Science.gov

Sample records for aerial application system

  1. A Low-Cost Imaging System for Aerial Applicators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural aircraft provide a readily available and versatile platform for airborne remote sensing. Although various airborne imaging systems are being used for research and commercial applications, most of these systems are either too expensive or too complex to be of practical use for aerial app...

  2. Field Assessment of A Variable-rate Aerial Application System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several experiments were conducted to evaluate the system response of a variable-rate aerial application controller to changing flow rates. The research is collaboration between the USDA, ARS, APTRU and Houma Avionics, USA, manufacturer of a widely used flow controller designed for agricultural airc...

  3. Aerial Image Systems

    NASA Astrophysics Data System (ADS)

    Clapp, Robert E.

    1987-09-01

    Aerial images produce the best stereoscopic images of the viewed world. Despite the fact that every optic in existence produces an aerial image, few persons are aware of their existence and possible uses. Constant reference to the eye and other optical systems have produced a psychosis of design that only considers "focal planes" in the design and analysis of optical systems. All objects in the field of view of the optical device are imaged by the device as an aerial image. Use of aerial images in vision and visual display systems can provide a true stereoscopic representation of the viewed world. This paper discusses aerial image systems - their applications and designs and presents designs and design concepts that utilize aerial images to obtain superior visual displays, particularly with application to visual simulation.

  4. Aerial applications dispersal systems control requirements study. [agriculture

    NASA Technical Reports Server (NTRS)

    Bauchspies, J. S.; Cleary, W. L.; Rogers, W. F.; Simpson, W.; Sanders, G. S.

    1980-01-01

    Performance deficiencies in aerial liquid and dry dispersal systems are identified. Five control system concepts are explored: (1) end of field on/off control; (2) manual control of particle size and application rate from the aircraft; (3) manual control of deposit rate on the field; (4) automatic alarm and shut-off control; and (5) fully automatic control. Operational aspects of the concepts and specifications for improved control configurations are discussed in detail. A research plan to provide the technology needed to develop the proposed improvements is presented along with a flight program to verify the benefits achieved.

  5. 75 FR 52713 - Nationwide Aerial Application of Fire Retardant on National Forest System Lands

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ... Forest Service Nationwide Aerial Application of Fire Retardant on National Forest System Lands AGENCY... aerial application of fire retardant on National Forest System lands. The responsible official for this.... Comments may also be sent via e- mail to FireRetardantEIS@fs.fed.us . FOR FURTHER INFORMATION CONTACT:...

  6. Rangeland remote sensing applications with unmanned aerial systems (UAS) in the national airspace: challenges and experiences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, civilian applications of unmanned aerial systems (UAS) have increased considerably due to their greater availability and the miniaturization of sensors, GPS, inertial measurement units, and other hardware. UAS are well suited for rangeland remote sensing applications, because of the...

  7. Improving Flow Response of a Variable-rate Aerial Application System by Interactive Refinement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were conducted to evaluate response of a variable-rate aerial application controller to changing flow rates and to improve its response at correspondingly varying system pressures. System improvements have been made by refinement of the control algorithms over time in collaboration with ...

  8. A low-cost single-camera imaging system for aerial applicators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural aircraft provide a readily available and versatile platform for airborne remote sensing. Although various airborne imaging systems are available, most of these systems are either too expensive or too complex to be of practical use for aerial applicators. The objective of this study was ...

  9. Field scale evaluation of spray drift reduction technologies from ground and aerial application systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this work is to evaluate a proposed Test Plan for the validation testing of pesticide spray drift reduction technologies for row and field crops, focusing on the testing of ground and aerial application systems under full-scale field evaluations. The measure of performance for a gi...

  10. Accuracy Potential and Applications of MIDAS Aerial Oblique Camera System

    NASA Astrophysics Data System (ADS)

    Madani, M.

    2012-07-01

    Airborne oblique cameras such as Fairchild T-3A were initially used for military reconnaissance in 30s. A modern professional digital oblique camera such as MIDAS (Multi-camera Integrated Digital Acquisition System) is used to generate lifelike three dimensional to the users for visualizations, GIS applications, architectural modeling, city modeling, games, simulators, etc. Oblique imagery provide the best vantage for accessing and reviewing changes to the local government tax base, property valuation assessment, buying & selling of residential/commercial for better decisions in a more timely manner. Oblique imagery is also used for infrastructure monitoring making sure safe operations of transportation, utilities, and facilities. Sanborn Mapping Company acquired one MIDAS from TrackAir in 2011. This system consists of four tilted (45 degrees) cameras and one vertical camera connected to a dedicated data acquisition computer system. The 5 digital cameras are based on the Canon EOS 1DS Mark3 with Zeiss lenses. The CCD size is 5,616 by 3,744 (21 MPixels) with the pixel size of 6.4 microns. Multiple flights using different camera configurations (nadir/oblique (28 mm/50 mm) and (50 mm/50 mm)) were flown over downtown Colorado Springs, Colorado. Boresight fights for 28 mm nadir camera were flown at 600 m and 1,200 m and for 50 mm nadir camera at 750 m and 1500 m. Cameras were calibrated by using a 3D cage and multiple convergent images utilizing Australis model. In this paper, the MIDAS system is described, a number of real data sets collected during the aforementioned flights are presented together with their associated flight configurations, data processing workflow, system calibration and quality control workflows are highlighted and the achievable accuracy is presented in some detail. This study revealed that the expected accuracy of about 1 to 1.5 GSD (Ground Sample Distance) for planimetry and about 2 to 2.5 GSD for vertical can be achieved. Remaining systematic

  11. Application of the aerial profiling of terrain system

    USGS Publications Warehouse

    Cyran, E.J.

    1986-01-01

    Test well Ch-Bf 146 was drilled to 1,650 ft below land surface to explore and evaluate the Patapsco Formation aquifers deeper than 1,000 ft in the Waldorf/La Plata area of Charles County, Maryland. The test hole penetrated two major aquifer systems above a depth of 1,000 ft and another major aquifer system and aquifer below 1,000 ft. The deepest aquifer system found in the test drilling, the Lower Patapsco aquifer system, is comprised of a group of sands which lie between 1,140 ft and the base of the Patapsco Formation at 1,417 ft. The Waldorf aquifer system, overlies the Upper Patapsco aquifer system and includes sands in the Waldorf/La Plata area that are referred to as the ' Magothy aquifer ' by other. At the test well site, the Waldorf aquifer system consists solely of sands in the Magothy and Monmouth Formations. The three major aquifer systems and the Middle Patapsco aquifer are correlative along the regional strike for at least 10 miles in the Waldorf/La Plata area. Correlations of geophysical logs indicate that individual sands 15 to 25 ft thick can be traced between wells. Geophysical log correlations also indicate that, at some well sites, the Waldorf aquifer system and the Upper Patapsco aquifer system are in sand-on-sand contact and function as one major hydrologic system at these sites. A production well (Ch-Bf 147) was drilled at the site of the test well (Ch-Bf 146). The initial static water level of these aquifers was 9.8 ft below sea level. Evaluation of the 24-hr pumping test of Ch-Bf 147 resulted in a transmissivity of 14,000 gpd/ft (gallons per day per foot) for the first 2 hours of the test and 7,300 gpd/ft for the remainder of the test. The decrease of 6,700 gpd/ft in the transmissivity indicates that the well 's expanding cone of depression intersected a transmissivity boundary after 2 hours of pumping. The Patapsco sands tested in Ch-Bf 147 have a storage coefficient of 0.0016. The hydraulic conductivity of the producing sands in Ch-Bf 147

  12. Unmanned Aerial Systems and Spectroscopy for Remote Sensing Applications in Archaeology

    NASA Astrophysics Data System (ADS)

    Themistocleous, K.; Agapiou, A.; Cuca, B.; Hadjimitsis, D. G.

    2015-04-01

    Remote sensing has open up new dimensions in archaeological research. Although there has been significant progress in increasing the resolution of space/aerial sensors and image processing, the detection of the crop (and soil marks) formations, which relate to buried archaeological remains, are difficult to detect since these marks may not be visible in the images if observed over different period or at different spatial/spectral resolution. In order to support the improvement of earth observation remote sensing technologies specifically targeting archaeological research, a better understanding of the crop/soil marks formation needs to be studied in detail. In this paper the contribution of both Unmanned Aerial Systems as well ground spectroradiometers is discussed in a variety of examples applied in the eastern Mediterranean region (Cyprus and Greece) as well in Central Europe (Hungary). In- situ spectroradiometric campaigns can be applied for the removal of atmospheric impact to simultaneous satellite overpass images. In addition, as shown in this paper, the systematic collection of ground truth data prior to the satellite/aerial acquisition can be used to detect the optimum temporal and spectral resolution for the detection of stress vegetation related to buried archaeological remains. Moreover, phenological studies of the crops from the area of interest can be simulated to the potential sensors based on their Relative Response Filters and therefore prepare better the satellite-aerial campaigns. Ground data and the use of Unmanned Aerial Systems (UAS) can provide an increased insight for studying the formation of crop and soil marks. New algorithms such as vegetation indices and linear orthogonal equations for the enhancement of crop marks can be developed based on the specific spectral characteristics of the area. As well, UAS can be used for remote sensing applications in order to document, survey and model cultural heritage and archaeological sites.

  13. Aerial Photography Summary Record System

    USGS Publications Warehouse

    ,

    1998-01-01

    The Aerial Photography Summary Record System (APSRS) describes aerial photography projects that meet specified criteria over a given geographic area of the United States and its territories. Aerial photographs are an important tool in cartography and a number of other professions. Land use planners, real estate developers, lawyers, environmental specialists, and many other professionals rely on detailed and timely aerial photographs. Until 1975, there was no systematic approach to locate an aerial photograph, or series of photographs, quickly and easily. In that year, the U.S. Geological Survey (USGS) inaugurated the APSRS, which has become a standard reference for users of aerial photographs.

  14. A low-cost dual-camera imaging system for aerial applicators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural aircraft provide a readily available remote sensing platform as low-cost and easy-to-use consumer-grade cameras are being increasingly used for aerial imaging. In this article, we report on a dual-camera imaging system we recently assembled that can capture RGB and near-infrared (NIR) i...

  15. Data Acquisition (DAQ) system dedicated for remote sensing applications on Unmanned Aerial Vehicles (UAV)

    NASA Astrophysics Data System (ADS)

    Keleshis, C.; Ioannou, S.; Vrekoussis, M.; Levin, Z.; Lange, M. A.

    2014-08-01

    Continuous advances in unmanned aerial vehicles (UAV) and the increased complexity of their applications raise the demand for improved data acquisition systems (DAQ). These improvements may comprise low power consumption, low volume and weight, robustness, modularity and capability to interface with various sensors and peripherals while maintaining the high sampling rates and processing speeds. Such a system has been designed and developed and is currently integrated on the Autonomous Flying Platforms for Atmospheric and Earth Surface Observations (APAESO/NEA-YΠOΔOMH/NEKΠ/0308/09) however, it can be easily adapted to any UAV or any other mobile vehicle. The system consists of a single-board computer with a dual-core processor, rugged surface-mount memory and storage device, analog and digital input-output ports and many other peripherals that enhance its connectivity with various sensors, imagers and on-board devices. The system is powered by a high efficiency power supply board. Additional boards such as frame-grabbers, differential global positioning system (DGPS) satellite receivers, general packet radio service (3G-4G-GPRS) modems for communication redundancy have been interfaced to the core system and are used whenever there is a mission need. The onboard DAQ system can be preprogrammed for automatic data acquisition or it can be remotely operated during the flight from the ground control station (GCS) using a graphical user interface (GUI) which has been developed and will also be presented in this paper. The unique design of the GUI and the DAQ system enables the synchronized acquisition of a variety of scientific and UAV flight data in a single core location. The new DAQ system and the GUI have been successfully utilized in several scientific UAV missions. In conclusion, the novel DAQ system provides the UAV and the remote-sensing community with a new tool capable of reliably acquiring, processing, storing and transmitting data from any sensor integrated

  16. AERIAL MEASURING SYSTEM IN JAPAN

    SciTech Connect

    Lyons, Craig; Colton, David

    2012-01-01

    The U.S. Department of Energy National Nuclear Security Agency’s Aerial Measuring System deployed personnel and equipment to partner with the U.S. Air Force in Japan to conduct multiple aerial radiological surveys. These were the first and most comprehensive sources of actionable information for U.S. interests in Japan and provided early confirmation to the government of Japan as to the extent of the release from the Fukushima Daiichi Nuclear Power Generation Station. Many challenges were overcome quickly during the first 48 hours; including installation and operation of Aerial Measuring System equipment on multiple U.S. Air Force Japan aircraft, flying over difficult terrain, and flying with talented pilots who were unfamiliar with the Aerial Measuring System flight patterns. These all combined to make for a dynamic and non-textbook situation. In addition, the data challenges of the multiple and on-going releases, and integration with the Japanese government to provide valid aerial radiological survey products that both military and civilian customers could use to make informed decisions, was extremely complicated. The Aerial Measuring System Fukushima response provided insight in addressing these challenges and gave way to an opportunity for the expansion of the Aerial Measuring System’s mission beyond the borders of the US.

  17. Application of DOAS Instruments for Trace Gas Measurements on Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Horbanski, M.; Pöhler, D.; Mahr, T.; Wagner, T.; Platt, U.

    2012-04-01

    Unmanned Aerial Systems (UAS) are a new powerful tool for observations in the atmospheric boundary layer. Recent developments in measuring technology allow the construction of compact and sensitive active and passive DOAS instruments which can fit the space and weight constraints on Unmanned Aircraft Systems. This opens new possibilities for trace gas measurements in the lower troposphere, especially in areas which are not accessible to manned aviation e.g. volcanic plumes or which should be monitored regularly (e.g. industrial emissions of a stack). Two DOAS instruments for the APAESO platform of the Energy, Environment and Water Research Centre (EEWRC) at the Cyprus Institute are presented. Our first system is a passive DOAS for remote sensing applications which measures scattered sunlight and light reflected by the surface. It is equipped with telescopes for observations in downward (nadir) and horizontal (limb) viewing direction. Thus it allows determining height profiles and the spatial distribution of trace gases. For this the light is analysed by a compact spectrometer which covers the UV-blue range allowing to measure a broad variety of atmospheric trace gases (e.g. NO2, SO2, BrO, IO, H2O ...) and aerosol properties via O4 absorption. Additionally, the nadir direction is equipped with a system for the observation of surface properties. It will be used to measure and analyse reflection of different types of vegetation. The spectra will serve as reference spectra for satellite measurements to create global maps. The instrumental setup and the results of first test flights are shown. The second instrument which is currently under development is a Cavity Enhanced (CE-) DOAS for in situ measurements of NO3. In contrast to the passive DOAS it is able to perform night time measurements as it uses an active LED light source. This is important for studies of NO3 since it plays an important role in night time chemistry while it is rapidly photolysed during daytime

  18. Development of a new modular aerial spray system and night application capability for the U.S. Air Force

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. Air Force maintains a capability with the C130 aircraft to conduct aerial spray operations over large areas for controlling insects of medical importance. The current modular aerial spray system (MASS) is custom designed to support a variety of configurations from ultralow volume space spra...

  19. Apply Pesticides Correctly, A Guide for Commercial Applicators: Aerial Application.

    ERIC Educational Resources Information Center

    Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.

    This guide contains basic information to meet specific standards for pesticide applicators. The text is concerned with the calibration of dry and liquid pesticide systems for aerial application. Additionally, dispersal equipment is discussed with considerations for environmental and safety factors. (CS)

  20. Efficient Forest Fire Detection Index for Application in Unmanned Aerial Systems (UASs)

    PubMed Central

    Cruz, Henry; Eckert, Martina; Meneses, Juan; Martínez, José-Fernán

    2016-01-01

    This article proposes a novel method for detecting forest fires, through the use of a new color index, called the Forest Fire Detection Index (FFDI), developed by the authors. The index is based on methods for vegetation classification and has been adapted to detect the tonalities of flames and smoke; the latter could be included adaptively into the Regions of Interest (RoIs) with the help of a variable factor. Multiple tests have been performed upon database imagery and present promising results: a detection precision of 96.82% has been achieved for image sizes of 960 × 540 pixels at a processing time of 0.0447 seconds. This achievement would lead to a performance of 22 f/s, for smaller images, while up to 54 f/s could be reached by maintaining a similar detection precision. Additional tests have been performed on fires in their early stages, achieving a precision rate of p = 96.62%. The method could be used in real-time in Unmanned Aerial Systems (UASs), with the aim of monitoring a wider area than through fixed surveillance systems. Thus, it would result in more cost-effective outcomes than conventional systems implemented in helicopters or satellites. UASs could also reach inaccessible locations without jeopardizing people’s safety. On-going work includes implementation into a commercially available drone. PMID:27322264

  1. Efficient Forest Fire Detection Index for Application in Unmanned Aerial Systems (UASs).

    PubMed

    Cruz, Henry; Eckert, Martina; Meneses, Juan; Martínez, José-Fernán

    2016-06-16

    This article proposes a novel method for detecting forest fires, through the use of a new color index, called the Forest Fire Detection Index (FFDI), developed by the authors. The index is based on methods for vegetation classification and has been adapted to detect the tonalities of flames and smoke; the latter could be included adaptively into the Regions of Interest (RoIs) with the help of a variable factor. Multiple tests have been performed upon database imagery and present promising results: a detection precision of 96.82% has been achieved for image sizes of 960 × 540 pixels at a processing time of 0.0447 seconds. This achievement would lead to a performance of 22 f/s, for smaller images, while up to 54 f/s could be reached by maintaining a similar detection precision. Additional tests have been performed on fires in their early stages, achieving a precision rate of p = 96.62%. The method could be used in real-time in Unmanned Aerial Systems (UASs), with the aim of monitoring a wider area than through fixed surveillance systems. Thus, it would result in more cost-effective outcomes than conventional systems implemented in helicopters or satellites. UASs could also reach inaccessible locations without jeopardizing people's safety. On-going work includes implementation into a commercially available drone.

  2. Efficient Forest Fire Detection Index for Application in Unmanned Aerial Systems (UASs).

    PubMed

    Cruz, Henry; Eckert, Martina; Meneses, Juan; Martínez, José-Fernán

    2016-01-01

    This article proposes a novel method for detecting forest fires, through the use of a new color index, called the Forest Fire Detection Index (FFDI), developed by the authors. The index is based on methods for vegetation classification and has been adapted to detect the tonalities of flames and smoke; the latter could be included adaptively into the Regions of Interest (RoIs) with the help of a variable factor. Multiple tests have been performed upon database imagery and present promising results: a detection precision of 96.82% has been achieved for image sizes of 960 × 540 pixels at a processing time of 0.0447 seconds. This achievement would lead to a performance of 22 f/s, for smaller images, while up to 54 f/s could be reached by maintaining a similar detection precision. Additional tests have been performed on fires in their early stages, achieving a precision rate of p = 96.62%. The method could be used in real-time in Unmanned Aerial Systems (UASs), with the aim of monitoring a wider area than through fixed surveillance systems. Thus, it would result in more cost-effective outcomes than conventional systems implemented in helicopters or satellites. UASs could also reach inaccessible locations without jeopardizing people's safety. On-going work includes implementation into a commercially available drone. PMID:27322264

  3. Low altitude aerial photogrammetry application to braided river systems. Example of the Buech River, Alps, France.

    NASA Astrophysics Data System (ADS)

    Jules Fleury, Thomas; Pothin, Virginie; Vella, Claude; Dussouillez, Philippe; Izem, Abdelkoddouss

    2015-04-01

    Low-altitude aerial photogrammetry offers new opportunities for geomorphology and other fields requiring very high-resolution topographic data. It combines the advantages of the reproducibility of GPS topographic surveys with the high accuracy of LIDAR, but at relatively low-cost, easy-to-deploy and with the synaptic advantage of remote sensing. In order to evaluate the potential of photogrammetry on river systems and to assess river-bed changes and erosion-accretion processes, we conducted several surveys over the period of one year on the Buech river, a gravel-bed braided river located in the French Southern Alps. The study area is located directly upstream of a gravel pit and there is an interest in evaluating its effects on the riverbed. Our field protocol was comprised of vertical aerial photographs taken from a microlight aircraft flying approximately 300 ft above the ground. The equipment used was a full-frame DSLR with a wide angle lense, synchronised with a DGPS onboard. Fourty 40cm wide targets were placed on the ground and georeferenced by RTK DGPS with an accuracy of 2cm. In addition, close to one thousand Ground Control Points (GCPs) were measured within the different types of ground surfaces (vegetated, water, gravels) in order to assess the Digital Terrain Model (DTM) accuracy. We operated the production of the 3D model and its derived products: Digital Surface Model (DSM) and orthophotography, with user-friendly Agisoft (c) Photoscan Professional software. The processing of several hundred pictures with 2.5 cm ground resolution resulted in a DSM with a resolution of 10 cm and a vertical accuracy within 5 cm. As is expected, accuracy was best on bare bars and decreased with increasing vegetation density. To complement the DSM in the wetted channels, we used the orthophotos to establish a relationship between water color and flow depth using statistical multivariate regressions. Merging the bathymetric model and the DSM produced a DTM with a vertical

  4. Aerial robotic data acquisition system

    SciTech Connect

    Hofstetter, K.J.; Hayes, D.W.; Pendergast, M.M.; Corban, J.E.

    1993-12-31

    A small, unmanned aerial vehicle (UAV), equipped with sensors for physical and chemical measurements of remote environments, is described. A miniature helicopter airframe is used as a platform for sensor testing and development. The sensor output is integrated with the flight control system for real-time, interactive, data acquisition and analysis. Pre-programmed flight missions will be flown with several sensors to demonstrate the cost-effective surveillance capabilities of this new technology.

  5. Current status and future directions of precision agriculture for aerial application in the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision aerial application in the USA is less than a decade old since the development of the first variable-rate aerial application system. Many areas of the United States rely on readily available agricultural airplanes or helicopters for pest management. Variable-rate aerial application provides...

  6. Unmanned Aerial Vehicle Systems for Disaster Relief: Tornado Alley

    NASA Technical Reports Server (NTRS)

    DeBusk, Wesley M.

    2009-01-01

    Unmanned aerial vehicle systems are currently in limited use for public service missions worldwide. Development of civil unmanned technology in the United States currently lags behind military unmanned technology development in part because of unresolved regulatory and technological issues. Civil unmanned aerial vehicle systems have potential to augment disaster relief and emergency response efforts. Optimal design of aerial systems for such applications will lead to unmanned vehicles which provide maximum potentiality for relief and emergency response while accounting for public safety concerns and regulatory requirements. A case study is presented that demonstrates application of a civil unmanned system to a disaster relief mission with the intent on saving lives. The concept utilizes unmanned aircraft to obtain advanced warning and damage assessments for tornados and severe thunderstorms. Overview of a tornado watch mission architecture as well as commentary on risk, cost, need for, and design tradeoffs for unmanned aerial systems are provided.

  7. Unmanned Aerial Vehicle (UAV) operated spectral camera system for forest and agriculture applications

    NASA Astrophysics Data System (ADS)

    Saari, Heikki; Pellikka, Ismo; Pesonen, Liisa; Tuominen, Sakari; Heikkilä, Jan; Holmlund, Christer; Mäkynen, Jussi; Ojala, Kai; Antila, Tapani

    2011-11-01

    VTT Technical Research Centre of Finland has developed a Fabry-Perot Interferometer (FPI) based hyperspectral imager compatible with the light weight UAV platforms. The concept of the hyperspectral imager has been published in the SPIE Proc. 7474 and 7668. In forest and agriculture applications the recording of multispectral images at a few wavelength bands is in most cases adequate. The possibility to calculate a digital elevation model of the forest area and crop fields provides means to estimate the biomass and perform forest inventory. The full UAS multispectral imaging system will consist of a high resolution false color imager and a FPI based hyperspectral imager which can be used at resolutions from VGA (480 x 640 pixels) up to 5 Mpix at wavelength range 500 - 900 nm at user selectable spectral resolutions in the range 10...40 nm @ FWHM. The resolution is determined by the order at which the Fabry- Perot interferometer is used. The overlap between successive images of the false color camera is 70...80% which makes it possible to calculate the digital elevation model of the target area. The field of view of the false color camera is typically 80 degrees and the ground pixel size at 150 m flying altitude is around 5 cm. The field of view of the hyperspectral imager is presently is 26 x 36 degrees and ground pixel size at 150 m flying altitude is around 3.5 cm. The UAS system has been tried in summer 2011 in Southern Finland for the forest and agricultural areas. During the first test campaigns the false color camera and hyperspectral imager were flown over the target areas at separate flights. The design and calibration of the hyperspectral imager will be shortly explained. The test flight campaigns on forest and crop fields and their preliminary results are also presented in this paper.

  8. Development of an unmanned agricultural robotics system for measuring crop conditions for precision aerial application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Unmanned Agricultural Robotics System (UARS) is acquired, rebuilt with desired hardware, and operated in both classrooms and field. The UARS includes crop height sensor, crop canopy analyzer, normalized difference vegetative index (NDVI) sensor, multispectral camera, and hyperspectral radiometer...

  9. Aerial Measuring System Sensor Modeling

    SciTech Connect

    R. S. Detwiler

    2002-04-01

    This project deals with the modeling the Aerial Measuring System (AMS) fixed-wing and rotary-wing sensor systems, which are critical U.S. Department of Energy's National Nuclear Security Administration (NNSA) Consequence Management assets. The fixed-wing system is critical in detecting lost or stolen radiography or medical sources, or mixed fission products as from a commercial power plant release at high flying altitudes. The helicopter is typically used at lower altitudes to determine ground contamination, such as in measuring americium from a plutonium ground dispersal during a cleanup. Since the sensitivity of these instruments as a function of altitude is crucial in estimating detection limits of various ground contaminations and necessary count times, a characterization of their sensitivity as a function of altitude and energy is needed. Experimental data at altitude as well as laboratory benchmarks is important to insure that the strong effects of air attenuation are modeled correctly. The modeling presented here is the first attempt at such a characterization of the equipment for flying altitudes. The sodium iodide (NaI) sensors utilized with these systems were characterized using the Monte Carlo N-Particle code (MCNP) developed at Los Alamos National Laboratory. For the fixed wing system, calculations modeled the spectral response for the 3-element NaI detector pod and High-Purity Germanium (HPGe) detector, in the relevant energy range of 50 keV to 3 MeV. NaI detector responses were simulated for both point and distributed surface sources as a function of gamma energy and flying altitude. For point sources, photopeak efficiencies were calculated for a zero radial distance and an offset equal to the altitude. For distributed sources approximating an infinite plane, gross count efficiencies were calculated and normalized to a uniform surface deposition of 1 {micro}Ci/m{sup 2}. The helicopter calculations modeled the transport of americium-241 ({sup 241}Am

  10. Unmanned Aerial Vehicle in Cadastral Applications

    NASA Astrophysics Data System (ADS)

    Manyoky, M.; Theiler, P.; Steudler, D.; Eisenbeiss, H.

    2011-09-01

    This paper presents the investigation of UAVs (Unmanned Aerial Vehicles) for use in cadastral surveying. Within the scope of a pilot study UAVs were tested for capturing geodata and compared with conventional data acquisition methods for cadastral surveying. Two study sites were therefore surveyed with a tachymeter-GNSS combination as well as a UAV system. The workflows of both methods were investigated and the resulting data were compared with the requirements of Swiss cadastral surveying. Concerning data acquisition and evaluation, the two systems are found to be comparable in terms of time expenditure, accuracy, and completeness. In conclusion, the UAV image orientation proved to be the limiting factor for the obtained accuracy due to the low- cost camera including camera calibration, image quality, and definition of the ground control points (natural or artificial). However, the required level of accuracy for cadastral surveying was reached. The advantage of UAV systems lies in their high flexibility and efficiency in capturing the surface of an area from a low flight altitude. In addition, further information such as orthoimages, elevation models and 3D objects can easily be gained from UAV images. Altogether, this project endorses the benefit of using UAVs in cadastral applications and the new opportunities they provide for cadastral surveying.

  11. Application of Adaptive Autopilot Designs for an Unmanned Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Shin, Yoonghyun; Calise, Anthony J.; Motter, Mark A.

    2005-01-01

    This paper summarizes the application of two adaptive approaches to autopilot design, and presents an evaluation and comparison of the two approaches in simulation for an unmanned aerial vehicle. One approach employs two-stage dynamic inversion and the other employs feedback dynamic inversions based on a command augmentation system. Both are augmented with neural network based adaptive elements. The approaches permit adaptation to both parametric uncertainty and unmodeled dynamics, and incorporate a method that permits adaptation during periods of control saturation. Simulation results for an FQM-117B radio controlled miniature aerial vehicle are presented to illustrate the performance of the neural network based adaptation.

  12. Toxicological effects of aerial application of monocrotophos.

    PubMed

    Rao, R R; Quadros, F; Mazmudar, R M; Marathe, M R; Gangoli, S D

    1980-01-01

    Aerial application of the insecticide Nuvacron 40% (monocrotophos) had no significant effect on the cholinesterase level of plasma and erythrocytes of cattle, chicken, buffaloes, and human volunteers exposed to the spray. Contamination of canal water with the pesticide was completely eliminated within 24 hr, whereas that in the soil was reduced by 80% in 72 hr. The degradation of insecticide residue in grass was about 90% in seven days and in cotton leaves about 85% for the same period.

  13. Unplanned releases and injuries associated with aerial application of chemicals, 1995-2002.

    PubMed

    Rice, Nancy; Messing, Rita; Souther, Larry; Berkowitz, Zahava

    2005-11-01

    For this article, records of the Hazardous Substances Emergency Events Surveillance (HSEES) system were reviewed to identify and describe acute, unplanned releases of agricultural chemicals and associated injuries related to aerial application during 1995-2002. Records of aerial-application accidents from the National Transportation Safety Board were also reviewed. Of the 54,090 events in the HSEES system for 1995-2002, 91 were identified as aerial-application events. The most commonly released substance was malathion. There were 56 victims; 12 died, and 34 required treatment at a hospital. A higher percentage of HSEES aerial-applicator events involved injury and death than did other HSEES transportation events. The relatively high number of injuries and fatalities underscores the need for precautions such as monitoring and limiting pilot cumulative exposures to pesticides, and using appropriate personal protective equipment and decontamination equipment. Emergency responders should be educated about the hazards associated with chemicals at aerial-application crash sites. PMID:16334093

  14. MicroProbe Small Unmanned Aerial System

    NASA Technical Reports Server (NTRS)

    Bland, Geoffrey; Miles, Ted

    2012-01-01

    The MicroProbe unmanned aerial system (UAS) concept incorporates twin electric motors mounted on the vehicle wing, thus enabling an aerodynamically and environmentally clean nose area for atmospheric sensors. A payload bay is also incorporated in the fuselage to accommodate remote sensing instruments. A key feature of this concept is lightweight construction combined with low flying speeds to minimize kinetic energy and associated hazards, as well as maximizing spatial resolution. This type of aerial platform is needed for Earth science research and environmental monitoring. There were no vehicles of this type known to exist previously.

  15. Sea Ice Mapping using Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Solbø, S.; Storvold, R.

    2011-12-01

    Mapping of sea ice extent and sea ice features is an important task in climate research. Since the arctic coastal and oceanic areas have a high probability of cloud coverage, aerial platforms are superior to satellite measurements for high-resolution optical measurements. However, routine observations of sea ice conditions present a variety of problems using conventional piloted aircrafts. Specially, the availability of suitable aircrafts for lease does not cover the demand in major parts of the arctic. With the recent advances in unmanned aerial systems (UAS), there is a high possibility of establishing routine, cost effective aerial observations of sea ice conditions in the near future. Unmanned aerial systems can carry a wide variety of sensors useful for characterizing sea-ice features. For instance, the CryoWing UAS, a system initially designed for measurements of the cryosphere, can be equipped with digital cameras, surface thermometers and laser altimeters for measuring freeboard of ice flows. In this work we will present results from recent CryoWing sea ice flights on Svalbard, Norway. The emphasis will be on data processing for stitching together images acquired with the non-stabilized camera payload, to form high-resolution mosaics covering large spatial areas. These data are being employed to map ice conditions; including ice and lead features and melt ponds. These high-resolution mosaics are also well suited for sea-ice mechanics, classification studies and for validation of satellite sea-ice products.

  16. Precision aerial application for site-specific rice crop management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision agriculture includes different technologies that allow agricultural professional to use information management tools to optimize agriculture production. The new technologies allow aerial application applicators to improve application accuracy and efficiency, which saves time and money for...

  17. Applicator Training Manual for: Aerial Application of Pesticides.

    ERIC Educational Resources Information Center

    Overhults, Douglas G.

    This training manual discusses both the advantages and limitations of aerial application of pesticides. Other topics included are: agricultural aircraft equipment, dispersal accessories, drift control, calibration, spray testing, granular materials testing, operations, and personal safety. Safety check lists are given for pilots, ground crew, and…

  18. Inertial instrument system for aerial surveying

    USGS Publications Warehouse

    Brown, R.H.; Chapman, W.H.; Hanna, W.F.; Mongan, C.E.; Hursh, J.W.

    1985-01-01

    An inertial guidance system for aerial surveying has been developed under contract to the U.S. Geological Survey. This prototype system, known as the aerial profiling of terrain (APT) system, is designed to determine continuously the positions of points along an aircraft flight path, or the underlying terrain profile, to an accuracy of + or - 0.5 ft (15 cm) vertically and + or - 2 ft (61 cm) horizontally. The system 's objective thus is to accomplish, from a fixed-wing aircraft, what would traditionally be accomplished from ground-based topographic surveys combined with aerial photography and photogrammetry. The two-part strategy for measuring the terrain profile entails: (1) use of an inertial navigator for continuous determination of the three-coordinate position of the aircraft, and (2) use of an eye-safe pulsed laser profiler for continuous measurement of the vertical distance from aircraft to land surface, so that the desired terrain profile can then be directly computed. The APT system, installed in a DeHavilland Twin Otter aircraft, is typically flown at a speed of 115 mph (105 knots) at an altitude of 2,000 ft (610 m) above the terrain. Performance-evaluation flights have shown that the vertical and horizontal accuracy specifications are met. (USGS)

  19. Application of Artificial Intelligence Techniques in Uninhabited Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA Southeastearn University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  20. Application of Artificial Intelligence Techniques in Uninhabitated Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA southeastern University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  1. Arctic Oil Spill Mapping and Response Using Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Cunningham, K. W.

    2011-12-01

    The University of Alaska Fairbanks works extensively with unmanned aerial systems and various sensor payloads used in mapping. Recent projects with Royal Dutch Shell and British Petroleum have demonstrated that unmanned aerial systems, including fixed and rotary winged platforms, can provide quick response to oil spill mapping in a variety of flight conditions, including those not well suited for manned aerial systems. We describe this collaborative research between the University and oil companies exploring and developing oil resources in Alaska and the Arctic.

  2. The Development and Flight Testing of an Aerially Deployed Unmanned Aerial System

    NASA Astrophysics Data System (ADS)

    Smith, Andrew

    An investigation into the feasibility of aerial deployed unmanned aerial vehicles was completed. The investigation included the development and flight testing of multiple unmanned aerial systems to investigate the different components of potential aerial deployment missions. The project consisted of two main objectives; the first objective dealt with the development of an airframe capable of surviving aerial deployment from a rocket and then self assembling from its stowed configuration into its flight configuration. The second objective focused on the development of an autopilot capable of performing basic guidance, navigation, and control following aerial deployment. To accomplish these two objectives multiple airframes were developed to verify their completion experimentally. The first portion of the project, investigating the feasibility of surviving an aerial deployment, was completed using a fixed wing glider that following a successful deployment had 52 seconds of controlled flight. Before developing the autopilot in the second phase of the project, the glider was significantly upgraded to fix faults discovered in the glider flight testing and to enhance the system capabilities. Unfortunately to conform to outdoor flight restrictions imposed by the university and the Federal Aviation Administration it was required to switch airframes before flight testing of the new fixed wing platform could begin. As a result, an autopilot was developed for a quadrotor and verified experimentally completely indoors to remain within the limits of governing policies.

  3. Airspeed and orifice size affect spray droplet spectrum from an aerial electrostatic nozzle for fixed-wing applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aerial electrostatic spraying system patented by the USDA ARS is a unique aerial application system which inductively charges spray particles for the purpose of increasing deposition and efficacy. While this system has many potential benefits, very little is known about how changes in airspeed o...

  4. Airspeed and orifice size affect spray droplet spectra from an aerial electrostatic nozzle for rotary-wing applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aerial electrostatic spraying system patented by the USDA-ARS is a unique aerial application system which inductively charges spray droplets for the purpose of increasing deposition and efficacy. While this system has many potential benefits, no published data exits which describe how changes i...

  5. Minimizing the impact of the mosquito adulticide naled on honey bees, Apis mellifera (Hymenoptera: Apidae): aerial ultra-low-volume application using a high-pressure nozzle system.

    PubMed

    Zhong, He; Latham, Mark; Payne, Steve; Brock, Cate

    2004-02-01

    The impact of the mosquito adulticide naled on honey bees, Apis mellifera L., was evaluated by exposing test beehives to nighttime aerial ultra-low-volume (ULV) applications using a high-pressure nozzle system. The tests were conducted during routine mosquito control missions at Manatee County, Florida, in summer 2000. Two treatment sites were sprayed a total of four times over a 10-wk period. Honey bees, which clustered outside of the hive entrances, were subjected to naled exposure during these mosquito control sprays. The highest average naled ground deposition was 2,688 microg/m2 at the Port Manatee site, which resulted in statistically significant bee mortality (118) compared with the controls. At the Terra Ceia Road site, an intermediate level of naled deposition was found (1,435 microg/m2). For this spray mission, the range of dead bees per hive at Terra Ceia was 2 to 9 before spraying and 5 to 36 after naled application. Means of all other naled ground depositions were < 850 microl/m2. We concluded that substantial bee mortality (> 100 dead bees) resulted when naled residue levels were > 2,000 kg/m2 and honey bees were clustered outside of the hive entrances during mosquito adulticide applications. Compared with the flat-fan nozzle systems currently used by most of Florida's mosquito control programs, the high-pressure nozzle system used in this experiment substantially reduced environmental insecticide contamination and lead to decreased bee mortality. Statistical analysis also showed that average honey yield at the end of the season was not significantly reduced for those hives that were exposed to the insecticide. PMID:14998120

  6. Current status and future directions of precision aerial application for site-specific crop management in the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The first variable-rate aerial application system was developed about a decade ago in the USA and since then, aerial application has benefitted from these technologies. Many areas of the United States rely on readily available agricultural airplanes or helicopters for pest management, and variable-...

  7. Bioinspired optical sensors for unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Chahl, Javaan; Rosser, Kent; Mizutani, Akiko

    2011-04-01

    Insects are dependant on the spatial, spectral and temporal distributions of light in the environment for flight control and navigation. This paper reports on flight trials of implementations of insect inspired behaviors on unmanned aerial vehicles. Optical flow methods for maintaining a constant height above ground and a constant course have been demonstrated to provide navigation capabilities that are impossible using conventional avionics sensors. Precision control of height above ground and ground course were achieved over long distances. Other vision based techniques demonstrated include a biomimetic stabilization sensor that uses the ultraviolet and green bands of the spectrum, and a sky polarization compass. Both of these sensors were tested over long trajectories in different directions, in each case showing performance similar to low cost inertial heading and attitude systems. The behaviors demonstrate some of the core functionality found in the lower levels of the sensorimotor system of flying insects and shows promise for more integrated solutions in the future.

  8. Aerial color infrared photography applications to citriculture

    NASA Technical Reports Server (NTRS)

    Blazquez, C. H.; Horn, F. W., Jr.

    1980-01-01

    Results of a one-year experimental study on the use of aerial color infrared photography in citrus grove management are presented. It is found that the spring season, when trees are in flush (have young leaves), is the best season to photograph visible differences between healthy and diseased trees. It is also shown that the best photography can be obtained with a 12-in. focal length lens. The photographic scale that allowed good photo interpretation with simple inexpensive equipment was 1 in. = 330 ft. The use of a window-overlay transparency method allowed rapid photo interpretation and data recording in computer-compatible forms. Aerial color infrared photography carried out during the spring season revealed a more accurate status of tree condition than visual inspection.

  9. Development of an unmanned aerial vehicle-based spray system for highly accurate site-specific application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of crop production and protection materials is a crucial component in the high productivity of American agriculture. Agricultural chemical application is frequently needed at a specific time and location for accurate site-specific management of crop pests. Piloted aircrafts that carry ...

  10. DETAIL VIEW OF AERIAL TRAM CABLE COUNTERWEIGHT SYSTEM, LOOKING DOWN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF AERIAL TRAM CABLE COUNTERWEIGHT SYSTEM, LOOKING DOWN THROUGH THE LOWER TERMINAL FLOOR. TWO SUSPENDED ROCK FILLED WOODEN BOXES CAN BE SEEN AT BOTTOM. THE METAL FRAMEWORK WAS INSTALLED BY THE PARK SERVICE DURING THE AERIAL TRAM'S STABILIZATION IN THE 1983. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  11. A review of the meteorological parameters which affect aerial application

    NASA Technical Reports Server (NTRS)

    Christensen, L. S.; Frost, W.

    1979-01-01

    The ambient wind field and temperature gradient were found to be the most important parameters. Investigation results indicated that the majority of meteorological parameters affecting dispersion were interdependent and the exact mechanism by which these factors influence the particle dispersion was largely unknown. The types and approximately ranges of instrumented capabilities for a systematic study of the significant meteorological parameters influencing aerial applications were defined. Current mathematical dispersion models were also briefly reviewed. Unfortunately, a rigorous dispersion model which could be applied to aerial application was not available.

  12. 1. AERIAL VIEW OF THE PATH TRANSIT SYSTEM BRIDGE, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. AERIAL VIEW OF THE PATH TRANSIT SYSTEM BRIDGE, LOOKING NORTHEAST. THE CONRAIL BRIDGE (HAER No. NJ-43) AND THE NEWARK TURNPIKE ARE VISIBLE IN THE BACKGROUND - Path Transit System Bridge, Spanning Hackensack River, Kearny, Hudson County, NJ

  13. Risk and safety analysis for Florida commercial aerial application operations

    NASA Astrophysics Data System (ADS)

    Robbins, John Michael

    The purpose of this study was to determine self-reported perceptions in the areas of agroterrorism, bioterrorism, chemical exposure and Federal Aviation Administration (FAA) oversight. The aerial application industry has been in existence since the 1920's with a gamut of issues ranging from pesticide drift to counterterrorism. The attacks of September 11th, 2001, caused a paradigm shift in the way the United States views security and, more importantly, the prevention of malicious activity. Through the proper implementation and dissemination of educational materials dealing with industry specific concerns, it is imperative that everyone has the proper level of resources and training to effectively manage terrorist threats. This research study was designed to interpret how aerial applicators view these topics of concern and how they perceive the current threat level of terrorism in the industry. Research results were consistent, indicating that a high number of aerial applicators in the state of Florida are concerned with these topics. As a result, modifications need to be made with respect to certain variables. The aerial application industry works day in and day out to provide a professional service that helps maintain the integrity of the food and commodities that we need to survive. They are a small percentage of the aviation community that we all owe a great deal for the vital and necessary services they provide.

  14. Power Sprayers, Power Dusters, and Aerial Equipment for Pesticide Application.

    ERIC Educational Resources Information Center

    Cole, Herbert, Jr.

    This agriculture extension service publication from Pennsylvania State University discusses agricultural pesticide application equipment. The three sections of the publication are Power Sprayers, Power Dusters, and Aerial Equipment. In the section discussing power sprayers, subtopics include hydraulic sprayers, component parts, multi-purpose farm…

  15. Aerospace toxicology overview: aerial application and cabin air quality.

    PubMed

    Chaturvedi, Arvind K

    2011-01-01

    Aerospace toxicology is a rather recent development and is closely related to aerospace medicine. Aerospace toxicology can be defined as a field of study designed to address the adverse effects of medications, chemicals, and contaminants on humans who fly within or outside the atmosphere in aviation or on space flights. The environment extending above and beyond the surface of the Earth is referred to as aerospace. The term aviation is frequently used interchangeably with aerospace. The focus of the literature review performed to prepare this paper was on aerospace toxicology-related subject matters, aerial application and aircraft cabin air quality. Among the important topics addressed are the following: · Aerial applications of agricultural chemicals, pesticidal toxicity, and exposures to aerially applied mixtures of chemicals and their associated formulating solvents/surfactants The safety of aerially encountered chemicals and the bioanalytical methods used to monitor exposures to some of them · The presence of fumes and smoke, as well as other contaminants that may generally be present in aircraft/space vehicle cabin air · And importantly, the toxic effects of aerially encountered contaminants, with emphasis on the degradation products of oils, fluids, and lubricants used in aircraft, and finally · Analytical methods used for monitoring human exposure to CO and HCN are addressed in the review, as are the signs and symptoms associated with exposures to these combustion gases. Although many agricultural chemical monitoring studies have been published, few have dealt with the occurrence of such chemicals in aircraft cabin air. However, agricultural chemicals do appear in cabin air; indeed, attempts have been made to establish maximum allowable concentrations for several of the more potentially toxic ones that are found in aircraft cabin air. In this article, I emphasize the need for precautionary measures to be taken to minimize exposures to aerially

  16. Aerospace toxicology overview: aerial application and cabin air quality.

    PubMed

    Chaturvedi, Arvind K

    2011-01-01

    Aerospace toxicology is a rather recent development and is closely related to aerospace medicine. Aerospace toxicology can be defined as a field of study designed to address the adverse effects of medications, chemicals, and contaminants on humans who fly within or outside the atmosphere in aviation or on space flights. The environment extending above and beyond the surface of the Earth is referred to as aerospace. The term aviation is frequently used interchangeably with aerospace. The focus of the literature review performed to prepare this paper was on aerospace toxicology-related subject matters, aerial application and aircraft cabin air quality. Among the important topics addressed are the following: · Aerial applications of agricultural chemicals, pesticidal toxicity, and exposures to aerially applied mixtures of chemicals and their associated formulating solvents/surfactants The safety of aerially encountered chemicals and the bioanalytical methods used to monitor exposures to some of them · The presence of fumes and smoke, as well as other contaminants that may generally be present in aircraft/space vehicle cabin air · And importantly, the toxic effects of aerially encountered contaminants, with emphasis on the degradation products of oils, fluids, and lubricants used in aircraft, and finally · Analytical methods used for monitoring human exposure to CO and HCN are addressed in the review, as are the signs and symptoms associated with exposures to these combustion gases. Although many agricultural chemical monitoring studies have been published, few have dealt with the occurrence of such chemicals in aircraft cabin air. However, agricultural chemicals do appear in cabin air; indeed, attempts have been made to establish maximum allowable concentrations for several of the more potentially toxic ones that are found in aircraft cabin air. In this article, I emphasize the need for precautionary measures to be taken to minimize exposures to aerially

  17. Aerial photography summary record system - five years later.

    USGS Publications Warehouse

    Lauterborn, T.J.

    1980-01-01

    Describes the APSRS, an automated information system for conventional aerial photography projects, established after the formation of the National Cartographic Information Center in the US Geological Survey in 1974. -after Author

  18. Safe, Effective Use of Pesticides, A Manual for Commercial Applicators: Aerial Application of Pesticides.

    ERIC Educational Resources Information Center

    Extension Service (USDA), Washington, DC.

    This manual is designed to assist aerial pesticide applicators to meet the requirements of the Michigan Department of Agriculture for certification. An introduction with the explanation of requirements of effective aerial application is presented. The six topics included describe: (1) Dispersal equipment; (2) Calibration; (3) Pattern testing; (4)…

  19. Galvanometer control system design of aerial camera motion compensation

    NASA Astrophysics Data System (ADS)

    Qiao, Mingrui; Cao, Jianzhong; Wang, Huawei; Guo, Yunzeng; Hu, Changchang; Tang, Hong; Niu, Yuefeng

    2015-10-01

    Aerial cameras exist the image motion on the flight. The image motion has seriously affected the image quality, making the image edge blurred and gray scale loss. According to the actual application situation, when high quality and high precision are required, the image motion compensation (IMC) should be adopted. This paper designs galvanometer control system of IMC. The voice coil motor as the actuator has a simple structure, fast dynamic response and high positioning accuracy. Double-loop feedback is also used. PI arithmetic and Hall sensors are used at the current feedback. Fuzzy-PID arithmetic and optical encoder are used at the speed feedback. Compared to conventional PID control arithmetic, the simulation results show that the control system has fast response and high control accuracy.

  20. Application of Artificial Intelligence Techniques in Unmanned Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H. (Technical Monitor); Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in Artificial Intelligence (AI) at Nova southeastern University and as an adjunct to a project at NASA Goddard Space Flight Center's Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an AI method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed. A low cost approach was taken using freeware, gnu, software, and demo programs. The focus of this research has been to outline some of the AI techniques used for UAV flight control and discuss some of the tools used to apply AI techniques. The intent is to succeed with the implementation of applying AI techniques to actually control different aspects of the flight of an UAV.

  1. Canopy Measurements with a Small Unmanned Aerial System

    NASA Astrophysics Data System (ADS)

    Peschel, J.

    2015-12-01

    This work discusses the use of a small unmanned aerial system (UAS) for the remote placement of wireless environmental sensors in tree canopies. Remote presence applications occur when one or more humans use a robot to project themselves into an environment in order to complete an inaccessible or time-critical mission. The more difficult problem of physical object manipulation goes one step further by incorporating physical-based interaction, in additional to visualization. Forested environments present especially unique challenges for small UAS versus similar domains (e.g., disaster response, inspection of critical infrastructure) due to the navigation and interaction required with dense tree canopies. This work describes two field investigations that inform: i) the type of physical object manipulation and visualization necessary for sensor placement (ventral, frontal, dorsal), ii) the necessary display form (hybrid) for piloting and sensor placement, and iii) visual feedback mechanisms useful for handling human-robot team role conflicts.

  2. Evaluation of foam-skin cables for aerial applications

    NASA Astrophysics Data System (ADS)

    Samuelson, G. R.

    Since the introduction of foam-skin filled cables, there has been considerable discussion within the Industry, both pro and con, regarding the acceptability of foam-skin filled cables for aerial application. This paper reports on results obtained from a study undertaken to evaluate the changes in transmission properties of such cables in a simulated aerial environment. Cable samples produced by six cable manufacturers using conventional, high-temperature drip-resistant filling compounds with a petrolatum base were subjected to temperature cycling from -40 F to 140 F. Transmission parameters were measured at 1, 150 and 772 kHz and compared to initial values. A solid polypropylene insulated filled cable was included for reference. The results show that foam-skin petrolatum based filled cables exhibit stable electrical characteristics when exposed to cycled temperature extremes.

  3. Impact of naled on honey bee Apis mellifera L. survival and productivity: aerial ULV application using a flat-fan nozzle system.

    PubMed

    Zhong, H; Latham, M; Hester, P G; Frommer, R L; Brock, C

    2003-08-01

    A study was conducted to evaluate the impact of naled on honey bees as a result of their exposure to aerial ULV applications of this insecticide during three routine mosquito spray missions by Manatee County Mosquito Control District in Florida during the summer of 1999. Naled deposits were collected on filter paper and subsequently analyzed by gas chromatography. Mortality of adult honey bees Apis mellifera L. was estimated based on numbers from dead bee collectors placed in front of the entrance of the beehives. We found that honey bees clustering outside of the beehives were subject to naled exposure. Bee mortality increased when higher naled residues were found around the hives. The highest average naled deposit was 6,227 +/- 696 microg/m2 at the site 1 forest area following the mosquito spray mission on July 15, 1999. The range of naled deposition for this application was 2,818-7,101 microg/m2. The range of dead bees per hive was 0-39 prior to spraying and 9-200 within 24 h following this spray mission. The average yield of honey per hive was significantly lower (p < 0.05) for naled-exposed hives compared with unexposed hives. Because reduction of honey yield also may be affected by other factors, such as location of the hives relative to a food source and vigor of the queen bee, the final assessment of honey yield was complicated. PMID:14565579

  4. International-Aerial Measuring System (I-AMS) Training Program

    SciTech Connect

    Wasiolek, Piotre T.; Malchor, Russell L.; Maurer, Richard J.; Adams, Henry L.

    2015-10-01

    Since the Fukushima reactor accident in 2011, there has been an increased interest worldwide in developing national capabilities to rapidly map and assess ground contamination resulting from nuclear reactor accidents. The capability to rapidly measure the size of the contaminated area, determine the activity level, and identify the radionuclides can aid emergency managers and decision makers in providing timely protective action recommendations to the public and first responders. The development of an aerial detection capability requires interagency coordination to assemble the radiation experts, detection system operators, and aviation aircrews to conduct the aerial measurements, analyze and interpret the data, and provide technical assessments. The Office of International Emergency Management and Cooperation (IEMC) at the U.S. Department of Energy, National Nuclear Security Administration (DOE/NNSA) sponsors an International - Aerial Measuring System (I-AMS) training program for partner nations to develop and enhance their response to radiological emergencies. An initial series of courses can be conducted in the host country to assist in developing an aerial detection capability. As the capability develops and expands, additional experience can be gained through advanced courses with the opportunity to conduct aerial missions over a broad range of radiation environments.

  5. Supporting Remote Sensing Research with Small Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Anderson, R. C.; Shanks, P. C.; Kritis, L. A.; Trani, M. G.

    2014-11-01

    We describe several remote sensing research projects supported with small Unmanned Aerial Systems (sUAS) operated by the NGA Basic and Applied Research Office. These sUAS collections provide data supporting Small Business Innovative Research (SBIR), NGA University Research Initiative (NURI), and Cooperative Research And Development Agreements (CRADA) efforts in addition to inhouse research. Some preliminary results related to 3D electro-optical point clouds are presented, and some research goals discussed. Additional details related to the autonomous operational mode of both our multi-rotor and fixed wing small Unmanned Aerial System (sUAS) platforms are presented.

  6. Towards aerial natural gas leak detection system based on TDLAS

    NASA Astrophysics Data System (ADS)

    Liu, Shuyang; Zhou, Tao; Jia, Xiaodong

    2014-11-01

    Pipeline leakage is a complex scenario for sensing system due to the traditional high cost, low efficient and labor intensive detection scheme. TDLAS has been widely accepted as industrial trace gas detection method and, thanks to its high accuracy and reasonable size, it has the potential to meet pipeline gas leakage detection requirements if it combines with the aerial platform. Based on literature study, this paper discussed the possibility of applying aerial TDLAS principle in pipeline gas leak detection and the key technical foundation of implementing it. Such system is able to result in a high efficiency and accuracy measurement which will provide sufficient data in time for the pipeline leakage detection.

  7. 6. AERIAL VIEW OF THE PATH TRANSIT SYSTEM BRIDGE LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. AERIAL VIEW OF THE PATH TRANSIT SYSTEM BRIDGE LOOKING SOUTHEAST. TO THE RIGHT ARE THE NEWARK TURNPIKE AND THE CONRAIL BRIDGE (HAER No. NJ-43). THE PULASKI SKYWAY (HAER No. NJ-34) IS IN THE BACKGROUND - Path Transit System Bridge, Spanning Hackensack River, Kearny, Hudson County, NJ

  8. 5. AERIAL VIEW OF THE PATH TRANSIT SYSTEM BRIDGE LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. AERIAL VIEW OF THE PATH TRANSIT SYSTEM BRIDGE LOOKING SOUTHEAST. TO THE RIGHT ARE THE NEWARK TURNPIKE AND THE CONRAIL BRIDGE (HAER No. NJ-43). THE PULASKI SKYWAY (HAER No. NJ-34) IS IN THE BACKGROUND - Path Transit System Bridge, Spanning Hackensack River, Kearny, Hudson County, NJ

  9. 4. AERIAL 'BARREL' SHOT OF THE PATH TRANSIT SYSTEM BRIDGE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. AERIAL 'BARREL' SHOT OF THE PATH TRANSIT SYSTEM BRIDGE, LOOKING SOUTHEAST TOWARDS JERSEY CITY. TO THE RIGHT ARE THE NEWARK TURNPIKE AND THE CONRAIL BRIDGE (HAER No. NJ-43). THE PULASKI SKYWAY (HAER No. NJ-34) IS IN THE BACKGROUND TO THE RIGHT - Path Transit System Bridge, Spanning Hackensack River, Kearny, Hudson County, NJ

  10. U. S. Department of Energy Aerial Measuring Systems

    SciTech Connect

    J. J. Lease

    1998-10-01

    The Aerial Measuring Systems (AMS) is an aerial surveillance system. This system consists of remote sensing equipment to include radiation detectors; multispectral, thermal, radar, and laser scanners; precision cameras; and electronic imaging and still video systems. This equipment, in varying combinations, is mounted in an airplane or helicopter and flown at different heights in specific patterns to gather various types of data. This system is a key element in the US Department of Energy's (DOE) national emergency response assets. The mission of the AMS program is twofold--first, to respond to emergencies involving radioactive materials by conducting aerial surveys to rapidly track and map the contamination that may exist over a large ground area and second, to conduct routinely scheduled, aerial surveys for environmental monitoring and compliance purposes through the use of credible science and technology. The AMS program evolved from an early program, begun by a predecessor to the DOE--the Atomic Energy Commission--to map the radiation that may have existed within and around the terrestrial environments of DOE facilities, which produced, used, or stored radioactive materials.

  11. A scheduling model for the aerial relay system

    NASA Technical Reports Server (NTRS)

    Ausrotas, R. A.; Liu, E. W.

    1980-01-01

    The ability of the Aerial Relay System to handle the U.S. transcontinental large hub passenger flow was analyzed with a flexible, interactive computer model. The model incorporated city pair time of day demand and a demand allocation function which assigned passengers to their preferred flights.

  12. Integrating Spray Plane-Based Remote Sensing and Rapid Image Processing with Variable-Rate Aerial Application.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A remote sensing and variable rate application system was configured for agricultural aircraft. This combination system has the potential of providing a completely integrated solution for all aspects of aerial site-specific application and includes remote sensing, image processing and georegistratio...

  13. The Ground Control Room as an Enabling Technology in the Unmanned Aerial System

    NASA Technical Reports Server (NTRS)

    Gear, Gary; Mace, Thomas

    2007-01-01

    This viewgraph presentation reviews the development of the ground control room as an required technology for the use of an Unmanned Aerial system. The Unmanned Aerial system is a strategic component of the Global Observing System, which will serve global science needs. The unmanned aerial system will use the same airspace as manned aircraft, therefore there will be unique telemetry needs.

  14. National aerial photography program as a geographic information system resource

    USGS Publications Warehouse

    Light, Donald L.

    1991-01-01

    The National Aerial Photography Program (NAPP) is jointly funded by Federal agencies and States that choose to participate in a 50-50 cost sharing cooperative arrangement. The NAPP is designed to acquire black-and-white (B&W) or color infrared (CIR) photography at a scale of 1:40,000. The status of NAPP flying, now going into the first year of its second 5-year cycle, is reviewed to inform the user community of NAPP's coverage. The resolution, geometric quality and flight parameters are used to estimate the system's cartographic potential to produce orthophotoquads, digital elevation models, topographic maps and digital information to meet national map accuracy standards at 1:12,000 and 1:24,000-scale and serve as a geographic information system resource. Also, a technique is presented to compute the optimum scanning spot size (15 ??m) and storage required for converting the B&W or CIR photography to digital, machine-readable pixel form. The resulting digital NAPP data are suitable for a wide variety of new applications, including use in geographic information systems.

  15. Environmental application of aerial reconnaissance to search for open dumps

    NASA Astrophysics Data System (ADS)

    Getz, Thomas J.; Randolph, J. C.; Echelberger, Wayne F.

    1983-11-01

    Three approaches to using aerial photography are evaluated for searching for open dumps in the state of Indiana. Photography with hand-held cameras from a small airplane proved more effective and flexible than either photo-interpretation of existing air photos or subcontracting to a federal agency for new aerial photography. The rationale for our choice of aerial reconnaissance, other uses of low-level aerial surveillance, the utility of small-format camera aerial photography for environmental analysis, and methods used for locating open dumps are discussed.

  16. The Role of Unmanned Aerial Systems-Sensors in Air Quality Research

    EPA Science Inventory

    The use of unmanned aerial systems (UASs) and miniaturized sensors for a variety of scientific and security purposes has rapidly increased. UASs include aerostats (tethered balloons) and remotely controlled, unmanned aerial vehicles (UAVs) including lighter-than-air vessels, fix...

  17. Meteorological and Aerosol Sensing with small Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Born, J.; Möhler, O.; Haunold, W.; Schrod, J.; Brooks, I.; Norris, S.; Brooks, B.; Hill, M.; Leisner, T.

    2012-04-01

    Unmanned Aerial Systems (UAS) facilitate the monitoring of several meteorological and aerosol parameters with high resolution in space and time. They are small, easy to operate, cost efficient and allow for flexible application during field campaigns. We present two experimental payloads for measurement of relative humidity, temperature, aerosol size distribution and the collection of aerosol samples on board the small UAS SIRIUS II. The payload modules are light weight (<1kg) and can be easily switched between two flights. All sensors can be controlled from the ground and the measured data is recorded by the autopilot together with the position data. The first module contains a sensor package for measurement of relative humidity and temperature and the Compact Lightweight Aerosol Spectrometer Prope (CLASP) for acquisition of aerosol size distributions. CLASP measures aerosol particles with diameters from 0.12μm to 9.25μm in up to 32 channels at a frequency of 10 Hz. The second module also contains a humidity and temperature sensor package and the aerosol sample collection device. The aerosol sampler collects air samples at 2 l/min onto a sample holder. After the flight the ice nuclei on the sample holder are activated in the lab and counted. In August 2012 the complete setup will be used during a measurement campaign at mount "Kleiner Feldberg" close to Frankfurt. Until then we will perform test flights and additional laboratory tests.

  18. Synthesis of the unmanned aerial vehicle remote control augmentation system

    NASA Astrophysics Data System (ADS)

    Tomczyk, Andrzej

    2014-12-01

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are not suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the "ideal" remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system.

  19. Synthesis of the unmanned aerial vehicle remote control augmentation system

    SciTech Connect

    Tomczyk, Andrzej

    2014-12-10

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are not suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the 'ideal' remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system.

  20. Cadastral Audit and Assessments Using Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Cunningham, K.; Walker, G.; Stahlke, E.; Wilson, R.

    2011-09-01

    Ground surveys and remote sensing are integral to establishing fair and equitable property valuations necessary for real property taxation. The International Association of Assessing Officers (IAAO) has embraced aerial and street-view imaging as part of its standards related to property tax assessments and audits. New technologies, including unmanned aerial systems (UAS) paired with imaging sensors, will become more common as local governments work to ensure their cadastre and tax rolls are both accurate and complete. Trends in mapping technology have seen an evolution in platforms from large, expensive manned aircraft to very small, inexpensive UAS. Traditional methods of photogrammetry have also given way to new equipment and sensors: digital cameras, infrared imagers, light detection and ranging (LiDAR) laser scanners, and now synthetic aperture radar (SAR). At the University of Alaska Fairbanks (UAF), we work extensively with unmanned aerial systems equipped with each of these newer sensors. UAF has significant experience flying unmanned systems in the US National Airspace, having begun in 1969 with scientific rockets and expanded to unmanned aircraft in 2003. Ongoing field experience allows UAF to partner effectively with outside organizations to test and develop leading-edge research in UAS and remote sensing. This presentation will discuss our research related to various sensors and payloads for mapping. We will also share our experience with UAS and optical systems for creating some of the first cadastral surveys in rural Alaska.

  1. Region Three Aerial Measurement System Flight Planning Tool - 12006

    SciTech Connect

    Messick, Chuck; Pham, Minh; Smith, Ron; Isiminger, Dave

    2012-07-01

    The Region 3 Aerial Measurement System Flight Planning Tool is used by the National Nuclear Security Agency (NNSA), United States Department of Energy, Radiological Assistance Program, Region 3, to respond to emergency radiological situations. The tool automates the flight planning package process while decreasing Aerial Measuring System response times and decreases the potential for human error. Deployment of the Region Three Aerial Measurement System Flight Planning Tool has resulted in an immediate improvement to the flight planning process in that time required for mission planning has been reduced from 1.5 hours to 15 minutes. Anecdotally, the RAP team reports that the rate of usable data acquired during surveys has improved from 40-60 percent to over 90 percent since they began using the tool. Though the primary product of the flight planning tool is a pdf format document for use by the aircraft flight crew, the RAP team has begun carrying their laptop computer on the aircraft during missions. By connecting a Global Positioning System (GPS) device to the laptop and using ESRI ArcMap's GPS tool bar to overlay the aircraft position directly on the flight plan in real time, the RAP team can evaluate and correct the aircraft position as the mission is executed. (authors)

  2. Application of solid state lighting in aerial refueling operations

    NASA Astrophysics Data System (ADS)

    Mangum, Scott; Singer, Jeffrey; Walker, Richard; Ferguson, Joseph; Kemp, Richard

    2005-09-01

    Operating at altitude and often in turbulent, low visibility conditions, in-flight refueling of aircraft is a challenging endeavor, even for seasoned aviators. The receiving aircraft must approach a large airborne tanker; take position within a "reception window" beneath and/or behind the tanker and, dependent upon the type of receiving aircraft, mate with an extended refueling boom or hose and drogue. Light is used to assist in the approach, alignment and refuel process of the aircraft. Robust solid state light emitting diodes (LEDs) are an appropriate choice for use in the challenging environments that these aircraft operate within. This paper examines how LEDs are incorporated into several unique lighting applications associated with such aerial refueling operations. We will discuss the design requirements, both environmental and photometric that defined the selection of different LED packages for use in state-of-the-art airborne refueling aircraft Formation Lights, Hose Drum/Drogue Unit lights and Pilot Director Lights.

  3. INERTIAL INSTRUMENT SYSTEM FOR AERIAL SURVEYING.

    USGS Publications Warehouse

    Brown, Russell H.; Chapman, William H.; Hanna, William F.; Mongan, Charles E.; Hursh, John W.

    1987-01-01

    The purpose of this report is to describe an inertial guidance or navigation system that will enable use of relatively light aircraft for efficient data-gathering in geologgy, hydrology, terrain mapping, and gravity-field mapping. The instrument system capitalizes not only on virtual state-of-the-art inertial guidance technology but also on similarly advanced technology for measuring distance with electromagnetic radiating devices. The distance measurement can be made with a transceiver beamed at either a cooperative taget, with a specially designed reflecting surface, or a noncooperative target, such as the Earth's surface. The instrument system features components that use both techniques. Thus, a laser tracker device, which updates the inertial guidance unit or navigator in flight, makes distance measurements to a retroreflector target mounted at a ground-control point; a laser profiler device, beamed vertically downward, makes distance measurements to the Earth's surface along a path that roughly mirrors the aircraft flight path.

  4. Unmanned aerial systems for photogrammetry and remote sensing: A review

    NASA Astrophysics Data System (ADS)

    Colomina, I.; Molina, P.

    2014-06-01

    We discuss the evolution and state-of-the-art of the use of Unmanned Aerial Systems (UAS) in the field of Photogrammetry and Remote Sensing (PaRS). UAS, Remotely-Piloted Aerial Systems, Unmanned Aerial Vehicles or simply, drones are a hot topic comprising a diverse array of aspects including technology, privacy rights, safety and regulations, and even war and peace. Modern photogrammetry and remote sensing identified the potential of UAS-sourced imagery more than thirty years ago. In the last five years, these two sister disciplines have developed technology and methods that challenge the current aeronautical regulatory framework and their own traditional acquisition and processing methods. Navety and ingenuity have combined off-the-shelf, low-cost equipment with sophisticated computer vision, robotics and geomatic engineering. The results are cm-level resolution and accuracy products that can be generated even with cameras costing a few-hundred euros. In this review article, following a brief historic background and regulatory status analysis, we review the recent unmanned aircraft, sensing, navigation, orientation and general data processing developments for UAS photogrammetry and remote sensing with emphasis on the nano-micro-mini UAS segment.

  5. Aerial data acquisition system for earth survey

    NASA Astrophysics Data System (ADS)

    Uhl, Bernd

    1990-11-01

    Zeiss, in cooperation with Niletus, have developed an airborne Data Recording and Control System using high resolution reconnaissance cameras combined with video tape recording. Sensors are installed in a Dornier DO-228 aircraft for special earth survey missions which provide forest damage assessment in mountainous regions. Sensors include KS-153A wide angle- and telelens camera configurations. A laser distance meter provides autofocus capability for the telelens camera. Flight and mission data are recorded on film and video for cross-reference purposes during photo-interpretation. Special photogrammetric interpretation equipment then produces detailed maps used to direct corrective activities.

  6. Human Systems Integration and Automation Issues in Small Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    McCauley, Michael E.; Matsangas, Panagiotis

    2004-01-01

    The goal of this report is to identify Human System Integration (HSI) and automation issues that contribute to improved effectiveness and efficiency in the operation of U.S. military Small Unmanned Aerial Vehicles (SUAVs). HSI issues relevant to SUAV operations are reviewed and observations from field trials are summarized. Short-term improvements are suggested research issues are identified and an overview is provided of automation technologies applicable to future SUAV design.

  7. Mortality of nontarget arthropods from an aerial application of pyrethrins.

    PubMed

    Kwan, Jonathan A; Novak, Mark G; Hyles, Timothy S; Niemela, Michael K

    2009-06-01

    Mortality of nontarget organisms from an ultra-low volume (ULV) aerial application of pyrethrins (Evergreen EC 60-6) was monitored by collecting arthropods from ground tarps placed at the interface of open and canopy areas. A larger number and greater diversity of arthropods were recovered from tarps in the ULV spray area. The observed mortality was approximately 10-fold greater than in the control area. Kruskal-Wallis tests revealed a significant difference in the abundance and diversity of arthropods collected at treatment and control sites at 1 and 12 h postspray. Arthropods, primarily insects, from the treatment area included representatives from 12 orders and > or = 34 families, as compared to 7 orders and 12 families in the control area. Chironomidae (midges) and Formicidae (ants) were the most commonly represented families, accounting for 61% of the arthropods collected from the treatment area; no large-bodied insects (>8 mm) were recovered. Mortality of sentinel mosquitoes in the treatment and control areas averaged 96% and <1%, respectively, at 24 h postexposure. This study supports previous work that the impact of a single ULV application of pyrethrins was limited to a variety of small-bodied arthropods.

  8. Aerial Neutron Detection: Neutron Signatures for Nonproliferation and Emergency Response Applications

    SciTech Connect

    Maurer, Richard J.; Stampahar, Thomas G.; Smith, Ethan X.; Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Rourke, Timothy J.; LeDonne, Jeffrey P.; Avaro, Emanuele; Butler, D. Andre; Borders, Kevin L.; Stampahar, Jezabel; Schuck, William H.; Selfridge, Thomas L.; McKissack, Thomas M.; Duncan, William W.; Hendricks, Thane J.

    2012-10-17

    From 2007 to the present, the Remote Sensing Laboratory has been conducting a series of studies designed to expand our fundamental understanding of aerial neutron detection with the goal of designing an enhanced sensitivity detection system for long range neutron detection. Over 35 hours of aerial measurements in a helicopter were conducted for a variety of neutron emitters such as neutron point sources, a commercial nuclear power reactor, nuclear reactor spent fuel in dry cask storage, depleted uranium hexafluoride and depleted uranium metal. The goals of the project were to increase the detection sensitivity of our instruments such that a 5.4 × 104 neutron/second source could be detected at 100 feet above ground level at a speed of 70 knots and to enhance the long-range detection sensitivity for larger neutron sources, i.e., detection ranges above 1000 feet. In order to increase the sensitivity of aerial neutron detection instruments, it is important to understand the dynamics of the neutron background as a function of altitude. For aerial neutron detection, studies have shown that the neutron background primarily originates from above the aircraft, being produced in the upper atmosphere by galactic cosmic-ray interactions with air molecules. These interactions produce energetic neutrons and charged particles that cascade to the earth’s surface, producing additional neutrons in secondary collisions. Hence, the neutron background increases as a function of altitude which is an impediment to long-range neutron detection. In order to increase the sensitivity for long range detection, it is necessary to maintain a low neutron background as a function of altitude. Initial investigations show the variation in the neutron background can be decreased with the application of a cosmic-ray shield. The results of the studies along with a representative data set are presented.

  9. Seasonal sleep effects on Louisiana aerial applicators' safety.

    PubMed

    Gregory, J M; Barbosa, R N

    2010-01-01

    Sleep management is one of the documented factors affecting safety and health. Using SLEEP (Sleep Loss Effects on Everyday Performance), a web-based model that integrates the dynamics of sleep to predict performance loss, aerial applicators licensed to work in the state of Louisiana were surveyed and evaluated for sleep deprivation. On and off season sleeping patterns were compared. During the off season, agricultural pilots reported having average sleeping time (6.9 hours), while during the farming season, because of their grueling schedule (sometimes working 100 hours a week), pilots reported sleeping only 3 hours per day in the week before the survey was made. Sleep deprivation greatly increases the chances of accidents. In the Mississippi delta region, 84% of the fatal accidents in the past nine years involving agricultural pilots were ruled as caused by human factors. Younger pilots are particularly at risk due to their limited flying experience and greater sleep needs. The agricultural pilot community would likely benefit from educational programs focused on better sleep management and the value and limitations of countermeasures to cope with fatigue. PMID:20222271

  10. Effects on birds of fenthion aerial application for mosquito control

    USGS Publications Warehouse

    DeWeese, L.R.; McEwen, L.C.; Settimi, L.A.; Deblinger, R.D.

    1983-01-01

    Effects on birds of an aerial application of fenthion, a potent organophosphorus cholinesterase (ChE)-inhibiting insecticide, were assessed on four study sites 1.8 to 3.6 km2 in size. These sites were located within 121.5 km2 of wet meadows treated with 47 g of fenthion (AI) per ha in ultralow- volume formulation. Assessment methods were searches for sick or dead birds, measurements of brain ChE activity in specimens found dead or collected alive at different time intervals, and counts of bird populations. After treatment, 99 birds and 15 mammals were found sick or dead; 106 of these were on one site. Brain ChE activity in dead birds was depressed sufficiently to indicate that death was caused by an anti-ChE substance. Brain ChE activity in three common bird species collected alive showed the greatest reduction 2 days postspray. Two of these species had ChE activity that was still significantly (P<0.05) depressed 15 days postspray. Bird populations declined most where mortality was heaviest. Fenthion sprayed for mosquito control was life threatening to many birds inhabiting treated meadows.

  11. Optimization and application of Retinex algorithm in aerial image processing

    NASA Astrophysics Data System (ADS)

    Sun, Bo; He, Jun; Li, Hongyu

    2008-04-01

    In this paper, we provide a segmentation based Retinex for improving the visual quality of aerial images obtained under complex weather conditions. With the method, an aerial image will be segmented into different regions, and then an adaptive Gaussian based on the segmentations will be used to process it. The method addresses the problems existing in previously developed Retinex algorithms, such as halo artifacts and graying-out artifacts. The experimental result also shows evidence of its better effect.

  12. Semantic Segmentation and Difference Extraction via Time Series Aerial Video Camera and its Application

    NASA Astrophysics Data System (ADS)

    Amit, S. N. K.; Saito, S.; Sasaki, S.; Kiyoki, Y.; Aoki, Y.

    2015-04-01

    Google earth with high-resolution imagery basically takes months to process new images before online updates. It is a time consuming and slow process especially for post-disaster application. The objective of this research is to develop a fast and effective method of updating maps by detecting local differences occurred over different time series; where only region with differences will be updated. In our system, aerial images from Massachusetts's road and building open datasets, Saitama district datasets are used as input images. Semantic segmentation is then applied to input images. Semantic segmentation is a pixel-wise classification of images by implementing deep neural network technique. Deep neural network technique is implemented due to being not only efficient in learning highly discriminative image features such as road, buildings etc., but also partially robust to incomplete and poorly registered target maps. Then, aerial images which contain semantic information are stored as database in 5D world map is set as ground truth images. This system is developed to visualise multimedia data in 5 dimensions; 3 dimensions as spatial dimensions, 1 dimension as temporal dimension, and 1 dimension as degenerated dimensions of semantic and colour combination dimension. Next, ground truth images chosen from database in 5D world map and a new aerial image with same spatial information but different time series are compared via difference extraction method. The map will only update where local changes had occurred. Hence, map updating will be cheaper, faster and more effective especially post-disaster application, by leaving unchanged region and only update changed region.

  13. Meteorological and Remote Sensing Applications of High Altitude Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Schoenung, S. M.; Wegener, S. S.

    1999-01-01

    Unmanned aerial vehicles (UAVs) are maturing in performance and becoming available for routine use in environmental applications including weather reconnaissance and remote sensing. This paper presents a discussion of UAV characteristics and unique features compared with other measurement platforms. A summary of potential remote sensing applications is provided, along with details for four types of tropical cyclone missions. Capabilities of platforms developed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program are reviewed, including the Altus, Perseus, and solar- powered Pathfinder, all of which have flown to over 57,000 ft (17 km). In many scientific missions, the science objectives drive the experimental design, thus defining the sensor payload, aircraft performance, and operational requirements. Some examples of science missions and the requisite UAV / payload system are given. A discussion of technology developments needed to fully mature UAV systems for routine operational use is included, along with remarks on future science and commercial UAV business opportunities.

  14. Unmanned aerial optical systems for spatial monitoring of Antarctic mosses

    NASA Astrophysics Data System (ADS)

    Lucieer, Arko; Turner, Darren; Veness, Tony; Malenovsky, Zbynek; Harwin, Stephen; Wallace, Luke; Kelcey, Josh; Robinson, Sharon

    2013-04-01

    The Antarctic continent has experienced major changes in temperature, wind speed and stratospheric ozone levels during the last 50 years. In a manner similar to tree rings, old growth shoots of Antarctic mosses, the only plants on the continent, also preserve a climate record of their surrounding environment. This makes them an ideal bio-indicator of the Antarctic climate change. Spatially extensive ground sampling of mosses is laborious and time limited due to the short Antarctic growing season. Obviously, there is a need for an efficient method to monitor spatially climate change induced stress of the Antarctic moss flora. Cloudy weather and high spatial fragmentation of the moss turfs makes satellite imagery unsuitable for this task. Unmanned aerial systems (UAS), flying at low altitudes and collecting image data even under a full overcast, can, however, overcome the insufficiency of satellite remote sensing. We, therefore, developed scientific UAS, consisting of a remote-controlled micro-copter carrying on-board different remote sensing optical sensors, tailored to perform fast and cost-effective mapping of Antarctic flora at ultra-high spatial resolution (1-10 cm depending on flight altitude). A single lens reflex (SLR) camera carried by UAS acquires multi-view aerial photography, which processed by the Structure from Motion computer vision algorithm provides an accurate three-dimensional digital surface model (DSM) at ultra-high spatial resolution. DSM is the key input parameter for modelling a local seasonal snowmelt run-off, which provides mosses with the vital water supply. A lightweight multispectral camera on-board of UVS is collecting images of six selected spectral wavebands with the full-width-half-maximum (FWHM) of 10 nm. The spectral bands can be used to compute various vegetation optical indices, e.g. Difference Vegetation Index (NDVI) or Photochemical Reflectance Index (PRI), assessing the actual physiological state of polar vegetation. Recently

  15. Aerial Explorers

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg; Ippolito, Corey

    2005-01-01

    This paper presents recent results from a mission architecture study of planetary aerial explorers. In this study, several mission scenarios were developed in simulation and evaluated on success in meeting mission goals. This aerial explorer mission architecture study is unique in comparison with previous Mars airplane research activities. The study examines how aerial vehicles can find and gain access to otherwise inaccessible terrain features of interest. The aerial explorer also engages in a high-level of (indirect) surface interaction, despite not typically being able to takeoff and land or to engage in multiple flights/sorties. To achieve this goal, a new mission paradigm is proposed: aerial explorers should be considered as an additional element in the overall Entry, Descent, Landing System (EDLS) process. Further, aerial vehicles should be considered primarily as carrier/utility platforms whose purpose is to deliver air-deployed sensors and robotic devices, or symbiotes, to those high-value terrain features of interest.

  16. Characterization of spray deposition and drift from a low drift nozzle for aerial application at different application altitudes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A complex interaction of controllable and uncontrollable factors is involved in aerial application of crop production and protection materials. Although it is difficult to completely characterize spray deposition and drift, these important factors can be estimated with appropriate sampling protocol ...

  17. Applicability Evaluation of Object Detection Method to Satellite and Aerial Imageries

    NASA Astrophysics Data System (ADS)

    Kamiya, K.; Fuse, T.; Takahashi, M.

    2016-06-01

    Since satellite and aerial imageries are recently widely spread and frequently observed, combination of them are expected to complement spatial and temporal resolution each other. One of the prospective applications is traffic monitoring, where objects of interest, or vehicles, need to be recognized automatically. Techniques that employ object detection before object recognition can save a computational time and cost, and thus take a significant role. However, there is not enough knowledge whether object detection method can perform well on satellite and aerial imageries. In addition, it also has to be studied how characteristics of satellite and aerial imageries affect the object detection performance. This study employ binarized normed gradients (BING) method that runs significantly fast and is robust to rotation and noise. For our experiments, 11-bits BGR-IR satellite imageries from WorldView-3, and BGR-color aerial imageries are used respectively, and we create thousands of ground truth samples. We conducted several experiments to compare the performances with different images, to verify whether combination of different resolution images improved the performance, and to analyze the applicability of mixing satellite and aerial imageries. The results showed that infrared band had little effect on the detection rate, that 11-bit images performed less than 8-bit images and that the better spatial resolution brought the better performance. Another result might imply that mixing higher and lower resolution images for training dataset could help detection performance. Furthermore, we found that aerial images improved the detection performance on satellite images.

  18. The Role of Unmanned Aerial Systems/Sensors in Air Quality Research

    EPA Science Inventory

    The use of unmanned aerial systems (UASs) for a variety of scientific and security purposes has rapidly increased. UASs include aerostats (tethered balloons) and remotely controlled, unmanned aerial vehicles (UAVs) including lighter-than-air vessels, fixed wing airplanes, and he...

  19. DOE/NNSA Aerial Measuring System (AMS): Flying the 'Real' Thing

    SciTech Connect

    Craig Lyons

    2011-06-24

    This slide show documents aerial radiation surveys over Japan. Map product is a compilation of daily aerial measuring system missions from the Fukushima Daiichi power plant to 80 km radius. In addition, other flights were conducted over US military bases and the US embassy.

  20. Comparison of binary mask defect printability analysis using virtual stepper system and aerial image microscope system

    NASA Astrophysics Data System (ADS)

    Phan, Khoi A.; Spence, Chris A.; Dakshina-Murthy, S.; Bala, Vidya; Williams, Alvina M.; Strener, Steve; Eandi, Richard D.; Li, Junling; Karklin, Linard

    1999-12-01

    As advanced process technologies in the wafer fabs push the patterning processes toward lower k1 factor for sub-wavelength resolution printing, reticles are required to use optical proximity correction (OPC) and phase-shifted mask (PSM) for resolution enhancement. For OPC/PSM mask technology, defect printability is one of the major concerns. Current reticle inspection tools available on the market sometimes are not capable of consistently differentiating between an OPC feature and a true random defect. Due to the process complexity and high cost associated with the making of OPC/PSM reticles, it is important for both mask shops and lithography engineers to understand the impact of different defect types and sizes to the printability. Aerial Image Measurement System (AIMS) has been used in the mask shops for a number of years for reticle applications such as aerial image simulation and transmission measurement of repaired defects. The Virtual Stepper System (VSS) provides an alternative method to do defect printability simulation and analysis using reticle images captured by an optical inspection or review system. In this paper, pre- programmed defects and repairs from a Defect Sensitivity Monitor (DSM) reticle with 200 nm minimum features (at 1x) will be studied for printability. The simulated resist lines by AIMS and VSS are both compared to SEM images of resist wafers qualitatively and quantitatively using CD verification.Process window comparison between unrepaired and repaired defects for both good and bad repair cases will be shown. The effect of mask repairs to resist pattern images for the binary mask case will be discussed. AIMS simulation was done at the International Sematech, Virtual stepper simulation at Zygo and resist wafers were processed at AMD-Submicron Development Center using a DUV lithographic process for 0.18 micrometer Logic process technology.

  1. Development of an aerial counting system in oil palm plantations

    NASA Astrophysics Data System (ADS)

    Zulyma Miserque Castillo, Jhany; Laverde Diaz, Rubbermaid; Rueda Guzmán, Claudia Leonor

    2016-07-01

    This paper proposes the development of a counting aerial system capable of capturing, process and analyzing images of an oil palm plantation to register the number of cultivated palms. It begins with a study of the available UAV technologies to define the most appropriate model according to the project needs. As result, a DJI Phantom 2 Vision+ is used to capture pictures that are processed by a photogrammetry software to create orthomosaics from the areas of interest, which are handled by the developed software to calculate the number of palms contained in them. The implemented algorithm uses a sliding window technique in image pyramids to generate candidate windows, an LBP descriptor to model the texture of the picture, a logistic regression model to classify the windows and a non-maximum suppression algorithm to refine the decision. The system was tested in different images than the ones used for training and for establishing the set point. As result, the system showed a 95.34% detection rate with a 97.83% precision in mature palms and a 79.26% detection rate with a 97.53% precision in young palms giving an FI score of 0.97 for mature palms and 0.87 for the small ones. The results are satisfactory getting the census and high-quality images from which is possible to get more information from the area of interest. All this, achieved through a low-cost system capable of work even in cloudy conditions.

  2. A Low Cost Rokkaku Kite Setup for Aerial Photogrammetric System

    NASA Astrophysics Data System (ADS)

    Khan, A. F.; Khurshid, K.; Saleh, N.; Yousuf, A. A.

    2015-03-01

    Orthogonally Projected Area (OPA) of a geographical feature has primarily been studied utilizing rather time consuming field based sampling techniques. Remote sensing on the contrary provides the ability to acquire large scale data at a snapshot of time and lets the OPA to be calculated conveniently and with reasonable accuracy. Unfortunately satellite based remote sensing provides data at high cost and limited spatial resolution for scientific studies focused at small areas such as micro lakes micro ecosystems, etc. More importantly, recent satellite data may not be readily available for a particular location. This paper describes a low cost photogrammetric system to measure the OPA of a small scale geographic feature such as a plot of land, micro lake or an archaeological site, etc. Fitted with a consumer grade digital imaging system, a Rokkaku kite aerial platform with stable flight characteristics is designed and fabricated for image acquisition. The data processing procedure involves automatic Ground Control Point (GCP) detection, intelligent target area shape determination with minimal human input. A Graphical User Interface (GUI) is built from scratch in MATLAB to allow the user to conveniently process the acquired data, archive and retrieve the results. Extensive on-field experimentation consists of multiple geographic features including flat land surfaces, buildings, undulating rural areas, and an irregular shaped micro lake, etc. Our results show that the proposed system is not only low cost, but provides a framework that is easy and fast to setup while maintaining the required constraints on the accuracy.

  3. Application of Digital Image Correlation Method to Improve the Accuracy of Aerial Photo Stitching

    NASA Astrophysics Data System (ADS)

    Tung, Shih-Heng; Jhou, You-Liang; Shih, Ming-Hsiang; Hsiao, Han-Wei; Sung, Wen-Pei

    2016-04-01

    Satellite images and traditional aerial photos have been used in remote sensing for a long time. However, there are some problems with these images. For example, the resolution of satellite image is insufficient, the cost to obtain traditional images is relatively high and there is also human safety risk in traditional flight. These result in the application limitation of these images. In recent years, the control technology of unmanned aerial vehicle (UAV) is rapidly developed. This makes unmanned aerial vehicle widely used in obtaining aerial photos. Compared to satellite images and traditional aerial photos, these aerial photos obtained using UAV have the advantages of higher resolution, low cost. Because there is no crew in UAV, it is still possible to take aerial photos using UAV under unstable weather conditions. Images have to be orthorectified and their distortion must be corrected at first. Then, with the help of image matching technique and control points, these images can be stitched or used to establish DEM of ground surface. These images or DEM data can be used to monitor the landslide or estimate the volume of landslide. For the image matching, we can use such as Harris corner method, SIFT or SURF to extract and match feature points. However, the accuracy of these methods for matching is about pixel or sub-pixel level. The accuracy of digital image correlation method (DIC) during image matching can reach about 0.01pixel. Therefore, this study applies digital image correlation method to match extracted feature points. Then the stitched images are observed to judge the improvement situation. This study takes the aerial photos of a reservoir area. These images are stitched under the situations with and without the help of DIC. The results show that the misplacement situation in the stitched image using DIC to match feature points has been significantly improved. This shows that the use of DIC to match feature points can actually improve the accuracy of

  4. Applicability of New Approaches of Sensor Orientation to Micro Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Rehak, M.; Skaloud, J.

    2016-06-01

    This study highlights the benefits of precise aerial position and attitude control in the context of mapping with Micro Aerial Vehicles (MAVs). Accurate mapping with MAVs is gaining importance in applications such as corridor mapping, road and pipeline inspections or mapping of large areas with homogeneous surface structure, e.g. forests or agricultural fields. There, accurate aerial control plays a major role in successful terrain reconstruction and artifact-free ortophoto generation. The presented experiments focus on new approaches of aerial control. We confirm practically that the relative aerial position and attitude control can improve accuracy in difficult mapping scenarios. Indeed, the relative orientation method represents an attractive alternative in the context of MAVs for two reasons. First, the procedure is somewhat simplified, e.g. the angular misalignment, so called boresight, between the camera and the inertial measurement unit (IMU) does not have to be determined and, second, the effect of possible systematic errors in satellite positioning (e.g. due to multipath and/or incorrect recovery of differential carrier-phase ambiguities) is mitigated. First, we present a typical mapping project over an agricultural field and second, we perform a corridor road mapping. We evaluate the proposed methods in scenarios with and without automated image observations. We investigate a recently proposed concept where adjustment is performed using image observations limited to ground control and check points, so called fast aerial triangulation (Fast AT). In this context we show that accurate aerial control (absolute or relative) together with a few image observations can deliver accurate results comparable to classical aerial triangulation with thousands of image measurements. This procedure in turns reduces the demands on processing time and the requirements on the existence of surface texture. Finally, we compare the above mentioned procedures with direct sensor

  5. The effect of adjuvants at high spray pressures for aerial applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Controlling droplet size is a critical part of making any successful agrochemical spray application. This is particularly true for higher speed aerial applications where secondary atomization from air shear becomes the most dominate factor driving spray droplet size. Previous research has shown th...

  6. Vision-Based SLAM System for Unmanned Aerial Vehicles

    PubMed Central

    Munguía, Rodrigo; Urzua, Sarquis; Bolea, Yolanda; Grau, Antoni

    2016-01-01

    The present paper describes a vision-based simultaneous localization and mapping system to be applied to Unmanned Aerial Vehicles (UAVs). The main contribution of this work is to propose a novel estimator relying on an Extended Kalman Filter. The estimator is designed in order to fuse the measurements obtained from: (i) an orientation sensor (AHRS); (ii) a position sensor (GPS); and (iii) a monocular camera. The estimated state consists of the full state of the vehicle: position and orientation and their first derivatives, as well as the location of the landmarks observed by the camera. The position sensor will be used only during the initialization period in order to recover the metric scale of the world. Afterwards, the estimated map of landmarks will be used to perform a fully vision-based navigation when the position sensor is not available. Experimental results obtained with simulations and real data show the benefits of the inclusion of camera measurements into the system. In this sense the estimation of the trajectory of the vehicle is considerably improved, compared with the estimates obtained using only the measurements from the position sensor, which are commonly low-rated and highly noisy. PMID:26999131

  7. Vision-Based SLAM System for Unmanned Aerial Vehicles.

    PubMed

    Munguía, Rodrigo; Urzua, Sarquis; Bolea, Yolanda; Grau, Antoni

    2016-01-01

    The present paper describes a vision-based simultaneous localization and mapping system to be applied to Unmanned Aerial Vehicles (UAVs). The main contribution of this work is to propose a novel estimator relying on an Extended Kalman Filter. The estimator is designed in order to fuse the measurements obtained from: (i) an orientation sensor (AHRS); (ii) a position sensor (GPS); and (iii) a monocular camera. The estimated state consists of the full state of the vehicle: position and orientation and their first derivatives, as well as the location of the landmarks observed by the camera. The position sensor will be used only during the initialization period in order to recover the metric scale of the world. Afterwards, the estimated map of landmarks will be used to perform a fully vision-based navigation when the position sensor is not available. Experimental results obtained with simulations and real data show the benefits of the inclusion of camera measurements into the system. In this sense the estimation of the trajectory of the vehicle is considerably improved, compared with the estimates obtained using only the measurements from the position sensor, which are commonly low-rated and highly noisy. PMID:26999131

  8. Aerial Measuring System Technical Integration Annual Report 2002

    SciTech Connect

    Bechtel Nevada Remote Sensing Laboratory

    2003-06-01

    Fiscal Year 2002 is the second year of a five-year commitment by the U.S. Department of Energy, National Nuclear Security Administration (NNSA) to invest in development of new and state-of-the-art technologies for the Aerial Measuring Systems (AMS) project. In 2000, NNSA committed to two million dollars for AMS Technical Integration (TI) for each of five years. The tragedy of September 11, 2001, profoundly influenced the program. NNSA redirected people and funding resources at the Remote Sensing Laboratory (RSL) to more immediate needs. Funds intended for AMS TI were redirected to NNSA's new posture of leaning further forward throughout. AMS TI was brought to a complete halt on December 10, 2001. Then on April 30, 2002, NNSA Headquarters allowed the restart of AMS TI at the reduced level of $840,000. The year's events resulted in a slow beginning of several projects, some of which were resumed only a few weeks before the AMS TI Symposium held at RSL on July 30.

  9. The NASA Dryden Flight Test Approach to an Aerial Refueling System

    NASA Technical Reports Server (NTRS)

    Hansen, Jennifer L.; Murray, James E.; Campos, Norma V.

    2005-01-01

    The integration of uninhabited aerial vehicles (UAVs) into controlled airspace has generated a new era of autonomous technologies and challenges. Autonomous aerial refueling would enable UAVs to travel further distances and loiter for extended periods over time-critical targets. The NASA Dryden Flight Research Center recently has completed a flight research project directed at developing a dynamic hose and drogue system model to support the development of an automated aerial refueling system. A systematic dynamic model of the hose and drogue system would include the effects of various influences on the system, such as flight condition, hose and drogue type, tanker type and weight, receiver type, and tanker and receiver maneuvering. Using two NASA F/A-18 aircraft and a conventional hose and drogue aerial refueling store from the Navy, NASA has obtained flight research data that document the response of the hose and drogue system to these effects. Preliminary results, salient trends, and important lessons are presented

  10. The NASA Dryden AAR Project: A Flight Test Approach to an Aerial Refueling System

    NASA Technical Reports Server (NTRS)

    Hansen, Jennifer L.; Murray, James E.; Campos, Norma V.

    2004-01-01

    The integration of uninhabited aerial vehicles (UAVs) into controlled airspace has generated a new era of autonomous technologies and challenges. Autonomous aerial refueling would enable UAVs to travel further distances and loiter for extended periods over time-critical targets. The NASA Dryden Flight Research Center recently has completed a flight research project directed at developing a dynamic hose and drogue system model to support the development of an automated aerial refueling system. A systematic dynamic model of the hose and drogue system would include the effects of various influences on the system, such as flight condition, hose and drogue type, tanker type and weight, receiver type, and tanker and receiver maneuvering. Using two NASA F/A-18 aircraft and a conventional hose and drogue aerial refueling store from the Navy, NASA has obtained flight research data that document the response of the hose and drogue system to these effects. Preliminary results, salient trends, and important lessons are presented.

  11. Unmanned Aerial System (UAS) Traffic Management (UTM): Enabling Low-Altitude Airspace and UAS Operations

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal H.

    2014-01-01

    Many civilian applications of Unmanned Aerial Systems (UAS) have been imagined ranging from remote to congested urban areas, including goods delivery, infrastructure surveillance, agricultural support, and medical services delivery. Further, these UAS will have different equipage and capabilities based on considerations such as affordability, and mission needs applications. Such heterogeneous UAS mix, along with operations such as general aviation, helicopters, gliders must be safely accommodated at lower altitudes. However, key infrastructure to enable and safely manage widespread use of low-altitude airspace and UAS operations therein does not exist. Therefore, NASA is exploring functional design, concept and technology development, and a prototype UAS Traffic Management (UTM) system. UTM will support safe and efficient UAS operations for the delivery of goods and services

  12. Computer discrimination procedures applicable to aerial and ERTS multispectral data

    NASA Technical Reports Server (NTRS)

    Richardson, A. J.; Torline, R. J.; Allen, W. A.

    1970-01-01

    Two statistical models are compared in the classification of crops recorded on color aerial photographs. A theory of error ellipses is applied to the pattern recognition problem. An elliptical boundary condition classification model (EBC), useful for recognition of candidate patterns, evolves out of error ellipse theory. The EBC model is compared with the minimum distance to the mean (MDM) classification model in terms of pattern recognition ability. The pattern recognition results of both models are interpreted graphically using scatter diagrams to represent measurement space. Measurement space, for this report, is determined by optical density measurements collected from Kodak Ektachrome Infrared Aero Film 8443 (EIR). The EBC model is shown to be a significant improvement over the MDM model.

  13. Reducing pesticide drift by considering propeller rotation effects from aerial application and near buffer zones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Off-target drift of chemical from agricultural spraying can damage sensitive crops, destroy beneficial insects, and intrude on human and domestic animal habitats, threatening environmental quality. Reduction of drift from aerial application can be facilitated at the edge of a field by offsetting spr...

  14. Aerial ULV application of Dibrom against Aedes aegypti in simulated urban and rural residences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reaching endophilic Aedes aegypti mosquito vectors of dengue located in human residences with aerial ULV pesticide applications is a prominent complication in operational wide area public health mosquito control activities. We conducted separate trials with a military C-130 fixed wing aircraft fitte...

  15. Research of aerial camera focal pane micro-displacement measurement system based on Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Wang, Shu-juan; Zhao, Yu-liang; Li, Shu-jun

    2014-09-01

    The aerial camera focal plane in the correct position is critical to the imaging quality. In order to adjust the aerial camera focal plane displacement caused in the process of maintenance, a new micro-displacement measuring system of aerial camera focal plane in view of the Michelson interferometer has been designed in this paper, which is based on the phase modulation principle, and uses the interference effect to realize the focal plane of the micro-displacement measurement. The system takes He-Ne laser as the light source, uses the Michelson interference mechanism to produce interference fringes, changes with the motion of the aerial camera focal plane interference fringes periodically, and records the periodicity of the change of the interference fringes to obtain the aerial camera plane displacement; Taking linear CCD and its driving system as the interference fringes picking up tool, relying on the frequency conversion and differentiating system, the system determines the moving direction of the focal plane. After data collecting, filtering, amplifying, threshold comparing, counting, CCD video signals of the interference fringes are sent into the computer processed automatically, and output the focal plane micro displacement results. As a result, the focal plane micro displacement can be measured automatically by this system. This system uses linear CCD as the interference fringes picking up tool, greatly improving the counting accuracy and eliminated the artificial counting error almost, improving the measurement accuracy of the system. The results of the experiments demonstrate that: the aerial camera focal plane displacement measurement accuracy is 0.2nm. While tests in the laboratory and flight show that aerial camera focal plane positioning is accurate and can satisfy the requirement of the aerial camera imaging.

  16. High Altitude Aerial Natural Gas Leak Detection System

    SciTech Connect

    Richard T. Wainner; Mickey B. Frish; B. David Green; Matthew C. Laderer; Mark G. Allen; Joseph R. Morency

    2006-12-31

    The objective of this program was to develop and demonstrate a cost-effective and power-efficient advanced standoff sensing technology able to detect and quantify, from a high-altitude (> 10,000 ft) aircraft, natural gas leaking from a high-pressure pipeline. The advanced technology is based on an enhanced version of the Remote Methane Leak Detector (RMLD) platform developed previously by Physical Sciences Inc. (PSI). The RMLD combines a telecommunications-style diode laser, fiber-optic components, and low-cost DSP electronics with the well-understood principles of Wavelength Modulation Spectroscopy (WMS), to indicate the presence of natural gas located between the operator and a topographic target. The transceiver transmits a laser beam onto a topographic target and receives some of the laser light reflected by the target. The controller processes the received light signal to deduce the amount of methane in the laser's path. For use in the airborne platform, we modified three aspects of the RMLD, by: (1) inserting an Erbium-doped optical fiber laser amplifier to increase the transmitted laser power from 10 mW to 5W; (2) increasing the optical receiver diameter from 10 cm to 25 cm; and (3) altering the laser wavelength from 1653 nm to 1618 nm. The modified RMLD system provides a path-integrated methane concentration sensitivity {approx}5000 ppm-m, sufficient to detect the presence of a leak from a high capacity transmission line while discriminating against attenuation by ambient methane. In ground-based simulations of the aerial leak detection scenario, we demonstrated the ability to measure methane leaks within the laser beam path when it illuminates a topographic target 2000 m away. We also demonstrated simulated leak detection from ranges of 200 m using the 25 cm optical receiver without the fiber amplifier.

  17. Developing Collective Training for Small Unmanned Aerial Systems Employment

    NASA Technical Reports Server (NTRS)

    Durlach, Paula J.; Priest, Heather; Martin, Glenn A.; Saffold, Jay

    2010-01-01

    The projected use of small unmanned aerial systems (SUAS) in military operations will produce training requirements which go beyond current capabilities. The paper describes the development of prototype training procedures and accompanying research simulations to address this need. We initially constructed a testbed to develop simulation-based training for an SUAS operator equipped with a simulated vertical-lift and land SUAS. However, the required training will go beyond merely training an operator how to pilot an SUAS. In addition to tactics, techniques, and procedures for employment of SUASs, collective training methods must be trained. Moreover, the leader of a unit equipped with SUAS will need to learn how to plan missions which incorporate the SUAS, and take into account air space and frequency management considerations. The demands of the task require the leader to allocate personnel to the SUAS mission, communicate and coordinate with those personnel during the mission, and make use of the information provided. To help address these training issues, we expanded our research testbed to include a command and control node (C2 node), to enable communications between a leader and the SUAS operator. In addition, we added a virtual environment in which dismounted infantry missions can be conducted. This virtual environment provides the opportunity for interactions among human-controlled avatars and non-player characters (NPCs), plus authoring tools to construct scenarios. Using these NPCs, a collective exercise involving friendly, enemy, and civilian personnel can be conducted without the need for a human role-player for every entity. We will describe the results of our first experiment, which examined the ability of players to negotiate use of the C2 node and the virtual environment at the same time, in order to see if this is a feasible combination of tools for training development.

  18. Holarchical Systems and Emotional Holons : Biologically-Inspired System Designs for Control of Autonomous Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Ippolito, Corey; Plice, Laura; Pisanich, Greg

    2003-01-01

    The BEES (Bio-inspired Engineering for Exploration Systems) for Mars project at NASA Ames Research Center has the goal of developing bio-inspired flight control strategies to enable aerial explorers for Mars scientific investigations. This paper presents a summary of our ongoing research into biologically inspired system designs for control of unmanned autonomous aerial vehicle communities for Mars exploration. First, we present cooperative design considerations for robotic explorers based on the holarchical nature of biological systems and communities. Second, an outline of an architecture for cognitive decision making and control of individual robotic explorers is presented, modeled after the emotional nervous system of cognitive biological systems. Keywords: Holarchy, Biologically Inspired, Emotional UAV Flight Control

  19. Accurate Optical Target Pose Determination for Applications in Aerial Photogrammetry

    NASA Astrophysics Data System (ADS)

    Cucci, D. A.

    2016-06-01

    We propose a new design for an optical coded target based on concentric circles and a position and orientation determination algorithm optimized for high distances compared to the target size. If two ellipses are fitted on the edge pixels corresponding to the outer and inner circles, quasi-analytical methods are known to obtain the coordinates of the projection of the circles center. We show the limits of these methods for quasi-frontal target orientations and in presence of noise and we propose an iterative refinement algorithm based on a geometric invariant. Next, we introduce a closed form, computationally inexpensive, solution to obtain the target position and orientation given the projected circle center and the parameters of the outer circle projection. The viability of the approach is demonstrated based on aerial pictures taken by an UAV from elevations between 10 to 100 m. We obtain a distance RMS below 0.25 % under 50 m and below 1 % under 100 m with a target size of 90 cm, part of which is a deterministic bias introduced by image exposure.

  20. The application of unmanned aerial vehicle to precision agriculture: Chlorophyll, nitrogen, and evapotranspiration estimation

    NASA Astrophysics Data System (ADS)

    Elarab, Manal

    Precision agriculture (PA) is an integration of a set of technologies aiming to improve productivity and profitability while sustaining the quality of the surrounding environment. It is a process that vastly relies on high-resolution information to enable greater precision in the management of inputs to production. This dissertation explored the usage of multispectral high resolution aerial imagery acquired by an unmanned aerial systems (UAS) platform to serve precision agriculture application. The UAS acquired imagery in the visual, near infrared and thermal infrared spectra with a resolution of less than a meter (15--60 cm). This research focused on developing two models to estimate cm-scale chlorophyll content and leaf nitrogen. To achieve the estimations a well-established machine learning algorithm (relevance vector machine) was used. The two models were trained on a dataset of in situ collected leaf chlorophyll and leaf nitrogen measurements, and the machine learning algorithm intelligently selected the most appropriate bands and indices for building regressions with the highest prediction accuracy. In addition, this research explored the usage of the high resolution imagery to estimate crop evapotranspiration (ET) at 15 cm resolution. A comparison was also made between the high resolution ET and Landsat derived ET over two different crop cover (field crops and vineyards) to assess the advantages of UAS based high resolution ET. This research aimed to bridge the information embedded in the high resolution imagery with ground crop parameters to provide site specific information to assist farmers adopting precision agriculture. The framework of this dissertation consisted of three components that provide tools to support precision agriculture operational decisions. In general, the results for each of the methods developed were satisfactory, relevant, and encouraging.

  1. The application of GPS precise point positioning technology in aerial triangulation

    NASA Astrophysics Data System (ADS)

    Yuan, Xiuxiao; Fu, Jianhong; Sun, Hongxing; Toth, Charles

    In traditional GPS-supported aerotriangulation, differential GPS (DGPS) positioning technology is used to determine the 3-dimensional coordinates of the perspective centers at exposure time with an accuracy of centimeter to decimeter level. This method can significantly reduce the number of ground control points (GCPs). However, the establishment of GPS reference stations for DGPS positioning is not only labor-intensive and costly, but also increases the implementation difficulty of aerial photography. This paper proposes aerial triangulation supported with GPS precise point positioning (PPP) as a way to avoid the use of the GPS reference stations and simplify the work of aerial photography. Firstly, we present the algorithm for GPS PPP in aerial triangulation applications. Secondly, the error law of the coordinate of perspective centers determined using GPS PPP is analyzed. Thirdly, based on GPS PPP and aerial triangulation software self-developed by the authors, four sets of actual aerial images taken from surveying and mapping projects, different in both terrain and photographic scale, are given as experimental models. The four sets of actual data were taken over a flat region at a scale of 1:2500, a mountainous region at a scale of 1:3000, a high mountainous region at a scale of 1:32000 and an upland region at a scale of 1:60000 respectively. In these experiments, the GPS PPP results were compared with results obtained through DGPS positioning and traditional bundle block adjustment. In this way, the empirical positioning accuracy of GPS PPP in aerial triangulation can be estimated. Finally, the results of bundle block adjustment with airborne GPS controls from GPS PPP are analyzed in detail. The empirical results show that GPS PPP applied in aerial triangulation has a systematic error of half-meter level and a stochastic error within a few decimeters. However, if a suitable adjustment solution is adopted, the systematic error can be eliminated in GPS

  2. Auto-measurement system of aerial camera lens' resolution based on orthogonal linear CCD

    NASA Astrophysics Data System (ADS)

    Zhao, Yu-liang; Zhang, Yu-ye; Ding, Hong-yi

    2010-10-01

    The resolution of aerial camera lens is one of the most important camera's performance indexes. The measurement and calibration of resolution are important test items in in maintenance of camera. The traditional method that is observing resolution panel of collimator rely on human's eyes using microscope and doing some computing. The method is of low efficiency and susceptible to artificial factors. The measurement results are unstable, too. An auto-measurement system of aerial camera lens' resolution, which uses orthogonal linear CCD sensor as the detector to replace reading microscope, is introduced. The system can measure automatically and show result real-timely. In order to measure the smallest diameter of resolution panel which could be identified, two orthogonal linear CCD is laid on the imaging plane of measured lens and four intersection points are formed on the orthogonal linear CCD. A coordinate system is determined by origin point of the linear CCD. And a circle is determined by four intersection points. In order to obtain the circle's radius, firstly, the image of resolution panel is transformed to pulse width of electric signal which is send to computer through amplifying circuit and threshold comparator and counter. Secondly, the smallest circle would be extracted to do measurement. The circle extraction made using of wavelet transform which has character of localization in the domain of time and frequency and has capability of multi-scale analysis. Lastly, according to the solution formula of lens' resolution, we could obtain the resolution of measured lens. The measuring precision on practical measurement is analyzed, and the result indicated that the precision will be improved when using linear CCD instead of reading microscope. Moreover, the improvement of system error is determined by the pixel's size of CCD. With the technique of CCD developed, the pixel's size will smaller, the system error will be reduced greatly too. So the auto

  3. Marginal Ice Zone Processes Observed from Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Zappa, C. J.

    2015-12-01

    Recent years have seen extreme changes in the Arctic. Marginal ice zones (MIZ), or areas where the "ice-albedo feedback" driven by solar warming is highest and ice melt is extensive, may provide insights into the extent of these changes. Furthermore, MIZ play a central role in setting the air-sea CO2 balance making them a critical component of the global carbon cycle. Incomplete understanding of how the sea-ice modulates gas fluxes renders it difficult to estimate the carbon budget in MIZ. Here, we investigate the turbulent mechanisms driving mixing and gas exchange in leads, polynyas and in the presence of ice floes using both field and laboratory measurements. Measurements from unmanned aerial systems (UAS) in the marginal ice zone were made during 2 experiments: 1) North of Oliktok Point AK in the Beaufort Sea were made during the Marginal Ice Zone Ocean and Ice Observations and Processes EXperiment (MIZOPEX) in July-August 2013 and 2) Fram Strait and Greenland Sea northwest of Ny-Ålesund, Svalbard, Norway during the Air-Sea-Ice Physics and Biogeochemistry Experiment (ASIPBEX) April - May 2015. We developed a number of new payloads that include: i) hyperspectral imaging spectrometers to measure VNIR (400-1000 nm) and NIR (900-1700 nm) spectral radiance; ii) net longwave and net shortwave radiation for ice-ocean albedo studies; iii) air-sea-ice turbulent fluxes as well as wave height, ice freeboard, and surface roughness with a LIDAR; and iv) drone-deployed micro-drifters (DDµD) deployed from the UAS that telemeter temperature, pressure, and RH as it descends through the atmosphere and temperature and salinity of the upper meter of the ocean once it lands on the ocean's surface. Visible and IR imagery of melting ice floes clearly defines the scale of the ice floes. The IR imagery show distinct cooling of the skin sea surface temperature (SST) as well as an intricate circulation and mixing pattern that depends on the surface current, wind speed, and near

  4. Factors influencing efficiency of laser wireless power transmission system for micro unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoguang; Hua, Wenshen; Liu, Xun

    2014-12-01

    Micro unmanned aerial vehicle, mostly powered by electricity, plays an important role in many military and civil applications, e.g. military detection, communication relay et al. But restricted endurance ability severely limits its applications. To solve the problem, laser wireless power transmission system is proposed. However, overall efficiency of the system is quite low. This paper describes basic structure of laser wireless power transmission system and its working process. The system consists of two major modules: a high power laser source transmitting energy and a photovoltaic receiver converting optical energy into electricity. Then factors influencing efficiency of the system are analyzed. It suggests that electro-optical efficiency of laser, atmospheric impact on laser beam and photo-electric efficiency of photovoltaic receiver play significant role in overall efficiency of the system. Atmospheric impact on laser beam mostly derived from refraction, absorption, scattering and turbulence effects, leads to drop in energy and quality of laser beam. Efficiency of photovoltaic receiver is affected by photovoltaic materials. In addition, matching degree between intensity distribution of laser beam and layout of photovoltaic receiver also obviously influence efficiency of photovoltaic receiver. Experiment results suggest that under non-uniform laser beam illumination, efficiency of photovoltaic receiver mostly depends on layout of photovoltaic receiver. Through optimizing the layout of photovoltaic receiver based on intensity distribution of laser beam, output power is significantly improved. The analysis may help to take corresponding measures to alleviate negative effects of these factors and improve performance of laser wireless power transmission system.

  5. Progress on Platforms, Sensors and Applications with Unmanned Aerial Vehicles in soil science and geomorphology

    NASA Astrophysics Data System (ADS)

    Anders, Niels; Suomalainen, Juha; Seeger, Manuel; Keesstra, Saskia; Bartholomeus, Harm; Paron, Paolo

    2014-05-01

    The recent increase of performance and endurance of electronically controlled flying platforms, such as multi-copters and fixed-wing airplanes, and decreasing size and weight of different sensors and batteries leads to increasing popularity of Unmanned Aerial Systems (UAS) for scientific purposes. Modern workflows that implement UAS include guided flight plan generation, 3D GPS navigation for fully automated piloting, and automated processing with new techniques such as "Structure from Motion" photogrammetry. UAS are often equipped with normal RGB cameras, multi- and hyperspectral sensors, radar, or other sensors, and provide a cheap and flexible solution for creating multi-temporal data sets. UAS revolutionized multi-temporal research allowing new applications related to change analysis and process monitoring. The EGU General Assembly 2014 is hosting a session on platforms, sensors and applications with UAS in soil science and geomorphology. This presentation briefly summarizes the outcome of this session, addressing the current state and future challenges of small-platform data acquisition in soil science and geomorphology.

  6. Fuel cell powered small unmanned aerial systems (UASs) for extended endurance flights

    NASA Astrophysics Data System (ADS)

    Chu, Deryn; Jiang, R.; Dunbar, Z.; Grew, Kyle; McClure, J.

    2015-05-01

    Small unmanned aerial systems (UASs) have been used for military applications and have additional potential for commercial applications [1-4]. For the military, these systems provide valuable intelligence, surveillance, reconnaissance and target acquisition (ISRTA) capabilities for units at the infantry, battalion, and company levels. The small UASs are light-weight, manportable, can be hand-launched, and are capable of carrying payloads. Currently, most small UASs are powered by lithium-ion or lithium polymer batteries; however, the flight endurance is usually limited less than two hours and requires frequent battery replacement. Long endurance small UAS flights have been demonstrated through the implementation of a fuel cell system. For instance, a propane fueled solid oxide fuel cell (SOFC) stack has been used to power a small UAS and shown to extend mission flight time. The research and development efforts presented here not only apply to small UASs, but also provide merit to the viability of extending mission operations for other unmanned systems applications.

  7. Study of guidance techniques for aerial application of agricultural compounds

    NASA Technical Reports Server (NTRS)

    Caldwell, J. D.; Dimmock, P. B. A.; Watkins, R. H.

    1980-01-01

    Candidate systems were identified for evaluation of suitability in meeting specified accuracy requirements for a swath guidance system in an agriculture aircraft. Further examination reduced the list of potential candidates to a single category, i.e., transponder type systems, for detailed evaluation. Within this category three systems were found which met the basic accuracy requirements of the work statement. The Flying Flagman, the Electronic Flagging and the Raydist Director System. In addition to evaluating the systems against the specified requirements, each system was compared with the other two systems on a relative basis. The conclusions supported by the analyses show the Flying Flagman system to be the most suitable system currently available to meet the requirements.

  8. Combination ground and aerial adulticide applications against mosquitoes in an Arkansas riceland community.

    PubMed

    Weathersbee, A A; Meisch, M V; Sandoski, C A; Finch, M F; Dame, D A; Olson, J K; Inman, A

    1986-12-01

    Simultaneous ground and aerial adulticide applications were evaluated against riceland mosquitoes in Stuttgart, AR, during July 1985. Naled was aerially applied at 52.6 ml/ha over 10.4 km2 surrounding the city. Ground ULV applications of a mixture of malathion, HAN and resmethrin/PBO (1:1:0.0625) were applied within the city at a rate of 221.8 ml/min at 24 kph. Adult populations of Anopheles quadrimaculatus and Psorophora columbiae were reduced at 24 hr but resurgence of Ps. columbiae was evident at 48 hr posttreatment. Posttreatment data indicated that movement of both mosquitoes occurred along the path of prevailing wind. PMID:2906984

  9. Aerial Measuring System (AMS) Baseline Surveys for Emergency Planning

    SciTech Connect

    Lyons, C

    2012-06-04

    Originally established in the 1960s to support the Nuclear Test Program, the AMS mission is to provide a rapid and comprehensive worldwide aerial measurement, analysis, and interpretation capability in response to a nuclear/radiological emergency. AMS provides a responsive team of individuals whose processes allow for a mission to be conducted and completed with results available within hours. This presentation slide-show reviews some of the history of the AMS, summarizes present capabilities and methods, and addresses the value of the surveys.

  10. Real-Time Monitoring System Using Unmanned Aerial Vehicle Integrated with Sensor Observation Service

    NASA Astrophysics Data System (ADS)

    Witayangkurn, A.; Nagai, M.; Honda, K.; Dailey, M.; Shibasaki, R.

    2011-09-01

    The Unmanned Aerial Vehicle (UAV) is an emerging technology being adapted for a wide range of applications. Real-time monitoring is essential to enhance the effectiveness of UAV applications. Sensor networks are networks constructed from various sensor nodes. International standard such as OGC's SOS (Sensor Observation Service) makes it possible to share sensor data with other systems as well as to provide accessibility to globally distributed users. In this paper, we propose a system combining UAV technology and sensor network technology to use an UAV as a mobile node of sensor network so that the sensor data from UAV is published and shared real-time. A UAV can extend the observation range of a sensor network to remote areas where it is usually difficult to access such as disaster area. We constructed a UAV system using remote-controlled helicopter and various sensors such as GPS, gyrocompass, laser range finder, Digital camera and Thermometer. Furthermore, we extended the Sensor Observation Service (SOS) and Sensor Service Grid (SSG) to support mobile sensor nodes. Then, we conducted experiments of flying the helicopter over an area of the interest. During the flight, the system measured environmental data using its sensors and captured images of the ground. The data was sent to a SOS node as the ground station via Wi-Fi which was published using SSG to give real- time access to globally distributed users.

  11. The application of the unmanned aerial vehicle remote sensing technology in the FAST project construction

    NASA Astrophysics Data System (ADS)

    Zhu, Boqin

    2015-08-01

    The purpose of using unmanned aerial vehicle (UAV) remote sensing application in Five-hundred-meter aperture spherical telescope (FAST) project is to dynamically record the construction process with high resolution image, monitor the environmental impact, and provide services for local environmental protection and the reserve immigrants. This paper introduces the use of UAV remote sensing system and the course design and implementation for the FAST site. Through the analysis of the time series data, we found that: (1) since the year 2012, the project has been widely carried out; (2) till 2013, the internal project begun to take shape;(3) engineering excavation scope was kept stable in 2014, and the initial scale of the FAST engineering construction has emerged as in the meantime, the vegetation recovery went well on the bare soil area; (4) in 2015, none environmental problems caused by engineering construction and other engineering geological disaster were found in the work area through the image interpretation of UAV images. This paper also suggested that the UAV technology need some improvements to fulfill the requirements of surveying and mapping specification., including a new data acquisition and processing measures assigned with the background of highly diverse elevation, usage of telephoto camera, hierarchical photography with different flying height, and adjustment with terrain using the joint empty three settlement method.

  12. Unmanned Aerial Mass Spectrometer Systems for In-Situ Volcanic Plume Analysis

    NASA Astrophysics Data System (ADS)

    Diaz, Jorge Andres; Pieri, David; Wright, Kenneth; Sorensen, Paul; Kline-Shoder, Robert; Arkin, C. Richard; Fladeland, Matthew; Bland, Geoff; Buongiorno, Maria Fabrizia; Ramirez, Carlos; Corrales, Ernesto; Alan, Alfredo; Alegria, Oscar; Diaz, David; Linick, Justin

    2015-02-01

    Technology advances in the field of small, unmanned aerial vehicles and their integration with a variety of sensor packages and instruments, such as miniature mass spectrometers, have enhanced the possibilities and applications of what are now called unmanned aerial systems (UAS). With such technology, in situ and proximal remote sensing measurements of volcanic plumes are now possible without risking the lives of scientists and personnel in charge of close monitoring of volcanic activity. These methods provide unprecedented, and otherwise unobtainable, data very close in space and time to eruptions, to better understand the role of gas volatiles in magma and subsequent eruption products. Small mass spectrometers, together with the world's smallest turbo molecular pump, have being integrated into NASA and University of Costa Rica UAS platforms to be field-tested for in situ volcanic plume analysis, and in support of the calibration and validation of satellite-based remote sensing data. These new UAS-MS systems are combined with existing UAS flight-tested payloads and assets, such as temperature, pressure, relative humidity, SO2, H2S, CO2, GPS sensors, on-board data storage, and telemetry. Such payloads are capable of generating real time 3D concentration maps of the Turrialba volcano active plume in Costa Rica, while remote sensing data are simultaneously collected from the ASTER and OMI space-borne instruments for comparison. The primary goal is to improve the understanding of the chemical and physical properties of emissions for mitigation of local volcanic hazards, for the validation of species detection and abundance of retrievals based on remote sensing, and to validate transport models.

  13. Unmanned aerial mass spectrometer systems for in-situ volcanic plume analysis.

    PubMed

    Diaz, Jorge Andres; Pieri, David; Wright, Kenneth; Sorensen, Paul; Kline-Shoder, Robert; Arkin, C Richard; Fladeland, Matthew; Bland, Geoff; Buongiorno, Maria Fabrizia; Ramirez, Carlos; Corrales, Ernesto; Alan, Alfredo; Alegria, Oscar; Diaz, David; Linick, Justin

    2015-02-01

    Technology advances in the field of small, unmanned aerial vehicles and their integration with a variety of sensor packages and instruments, such as miniature mass spectrometers, have enhanced the possibilities and applications of what are now called unmanned aerial systems (UAS). With such technology, in situ and proximal remote sensing measurements of volcanic plumes are now possible without risking the lives of scientists and personnel in charge of close monitoring of volcanic activity. These methods provide unprecedented, and otherwise unobtainable, data very close in space and time to eruptions, to better understand the role of gas volatiles in magma and subsequent eruption products. Small mass spectrometers, together with the world's smallest turbo molecular pump, have being integrated into NASA and University of Costa Rica UAS platforms to be field-tested for in situ volcanic plume analysis, and in support of the calibration and validation of satellite-based remote sensing data. These new UAS-MS systems are combined with existing UAS flight-tested payloads and assets, such as temperature, pressure, relative humidity, SO2, H2S, CO2, GPS sensors, on-board data storage, and telemetry. Such payloads are capable of generating real time 3D concentration maps of the Turrialba volcano active plume in Costa Rica, while remote sensing data are simultaneously collected from the ASTER and OMI space-borne instruments for comparison. The primary goal is to improve the understanding of the chemical and physical properties of emissions for mitigation of local volcanic hazards, for the validation of species detection and abundance of retrievals based on remote sensing, and to validate transport models. PMID:25588720

  14. Unmanned Aerial Systems in Occupational Hygiene-Learning from Allied Disciplines.

    PubMed

    Eninger, Robert M; Johnson, Robert L

    2015-10-01

    Unmanned Aerial System (UAS) technologies are rapidly developing, lowering cost, and technology barriers for their use in numerous applications. This review and commentary summarizes relevant literature in allied fields and evaluates potential application and utility of UAS technology in the discipline of occupational hygiene. Disciplines closely related to occupational hygiene are moving to investigate potential uses--and in some cases--already employing this technology for research or commercial purposes. The literature was reviewed to formulate a cross-sectional picture of how UAS technology is being used in these closely allied disciplines which could inform or guide potential use in occupational hygiene. Discussed are UAS applications in environmental monitoring, emergency response, epidemiology, safety, and process optimization. A rapidly developing state of the art indicates that there is potential utility for this technology in occupational hygiene. Benefits may include cost savings, time savings, and averting hazardous environments via remote sensing. The occupational hygiene community can look to allied fields to garner lessons and possible applications to their own practice. PMID:26180263

  15. Unmanned Aerial Systems in Occupational Hygiene-Learning from Allied Disciplines.

    PubMed

    Eninger, Robert M; Johnson, Robert L

    2015-10-01

    Unmanned Aerial System (UAS) technologies are rapidly developing, lowering cost, and technology barriers for their use in numerous applications. This review and commentary summarizes relevant literature in allied fields and evaluates potential application and utility of UAS technology in the discipline of occupational hygiene. Disciplines closely related to occupational hygiene are moving to investigate potential uses--and in some cases--already employing this technology for research or commercial purposes. The literature was reviewed to formulate a cross-sectional picture of how UAS technology is being used in these closely allied disciplines which could inform or guide potential use in occupational hygiene. Discussed are UAS applications in environmental monitoring, emergency response, epidemiology, safety, and process optimization. A rapidly developing state of the art indicates that there is potential utility for this technology in occupational hygiene. Benefits may include cost savings, time savings, and averting hazardous environments via remote sensing. The occupational hygiene community can look to allied fields to garner lessons and possible applications to their own practice.

  16. Effects of aerial applications of naled on nontarget insects at Parris Island, South Carolina.

    PubMed

    Breidenbaugh, M S; de Szalay, F A

    2010-04-01

    Testing impacts of large-scale aerial spraying to control public health pests under realistic field conditions are needed to understand impacts on natural populations of nontarget insects. Responses of terrestrial insects to aerial applications of an organophosphate insecticide, naled, used for mosquito and biting midge control were studied on Parris Island Marine Corps Recruit Depot, Parris Island, SC. Aerial applications were made with C-130 aircraft at dusk in 2003 and in 2005. In 2003, we sampled two locations on Parris Island with Malaise traps before and after spraying, and used Before-After analyses to examine changes in terrestrial insect diversity and abundance. In 2005, we sampled insects with yellow pan traps at three locations on Parris Island and at an untreated control site. A Before-After Control-Impact analysis at each location was conducted to compare changes. In 2003, numbers of four of 12 common taxa (Dolichopodidae, Sarcophagidae, Syrphidae, Tachinidae) were lower after sprays. However, there were no significant changes in numbers of common taxa or total numbers in 2005. Shannon diversities (H') were not different in either year indicating that sprays had minimal impact on overall community biodiversity. In contrast, populations of pestiferous biting midges (Culicoides spp.) collected in CDC-style traps were reduced by 94-99% after spraying in both years; mosquito numbers declined by 88.2% in 2003 and 92.5% in 2005, after sprays. PMID:20388292

  17. Aerial image simulation for partial coherent system with programming development in MATLAB

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Nazmul; Rahman, Md. Momtazur; Udoy, Ariful Banna

    2014-10-01

    Aerial image can be calculated by either Abbe's method or sum of coherent system decomposition (SOCS) method for partial coherent system. This paper introduces a programming with Matlab code that changes the analytical representation of Abbe's method to the matrix form, which has advantages for both Abbe's method and SOCS since matrix calculation is easier than double integration over object plane or pupil plane. First a singular matrix P is derived from a pupil function and effective light source in the spatial frequency domain. By applying Singular Value Decomposition (SVD) to the matrix P, eigenvalues and eigenfunctions are obtained. The aerial image can then be computed by the eigenvalues and eigenfunctions without calculation of Transmission Cross Coefficient (TCC). The aerial final image is almost identical as an original cross mask and the intensity distribution on image plane shows that it is almost uniform across the linewidth of the mask.

  18. Hardware Implementation of COTS Avionics System on Unmanned Aerial Vehicle Platforms

    NASA Technical Reports Server (NTRS)

    Yeh, Yoo-Hsiu; Kumar, Parth; Ishihara, Abraham; Ippolito, Corey

    2010-01-01

    Unmanned Aerial Vehicles (UAVs) can serve as low cost and low risk platforms for flight testing in Aeronautics research. The NASA Exploration Aerial Vehicle (EAV) and Experimental Sensor-Controlled Aerial Vehicle (X-SCAV) UAVs were developed in support of control systems research at NASA Ames Research Center. The avionics hardware for both systems has been redesigned and updated, and the structure of the EAV has been further strengthened. Preliminary tests show the avionics operate properly in the new configuration. A linear model for the EAV also was estimated from flight data, and was verified in simulation. These modifications and results prepare the EAV and X-SCAV to be used in a wide variety of flight research projects.

  19. Development and evaluation of a lightweight sensor system for aerial emission sampling from open area sources

    EPA Science Inventory

    A new sensor system for mobile and aerial emission sampling was developed for open area pollutant sources, such as prescribed forest burns. The sensor system, termed “Kolibri”, consists of multiple low-cost air quality sensors measuring CO2, CO, samplers for particula...

  20. Development and evaluation of a lightweight sensor system for aerial emission sampling from open area sources

    EPA Science Inventory

    A new sensor system for mobile and aerial emission sampling was developed for open area pollutant sources, such as prescribed forest burns. The sensor system, termed “Kolibri”, consists of multiple low-cost air quality sensors measuring CO2, CO, samplers for particulate matter wi...

  1. Accuracy Assessment of Direct Georeferencing for Photogrammetric Applications on Small Unmanned Aerial Platforms

    NASA Astrophysics Data System (ADS)

    Mian, O.; Lutes, J.; Lipa, G.; Hutton, J. J.; Gavelle, E.; Borghini, S.

    2016-03-01

    Efficient mapping from unmanned aerial platforms cannot rely on aerial triangulation using known ground control points. The cost and time of setting ground control, added to the need for increased overlap between flight lines, severely limits the ability of small VTOL platforms, in particular, to handle mapping-grade missions of all but the very smallest survey areas. Applanix has brought its experience in manned photogrammetry applications to this challenge, setting out the requirements for increasing the efficiency of mapping operations from small UAVs, using survey-grade GNSS-Inertial technology to accomplish direct georeferencing of the platform and/or the imaging payload. The Direct Mapping Solution for Unmanned Aerial Vehicles (DMS-UAV) is a complete and ready-to-integrate OEM solution for Direct Georeferencing (DG) on unmanned aerial platforms. Designed as a solution for systems integrators to create mapping payloads for UAVs of all types and sizes, the DMS produces directly georeferenced products for any imaging payload (visual, LiDAR, infrared, multispectral imaging, even video). Additionally, DMS addresses the airframe's requirements for high-accuracy position and orientation for such tasks as precision RTK landing and Precision Orientation for Air Data Systems (ADS), Guidance and Control. This paper presents results using a DMS comprised of an Applanix APX-15 UAV with a Sony a7R camera to produce highly accurate orthorectified imagery without Ground Control Points on a Microdrones md4-1000 platform conducted by Applanix and Avyon. APX-15 UAV is a single-board, small-form-factor GNSS-Inertial system designed for use on small, lightweight platforms. The Sony a7R is a prosumer digital RGB camera sensor, with a 36MP, 4.9-micron CCD producing images at 7360 columns by 4912 rows. It was configured with a 50mm AF-S Nikkor f/1.8 lens and subsequently with a 35mm Zeiss Sonnar T* FE F2.8 lens. Both the camera/lens combinations and the APX-15 were mounted to a

  2. Accuracy Assessment of Direct Georeferencing for Photogrammetric Applications on Small Unmanned Aerial Platforms

    NASA Astrophysics Data System (ADS)

    Mian, O.; Lutes, J.; Lipa, G.; Hutton, J. J.; Gavelle, E.; Borghini, S.

    2016-03-01

    Efficient mapping from unmanned aerial platforms cannot rely on aerial triangulation using known ground control points. The cost and time of setting ground control, added to the need for increased overlap between flight lines, severely limits the ability of small VTOL platforms, in particular, to handle mapping-grade missions of all but the very smallest survey areas. Applanix has brought its experience in manned photogrammetry applications to this challenge, setting out the requirements for increasing the efficiency of mapping operations from small UAVs, using survey-grade GNSS-Inertial technology to accomplish direct georeferencing of the platform and/or the imaging payload. The Direct Mapping Solution for Unmanned Aerial Vehicles (DMS-UAV) is a complete and ready-to-integrate OEM solution for Direct Georeferencing (DG) on unmanned aerial platforms. Designed as a solution for systems integrators to create mapping payloads for UAVs of all types and sizes, the DMS produces directly georeferenced products for any imaging payload (visual, LiDAR, infrared, multispectral imaging, even video). Additionally, DMS addresses the airframe's requirements for high-accuracy position and orientation for such tasks as precision RTK landing and Precision Orientation for Air Data Systems (ADS), Guidance and Control. This paper presents results using a DMS comprised of an Applanix APX-15 UAV with a Sony a7R camera to produce highly accurate orthorectified imagery without Ground Control Points on a Microdrones md4-1000 platform conducted by Applanix and Avyon. APX-15 UAV is a single-board, small-form-factor GNSS-Inertial system designed for use on small, lightweight platforms. The Sony a7R is a prosumer digital RGB camera sensor, with a 36MP, 4.9-micron CCD producing images at 7360 columns by 4912 rows. It was configured with a 50mm AF-S Nikkor f/1.8 lens and subsequently with a 35mm Zeiss Sonnar T* FE F2.8 lens. Both the camera/lens combinations and the APX-15 were mounted to a

  3. Concept and realization of unmanned aerial system with different modes of operation

    SciTech Connect

    Czyba, Roman; Szafrański, Grzegorz; Janusz, Wojciech; Niezabitowski, Michał; Czornik, Adam; Błachuta, Marian

    2014-12-10

    In this paper we describe the development process of unmanned aerial system, its mechanical components, electronics and software solutions. During the stage of design, we have formulated some necessary requirements for the multirotor vehicle and ground control station in order to build an optimal system which can be used for the reconnaissance missions. Platform is controlled by use of the ground control station (GCS) and has possibility of accomplishing video based observation tasks. In order to fulfill this requirement the on-board payload consists of mechanically stabilized camera augmented with machine vision algorithms to enable object tracking tasks. Novelty of the system are four modes of flight, which give full functionality of the developed UAV system. Designed ground control station is consisted not only of the application itself, but also a built-in dedicated components located inside the chassis, which together creates an advanced UAV system supporting the control and management of the flight. Mechanical part of quadrotor is designed to ensure its robustness while meeting objectives of minimizing weight of the platform. Finally the designed electronics allows for implementation of control and estimation algorithms without the needs for their excessive computational optimization.

  4. Concept and realization of unmanned aerial system with different modes of operation

    NASA Astrophysics Data System (ADS)

    Czyba, Roman; Szafrański, Grzegorz; Janusz, Wojciech; Niezabitowski, Michał; Czornik, Adam; Błachuta, Marian

    2014-12-01

    In this paper we describe the development process of unmanned aerial system, its mechanical components, electronics and software solutions. During the stage of design, we have formulated some necessary requirements for the multirotor vehicle and ground control station in order to build an optimal system which can be used for the reconnaissance missions. Platform is controlled by use of the ground control station (GCS) and has possibility of accomplishing video based observation tasks. In order to fulfill this requirement the on-board payload consists of mechanically stabilized camera augmented with machine vision algorithms to enable object tracking tasks. Novelty of the system are four modes of flight, which give full functionality of the developed UAV system. Designed ground control station is consisted not only of the application itself, but also a built-in dedicated components located inside the chassis, which together creates an advanced UAV system supporting the control and management of the flight. Mechanical part of quadrotor is designed to ensure its robustness while meeting objectives of minimizing weight of the platform. Finally the designed electronics allows for implementation of control and estimation algorithms without the needs for their excessive computational optimization.

  5. Proposed tethered unmanned aerial system for the detection of pollution entering the Chesapeake Bay area

    NASA Astrophysics Data System (ADS)

    Goodman, J.; McKay, J.; Evans, W.; Gadsden, S. Andrew

    2016-05-01

    This paper is based on a proposed unmanned aerial system platform that is to be outfitted with high-resolution sensors. The proposed system is to be tethered to a moveable ground station, which may be a research vessel or some form of ground vehicle (e.g., car, truck, or rover). The sensors include, at a minimum: camera, infrared sensor, thermal, normalized difference vegetation index (NDVI) camera, global positioning system (GPS), and a light-based radar (LIDAR). The purpose of this paper is to provide an overview of existing methods for pollution detection of failing septic systems, and to introduce the proposed system. Future work will look at the high-resolution data from the sensors and integrating the data through a process called information fusion. Typically, this process is done using the popular and well-published Kalman filter (or its nonlinear formulations, such as the extended Kalman filter). However, future work will look at using a new type of strategy based on variable structure estimation for the information fusion portion of the data processing. It is hypothesized that fusing data from the thermal and NDVI sensors will be more accurate and reliable for a multitude of applications, including the detection of pollution entering the Chesapeake Bay area.

  6. Ethyl parathion in wetlands following aerial application to sunflowers in North Dakota

    USGS Publications Warehouse

    Tome, M.W.; Grue, C.E.; DeWeese, L.R.

    1991-01-01

    An operational aerial application of parathion to sunflower fields resulted in greater or equal spray deposit in wetlands adjacent to or surrounded by sunflower fields than in the sunflower fields. In another application, when the applicator attempted to avoid contamination of the wetlands, parathion still drifted into wetlands in detectable amounts; in 2 of 4 comparisons, spray deposit in wetlands and sunflower fields did not differ. Weather during both spray operations was ideal for North Dakota, Le., wind speeds <16 km/ hour, excellent visibility, and temperature <24 C. We review how spray droplet size, weather, terrain, and type of application equipment interact to determine the amount of drift from any application of pesticide. With this information, wildlife managers should be able to make decisions pertaining to insecticide applications that will minimize drift and reduce negative impacts to nontarget organisms

  7. Historical pesticide applications coincided with an altered diet of aerially foraging insectivorous chimney swifts

    PubMed Central

    Nocera, Joseph J.; Blais, Jules M.; Beresford, David V.; Finity, Leah K.; Grooms, Christopher; Kimpe, Lynda E.; Kyser, Kurt; Michelutti, Neal; Reudink, Matthew W.; Smol, John P.

    2012-01-01

    Numerous environmental pressures have precipitated long-term population reductions of many insect species. Population declines in aerially foraging insectivorous birds have also been detected, but the cause remains unknown partly because of a dearth of long-term monitoring data on avian diets. Chimney swifts (Chaetura pelagica) are a model aerial insectivore to fill such information gaps because their roosting behaviour makes them easy to sample in large numbers over long time periods. We report a 48-year-long (1944–1992) dietary record for the chimney swift, determined from a well-preserved deposit of guano and egested insect remains in Ontario (Canada). This unique archive of palaeo-environmental data reflecting past chimney swift diets revealed a steep rise in dichlorodiphenyltrichloroethane (DDT) and metabolites, which were correlated with a decrease in Coleoptera remains and an increase in Hemiptera remains, indicating a significant change in chimney swift prey. We argue that DDT applications decimated Coleoptera populations and dramatically altered insect community structure by the 1960s, triggering nutritional consequences for swifts and other aerial insectivores. PMID:22513860

  8. Greenhouse Gas Sensing Using Small Unmanned Aerial Systems - Field Experiment Results and Future Directions

    NASA Astrophysics Data System (ADS)

    Aubrey, A. D.; Christensen, L. E.; Brockers, R.; Thompson, D. R.

    2014-12-01

    Requirements for greenhouse gas point source detection and quantification often require high spatial resolution on the order of meters. These applications, which help close the gap in emissions estimate uncertainties, also demand sensing with high sensitivity and in a fashion that accounts for spatiotemporal variability on the order of seconds to minutes. Low-cost vertical takeoff and landing (VTOL) small unmanned aerial systems (sUAS) provide a means to detect and identify the location of point source gas emissions while offering ease of deployment and high maneuverability. Our current fielded gas sensing sUAS platforms are able to provide instantaneous in situ concentration measurements at locations within line of sight of the operator. Recent results from field experiments demonstrating methane detection and plume characterization will be discussed here, including performance assessment conducted via a controlled release experiment in 2013. The logical extension of sUAS gas concentration measurement is quantification of flux rate. We will discuss the preliminary strategy for quantitative flux determination, including intrinsic challenges and heritage from airborne science campaigns, associated with this point source flux quantification. This system approach forms the basis for intelligent autonomous quantitative characterization of gas plumes, which holds great value for applications in commercial, regulatory, and safety environments.

  9. The Generation of Building Floor Plans Using Portable and Unmanned Aerial Vehicle Mapping Systems

    NASA Astrophysics Data System (ADS)

    Tsai, G. J.; Chen, Y. L.; Chiang, K. W.; Lai, Y. C.

    2016-06-01

    Indoor navigation or positioning systems have been widely developed for Location-Based Services (LBS) applications and they come along with a keen demand of indoor floor plans for displaying results even improving the positioning performance. Generally, the floor plans produced by robot mapping focus on perceiving the environment to avoid obstacles and using the feature landmarks to update the robot position in the relative coordinate frame. These maps are not accurate enough to incorporate to the indoor positioning system. This study aims at developing Indoor Mobile Mapping System (Indoor MMS) and concentrates on generating the highly accurate floor plans based on the robot mapping technique using the portable, robot and Unmanned Aerial Vehicles (UAV) platform. The proposed portable mapping system prototype can be used in the chest package and the handheld approach. In order to evaluate and correct the generated floor plans from robot mapping techniques, this study builds the testing and calibration field using the outdoor control survey method implemented in the indoor environments. Based on control points and check points from control survey, this study presents the map rectification method that uses the affine transformation to solve the scale and deformation problems and also transfer the local coordinate system into world standard coordinate system. The preliminary results illustrate that the final version of the building floor plan reach 1 meter absolute positioning accuracy using the proposed mapping systems that combines with the novel map rectification approach proposed. These maps are well geo-referenced with world coordinate system thus it can be applied for future seamless navigation applications including indoor and outdoor scenarios.

  10. Impact of low aerial application rates of Dibrom 14 on potential vectors.

    PubMed

    Brown, James R; Rutledge, Cynthia R; Reynolds, William; Dame, David A

    2006-03-01

    Aerial applications designed to assess the impact of low application rates of naled (Dibrom 14) on potential vector species were conducted in 2003 with caged adult Anopheles quadrimaculatus in open grassland at Cecil Airfield in Jacksonville, FL. Offset flight paths of 2,000-6,000 (calculated by the AgDisp aerial application model) and 1,000-ft swath widths were conducted with a Micronair AU4000 rotary atomizer, which provides a several-fold increase in droplets between 7 and 22 microm. Mean volume median diameters of 8.0, 7.8, and 9.4 microm and 290, 506, and 192 droplets per sq cm were observed in the target area with application rates of 0.125, 0.25, and 0.5 fl oz per acre, respectively. The observed mean mortality of caged mosquitoes 12 h posttreatment, corrected for mortality in untreated controls, was 14%, 80%, and 99% at 0.125, 0.25, and 0.5 fl oz per acre, respectively. These results indicate that applications at 0.25 fl oz per acre or less should be avoided and rates greater than 0.5 fl oz may be required for adequate control in canopied habitats and less-than-optimum terrains. PMID:16646327

  11. Monitoring agricultural crops using a light-weight hyperspectral mapping system for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Kooistra, Lammert; Suomalainen, Juha; Franke, Jappe; Bartholomeus, Harm; Mücher, Sander; Becker, Rolf

    2014-05-01

    Remote sensing has been identified as a key technology to allow near real-time detection and diagnosis of crop status at the field level. Although satellite based remote sensing techniques have already proven to be relevant for many requirements of crop inventory and monitoring, they might lack flexibility to support anomaly detection at specific moments over the growing season. Imagery taken from unmanned aerial vehicles (UAV) are shown to be an effective alternative platform for crop monitoring, given their potential of high spatial and temporal resolution, and their high flexibility in image acquisition programming. In addition, several studies have shown that an increased spectral resolution as available from hyperspectral systems provide the opportunity to estimate biophysical properties like leaf-area-index (LAI), chlorophyll and leaf water content with improved accuracies. To investigate the opportunities of unmanned aerial vehicles (UAV) in operational crop monitoring, we have developed a light-weight hyperspectral mapping system (< 2 kg) suitable to be mounted on small UAVs. Its composed of an octocopter UAV-platform with a pushbroom spectrometer consisting of a spectrograph, an industrial camera functioning as frame grabber, storage device, and computer, a separate INS and finally a photogrammetric camera. The system is able to produce georeferenced and georectified hyperspectral data cubes in the 400-1000 nm spectral range at 10-50 cm resolution. The system is tested in a fertilization experiment for a potato crop on a 12 ha experimental field in the South of the Netherlands. In the experiment UAV-based hyperspectral images were acquired on a weekly basis together with field data on chlorophyll as indicator for the nitrogen situation of the crop and leaf area index (LAI) as indicator for biomass status. Initially, the quality aspects of the developed light-weight hyperspectral mapping system will presented with regard to its radiometric and geometric

  12. Airborne Wireless Optical Communication System in Low Altitude Using an Unmanned Aerial Vehicle and LEDs

    NASA Astrophysics Data System (ADS)

    Kong, Meiwei; Tong, Zheng; Yu, Xiangyu; Song, Yuhang; Lin, Aobo; Xu, Jing

    2016-02-01

    In this paper, we demonstrate the feasibility of airborne wireless optical communication system using an unmanned aerial vehicle and LEDs. Monte Carlo simulation method is used to evaluate the performance of the communication channel. Considering OOK modulation, we illustrate how the BER performance is affected by the link distance, the divergence angel and the deflection angel of the light source.

  13. Automatic construction of aerial corridor for navigation of unmanned aircraft systems in class G airspace using LiDAR

    NASA Astrophysics Data System (ADS)

    Feng, Dengchao; Yuan, Xiaohui

    2016-05-01

    According to the airspace classification by the Federal Aviation Agency, Class G airspace is the airspace at 1,200 feet or less to the ground, which is beneath class E airspace and between classes B-D cylinders around towered airstrips. However, the lack of flight supervision mechanism in this airspace, unmanned aerial system (UAS) missions pose many safety issues. Collision avoidance and route planning for UASs in class G airspace is critical for broad deployment of UASs in commercial and security applications. Yet, unlike road network, there is no stationary marker in airspace to identify corridors that are available and safe for UASs to navigate. In this paper, we present an automatic LiDAR-based airspace corridor construction method for navigation in class G airspace and a method for route planning to minimize collision and intrusion. Our idea is to combine LiDAR to automatically identify ground objects that pose navigation restrictions such as airports and high-rises. Digital terrain model (DTM) is derived from LiDAR point cloud to provide an altitude-based class G airspace description. Following the FAA Aeronautical Information Manual, the ground objects that define the restricted airspaces are used together with digital surface model derived from LiDAR data to construct the aerial corridor for navigation of UASs. Preliminary results demonstrate competitive performance and the construction of aerial corridor can be automated with much great efficiency.

  14. Synthetic vision system for improving unmanned aerial vehicle operator situation awareness

    NASA Astrophysics Data System (ADS)

    Calhoun, Gloria L.; Draper, Mark H.; Abernathy, Michael F.; Patzek, Michael; Delgado, Francisco

    2005-05-01

    The Air Force Research Laboratory's Human Effectiveness Directorate (AFRL/HE) supports research addressing human factors associated with Unmanned Aerial Vehicle (UAV) operator control stations. Recent research, in collaboration with Rapid Imaging Software, Inc., has focused on determining the value of combining synthetic vision data with live camera video presented on a UAV control station display. Information is constructed from databases (e.g., terrain, cultural features, pre-mission plan, etc.), as well as numerous information updates via networked communication with other sources (e.g., weather, intel). This information is overlaid conformal, in real time, onto the dynamic camera video image display presented to operators. Synthetic vision overlay technology is expected to improve operator situation awareness by highlighting key spatial information elements of interest directly onto the video image, such as threat locations, expected locations of targets, landmarks, emergency airfields, etc. Also, it may help maintain an operator"s situation awareness during periods of video datalink degradation/dropout and when operating in conditions of poor visibility. Additionally, this technology may serve as an intuitive means of distributed communications between geographically separated users. This paper discusses the tailoring of synthetic overlay technology for several UAV applications. Pertinent human factors issues are detailed, as well as the usability, simulation, and flight test evaluations required to determine how best to combine synthetic visual data with live camera video presented on a ground control station display and validate that a synthetic vision system is beneficial for UAV applications.

  15. Research applications of night-time aerial photography, from local to global scales

    NASA Astrophysics Data System (ADS)

    Hale, J.; Sadler, J.

    2012-12-01

    Artificial lighting of the earth's surface is changing at a global scale, with numerous social, economic and environmental implications. In many regions, the extent, brightness and spectral range of lighting is increasing, reflecting economic and technological development, population growth and urbanization. Its benefits include improving the perception of neighbourhood safety and increasing people's options for when activities can take place. Impacts range from the disruption of sleep patterns by a single street lamp to obscured views of the night sky for tens of kilometers surrounding an urban area. There is therefore a need to secure baseline maps of artificial lighting, and to detect changes in their extent and quality over time. Considerable success has been achieved in generating global lighting datasets from Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) data, which have been used to support a broad range of research and policy applications. However, their coarse spatial and spectral resolution and difficulties in radiance calibration have been recognised as barriers to some potential applications. We present the first multi-spectral radiance calibrated lighting data for cities at a fine spatial resolution (10cm). We then illustrate how these data can be effective for exploring relationships between lighting and urban form, and that they can support the radiance calibration of lighting datasets with much greater spatial extents. Color night photography was collected for two major English cities - Birmingham and London. Ground photometry and radiometry surveys were undertaken, permitting the reclassification of the images to represent incident lux and the identification and classification of individual lamps. Total illuminated area and lamp density both correlated positively with percentage built surface cover, although the strength of these relationships differed between cities. This suggests that artificial lighting may

  16. Optical system design of multi-spectral and large format color CCD aerial photogrammetric camera

    NASA Astrophysics Data System (ADS)

    Qian, Yixian; Sun, Tianxiang; Gao, Xiaodong; Liang, Wei

    2007-12-01

    Multi-spectrum and high spatial resolution is the vital problem for optical design of aerial photogrammetric camera all the time. It is difficult to obtain an outstanding optical system with high modulation transfer function (MTF) as a result of wide band. At the same time, for acquiring high qualified image, chromatic distortion in optical system must be expected to be controlled below 0.5 pixels; it is a trouble thing because of wide field and multi-spectrum. In this paper, MTF and band of the system are analyzed. A Russar type photogrammetric objective is chosen as the basic optical structure. A novel optical system is presented to solve the problem. The new optical photogrammetric system, which consists of panchromatic optical system and chromatic optical system, is designed. The panchromatic optical system, which can obtain panchromatic image, makes up of a 9k×9k large format CCD and high-accuracy photographic objective len, its focal length is 69.83mm, field angle is 60°×60°, the size of CCD pixels is 8.75um×8.75um, spectral scope is from 0.43um to 0.74um, modulation transfer function is all above 0.4 in whole field when spatial frequency is at 60lp/mm, distortion is less than 0.007%. In a chromatic optical system, three 2k×2k array CCDs combine individually three same photographic objectives, the high resolution chromatic image is acquired by the synthesis of red, green, blue image data information delivered by three CCD sensors. For the chromatic system, their focal length is 24.83mm and they have the same spectral range of 0.39um to 0.74um. A difference is that they are coated in different film on their protect glass. The pixel number is 2048 × 2048; its MTF exceeds 0.4 in full field when spatial frequency is 30lp/mm. The advantages of digital aerial photogrammetric camera comparison with traditional film camera are described. It is considered that the two development trends on digital aerial photogrammetric camera are high-spectral resolution and

  17. Hierarchical flight control system synthesis for rotorcraft-based unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Shim, Hyunchul

    The Berkeley Unmanned Aerial Vehicle (UAV) research aims to design, implement, and analyze a group of autonomous intelligent UAVs and UGVs (Unmanned Ground Vehicles). The goal of this dissertation is to provide a comprehensive procedural methodology to design, implement, and test rotorcraft-based unmanned aerial vehicles (RUAVs). We choose the rotorcraft as the base platform for our aerial agents because it offers ideal maneuverability for our target scenarios such as the pursuit-evasion game. Aided by many enabling technologies such as lightweight and powerful computers, high-accuracy navigation sensors and communication devices, it is now possible to construct RUAVs capable of precise navigation and intelligent behavior by the decentralized onboard control system. Building a fully functioning RUAV requires a deep understanding of aeronautics, control theory and computer science as well as a tremendous effort for implementation. These two aspects are often inseparable and therefore equally highlighted throughout this research. The problem of multiple vehicle coordination is approached through the notion of a hierarchical system. The idea behind the proposed architecture is to build a hierarchical multiple-layer system that gradually decomposes the abstract mission objectives into the physical quantities of control input. Each RUAV incorporated into this system performs the given tasks and reports the results through the hierarchical communication channel back to the higher-level coordinator. In our research, we provide a theoretical and practical approach to build a number of RUAVs based on commercially available navigation sensors, computer systems, and radio-controlled helicopters. For the controller design, the dynamic model of the helicopter is first built. The helicopter exhibits a very complicated multi-input multi-output, nonlinear, time-varying and coupled dynamics, which is exposed to severe exogenous disturbances. This poses considerable difficulties for

  18. Design and realization of an AEC&AGC system for the CCD aerial camera

    NASA Astrophysics Data System (ADS)

    Liu, Hai ying; Feng, Bing; Wang, Peng; Li, Yan; Wei, Hao yun

    2015-08-01

    An AEC and AGC(Automatic Exposure Control and Automatic Gain Control) system was designed for a CCD aerial camera with fixed aperture and electronic shutter. The normal AEC and AGE algorithm is not suitable to the aerial camera since the camera always takes high-resolution photographs in high-speed moving. The AEC and AGE system adjusts electronic shutter and camera gain automatically according to the target brightness and the moving speed of the aircraft. An automatic Gamma correction is used before the image is output so that the image is better for watching and analyzing by human eyes. The AEC and AGC system could avoid underexposure, overexposure, or image blurring caused by fast moving or environment vibration. A series of tests proved that the system meet the requirements of the camera system with its fast adjusting speed, high adaptability, high reliability in severe complex environment.

  19. The Proposed Use of Unmanned Aerial System Surrogate Research Aircraft for National Airspace System Integration Research

    NASA Technical Reports Server (NTRS)

    Howell, Charles T., III

    2011-01-01

    Research is needed to determine what procedures, aircraft sensors and other systems will be required to allow Unmanned Aerial Systems (UAS) to safely operate with manned aircraft in the National Airspace System (NAS). This paper explores the use of Unmanned Aerial System (UAS) Surrogate research aircraft to serve as platforms for UAS systems research, development, and flight testing. These aircraft would be manned with safety pilots and researchers that would allow for flight operations almost anywhere in the NAS without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). With pilot override capability, these UAS Surrogate aircraft would be controlled from ground stations like true UAS s. It would be possible to file and fly these UAS Surrogate aircraft in the NAS with normal traffic and they would be better platforms for real world UAS research and development over existing vehicles flying in restricted ranges or other sterilized airspace. These UAS surrogate aircraft could be outfitted with research systems as required such as computers, state sensors, video recording, data acquisition, data link, telemetry, instrumentation, and Automatic Dependent Surveillance-Broadcast (ADS-B). These surrogate aircraft could also be linked to onboard or ground based simulation facilities to further extend UAS research capabilities. Potential areas for UAS Surrogate research include the development, flight test and evaluation of sensors to aide in the process of air traffic "see-and-avoid". These and other sensors could be evaluated in real-time and compared with onboard human evaluation pilots. This paper examines the feasibility of using UAS Surrogate research aircraft as test platforms for a variety of UAS related research.

  20. Implementation of AN Unmanned Aerial Vehicle System for Large Scale Mapping

    NASA Astrophysics Data System (ADS)

    Mah, S. B.; Cryderman, C. S.

    2015-08-01

    Unmanned Aerial Vehicles (UAVs), digital cameras, powerful personal computers, and software have made it possible for geomatics professionals to capture aerial photographs and generate digital terrain models and orthophotographs without using full scale aircraft or hiring mapping professionals. This has been made possible by the availability of miniaturized computers and sensors, and software which has been driven, in part, by the demand for this technology in consumer items such as smartphones. The other force that is in play is the increasing number of Do-It-Yourself (DIY) people who are building UAVs as a hobby or for professional use. Building a UAV system for mapping is an alternative to purchasing a turnkey system. This paper describes factors to be considered when building a UAV mapping system, the choices made, and the test results of a project using this completed system.

  1. The Smart Aerial Release Machine, a Universal System for Applying the Sterile Insect Technique

    PubMed Central

    Mubarqui, Ruben Leal; Perez, Rene Cano; Kladt, Roberto Angulo; Lopez, Jose Luis Zavala; Parker, Andrew; Seck, Momar Talla; Sall, Baba; Bouyer, Jérémy

    2014-01-01

    Background Beyond insecticides, alternative methods to control insect pests for agriculture and vectors of diseases are needed. Management strategies involving the mass-release of living control agents have been developed, including genetic control with sterile insects and biological control with parasitoids, for which aerial release of insects is often required. Aerial release in genetic control programmes often involves the use of chilled sterile insects, which can improve dispersal, survival and competitiveness of sterile males. Currently available means of aerially releasing chilled fruit flies are however insufficiently precise to ensure homogeneous distribution at low release rates and no device is available for tsetse. Methodology/Principal Findings Here we present the smart aerial release machine, a new design by the Mubarqui Company, based on the use of vibrating conveyors. The machine is controlled through Bluetooth by a tablet with Android Operating System including a completely automatic guidance and navigation system (MaxNav software). The tablet is also connected to an online relational database facilitating the preparation of flight schedules and automatic storage of flight reports. The new machine was compared with a conveyor release machine in Mexico using two fruit flies species (Anastrepha ludens and Ceratitis capitata) and we obtained better dispersal homogeneity (% of positive traps, p<0.001) for both species and better recapture rates for Anastrepha ludens (p<0.001), especially at low release densities (<1500 per ha). We also demonstrated that the machine can replace paper boxes for aerial release of tsetse in Senegal. Conclusions/Significance This technology limits damages to insects and allows a large range of release rates from 10 flies/km2 for tsetse flies up to 600 000 flies/km2 for fruit flies. The potential of this machine to release other species like mosquitoes is discussed. Plans and operating of the machine are provided to allow its

  2. A Precise Position and Attitude Determination System for Lightweight Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Eling, C.; Klingbeil, L.; Wieland, M.; Kuhlmann, H.

    2013-08-01

    In many unmanned aerial vehicle (UAV) applications a direct georeferencing is required. The reason can be that the UAV flies autonomous and must be navigated precisely, or that the UAV performs a remote sensing operation, where the position of the camera has to be known at the moment of the recording. In our application, a project called Mapping on Demand, we are motivated by both of these reasons. The goal of this project is to develop a lightweight autonomously flying UAV that is able to identify and measure inaccessible three-dimensional objects by use of visual information. Due to payload and space limitations, precise position and attitude determination of micro- and mini-sized UAVs is very challenging. The limitations do not only affect the onboard computing capacity, but they are also noticeable when choosing the georeferencing sensors. In this article, we will present a new developed onboard direct georeferencing system which is real-time capable, applicable for lightweight UAVs and provides very precise results (position accuracy σ < 5 cm and attitude accuracy σ < 0.5 deg). In this system GPS, inertial sensors, magnetic field sensors, a barometer as well as stereo video cameras are used as georeferencing sensors. We will describe the hardware development and will go into details of the implemented software. In this context especially the RTK-GPS software and the concept of the attitude determination by use of inertial sensors, magnetic field sensors as well as an onboard GPS baseline will be highlighted. Finally, results of first field tests as well as an outlook on further developments will conclude this contribution.

  3. The use of Unmanned Aerial Vehicles in monitoring applications and management of natural hazards

    NASA Astrophysics Data System (ADS)

    Piras, Marco; Aicardi, Irene; Lingua, Andrea; Noardo, Francesca; Chiabrando, Filiberto

    2015-04-01

    In the last years following the damages derived by the climate change (such as flooding and so on) it is growing the necessity to monitor the watercourses with effective and quickly method, where low cost solutions are particularly interested. In some cases, it is essential to have information about the riverbed, the river banks and to analyze the springs and the way in which the water moves. For the terrestrial point of view this knowledge can be acquired through GNSS and topographic methods, but they are still too manually so that they are time-consuming with respect the acquisition of information about the entire area. Another possibility is to perform a laser scanner survey, but the most common instruments (economically sustainable) have some problems to acquire information of sub-water-layer. Moreover, terrestrial surveys from cameras (such as visible, thermic or hyperspectral sensors) can't always offer a useful view of the case study due to the fact that they have a limited range of possible points of acquisition. For these reasons, it can be more effective to have an aerial point of view of the river, for example using UAVs (Unmanned Aerial Vehicles), which have been experimented in these last years for environmental investigations. The proposed studies include photogrammetric and thermographic applications in order to investigate a new post-flooding riverbed arrangement and to identify some sub-riverbed springs inside a stream in order to monitor the behavior of two studied watercourses. The tests have been carried out with a customized low-cost mini-UAV based on the Mikrokopter Hexakopter solution embedded with a navigation system for the autonomous flight (GNSS/IMU) and with the possibility to house different kind of sensors, such as a camera, a GNSS receiver, a LiDAR sensor, a thermographic camera and more other sensors, but with the limitation of a 1.2 Kg payload. The most significant innovation is the possibility to perform quickly and economical

  4. The U.S. Department of Energy's Aerial Measuring System (AMS)

    SciTech Connect

    Craig Marianno

    2008-03-01

    For nearly 40 years, aerial radiological search and survey missions have been performed by the United States Department of Energy's (USDOE) Remote Sensing Laboratory (RSL). Originally created in 1967 as Aerial Measurement Operations (AMO), the AMS mission has expanded to include acquiring baseline measurements, performing periodic area monitoring, and responding to radiological emergencies. In an accident scenario, AMS fixed-wing and/or rotary-wing systems can be deployed to map radiological deposition. A fixed-wing system is on standby twenty-fours per day, seven days per week and can be deployed within four hours of notification. It can quickly evaluate high levels of radiation which may constitute immediate health risks. To accomplish its mission the fixed-wing aircraft utilizes the Spectral Aerial Radiological Computer System (SPARCS) which records gross count and spectral information. Data from SPARCS is telemetered to ground stations and secure websites where it can be viewed and evaluated in near-real time. The rotary-wing system deploys following the critical phase of an accident and supports the DOE's Consequence Management Response Team (CMRT) in determining long term consequences of the accident. The rotary wing aircraft utilizes the Radiation and Environmental Data Acquisition and Recording System (REDAR). A 25-liter sodium iodide (NaI) spectral system and precise positioning allow distributed man-made activity of less than 1 {micro}R/hr at ground level to be precisely mapped. This talk will discuss history of the USDOE's AMS program and its current efforts to conduct baseline aerial surveys of some US cities.

  5. Crop pest management with an aerial imaging system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing along with Global Positioning Systems, Geographic Information Systems, and variable rate technology has been developed, which scientists can implement to help farmers maximize the economic and environmental benefits of crop pest management through precision agriculture. Airborne remo...

  6. Comparison of the strapdown and gimbaled seekers utilized in aerial applications

    NASA Astrophysics Data System (ADS)

    Özkan, Bülent; Uçar, Altuğ

    2012-06-01

    In order to orient aerial vehicles such as unmanned aerial vehicles and guided munitions toward intended target points, it often becomes vital to acquire the correct information about the states of the targets during the flight of the vehicles. One of the most widely-used ways to achieve this task is the utilization of seekers. Physically, the measurement capability of seekers is restricted due to some physical, optical, and electronic limitations such as limited field-of-view (FOV), atmospheric transmittance, and noise effects. Regarding these characteristics, basically two types of seekers are employed in the relevant applications: strapdown or body-fixed seekers and gimbaled seekers. The strapdown seekers are directly mounted on the considered vehicle body. Therefore, their measurements become relative to the body fixed reference frame of the missile. For relieving the FOV limitations of the strapdown seekers, the gimbaled seekers are preferred in some of the implementations. In this scheme, the seeker is mounted on a platform supported by two orthogonal gimbals and stabilized by means of rate gyro feedbacks. This way, the FOV range of the seeker is increased considerably. Also, the line of sight (LOS) angle and the LOS angular rate can be measured directly independently of the missile motion. This study deals with the comparison of these two kinds of seekers according to certain criteria involving mounting properties, FOV, angle and rate measurements, guidance method utilization, measurement methods, major sources of measurement errors, and cost. A general evaluation is submitted at the end of the work.

  7. Post-hurricane Rita mosquito surveillance and the efficacy of Air Force aerial applications for mosquito control in east Texas.

    PubMed

    Breidenbaugh, Mark S; Haagsma, Karl A; Walker, Wes W; Sanders, David M

    2008-06-01

    Post-Hurricane Rita mosquito surveillance was carried out in 4 east Texas counties to determine mosquito abundance, species composition, and need for mosquito control. Subsequently, aerial applications of naled (Dibrom) for mosquito control were made by the Air Force Aerial Spray Flight, while continued surveillance documented the efficacy of the applications. Psorophora columbiae was the predominant species in landing counts. Twenty-two mosquito species were represented in light trap collections with Aedes atlanitcus/tormentor, Culex nigripalpus, Ae. vexans, and Ps. columbiae making up 91% of the total. A total of 102,001 ha (252,052 acres) were aerially treated based on high mosquito abundance, exposure of first responders and residents to nuisance biting, and local interruption of electric utilities. A significant 90% decline in mosquito abundance was observed posttreatment. PMID:18666545

  8. Application possibilities of aerial and terrain data evaluation in particulate pollution effects

    NASA Astrophysics Data System (ADS)

    Kozma-Bognar, V.; Berke, J.; Martin, G.

    2012-04-01

    Recently, remote sensing has become a widely used technology in order to acquire information about our environment. Data collected using remote sensing technology indispensible criteria to recognise and monitor environmental problems caused by contamination from various human activities. According to great technological change and development in the previous decade high spectral and geometric resolution sensors are more often used. The higher resolution technology allows getting more accurate and reliable results in the research processes of the environmental pollution impacts. At University of Pannonia, Georgikon Faculty (Hungary) plant-soil-atmosphere system analyses are carried out for detecting the potential harmful effects of heavy metal pollution originated from vehicle industry. Related to this research at the Department of Meteorology and Water Management, black carbon and cadmium pollution effects are being analysed on maize crops. Testing area is situated at Agro-meteorological Research Station in Keszthely, where the first time in 2011 aerial imaging technology was used in parallel with field analyses. The experiment aims to analyses correlation of the field data with aerial data. During aerial photography were taken in different spectral bands (Visible, Near Infrared, Far Infrared). High intensity, spectral and spatial resolution data was an important part of the multitemporal imagine sensing and evaluating technology, therefore original technical solutions were applied. These resolutions served accurate plot-level evaluation. Fractal structure and intensity measurement evaluation methods were applied to examine black carbon and cadmium polluted and control maize canopy after data pre-processing. Research also focused on the examination of potential negative or positive effects of irrigation so that differences between irrigated and non-irrigated maize was investigated. For the period of growing season of 2011 time-series analyses were carried out in

  9. Mobile Aerial Tracking and Imaging System (MATRIS) for Aeronautical Research

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Blanchard, R. C.; Miller, G. M.

    2004-01-01

    A mobile, rapidly deployable ground-based system to track and image targets of aeronautical interest has been developed. Targets include reentering reusable launch vehicles (RLVs) as well as atmospheric and transatmospheric vehicles. The optics were designed to image targets in the visible and infrared wavelengths. To minimize acquisition cost and development time, the system uses commercially available hardware and software where possible. The conception and initial funding of this system originated with a study of ground-based imaging of global aerothermal characteristics of RLV configurations. During that study NASA teamed with the Missile Defense Agency/Innovative Science and Technology Experimentation Facility (MDA/ISTEF) to test techniques and analysis on two Space Shuttle flights.

  10. The aerial relay system: An energy-efficient solution to the airport congestion problem

    NASA Technical Reports Server (NTRS)

    Kyser, A. C.

    1980-01-01

    The ability to transfer airline passengers between aircraft in flight, if adequately developed and integrated into the national air transportation system, could provide significant improvements in transportation-system performance, in terms of airport congestion, fuel consumption, and passenger service. The proposed Aerial Relay System concept, which was developed as a means of exploiting inflight transfer, makes use of large 'cruise liner' aircraft which fly continuously along their routes, docking periodically with short-haul feeder aircraft for exchange of payloads. Preliminary vehicle designs for a representative system are described and the operational feasibility of the concept for the United States in the 1990's is discussed.

  11. Modeling and optimization of multiple unmanned aerial vehicles system architecture alternatives.

    PubMed

    Qin, Dongliang; Li, Zhifei; Yang, Feng; Wang, Weiping; He, Lei

    2014-01-01

    Unmanned aerial vehicle (UAV) systems have already been used in civilian activities, although very limitedly. Confronted different types of tasks, multi UAVs usually need to be coordinated. This can be extracted as a multi UAVs system architecture problem. Based on the general system architecture problem, a specific description of the multi UAVs system architecture problem is presented. Then the corresponding optimization problem and an efficient genetic algorithm with a refined crossover operator (GA-RX) is proposed to accomplish the architecting process iteratively in the rest of this paper. The availability and effectiveness of overall method is validated using 2 simulations based on 2 different scenarios.

  12. On Board Data Acquisition System with Intelligent Transducers for Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Rochala, Zdzisław

    2012-02-01

    This report presents conclusions from research project no. ON50900363 conducted at the Mechatronics Department, Military University of Technology in the years 2007-2010. As the main object of the study involved the preparation of a concept and the implementation of an avionics data acquisition system intended for research during flight of unmanned aerial vehicles of the mini class, this article presents a design of an avionics system and describes equipment solutions of a distributed measurement system intended for data acquisition consisting of intelligent transducers. The data collected during a flight controlled by an operator confirmed proper operation of the individual components of the data acquisition system.

  13. Modeling and Optimization of Multiple Unmanned Aerial Vehicles System Architecture Alternatives

    PubMed Central

    Wang, Weiping; He, Lei

    2014-01-01

    Unmanned aerial vehicle (UAV) systems have already been used in civilian activities, although very limitedly. Confronted different types of tasks, multi UAVs usually need to be coordinated. This can be extracted as a multi UAVs system architecture problem. Based on the general system architecture problem, a specific description of the multi UAVs system architecture problem is presented. Then the corresponding optimization problem and an efficient genetic algorithm with a refined crossover operator (GA-RX) is proposed to accomplish the architecting process iteratively in the rest of this paper. The availability and effectiveness of overall method is validated using 2 simulations based on 2 different scenarios. PMID:25140328

  14. A system for simulating aerial or orbital TV observations of geographic patterns

    NASA Technical Reports Server (NTRS)

    Latham, J. P.

    1972-01-01

    A system which simulates observation of the earth surface by aerial or orbiting television devices has been developed. By projecting color slides of photographs taken by aircraft and orbiting sensors upon a rear screen system, and altering scale of projected image, screen position, or TV camera position, it is possible to simulate alternatives of altitude, or optical systems. By altering scan line patterns in COHU 3200 series camera from 525 to 945 scan lines, it is possible to study implications of scan line resolution upon the detection and analysis of geographic patterns observed by orbiting TV systems.

  15. Condor TAC: EO/IR tactical aerial reconnaissance photography system

    NASA Astrophysics Data System (ADS)

    Petrushevsky, Vladimir; Tsur, David

    2012-06-01

    Based on the experience gained with the Condor2 long-range oblique photography (LOROP) camera, ELOP is expanding its airborne reconnaissance product line with the Condor TAC tactical photography system. The latter was designed for overflight imaging of extended areas from a fighter or special mission aircraft, at day and night. The Condor TAC is mounted in an aerodynamically shaped pod and can operate in wide envelope of flight altitude and speed. Besides the camera, the pod contains mission management and video processing unit (MVU), solid state recorder (SSR), wide-band data link (DL) for real-time imagery transmission, and two environmental control units (ECU). Complex multi-segment optical windows were successfully developed for the system. The camera system design is modular and highly flexible. Two independent imaging payload modules are mounted inside a gimbal system. Each of the modules is equipped with a strap-down IMU, and may carry a cluster of cameras or a single large camera with gross weight up to 35 kg. The payload modules are interchangeable, with an identical interface to the gimbal. The modularity and open architecture of the system facilitate its adaptation to various operational requirements, as well as allow easy and relatively non-expensive upgrades and configuration changes. In the current configuration, both EO and IR payload modules are equipped with a combination of longer focal length cameras for bi-directional panoramic scan at medium and high flight altitudes, and shorter focal length cameras for fixed wide angle coverage at low altitudes. All the camera types are equipped with standard format, off-the-shelf area detector arrays. Precise motion compensation is achieved by calibrated back-scan mirrors.

  16. Application of high resolution images from unmanned aerial vehicles for hydrology and rangeland science

    NASA Astrophysics Data System (ADS)

    Rango, A.; Vivoni, E. R.; Anderson, C. A.; Perini, N. A.; Saripalli, S.; Laliberte, A.

    2012-12-01

    UAV image classifications is required as input to detailed watershed modeling There are multiple advantages to UAVs for use in hydrology and rangeland science, including that coverage is less expensive while just as accurate as conventional ground measurements. The UAV guidance systems can also guarantee returning to the same location for change detection analysis. UAV capabilities also have advantages over manned aircraft because they are safer, less expensive, and can respond in a timelier manner to new flight requests. As a result, the use of UAVs for watershed and rangeland monitoring and modeling is a rapidly expanding civil application in natural resources.

  17. Semi-auto assessment system on building damage caused by landslide disaster with high-resolution satellite and aerial images

    NASA Astrophysics Data System (ADS)

    Sun, Bo; Xu, Qihua; He, Jun; Ge, Fengxiang; Wang, Ying

    2015-10-01

    In recent years, earthquake and heavy rain have triggered more and more landslides, which have caused serious economic losses. The timely detection of the disaster area and the assessment of the hazard are necessary and primary for disaster mitigation and relief. As high-resolution satellite and aerial images have been widely used in the field of environmental monitoring and disaster management, the damage assessment by processing satellite and aerial images has become a hot spot of research work. The rapid assessment of building damage caused by landslides with high-resolution satellite or aerial images is the focus of this article. In this paper, after analyzing the morphological characteristics of the landslide disaster, we proposed a set of criteria for rating building damage, and designed a semi-automatic evaluation system. The system is applied to the satellite and aerial images processing. The performance of the experiments demonstrated the effectiveness of our system.

  18. USE OF THE AERIAL MEASUREMENT SYSTEM HELICOPTER EMERGENCY RESPONSE ACQUISITION SYSTEMS WITH GEOGRAPHIC INFORMATION SYSTEM FOR RADIOACTIVE SOIL REMEDIATION - [11504

    SciTech Connect

    BROCK CT

    2011-02-15

    The Aerial Measurement System (AMS) Helicopter Emergency Response Acquisition System provides a thorough and economical means to identify and characterize the contaminants for large area radiological surveys. The helicopter system can provide a 100-percent survey of an area that qualifies as a scoping survey under the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) methodology. If the sensitivity is adequate when compared to the clean up values, it may also be used for the characterization survey. The data from the helicopter survey can be displayed and manipulated to provide invaluable data during remediation activities.

  19. Miniaturization of high spectral spatial resolution hyperspectral imagers on unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Hill, Samuel L.; Clemens, Peter

    2015-06-01

    Traditional airborne environmental monitoring has frequently deployed hyperspectral imaging as a leading tool for characterizing and analyzing a scene's critical spectrum-based signatures for applications in agriculture genomics and crop health, vegetation and mineral monitoring, and hazardous material detection. As the acceptance of hyperspectral evaluation grows in the airborne community, there has been a dramatic trend in moving the technology from use on midsize aircraft to Unmanned Aerial Systems (UAS). The use of UAS accomplishes a number of goals including the reduction in cost to run multiple seasonal evaluations over smaller but highly valuable land-areas, the ability to use frequent data collections to make rapid decisions on land management, and the improvement of spatial resolution by flying at lower altitudes (<500 ft.). Despite this trend, there are several key parameters affecting the use of traditional hyperspectral instruments in UAS with payloads less than 10 lbs. where size, weight and power (SWAP) are critical to how high and how far a given UAS can fly. Additionally, on many of the light-weight UAS, users are frequently trying to capture data from one or more instruments to augment the hyperspectral data collection, thus reducing the amount of SWAP available to the hyperspectral instrumentation. The following manuscript will provide an analysis on a newly-developed miniaturized hyperspectral imaging platform, the Nano-Hyperspec®, which provides full hyperspectral resolution and traditional hyperspectral capabilities without sacrificing performance to accommodate the decreasing SWAP of smaller and smaller UAS platforms. The analysis will examine the Nano-Hyperspec flown in several UAS airborne environments and the correlation of the systems data with LiDAR and other GIS datasets.

  20. Mapping snow depth in alpine terrain with unmanned aerial systems (UASs): potential and limitations

    NASA Astrophysics Data System (ADS)

    Bühler, Yves; Adams, Marc S.; Bösch, Ruedi; Stoffel, Andreas

    2016-05-01

    Detailed information on the spatiotemporal snow depth distribution is a crucial input for numerous applications in hydrology, climatology, ecology and avalanche research. Today, snow depth distribution is usually estimated by combining point measurements from weather stations or observers in the field with spatial interpolation algorithms. However, even a dense measurement network like the one in Switzerland, with more than one measurement station per 10 km2 on average, is not able to capture the large spatial variability of snow depth present in alpine terrain.Remote sensing methods, such as laser scanning or digital photogrammetry, have recently been successfully applied to map snow depth variability at local and regional scales. However, in most countries such data acquisition is costly if manned airplanes are involved. The effectiveness of ground-based measurements on the other hand is often hindered by occlusions, due to the complex terrain or acute viewing angles. In this paper, we investigate the application of unmanned aerial systems (UASs), in combination with structure-from-motion photogrammetry, to map snow depth distribution. Compared to manual measurements, such systems are relatively cost-effective and can be applied very flexibly to cover terrain not accessible from the ground. In this study, we map snow depth at two different locations: (a) a sheltered location at the bottom of the Flüela valley (1900 m a.s.l.) and (b) an exposed location on a peak (2500 m a.s.l.) in the ski resort Jakobshorn, both in the vicinity of Davos, Switzerland. At the first test site, we monitor the ablation on three different dates. We validate the photogrammetric snow depth maps using simultaneously acquired manual snow depth measurements. The resulting snow depth values have a root mean square error (RMSE) of less than 0.07 to 0.15 m on meadows and rocks and a RMSE of less than 0.30 m on sections covered by bushes or tall grass, compared to manual probe measurements

  1. Aerial photography: Applications in the study of coastal erosion and pollution. (Latest citations from Oceanic abstracts). Published Search

    SciTech Connect

    Not Available

    1993-05-01

    The bibliography contains citations concerning the applications of aerial photography in the study of coastal shoreline problems such as erosion and pollution. Topics include ocean wave direction and measurement, oil pollution detection and direction forecasting, shoreline change measurements, coastal mapping, and coastal topographic features. (Contains 250 citations and includes a subject term index and title list.)

  2. Safely Enabling Civilian Unmanned Aerial System (UAS) Operations in Low-Altitude Airspace by Unmanned Aerial System Traffic Management (UTM)

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal Hemchandra

    2015-01-01

    Many UAS will operate at lower altitude (Class G, below 2000 feet). There is an urgent need for a system for civilian low-altitude airspace and UAS operations. Stakeholders want to work with NASA to enable safe operations.

  3. Safely Enabling Civilian Unmanned Aerial System (UAS) Operations In Low-Altitude Airspace By Unmanned Aerial System Traffic Management (UTM)

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal H.

    2015-01-01

    Many UAS will operate at lower altitude (Class G, below 2000 feet)There is urgent need for a system for civilian low-altitude airspace and UAS operations. Stakeholders want to work with NASA to enable safe operations.

  4. Dynamics of aerial target pursuit

    NASA Astrophysics Data System (ADS)

    Pal, S.

    2015-12-01

    During pursuit and predation, aerial species engage in multitasking behavior that involve simultaneous target detection, tracking, decision-making, approach and capture. The mobility of the pursuer and the target in a three dimensional environment during predation makes the capture task highly complex. Many researchers have studied and analyzed prey capture dynamics in different aerial species such as insects and bats. This article focuses on reviewing the capture strategies adopted by these species while relying on different sensory variables (vision and acoustics) for navigation. In conclusion, the neural basis of these capture strategies and some applications of these strategies in bio-inspired navigation and control of engineered systems are discussed.

  5. A computer vision system for the recognition of trees in aerial photographs

    NASA Technical Reports Server (NTRS)

    Pinz, Axel J.

    1991-01-01

    Increasing problems of forest damage in Central Europe set the demand for an appropriate forest damage assessment tool. The Vision Expert System (VES) is presented which is capable of finding trees in color infrared aerial photographs. Concept and architecture of VES are discussed briefly. The system is applied to a multisource test data set. The processing of this multisource data set leads to a multiple interpretation result for one scene. An integration of these results will provide a better scene description by the vision system. This is achieved by an implementation of Steven's correlation algorithm.

  6. Application of aerial photography to water-related programs in Michigan

    NASA Technical Reports Server (NTRS)

    Enslin, W. R.; Hill-Rowley, R.; Tilmann, S. E.

    1977-01-01

    The paper describes the use of aerial photography and information system technology in the provision of information required for the effective operation of three water-related programs in Michigan. Potential mosquito breeding sites were identified from specially acquired low altitude 70 mm color photography for the City of Lansing Vector Control Area. A comprehensive inventory of surface water sources and potential access sites was prepared to assist fire departments in Antrim County with fire truck water-recharge operations. Remotely-sensed land cover/use data for Windsor Township, Eaton County were integrated with other resource data into a computer-based information system for regional water quality studies. Eleven thematic maps specifically focussed on landscape features affecting non-point water pollution and waste disposal were generated from analyses of a four-hectare grid-based data file containing land cover/use, soils, topographic and geologic (well-log) data.

  7. Application of aerial photography to water-related programs in Michigan

    NASA Technical Reports Server (NTRS)

    Enslin, W. R.; Hill-Rowley, R.; Tilmann, S. E.

    1977-01-01

    Aerial photography and information system technology were used to generate information required for the effective operation of three water-related programs in Michigan. Potential mosquito breeding sites were identified from specially acquired low altitude 70 mm color photography for the city of Lansing; the inventory identified 35% more surface water areas than indicated on existing field maps. A comprehensive inventory of surface water sources and potential access sites was prepared to assist fire departments in Antrim County with fire truck water-recharge operations. Remotely-sensed land cover/use data for Windsor Township, Eaton County, were integrated with other resource data into a computer-based information system for regional water quality studies. Eleven thematic maps focusing on landscape features affecting non-point water pollution and waste disposal were generated from analyses of a four-hectare grid-based data file containing land cover/use, soils, topographic and geologic (well-log) data.

  8. Diagnostic Reasoning using Prognostic Information for Unmanned Aerial Systems

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Roychoudhury, Indranil; Kulkarni, Chetan

    2015-01-01

    With increasing popularity of unmanned aircraft, continuous monitoring of their systems, software, and health status is becoming more and more important to ensure safe, correct, and efficient operation and fulfillment of missions. The paper presents integration of prognosis models and prognostic information with the R2U2 (REALIZABLE, RESPONSIVE, and UNOBTRUSIVE Unit) monitoring and diagnosis framework. This integration makes available statistically reliable health information predictions of the future at a much earlier time to enable autonomous decision making. The prognostic information can be used in the R2U2 model to improve diagnostic accuracy and enable decisions to be made at the present time to deal with events in the future. This will be an advancement over the current state of the art, where temporal logic observers can only do such valuation at the end of the time interval. Usefulness and effectiveness of this integrated diagnostics and prognostics framework was demonstrated using simulation experiments with the NASA Dragon Eye electric unmanned aircraft.

  9. Aerial Deployment and Inflation System for Mars Helium Balloons

    NASA Technical Reports Server (NTRS)

    Lachenmeler, Tim; Fairbrother, Debora; Shreves, Chris; Hall, Jeffery, L.; Kerzhanovich, Viktor V.; Pauken, Michael T.; Walsh, Gerald J.; White, Christopher V.

    2009-01-01

    A method is examined for safely deploying and inflating helium balloons for missions at Mars. The key for making it possible to deploy balloons that are light enough to be buoyant in the thin, Martian atmosphere is to mitigate the transient forces on the balloon that might tear it. A fully inflated Mars balloon has a diameter of 10 m, so it must be folded up for the trip to Mars, unfolded upon arrival, and then inflated with helium gas in the atmosphere. Safe entry into the Martian atmosphere requires the use of an aeroshell vehicle, which protects against severe heating and pressure loads associated with the hypersonic entry flight. Drag decelerates the aeroshell to supersonic speeds, then two parachutes deploy to slow the vehicle down to the needed safe speed of 25 to 35 m/s for balloon deployment. The parachute system descent dynamic pressure must be approximately 5 Pa or lower at an altitude of 4 km or more above the surface.

  10. Demonstration of rapid-scan two-dimensional laser velocimetry in the Langley Vortex Research Facility for research in aerial applications

    NASA Technical Reports Server (NTRS)

    Gartrell, L. R.; Jordan, F. L., Jr.

    1977-01-01

    Tests were conducted to demonstrate a rapid scan two dimensional laser velocimeter (LV) measurement technique for aerial applications research. The LV system is capable of simultaneously measuring both vertical and axial flow velocity components in a near or far field vortex system. Velocity profiles were successfully measured in the wake vortex of a representative agricultural aircraft model, with the vortex system rapidly transporting in ground effect. Results indicate that the laser velocimetry technique can provide quantitative information of wake vortex characteristics in ground effect.

  11. Reducing Size, Weight, and Power (SWaP) of Perception Systems in Small Autonomous Aerial Systems

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Gross, Jason

    2014-01-01

    The objectives are to examine recent trends in the reduction of size, weight, and power (SWaP) requirements of sensor systems for environmental perception and to explore new technology that may overcome limitations in current systems. Improving perception systems to facilitate situation awareness is critical in the move to introduce increasing autonomy in aerial systems. Whether the autonomy is in the current state-of-the-art of increasing automation or is enabling cognitive decisions that facilitate adaptive behavior, collection of environmental information and fusion of that information into knowledge that can direct actuation is imperative to decisions resulting in appropriate behavior. Artificial sensory systems such as cameras, radar, LIDAR, and acoustic sensors have been in use on aircraft for many years but, due to the large size and weight of the airplane and electrical power made available through powerful engines, the SWaP requirements of these sensors was inconsequential. With the proliferation of Remote Piloted Vehicles (RPV), the trend is in significant reduction in SWaP of the vehicles. This requires at least an equivalent reduction in SWaP for the sensory systems. A survey of some currently available sensor systems and changing technology will reveal the trend toward reduction of SWaP of these systems and will predict future reductions. A new technology will be introduced that provides an example of a desirable new trend. A new device replaces multiple conventional sensory devices facilitating synchronization, localization, altimetry, collision avoidance, terrain mapping, and data communication in a single integrated, small form-factor, extremely lightweight, and low power device that it is practical for integration into small autonomous vehicles and can facilitate cooperative behavior. The technology is based on Ultra WideBand (UWB) radio using short pulses of energy rather than continuous sine waves. The characteristics of UWB yield several

  12. a Uav Based Close-Range Rapid Aerial Monitoring System for Emergency Responses

    NASA Astrophysics Data System (ADS)

    Choi, K.; Lee, I.

    2011-09-01

    As the occurrences and scales of disasters and accidents have been increased due to the global warming, the terrorists' attacks, and many other reasons, the demand for rapid responses for the emergent situations also has been thus ever-increasing. These emergency responses are required to be customized to each individual site for more effective management of the emergent situations. These requirements can be satisfied with the decisions based on the spatial changes on the target area, which should be detected immediately or in real-time. Aerial monitoring without human operators is an appropriate means because the emergency areas are usually inaccessible. Therefore, a UAV is a strong candidate as the platform for the aerial monitoring. In addition, the sensory data from the UAV system usually have higher resolution than other system because the system can operate at a lower altitude. If the transmission and processing of the data could be performed in real-time, the spatial changes of the target area can be detected with high spatial and temporal resolution by the UAV rapid mapping systems. As a result, we aim to develop a rapid aerial mapping system based on a UAV, whose key features are the effective acquisition of the sensory data, real-time transmission and processing of the data. In this paper, we will introduce the general concept of our system, including the main features, intermediate results, and explain our real-time sensory data georeferencing algorithm which is a core for prompt generation of the spatial information from the sensory data.

  13. Mapping of riparian invasive species with supervised classification of Unmanned Aerial System (UAS) imagery

    NASA Astrophysics Data System (ADS)

    Michez, Adrien; Piégay, Hervé; Jonathan, Lisein; Claessens, Hugues; Lejeune, Philippe

    2016-02-01

    Riparian zones are key landscape features, representing the interface between terrestrial and aquatic ecosystems. Although they have been influenced by human activities for centuries, their degradation has increased during the 20th century. Concomitant with (or as consequences of) these disturbances, the invasion of exotic species has increased throughout the world's riparian zones. In our study, we propose a easily reproducible methodological framework to map three riparian invasive taxa using Unmanned Aerial Systems (UAS) imagery: Impatiens glandulifera Royle, Heracleum mantegazzianum Sommier and Levier, and Japanese knotweed (Fallopia sachalinensis (F. Schmidt Petrop.), Fallopia japonica (Houtt.) and hybrids). Based on visible and near-infrared UAS orthophoto, we derived simple spectral and texture image metrics computed at various scales of image segmentation (10, 30, 45, 60 using eCognition software). Supervised classification based on the random forests algorithm was used to identify the most relevant variable (or combination of variables) derived from UAS imagery for mapping riparian invasive plant species. The models were built using 20% of the dataset, the rest of the dataset being used as a test set (80%). Except for H. mantegazzianum, the best results in terms of global accuracy were achieved with the finest scale of analysis (segmentation scale parameter = 10). The best values of overall accuracies reached 72%, 68%, and 97% for I. glandulifera, Japanese knotweed, and H. mantegazzianum respectively. In terms of selected metrics, simple spectral metrics (layer mean/camera brightness) were the most used. Our results also confirm the added value of texture metrics (GLCM derivatives) for mapping riparian invasive species. The results obtained for I. glandulifera and Japanese knotweed do not reach sufficient accuracies for operational applications. However, the results achieved for H. mantegazzianum are encouraging. The high accuracies values combined to

  14. Assessment of the Quality of Digital Terrain Model Produced from Unmanned Aerial System Imagery

    NASA Astrophysics Data System (ADS)

    Kosmatin Fras, M.; Kerin, A.; Mesarič, M.; Peterman, V.; Grigillo, D.

    2016-06-01

    Production of digital terrain model (DTM) is one of the most usual tasks when processing photogrammetric point cloud generated from Unmanned Aerial System (UAS) imagery. The quality of the DTM produced in this way depends on different factors: the quality of imagery, image orientation and camera calibration, point cloud filtering, interpolation methods etc. However, the assessment of the real quality of DTM is very important for its further use and applications. In this paper we first describe the main steps of UAS imagery acquisition and processing based on practical test field survey and data. The main focus of this paper is to present the approach to DTM quality assessment and to give a practical example on the test field data. For data processing and DTM quality assessment presented in this paper mainly the in-house developed computer programs have been used. The quality of DTM comprises its accuracy, density, and completeness. Different accuracy measures like RMSE, median, normalized median absolute deviation and their confidence interval, quantiles are computed. The completeness of the DTM is very often overlooked quality parameter, but when DTM is produced from the point cloud this should not be neglected as some areas might be very sparsely covered by points. The original density is presented with density plot or map. The completeness is presented by the map of point density and the map of distances between grid points and terrain points. The results in the test area show great potential of the DTM produced from UAS imagery, in the sense of detailed representation of the terrain as well as good height accuracy.

  15. Aerial applications of insecticides for tsetse fly control in East Africa

    PubMed Central

    Lee, C. W.

    1969-01-01

    Since 1948, research has progressed in East Africa on the control of tsetse flies by aeria, applications of insecticides. Initial experiments proved that residual spray treatments were ineffective while repeated applications of coarse aerosols gave promising fly mortalities. In recent years, with the development of more toxic insecticides used in conjunction with improved thermal exhaust equipment and modified rotary atomizers, sprays with fine aerosol characteristics have been produced at considerably reduced cost. Aerial applications of aerosols are confined to early morning and late afternoon when weather conditions are stable, but large areas can be treated during these short intervals, and the technique is efficient and economical. Control of tsetse flies has been good; where complete isolation of an area has been possible, eradication has been achieved. It would be economically worth while to assess the possibility of increasing spray swath widths, and also to continue with research into the biological effectiveness of pyrethrum, primarily because of its absolute safety in use. There is a need for a simple method for the determination of tsetse fly populations in woodland and savanna habitats. Finally, it is recommended that the results of research to date should be brought more forcefully to the attention of government bodies and commercial airspray operators so that the techniques be more fully exploited. PMID:5308701

  16. Automatic Forest-Fire Measuring Using Ground Stations and Unmanned Aerial Systems

    PubMed Central

    Martínez-de Dios, José Ramiro; Merino, Luis; Caballero, Fernando; Ollero, Anibal

    2011-01-01

    This paper presents a novel system for automatic forest-fire measurement using cameras distributed at ground stations and mounted on Unmanned Aerial Systems (UAS). It can obtain geometrical measurements of forest fires in real-time such as the location and shape of the fire front, flame height and rate of spread, among others. Measurement of forest fires is a challenging problem that is affected by numerous potential sources of error. The proposed system addresses them by exploiting the complementarities between infrared and visual cameras located at different ground locations together with others onboard Unmanned Aerial Systems (UAS). The system applies image processing and geo-location techniques to obtain forest-fire measurements individually from each camera and then integrates the results from all the cameras using statistical data fusion techniques. The proposed system has been extensively tested and validated in close-to-operational conditions in field fire experiments with controlled safety conditions carried out in Portugal and Spain from 2001 to 2006. PMID:22163958

  17. Automatic forest-fire measuring using ground stations and Unmanned Aerial Systems.

    PubMed

    Martínez-de Dios, José Ramiro; Merino, Luis; Caballero, Fernando; Ollero, Anibal

    2011-01-01

    This paper presents a novel system for automatic forest-fire measurement using cameras distributed at ground stations and mounted on Unmanned Aerial Systems (UAS). It can obtain geometrical measurements of forest fires in real-time such as the location and shape of the fire front, flame height and rate of spread, among others. Measurement of forest fires is a challenging problem that is affected by numerous potential sources of error. The proposed system addresses them by exploiting the complementarities between infrared and visual cameras located at different ground locations together with others onboard Unmanned Aerial Systems (UAS). The system applies image processing and geo-location techniques to obtain forest-fire measurements individually from each camera and then integrates the results from all the cameras using statistical data fusion techniques. The proposed system has been extensively tested and validated in close-to-operational conditions in field fire experiments with controlled safety conditions carried out in Portugal and Spain from 2001 to 2006.

  18. Quality of DEMs derived from Kite Aerial Photogrammety System: a case study of Dutch coastal environments.

    NASA Astrophysics Data System (ADS)

    Paron, Paolo; Smith, Mike J.; Anders, Niels; Meesuk, Vorawit

    2014-05-01

    Coastal protection is one of the main challenges for the Netherlands, where a large proportion of anthropogenic activity is located below sea level (both residential and economic). The Dutch government is implementing an innovative method of coastal replenishment using natural waves and winds to relocate sand from one side to the other of the country. This requires close monitoring of the spatio-temporal evolution of beaches in order to correctly model the future direction and amount of sand movement. To do so -on the onshore beach- we tested a Kite-Aerial Photography System for monitoring the beach dynamics at Zandmotor (http://www.dezandmotor.nl/en-GB/). The equipment used for data collection were a commercial DSLR camera (Nikon D7000 with a 20mm lens), gyro-levelled rig, Sutton Flowform 16 kite and Leica GNSS Viva GS10, with GSM connection to the Dutch geodetic network. We flew using a 115 m line with an average inclination of 40 to 45°; this gave a camera vertical distance of ~80 m and pixel size of ~20 mm. The methodology follows that of Smith et al. (2009), and of Paron & Smith (2013), applied to a highly dynamic environment with low texture and small relief conditions. Here we present a comparison of the quality of the digital elevation model (DEM) generated from the same dataset using two different systems: Structure from Motion (SfM) using Agisoft Photoscan Pro and traditional photogrammetry using Leica Photograpmmetry Suite. In addition the outputs from the two data processing methods are presented, including both an image mosaic and DEM, and highlighting pros and cons of both methods. References Smith, M. J. et al. 2009. High spatial resolution data acquisition for the geosciences: kite aerial photography. ESPL, 34(1), 155-161. Paron, P., Smith, M.J. 2013. Kite aerial photogrammetry system for monitoring coastal change in the Netherlands. 8th IAG International Conference on Geomorphology, Paris, August.

  19. Unmanned aerial vehicles for rangeland mapping and monitoring: a comparison of two systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerial photography from unmanned aerial vehicles (UAVs) bridges the gap between ground-based observations and remotely sensed imagery from aerial and satellite platforms. UAVs can be deployed quickly and repeatedly, are less costly and safer than piloted aircraft, and can obtain very high-resolution...

  20. A study of aerosol optical properties using a lightweight optical particle spectrometer and sun photometer from an unmanned aerial system

    NASA Astrophysics Data System (ADS)

    Telg, H.; Murphy, D. M.; Bates, T. S.; Johnson, J. E.; Gao, R. S.

    2015-12-01

    A miniaturized printed optical particle spectrometer (POPS) and sun photometer (miniSASP) have been developed recently for unmanned aerial systems (UAS) and balloon applications. Here we present the first scientific data recorded by the POPS and miniSASP from a Manta UAS during a field campaign on Svalbard, Norway, in April 2015. As part of a payload composed of five different aerosol instruments (absorption photometer, condensation particle counter, filter sampler, miniSASP and POPS) we collected particle size distributions, the optical depth (OD) and the sky brightness from 0 to 3000 m altitude. The complementary measurement approaches of the miniSASP and POPS allow us to calculate aerosol optical properties such as the aerosol optical depth and the angstrom exponent or the asymmetry parameter independently. We discuss deviation between results with respect to aerosol properties, e.g. hygroscopicity and absorption, as well as instrumental limitations.

  1. Dhaksha, the Unmanned Aircraft System in its New Avatar-Automated Aerial Inspection of INDIA'S Tallest Tower

    NASA Astrophysics Data System (ADS)

    Kumar, K. S.; Rasheed, A. Mohamed; Krishna Kumar, R.; Giridharan, M.; Ganesh

    2013-08-01

    DHAKSHA, the unmanned aircraft system (UAS), developed after several years of research by Division of Avionics, Department of Aerospace Engineering, MIT Campus of Anna University has recently proved its capabilities during May 2012 Technology demonstration called UAVforge organised by Defence Research Project Agency, Department of Defence, USA. Team Dhaksha with its most stable design outperformed all the other contestants competing against some of the best engineers from prestigi ous institutions across the globe like Middlesex University from UK, NTU and NUS from Singapore, Tudelft Technical University, Netherlands and other UAV industry participants in the world's toughest UAV challenge. This has opened up an opportunity for Indian UAVs making a presence in the international scenario as well. In furtherance to the above effort at Fort Stewart military base at Georgia,USA, with suitable payloads, the Dhaksha team deployed the UAV in a religious temple festival during November 2012 at Thiruvannamalai District for Tamil Nadu Police to avail the instant aerial imagery services over the crowd of 10 lakhs pilgrims and also about the investigation of the structural strength of the India's tallest structure, the 300 m RCC tower during January 2013. The developed system consists of a custom-built Rotary Wing model with on-board navigation, guidance and control systems (NGC) and ground control station (GCS), for mission planning, remote access, manual overrides and imagery related computations. The mission is to fulfill the competition requirements by using an UAS capable of providing complete solution for the stated problem. In this work the effort to produce multirotor unmanned aerial systems (UAS) for civilian applications at the MIT, Avionics Laboratory is presented

  2. Dynamic modeling, simulation and control design of a parafoil-payload system for ship launched aerial delivery system (SLADS)

    NASA Astrophysics Data System (ADS)

    Puranik, Anand S.

    The objective of this research was to develop a high-fidelity dynamic model of a parafoil-payload system with respect to its application for the Ship Launched Aerial Delivery System (SLADS). SLADS is a concept in which cargo can be transfered from ship to shore using a parafoil-payload system. It is accomplished in two phases: An initial towing phase when the glider follows the towing vessel in a passive lift mode and an autonomous gliding phase when the system is guided to the desired point. While many previous researchers have analyzed the parafoil-payload system when it is released from another airborne vehicle, limited work has been done in the area of towing up the system from ground or sea. One of the main contributions of this research was the development of a nonlinear dynamic model of a towed parafoil-payload system. After performing an extensive literature review of the existing methods of modeling a parafoil-payload system, a five degree-of-freedom model was developed. The inertial and geometric properties of the system were investigated to predict accurate results in the simulation environment. Since extensive research has been done in determining the aerodynamic characteristics of a paraglider, an existing aerodynamic model was chosen to incorporate the effects of air flow around the flexible paraglider wing. During the towing phase, it is essential that the parafoil-payload system follow the line of the towing vessel path to prevent an unstable flight condition called 'lockout'. A detailed study of the causes of lockout, its mathematical representation and the flight conditions and the parameters related to lockout, constitute another contribution of this work. A linearized model of the parafoil-payload system was developed and used to analyze the stability of the system about equilibrium conditions. The relationship between the control surface inputs and the stability was investigated. In addition to stability of flight, one more important objective

  3. Unmanned Aerial Systems as Versatile Tools for Atmospheric and Environmental Research

    NASA Astrophysics Data System (ADS)

    Lange, Manfred; Argyrides, Marios; Ioannou, Stelios; Keleshis, Christos; Levin, Zev

    2013-04-01

    Unmanned Aerial Systems (UASs) are increasingly recognized as versatile tools for different earth-sciences applications providing chiefly a link between in-situ ground based measurements and satellite remote sensing observations. Based on the Autonomous Flying Platforms for Atmospheric and Earth Surface Observations project (APAESO) of the Energy, Environment and Water Research Center (EEWRC) at the Cyprus Institute (APAESO is co-financed by the European Development Fund and the Republic of Cyprus through the Cyprus Research Promotion Foundation: ΝΕΑ ΥΠΟΔΟΜΗ/ΝΕΚΥΠ/0308/09), we have acquired four CRUISERS (ET-Air, Slovakia) as UAS platforms and a substantial range of scientific instruments to be employed on these platforms. The APAESO platforms are aimed at the dual purpose of carrying out atmospheric and earth-surface observations in the (Eastern) Mediterranean They will enable 3D measurements for determining physical, chemical and radiative atmospheric properties, aerosol and dust concentrations and atmospheric dynamics as well as 2D investigations into land management practices, vegetation and agricultural mapping, contaminant detection and the monitoring and assessment of hydrological parameters and processes of a given region at high spatial resolution. Currently, we are building up an Unmanned Airplane Facility at CyI. In the process of reaching full operational capacity, we have initiated and carried out first test missions involving highly specialized and specifically adapted instrumentation for atmospheric investigations. The first scientific mission involves the employment of a DOAS-system (Differential Optical Absorption Spectroscopy) in cooperation with colleagues from Heidelberg and Mainz, Germany and has been successfully completed. More recently, we started work on a new collaborative project aimed at measuring vertical profiles of aerosols in the Eastern Mediterranean. The project involves colleagues from the University of Frankfurt

  4. Monocular Vision System for Fixed Altitude Flight of Unmanned Aerial Vehicles.

    PubMed

    Huang, Kuo-Lung; Chiu, Chung-Cheng; Chiu, Sheng-Yi; Teng, Yao-Jen; Hao, Shu-Sheng

    2015-07-13

    The fastest and most economical method of acquiring terrain images is aerial photography. The use of unmanned aerial vehicles (UAVs) has been investigated for this task. However, UAVs present a range of challenges such as flight altitude maintenance. This paper reports a method that combines skyline detection with a stereo vision algorithm to enable the flight altitude of UAVs to be maintained. A monocular camera is mounted on the downside of the aircraft's nose to collect continuous ground images, and the relative altitude is obtained via a stereo vision algorithm from the velocity of the UAV. Image detection is used to obtain terrain images, and to measure the relative altitude from the ground to the UAV. The UAV flight system can be set to fly at a fixed and relatively low altitude to obtain the same resolution of ground images. A forward-looking camera is mounted on the upside of the aircraft's nose. In combination with the skyline detection algorithm, this helps the aircraft to maintain a stable flight pattern. Experimental results show that the proposed system enables UAVs to obtain terrain images at constant resolution, and to detect the relative altitude along the flight path.

  5. Monocular Vision System for Fixed Altitude Flight of Unmanned Aerial Vehicles

    PubMed Central

    Huang, Kuo-Lung; Chiu, Chung-Cheng; Chiu, Sheng-Yi; Teng, Yao-Jen; Hao, Shu-Sheng

    2015-01-01

    The fastest and most economical method of acquiring terrain images is aerial photography. The use of unmanned aerial vehicles (UAVs) has been investigated for this task. However, UAVs present a range of challenges such as flight altitude maintenance. This paper reports a method that combines skyline detection with a stereo vision algorithm to enable the flight altitude of UAVs to be maintained. A monocular camera is mounted on the downside of the aircraft’s nose to collect continuous ground images, and the relative altitude is obtained via a stereo vision algorithm from the velocity of the UAV. Image detection is used to obtain terrain images, and to measure the relative altitude from the ground to the UAV. The UAV flight system can be set to fly at a fixed and relatively low altitude to obtain the same resolution of ground images. A forward-looking camera is mounted on the upside of the aircraft’s nose. In combination with the skyline detection algorithm, this helps the aircraft to maintain a stable flight pattern. Experimental results show that the proposed system enables UAVs to obtain terrain images at constant resolution, and to detect the relative altitude along the flight path. PMID:26184213

  6. Rule-Based Interpreting Of Aerial Photographs Using The Lockheed Expert System

    NASA Astrophysics Data System (ADS)

    Perkins, W. A.; Faffey, T. J.; Nguyen, T. A.

    1986-03-01

    Human photointerpreters use expert knowledge and contextual information to help them analyze a scene. We have experimented with the Lockheed Expert System (LES) to see if contextual information can be useful in interpreting aerial photographs. First, the gray-scale image is segmented into uniform or slowly varying intensity regions or contiguous textured regions using an edge-based segmentation technique. Next, the system computes a set of attributes for each region. Some of these attributes are based on local properties of that region only (e.g., area, average intensity, texture strength, etc.); others are based on contextual or global information (e.g., adjacent regions and nearby regions). Finally, LES is given the task of classifying all the regions using the attribute values. It utilizes multiple goals and multiple rule sets to determine the best classification; regions that do not satisfy any of the rules are left unclassified. The authors obtained the rules by an introspection technique after studying many aerial photographs. Unlike programs that use only statistics in the region under consideration, LES can use contextual information such as the fact that cars are likely to be adjacent to roads, which significantly improves its performance on regions that are difficult to classify.

  7. Monocular Vision System for Fixed Altitude Flight of Unmanned Aerial Vehicles.

    PubMed

    Huang, Kuo-Lung; Chiu, Chung-Cheng; Chiu, Sheng-Yi; Teng, Yao-Jen; Hao, Shu-Sheng

    2015-01-01

    The fastest and most economical method of acquiring terrain images is aerial photography. The use of unmanned aerial vehicles (UAVs) has been investigated for this task. However, UAVs present a range of challenges such as flight altitude maintenance. This paper reports a method that combines skyline detection with a stereo vision algorithm to enable the flight altitude of UAVs to be maintained. A monocular camera is mounted on the downside of the aircraft's nose to collect continuous ground images, and the relative altitude is obtained via a stereo vision algorithm from the velocity of the UAV. Image detection is used to obtain terrain images, and to measure the relative altitude from the ground to the UAV. The UAV flight system can be set to fly at a fixed and relatively low altitude to obtain the same resolution of ground images. A forward-looking camera is mounted on the upside of the aircraft's nose. In combination with the skyline detection algorithm, this helps the aircraft to maintain a stable flight pattern. Experimental results show that the proposed system enables UAVs to obtain terrain images at constant resolution, and to detect the relative altitude along the flight path. PMID:26184213

  8. On the quality of prairie-pothole wetlands for adult and juvenile waterfowl following aerial application of insecticides

    USGS Publications Warehouse

    Grue, C.E.; Tome, M.W.; Swanson, G.A.; Borthwick, S.M.; DeWeese, L.R.

    1990-01-01

    In 1987 the impact of aerial application of ethyl parathion to waterfowl on small prairie wetlands adjacent to sunflower fields in North Dakota was assessed by studying 5 fenced wetlands surrounded by sunflowers and 5 fenced controls. By 3 days post-spray, 4 of 104 ducklings released onto the wetlands were alive, compared to 52% of 105 control ducklings. Brain ChE activity was depressed > 50% in all but one of the 50 ducklings found dead post-spray. Survival of amphipods in enclosures within the contaminated wetlands was reduced for 25 days. Naturally-occurring broods on unfenced wetlands and free-living aquatic invertebrates in the fenced wetlands were also severely affected. The results suggest aerial application of insecticides may have significant direct and indirect impacts on the survival of adult and juvenile waterfowl within the prairie-pothole region.

  9. An Overview of Small Unmanned Aerial Vehicles for Air Quality Measurements: Present Applications and Future Prospectives.

    PubMed

    Villa, Tommaso Francesco; Gonzalez, Felipe; Miljievic, Branka; Ristovski, Zoran D; Morawska, Lidia

    2016-01-01

    Assessment of air quality has been traditionally conducted by ground based monitoring, and more recently by manned aircrafts and satellites. However, performing fast, comprehensive data collection near pollution sources is not always feasible due to the complexity of sites, moving sources or physical barriers. Small Unmanned Aerial Vehicles (UAVs) equipped with different sensors have been introduced for in-situ air quality monitoring, as they can offer new approaches and research opportunities in air pollution and emission monitoring, as well as for studying atmospheric trends, such as climate change, while ensuring urban and industrial air safety. The aims of this review were to: (1) compile information on the use of UAVs for air quality studies; and (2) assess their benefits and range of applications. An extensive literature review was conducted using three bibliographic databases (Scopus, Web of Knowledge, Google Scholar) and a total of 60 papers was found. This relatively small number of papers implies that the field is still in its early stages of development. We concluded that, while the potential of UAVs for air quality research has been established, several challenges still need to be addressed, including: the flight endurance, payload capacity, sensor dimensions/accuracy, and sensitivity. However, the challenges are not simply technological, in fact, policy and regulations, which differ between countries, represent the greatest challenge to facilitating the wider use of UAVs in atmospheric research.

  10. An Examination of Drag Reduction Mechanisms in Marine Animals, with Potential Applications to Uninhabited Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Musick, John A.; Patterson, Mark R.; Dowd, Wesley W.

    2002-01-01

    Previous engineering research and development has documented the plausibility of applying biomimetic approaches to aerospace engineering. Past cooperation between the Virginia Institute of Marine Science (VIMS) and NASA focused on the drag reduction qualities of the microscale dermal denticles of shark skin. This technology has subsequently been applied to submarines and aircraft. The present study aims to identify and document the three-dimensional geometry of additional macroscale morphologies that potentially confer drag reducing hydrodynamic qualities upon marine animals and which could be applied to enhance the range and endurance of Uninhabited Aerial Vehicles (UAVs). Such morphologies have evolved over eons to maximize organismal energetic efficiency by reducing the energetic input required to maintain cruising speeds in the viscous marine environment. These drag reduction qualities are manifested in several groups of active marine animals commonly encountered by ongoing VIMS research programs: namely sharks, bony fishes such as tunas, and sea turtles. Through spatial data acquired by molding and digital imagery analysis of marine specimens provided by VIMS, NASA aims to construct scale models of these features and to test these potential drag reduction morphologies for application to aircraft design. This report addresses the efforts of VIMS and NASA personnel on this project between January and November 2001.

  11. An Overview of Small Unmanned Aerial Vehicles for Air Quality Measurements: Present Applications and Future Prospectives.

    PubMed

    Villa, Tommaso Francesco; Gonzalez, Felipe; Miljievic, Branka; Ristovski, Zoran D; Morawska, Lidia

    2016-01-01

    Assessment of air quality has been traditionally conducted by ground based monitoring, and more recently by manned aircrafts and satellites. However, performing fast, comprehensive data collection near pollution sources is not always feasible due to the complexity of sites, moving sources or physical barriers. Small Unmanned Aerial Vehicles (UAVs) equipped with different sensors have been introduced for in-situ air quality monitoring, as they can offer new approaches and research opportunities in air pollution and emission monitoring, as well as for studying atmospheric trends, such as climate change, while ensuring urban and industrial air safety. The aims of this review were to: (1) compile information on the use of UAVs for air quality studies; and (2) assess their benefits and range of applications. An extensive literature review was conducted using three bibliographic databases (Scopus, Web of Knowledge, Google Scholar) and a total of 60 papers was found. This relatively small number of papers implies that the field is still in its early stages of development. We concluded that, while the potential of UAVs for air quality research has been established, several challenges still need to be addressed, including: the flight endurance, payload capacity, sensor dimensions/accuracy, and sensitivity. However, the challenges are not simply technological, in fact, policy and regulations, which differ between countries, represent the greatest challenge to facilitating the wider use of UAVs in atmospheric research. PMID:27420065

  12. An Overview of Small Unmanned Aerial Vehicles for Air Quality Measurements: Present Applications and Future Prospectives

    PubMed Central

    Villa, Tommaso Francesco; Gonzalez, Felipe; Miljievic, Branka; Ristovski, Zoran D.; Morawska, Lidia

    2016-01-01

    Assessment of air quality has been traditionally conducted by ground based monitoring, and more recently by manned aircrafts and satellites. However, performing fast, comprehensive data collection near pollution sources is not always feasible due to the complexity of sites, moving sources or physical barriers. Small Unmanned Aerial Vehicles (UAVs) equipped with different sensors have been introduced for in-situ air quality monitoring, as they can offer new approaches and research opportunities in air pollution and emission monitoring, as well as for studying atmospheric trends, such as climate change, while ensuring urban and industrial air safety. The aims of this review were to: (1) compile information on the use of UAVs for air quality studies; and (2) assess their benefits and range of applications. An extensive literature review was conducted using three bibliographic databases (Scopus, Web of Knowledge, Google Scholar) and a total of 60 papers was found. This relatively small number of papers implies that the field is still in its early stages of development. We concluded that, while the potential of UAVs for air quality research has been established, several challenges still need to be addressed, including: the flight endurance, payload capacity, sensor dimensions/accuracy, and sensitivity. However, the challenges are not simply technological, in fact, policy and regulations, which differ between countries, represent the greatest challenge to facilitating the wider use of UAVs in atmospheric research. PMID:27420065

  13. Aerial Explorers and Robotic Ecosystems

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg

    2004-01-01

    A unique bio-inspired approach to autonomous aerial vehicle, a.k.a. aerial explorer technology is discussed. The work is focused on defining and studying aerial explorer mission concepts, both as an individual robotic system and as a member of a small robotic "ecosystem." Members of this robotic ecosystem include the aerial explorer, air-deployed sensors and robotic symbiotes, and other assets such as rovers, landers, and orbiters.

  14. Performance Characterization of a Lithium-ion Gel Polymer Battery Power Supply System for an Unmanned Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Manzo, Michelle A.; Logan, Michael J.

    2004-01-01

    Unmanned aerial vehicles (UAVs) are currently under development for NASA missions, earth sciences, aeronautics, the military, and commercial applications. The design of an all electric power and propulsion system for small UAVs was the focus of a detailed study. Currently, many of these small vehicles are powered by primary (nonrechargeable) lithium-based batteries. While this type of battery is capable of satisfying some of the mission needs, a secondary (rechargeable) battery power supply system that can provide the same functionality as the current system at the same or lower system mass and volume is desired. A study of commercially available secondary battery cell technologies that could provide the desired performance characteristics was performed. Due to the strict mass limitations and wide operating temperature requirements of small UAVs, the only viable cell chemistries were determined to be lithium-ion liquid electrolyte systems and lithium-ion gel polymer electrolyte systems. Two lithium-ion gel polymer cell designs were selected as candidates and were tested using potential load profiles for UAV applications. Because lithium primary batteries have a higher specific energy and energy density, for the same mass and volume allocation, the secondary batteries resulted in shorter flight times than the primary batteries typically provide. When the batteries were operated at lower ambient temperatures (0 to -20 C), flight times were even further reduced. Despite the reduced flight times demonstrated, for certain UAV applications, the secondary batteries operated within the acceptable range of flight times at room temperature and above. The results of this testing indicate that a secondary battery power supply system can provide some benefits over the primary battery power supply system. A UAV can be operated for hundreds of flights using a secondary battery power supply system that provides the combined benefits of rechargeability and an inherently safer

  15. Applicability of Aerial Green LiDAR to a Large River in the Western United States

    NASA Astrophysics Data System (ADS)

    Conner, J. T.; Welcker, C. W.; Cooper, C.; Faux, R.; Butler, M.; Nayegandhi, A.

    2013-12-01

    In October 2012, aerial green LiDAR data were collected in the Snake River (within Idaho and Oregon) to test this emerging technology in a large river with poor water clarity. Six study areas (total of 30 river miles spread out over 250 river miles) were chosen to represent a variety of depths, channel types, and surface conditions to test the accuracy, depth penetration, data density of aerial green LiDAR. These characteristics along with cost and speed of acquisition were compared to other bathymetric survey techniques including rod surveys (total station and RTK-GPS), single-beam sonar, and multibeam echosounder (MBES). The green LiDAR system typically measured returns from the riverbed through 1-2 meters of water, which was less than one Secchi depth. However, in areas with steep banks or aquatic macrophytes, LiDAR returns from the riverbed were less frequent or non-existent. In areas of good return density, depths measured from green LiDAR data corresponded well with previously collected data sets from traditional bathymetric survey techniques. In such areas, the green LiDAR point density was much higher than both rod and single beam sonar surveys, yet lower than MBES. The green LiDAR survey was also collected more efficiently than all other methods. In the Snake River, green LiDAR does not provide a method to map the entire riverbed as it only receives bottom returns in shallow water, typically at the channel margins. However, green LiDAR does provide survey data that is an excellent complement to MBES, which is more effective at surveying the deeper portions of the channel. In some cases, the green LiDAR was able to provide data in areas that the MBES could not, often due to issues with navigating the survey boat in shallow water. Even where both MBES and green LiDAR mapped the river bottom, green LiDAR often provides more accurate data through a better angle of incidence and less shadowing than the MBES survey. For one MBES survey in 2013, the green Li

  16. Fiber Bragg Grating Sensor/Systems for In-Flight Wing Shape Monitoring of Unmanned Aerial Vehicles (UAVs)

    NASA Technical Reports Server (NTRS)

    Parker, Allen; Richards, Lance; Ko, William; Piazza, Anthony; Tran, Van

    2006-01-01

    A viewgraph presentation describing an in-flight wing shape measurement system based on fiber bragg grating sensors for use in Unmanned Aerial Vehicles (UAV) is shown. The topics include: 1) MOtivation; 2) Objective; 3) Background; 4) System Design; 5) Ground Testing; 6) Future Work; and 7) Conclusions

  17. A meta-analysis of human-system interfaces in unmanned aerial vehicle (UAV) swarm management.

    PubMed

    Hocraffer, Amy; Nam, Chang S

    2017-01-01

    A meta-analysis was conducted to systematically evaluate the current state of research on human-system interfaces for users controlling semi-autonomous swarms composed of groups of drones or unmanned aerial vehicles (UAVs). UAV swarms pose several human factors challenges, such as high cognitive demands, non-intuitive behavior, and serious consequences for errors. This article presents findings from a meta-analysis of 27 UAV swarm management papers focused on the human-system interface and human factors concerns, providing an overview of the advantages, challenges, and limitations of current UAV management interfaces, as well as information on how these interfaces are currently evaluated. In general allowing user and mission-specific customization to user interfaces and raising the swarm's level of autonomy to reduce operator cognitive workload are beneficial and improve situation awareness (SA). It is clear more research is needed in this rapidly evolving field.

  18. A meta-analysis of human-system interfaces in unmanned aerial vehicle (UAV) swarm management.

    PubMed

    Hocraffer, Amy; Nam, Chang S

    2017-01-01

    A meta-analysis was conducted to systematically evaluate the current state of research on human-system interfaces for users controlling semi-autonomous swarms composed of groups of drones or unmanned aerial vehicles (UAVs). UAV swarms pose several human factors challenges, such as high cognitive demands, non-intuitive behavior, and serious consequences for errors. This article presents findings from a meta-analysis of 27 UAV swarm management papers focused on the human-system interface and human factors concerns, providing an overview of the advantages, challenges, and limitations of current UAV management interfaces, as well as information on how these interfaces are currently evaluated. In general allowing user and mission-specific customization to user interfaces and raising the swarm's level of autonomy to reduce operator cognitive workload are beneficial and improve situation awareness (SA). It is clear more research is needed in this rapidly evolving field. PMID:27633199

  19. Comparative analyses of olfactory systems in terrestrial crabs (Brachyura): evidence for aerial olfaction?

    PubMed

    Krieger, Jakob; Braun, Philipp; Rivera, Nicole T; Schubart, Christoph D; Müller, Carsten H G; Harzsch, Steffen

    2015-01-01

    Adaptations to a terrestrial lifestyle occurred convergently multiple times during the evolution of the arthropods. This holds also true for the "true crabs" (Brachyura), a taxon that includes several lineages that invaded land independently. During an evolutionary transition from sea to land, animals have to develop a variety of physiological and anatomical adaptations to a terrestrial life style related to respiration, reproduction, development, circulation, ion and water balance. In addition, sensory systems that function in air instead of in water are essential for an animal's life on land. Besides vision and mechanosensory systems, on land, the chemical senses have to be modified substantially in comparison to their function in water. Among arthropods, insects are the most successful ones to evolve aerial olfaction. Various aspects of terrestrial adaptation have also been analyzed in those crustacean lineages that evolved terrestrial representatives including the taxa Anomala, Brachyura, Amphipoda, and Isopoda. We are interested in how the chemical senses of terrestrial crustaceans are modified to function in air. Therefore, in this study, we analyzed the brains and more specifically the structure of the olfactory system of representatives of brachyuran crabs that display different degrees of terrestriality, from exclusively marine to mainly terrestrial. The methods we used included immunohistochemistry, detection of autofluorescence- and confocal microscopy, as well as three-dimensional reconstruction and morphometry. Our comparative approach shows that both the peripheral and central olfactory pathways are reduced in terrestrial members in comparison to their marine relatives, suggesting a limited function of their olfactory system on land. We conclude that for arthropod lineages that invaded land, evolving aerial olfaction is no trivial task.

  20. Comparative analyses of olfactory systems in terrestrial crabs (Brachyura): evidence for aerial olfaction?

    PubMed Central

    Krieger, Jakob; Braun, Philipp; Rivera, Nicole T.; Schubart, Christoph D.; Müller, Carsten H.G.

    2015-01-01

    Adaptations to a terrestrial lifestyle occurred convergently multiple times during the evolution of the arthropods. This holds also true for the “true crabs” (Brachyura), a taxon that includes several lineages that invaded land independently. During an evolutionary transition from sea to land, animals have to develop a variety of physiological and anatomical adaptations to a terrestrial life style related to respiration, reproduction, development, circulation, ion and water balance. In addition, sensory systems that function in air instead of in water are essential for an animal’s life on land. Besides vision and mechanosensory systems, on land, the chemical senses have to be modified substantially in comparison to their function in water. Among arthropods, insects are the most successful ones to evolve aerial olfaction. Various aspects of terrestrial adaptation have also been analyzed in those crustacean lineages that evolved terrestrial representatives including the taxa Anomala, Brachyura, Amphipoda, and Isopoda. We are interested in how the chemical senses of terrestrial crustaceans are modified to function in air. Therefore, in this study, we analyzed the brains and more specifically the structure of the olfactory system of representatives of brachyuran crabs that display different degrees of terrestriality, from exclusively marine to mainly terrestrial. The methods we used included immunohistochemistry, detection of autofluorescence- and confocal microscopy, as well as three-dimensional reconstruction and morphometry. Our comparative approach shows that both the peripheral and central olfactory pathways are reduced in terrestrial members in comparison to their marine relatives, suggesting a limited function of their olfactory system on land. We conclude that for arthropod lineages that invaded land, evolving aerial olfaction is no trivial task. PMID:26713228

  1. An autonomous unmanned aerial vehicle sensing system for structural health monitoring of bridges

    NASA Astrophysics Data System (ADS)

    Reagan, Daniel; Sabato, Alessandro; Niezrecki, Christopher; Yu, Tzuyang; Wilson, Richard

    2016-04-01

    As civil infrastructure (i.e. bridges, railways, and tunnels) continues to age; the frequency and need to perform inspection more quickly on a broader scale increases. Traditional inspection and monitoring techniques (e.g., visual inspection, mechanical sounding, rebound hammer, cover meter, electrical potential measurements, ultrasound, and ground penetrating radar) may produce inconsistent results, require lane closure, are labor intensive and time-consuming. Therefore, new structural health monitoring systems must be developed that are automated, highly accurate, minimally invasive, and cost effective. Three-dimensional (3D) digital image correlation (DIC) systems have the merits of extracting full-field strain, deformation, and geometry profiles. These profiles can then be stitched together to generate a complete integrity map of the area of interest. Concurrently, unmanned aerial vehicles (UAVs) have emerged as valuable resources for positioning sensing equipment where it is either difficult to measure or poses a risk to human safety. UAVs have the capability to expedite the optical-based measurement process, offer increased accessibility, and reduce interference with local traffic. Within this work, an autonomous unmanned aerial vehicle in conjunction with 3D DIC was developed for monitoring bridges. The capabilities of the proposed system are demonstrated in both laboratory measurements and data collected from bridges currently in service. Potential measurement influences from platform instability, rotor vibration and positioning inaccuracy are also studied in a controlled environment. The results of these experiments show that the combination of autonomous flight with 3D DIC and other non-contact measurement systems provides a valuable and effective civil inspection platform.

  2. Development of test methods for scale model simulation of aerial applications in the NASA Langley Vortex Research Facility. [agricultural aircraft

    NASA Technical Reports Server (NTRS)

    Jordan, F. L., Jr.

    1980-01-01

    As part of basic research to improve aerial applications technology, methods were developed at the Langley Vortex Research Facility to simulate and measure deposition patterns of aerially-applied sprays and granular materials by means of tests with small-scale models of agricultural aircraft and dynamically-scaled test particles. Interactions between the aircraft wake and the dispersed particles are being studied with the objective of modifying wake characteristics and dispersal techniques to increase swath width, improve deposition pattern uniformity, and minimize drift. The particle scaling analysis, test methods for particle dispersal from the model aircraft, visualization of particle trajectories, and measurement and computer analysis of test deposition patterns are described. An experimental validation of the scaling analysis and test results that indicate improved control of chemical drift by use of winglets are presented to demonstrate test methods.

  3. Iowa Commercial Pesticide Applicator Manual, Category 11: Aerial Applicators. CS-26.

    ERIC Educational Resources Information Center

    DeWitt, Jerald R., Ed.

    This manual provides information needed to meet specific standards for certification as a pesticide applicator. The text is concerned with the calibration and application of pesticides/herbicides by aircraft. Special attention is given to the field flight patterns and safety precautions which must be considered for the pilot, ground crews and the…

  4. Small Unmanned Aerial Vehicles in coastal areas: lessons learned from applications in Liguria, NW Mediterranean.

    NASA Astrophysics Data System (ADS)

    Rovere, A.; Casella, E.; Pedroncini, A.; Mucerino, L.; Casella, M.; Cusati, L. A.; Vacchi, M.; Ferrari, M.; Firpo, M.

    2014-12-01

    In 2013 we started to apply small UAVs to the study of coastal areas in Liguria, NW Mediterranean Sea. In this region monitoring coastal evolution and the impact of sea storms is a primary administrative need, as a large part of the economic income derives from summer tourism. In two years, we accumulated almost 200 hours of flight with two different UAVs, a professional-grade Mikrokopter Okto and a consumer-grade Phantom DJI. We used photogrammetric and orthorectification techniques to obtain Digital Elevation Models (DEMs) and orthophotos of different beaches in the region. Data from UAVs allowed us to answer several questions. What is the accuracy of DEMs obtained from UAVs in low-relief areas such as beaches? What are the problems encountered in the photogrammetric procedure near the shoreline? Are the results obtained with consumer-grade UAVs comparable to those obtained with professional-grade ones? Aside from these technical questions, we used the data obtained from UAVs for different local studies aimed at giving management tools to the local administrations. We used the cloudpoint obtained from DEMs and the orthophotos to set up a runup modelling chain, to detect short-term changes in the coastal zone, and to give a first estimate of the debris deposited on the beach after a major storm. As stated by Watts et al., 2012 (Remote Sensing 4, 1671-1692) the application of Unmanned Aerial Vehicles and photogrammetry techniques in earth sciences is flourishing, and has the potential to revolutionize the study of geomorphology. Surely, UAVs opened new research perspectives for our group, which has been actively working on coastal changes in Liguria for almost 25 years.

  5. Aerial radiological survey of the area surrounding the UNC Recovery Systems Facility, Wood River Junction, Rhode Island

    SciTech Connect

    Bluitt, C.M.

    1981-05-01

    An aerial radiological survey to measure terrestrial gamma radiation was carried out over the United Nuclear Corporation (UNC) Recovery Systems Facility located near Wood River Junction, Rhode Island. At the time of the survey (August 1979) materials were being processed at the facility. Gamma ray data were collected over a 3.28 km/sup 2/ area centered on the facility by flying north-south lines spaced 60 m apart. Processed data indicated that detected radioisotopes and their associated gamma ray exposure rates were consistent with those expected from normal background emitters, except directly over the UNC Facility. Average exposure rates 1 m above the ground, as calculated from the aerial data, are presented in the form of an isopleth map. No ground sample data were taken at the time of the aerial survey.

  6. A temporal and ecological analysis of the Huntington Beach Wetlands through an unmanned aerial system remote sensing perspective

    NASA Astrophysics Data System (ADS)

    Rafiq, Talha

    Wetland monitoring and preservation efforts have the potential to be enhanced with advanced remote sensing acquisition and digital image analysis approaches. Progress in the development and utilization of Unmanned Aerial Systems (UAS) and Unmanned Aerial Vehicles (UAV) as remote sensing platforms has offered significant spatial and temporal advantages over traditional aerial and orbital remote sensing platforms. Photogrammetric approaches to generate high spatial resolution orthophotos of UAV acquired imagery along with the UAV's low-cost and temporally flexible characteristics are explored. A comparative analysis of different spectral based land cover maps derived from imagery captured using UAV, satellite, and airplane platforms provide an assessment of the Huntington Beach Wetlands. This research presents a UAS remote sensing methodology encompassing data collection, image processing, and analysis in constructing spectral based land cover maps to augment the efforts of the Huntington Beach Wetlands Conservancy by assessing ecological and temporal changes at the Huntington Beach Wetlands.

  7. R2U2: Monitoring and Diagnosis of Security Threats for Unmanned Aerial Systems

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Moosbruger, Patrick; Rozier, Kristin Y.

    2015-01-01

    We present R2U2, a novel framework for runtime monitoring of security properties and diagnosing of security threats on-board Unmanned Aerial Systems (UAS). R2U2, implemented in FPGA hardware, is a real-time, REALIZABLE, RESPONSIVE, UNOBTRUSIVE Unit for security threat detection. R2U2 is designed to continuously monitor inputs from the GPS and the ground control station, sensor readings, actuator outputs, and flight software status. By simultaneously monitoring and performing statistical reasoning, attack patterns and post-attack discrepancies in the UAS behavior can be detected. R2U2 uses runtime observer pairs for linear and metric temporal logics for property monitoring and Bayesian networks for diagnosis of security threats. We discuss the design and implementation that now enables R2U2 to handle security threats and present simulation results of several attack scenarios on the NASA DragonEye UAS.

  8. The use of unmanned aerial systems for the mapping of legacy uranium mines.

    PubMed

    Martin, P G; Payton, O D; Fardoulis, J S; Richards, D A; Scott, T B

    2015-05-01

    Historical mining of uranium mineral veins within Cornwall, England, has resulted in a significant amount of legacy radiological contamination spread across numerous long disused mining sites. Factors including the poorly documented and aged condition of these sites as well as the highly localised nature of radioactivity limit the success of traditional survey methods. A newly developed terrain-independent unmanned aerial system [UAS] carrying an integrated gamma radiation mapping unit was used for the radiological characterisation of a single legacy mining site. Using this instrument to produce high-spatial-resolution maps, it was possible to determine the radiologically contaminated land areas and to rapidly identify and quantify the degree of contamination and its isotopic nature. The instrument was demonstrated to be a viable tool for the characterisation of similar sites worldwide.

  9. Development of an autonomous unmanned aerial system for atmospheric data collection and research

    NASA Astrophysics Data System (ADS)

    Lee, Andrew; Hanlon, David; Sakai, Ricardo; Morris, Vernon; Demoz, Belay; Gadsden, S. Andrew

    2016-05-01

    This paper addresses the use of unmanned aerial systems (UAS) to carry out atmospheric data collection and studies. An important area of research is the study of the chemistry and physics of Earth's planetary boundary layer (PBL). The PBL, also known as the atmospheric boundary layer (ABL), is the lowest part of the atmosphere and its behavior is directly influenced by its contact with the planetary surface. Sampling of the PBL is performed in a timely and periodic manner. Currently, sensors and uncontrollable balloons are used to obtain relevant data and information. This method is cumbersome and can be ineffective in obtaining consistent environmental data. This paper proposes the use of autonomous UAS' to study the atmosphere in an effort to improve the efficiency and accuracy of the sampling process. The UAS setup and design is provided, and preliminary data collection information is shared.

  10. Mars Aerial Regional-Scale Environmental Survey (ARES) Coordinate Systems Definitions and Transformations

    NASA Technical Reports Server (NTRS)

    Kuhl, Christoper A.

    2009-01-01

    The Aerial Regional-Scale Environmental Survey (ARES) is a Mars exploration mission concept with the goal of taking scientific measurements of the atmosphere, surface, and subsurface of Mars by using an airplane as the payload platform. ARES team first conducted a Phase-A study for a 2007 launch opportunity, which was completed in May 2003. Following this study, significant efforts were undertaken to reduce the risk of the atmospheric flight system, under the NASA Langley Planetary Airplane Risk Reduction Project. The concept was then proposed to the Mars Scout program in 2006 for a 2011 launch opportunity. This paper summarizes the design and development of the ARES airplane propulsion subsystem beginning with the inception of the ARES project in 2002 through the submittal of the Mars Scout proposal in July 2006.

  11. An Obstacle Alerting System for Agricultural Application

    NASA Technical Reports Server (NTRS)

    DeMaio, Joe

    2003-01-01

    Wire strikes are a significant cause of helicopter accidents. The aircraft most at risk are aerial applicators. The present study examines the effectiveness of a wire alert delivered by way of the lightbar, a GPS-based guidance system for aerial application. The alert lead-time needed to avoid an invisible wire is compared with that to avoid a visible wire. A flight simulator was configured to simulate an agricultural application helicopter. Two pilots flew simulated spray runs in fields with visible wires, invisible wires, and no wires. The wire alert was effective in reducing wire strikes. A lead-time of 3.5 sec was required for the alert to be effective. The lead- time required was the same whether the pilot could see the wire or not.

  12. Evaluating effective swath width and droplet distribution of aerial spraying systems on M-18B and Thrush 510G airplanes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerial spraying plays an important role in promoting agricultural production and protecting the biological environment due to its flexibility, high effectiveness, and large operational area per unit of time. In order to evaluate the performance parameters of the spraying systems on two fixed wing ai...

  13. Theoretical study of network design methodologies for the aerial relay system. [energy consumption and air traffic control

    NASA Technical Reports Server (NTRS)

    Rivera, J. M.; Simpson, R. W.

    1980-01-01

    The aerial relay system network design problem is discussed. A generalized branch and bound based algorithm is developed which can consider a variety of optimization criteria, such as minimum passenger travel time and minimum liner and feeder operating costs. The algorithm, although efficient, is basically useful for small size networks, due to its nature of exponentially increasing computation time with the number of variables.

  14. HPLC/QTOF-MS/MS application to investigate phenolic constituents from Ficus pandurata H. aerial roots.

    PubMed

    Zhang, Xiaoping; Lv, Huiqing; Li, Zuguang; Jiang, Kezhi; Lee, Maw-Rong

    2015-06-01

    Ficus pandurata H. aerial roots are used as a traditional Chinese medicine for the treatment of uarthritis, indigestion and hyperuricemia. However, the bioactive constituents responsible for the pharmacological effects of F. pandurata H. are unclear. A simple and efficient HPLC/QTOF-MS/MS (high-performance liquid chromatography/electrospray ionization with quadrupole time-of-flight tandem mass spectrometry) method was established to detect and identify active constituents in the n-butanol extract of F. pandurata H. aerial roots. Chemical constituents were separated and investigated by HPLC/QTOF-MS/MS in the negative-ion mode. Thirty-seven compounds, including hydroxycinnamic acid derivatives, hydroxybenzoic acid derivatives, hydroquinone glycosides, flavonoid glycosides, etc., were identified or tentatively characterized in the n-butanol extract of F. pandurata H. aerial roots by comparing the UV spectra, accurate mass spectra and fragmentation pathways and retrieving the reference literatures. Moreover, the flavonoid trisaccharides and hydroxybenzoic acid derivatives were tentatively characterized in F. pandurata H. for the first time. The analytical tool used here is very valuable in the rapid separation and identification of the multiple and minor constituents in the n-butanol extract of F. pandurata H. aerial roots.

  15. Application of high resolution images from unmanned aerial vehicles for hydrology and range science

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A common problem in many natural resource disciplines is the lack of high-enough spatial resolution images that can be used for monitoring and modeling purposes. Advances have been made in the utilization of Unmanned Aerial Vehicles (UAVs) in hydrology and rangeland science. By utilizing low fligh...

  16. Defocus compensation system of long focal aerial camera based on auto-collimation

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-ye; Zhao, Yu-liang; Xu, Zhao-lin

    2010-10-01

    Nowadays, novel aerial reconnaissance camera emphasizes on the shooting performance in high altitude or in long distance of oblique photography. In order to obtain the larger scale pictures which are easier for image interpretation, we need the camera has long focal length. But long focal length camera is easier to be influenced by environmental condition and lead to great change of lens' back focus which can result in the lens' resolution decreased greatly. So, we should do precise defocusing compensation to long focal aerial camera system. In order to realize defocusing compensation, a defocusing compensation system based on autocollimation is designed. Firstly, the reason which can lead to long focal camera's defocusing was discussed, then the factors such as changes of atmospheric pressure and temperature and oblique photographic distance were pointed out, and mathematical equation which could compute camera's defocusing amount was presented. Secondly, after camera's defocusing was analyzed, electro-optical autocollimation of higher automation and intelligent was adopted in the system. Before shooting , focal surface was located by electro-optical autocollimation focal detection mechanism, the data of airplane's height was imported through electronic control system. Defocusing amount was corrected by computing defocusing amount and the signal was send to focusing control motor. And an efficient improved mountain climb-searching algorithm was adopted for focal surface locating in the correction process. When confirming the direction of curve, the improved algorithm considered both twice focusing results and four points. If four points continue raised, the curve would be confirmed as rising direction. On the other hand, if four points continue decreased, the curve would be confirmed as decrease direction. In this way, we could avoid the local peak value appeared in two focusing steps. The defocusing compensation system consists of optical component and precise

  17. Aerial Measuring System (AMS)/Israel Atomic Energy Commission (IAEC) Joint Comparison Study Report

    SciTech Connect

    Wasiolek, P.; Halevy, I.

    2013-12-23

    Under the 13th Bilateral Meeting to Combat Nuclear Terrorism conducted on January 8–9, 2013, the committee approved the development of a cost-effective proposal to conduct a Comparison Study of the Aerial Measuring System (AMS) of the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) and Israel Atomic Energy Commission (IAEC). The study was to be held at the Remote Sensing Laboratory (RSL), Nellis Air Force Base, Las Vegas, Nevada, with measurements at the Nevada National Security Site (NNSS). The goal of the AMS and the IAEC joint survey was to compare the responses of the two agencies’ aerial radiation detection systems to varied radioactive surface contamination levels and isotopic composition experienced at the NNSS, and the differing data processing techniques utilized by the respective teams. Considering that for the comparison both teams were using custom designed and built systems, the main focus of the short campaign was to investigate the impact of the detector size and data analysis techniques used by both teams. The AMS system, SPectral Advanced Radiological Computer System, Model A (SPARCS-A), designed and built by RSL, incorporates four different size sodium iodide (NaI) crystals: 1" × 1", 2" × 4" × 4", 2" × 4" ×16", and an “up-looking” 2" × 4" × 4". The Israel AMS System, Air RAM 2000, was designed by the IAEC Nuclear Research Center – Negev (NRCN) and built commercially by ROTEM Industries (Israel) and incorporates two 2" diameter × 2" long NaI crystals. The operational comparison was conducted at RSL-Nellis in Las Vegas, Nevada, during week of June 24–27, 2013. The Israeli system, Air RAM 2000, was shipped to RSL-Nellis and mounted together with the DOE SPARCS on a DOE Bell-412 helicopter for a series of aerial comparison measurements at local test ranges, including the Desert Rock Airport and Area 3 at the NNSS. A 4-person Israeli team from the IAEC NRCN supported the activity together with 11

  18. Number of lightning discharges causing damage to lightning arrester cables for aerial transmission lines in power systems

    SciTech Connect

    Nikiforov, E. P.

    2009-07-15

    Damage by lightning discharges to lightning arrester cables for 110-175 kV aerial transmission lines is analyzed using data from power systems on incidents with aerial transmission lines over a ten year operating period (1997-2006). It is found that failures of lightning arrester cables occur when a tensile force acts on a cable heated to the melting point by a lightning current. The lightning currents required to heat a cable to this extent are greater for larger cable cross sections. The probability that a lightning discharge will develop decreases as the amplitude of the lightning current increases, which greatly reduces the number of lightning discharges which damage TK-70 cables compared to TK-50 cables. In order to increase the reliability of lightning arrester cables for 110 kV aerial transmission lines, TK-70 cables should be used in place of TK-50 cables. The number of lightning discharges per year which damage lightning arrester cables is lowered when the density of aerial transmission lines is reduced within the territory of electrical power systems. An approximate relationship between these two parameters is obtained.

  19. 3D geometrical description of landslides using photogrammetric data acquired by Remotely Piloted Aerial System

    NASA Astrophysics Data System (ADS)

    Dubbini, Marco; Benedetti, Gianluca; Lucente, Corrado Claudio

    2015-04-01

    The need to have three-dimensional digital products of high accuracy and high resolution is now increasingly important for the study of the hydrogeological instability phenomena both from a geomorphological point of view and a geotechnical-geomechanical one. What until now was considered the prerogative of the laser scanner (both air-transported and terrestrial) for data acquisition, in many contexts is to be integrated and often replaced by photogrammetric techniques. The integration of the typical photogrammetry algorithms (Aerial Triangulation, bundle adjustment, collinearity equations, etc.) with Structure from Motion (SFM) algorithms derived from Computer Vision (CV) allows to get products "dense points cloud" of high quality and high resolution with almost complete automation of processes. The use of Remotely Piloted Aerial System (RPAS) equipped with high resolution photogrammetric and positioning sensors, allows to obtain, in a very short time and with low costs, all necessary data for the purpose. Through all stages of the photogrammetric processing, is obtained, as a base product, a dense cloud of points. Subsequently, after the phase of cleaning and classification of data, it will be possible to obtained all the necessary products for studing the geomorphological characterization and, in specific cases, also geotechnical-geomechanical characterization. The high repeatability of surveys, due to the insertion of data always in the same reference system without introducing transformations between coordinate systems, and the high accuracy in the determination of Ground Control Point (GCP) measured and processed with geodetic techniques, mainly by GNSS instrumentation, allows to compare data and models over time. The possibility of the RPAS to carry on board the double frequency satellite positioning systems, so as to define the spatial coordinates of the perspective center with centimetric accuracy, it also allows to obtain repeatability of the data in

  20. Thermal Analysis on Cryogenic Liquid Hydrogen Tank on an Unmanned Aerial Vehicle System

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Harpster, George; Hunter, James

    2007-01-01

    Thermal analyses are performed on the liquid hydrogen (LH2) tank designed for an unmanned aerial vehicle (UAV) powered by solar arrays and a regenerative proton-exchange membrane (PEM) fuel cell. A 14-day cruise mission at a 65,000 ft altitude is considered. Thermal analysis provides the thermal loads on the tank system and the boiling-off rates of LH2. Different approaches are being considered to minimize the boiling-off rates of the LH2. It includes an evacuated multilayer insulation (MLI) versus aerogel insulation on the LH2 tank and aluminum versus stainless steel spacer rings between the inner and outer tank. The resulting boil-off rates of LH2 provided by the one-dimensional model and three-dimensional finite element analysis (FEA) on the tank system are presented and compared to validate the results of the three-dimensional FEA. It concludes that heat flux through penetrations by conduction is as significant as that through insulation around the tank. The tank system with MLI insulation and stainless steel spacer rings result in the lowest boiling-off rate of LH2.

  1. Self-Contained Avionics Sensing and Flight Control System for Small Unmanned Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A. (Inventor); Logan, Michael J. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox, legal representative, Melanie L. (Inventor); Ingham, John C. (Inventor); Laughter, Sean A. (Inventor); Kuhn, III, Theodore R. (Inventor); Adams, James K. (Inventor); Babel, III, Walter C. (Inventor)

    2011-01-01

    A self-contained avionics sensing and flight control system is provided for an unmanned aerial vehicle (UAV). The system includes sensors for sensing flight control parameters and surveillance parameters, and a Global Positioning System (GPS) receiver. Flight control parameters and location signals are processed to generate flight control signals. A Field Programmable Gate Array (FPGA) is configured to provide a look-up table storing sets of values with each set being associated with a servo mechanism mounted on the UAV and with each value in each set indicating a unique duty cycle for the servo mechanism associated therewith. Each value in each set is further indexed to a bit position indicative of a unique percentage of a maximum duty cycle for the servo mechanism associated therewith. The FPGA is further configured to provide a plurality of pulse width modulation (PWM) generators coupled to the look-up table. Each PWM generator is associated with and adapted to be coupled to one of the servo mechanisms.

  2. Control and navigation system for a fixed-wing unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Zhai, Ruiyong; Zhou, Zhaoying; Zhang, Wendong; Sang, Shengbo; Li, Pengwei

    2014-03-01

    This paper presents a flight control and navigation system for a fixed-wing unmanned aerial vehicle (UAV) with low-cost micro-electro-mechanical system (MEMS) sensors. The system is designed under the inner loop and outer loop strategy. The trajectory tracking navigation loop is the outer loop of the attitude loop, while the attitude control loop is the outer loop of the stabilization loop. The proportional-integral-derivative (PID) control was adopted for stabilization and attitude control. The three-dimensional (3D) trajectory tracking control of a UAV could be approximately divided into lateral control and longitudinal control. The longitudinal control employs traditional linear PID feedback to achieve the desired altitude of the UAV, while the lateral control uses a non-linear control method to complete the desired trajectory. The non-linear controller can automatically adapt to ground velocity change, which is usually caused by gust disturbance, thus the UAV has good wind resistance characteristics. Flight tests and survey missions were carried out with our self-developed delta fixed-wing UAV and MEMS-based autopilot to confirm the effectiveness and practicality of the proposed navigation method.

  3. Mass image data storage system for high resolution aerial photographic survey

    NASA Astrophysics Data System (ADS)

    Zen, Luan; Tan, Jiubin; Zhao, Zhongwen

    2008-10-01

    In order to make it possible for an image data acquisition and storage system used for aerial photographic survey to have a continuous storage speed of 144 MB/s and data storage capacity of 260GB, three main problems have been solved in this paper. First, with multi-channel synchronous DMA transfer, parallel data storage of four SCSI hard disks is realized. It solved the problem of the data transfer rate too high for direct storage. Then, to increase the data transfer rate, a high speed BUS based on LVDS and a SCSI control circuit based on FAS368M were designed. It solved the problem of PCI BUS limiting the storage speed. Finally, the problem of the SCSI hard disk continuous storage speed declining led by much time interval between two DMA transfers is solved by optimizing DMA channel. The practical system test shows that the acquisition and storage system has a continuous storage speed of 150 MB/s and a data storage capacity of 280GB. Therefore, it is a new storage method for high speed and mass image data.

  4. Selected reading in agricultural applications of small-format aerial photography

    USGS Publications Warehouse

    Anderson, William H.; Kroeger, Kevin J.

    1980-01-01

    This collection of material has been assembled in response to a growing.interest in the use of low-cost, small-format aerial photography in the management of agricultural resources. Together, these articles serve to document the prevailing level of interest in the subject and provide an insight as to what can reasonably be expected from the use of this powerful agricultural management tool. 

  5. Application of machine learning for the evaluation of turfgrass plots using aerial images

    NASA Astrophysics Data System (ADS)

    Ding, Ke; Raheja, Amar; Bhandari, Subodh; Green, Robert L.

    2016-05-01

    Historically, investigation of turfgrass characteristics have been limited to visual ratings. Although relevant information may result from such evaluations, final inferences may be questionable because of the subjective nature in which the data is collected. Recent advances in computer vision techniques allow researchers to objectively measure turfgrass characteristics such as percent ground cover, turf color, and turf quality from the digital images. This paper focuses on developing a methodology for automated assessment of turfgrass quality from aerial images. Images of several turfgrass plots of varying quality were gathered using a camera mounted on an unmanned aerial vehicle. The quality of these plots were also evaluated based on visual ratings. The goal was to use the aerial images to generate quality evaluations on a regular basis for the optimization of water treatment. Aerial images are used to train a neural network so that appropriate features such as intensity, color, and texture of the turfgrass are extracted from these images. Neural network is a nonlinear classifier commonly used in machine learning. The output of the neural network trained model is the ratings of the grass, which is compared to the visual ratings. Currently, the quality and the color of turfgrass, measured as the greenness of the grass, are evaluated. The textures are calculated using the Gabor filter and co-occurrence matrix. Other classifiers such as support vector machines and simpler linear regression models such as Ridge regression and LARS regression are also used. The performance of each model is compared. The results show encouraging potential for using machine learning techniques for the evaluation of turfgrass quality and color.

  6. Atmospheric Mining in the Outer Solar System:. [Aerial Vehicle Reconnaissance and Exploration Options

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    2014-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and hydrogen (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. Additional supporting analyses were conducted to illuminate vehicle sizing and orbital transportation issues. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional gases, the potential for fueling small and large fleets of additional exploration and exploitation vehicles exists. Additional aerospacecraft or other aerial vehicles (UAVs, balloons, rockets, etc.) could fly through the outer planet atmospheres, for global weather observations, localized storm or other disturbance investigations, wind speed measurements, polar observations, etc. Deep-diving aircraft (built with the strength to withstand many atmospheres of pressure) powered by the excess hydrogen or helium 4 may be designed to probe the higher density regions of the gas giants. Outer planet atmospheric properties, atmospheric storm data, and mission planning for future outer planet UAVs are presented.

  7. Region-Based 3d Surface Reconstruction Using Images Acquired by Low-Cost Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Lari, Z.; Al-Rawabdeh, A.; He, F.; Habib, A.; El-Sheimy, N.

    2015-08-01

    Accurate 3D surface reconstruction of our environment has become essential for an unlimited number of emerging applications. In the past few years, Unmanned Aerial Systems (UAS) are evolving as low-cost and flexible platforms for geospatial data collection that could meet the needs of aforementioned application and overcome limitations of traditional airborne and terrestrial mobile mapping systems. Due to their payload restrictions, these systems usually include consumer-grade imaging and positioning sensor which will negatively impact the quality of the collected geospatial data and reconstructed surfaces. Therefore, new surface reconstruction surfaces are needed to mitigate the impact of using low-cost sensors on the final products. To date, different approaches have been proposed to for 3D surface construction using overlapping images collected by imaging sensor mounted on moving platforms. In these approaches, 3D surfaces are mainly reconstructed based on dense matching techniques. However, generated 3D point clouds might not accurately represent the scanned surfaces due to point density variations and edge preservation problems. In order to resolve these problems, a new region-based 3D surface renostruction trchnique is introduced in this paper. This approach aims to generate a 3D photo-realistic model of individually scanned surfaces within the captured images. This approach is initiated by a Semi-Global dense Matching procedure is carried out to generate a 3D point cloud from the scanned area within the collected images. The generated point cloud is then segmented to extract individual planar surfaces. Finally, a novel region-based texturing technique is implemented for photorealistic reconstruction of the extracted planar surfaces. Experimental results using images collected by a camera mounted on a low-cost UAS demonstrate the feasibility of the proposed approach for photorealistic 3D surface reconstruction.

  8. LiPo battery energy studies for improved flight performance of unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Chang, K.; Rammos, P.; Wilkerson, S. A.; Bundy, M.; Gadsden, S. Andrew

    2016-05-01

    Energy storage is one of the most important determinants of how long and far a small electric powered unmanned aerial system (UAS) can fly. For years, most hobby and experimentalists used heavy fuels to power small drone-like systems. Electric motors and battery storage prior to the turn of the century were either too heavy or too inefficient for flight times of any usable duration. However, with the availability of brushless electric motors and lithium-based batteries everything has changed. Systems like the Dragon Eye, Pointer, and Raven are in service performing reconnaissance, intelligence, surveillance, and target acquisition (RISTA) for more than an hour at a time. More recently, multi-rotor vehicles have expanded small UAS capabilities to include activities with hovering and persistent surveillance. Moreover, these systems coupled with the surge of small, low-cost electronics can perform autonomous and semi-autonomous missions not possible just ten years ago. This paper addresses flight time limitation issues by proposing an experimental method with procedures for system identification that may lead to modeling of energy storage in electric UAS'. Consequently, this will allow for energy storage to be used more effectively in planning autonomous missions. To achieve this, a set of baseline experiments were designed to measure the energy consumption of a mid-size UAS multi-rotor. Several different flight maneuvers were considered to include different lateral velocities, climbing, and hovering. Therefore, the goal of this paper is to create baseline flight data for each maneuver to be characterized with a certain rate of energy usage. Experimental results demonstrate the feasibility and robustness of the proposed approach. Future work will include the development of mission planning algorithms that provide realistic estimates of possible mission flight times and distances given specific mission parameters.

  9. Discrimination of Deciduous Tree Species from Time Series of Unmanned Aerial System Imagery.

    PubMed

    Lisein, Jonathan; Michez, Adrien; Claessens, Hugues; Lejeune, Philippe

    2015-01-01

    Technology advances can revolutionize Precision Forestry by providing accurate and fine forest information at tree level. This paper addresses the question of how and particularly when Unmanned Aerial System (UAS) should be used in order to efficiently discriminate deciduous tree species. The goal of this research is to determine when is the best time window to achieve an optimal species discrimination. A time series of high resolution UAS imagery was collected to cover the growing season from leaf flush to leaf fall. Full benefit was taken of the temporal resolution of UAS acquisition, one of the most promising features of small drones. The disparity in forest tree phenology is at the maximum during early spring and late autumn. But the phenology state that optimized the classification result is the one that minimizes the spectral variation within tree species groups and, at the same time, maximizes the phenologic differences between species. Sunlit tree crowns (5 deciduous species groups) were classified using a Random Forest approach for monotemporal, two-date and three-date combinations. The end of leaf flushing was the most efficient single-date time window. Multitemporal datasets definitely improve the overall classification accuracy. But single-date high resolution orthophotomosaics, acquired on optimal time-windows, result in a very good classification accuracy (overall out of bag error of 16%).

  10. Discrimination of Deciduous Tree Species from Time Series of Unmanned Aerial System Imagery.

    PubMed

    Lisein, Jonathan; Michez, Adrien; Claessens, Hugues; Lejeune, Philippe

    2015-01-01

    Technology advances can revolutionize Precision Forestry by providing accurate and fine forest information at tree level. This paper addresses the question of how and particularly when Unmanned Aerial System (UAS) should be used in order to efficiently discriminate deciduous tree species. The goal of this research is to determine when is the best time window to achieve an optimal species discrimination. A time series of high resolution UAS imagery was collected to cover the growing season from leaf flush to leaf fall. Full benefit was taken of the temporal resolution of UAS acquisition, one of the most promising features of small drones. The disparity in forest tree phenology is at the maximum during early spring and late autumn. But the phenology state that optimized the classification result is the one that minimizes the spectral variation within tree species groups and, at the same time, maximizes the phenologic differences between species. Sunlit tree crowns (5 deciduous species groups) were classified using a Random Forest approach for monotemporal, two-date and three-date combinations. The end of leaf flushing was the most efficient single-date time window. Multitemporal datasets definitely improve the overall classification accuracy. But single-date high resolution orthophotomosaics, acquired on optimal time-windows, result in a very good classification accuracy (overall out of bag error of 16%). PMID:26600422

  11. Constraining the sulfur dioxide degassing flux from Turrialba volcano, Costa Rica using unmanned aerial system measurements

    NASA Astrophysics Data System (ADS)

    Xi, Xin; Johnson, Matthew S.; Jeong, Seongeun; Fladeland, Matthew; Pieri, David; Diaz, Jorge Andres; Bland, Geoffrey L.

    2016-10-01

    Observed sulfur dioxide (SO2) mixing ratios onboard unmanned aerial systems (UAS) during March 11-13, 2013 are used to constrain the three-day averaged SO2 degassing flux from Turrialba volcano within a Bayesian inverse modeling framework. A mesoscale model coupled with Lagrangian stochastic particle backward trajectories is used to quantify the source-receptor relationships at very high spatial resolutions (i.e., < 1 km). The model shows better performance in reproducing the near-surface meteorological properties and observed SO2 variations when using a first-order closure non-local planetary boundary layer (PBL) scheme. The optimized SO2 degassing fluxes vary from 0.59 ± 0.37 to 0.83 ± 0.33 kt d- 1 depending on the PBL scheme used. These fluxes are in good agreement with ground-based gas flux measurements, and correspond to corrective scale factors of 8-12 to the posteruptive SO2 degassing rate in the AeroCom emission inventory. The maximum a posteriori solution for the SO2 flux is highly sensitive to the specification of prior and observational errors, and relatively insensitive to the SO2 loss term and temporal averaging of observations. Our results indicate relatively low degassing activity but sustained sulfur emissions from Turrialba volcano to the troposphere during March 2013. This study demonstrates the utility of low-cost small UAS platforms for volcanic gas composition and flux analysis.

  12. On parallel hybrid-electric propulsion system for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Hung, J. Y.; Gonzalez, L. F.

    2012-05-01

    This paper presents a review of existing and current developments and the analysis of Hybrid-Electric Propulsion Systems (HEPS) for small fixed-wing Unmanned Aerial Vehicles (UAVs). Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. One technology with potential in this area is with the use of HEPS. In this paper, information on the state-of-art technology in this field of research is provided. A description and simulation of a parallel HEPS for a small fixed-wing UAV by incorporating an Ideal Operating Line (IOL) control strategy is described. Simulation models of the components in a HEPS were designed in the MATLAB Simulink environment. An IOL analysis of an UAV piston engine was used to determine the most efficient points of operation for this engine. The results show that an UAV equipped with this HEPS configuration is capable of achieving a fuel saving of 6.5%, compared to the engine-only configuration.

  13. Unmanned Aerial Systems during the Coordinated Investigation of Climate-Cryosphere Interaction at Svalbard, Norway

    NASA Astrophysics Data System (ADS)

    Burkhart, J. F.; Bates, T. S.; Quinn, P.; Storvold, R.; Herber, A.; Vitale, V.; Lesenkov, S.; Cicci/Vauuav Science Team

    2011-12-01

    During Spring 2011 an intensive investigation of climate-cryosphere interaction was conducted in Svalbard, Norway. A primary objective of the campaign was to investigate processes related to the deposition of aerosols to the Arctic cryosphere. Moreover, the campaign provided a first-time opportunity to test several novel data acquisition platforms. Of interest to this session are the three Unmanned Aerial System (UAS) platforms that flew cooperatively with oversight from the Norwegian Civil Aviation Authority (CAA). The campaign presented the unique opportunity for a CAA to regulate UAS platforms; both private and foreign government-owned aircraft (Norway, USA, and Russia). Further, it highlighted challenges, both political and logistical, related to conducting such an operation. We present an overview of the 'Coordinated Investigation of Climate-Cryosphere Interaction' campaign, and highlight the novel and valuable contributions from each of the UAS platforms. Our presentation includes an overview of the different platform capabilities, a discussion of the scientific merits of the platforms, insight into the political process for UAS operations in the Arctic, and a summary of the acquired contributions toward the goals of the CICCI project.

  14. Discrimination of Deciduous Tree Species from Time Series of Unmanned Aerial System Imagery

    PubMed Central

    Lisein, Jonathan; Michez, Adrien; Claessens, Hugues; Lejeune, Philippe

    2015-01-01

    Technology advances can revolutionize Precision Forestry by providing accurate and fine forest information at tree level. This paper addresses the question of how and particularly when Unmanned Aerial System (UAS) should be used in order to efficiently discriminate deciduous tree species. The goal of this research is to determine when is the best time window to achieve an optimal species discrimination. A time series of high resolution UAS imagery was collected to cover the growing season from leaf flush to leaf fall. Full benefit was taken of the temporal resolution of UAS acquisition, one of the most promising features of small drones. The disparity in forest tree phenology is at the maximum during early spring and late autumn. But the phenology state that optimized the classification result is the one that minimizes the spectral variation within tree species groups and, at the same time, maximizes the phenologic differences between species. Sunlit tree crowns (5 deciduous species groups) were classified using a Random Forest approach for monotemporal, two-date and three-date combinations. The end of leaf flushing was the most efficient single-date time window. Multitemporal datasets definitely improve the overall classification accuracy. But single-date high resolution orthophotomosaics, acquired on optimal time-windows, result in a very good classification accuracy (overall out of bag error of 16%). PMID:26600422

  15. High-Resolution Debris Flow Volume Mapping with Unmanned Aerial Systems (uas) and Photogrammetric Techniques

    NASA Astrophysics Data System (ADS)

    Adams, M. S.; Fromm, R.; Lechner, V.

    2016-06-01

    Debris flows cause an average € 30 million damages and 1-2 fatalities every year in Austria. Detailed documentation of their extent and magnitude is essential for understanding, preventing and mitigating these natural hazard events. The recent development of unmanned aerial systems (UAS) has provided a new possibility for on-demand high-resolution monitoring and mapping. Here, we present a study, where the spatial extent and volume of a large debris flow event were mapped with different UAS, fitted with commercial off-the-shelf sensors. Orthophotos and digital terrain models (DTM) were calculated using structure-from-motion photogrammetry software. Terrain height differences caused by the debris flow in the catchment and valley floor were derived by subtracting the pre-event airborne laser scanning (ALS) DTM from a post-event UAS-DTM. The analysis of the volumetric sediment budget showed, that approximately 265,000 m³ material was mobilised in the catchment, of which 45,000 m³ settled there; of the material, which reached the valley floor, 120,000 m³ was deposited, while another 10,000 m³ was eroded from there. The UAS-results were validated against ALS data and imagery from a traditional manned-aircraft photogrammetry campaign. In conclusion, the UAS-data can reach an accuracy and precision comparable to manned aircraft data, but with the added benefits of higher flexibility, easier repeatability, less operational constraints and higher spatial resolution.

  16. Construction of an unmanned aerial vehicle remote sensing system for crop monitoring

    NASA Astrophysics Data System (ADS)

    Jeong, Seungtaek; Ko, Jonghan; Kim, Mijeong; Kim, Jongkwon

    2016-04-01

    We constructed a lightweight unmanned aerial vehicle (UAV) remote sensing system and determined the ideal method for equipment setup, image acquisition, and image processing. Fields of rice paddy (Oryza sativa cv. Unkwang) grown under three different nitrogen (N) treatments of 0, 50, or 115 kg/ha were monitored at Chonnam National University, Gwangju, Republic of Korea, in 2013. A multispectral camera was used to acquire UAV images from the study site. Atmospheric correction of these images was completed using the empirical line method, and three-point (black, gray, and white) calibration boards were used as pseudo references. Evaluation of our corrected UAV-based remote sensing data revealed that correction efficiency and root mean square errors ranged from 0.77 to 0.95 and 0.01 to 0.05, respectively. The time series maps of simulated normalized difference vegetation index (NDVI) produced using the UAV images reproduced field variations of NDVI reasonably well, both within and between the different N treatments. We concluded that the UAV-based remote sensing technology utilized in this study is potentially an easy and simple way to quantitatively obtain reliable two-dimensional remote sensing information on crop growth.

  17. Measurements of Atmospheric Aerosol Vertical Distributions above Svalbard, Norway using Unmanned Aerial Systems (UAS)

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Johnson, J. E.; Stalin, S.; Telg, H.; Murphy, D. M.; Burkhart, J. F.; Quinn, P.; Storvold, R.

    2015-12-01

    Atmospheric aerosol vertical distributions were measured above Svalbard, Norway in April 2015 to investigate the processes controlling aerosol concentrations and radiative effects. The aerosol payload was flown in a NOAA/PMEL MANTA Unmanned Aerial System (UAS) on 9 flights totaling 19 flight hours. Measurements were made of particle number concentration and aerosol light absorption at three wavelengths, similar to those conducted in April 2011 (Bates et al., Atmos. Meas. Tech., 6, 2115-2120, 2013). A filter sample was collected on each flight for analyses of trace elements. Additional measurements in the aerosol payload in 2015 included aerosol size distributions obtained using a Printed Optical Particle Spectrometer (POPS) and aerosol optical depth obtained using a four wavelength miniature Scanning Aerosol Sun Photometer (miniSASP). The data show most of the column aerosol mass and resulting optical depth in the boundary layer but frequent aerosol layers aloft with high particle number concentration (2000 cm-3) and enhanced aerosol light absorption (1 Mm-1). Transport of these aerosol layers was assessed using FLEXPART particle dispersion models. The data contribute to an assessment of sources of BC to the Arctic and potential climate impacts.

  18. Feasibility study of using the RoboEarth cloud engine for rapid mapping and tracking with small unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Li-Chee-Ming, J.; Armenakis, C.

    2014-11-01

    This paper presents the ongoing development of a small unmanned aerial mapping system (sUAMS) that in the future will track its trajectory and perform 3D mapping in near-real time. As both mapping and tracking algorithms require powerful computational capabilities and large data storage facilities, we propose to use the RoboEarth Cloud Engine (RCE) to offload heavy computation and store data to secure computing environments in the cloud. While the RCE's capabilities have been demonstrated with terrestrial robots in indoor environments, this paper explores the feasibility of using the RCE in mapping and tracking applications in outdoor environments by small UAMS. The experiments presented in this work assess the data processing strategies and evaluate the attainable tracking and mapping accuracies using the data obtained by the sUAMS. Testing was performed with an Aeryon Scout quadcopter. It flew over York University, up to approximately 40 metres above the ground. The quadcopter was equipped with a single-frequency GPS receiver providing positioning to about 3 meter accuracies, an AHRS (Attitude and Heading Reference System) estimating the attitude to about 3 degrees, and an FPV (First Person Viewing) camera. Video images captured from the onboard camera were processed using VisualSFM and SURE, which are being reformed as an Application-as-a-Service via the RCE. The 3D virtual building model of York University was used as a known environment to georeference the point cloud generated from the sUAMS' sensor data. The estimated position and orientation parameters of the video camera show increases in accuracy when compared to the sUAMS' autopilot solution, derived from the onboard GPS and AHRS. The paper presents the proposed approach and the results, along with their accuracies.

  19. The Aeronautics Education, Research, and Industry Alliance (AERIAL) 2002 Report

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Fink, Mary M.; Nickerson, Jocelyn S.

    2002-01-01

    This report presents and overview of the Aeronautics Education, Research, and Industry Alliance (AERIAL). It covers the University of Nebraska's areas of research, and its outreach to students at Native American schools as part of AERIAL. The report contains three papers: "Airborne Remote Sensing (ARS) for Agricultural Research and Commercialization Application" (White Paper), "Validated Numerical Models for the Convective Extinction of Fuel Droplets (CEFD)", and "The Small Aircraft Transportation System (SATS): Research Collaborations with the NASA Langley Research Center".

  20. The NASA Langley Research Center's Unmanned Aerial System Surrogate Research Aircraft

    NASA Technical Reports Server (NTRS)

    Howell, Charles T., III; Jessup, Artie; Jones, Frank; Joyce, Claude; Sugden, Paul; Verstynen, Harry; Mielnik, John

    2010-01-01

    Research is needed to determine what procedures, aircraft sensors and other systems will be required to allow Unmanned Aerial Systems (UAS) to safely operate with manned aircraft in the National Airspace System (NAS). The NASA Langley Research Center has transformed a Cirrus Design SR22 general aviation (GA) aircraft into a UAS Surrogate research aircraft to serve as a platform for UAS systems research, development, flight testing and evaluation. The aircraft is manned with a Safety Pilot and systems operator that allows for flight operations almost anywhere in the NAS without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). The UAS Surrogate can be controlled from a modular, transportable ground station like a true UAS. The UAS Surrogate is able to file and fly in the NAS with normal traffic and is a better platform for real world UAS research and development than existing vehicles flying in restricted ranges or other sterilized airspace. The Cirrus Design SR22 aircraft is a small, singleengine, four-place, composite-construction aircraft that NASA Langley acquired to support NASA flight-research programs like the Small Aircraft Transportation System (SATS) Project. Systems were installed to support flight test research and data gathering. These systems include: separate research power; multi-function flat-panel displays; research computers; research air data and inertial state sensors; video recording; data acquisition; data-link; S-band video and data telemetry; Common Airborne Instrumentation System (CAIS); Automatic Dependent Surveillance-Broadcast (ADS-B); instrumented surfaces and controls; and a systems operator work station. The transformation of the SR22 to a UAS Surrogate was accomplished in phases. The first phase was to modify the existing autopilot to accept external commands from a research computer that was connected by redundant data-link radios to a ground control station. An electro-mechanical auto

  1. Application of high-performance steel in mobile hydraulic cranes and aerial work platforms

    SciTech Connect

    Pike, G.S.

    1995-12-31

    The market for mobile hydraulic cranes and aerial work platforms is highly competitive and customers continue to demand increased lift capacity and heights with decreased cost and vehicle weight. As Grove designers strive to optimize these parameters, the Materials and Welding Engineering Department must provide them with materials that surpass the capabilities of materials covered by established industry standards such as ASTM. These industry standards, due to their consensus nature, do not keep pace with the latest steel-making technology, which is often proprietary in nature. Therefore, Grove works with suppliers to support development of high performance steels by providing performance goals, fabrication testing, and a market for these new materials.

  2. Aerial Images from AN Uav System: 3d Modeling and Tree Species Classification in a Park Area

    NASA Astrophysics Data System (ADS)

    Gini, R.; Passoni, D.; Pinto, L.; Sona, G.

    2012-07-01

    The use of aerial imagery acquired by Unmanned Aerial Vehicles (UAVs) is scheduled within the FoGLIE project (Fruition of Goods Landscape in Interactive Environment): it starts from the need to enhance the natural, artistic and cultural heritage, to produce a better usability of it by employing audiovisual movable systems of 3D reconstruction and to improve monitoring procedures, by using new media for integrating the fruition phase with the preservation ones. The pilot project focus on a test area, Parco Adda Nord, which encloses various goods' types (small buildings, agricultural fields and different tree species and bushes). Multispectral high resolution images were taken by two digital compact cameras: a Pentax Optio A40 for RGB photos and a Sigma DP1 modified to acquire the NIR band. Then, some tests were performed in order to analyze the UAV images' quality with both photogrammetric and photo-interpretation purposes, to validate the vector-sensor system, the image block geometry and to study the feasibility of tree species classification. Many pre-signalized Control Points were surveyed through GPS to allow accuracy analysis. Aerial Triangulations (ATs) were carried out with photogrammetric commercial software, Leica Photogrammetry Suite (LPS) and PhotoModeler, with manual or automatic selection of Tie Points, to pick out pros and cons of each package in managing non conventional aerial imagery as well as the differences in the modeling approach. Further analysis were done on the differences between the EO parameters and the corresponding data coming from the on board UAV navigation system.

  3. A Mobile System for Measuring Water Surface Velocities Using Unmanned Aerial Vehicle and Large-Scale Particle Image Velocimetry

    NASA Astrophysics Data System (ADS)

    Chen, Y. L.

    2015-12-01

    Measurement technologies for velocity of river flow are divided into intrusive and nonintrusive methods. Intrusive method requires infield operations. The measuring process of intrusive methods are time consuming, and likely to cause damages of operator and instrument. Nonintrusive methods require fewer operators and can reduce instrument damages from directly attaching to the flow. Nonintrusive measurements may use radar or image velocimetry to measure the velocities at the surface of water flow. The image velocimetry, such as large scale particle image velocimetry (LSPIV) accesses not only the point velocity but the flow velocities in an area simultaneously. Flow properties of an area hold the promise of providing spatially information of flow fields. This study attempts to construct a mobile system UAV-LSPIV by using an unmanned aerial vehicle (UAV) with LSPIV to measure flows in fields. The mobile system consists of a six-rotor UAV helicopter, a Sony nex5T camera, a gimbal, an image transfer device, a ground station and a remote control device. The activate gimbal helps maintain the camera lens orthogonal to the water surface and reduce the extent of images being distorted. The image transfer device can monitor the captured image instantly. The operator controls the UAV by remote control device through ground station and can achieve the flying data such as flying height and GPS coordinate of UAV. The mobile system was then applied to field experiments. The deviation of velocities measured by UAV-LSPIV of field experiments and handhold Acoustic Doppler Velocimeter (ADV) is under 8%. The results of the field experiments suggests that the application of UAV-LSPIV can be effectively applied to surface flow studies.

  4. Improving Rangeland Monitoring and Assessment: Integrating Remote Sensing, GIS, and Unmanned Aerial Vehicle Systems

    SciTech Connect

    Robert Paul Breckenridge

    2007-05-01

    Creeping environmental changes are impacting some of the largest remaining intact parcels of sagebrush steppe ecosystems in the western United States, creating major problems for land managers. The Idaho National Laboratory (INL), located in southeastern Idaho, is part of the sagebrush steppe ecosystem, one of the largest ecosystems on the continent. Scientists at the INL and the University of Idaho have integrated existing field and remotely sensed data with geographic information systems technology to analyze how recent fires on the INL have influenced the current distribution of terrestrial vegetation. Three vegetation mapping and classification systems were used to evaluate the changes in vegetation caused by fires between 1994 and 2003. Approximately 24% of the sagebrush steppe community on the INL was altered by fire, mostly over a 5-year period. There were notable differences between methods, especially for juniper woodland and grasslands. The Anderson system (Anderson et al. 1996) was superior for representing the landscape because it includes playa/bare ground/disturbed area and sagebrush steppe on lava as vegetation categories. This study found that assessing existing data sets is useful for quantifying fire impacts and should be helpful in future fire and land use planning. The evaluation identified that data from remote sensing technologies is not currently of sufficient quality to assess the percentage of cover. To fill this need, an approach was designed using both helicopter and fixed wing unmanned aerial vehicles (UAVs) and image processing software to evaluate six cover types on field plots located on the INL. The helicopter UAV provided the best system compared against field sampling, but is more dangerous and has spatial coverage limitations. It was reasonably accurate for dead shrubs and was very good in assessing percentage of bare ground, litter and grasses; accuracy for litter and shrubs is questionable. The fixed wing system proved to be

  5. Evaluation of Meteorological and Aerosol Sensing with small Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Claussen, Johanna; Möhler, Ottmar; Leisner, Thomas; Brooks, Ian; Norris, Sarah; Brooks, Barbara; Hill, Martin; Haunold, Werner; Schrod, Jann; Danielczok, Anja

    2013-04-01

    Atmospheric aerosols have a large impact on the climate system due to their influence on the global radiation budget. Local aerosol sources such as vegetation, (bare) soil or industrial sites have to be quantified with high resolution data to validate aerosol transport models and improve the input for high resolution weather models. Our goal is to evaluate the use of Unmanned Aerial Systems (UAS) as a method for acquisition of high resolution meteorological and aerosol data. During the INUIT measurement campaign in August 2012 at mount Großer Feldberg near Frankfurt, Germany, several flights with different sensor packages were carried out. We measured basic meteorological parameters such as temperature, relative humidity and air pressure with miniaturized onboard sensors. In addition, the Compact Lightweight Aerosol Spectrometer Probe (CLASP) for aerosol size distribution measurement or the Electrostatic Aerosol Collector (EAC) for aerosol sample collection was installed on board. CLASP measures aerosol particles with diameters from 0.17 μm to 9.5 μm in up to 32 channels at a frequency of 10 Hz. The EAC collects air samples at 2 l/min onto a sample holder. After the flight the ice nuclei on the sample holder are activated and counted in the isothermal static diffusion chamber FRIDGE. The results from the INUIT campaign and additional calibration laboratory measurements show that UAS are a valuable platform for miniaturized sensors. The number of ice nuclei was determined with the EAC at 200m above ground level and compared to the reference measurement on the ground.

  6. Building and road detection from large aerial imagery

    NASA Astrophysics Data System (ADS)

    Saito, Shunta; Aoki, Yoshimitsu

    2015-02-01

    Building and road detection from aerial imagery has many applications in a wide range of areas including urban design, real-estate management, and disaster relief. The extracting buildings and roads from aerial imagery has been performed by human experts manually, so that it has been very costly and time-consuming process. Our goal is to develop a system for automatically detecting buildings and roads directly from aerial imagery. Many attempts at automatic aerial imagery interpretation have been proposed in remote sensing literature, but much of early works use local features to classify each pixel or segment to an object label, so that these kind of approach needs some prior knowledge on object appearance or class-conditional distribution of pixel values. Furthermore, some works also need a segmentation step as pre-processing. Therefore, we use Convolutional Neural Networks(CNN) to learn mapping from raw pixel values in aerial imagery to three object labels (buildings, roads, and others), in other words, we generate three-channel maps from raw aerial imagery input. We take a patch-based semantic segmentation approach, so we firstly divide large aerial imagery into small patches and then train the CNN with those patches and corresponding three-channel map patches. Finally, we evaluate our system on a large-scale road and building detection datasets that is publicly available.

  7. Two-Step System Identification and Primitive-Based Motion Planning for Control of Small Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Grymin, David J.

    This dissertation addresses motion planning, modeling, and feedback control for autonomous vehicle systems. A hierarchical approach for motion planning and control of nonlinear systems operating in obstacle environments is presented. To reduce computation time during the motion planning process, dynamically feasible trajectories are generated in real-time through concatenation of pre-specified motion primitives. The motion planning task is posed as a search over a directed graph, and the applicability of informed graph search techniques is investigated. Specifically, a locally greedy algorithm with effective backtracking ability is developed and compared to weighted A* search. The greedy algorithm shows an advantage with respect to solution cost and computation time when larger motion primitive libraries that do not operate on a regular state lattice are utilized. Linearization of the nonlinear system equations about the motion primitive library results in a hybrid linear time-varying model, and an optimal control algorithm using the l 2-induced norm as the performance measure is applied to ensure that the system tracks the desired trajectory. The ability of the resulting controller to closely track the trajectory obtained from the motion planner, despite various disturbances and uncertainties, is demonstrated through simulation. Additionally, an approach for obtaining dynamically feasible reference trajectories and feedback controllers for a small unmanned aerial vehicle (UAV) based on an aerodynamic model derived from flight tests is presented. The modeling approach utilizes the two step method (TSM) with stepwise multiple regression to determine relevant explanatory terms for the aerodynamic models. Dynamically feasible trajectories are then obtained through the solution of an optimal control problem using pseudospectral optimal control software. Discretetime feedback controllers are then obtained to regulate the vehicle along the desired reference trajectory

  8. Ecological risk assessment of aerial insectivores of the Clinch River/Poplar Creek system

    SciTech Connect

    Baron, L.A.; Sample, B.E.

    1995-12-31

    Risks to aerial insectivores (species that consume flying insects; rough-winged swallows, little brown bats, and endangered gray bats) were assessed for the CERCLA remedial investigation of the Clinch River/Poplar Creek system. Adult mayflies and sediment were collected from four locations and analyzed for contaminants. Sediment-to-mayfly contaminant transfer factors were generated from these data and used to estimate contaminant concentrations in mayflies from thirteen additional locations. Contaminants of potential concern (COPCs) were identified by comparing exposure estimates, generated using point estimates of parameter values, to NOAELS. COPCs included mercury, arsenic, and PCBs. Exposure to COPCs was re-estimated using Monte Carlo simulations. Adverse population effects were assumed likely if > 20% of the estimated exposure distribution was greater than the LOAEL. Exposure of swallows to mercury was a significant risk at two locations. Exposure of bats to mercury was a significant risk at only one location. While consideration of movement and foraging territory did not reduce estimated risks to swallows, when exposures for gray and little brown bats were re-estimated, population-level risks from mercury were no longer considered likely. As an endangered species however, protection is extended to individual gray bats. While less than 20% of the mercury exposure distribution for gray bats was > LOAEL, > 99% of the distribution was >NOAEL. Therefore, adverse effects may occur among maximally exposed individual gray bats. Available data indicate that contaminants in Poplar Creek are likely to present a risk to the swallow population, do not present a risk to the little brown bat population, and may present a risk to individual gray bats.

  9. Observations of the atmosphere and surface state over Terra Nova Bay, Antarctica, using unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Cassano, John J.; Seefeldt, Mark W.; Palo, Scott; Knuth, Shelley L.; Bradley, Alice C.; Herrman, Paul D.; Kernebone, Peter A.; Logan, Nick J.

    2016-03-01

    In September 2012 five Aerosonde unmanned aircraft were used to make measurements of the atmospheric state over the Terra Nova Bay polynya, Antarctica, to explore the details of air-sea ice-ocean coupling. A total of 14 flights were completed in September 2012. Ten of the flight missions consisted of two unmanned aerial systems (UAS) sampling the atmosphere over Terra Nova Bay on 5 different days, with one UAS focusing on the downwind evolution of the air mass and a second UAS flying transects roughly perpendicular to the low-level winds. The data from these coordinated UAS flights provide a comprehensive three-dimensional data set of the atmospheric state (air temperature, humidity, pressure, and wind) and surface skin temperature over Terra Nova Bay. The remaining UAS flights during the September 2012 field campaign included two local flights near McMurdo Station for flight testing, a single UAS flight to Terra Nova Bay, and a single UAS flight over the Ross Ice Shelf and Ross Sea polynya. A data set containing the atmospheric and surface data as well as operational aircraft data have been submitted to the United States Antarctic Program Data Coordination Center (USAP-DCC, http://www.usap-data.org/) for free access (http://gcmd.nasa.gov/getdif.htm?NSF-ANT10-43657, doi:10.15784/600125).

  10. Unmanned Aerial Systems in the Process of Juridical Verification of Cadastral Border

    NASA Astrophysics Data System (ADS)

    Rijsdijk, M.; van Hinsbergh, W. H. M.; Witteveen, W.; ten Buuren, G. H. M.; Schakelaar, G. A.; Poppinga, G.; van Persie, M.; Ladiges, R.

    2013-08-01

    Quite often in the verification of cadastral borders, owners of the parcels involved are not able to make their attendance at the appointed moment in time. New appointments have to be made in order to complete the verification process, and as a result often costs and throughput times grow beyond what is considered to be acceptable. To improve the efficiency of the verification process an experiment was set up that refrains from the conventional terrestrial methods for border verification. The central research question was formulated as "How useful are Unmanned Aerial Systems in the juridical verification process of cadastral borders of ownership at het Kadaster in the Netherlands?". For the experiment, operational evaluations were executed at two different locations. The first operational evaluation took place at the Pyramid of Austerlitz, a flat area with a 30 m high pyramid built by troops of Napoleon, with low civilian attendance. Two subsequent evaluations were situated in a small neighbourhood in the city of Nunspeet, where the cadastral situation recently changed, resulting from twenty new houses that were build. Initially a mini-UAS of the KLPD was used to collect photo datasets with less than 1 cm spatial resolution. In a later stage the commercial service provider Orbit Gis was hired. During the experiment four different software packages were used for processing the photo datasets into accurate geo-referenced ortho-mosaics. In this article more details will be described on the experiments carried out. Attention will be paid to the mini-UAS platforms (AscTec Falcon 8, Microdrone MD-4), the cameras used, the photo collection plan, the usage of ground control markers and the calibration of the camera's. Furthermore the results and experiences of the different used SFM software packages (Visual SFM/Bundler, PhotoScan, PhotoModeler and the Orbit software) will be shared.

  11. Unsupervised and stable LBG algorithm for data classification: application to aerial multicomponent images

    NASA Astrophysics Data System (ADS)

    Taher, A.; Chehdi, K.; Cariou, C.

    2015-10-01

    In this paper a stable and unsupervised Linde-Buzo-Gray (LBG) algorithm named LBGO is presented. The originality of the proposed algorithm relies: i) on the utilization of an adaptive incremental technique to initialize the class centres that calls into question the intermediate initializations; this technique makes the algorithm stable and deterministic, and the classification results do not vary from a run to another, and ii) on the unsupervised evaluation criteria of the intermediate classification result to estimate the optimal number of classes; this makes the algorithm unsupervised. The efficiency of this optimized version of LBG is shown through some experimental results on synthetic and real aerial hyperspectral data. More precisely we have tested our proposed classification approach regarding three aspects: firstly for its stability, secondly for its correct classification rate, and thirdly for the correct estimation of number of classes.

  12. South Carolina Maps and Aerial Photographic Systems (SC Maps) Teaching Manual.

    ERIC Educational Resources Information Center

    Cain, Peggy W.; And Others

    South Carolina has mountain chains, monadnocks, rolling hills, varying drainage patterns, rivers, a delta, barrier islands, rocks over a billion years old and land that was once part of another continent. This document contains a set of curriculum activities that have been developed from a diverse collection of aerial photographic, satellite,…

  13. Characteristics of chlorophyll formation of the aerial microalga Coelastrella striolata var. multistriata and its application for environmental biomonitoring.

    PubMed

    Abe, Katsuya; Takizawa, Hiroyuki; Kimura, Seiko; Hirano, Morio

    2004-01-01

    The growth and ammonium uptake of the aerial microalga Coelastrella striolata var. multistriata, which was isolated from the surface of rocks, were characterized in this study. The specific growth rate of the alga was mu=0.3 d(-1), as calculated in the growth logarithmic phase. The algal cells were able to remove almost 100% of the ammonium ions from medium in 5 d, with the removal rate of ammonium-N being 0.4 mg/l/h. It was shown that the alga has a unique ability to be a reddish orange to green color depending on the nitrogen source concentration in the medium. Astaxanthin, adonixanthin, canthaxanthin, and beta-carotene were found in the reddish orange cells of the alga. The assessment of water pollution was attempted using this aerial microalga. When the reddish orange alga was incubated in the experimental medium with added ammonium-, nitrate-, or urea-N as a nitrogen source, an approximately linear relationship existed between the nitrogen concentration and chlorophyll formation. Using the chlorophyll formation of the alga, for example, it was possible to estimate spectrophotometrically the total nitrogen content in water collected from aquatic systems. Biofunctional materials for environmental biomonitoring using photosynthetic microorganisms are called green devices in this study.

  14. Understanding signal design during the pursuit of aerial insects by echolocating bats: tools and applications.

    PubMed

    Holderied, Marc W; Baker, Chris J; Vespe, Michele; Jones, Gareth

    2008-07-01

    Bats are among the few predators that can exploit the large quantities of aerial insects active at night. They do this by using echolocation to detect, localize, and classify targets in the dark. Echolocation calls are shaped by natural selection to match ecological challenges. For example, bats flying in open habitats typically emit calls of long duration, with long pulse intervals, shallow frequency modulation, and containing low frequencies-all these are adaptations for long-range detection. As obstacles or prey are approached, call structure changes in predictable ways for several reasons: calls become shorter, thereby reducing overlap between pulse and echo, and calls change in shape in ways that minimize localization errors. At the same time, such changes are believed to support recognition of objects. Echolocation and flight are closely synchronized: we have monitored both features simultaneously by using stereo photogrammetry and videogrammetry, and by acoustic tracking of flight paths. These methods have allowed us to quantify the intensity of signals used by free-living bats, and illustrate systematic changes in signal design in relation to obstacle proximity. We show how signals emitted by aerial feeding bats can be among the most intense airborne sounds in nature. Wideband ambiguity functions developed in the processing of signals produce two-dimensional functions showing trade-offs between resolution of time and velocity, and illustrate costs and benefits associated with Doppler sensitivity and range resolution in echolocation. Remarkably, bats that emit broadband calls can adjust signal design so that Doppler-related overestimation of range compensates for underestimation of range caused by the bat's movement in flight. We show the potential of our methods for understanding interactions between echolocating bats and those prey that have evolved ears that detect bat calls. PMID:21669774

  15. Aerial Photography

    NASA Technical Reports Server (NTRS)

    1985-01-01

    John Hill, a pilot and commercial aerial photographer, needed an information base. He consulted NERAC and requested a search of the latest developments in camera optics. NERAC provided information; Hill contacted the manufacturers of camera equipment and reduced his photographic costs significantly.

  16. Development of Flight-Test Performance Estimation Techniques for Small Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    McCrink, Matthew Henry

    This dissertation provides a flight-testing framework for assessing the performance of fixed-wing, small-scale unmanned aerial systems (sUAS) by leveraging sub-system models of components unique to these vehicles. The development of the sub-system models, and their links to broader impacts on sUAS performance, is the key contribution of this work. The sub-system modeling and analysis focuses on the vehicle's propulsion, navigation and guidance, and airframe components. Quantification of the uncertainty in the vehicle's power available and control states is essential for assessing the validity of both the methods and results obtained from flight-tests. Therefore, detailed propulsion and navigation system analyses are presented to validate the flight testing methodology. Propulsion system analysis required the development of an analytic model of the propeller in order to predict the power available over a range of flight conditions. The model is based on the blade element momentum (BEM) method. Additional corrections are added to the basic model in order to capture the Reynolds-dependent scale effects unique to sUAS. The model was experimentally validated using a ground based testing apparatus. The BEM predictions and experimental analysis allow for a parameterized model relating the electrical power, measurable during flight, to the power available required for vehicle performance analysis. Navigation system details are presented with a specific focus on the sensors used for state estimation, and the resulting uncertainty in vehicle state. Uncertainty quantification is provided by detailed calibration techniques validated using quasi-static and hardware-in-the-loop (HIL) ground based testing. The HIL methods introduced use a soft real-time flight simulator to provide inertial quality data for assessing overall system performance. Using this tool, the uncertainty in vehicle state estimation based on a range of sensors, and vehicle operational environments is

  17. Assessing the accuracy and repeatability of automated photogrammetrically generated digital surface models from unmanned aerial system imagery

    NASA Astrophysics Data System (ADS)

    Chavis, Christopher

    Using commercial digital cameras in conjunction with Unmanned Aerial Systems (UAS) to generate 3-D Digital Surface Models (DSMs) and orthomosaics is emerging as a cost-effective alternative to Light Detection and Ranging (LiDAR). Powerful software applications such as Pix4D and APS can automate the generation of DSM and orthomosaic products from a handful of inputs. However, the accuracy of these models is relatively untested. The objectives of this study were to generate multiple DSM and orthomosaic pairs of the same area using Pix4D and APS from flights of imagery collected with a lightweight UAS. The accuracy of each individual DSM was assessed in addition to the consistency of the method to model one location over a period of time. Finally, this study determined if the DSMs automatically generated using lightweight UAS and commercial digital cameras could be used for detecting changes in elevation and at what scale. Accuracy was determined by comparing DSMs to a series of reference points collected with survey grade GPS. Other GPS points were also used as control points to georeference the products within Pix4D and APS. The effectiveness of the products for change detection was assessed through image differencing and observance of artificially induced, known elevation changes. The vertical accuracy with the optimal data and model is ≈ 25 cm and the highest consistency over repeat flights is a standard deviation of ≈ 5 cm. Elevation change detection based on such UAS imagery and DSM models should be viable for detecting infrastructure change in urban or suburban environments with little dense canopy vegetation.

  18. Navigation and Remote Sensing Payloads and Methods of the Sarvant Unmanned Aerial System

    NASA Astrophysics Data System (ADS)

    Molina, P.; Fortuny, P.; Colomina, I.; Remy, M.; Macedo, K. A. C.; Zúnigo, Y. R. C.; Vaz, E.; Luebeck, D.; Moreira, J.; Blázquez, M.

    2013-08-01

    In a large number of scenarios and missions, the technical, operational and economical advantages of UAS-based photogrammetry and remote sensing over traditional airborne and satellite platforms are apparent. Airborne Synthetic Aperture Radar (SAR) or combined optical/SAR operation in remote areas might be a case of a typical "dull, dirty, dangerous" mission suitable for unmanned operation - in harsh environments such as for example rain forest areas in Brazil, topographic mapping of small to medium sparsely inhabited remote areas with UAS-based photogrammetry and remote sensing seems to be a reasonable paradigm. An example of such a system is the SARVANT platform, a fixed-wing aerial vehicle with a six-meter wingspan and a maximumtake- of-weight of 140 kilograms, able to carry a fifty-kilogram payload. SARVANT includes a multi-band (X and P) interferometric SAR payload, as the P-band enables the topographic mapping of densely tree-covered areas, providing terrain profile information. Moreover, the combination of X- and P-band measurements can be used to extract biomass estimations. Finally, long-term plan entails to incorporate surveying capabilities also at optical bands and deliver real-time imagery to a control station. This paper focuses on the remote-sensing concept in SARVANT, composed by the aforementioned SAR sensor and envisioning a double optical camera configuration to cover the visible and the near-infrared spectrum. The flexibility on the optical payload election, ranging from professional, medium-format cameras to mass-market, small-format cameras, is discussed as a driver in the SARVANT development. The paper also focuses on the navigation and orientation payloads, including the sensors (IMU and GNSS), the measurement acquisition system and the proposed navigation and orientation methods. The latter includes the Fast AT procedure, which performs close to traditional Integrated Sensor Orientation (ISO) and better than Direct Sensor Orientation (Di

  19. GPS-aided inertial technology and navigation-based photogrammetry for aerial mapping the San Andreas fault system

    USGS Publications Warehouse

    Sanchez, Richard D.; Hudnut, Kenneth W.

    2004-01-01

    Aerial mapping of the San Andreas Fault System can be realized more efficiently and rapidly without ground control and conventional aerotriangulation. This is achieved by the direct geopositioning of the exterior orientation of a digital imaging sensor by use of an integrated Global Positioning System (GPS) receiver and an Inertial Navigation System (INS). A crucial issue to this particular type of aerial mapping is the accuracy, scale, consistency, and speed achievable by such a system. To address these questions, an Applanix Digital Sensor System (DSS) was used to examine its potential for near real-time mapping. Large segments of vegetation along the San Andreas and Cucamonga faults near the foothills of the San Bernardino and San Gabriel Mountains were burned to the ground in the California wildfires of October-November 2003. A 175 km corridor through what once was a thickly vegetated and hidden fault surface was chosen for this study. Both faults pose a major hazard to the greater Los Angeles metropolitan area and a near real-time mapping system could provide information vital to a post-disaster response.

  20. Unmanned Aerial Vehicle (UAV) Dynamic-Tracking Directional Wireless Antennas for Low Powered Applications that Require Reliable Extended Range Operations in Time Critical Scenarios

    SciTech Connect

    Scott G. Bauer; Matthew O. Anderson; James R. Hanneman

    2005-10-01

    The proven value of DOD Unmanned Aerial Vehicles (UAVs) will ultimately transition to National and Homeland Security missions that require real-time aerial surveillance, situation awareness, force protection, and sensor placement. Public services first responders who routinely risk personal safety to assess and report a situation for emergency actions will likely be the first to benefit from these new unmanned technologies. ‘Packable’ or ‘Portable’ small class UAVs will be particularly useful to the first responder. They require the least amount of training, no fixed infrastructure, and are capable of being launched and recovered from the point of emergency. All UAVs require wireless communication technologies for real- time applications. Typically on a small UAV, a low bandwidth telemetry link is required for command and control (C2), and systems health monitoring. If the UAV is equipped with a real-time Electro-Optical or Infrared (EO/Ir) video camera payload, a dedicated high bandwidth analog/digital link is usually required for reliable high-resolution imagery. In most cases, both the wireless telemetry and real-time video links will be integrated into the UAV with unity gain omni-directional antennas. With limited on-board power and payload capacity, a small UAV will be limited with the amount of radio-frequency (RF) energy it transmits to the users. Therefore, ‘packable’ and ‘portable’ UAVs will have limited useful operational ranges for first responders. This paper will discuss the limitations of small UAV wireless communications. The discussion will present an approach of utilizing a dynamic ground based real-time tracking high gain directional antenna to provide extend range stand-off operation, potential RF channel reuse, and assured telemetry and data communications from low-powered UAV deployed wireless assets.

  1. Unmanned Aerial Systems as Part of a Multi-Component Assessment Strategy to Address Climate Change and Atmospheric Processes

    NASA Astrophysics Data System (ADS)

    Lange, Manfred; Vrekoussis, Mihalis; Sciare, Jean; Argyrides, Marios; Ioannou, Stelios; Keleshis, Christos

    2015-04-01

    Unmanned Aerial Systems (UAS) have been established as versatile tools for different applications, providing data and observations for atmospheric and Earth-Systems research. They offer an urgently needed link between in-situ ground based measurements and satellite remote sensing observations and are distinguished by significant versatility, flexibility and moderate operational costs. UAS have the proven potential to contribute to a multi-component assessment strategy that combines remote-sensing, numerical modelling and surface measurements in order to elucidate important atmospheric processes. This includes physical and chemical transformations related to ongoing climate change as well as issues linked to aerosol-cloud interactions and air quality. The distinct advantages offered by UAS comprise, to name but a few: (i) their ability to operate from altitudes of a few meters to up to a few kilometers; (ii) their capability to perform autonomously controlled missions, which provides for repeat-measurements to be carried out at precisely defined locations; (iii) their relative ease of operation, which enables flexible employment at short-term notice and (iv) the employment of more than one platform in stacked formation, which allows for unique, quasi-3D-observations of atmospheric properties and processes. These advantages are brought to bear in combining in-situ ground based observations and numerical modeling with UAS-based remote sensing in elucidating specific research questions that require both horizontally and vertically resolved measurements at high spatial and temporal resolutions. Employing numerical atmospheric modelling, UAS can provide survey information over spatially and temporally localized, focused areas of evolving atmospheric phenomena, as they become identified by the numerical models. Conversely, UAS observations offer urgently needed data for model verification and provide boundary conditions for numerical models. In this presentation, we will

  2. System identification of a small low-cost unmanned aerial vehicle using flight data from low-cost sensors

    NASA Astrophysics Data System (ADS)

    Hoffer, Nathan Von

    Remote sensing has traditionally been done with satellites and manned aircraft. While. these methods can yield useful scientificc data, satellites and manned aircraft have limitations in data frequency, process time, and real time re-tasking. Small low-cost unmanned aerial vehicles (UAVs) provide greater possibilities for personal scientic research than traditional remote sensing platforms. Precision aerial data requires an accurate vehicle dynamics model for controller development, robust flight characteristics, and fault tolerance. One method of developing a model is system identification (system ID). In this thesis system ID of a small low-cost fixed-wing T-tail UAV is conducted. The linerized longitudinal equations of motion are derived from first principles. Foundations of Recursive Least Squares (RLS) are presented along with RLS with an Error Filtering Online Learning scheme (EFOL). Sensors, data collection, data consistency checking, and data processing are described. Batch least squares (BLS) and BLS with EFOL are used to identify aerodynamic coecoefficients of the UAV. Results of these two methods with flight data are discussed.

  3. Modeling Aircraft Position and Conservatively Calculating Airspace Violations for an Autonomous Collision Awareness System for Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Ueunten, Kevin K.

    With the scheduled 30 September 2015 integration of Unmanned Aerial System (UAS) into the national airspace, the Federal Aviation Administration (FAA) is concerned with UAS capabilities to sense and avoid conflicts. Since the operator is outside the cockpit, the proposed collision awareness plugin (CAPlugin), based on probability and error propagation, conservatively predicts potential conflicts with other aircraft and airspaces, thus increasing the operator's situational awareness. The conflict predictions are calculated using a forward state estimator (FSE) and a conflict calculator. Predicting an aircraft's position, modeled as a mixed Gaussian distribution, is the FSE's responsibility. Furthermore, the FSE supports aircraft engaged in the following three flight modes: free flight, flight path following and orbits. The conflict calculator uses the FSE result to calculate the conflict probability between an aircraft and airspace or another aircraft. Finally, the CAPlugin determines the highest conflict probability and warns the operator. In addition to discussing the FSE free flight, FSE orbit and the airspace conflict calculator, this thesis describes how each algorithm is implemented and tested. Lastly two simulations demonstrates the CAPlugin's capabilities.

  4. Large-Scale Aerial Image Categorization Using a Multitask Topological Codebook.

    PubMed

    Zhang, Luming; Wang, Meng; Hong, Richang; Yin, Bao-Cai; Li, Xuelong

    2016-02-01

    Fast and accurately categorizing the millions of aerial images on Google Maps is a useful technique in pattern recognition. Existing methods cannot handle this task successfully due to two reasons: 1) the aerial images' topologies are the key feature to distinguish their categories, but they cannot be effectively encoded by a conventional visual codebook and 2) it is challenging to build a realtime image categorization system, as some geo-aware Apps update over 20 aerial images per second. To solve these problems, we propose an efficient aerial image categorization algorithm. It focuses on learning a discriminative topological codebook of aerial images under a multitask learning framework. The pipeline can be summarized as follows. We first construct a region adjacency graph (RAG) that describes the topology of each aerial image. Naturally, aerial image categorization can be formulated as RAG-to-RAG matching. According to graph theory, RAG-to-RAG matching is conducted by enumeratively comparing all their respective graphlets (i.e., small subgraphs). To alleviate the high time consumption, we propose to learn a codebook containing topologies jointly discriminative to multiple categories. The learned topological codebook guides the extraction of the discriminative graphlets. Finally, these graphlets are integrated into an AdaBoost model for predicting aerial image categories. Experimental results show that our approach is competitive to several existing recognition models. Furthermore, over 24 aerial images are processed per second, demonstrating that our approach is ready for real-world applications. PMID:25794407

  5. Large-Scale Aerial Image Categorization Using a Multitask Topological Codebook.

    PubMed

    Zhang, Luming; Wang, Meng; Hong, Richang; Yin, Bao-Cai; Li, Xuelong

    2016-02-01

    Fast and accurately categorizing the millions of aerial images on Google Maps is a useful technique in pattern recognition. Existing methods cannot handle this task successfully due to two reasons: 1) the aerial images' topologies are the key feature to distinguish their categories, but they cannot be effectively encoded by a conventional visual codebook and 2) it is challenging to build a realtime image categorization system, as some geo-aware Apps update over 20 aerial images per second. To solve these problems, we propose an efficient aerial image categorization algorithm. It focuses on learning a discriminative topological codebook of aerial images under a multitask learning framework. The pipeline can be summarized as follows. We first construct a region adjacency graph (RAG) that describes the topology of each aerial image. Naturally, aerial image categorization can be formulated as RAG-to-RAG matching. According to graph theory, RAG-to-RAG matching is conducted by enumeratively comparing all their respective graphlets (i.e., small subgraphs). To alleviate the high time consumption, we propose to learn a codebook containing topologies jointly discriminative to multiple categories. The learned topological codebook guides the extraction of the discriminative graphlets. Finally, these graphlets are integrated into an AdaBoost model for predicting aerial image categories. Experimental results show that our approach is competitive to several existing recognition models. Furthermore, over 24 aerial images are processed per second, demonstrating that our approach is ready for real-world applications.

  6. Efficient pedestrian detection from aerial vehicles with object proposals and deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Minnehan, Breton; Savakis, Andreas

    2016-05-01

    As Unmanned Aerial Systems grow in numbers, pedestrian detection from aerial platforms is becoming a topic of increasing importance. By providing greater contextual information and a reduced potential for occlusion, the aerial vantage point provided by Unmanned Aerial Systems is highly advantageous for many surveillance applications, such as target detection, tracking, and action recognition. However, due to the greater distance between the camera and scene, targets of interest in aerial imagery are generally smaller and have less detail. Deep Convolutional Neural Networks (CNN's) have demonstrated excellent object classification performance and in this paper we adopt them to the problem of pedestrian detection from aerial platforms. We train a CNN with five layers consisting of three convolution-pooling layers and two fully connected layers. We also address the computational inefficiencies of the sliding window method for object detection. In the sliding window configuration, a very large number of candidate patches are generated from each frame, while only a small number of them contain pedestrians. We utilize the Edge Box object proposal generation method to screen candidate patches based on an "objectness" criterion, so that only regions that are likely to contain objects are processed. This method significantly reduces the number of image patches processed by the neural network and makes our classification method very efficient. The resulting two-stage system is a good candidate for real-time implementation onboard modern aerial vehicles. Furthermore, testing on three datasets confirmed that our system offers high detection accuracy for terrestrial pedestrian detection in aerial imagery.

  7. Design of a Mars Airplane Propulsion System for the Aerial Regional-Scale Environmental Survey (ARES) Mission Concept

    NASA Technical Reports Server (NTRS)

    Kuhl, Christopher A.

    2008-01-01

    The Aerial Regional-Scale Environmental Survey (ARES) is a Mars exploration mission concept that utilizes a rocket propelled airplane to take scientific measurements of atmospheric, surface, and subsurface phenomena. The liquid rocket propulsion system design has matured through several design cycles and trade studies since the inception of the ARES concept in 2002. This paper describes the process of selecting a bipropellant system over other propulsion system options, and provides details on the rocket system design, thrusters, propellant tank and PMD design, propellant isolation, and flow control hardware. The paper also summarizes computer model results of thruster plume interactions and simulated flight performance. The airplane has a 6.25 m wingspan with a total wet mass of 185 kg and has to ability to fly over 600 km through the atmosphere of Mars with 45 kg of MMH / MON3 propellant.

  8. A Spherical Aerial Terrestrial Robot

    NASA Astrophysics Data System (ADS)

    Dudley, Christopher J.

    This thesis focuses on the design of a novel, ultra-lightweight spherical aerial terrestrial robot (ATR). The ATR has the ability to fly through the air or roll on the ground, for applications that include search and rescue, mapping, surveillance, environmental sensing, and entertainment. The design centers around a micro-quadcopter encased in a lightweight spherical exoskeleton that can rotate about the quadcopter. The spherical exoskeleton offers agile ground locomotion while maintaining characteristics of a basic aerial robot in flying mode. A model of the system dynamics for both modes of locomotion is presented and utilized in simulations to generate potential trajectories for aerial and terrestrial locomotion. Details of the quadcopter and exoskeleton design and fabrication are discussed, including the robot's turning characteristic over ground and the spring-steel exoskeleton with carbon fiber axle. The capabilities of the ATR are experimentally tested and are in good agreement with model-simulated performance. An energy analysis is presented to validate the overall efficiency of the robot in both modes of locomotion. Experimentally-supported estimates show that the ATR can roll along the ground for over 12 minutes and cover the distance of 1.7 km, or it can fly for 4.82 minutes and travel 469 m, on a single 350 mAh battery. Compared to a traditional flying-only robot, the ATR traveling over the same distance in rolling mode is 2.63-times more efficient, and in flying mode the system is only 39 percent less efficient. Experimental results also demonstrate the ATR's transition from rolling to flying mode.

  9. Measuring Sunflower Nitrogen Status from AN Unmanned Aerial Vehicle-Based System and AN on the Ground Device

    NASA Astrophysics Data System (ADS)

    Agüera, F.; Carvajal, F.; Pérez, M.

    2011-09-01

    Precision agriculture recognizes the inherent spatial variability associated with soil characteristics, land morphology and crop growth, and uses this information to prescribe the most appropriate management strategy on a site-specific basis. To reach this task, the most important information related with crop growth is nutrient status, weed infestation, disease and pet affectation and water management. The application of fertilizer nitrogen to field crops is of critical importance because it determines plant's gro wth, vigour, colour and yield. Furthermore, nitrogen has been observed as a nutrient with high spatial variability in a single field, related to its high mobility. Some previous works have shown that is possible to measure crop nitrogen status with optical instruments. Since most leaf nitrogen is contained in chlorophyll molecules, there is a strong relationship between leaf nitrogen and leaf chlorophyll content, which is the basis for predicting crop nitrogen status by measuring leaf reflectance. So, sensors that can easily monitor crop nitrogen amount throughout the growing season at a high resolution to allow producers to reach their production goals, will give useful information to prescribe a crop management on a site-specific basis. Sunflower is a crop which is taking importance again because it can be used both for food and biofuel purposes, and it is widely cultivated in the South of Spain and other European countries.The aim of this work was to compare an index related with sunflower nitrogen status, deduced from multispectral images taken from an Unmanned Aerial Vehicle (UAV), with optical data collected with a ground-based platform.An ADC Lite Tetracam digital cam was mounted on a md4-200 Microdrones to take pictures of a sunflower field during the crop season. ADC Lite Tetracam is a single sensor digital camera designed for capture of visible light wavelength longer than 520 nm and near-infrared wavelength up to 920 nm. The md4

  10. A prospective study of the effects of ultralow volume (ULV) aerial application of malathion on epidemic Plasmodium falciparum malaria. III. Ecologic aspects.

    PubMed

    McLean, R G; Spillane, J T; Miles, J W

    1975-03-01

    The effects of aerial ultralow volume (ULV) malathion on selected species of nontarget animals in Haiti are reported. Mortality of certain groups of insects such as bees, flies, beetles, and butterflies was observed immediately following spray application. Minor fish mortality occurred only in shallow water exposed to direct spray. The brain acetylcholine esterase levels of living fish, tree lizards, birds and bats collected from treated areas were not significantly reduced. No ill or dead animals, besides the few fish, were seen even when maximum exposure occurred. Only minor changes in the feeding behavior of some insectivorous birds were observed. The relative bird density decreased substantially for only one species during the study, and other factors besides treatment were considered to be the reasons for the decline. Aerial applications of ULV malathion at dosages sufficient to dramatically reduce anopheline populations did not significantly affect nontarget vertebrates in this tropical environment.

  11. Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system.

    PubMed

    Michez, Adrien; Piégay, Hervé; Lisein, Jonathan; Claessens, Hugues; Lejeune, Philippe

    2016-03-01

    Riparian forests are critically endangered many anthropogenic pressures and natural hazards. The importance of riparian zones has been acknowledged by European Directives, involving multi-scale monitoring. The use of this very-high-resolution and hyperspatial imagery in a multi-temporal approach is an emerging topic. The trend is reinforced by the recent and rapid growth of the use of the unmanned aerial system (UAS), which has prompted the development of innovative methodology. Our study proposes a methodological framework to explore how a set of multi-temporal images acquired during a vegetative period can differentiate some of the deciduous riparian forest species and their health conditions. More specifically, the developed approach intends to identify, through a process of variable selection, which variables derived from UAS imagery and which scale of image analysis are the most relevant to our objectives.The methodological framework is applied to two study sites to describe the riparian forest through two fundamental characteristics: the species composition and the health condition. These characteristics were selected not only because of their use as proxies for the riparian zone ecological integrity but also because of their use for river management.The comparison of various scales of image analysis identified the smallest object-based image analysis (OBIA) objects (ca. 1 m(2)) as the most relevant scale. Variables derived from spectral information (bands ratios) were identified as the most appropriate, followed by variables related to the vertical structure of the forest. Classification results show good overall accuracies for the species composition of the riparian forest (five classes, 79.5 and 84.1% for site 1 and site 2). The classification scenario regarding the health condition of the black alders of the site 1 performed the best (90.6%).The quality of the classification models developed with a UAS-based, cost-effective, and semi-automatic approach

  12. Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system.

    PubMed

    Michez, Adrien; Piégay, Hervé; Lisein, Jonathan; Claessens, Hugues; Lejeune, Philippe

    2016-03-01

    Riparian forests are critically endangered many anthropogenic pressures and natural hazards. The importance of riparian zones has been acknowledged by European Directives, involving multi-scale monitoring. The use of this very-high-resolution and hyperspatial imagery in a multi-temporal approach is an emerging topic. The trend is reinforced by the recent and rapid growth of the use of the unmanned aerial system (UAS), which has prompted the development of innovative methodology. Our study proposes a methodological framework to explore how a set of multi-temporal images acquired during a vegetative period can differentiate some of the deciduous riparian forest species and their health conditions. More specifically, the developed approach intends to identify, through a process of variable selection, which variables derived from UAS imagery and which scale of image analysis are the most relevant to our objectives.The methodological framework is applied to two study sites to describe the riparian forest through two fundamental characteristics: the species composition and the health condition. These characteristics were selected not only because of their use as proxies for the riparian zone ecological integrity but also because of their use for river management.The comparison of various scales of image analysis identified the smallest object-based image analysis (OBIA) objects (ca. 1 m(2)) as the most relevant scale. Variables derived from spectral information (bands ratios) were identified as the most appropriate, followed by variables related to the vertical structure of the forest. Classification results show good overall accuracies for the species composition of the riparian forest (five classes, 79.5 and 84.1% for site 1 and site 2). The classification scenario regarding the health condition of the black alders of the site 1 performed the best (90.6%).The quality of the classification models developed with a UAS-based, cost-effective, and semi-automatic approach

  13. Aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.

    1978-01-01

    Thermal infrared scanning from an aircraft is a convenient and commercially available means for determining relative rates of energy loss from building roofs. The need to conserve energy as fuel costs makes the mass survey capability of aerial thermography an attractive adjunct to community energy awareness programs. Background information on principles of aerial thermography is presented. Thermal infrared scanning systems, flight and environmental requirements for data acquisition, preparation of thermographs for display, major users and suppliers of thermography, and suggested specifications for obtaining aerial scanning services were reviewed.

  14. Towards an Autonomous Vision-Based Unmanned Aerial System against Wildlife Poachers

    PubMed Central

    Olivares-Mendez, Miguel A.; Fu, Changhong; Ludivig, Philippe; Bissyandé, Tegawendé F.; Kannan, Somasundar; Zurad, Maciej; Annaiyan, Arun; Voos, Holger; Campoy, Pascual

    2015-01-01

    Poaching is an illegal activity that remains out of control in many countries. Based on the 2014 report of the United Nations and Interpol, the illegal trade of global wildlife and natural resources amounts to nearly $213 billion every year, which is even helping to fund armed conflicts. Poaching activities around the world are further pushing many animal species on the brink of extinction. Unfortunately, the traditional methods to fight against poachers are not enough, hence the new demands for more efficient approaches. In this context, the use of new technologies on sensors and algorithms, as well as aerial platforms is crucial to face the high increase of poaching activities in the last few years. Our work is focused on the use of vision sensors on UAVs for the detection and tracking of animals and poachers, as well as the use of such sensors to control quadrotors during autonomous vehicle following and autonomous landing. PMID:26703597

  15. Towards an Autonomous Vision-Based Unmanned Aerial System against Wildlife Poachers.

    PubMed

    Olivares-Mendez, Miguel A; Fu, Changhong; Ludivig, Philippe; Bissyandé, Tegawendé F; Kannan, Somasundar; Zurad, Maciej; Annaiyan, Arun; Voos, Holger; Campoy, Pascual

    2015-01-01

    Poaching is an illegal activity that remains out of control in many countries. Based on the 2014 report of the United Nations and Interpol, the illegal trade of global wildlife and natural resources amounts to nearly $ 213 billion every year, which is even helping to fund armed conflicts. Poaching activities around the world are further pushing many animal species on the brink of extinction. Unfortunately, the traditional methods to fight against poachers are not enough, hence the new demands for more efficient approaches. In this context, the use of new technologies on sensors and algorithms, as well as aerial platforms is crucial to face the high increase of poaching activities in the last few years. Our work is focused on the use of vision sensors on UAVs for the detection and tracking of animals and poachers, as well as the use of such sensors to control quadrotors during autonomous vehicle following and autonomous landing. PMID:26703597

  16. Towards an Autonomous Vision-Based Unmanned Aerial System against Wildlife Poachers.

    PubMed

    Olivares-Mendez, Miguel A; Fu, Changhong; Ludivig, Philippe; Bissyandé, Tegawendé F; Kannan, Somasundar; Zurad, Maciej; Annaiyan, Arun; Voos, Holger; Campoy, Pascual

    2015-12-12

    Poaching is an illegal activity that remains out of control in many countries. Based on the 2014 report of the United Nations and Interpol, the illegal trade of global wildlife and natural resources amounts to nearly $ 213 billion every year, which is even helping to fund armed conflicts. Poaching activities around the world are further pushing many animal species on the brink of extinction. Unfortunately, the traditional methods to fight against poachers are not enough, hence the new demands for more efficient approaches. In this context, the use of new technologies on sensors and algorithms, as well as aerial platforms is crucial to face the high increase of poaching activities in the last few years. Our work is focused on the use of vision sensors on UAVs for the detection and tracking of animals and poachers, as well as the use of such sensors to control quadrotors during autonomous vehicle following and autonomous landing.

  17. Unmanned aerial systems for forest reclamation monitoring: throwing balloons in the air

    NASA Astrophysics Data System (ADS)

    Andrade, Rita; Vaz, Eric; Panagopoulos, Thomas; Guerrero, Carlos

    2014-05-01

    Wildfires are a recurrent phenomenon in Mediterranean landscapes, deteriorating environment and ecosystems, calling out for adequate land management. Monitoring burned areas enhances our abilities to reclaim them. Remote sensing has become an increasingly important tool for environmental assessment and land management. It is fast, non-intrusive, and provides continuous spatial coverage. This paper reviews remote sensing methods, based on space-borne, airborne or ground-based multispectral imagery, for monitoring the biophysical properties of forest areas for site specific management. The usage of satellite imagery for land use management has been frequent in the last decades, it is of great use to determine plants health and crop conditions, allowing a synergy between the complexity of environment, anthropogenic landscapes and multi-temporal understanding of spatial dynamics. Aerial photography increments on spatial resolution, nevertheless it is heavily dependent on airborne availability as well as cost. Both these methods are required for wide areas management and policy planning. Comprising an active and high resolution imagery source, that can be brought at a specific instance, reducing cost while maintaining locational flexibility is of utmost importance for local management. In this sense, unmanned aerial vehicles provide maximum flexibility with image collection, they can incorporate thermal and multispectral sensors, however payload and engine operation time limit flight time. Balloon remote sensing is becoming increasingly sought after for site specific management, catering rapid digital analysis, permitting greater control of the spatial resolution as well as of datasets collection in a given time. Different wavelength sensors may be used to map spectral variations in plant growth, monitor water and nutrient stress, assess yield and plant vitality during different stages of development. Proximity could be an asset when monitoring forest plants vitality

  18. Comparison of drop size data from ground and aerial application nozzles at three testing laboratories

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spray drop size is a critical factor in the performance of any agrochemical solution and is a function of spray solution, nozzle selection, and nozzle operation. Applicators generally base their selection of a particular nozzle based on the drop size reported by manufacturers and researchers. Like m...

  19. Site-specific Topguard application based on aerial imagery for effective management of cotton root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton root rot is a century-old cotton disease that can be controlled with Topguard Fungicide recently. As this disease tends to occur in the same general areas within fields in recurring years, site-specific application of the fungicide only to the infected areas can be more effective and economic...

  20. A study of methods for lowering aerial environmental survey cost

    NASA Technical Reports Server (NTRS)

    Stansberry, J. R.

    1973-01-01

    The results are presented of a study of methods for lowering the cost of environmental aerial surveys. A wide range of low cost techniques were investigated for possible application to current pressing urban and rural problems. The objective of the study is to establish a definition of the technical problems associated with conducting aerial surveys using various low cost techniques, to conduct a survey of equipment which may be used in low cost systems, and to establish preliminary estimates of cost. A set of candidate systems were selected and described for the environmental survey tasks.

  1. Efficacy of aerial ultra-low volume applications of two novel water-based formulations of unsynergized pyrethroids against riceland mosquitoes in Greece.

    PubMed

    Chaskopoulou, Alexandra; Latham, Mark D; Pereira, Roberto M; Connelly, Roxanne; Bonds, Jane A S; Koehler, Philip G

    2011-12-01

    We assessed the efficacy of ultra-low volume aerial adulticiding with 2 new water-based, unsynergized formulations of Aqua-K-Othrin (2% deltamethrin) and Pesguard S102 (10% d-phenothrin) against the riceland mosquitoes of Greece. A helicopter with Global Positioning System (GPS) navigation, real-time weather recording, and spray dispersal modeling (AgDISP) was utilized to accurately treat the experimental blocks by adjusting spray line positions to changing meteorological conditions. Two application rates were applied per formulation that corresponded to 0.75 and 1.00 g AI/ha of deltamethrin and 7.50 and 10.00 g AI/ha of d-phenothrin. The mosquitoes used for the trials were the main nuisance species found in rice field areas of Thessaloniki, which were primarily Aedes caspius, followed by Culex modestus and Anopheles sacharovi. Overall mean mortality of caged mosquitoes was 69.2% and 64.8% for deltamethrin and d-phenothrin, respectively. Mean population decrease in wild mosquito populations within the treatment areas was 76.5% and 78% for deltamethrin and d-phenothrin, respectively. The AgDISP dispersal model, coupled with GPS navigation and real-time weather recording, enabled accurate placement of the spray cloud such that the majority of the treatment area received sufficiently high droplet densities to result in uniform caged-mosquito mortality across all sampling sites.

  2. Results of Laboratory Testing for Diphacinone in Seawater, Fish, Invertebrates, and Soil Following Aerial Application of Rodenticide on Lehua Island, Kauai County, Hawaii, January 2009

    USGS Publications Warehouse

    Orazio, Carl E.; Tanner, Michael J.; Swenson, Chris; Herod, Jeffrey J.; Dunlevy, Peter; Gale, Robert W.

    2009-01-01

    In January 2009, rodenticide bait (Ramik Green pellets) containing the active ingredient diphacinone was aerially applied to Lehua Island. Reported herein are the results of laboratory analyses to determine diphacinone concentrations in samples of seawater, fillet of fish, soft tissue of limpets (opihi), whole-body crabs, and soil collected from Lehua Island, Kauai County, Hawaii, after aerial application of the rodenticide bait. Diphacinone was specifically chosen because of its low toxicity to nontarget organisms. Its use on Lehua Island is the second time it has ever been used for an aerial application to eradicate rodents. Testing of the Lehua Island samples for diphacinone utilized high-performance liquid chromatography with photodiode array detection. No detectable concentrations of diphacinone were found in any of the samples from Lehua Island. The limits of detection for diphacinone were 0.4 nanograms per milliliter (parts per billion) seawater, 15 nanograms per gram (dry weight) soil, 20 nanograms per gram (parts per billion) fish fillet, 13 nanograms per gram whole crab, and 34 nanograms per gram soft tissue limpet.

  3. Contamination and effects in freshwater ditches resulting from an aerial application of cypermethrin

    SciTech Connect

    Shires, S.W.; Bennett, D.

    1985-04-01

    Cypermethrin (Ripcord) was applied at 25 g ai ha-1 by fixed-wing aircraft to a large field (11.6 ha) of winter wheat bordered on three sides by drainage ditches. About 60% of the nominal application rate was deposited on the crop and about 6% (maximum) was deposited over the water surface. The amount of spray drift deposited upwind declined sharply with increasing distance from the treated field. Downwind, the spray drift was small but occurred over a much greater distance. Very low (0.03 micrograms liter-1 maximum) concentrations of cypermethrin were found in subsurface water samples and these declined rapidly after spraying. Bioassay tests, using a sensitive indicator species, confirmed that only a small amount of cypermethrin contamination had occurred in the ditch adjacent to the downwind perimeter of the field. Frequent sampling of the zooplankton and macroinvertebrate fauna of the ditches indicated that there were no marked biological effects resulting from the cypermethrin application. Only a few air-breathing corixids and the highly susceptible water mites showed minor short-term reductions in abundance after spraying. No effects were observed on either caged or indigenous fish stocks and no significant residues of cypermethrin were found in fish tissues.

  4. Design of a Mars Airplane Propulsion System for the Aerial Regional-Scale Environmental Survey (ARES) Mission Concept

    NASA Technical Reports Server (NTRS)

    Kuhl. Christopher A.

    2009-01-01

    The Aerial Regional-Scale Environmental Survey (ARES) is a Mars exploration mission concept with the goal of taking scientific measurements of the atmosphere, surface, and subsurface of Mars by using an airplane as the payload platform. ARES team first conducted a Phase-A study for a 2007 launch opportunity, which was completed in May 2003. Following this study, significant efforts were undertaken to reduce the risk of the atmospheric flight system, under the NASA Langley Planetary Airplane Risk Reduction Project. The concept was then proposed to the Mars Scout program in 2006 for a 2011 launch opportunity. This paper summarizes the design and development of the ARES airplane propulsion subsystem beginning with the inception of the ARES project in 2002 through the submittal of the Mars Scout proposal in July 2006.

  5. Photovoltaic systems and applications

    SciTech Connect

    Not Available

    1982-01-01

    Abstracts are given of presentations given at a project review meeting held at Albuquerque, NM. The proceedings cover the past accomplishments and current activities of the Photovoltaic Systems Research, Balance-of-System Technology Development and System Application Experiments Projects at Sandia National Laboratories. The status of intermediate system application experiments and residential system analysis is emphasized. Some discussion of the future of the Photovoltaic Program in general, and the Sandia projects in particular is also presented.

  6. Autonomous Hovering and Landing of a Quad-rotor Micro Aerial Vehicle by Means of on Ground Stereo Vision System

    NASA Astrophysics Data System (ADS)

    Pebrianti, Dwi; Kendoul, Farid; Azrad, Syaril; Wang, Wei; Nonami, Kenzo

    On ground stereo vision system is used for autonomous hovering and landing of a quadrotor Micro Aerial Vehicle (MAV). This kind of system has an advantage to support embedded vision system for autonomous hovering and landing, since an embedded vision system occasionally gives inaccurate distance calculation due to either vibration problem or unknown geometry of the landing target. Color based object tracking by using Continuously Adaptive Mean Shift (CAMSHIFT) algorithm was examined. Nonlinear model of quad-rotor MAV and a PID controller were used for autonomous hovering and landing. The result shows that the Camshift based object tracking algorithm has good performance. Additionally, the comparison between the stereo vision system based and GPS based autonomous hovering of a quad-rotor MAV shows that stereo vision system has better performance. The accuracy of the stereo vision system is about 1 meter in the longitudinal and lateral direction when the quad-rotor flies in 6 meters of altitude. In the same experimental condition, the GPS based system accuracy is about 3 meters. Additionally, experiment on autonomous landing gives a reliable result.

  7. Effects on wildlife of aerial applications of strobane, DDT, and BHC to tidal marshes in Delaware

    USGS Publications Warehouse

    George, J.L.; Darsie, R.F.; Springer, P.F.

    1957-01-01

    The principal purpose of this study was to ascertain what effect on wildlife, if any, would result from the use of the new insecticide, Strobane, for mosquito control on tideland areas. Comparisons were made with DDT and BHC (43 per cent gamma isomer) commonly used in control operations. The investigation was carried out on the tidal marshes of Bombay Hook National Wildlife Refuge near Smyrna, Delaware. Four areas, all similar in habitat, were chosen-three as test plots for Strobane, BHC, and DDT, respectively, and the fourth as an untreated check. The insecticides in oil solution were applied by airplane at the rates of 0.1, 0.2, and 0.3 pound per acre for gamma isomer of BHC, DDT, and Strobane, respectively. The first application was made on the morning of July 27; and the second, on the evening of August 23, 1955. To assay the results of spraying, 14 testing devices were set up in each area. They consisted of cages, traps, and microscope slides placed in the streams and ponds. The estuarine fishes, Fundulus heteroclitus, Cyprinodon variegatus, Leiostornus xanthurus, and Ailugil curemu; blue crabs, Callinectes sapidus; fiddler crabs, Uca pugnux, Uca minux, and Sesarma reticulaturn; and certain sessile organisms were included in the tests. Analyses of variance on fish and blue crabs showed no significant difference between deaths occurring in treated and control plots, nor among the three treatments. Differential mortalities were suffered by fish caged in streams and ponds. Greater numbers died in the BHC-treated streams and in the DDT-treated ponds. Local concentrations of insecticide appeared to be the cause, although the magnitude of kill was not significantly greater than in control areas. Field observations and crab-pot counts showed that both the fish and blue crabs avoided the sites of high insecticide concentration. Certainly the majority of the free-living individuals in the treated areas were able to survive the sprays, and at the level tested showed no

  8. Unmanned Aerial Systems, Moored Balloons, and the U.S. Department of Energy ARM Facilities in Alaska

    NASA Astrophysics Data System (ADS)

    Ivey, Mark; Verlinde, Johannes

    2014-05-01

    The U.S. Department of Energy (DOE), through its scientific user facility, the Atmospheric Radiation Measurement (ARM) Climate Research Facility, provides scientific infrastructure and data to the international Arctic research community via its research sites located on the North Slope of Alaska. Facilities and infrastructure to support operations of unmanned aerial systems for science missions in the Arctic and North Slope of Alaska were established at Oliktok Point Alaska in 2013. Tethered instrumented balloons will be used in the near future to make measurements of clouds in the boundary layer including mixed-phase clouds. The DOE ARM Program has operated an atmospheric measurement facility in Barrow, Alaska, since 1998. Major upgrades to this facility, including scanning radars, were added in 2010. Arctic Observing Networks are essential to meet growing policy, social, commercial, and scientific needs. Calibrated, high-quality arctic geophysical datasets that span ten years or longer are especially important for climate studies, climate model initializations and validations, and for related climate policy activities. For example, atmospheric data and derived atmospheric forcing estimates are critical for sea-ice simulations. International requirements for well-coordinated, long-term, and sustained Arctic Observing Networks and easily-accessible data sets collected by those networks have been recognized by many high-level workshops and reports (Arctic Council Meetings and workshops, National Research Council reports, NSF workshops and others). The recent Sustaining Arctic Observation Network (SAON) initiative sponsored a series of workshops to "develop a set of recommendations on how to achieve long-term Arctic-wide observing activities that provide free, open, and timely access to high-quality data that will realize pan-Arctic and global value-added services and provide societal benefits." This poster will present information on opportunities for members of the

  9. Lightweight Vertical Take-Off & Landing Unmanned Aerial Systems For Local-Scale Forestry and Agriculture Remote Sensing Data Collection

    NASA Astrophysics Data System (ADS)

    Putman, E.; Sheridan, R.; Popescu, S. C.

    2015-12-01

    The evolution of lightweight Vertical Take-Off and Landing (VTOL) rotary Unmanned Aerial Vehicles (UAVs) and remote sensor technologies have provided researchers with the ability to integrate compact remote sensing systems with UAVs to create Unmanned Aerial Systems (UASs) capable of collecting high-resolution airborne remote sensing data. UASs offer a myriad of benefits. Some of the most notable include: (1) reduced operational cost; (2) reduced lead-time for mission planning; (3) high-resolution and high-density data collection; and (4) customization of data collection intervals to fit the needs of a specific project (i.e. acquiring data at hourly, daily, or weekly intervals). Such benefits allow researchers and natural resource managers to acquire airborne remote sensing data on local-scale phenomenon in ways that were previously cost-prohibitive. VTOL UASs also offer a stable platform capable of low speed low altitude flight over small spatial scales that do not require a dedicated runway. Such flight characteristics allow VTOL UASs to collect high-resolution data at very high densities, enabling the use of structure from motion (SFM) techniques to generate three-dimensional datasets from photographs. When combined, these characteristics make VTOL UASs ideal for collecting data over agricultural or forested research areas. The goal of this study is to provide an overview of several lightweight eight-rotor VTOL UASs designed for small-scale forest remote sensing data collection. Specific objectives include: (1) the independent integration of a lightweight multispectral camera, a lightweight scanning lidar sensor, with required components (i.e. IMU, GPS, data logger) and the UAV; (2) comparison of UAS-collected data to terrestrial lidar data and airborne multispectral and lidar data; (3) comparison of UAS SFM techniques to terrestrial lidar data; and (4) multi-temporal assessment of tree decay using terrestrial lidar and UAS SfM techniques.

  10. The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots

    PubMed Central

    Gómez-Lama Cabanás, Carmen; Schilirò, Elisabetta; Valverde-Corredor, Antonio; Mercado-Blanco, Jesús

    2014-01-01

    Pseudomonas fluorescens PICF7, a native olive root endophyte and effective biocontrol agent (BCA) against Verticillium wilt of olive, is able to trigger a broad range of defense responses in root tissues of this woody plant. In order to elucidate whether strain PICF7 also induces systemic defense responses in above-ground organs, aerial tissues of olive plants grown under non-gnotobiotic conditions were collected at different time points after root bacterization with this endophytic BCA. A suppression subtractive hybridization (SSH) cDNA library, enriched in up-regulated genes, was generated. This strategy enabled the identification of 376 ESTs (99 contigs and 277 singlets), many of them related to response to different stresses. Five ESTs, involved in defense responses, were selected to carry out time-course quantitative real-time PCR (qRT-PCR) experiments aiming to: (1) validate the induction of these genes, and (2) shed light on their expression pattern along time (from 1 to 15 days). Induction of olive genes potentially coding for lipoxygenase 2, catalase, 1-aminocyclopropane-1-carboxylate oxidase, and phenylananine ammonia-lyase was thus confirmed at some time points. Computational analysis also revealed that different transcription factors were up-regulated in olive aerial tissues (i.e., JERF, bHLH, WRKY), as previously reported for roots. Results confirmed that root colonization by this endophytic bacterium does not only trigger defense responses in this organ but also mounts a wide array of systemic defense responses in distant tissues (stems, leaves). This sheds light on how olive plants respond to the “non-hostile” colonization by a bacterial endophyte and how induced defense response can contribute to the biocontrol activity of strain PICF7. PMID:25250017

  11. Efficacy of aerial spray applications using fuselage booms on Air Force C-130H aircraft against mosquitoes and biting midges.

    PubMed

    Breidenbaugh, Mark S; Haagsma, Karl A; Wojcik, George M; De Szalay, Ferenc A

    2009-12-01

    The effectiveness of a novel fuselage boom configuration was tested with flat-fan nozzles on U.S. Air Force C-130H aircraft to create ultra-low volume sprays to control mosquitoes (Culicidae) and biting midges (Ceratopogonidae). The mortality of mosquitoes and biting midges in bioassay cages and natural populations, using the organophosphate adulticide, naled, was measured. Mosquitoes in bioassay cages had 100% mortality at 639 m downwind in all single-pass spray trials, and most trials had >90% mortality up to 1491 m downwind. Mosquito mortality was negatively correlated with distance from the spray release point (r2 = 0.38, P < 0.001). The volume median diam of droplets collected was 44 tm at 213 m and decreased to 11 microm at 2130 m downwind of the release point. Droplet density decreased from an average of 18.4 drops/cm2 at 213 m to 2 drops/cm2 at 2130 m. Droplet densities of 10-18 droplets/cm2 were recorded at sampling stations with high mosquito mortality rates (>90%). In wide-area operational applications, numbers of mosquitoes from natural populations 1 wk postspray were 83% (range 55%-95%), lower than prespray numbers (P < 0.05). Biting midge numbers were reduced by 86% (range 53%-97%) on average (P = 0.051) after 7 days. The results of these field trials indicate that the fuselage boom configuration on C-130H aircraft are an effective method to conduct large-scale aerial sprays during military operations and public health emergencies. PMID:20099594

  12. Unmanned aerial vehicles (UAVs) in pest management: Progress in the development of a UAV-deployed mating disruption system for Wisconsin cranberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned aerial vehicles (UAVs) represent a powerful new tool for agriculture. Currently, UAVs are used almost exclusively as crop reconnaissance devices (“eyes in the sky”), not as pest control delivery systems. Research in Wisconsin cranberries is taking UAVs in a new direction. The Steffan and Lu...

  13. Unmanned aerial vehicles (UAVs) in pest management: Progress in the development of a UAV-deployed mating disruption system for Wisconsin cranberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned aerial vehicles (UAVs) hold significant promise for agriculture. Currently, UAVs are being employed for various reconnaissance purposes (“eyes in the sky”), but not as pest control delivery systems. Research in Wisconsin cranberries is taking UAVs in a new direction. The Steffan and Luck La...

  14. Sitting in the Pilot's Seat; Optimizing Human-Systems Interfaces for Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Queen, Steven M.; Sanner, Kurt Gregory

    2011-01-01

    One of the pilot-machine interfaces (the forward viewing camera display) for an Unmanned Aerial Vehicle called the DROID (Dryden Remotely Operated Integrated Drone) will be analyzed for optimization. The goal is to create a visual display for the pilot that as closely resembles an out-the-window view as possible. There are currently no standard guidelines for designing pilot-machine interfaces for UAVs. Typically, UAV camera views have a narrow field, which limits the situational awareness (SA) of the pilot. Also, at this time, pilot-UAV interfaces often use displays that have a diagonal length of around 20". Using a small display may result in a distorted and disproportional view for UAV pilots. Making use of a larger display and a camera lens with a wider field of view may minimize the occurrences of pilot error associated with the inability to see "out the window" as in a manned airplane. It is predicted that the pilot will have a less distorted view of the DROID s surroundings, quicker response times and more stable vehicle control. If the experimental results validate this concept, other UAV pilot-machine interfaces will be improved with this design methodology.

  15. Fault Tolerance Analysis of L1 Adaptive Control System for Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Kiruthika

    Trajectory tracking is a critical element for the better functionality of autonomous vehicles. The main objective of this research study was to implement and analyze L1 adaptive control laws for autonomous flight under normal and upset flight conditions. The West Virginia University (WVU) Unmanned Aerial Vehicle flight simulation environment was used for this purpose. A comparison study between the L1 adaptive controller and a baseline conventional controller, which relies on position, proportional, and integral compensation, has been performed for a reduced size jet aircraft, the WVU YF-22. Special attention was given to the performance of the proposed control laws in the presence of abnormal conditions. The abnormal conditions considered are locked actuators (stabilator, aileron, and rudder) and excessive turbulence. Several levels of abnormal condition severity have been considered. The performance of the control laws was assessed over different-shape commanded trajectories. A set of comprehensive evaluation metrics was defined and used to analyze the performance of autonomous flight control laws in terms of control activity and trajectory tracking errors. The developed L1 adaptive control laws are supported by theoretical stability guarantees. The simulation results show that L1 adaptive output feedback controller achieves better trajectory tracking with lower level of control actuation as compared to the baseline linear controller under nominal and abnormal conditions.

  16. A distribution model for the aerial application of granular agricultural particles

    NASA Technical Reports Server (NTRS)

    Fernandes, S. T.; Ormsbee, A. I.

    1978-01-01

    A model is developed to predict the shape of the distribution of granular agricultural particles applied by aircraft. The particle is assumed to have a random size and shape and the model includes the effect of air resistance, distributor geometry and aircraft wake. General requirements for the maintenance of similarity of the distribution for scale model tests are derived and are addressed to the problem of a nongeneral drag law. It is shown that if the mean and variance of the particle diameter and density are scaled according to the scaling laws governing the system, the shape of the distribution will be preserved. Distributions are calculated numerically and show the effect of a random initial lateral position, particle size and drag coefficient. A listing of the computer code is included.

  17. Neural network control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Harmon, Frederick G.

    2005-11-01

    Parallel hybrid-electric propulsion systems would be beneficial for small unmanned aerial vehicles (UAVs) used for military, homeland security, and disaster-monitoring missions. The benefits, due to the hybrid and electric-only modes, include increased time-on-station and greater range as compared to electric-powered UAVs and stealth modes not available with gasoline-powered UAVs. This dissertation contributes to the research fields of small unmanned aerial vehicles, hybrid-electric propulsion system control, and intelligent control. A conceptual design of a small UAV with a parallel hybrid-electric propulsion system is provided. The UAV is intended for intelligence, surveillance, and reconnaissance (ISR) missions. A conceptual design reveals the trade-offs that must be considered to take advantage of the hybrid-electric propulsion system. The resulting hybrid-electric propulsion system is a two-point design that includes an engine primarily sized for cruise speed and an electric motor and battery pack that are primarily sized for a slower endurance speed. The electric motor provides additional power for take-off, climbing, and acceleration and also serves as a generator during charge-sustaining operation or regeneration. The intelligent control of the hybrid-electric propulsion system is based on an instantaneous optimization algorithm that generates a hyper-plane from the nonlinear efficiency maps for the internal combustion engine, electric motor, and lithium-ion battery pack. The hyper-plane incorporates charge-depletion and charge-sustaining strategies. The optimization algorithm is flexible and allows the operator/user to assign relative importance between the use of gasoline, electricity, and recharging depending on the intended mission. A MATLAB/Simulink model was developed to test the control algorithms. The Cerebellar Model Arithmetic Computer (CMAC) associative memory neural network is applied to the control of the UAVs parallel hybrid

  18. Advances in hardware, software, and automation for 193nm aerial image measurement systems

    NASA Astrophysics Data System (ADS)

    Zibold, Axel M.; Schmid, R.; Seyfarth, A.; Waechter, M.; Harnisch, W.; Doornmalen, H. v.

    2005-05-01

    A new, second generation AIMS fab 193 system has been developed which is capable of emulating lithographic imaging of any type of reticles such as binary and phase shift masks (PSM) including resolution enhancement technologies (RET) such as optical proximity correction (OPC) or scatter bars. The system emulates the imaging process by adjustment of the lithography equivalent illumination and imaging conditions of 193nm wafer steppers including circular, annular, dipole and quadrupole type illumination modes. The AIMS fab 193 allows a rapid prediction of wafer printability of critical mask features, including dense patterns and contacts, defects or repairs by acquiring through-focus image stacks by means of a CCD camera followed by quantitative image analysis. Moreover the technology can be readily applied to directly determine the process window of a given mask under stepper imaging conditions. Since data acquisition is performed electronically, AIMS in many applications replaces the need for costly and time consuming wafer prints using a wafer stepper/ scanner followed by CD SEM resist or wafer analysis. The AIMS fab 193 second generation system is designed for 193nm lithography mask printing predictability down to the 65nm node. In addition to hardware improvements a new modular AIMS software is introduced allowing for a fully automated operation mode. Multiple pre-defined points can be visited and through-focus AIMS measurements can be executed automatically in a recipe based mode. To increase the effectiveness of the automated operation mode, the throughput of the system to locate the area of interest, and to acquire the through-focus images is increased by almost a factor of two in comparison with the first generation AIMS systems. In addition a new software plug-in concept is realised for the tools. One new feature has been successfully introduced as "Global CD Map", enabling automated investigation of global mask quality based on the local determination of

  19. Vision based control of unmanned aerial vehicles with applications to an autonomous four-rotor helicopter, quadrotor

    NASA Astrophysics Data System (ADS)

    Altug, Erdinc

    Our work proposes a vision-based stabilization and output tracking control method for a model helicopter. This is a part of our effort to produce a rotorcraft based autonomous Unmanned Aerial Vehicle (UAV). Due to the desired maneuvering ability, a four-rotor helicopter has been chosen as the testbed. On previous research on flying vehicles, vision is usually used as a secondary sensor. Unlike previous research, our goal is to use visual feedback as the main sensor, which is not only responsible for detecting where the ground objects are but also for helicopter localization. A novel two-camera method has been introduced for estimating the full six degrees of freedom (DOF) pose of the helicopter. This two-camera system consists of a pan-tilt ground camera and an onboard camera. The pose estimation algorithm is compared through simulation to other methods, such as four-point, and stereo method and is shown to be less sensitive to feature detection errors. Helicopters are highly unstable flying vehicles; although this is good for agility, it makes the control harder. To build an autonomous helicopter, two methods of control are studied---one using a series of mode-based, feedback linearizing controllers and the other using a back-stepping control law. Various simulations with 2D and 3D models demonstrate the implementation of these controllers. We also show global convergence of the 3D quadrotor controller even with large calibration errors or presence of large errors on the image plane. Finally, we present initial flight experiments where the proposed pose estimation algorithm and non-linear control techniques have been implemented on a remote-controlled helicopter. The helicopter was restricted with a tether to vertical, yaw motions and limited x and y translations.

  20. Fusion of Multi-View and Multi-Scale Aerial Imagery for Real-Time Situation Awareness Applications

    NASA Astrophysics Data System (ADS)

    Zhuo, X.; Kurz, F.; Reinartz, P.

    2015-08-01

    Manned aircraft has long been used for capturing large-scale aerial images, yet the high costs and weather dependence restrict its availability in emergency situations. In recent years, MAV (Micro Aerial Vehicle) emerged as a novel modality for aerial image acquisition. Its maneuverability and flexibility enable a rapid awareness of the scene of interest. Since these two platforms deliver scene information from different scale and different view, it makes sense to fuse these two types of complimentary imagery to achieve a quick, accurate and detailed description of the scene, which is the main concern of real-time situation awareness. This paper proposes a method to fuse multi-view and multi-scale aerial imagery by establishing a common reference frame. In particular, common features among MAV images and geo-referenced airplane images can be extracted by a scale invariant feature detector like SIFT. From the tie point of geo-referenced images we derive the coordinate of corresponding ground points, which are then utilized as ground control points in global bundle adjustment of MAV images. In this way, the MAV block is aligned to the reference frame. Experiment results show that this method can achieve fully automatic geo-referencing of MAV images even if GPS/IMU acquisition has dropouts, and the orientation accuracy is improved compared to the GPS/IMU based georeferencing. The concept for a subsequent 3D classification method is also described in this paper.

  1. Determining position, velocity and acceleration of free-ranging animals with a low-cost unmanned aerial system.

    PubMed

    Harvey, Richard J; Roskilly, Kyle; Buse, Chris; Evans, Hannah K; Hubel, Tatjana Y; Wilson, Alan M

    2016-09-01

    Unmanned aerial systems (UASs), frequently referred to as 'drones', have become more common and affordable and are a promising tool for collecting data on free-ranging wild animals. We used a Phantom-2 UAS equipped with a gimbal-mounted camera to estimate position, velocity and acceleration of a subject on the ground moving through a grid of GPS surveyed ground control points (area ∼1200 m(2)). We validated the accuracy of the system against a dual frequency survey grade GPS system attached to the subject. When compared with GPS survey data, the estimations of position, velocity and acceleration had a root mean square error of 0.13 m, 0.11 m s(-1) and 2.31 m s(-2), respectively. The system can be used to collect locomotion and localisation data on multiple free-ranging animals simultaneously. It does not require specialist skills to operate, is easily transported to field locations, and is rapidly and easily deployed. It is therefore a useful addition to the range of methods available for field data collection on free-ranging animal locomotion.

  2. Determining position, velocity and acceleration of free-ranging animals with a low-cost unmanned aerial system.

    PubMed

    Harvey, Richard J; Roskilly, Kyle; Buse, Chris; Evans, Hannah K; Hubel, Tatjana Y; Wilson, Alan M

    2016-09-01

    Unmanned aerial systems (UASs), frequently referred to as 'drones', have become more common and affordable and are a promising tool for collecting data on free-ranging wild animals. We used a Phantom-2 UAS equipped with a gimbal-mounted camera to estimate position, velocity and acceleration of a subject on the ground moving through a grid of GPS surveyed ground control points (area ∼1200 m(2)). We validated the accuracy of the system against a dual frequency survey grade GPS system attached to the subject. When compared with GPS survey data, the estimations of position, velocity and acceleration had a root mean square error of 0.13 m, 0.11 m s(-1) and 2.31 m s(-2), respectively. The system can be used to collect locomotion and localisation data on multiple free-ranging animals simultaneously. It does not require specialist skills to operate, is easily transported to field locations, and is rapidly and easily deployed. It is therefore a useful addition to the range of methods available for field data collection on free-ranging animal locomotion. PMID:27353230

  3. Unmanned aerial monitoring of fluvial changes in the vicinity of selected gauges of the Local System for Flood Monitoring in Klodzko County, SW Poland

    NASA Astrophysics Data System (ADS)

    Jeziorska, Justyna; Witek, Matylda; Niedzielski, Tomasz

    2013-04-01

    Only high resolution spatial data enable precise measurements of various morphometric characteristics of river channels and ensure meaningful effects of research into fluvial changes. Using ground-based measurement tools is time-consuming and expensive. Traditional photogrammetry often does not reach a desired resolution, and the technology is cost effective only for the large-area coverage. The present research introduces potentials of UAV (Unmanned Aerial Vehicle) for monitoring fluvial changes. Observations were carried out with the ultralight UAV swinglet CAM produced by senseFly. This lightweight (0,5 kg), small (wingspan: 80 cm) aircraft allowed frequent (with approximately monthly sampling resolution) and low-cost missions. Three hydrologic gauges, the surroundings of which were the target of series of photos taken by camera placed in airplane frame, belong to the Local System for Flood Monitoring in Kłodzko County (SW Poland). The only way of obtaining reliable results is an appropriate image rectification, in order to measure morphometric characteristics of terrain, free of geometrical deformations induced by the topographical relief, the tilt of the camera axis and the distortion of the optics. Commercially available software for the production of digital orthophotos and digital surface models (DSMs) from a range of uncalibrated oblique and vertical aerial images was successfully used to achieve this aim. As a result of completing the above procedure 9 orthophotos were generated (one for each of 3 study areas during 3 missions). For extraction of terrain parameters, a DSM was produced as a result of bundle block adjustment. Both products reached ultra-high resolution of 4cm/px. Various fluvial forms were classified and recognized, and a few time series of maps from each study area were compared in order to detect potential changes within the fluvial system. We inferred on the origins of the short-term responses of fluvial systems, and such an inference

  4. Assessing the Accuracy of Ortho-image using Photogrammetric Unmanned Aerial System

    NASA Astrophysics Data System (ADS)

    Jeong, H. H.; Park, J. W.; Kim, J. S.; Choi, C. U.

    2016-06-01

    Smart-camera can not only be operated under network environment anytime and any place but also cost less than the existing photogrammetric UAV since it provides high-resolution image, 3D location and attitude data on a real-time basis from a variety of built-in sensors. This study's proposed UAV photogrammetric method, low-cost UAV and smart camera were used. The elements of interior orientation were acquired through camera calibration. The image triangulation was conducted in accordance with presence or absence of consideration of the interior orientation (IO) parameters determined by camera calibration, The Digital Elevation Model (DEM) was constructed using the image data photographed at the target area and the results of the ground control point survey. This study also analyzes the proposed method's application possibility by comparing a Ortho-image the results of the ground control point survey. Considering these study findings, it is suggested that smartphone is very feasible as a payload for UAV system. It is also expected that smartphone may be loaded onto existing UAV playing direct or indirect roles significantly.

  5. Aerial Video Imaging

    NASA Technical Reports Server (NTRS)

    1991-01-01

    When Michael Henry wanted to start an aerial video service, he turned to Johnson Space Center for assistance. Two NASA engineers - one had designed and developed TV systems in Apollo, Skylab, Apollo- Soyuz and Space Shuttle programs - designed a wing-mounted fiberglass camera pod. Camera head and angles are adjustable, and the pod is shaped to reduce vibration. The controls are located so a solo pilot can operate the system. A microprocessor displays latitude, longitude, and bearing, and a GPS receiver provides position data for possible legal references. The service has been successfully utilized by railroads, oil companies, real estate companies, etc.

  6. The Aeronautics Education, Research, and Industry Alliance (AERIAL) 2002 Report

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Box, Richard C.; Fink, Mary; Gogos, George; Lehrer, Henry R.; Narayanan, Ram M.; Nickerson, Jocelyn S.; Tarry, Scott E.; Vlasek, Karisa D.; O'Neil, Patrick D.

    2002-01-01

    The NASA Nebraska Space Grant Consortium (NSGC) & EPSCoR programs at the University of Nebraska at Omaha are involved in a variety of innovative research activities. Such research is supported through the Aeronautics Education, Research, and Industry Alliance (AERIAL) and collaborative seed funds. AERIAL is a comprehensive, multi-faceted, five year NASA EPSCoR initiative that contributes substantially to the strategic research and technology priorities of NASA while intensifying Nebraska s rapidly growing aeronautics research and development endeavors. AERIAL includes three major collaborative research teams (CRTs) whose nexus is a common focus in aeronautics research. Each CRT - Small Aircraft Transportation System (SATS), Airborne Remote Sensing for Agricultural Research and Commercialization Applications (ARS), and Numerical Simulation of the Combustion of Fuel Droplets: Finite Rate Kinetics and Flame Zone Grid Adaptation (CEFD) -has a distinct research agenda. This program provides the template for funding of new and innovative research that emphasizes aerospace technology.

  7. Volcanic sulfur dioxide and carbon dioxide measurements using small unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Pieri, D. C.; Diaz, J. A.; Fladeland, M. M.; Bland, G.; Alan, A., Jr.; Alegria, O.; Buongiorno, M. F.; Christensen, L. E.; Corrales, E.; Linick, J.; Mouginis-Mark, P. J.; Ramsey, M. S.; Realmuto, V. J.; Schwandner, F. M.

    2015-12-01

    Volcanoes emit gases continuously with significant pre-post-eruption changes, mainly H2O and CO2, plus SO2, and others. The SO2/CO2 ratio changes within volcanic life cycles making it an indicator of oncoming eruption phases: it can dip weeks to months before eruptions, then increase, and decrease back to background after eruptions. Over the last five years, we have made an effort to develop small and inexpensive lighter-than-air and fixed wing unmanned aerial vehicle (UAV) platforms in Costa Rica at Turrialba Volcano. Turrialba is an appropriate natural laboratory to test and prove platforms and instrumentation in low-level steady state volcanogenic gas and aerosol emissions at moderate altitudes (<12Kft ASL), where good technical infrastructure exists, with good physical access to the volcano. Our program in Costa Rica includes: (1) systematic monitoring of Turrialba from orbit with the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), with its thermal infrared (TIR) camera for SO2 retrieval, and more recently with GOSAT and OCO-2 for CO2; (2) in situ observations from aerostats and UAVs during ASTER overpasses, and (3) reconciliation of the orbital results with in situ data to validate mass retrieval and transport models. As part of the NASA HyspIRI Preparatory Airborne Activities program, we will conduct similar observations at Kilauea volcano using small UAVs and for both SO2 and CO2 in situ. One of the salient characteristics of the long lived Kilauea eruptions since 1983 has been the emission of SO2 in significant amounts, generating environmental stresses on local inhabitants due to lowered air quality, and stress on vegetation. Kilauea volcanic plumes, as with Turrialba, are mainly gases and liquid--SO2 is hydrolyzed to H2SO4 and the resulting highly acidic liquid aerosol is termed "vog," an environmental health hazard. Measurement of the diffuse CO2 emissions at Kilauea will also be of interest. Such measurements at Turrialba

  8. Towards Real-time, On-board, Hardware-Supported Sensor and Software Health Management for Unmanned Aerial Systems

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Rozier, Kristin Y.; Reinbacher, Thomas; Mengshoel, Ole J.; Mbaya, Timmy; Ippolito, Corey

    2013-01-01

    Unmanned aerial systems (UASs) can only be deployed if they can effectively complete their missions and respond to failures and uncertain environmental conditions while maintaining safety with respect to other aircraft as well as humans and property on the ground. In this paper, we design a real-time, on-board system health management (SHM) capability to continuously monitor sensors, software, and hardware components for detection and diagnosis of failures and violations of safety or performance rules during the flight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and/or software signals; (2) signal analysis, preprocessing, and advanced on the- fly temporal and Bayesian probabilistic fault diagnosis; (3) an unobtrusive, lightweight, read-only, low-power realization using Field Programmable Gate Arrays (FPGAs) that avoids overburdening limited computing resources or costly re-certification of flight software due to instrumentation. Our implementation provides a novel approach of combining modular building blocks, integrating responsive runtime monitoring of temporal logic system safety requirements with model-based diagnosis and Bayesian network-based probabilistic analysis. We demonstrate this approach using actual data from the NASA Swift UAS, an experimental all-electric aircraft.

  9. Development of a Spray System for An Unmanned Aerial Vehicle Platform

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of crop production and protection materials is a crucial component in the high productivity of American agriculture. Agricultural chemical application is frequently needed at specific times and locations for accurate site-specific management of crop pests. Piloted agricultural aircraft ...

  10. Spectral anomaly methods for aerial detection using KUT nuisance rejection

    NASA Astrophysics Data System (ADS)

    Detwiler, R. S.; Pfund, D. M.; Myjak, M. J.; Kulisek, J. A.; Seifert, C. E.

    2015-06-01

    This work discusses the application and optimization of a spectral anomaly method for the real-time detection of gamma radiation sources from an aerial helicopter platform. Aerial detection presents several key challenges over ground-based detection. For one, larger and more rapid background fluctuations are typical due to higher speeds, larger field of view, and geographically induced background changes. As well, the possible large altitude or stand-off distance variations cause significant steps in background count rate as well as spectral changes due to increased gamma-ray scatter with detection at higher altitudes. The work here details the adaptation and optimization of the PNNL-developed algorithm Nuisance-Rejecting Spectral Comparison Ratios for Anomaly Detection (NSCRAD), a spectral anomaly method previously developed for ground-based applications, for an aerial platform. The algorithm has been optimized for two multi-detector systems; a NaI(Tl)-detector-based system and a CsI detector array. The optimization here details the adaptation of the spectral windows for a particular set of target sources to aerial detection and the tailoring for the specific detectors. As well, the methodology and results for background rejection methods optimized for the aerial gamma-ray detection using Potassium, Uranium and Thorium (KUT) nuisance rejection are shown. Results indicate that use of a realistic KUT nuisance rejection may eliminate metric rises due to background magnitude and spectral steps encountered in aerial detection due to altitude changes and geographically induced steps such as at land-water interfaces.

  11. Quantifying streambank erosion: a comparative study using an unmanned aerial system (UAS) and a terrestrial laser scanner

    NASA Astrophysics Data System (ADS)

    Rizzo, D.; Hamshaw, S. D.; Dewoolkar, M.; ONeil-Dunne, J.; Frolik, J.; Bryce, T. G.; Waldron, A. Y.

    2015-12-01

    Streambank erosion is a common non-point source contributing to suspended sediment and nutrient loading of waterways, and recently has been estimated to account for 30-80% of sediment loading into receiving waters. There is interest in developing reliable methods to quantify bank erosion in watersheds, so effective management strategies can be devised. However, current methods can be either cost prohibitive or unreliable. Direct measurement approaches (surveys and erosion pins) are labor intensive and yield site-specific measurements that are limited for extrapolation to larger scales. Similar issues arise with analytical methods such as slope stability analysis, which require material parameters that are resource intensive to determine. Newer approaches such as use of aerial LiDAR data have proved effective for watershed level assessment, but come with long turnaround times and high cost. Terrestrial laser scanning (TLS) is also effective and offers high accuracy, however collection over large areas is impractical and post-processing is labor intensive. New technology in the form of unmanned aerial systems (UAS) has the potential to significantly enhance the ability to monitor channel migration and quantify bank erosion at variable scales. In this study, 20 km of the Mad and Winooski Rivers in Vermont were flown using a senseFly eBee UAS. Flights were made in spring and fall 2015 in leaf-off conditions with selected portions also flown after large storms in the summer. Change in bank profiles between spring and fall flights provide a comprehensive estimate of bank erosion along the study reaches. Six sites with varying bank heights, erosion sensitivity, and vegetation conditions were selected for simultaneous surveying using a TLS. Point cloud data from both the TLS and UAS were compared to assess the accuracy of the UAS for capturing the bank profile. Changes in bank cross-sections and in volumes calculated from 3D digital surface models were used to compare the

  12. The evaluation of unmanned aerial system-based photogrammetry and terrestrial laser scanning to generate DEMs of agricultural watersheds

    NASA Astrophysics Data System (ADS)

    Ouédraogo, Mohamar Moussa; Degré, Aurore; Debouche, Charles; Lisein, Jonathan

    2014-06-01

    Agricultural watersheds tend to be places of intensive farming activities that permanently modify their microtopography. The surface characteristics of the soil vary depending on the crops that are cultivated in these areas. Agricultural soil microtopography plays an important role in the quantification of runoff and sediment transport because the presence of crops, crop residues, furrows and ridges may impact the direction of water flow. To better assess such phenomena, 3-D reconstructions of high-resolution agricultural watershed topography are essential. Fine-resolution topographic data collection technologies can be used to discern highly detailed elevation variability in these areas. Knowledge of the strengths and weaknesses of existing technologies used for data collection on agricultural watersheds may be helpful in choosing an appropriate technology. This study assesses the suitability of terrestrial laser scanning (TLS) and unmanned aerial system (UAS) photogrammetry for collecting the fine-resolution topographic data required to generate accurate, high-resolution digital elevation models (DEMs) in a small watershed area (12 ha). Because of farming activity, 14 TLS scans (≈ 25 points m- 2) were collected without using high-definition surveying (HDS) targets, which are generally used to mesh adjacent scans. To evaluate the accuracy of the DEMs created from the TLS scan data, 1098 ground control points (GCPs) were surveyed using a real time kinematic global positioning system (RTK-GPS). Linear regressions were then applied to each DEM to remove vertical errors from the TLS point elevations, errors caused by the non-perpendicularity of the scanner's vertical axis to the local horizontal plane, and errors correlated with the distance to the scanner's position. The scans were then meshed to generate a DEMTLS with a 1 × 1 m spatial resolution. The Agisoft PhotoScan and MicMac software packages were used to process the aerial photographs and generate a DEMPSC

  13. Heuristic approach to the development of ratings and tactics applicable to the one-on-one aerial combat (dogfight) encounter

    NASA Technical Reports Server (NTRS)

    Hague, D. S.

    1977-01-01

    Computer simulations of the one-on-one aerial combat encounter are generated under the control of specified guidance laws. Given an initial state, the vehicle and atmospheric characteristics, and the guidance laws, the aerial combat encounter is simulated by forward integration of the two vehicles' motions. The development of a combat guidance law which converts positional advantage into an improved firing opportunity is reported. A combination of lag, line of sight, and lead pursuit steering paths are followed in the guidance law. The law is based on steering error, target angle-off and the relative velocities. It readily is automated either as an onboard aid to manned aircraft pilots or as a combat guidance law for unmanned vehicles.

  14. Three-dimensional imaging applications in Earth Sciences using video data acquired from an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    McLeod, Tara

    For three dimensional (3D) aerial images, unmanned aerial vehicles (UAVs) are cheaper to operate and easier to fly than the typical manned craft mounted with a laser scanner. This project explores the feasibility of using 2D video images acquired with a UAV and transforming them into 3D point clouds. The Aeryon Scout -- a quad-copter micro UAV -- flew two missions: the first at York University Keele campus and the second at the Canadian Wollastonite Mine Property. Neptec's ViDAR software was used to extract 3D information from the 2D video using structure from motion. The resulting point clouds were sparsely populated, yet captured vegetation well. They were used successfully to measure fracture orientation in rock walls. Any improvement in the video resolution would cascade through the processing and improve the overall results.

  15. Estimating chlorophyll with thermal and broadband multispectral high resolution imagery from an unmanned aerial system using relevance vector machines for precision agriculture

    NASA Astrophysics Data System (ADS)

    Elarab, Manal; Ticlavilca, Andres M.; Torres-Rua, Alfonso F.; Maslova, Inga; McKee, Mac

    2015-12-01

    Precision agriculture requires high-resolution information to enable greater precision in the management of inputs to production. Actionable information about crop and field status must be acquired at high spatial resolution and at a temporal frequency appropriate for timely responses. In this study, high spatial resolution imagery was obtained through the use of a small, unmanned aerial system called AggieAirTM. Simultaneously with the AggieAir flights, intensive ground sampling for plant chlorophyll was conducted at precisely determined locations. This study reports the application of a relevance vector machine coupled with cross validation and backward elimination to a dataset composed of reflectance from high-resolution multi-spectral imagery (VIS-NIR), thermal infrared imagery, and vegetative indices, in conjunction with in situ SPAD measurements from which chlorophyll concentrations were derived, to estimate chlorophyll concentration from remotely sensed data at 15-cm resolution. The results indicate that a relevance vector machine with a thin plate spline kernel type and kernel width of 5.4, having LAI, NDVI, thermal and red bands as the selected set of inputs, can be used to spatially estimate chlorophyll concentration with a root-mean-squared-error of 5.31 μg cm-2, efficiency of 0.76, and 9 relevance vectors.

  16. Uniformity of environmental conditions and plant growth in a hydroponic culture system for use in a growth room with aerial CO2 control

    NASA Technical Reports Server (NTRS)

    Vessey, J. K.; York, E. K.; Henry, L. T.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1988-01-01

    A portable system of hydroponic culture was developed that maintained temperature, pH, and nutrient concentrations of circulating nutrient solutions. The hydroponic system is used within a controlled-environment room (CER) for control of aerial environment. The CER was equipped with an auto-calibrating system for atmospheric CO2 control. The control systems for the hydroponic chambers were able to maintain acidity within +/- 0.2 pH units and the temperature with +/- 0.5 degree C. Mixing time for the 200-liter volume of solution within a hydroponic chamber was less than 12 min. The CO2 control system was able to maintain aerial concentrations within +/- 10 ppm CO2 during the light period. The only gradient found to occur within the hydroponic chambers or CER was a slight gradient in aerial temperature along the length of hydroponic chambers. Growth of soybeans [Glycine max (L.) Merr.] was characterized during a 3-week period of vegetative development by leaf number and area, plant dry weight, total N content of plants, and N depletion from the nutrient solution. The growth characteristics among populations for three hydroponic chambers within the CER were not significantly different, and the percent standard errors of means of the measurements within populations from each chamber were nearly all less than 10%. Thus, the uniformity of plant growth reflected the uniformity of environmental conditions.

  17. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Aerial wire. 32.2431 Section 32.2431 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire....

  18. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Aerial wire. 32.2431 Section 32.2431 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire....

  19. Preliminary applications of Landsat images and aerial photography for determining land-use, geologic, and hydrologic characteristics, Yampa River basin, Colorado and Wyoming

    USGS Publications Warehouse

    Heimes, F.J.; Moore, G.K.; Steele, T.D.

    1978-01-01

    Expanded energy- and recreation-related activities in the Yampa River basin, Colorado and Wyoming, have caused a rapid increase in economic development which will result in increased demand and competition for natural resources. In planning for efficient allocation of the basin 's natural resources, Landsat images and small-scale color and color-infrared photographs were used for selected geologic, hydrologic and land-use applications within the Yampa River basin. Applications of Landsat data included: (1) regional land-use classification and mapping, (2) lineament mapping, and (3) areal snow-cover mapping. Results from the Landsat investigations indicated that: (1) Landsat land-use classification maps, at a regional level, compared favorably with areal land-use patterns that were defined from available ground information, (2) lineaments were mapped in sufficient detail using recently developed techniques for interpreting aerial photographs, (3) snow cover generally could be mapped for large areas with the exception of some densely forested areas of the basin and areas having a large percentage of winter-season cloud cover. Aerial photographs were used for estimation of turbidity for eight stream locations in the basin. Spectral reflectance values obtained by digitizing photographs were compared with measured turbidity values. Results showed strong correlations (variances explained of greater than 90 percent) between spectral reflectance obtained from color photographs and measured turbidity values. (Woodard-USGS)

  20. Aerial radiation surveys

    SciTech Connect

    Jobst, J.

    1980-01-01

    A recent aerial radiation survey of the surroundings of the Vitro mill in Salt Lake City shows that uranium mill tailings have been removed to many locations outside their original boundary. To date, 52 remote sites have been discovered within a 100 square kilometer aerial survey perimeter surrounding the mill; 9 of these were discovered with the recent aerial survey map. Five additional sites, also discovered by aerial survey, contained uranium ore, milling equipment, or radioactive slag. Because of the success of this survey, plans are being made to extend the aerial survey program to other parts of the Salt Lake valley where diversions of Vitro tailings are also known to exist.

  1. Status of aerial applications research in the Langley vortex research facility and the Langley full-scale wind tunnel

    NASA Technical Reports Server (NTRS)

    Jordan, F. L., Jr.; Mclemore, H. C.; Bragg, M. B.

    1978-01-01

    Small scale models of agricultural airplanes were tested and numerical methods were utilized to study interactions between the airplane wake and the dispersed spray and granular materials. Methods were developed to measure and predict dispersal transport and wake characteristics and dispersal techniques to obtain interactions more favorable to wide, uniform deposition patterns and reduced drift. In the full scale wind tunnel, full scale agricultural airplanes and dispersal systems for both liquid and solid applications were evaluated to improve aircraft aerodynamics and dispersal systems efficiency. The program status in these two facilities is reported with emphasis on wake interactions and dispersal systems research.

  2. Sampling system for wheat (Triticum aestivum L) area estimation using digital LANDSAT MSS data and aerial photographs. [Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Moreira, M. A.; Chen, S. C.; Batista, G. T.

    1984-01-01

    A procedure to estimate wheat (Triticum aestivum L) area using sampling technique based on aerial photographs and digital LANDSAT MSS data is developed. Aerial photographs covering 720 square km are visually analyzed. To estimate wheat area, a regression approach is applied using different sample sizes and various sampling units. As the size of sampling unit decreased, the percentage of sampled area required to obtain similar estimation performance also decreased. The lowest percentage of the area sampled for wheat estimation with relatively high precision and accuracy through regression estimation is 13.90% using 10 square km as the sampling unit. Wheat area estimation using only aerial photographs is less precise and accurate than those obtained by regression estimation.

  3. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring

    USGS Publications Warehouse

    Gillan, Jeffrey K.; Karl, Jason W.; Duniway, Michael; Elaksher, Ahmed

    2014-01-01

    Vertical vegetation structure in rangeland ecosystems can be a valuable indicator for assessing rangeland health and monitoring riparian areas, post-fire recovery, available forage for livestock, and wildlife habitat. Federal land management agencies are directed to monitor and manage rangelands at landscapes scales, but traditional field methods for measuring vegetation heights are often too costly and time consuming to apply at these broad scales. Most emerging remote sensing techniques capable of measuring surface and vegetation height (e.g., LiDAR or synthetic aperture radar) are often too expensive, and require specialized sensors. An alternative remote sensing approach that is potentially more practical for managers is to measure vegetation heights from digital stereo aerial photographs. As aerial photography is already commonly used for rangeland monitoring, acquiring it in stereo enables three-dimensional modeling and estimation of vegetation height. The purpose of this study was to test the feasibility and accuracy of estimating shrub heights from high-resolution (HR, 3-cm ground sampling distance) digital stereo-pair aerial images. Overlapping HR imagery was taken in March 2009 near Lake Mead, Nevada and 5-cm resolution digital surface models (DSMs) were created by photogrammetric methods (aerial triangulation, digital image matching) for twenty-six test plots. We compared the heights of individual shrubs and plot averages derived from the DSMs to field measurements. We found strong positive correlations between field and image measurements for several metrics. Individual shrub heights tended to be underestimated in the imagery, however, accuracy was higher for dense, compact shrubs compared with shrubs with thin branches. Plot averages of shrub height from DSMs were also strongly correlated to field measurements but consistently underestimated. Grasses and forbs were generally too small to be detected with the resolution of the DSMs. Estimates of

  4. Effects of aerial applications of esfenvalerate on small mammals and birds in Douglas-fir seed orchards

    USGS Publications Warehouse

    Blus, L.J.; Henny, C.J.; Rice, C.P.; Grove, R.A.

    1992-01-01

    Although no adverse effects were documented, this study did not provide data sufficient to adequately test for effects of aerial spraying of esfenvalerate on small mammal populations or nesting of birds in Douglas-fir seed orchards. Small mammal trapping data were too sparse to provide statistical testing with reasonable power. Residues of the R and S forms of fenvalerate were low with maxima of 0.56 and 1.72 ?g/g, respectively in pelage of a deer mouse. No diagnostic residue data are available to interpret our results.

  5. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring.

    PubMed

    Gillan, Jeffrey K; Karl, Jason W; Duniway, Michael; Elaksher, Ahmed

    2014-11-01

    Vertical vegetation structure in rangeland ecosystems can be a valuable indicator for assessing rangeland health and monitoring riparian areas, post-fire recovery, available forage for livestock, and wildlife habitat. Federal land management agencies are directed to monitor and manage rangelands at landscapes scales, but traditional field methods for measuring vegetation heights are often too costly and time consuming to apply at these broad scales. Most emerging remote sensing techniques capable of measuring surface and vegetation height (e.g., LiDAR or synthetic aperture radar) are often too expensive, and require specialized sensors. An alternative remote sensing approach that is potentially more practical for managers is to measure vegetation heights from digital stereo aerial photographs. As aerial photography is already commonly used for rangeland monitoring, acquiring it in stereo enables three-dimensional modeling and estimation of vegetation height. The purpose of this study was to test the feasibility and accuracy of estimating shrub heights from high-resolution (HR, 3-cm ground sampling distance) digital stereo-pair aerial images. Overlapping HR imagery was taken in March 2009 near Lake Mead, Nevada and 5-cm resolution digital surface models (DSMs) were created by photogrammetric methods (aerial triangulation, digital image matching) for twenty-six test plots. We compared the heights of individual shrubs and plot averages derived from the DSMs to field measurements. We found strong positive correlations between field and image measurements for several metrics. Individual shrub heights tended to be underestimated in the imagery, however, accuracy was higher for dense, compact shrubs compared with shrubs with thin branches. Plot averages of shrub height from DSMs were also strongly correlated to field measurements but consistently underestimated. Grasses and forbs were generally too small to be detected with the resolution of the DSMs. Estimates of

  6. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring.

    PubMed

    Gillan, Jeffrey K; Karl, Jason W; Duniway, Michael; Elaksher, Ahmed

    2014-11-01

    Vertical vegetation structure in rangeland ecosystems can be a valuable indicator for assessing rangeland health and monitoring riparian areas, post-fire recovery, available forage for livestock, and wildlife habitat. Federal land management agencies are directed to monitor and manage rangelands at landscapes scales, but traditional field methods for measuring vegetation heights are often too costly and time consuming to apply at these broad scales. Most emerging remote sensing techniques capable of measuring surface and vegetation height (e.g., LiDAR or synthetic aperture radar) are often too expensive, and require specialized sensors. An alternative remote sensing approach that is potentially more practical for managers is to measure vegetation heights from digital stereo aerial photographs. As aerial photography is already commonly used for rangeland monitoring, acquiring it in stereo enables three-dimensional modeling and estimation of vegetation height. The purpose of this study was to test the feasibility and accuracy of estimating shrub heights from high-resolution (HR, 3-cm ground sampling distance) digital stereo-pair aerial images. Overlapping HR imagery was taken in March 2009 near Lake Mead, Nevada and 5-cm resolution digital surface models (DSMs) were created by photogrammetric methods (aerial triangulation, digital image matching) for twenty-six test plots. We compared the heights of individual shrubs and plot averages derived from the DSMs to field measurements. We found strong positive correlations between field and image measurements for several metrics. Individual shrub heights tended to be underestimated in the imagery, however, accuracy was higher for dense, compact shrubs compared with shrubs with thin branches. Plot averages of shrub height from DSMs were also strongly correlated to field measurements but consistently underestimated. Grasses and forbs were generally too small to be detected with the resolution of the DSMs. Estimates of

  7. Staircase-scene-based nonuniformity correction in aerial point target detection systems.

    PubMed

    Huo, Lijun; Zhou, Dabiao; Wang, Dejiang; Liu, Rang; He, Bin

    2016-09-01

    Focal-plane arrays (FPAs) are often interfered by heavy fixed-pattern noise, which severely degrades the detection rate and increases the false alarms in airborne point target detection systems. Thus, high-precision nonuniformity correction is an essential preprocessing step. In this paper, a new nonuniformity correction method is proposed based on a staircase scene. This correction method can compensate for the nonlinear response of the detector and calibrate the entire optical system with computational efficiency and implementation simplicity. Then, a proof-of-concept point target detection system is established with a long-wave Sofradir FPA. Finally, the local standard deviation of the corrected image and the signal-to-clutter ratio of the Airy disk of a Boeing B738 are measured to evaluate the performance of the proposed nonuniformity correction method. Our experimental results demonstrate that the proposed correction method achieves high-quality corrections. PMID:27607295

  8. Ikhana: A NASA Unmanned Aerial System Supporting Long-Duration Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Cobleigh, Brent R.

    2007-01-01

    This viewgraph presentation reviews Ikhana's project goals: (1) Develop an airborne platform to conduct Earth observation and atmospheric sampling science missions both nationally and internationally, (2) develop and demonstrate technologies that improve the capability of UAVs to conduct science collection missions, (3) develop technologies that improve manned and unmanned aircraft systems, and (4) support important national UAV development activities. The criteria that guided the selection of the aircraft are listed. The payload areas on Ikhana are shown and the network that connects the systems are also reviewed. The data recorder is shown. Also the diagram of the Airborne Research Test System (ARTS) is reviewed. The Mobile Ground Control Station and the Mobile Ku SatCom Antenna are also shown and described.

  9. Mobile Aerial Tracking and Imaging System (MATrIS) for Aeronautical Research

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Blanchard, Robert C.; Miller, Geoffrey M.

    2004-01-01

    A mobile, rapidly deployable ground-based system to track and image targets of aeronautical interest has been developed. Targets include reentering reusable launch vehicles as well as atmospheric and transatmospheric vehicles. The optics were designed to image targets in the visible and infrared wavelengths. To minimize acquisition cost and development time, the system uses commercially available hardware and software where possible. The conception and initial funding of this system originated with a study of ground-based imaging of global aerothermal characteristics of reusable launch vehicle configurations. During that study the National Aeronautics and Space Administration teamed with the Missile Defense Agency/Innovative Science and Technology Experimentation Facility to test techniques and analysis on two Space Shuttle flights.

  10. The development of a parachute system for aerial delivery from high speed cargo aircraft

    SciTech Connect

    Behr, V.L.

    1992-12-31

    Supply of military personnel on the ground with cargo has long been accomplished with parachute delivery systems from aircraft. Structural limits of aircraft have typically limited these operations to no more than 150 KCAS. A desire for increased survivability of cargo delivery aircraft has led to the development and fielding of aircraft capable of delivering cargo at substantially higher speeds. This paper describes efforts undertaken to design develop and test a cargo delivery system for use at speeds compatible with those high speed cargo aircraft.

  11. The development of a parachute system for aerial delivery from high speed cargo aircraft

    SciTech Connect

    Behr, V.L.

    1992-01-01

    Supply of military personnel on the ground with cargo has long been accomplished with parachute delivery systems from aircraft. Structural limits of aircraft have typically limited these operations to no more than 150 KCAS. A desire for increased survivability of cargo delivery aircraft has led to the development and fielding of aircraft capable of delivering cargo at substantially higher speeds. This paper describes efforts undertaken to design develop and test a cargo delivery system for use at speeds compatible with those high speed cargo aircraft.

  12. Flow variability of an aerial variable-rate nozzle at constant pressures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variable-rate ground application systems have been in use for the past 15 years, but due to high application speeds, flow requirements, and aerodynamic considerations, variable-rate aerial nozzles have not been available until now. In 2006, Spray Target, Inc. released the VeriRate™ variable-rate aer...

  13. Applications of hypermedia systems

    SciTech Connect

    Lennon, J.; Maurer, H.

    1995-05-01

    In this paper, we consider several new aspects of modern hypermedia systems. The applications discussed include: (1) General Information and Communication Systems: Distributed information systems for businesses, schools and universities, museums, libraries, health systems, etc. (2) Electronic orientation and information displays: Electronic guided tours, public information kiosks, and publicity dissemination with archive facilities. (3) Lecturing: A system going beyond the traditional to empower both teachers and learners. (4) Libraries: A further step towards fully electronic library systems. (5) Directories of all kinds: Staff, telephone, and all sorts of generic directories. (6) Administration: A fully integrated system such as the one proposed will mean efficient data processing and valuable statistical data. (7) Research: Material can now be accessed from databases all around the world. The effects of networking and computer-supported collaborative work are discussed, and examples of new scientific visualization programs are quoted. The paper concludes with a section entitled {open_quotes}Future Directions{close_quotes}.

  14. Anti-inflammatory effects in muscle injury by transdermal application of gel with Lychnophora pinaster aerial parts using phonophoresis in rats

    PubMed Central

    2013-01-01

    Background Lycnophora pinaster is used by the traditional Brazilian medicine for the treatment of inflammations. Anti-inflammatory activity of Lycnophora pinaster was investigated for extracts, fractions, and isolated compounds of their aerial parts. The hexane extract (HE) provided α-amyrin, lupeol, mixture of α-amyrin and lupeol, mixture of 3-O-acetyl-lupeol and 3-O-acetyl-pseudotaraxasterol, and mixture of the steroids stigmasterol and sitosterol. The aqueous extract (WE) provided a fraction containing alkaloids (AF) and another one containing phenolic compounds (PF). Methods The crude hexane extract obtained from aerial parts of L. pinaster was submitted to chromatographic fractionation. The fractionation of PF was performed by preparative HPLC analysis, providing the flavonoid quercetin. The extracts, fractions, and compounds isolated from L. pinaster were tested to evaluate the anti-inflammatory activity by experimental model of impact injury, followed by transdermal application of gels with these samples. The application of the gels was performed using phonophoresis in rat paws after induction of muscle injury. Histological analysis was based on scores assigned by the capacity of decreasing the lesion. Results HE and WE exhibited anti-inflammatory activity. Some fractions, triterpenes, and steroids also reduced the inflammatory infiltrates caused by muscle injury. Lupeol promoted a significant reduction of inflammation. Quercetin also provided significant results, promoting the greatest decreases in muscle injury. Conclusion The results of this work suggest that topical application of triterpenes, steroids and flavonoid significantly decreases the inflammatory process generated by muscle injury. The transdermal application using phonophoresis in rat paws of gel with lupeol and quercetin attenuates the inflammation. PMID:24138803

  15. Enabling Civilian Low-Altitude Airspace and Unmanned Aerial System (UAS) Operations

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal

    2014-01-01

    UAS operations will be safer if a UTM system is available to support the functions associated with Airspace management and geo-fencing (reduce risk of accidents, impact to other operations, and community concerns); Weather and severe wind integration (avoid severe weather areas based on prediction); Predict and manage congestion (mission safety);Terrain and man-made objects database and avoidance; Maintain safe separation (mission safety and assurance of other assets); Allow only authenticated operations (avoid unauthorized airspace use).

  16. Aerial videotape mapping of coastal geomorphic changes

    USGS Publications Warehouse

    Debusschere, Karolien; Penland, Shea; Westphal, Karen A.; Reimer, P. Douglas; McBride, Randolph A.

    1991-01-01

    An aerial geomorphic mapping system was developed to examine the spatial and temporal variability in the coastal geomorphology of Louisiana. Between 1984 and 1990 eleven sequential annual and post-hurricane aerial videotape surveys were flown covering periods of prolonged fair weather, hurricane impacts and subsequent post-storm recoveries. A coastal geomorphic classification system was developed to map the spatial and temporal geomorphic changes between these surveys. The classification system is based on 10 years of shoreline monitoring, analysis of aerial photography for 1940-1989, and numerous field surveys. The classification system divides shorelines into two broad classes: natural and altered. Each class consists of several genetically linked categories of shorelines. Each category is further subdivided into morphologic types on the basis of landform relief, elevation, habitat type, vegetation density and type, and sediment characteristics. The classification is used with imagery from the low-altitude, high-resolution aerial videotape surveys to describe and quantify the longshore and cross-shore geomorphic, sedimentologic, and vegetative character of Louisiana's shoreline systems. The mapping system makes it possible to delineate and map detailed geomorphic habitat changes at a resolution higher than that of conventional vertical aerial photography. Morphologic units are mapped parallel to the regional shoreline from the aerial videotape imagery onto the base maps at a scale of 1:24,000. The base maps were constructed from vertical aerial photography concurrent with the data of the video imagery.

  17. Design and development of a compact lidar/DIAL system for aerial surveillance of urban areas

    NASA Astrophysics Data System (ADS)

    Gaudio, P.; Gelfusa, M.; Malizia, A.; Richetta, M.; Antonucci, A.; Ventura, P.; Murari, A.; Vega, J.

    2013-10-01

    Recently surveying large areas in an automatic way, for early detection of harmful chemical agents, has become a strategic objective of defence and public health organisations. The Lidar-Dial techniques are widely recognized as a cost-effective alternative to monitor large portions of the atmosphere but, up to now, they have been mainly deployed as ground based stations. The design reported in this paper concerns the development of a Lidar-Dial system compact enough to be carried by a small airplane and capable of detecting sudden releases in air of harmful and/or polluting substances. The proposed approach consists of continuous monitoring of the area under surveillance with a Lidar type measurement. Once a significant increase in the density of backscattering substances is revealed, it is intended to switch to the Dial technique to identify the released chemicals and to determine its concentration. In this paper, the design of the proposed system is described and the simulations carried out to determine its performances are reported. For the Lidar measurements, commercially available Nd- YAG laser sources have already been tested and their performances, in combination with avalanche photodiodes, have been experimentally verified to meet the required specifications. With regard to the DIAL measurements, new compact CO2 laser sources are being investigated. The most promising candidate presents an energy per pulse of about 50 mJ typical, sufficient for a range of at least 500m. The laser also provides the so called "agile tuning" option that allows to quickly tune the wavelength. To guarantee continuous, automatic surveying of large areas, innovative solutions are required for the data acquisition, self monitoring of the system and data analysis. The results of the design, the simulations and some preliminary tests illustrate the potential of the chosen, integrated approach.

  18. Capabilities of the DOE Remote Sensing Laboratory`s aerial measuring system

    SciTech Connect

    Riedhauser, S.R.

    1995-09-01

    This report describes the capabilities of the Remote Sensing Laboratory`s aircraft for use in environmental radiation surveys, multispectral (visible, near infrared, and thermal infrared) surveys of vegetation and buildings, and photographic documentation of the areas covered by the two other surveys. The report discusses the technical capabilities of the various systems and presents examples of the data from a recent demonstration survey. To provide a view of the types of surveys the Remote Sensing Laboratory has conducted in the past, the appendices describe several of the previous area surveys and emergency search surveys.

  19. Agricultural aviation application in the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The United States has the most advanced equipment and applications in agricultural aviation. It also has a complete service system in agricultural aviation. This article introduces the current status of aerial application including service, equipment, and aerial application techniques. It has a c...

  20. Real Time Corner Detection for Miniaturized Electro-Optical Sensors Onboard Small Unmanned Aerial Systems

    PubMed Central

    Forlenza, Lidia; Carton, Patrick; Accardo, Domenico; Fasano, Giancarmine; Moccia, Antonio

    2012-01-01

    This paper describes the target detection algorithm for the image processor of a vision-based system that is installed onboard an unmanned helicopter. It has been developed in the framework of a project of the French national aerospace research center Office National d’Etudes et de Recherches Aérospatiales (ONERA) which aims at developing an air-to-ground target tracking mission in an unknown urban environment. In particular, the image processor must detect targets and estimate ground motion in proximity of the detected target position. Concerning the target detection function, the analysis has dealt with realizing a corner detection algorithm and selecting the best choices in terms of edge detection methods, filtering size and type and the more suitable criterion of detection of the points of interest in order to obtain a very fast algorithm which fulfills the computation load requirements. The compared criteria are the Harris-Stephen and the Shi-Tomasi, ones, which are the most widely used in literature among those based on intensity. Experimental results which illustrate the performance of the developed algorithm and demonstrate that the detection time is fully compliant with the requirements of the real-time system are discussed. PMID:22368499

  1. Atmospheric Mining in the Outer Solar System: Aerial Vehicle Mission and Design Issues

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2015-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional gases, the potential for fueling small and large fleets of additional exploration and exploitation vehicles exists. The mining aerospacecraft (ASC) could fly through the outer planet atmospheres, for global weather observations, localized storm or other disturbance investigations, wind speed measurements, polar observations, etc. Analyses of orbital transfer vehicles (OTVs), landers, and in-situ resource utilization (ISRU) mining factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points.

  2. Evidence for internalization of Escherichia coli into the aerial parts of maize via the root system.

    PubMed

    Bernstein, Nirit; Sela, Shlomo; Pinto, Riky; Ioffe, Marina

    2007-02-01

    Escherichia coli introduced into the hydroponic growing medium of maize plants was detected 48 h later in the shoot. Decapitation of root tips or severing of the plant root system at the root-shoot junction enhanced bacterial internalization. The density of the bacteria in shoots of plants with damaged roots or removed root systems was 27.8 and 23.9 times higher than that in plants with intact roots, respectively. The concentration of viable cells in the hydroponic solution decreased over time from 9.3 x 10(6) CFU/ml at the time of inoculation to 8.5 x 10(1) CFU/ml 4 days thereafter. The number of E. coli cells associated with the roots also decreased with time, but a significant decline appeared only at 4 days postinoculation. At the time of sampling for E. coli presence in the shoot, 10(2) CFU/ml was present in the nutrient solution and 8 x 10(3) CFU/g was associated with the roots. The present study is the first to demonstrate internalization of E. coli via the root in a monocotyledonous plant.

  3. Real time corner detection for miniaturized electro-optical sensors onboard small unmanned aerial systems.

    PubMed

    Forlenza, Lidia; Carton, Patrick; Accardo, Domenico; Fasano, Giancarmine; Moccia, Antonio

    2012-01-01

    This paper describes the target detection algorithm for the image processor of a vision-based system that is installed onboard an unmanned helicopter. It has been developed in the framework of a project of the French national aerospace research center Office National d'Etudes et de Recherches Aérospatiales (ONERA) which aims at developing an air-to-ground target tracking mission in an unknown urban environment. In particular, the image processor must detect targets and estimate ground motion in proximity of the detected target position. Concerning the target detection function, the analysis has dealt with realizing a corner detection algorithm and selecting the best choices in terms of edge detection methods, filtering size and type and the more suitable criterion of detection of the points of interest in order to obtain a very fast algorithm which fulfills the computation load requirements. The compared criteria are the Harris-Stephen and the Shi-Tomasi, ones, which are the most widely used in literature among those based on intensity. Experimental results which illustrate the performance of the developed algorithm and demonstrate that the detection time is fully compliant with the requirements of the real-time system are discussed.

  4. Can Unmanned Aerial Systems (Drones) Be Used for the Routine Transport of Chemistry, Hematology, and Coagulation Laboratory Specimens?

    PubMed Central

    Amukele, Timothy K.; Sokoll, Lori J.; Pepper, Daniel; Howard, Dana P.; Street, Jeff

    2015-01-01

    Background Unmanned Aerial Systems (UAS or drones) could potentially be used for the routine transport of small goods such as diagnostic clinical laboratory specimens. To the best of our knowledge, there is no published study of the impact of UAS transportation on laboratory tests. Methods Three paired samples were obtained from each one of 56 adult volunteers in a single phlebotomy event (336 samples total): two tubes each for chemistry, hematology, and coagulation testing respectively. 168 samples were driven to the flight field and held stationary. The other 168 samples were flown in the UAS for a range of times, from 6 to 38 minutes. After the flight, 33 of the most common chemistry, hematology, and coagulation tests were performed. Statistical methods as well as performance criteria from four distinct clinical, academic, and regulatory bodies were used to evaluate the results. Results Results from flown and stationary sample pairs were similar for all 33 analytes. Bias and intercepts were <10% and <13% respectively for all analytes. Bland-Altman comparisons showed a mean difference of 3.2% for Glucose and <1% for other analytes. Only bicarbonate did not meet the strictest (Royal College of Pathologists of Australasia Quality Assurance Program) performance criteria. This was due to poor precision rather than bias. There were no systematic differences between laboratory-derived (analytic) CV’s and the CV’s of our flown versus terrestrial sample pairs however CV’s from the sample pairs tended to be slightly higher than analytic CV’s. The overall concordance, based on clinical stratification (normal versus abnormal), was 97%. Length of flight had no impact on the results. Conclusions Transportation of laboratory specimens via small UASs does not affect the accuracy of routine chemistry, hematology, and coagulation tests results from selfsame samples. However it results in slightly poorer precision for some analytes. PMID:26222261

  5. A Data System for a Rapid Evaluation Class of Subscale Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Hogge, Edward F.; Quach, Cuong C.; Vazquez, Sixto L.; Hill, Boyd L.

    2011-01-01

    A low cost, rapid evaluation, test aircraft is used to develop and test airframe damage diagnosis algorithms at Langley Research Center as part of NASA's Aviation Safety Program. The remotely operated subscale aircraft is instrumented with sensors to monitor structural response during flight. Data is collected for good and compromised airframe configurations to develop data driven models for diagnosing airframe state. This paper describes the data acquisition system (DAS) of the rapid evaluation test aircraft. A PC/104 form factor DAS was developed to allow use of Matlab, Simulink simulation code in Langley's existing subscale aircraft flight test infrastructure. The small scale of the test aircraft permitted laboratory testing of the actual flight article under controlled conditions. The low cost and modularity of the DAS permitted adaptation to various flight experiment requirements.

  6. Development of an Unmanned Aerial System (UAS) for Scaling Terrestrial Ecosystem Traits

    NASA Astrophysics Data System (ADS)

    Meng, R.; McMahon, A. M.; Serbin, S.; Rogers, A.

    2015-12-01

    The next generation of Ecosystem and Earth System Models (EESMs) will require detailed information on ecosystem structure and function, including properties of vegetation related to carbon (C), water, and energy cycling, in order to project the future state of ecosystems. High spatial-temporal resolution measurements of terrestrial ecosystem are also important for EESMs, because they can provide critical inputs and benchmark datasets for evaluation of EESMs simulations across scales. The recent development of high-quality, low-altitude remote sensing platforms or small UAS (< 25 kg) enables measurements of terrestrial ecosystems at unprecedented temporal and spatial scales. Specifically, these new platforms can provide detailed information on patterns and processes of terrestrial ecosystems at a critical intermediate scale between point measurements and suborbital and satellite platforms. Given their potential for sub-decimeter spatial resolution, improved mission safety, high revisit frequency, and reduced operation cost, these platforms are of particular interest in the development of ecological scaling algorithms to parameterize and benchmark EESMs, particularly over complex and remote terrain. Our group is developing a small UAS platform and integrated sensor package focused on measurement needs for scaling and informing ecosystem modeling activities, as well as scaling and mapping plant functional traits. To do this we are developing an integrated software workflow and hardware package using off-the-shelf instrumentation including a high-resolution digital camera for Structure from Motion, spectroradiometer, and a thermal infrared camera. Our workflow includes platform design, measurement, image processing, data management, and information extraction. The fusion of 3D structure information, thermal-infrared imagery, and spectroscopic measurements, will provide a foundation for the development of ecological scaling and mapping algorithms. Our initial focus is

  7. Aerial-broadcast application of diphacinone bait for rodent control in Hawai`i: Efficacy and non-target species risk assessment

    USGS Publications Warehouse

    Foote, David; Spurr, Eric B.; Lindsey, Gerald D.; Forbes Perry, Charlotte

    2015-01-01

    Introduced rats (Rattus rattus, R. exulans, and R. norvegicus) have been implicated in the decline or extinction of numerous species of plants and animals in Hawai‘i. This study investigated the efficacy of aerial-broadcast application of Ramik® Green baits containing 50 ppm (0.005%) diphacinone in reducing rat and mouse populations and the risk to non-target species. The study was undertaken in paired 45.56-ha treatment and non-treatment plots in Hawai‘i Volcanoes National Park. All 21 radio-collared rats in the treatment plot died within nine days of bait application, whereas none of the 18 radio-collared rats in the non-treatment plot died. There was a 99% drop in both the rat capture rate and percentage of non-toxic census bait blocks gnawed by rats in the treatment plot relative to the non-treatment plot three weeks after bait application. The only rat captured in the treatment plot three weeks after bait application was not ear-tagged (i.e., it was not a recapture), whereas 44% of the 52 rats captured in the non-treatment plot were ear-tagged. Most of the bait had disappeared from the forest floor within about one month of application. No birds likely to have eaten bait were found dead, although residues of diphacinone were found in the livers of three species of introduced seed-eating/omnivorous birds captured alive after bait application. No predatory birds were found dead one month or three months after bait application. The remains of a Hawaiian hawk (Buteo solitarius) were found six months after bait application, but it was not possible to determine the cause of death. This study demonstrated the efficacy of aerially broadcast diphacinone bait for control of rats and mice in Hawaiian montane forests, and was part of the dataset submitted to the U.S. Environmental Protection Agency for the national registration of a diphacinone bait for the control of rat populations in conservation areas.

  8. 11. Photocopy of aerial photograph (original aerial located in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photocopy of aerial photograph (original aerial located in the U.S. Forest Service, Toiyabe National Forest, Carson District Office). AERIAL VIEW OF THE GENOA PEAK ROAD, SPUR. - Genoa Peak Road, Spur, Glenbrook, Douglas County, NV

  9. Space applications instrumentation systems

    NASA Technical Reports Server (NTRS)

    Minzner, R. A.; Oberholtzer, J. D.

    1972-01-01

    A compendium of resumes of 158 instrument systems or experiments, of particular interest to space applications, is presented. Each resume exists in a standardized format, permitting entries for 26 administrative items and 39 scientific or engineering items. The resumes are organized into forty groups determined by the forty spacecraft with which the instruments are associated. The resumes are followed by six different cross indexes, each organized alphabetically according to one of the following catagories: instrument name, acronym, name of principal investigator, name of organization employing the principal investigator, assigned experiment number, and spacecraft name. The resumes are associated with a computerized instrument resume search and retrieval system.

  10. Advanced System Design Requirements for Large and Small Fixed-wing Aerial Application Systems for Agriculture

    NASA Technical Reports Server (NTRS)

    Hinely, J. T., Jr.; Boyles, R. Q., Jr.

    1979-01-01

    Several candidate aircraft configurations were defined over the range of 1000 to 10,000 pounds payload and evaluated over a broad spectrum of agricultural missions. From these studies, baseline design points were selected at 3200 pounds payload for the small aircraft and 7500 pounds for the large aircraft. The small baseline aircraft utilizes a single turboprop powerplant while the large aircraft utilizes two turboprop powerplants. These configurations were optimized for wing loading, aspect ratio, and power loading to provide the best mission economics in representative missions. Wing loading of 20 lb/sq ft was selected for the small aircraft and 25 lb/sq ft for the large aircraft. Aspect ratio of 8 was selected for both aircraft. It was found that a 10% reduction in engine power from the original configurations provided improved mission economics for both aircraft by reducing the cost of the turboprop. Refined configurations incorporate a 675 HP engine in the small aircraft and two 688 HP engines in the large aircraft.

  11. Draper Laboratory small autonomous aerial vehicle

    NASA Astrophysics Data System (ADS)

    DeBitetto, Paul A.; Johnson, Eric N.; Bosse, Michael C.; Trott, Christian A.

    1997-06-01

    The Charles Stark Draper Laboratory, Inc. and students from Massachusetts Institute of Technology and Boston University have cooperated to develop an autonomous aerial vehicle that won the 1996 International Aerial Robotics Competition. This paper describes the approach, system architecture and subsystem designs for the entry. This entry represents a combination of many technology areas: navigation, guidance, control, vision processing, human factors, packaging, power, real-time software, and others. The aerial vehicle, an autonomous helicopter, performs navigation and control functions using multiple sensors: differential GPS, inertial measurement unit, sonar altimeter, and a flux compass. The aerial transmits video imagery to the ground. A ground based vision processor converts the image data into target position and classification estimates. The system was designed, built, and flown in less than one year and has provided many lessons about autonomous vehicle systems, several of which are discussed. In an appendix, our current research in augmenting the navigation system with vision- based estimates is presented.

  12. Photogrammetric mapping using unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Graça, N.; Mitishita, E.; Gonçalves, J.

    2014-11-01

    Nowadays Unmanned Aerial Vehicle (UAV) technology has attracted attention for aerial photogrammetric mapping. The low cost and the feasibility to automatic flight along commanded waypoints can be considered as the main advantages of this technology in photogrammetric applications. Using GNSS/INS technologies the images are taken at the planned position of the exposure station and the exterior orientation parameters (position Xo, Yo, Zo and attitude ω, φ, χ) of images can be direct determined. However, common UAVs (off-the-shelf) do not replace the traditional aircraft platform. Overall, the main shortcomings are related to: difficulties to obtain the authorization to perform the flight in urban and rural areas, platform stability, safety flight, stability of the image block configuration, high number of the images and inaccuracies of the direct determination of the exterior orientation parameters of the images. In this paper are shown the obtained results from the project photogrammetric mapping using aerial images from the SIMEPAR UAV system. The PIPER J3 UAV Hydro aircraft was used. It has a micro pilot MP2128g. The system is fully integrated with 3-axis gyros/accelerometers, GPS, pressure altimeter, pressure airspeed sensors. A Sony Cyber-shot DSC-W300 was calibrated and used to get the image block. The flight height was close to 400 m, resulting GSD near to 0.10 m. The state of the art of the used technology, methodologies and the obtained results are shown and discussed. Finally advantages/shortcomings found in the study and main conclusions are presented

  13. CMOS Imaging Sensor Technology for Aerial Mapping Cameras

    NASA Astrophysics Data System (ADS)

    Neumann, Klaus; Welzenbach, Martin; Timm, Martin

    2016-06-01

    In June 2015 Leica Geosystems launched the first large format aerial mapping camera using CMOS sensor technology, the Leica DMC III. This paper describes the motivation to change from CCD sensor technology to CMOS for the development of this new aerial mapping camera. In 2002 the DMC first generation was developed by Z/I Imaging. It was the first large format digital frame sensor designed for mapping applications. In 2009 Z/I Imaging designed the DMC II which was the first digital aerial mapping camera using a single ultra large CCD sensor to avoid stitching of smaller CCDs. The DMC III is now the third generation of large format frame sensor developed by Z/I Imaging and Leica Geosystems for the DMC camera family. It is an evolution of the DMC II using the same system design with one large monolithic PAN sensor and four multi spectral camera heads for R,G, B and NIR. For the first time a 391 Megapixel large CMOS sensor had been used as PAN chromatic sensor, which is an industry record. Along with CMOS technology goes a range of technical benefits. The dynamic range of the CMOS sensor is approx. twice the range of a comparable CCD sensor and the signal to noise ratio is significantly better than with CCDs. Finally results from the first DMC III customer installations and test flights will be presented and compared with other CCD based aerial sensors.

  14. Stratigraphic sequence architecture of deep-sea clastic system from aerial photographs, Great Valley sequence, northern California

    SciTech Connect

    Paramore, R.C.; Suchecki, R.K.

    1989-04-01

    Lineations interpreted from aerial photographs reveal stratal geometries of deep-sea clastic deposits along an ancient basin margin that was strongly influenced by both subduction and related volcanogenic processes. These stratal patterns of four principal stratigraphic sequences in steeply dipping Tithonian to Valanginian sediments of the Great Valley sequence, northern California, in combination with lithic facies data, illustrate the major components and internal architecture that resulted from eustatic and tectonic variations. Although deposited along a tectonically active margin, the component geometries and internal stratal patterns of the sequences are similar in detail to seismically defined stratigraphic sequences of Vail. The integration of fine-scale stratal architecture based on aerial photograph interpretation and sediment facies using classical models of submarine-fan deposits illustrates the depositional and stratigraphic evolution of a convegent deep-sea margin.

  15. Aerial photographic reproductions

    USGS Publications Warehouse

    ,

    1975-01-01

    The National Cartographic Information Center of the U.S. Geological Survey maintains records of aerial photographic coverage of the United States and its Territories, based on reports from other Federal agencies as well as State governmental agencies and commercial companies. From these records, the Center furnishes data to prospective purchasers on available photography and the agency holding the aerial film.

  16. Detection of morphological changes in cliff face surrounding a waterfall using terrestrial laser scanning and unmanned aerial system

    NASA Astrophysics Data System (ADS)

    Hayakawa, Yuichi S.; Obanawa, Hiroyuki

    2015-04-01

    Waterfall or bedrock knickpoint appears as an erosional front in bedrock rivers forming deep v-shaped valley downstream. Following the rapid fluvial erosion of waterfall, rockfalls and gravita-tional collapses often occur in surrounding steep cliffs. Although morphological changes of such steep cliffs are sometimes visually observed, quantitative and precise measurements of their spatio-temporal distribution have been limited due to the difficulties in direct access to such cliffs if with classical measurement methods. However, for the clarification of geomorphological processes oc-curring in the cliffs, multi-temporal mapping of the cliff face at a high resolution is necessary. Re-mote sensing approaches are therefore suitable for the topographic measurements and detection of changes in such inaccessible cliffs. To achieve accurate topographic mapping of cliffs around a wa-terfall, here we perform multi-temporal terrestrial laser scanning (TLS), as well as structure-from-motion multi-view stereo (SfM-MVS) photogrammetry based on unmanned aerial system (UAS). The study site is Kegon Falls in central Japan, having a vertical drop of surface water from top of its overhanging cliff, as well as groundwater outflows from its lower portions. The bedrock is composed of alternate layers of andesite lava and conglomerates. Minor rockfalls in the cliffs are often ob-served by local people. The latest major rockfall occurred in 1986, causing ca. 8-m upstream propa-gation of the waterfall lip. This provides a good opportunity to examine the changes in the surround-ing cliffs following the waterfall recession. Multi-time point clouds were obtained by TLS measure-ment over years, and the three-dimensional changes of the rock surface were detected, uncovering the locus of small rockfalls and gully developments. Erosion seems particularly frequent in relatively weak the conglomerates layer, whereas small rockfalls seems to have occurred in the andesite layers. Also, shadows in the

  17. Bridging Estimates of Greenness in an Arid Grassland Using Field Observations, Phenocams, and Time Series Unmanned Aerial System (UAS) Imagery

    NASA Astrophysics Data System (ADS)

    Browning, D. M.; Tweedie, C. E.; Rango, A.

    2013-12-01

    Spatially extensive grasslands and savannas in arid and semi-arid ecosystems (i.e., rangelands) require cost-effective, accurate, and consistent approaches for monitoring plant phenology. Remotely sensed imagery offers these capabilities; however contributions of exposed soil due to modest vegetation cover, susceptibility of vegetation to drought, and lack of robust scaling relationships challenge biophysical retrievals using moderate- and coarse-resolution satellite imagery. To evaluate methods for characterizing plant phenology of common rangeland species and to link field measurements to remotely sensed metrics of land surface phenology, we devised a hierarchical study spanning multiple spatial scales. We collect data using weekly standardized field observations on focal plants, daily phenocam estimates of vegetation greenness, and very high spatial resolution imagery from an Unmanned Aerial System (UAS) throughout the growing season. Field observations of phenological condition and vegetation cover serve to verify phenocam greenness indices along with indices derived from time series UAS imagery. UAS imagery is classified using object-oriented image analysis to identify species-specific image objects for which greenness indices are derived. Species-specific image objects facilitate comparisons with phenocam greenness indices and scaling spectral responses to footprints of Landsat and MODIS pixels. Phenocam greenness curves indicated rapid canopy development for the widespread deciduous shrub Prosopis glandulosa over 14 (in April 2012) to 16 (in May 2013) days. The modest peak in greenness for the dominant perennial grass Bouteloua eriopoda occurred in October 2012 following peak summer rainfall. Weekly field estimates of canopy development closely coincided with daily patterns in initial growth and senescence for both species. Field observations improve the precision of the timing of phenophase transitions relative to inflection points calculated from phenocam

  18. Aerial Application of Mancozeb and Urinary Ethylene Thiourea (ETU) Concentrations among Pregnant Women in Costa Rica: The Infants’ Environmental Health Study (ISA)

    PubMed Central

    Mora, Ana María; Córdoba, Leonel; Cano, Juan Camilo; Quesada, Rosario; Faniband, Moosa; Wesseling, Catharina; Ruepert, Clemens; Öberg, Mattias; Eskenazi, Brenda; Mergler, Donna; Lindh, Christian H.

    2014-01-01

    Background: Mancozeb and its main metabolite ethylene thiourea (ETU) may alter thyroid function; thyroid hormones are essential for fetal brain development. In Costa Rica, mancozeb is aerially sprayed at large-scale banana plantations on a weekly basis. Objectives: Our goals were to evaluate urinary ETU concentrations in pregnant women living near large-scale banana plantations, compare their estimated daily intake (EDI) with established reference doses (RfDs), and identify factors that predict their urinary ETU concentrations. Methods: We enrolled 451 pregnant women from Matina County, Costa Rica, which has large-scale banana production. We visited 445 women up to three times during pregnancy to obtain urine samples (n = 872) and information on factors that possibly influence exposure. We determined urinary ETU concentrations using liquid chromatography mass spectrometry. Results: Pregnant women’s median urinary ETU concentrations were more than five times higher than those reported for other general populations. Seventy-two percent of the women had EDIs above the RfD. Women who lived closest (1st quartile, < 48 m) to banana plantations on average had a 45% (95% CI: 23, 72%) higher urinary ETU compared with women who lived farthest away (4th quartile, ≥ 565 m). Compared with the other women, ETU was also higher in women who washed agricultural work clothes on the day before sampling (11%; 95% CI: 4.9, 17%), women who worked in agriculture during pregnancy (19%; 95% CI: 9.3, 29%), and immigrant women (6.2%; 95% CI: 1.0, 13%). Conclusions: The pregnant women’s urinary ETU concentrations are of concern, and the principal source of exposure is likely to be aerial spraying of mancozeb. The factors predicting ETU provide insight into possibilities for exposure reduction. Citation: van Wendel de Joode B, Mora AM, Córdoba L, Cano JC, Quesada R, Faniband M, Wesseling C, Ruepert C, Öberg M, Eskenazi B, Mergler D, Lindh CH. 2014. Aerial application of mancozeb and

  19. The Potential of Unmanned Aerial Vehicle for Large Scale Mapping of Coastal Area

    NASA Astrophysics Data System (ADS)

    Darwin, N.; Ahmad, A.; Zainon, O.

    2014-02-01

    Many countries in the tropical region are covered with cloud for most of the time, hence, it is difficult to get clear images especially from high resolution satellite imagery. Aerial photogrammetry can be used but most of the time the cloud problem still exists. Today, this problem could be solved using a system known as unmanned aerial vehicle (UAV) where the aerial images can be acquired at low altitude and the system can fly under the cloud. The UAV system could be used in various applications including mapping coastal area. The UAV system is equipped with an autopilot system and automatic method known as autonomous flying that can be utilized for data acquisition. To achieve high resolution imagery, a compact digital camera of high resolution was used to acquire the aerial images at an altitude. In this study, the UAV system was employed to acquire aerial images of a coastal simulation model at low altitude. From the aerial images, photogrammetric image processing was executed to produce photogrammetric outputs such a digital elevation model (DEM), contour line and orthophoto. In this study, ground control point (GCP) and check point (CP) were established using conventional ground surveying method (i.e total station). The GCP is used for exterior orientation in photogrammetric processes and CP for accuracy assessment based on Root Mean Square Error (RMSE). From this study, it was found that the UAV system can be used for large scale mapping of coastal simulation model with accuracy at millimeter level. It is anticipated that the same system could be used for large scale mapping of real coastal area and produces good accuracy. Finally, the UAV system has great potential to be used for various applications that require accurate results or products at limited time and less man power.

  20. A Space-Time Network-Based Modeling Framework for Dynamic Unmanned Aerial Vehicle Routing in Traffic Incident Monitoring Applications

    PubMed Central

    Zhang, Jisheng; Jia, Limin; Niu, Shuyun; Zhang, Fan; Tong, Lu; Zhou, Xuesong

    2015-01-01

    It is essential for transportation management centers to equip and manage a network of fixed and mobile sensors in order to quickly detect traffic incidents and further monitor the related impact areas, especially for high-impact accidents with dramatic traffic congestion propagation. As emerging small Unmanned Aerial Vehicles (UAVs) start to have a more flexible regulation environment, it is critically important to fully explore the potential for of using UAVs for monitoring recurring and non-recurring traffic conditions and special events on transportation networks. This paper presents a space-time network- based modeling framework for integrated fixed and mobile sensor networks, in order to provide a rapid and systematic road traffic monitoring mechanism. By constructing a discretized space-time network to characterize not only the speed for UAVs but also the time-sensitive impact areas of traffic congestion, we formulate the problem as a linear integer programming model to minimize the detection delay cost and operational cost, subject to feasible flying route constraints. A Lagrangian relaxation solution framework is developed to decompose the original complex problem into a series of computationally efficient time-dependent and least cost path finding sub-problems. Several examples are used to demonstrate the results of proposed models in UAVs’ route planning for small and medium-scale networks. PMID:26076404

  1. A Space-Time Network-Based Modeling Framework for Dynamic Unmanned Aerial Vehicle Routing in Traffic Incident Monitoring Applications.

    PubMed

    Zhang, Jisheng; Jia, Limin; Niu, Shuyun; Zhang, Fan; Tong, Lu; Zhou, Xuesong

    2015-06-12

    It is essential for transportation management centers to equip and manage a network of fixed and mobile sensors in order to quickly detect traffic incidents and further monitor the related impact areas, especially for high-impact accidents with dramatic traffic congestion propagation. As emerging small Unmanned Aerial Vehicles (UAVs) start to have a more flexible regulation environment, it is critically important to fully explore the potential for of using UAVs for monitoring recurring and non-recurring traffic conditions and special events on transportation networks. This paper presents a space-time network- based modeling framework for integrated fixed and mobile sensor networks, in order to provide a rapid and systematic road traffic monitoring mechanism. By constructing a discretized space-time network to characterize not only the speed for UAVs but also the time-sensitive impact areas of traffic congestion, we formulate the problem as a linear integer programming model to minimize the detection delay cost and operational cost, subject to feasible flying route constraints. A Lagrangian relaxation solution framework is developed to decompose the original complex problem into a series of computationally efficient time-dependent and least cost path finding sub-problems. Several examples are used to demonstrate the results of proposed models in UAVs' route planning for small and medium-scale networks.

  2. A Space-Time Network-Based Modeling Framework for Dynamic Unmanned Aerial Vehicle Routing in Traffic Incident Monitoring Applications.

    PubMed

    Zhang, Jisheng; Jia, Limin; Niu, Shuyun; Zhang, Fan; Tong, Lu; Zhou, Xuesong

    2015-01-01

    It is essential for transportation management centers to equip and manage a network of fixed and mobile sensors in order to quickly detect traffic incidents and further monitor the related impact areas, especially for high-impact accidents with dramatic traffic congestion propagation. As emerging small Unmanned Aerial Vehicles (UAVs) start to have a more flexible regulation environment, it is critically important to fully explore the potential for of using UAVs for monitoring recurring and non-recurring traffic conditions and special events on transportation networks. This paper presents a space-time network- based modeling framework for integrated fixed and mobile sensor networks, in order to provide a rapid and systematic road traffic monitoring mechanism. By constructing a discretized space-time network to characterize not only the speed for UAVs but also the time-sensitive impact areas of traffic congestion, we formulate the problem as a linear integer programming model to minimize the detection delay cost and operational cost, subject to feasible flying route constraints. A Lagrangian relaxation solution framework is developed to decompose the original complex problem into a series of computationally efficient time-dependent and least cost path finding sub-problems. Several examples are used to demonstrate the results of proposed models in UAVs' route planning for small and medium-scale networks. PMID:26076404

  3. Integration of historical aerial photography and a geographic information system to evaluate the impact of human activities in a cypress-tupelo swamp

    SciTech Connect

    Jensen, J.R.; Burkhalter, S.; Althausen, J.D.; Narumalani, S.; Mackey, H.E. Jr.

    1993-12-31

    The Savannah River Site (SRS) is a 78,000 ha Department of Energy (DOE) facility that borders the Savannah River in the south-west portion of South Carolina. It includes a 3,800 ha cypress-tupelo swamp where commercial lumbering activities took place prior to the purchase of the land by the federal government in 1951. Since then, the DOE commenced nuclear production operations which resulted in the release of thermal effluent into the streams entering the Savannah River swamp system. The thermal effluent also had an impact on the swamp through the creation of sedimentation deltas. The purpose of this research is to identify areas of anthropogenic impact on the swamp and to delineate any areas that may still be considered pristine. Large-scale historical aerial photography of the swamp for 1938, 1943, 1951, and 1973 were photo-interpreted and used to develop a geographic information system (GIS) database. Logging features such as haul lines, drag points, harvest areas and roads were identified from black-and-white aerial photographs (1938-1973) and converted into a digital format. Sediment deltas were interpreted from 1976, 1981 and 1988 color aerial photography. Geometric transformations and GIS data analysis operations were performed to delineate areas impacted by man`s activities over the 48-year time period. Only 1391 ha of swamp can still can be considered pristine. Approximately 63% of the swamp has been altered from its original state, either by logging practices or the effects of sediment loading from thermal effluent. This method of mapping the pristine areas of the swamp allows SRS environmental scientists the opportunity to have a priori knowledge about undisturbed swamp forest environments, which they may use as a baseline for restoration or wetland mitigation projects.

  4. A comparison of multicopter and fixed-wing unmanned aerial systems (UAS) applied to mapping debris flows in small alpine catchments

    NASA Astrophysics Data System (ADS)

    Sotier, Bernadette; Lechner, Veronika

    2016-04-01

    The use of unmanned aerial systems (UAS) for documenting natural hazard events (e.g. debris flows) is becoming increasingly popular, as UAS allow on-demand, flexible and cost-efficient data acquisition. In this paper, we present the results of a comparison of multicopter and fixed-wing UAS. They were employed in the summer of 2015 to map two small alpine catchments located in Western Austria, where debris flows had occurred recently: The first event took place in the Seigesbach (Tyrol), the second occurred in the Plojergraben (Salzburg). For the Seigesbach mission, a fixed-wing UAS (Multiplex Mentor), equipped with a Sony NEX5 (50 mm prime lens, 14 MP sensor resolution) was employed to acquire approximately 4,000 images. In the Plojergraben an AustroDrones X18 octocopter was used, carrying a Sony ILCE-7R (35 mm prime lens, 36 MP sensor resolution) to record 1,700 images. Both sites had a size of approximately 2km². 20 ground control points (GCP) were distributed within both catchments, and their location was measured (Trimble GeoXT, expected accuracy 0.15 m). Using standard structure-from-motion photogrammetry software (AgiSoft PhotoScan Pro, v. 1.1.6), orthophotos (5 cm ground sampling distance - GSD) and digital surface models (DSM) (20 cm GSD) were calculated. Volume differences caused by the debris flow (i.e. deposition heights and erosion depths) computed by subtracting post-event from pre-event DSMs. Even though the terrain conditions in the two catchments were comparable, the challenges during the field campaign and the evaluation of the aerial images were very different. The main difference between the two campaigns was the number of flights required to cover the catchment: only four were needed by the fixed-wing UAS, while the multicopter required eleven in the Plojergraben. The fixed-wing UAS is specially designed for missions in hardly accessible regions, requiring only two people to carry the whole equipment, while in this case a car was needed for the

  5. Rangeland resource assessment, monitoring, and management using unmanned aerial vehicle-based remote sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Civilian applications of Unmanned Aerial Vehicles (UAV) have rapidly been expanding recently. Thanks to military development many civil UAVs come via the defense sector. Although numerous UAVs can perform civilian tasks, the regulations imposed by FAA in the national airspace system and military e...

  6. Combining Human Computing and Machine Learning to Make Sense of Big (Aerial) Data for Disaster Response.

    PubMed

    Ofli, Ferda; Meier, Patrick; Imran, Muhammad; Castillo, Carlos; Tuia, Devis; Rey, Nicolas; Briant, Julien; Millet, Pauline; Reinhard, Friedrich; Parkan, Matthew; Joost, Stéphane

    2016-03-01

    Aerial imagery captured via unmanned aerial vehicles (UAVs) is playing an increasingly important role in disaster response. Unlike satellite imagery, aerial imagery can be captured and processed within hours rather than days. In addition, the spatial resolution of aerial imagery is an order of magnitude higher than the imagery produced by the most sophisticated commercial satellites today. Both the United States Federal Emergency Management Agency (FEMA) and the European Commission's Joint Research Center (JRC) have noted that aerial imagery will inevitably present a big data challenge. The purpose of this article is to get ahead of this future challenge by proposing a hybrid crowdsourcing and real-time machine learning solution to rapidly process large volumes of aerial data for disaster response in a time-sensitive manner. Crowdsourcing can be used to annotate features of interest in aerial images (such as damaged shelters and roads blocked by debris). These human-annotated features can then be used to train a supervised machine learning system to learn to recognize such features in new unseen images. In this article, we describe how this hybrid solution for image analysis can be implemented as a module (i.e., Aerial Clicker) to extend an existing platform called Artificial Intelligence for Disaster Response (AIDR), which has already been deployed to classify microblog messages during disasters using its Text Clicker module and in response to Cyclone Pam, a category 5 cyclone that devastated Vanuatu in March 2015. The hybrid solution we present can be applied to both aerial and satellite imagery and has applications beyond disaster response such as wildlife protection, human rights, and archeological exploration. As a proof of concept, we recently piloted this solution using very high-resolution aerial photographs of a wildlife reserve in Namibia to support rangers with their wildlife conservation efforts (SAVMAP project, http://lasig.epfl.ch/savmap ). The

  7. Combining Human Computing and Machine Learning to Make Sense of Big (Aerial) Data for Disaster Response.

    PubMed

    Ofli, Ferda; Meier, Patrick; Imran, Muhammad; Castillo, Carlos; Tuia, Devis; Rey, Nicolas; Briant, Julien; Millet, Pauline; Reinhard, Friedrich; Parkan, Matthew; Joost, Stéphane

    2016-03-01

    Aerial imagery captured via unmanned aerial vehicles (UAVs) is playing an increasingly important role in disaster response. Unlike satellite imagery, aerial imagery can be captured and processed within hours rather than days. In addition, the spatial resolution of aerial imagery is an order of magnitude higher than the imagery produced by the most sophisticated commercial satellites today. Both the United States Federal Emergency Management Agency (FEMA) and the European Commission's Joint Research Center (JRC) have noted that aerial imagery will inevitably present a big data challenge. The purpose of this article is to get ahead of this future challenge by proposing a hybrid crowdsourcing and real-time machine learning solution to rapidly process large volumes of aerial data for disaster response in a time-sensitive manner. Crowdsourcing can be used to annotate features of interest in aerial images (such as damaged shelters and roads blocked by debris). These human-annotated features can then be used to train a supervised machine learning system to learn to recognize such features in new unseen images. In this article, we describe how this hybrid solution for image analysis can be implemented as a module (i.e., Aerial Clicker) to extend an existing platform called Artificial Intelligence for Disaster Response (AIDR), which has already been deployed to classify microblog messages during disasters using its Text Clicker module and in response to Cyclone Pam, a category 5 cyclone that devastated Vanuatu in March 2015. The hybrid solution we present can be applied to both aerial and satellite imagery and has applications beyond disaster response such as wildlife protection, human rights, and archeological exploration. As a proof of concept, we recently piloted this solution using very high-resolution aerial photographs of a wildlife reserve in Namibia to support rangers with their wildlife conservation efforts (SAVMAP project, http://lasig.epfl.ch/savmap ). The

  8. Unmanned Aerial Vehicles unique cost estimating requirements

    NASA Astrophysics Data System (ADS)

    Malone, P.; Apgar, H.; Stukes, S.; Sterk, S.

    Unmanned Aerial Vehicles (UAVs), also referred to as drones, are aerial platforms that fly without a human pilot onboard. UAVs are controlled autonomously by a computer in the vehicle or under the remote control of a pilot stationed at a fixed ground location. There are a wide variety of drone shapes, sizes, configurations, complexities, and characteristics. Use of these devices by the Department of Defense (DoD), NASA, civil and commercial organizations continues to grow. UAVs are commonly used for intelligence, surveillance, reconnaissance (ISR). They are also use for combat operations, and civil applications, such as firefighting, non-military security work, surveillance of infrastructure (e.g. pipelines, power lines and country borders). UAVs are often preferred for missions that require sustained persistence (over 4 hours in duration), or are “ too dangerous, dull or dirty” for manned aircraft. Moreover, they can offer significant acquisition and operations cost savings over traditional manned aircraft. Because of these unique characteristics and missions, UAV estimates require some unique estimating methods. This paper describes a framework for estimating UAV systems total ownership cost including hardware components, software design, and operations. The challenge of collecting data, testing the sensitivities of cost drivers, and creating cost estimating relationships (CERs) for each key work breakdown structure (WBS) element is discussed. The autonomous operation of UAVs is especially challenging from a software perspective.

  9. Object-based spatiotemporal analysis of vine canopy vigor using an inexpensive unmanned aerial vehicle remote sensing system

    NASA Astrophysics Data System (ADS)

    Mathews, Adam J.

    2014-01-01

    Remotely sensed imagery provides a rapid assessment of spatial variability in grapevine canopy vigor that correlates with crop performance. Unmanned aerial vehicles (UAVs) provide a low-cost image acquisition platform with high spatial and temporal resolutions. Using a UAV and digital cameras, aerial images of a Texas vineyard were captured at postflowering, veraison, and harvest. Imagery was processed to generate orthophotos in units of reflectance, which were then segmented to extract per-vine estimates of canopy area (planimetric extent) and normalized difference vegetation index (NDVI)-based canopy density. Derived canopy area and density values were compared to the harvest variables of number of clusters, cluster size, and yield to explore correlations. Planimetrically derived canopy area yielded significant, positive relationships, whereas NDVI-based canopy density exhibited no significant relationships due to sensor-related radiometric inaccuracy. A vine performance index was calculated to map spatial variation in canopy vigor for the entire growing season. Future management zones were delineated using spatial grouping analysis.

  10. Application of High-resolution Aerial LiDAR Data in Calibration of a Two-dimensional Urban Flood Simulation

    NASA Astrophysics Data System (ADS)

    Piotrowski, J.; Goska, R.; Chen, B.; Krajewski, W. F.; Young, N.; Weber, L.

    2009-12-01

    In June 2008, the state of Iowa experienced an unprecedented flood event which resulted in an economic loss of approximately $2.88 billion. Flooding in the Iowa River corridor, which exceeded the previous flood of record by 3 feet, devastated several communities, including Coralville and Iowa City, home to the University of Iowa. Recognizing an opportunity to capture a unique dataset detailing the impacts of the historic flood, the investigators contacted the National Center for Airborne Laser Mapping (NCALM), which performed an aerial Light Detection and Ranging (LiDAR) survey along the Iowa River. The survey, conducted immediately following the flood peak, provided coverage of a 60-mile reach. The goal of the present research is to develop a process by which flood extents and water surface elevations can be accurately extracted from the LiDAR data set and to evaluate the benefit of such data in calibrating one- and two-dimensional hydraulic models. Whereas data typically available for model calibration include sparsely distributed point observations and high water marks, the LiDAR data used in the present study provide broad-scale, detailed, and continuous information describing the spatial extent and depth of flooding. Initial efforts were focused on a 10-mile, primarily urban reach of the Iowa River extending from Coralville Reservoir, a United States Army Corps of Engineers flood control project, downstream through the Coralville and Iowa City. Spatial extent and depth of flooding were estimated from the LiDAR data. At a given cross-sectional location, river channel and floodplain measurements were compared. When differences between floodplain and river channel measurements were less than a standard deviation of the vertical uncertainty in the LiDAR survey, floodplain measurements were classified as flooded. A flood water surface DEM was created using measurements classified as flooded. A two-dimensional, depth-averaged numerical model of a 10-mile reach of

  11. Aerial Photographs and Satellite Images

    USGS Publications Warehouse

    ,

    1997-01-01

    Photographs and other images of the Earth taken from the air and from space show a great deal about the planet's landforms, vegetation, and resources. Aerial and satellite images, known as remotely sensed images, permit accurate mapping of land cover and make landscape features understandable on regional, continental, and even global scales. Transient phenomena, such as seasonal vegetation vigor and contaminant discharges, can be studied by comparing images acquired at different times. The U.S. Geological Survey (USGS), which began using aerial photographs for mapping in the 1930's, archives photographs from its mapping projects and from those of some other Federal agencies. In addition, many images from such space programs as Landsat, begun in 1972, are held by the USGS. Most satellite scenes can be obtained only in digital form for use in computer-based image processing and geographic information systems, but in some cases are also available as photographic products.

  12. GIS for mapping waterfowl density and distribution from aerial surveys

    USGS Publications Warehouse

    Butler, W.I.; Stehn, R.A.; Balogh, G.R.

    1995-01-01

    We modified standard aerial survey data collection to obtain the geographic location for each waterfowl observation on surveys in Alaska during 1987-1993. Using transect navigation with CPS (global positioning system), data recording on continuously running tapes, and a computer data input program, we located observations with an average deviation along transects of 214 m. The method provided flexibility in survey design and data analysis. Although developed for geese nesting near the coast of the Yukon-Kuskokwim Delta, the methods are widely applicable and were used on other waterfowl surveys in Alaska to map distribution and relative abundance of waterfowl. Accurate location data with GIS analysis and display may improve precision and usefulness of data from any aerial transect survey.

  13. A perspective on the state of the art of photographic interpretation. [aerial photography

    NASA Technical Reports Server (NTRS)

    Estes, J. E.

    1977-01-01

    Aerial photography and photographic interpretation are the cornerstone of remote sensing. Many interpretative techniques used on data from these more advanced or unconventional imaging systems are essentially extensions of techniques originally developed for the analysis of aerial photographic data. As research on the analysis and application of data from other than photographic imaging systems progresses, the role of the interpretation of aerial photography becomes more important. Any individual who wishes to practice the art of remote sensing data analysis must gain a thorough knowledge of the activities, elements and techniques of manual photographic/image interpretation. While the activities and elements of photo interpretation have remained essentially the same, technique development has continued to progress. Additional studies are proposed dealing with the basics of interactive processes.

  14. In-Swath Spray Deposition Characteristics of a Low Drift Nozzle for Low Volume Aerial Application - Preliminary Results.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CP flat-fan nozzles with selectable tips were evaluated for droplet spectra and coverage using water sensitive papers placed in the spray swath. This study used low application volumes (1, 2, and 3 GPA) at a certain spray application height as measured precisely by laser mounted in the aircraft. No...

  15. Expert systems development and application

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Regenie, V. A.

    1985-01-01

    Current research in the application of expert systems to problems in the flight research environment is discussed. In what is anticipated to be a broad research area, a real time expert system flight status monitor has been identified as the initial project. This real time expert system flight status monitor is described in terms of concept, application, development, and schedule.

  16. Applications of Ion Laser Systems

    NASA Astrophysics Data System (ADS)

    Fletcher, Peter W.

    1987-04-01

    This paper provides an introduction to the more common applications of ion laser systems. Applications discussed include photocoagulation, flow cytometry, laser disk mastering, laser doppler velocimetry, Raman spectroscopy, holography, laser light shows, large screen projection, fingerprint detection, and applications in printing such as color separation and scanning. All these applications are currently in widespread use. At the end of the paper a short review is provided of developing applications such as cardiovascular surgery and semiconductor processing.

  17. Aerial ultra-low-volume application of naled: impact on nontarget imperiled butterfly larvae (Cyclargus thomasi bethunebakeri) and efficacy against adult mosquitoes (Aedes taeniorhynchus).

    PubMed

    Zhong, H; Hribar, L J; Daniels, J C; Feken, M A; Brock, C; Trager, M D

    2010-12-01

    We assessed the exposure and acute toxicity of naled, applied aerially as an ultra-low-volume spray for mosquito control, on late instar larvae of the Miami blue (Cyclargus thomasi bethunebakeri) (Comstock and Huntington 1943) (Lepidoptera: Lycaenidae), an imperiled South Florida butterfly. We concurrently evaluated the control efficacy against caged adult female salt-marsh mosquitoes (Aedes taeniorhynchus) (Wiedemann 1821) (Diptera: Culicidae). This 3-yr study was conducted in north Key Largo (Monroe County, FL) beginning in 2006. The field trials incorporated 15 sampling stations: nine in the target spray zone, three in the spray drift zone at varying distances from the target zone, and three in the control zone not subjected to naled spray drift. A total of six field spray trials were completed, three at an altitude of 30.5 m (100 feet), and three at 45.7 m (150 feet). For all trials, the ultra-low-volume application of Trumpet EC insecticide (78% naled) at a rate of 54.8 ml/ha (0.75 fl. oz/acre) was effective in killing caged adult mosquitoes in the target zone. Butterfly larvae survival was significantly reduced in the spray zone compared with drift and control zones. Analysis of insecticide residue data revealed that the mortality of the late instar butterfly larvae was a result of exposure to excess residues of naled. Additional research is needed to determine mitigation strategies that can limit exposure of sensitive butterflies to naled while maintaining mosquito control efficacy. PMID:22182563

  18. The control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle using a CMAC neural network.

    PubMed

    Harmon, Frederick G; Frank, Andrew A; Joshi, Sanjay S

    2005-01-01

    A Simulink model, a propulsion energy optimization algorithm, and a CMAC controller were developed for a small parallel hybrid-electric unmanned aerial vehicle (UAV). The hybrid-electric UAV is intended for military, homeland security, and disaster-monitoring missions involving intelligence, surveillance, and reconnaissance (ISR). The Simulink model is a forward-facing simulation program used to test different control strategies. The flexible energy optimization algorithm for the propulsion system allows relative importance to be assigned between the use of gasoline, electricity, and recharging. A cerebellar model arithmetic computer (CMAC) neural network approximates the energy optimization results and is used to control the parallel hybrid-electric propulsion system. The hybrid-electric UAV with the CMAC controller uses 67.3% less energy than a two-stroke gasoline-powered UAV during a 1-h ISR mission and 37.8% less energy during a longer 3-h ISR mission.

  19. Choosing a survey sample when data on the population are limited: a method using Global Positioning Systems and aerial and satellite photographs

    PubMed Central

    2012-01-01

    Background Various methods have been proposed for sampling when data on the population are limited. However, these methods are often biased. We propose a new method to draw a population sample using Global Positioning Systems and aerial or satellite photographs. Results We randomly sampled Global Positioning System locations in designated areas. A circle was drawn around each location with radius representing 20 m. Buildings in the circle were identified from satellite photographs; one was randomly chosen. Interviewers selected one household from the building, and interviews were conducted with eligible household members. Conclusions Participants had known selection probabilities, allowing proper estimation of parameters of interest and their variances. The approach was made possible by recent technological developments and access to satellite photographs. PMID:22967277

  20. Telemetry of Aerial Radiological Measurements

    SciTech Connect

    H. W. Clark, Jr.

    2002-10-01

    Telemetry has been added to National Nuclear Security Administration's (NNSA's) Aerial Measuring System (AMS) Incident Response aircraft to accelerate availability of aerial radiological mapping data. Rapid aerial radiological mapping is promptly performed by AMS Incident Response aircraft in the event of a major radiological dispersal. The AMS airplane flies the entire potentially affected area, plus a generous margin, to provide a quick look at the extent and severity of the event. The primary result of the AMS Incident Response over flight is a map of estimated exposure rate on the ground along the flight path. Formerly, it was necessary to wait for the airplane to land before the map could be seen. Now, while the flight is still in progress, data are relayed via satellite directly from the aircraft to an operations center, where they are displayed and disseminated. This permits more timely utilization of results by decision makers and redirection of the mission to optimize its value. The current telemetry capability can cover all of North America. Extension to a global capability is under consideration.

  1. Oblique Aerial Photography Tool for Building Inspection and Damage Assessment

    NASA Astrophysics Data System (ADS)

    Murtiyoso, A.; Remondino, F.; Rupnik, E.; Nex, F.; Grussenmeyer, P.

    2014-11-01

    Aerial photography has a long history of being employed for mapping purposes due to some of its main advantages, including large area imaging from above and minimization of field work. Since few years multi-camera aerial systems are becoming a practical sensor technology across a growing geospatial market, as complementary to the traditional vertical views. Multi-camera aerial systems capture not only the conventional nadir views, but also tilted images at the same time. In this paper, a particular use of such imagery in the field of building inspection as well as disaster assessment is addressed. The main idea is to inspect a building from four cardinal directions by using monoplotting functionalities. The developed application allows to measure building height and distances and to digitize man-made structures, creating 3D surfaces and building models. The realized GUI is capable of identifying a building from several oblique points of views, as well as calculates the approximate height of buildings, ground distances and basic vectorization. The geometric accuracy of the results remains a function of several parameters, namely image resolution, quality of available parameters (DEM, calibration and orientation values), user expertise and measuring capability.

  2. Fuel cells: a real option for Unmanned Aerial Vehicles propulsion.

    PubMed

    González-Espasandín, Óscar; Leo, Teresa J; Navarro-Arévalo, Emilio

    2014-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored.

  3. Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion

    PubMed Central

    2014-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored. PMID:24600326

  4. Uas for Archaeology - New Perspectives on Aerial Documentation

    NASA Astrophysics Data System (ADS)

    Fallavollita, P.; Balsi, M.; Esposito, S.; Melis, M. G.; Milanese, M.; Zappino, L.

    2013-08-01

    In this work some Unmanned Aerial Systems applications are discussed and applied to archaeological sites survey and 3D model reconstructions. Interesting results are shown for three important and different aged sites on north Sardinia (Italy). An easy and simplified procedure has proposed permitting the adoption of multi-rotor aircrafts for daily archaeological survey during excavation and documentation, involving state of art in UAS design, flight control systems, high definition sensor cameras and innovative photogrammetric software tools. Very high quality 3D models results are shown and discussed and how they have been simplified the archaeologist work and decisions.

  5. In situ Volcanic Plume Monitoring with small Unmanned Aerial Systems for Cal/Val of Satellite Remote Sensing Data: CARTA-UAV 2013 Mission (Invited)

    NASA Astrophysics Data System (ADS)

    Diaz, J. A.; Pieri, D. C.; Bland, G.; Fladeland, M. M.

    2013-12-01

    The development of small unmanned aerial systems (sUAS) with a variety of sensor packages, enables in situ and proximal remote sensing measurements of volcanic plumes. Using Costa Rican volcanoes as a Natural Laboratory, the University of Costa Rica as host institution, in collaboration with four NASA centers, have started an initiative to develop low-cost, field-deployable airborne platforms to perform volcanic gas & ash plume research, and in-situ volcanic monitoring in general, in conjunction with orbital assets and state-of-the-art models of plume transport and composition. Several gas sensors have been deployed into the active plume of Turrialba Volcano including a miniature mass spectrometer, and an electrochemical SO2 sensor system with temperature, pressure, relative humidity, and GPS sensors. Several different airborne platforms such as manned research aircraft, unmanned aerial vehicles, tethered balloons, as well as man-portable in-situ ground truth systems are being used for this research. Remote sensing data is also collected from the ASTER and OMI spaceborne instruments and compared with in situ data. The CARTA-UAV 2013 Mission deployment and follow up measurements successfully demonstrated a path to study and visualize gaseous volcanic emissions using mass spectrometer and gas sensor based instrumentation in harsh environment conditions to correlate in situ ground/airborne data with remote sensing satellite data for calibration and validation purposes. The deployment of such technology improves on our current capabilities to detect, analyze, monitor, model, and predict hazards presented to aircraft by volcanogenic ash clouds from active and impending volcanic eruptions.

  6. Techniques of UAV system land use changes detection application

    NASA Astrophysics Data System (ADS)

    Zhang, Youying; Cui, Hongxia

    2011-02-01

    The unmanned aerial vehicle( UAV) was able to acquire remote sensing images with low cost, precise and high spatial resolution information needed by management of Land use at desired time. The aim of this paper was to present an overview of the ongoing research on the potential and techniques of low-altitude UAV system for land use applications. The development of crucial subsystems consisting of the UAV platforms, multiple camera system, camera calibration and photogrammetric production, was introduced together. A procedure of images acquisition and photogrammetric processing was proposed. To detect land use changes, methods based on DSMs and DLG were discussed and adopted in this paper. Finally, analysis of land use research based UAVs was realized on real flight experiments of two study areas. The results of this study show that UAVs can be used successfully for land use change detection.

  7. Off-the-Wall Project Brings Aerial Mapping down to Earth

    ERIC Educational Resources Information Center

    Davidhazy, Andrew

    2008-01-01

    The technology of aerial photography, photogrametry, has widespread applications in mapping and aerial surveying. A multi-billion-dollar industry, aerial surveying and mapping is "big business" in both civilian and military sectors. While the industry has grown increasingly automated, employment opportunities still exist for people with a basic…

  8. Mapping snow depth in alpine terrain with remotely piloted aerial systems and structure-from-motion photogrammetry - first results from a pilot study

    NASA Astrophysics Data System (ADS)

    Adams, Marc; Fromm, Reinhard; Bühler, Yves; Bösch, Ruedi; Ginzler, Christian

    2016-04-01

    Detailed information on the spatio-temporal distribution of seasonal snow in the alpine terrain plays a major role for the hydrological cycle, natural hazard management, flora and fauna, as well as tourism. Current methods are mostly only valid on a regional scale or require a trade-off between the data's availability, cost and resolution. During a one-year pilot study, we investigated the potential of remotely piloted aerial systems (RPAS) and structure-from-motion photogrammetry for snow depth mapping. We employed multi-copter and fixed-wing RPAS, equipped with different low-cost, off-the shelf sensors, at four test sites in Austria and Switzerland. Over 30 flights were performed during the winter 2014/15, where different camera settings, filters and lenses, as well as data collection routines were tested. Orthophotos and digital surface models (DSM) where calculated from the imagery using structure-from-motion photogrammetry software. Snow height was derived by subtracting snow-free from snow-covered DSMs. The RPAS-results were validated against data collected using a variety of well-established remote sensing (i.e. terrestrial laser scanning, large frame aerial sensors) and in-situ measurement techniques. The results show, that RPAS i) are able to map snow depth within accuracies of 0.07-0.15 m root mean square error (RMSE), when compared to traditional in-situ data; ii) can be operated at lower cost, easier repeatability, less operational constraints and higher GSD than large frame aerial sensors on-board manned aircraft, while achieving significantly higher accuracies; iii) are able to acquire meaningful data even under harsh environmental conditions above 2000 m a.s.l. (turbulence, low temperature and high irradiance, low air density). While providing a first prove-of-concept, the study also showed future challenges and limitations of RPAS-based snow depth mapping, including a high dependency on correct co-registration of snow-free and snow-covered height

  9. Astronomical Methods in Aerial Navigation

    NASA Technical Reports Server (NTRS)

    Beij, K Hilding

    1925-01-01

    The astronomical method of determining position is universally used in marine navigation and may also be of service in aerial navigation. The practical application of the method, however, must be modified and adapted to conform to the requirements of aviation. Much of this work of adaptation has already been accomplished, but being scattered through various technical journals in a number of languages, is not readily available. This report is for the purpose of collecting under one cover such previous work as appears to be of value to the aerial navigator, comparing instruments and methods, indicating the best practice, and suggesting future developments. The various methods of determining position and their application and value are outlined, and a brief resume of the theory of the astronomical method is given. Observation instruments are described in detail. A complete discussion of the reduction of observations follows, including a rapid method of finding position from the altitudes of two stars. Maps and map cases are briefly considered. A bibliography of the subject is appended.

  10. Toward autonomous avian-inspired grasping for micro aerial vehicles.

    PubMed

    Thomas, Justin; Loianno, Giuseppe; Polin, Joseph; Sreenath, Koushil; Kumar, Vijay

    2014-06-01

    Micro aerial vehicles, particularly quadrotors, have been used in a wide range of applications. However, the literature on aerial manipulation and grasping is limited and the work is based on quasi-static models. In this paper, we draw inspiration from agile, fast-moving birds such as raptors, that are able to capture moving prey on the ground or in water, and develop similar capabilities for quadrotors. We address dynamic grasping, an approach to prehensile grasping in which the dynamics of the robot and its gripper are significant and must be explicitly modeled and controlled for successful execution. Dynamic grasping is relevant for fast pick-and-place operations, transportation and delivery of objects, and placing or retrieving sensors. We show how this capability can be realized (a) using a motion capture system and (b) without external sensors relying only on onboard sensors. In both cases we describe the dynamic model, and trajectory planning and control algorithms. In particular, we present a methodology for flying and grasping a cylindrical object using feedback from a monocular camera and an inertial measurement unit onboard the aerial robot. This is accomplished by mapping the dynamics of the quadrotor to a level virtual image plane, which in turn enables dynamically-feasible trajectory planning for image features in the image space, and a vision-based controller with guaranteed convergence properties. We also present experimental results obtained with a quadrotor equipped with an articulated gripper to illustrate both approaches. PMID:24852023

  11. Toward autonomous avian-inspired grasping for micro aerial vehicles.

    PubMed

    Thomas, Justin; Loianno, Giuseppe; Polin, Joseph; Sreenath, Koushil; Kumar, Vijay

    2014-06-01

    Micro aerial vehicles, particularly quadrotors, have been used in a wide range of applications. However, the literature on aerial manipulation and grasping is limited and the work is based on quasi-static models. In this paper, we draw inspiration from agile, fast-moving birds such as raptors, that are able to capture moving prey on the ground or in water, and develop similar capabilities for quadrotors. We address dynamic grasping, an approach to prehensile grasping in which the dynamics of the robot and its gripper are significant and must be explicitly modeled and controlled for successful execution. Dynamic grasping is relevant for fast pick-and-place operations, transportation and delivery of objects, and placing or retrieving sensors. We show how this capability can be realized (a) using a motion capture system and (b) without external sensors relying only on onboard sensors. In both cases we describe the dynamic model, and trajectory planning and control algorithms. In particular, we present a methodology for flying and grasping a cylindrical object using feedback from a monocular camera and an inertial measurement unit onboard the aerial robot. This is accomplished by mapping the dynamics of the quadrotor to a level virtual image plane, which in turn enables dynamically-feasible trajectory planning for image features in the image space, and a vision-based controller with guaranteed convergence properties. We also present experimental results obtained with a quadrotor equipped with an articulated gripper to illustrate both approaches.

  12. Aerial monitoring in active mud volcano by UAV technique

    NASA Astrophysics Data System (ADS)

    Pisciotta, Antonino; Capasso, Giorgio; Madonia, Paolo

    2016-04-01

    UAV photogrammetry opens various new applications in the close range domain, combining aerial and terrestrial photogrammetry, but also introduces low-cost alternatives to the classical manned aerial photogrammetry. Between 2014 and 2015 tree aerial surveys have been carried out. Using a quadrotor drone, equipped with a compact camera, it was possible to generate high resolution elevation models and orthoimages of The "Salinelle", an active mud volcanoes area, located in territory of Paternò (South Italy). The main risks are related to the damages produced by paroxysmal events. Mud volcanoes show different cyclic phases of activity, including catastrophic events and periods of relative quiescence characterized by moderate activity. Ejected materials often are a mud slurry of fine solids suspended in liquids which may include water and hydrocarbon fluids, the bulk of released gases are carbon dioxide, with some methane and nitrogen, usually pond-shaped of variable dimension (from centimeters to meters in diameter). The scope of the presented work is the performance evaluation of a UAV system that was built to rapidly and autonomously acquire mobile three-dimensional (3D) mapping data in a volcanic monitoring scenario.

  13. Aerial Perspective Artistry

    ERIC Educational Resources Information Center

    Wolfe, Linda

    2010-01-01

    This article presents a lesson centering on aerial perspective artistry of students and offers suggestions on how art teachers should carry this project out. This project serves to develop students' visual perception by studying reproductions by famous artists. This lesson allows one to imagine being lured into a landscape capable of captivating…

  14. Aerial of the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Even in this aerial view at KSC, the Vehicle Assembly Building is imposing. In front of it is the Launch Control Center. In the background is the Rotation/Processing Facility, next to the Banana Creek. In the foreground is the Saturn Causeway that leads to Launch Pads 39A and 39B.

  15. Aerial photographic reproductions

    USGS Publications Warehouse

    U.S. Geological Survey

    1971-01-01

    Geological Survey vertical aerial photography is obtained primarily for topographic and geologic mapping. Reproductions from this photography are usually satisfactory for general use. Because reproductions are not stocked, but are custom processed for each order, they cannot be returned for credit or refund.

  16. Shutter/aperture settings for aerial photography

    NASA Technical Reports Server (NTRS)

    Lockwood, H. E.; Perry, L.

    1976-01-01

    Determination of aerial camera shutter and aperture settings to produce consistently high-quality aerial photographs is a task complicated by numerous variables. Presented in this article are brief discussions of each variable and specific data which may be used for the systematic control of each. The variables discussed include sunlight, aircraft altitude, subject and season, film speed, and optical system. Data which may be used as a base reference are included, and encompass two sets of sensitometric specifications for two film-chemistry processes along with camera-aircraft parameters, which have been established and used to produce good exposures. Information contained here may be used to design and implement an exposure-determination system for aerial photography.

  17. Comparison of analysis techniques for aerial image metrology on advanced photomask

    NASA Astrophysics Data System (ADS)

    Hwang, Seolchong; Woo, Sungha; Jang, Heeyeon; Lee, Youngmo; Kim, Sangpyo; Yang, Hyunjo; Schulz, Kristian; Garetto, Anthony

    2016-05-01

    The standard method for defect disposition and verification of repair success in the mask shop is through the utilization of the aerial imaging platform, AIMSTM. The CD (Critical Dimension) deviation of the defective or repaired region as well as the pattern shift can be calculated by comparing the measured aerial images of this region to that of a reference. Through this analysis it can be determined if the defect or repaired region will be printed on the wafer under the illumination conditions of the scanner. The analysis of the measured aerial images from the AIMSTM are commonly performed manually using the analysis software available on the system or with the help of an analysis software called RV (Repair Verification). Because the process is manual, it is not standardized and is subject to operator variations. This method of manual aerial image analysis is time consuming, dependent on the skill level of the operator and significantly contributes to the overall mask manufacturing process flow. AutoAnalysis (AA), the first application available for the FAVOR® platform, provides fully automated analysis of AIMSTM aerial images [1] and runs in parallel to the measurement of the aerial images. In this paper, we investigate the initial AutoAnalysis performance compared to the conventional method using RV and its application to a production environment. The evaluation is based on the defect CD of three pattern types: contact holes, dense line and spaces and peripheral structure. The defect analysis results for different patterns and illumination conditions will be correlated and challenges in transitioning to the new approach will be discussed.

  18. Practical Applications of Space Systems.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    This report gives an overview of a study conducted by the Space Applications Board (SAB) on the practical applications of space systems. In this study, the SAB considered how the nation's space capability might be used to solve problems such as the shortage of food and energy; the improvement of the physical environment; inventorying and…

  19. Aerial radiation survey at a military range.

    SciTech Connect

    Williams, G. P.; Martino, L. E.; Wrobel, J.; Environmental Assessment; U.S. Army Aberdeen Proving Ground

    2001-04-01

    Aberdeen Proving Ground (APG) is currently listed on the Superfund National Priorities List because of past waste handling practices at 13 'study areas.' Concern has been expressed that anthropogenic radioisotopes may have been released at some of the study areas, with the potential of posing health risks to human or ecological receptors. This concern was addressed by thoroughly searching archival records, sampling and analyzing environmental media, and performing an aerial radiation survey. The aerial radiation survey techniques employed have been used over all U.S. Department of Energy and commercial reactor sites. Use of the Aerial Measurement System (AMS) allowed investigators to safely survey areas where surveys using hand-held instruments would be difficult to perform. In addition, the AMS delivered a full spectrum of the measured gamma radiation, thereby providing a means of determining which radioisotopes were present at the surface. As a quality check on the aerial measurements, four ground truth measurements were made at selected locations and compared with the aerial data for the same locations. The results of the survey revealed no evidence of surface radioactive contamination. The measured background radiation, including the cosmic contribution, ranged from 4 to 11 {mu}R/h.

  20. Looking for an old aerial photograph

    USGS Publications Warehouse

    ,

    1997-01-01

    Attempts to photograph the surface of the Earth date from the 1800's, when photographers attached cameras to balloons, kites, and even pigeons. Today, aerial photographs and satellite images are commonplace. The rate of acquiring aerial photographs and satellite images has increased rapidly in recent years. Views of the Earth obtained from aircraft or satellites have become valuable tools to Government resource planners and managers, land-use experts, environmentalists, engineers, scientists, and a wide variety of other users. Many people want historical aerial photographs for business or personal reasons. They may want to locate the boundaries of an old farm or a piece of family property. Or they may want a photograph as a record of changes in their neighborhood, or as a gift. The U.S. Geological Survey (USGS) maintains the Earth Science Information Centers (ESIC?s) to sell aerial photographs, remotely sensed images from satellites, a wide array of digital geographic and cartographic data, as well as the Bureau?s wellknown maps. Declassified photographs from early spy satellites were recently added to the ESIC offerings of historical images. Using the Aerial Photography Summary Record System database, ESIC researchers can help customers find imagery in the collections of other Federal agencies and, in some cases, those of private companies that specialize in esoteric products.

  1. Advanced Image Processing of Aerial Imagery

    NASA Technical Reports Server (NTRS)

    Woodell, Glenn; Jobson, Daniel J.; Rahman, Zia-ur; Hines, Glenn

    2006-01-01

    Aerial imagery of the Earth is an invaluable tool for the assessment of ground features, especially during times of disaster. Researchers at the NASA Langley Research Center have developed techniques which have proven to be useful for such imagery. Aerial imagery from various sources, including Langley's Boeing 757 Aries aircraft, has been studied extensively. This paper discusses these studies and demonstrates that better-than-observer imagery can be obtained even when visibility is severely compromised. A real-time, multi-spectral experimental system will be described and numerous examples will be shown.

  2. Commercial Applications Multispectral Sensor System

    NASA Technical Reports Server (NTRS)

    Birk, Ronald J.; Spiering, Bruce

    1993-01-01

    NASA's Office of Commercial Programs is funding a multispectral sensor system to be used in the development of remote sensing applications. The Airborne Terrestrial Applications Sensor (ATLAS) is designed to provide versatility in acquiring spectral and spatial information. The ATLAS system will be a test bed for the development of specifications for airborne and spaceborne remote sensing instrumentation for dedicated applications. This objective requires spectral coverage from the visible through thermal infrared wavelengths, variable spatial resolution from 2-25 meters; high geometric and geo-location accuracy; on-board radiometric calibration; digital recording; and optimized performance for minimized cost, size, and weight. ATLAS is scheduled to be available in 3rd quarter 1992 for acquisition of data for applications such as environmental monitoring, facilities management, geographic information systems data base development, and mineral exploration.

  3. Solar-powered unmanned aerial vehicles

    SciTech Connect

    Reinhardt, K.C.; Lamp, T.R.; Geis, J.W.; Colozza, A.J.

    1996-12-31

    An analysis was performed to determine the impact of various power system components and mission requirements on the size of solar-powered high altitude long endurance (HALE)-type aircraft. The HALE unmanned aerial vehicle (UAV) has good potential for use in many military and civil applications. The primary power system components considered in this study were photovoltaic (PV) modules for power generation and regenerative fuel cells for energy storage. The impact of relevant component performance on UAV size and capability were considered; including PV module efficiency and mass, power electronics efficiency, and fuel cell specific energy. Mission parameters such as time of year, flight altitude, flight latitude, and payload mass and power were also varied to determine impact on UAV size. The aircraft analysis method used determines the required aircraft wing aspect ratio, wing area, and total mass based on maximum endurance or minimum required power calculations. The results indicate that the capacity of the energy storage system employed, fuel cells in this analysis, greatly impacts aircraft size, whereas the impact of PV module efficiency and mass is much less important. It was concluded that an energy storage specific energy (total system) of 250--500 Whr/kg is required to enable most useful missions, and that PV cells with efficiencies greater than {approximately} 12% are suitable for use.

  4. AERIAL RADIOLOGICAL SURVEYS

    SciTech Connect

    Proctor, A.E.

    1997-06-09

    Measuring terrestrial gamma radiation from airborne platforms has proved to be a useful method for characterizing radiation levels over large areas. Over 300 aerial radiological surveys have been carried out over the past 25 years including U.S. Department of Energy (DOE) sites, commercial nuclear power plants, Formerly Utilized Sites Remedial Action Program/Uranium Mine Tailing Remedial Action Program (FUSRAP/UMTRAP) sites, nuclear weapons test sites, contaminated industrial areas, and nuclear accident sites. This paper describes the aerial measurement technology currently in use by the Remote Sensing Laboratory (RSL) for routine environmental surveys and emergency response activities. Equipment, data-collection and -analysis methods, and examples of survey results are described.

  5. Remote sensing and aerial application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the increasing need for global food production in the presence of dwindling productive acres, the business of modern agriculture needs to use all possible information available to maximize production. One tool that is being used to obtain this information is remote sensing. Any crop disease o...

  6. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Aerial wire. 32.2431 Section 32.2431 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS... construction of such plant. (b) The cost of permits and privileges for the construction of cable and...

  7. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Aerial wire. 32.2431 Section 32.2431 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS... construction of such plant. (b) The cost of permits and privileges for the construction of cable and...

  8. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Aerial wire. 32.2431 Section 32.2431 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS... construction of such plant. (b) The cost of permits and privileges for the construction of cable and...

  9. Land cover mapping using aerial and VHR satellite images for distributed hydrological modelling of periurban catchments: Application to the Yzeron catchment (Lyon, France)

    NASA Astrophysics Data System (ADS)

    Jacqueminet, C.; Kermadi, S.; Michel, K.; Béal, D.; Gagnage, M.; Branger, F.; Jankowfsky, S.; Braud, I.

    2013-04-01

    SummaryThe rapid progression of urbanization in periurban areas affects the hydrological cycle of periurban rivers. To quantify these changes, distributed hydrological modelling tools able to simulate the hydrology of periurban catchments are being developed. Land cover information is one of the data sources used to define the model mesh and parameters. The land cover in periurban catchments is characterized by a very large heterogeneity, where the vegetated and the artificial surfaces are finely overlapping. The study is conducted in the Yzeron catchment (150 km2), close to the city of Lyon, France. We explore the potential of very high-resolution (VHR) optical images (0.50-2.50 m) for retrieving information useful for those distributed hydrological models at two scales. For detailed object-oriented models, applicable to catchments of a few km2, where hydrological units are based on the cadastral units, manual digitizing based on the 0.5 m resolution image, was found to be the most accurate to provide the required information. For larger catchments of about 100 km2, three semi-automated mapping procedures (pixel based and object-oriented classifications), applied to aerial images (BD-Ortho®IGN), and two satellite images (Quickbird and Spot 5) were compared. We showed that each image/processing provided some interesting and accurate information about some of the land cover classes. We proposed to combine them into a synthesis map, taking profit of the strength of each image/processing in identifying the land cover classes and their physical properties. This synthesis map was shown to be more accurate than each map separately. We illustrate the interest of the derived maps in terms of distributed hydrological modelling. The maps were used to propose a classification of the Yzeron sub-catchments in terms of dominant vegetation cover and imperviousness. We showed that according to the image processing and images characteristics, the calculated imperviousness rates

  10. Aerial infrared surveys in the investigation of geothermal and volcanic heat sources

    USGS Publications Warehouse

    ,

    1995-01-01

    This factsheet briefly summarizes and clarifies the application of aerial infrared surveys in geophysical exploration for geothermal energy sources and environmental monitoring for potential volcanic hazards.

  11. Evolvable Systems for Space Applications

    NASA Technical Reports Server (NTRS)

    Lohn, Jason; Crawford, James; Globus, Al; Hornby, Gregory; Kraus, William; Larchev, Gregory; Pryor, Anna; Srivastava, Deepak

    2003-01-01

    This article surveys the research of the Evolvable System Group at NASA Ames Research Center. Over the past few years, our group has developed the ability to use evolutionary algorithms in a variety of NASA applications ranging from spacecraft antenna design, fault tolerance for programmable logic chips, atomic force field parameter fitting, analog circuit design, and earth observing satellite scheduling. In some of these applications, evolutionary algorithms match or improve on human performance.

  12. Directed aerial robot explorers for planetary exploration

    NASA Astrophysics Data System (ADS)

    Pankine, A. A.; Aaron, K. M.; Heun, M. K.; Nock, K. T.; Schlaifer, R. S.; Wyszkowski, C. J.; Ingersoll, A. P.; Lorenz, R. D.

    2004-01-01

    Global Aerospace Corporation (GAC) is developing a revolutionary system architecture for exploration of planetary atmospheres and surfaces from atmospheric altitudes. The work is supported by the NASA Institute for Advanced Concepts (NIAC). The innovative system architecture relies upon the use of Directed Aerial Robot Explorers (DAREs), which essentially are long-duration-flight autonomous balloons with trajectory control capabilities that can deploy swarms of miniature probes over multiple target areas. The balloons will serve a dual purpose as independent explorers and as microprobe delivery systems for targeted observations. Trajectory control capabilities will offer unprecedented opportunities in high-resolution, targeted observations of both atmospheric and surface phenomena. Multifunctional microprobes will be deployed from the balloons once over the target areas, and perform a multitude of functions, such as atmospheric profiling or surface exploration, relaying data back to the balloons or an orbiter. This architecture will enable low-cost, low-energy, long-term global exploration of planetary atmospheres and surfaces. We report here results of the preliminary analysis of the trajectory control capabilities and potential applications for DARE platforms at Venus, Mars, Titan and Jupiter.

  13. Spaceborne application multiprocessor operating system

    NASA Astrophysics Data System (ADS)

    Grisbeck, Gary S.; Webber, Wesley D.

    1992-03-01

    The Operational Kernel (OK) system for the Spaceborne Processor Array-1 (SPA-1) software development environment is described. The OK system demonstration featured fully autonomous onboard control of data movement, fault detection, fault isolation, hardware reconfiguration, application restart, and load balancing. Random nodal or processing hardware was caused to fail by selection of switches on a fault injection panel. The SPA-1 based on the OK written in Ada detected that a failure had occurred, isolated it, redistributed the processing load, and continued with the application processing.

  14. Application of Technical Measures and Software in Constructing Photorealistic 3D Models of Historical Building Using Ground-Based and Aerial (UAV) Digital Images

    NASA Astrophysics Data System (ADS)

    Zarnowski, Aleksander; Banaszek, Anna; Banaszek, Sebastian

    2015-12-01

    Preparing digital documentation of historical buildings is a form of protecting cultural heritage. Recently there have been several intensive studies using non-metric digital images to construct realistic 3D models of historical buildings. Increasingly often, non-metric digital images are obtained with unmanned aerial vehicles (UAV). Technologies and methods of UAV flights are quite different from traditional photogrammetric approaches. The lack of technical guidelines for using drones inhibits the process of implementing new methods of data acquisition. This paper presents the results of experiments in the use of digital images in the construction of photo-realistic 3D model of a historical building (Raphaelsohns' Sawmill in Olsztyn). The aim of the study at the first stage was to determine the meteorological and technical conditions for the acquisition of aerial and ground-based photographs. At the next stage, the technology of 3D modelling was developed using only ground-based or only aerial non-metric digital images. At the last stage of the study, an experiment was conducted to assess the possibility of 3D modelling with the comprehensive use of aerial (UAV) and ground-based digital photographs in terms of their labour intensity and precision of development. Data integration and automatic photo-realistic 3D construction of the models was done with Pix4Dmapper and Agisoft PhotoScan software Analyses have shown that when certain parameters established in an experiment are kept, the process of developing the stock-taking documentation for a historical building moves from the standards of analogue to digital technology with considerably reduced cost.

  15. COCOA: tracking in aerial imagery

    NASA Astrophysics Data System (ADS)

    Ali, Saad; Shah, Mubarak

    2006-05-01

    Unmanned Aerial Vehicles (UAVs) are becoming a core intelligence asset for reconnaissance, surveillance and target tracking in urban and battlefield settings. In order to achieve the goal of automated tracking of objects in UAV videos we have developed a system called COCOA. It processes the video stream through number of stages. At first stage platform motion compensation is performed. Moving object detection is performed to detect the regions of interest from which object contours are extracted by performing a level set based segmentation. Finally blob based tracking is performed for each detected object. Global tracks are generated which are used for higher level processing. COCOA is customizable to different sensor resolutions and is capable of tracking targets as small as 100 pixels. It works seamlessly for both visible and thermal imaging modes. The system is implemented in Matlab and works in a batch mode.

  16. High clearance phenotyping systems for season-long measurement of corn, sorghum and other row crops to complement unmanned aerial vehicle systems

    NASA Astrophysics Data System (ADS)

    Murray, Seth C.; Knox, Leighton; Hartley, Brandon; Méndez-Dorado, Mario A.; Richardson, Grant; Thomasson, J. Alex; Shi, Yeyin; Rajan, Nithya; Neely, Haly; Bagavathiannan, Muthukumar; Dong, Xuejun; Rooney, William L.

    2016-05-01

    The next generation of plant breeding progress requires accurately estimating plant growth and development parameters to be made over routine intervals within large field experiments. Hand measurements are laborious and time consuming and the most promising tools under development are sensors carried by ground vehicles or unmanned aerial vehicles, with each specific vehicle having unique limitations. Previously available ground vehicles have primarily been restricted to monitoring shorter crops or early growth in corn and sorghum, since plants taller than a meter could be damaged by a tractor or spray rig passing over them. Here we have designed two and already constructed one of these self-propelled ground vehicles with adjustable heights that can clear mature corn and sorghum without damage (over three meters of clearance), which will work for shorter row crops as well. In addition to regular RGB image capture, sensor suites are incorporated to estimate plant height, vegetation indices, canopy temperature and photosynthetically active solar radiation, all referenced using RTK GPS to individual plots. These ground vehicles will be useful to validate data collected from unmanned aerial vehicles and support hand measurements taken on plots.

  17. The Eye in the Sky: Combined Use of Unmanned Aerial Systems and GPS Data Loggers for Ecological Research and Conservation of Small Birds

    PubMed Central

    Rodríguez, Airam; Negro, Juan J.; Mulero, Mara; Rodríguez, Carlos; Hernández-Pliego, Jesús; Bustamante, Javier

    2012-01-01

    Technological advances for wildlife monitoring have expanded our ability to study behavior and space use of many species. But biotelemetry is limited by size, weight, data memory and battery power of the attached devices, especially in animals with light body masses, such as the majority of bird species. In this study, we describe the combined use of GPS data logger information obtained from free-ranging birds, and environmental information recorded by unmanned aerial systems (UASs). As a case study, we studied habitat selection of a small raptorial bird, the lesser kestrel Falco naumanni, foraging in a highly dynamic landscape. After downloading spatio-temporal information from data loggers attached to the birds, we programmed the UASs to fly and take imagery by means of an onboard digital camera documenting the flight paths of those same birds shortly after their recorded flights. This methodology permitted us to extract environmental information at quasi-real time. We demonstrate that UASs are a useful tool for a wide variety of wildlife studies. PMID:23239979

  18. The eye in the sky: combined use of unmanned aerial systems and GPS data loggers for ecological research and conservation of small birds.

    PubMed

    Rodríguez, Airam; Negro, Juan J; Mulero, Mara; Rodríguez, Carlos; Hernández-Pliego, Jesús; Bustamante, Javier

    2012-01-01

    Technological advances for wildlife monitoring have expanded our ability to study behavior and space use of many species. But biotelemetry is limited by size, weight, data memory and battery power of the attached devices, especially in animals with light body masses, such as the majority of bird species. In this study, we describe the combined use of GPS data logger information obtained from free-ranging birds, and environmental information recorded by unmanned aerial systems (UASs). As a case study, we studied habitat selection of a small raptorial bird, the lesser kestrel Falco naumanni, foraging in a highly dynamic landscape. After downloading spatio-temporal information from data loggers attached to the birds, we programmed the UASs to fly and take imagery by means of an onboard digital camera documenting the flight paths of those same birds shortly after their recorded flights. This methodology permitted us to extract environmental information at quasi-real time. We demonstrate that UASs are a useful tool for a wide variety of wildlife studies.

  19. Expert system application education project

    NASA Technical Reports Server (NTRS)

    Gonzelez, Avelino J.; Ragusa, James M.

    1988-01-01

    Artificial intelligence (AI) technology, and in particular expert systems, has shown potential applicability in many areas of operation at the Kennedy Space Center (KSC). In an era of limited resources, the early identification of good expert system applications, and their segregation from inappropriate ones can result in a more efficient use of available NASA resources. On the other hand, the education of students in a highly technical area such as AI requires an extensive hands-on effort. The nature of expert systems is such that proper sample applications for the educational process are difficult to find. A pilot project between NASA-KSC and the University of Central Florida which was designed to simultaneously address the needs of both institutions at a minimum cost. This project, referred to as Expert Systems Prototype Training Project (ESPTP), provided NASA with relatively inexpensive development of initial prototype versions of certain applications. University students likewise benefit by having expertise on a non-trivial problem accessible to them at no cost. Such expertise is indispensible in a hands-on training approach to developing expert systems.

  20. Calculating aerial images from EUV masks

    NASA Astrophysics Data System (ADS)

    Pistor, Thomas V.; Neureuther, Andrew R.

    1999-06-01

    Aerial images for line/space patterns, arrays of posts and an arbitrary layout pattern are calculated for EUV masks in a 4X EUV imaging system. Both mask parameters and illumination parameters are varied to investigate their effects on the aerial image. To facilitate this study, a parallel version of TEMPEST with a Fourier transform boundary condition was developed and run on a network of 24 microprocessors. Line width variations are observed when absorber thickness or sidewall angle changes. As the line/space pattern scales to smaller dimensions, the aspect ratios of the absorber features increase, introducing geometric shadowing and reducing aerial image intensity and contrast. 100nm square posts have circular images of diameter close to 100nm, but decreasing in diameter significantly when the corner round radius at the mask becomes greater than 50 nm. Exterior mask posts image slightly smaller and with higher ellipticity than interior mask posts. The aerial image of the arbitrary test pattern gives insight into the effects of the off-axis incidence employed in EUV lithography systems.

  1. Computational Systems for Multidisciplinary Applications

    NASA Technical Reports Server (NTRS)

    Soni, Bharat; Haupt, Tomasz; Koomullil, Roy; Luke, Edward; Thompson, David

    2002-01-01

    In this paper, we briefly describe our efforts to develop complex simulation systems. We focus first on four key infrastructure items: enterprise computational services, simulation synthesis, geometry modeling and mesh generation, and a fluid flow solver for arbitrary meshes. We conclude by presenting three diverse applications developed using these technologies.

  2. Mars Exploration with Directed Aerial Robot Explorers

    NASA Astrophysics Data System (ADS)

    Pankine, Alexey A.; Aaron, Kim M.; Heun, Matthew K.; Nock, Kerry T.; Schlaifer, R. Stephen; Ingersoll, Andrew P.; Lorenz, Ralph D.

    2004-02-01

    Global Aerospace Corporation (GAC) is developing a revolutionary system architecture for exploration of planetary atmospheres and surfaces from atmospheric altitudes. The work is supported by the NASA Institute for Advanced Concepts (NIAC). The innovative system architecture relies upon the use of Directed Aerial Robot Explorers (DAREs), which essentially are long-duration-flight autonomous balloons with trajectory control capabilities that can deploy swarms of miniature probes over multiple target areas. Balloon guidance capabilities will offer unprecedented opportunities in high-resolution, targeted observations of both atmospheric and surface phenomena. Multifunctional microprobes will be deployed from the balloons when over the target areas, and perform a multitude of functions, such as atmospheric profiling or surface exploration, relaying data back to the balloons or an orbiter. This architecture will enable low-cost, low-energy, long-term global exploration of planetary atmospheres and surfaces. A conceptual analysis of DARE capabilities and science applications for Mars is presented. Initial results of simulations indicate that a relatively small trajectory control wing can significantly change planetary balloon flight paths, especially during summer seasons in Polar Regions. This opens new possibilities for high-resolution observations of crustal magnetic anomalies, polar layered terrain, polar clouds, dust storms at the edges of the Polar caps and of seasonal variability of volatiles in the atmosphere.

  3. Mesh stability of formations of unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Pant, Aniruddha G.

    Co-ordinated maneuvers are becoming more and more important in military as well as civilian applications. Advances in sensing, communication and computation are aiding in the design and development of advanced control technologies for these distributed, multi-vehicle systems. Some of the applications where coordinated control of a multi-vehicle system is required are, automated highway systems, formation flying of unmanned aerial vehicles for military surveillance and coordinated ocean floor mapping for autonomous underwater vehicles. For successful formation maneuvers of these vehicles we need to design the controller and communication structure so as to achieve classical stability of the formations. In addition to classical Lyapunov stability, one can imagine that these formations need to have the property of damping any disturbances which may and will arise in the course of operation. This thesis is concerned with the analysis and design of cluster controllers which achieve such disturbance damping. Roughly speaking, this property of disturbance damping and error attenuation is called mesh stability. The contributions of this thesis can be seen in three parts. The first part concerns analysis of a cluster of linear dynamical systems. It is shown that it is not possible to get scalable clusters if the cluster controllers focus only on the local information. The second part is analysis of a nonlinear look-ahead interconnected system. Sufficient conditions guaranteeing mesh stability have been presented. The results obtained using the Lyapunov theory based approach are compared with the input-output gain results for linear systems. Third part is the applications of the above theoretical results to a case of formation flying of unmanned aerial vehicles. A nonlinear helicopter model is used to test the results offered by previous theoretical work. As an initial step, a regulation layer controller based on differential flatness and dynamic surface control is designed

  4. Cascade Chaotic System With Applications.

    PubMed

    Zhou, Yicong; Hua, Zhongyun; Pun, Chi-Man; Chen, C L Philip

    2015-09-01

    Chaotic maps are widely used in different applications. Motivated by the cascade structure in electronic circuits, this paper introduces a general chaotic framework called the cascade chaotic system (CCS). Using two 1-D chaotic maps as seed maps, CCS is able to generate a huge number of new chaotic maps. Examples and evaluations show the CCS's robustness. Compared with corresponding seed maps, newly generated chaotic maps are more unpredictable and have better chaotic performance, more parameters, and complex chaotic properties. To investigate applications of CCS, we introduce a pseudo-random number generator (PRNG) and a data encryption system using a chaotic map generated by CCS. Simulation and analysis demonstrate that the proposed PRNG has high quality of randomness and that the data encryption system is able to protect different types of data with a high-security level.

  5. Object and activity detection from aerial video

    NASA Astrophysics Data System (ADS)

    Se, Stephen; Shi, Feng; Liu, Xin; Ghazel, Mohsen

    2015-05-01

    Aerial video surveillance has advanced significantly in recent years, as inexpensive high-quality video cameras and airborne platforms are becoming more readily available. Video has become an indispensable part of military operations and is now becoming increasingly valuable in the civil and paramilitary sectors. Such surveillance capabilities are useful for battlefield intelligence and reconnaissance as well as monitoring major events, border control and critical infrastructure. However, monitoring this growing flood of video data requires significant effort from increasingly large numbers of video analysts. We have developed a suite of aerial video exploitation tools that can alleviate mundane monitoring from the analysts, by detecting and alerting objects and activities that require analysts' attention. These tools can be used for both tactical applications and post-mission analytics so that the video data can be exploited more efficiently and timely. A feature-based approach and a pixel-based approach have been developed for Video Moving Target Indicator (VMTI) to detect moving objects at real-time in aerial video. Such moving objects can then be classified by a person detector algorithm which was trained with representative aerial data. We have also developed an activity detection tool that can detect activities of interests in aerial video, such as person-vehicle interaction. We have implemented a flexible framework so that new processing modules can be added easily. The Graphical User Interface (GUI) allows the user to configure the processing pipeline at run-time to evaluate different algorithms and parameters. Promising experimental results have been obtained using these tools and an evaluation has been carried out to characterize their performance.

  6. DETAIL TOP VIEW OF AERIAL TRAMWAY DRIVE MECHANISM, LOOKING NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL TOP VIEW OF AERIAL TRAMWAY DRIVE MECHANISM, LOOKING NORTHEAST. THE FRICTION BRAKING SYSTEM CAN BE SEEN IN SHADOW ABOVE THE LARGE CABLE WHEEL BELOW. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  7. Whitecap coverage from aerial photography

    NASA Technical Reports Server (NTRS)

    Austin, R. W.

    1970-01-01

    A program for determining the feasibility of deriving sea surface wind speeds by remotely sensing ocean surface radiances in the nonglitter regions is discussed. With a knowledge of the duration and geographical extent of the wind field, information about the conventional sea state may be derived. The use of optical techniques for determining sea state has obvious limitations. For example, such means can be used only in daylight and only when a clear path of sight is available between the sensor and the surface. However, sensors and vehicles capable of providing the data needed for such techniques are planned for the near future; therefore, a secondary or backup capability can be provided with little added effort. The information currently being sought regarding white water coverage is also of direct interest to those working with passive microwave systems, the study of energy transfer between winds and ocean currents, the aerial estimation of wind speeds, and many others.

  8. Use of low-altitude aerial photography to identify submersed aquatic macrophytes

    USGS Publications Warehouse

    Schloesser, Donald W.; Manny, Bruce A.; Brown, Charles L.; Jaworski, Eugene

    1987-01-01

    The feasibility of using low-altitude aerial photography to identify beds of submersed macrophytes is demonstrated. True color aerial photos and collateral ground survey information for submersed aquatic macrophyte beds at 10 sites in the St.Clair-Detroit River system were obtained in September 1978. Using the photos and collateral ground survey information, a dichotomous key was developed for the identification of six classes - beds of five genera of macrophytes and one substrate type. A test was prepared to determine how accurately photo interpreters could identify the six classes. The test required an interpreter to examine an unlabeled, outlined area on photographs and identify it using the key. Six interpreters were tested. One pair of interpreters was trained in the interpretation of a variety of aerial photos, a second pair had field experience in the collection and identification of submersed macrophytes in the river system, and a third pair had neither training in the interpretation of aerial photos nor field experience. The criteria that we developed were applied equally well by the interpretors, regardless of their training or experience. Overall accuracy (i.e., omission errors) of all six classes combined was 68% correct, whereas, overall accuracy of individual classes ranged from 50 to 100% correct. Mapping accuracy (i.e. omission and commission errors) of individual classes ranged from 36 to 75%. Although the key developed for this study has only limited application outside the context of the data and sites examined in this study, it is concluded that low-altitude aerial photography, together with limited amounts of collateral ground survey information, can be used to economically identify beds of submersed macrophytes in the St. Clair-Detroit River system and other similar water bodies.

  9. Aerial Scene Recognition using Efficient Sparse Representation

    SciTech Connect

    Cheriyadat, Anil M

    2012-01-01

    Advanced scene recognition systems for processing large volumes of high-resolution aerial image data are in great demand today. However, automated scene recognition remains a challenging problem. Efficient encoding and representation of spatial and structural patterns in the imagery are key in developing automated scene recognition algorithms. We describe an image representation approach that uses simple and computationally efficient sparse code computation to generate accurate features capable of producing excellent classification performance using linear SVM kernels. Our method exploits unlabeled low-level image feature measurements to learn a set of basis vectors. We project the low-level features onto the basis vectors and use simple soft threshold activation function to derive the sparse features. The proposed technique generates sparse features at a significantly lower computational cost than other methods~\\cite{Yang10, newsam11}, yet it produces comparable or better classification accuracy. We apply our technique to high-resolution aerial image datasets to quantify the aerial scene classification performance. We demonstrate that the dense feature extraction and representation methods are highly effective for automatic large-facility detection on wide area high-resolution aerial imagery.

  10. Infrared film for aerial photography

    USGS Publications Warehouse

    Anderson, William H.

    1979-01-01

    Considerable interest has developed recently in the use of aerial photographs for agricultural management. Even the simplest hand-held aerial photographs, especially those taken with color infrared film, often provide information not ordinarily available through routine ground observation. When fields are viewed from above, patterns and variations become more apparent, often allowing problems to be spotted which otherwise may go undetected.

  11. Investigations on the Accuracy of the Navigation Data of Unmanned Aerial Vehicles Using the Example of the System Mikrokopter

    NASA Astrophysics Data System (ADS)

    Bäumker, M.; Przybilla, H.-J.

    2011-09-01

    Bochum University of Applied Sciences (HS BO) is currently involved in an UAV project, whose fundamental developments are the result of an internet community. The MikroKopter system, being built by the laboratory, is a manually and autonomous flying platform. With regard to the implementation of an autonomous flight the MikroKopter is equipped with appropriate sensors for the flight control. The interaction of these components allows horizontal and vertical stabilized positioning of the system, as well as the return to the launch site. Using these positioning data a stabilization and orientation of the camera occurs, followed by a manual or automatically triggering of the camera to the predetermined positions. All flight data is completely recorded and can be evaluated at a later date. Investigations to the quality of navigation data are presented. Based on different flights at the Bochum test field, combined with the use of alternative navigation sensors, an evaluation of the standard components of the MikroKopter system occurs. Another focus is given by efforts to optimize the control, stabilization and orientation of the camera.

  12. Controller Design of Quadrotor Aerial Robot

    NASA Astrophysics Data System (ADS)

    Yali, Yu; SunFeng; Yuanxi, Wang

    This paper deduced the nonlinear dynamic model of a quadrotor aerial robot, which was a VTOL (vertical tale-off and landing) unmanned air vehicle. Since that is a complex model with the highly nonlinear multivariable strongly coupled and under-actuated property, the controller design of it was very difficult. Aimed at attaining the excellent controller, the whole system can be divided into three interconnected parts: attitude subsystem, vertical subsystem, position subsystem. Then nonlinear control strategy of them has been described, such as SDRE and Backstepping. The controller design was presented to stabilize the whole system. Through simulation result indicates, the various models have shown that the control law stabilize a quadrotor aerial robot with good tracking performance and robotness of the system.

  13. Stratigraphic Systems: Origin and Application

    NASA Astrophysics Data System (ADS)

    Galloway, William E.

    In Stratigraphic Systems: Origin and Application, Glenn S.Visher attempts to synthesize and organize the knowledge and integrated interpretation system developed over 35 years in sedimentary analysis. The book sets forth an extremely aggressive agenda: to bring together a knowledge base that includes basin tectonics, stratigraphy, sedimentology paleogeomorphology seismic interpretation, and petroleum geoscience.The book contains more than 700 figures. An enclosed CD-ROM provides many additional figures, 24 color plates, and an expert system program—DE-EXPERT—developed by Visher and colleagues. Visher's approach is inclusive and emphasizes regional synthesis of multiple data sets. The analysis of stratigraphic systems is condensed into a suite of 15 siliciclastic and 6 biochemical depositional themes that reflect deposition over extended time, geographic area, and depositional settings. The themes are built around geomorphic patterns and basin tectonic contexts. In the end, however, the book is disappointing.

  14. Unmanned aerial survey of elephants.

    PubMed

    Vermeulen, Cédric; Lejeune, Philippe; Lisein, Jonathan; Sawadogo, Prosper; Bouché, Philippe

    2013-01-01

    The use of a UAS (Unmanned Aircraft System) was tested to survey large mammals in the Nazinga Game Ranch in the south of Burkina Faso. The Gatewing ×100™ equipped with a Ricoh GR III camera was used to test animal reaction as the UAS passed, and visibility on the images. No reaction was recorded as the UAS passed at a height of 100 m. Observations, made on a set of more than 7000 images, revealed that only elephants (Loxodonta africana) were easily visible while medium and small sized mammals were not. The easy observation of elephants allows experts to enumerate them on images acquired at a height of 100 m. We, therefore, implemented an aerial strip sample count along transects used for the annual wildlife foot count. A total of 34 elephants were recorded on 4 transects, each overflown twice. The elephant density was estimated at 2.47 elephants/km(2) with a coefficient of variation (CV%) of 36.10%. The main drawback of our UAS was its low autonomy (45 min). Increased endurance of small UAS is required to replace manned aircraft survey of large areas (about 1000 km of transect per day vs 40 km for our UAS). The monitoring strategy should be adapted according to the sampling plan. Also, the UAS is as expensive as a second-hand light aircraft. However the logistic and flight implementation are easier, the running costs are lower and its use is safer. Technological evolution will make civil UAS more efficient, allowing them to compete with light aircraft for aerial wildlife surveys.

  15. Unmanned Aerial Survey of Elephants

    PubMed Central

    Vermeulen, Cédric; Lejeune, Philippe; Lisein, Jonathan; Sawadogo, Prosper; Bouché, Philippe

    2013-01-01

    The use of a UAS (Unmanned Aircraft System) was tested to survey large mammals in the Nazinga Game Ranch in the south of Burkina Faso. The Gatewing ×100™ equipped with a Ricoh GR III camera was used to test animal reaction as the UAS passed, and visibility on the images. No reaction was recorded as the UAS passed at a height of 100 m. Observations, made on a set of more than 7000 images, revealed that only elephants (Loxodonta africana) were easily visible while medium and small sized mammals were not. The easy observation of elephants allows experts to enumerate them on images acquired at a height of 100 m. We, therefore, implemented an aerial strip sample count along transects used for the annual wildlife foot count. A total of 34 elephants were recorded on 4 transects, each overflown twice. The elephant density was estimated at 2.47 elephants/km2 with a coefficient of variation (CV%) of 36.10%. The main drawback of our UAS was its low autonomy (45 min). Increased endurance of small UAS is required to replace manned aircraft survey of large areas (about 1000 km of transect per day vs 40 km for our UAS). The monitoring strategy should be adapted according to the sampling plan. Also, the UAS is as expensive as a second-hand light aircraft. However the logistic and flight implementation are easier, the running costs are lower and its use is safer. Technological evolution will make civil UAS more efficient, allowing them to compete with light aircraft for aerial wildlife surveys. PMID:23405088

  16. Well Clear: General Aviation and Commercial Pilots' Perceptioin of Unmanned Aerial Vehicles in the National Airspace System

    NASA Technical Reports Server (NTRS)

    Ott, Joseph

    2015-01-01

    This research explored how different pilots perceived the concept of the Well Clear Boundary (WCB) and observed if that boundary changed when dealing with manned versus unmanned aircraft systems (UAS), and the effects of other variables. Pilots' WCB perceptions were collected objectively through simulator recordings and subjectively through questionnaires. Objectively, significant differences were found in WCB perception between two pilot types (general aviation [GA], and Airline Transport Pilots [ATPs]), and significant WCB differences were evident when comparing two intruder types (manned versus unmanned aircraft). Differences were dependent on other manipulated variables (intruder approach angle, ownship speed, and background traffic levels). Subjectively, there were differences in WCB perception across pilot types; GA pilots trusted UAS aircraft higher than the more experienced ATPs. Conclusions indicate pilots' WCB mental models are more easily perceived as time-based boundaries in front of ownship, and more easily perceived as distance-based boundaries to the rear of ownship.

  17. Remotely deployable aerial inspection using tactile sensors

    SciTech Connect

    MacLeod, C. N.; Cao, J.; Pierce, S. G.; Dobie, G.; Summan, R.; Sullivan, J. C.; Pipe, A. G.

    2014-02-18

    For structural monitoring applications, the use of remotely deployable Non-Destructive Evaluation (NDE) inspection platforms offer many advantages, including improved accessibility, greater safety and reduced cost, when compared to traditional manual inspection techniques. The use of such platforms, previously reported by researchers at the University Strathclyde facilitates the potential for rapid scanning of large areas and volumes in hazardous locations. A common problem for both manual and remote deployment approaches lies in the intrinsic stand-off and surface coupling issues of typical NDE probes. The associated complications of these requirements are obviously significantly exacerbated when considering aerial based remote inspection and deployment, resulting in simple visual techniques being the preferred sensor payload. Researchers at Bristol Robotics Laboratory have developed biomimetic tactile sensors modelled on the facial whiskers (vibrissae) of animals such as rats and mice, with the latest sensors actively sweeping their tips across the surface in a back and forth motion. The current work reports on the design and performance of an aerial inspection platform and the suitability of tactile whisking sensors to aerial based surface monitoring applications.

  18. Well clear: General aviation and commercial pilots' perception of unmanned aerial vehicles in the national airspace system

    NASA Astrophysics Data System (ADS)

    Ott, Joseph T.

    The purpose of this research was to determine how different pilot types perceived the subjective concept of the Well Clear Boundary (WCB) and to observe if that boundary changed when dealing with manned versus unmanned aircraft systems (UAS) as well as the effects of other variables. Pilots' perceptions of the WCB were collected objectively through simulator recordings and subjectively through questionnaires. Together, these metrics provided quantitative and qualitative data about pilot WCB perception. The objective results of this study showed significant differences in WCB perception between two different pilot types, as well as WCB significant differences when comparing two different intruder types (manned versus unmanned aircraft). These differences were dependent on other manipulated variables, including intruder approach angle, ownship speed, and background traffic levels. Subjectively, there were evident differences in WCB perception across pilot types; general aviation (GA) pilots appeared to trust UAS aircraft slightly more than did the more experienced Airline Transport Pilots (ATPs). Overall, it is concluded that pilots' mental models of the WCB are more easily perceived as time-based boundaries in front of ownship, while being more easily perceived as distance-based boundaries to the rear of ownship.

  19. Film analysis systems and applications

    SciTech Connect

    Yonekura, Y.; Brill, A.B.

    1981-01-01

    The different components that can be used in modern film analysis systems are reviewed. TV camera and charge-coupled device sensors coupled to computers provide low cost systems for applications such as those described. The autoradiography (ARG) method provides an important tool for medical research and is especially useful for the development of new radiopharmaceutical compounds. Biodistribution information is needed for estimation of radiation dose, and for interpretation of the significance of observed patterns. The need for such precise information is heightened when one seeks to elucidate physiological principles/factors in normal and experimental models of disease. The poor spatial resolution achieved with current PET-imaging systems limits the information on radioreceptor mapping, neutrotransmitter, and neuroleptic drug distribution that can be achieved from patient studies. The artful use of ARG in carefully-controlled animal studies will be required to provide the additional information needed to fully understand results obtained with this new important research tool. (ERB)

  20. Film cameras or digital sensors? The challenge ahead for aerial imaging

    USGS Publications Warehouse

    Light, D.L.

    1996-01-01

    Cartographic aerial cameras continue to play the key role in producing quality products for the aerial photography business, and specifically for the National Aerial Photography Program (NAPP). One NAPP photograph taken with cameras capable of 39 lp/mm system resolution can contain the equivalent of 432 million pixels at 11 ??m spot size, and the cost is less than $75 per photograph to scan and output the pixels on a magnetic storage medium. On the digital side, solid state charge coupled device linear and area arrays can yield quality resolution (7 to 12 ??m detector size) and a broader dynamic range. If linear arrays are to compete with film cameras, they will require precise attitude and positioning of the aircraft so that the lines of pixels can be unscrambled and put into a suitable homogeneous scene that is acceptable to an interpreter. Area arrays need to be much larger than currently available to image scenes competitive in size with film cameras. Analysis of the relative advantages and disadvantages of the two systems show that the analog approach is more economical at present. However, as arrays become larger, attitude sensors become more refined, global positioning system coordinate readouts become commonplace, and storage capacity becomes more affordable, the digital camera may emerge as the imaging system for the future. Several technical challenges must be overcome if digital sensors are to advance to where they can support mapping, charting, and geographic information system applications.

  1. Ground Control Point - Wireless System Network for UAV-based environmental monitoring applications

    NASA Astrophysics Data System (ADS)

    Mejia-Aguilar, Abraham

    2016-04-01

    In recent years, Unmanned Aerial Vehicles (UAV) have seen widespread civil applications including usage for survey and monitoring services in areas such as agriculture, construction and civil engineering, private surveillance and reconnaissance services and cultural heritage management. Most aerial monitoring services require the integration of information acquired during the flight (such as imagery) with ground-based information (such as GPS information or others) for improved ground truth validation. For example, to obtain an accurate 3D and Digital Elevation Model based on aerial imagery, it is necessary to include ground-based information of coordinate points, which are normally acquired with surveying methods based on Global Position Systems (GPS). However, GPS surveys are very time consuming and especially for longer time series of monitoring data repeated GPS surveys are necessary. In order to improve speed of data collection and integration, this work presents an autonomous system based on Waspmote technologies build on single nodes interlinked in a Wireless Sensor Network (WSN) star-topology for ground based information collection and later integration with surveying data obtained by UAV. Nodes are designed to be visible from the air, to resist extreme weather conditions with low-power consumption. Besides, nodes are equipped with GPS as well as Inertial Measurement Unit (IMU), accelerometer, temperature and soil moisture sensors and thus provide significant advantages in a broad range of applications for environmental monitoring. For our purpose, the WSN transmits the environmental data with 3G/GPRS to a database on a regular time basis. This project provides a detailed case study and implementation of a Ground Control Point System Network for UAV-based vegetation monitoring of dry mountain grassland in the Matsch valley, Italy.

  2. 1:500 Scale Aerial Triangulation Test with Unmanned Airship in Hubei Province

    NASA Astrophysics Data System (ADS)

    Feifei, Xie; Zongjian, Lin; Dezhu, Gui

    2014-03-01

    A new UAVS (Unmanned Aerial Vehicle System) for low altitude aerial photogrammetry is introduced for fine surveying and mapping, including the platform airship, sensor system four-combined wide-angle camera and photogrammetry software MAP-AT. It is demonstrated that this low-altitude aerial photogrammetric system meets the precision requirements of 1:500 scale aerial triangulation based on the test of this system in Hubei province, including the working condition of the airship, the quality of image data and the data processing report. This work provides a possibility for fine surveying and mapping.

  3. Exterior Orientation Estimation of Oblique Aerial Imagery Using Vanishing Points

    NASA Astrophysics Data System (ADS)

    Verykokou, Styliani; Ioannidis, Charalabos

    2016-06-01

    In this paper, a methodology for the calculation of rough exterior orientation (EO) parameters of multiple large-scale overlapping oblique aerial images, in the case that GPS/INS information is not available (e.g., for old datasets), is presented. It consists of five main steps; (a) the determination of the overlapping image pairs and the single image in which four ground control points have to be measured; (b) the computation of the transformation parameters from every image to the coordinate reference system; (c) the rough estimation of the camera interior orientation parameters; (d) the estimation of the true horizon line and the nadir point of each image; (e) the calculation of the rough EO parameters of each image. A developed software suite implementing the proposed methodology is tested using a set of UAV multi-perspective oblique aerial images. Several tests are performed for the assessment of the errors and show that the estimated EO parameters can be used either as initial approximations for a bundle adjustment procedure or as rough georeferencing information for several applications, like 3D modelling, even by non-photogrammetrists, because of the minimal user intervention needed. Finally, comparisons with a commercial software are made, in terms of automation and correctness of the computed EO parameters.

  4. Mapping bare soil in South West Wales, UK, using high resolution colour infra-red aerial photography for water quality and flood risk management applications

    NASA Astrophysics Data System (ADS)

    Sykes, Helena; Neale, Simon; Coe, Sarah

    2016-04-01

    Natural Resources Wales is a UK government body responsible for environmental regulation, among other areas. River walks in Water Framework Directive (WFD) priority catchments in South West Wales, UK, identified soil entering water courses due to poaching and bank erosion, leading to deterioration in the water quality and jeopardising the water quality meeting legal minimum standards. Bare soil has also been shown to cause quicker and higher hydrograph peaks in rural catchments than if those areas were vegetated, which can lead to flooding of domestic properties during peak storm flows. The aim was to target farm visits by operational staff to advise on practices likely to improve water quality and to identify areas where soft engineering solutions such as revegetation could alleviate flood risk in rural areas. High resolution colour-infrared aerial photography, 25cm in the three colour bands and 50cm in the near infrared band, was used to map bare soil in seven catchments using supervised classification of a five band stack including the Normalised Difference Vegetation Index (NDVI). Mapping was combined with agricultural land use and field boundary data to filter out arable fields, which are supposed to bare soil for part of their cycle, and was very successful when compared to ground truthing, with the exception of silage fields which contained sparse, no or unproductive vegetation at the time the imagery was acquired leading to spectral similarity to bare soil. A raindrop trace model was used to show the path sediment from bare soil areas would take when moving through the catchment to a watercourse, with hedgerows inserted as barriers following our observations from ground truthing. The findings have been used to help farmers gain funding for improvements such as fencing to keep animals away from vulnerable river banks. These efficient and automated methods can be rolled out to more catchments in Wales and updated using aerial imagery acquired more recently to

  5. Building FAÇADE Separation in Vertical Aerial Images

    NASA Astrophysics Data System (ADS)

    Meixner, P.; Wendel, A.; Bischof, H.; Leberl, F.

    2012-07-01

    Three-dimensional models of urban environments have great appeal and offer promises of interesting applications. While initially it was of interest to just have such 3D data, it increasingly becomes evident that one really would like to have interpreted urban objects. To be able to interpret buildings we have to split a visible whole building block into its different single buildings. Usually this is done using cadastral information to divide the single land parcels. The problem in this case is that sometimes the building boundaries derived from the cadastre are insufficiently accurate due to several reasons like old databases with lower accuracies or inaccuracies due to transformation between two coordinate systems. For this reason it can happen that a cadastral boundary coming from an old map is displaced by up to several meters and therefore divides two buildings incorrectly. To overcome such problems we incorporate the information from vertical aerial images. We introduce a façade separation method that is able to find individual building façades using multi view stereo. The purpose is to identify the individual façades and separate them from one another before on proceeds with the analysis of a façade's details. The source was a set of overlapping, thus "redundant" vertical aerial images taken by an UltraCam digital aerial camera. Therefore in a first step we determine the building block outlines using the building classification and use the height values from the Digital Surface Model (DSM) to determine approximate "façade quadrilaterals". We also incorporate height discontinuities using the height profiles along the building outlines to enhance our façade separation. In a next step we detect repeated pattern in these "façade images" and use them to separate the façades respectively building blocks from one another. We show that this method can be successfully used to separate building façades using vertical aerial images with a very high detection

  6. Modeling aerial refueling operations

    NASA Astrophysics Data System (ADS)

    McCoy, Allen B., III

    Aerial Refueling (AR) is the act of offloading fuel from one aircraft (the tanker) to another aircraft (the receiver) in mid flight. Meetings between tanker and receiver aircraft are referred to as AR events and are scheduled to: escort one or more receivers across a large body of water; refuel one or more receivers; or train receiver pilots, tanker pilots, and boom operators. In order to efficiently execute the Aerial Refueling Mission, the Air Mobility Command (AMC) of the United States Air Force (USAF) depends on computer models to help it make tanker basing decisions, plan tanker sorties, schedule aircraft, develop new organizational doctrines, and influence policy. We have worked on three projects that have helped AMC improve its modeling and decision making capabilities. Optimal Flight Planning. Currently Air Mobility simulation and optimization software packages depend on algorithms which iterate over three dimensional fuel flow tables to compute aircraft fuel consumption under changing flight conditions. When a high degree of fidelity is required, these algorithms use a large amount of memory and CPU time. We have modeled the rate of aircraft fuel consumption with respect to AC GrossWeight, Altitude and Airspeed. When implemented, this formula will decrease the amount of memory and CPU time needed to compute sortie fuel costs and cargo capacity values. We have also shown how this formula can be used in optimal control problems to find minimum costs flight plans. Tanker Basing Demand Mismatch Index. Since 1992, AMC has relied on a Tanker Basing/AR Demand Mismatch Index which aggregates tanker capacity and AR demand data into six regions. This index was criticized because there were large gradients along regional boundaries. Meanwhile tankers frequently cross regional boundaries to satisfy the demand for AR support. In response we developed continuous functions to score locations with respect to their proximity to demand for AR support as well as their

  7. Multi-temporal monitoring of crack formation on a mountain col with low-cost unmanned aerial systems - a case study in Austria

    NASA Astrophysics Data System (ADS)

    Stary, Ulrike; Adams, Marc

    2016-04-01

    In the Tuxer Alps of Western Austria, crack formation was observed on a col at approximately 2,500 m a.s.l., in close proximity to a highly frequented hiking trail. On an area of 0.2 ha, three several meter deep cracks were identified. Here we present the results of a 3-year monitoring of this area with low-cost, unmanned aerial systems (UAS) and photogrammetric techniques. In 2013 and 2014, a custom-built fixed-wing UAS (Multiplex Mentor, wingspan 1.6 m, gross take-off weight 2.5 kg), equipped with a Sony NEX5 (16 mm prime lens, 14 MP sensor resolution) was used to map the study site. In 2015 we employed a helicopter (Thundertiger Raptor, 0.55 m blade length, gross take-off weight 2.8 kg), fitted with a GoPro2 (60° prime lens, 5 MP sensor resolution). In all three cases we recorded 1,200-2,000 images in 10-30 minutes. To georeference the images, 8-10 ground control points (GCP) were placed at the study site and measured with a Trimble GeoXT GPS device (expected accuracy 0.15 m, precision 0.3 m). Using AgiSoft's PhotoScan (v.1.1.6), Orthophotos (OP) and digital surface models (DSM) were calculated with 5 and 20 cm ground sampling distance, respectively. The visual interpretation of the OPs gave some indication, that the size of the cracks was increasing by 0.1-0.5 m (A-axis) or 0.2-0.8 m² per year. An interpretation of the DSMs was inconclusive with regard to the depth of the cracks due to shadows in the imagery and vertical or overhanging sidewalls of the cracks. Additionally the accuracy of the GCP-measurements was found to lie below the rate of change of the cracks, thus not permitting a direct calculation of difference DSM. From an operational point-of-view, the study site proved very challenging because of its exposed, high-alpine location, with high wind speeds, gusts and poor visibility hampering the UAS-missions. The monitoring campaign will continue in 2016, where the collection of additional ground-based reference data is planned (e.g. terrestrial

  8. Mapping of invasive Acacia species in Brazilian Mussununga ecosystems using high- resolution IR remote sensing data acquired with an autonomous Unmanned Aerial System (UAS)

    NASA Astrophysics Data System (ADS)

    Lehmann, Jan Rudolf Karl; Zvara, Ondrej; Prinz, Torsten

    2015-04-01

    The biological invasion of Australian Acacia species in natural ecosystems outside Australia has often a negative impact on native and endemic plant species and the related biodiversity. In Brazil, the Atlantic rainforest of Bahia and Espirito Santo forms an associated type of ecosystem, the Mussununga. In our days this biologically diverse ecosystem is negatively affected by the invasion of Acacia mangium and Acacia auriculiformis, both introduced to Brazil by the agroforestry to increase the production of pulp and high grade woods. In order to detect the distribution of Acacia species and to monitor the expansion of this invasion the use of high-resolution imagery data acquired with an autonomous Unmanned Aerial System (UAS) proved to be a very promising approach. In this study, two types of datasets - CIR and RGB - were collected since both types provide different information. In case of CIR imagery attention was paid on spectral signatures related to plants, whereas in case of RGB imagery the focus was on surface characteristics. Orthophoto-mosaics and DSM/DTM for both dataset were extracted. RGB/IHS transformations of the imagery's colour space were utilized, as well as NDVIblue index in case of CIR imagery to discriminate plant associations. Next, two test areas were defined in order validate OBIA rule sets using eCognition software. In case of RGB dataset, a rule set based on elevation distinction between high vegetation (including Acacia) and low vegetation (including soils) was developed. High vegetation was classified using Nearest Neighbour algorithm while working with the CIR dataset. The IHS information was used to mask shadows, soils and low vegetation. Further Nearest Neighbour classification was used for distinction between Acacia and other high vegetation types. Finally an accuracy assessment was performed using a confusion matrix. One can state that the IHS information appeared to be helpful in Acacia detection while the surface elevation

  9. Terrestrial and unmanned aerial system imagery for deriving photogrammetric three-dimensional point clouds and volume models of mass wasting sites

    NASA Astrophysics Data System (ADS)

    Hämmerle, Martin; Schütt, Fabian; Höfle, Bernhard

    2016-04-01

    Three-dimensional (3-D) geodata of mass wasting sites are important to model surfaces, volumes, and their changes over time. With a photogrammetric approach commonly known as structure from motion, 3-D point clouds can be derived from image collections in a straightforward way. The quality of point clouds covering a quarry dump derived from terrestrial and aerial imagery is compared and assessed. A comprehensive set of quality indicators is calculated and compared to surveyed reference data and to a terrestrial LiDAR point cloud. The examined indicators are completeness of coverage, point density, vertical accuracy, multiscale point cloud distance, scaling accuracy, and dump volume. It is found that the photogrammetric datasets generally represent the examined dump well with, for example, an area coverage of up to 90% and 100% in case of terrestrial and aerial imagery, respectively, a maximum scaling difference of 0.62%, and volume estimations reaching up to 100% of the LiDAR reference. Combining the advantages of 3-D geodata derived from terrestrial (high detail, accurate volume calculation even with a small number of input images) and aerial images (high coverage) can be a promising method to further improve the quality of 3-D geodata derived with low-cost approaches.

  10. Low-cost inflatable lighter-than-air surveillance system for civilian applications

    NASA Astrophysics Data System (ADS)

    Kiddy, Jason S.; Chen, Peter C.; Niemczuk, John B.

    2002-08-01

    Today's society places an extremely high price on the value of human life and injury. Whenever possible, police and paramilitary actions are always directed towards saving as many lives as possible, whether it is the officer, perpetrator, or innocent civilians. Recently, the advent of robotic systems has enable law enforcement agencies to perform many of the most dangerous aspects of their jobs from relative safety. This is especially true to bomb disposal units but it is also gaining acceptance in other areas. An area where small, remotely operated machines may prove effective is in local aerial surveillance. Currently, the only aerial surveillance assets generally available to law enforcement agencies are costly helicopters. Unfortunately, most of the recently developed unmanned air vehicles (UAVs) are directed towards military applications and have limited civilian use. Systems Planning and Analysis, Inc. (SPA) has conceived and performed a preliminary analysis of a low-cost, inflatable, lighter- than-air surveillance system that may be used in a number of military and law enforcement surveillance situations. The preliminary analysis includes the concept definition, a detailed trade study to determine the optimal configuration of the surveillance system, high-pressure inflation tests, and a control analysis. This paper will provide the details in these areas of the design and provide an insight into the feasibility of such a system.

  11. Coordination Between Unmanned Aerial and Ground Vehicles: A Taxonomy and Optimization Perspective.

    PubMed

    Chen, Jie; Zhang, Xing; Xin, Bin; Fang, Hao

    2016-04-01

    The coordination between unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) is a proactive research topic whose great value of application has attracted vast attention. This paper outlines the motivations for studying the cooperative control of UAVs and UGVs, and attempts to make a comprehensive investigation and analysis on recent research in this field. First, a taxonomy for classification of existing unmanned aerial and ground vehicles systems (UAGVSs) is proposed, and a generalized optimization framework is developed to allow the decision-making problems for different types of UAGVSs to be described in a unified way. By following the proposed taxonomy, we show how different types of UAGVSs can be built to realize the goal of a common task, that is target tracking, and how optimization problems can be formulated for a UAGVS to perform specific tasks. This paper presents an optimization perspective to model and analyze different types of UAGVSs, and serves as a guidance and reference for developing UAGVSs.

  12. Exploring Planets with Directed Aerial Robot Explorers

    NASA Astrophysics Data System (ADS)

    Pankine, Alexey A.; Aaron, Kim M.; Heun, Matthew K.; Nock, Kerry T.; Schlaifer, R. Stephen; Ingersoll, Andrew P.; Lorenz, Ralph D.

    2004-02-01

    Global Aerospace Corporation (GAC) is developing a revolutionary system architecture for exploration of planetary atmospheres and surfaces from atmospheric altitudes. The work is supported by the NASA Institute for Advanced Concepts (NIAC). The innovative system architecture relies upon the use of Directed Aerial Robot Explorers (DAREs), which essentially are long-duration-flight autonomous balloons with trajectory control capabilities that can deploy swarms of miniature probes over multiple target areas. Balloon guidance capabilities will offer unprecedented opportunities in high-resolution, targeted observations of both atmospheric and surface phenomena. Multifunctional microprobes will be deployed from the balloons once over the target areas, and perform a multitude of functions, such as atmospheric profiling or surface exploration, relaying data back to the balloons or an orbiter. This architecture will enable low-cost, low-energy, long-term global exploration of planetary atmospheres and surfaces. This paper focuses on a conceptual analysis of the DARE architecture capabilities and science applications for Venus, Titan and Jupiter. Preliminary simulations with simplified atmospheric models show that a relatively small trajectory control wing can enable global coverage of the atmospheres of Venus and Titan by a single balloon over a 100-day mission. This presents unique opportunities for global in situ sampling of the atmospheric composition and dynamics, atmospheric profiling over multiple sites with small dropsondes and targeted deployment of surface microprobes. At Jupiter, path guidance capabilities of the DARE platforms permits targeting localized regions of interest, such as ``hot spots'' or the Great Red Spot. A single DARE platform at Jupiter can sample major types of the atmospheric flows (zones and belts) over a 100-day mission. Observations by deployable probes would reveal if the differences exist in radiative, dynamic and compositional environments

  13. Review of the SAFARI 2000 RC-10 Aerial Photography

    NASA Technical Reports Server (NTRS)

    Myers, Jeff; Shelton, Gary; Annegarn, Harrold; Peterson, David L. (Technical Monitor)

    2001-01-01

    This presentation will review the aerial photography collected by the NASA ER-2 aircraft during the SAFARI (Southern African Regional Science Initiative) year 2000 campaign. It will include specifications on the camera and film, and will show examples of the imagery. It will also detail the extent of coverage, and the procedures to obtain film products from the South African government. Also included will be some sample applications of aerial photography for various environmental applications, and its use in augmenting other SAFARI data sets.

  14. Unmanned aerial vehicles (UAV) in atmospheric research and satellite validation

    NASA Astrophysics Data System (ADS)

    Sitnikov, Nikolay; Borisov, Yuriy; Akmulin, Dimitry; Chekulaev, Igor; Efremov, Denis; Sitnikova, Vera; Ulanovsky, Alexey; Popovicheva, Olga

    The perspectives of the development of methods and facilities based on UAV for atmospheric investigations are considered. Some aspects of these methods applications are discussed. Developments of the experimental samples of UAV onboard equipment for measurements of atmospheric parameters carried out in Central Aerological Observatory are presented. Hardware system for the UAV is developed. The results of measurements of the spatial distributions of the thermodynamic parameters and the concentrations of some gas species onboard of remotely piloted and unmanned aerial vehicles obtained in field tests are presented. The development can be used for satellite data validation, as well as operative environmental monitoring of contaminated areas in particular, chemical plants, natural and industrial disasters territories, areas and facilities for space purposes , etc.

  15. System Analysis Applied to Autonomy: Application to High-Altitude Long-Endurance Remotely Operated Aircraft

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Yetter, Jeffrey A.; Guynn, Mark D.

    2006-01-01

    Maturation of intelligent systems technologies and their incorporation into aerial platforms are dictating the development of new analysis tools and incorporation of such tools into existing system analysis methodologies in order to fully capture the trade-offs of autonomy on vehicle and mission success. A first-order "system analysis of autonomy" methodology is outlined in this paper. Further, this analysis methodology is subsequently applied to notional high-altitude long-endurance (HALE) aerial vehicle missions.

  16. Ecological Energetics of an Abundant Aerial Insectivore, the Purple Martin

    PubMed Central

    Kelly, Jeffrey F.; Bridge, Eli S.; Frick, Winifred F.; Chilson, Phillip B.

    2013-01-01

    The atmospheric boundary layer and lower free atmosphere, or aerosphere, is increasingly important for human transportation, communication, environmental monitoring, and energy production. The impacts of anthropogenic encroachment into aerial habitats are not well understood. Insectivorous birds and bats are inherently valuable components of biodiversity and play an integral role in aerial trophic dynamics. Many of these insectivores are experiencing range-wide population declines. As a first step toward gaging the potential impacts of these declines on the aerosphere’s trophic system, estimates of the biomass and energy consumed by aerial insectivores are needed. We developed a suite of energetics models for one of the largest and most common avian aerial insectivores in North America, the Purple Martin (Prognesubis). The base model estimated that Purple Martins consumed 412 (± 104) billion insects*y-1 with a biomass of 115,860 (± 29,192) metric tonnes*y-1. During the breeding season Purple Martins consume 10.3 (+ 3.0) kg of prey biomass per km3 of aerial habitat, equal to about 36,000 individual insects*km-3. Based on these calculations, the cumulative seasonal consumption of insects*km-3 is greater in North America during the breeding season than during other phases of the annual cycle, however the maximum daily insect consumption*km-3 occurs during fall migration. This analysis provides the first range-wide quantitative estimate of the magnitude of the trophic impact of this large and common aerial insectivore. Future studies could use a similar modeling approach to estimate impacts of the entire guild of aerial insectivores at a variety of temporal and spatial scales. These analyses would inform our understanding of the impact of population declines among aerial insectivores on the aerosphere’s trophic dynamics. PMID:24086755

  17. Mask degradation monitoring with aerial mask inspector

    NASA Astrophysics Data System (ADS)

    Tseng, Wen-Jui; Fu, Yung-Ying; Lu, Shih-Ping; Jiang, Ming-Sian; Lin, Jeffrey; Wu, Clare; Lifschitz, Sivan; Tam, Aviram

    2013-06-01

    As design rule continues to shrink, microlithography is becoming more challenging and the photomasks need to comply with high scanner laser energy, low CDU, and ever more aggressive RETs. This give rise to numerous challenges in the semiconductor wafer fabrication plants. Some of these challenges being contamination (mainly haze and particles), mask pattern degradation (MoSi oxidation, chrome migration, etc.) and pellicle degradation. Fabs are constantly working to establish an efficient methodology to manage these challenges mainly using mask inspection, wafer inspection, SEM review and CD SEMs. Aerial technology offers a unique opportunity to address the above mask related challenges using one tool. The Applied Materials Aera3TM system has the inherent ability to inspect for defects (haze, particles, etc.), and track mask degradation (e.g. CDU). This paper focuses on haze monitoring, which is still a significant challenge in semiconductor manufacturing, and mask degradation effects that are starting to emerge as the next challenge for high volume semiconductor manufacturers. The paper describes Aerial inspector (Aera3) early haze methodology and mask degradation tracking related to high volume manufacturing. These will be demonstrated on memory products. At the end of the paper we take a brief look on subsequent work currently conducted on the more general issue of photo mask degradation monitoring by means of an Aerial inspector.

  18. Localization of aerial broadband noise by pinnipeds

    NASA Astrophysics Data System (ADS)

    Holt, Marla M.; Schusterman, Ronald J.; Southall, Brandon L.; Kastak, David

    2004-05-01

    Although many pinnipeds (seals, sea lions, and walruses) emit broadband calls on land as part of their communication system, few studies have addressed these animals' ability to localize aerial broadband sounds. In this study, the aerial sound localization acuities of a female northern elephant seal (Mirounga angustirostris), a male harbor seal (Phoca vitulina), and a female California sea lion (Zalophus californianus) were measured in the horizontal plane. The stimulus was broadband white noise that was band pass filtered between 1.2 and 15 kHz. Testing was conducted in a hemi-anechoic chamber using a left/right forced choice procedure to measure the minimum audible angle (MAA) for each subject. MAAs were defined as half the angular separation of two sound sources bisected by a subject's midline that corresponded to 75% correct discrimination. MAAs were 4.7°, 3.6°, and 4.2° for the northern elephant seal, harbor seal, and California sea lion, respectively. These results demonstrate that individuals of these pinniped species have sound localization abilities comparable to the domestic cat and rhesus macaque. The acuity differences between our subjects were small and not predicted by head size. These results likely reflect the relatively acute general abilities of pinnipeds to localize aerial broadband signals.

  19. Favourable uranium-phosphate exploration trends guided by the application of statistical factor analysis technique on the aerial gamma spectrometric data in Syrian desert (Area-1), Syria

    NASA Astrophysics Data System (ADS)

    Asfahani, J.; Al-Hent, R.; Aissa, M.

    2016-02-01

    A scored lithological map including 10 radiometric units is established through applying factor analysis approach to aerial spectrometric data of Area-1, Syrian desert, which includes Ur, eU, eTh, K%, eU/eTh, eU/K%, and eTh/K%. A model of four rotated factors F1, F2, F3, and F4 is adapted for representing 234,829 data measured points in Area-1, where 86% of total data variance is interpreted. A geological scored pseudo-section derived from the lithological scored map is established and analyzed in order to show the possible stratigraphic and structural traps for uranium occurrences associated with phosphate deposits in the studied Area-1. These identified traps presented in this paper need detailed investigation and must be necessarily followed and checked by ground validations and subsurface well logging, in order to locate the anomalous uranium occurrences and explore with more confidence and certitude their characteristics as a function of depth.

  20. Calculated Drag of an Aerial Refueling Assembly Through Airplane Performance Analysis

    NASA Technical Reports Server (NTRS)

    Vachon, Jake; Ray, Ronald; Calianno, Carl

    2004-01-01

    This viewgraph document reviews NASA Dryden's work on Aerial refueling, with specific interest in calculating the drag of the refueling system. The aerodynamic drag of an aerial refueling assembly was calculated during the Automated Aerial Refueling project at the NASA Dryden Flight Research Center. An F/A-18A airplane was specially instrumented to obtain accurate fuel flow measurements and to determine engine thrust

  1. EROS main image file - A picture perfect database for Landsat imagery and aerial photography

    NASA Technical Reports Server (NTRS)

    Jack, R. F.

    1984-01-01

    The Earth Resources Observation System (EROS) Program was established by the U.S. Department of the Interior in 1966 under the administration of the Geological Survey. It is primarily concerned with the application of remote sensing techniques for the management of natural resources. The retrieval system employed to search the EROS database is called INORAC (Inquiry, Ordering, and Accounting). A description is given of the types of images identified in EROS, taking into account Landsat imagery, Skylab images, Gemini/Apollo photography, and NASA aerial photography. Attention is given to retrieval commands, geographic coordinate searching, refinement techniques, various online functions, and questions regarding the access to the EROS Main Image File.

  2. Evaluation of efficacy and human health risk of aerial ultra-low volume applications of pyrethrins and piperonyl butoxide for adult mosquito management in response to West Nile virus activity in Sacramento County, California.

    PubMed

    Macedo, Paula A; Schleier, Jerome J; Reed, Marcia; Kelley, Kara; Goodman, Gary W; Brown, David A; Peterson, Robert K D

    2010-03-01

    The Sacramento and Yolo Mosquito and Vector Control District (SYMVCD, also referred to as "the District") conducts surveillance and management of mosquitoes in Sacramento and Yolo counties in California. Following an increase in numbers and West Nile virus (WNV) infection rates of Culex tarsalis and Culex pipiens, the District decided on July 26, 2007, to conduct aerial applications of Evergreen EC 60-6 (60% pyrethrins: 6% piperonyl butoxide) over approximately 215 km2 in the north area of Sacramento County on the nights of July 30, July 31, and August 1, 2007. At the same time, the District received notification of the first human WNV case in the area. To evaluate the efficacy of the applications in decreasing mosquito abundance and infection rates, we conducted pre- and post-trapping inside and outside the spray zone and assessed human health risks from exposure to the insecticide applications. Results showed a significant decrease in abundance of both Cx. tarsalis and Cx. pipiens, and in the minimum infection rate of Cx. tarsalis. Human-health risks from exposure to the insecticide were below thresholds set by the US Environmental Protection Agency. PMID:20402352

  3. A Texture Thesaurus for Browsing Large Aerial Photographs.

    ERIC Educational Resources Information Center

    Ma, Wei-Ying; Manjunath, B. S.

    1998-01-01

    Presents a texture-based image-retrieval system for browsing large-scale aerial photographs. System components include texture-feature extraction, image segmentation and grouping, learning-similarity measure, and a texture-thesaurus model for fast search and indexing. Testing has demonstrated the system's effectiveness in searching and selecting…

  4. Dynamical systems theory and applications

    NASA Astrophysics Data System (ADS)

    Awrejcewicz, Jan

    2006-08-01

    The 7th International Conference devoted to "Dynamical Systems-Theory and Applications" hold in 8-11 December, 2003 in Łódź, Poland, and it was organized by the staff of Department of Automatics and Biomechanics of the Technical University of Łódź. It was financially supported by the Rector of the Technical University of Łódź and the Department of Education and Physical Culture of the Łódź City Hall. The members of the International Scientific Committee included: Igor V. Andrianov (Dniepropetrovsk), Jan Awrejcewicz (Łódź), Iliya Blekhman (Sankt Petersburg), Roman Bogacz (Warszawa), Dick van Campen (Eindhoven), Zbigniew Engel (Kraków), Lothar Gaul (Stuttgart), Józef Giergiel (Kraków), Michał Kleiber (Warszawa), Vadim A. Krysko (Saratov), Włodzimierz Kurnik (Warszawa), Claude-Henri Lamarque (Lyon), Leonid I. Manevitch (Moscow), Jan Osiecki (Warszawa), Wiesaw Ostachowicz (Gdańsk), Ladislav Pust (Prague), Giuseppe Rega (Rome), Tsuneo Someya (Tokyo), Zbigniew Starczewski (Warszawa), Eugeniusz Świtoński (Gliwice), Andrzej Tylikowski (Warszawa), Tadeusz Uhl (Kraków), Aleksander F. Vakakis (Illinois), Józef Wojnarowski (Gliwice).

  5. Initial Efforts toward Mission-Representative Imaging Surveys from Aerial Explorers

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Plice, Laura; Ippolito, Corey; Young, Larry A.; Lau, Benton; Lee, Pascal

    2004-01-01

    Numerous researchers have proposed the use of robotic aerial explorers to perform scientific investigation of planetary bodies in our solar system. One of the essential tasks for any aerial explorer is to be able to perform scientifically valuable imaging surveys. The focus of this paper is to discuss the challenges implicit in, and recent observations related to, acquiring mission-representative imaging data from a small fixed-wing UAV, acting as a surrogate planetary aerial explorer. This question of successfully performing aerial explorer surveys is also tied to other topics of technical investigation, including the development of unique bio-inspired technologies.

  6. Aerial monitoring and environmental protection: aerial photography as an instrument for checking landscape damage

    NASA Astrophysics Data System (ADS)

    Tartara, Patrizia

    2009-09-01

    C.N.R. and University of Salento have realized a Geographical Information System for heritage management of the national territory (landscape) and historical urban settlements. Informations come from bibliography, archives, direct and systematic field survey, different kind of aerial photographs analysis, with the primary aim of knowledge for the establishment of an in existence Cultural Heritage Cadastre, focused to legal protection and exploitation of the sites, not last the correct territory planning.

  7. AERIAL OF VEHICLE ASSEMBLY BUILDING & SURROUNDING AREA

    NASA Technical Reports Server (NTRS)

    1977-01-01

    AERIAL OF VEHICLE ASSEMBLY BUILDING & SURROUNDING AREA KSC-377C-0082.41 116-KSC-377C-82.41, P-15877, ARCHIVE-04151 Aerial view - Shuttle construction progress - VAB and Orbiter Processing Facilities - direction northwest.

  8. Aeronautic Instruments. Section VI : Aerial Navigation and Navigating Instruments

    NASA Technical Reports Server (NTRS)

    Eaton, H N

    1923-01-01

    This report outlines briefly the methods of aerial navigation which have been developed during the past few years, with a description of the different instruments used. Dead reckoning, the most universal method of aerial navigation, is first discussed. Then follows an outline of the principles of navigation by astronomical observation; a discussion of the practical use of natural horizons, such as sea, land, and cloud, in making extant observations; the use of artificial horizons, including the bubble, pendulum, and gyroscopic types. A description is given of the recent development of the radio direction finder and its application to navigation.

  9. Biological response of soybean and cotton to aerial glyphosate drift

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An aerial application drift study was conducted in 2009 to determine biological effects of glyphosate on cotton (Gossypium hirsutum L.) and soybean [Glycine max (L.) Merr.]. Glyphosate at 866 g ae/ha was applied using an Air Tractor 402B agricultural aircraft in an 18.3 m spray swath to crops at the...

  10. Integrating CLIPS applications into heterogeneous distributed systems

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.

    1991-01-01

    SOCIAL is an advanced, object-oriented development tool for integrating intelligent and conventional applications across heterogeneous hardware and software platforms. SOCIAL defines a family of 'wrapper' objects called agents, which incorporate predefined capabilities for distributed communication and control. Developers embed applications within agents and establish interactions between distributed agents via non-intrusive message-based interfaces. This paper describes a predefined SOCIAL agent that is specialized for integrating C Language Integrated Production System (CLIPS)-based applications. The agent's high-level Application Programming Interface supports bidirectional flow of data, knowledge, and commands to other agents, enabling CLIPS applications to initiate interactions autonomously, and respond to requests and results from heterogeneous remote systems. The design and operation of CLIPS agents are illustrated with two distributed applications that integrate CLIPS-based expert systems with other intelligent systems for isolating and mapping problems in the Space Shuttle Launch Processing System at the NASA Kennedy Space Center.

  11. Floating aerial LED signage based on aerial imaging by retro-reflection (AIRR).

    PubMed

    Yamamoto, Hirotsugu; Tomiyama, Yuka; Suyama, Shiro

    2014-11-01

    We propose a floating aerial LED signage technique by utilizing retro-reflection. The proposed display is composed of LEDs, a half mirror, and retro-reflective sheeting. Directivity of the aerial image formation and size of the aerial image have been investigated. Furthermore, a floating aerial LED sign has been successfully formed in free space.

  12. Application of a Very-Low-Cost Unmanned Aerial Vehicle (UAV) and Consumer Grade Camera for the Collection of Research Grade Data: Preliminary Findings

    NASA Astrophysics Data System (ADS)

    Christian, P.; Davis, J. D.; Blesius, L.

    2013-12-01

    The use of UAV technology in the field of geoscience research has grown almost exponentially in the last decade. UAVs have been utilized as a sensor platform in many fields including geology, biology, climatology, geomorphology and archaeology. A UAV's ability to fly frequently, at very low altitude, and at relatively little cost makes them a perfect compromise between free, low temporal and spatial resolution satellite data and terrestrial based survey when there are insufficient funds to purchase custom satellite or manned aircraft data. Unfortunately, many available UAVs for research are still relatively expensive and often have predetermined imaging systems. However, the proliferation of hobbyist grade UAVs and consumer point and shoot cameras may provide many research projects with an alternative that is both cost-effective and efficient in data collection. This study therefore seeks to answer the question, can these very low cost, hobby-grade UAVs be used to produce research grade data. To achieve this end, in December of 2012 a small grant was obtained (<$6500) to set up a complete UAV system and to employ it in a diverse range of research. The system is comprised of a 3D Robotics hexacopter, Ardupilot automated flight hardware and software, spare parts and tool kit, two Canon point-and-shoot cameras including one modified for near infrared imagery, and a field laptop. To date, successful research flights have been flown for geomorphic research in degraded and restored montane meadows to study stream channel formation using both visible and near infrared imagery as well as for the creation of digital elevation models of large hillslope gullies using structure from motion (SFM). Other applications for the hexacopter, in progress or planned, include landslide monitoring, vegetation monitoring and mapping using the normalized difference vegetation index, archaeological survey, and bird nest identification on small rock islands. An analysis of the results

  13. Overview of meteorological measurements for aerial spray modeling.

    PubMed

    Rafferty, J E; Biltoft, C A; Bowers, J F

    1996-06-01

    The routine meteorological observations made by the National Weather Service have a spatial resolution on the order of 1,000 km, whereas the resolution needed to conduct or model aerial spray applications is on the order of 1-10 km. Routinely available observations also do not include the detailed information on the turbulence and thermal structure of the boundary layer that is needed to predict the transport, dispersion, and deposition of aerial spray releases. This paper provides an overview of the information needed to develop the meteorological inputs for an aerial spray model such as the FSCBG and discusses the different types of instruments that are available to make the necessary measurements.

  14. Industrial and Systems Engineering Applications in NASA

    NASA Technical Reports Server (NTRS)

    Shivers, Charles H.

    2006-01-01

    A viewgraph presentation on the many applications of Industrial and Systems Engineering used for safe NASA missions is shown. The topics include: 1) NASA Information; 2) Industrial Engineering; 3) Systems Engineering; and 4) Major NASA Programs.

  15. Colorimetric Determination of Color of Aerial Mycelium of Streptomycetes1

    PubMed Central

    Lyons, Allister J.; Pridham, Thomas G.

    1965-01-01

    Lyons, Allister J., Jr. (Northern Regional Research Laboratory, Peoria, Ill.) and Thomas G. Pridham. Colorimetric determination of color of aerial mycelium of streptomycetes. J. Bacteriol. 89:159–169. 1965.—For some time, streptomycete taxonomists have been seeking to describe more accurately the colors of aerial mycelium. Some of the descriptive systems involve many different color names and groups. Others combine many colors into a few groups. All the systems and methods leave much to be desired. To obtain an accurate description, a colorimeter with a reflectance attachment was used to examine streptomycete aerial mycelium of 37 strains, representing all of the major aerial mycelium color groups. Each color was characterized by three values: dominant wavelength in millimicrons, and purity and brightness in percentages. All colors of aerial mycelium were of low purity (< 25%). Most of the dominant wavelengths were in the yellow to yellow-green bands of the spectrum. Most of the color tabs matched visually with the streptomycete strains had purities of a higher value than those of the cultures. The reflectance instrument seems to allow an objective description, and its use may help to clarify the color problem with streptomycetes. It is concluded that present color descriptions are inadequate and that the significance of color in speciation requires critical examination. PMID:14255657

  16. Vehicle detection in aerial surveillance using dynamic Bayesian networks.

    PubMed

    Cheng, Hsu-Yung; Weng, Chih-Chia; Chen, Yi-Ying

    2012-04-01

    We present an automatic vehicle detection system for aerial surveillance in this paper. In this system, we escape from the stereotype and existing frameworks of vehicle detection in aerial surveillance, which are either region based or sliding window based. We design a pixelwise classification method for vehicle detection. The novelty lies in the fact that, in spite of performing pixelwise classification, relations among neighboring pixels in a region are preserved in the feature extraction process. We consider features including vehicle colors and local features. For vehicle color extraction, we utilize a color transform to separate vehicle colors and nonvehicle colors effectively. For edge detection, we apply moment preserving to adjust the thresholds of the Canny edge detector automatically, which increases the adaptability and the accuracy for detection in various aerial images. Afterward, a dynamic Bayesian network (DBN) is constructed for the classification purpose. We convert regional local features into quantitative observations that can be referenced when applying pixelwise classification via DBN. Experiments were conducted on a wide variety of aerial videos. The results demonstrate flexibility and good generalization abilities of the proposed method on a challenging data set with aerial surveillance images taken at different heights and under different camera angles.

  17. Delivery of Unmanned Aerial Vehicle Data

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Sullivan, Donald V.

    2011-01-01

    To support much of NASA's Upper Atmosphere Research Program science, NASA has acquired two Global Hawk Unmanned Aerial Vehicles (UAVs). Two major missions are currently planned using the Global Hawk: the Global Hawk Pacific (GloPac) and the Genesis and Rapid Intensification Processes (GRIP) missions. This paper briefly describes GloPac and GRIP, the concept of operations and the resulting requirements and communication architectures. Also discussed are requirements for future missions that may use satellite systems and networks owned and operated by third parties.

  18. Reconnaissance mapping from aerial photographs

    NASA Technical Reports Server (NTRS)

    Weeden, H. A.; Bolling, N. B. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Engineering soil and geology maps were successfully made from Pennsylvania aerial photographs taken at scales from 1:4,800 to 1:60,000. The procedure involved a detailed study of a stereoscopic model while evaluating landform, drainage, erosion, color or gray tones, tone and texture patterns, vegetation, and cultural or land use patterns.

  19. Aerial Observation Needs Workshop, May 13-14, 2015

    SciTech Connect

    Nasiri, Shaima; Serbin, Shawn; Lesmes, David; Petty, Rick; Schmid, Beat; Vogelmann, Andrew; de Boer, Gijs; Dafflon, Baptiste; Guenther, Alex; Moore, David

    2015-10-01

    The mission of the Climate and Environmental Sciences Division (CESD) of the Office of Biological and Environmental Research (BER) within the U.S. Department of Energy's (DOE) Office of Science is "to advance a robust, predictive understanding of Earth's climate and environmental systems and to inform the development of sustainable solutions to the nation's energy and environmental challenges." Accomplishing this mission requires aerial observations of the atmospheric and terrestrial components of the climate system. CESD is assessing its current and future aerial observation needs to develop a strategy and roadmap of capability requirements for the next decade. To facilitate this process, a workshop was convened that consisted of invited experts in the atmospheric and terrestrial sciences, airborne observations, and modeling. This workshop report summarizes the community input prior to and during the workshop on research challenges and opportunities, as well as specific science questions and observational needs that require aerial observations to address.

  20. Real-time Accurate Surface Reconstruction Pipeline for Vision Guided Planetary Exploration Using Unmanned Ground and Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Almeida, Eduardo DeBrito

    2012-01-01

    This report discusses work completed over the summer at the Jet Propulsion Laboratory (JPL), California Institute of Technology. A system is presented to guide ground or aerial unmanned robots using computer vision. The system performs accurate camera calibration, camera pose refinement and surface extraction from images collected by a camera mounted on the vehicle. The application motivating the research is planetary exploration and the vehicles are typically rovers or unmanned aerial vehicles. The information extracted from imagery is used primarily for navigation, as robot location is the same as the camera location and the surfaces represent the terrain that rovers traverse. The processed information must be very accurate and acquired very fast in order to be useful in practice. The main challenge being addressed by this project is to achieve high estimation accuracy and high computation speed simultaneously, a difficult task due to many technical reasons.