed.

  7. Aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.

    1978-01-01

    Thermal infrared scanning from an aircraft is a convenient and commercially available means for determining relative rates of energy loss from building roofs. The need to conserve energy as fuel costs makes the mass survey capability of aerial thermography an attractive adjunct to community energy awareness programs. Background information on principles of aerial thermography is presented. Thermal infrared scanning systems, flight and environmental requirements for data acquisition, preparation of thermographs for display, major users and suppliers of thermography, and suggested specifications for obtaining aerial scanning services were reviewed.

  8. Airborne remote sensing assessment of the damage to cotton caused by spray drift from aerially applied glyphosate through spray deposition measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Off-target drift of aerially applied glyphosate can cause plant injury, which is of great concern to farmers and aerial applicators. To determine the extent of crop injury due to near-field drift, an experiment was conducted with a single aerial application of glyphosate. For identification of the d...

  9. Survey on the novel hybrid aquatic-aerial amphibious aircraft: Aquatic unmanned aerial vehicle (AquaUAV)

    NASA Astrophysics Data System (ADS)

    Yang, Xingbang; Wang, Tianmiao; Liang, Jianhong; Yao, Guocai; Liu, Miao

    2015-04-01

    The aquatic unmanned aerial vehicle (AquaUAV), a kind of vehicle that can operate both in the air and the water, has been regarded as a new breakthrough to broaden the application scenario of UAV. Wide application prospects in military and civil field are more than bright, therefore many institutions have focused on the development of such a vehicle. However, due to the significant difference of the physical properties between the air and the water, it is rather difficult to design a fully-featured AquaUAV. Until now, majority of partially-featured AquaUAVs have been developed and used to verify the feasibility of an aquatic-aerial vehicle. In the present work, we classify the current partially-featured AquaUAV into three categories from the scope of the whole UAV field, i.e., the seaplane UAV, the submarine-launched UAV, and the submersible UAV. Then the recent advancements and common characteristics of the three kinds of AquaUAVs are reviewed in detail respectively. Then the applications of bionics in the design of AquaUAV, the transition mode between the air and the water, the morphing wing structure for air-water adaptation, and the power source and the propulsion type are summarized and discussed. The tradeoff analyses for different transition methods between the air and the water are presented. Furthermore, it indicates that applying the bionics into the design and development of the AquaUAV will be essential and significant. Finally, the significant technical challenges for the AquaUAV to change from a conception to a practical prototype are indicated.

  10. Supporting Remote Sensing Research with Small Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Anderson, R. C.; Shanks, P. C.; Kritis, L. A.; Trani, M. G.

    2014-11-01

    We describe several remote sensing research projects supported with small Unmanned Aerial Systems (sUAS) operated by the NGA Basic and Applied Research Office. These sUAS collections provide data supporting Small Business Innovative Research (SBIR), NGA University Research Initiative (NURI), and Cooperative Research And Development Agreements (CRADA) efforts in addition to inhouse research. Some preliminary results related to 3D electro-optical point clouds are presented, and some research goals discussed. Additional details related to the autonomous operational mode of both our multi-rotor and fixed wing small Unmanned Aerial System (sUAS) platforms are presented.

  11. Operational forecast products and applications based on WRF/Chem

    NASA Astrophysics Data System (ADS)

    Hirtl, Marcus; Flandorfer, Claudia; Langer, Matthias; Mantovani, Simone; Olefs, Marc; Schellander-Gorgas, Theresa

    2015-04-01

    The responsibilities of the national weather service of Austria (ZAMG) include the support of the federal states and the public in questions connected to the protection of the environment in the frame of advisory and counseling services as well as expert opinions. The ZAMG conducts daily Air-Quality forecasts using the on-line coupled model WRF/Chem. The mother domain expands over Europe, North Africa and parts of Russia. The nested domain includes the alpine region and has a horizontal resolution of 4 km. Local emissions (Austria) are used in combination with European inventories (TNO and EMEP) for the simulations. The modeling system is presented and the results from the evaluation of the assimilation of pollutants using the 3D-VAR software GSI is shown. Currently observational data (PM10 and O3) from the Austrian Air-Quality network and from European stations (EEA) are assimilated into the model on an operational basis. In addition PM maps are produced using Aerosol Optical Thickness (AOT) observations from MODIS in combination with model data using machine learning techniques. The modeling system is operationally evaluated with different data sets. The emphasis of the application is on the forecast of pollutants which are compared to the hourly values (PM10, O3 and NO2) of the Austrian Air-Quality network. As the meteorological conditions are important for transport and chemical processes, some parameters like wind and precipitation are automatically evaluated (SAL diagrams, maps, …) with other models (e.g. ECMWF, AROME, …) and ground stations via web interface. The prediction of the AOT is also important for operators of solar power plants. In the past Numerical Weather Prediction (NWP) models were used to predict the AOT based on cloud forecasts at the ZAMG. These models do not consider the spatial and temporal variation of the aerosol distribution in the atmosphere with a consequent impact on the accuracy of forecasts especially during clear-sky days

  12. Atmospheric effects on the fate of aerially applied agricultural sprays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drift from aerial application of crop protection materials is influenced by many factors such as mean wind, temperature, relative humidity, and atmospheric stability. The applicator is responsible for making all possible efforts to reduce drift. Atmospheric conditions and stability must be conside...

  13. Overview of Uav Activities in Wageningen Unmanned Aerial Remote Sensing Facility

    NASA Astrophysics Data System (ADS)

    Suomalainen, J.; Anders, N.; Franke, J.; Bartholomeus, H.; Nolet, C.; van Puijenbroek, M.; Kramer, H.; Keesstra, S.; Mücher, S.; Kooistra, L.

    2015-08-01

    The WUR Unmanned Aerial Remote Sensing Facility (UARSF) (www.wageningenur.nl/uarsf) is a co-operation organization of different groups within Wageningen University and Research Centre to use UAVs in remote sensing applications. The facility was founded in 2012. Since then the facility has taken part in numerous of mapping campaigns exploiting UAVs with researchers with in WUR as well as external cooperating partners. In this paper/poster we present the facility, the UAV platforms, the camera systems, and demonstrate some highlights of our results.

  14. A GIS based application for seismic risk operational response support

    NASA Astrophysics Data System (ADS)

    Voulgaris, N.; Vassilakis, E.; Parcharidis, I.; Soukis, K.; Alexopoulos, J.

    2003-04-01

    Information flow and management represents one of the main tasks of seismic risk mitigation. The recent experience, following a number of disastrous earthquakes in Greece during the last decade, underlined the necessity of a flexible system in order to support earthquake disaster response organizations. Due to the large volume of spatial data required, a GIS platform represented the most efficient choice for the development of such an application. A number of basic thematic layers, such as topography, administrative, tectonic and seismological data, are available and can processed by the user through a specially designed menu driven system in order to obtain a variety of reports. Following the declaration of a damaging earthquake, location data are immediately transmitted by the seismological agencies to the primary earthquake response organization (EPPO) and administrative data are selected and sorted according to preliminary estimated damage zones. Thus, the user is able to access all the relevant contact and communication data in order to obtain and record predefined damage report information. These data can be stored, updated and reviewed within the system or forwarded as reports to the corresponding agencies for further action. At present the system is in operation at the Earthquake Planning and Protection Organization (EPPO) in Greece, while further enhancements are also planned according to user requirements.

  15. Review of the SAFARI 2000 RC-10 Aerial Photography

    NASA Technical Reports Server (NTRS)

    Myers, Jeff; Shelton, Gary; Annegarn, Harrold; Peterson, David L. (Technical Monitor)

    2001-01-01

    This presentation will review the aerial photography collected by the NASA ER-2 aircraft during the SAFARI (Southern African Regional Science Initiative) year 2000 campaign. It will include specifications on the camera and film, and will show examples of the imagery. It will also detail the extent of coverage, and the procedures to obtain film products from the South African government. Also included will be some sample applications of aerial photography for various environmental applications, and its use in augmenting other SAFARI data sets.

  16. 30 CFR 773.9 - Review of applicant, operator, and ownership and control information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operator's organizational structure and ownership or control relationships. (b) We must conduct the review... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Review of applicant, operator, and ownership....9 Review of applicant, operator, and ownership and control information. (a) We, the...

  17. 47 CFR 0.483 - Applications for amateur or commercial radio operator licenses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Applications for amateur or commercial radio..., and for Taking Examinations § 0.483 Applications for amateur or commercial radio operator licenses. (a) Application filing procedures for amateur radio operator licenses are set forth in part 97 of this chapter....

  18. 47 CFR 0.483 - Applications for amateur or commercial radio operator licenses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Applications for amateur or commercial radio..., and for Taking Examinations § 0.483 Applications for amateur or commercial radio operator licenses. (a) Application filing procedures for amateur radio operator licenses are set forth in part 97 of this chapter....

  19. 47 CFR 0.483 - Applications for amateur or commercial radio operator licenses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Applications for amateur or commercial radio..., and for Taking Examinations § 0.483 Applications for amateur or commercial radio operator licenses. (a) Application filing procedures for amateur radio operator licenses are set forth in part 97 of this chapter....

  20. 47 CFR 0.483 - Applications for amateur or commercial radio operator licenses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Applications for amateur or commercial radio..., and for Taking Examinations § 0.483 Applications for amateur or commercial radio operator licenses. (a) Application filing procedures for amateur radio operator licenses are set forth in part 97 of this chapter....

  1. 47 CFR 0.483 - Applications for amateur or commercial radio operator licenses.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Applications for amateur or commercial radio..., and for Taking Examinations § 0.483 Applications for amateur or commercial radio operator licenses. (a) Application filing procedures for amateur radio operator licenses are set forth in part 97 of this chapter....

  2. Optimizing selection of controllable variables to minimize downwind drift from aerially applied sprays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drift of aerially applied crop protection and production materials is studied using a novel simulation-based approach. This new approach first studies many factors that can potentially contribute to downwind deposition from aerial spray application to narrow down the major contributing factors. An o...

  3. Favourable uranium-phosphate exploration trends guided by the application of statistical factor analysis technique on the aerial gamma spectrometric data in Syrian desert (Area-1), Syria

    NASA Astrophysics Data System (ADS)

    Asfahani, J.; Al-Hent, R.; Aissa, M.

    2016-02-01

    A scored lithological map including 10 radiometric units is established through applying factor analysis approach to aerial spectrometric data of Area-1, Syrian desert, which includes Ur, eU, eTh, K%, eU/eTh, eU/K%, and eTh/K%. A model of four rotated factors F1, F2, F3, and F4 is adapted for representing 234,829 data measured points in Area-1, where 86% of total data variance is interpreted. A geological scored pseudo-section derived from the lithological scored map is established and analyzed in order to show the possible stratigraphic and structural traps for uranium occurrences associated with phosphate deposits in the studied Area-1. These identified traps presented in this paper need detailed investigation and must be necessarily followed and checked by ground validations and subsurface well logging, in order to locate the anomalous uranium occurrences and explore with more confidence and certitude their characteristics as a function of depth.

  4. A mobile App for military operational entomology pesticide applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multiple field studies conducted for the Deployed War Fighter Protection (DWFP) research program have generated over 80 specific guidance points for innovative combinations of pesticide application equipment, pesticide formulations, and application techniques for aerosol and residual pesticide treat...

  5. BOREAS Level-0 C-130 Aerial Photography

    NASA Technical Reports Server (NTRS)

    Newcomer, Jeffrey A.; Dominguez, Roseanne; Hall, Forrest G. (Editor)

    2000-01-01

    For BOReal Ecosystem-Atmosphere Study (BOREAS), C-130 and other aerial photography was collected to provide finely detailed and spatially extensive documentation of the condition of the primary study sites. The NASA C-130 Earth Resources aircraft can accommodate two mapping cameras during flight, each of which can be fitted with 6- or 12-inch focal-length lenses and black-and-white, natural-color, or color-IR film, depending upon requirements. Both cameras were often in operation simultaneously, although sometimes only the lower resolution camera was deployed. When both cameras were in operation, the higher resolution camera was often used in a more limited fashion. The acquired photography covers the period of April to September 1994. The aerial photography was delivered as rolls of large format (9 x 9 inch) color transparency prints, with imagery from multiple missions (hundreds of prints) often contained within a single roll. A total of 1533 frames were collected from the C-130 platform for BOREAS in 1994. Note that the level-0 C-130 transparencies are not contained on the BOREAS CD-ROM set. An inventory file is supplied on the CD-ROM to inform users of all the data that were collected. Some photographic prints were made from the transparencies. In addition, BORIS staff digitized a subset of the tranparencies and stored the images in JPEG format. The CD-ROM set contains a small subset of the collected aerial photography that were the digitally scanned and stored as JPEG files for most tower and auxiliary sites in the NSA and SSA. See Section 15 for information about how to acquire additional imagery.

  6. 14 CFR 135.3 - Rules applicable to operations subject to this part.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Rules applicable to operations subject to this part. 135.3 Section 135.3 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: COMMUTER AND...

  7. Close range ISR (PRISTA) and close quarters combat (CQC) with unmanned aerial systems (UAS)

    NASA Astrophysics Data System (ADS)

    Maynell, Jon

    2010-04-01

    Ironically, the final frontiers for the UAV (unmanned aerial vehicle) are the closest spaces at hand. There is an urgent operational capability gap in the area of proximate reconnaissance, intelligence, surveillance, and target acquisition (PRISTA) as well as close quarters combats (CQC). Needs for extremely close range functionality in land, sea and urban theaters remain unfilled, largely due to the challenges presented by the maneuverability and silent operating floor required to address these missions. The evolution of small, nimble and inexpensive VTOL UAV assets holds much promise in terms of filling this gap. Just as UAVs have evolved from large manned aircraft, so have MAVs (Micro Aerial Vehicles) evolved from UAVs. As unmanned aviation evolves into aerial robotics, NAV (Nano Aerial Vehicle) research will become the next hotbed of unmanned aerial systems development as these systems continue to mature in response to the need to find robotic replacements for humans in PRISTA, CQC, and many other hazardous duties.

  8. 29. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING SOUTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING SOUTH. IN 1983, THE PERIMETER SECURITY ZONE SURROUNDING THE PLUTONIUM OPERATIONS WAS COMPLETED. IT CONSISTED OF A DOUBLE PERIMETER FENCE, CLOSED CIRCUIT TELEVISIONS, ALARMS, AND AN UNINTERRUPTED POWER SUPPLY (7/29/83). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  9. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Availability of aerial photography. 611.21 Section 611.21 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS SOIL SURVEYS Cartographic...

  10. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Availability of aerial photography. 611.21 Section 611.21 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS SOIL SURVEYS Cartographic...

  11. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Availability of aerial photography. 611.21 Section 611.21 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS SOIL SURVEYS Cartographic...

  12. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Availability of aerial photography. 611.21 Section 611.21 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS SOIL SURVEYS Cartographic...

  13. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Availability of aerial photography. 611.21 Section 611.21 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS SOIL SURVEYS Cartographic...

  14. RoboCon: Operator interface for robotic applications

    SciTech Connect

    Schempf, H.; Warwick, J.; Fung, M.; Chemel, B.; Blackwell, M.

    1996-12-31

    Carnegie Mellon U. and ORNL`s Robotics and Process Systems Division are developing a state-of-the-art robot operator control station (RoboCon) with standardized hardware and software control interfaces to be adaptable to a variety of remote and robotic equipment currently funded by DOE`s Office of Science & Technology Robotics Technology Development Program. The human operation and telerobotic and supervisory control of sophisticated and remote and robotic systems is a complex, tiring, and non-intuitive activity. Since decontamination & decommissioning, selective equipment removal, mixed waste operations, and in-tank cleanup are going to be a major future activity in DOE environmental restoration and waste management cleanup agenda, it seems necessary to utilize an operator control station and interface which maximizes operator comfort and productivity.

  15. Preparing the CAA Title V operating permit application

    SciTech Connect

    Wyles, T.R. )

    1994-01-01

    The CAA amendments contain 11 new and amended titles, including enhanced non-attainment area provisions, additional conditions for controlling hazardous air pollutants, expanded monitoring and record keeping requirements, and increased enforcement authority. The cornerstone of the regulation is the operating permits program (Title V). In the past, permits have been issued to construct or modify sources, and some sources have been permitted in states with operating permit programs. Such programs will remain in effect. However, under the new CAA, most emissions sources will be required to have an operating permit. Title V's permit provision initially affects about 34,000 major facilities and may affect another 350,000 smaller sources in the future. The amendments also increase the number of regulated pollutants from 21 to about 200. Operating permits limit emissions from manufacturing operations, and place further restrictions on raw materials and products.

  16. Digital aerial-triangulation system on personal computers

    NASA Astrophysics Data System (ADS)

    Tseng, Yi-Hsing; Chang, Shau-Yen

    1994-08-01

    This paper demonstrates a prototype of a PC-based digital aerial-triangulation system (PC- DATS). The system takes all of the procedures of aerial triangulation and is constructed by five working modules: preparation, interior orientation, tie point measurement, target point measurement, and bundle adjustment. All of the modules are integrated on the platform Microsoft-Windows. A test block containing 15 photos was processed by using the system. The operation was quite smooth, and the adjustment result shows an accuracy of about 0.3 pixel in average. The success of this proto-DATS was quite encouraging.

  17. Preliminary assessment of aerial photography techniques for canvasback population analysis

    USGS Publications Warehouse

    Munro, R.E.; Trauger, D.L.

    1976-01-01

    Recent intensive research on the canvasback has focused attention on the need for more precise estimates of population parameters. During the 1972-75 period, various types of aerial photographing equipment were evaluated to determine the problems and potentials for employing these techniques in appraisals of canvasback populations. The equipment and procedures available for automated analysis of aerial photographic imagery were also investigated. Serious technical problems remain to be resolved, but some promising results were obtained. Final conclusions about the feasibility of operational implementation await a more rigorous analysis of the data collected.

  18. Grab a coffee: your aerial images are already analyzed

    NASA Astrophysics Data System (ADS)

    Garetto, Anthony; Rademacher, Thomas; Schulz, Kristian

    2015-07-01

    For over 2 decades the AIMTM platform has been utilized in mask shops as the standard for actinic review of photomask sites in order to perform defect disposition and repair review. Throughout this time the measurement throughput of the systems has been improved in order to keep pace with the requirements demanded by a manufacturing environment, however the analysis of the sites captured has seen little improvement and remained a manual process. This manual analysis of aerial images is time consuming, subject to error and unreliability and contributes to holding up turn-around time (TAT) and slowing process flow in a manufacturing environment. AutoAnalysis, the first application available for the FAVOR® platform, offers a solution to these problems by providing fully automated data transfer and analysis of AIMTM aerial images. The data is automatically output in a customizable format that can be tailored to your internal needs and the requests of your customers. Savings in terms of operator time arise from the automated analysis which no longer needs to be performed. Reliability is improved as human error is eliminated making sure the most defective region is always and consistently captured. Finally the TAT is shortened and process flow for the back end of the line improved as the analysis is fast and runs in parallel to the measurements. In this paper the concept and approach of AutoAnalysis will be presented as well as an update to the status of the project. A look at the benefits arising from the automation and the customizable approach of the solution will be shown.

  19. Unmanned Aerial Systems for scientific research

    NASA Astrophysics Data System (ADS)

    Stefanutti, Leopoldo; MacKenzie, A. Robert; di Donfrancesco, Guido; Amici, Stefania

    2010-05-01

    In the last decade a very wide spectrum of Unmanned Aerial Systems (UAS) has been developed, essentially for military purposes. They range from very small aircraft, weighing a few kg, to stratospheric aeroplanes with total weight of many tonnes. Endurance also varies very markedly, from a few hours to ≤ 60 hours, and possibly more in the next future. Environmental Research and Services (ERS) Srl., Florence, has carried out a scoping study for the UK Natural Environmental Research Council, to identify key Earth and Environmental Science issues which can best be tackled by means of unmanned aerial platforms. The study focused on issues which could not easily be solved using other platforms, as manned aircraft, airships and satellites. Topics included: · glaciology (including both continental ice-sheets and sea-ice) · volcanology · coastal and ocean observation · Exchange processes between sea and atmosphere · atmospheric turbulence, transport, and chemistry in the planetary boundary layer, in the free troposphere and in the upper troposphere - lower stratosphere (UTLS). Different platforms are best suited to each of these tasks. Platforms range from mini UAS, to Middle Altitude and Long Endurance (MALE) and High Altitude and Long Endurance (HALE) platforms, from electric aircraft to diesel-turbocharged platforms, from solar to turbofan aircraft. Generally long endurance and the capability to fly beyond line of sight are required for most scientific missions. An example is the application of UAS to the measurement of the extension and depth of sea and continental ice. Such measurements are of primary importance in the evaluation of climatic change. While with satellites it is possible to measure the extent of ice, measuring the depth can only be accomplished by using radar operating at relatively low altitudes. A tactical or a MALE UAS could be equipped with VHL radar which can penetrate ice and hence used to measure the depth of ice sheets. A platform which

  20. Aerial camera auto focusing system

    NASA Astrophysics Data System (ADS)

    Wang, Xuan; Lan, Gongpu; Gao, Xiaodong; Liang, Wei

    2012-10-01

    Before the aerial photographic task, the cameras focusing work should be performed at first to compensate the defocus caused by the changes of the temperature, pressure etc. A new method of aerial camera auto focusing is proposed through traditional photoelectric self-collimation combined with image processing method. Firstly, the basic principles of optical self-collimation and image processing are introduced. Secondly, the limitations of the two are illustrated and the benefits of the new method are detailed. Then the basic principle, the system composition and the implementation of this new method are presented. Finally, the data collection platform is set up reasonably and the focus evaluation function curve is draw. The results showed that: the method can be used in the Aerial camera focusing field, adapt to the aviation equipment trends of miniaturization and lightweight .This paper is helpful to the further work of accurate and automatic focusing.

  1. The application of image enhancement techniques to remote manipulator operation

    NASA Technical Reports Server (NTRS)

    Gonzalez, R. C.

    1974-01-01

    Methods of image enhancement which can be used by an operator who is not experienced with the mechanisms of enhancement to obtain satisfactory results were designed and implemented. Investigation of transformations which operate directly on the image domain resulted in a new technique of contrast enhancement. Transformations on the Fourier transform of the original image, including such techniques as homomorphic filtering, were also investigated. The methods of communication between the enhancement system and the computer operator were analyzed, and a language was developed for use in image enhancement. A working enhancement system was then created, and is included.

  2. Department of Defense operational applications of wind measurements

    NASA Technical Reports Server (NTRS)

    Ramsay, Allan C.

    1985-01-01

    A stated objective for this symposium is to identify requirements for global wind measurements. This paper will draw from recent reports which considered the impact of over 100 environmental factors known to affect military operations. A conclusion that can be drawn from those analyses is that one environmental factor, atmospheric wind, has an operational impact on each of the 48 mission areas examined. This paper will characterize the impact of wind on the various mission areas and will define and summarize both 'technical' and 'operational' requirements for wind intelligence.

  3. International-Aerial Measuring System (I-AMS) Training Program

    SciTech Connect

    Wasiolek, Piotre T.; Malchor, Russell L.; Maurer, Richard J.; Adams, Henry L.

    2015-10-01

    Since the Fukushima reactor accident in 2011, there has been an increased interest worldwide in developing national capabilities to rapidly map and assess ground contamination resulting from nuclear reactor accidents. The capability to rapidly measure the size of the contaminated area, determine the activity level, and identify the radionuclides can aid emergency managers and decision makers in providing timely protective action recommendations to the public and first responders. The development of an aerial detection capability requires interagency coordination to assemble the radiation experts, detection system operators, and aviation aircrews to conduct the aerial measurements, analyze and interpret the data, and provide technical assessments. The Office of International Emergency Management and Cooperation (IEMC) at the U.S. Department of Energy, National Nuclear Security Administration (DOE/NNSA) sponsors an International - Aerial Measuring System (I-AMS) training program for partner nations to develop and enhance their response to radiological emergencies. An initial series of courses can be conducted in the host country to assist in developing an aerial detection capability. As the capability develops and expands, additional experience can be gained through advanced courses with the opportunity to conduct aerial missions over a broad range of radiation environments.

  4. 7 CFR 273.2 - Office operations and application processing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... prominent language on or near the front page of the application, a description of the expedited service provisions described in paragraph (i) of this section; (vii) In plain and prominent language on or near the... and prominent language on or near the front page of the application, notification of the...

  5. AERIAL OF VEHICLE ASSEMBLY BUILDING & SURROUNDING AREA

    NASA Technical Reports Server (NTRS)

    1977-01-01

    AERIAL OF VEHICLE ASSEMBLY BUILDING & SURROUNDING AREA KSC-377C-0082.41 116-KSC-377C-82.41, P-15877, ARCHIVE-04151 Aerial view - Shuttle construction progress - VAB and Orbiter Processing Facilities - direction northwest.

  6. A study of methods for lowering aerial environmental survey cost

    NASA Technical Reports Server (NTRS)

    Stansberry, J. R.

    1973-01-01

    The results are presented of a study of methods for lowering the cost of environmental aerial surveys. A wide range of low cost techniques were investigated for possible application to current pressing urban and rural problems. The objective of the study is to establish a definition of the technical problems associated with conducting aerial surveys using various low cost techniques, to conduct a survey of equipment which may be used in low cost systems, and to establish preliminary estimates of cost. A set of candidate systems were selected and described for the environmental survey tasks.

  7. Aeronautic Instruments. Section VI : Aerial Navigation and Navigating Instruments

    NASA Technical Reports Server (NTRS)

    Eaton, H N

    1923-01-01

    This report outlines briefly the methods of aerial navigation which have been developed during the past few years, with a description of the different instruments used. Dead reckoning, the most universal method of aerial navigation, is first discussed. Then follows an outline of the principles of navigation by astronomical observation; a discussion of the practical use of natural horizons, such as sea, land, and cloud, in making extant observations; the use of artificial horizons, including the bubble, pendulum, and gyroscopic types. A description is given of the recent development of the radio direction finder and its application to navigation.

  8. Biological response of soybean and cotton to aerial glyphosate drift

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An aerial application drift study was conducted in 2009 to determine biological effects of glyphosate on cotton (Gossypium hirsutum L.) and soybean [Glycine max (L.) Merr.]. Glyphosate at 866 g ae/ha was applied using an Air Tractor 402B agricultural aircraft in an 18.3 m spray swath to crops at the...

  9. The Aeronautics Education, Research, and Industry Alliance (AERIAL) 2002 Report

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Box, Richard C.; Fink, Mary; Gogos, George; Lehrer, Henry R.; Narayanan, Ram M.; Nickerson, Jocelyn S.; Tarry, Scott E.; Vlasek, Karisa D.; O'Neil, Patrick D.

    2002-01-01

    The NASA Nebraska Space Grant Consortium (NSGC) & EPSCoR programs at the University of Nebraska at Omaha are involved in a variety of innovative research activities. Such research is supported through the Aeronautics Education, Research, and Industry Alliance (AERIAL) and collaborative seed funds. AERIAL is a comprehensive, multi-faceted, five year NASA EPSCoR initiative that contributes substantially to the strategic research and technology priorities of NASA while intensifying Nebraska s rapidly growing aeronautics research and development endeavors. AERIAL includes three major collaborative research teams (CRTs) whose nexus is a common focus in aeronautics research. Each CRT - Small Aircraft Transportation System (SATS), Airborne Remote Sensing for Agricultural Research and Commercialization Applications (ARS), and Numerical Simulation of the Combustion of Fuel Droplets: Finite Rate Kinetics and Flame Zone Grid Adaptation (CEFD) -has a distinct research agenda. This program provides the template for funding of new and innovative research that emphasizes aerospace technology.

  10. The gas electron multiplier (GEM): Operating principles and applications

    NASA Astrophysics Data System (ADS)

    Sauli, Fabio

    2016-01-01

    Introduced by the author in 1997, The Gas Electron Multiplier (GEM) constitutes a powerful addition to the family of fast radiation detectors; originally developed for particle physics experiments, the device and has spawned a large number of developments and applications; a web search yields more than 400 articles on the subject. This note is an attempt to summarize the status of the design, developments and applications of the new detector.

  11. 1. COPY OF AERIAL PHOTO BY U.S. ARMY AIR CORPS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. COPY OF AERIAL PHOTO BY U.S. ARMY AIR CORPS OF LA-TEX INTRACOASTAL WATERWAY DREDGING OPERATIONS NEAR HIGH ISLAND, TEXAS, 1934 - Louisiana-Texas (LA-TEX) Intercoastal Waterway, Port Isabel, Cameron County, TX

  12. USE OF GPS TO DOCUMENT AERIAL OVERFLIGHT ROUTES AND POSITIONS OF CAFO FACILITIES.

    EPA Science Inventory

    As part of the targeting process for CAFO (Concentrated Animal Feeding Operation) inspections it is necessary to perform aerial overflights to document potential violators. To accurately document these flight patterns and facility locations, a system was developed and used incor...

  13. Operator assistant systems - An experimental approach using a telerobotics application

    NASA Technical Reports Server (NTRS)

    Boy, Guy A.; Mathe, Nathalie

    1993-01-01

    This article presents a knowledge-based system methodology for developing operator assistant (OA) systems in dynamic and interactive environments. This is a problem both of training and design, which is the subject of this article. Design includes both design of the system to be controlled and design of procedures for operating this system. A specific knowledge representation is proposed for representing the corresponding system and operational knowledge. This representation is based on the situation recognition and analytical reasoning paradigm. It tries to make explicit common factors involved in both human and machine intelligence, including perception and reasoning. An OA system based on this representation has been developed for space telerobotics. Simulations have been carried out with astronauts and the resulting protocols have been analyzed. Results show the relevance of the approach and have been used for improving the knowledge representation and the OA architecture.

  14. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... lift, except in case of emergency. (x) Climbers shall not be worn while performing work from an aerial... 29 Labor 8 2010-07-01 2010-07-01 false Aerial lifts. 1926.453 Section 1926.453 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Scaffolds § 1926.453 Aerial lifts. (a)...

  15. MIL-H-8501B: Application to shipboard terminal operations

    NASA Technical Reports Server (NTRS)

    Cappetta, A. N.; Johns, J. B.

    1993-01-01

    The philosophy and structure of the proposed U.S. Military Specification for Handling Qualities Requirements for Military Rotorcraft, MIL-H-8501B, are presented with emphasis on shipboard terminal operations. The impact of current and future naval operational requirements on the selection of appropriate combinations of basic vehicle dynamics and usable cue environments are identified. An example 'walk through' of MIL-H-8501B is conducted from task identification to determination of stability and control requirements. For selected basic vehicle dynamics, criteria as a function of input/response magnitude are presented. Additionally, rotorcraft design development implications are discussed.

  16. Towards an operational ERTS - requirements for implementing cartographic applications of an operational ERTS type satellite

    NASA Technical Reports Server (NTRS)

    Colvocoresses, A. P.

    1974-01-01

    After nearly 18 months of successful operation of the first Earth Resources Technology Satellite (ERTS-1), a careful look at the future in order. Judging from the results of ERTS-1 experiments, public sales of ERTS-1 products and overall worldwide response it is believed that ERTS-1 has demonstrated an earth sensing mode that should become operational. It is recognized that several studies leading to the definition of an operational ERTS have been made. However cartographic requirements are generally more basic and demanding than those of the earth science disciplines and are therefore treated separately in this report. One assumption made is that the configuration of ERTS, particularly with respect to the multispectral scanner and data transmission rates cannot be materially altered.

  17. Spectral anomaly methods for aerial detection using KUT nuisance rejection

    NASA Astrophysics Data System (ADS)

    Detwiler, R. S.; Pfund, D. M.; Myjak, M. J.; Kulisek, J. A.; Seifert, C. E.

    2015-06-01

    This work discusses the application and optimization of a spectral anomaly method for the real-time detection of gamma radiation sources from an aerial helicopter platform. Aerial detection presents several key challenges over ground-based detection. For one, larger and more rapid background fluctuations are typical due to higher speeds, larger field of view, and geographically induced background changes. As well, the possible large altitude or stand-off distance variations cause significant steps in background count rate as well as spectral changes due to increased gamma-ray scatter with detection at higher altitudes. The work here details the adaptation and optimization of the PNNL-developed algorithm Nuisance-Rejecting Spectral Comparison Ratios for Anomaly Detection (NSCRAD), a spectral anomaly method previously developed for ground-based applications, for an aerial platform. The algorithm has been optimized for two multi-detector systems; a NaI(Tl)-detector-based system and a CsI detector array. The optimization here details the adaptation of the spectral windows for a particular set of target sources to aerial detection and the tailoring for the specific detectors. As well, the methodology and results for background rejection methods optimized for the aerial gamma-ray detection using Potassium, Uranium and Thorium (KUT) nuisance rejection are shown. Results indicate that use of a realistic KUT nuisance rejection may eliminate metric rises due to background magnitude and spectral steps encountered in aerial detection due to altitude changes and geographically induced steps such as at land-water interfaces.

  18. Photogrammetric mapping using unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Graça, N.; Mitishita, E.; Gonçalves, J.

    2014-11-01

    Nowadays Unmanned Aerial Vehicle (UAV) technology has attracted attention for aerial photogrammetric mapping. The low cost and the feasibility to automatic flight along commanded waypoints can be considered as the main advantages of this technology in photogrammetric applications. Using GNSS/INS technologies the images are taken at the planned position of the exposure station and the exterior orientation parameters (position Xo, Yo, Zo and attitude ω, φ, χ) of images can be direct determined. However, common UAVs (off-the-shelf) do not replace the traditional aircraft platform. Overall, the main shortcomings are related to: difficulties to obtain the authorization to perform the flight in urban and rural areas, platform stability, safety flight, stability of the image block configuration, high number of the images and inaccuracies of the direct determination of the exterior orientation parameters of the images. In this paper are shown the obtained results from the project photogrammetric mapping using aerial images from the SIMEPAR UAV system. The PIPER J3 UAV Hydro aircraft was used. It has a micro pilot MP2128g. The system is fully integrated with 3-axis gyros/accelerometers, GPS, pressure altimeter, pressure airspeed sensors. A Sony Cyber-shot DSC-W300 was calibrated and used to get the image block. The flight height was close to 400 m, resulting GSD near to 0.10 m. The state of the art of the used technology, methodologies and the obtained results are shown and discussed. Finally advantages/shortcomings found in the study and main conclusions are presented

  19. Block-Diagonalization of Operators with Gaps, with Applications to Dirac Operators

    NASA Astrophysics Data System (ADS)

    Cuenin, Jean-Claude

    2012-09-01

    We present new results on the block-diagonalization of operators with spectral gaps, based on a method of Langer and Tretter, and apply them to Dirac operators on three-dimensional Euclidean space with unbounded potentials. For the Coulomb potential, we achieve an exact diagonalization up to nuclear charge Z = 124 (which covers all chemical elements) and prove the convergence of an approximate block-diagonalization up to Z = 62, thus considerably improving the upper bounds Z = 93 and Z = 51, respectively, established by Siedentop and Stockmeyer.

  20. Reconnaissance mapping from aerial photographs

    NASA Technical Reports Server (NTRS)

    Weeden, H. A.; Bolling, N. B. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Engineering soil and geology maps were successfully made from Pennsylvania aerial photographs taken at scales from 1:4,800 to 1:60,000. The procedure involved a detailed study of a stereoscopic model while evaluating landform, drainage, erosion, color or gray tones, tone and texture patterns, vegetation, and cultural or land use patterns.

  1. Applications of Optimal Building Energy System Selection and Operation

    SciTech Connect

    Marnay, Chris; Stadler, Michael; Siddiqui, Afzal; DeForest, Nicholas; Donadee, Jon; Bhattacharya, Prajesh; Lai, Judy

    2011-04-01

    Berkeley Lab has been developing the Distributed Energy Resources Customer Adoption Model (DER-CAM) for several years. Given load curves for energy services requirements in a building microgrid (u grid), fuel costs and other economic inputs, and a menu of available technologies, DER-CAM finds the optimum equipment fleet and its optimum operating schedule using a mixed integer linear programming approach. This capability is being applied using a software as a service (SaaS) model. Optimisation problems are set up on a Berkeley Lab server and clients can execute their jobs as needed, typically daily. The evolution of this approach is demonstrated by description of three ongoing projects. The first is a public access web site focused on solar photovoltaic generation and battery viability at large commercial and industrial customer sites. The second is a building CO2 emissions reduction operations problem for a University of California, Davis student dining hall for which potential investments are also considered. And the third, is both a battery selection problem and a rolling operating schedule problem for a large County Jail. Together these examples show that optimization of building u grid design and operation can be effectively achieved using SaaS.

  2. The application of NAVSTAR Differential GPS to civil helicopter operations

    NASA Technical Reports Server (NTRS)

    Beser, J.; Parkinson, B. W.

    1981-01-01

    Principles concerning the operation of the NAVSTAR Global Positioning Systems (GPS) are discussed. Selective availability issues concerning NAVSTAR GPS and differential GPS concepts are analyzed. Civil support and market potential for differential GPS are outlined. It is concluded that differential GPS provides a variation on the baseline GPS system, and gives an assured, uninterrupted level of accuracy for the civilian community.

  3. Selected Mathematics Applications (Level A): Operating A Store.

    ERIC Educational Resources Information Center

    Hawaii State Dept. of Education, Honolulu. Office of Instructional Services.

    Presented is one of a series of resource guides designed to provide students with an improved mathematics program. This guide emphasizes real-life situations focusing on the operation of a store. Classes are divided into grocery, meat, produce, drugs, and hardware sections at the beginning of the course. Students learn how to organize, collect,…

  4. Operational excellence (six sigma) philosophy: Application to software quality assurance

    SciTech Connect

    Lackner, M.

    1997-11-01

    This report contains viewgraphs on operational excellence philosophy of six sigma applied to software quality assurance. This report outlines the following: goal of six sigma; six sigma tools; manufacturing vs administrative processes; Software quality assurance document inspections; map software quality assurance requirements document; failure mode effects analysis for requirements document; measuring the right response variables; and questions.

  5. Decorrelating capabilities of operations with application to decoherence

    SciTech Connect

    Luo Shunlong; Fu Shuangshuang; Li Nan

    2010-11-15

    Decoherence, interpreted broadly, is essentially the leakage of system information into the environment and is often accompanied by dissipation. The basic questions arise: how to quantify decoherence induced by an operation and how to quantitatively compare decoherence induced by different operations. In this paper, based on a joint ancilla-system-environment tripartite purification for the initial system state and the operation, and by exploiting the intrinsic relations between the loss of correlations in the ancilla-system and the correlations established in the system-environment, we characterize and quantify decoherence from a decorrelating perspective. For this purpose, we first address the issue of separating and quantifying the classical and quantum parts of decorrelation. By use of the canonical isomorphism between operations and bipartite states, we propose two intrinsic decorrelation measures: One is the classical decorrelation based on the loss of classical correlations, and the other is the quantum decorrelation based on the loss of quantum correlations. With the help of quantum decorrelation, we introduce an intuitive measure of (quantum) decoherence. We further employ these informational quantities to analyze some widely used channels such as the complete decoherent channel, the depolarizing channel, the bit-flip channel, the transpose depolarizing channel, the amplitude damping channel, and the phase damping channel. Our analysis illustrates the intriguing interplay between classical and quantum decorrelations and sheds some light on the informational nature of decoherence.

  6. Application and Operation of Audiovisual Equipment in Education.

    ERIC Educational Resources Information Center

    Pula, Fred John

    Interest in audiovisual aids in education has been increased by the shortage of classrooms and good teachers and by the modern predisposition toward learning by visual concepts. Effective utilization of audiovisual materials and equipment depends most importantly, on adequate preparation of the teacher in operating equipment and in coordinating…

  7. 77 FR 27533 - Application for Presidential Permit To Construct, Operate and Maintain Pipeline Facilities on the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-10

    ... Application for Presidential Permit To Construct, Operate and Maintain Pipeline Facilities on the Border of... Presidential Permit to Construct, Operate and Maintain Pipeline Facilities on the Border of the United States... construct, operate and maintain pipeline facilities on the border of the United States from...

  8. Application of generalized operator representation in the time evolution of quantum systems

    NASA Astrophysics Data System (ADS)

    He, Rui; Liu, Xiangyuan; Song, Jun

    2016-07-01

    We have systematically explored the application of generalized operator representation including P-, W-, and Husimi representation in the time evolution of quantum systems. In particular, by using the method of differentiation within an ordered product of operators, we give the normally and antinormally ordered forms of the integral kernels of Husimi operator representations and its corresponding formulations. By making use of the generalized operator representation, we transform exponentially complex operator equations into tractable phase-space equations. As a simple application, the time evolution equation of Husimi function in the amplitude dissipative channel is clearly obtained.

  9. Securing Ground Data System Applications for Space Operations

    NASA Technical Reports Server (NTRS)

    Pajevski, Michael J.; Tso, Kam S.; Johnson, Bryan

    2014-01-01

    The increasing prevalence and sophistication of cyber attacks has prompted the Multimission Ground Systems and Services (MGSS) Program Office at Jet Propulsion Laboratory (JPL) to initiate the Common Access Manager (CAM) effort to protect software applications used in Ground Data Systems (GDSs) at JPL and other NASA Centers. The CAM software provides centralized services and software components used by GDS subsystems to meet access control requirements and ensure data integrity, confidentiality, and availability. In this paper we describe the CAM software; examples of its integration with spacecraft commanding software applications and an information management service; and measurements of its performance and reliability.

  10. 20. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING NORTHEAST. THE PLANT WAS COMPOSED OF FOUR WIDELY SEPARATED AREAS, EACH ONE PERFORMING A DIFFERENT TYPE OF WORK. PLANT A (44), SOUTHWEST, FABRICATED PARTS FROM DEPLETED URANIUM, PLANT B (81), SOUTH, WAS ENRICHED URANIUM OPERATIONS, PLANT C (71), NORTH, PLUTONIUM OPERATIONS, AND PLANT D (91), EAST, WAS FINAL ASSEMBLY, SHIPPING AND RECEIVING (2/6/66). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  11. Options for organization and operation of space applications transfer centers

    NASA Technical Reports Server (NTRS)

    Robinson, A. C.; Madigan, J. A.

    1976-01-01

    The benefits of developing regional facilities for transfer of NASA developed technology are discussed. These centers are designed to inform, persuade, and serve users. Included will be equipment for applications and demonstrations of the processes, a library, training facilities, and meeting rooms. The staff will include experts in the various techniques, as well as personnel involved in finding and persuading potential users.

  12. FIELD APPLICATIONS OF ROBOTIC SYSTEMS IN HAZARDOUS WASTE SITE OPERATIONS

    EPA Science Inventory

    The cleanup of hazardous waste sites is a challenging and complex field that offers numerous opportunities for the application of robotic technology. he contamination problem, long in the making, will take decades to resolve. ur ingenuity in developing robotic tools to assist in ...

  13. U.S. Forward Operating Base Applications of Nuclear Power

    SciTech Connect

    Griffith, George W.

    2015-01-01

    This paper provides a high level overview of current nuclear power technology and the potential use of nuclear power at military bases. The size, power ranges, and applicability of nuclear power units for military base power are reviewed. Previous and current reactor projects are described to further define the potential for nuclear power for military power.

  14. Applications of Genetic Methods to NASA Design and Operations Problems

    NASA Technical Reports Server (NTRS)

    Laird, Philip D.

    1996-01-01

    We review four recent NASA-funded applications in which evolutionary/genetic methods are important. In the process we survey: the kinds of problems being solved today with these methods; techniques and tools used; problems encountered; and areas where research is needed. The presentation slides are annotated briefly at the top of each page.

  15. Peri-operative warming devices: performance and clinical application.

    PubMed

    John, M; Ford, J; Harper, M

    2014-06-01

    Since the adverse consequences of accidental peri-operative hypothermia have been recognised, there has been a rapid expansion in the development of new warming equipment designed to prevent it. This is a review of peri-operative warming devices and a critique of the evidence assessing their performance. Forced-air warming is a common and extensively tested warming modality that outperforms passive insulation and water mattresses, and is at least as effective as resistive heating. More recently developed devices include circulating water garments, which have shown promising results due to their ability to cover large surface areas, and negative pressure devices aimed at improving subcutaneous perfusion for warming. We also discuss the challenge of fluid warming, looking particularly at how devices' performance varies according to flow rate. Our ultimate aim is to provide a guide through the bewildering array of devices on the market so that clinicians can make informed and accurate choices for their particular hospital environment. PMID:24720346

  16. The application of automated operations at the Institutional Processing Center

    NASA Technical Reports Server (NTRS)

    Barr, Thomas H.

    1993-01-01

    The JPL Institutional and Mission Computing Division, Communications, Computing and Network Services Section, with its mission contractor, OAO Corporation, have for some time been applying automation to the operation of JPL's Information Processing Center (IPC). Automation does not come in one easy to use package. Automation for a data processing center is made up of many different software and hardware products supported by trained personnel. The IPC automation effort formally began with console automation, and has since spiraled out to include production scheduling, data entry, report distribution, online reporting, failure reporting and resolution, documentation, library storage, and operator and user education, while requiring the interaction of multi-vendor and locally developed software. To begin the process, automation goals are determined. Then a team including operations personnel is formed to research and evaluate available options. By acquiring knowledge of current products and those in development, taking an active role in industry organizations, and learning of other data center's experiences, a forecast can be developed as to what direction technology is moving. With IPC management's approval, an implementation plan is developed and resources identified to test or implement new systems. As an example, IPC's new automated data entry system was researched by Data Entry, Production Control, and Advance Planning personnel. A proposal was then submitted to management for review. A determination to implement the new system was made and elements/personnel involved with the initial planning performed the implementation. The final steps of the implementation were educating data entry personnel in the areas effected and procedural changes necessary to the successful operation of the new system.

  17. Applications of triggered lightning to space vehicle operations

    NASA Technical Reports Server (NTRS)

    Jafferis, William; Sanicandro, Rocco; Rompalla, John; Wohlman, Richard

    1992-01-01

    Kennedy Space Center (KSC) and the USAF Eastern Space Missile Center (ESMC) covering an area of 25 x 40 km are frequently called America's Spaceport. This title is earned through the integration, by labor and management, of many skills in a wide variety of engineering fields to solve many technical problems that occur during the launch processing of space vehicles. Weather is one of these problems, and although less frequent in time and duration when compared to engineering type problems, has caused costly and life threatening situations. This sensitivity to weather, especially lightning, was recognized in the very early pioneer days of space operations. The need to protect the many v\\facilities, space flight hardware, and personnel from electrified clouds capable of producing lightning was a critical element in improving launch operations. A KSC lightning committee was formed and directed to improve lightning protection, detection, and measuring systems and required that all theoretical studies be confirmed by KSC field data. Over the years, there have been several lightning incidents involving flight vehicles during ground processing as well as launch. Subsequent investigations revealed the need to improve these systems as well as the knowledge of the electrical atmosphere and its effects on operations in regard to cost and safety. Presented here is how, KSC Atmospheric Science Field Laboratory (AFSL), in particular Rocket Triggered Lightning, is being used to solve these problems.

  18. Low-altitude aerial color digital photographic survey of the San Andreas Fault

    USGS Publications Warehouse

    Lynch, David K.; Hudnut, Kenneth W.; Dearborn, David S.P.

    2010-01-01

    southeast leg and 300 m AGL on the northwest leg. Spatial resolution (pixel size or ground sample distance) is a few centimeters. Time and geographic coordinates of the aircraft were automatically written into the exchangeable image file format (EXIF) data within each jpeg photograph. A few hours after acquisition and validation, the photographs were uploaded to a publically accessible Web page. The goal was to obtain quick-turnaround, low-cost, high-resolution, overlapping, and contiguous imagery for use in planning field operations, and to provide imagery for a wide variety of land use and educational studies. This work was carried out in support of ongoing geological research on the San Andreas fault, but the technique is widely applicable beyond geology.

  19. Pipe line pigs have varied applications in operations. Part 2

    SciTech Connect

    Vernooy, B.

    1980-10-01

    In the early days of pipelining, it was discovered that running a swab equipped with leather disks through the line removed paraffin deposited on the pipe wall increasing the flow without increasing the power input. Blades were added to the device later to improve the efficiency of wax removal, which also decreased the number of runs and the cost of pigging. Pig developers learned from their successes as well as their failures. Part 1 of this work focused on the construction and kaliper pigs, and the second part describes the general form and function of the different operational pigs, i.e., calipers, cleaners, and spheres.

  20. Efficient pedestrian detection from aerial vehicles with object proposals and deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Minnehan, Breton; Savakis, Andreas

    2016-05-01

    As Unmanned Aerial Systems grow in numbers, pedestrian detection from aerial platforms is becoming a topic of increasing importance. By providing greater contextual information and a reduced potential for occlusion, the aerial vantage point provided by Unmanned Aerial Systems is highly advantageous for many surveillance applications, such as target detection, tracking, and action recognition. However, due to the greater distance between the camera and scene, targets of interest in aerial imagery are generally smaller and have less detail. Deep Convolutional Neural Networks (CNN's) have demonstrated excellent object classification performance and in this paper we adopt them to the problem of pedestrian detection from aerial platforms. We train a CNN with five layers consisting of three convolution-pooling layers and two fully connected layers. We also address the computational inefficiencies of the sliding window method for object detection. In the sliding window configuration, a very large number of candidate patches are generated from each frame, while only a small number of them contain pedestrians. We utilize the Edge Box object proposal generation method to screen candidate patches based on an "objectness" criterion, so that only regions that are likely to contain objects are processed. This method significantly reduces the number of image patches processed by the neural network and makes our classification method very efficient. The resulting two-stage system is a good candidate for real-time implementation onboard modern aerial vehicles. Furthermore, testing on three datasets confirmed that our system offers high detection accuracy for terrestrial pedestrian detection in aerial imagery.

  1. Knowledge-based understanding of aerial surveillance video

    NASA Astrophysics Data System (ADS)

    Cheng, Hui; Butler, Darren

    2006-05-01

    Aerial surveillance has long been used by the military to locate, monitor and track the enemy. Recently, its scope has expanded to include law enforcement activities, disaster management and commercial applications. With the ever-growing amount of aerial surveillance video acquired daily, there is an urgent need for extracting actionable intelligence in a timely manner. Furthermore, to support high-level video understanding, this analysis needs to go beyond current approaches and consider the relationships, motivations and intentions of the objects in the scene. In this paper we propose a system for interpreting aerial surveillance videos that automatically generates a succinct but meaningful description of the observed regions, objects and events. For a given video, the semantics of important regions and objects, and the relationships between them, are summarised into a semantic concept graph. From this, a textual description is derived that provides new search and indexing options for aerial video and enables the fusion of aerial video with other information modalities, such as human intelligence, reports and signal intelligence. Using a Mixture-of-Experts video segmentation algorithm an aerial video is first decomposed into regions and objects with predefined semantic meanings. The objects are then tracked and coerced into a semantic concept graph and the graph is summarized spatially, temporally and semantically using ontology guided sub-graph matching and re-writing. The system exploits domain specific knowledge and uses a reasoning engine to verify and correct the classes, identities and semantic relationships between the objects. This approach is advantageous because misclassifications lead to knowledge contradictions and hence they can be easily detected and intelligently corrected. In addition, the graph representation highlights events and anomalies that a low-level analysis would overlook.

  2. Operation Greenhouse. Scientific Director's report of atomic weapon tests at Eniwetok, 1951. Annex 1. 6, blast measurements. Part 3. Pressure near ground level. Section 4. Blast asymmetry from aerial photographs. Section 5. Ball-crusher-gauge measurements of peak pressure

    SciTech Connect

    Not Available

    1985-04-01

    Aerial motion pictures from manned aircraft were taken of the Dog, Easy, and George Shots and from a drone aircraft on Dog Shot to determine whether asymmetries in the blast waves could be detected and measured. Only one film, that taken of Dog Shot from a drone, was considered good enough to warrant detailed analysis, but this failed to yield any positive information on asymmetries. The analysis showed that failure to obtain good arrival-time data arose from a number of cases, but primarily from uncertainities in magnification and timing. Results could only be matched with reliable data from blast-velocity switches by use of large corrections. Asymnetries, if present, were judged to have been too small or to have occurred too early to be detected with the slow-frame speed used. Recommendations for better results include locating the aircraft directly overhead at the time of burst and using a camera having greater frame speed and provided with timing marks.

  3. Digital computer processing of peach orchard multispectral aerial photography

    NASA Technical Reports Server (NTRS)

    Atkinson, R. J.

    1976-01-01

    Several methods of analysis using digital computers applicable to digitized multispectral aerial photography, are described, with particular application to peach orchard test sites. This effort was stimulated by the recent premature death of peach trees in the Southeastern United States. The techniques discussed are: (1) correction of intensity variations by digital filtering, (2) automatic detection and enumeration of trees in five size categories, (3) determination of unhealthy foliage by infrared reflectances, and (4) four band multispectral classification into healthy and declining categories.

  4. USGS aerial resolution targets.

    USGS Publications Warehouse

    Salamonowicz, P.H.

    1982-01-01

    It is necessary to measure the achievable resolution of any airborne sensor that is to be used for metric purposes. Laboratory calibration facilities may be inadequate or inappropriate for determining the resolution of non-photographic sensors such as optical-mechanical scanners, television imaging tubes, and linear arrays. However, large target arrays imaged in the field can be used in testing such systems. The USGS has constructed an array of resolution targets in order to permit field testing of a variety of airborne sensing systems. The target array permits any interested organization with an airborne sensing system to accurately determine the operational resolution of its system. -from Author

  5. Multimegabit Operation Multiplexer System. [PCM telemetry unit for space applications

    NASA Technical Reports Server (NTRS)

    Giri, R. R.; Maxwell, M. S.

    1973-01-01

    The Multimegabit Operation Multiplexer System (MOMS) is a high-data-rate PCM telemetry unit capable of sampling and encoding 60 scanning radiometer and four vidicon channels at 250 kilosamples/second and 5 megasamples/second, respectively. This sampling capacity plus the seven-bit quantization requires a total throughput rate of 40 megasamples/second and 280 megabits/second. To produce these rates efficiently, the system was divided into a pair of identical 140-megabit blocks. A low-power 20-MHz analog multiplexer and analog-to-digital converter were developed together with a video sample-and-hold that features an aperture time error of less than 50 psec. Breadboard testing of these basic building blocks confirmed the design prediction that the total system would consume 27 watts of power. Two 140-megabit output parts are suitable for quadriphase modulation.

  6. Identifying Contingency Requirements using Obstacle Analysis on an Unpiloted Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Lutz, Robyn R.; Nelson, Stacy; Patterson-Hine, Ann; Frost, Chad R.; Tal, Doron

    2005-01-01

    This paper describes experience using Obstacle Analysis to identify contingency requirements on an unpiloted aerial vehicle. A contingency is an operational anomaly, and may or may not involve component failure. The challenges to this effort were: ( I ) rapid evolution of the system while operational, (2) incremental autonomy as capabilities were transferred from ground control to software control and (3) the eventual safety-criticality of such systems as they begin to fly over populated areas. The results reported here are preliminary but show that Obstacle Analysis helped (1) identify new contingencies that appeared as autonomy increased; (2) identify new alternatives for handling both previously known and new contingencies; and (3) investigate the continued validity of existing software requirements for contingency handling. Since many mobile, intelligent systems are built using a development process that poses the same challenges, the results appear to have applicability to other similar systems.

  7. Demonstration of a multimode longwave infrared imaging system on an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Jones, Terry L.; Romanski, John G.; Buckley, John J.; Girata, Anthony J.

    1999-07-01

    The RISTA II sensor was integrated into the Altus Unmanned Aerial Vehicle (UAV) and flown over Camp Roberts and Ft. Hunter Ligget, CA in July 1998. The RISTA II demonstration system consisted of a long-wave IR imager, a digital data link, and a ground processing facility (GPF) containing an aided target recognizer, data storage devices, and operator workstations. Imagery was compressed on the UAV and sent on the GPF over a 10.71 Mbit per second digital data link. Selected image frames from the GPF were sent near real-time over a T1 link to observers in Rosslyn, VA. The sensor operated in a variety of scanning and framing modes. Both manual and automatic sensor pointing were demonstrated. Seven flights were performed at altitudes up to 7500m and range sup to 60 km from the GPF. Applicability to numerous military and civilian scenarios was demonstrated.

  8. Development of RGB Composite Imagery for Operational Weather Forecasting Applications

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Fuell, Kevin K.; Oswald, Hayden, K; Knaff, John A.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center, in collaboration with the Cooperative Institute for Research in the Atmosphere (CIRA), is providing red-green-blue (RGB) color composite imagery to several of NOAA s National Centers and National Weather Service forecast offices as a demonstration of future capabilities of the Advanced Baseline Imager (ABI) to be implemented aboard GOES-R. Forecasters rely upon geostationary satellite imagery to monitor conditions over their regions of responsibility. Since the ABI will provide nearly three times as many channels as the current GOES imager, the volume of data available for analysis will increase. RGB composite imagery can aid in the compression of large data volumes by combining information from multiple channels or paired channel differences into single products that communicate more information than provided by a single channel image. A standard suite of RGB imagery has been developed by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), based upon the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The SEVIRI instrument currently provides visible and infrared wavelengths comparable to the future GOES-R ABI. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard the NASA Terra and Aqua satellites can be used to demonstrate future capabilities of GOES-R. This presentation will demonstrate an overview of the products currently disseminated to SPoRT partners within the GOES-R Proving Ground, and other National Weather Service forecast offices, along with examples of their application. For example, CIRA has used the channels of the current GOES sounder to produce an "air mass" RGB originally designed for SEVIRI. This provides hourly imagery over CONUS for looping applications while demonstrating capabilities similar to the future ABI instrument. SPoRT has developed similar "air mass" RGB imagery from MODIS, and through

  9. Trends in quantitative aerial thermography

    SciTech Connect

    Schott, J.R.; Wilkinson, E.P.

    1983-06-01

    Recent improvements in aerial thermographic techniques, particularly in achievable spatial resolution and noise equivalent temperature variation, have enabled the use of thermography in a more objective fashion. Interpretation of the information contained in thermograms has also been improved through the use of certain techniques accounting for roof material type (emissivity), background effects, and atmospheric variables. With current methods, roof surface temperature from aerial imagery can be measured to within 1.8/sup 0/F (1.0/sup 0/C) of the actual temperature. These advances in thermogram analysis have opened the door for potential direct measurement of rooftop heat-loss levels from thermogram data. Ultimately, it is felt that this type of information would make it feasible to direct intensive energy-conservation efforts toward a smaller population, where the need and cost benefits will be the greatest.

  10. Aerial Photographs and Satellite Images

    USGS Publications Warehouse

    U.S. Geological Survey

    1997-01-01

    Photographs and other images of the Earth taken from the air and from space show a great deal about the planet's landforms, vegetation, and resources. Aerial and satellite images, known as remotely sensed images, permit accurate mapping of land cover and make landscape features understandable on regional, continental, and even global scales. Transient phenomena, such as seasonal vegetation vigor and contaminant discharges, can be studied by comparing images acquired at different times. The U.S. Geological Survey (USGS), which began using aerial photographs for mapping in the 1930's, archives photographs from its mapping projects and from those of some other Federal agencies. In addition, many images from such space programs as Landsat, begun in 1972, are held by the USGS. Most satellite scenes can be obtained only in digital form for use in computer-based image processing and geographic information systems, but in some cases are also available as photographic products.

  11. Aerial of the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the early morning, flocks of birds soar over the Banana River, whose waters reflect the Vehicle Assembly Building , bathed in a pink glow from post-dawn light. Next to the VAB, on the left, is the Launch Control Center. The rectangular building closer to the water at left is the Operations Support Building. At right is the Rotation/Processing Facility. The birds are a common sight at KSC since the Center shares a boundary with the Merritt Island National Wildlife Refuge. The Refuge encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  12. Operations

    ERIC Educational Resources Information Center

    Wilkins, Jesse L. M.; Norton, Anderson; Boyce, Steven J.

    2013-01-01

    Previous research has documented schemes and operations that undergird students' understanding of fractions. This prior research was based, in large part, on small-group teaching experiments. However, written assessments are needed in order for teachers and researchers to assess students' ways of operating on a whole-class scale. In this…

  13. Aerial robotic data acquisition system

    SciTech Connect

    Hofstetter, K.J.; Hayes, D.W.; Pendergast, M.M.; Corban, J.E.

    1993-12-31

    A small, unmanned aerial vehicle (UAV), equipped with sensors for physical and chemical measurements of remote environments, is described. A miniature helicopter airframe is used as a platform for sensor testing and development. The sensor output is integrated with the flight control system for real-time, interactive, data acquisition and analysis. Pre-programmed flight missions will be flown with several sensors to demonstrate the cost-effective surveillance capabilities of this new technology.

  14. Wildlife Multispecies Remote Sensing Using Visible and Thermal Infrared Imagery Acquired from AN Unmanned Aerial Vehicle (uav)

    NASA Astrophysics Data System (ADS)

    Chrétien, L.-P.; Théau, J.; Ménard, P.

    2015-08-01

    Wildlife aerial surveys require time and significant resources. Multispecies detection could reduce costs to a single census for species that coexist spatially. Traditional methods are demanding for observers in terms of concentration and are not adapted to multispecies censuses. The processing of multispectral aerial imagery acquired from an unmanned aerial vehicle (UAV) represents a potential solution for multispecies detection. The method used in this study is based on a multicriteria object-based image analysis applied on visible and thermal infrared imagery acquired from a UAV. This project aimed to detect American bison, fallow deer, gray wolves, and elks located in separate enclosures with a known number of individuals. Results showed that all bison and elks were detected without errors, while for deer and wolves, 0-2 individuals per flight line were mistaken with ground elements or undetected. This approach also detected simultaneously and separately the four targeted species even in the presence of other untargeted ones. These results confirm the potential of multispectral imagery acquired from UAV for wildlife census. Its operational application remains limited to small areas related to the current regulations and available technology. Standardization of the workflow will help to reduce time and expertise requirements for such technology.

  15. 76 FR 9821 - Biweekly Notice Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... COMMISSION Biweekly Notice Applications and Amendments to Facility Operating Licenses Involving No... involves no significant hazards consideration, notwithstanding the pendency before the Commission of a... on February 8, 2011 (76 FR 6830). Notice of Consideration of Issuance of Amendments to...

  16. Flexible vision-based navigation system for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Blasch, Erik P.

    1995-01-01

    A critical component of unmanned aerial vehicles in the navigation system which provides position and velocity feedback for autonomous control. The Georgia Tech Aerial Robotics navigational system (NavSys) consists of four DVTStinger70C Integrated Vision Units (IVUs) with CCD-based panning platforms, software, and a fiducial onboard the vehicle. The IVUs independently scan for the retro-reflective bar-code fiducial while the NavSys image processing software performs a gradient threshold followed by a image search localization of three vertical bar-code lines. Using the (x,y) image coordinate and CCD angle, the NavSys triangulates the fiducial's (x,y) position, differentiates for velocity, and relays the information to the helicopter controller, which independently determines the z direction with an onboard altimeter. System flexibility is demonstrated by recognition of different fiducial shapes, night and day time operation, and is being extended to on-board and off-board navigation of aerial and ground vehicles. The navigation design provides a real-time, inexpensive, and effective system for determining the (x,y) position of the aerial vehicle with updates generated every 51 ms (19.6 Hz) at an accuracy of approximately +/- 2.8 in.

  17. Aerial Magnetic Sensing with AN Uav Helicopter

    NASA Astrophysics Data System (ADS)

    Eck, C.; Imbach, B.

    2011-09-01

    This paper concentrates on aerial magnetic sensing with an autonomous Scout B1-100 UAV helicopter. A high-resolution 3-axis mag- netic sensor has been mounted on the helicopter in order to generate a detailed magnetic map and to identify various ferrous objects in the soil. The development is based on advanced mission planning for the UAV as well as test flights under challenging weather conditions such as wind gusts and snow fall. Finally, this paper summarizes a real-world application after the collapse of a daylight coal mining where various persons have been killed and multiple infrastructure objects have been buried. The task of magnetic scanning was applied in order to find buried vehicles where miners have been expected based on eyewitnesses during the collapse. However, while several ferrous objects have been located, the van could not be identified in the extensive area of the landslide.

  18. Meteorological and Aerosol Sensing with small Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Born, J.; Möhler, O.; Haunold, W.; Schrod, J.; Brooks, I.; Norris, S.; Brooks, B.; Hill, M.; Leisner, T.

    2012-04-01

    Unmanned Aerial Systems (UAS) facilitate the monitoring of several meteorological and aerosol parameters with high resolution in space and time. They are small, easy to operate, cost efficient and allow for flexible application during field campaigns. We present two experimental payloads for measurement of relative humidity, temperature, aerosol size distribution and the collection of aerosol samples on board the small UAS SIRIUS II. The payload modules are light weight (<1kg) and can be easily switched between two flights. All sensors can be controlled from the ground and the measured data is recorded by the autopilot together with the position data. The first module contains a sensor package for measurement of relative humidity and temperature and the Compact Lightweight Aerosol Spectrometer Prope (CLASP) for acquisition of aerosol size distributions. CLASP measures aerosol particles with diameters from 0.12μm to 9.25μm in up to 32 channels at a frequency of 10 Hz. The second module also contains a humidity and temperature sensor package and the aerosol sample collection device. The aerosol sampler collects air samples at 2 l/min onto a sample holder. After the flight the ice nuclei on the sample holder are activated in the lab and counted. In August 2012 the complete setup will be used during a measurement campaign at mount "Kleiner Feldberg" close to Frankfurt. Until then we will perform test flights and additional laboratory tests.

  19. Detecting new buildings from aerial stereo pairs at different dates

    NASA Astrophysics Data System (ADS)

    Jung, Franck

    2001-12-01

    The aim of this application is to detect changes in an aerial scene by comparing stereo pairs taken at intervals of several years in order to update a database. The result is a set of image locations that have a high likelihood to contain changes. Each location will be submitted to a human operator who will either validate the given change and update the database or reject it. We are mainly interested in changes occurring for a specific class of objects : buildings. To isolate new construction, we provide an algorithm that works in two steps. First, during a focusing phase, we aim to eliminate a large part of the scene without losing any actual changes. This is achieved with a Digital Elevation Model (DEM) comparison between the two different dates. Then, in the second phase, we classify regions of interest (ROI). Each ROI is described by four images: a stereo pair of the focusing area at the first date and a stereo pair of the focusing area at the second date. To decide whether or not the ROI contains a change, we classify each of the four images as building or non-building. The building vs non-building classifier is a combination of several decision trees induced by learning. Each node of a decision tree is identified with a graph of features which is more likely to describe buildings than background. Finally, the classification results at the two different dates are compared.

  20. Coastline Extraction from Aerial Images Based on Edge Detection

    NASA Astrophysics Data System (ADS)

    Paravolidakis, V.; Moirogiorgou, K.; Ragia, L.; Zervakis, M.; Synolakis, C.

    2016-06-01

    Nowadays coastline extraction and tracking of its changes become of high importance because of the climate change, global warming and rapid growth of human population. Coastal areas play a significant role for the economy of the entire region. In this paper we propose a new methodology for automatic extraction of the coastline using aerial images. A combination of a four step algorithm is used to extract the coastline in a robust and generalizable way. First, noise distortion is reduced in order to ameliorate the input data for the next processing steps. Then, the image is segmented into two regions, land and sea, through the application of a local threshold to create the binary image. The result is further processed by morphological operators with the aim that small objects are being eliminated and only the objects of interest are preserved. Finally, we perform edge detection and active contours fitting in order to extract and model the coastline. These algorithmic steps are illustrated through examples, which demonstrate the efficacy of the proposed methodology.

  1. Real time target allocation in cooperative unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Kudleppanavar, Ganesh

    The prolific development of Unmanned Aerial Vehicles (UAV's) in recent years has the potential to provide tremendous advantages in military, commercial and law enforcement applications. While safety and performance take precedence in the development lifecycle, autonomous operations and, in particular, cooperative missions have the ability to significantly enhance the usability of these vehicles. The success of cooperative missions relies on the optimal allocation of targets while taking into consideration the resource limitation of each vehicle. The task allocation process can be centralized or decentralized. This effort presents the development of a real time target allocation algorithm that considers available stored energy in each vehicle while minimizing the communication between each UAV. The algorithm utilizes a nearest neighbor search algorithm to locate new targets with respect to existing targets. Simulations show that this novel algorithm compares favorably to the mixed integer linear programming method, which is computationally more expensive. The implementation of this algorithm on Arduino and Xbee wireless modules shows the capability of the algorithm to execute efficiently on hardware with minimum computation complexity.

  2. System Analysis Applied to Autonomy: Application to High-Altitude Long-Endurance Remotely Operated Aircraft

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Yetter, Jeffrey A.; Guynn, Mark D.

    2006-01-01

    Maturation of intelligent systems technologies and their incorporation into aerial platforms are dictating the development of new analysis tools and incorporation of such tools into existing system analysis methodologies in order to fully capture the trade-offs of autonomy on vehicle and mission success. A first-order "system analysis of autonomy" methodology is outlined in this paper. Further, this analysis methodology is subsequently applied to notional high-altitude long-endurance (HALE) aerial vehicle missions.

  3. 43 CFR 23.4 - Application for permission to conduct exploration operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... exploration operations. 23.4 Section 23.4 Public Lands: Interior Office of the Secretary of the Interior SURFACE EXPLORATION, MINING AND RECLAMATION OF LANDS § 23.4 Application for permission to conduct exploration operations. No person shall, in any manner or by any means which will cause the surface of...

  4. 76 FR 11822 - Southern Nuclear Operating Company; Notice of Availability of Application for a Combined License

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Southern Nuclear Operating Company; Notice of Availability of Application for a Combined License On March 28, 2008, Southern Nuclear Operating Company (SNC), acting on behalf of itself and Georgia Power Company, Oglethorpe Power Corporation...

  5. 76 FR 13241 - Southern Nuclear Operating Company; Notice of Availability of Application for a Combined License

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Southern Nuclear Operating Company; Notice of Availability of Application for a Combined License On March 28, 2008, Southern Nuclear Operating Company (SNC), acting on behalf of itself and Georgia Power Company, Oglethorpe Power Corporation...

  6. 14 CFR 119.36 - Additional certificate application requirements for commercial operators.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Additional certificate application requirements for commercial operators. 119.36 Section 119.36 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR...

  7. 78 FR 40519 - Cooper Nuclear Station; Application and Amendment to Facility Operating License Involving...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-05

    ... be filed in accordance with the NRC's E-Filing rule (72 FR 49139; August 28, 2007). The E-Filing... COMMISSION Cooper Nuclear Station; Application and Amendment to Facility Operating License Involving Proposed... No. DPR-46, issued to Nebraska Public Power District (the licensee), for operation of the...

  8. CMOS Imaging Sensor Technology for Aerial Mapping Cameras

    NASA Astrophysics Data System (ADS)

    Neumann, Klaus; Welzenbach, Martin; Timm, Martin

    2016-06-01

    In June 2015 Leica Geosystems launched the first large format aerial mapping camera using CMOS sensor technology, the Leica DMC III. This paper describes the motivation to change from CCD sensor technology to CMOS for the development of this new aerial mapping camera. In 2002 the DMC first generation was developed by Z/I Imaging. It was the first large format digital frame sensor designed for mapping applications. In 2009 Z/I Imaging designed the DMC II which was the first digital aerial mapping camera using a single ultra large CCD sensor to avoid stitching of smaller CCDs. The DMC III is now the third generation of large format frame sensor developed by Z/I Imaging and Leica Geosystems for the DMC camera family. It is an evolution of the DMC II using the same system design with one large monolithic PAN sensor and four multi spectral camera heads for R,G, B and NIR. For the first time a 391 Megapixel large CMOS sensor had been used as PAN chromatic sensor, which is an industry record. Along with CMOS technology goes a range of technical benefits. The dynamic range of the CMOS sensor is approx. twice the range of a comparable CCD sensor and the signal to noise ratio is significantly better than with CCDs. Finally results from the first DMC III customer installations and test flights will be presented and compared with other CCD based aerial sensors.

  9. Unmanned Aerial Vehicle Use for Wood Chips Pile Volume Estimation

    NASA Astrophysics Data System (ADS)

    Mokroš, M.; Tabačák, M.; Lieskovský, M.; Fabrika, M.

    2016-06-01

    The rapid development of unmanned aerial vehicles is a challenge for applied research. Many technologies are developed and then researcher are looking up for their application in different sectors. Therefore, we decided to verify the use of the unmanned aerial vehicle for wood chips pile monitoring. We compared the use of GNSS device and unmanned aerial vehicle for volume estimation of four wood chips piles. We used DJI Phantom 3 Professional with the built-in camera and GNSS device (geoexplorer 6000). We used Agisoft photoscan for processing photos and ArcGIS for processing points. Volumes calculated from pictures were not statistically significantly different from amounts calculated from GNSS data and high correlation between them was found (p = 0.9993). We conclude that the use of unmanned aerial vehicle instead of the GNSS device does not lead to significantly different results. Tthe data collection consumed from almost 12 to 20 times less time with the use of UAV. Additionally, UAV provides documentation trough orthomosaic.

  10. Performance assessments of Android-powered military applications operating on tactical handheld devices

    NASA Astrophysics Data System (ADS)

    Weiss, Brian A.; Fronczek, Lisa; Morse, Emile; Kootbally, Zeid; Schlenoff, Craig

    2013-05-01

    Transformative Apps (TransApps) is a Defense Advanced Research Projects Agency (DARPA) funded program whose goal is to develop a range of militarily-relevant software applications ("apps") to enhance the operational-effectiveness of military personnel on (and off) the battlefield. TransApps is also developing a military apps marketplace to facilitate rapid development and dissemination of applications to address user needs by connecting engaged communities of endusers with development groups. The National Institute of Standards and Technology's (NIST) role in the TransApps program is to design and implement evaluation procedures to assess the performance of: 1) the various software applications, 2) software-hardware interactions, and 3) the supporting online application marketplace. Specifically, NIST is responsible for evaluating 50+ tactically-relevant applications operating on numerous Android™-powered platforms. NIST efforts include functional regression testing and quantitative performance testing. This paper discusses the evaluation methodologies employed to assess the performance of three key program elements: 1) handheld-based applications and their integration with various hardware platforms, 2) client-based applications and 3) network technologies operating on both the handheld and client systems along with their integration into the application marketplace. Handheld-based applications are assessed using a combination of utility and usability-based checklists and quantitative performance tests. Client-based applications are assessed to replicate current overseas disconnected (i.e. no network connectivity between handhelds) operations and to assess connected operations envisioned for later use. Finally, networked applications are assessed on handhelds to establish baselines of performance for when connectivity will be common usage.

  11. 27 CFR 71.49a - Applications for operating permits and industrial use permits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... permits and industrial use permits. 71.49a Section 71.49a Alcohol, Tobacco Products and Firearms ALCOHOL... and industrial use permits. If, on examination of an application for an operating permit or an industrial use permit, the appropriate TTB officer has reason to believe: (a) In case of an application...

  12. 27 CFR 71.49a - Applications for operating permits and industrial use permits.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... permits and industrial use permits. 71.49a Section 71.49a Alcohol, Tobacco Products and Firearms ALCOHOL... and industrial use permits. If, on examination of an application for an operating permit or an industrial use permit, the appropriate TTB officer has reason to believe: (a) In case of an application...

  13. 27 CFR 71.49a - Applications for operating permits and industrial use permits.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... permits and industrial use permits. 71.49a Section 71.49a Alcohol, Tobacco Products and Firearms ALCOHOL... and industrial use permits. If, on examination of an application for an operating permit or an industrial use permit, the appropriate TTB officer has reason to believe: (a) In case of an application...

  14. 27 CFR 71.49a - Applications for operating permits and industrial use permits.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... permits and industrial use permits. 71.49a Section 71.49a Alcohol, Tobacco Products and Firearms ALCOHOL... and industrial use permits. If, on examination of an application for an operating permit or an industrial use permit, the appropriate TTB officer has reason to believe: (a) In case of an application...

  15. 27 CFR 71.49a - Applications for operating permits and industrial use permits.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... permits and industrial use permits. 71.49a Section 71.49a Alcohol, Tobacco Products and Firearms ALCOHOL... and industrial use permits. If, on examination of an application for an operating permit or an industrial use permit, the appropriate TTB officer has reason to believe: (a) In case of an application...

  16. Potential applications of expert systems and operations research to space station logistics functions

    NASA Technical Reports Server (NTRS)

    Lippiatt, Thomas F.; Waterman, Donald

    1985-01-01

    The applicability of operations research, artificial intelligence, and expert systems to logistics problems for the space station were assessed. Promising application areas were identified for space station logistics. A needs assessment is presented and a specific course of action in each area is suggested.

  17. 77 FR 67837 - Callaway Plant, Unit 1; Application for Amendment to Facility Operating License

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-14

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Callaway Plant, Unit 1; Application for Amendment to Facility Operating License AGENCY: Nuclear Regulatory Commission. ACTION: License amendment application; withdrawal. ADDRESSES: Please refer to Docket ID NRC-2012-0275 when contacting the...

  18. 12 CFR 7.4009 - Applicability of state law to national bank operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Taxation; (vii) Zoning; and (viii) Any other law the effect of which the OCC determines to be incidental to... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Applicability of state law to national bank... BANK ACTIVITIES AND OPERATIONS Preemption § 7.4009 Applicability of state law to national...

  19. 14 CFR 129.7 - Application, issuance, or denial of operations specifications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... operations specifications. 129.7 Section 129.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... with the applicable security requirements of 49 CFR chapter XII; (4) Is properly and adequately... applicant— (1) Meets the applicable requirements of this part; (2) Holds the economic or exemption...

  20. 14 CFR 129.7 - Application, issuance, or denial of operations specifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... operations specifications. 129.7 Section 129.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... with the applicable security requirements of 49 CFR chapter XII; (4) Is properly and adequately... applicant— (1) Meets the applicable requirements of this part; (2) Holds the economic or exemption...

  1. 14 CFR 129.7 - Application, issuance, or denial of operations specifications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... operations specifications. 129.7 Section 129.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... with the applicable security requirements of 49 CFR chapter XII; (4) Is properly and adequately... applicant— (1) Meets the applicable requirements of this part; (2) Holds the economic or exemption...

  2. AERIAL OF VISITORS INFORMATION CENTER [VIC] & RELOCATED ROCKET GARDEN

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This is an aerial view of KSC's Visitors Information Center, origination point of guided bus tours of KSC and Cape Canaveral Air Force Station. More than one million visitors a year take advantage of the public bus tours. In left midground are the new Hall of History and food services building. The bus tours will remain in operation during the U. S. Bicentennial Exposition on Science and Technology to be held here from May 30 through September 7.

  3. Assessment of Photogrammetric Mapping Accuracy Based on Variation Flying Altitude Using Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Udin, W. S.; Ahmad, A.

    2014-02-01

    Photogrammetry is the earliest technique used to collect data for topographic mapping. The recent development in aerial photogrammetry is the used of large format digital aerial camera for producing topographic map. The aerial photograph can be in the form of metric or non-metric imagery. The cost of mapping using aerial photogrammetry is very expensive. In certain application, there is a need to map small area with limited budget. Due to the development of technology, small format aerial photogrammetry technology has been introduced and offers many advantages. Currently, digital map can be extracted from digital aerial imagery of small format camera mounted on light weight platform such as unmanned aerial vehicle (UAV). This study utilizes UAV system for large scale stream mapping. The first objective of this study is to investigate the use of light weight rotary-wing UAV for stream mapping based on different flying height. Aerial photograph were acquired at 60% forward lap and 30% sidelap specifications. Ground control points and check points were established using Total Station technique. The digital camera attached to the UAV was calibrated and the recovered camera calibration parameters were then used in the digital images processing. The second objective is to determine the accuracy of the photogrammetric output. In this study, the photogrammetric output such as stereomodel in three dimensional (3D), contour lines, digital elevation model (DEM) and orthophoto were produced from a small stream of 200m long and 10m width. The research output is evaluated for planimetry and vertical accuracy using root mean square error (RMSE). Based on the finding, sub-meter accuracy is achieved and the RMSE value decreases as the flying height increases. The difference is relatively small. Finally, this study shows that UAV is very useful platform for obtaining aerial photograph and subsequently used for photogrammetric mapping and other applications.

  4. Approach for Autonomous Control of Unmanned Aerial Vehicle Using Intelligent Agents for Knowledge Creation

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of a planned approach for Autonomous operation of an Unmanned Aerial Vehicle (UAV). A Hybrid approach will seek to provide Knowledge Generation thru the application of Artificial Intelligence (AI) and Intelligent Agents (IA) for UAV control. The application of many different types of AI techniques for flight will be explored during this research effort. The research concentration will be directed to the application of different AI methods within the UAV arena. By evaluating AI approaches, which will include Expert Systems, Neural Networks, Intelligent Agents, Fuzzy Logic, and Complex Adaptive Systems, a new insight may be gained into the benefits of AI techniques applied to achieving true autonomous operation of these systems thus providing new intellectual merit to this research field. The major area of discussion will be limited to the UAV. The systems of interest include small aircraft, insects, and miniature aircraft. Although flight systems will be explored, the benefits should apply to many Unmanned Vehicles such as: Rovers, Ocean Explorers, Robots, and autonomous operation systems. The flight system will be broken down into control agents that will represent the intelligent agent approach used in AI. After the completion of a successful approach, a framework of applying a Security Overseer will be added in an attempt to address errors, emergencies, failures, damage, or over dynamic environment. The chosen control problem was the landing phase of UAV operation. The initial results from simulation in FlightGear are presented.

  5. Application of LBB to high energy piping systems in operating PWR

    SciTech Connect

    Swamy, S.A.; Bhowmick, D.C.

    1997-04-01

    The amendment to General Design Criterion 4 allows exclusion, from the design basis, of dynamic effects associated with high energy pipe rupture by application of leak-before-break (LBB) technology. This new approach has resulted in substantial financial savings to utilities when applied to the Pressurized Water Reactor (PWR) primary loop piping and auxiliary piping systems made of stainless steel material. To date majority of applications pertain to piping systems in operating plants. Various steps of evaluation associated with the LBB application to an operating plant are described in this paper.

  6. Infrared microsensor payload for miniature unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Kostrzewa, Joseph; Meyer, William H.; Laband, Stan; Terre, William A.; Petrovich, Peter; Swanson, Kyle; Sundra, Carrie; Sener, Ward; Wilmott, Jay

    2003-09-01

    Miniature unmanned aerial vehicles (UAVs) are a category of aircraft small enough to be transported, launched, operated, and retrieved by a crew of one or two. The concept is not new, having been in limited use by the U.S. military over the past fifteen years, but interest in potential applications is growing as size and cost of the vehicles come down. An application that is particularly significant to the military and law-enforcement agencies is remote reconnaissance, with one or more onboard sensors transmitting data back to the operator(s) in real time. Typically, a miniature UAV is capable of flying a pre-programmed route autonomously, with manual override as an option. At the conclusion of the mission, the vehicle returns for landing, after which it can be quickly disassembled and stowed until its next use. Thermal imaging extends the utility of miniature UAVs to operations in complete darkness and limited visibility, but historically thermal imagers have been too large and heavy for this application. That changed in 1999 with the introduction of Indigo System's AlphaTM camera, which established a new class of thermal imaging product termed the infrared "microsensor". Substantially smaller and lighter than any other infrared imaging product available at the time, AlphaTMwas the first camera that could be readily packaged into the nose of a miniature UAV. Its low power consumption was also a key enabling feature. Building upon the success of AlphaTM, Indigo then took the microsensor class a step further with its OmegaTM camera, which broke all the records established by AlphaTM for small size, weight, and power. OmegaTM has been successfully integrated into several miniature UAVs, including AeroVironment's Pointer and Raven, as well as the Snake Eye UAV manufactured by BAI Aerosystems. Aspects of the OmegaTM design that have led to its utility on these and other platforms are described, and future prospects for even smaller microsensors are discussed.

  7. Application of a Very-Low-Cost Unmanned Aerial Vehicle (UAV) and Consumer Grade Camera for the Collection of Research Grade Data: Preliminary Findings

    NASA Astrophysics Data System (ADS)

    Christian, P.; Davis, J. D.; Blesius, L.

    2013-12-01

    The use of UAV technology in the field of geoscience research has grown almost exponentially in the last decade. UAVs have been utilized as a sensor platform in many fields including geology, biology, climatology, geomorphology and archaeology. A UAV's ability to fly frequently, at very low altitude, and at relatively little cost makes them a perfect compromise between free, low temporal and spatial resolution satellite data and terrestrial based survey when there are insufficient funds to purchase custom satellite or manned aircraft data. Unfortunately, many available UAVs for research are still relatively expensive and often have predetermined imaging systems. However, the proliferation of hobbyist grade UAVs and consumer point and shoot cameras may provide many research projects with an alternative that is both cost-effective and efficient in data collection. This study therefore seeks to answer the question, can these very low cost, hobby-grade UAVs be used to produce research grade data. To achieve this end, in December of 2012 a small grant was obtained (<$6500) to set up a complete UAV system and to employ it in a diverse range of research. The system is comprised of a 3D Robotics hexacopter, Ardupilot automated flight hardware and software, spare parts and tool kit, two Canon point-and-shoot cameras including one modified for near infrared imagery, and a field laptop. To date, successful research flights have been flown for geomorphic research in degraded and restored montane meadows to study stream channel formation using both visible and near infrared imagery as well as for the creation of digital elevation models of large hillslope gullies using structure from motion (SFM). Other applications for the hexacopter, in progress or planned, include landslide monitoring, vegetation monitoring and mapping using the normalized difference vegetation index, archaeological survey, and bird nest identification on small rock islands. An analysis of the results

  8. Intelligent mission management for uninhabited aerial vehicles

    NASA Astrophysics Data System (ADS)

    Sullivan, Don; Totah, Joseph J.; Wegener, Steve S.; Enomoto, Francis Y.; Frost, Chad R.; Kaneshige, John; Frank, Jeremy E.

    2004-12-01

    The National Aeronautics and Space Administration (NASA), Aeronautics Research Mission Directorate, is developing Intelligent Mission Management (IMM) technology for Uninhabited Aerial Vehicles (UAV"s) under the Vehicle Systems Program"s Autonomous Robust Avionics Project. The objective of the project is to develop air vehicle and associated ground element technology to enhance mission success by increasing mission return and reducing mission risk. Unanticipated science targets, uncertain conditions and changing mission requirements can all influence a flight plan and may require human intervention during the flight; however, time delays and communications bandwidth limit opportunities for operator intervention. To meet these challenges, we will develop UAV-specific technologies enabling goal-directed autonomy, i.e. the ability to redirect the flight in response to current conditions and the current goals of the flight. Our approach divides goal-directed autonomy into two components, an on-board Intelligent Agent Architecture (IAA) and a ground based Collaborative Decision Environment (CDE). These technologies cut across all aspects of a UAV system, including the payload, inner- and outer-loop onboard control, and the operator"s ground station.

  9. New forms of the Cauchy operator and some of their applications

    NASA Astrophysics Data System (ADS)

    Srivastava, H. M.; Abdlhusein, M. A.

    2016-01-01

    In this paper, we first construct the Cauchy q-shift operator T( a, b; D xy ) and the Cauchy q-difference operator L( a, b; θ xy ). We then apply these operators in order to represent and investigate some new families of q-polynomials which are defined in this paper. We derive some q-identities such as generating functions, symmetry properties and Rogers-type formulas for these q-polynomials. We also give an application for the q-exponential operator R( bD q ).

  10. Biologically Inspired Behavioral Strategies for Autonomous Aerial Explorers on Mars

    NASA Technical Reports Server (NTRS)

    Plice, Laura; Pisanich, Greg; Lau, Benton; Young, Larry A.

    2002-01-01

    The natural world is a rich source of problem- solving approaches. This paper discusses the feasibility and technical challenges underlying mimicking, or analogously adapting, biological behavioral strategies to mission/flight planning for aerial vehicles engaged in planetary exploration. Two candidate concepts based on natural resource utilization and searching behaviors are adapted io technological applications. Prototypes and test missions addressing the difficulties of implementation and their solutions are also described.

  11. Aerial surveillance based on hierarchical object classification for ground target detection

    NASA Astrophysics Data System (ADS)

    Vázquez-Cervantes, Alberto; García-Huerta, Juan-Manuel; Hernández-Díaz, Teresa; Soto-Cajiga, J. A.; Jiménez-Hernández, Hugo

    2015-03-01

    Unmanned aerial vehicles have turned important in surveillance application due to the flexibility and ability to inspect and displace in different regions of interest. The instrumentation and autonomy of these vehicles have been increased; i.e. the camera sensor is now integrated. Mounted cameras allow flexibility to monitor several regions of interest, displacing and changing the camera view. A well common task performed by this kind of vehicles correspond to object localization and tracking. This work presents a hierarchical novel algorithm to detect and locate objects. The algorithm is based on a detection-by-example approach; this is, the target evidence is provided at the beginning of the vehicle's route. Afterwards, the vehicle inspects the scenario, detecting all similar objects through UTM-GPS coordinate references. Detection process consists on a sampling information process of the target object. Sampling process encode in a hierarchical tree with different sampling's densities. Coding space correspond to a huge binary space dimension. Properties such as independence and associative operators are defined in this space to construct a relation between the target object and a set of selected features. Different densities of sampling are used to discriminate from general to particular features that correspond to the target. The hierarchy is used as a way to adapt the complexity of the algorithm due to optimized battery duty cycle of the aerial device. Finally, this approach is tested in several outdoors scenarios, proving that the hierarchical algorithm works efficiently under several conditions.

  12. Orientation and Dense Reconstruction of Unordered Terrestrial and Aerial Wide Baseline Image Sets

    NASA Astrophysics Data System (ADS)

    Bartelsen, J.; Mayer, H.; Hirschmüller, H.; Kuhn, A.; Michelini, M.

    2012-07-01

    In this paper we present an approach for detailed and precise automatic dense 3D reconstruction using images from consumer cameras. The major difference between our approach and many others is that we focus on wide-baseline image sets. We have combined and improved several methods, particularly, least squares matching, RANSAC, scale-space maxima and bundle adjustment, for robust matching and parameter estimation. Point correspondences and the five-point algorithm lead to relative orientation. Due to our robust matching method it is possible to orient images under much more unfavorable conditions, for instance concerning illumination changes or scale differences, than for often used operators such as SIFT. For dense reconstruction, we use our orientation as input for Semiglobal Matching (SGM) resulting into dense depth images. The latter can be fused into a 2.5D model for eliminating the redundancy of the highly overlapping depth images. However, some applications require full 3D models. A solution to this problem is part of our current work, for which preliminary results are presented in this paper. With very small unmanned aerial systems (Micro UAS) it is possible to acquire images which have a perspective similar to terrestrial images and can thus be combined with them. Such a combination is useful for an almost complete 3D reconstruction of urban scenes. We have applied our approach to several hundred aerial and terrestrial images and have generated detailed 2.5D and 3D models of urban areas.

  13. Wageningen UR Unmanned Aerial Remote Sensing Facility - Overview of activities

    NASA Astrophysics Data System (ADS)

    Bartholomeus, Harm; Keesstra, Saskia; Kooistra, Lammert; Suomalainen, Juha; Mucher, Sander; Kramer, Henk; Franke, Jappe

    2016-04-01

    To support environmental management there is an increasing need for timely, accurate and detailed information on our land. Unmanned Aerial Systems (UAS) are increasingly used to monitor agricultural crop development, habitat quality or urban heat efficiency. An important reason is that UAS technology is maturing quickly while the flexible capabilities of UAS fill a gap between satellite based and ground based geo-sensing systems. In 2012, different groups within Wageningen University and Research Centre have established an Unmanned Airborne Remote Sensing Facility. The objective of this facility is threefold: a) To develop innovation in the field of remote sensing science by providing a platform for dedicated and high-quality experiments; b) To support high quality UAS services by providing calibration facilities and disseminating processing procedures to the UAS user community; and c) To promote and test the use of UAS in a broad range of application fields like habitat monitoring, precision agriculture and land degradation assessment. The facility is hosted by the Laboratory of Geo-Information Science and Remote Sensing (GRS) and the Department of Soil Physics and Land Management (SLM) of Wageningen University together with the team Earth Informatics (EI) of Alterra. The added value of the Unmanned Aerial Remote Sensing Facility is that compared to for example satellite based remote sensing more dedicated science experiments can be prepared. This includes for example higher frequent observations in time (e.g., diurnal observations), observations of an object under different observation angles for characterization of BRDF and flexibility in use of camera's and sensors types. In this way, laboratory type of set ups can be tested in a field situation and effects of up-scaling can be tested. In the last years we developed and implemented different camera systems (e.g. a hyperspectral pushbroom system, and multispectral frame cameras) which we operated in projects all

  14. The application of digital medical 3D printing technology on tumor operation

    NASA Astrophysics Data System (ADS)

    Chen, Jimin; Jiang, Yijian; Li, Yangsheng

    2016-04-01

    Digital medical 3D printing technology is a new hi-tech which combines traditional medical and digital design, computer science, bio technology and 3D print technology. At the present time there are four levels application: The printed 3D model is the first and simple application. The surgery makes use of the model to plan the processing before operation. The second is customized operation tools such as implant guide. It helps doctor to operate with special tools rather than the normal medical tools. The third level application of 3D printing in medical area is to print artificial bones or teeth to implant into human body. The big challenge is the fourth level which is to print organs with 3D printing technology. In this paper we introduced an application of 3D printing technology in tumor operation. We use 3D printing to print guide for invasion operation. Puncture needles were guided by printed guide in face tumors operation. It is concluded that this new type guide is dominantly advantageous.

  15. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Aerial lifts. 1926.453 Section 1926.453 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Scaffolds § 1926.453 Aerial lifts. (a) General requirements. (1) Unless otherwise provided...

  16. A Classroom Simulation of Aerial Photography.

    ERIC Educational Resources Information Center

    Baker, Simon

    1981-01-01

    Explains how a simulation of aerial photography can help students in a college level beginning course on interpretation of aerial photography understand the interrelationships of the airplane, the camera, and the earth's surface. Procedures, objectives, equipment, and scale are discussed. (DB)

  17. BOREAS Level-0 ER-2 Aerial Photography

    NASA Technical Reports Server (NTRS)

    Newcomer, Jeffrey A.; Dominquez, Roseanne; Hall, Forrest G. (Editor)

    2000-01-01

    For BOReal Ecosystem-Atmosphere Study (BOREAS), the ER-2 and other aerial photography was collected to provide finely detailed and spatially extensive documentation of the condition of the primary study sites. The ER-2 aerial photography consists of color-IR transparencies collected during flights in 1994 and 1996 over the study areas.

  18. Adaptive planning of emergency aerial photogrammetric mission

    NASA Astrophysics Data System (ADS)

    Shen, Fuqiang; Zhu, Qing; Zhang, Junxiao; Miao, Shuangxi; Zhou, Xingxia; Cao, Zhenyu

    2015-12-01

    Aiming at the diversity of emergency aerial photogrammetric mission requirements, complex ground and air environmental constraints make the planning mission time-consuming. This paper presents a fast adaptation for the UAV aerial photogrammetric mission planning. First, Building emergency aerial UAVs mission the unified expression of UAVs model and mechanical model of performance parameters in the semantic space make the integrated expression of mission requirements and low altitude environment. Proposed match assessment method which based on resource and mission efficiency. Made the Adaptive match of UAV aerial resources and mission. According to the emergency aerial resource properties, considering complex air-ground environment and mission requirements constraints. Made accurate design of UAV route. Experimental results show, the method scientific and efficient, greatly enhanced the emergency response rate.

  19. Synthesis of the unmanned aerial vehicle remote control augmentation system

    NASA Astrophysics Data System (ADS)

    Tomczyk, Andrzej

    2014-12-01

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are not suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the "ideal" remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system.

  20. Synthesis of the unmanned aerial vehicle remote control augmentation system

    SciTech Connect

    Tomczyk, Andrzej

    2014-12-10

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are not suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the 'ideal' remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system.

  1. Variable speed operation of generators with rotor-speed feedback in wind power applications

    SciTech Connect

    Muljadi, E.; Butterfield, C.P.; Migliore, P.

    1995-11-01

    The use of induction generators in wind power applications has been common since the early development of the wind industry. Most of these generators operate at fixed frequency and are connected directly to the utility grid. Unfortunately, this mode of operation limits the rotor speed to a specific rpm. Variable-speed operation is preferred in order to facilitate maximum energy capture over a wide range of wind speeds. This paper explores variable-speed operating strategies for wind turbine applications. The objectives are to maximize energy production, provide controlled start-up and reduce torque loading. This paper focuses on optimizing the energy captured by operating at maximum aerodynamic efficiency at any wind speed. The control strategy we analyze uses rotor speed and generator power as the feedback signals. In the normal operating region, rotor speed is used to compute a target power that corresponds to optimum operation. With power as the control objective, the power converter and generator are controlled to track the target power at any rpm. Thus, the torque-speed characteristic of the generator is shaped to optimize the energy capture. The target power is continuously updated at any rpm. in extreme areas of the operating envelope, during start-up, shutdown, generator overload, or overspeed, different strategies driven by other system considerations must be used.

  2. A Comparison of Platforms for the Aerial Exploration of Titan

    NASA Technical Reports Server (NTRS)

    Wright, Henry S.; Gasbarre, Joseph F.; Levine, Joel S.

    2005-01-01

    Exploration of Titan, envisioned as a follow-on to the highly successful Cassini-Huygens mission, is described in this paper. A mission blending measurements from a dedicated orbiter and an in-situ aerial explorer is discussed. Summary description of the science rationale and the mission architecture, including the orbiter, is provided. The mission has been sized to ensure it can be accommodated on an existing expendable heavy-lift launch vehicle. A launch to Titan in 2018 with a 6-year time of flight to Titan using a combination of Solar Electric Propulsion and aeroassist (direct entry and aerocapture) forms the basic mission architecture. A detailed assessment of different platforms for aerial exploration of Titan has been performed. A rationale for the selection of the airship as the baseline platform is provided. Detailed description of the airship, its subsystems, and its operational strategies are provided.

  3. Approach for Autonomous Control of Unmanned Aerial Vehicle Using Intelligent Agents for Knowledge Creation

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of a planned approach for Autonomous operation of an Unmanned Aerial Vehicle (UAV). A Hybrid approach will seek to provide Knowledge Generation through the application of Artificial Intelligence (AI) and Intelligent Agents (IA) for UAV control. The applications of several different types of AI techniques for flight are explored during this research effort. The research concentration is directed to the application of different AI methods within the UAV arena. By evaluating AI and biological system approaches. which include Expert Systems, Neural Networks. Intelligent Agents, Fuzzy Logic, and Complex Adaptive Systems, a new insight may be gained into the benefits of AI and CAS techniques applied to achieving true autonomous operation of these systems. Although flight systems were explored, the benefits should apply to many Unmanned Vehicles such as: Rovers. Ocean Explorers, Robots, and autonomous operation systems. A portion of the flight system is broken down into control agents that represent the intelligent agent approach used in AI. After the completion of a successful approach, a framework for applying an intelligent agent is presented. The initial results from simulation of a security agent for communication are presented.

  4. Sensitivity-based operational mode shape normalisation: Application to a bridge

    NASA Astrophysics Data System (ADS)

    Parloo, E.; Cauberghe, B.; Benedettini, F.; Alaggio, R.; Guillaume, P.

    2005-01-01

    Recently, an innovative sensitivity-based technique was introduced for the normalisation of operational mode shapes purely on a basis of output-only data. The technique is based on the use of a controlled mass modification experiment and does not involve any analytical models. Moreover, it allows to extend the applicability of many modal analysis based applications towards the domain of in-operation modal testing. Previously, this method was successfully tested by means of experiments on various mechanical engineering structures. The focus of this contribution is the validation of the sensitivity-based normalisation technique on a civil structure. For this purpose, measurements were performed on a bridge.

  5. Learning Scene Categories from High Resolution Satellite Image for Aerial Video Analysis

    SciTech Connect

    Cheriyadat, Anil M

    2011-01-01

    Automatic scene categorization can benefit various aerial video processing applications. This paper addresses the problem of predicting the scene category from aerial video frames using a prior model learned from satellite imagery. We show that local and global features in the form of line statistics and 2-D power spectrum parameters respectively can characterize the aerial scene well. The line feature statistics and spatial frequency parameters are useful cues to distinguish between different urban scene categories. We learn the scene prediction model from highresolution satellite imagery to test the model on the Columbus Surrogate Unmanned Aerial Vehicle (CSUAV) dataset ollected by high-altitude wide area UAV sensor platform. e compare the proposed features with the popular Scale nvariant Feature Transform (SIFT) features. Our experimental results show that proposed approach outperforms te SIFT model when the training and testing are conducted n disparate data sources.

  6. Launching the AquaMAV: bioinspired design for aerial-aquatic robotic platforms.

    PubMed

    Siddall, R; Kovač, M

    2014-09-01

    Current Micro Aerial Vehicles (MAVs) are greatly limited by being able to operate in air only. Designing multimodal MAVs that can fly effectively, dive into the water and retake flight would enable applications of distributed water quality monitoring, search and rescue operations and underwater exploration. While some can land on water, no technologies are available that allow them to both dive and fly, due to dramatic design trade-offs that have to be solved for movement in both air and water and due to the absence of high-power propulsion systems that would allow a transition from underwater to air. In nature, several animals have evolved design solutions that enable them to successfully transition between water and air, and move in both media. Examples include flying fish, flying squid, diving birds and diving insects. In this paper, we review the biological literature on these multimodal animals and abstract their underlying design principles in the perspective of building a robotic equivalent, the Aquatic Micro Air Vehicle (AquaMAV). Building on the inspire-abstract-implement bioinspired design paradigm, we identify key adaptations from nature and designs from robotics. Based on this evaluation we propose key design principles for the design of successful aerial-aquatic robots, i.e. using a plunge diving strategy for water entry, folding wings for diving efficiency, water jet propulsion for water takeoff and hydrophobic surfaces for water shedding and dry flight. Further, we demonstrate the feasibility of the water jet propulsion by building a proof-of-concept water jet propulsion mechanism with a mass of 2.6 g that can propel itself up to 4.8 m high, corresponding to 72 times its size. This propulsion mechanism can be used for AquaMAV but also for other robotic applications where high-power density is of use, such as for jumping and swimming robots. PMID:24615533

  7. The future of structural fieldwork - UAV assisted aerial photogrammetry

    NASA Astrophysics Data System (ADS)

    Vollgger, Stefan; Cruden, Alexander

    2015-04-01

    Unmanned aerial vehicles (UAVs), commonly referred to as drones, are opening new and low cost possibilities to acquire high-resolution aerial images and digital surface models (DSM) for applications in structural geology. UAVs can be programmed to fly autonomously along a user defined grid to systematically capture high-resolution photographs, even in difficult to access areas. The photographs are subsequently processed using software that employ SIFT (scale invariant feature transform) and SFM (structure from motion) algorithms. These photogrammetric routines allow the extraction of spatial information (3D point clouds, digital elevation models, 3D meshes, orthophotos) from 2D images. Depending on flight altitude and camera setup, sub-centimeter spatial resolutions can be achieved. By "digitally mapping" georeferenced 3D models and images, orientation data can be extracted directly and used to analyse the structural framework of the mapped object or area. We present UAV assisted aerial mapping results from a coastal platform near Cape Liptrap (Victoria, Australia), where deformed metasediments of the Palaeozoic Lachlan Fold Belt are exposed. We also show how orientation and spatial information of brittle and ductile structures extracted from the photogrammetric model can be linked to the progressive development of folds and faults in the region. Even though there are both technical and legislative limitations, which might prohibit the use of UAVs without prior commercial licensing and training, the benefits that arise from the resulting high-resolution, photorealistic models can substantially contribute to the collection of new data and insights for applications in structural geology.

  8. Landscape-scale geospatial research utilizing low elevation aerial photography generated with commercial unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Lipo, C. P.; Lee, C.; Wechsler, S.

    2012-12-01

    With the ability to generate on demand high-resolution imagery across landscapes, unmanned aerial systems (UAS) are increasingly become the tools of choice for geospatial researchers. At CSULB, we have implemented a number of aerial systems in order to conduct archaeological, vegetation and terrain analyses. The platforms include the commercially available X100 by Gatewing, a hobby based aircraft, kites, and tethered blimps. From our experience, each platform has advantages and disadvantages n applicability int eh field and derived imagery. The X100, though comparatively more costly, produces images with excellent coverage of areas of interest and can fly in a wide range of weather conditions. The hobby plane solutions are low-cost and flexible in their configuration but their relative lightweight makes them difficult to fly in windy conditions and the sets of images produced can widely vary. The tethered blimp has a large payload and can fly under many conditions but its ability to systematically cover large areas is very limited. Kites are extremely low-cost but have similar limitations to blimps for area coverage and limited payload capabilities. Overall, we have found the greatest return for our investment from the Gatewing X100, despite its relatively higher cost, due to the quality of the images produced. Developments in autopilots, however, may improve the hobby aircraft solution and allow X100 like products to be produced in the near future. Results of imagery and derived products from these UAS missions will be presented and evaluated. Assessment of the viability of these UAS-products will inform the research community of their applicability to a range of applications, and if viable, could provide a lower cost alternative to other image acquisition methods.

  9. Evaluation of Selected Features for CAR Detection in Aerial Images

    NASA Astrophysics Data System (ADS)

    Tuermer, S.; Leitloff, J.; Reinartz, P.; Stilla, U.

    2011-09-01

    The extraction of vehicles from aerial images provides a wide area traffic situation within a short time. Applications for the gathered data are various and reach from smart routing in the case of congestions to usability validation of roads in the case of disasters. The challenge of the vehicle detection task is finding adequate features which are capable to separate cars from other objects; especially those that look similar. We present an experiment where selected features show their ability of car detection. Precisely, Haar-like and HoG features are utilized and passed to the AdaBoost algorithm for calculating the final detector. Afterwards the classifying power of the features is accurately analyzed and evaluated. The tests a carried out on aerial data from the inner city of Munich, Germany and include small inner city roads with rooftops close by which raise the complexity factor.

  10. GIS for mapping waterfowl density and distribution from aerial surveys

    USGS Publications Warehouse

    Butler, W.I.; Stehn, R.A.; Balogh, G.R.

    1995-01-01

    We modified standard aerial survey data collection to obtain the geographic location for each waterfowl observation on surveys in Alaska during 1987-1993. Using transect navigation with CPS (global positioning system), data recording on continuously running tapes, and a computer data input program, we located observations with an average deviation along transects of 214 m. The method provided flexibility in survey design and data analysis. Although developed for geese nesting near the coast of the Yukon-Kuskokwim Delta, the methods are widely applicable and were used on other waterfowl surveys in Alaska to map distribution and relative abundance of waterfowl. Accurate location data with GIS analysis and display may improve precision and usefulness of data from any aerial transect survey.

  11. 24. AERIAL VIEW LOOKING SOUTHEAST AT BUILDING 371 UNDER CONSTRUCTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. AERIAL VIEW LOOKING SOUTHEAST AT BUILDING 371 UNDER CONSTRUCTION IN 1974. BY 1968, BUILDING 771 WAS OUTMODED AND NEW TECHNOLOGIES HAD BEEN DEVELOPED FOR PLUTONIUM RECOVERY. AS A RESULT, A NEW RECOVERY BUILDING, BUILDING 371 WAS PLANNED. BUILDING 371 SUFFERED FROM VARIOUS DESIGN PROBLEMS, WHICH PREVENTED ITS OPENING UNTIL 1981 AND CAUSED TERMINATION OF RECOVERY OPERATIONS IN 1986. IT NEVER BECAME FULLY OPERATIONAL. TO THE EAST OF BUILDING 371, IS THE 700 BUILDING COMPLEX (4/74). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  12. Space Environments and Effects Concept: Transitioning Research to Operations and Applications

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Spann, James; Burns, Howard D.; Schumacher, Dan

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. NASA has established numerous offices specializing in specific space environments disciplines that will serve to enable these missions. To complement these existing discipline offices, a concept focusing on the development of space environment and effects application is presented. This includes space climate, space weather, and natural and induced space environments. This space environment and effects application is composed of 4 topic areas; characterization and modeling, engineering effects, prediction and operation, and mitigation and avoidance. These topic areas are briefly described below. Characterization and modeling of space environments will primarily focus on utilization during Program mission concept, planning, and design phases. Engineering effects includes materials testing and flight experiments producing data to be used in mission planning and design phases. Prediction and operation pulls data from existing sources into decision-making tools and empirical data sets to be used during the operational phase of a mission. Mitigation and avoidance will develop techniques and strategies used in the design and operations phases of the mission. The goal of this space environment and effects application is to develop decision-making tools and engineering products to support the mission phases of mission concept through operations by focusing on transitioning research to operations. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will outline the four topic areas, describe the need, and discuss an organizational structure for this space environments and effects

  13. COCOA: tracking in aerial imagery

    NASA Astrophysics Data System (ADS)

    Ali, Saad; Shah, Mubarak

    2006-05-01

    Unmanned Aerial Vehicles (UAVs) are becoming a core intelligence asset for reconnaissance, surveillance and target tracking in urban and battlefield settings. In order to achieve the goal of automated tracking of objects in UAV videos we have developed a system called COCOA. It processes the video stream through number of stages. At first stage platform motion compensation is performed. Moving object detection is performed to detect the regions of interest from which object contours are extracted by performing a level set based segmentation. Finally blob based tracking is performed for each detected object. Global tracks are generated which are used for higher level processing. COCOA is customizable to different sensor resolutions and is capable of tracking targets as small as 100 pixels. It works seamlessly for both visible and thermal imaging modes. The system is implemented in Matlab and works in a batch mode.

  14. Unmanned aerial survey of elephants.

    PubMed

    Vermeulen, Cédric; Lejeune, Philippe; Lisein, Jonathan; Sawadogo, Prosper; Bouché, Philippe

    2013-01-01

    The use of a UAS (Unmanned Aircraft System) was tested to survey large mammals in the Nazinga Game Ranch in the south of Burkina Faso. The Gatewing ×100™ equipped with a Ricoh GR III camera was used to test animal reaction as the UAS passed, and visibility on the images. No reaction was recorded as the UAS passed at a height of 100 m. Observations, made on a set of more than 7000 images, revealed that only elephants (Loxodonta africana) were easily visible while medium and small sized mammals were not. The easy observation of elephants allows experts to enumerate them on images acquired at a height of 100 m. We, therefore, implemented an aerial strip sample count along transects used for the annual wildlife foot count. A total of 34 elephants were recorded on 4 transects, each overflown twice. The elephant density was estimated at 2.47 elephants/km(2) with a coefficient of variation (CV%) of 36.10%. The main drawback of our UAS was its low autonomy (45 min). Increased endurance of small UAS is required to replace manned aircraft survey of large areas (about 1000 km of transect per day vs 40 km for our UAS). The monitoring strategy should be adapted according to the sampling plan. Also, the UAS is as expensive as a second-hand light aircraft. However the logistic and flight implementation are easier, the running costs are lower and its use is safer. Technological evolution will make civil UAS more efficient, allowing them to compete with light aircraft for aerial wildlife surveys. PMID:23405088

  15. Unmanned Aerial Survey of Elephants

    PubMed Central

    Vermeulen, Cédric; Lejeune, Philippe; Lisein, Jonathan; Sawadogo, Prosper; Bouché, Philippe

    2013-01-01

    The use of a UAS (Unmanned Aircraft System) was tested to survey large mammals in the Nazinga Game Ranch in the south of Burkina Faso. The Gatewing ×100™ equipped with a Ricoh GR III camera was used to test animal reaction as the UAS passed, and visibility on the images. No reaction was recorded as the UAS passed at a height of 100 m. Observations, made on a set of more than 7000 images, revealed that only elephants (Loxodonta africana) were easily visible while medium and small sized mammals were not. The easy observation of elephants allows experts to enumerate them on images acquired at a height of 100 m. We, therefore, implemented an aerial strip sample count along transects used for the annual wildlife foot count. A total of 34 elephants were recorded on 4 transects, each overflown twice. The elephant density was estimated at 2.47 elephants/km2 with a coefficient of variation (CV%) of 36.10%. The main drawback of our UAS was its low autonomy (45 min). Increased endurance of small UAS is required to replace manned aircraft survey of large areas (about 1000 km of transect per day vs 40 km for our UAS). The monitoring strategy should be adapted according to the sampling plan. Also, the UAS is as expensive as a second-hand light aircraft. However the logistic and flight implementation are easier, the running costs are lower and its use is safer. Technological evolution will make civil UAS more efficient, allowing them to compete with light aircraft for aerial wildlife surveys. PMID:23405088

  16. Aerial videotape mapping of coastal geomorphic changes

    USGS Publications Warehouse

    Debusschere, Karolien; Penland, Shea; Westphal, Karen A.; Reimer, P. Douglas; McBride, Randolph A.

    1991-01-01

    An aerial geomorphic mapping system was developed to examine the spatial and temporal variability in the coastal geomorphology of Louisiana. Between 1984 and 1990 eleven sequential annual and post-hurricane aerial videotape surveys were flown covering periods of prolonged fair weather, hurricane impacts and subsequent post-storm recoveries. A coastal geomorphic classification system was developed to map the spatial and temporal geomorphic changes between these surveys. The classification system is based on 10 years of shoreline monitoring, analysis of aerial photography for 1940-1989, and numerous field surveys. The classification system divides shorelines into two broad classes: natural and altered. Each class consists of several genetically linked categories of shorelines. Each category is further subdivided into morphologic types on the basis of landform relief, elevation, habitat type, vegetation density and type, and sediment characteristics. The classification is used with imagery from the low-altitude, high-resolution aerial videotape surveys to describe and quantify the longshore and cross-shore geomorphic, sedimentologic, and vegetative character of Louisiana's shoreline systems. The mapping system makes it possible to delineate and map detailed geomorphic habitat changes at a resolution higher than that of conventional vertical aerial photography. Morphologic units are mapped parallel to the regional shoreline from the aerial videotape imagery onto the base maps at a scale of 1:24,000. The base maps were constructed from vertical aerial photography concurrent with the data of the video imagery.

  17. Dermal & inhalation exposure of operators during fungicide application in vineyards. Evaluation of coverall performance.

    PubMed

    Tsakirakis, Angelos N; Kasiotis, Konstantinos M; Charistou, Agathi N; Arapaki, Niki; Tsatsakis, Aristidis; Tsakalof, Andreas; Machera, Kyriaki

    2014-02-01

    In the present study the dermal and the inhalation exposure of five operators during fungicide applications in vineyards were determined. The produced exposure datasets can be used as surrogate for the estimation of the actual and the potential dermal as well as inhalation operator exposure levels for this application scenario. The dermal exposure was measured using the whole body dosimetry method while the inhalation exposure with the use of personal air sampling devices with XAD tubes located on the operator's breathing zone. Ten field trials were carried out by 5 different operators using a tractor assisted hand-held lance with spray gun at the Tanagra region of Viotia, Greece. An in-house GC-ECD analytical method was developed and validated for the determination of penconazole, which was the active substance (a.s.) of the fungicide formulation used in field trials. The mean recovery of field-fortified samples was 81%. The operator exposure results showed expected variability and were compared to those derived from the German model for prediction of operator exposure. The comparison of the 75th percentile values for an operator wearing personal protection equipment has shown that the measured levels were 2.2 times lower than those estimated by the German model. The levels of actual dermal exposure ranged from 2 to 19 mg/kg a.s. applied. The protection provided by the two types of coveralls was evaluated and in comparison to the existing reduction factors used for other types of PPE (coveralls) was found satisfactory for the operator under the conditions of the specific applications. PMID:24140699

  18. Monte Carlo applications for the design and operation of nuclear facilities

    SciTech Connect

    Carter, L.L.; Bunch, W.L.; Morford, R.J.; Wootan, D.W.; Schwarz, R.A.

    1988-06-01

    The computational capabilities of current supercomputers enable the application of rigorous Monte Carlo methods to solve day-to-day neutronics and shielding problems. Experience at Westinghouse Hanford Company has included applications to: reactor operations, decommissioning of a reactor facility, and the design of a space reactor; intermediate energy accelerators; and high-level waste facilities and casks. These practical applications are typically computationally intensive because of the amount of information required. A number of practical examples are discussed. An increase in effective computer capabilities would further enhance the use of Monte Carlo methods. 16 refs., 4 figs., 2 tabs.

  19. 75 FR 9445 - Notice; Applications and Amendments to Facility Operating Licenses Involving Proposed No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION Notice; Applications and Amendments to Facility Operating Licenses Involving Proposed No Significant Hazards Considerations and Containing Sensitive Unclassified Non-Safeguards Information and Order Imposing Procedures for Access to...

  20. 78 FR 60321 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses and Combined Licenses...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-01

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Biweekly Notice; Applications and Amendments to Facility Operating Licenses and Combined Licenses Involving No Significant Hazards Considerations Background Pursuant to Section 189a. (2) of the Atomic Energy Act of 1954, as amended (the Act), the...

  1. 75 FR 70032 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-16

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No Significant Hazards Considerations I. Background Pursuant to section 189a. (2) of the Atomic Energy Act of 1954, as amended (the Act), the U.S....

  2. 78 FR 35066 - Applications and Amendments to Facility Operating Licenses and Combined Licenses Involving...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-11

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Applications and Amendments to Facility Operating Licenses and Combined Licenses Involving Proposed No Significant Hazards Considerations and Containing Sensitive Unclassified Non-Safeguards Information and Order Imposing Procedures for Access...

  3. 75 FR 32509 - Notice Applications and Amendments to Facility Operating Licenses Involving Proposed No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Notice Applications and Amendments to Facility Operating Licenses Involving Proposed No Significant Hazards Considerations and Containing Sensitive Unclassified Non-Safeguards Information and Order Imposing Procedures for Access to...

  4. 76 FR 20377 - Applications and Amendments to Facility Operating Licenses Involving Proposed No Significant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-12

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION Applications and Amendments to Facility Operating Licenses Involving Proposed No Significant Hazards Considerations and Containing Sensitive Unclassified Non-Safeguards Information and Order Imposing Procedures for Access to...

  5. 76 FR 48908 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-09

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No Significant Hazards Considerations Background Pursuant to Section 189a. (2) of the Atomic Energy Act of 1954, as amended (the Act), the U.S. Nuclear...

  6. 78 FR 11688 - Biweekly Notice, Applications and Amendments to Facility Operating Licenses and Combined Licenses...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Biweekly Notice, Applications and Amendments to Facility Operating Licenses and Combined Licenses Involving No Significant Hazards Considerations Background Pursuant to Section 189a. (2) of the Atomic Energy Act of 1954, as amended (the Act), the...

  7. 76 FR 37845 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No Significant Hazards Considerations Background Pursuant to section 189a. (2) of the Atomic Energy Act of 1954, as amended (the Act), the U.S. Nuclear...

  8. 75 FR 61521 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No Significant Hazards Considerations I. Background Pursuant to section 189a. (2) of the Atomic Energy Act of 1954, as amended (the Act), the U.S....

  9. 78 FR 19746 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses and Combined Licenses...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Biweekly Notice; Applications and Amendments to Facility Operating Licenses and Combined Licenses Involving No Significant Hazards Considerations Background Pursuant to Section 189a. (2) of the Atomic Energy Act of 1954, as amended (the Act), the...

  10. Kernel Functions for Difference Operators of Ruijsenaars Type and Their Applications

    NASA Astrophysics Data System (ADS)

    Komori, Yasushi; Noumi, Masatoshi; Shiraishi, Jun'ichi

    2009-05-01

    A unified approach is given to kernel functions which intertwine Ruijsenaars difference operators of type A and of type BC. As an application of the trigonometric cases, new explicit formulas for Koornwinder polynomials attached to single columns and single rows are derived.

  11. 3D exploitation system for operational applications of Earth observation data

    NASA Astrophysics Data System (ADS)

    Bonavenia, Roberto; Colaiacomo, Lucio; Dooley, Colin; Menu, Eric; Palumbo, Gianluca; Prisco, Giulio; Valero, Juan L.; Villemaud, Olivier

    1999-07-01

    The operational applicability of Earth Observation data to facilitate decision making is demonstrated with examples taken from the work of the Western European Union Satellite Center in Madrid. Analysis and reporting techniques based on 3D representations of the surface of the Earth and Virtual Reality are described.

  12. 20 CFR 726.104 - Action by the Office upon application of operator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false Action by the Office upon application of operator. 726.104 Section 726.104 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG...

  13. An investigation of potential applications of OP-SAPS: Operational Sampled Analog Processors

    NASA Technical Reports Server (NTRS)

    Parrish, E. A.; Mcvey, E. S.

    1977-01-01

    The application of OP-SAP's (operational sampled analog processors) in pattern recognition system is summarized. Areas investigated include: (1) human face recognition; (2) a high-speed programmable transversal filter system; (3) discrete word (speech) recognition; and (4) a resolution enhancement system.

  14. 20 CFR 726.104 - Action by the Office upon application of operator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false Action by the Office upon application of operator. 726.104 Section 726.104 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG...

  15. 20 CFR 726.104 - Action by the Office upon application of operator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false Action by the Office upon application of operator. 726.104 Section 726.104 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG...

  16. 77 FR 66486 - Applications and Amendments to Facility Operating Licenses and Combined Licenses Involving...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-05

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Applications and Amendments to Facility Operating Licenses and Combined Licenses Involving Proposed No Significant Hazards Considerations and Containing Sensitive Unclassified Non-Safeguards Information and Order Imposing Procedures for Access...

  17. 76 FR 67485 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No Significant Hazards Considerations Background Pursuant to section 189a.(2) of the Atomic Energy Act of 1954, as amended (the Act), the U.S. Nuclear...

  18. 78 FR 47785 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses and Combined Licenses...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Biweekly Notice; Applications and Amendments to Facility Operating Licenses and Combined Licenses Involving No Significant Hazards Considerations Background Pursuant to Section 189a. (2) of the Atomic Energy Act of 1954, as amended (the Act), the...

  19. 75 FR 64359 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-19

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No Significant Hazards Considerations I. Background Pursuant to section 189a.(2) of the Atomic Energy Act of 1954, as amended (the Act), the U.S....

  20. 75 FR 17439 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No Significant Hazards Considerations I. Background Pursuant to section 189a. (2) of the Atomic Energy Act of 1954, as amended (the Act), the U.S....