Science.gov

Sample records for aerial image contrast

  1. Aerial Image Systems

    NASA Astrophysics Data System (ADS)

    Clapp, Robert E.

    1987-09-01

    Aerial images produce the best stereoscopic images of the viewed world. Despite the fact that every optic in existence produces an aerial image, few persons are aware of their existence and possible uses. Constant reference to the eye and other optical systems have produced a psychosis of design that only considers "focal planes" in the design and analysis of optical systems. All objects in the field of view of the optical device are imaged by the device as an aerial image. Use of aerial images in vision and visual display systems can provide a true stereoscopic representation of the viewed world. This paper discusses aerial image systems - their applications and designs and presents designs and design concepts that utilize aerial images to obtain superior visual displays, particularly with application to visual simulation.

  2. Calculating aerial images from EUV masks

    NASA Astrophysics Data System (ADS)

    Pistor, Thomas V.; Neureuther, Andrew R.

    1999-06-01

    Aerial images for line/space patterns, arrays of posts and an arbitrary layout pattern are calculated for EUV masks in a 4X EUV imaging system. Both mask parameters and illumination parameters are varied to investigate their effects on the aerial image. To facilitate this study, a parallel version of TEMPEST with a Fourier transform boundary condition was developed and run on a network of 24 microprocessors. Line width variations are observed when absorber thickness or sidewall angle changes. As the line/space pattern scales to smaller dimensions, the aspect ratios of the absorber features increase, introducing geometric shadowing and reducing aerial image intensity and contrast. 100nm square posts have circular images of diameter close to 100nm, but decreasing in diameter significantly when the corner round radius at the mask becomes greater than 50 nm. Exterior mask posts image slightly smaller and with higher ellipticity than interior mask posts. The aerial image of the arbitrary test pattern gives insight into the effects of the off-axis incidence employed in EUV lithography systems.

  3. Aerial Photographs and Satellite Images

    USGS Publications Warehouse

    U.S. Geological Survey

    1997-01-01

    Photographs and other images of the Earth taken from the air and from space show a great deal about the planet's landforms, vegetation, and resources. Aerial and satellite images, known as remotely sensed images, permit accurate mapping of land cover and make landscape features understandable on regional, continental, and even global scales. Transient phenomena, such as seasonal vegetation vigor and contaminant discharges, can be studied by comparing images acquired at different times. The U.S. Geological Survey (USGS), which began using aerial photographs for mapping in the 1930's, archives photographs from its mapping projects and from those of some other Federal agencies. In addition, many images from such space programs as Landsat, begun in 1972, are held by the USGS. Most satellite scenes can be obtained only in digital form for use in computer-based image processing and geographic information systems, but in some cases are also available as photographic products.

  4. Aerial Video Imaging

    NASA Technical Reports Server (NTRS)

    1991-01-01

    When Michael Henry wanted to start an aerial video service, he turned to Johnson Space Center for assistance. Two NASA engineers - one had designed and developed TV systems in Apollo, Skylab, Apollo- Soyuz and Space Shuttle programs - designed a wing-mounted fiberglass camera pod. Camera head and angles are adjustable, and the pod is shaped to reduce vibration. The controls are located so a solo pilot can operate the system. A microprocessor displays latitude, longitude, and bearing, and a GPS receiver provides position data for possible legal references. The service has been successfully utilized by railroads, oil companies, real estate companies, etc.

  5. 3D Buildings Extraction from Aerial Images

    NASA Astrophysics Data System (ADS)

    Melnikova, O.; Prandi, F.

    2011-09-01

    This paper introduces a semi-automatic method for buildings extraction through multiple-view aerial image analysis. The advantage of the used semi-automatic approach is that it allows processing of each building individually finding the parameters of buildings features extraction more precisely for each area. On the early stage the presented technique uses an extraction of line segments that is done only inside of areas specified manually. The rooftop hypothesis is used further to determine a subset of quadrangles, which could form building roofs from a set of extracted lines and corners obtained on the previous stage. After collecting of all potential roof shapes in all images overlaps, the epipolar geometry is applied to find matching between images. This allows to make an accurate selection of building roofs removing false-positive ones and to identify their global 3D coordinates given camera internal parameters and coordinates. The last step of the image matching is based on geometrical constraints in contrast to traditional correlation. The correlation is applied only in some highly restricted areas in order to find coordinates more precisely, in such a way significantly reducing processing time of the algorithm. The algorithm has been tested on a set of Milan's aerial images and shows highly accurate results.

  6. Wafer weak point detection based on aerial images or WLCD

    NASA Astrophysics Data System (ADS)

    Ning, Guoxiang; Philipp, Peter; Litt, Lloyd C.; Ackmann, Paul; Crell, Christian; Chen, Norman

    2015-10-01

    Aerial image measurement is a key technique for model based optical proximity correction (OPC) verification. Actual aerial images obtained by AIMS (aerial image measurement system) or WLCD (wafer level critical dimension) can detect printed wafer weak point structures in advance of wafer exposure and defect inspection. Normally, the potential wafer weak points are determined based on optical rule check (ORC) simulation in advance. However, the correlation to real wafer weak points is often not perfect due to the contribution of mask three dimension (M3D) effects, actual mask errors, and scanner lens effects. If the design weak points can accurately be detected in advance, it will reduce the wafer fab cost and improve cycle time. WLCD or AIMS tools are able to measure the aerial images CD and bossung curve through focus window. However, it is difficult to detect the wafer weak point in advance without defining selection criteria. In this study, wafer weak points sensitive to mask mean-to-nominal values are characterized for a process with very high MEEF (normally more than 4). Aerial image CD uses fixed threshold to detect the wafer weak points. By using WLCD through threshold and focus window, the efficiency of wafer weak point detection is also demonstrated. A novel method using contrast range evaluation is shown in the paper. Use of the slope of aerial images for more accurate detection of the wafer weak points using WLCD is also discussed. The contrast range can also be used to detect the wafer weak points in advance. Further, since the mean to nominal of the reticle contributes to the effective contrast range in a high MEEF area this work shows that control of the mask error is critical for high MEEF layers such as poly, active and metal layers. Wafer process based weak points that cannot be detected by wafer lithography CD or WLCD will be discussed.

  7. Phase Contrast Imaging

    SciTech Connect

    Menk, Ralf Hendrik

    2008-11-13

    All standard (medical) x-ray imaging technologies, rely primarily on the amplitude properties of the incident radiation, and do not depend on its phase. This is unchanged since the discovery by Roentgen that the intensity of an x-ray beam, as measured by the exposure on a film, was related to the relative transmission properties of an object. However, recently various imaging techniques have emerged which depend on the phase of the x-rays as well as the amplitude. Phase becomes important when the beam is coherent and the imaging system is sensitive to interference phenomena. Significant new advances have been made in coherent optic theory and techniques, which now promise phase information in medical imaging. The development of perfect crystal optics and the increasing availability of synchrotron radiation facilities have contributed to a significant increase in the application of phase based imaging in materials and life sciences. Unique source characteristics such as high intensity, monochromaticity, coherence and high collimating provide an ideal source for advanced imaging. Phase contrast imaging has been applied in both projection and computed tomography modes, and recent applications have been made in the field of medical imaging. Due to the underlying principle of X-ray detection conventional image receptors register only intensities of wave fields and not their phases. During the last decade basically five different methods were developed that translate the phase information into intensity variations. These methods are based on measuring the phase shift {phi} directly (using interference phenomena), the gradient {nabla}{sub {phi}}, or the Laplacian {nabla}{sup 2}{phi}. All three methods can be applied to polychromatic X-ray sources keeping in mind that the native source is synchrotron radiation, featuring monochromatic and reasonable coherent X-ray beams. Due to the vast difference in the coefficients that are driven absorption and phase effects (factor 1

  8. Aerial photographs and satellite images

    USGS Publications Warehouse

    U.S. Geological Survey

    1995-01-01

    Because photographs and images taken from the air or from space are acquired without direct contact with the ground, they are referred to as remotely sensed images. The U.S. Geological Survey (USGS) has used remote sensing from the early years of the 20th century to support earth science studies and for mapping purposes.

  9. Perceived contrast in complex images

    PubMed Central

    Haun, Andrew M.; Peli, Eli

    2013-01-01

    To understand how different spatial frequencies contribute to the overall perceived contrast of complex, broadband photographic images, we adapted the classification image paradigm. Using natural images as stimuli, we randomly varied relative contrast amplitude at different spatial frequencies and had human subjects determine which images had higher contrast. Then, we determined how the random variations corresponded with the human judgments. We found that the overall contrast of an image is disproportionately determined by how much contrast is between 1 and 6 c/°, around the peak of the contrast sensitivity function (CSF). We then employed the basic components of contrast psychophysics modeling to show that the CSF alone is not enough to account for our results and that an increase in gain control strength toward low spatial frequencies is necessary. One important consequence of this is that contrast constancy, the apparent independence of suprathreshold perceived contrast and spatial frequency, will not hold during viewing of natural images. We also found that images with darker low-luminance regions tended to be judged as having higher overall contrast, which we interpret as the consequence of darker local backgrounds resulting in higher band-limited contrast response in the visual system. PMID:24190908

  10. Image Contrast in Holographic Reconstructions

    ERIC Educational Resources Information Center

    Russell, B. R.

    1969-01-01

    The fundamental concepts of holography are explained using elementary wave ideas. Discusses wavefront reconstruction and contrast in hemigraphic images. The consequence of recording only the intensity at a given surface and using an oblique reference wave is shown to be an incomplete reconstruction resulting in image of low contrast. (LC)

  11. Design of an integrated aerial image sensor

    NASA Astrophysics Data System (ADS)

    Xue, Jing; Spanos, Costas J.

    2005-05-01

    The subject of this paper is a novel integrated aerial image sensor (IAIS) system suitable for integration within the surface of an autonomous test wafer. The IAIS could be used as a lithography processing monitor, affording a "wafer's eye view" of the process, and therefore facilitating advanced process control and diagnostics without integrating (and dedicating) the sensor to the processing equipment. The IAIS is composed of an aperture mask and an array of photo-detectors. In order to retrieve nanometer scale resolution of the aerial image with a practical photo-detector pixel size, we propose a design of an aperture mask involving a series of spatial phase "moving" aperture groups. We demonstrate a design example aimed at the 65nm technology node through TEMPEST simulation. The optimized, key design parameters include an aperture width in the range of 30nm, aperture thickness in the range of 70nm, and offer a spatial resolution of about 5nm, all with comfortable fabrication tolerances. Our preliminary simulation work indicates the possibility of the IAIS being applied to the immersion lithography. A bench-top far-field experiment verifies that our approach of the spatial frequency down-shift through forming large Moire patterns is feasible.

  12. Calculation and uses of the lithographic aerial image

    NASA Astrophysics Data System (ADS)

    Flagello, Donis G.; Smith, Daniel G.

    2012-09-01

    Beginning with the seminal Dill papers of 1975, the aerial image has been essential for understanding the process of microlithography. From the aerial image, we can predict the performance of a given lithographic process in terms of depth of focus, exposure latitude, etc. As lithographic technologies improved, reaching smaller and smaller printed features, the sophistication of aerial image calculations has had to increase from simple incoherent imaging theory, to partial coherence, polarization effects, thin film effects at the resist, thick mask effects, and so on. This tutorial provides an overview and semihistorical development of the aerial image calculation and then provides a review of some of the various ways in which the aerial image is typically used to estimate the performance of the lithographic process.

  13. Multiscale image contrast amplification (MUSICA)

    NASA Astrophysics Data System (ADS)

    Vuylsteke, Pieter; Schoeters, Emile P.

    1994-05-01

    This article presents a novel approach to the problem of detail contrast enhancement, based on multiresolution representation of the original image. The image is decomposed into a weighted sum of smooth, localized, 2D basis functions at multiple scales. Each transform coefficient represents the amount of local detail at some specific scale and at a specific position in the image. Detail contrast is enhanced by non-linear amplification of the transform coefficients. An inverse transform is then applied to the modified coefficients. This yields a uniformly contrast- enhanced image without artefacts. The MUSICA-algorithm is being applied routinely to computed radiography images of chest, skull, spine, shoulder, pelvis, extremities, and abdomen examinations, with excellent acceptance. It is useful for a wide range of applications in the medical, graphical, and industrial area.

  14. Phase Contrast Imaging in Neonates

    PubMed Central

    Zhong, Kai; Ernst, Thomas; Buchthal, Steve; Speck, Oliver; Anderson, Lynn; Chang, Linda

    2011-01-01

    Magnetic resonance phase images can yield superior gray and white matter contrast compared to conventional magnitude images. However, the underlying contrast mechanisms are not yet fully understood. Previous studies have been limited to high field acquisitions in adult volunteers and patients. In this study, phase imaging in the neonatal brain is demonstrated for the first time. Compared to adults, phase differences between gray and white matter are significantly reduced but not inverted in neonates with little myelination and iron deposits in their brains. The remaining phase difference between the neonatal and adult brains may be due to different macromolecule concentration in the unmyelinated brain of the neonates and thus different frequency due to water macromolecule exchange. Additionally, the susceptibility contrast from brain myelination can be separately studied in neonates during brain development. Therefore, magnetic resonance phase imaging is suggested as a novel tool to study neonatal brain development and pathologies in neonates. PMID:21232619

  15. An algorithm for approximate rectification of digital aerial images

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-resolution aerial photography is one of the most valuable tools available for managing extensive landscapes. With recent advances in digital camera technology, computer hardware, and software, aerial photography is easier to collect, store, and transfer than ever before. Images can be automa...

  16. Aerial image retargeting (AIR): achieving litho-friendly designs

    NASA Astrophysics Data System (ADS)

    Yehia Hamouda, Ayman; Word, James; Anis, Mohab; Karim, Karim S.

    2011-04-01

    In this work, we present a new technique to detect non-Litho-Friendly design areas based on their Aerial Image signature. The aerial image is calculated for the litho target (pre-OPC). This is followed by the fixing (retargeting) the design to achieve a litho friendly OPC target. This technique is applied and tested on 28 nm metal layer and shows a big improvement in the process window performance. For an optimized Aerial-Image-Retargeting (AIR) recipe is very computationally efficient and its runtime doesn't consume more than 1% of the OPC flow runtime.

  17. Direct Penguin Counting Using Unmanned Aerial Vehicle Image

    NASA Astrophysics Data System (ADS)

    Hyun, C. U.; Kim, H. C.; Kim, J. H.; Hong, S. G.

    2015-12-01

    This study presents an application of unmanned aerial vehicle (UAV) images to monitor penguin colony in Baton Peninsula, King George Island, Antarctica. The area around Narębski Point located on the southeast coast of Barton Peninsula was designated as Antarctic Specially Protected Area No. 171 (ASPA 171), and Chinstrap and Gentoo penguins inhabit in this area. The UAV images were acquired in a part of ASPA 171 from four flights in a single day, Jan 18, 2014. About 360 images were mosaicked as an image of about 3 cm spatial resolution and then a subset including representative penguin rookeries was selected. The subset image was segmented based on gradient map of pixel values, and spectral and spatial attributes were assigned to each segment. The object based image analysis (OBIA) was conducted with consideration of spectral attributes including mean and minimum values of each segment and various shape attributes such as area, length, compactness and roundness to detect individual penguin. The segments indicating individual penguin were effectively detected on rookeries with high contrasts in the spectral and shape attributes. The importance of periodic and precise monitoring of penguins has been recognized because variations of their populations reflect environmental changes and disturbance from human activities. Utilization of very high resolution imaging method shown in this study can be applied to other penguin habitats in Antarctica, and the results will be able to support establishing effective environmental management plans.

  18. Contrast-guided image interpolation.

    PubMed

    Wei, Zhe; Ma, Kai-Kuang

    2013-11-01

    In this paper a contrast-guided image interpolation method is proposed that incorporates contrast information into the image interpolation process. Given the image under interpolation, four binary contrast-guided decision maps (CDMs) are generated and used to guide the interpolation filtering through two sequential stages: 1) the 45(°) and 135(°) CDMs for interpolating the diagonal pixels and 2) the 0(°) and 90(°) CDMs for interpolating the row and column pixels. After applying edge detection to the input image, the generation of a CDM lies in evaluating those nearby non-edge pixels of each detected edge for re-classifying them possibly as edge pixels. This decision is realized by solving two generalized diffusion equations over the computed directional variation (DV) fields using a derived numerical approach to diffuse or spread the contrast boundaries or edges, respectively. The amount of diffusion or spreading is proportional to the amount of local contrast measured at each detected edge. The diffused DV fields are then thresholded for yielding the binary CDMs, respectively. Therefore, the decision bands with variable widths will be created on each CDM. The two CDMs generated in each stage will be exploited as the guidance maps to conduct the interpolation process: for each declared edge pixel on the CDM, a 1-D directional filtering will be applied to estimate its associated to-be-interpolated pixel along the direction as indicated by the respective CDM; otherwise, a 2-D directionless or isotropic filtering will be used instead to estimate the associated missing pixels for each declared non-edge pixel. Extensive simulation results have clearly shown that the proposed contrast-guided image interpolation is superior to other state-of-the-art edge-guided image interpolation methods. In addition, the computational complexity is relatively low when compared with existing methods; hence, it is fairly attractive for real-time image applications. PMID:23846469

  19. Contrast-enhanced refraction imaging

    NASA Astrophysics Data System (ADS)

    Hall, Christopher J.; Rogers, Keith D.; Lewis, Rob A.; Menk, Ralf Hendrik; Arfelli, Fulvia; Siu, Karen K.; Benci, A.; Kitchen, M.; Pillon, Alessandra; Rigon, Luigi; Round, Andrew J.; Hufton, Alan P.; Evans, Andrew; Pinder, Sarah E.; Evans, S.

    2004-01-01

    An attempt has been made, for the first time, to extend the capabilities of diffraction enhanced imaging (DEI) using low concentrations of a contrast agent. A phantom has been constructed to accommodate a systematic series of diluted bromine deoxyuridase (BrDU) samples in liquid form. This was imaged using a conventional DEI arrangement and at a range of energies traversing the Br K-edge. The images were analyzed to provide a quantitative measure of contrast as a function of X-ray energy and (BrDU) concentration. The results indicate that the particular experimental arrangement was not optimized to exploit the potential of this contrast enhancement and several suggestions are discussed to improve this further.

  20. Research of Active Contour Model in Aerial Images

    NASA Astrophysics Data System (ADS)

    Kun, Wang; Li, Guo

    With the development of computer and aviation technology, the aerial image is facing an important issue is how to automate, including aerial images of the automatic extraction of the target. In this paper, the issue of aerial images to study the active contour model is introduced, that is, Snake model, to achieve the target aerial image of the semi-automatic contour extraction method. Snake model used the unique characteristic of the energy minimization, carried out on the image contour extraction, to obtain a clear, consistent and accurate image contour. The model is defined through the energy minimization of the function, given in the initial position of artificial circumstances, through the iterative calculation of Snake model will eventually form the minimum energy function has been described in the outline of the target partition. The results indicate that Snake model for aerial images of the edge contour extraction, verification, concluded that the Snake-based edge detection methods could be more objectively and accurately extract the edge of the outline of aerial images.

  1. Historic Image: Aerial view of cemetery and its environs. Photograph ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Historic Image: Aerial view of cemetery and its environs. Photograph 2 November 1961. NCA History Collection - Cypress Hills National Cemetery, Jamaica Avenue Unit, 625 Jamaica Avenue, Brooklyn, Kings County, NY

  2. HISTORIC IMAGE: AERIAL VIEW OF CEMETERY AND ITS ENVIRONS. PHOTOGRAPH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HISTORIC IMAGE: AERIAL VIEW OF CEMETERY AND ITS ENVIRONS. PHOTOGRAPH 15 SEPTEMBER 1950. NCA HISTORY COLLECTION. - San Francisco National Cemetery, 1 Lincoln Boulevard, San Francisco, San Francisco County, CA

  3. Historic Image: Aerial view of Mount of Victory Plot. Photograph ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Historic Image: Aerial view of Mount of Victory Plot. Photograph 1961. NCA History Collection - Cypress Hills National Cemetery, Mount of Victory Plot Unit, 625 Jamaica Avenue, Brooklyn, Kings County, NY

  4. Coastal Digital Surface Model on Low Contrast Images

    NASA Astrophysics Data System (ADS)

    Rosu, A.-M.; Assenbaum, M.; De la Torre, Y.; Pierrot-Deseilligny, M.

    2015-08-01

    Coastal sandy environments are extremely dynamic and require regular monitoring that can easily be achieved by using an unmanned aerial system (UAS) including a drone and a photo camera. The acquired images have low contrast and homogeneous texture. Using these images and with very few, if any, ground control points (GCPs), it is difficult to obtain a digital surface model (DSM) by classical correlation and automatic interest points determination approach. A possible response to this problem is to work with enhanced, contrast filtered images. To achieve this, we use and tune the free open-source software MicMac.

  5. A Comparison of Visual Statistics for the Image Enhancement of FORESITE Aerial Images with Those of Major Image Classes

    NASA Technical Reports Server (NTRS)

    Johnson, Daniel J.; Rahman, Zia-ur; Woodell, Glenn A.; Hines, Glenn D.

    2006-01-01

    Aerial images from the Follow-On Radar, Enhanced and Synthetic Vision Systems Integration Technology Evaluation (FORESITE) flight tests with the NASA Langley Research Center's research Boeing 757 were acquired during severe haze and haze/mixed clouds visibility conditions. These images were enhanced using the Visual Servo (VS) process that makes use of the Multiscale Retinex. The images were then quantified with visual quality metrics used internally with the VS. One of these metrics, the Visual Contrast Measure, has been computed for hundreds of FORESITE images, and for major classes of imaging--terrestrial (consumer), orbital Earth observations, orbital Mars surface imaging, NOAA aerial photographs, and underwater imaging. The metric quantifies both the degree of visual impairment of the original, un-enhanced images as well as the degree of visibility improvement achieved by the enhancement process. The large aggregate data exhibits trends relating to degree of atmospheric visibility attenuation, and its impact on limits of enhancement performance for the various image classes. Overall results support the idea that in most cases that do not involve extreme reduction in visibility, large gains in visual contrast are routinely achieved by VS processing. Additionally, for very poor visibility imaging, lesser, but still substantial, gains in visual contrast are also routinely achieved. Further, the data suggest that these visual quality metrics can be used as external standalone metrics for establishing performance parameters.

  6. High-contrast imaging testbed

    SciTech Connect

    Baker, K; Silva, D; Poyneer, L; Macintosh, B; Bauman, B; Palmer, D; Remington, T; Delgadillo-Lariz, M

    2008-01-23

    Several high-contrast imaging systems are currently under construction to enable the detection of extra-solar planets. In order for these systems to achieve their objectives, however, there is considerable developmental work and testing which must take place. Given the need to perform these tests, a spatially-filtered Shack-Hartmann adaptive optics system has been assembled to evaluate new algorithms and hardware configurations which will be implemented in these future high-contrast imaging systems. In this article, construction and phase measurements of a membrane 'woofer' mirror are presented. In addition, results from closed-loop operation of the assembled testbed with static phase plates are presented. The testbed is currently being upgraded to enable operation at speeds approaching 500 hz and to enable studies of the interactions between the woofer and tweeter deformable mirrors.

  7. Estimating growth status of winter wheat based on aerial images and hyperspectral data

    NASA Astrophysics Data System (ADS)

    Han, Yunxia; Li, Minzan; Jia, Liangliang; Zhang, Xijie; Zhang, Fusuo

    2005-08-01

    The aim of this paper is to estimate the growth status and yield of winter wheat using aerial images and hyperspectral data obtained by unmanned aircraft, and then to perform precision management to the crop. The test farm was divided into 48 cells. Twenty-four cells were selected as variable rate fertilization area, and the other 24 cells were used as contrast area with low fertilization in growth season. In 2004, the aerial images of winter wheat canopy were measured from an unmanned aircraft. The SPAD value of crop leaf was acquired using a SPAD-502 chlorophyll meter, and then the hyperspectral reflectance of the crop canopy was measured by a handheld spectroradiometer. The vegetation indices, NDVI and DVI, were calculated from the hyperspectral data. The characteristics of the aerial images were used to evaluate the growth status. The RGB values of all cells were calculated from aerial images. The result showed that total nitrogen had better correlation with SPAD, NDVI, DVI, and RGB. NDVI and DVI had high correlation with the growth condition, and R/(R+G+B) and G/(R+G+B) had good correlation with the growth status and yield. The variable rate fertilization based on aerial images and NDVI was executed in the experimental cells. The yield map showed that the spatial variation of the yield was reduced and the total yield was increased. While in contrast cells, the spatial variation of the yield is greater than in experimental cells because of the spatial variation of the field nutrition. Therefore, it is practical to use aerial images and hyperspectral data of the crop canopy in estimation of the crop growth status.

  8. Advanced Image Processing of Aerial Imagery

    NASA Technical Reports Server (NTRS)

    Woodell, Glenn; Jobson, Daniel J.; Rahman, Zia-ur; Hines, Glenn

    2006-01-01

    Aerial imagery of the Earth is an invaluable tool for the assessment of ground features, especially during times of disaster. Researchers at the NASA Langley Research Center have developed techniques which have proven to be useful for such imagery. Aerial imagery from various sources, including Langley's Boeing 757 Aries aircraft, has been studied extensively. This paper discusses these studies and demonstrates that better-than-observer imagery can be obtained even when visibility is severely compromised. A real-time, multi-spectral experimental system will be described and numerous examples will be shown.

  9. Laser Image Contrast Enhancement System

    NASA Technical Reports Server (NTRS)

    Kurtz, Robert L. (Inventor); Holmes, Richard R. (Inventor); Witherow, William K. (Inventor)

    2002-01-01

    An optical image enhancement system provides improved image contrast in imaging of a target in high temperature surroundings such as a furnace. The optical system includes a source of vertically polarized light such as laser and a beam splitter for receiving the light and directing the light toward the target. A retardation plate is affixed to a target-facing surface of the beam splitter and a vertical polarizer is disposed along a common optical path with the beam splitter between the retardation plate and the target. A horizontal polarizer disposed in the common optical path, receives light passing through a surface of the beam splitter opposed to the target-facing surface. An image detector is disposed at one end of the optical path. A band pass filter having a band pass filter characteristic matching the frequency of the vertically polarized light source is disposed in the path between the horizontal polarizer and the image detector. The use of circular polarization, together with cross polarizers, enables the reflected light to be passed to the detector while blocking thermal radiation.

  10. Laser speckle contrast imaging in biomedical optics

    PubMed Central

    Boas, David A.; Dunn, Andrew K.

    2010-01-01

    First introduced in the 1980s, laser speckle contrast imaging is a powerful tool for full-field imaging of blood flow. Recently laser speckle contrast imaging has gained increased attention, in part due to its rapid adoption for blood flow studies in the brain. We review the underlying physics of speckle contrast imaging and discuss recent developments to improve the quantitative accuracy of blood flow measures. We also review applications of laser speckle contrast imaging in neuroscience, dermatology and ophthalmology. PMID:20210435

  11. An improved algorithm of mask image dodging for aerial image

    NASA Astrophysics Data System (ADS)

    Zhang, Zuxun; Zou, Songbai; Zuo, Zhiqi

    2011-12-01

    The technology of Mask image dodging based on Fourier transform is a good algorithm in removing the uneven luminance within a single image. At present, the difference method and the ratio method are the methods in common use, but they both have their own defects .For example, the difference method can keep the brightness uniformity of the whole image, but it is deficient in local contrast; meanwhile the ratio method can work better in local contrast, but sometimes it makes the dark areas of the original image too bright. In order to remove the defects of the two methods effectively, this paper on the basis of research of the two methods proposes a balance solution. Experiments show that the scheme not only can combine the advantages of the difference method and the ratio method, but also can avoid the deficiencies of the two algorithms.

  12. HISTORIC IMAGE: AERIAL VIEW OF THE CEMETERY AND ITS ENVIRONS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HISTORIC IMAGE: AERIAL VIEW OF THE CEMETERY AND ITS ENVIRONS. PHOTOGRAPH TAKEN ON 6 APRIL 1968. NCA HISTORY COLLECTION. - Rock Island National Cemetery, Rock Island Arsenal, 0.25 mile north of southern tip of Rock Island, Rock Island, Rock Island County, IL

  13. A Low-Cost Imaging System for Aerial Applicators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural aircraft provide a readily available and versatile platform for airborne remote sensing. Although various airborne imaging systems are being used for research and commercial applications, most of these systems are either too expensive or too complex to be of practical use for aerial app...

  14. An improved dehazing algorithm of aerial high-definition image

    NASA Astrophysics Data System (ADS)

    Jiang, Wentao; Ji, Ming; Huang, Xiying; Wang, Chao; Yang, Yizhou; Li, Tao; Wang, Jiaoying; Zhang, Ying

    2016-01-01

    For unmanned aerial vehicle(UAV) images, the sensor can not get high quality images due to fog and haze weather. To solve this problem, An improved dehazing algorithm of aerial high-definition image is proposed. Based on the model of dark channel prior, the new algorithm firstly extracts the edges from crude estimated transmission map and expands the extracted edges. Then according to the expended edges, the algorithm sets a threshold value to divide the crude estimated transmission map into different areas and makes different guided filter on the different areas compute the optimized transmission map. The experimental results demonstrate that the performance of the proposed algorithm is substantially the same as the one based on dark channel prior and guided filter. The average computation time of the new algorithm is around 40% of the one as well as the detection ability of UAV image is improved effectively in fog and haze weather.

  15. CMOS Imaging Sensor Technology for Aerial Mapping Cameras

    NASA Astrophysics Data System (ADS)

    Neumann, Klaus; Welzenbach, Martin; Timm, Martin

    2016-06-01

    In June 2015 Leica Geosystems launched the first large format aerial mapping camera using CMOS sensor technology, the Leica DMC III. This paper describes the motivation to change from CCD sensor technology to CMOS for the development of this new aerial mapping camera. In 2002 the DMC first generation was developed by Z/I Imaging. It was the first large format digital frame sensor designed for mapping applications. In 2009 Z/I Imaging designed the DMC II which was the first digital aerial mapping camera using a single ultra large CCD sensor to avoid stitching of smaller CCDs. The DMC III is now the third generation of large format frame sensor developed by Z/I Imaging and Leica Geosystems for the DMC camera family. It is an evolution of the DMC II using the same system design with one large monolithic PAN sensor and four multi spectral camera heads for R,G, B and NIR. For the first time a 391 Megapixel large CMOS sensor had been used as PAN chromatic sensor, which is an industry record. Along with CMOS technology goes a range of technical benefits. The dynamic range of the CMOS sensor is approx. twice the range of a comparable CCD sensor and the signal to noise ratio is significantly better than with CCDs. Finally results from the first DMC III customer installations and test flights will be presented and compared with other CCD based aerial sensors.

  16. Improved land cover mapping using aerial photographs and satellite images

    NASA Astrophysics Data System (ADS)

    Varga, Katalin; Szabó, Szilárd; Szabó, Gergely; Dévai, György; Tóthmérész, Béla

    2014-10-01

    Manual Land Cover Mapping using aerial photographs provides sufficient level of resolution for detailed vegetation or land cover maps. However, in some cases it is not possible to achieve the desired information over large areas, for example from historical data where the quality and amount of available images is definitely lower than from modern data. The use of automated and semiautomated methods offers the means to identify the vegetation cover using remotely sensed data. In this paper automated methods were tested on aerial photographs and satellite images to extract better and more reliable information about vegetation cover. These testswere performed by using automated analysis of LANDSAT7 images (with and without the surface model of the Shuttle Radar Topography Mission (SRTM)) and two temporally similar aerial photographs. The spectral bands were analyzed with supervised (maximum likelihood) methods. In conclusion, the SRTM and the combination of two temporally similar aerial photographs from earlier years were useful in separating the vegetation cover on a floodplain area. In addition the different date of the vegetation season also gave reliable information about the land cover. High quality information about old and present vegetation on a large area is an essential prerequisites ensuring the conservation of ecosystems

  17. D City Transformations by Time Series of Aerial Images

    NASA Astrophysics Data System (ADS)

    Adami, A.

    2015-02-01

    Recent photogrammetric applications, based on dense image matching algorithms, allow to use not only images acquired by digital cameras, amateur or not, but also to recover the vast heritage of analogue photographs. This possibility opens up many possibilities in the use and enhancement of existing photos heritage. The research of the original figuration of old buildings, the virtual reconstruction of disappeared architectures and the study of urban development are some of the application areas that exploit the great cultural heritage of photography. Nevertheless there are some restrictions in the use of historical images for automatic reconstruction of buildings such as image quality, availability of camera parameters and ineffective geometry of image acquisition. These constrains are very hard to solve and it is difficult to discover good dataset in the case of terrestrial close range photogrammetry for the above reasons. Even the photographic archives of museums and superintendence, while retaining a wealth of documentation, have no dataset for a dense image matching approach. Compared to the vast collection of historical photos, the class of aerial photos meets both criteria stated above. In this paper historical aerial photographs are used with dense image matching algorithms to realize 3d models of a city in different years. The models can be used to study the urban development of the city and its changes through time. The application relates to the city centre of Verona, for which some time series of aerial photographs have been retrieved. The models obtained in this way allowed, right away, to observe the urban development of the city, the places of expansion and new urban areas. But a more interesting aspect emerged from the analytical comparison between models. The difference, as the Euclidean distance, between two models gives information about new buildings or demolitions. As considering accuracy it is necessary point out that the quality of final

  18. Detection of Aspens Using High Resolution Aerial Laser Scanning Data and Digital Aerial Images

    PubMed Central

    Säynäjoki, Raita; Packalén, Petteri; Maltamo, Matti; Vehmas, Mikko; Eerikäinen, Kalle

    2008-01-01

    The aim was to use high resolution Aerial Laser Scanning (ALS) data and aerial images to detect European aspen (Populus tremula L.) from among other deciduous trees. The field data consisted of 14 sample plots of 30 m × 30 m size located in the Koli National Park in the North Karelia, Eastern Finland. A Canopy Height Model (CHM) was interpolated from the ALS data with a pulse density of 3.86/m2, low-pass filtered using Height-Based Filtering (HBF) and binarized to create the mask needed to separate the ground pixels from the canopy pixels within individual areas. Watershed segmentation was applied to the low-pass filtered CHM in order to create preliminary canopy segments, from which the non-canopy elements were extracted to obtain the final canopy segmentation, i.e. the ground mask was analysed against the canopy mask. A manual classification of aerial images was employed to separate the canopy segments of deciduous trees from those of coniferous trees. Finally, linear discriminant analysis was applied to the correctly classified canopy segments of deciduous trees to classify them into segments belonging to aspen and those belonging to other deciduous trees. The independent variables used in the classification were obtained from the first pulse ALS point data. The accuracy of discrimination between aspen and other deciduous trees was 78.6%. The independent variables in the classification function were the proportion of vegetation hits, the standard deviation of in pulse heights, accumulated intensity at the 90th percentile and the proportion of laser points reflected at the 60th height percentile. The accuracy of classification corresponded to the validation results of earlier ALS-based studies on the classification of individual deciduous trees to tree species.

  19. Small intestine contrast injection (image)

    MedlinePlus

    ... and throat, through the stomach into the small intestine. When in place, contrast dye is introduced and ... means of demonstrating whether or not the small intestine is normal when abnormality is suspected.

  20. a Fast Approach for Stitching of Aerial Images

    NASA Astrophysics Data System (ADS)

    Moussa, A.; El-Sheimy, N.

    2016-06-01

    The last few years have witnessed an increasing volume of aerial image data because of the extensive improvements of the Unmanned Aerial Vehicles (UAVs). These newly developed UAVs have led to a wide variety of applications. A fast assessment of the achieved coverage and overlap of the acquired images of a UAV flight mission is of great help to save the time and cost of the further steps. A fast automatic stitching of the acquired images can help to visually assess the achieved coverage and overlap during the flight mission. This paper proposes an automatic image stitching approach that creates a single overview stitched image using the acquired images during a UAV flight mission along with a coverage image that represents the count of overlaps between the acquired images. The main challenge of such task is the huge number of images that are typically involved in such scenarios. A short flight mission with image acquisition frequency of one second can capture hundreds to thousands of images. The main focus of the proposed approach is to reduce the processing time of the image stitching procedure by exploiting the initial knowledge about the images positions provided by the navigation sensors. The proposed approach also avoids solving for all the transformation parameters of all the photos together to save the expected long computation time if all the parameters were considered simultaneously. After extracting the points of interest of all the involved images using Scale-Invariant Feature Transform (SIFT) algorithm, the proposed approach uses the initial image's coordinates to build an incremental constrained Delaunay triangulation that represents the neighborhood of each image. This triangulation helps to match only the neighbor images and therefore reduces the time-consuming features matching step. The estimated relative orientation between the matched images is used to find a candidate seed image for the stitching process. The pre-estimated transformation

  1. Evaluation of Color Settings in Aerial Images with the Use of Eye-Tracking User Study

    NASA Astrophysics Data System (ADS)

    Mirijovsky, J.; Popelka, S.

    2016-06-01

    The main aim of presented paper is to find the most realistic and preferred color settings for four different types of surfaces on the aerial images. This will be achieved through user study with the use of eye-movement recording. Aerial images taken by the unmanned aerial system were used as stimuli. From each image, squared crop area containing one of the studied types of surfaces (asphalt, concrete, water, soil, and grass) was selected. For each type of surface, the real value of reflectance was found with the use of precise spectroradiometer ASD HandHeld 2 which measures the reflectance. The device was used at the same time as aerial images were captured, so lighting conditions and state of vegetation were equal. The spectral resolution of the ASD device is better than 3.0 nm. For defining the RGB values of selected type of surface, the spectral reflectance values recorded by the device were merged into wider groups. Finally, we get three groups corresponding to RGB color system. Captured images were edited with the graphic editor Photoshop CS6. Contrast, clarity, and brightness were edited for all surface types on images. Finally, we get a set of 12 images of the same area with different color settings. These images were put into the grid and used as stimuli for the eye-tracking experiment. Eye-tracking is one of the methods of usability studies and it is considered as relatively objective. Eye-tracker SMI RED 250 with the sampling frequency 250 Hz was used in the study. As respondents, a group of 24 students of Geoinformatics and Geography was used. Their task was to select which image in the grid has the best color settings. The next task was to select which color settings they prefer. Respondents' answers were evaluated and the most realistic and most preferable color settings were found. The advantage of the eye-tracking evaluation was that also the process of the selection of the answers was analyzed. Areas of Interest were marked around each image in the

  2. Orientation-selective building detection in aerial images

    NASA Astrophysics Data System (ADS)

    Manno-Kovacs, Andrea; Sziranyi, Tamas

    2015-10-01

    This paper introduces a novel aerial building detection method based on region orientation as a new feature, which is used in various steps throughout the presented framework. As building objects are expected to be connected with each other on a regional level, exploiting the main orientation obtained from the local gradient analysis provides further information for detection purposes. The orientation information is applied for an improved edge map design, which is integrated with classical features like shadow and color. Moreover, an orthogonality check is introduced for finding building candidates, and their final shapes defined by the Chan-Vese active contour algorithm are refined based on the orientation information, resulting in smooth and accurate building outlines. The proposed framework is evaluated on multiple data sets, including aerial and high resolution optical satellite images, and compared to six state-of-the-art methods in both object and pixel level evaluation, proving the algorithm's efficiency.

  3. Evaluation of Selected Features for CAR Detection in Aerial Images

    NASA Astrophysics Data System (ADS)

    Tuermer, S.; Leitloff, J.; Reinartz, P.; Stilla, U.

    2011-09-01

    The extraction of vehicles from aerial images provides a wide area traffic situation within a short time. Applications for the gathered data are various and reach from smart routing in the case of congestions to usability validation of roads in the case of disasters. The challenge of the vehicle detection task is finding adequate features which are capable to separate cars from other objects; especially those that look similar. We present an experiment where selected features show their ability of car detection. Precisely, Haar-like and HoG features are utilized and passed to the AdaBoost algorithm for calculating the final detector. Afterwards the classifying power of the features is accurately analyzed and evaluated. The tests a carried out on aerial data from the inner city of Munich, Germany and include small inner city roads with rooftops close by which raise the complexity factor.

  4. An automatic high precision registration method between large area aerial images and aerial light detection and ranging data

    NASA Astrophysics Data System (ADS)

    Du, Q.; Xie, D.; Sun, Y.

    2015-06-01

    The integration of digital aerial photogrammetry and Light Detetion And Ranging (LiDAR) is an inevitable trend in Surveying and Mapping field. We calculate the external orientation elements of images which identical with LiDAR coordinate to realize automatic high precision registration between aerial images and LiDAR data. There are two ways to calculate orientation elements. One is single image spatial resection using image matching 3D points that registered to LiDAR. The other one is Position and Orientation System (POS) data supported aerotriangulation. The high precision registration points are selected as Ground Control Points (GCPs) instead of measuring GCPs manually during aerotriangulation. The registration experiments indicate that the method which registering aerial images and LiDAR points has a great advantage in higher automation and precision compare with manual registration.

  5. Phase contrast imaging of cochlear soft tissue.

    SciTech Connect

    Smith, S.; Hwang, M.; Rau, C.; Fishman, A.; Lee, W.; Richter, C.

    2011-01-01

    A noninvasive technique to image soft tissue could expedite diagnosis and disease management in the auditory system. We propose inline phase contrast imaging with hard X-rays as a novel method that overcomes the limitations of conventional absorption radiography for imaging soft tissue. In this study, phase contrast imaging of mouse cochleae was performed at the Argonne National Laboratory Advanced Photon Source. The phase contrast tomographic reconstructions show soft tissue structures of the cochlea, including the inner pillar cells, the inner spiral sulcus, the tectorial membrane, the basilar membrane, and the Reissner's membrane. The results suggest that phase contrast X-ray imaging and tomographic techniques hold promise to noninvasively image cochlear structures at an unprecedented cellular level.

  6. Fitting of Parametric Building Models to Oblique Aerial Images

    NASA Astrophysics Data System (ADS)

    Panday, U. S.; Gerke, M.

    2011-09-01

    In literature and in photogrammetric workstations many approaches and systems to automatically reconstruct buildings from remote sensing data are described and available. Those building models are being used for instance in city modeling or in cadastre context. If a roof overhang is present, the building walls cannot be estimated correctly from nadir-view aerial images or airborne laser scanning (ALS) data. This leads to inconsistent building outlines, which has a negative influence on visual impression, but more seriously also represents a wrong legal boundary in the cadaster. Oblique aerial images as opposed to nadir-view images reveal greater detail, enabling to see different views of an object taken from different directions. Building walls are visible from oblique images directly and those images are used for automated roof overhang estimation in this research. A fitting algorithm is employed to find roof parameters of simple buildings. It uses a least squares algorithm to fit projected wire frames to their corresponding edge lines extracted from the images. Self-occlusion is detected based on intersection result of viewing ray and the planes formed by the building whereas occlusion from other objects is detected using an ALS point cloud. Overhang and ground height are obtained by sweeping vertical and horizontal planes respectively. Experimental results are verified with high resolution ortho-images, field survey, and ALS data. Planimetric accuracy of 1cm mean and 5cm standard deviation was obtained, while buildings' orientation were accurate to mean of 0.23° and standard deviation of 0.96° with ortho-image. Overhang parameters were aligned to approximately 10cm with field survey. The ground and roof heights were accurate to mean of - 9cm and 8cm with standard deviations of 16cm and 8cm with ALS respectively. The developed approach reconstructs 3D building models well in cases of sufficient texture. More images should be acquired for completeness of

  7. Imaging Contrast Effects in Alginate Microbeads

    NASA Astrophysics Data System (ADS)

    Shapley, Nina; Hester-Reilly, Holly

    2007-03-01

    We have investigated the use of alginate gel microbeads as contrast agents for the study of suspension flows in complex geometries using nuclear magnetic resonance (NMR) imaging. These deformable particles can provide imaging contrast to rigid polymer particles in a bimodal suspension (two particle sizes). Microbeads were formed of crosslinked alginate gel, with or without trapped oil droplets. Crosslinking of the aqueous sodium alginate solution or the continuous phase of an oil-in-water emulsion occurred rapidly at gentle processing conditions. The alginate microbeads exhibit both spin-spin relaxation time (T2) contrast and diffusion contrast relative to both the suspending fluid and rigid polystyrene particles. Large alginate emulsion microbeads flowing in the abrupt, axisymmetric expansion geometry can be clearly distinguished from the suspending fluid and from rigid polymer particles in both spin-echo and diffusion weighted imaging. The alginate microbeads, particularly those containing trapped emulsion droplets, offer potential as a positive contrast agent in multiple NMR imaging applications.

  8. Phase contrast portal imaging using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Umetani, K.; Kondoh, T.

    2014-07-01

    Microbeam radiation therapy is an experimental form of radiation treatment with great potential to improve the treatment of many types of cancer. We applied a synchrotron radiation phase contrast technique to portal imaging to improve targeting accuracy for microbeam radiation therapy in experiments using small animals. An X-ray imaging detector was installed 6.0 m downstream from an object to produce a high-contrast edge enhancement effect in propagation-based phase contrast imaging. Images of a mouse head sample were obtained using therapeutic white synchrotron radiation with a mean beam energy of 130 keV. Compared to conventional portal images, remarkably clear images of bones surrounding the cerebrum were acquired in an air environment for positioning brain lesions with respect to the skull structure without confusion with overlapping surface structures.

  9. Phase contrast portal imaging using synchrotron radiation

    SciTech Connect

    Umetani, K.; Kondoh, T.

    2014-07-15

    Microbeam radiation therapy is an experimental form of radiation treatment with great potential to improve the treatment of many types of cancer. We applied a synchrotron radiation phase contrast technique to portal imaging to improve targeting accuracy for microbeam radiation therapy in experiments using small animals. An X-ray imaging detector was installed 6.0 m downstream from an object to produce a high-contrast edge enhancement effect in propagation-based phase contrast imaging. Images of a mouse head sample were obtained using therapeutic white synchrotron radiation with a mean beam energy of 130 keV. Compared to conventional portal images, remarkably clear images of bones surrounding the cerebrum were acquired in an air environment for positioning brain lesions with respect to the skull structure without confusion with overlapping surface structures.

  10. Optical imaging with dynamic contrast agents.

    PubMed

    Wei, Qingshan; Wei, Alexander

    2011-01-24

    Biological imaging applications often employ molecular probes or nanoparticles for enhanced contrast. However, resolution and detection are still often limited by the intrinsic heterogeneity of the sample, which can produce high levels of background that obscure the signals of interest. Herein, we describe approaches to overcome this obstacle based on the concept of dynamic contrast: a strategy for elucidating signals by the suppression or removal of background noise. Dynamic contrast mechanisms can greatly reduce the loading requirement of contrast agents, and may be especially useful for single-probe imaging. Dynamic contrast modalities are also platform-independent, and can enhance the performance of sophisticated biomedical imaging systems or simple optical microscopes alike. Dynamic contrast is performed in two stages: 1) a signal modulation scheme to introduce time-dependent changes in amplitude or phase, and 2) a demodulation step for signal recovery. Optical signals can be coupled with magnetic nanoparticles, photoswitchable probes, or plasmon-resonant nanostructures for modulation by magnetomotive, photonic, or photothermal mechanisms, respectively. With respect to image demodulation, many of the strategies developed for signal processing in electronics and communication technologies can also be applied toward the editing of digital images. The image-processing step can be as simple as differential imaging, or may involve multiple reference points for deconvolution by using cross-correlation algorithms. Periodic signals are particularly amenable to image demodulation strategies based on Fourier transform; the contrast of the demodulated signal increases with acquisition time, and modulation frequencies in the kHz range are possible. Dynamic contrast is an emerging topic with considerable room for development, both with respect to molecular or nanoscale probes for signal modulation, and also to methods for more efficient image processing and editing. PMID

  11. a New Paradigm for Matching - and Aerial Images

    NASA Astrophysics Data System (ADS)

    Koch, T.; Zhuo, X.; Reinartz, P.; Fraundorfer, F.

    2016-06-01

    This paper investigates the performance of SIFT-based image matching regarding large differences in image scaling and rotation, as this is usually the case when trying to match images captured from UAVs and airplanes. This task represents an essential step for image registration and 3d-reconstruction applications. Various real world examples presented in this paper show that SIFT, as well as A-SIFT perform poorly or even fail in this matching scenario. Even if the scale difference in the images is known and eliminated beforehand, the matching performance suffers from too few feature point detections, ambiguous feature point orientations and rejection of many correct matches when applying the ratio-test afterwards. Therefore, a new feature matching method is provided that overcomes these problems and offers thousands of matches by a novel feature point detection strategy, applying a one-to-many matching scheme and substitute the ratio-test by adding geometric constraints to achieve geometric correct matches at repetitive image regions. This method is designed for matching almost nadir-directed images with low scene depth, as this is typical in UAV and aerial image matching scenarios. We tested the proposed method on different real world image pairs. While standard SIFT failed for most of the datasets, plenty of geometrical correct matches could be found using our approach. Comparing the estimated fundamental matrices and homographies with ground-truth solutions, mean errors of few pixels can be achieved.

  12. Land Use Classification from Vhr Aerial Images Using Invariant Colour Components and Texture

    NASA Astrophysics Data System (ADS)

    Movia, A.; Beinat, A.; Sandri, T.

    2016-06-01

    Very high resolution (VHR) aerial images can provide detailed analysis about landscape and environment; nowadays, thanks to the rapid growing airborne data acquisition technology an increasing number of high resolution datasets are freely available. In a VHR image the essential information is contained in the red-green-blue colour components (RGB) and in the texture, therefore a preliminary step in image analysis concerns the classification in order to detect pixels having similar characteristics and to group them in distinct classes. Common land use classification approaches use colour at a first stage, followed by texture analysis, particularly for the evaluation of landscape patterns. Unfortunately RGB-based classifications are significantly influenced by image setting, as contrast, saturation, and brightness, and by the presence of shadows in the scene. The classification methods analysed in this work aim to mitigate these effects. The procedures developed considered the use of invariant colour components, image resampling, and the evaluation of a RGB texture parameter for various increasing sizes of a structuring element. To identify the most efficient solution, the classification vectors obtained were then processed by a K-means unsupervised classifier using different metrics, and the results were compared with respect to corresponding user supervised classifications. The experiments performed and discussed in the paper let us evaluate the effective contribution of texture information, and compare the most suitable vector components and metrics for automatic classification of very high resolution RGB aerial images.

  13. Error Estimation Techniques to Refine Overlapping Aerial Image Mosaic Processes via Detected Parameters

    ERIC Educational Resources Information Center

    Bond, William Glenn

    2012-01-01

    In this paper, I propose to demonstrate a means of error estimation preprocessing in the assembly of overlapping aerial image mosaics. The mosaic program automatically assembles several hundred aerial images from a data set by aligning them, via image registration using a pattern search method, onto a GIS grid. The method presented first locates…

  14. Multi-contrast magnetic resonance image reconstruction

    NASA Astrophysics Data System (ADS)

    Liu, Meng; Chen, Yunmei; Zhang, Hao; Huang, Feng

    2015-03-01

    In clinical exams, multi-contrast images from conventional MRI are scanned with the same field of view (FOV) for complementary diagnostic information, such as proton density- (PD-), T1- and T2-weighted images. Their sharable information can be utilized for more robust and accurate image reconstruction. In this work, we propose a novel model and an efficient algorithm for joint image reconstruction and coil sensitivity estimation in multi-contrast partially parallel imaging (PPI) in MRI. Our algorithm restores the multi-contrast images by minimizing an energy function consisting of an L2-norm fidelity term to reduce construction errors caused by motion, a regularization term of underlying images to preserve common anatomical features by using vectorial total variation (VTV) regularizer, and updating sensitivity maps by Tikhonov smoothness based on their physical property. We present the numerical results including T1- and T2-weighted MR images recovered from partially scanned k-space data and provide the comparisons between our results and those obtained from the related existing works. Our numerical results indicate that the proposed method using vectorial TV and penalties on sensitivities can be made promising and widely used for multi-contrast multi-channel MR image reconstruction.

  15. Three-dimensional image contrast using biospeckle

    NASA Astrophysics Data System (ADS)

    Godinho, Robson Pierangeli; Braga, Roberto A., Jr.

    2010-09-01

    The biospeckle laser (BSL) has been applied in many areas of knowledge and a variety of approaches has been presented to address the best results in biological and non-biological samples, in fast or slow activities, or else in defined flow of materials or in random activities. The methodologies accounted in the literature consider the apparatus used in the image assembling and the way the collected data is processed. The image processing steps presents in turn a variety of procedures with first or second order statistics analysis, and as well with different sizes of data collected. One way to access the biospeckle in defined flow, such as in capillary blood flow in alive animals, was the adoption of the image contrast technique which uses only one image from the illuminated sample. That approach presents some problems related to the resolution of the image, which is reduced during the image contrast processing. In order to help the visualization of the low resolution image formed by the contrast technique, this work presents the three-dimensional procedure as a reliable alternative to enhance the final image. The work based on a parallel processing, with the generation of a virtual map of amplitudes, and maintaining the quasi-online characteristic of the contrast technique. Therefore, it was possible to generate in the same display the observed material, the image contrast result and in addiction the three-dimensional image with adjustable options of rotation. The platform also offers to the user the possibility to access the 3D image offline.

  16. Extracting roads based on Retinex and improved Canny operator with shape criteria in vague and unevenly illuminated aerial images

    NASA Astrophysics Data System (ADS)

    Ronggui, Ma; Weixing, Wang; Sheng, Liu

    2012-01-01

    An automatic road extraction method for vague aerial images is proposed in this paper. First, a high-resolution but low-contrast image is enhanced by using a Retinex-based algorithm. Then, the enhanced image is segmented with an improved Canny edge detection operator that can automatically threshold the image into a binary edge image. Subsequently, the linear and curved road segments are regulated by the Hough line transform and extracted based on several thresholds of road size and shapes, in which a number of morphological operators are used such as thinning (skeleton), junction detection, and endpoint detection. In experiments, a number of vague aerial images with bad uniformity are selected for testing. Similarity and discontinuation-based algorithms, such as Otsu thresholding, merge and split, edge detection-based algorithms, and the graph-based algorithm are compared with the new method. The experiment and comparison results show that the studied method can enhance vague, low-contrast, and unevenly illuminated color aerial road images; it can detect most road edges with fewer disturb elements and trace roads with good quality. The method in this study is promising.

  17. Role of Contrast in MR Imaging.

    PubMed

    Chandra, Tushar; Mohan, Suyash

    2016-08-01

    Magnetic resonance (MR) contrast agents have been widely used over the last 3 decades in routine clinical practice. Paul Lauterbur recognized the presence of these contrast agents, which act as paramagnetic catalysts that accelerate the T1 relaxation process. The first MR contrast agent to be approved for clinical use was in 1988, and since then, it is estimated that 200 million doses have been administered worldwide. These contrast agents have diverse clinical as well as research applications, involving almost all the body organs. This review will cover some existing as well as many new applications that have emerged over the last few decades. MR imaging now has the potential of being used to monitor enzymatic activity, gene expression, metal ion homeostasis, and cell death in vivo. In future, newer contrast agents will develop and become commercially available, expanding the current clinical applications of MR contrast media. PMID:27367311

  18. Contrast enhancement of mail piece images

    NASA Astrophysics Data System (ADS)

    Shin, Yong-Chul; Sridhar, Ramalingam; Demjanenko, Victor; Palumbo, Paul W.; Hull, Jonathan J.

    1992-08-01

    A New approach to contrast enhancement of mail piece images is presented. The contrast enhancement is used as a preprocessing step in the real-time address block location (RT-ABL) system. The RT-ABL system processes a stream of mail piece images and locates destination address blocks. Most of the mail pieces (classified into letters) show high contrast between background and foreground. As an extreme case, however, the seasonal greeting cards usually use colored envelopes which results in reduced contrast osured by an error rate by using a linear distributed associative memory (DAM). The DAM is trained to recognize the spectra of three classes of images: with high, medium, and low OCR error rates. The DAM is not forced to make a classification every time. It is allowed to reject as unknown a spectrum presented that does not closely resemble any that has been stored in the DAM. The DAM was fairly accurate with noisy images but conservative (i.e., rejected several text images as unknowns) when there was little ground and foreground degradations without affecting the nondegraded images. This approach provides local enhancement which adapts to local features. In order to simplify the computation of A and (sigma) , dynamic programming technique is used. Implementation details, performance, and the results on test images are presented in this paper.

  19. Image contrast enhancement using Chebyshev wavelet moments

    NASA Astrophysics Data System (ADS)

    Uchaev, Dm. V.; Uchaev, D. V.; Malinnikov, V. A.

    2015-12-01

    A new algorithm for image contrast enhancement in the Chebyshev moment transform (CMT) domain is introduced. This algorithm is based on a contrast measure that is defined as the ratio of high-frequency to zero-frequency content in the bands of CMT matrix. Our algorithm enables to enhance a large number of high-spatial-frequency coefficients, that are responsible for image details, without severely degrading low-frequency contributions. To enhance high-frequency Chebyshev coefficients we use a multifractal spectrum of scaling exponents (SEs) for Chebyshev wavelet moment (CWM) magnitudes, where CWMs are multiscale realization of Chebyshev moments (CMs). This multifractal spectrum is very well suited to extract meaningful structures on images of natural scenes, because these images have a multifractal character. Experiments with test images show some advantages of the proposed algorithm as compared to other widely used image enhancement algorithms. The main advantage of our algorithm is the following: the algorithm very well highlights image details during image contrast enhancement.

  20. Oblique Aerial Images and Their Use in Cultural Heritage Documentation

    NASA Astrophysics Data System (ADS)

    Höhle, J.

    2013-07-01

    Oblique images enable three-dimensional (3d) modelling of objects with vertical dimensions. Such imagery is nowadays systematically taken of cities and may easily become available. The documentation of cultural heritage can take advantage of these sources of information. Two new oblique camera systems are presented and characteristics of such images are summarized. A first example uses images of a new multi-camera system for the derivation of orthoimages, façade plots with photo texture, 3d scatter plots, and dynamic 3d models of a historic church. The applied methodology is based on automatically derived point clouds of high density. Each point will be supplemented with colour and other attributes. The problems experienced in these processes and the solutions to these problems are presented. The applied tools are a combination of professional tools, free software, and of own software developments. Special attention is given to the quality of input images. Investigations are carried out on edges in the images. The combination of oblique and nadir images enables new possibilities in the processing. The use of the near-infrared channel besides the red, green, and blue channel of the applied multispectral imagery is also of advantage. Vegetation close to the object of interest can easily be removed. A second example describes the modelling of a monument by means of a non-metric camera and a standard software package. The presented results regard achieved geometric accuracy and image quality. It is concluded that the use of oblique aerial images together with image-based processing methods yield new possibilities of economic and accurate documentation of tall monuments.

  1. Optical Image Contrast Reversal Using Bacteriorhodopsin Films

    NASA Astrophysics Data System (ADS)

    Wang, Ying-Li; Yao, Bao-Li; Menke, Neimule; Zheng, Yuan; Lei, Ming; Chen, Guo-Fu

    2005-05-01

    The implementation of image contrast reversal by using a photochromic material of Bacteriorhodopsin (BR) films is demonstrated with two methods based on the optical properties of BR. One is based on the absorption difference between the B and M states. Images recorded by green light can be contrast reversed readout by violet light. The other is based on the photoinduced anisotropy of BR when it is excited by linear polarization light. By placing the BR film between two crossed polarizers (i.e. a polarizer and an analyser), the difference of polarization states of the recorded area and the unrecorded area can be detected, and thus different contrast images can be obtained by rotating the polarization axis of the analyser.

  2. Contrast dispersion imaging for cancer localization.

    PubMed

    Mischi, Massimo; Wijkstra, Hessel

    2014-01-01

    Cancer growth is associated with angiogenic processes in many types of cancer. Several imaging strategies have therefore been developed that target angiogenesis as a marker for cancer localization. To this end, intravascular and extravascular tissue perfusion is typically assessed by dynamic contrast enhanced (DCE) ultrasound (US) and MRI. All the proposed strategies, however, overlook important changes in the microvascular architecture that result from angiogenic processes. To overcome these limitations, we have recently introduced a new imaging strategy that analyzes the intravascular dispersion kinetics of contrast agents spreading through the microvasculature. Contrast dispersion is mainly determined by microvascular multi-path trajectories, reflecting the underlying microvascular architecture. This paper reviews the results obtained for prostate cancer localization by US and MRI dispersion imaging, also presenting the latest new developments and future perspectives. PMID:25570935

  3. NASA High Contrast Imaging for Exoplanets

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.

    2008-01-01

    Described is NASA's ongoing program for the detection and characterization of exosolar planets via high-contrast imaging. Some of the more promising proposed techniques under assessment may enable detection of life outside our solar system. In visible light terrestrial planets are approximately 10(exp -10) dimmer than the parent star. Issues such as diffraction, scatter, wavefront, amplitude and polarization all contribute to a reduction in contrast. An overview of the techniques will be discussed.

  4. Initial Efforts toward Mission-Representative Imaging Surveys from Aerial Explorers

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Plice, Laura; Ippolito, Corey; Young, Larry A.; Lau, Benton; Lee, Pascal

    2004-01-01

    Numerous researchers have proposed the use of robotic aerial explorers to perform scientific investigation of planetary bodies in our solar system. One of the essential tasks for any aerial explorer is to be able to perform scientifically valuable imaging surveys. The focus of this paper is to discuss the challenges implicit in, and recent observations related to, acquiring mission-representative imaging data from a small fixed-wing UAV, acting as a surrogate planetary aerial explorer. This question of successfully performing aerial explorer surveys is also tied to other topics of technical investigation, including the development of unique bio-inspired technologies.

  5. Vessel contrast enhancement in hyperspectral images

    NASA Astrophysics Data System (ADS)

    Bjorgan, Asgeir; Denstedt, Martin; Milanič, Matija; Paluchowski, Lukasz A.; Randeberg, Lise L.

    2015-03-01

    Imaging of vessel structures can be useful for investigation of endothelial function, angiogenesis and hyper-vascularization. This can be challenging for hyperspectral tissue imaging due to photon scattering and absorption in other parts of the tissue. Real-time processing techniques for enhancement of vessel contrast in hyperspectral tissue images were investigated. Wavelet processing and an inverse diffusion model were employed, and compared to band ratio metrics and statistical methods. A multiscale vesselness filter was applied for further enhancement. The results show that vessel structures in hyperspectral images can be enhanced and characterized using a combination of statistical, numerical and more physics informed models.

  6. Photoacoustic phasoscopy super-contrast imaging

    SciTech Connect

    Gao, Fei; Feng, Xiaohua; Zheng, Yuanjin

    2014-05-26

    Phasoscopy is a recently proposed concept correlating electromagnetic (EM) absorption and scattering properties based on energy conservation. Phase information can be extracted from EM absorption induced acoustic wave and scattered EM wave for biological tissue characterization. In this paper, an imaging modality, termed photoacoustic phasoscopy imaging (PAPS), is proposed and verified experimentally based on phasoscopy concept with laser illumination. Both endogenous photoacoustic wave and scattered photons are collected simultaneously to extract the phase information. The PAPS images are then reconstructed on vessel-mimicking phantom and ex vivo porcine tissues to show significantly improved contrast than conventional photoacoustic imaging.

  7. Application of Digital Image Correlation Method to Improve the Accuracy of Aerial Photo Stitching

    NASA Astrophysics Data System (ADS)

    Tung, Shih-Heng; Jhou, You-Liang; Shih, Ming-Hsiang; Hsiao, Han-Wei; Sung, Wen-Pei

    2016-04-01

    Satellite images and traditional aerial photos have been used in remote sensing for a long time. However, there are some problems with these images. For example, the resolution of satellite image is insufficient, the cost to obtain traditional images is relatively high and there is also human safety risk in traditional flight. These result in the application limitation of these images. In recent years, the control technology of unmanned aerial vehicle (UAV) is rapidly developed. This makes unmanned aerial vehicle widely used in obtaining aerial photos. Compared to satellite images and traditional aerial photos, these aerial photos obtained using UAV have the advantages of higher resolution, low cost. Because there is no crew in UAV, it is still possible to take aerial photos using UAV under unstable weather conditions. Images have to be orthorectified and their distortion must be corrected at first. Then, with the help of image matching technique and control points, these images can be stitched or used to establish DEM of ground surface. These images or DEM data can be used to monitor the landslide or estimate the volume of landslide. For the image matching, we can use such as Harris corner method, SIFT or SURF to extract and match feature points. However, the accuracy of these methods for matching is about pixel or sub-pixel level. The accuracy of digital image correlation method (DIC) during image matching can reach about 0.01pixel. Therefore, this study applies digital image correlation method to match extracted feature points. Then the stitched images are observed to judge the improvement situation. This study takes the aerial photos of a reservoir area. These images are stitched under the situations with and without the help of DIC. The results show that the misplacement situation in the stitched image using DIC to match feature points has been significantly improved. This shows that the use of DIC to match feature points can actually improve the accuracy of

  8. High-resolution EUV imaging tools for resist exposure and aerial image monitoring

    NASA Astrophysics Data System (ADS)

    Booth, M.; Brisco, O.; Brunton, A.; Cashmore, J.; Elbourn, P.; Elliner, G.; Gower, M.; Greuters, J.; Grunewald, P.; Gutierrez, R.; Hill, T.; Hirsch, J.; Kling, L.; McEntee, N.; Mundair, S.; Richards, P.; Truffert, V.; Wallhead, I.; Whitfield, M.; Hudyma, R.

    2005-05-01

    Key features are presented of two high-resolution EUV imaging tools: the MS-13 Microstepper wafer exposure and the RIM-13 reticle imaging microscope. The MS-13 has been developed for EUV resist testing and technology evaluation at the 32nm node and beyond, while the RIM-13 is designed for actinic aerial image monitoring of blank and patterned EUV reticles. Details of the design architecture, module layout, major subsystems and performance are presented for both tools.

  9. Enhancement of fluoroscopic images with varying contrast.

    PubMed

    Ozanian, T O; Phillips, R

    2001-04-01

    A heuristic algorithm for enhancement of fluoroscopic images of varying contrast is proposed. The new technique aims at identifying a suitable type of enhancement for different locations in an image. The estimation relies on simple preliminary classification of image parts into one of the following types: uniform, sharp (with sufficient contrast), detail-containing (structure present) and unknown (for the cases where it is difficult to make a decision). Different smoothing techniques are applied locally in the different types of image parts. For those parts that are classified as detail-containing, probable object boundaries are identified and local sharpening is carried out to increase the contrast at these places. The adopted approach attempts to improve the quality of an image by reducing available noise and simultaneously increasing the contrast at probable object boundaries without increasing the overall dynamic range. In addition, it allows noise to be cleaned, that at some locations is stronger than the fine structure at other locations, whilst preserving the details. PMID:11223147

  10. Semantic Segmentation of Aerial Images with AN Ensemble of Cnns

    NASA Astrophysics Data System (ADS)

    Marmanis, D.; Wegner, J. D.; Galliani, S.; Schindler, K.; Datcu, M.; Stilla, U.

    2016-06-01

    This paper describes a deep learning approach to semantic segmentation of very high resolution (aerial) images. Deep neural architectures hold the promise of end-to-end learning from raw images, making heuristic feature design obsolete. Over the last decade this idea has seen a revival, and in recent years deep convolutional neural networks (CNNs) have emerged as the method of choice for a range of image interpretation tasks like visual recognition and object detection. Still, standard CNNs do not lend themselves to per-pixel semantic segmentation, mainly because one of their fundamental principles is to gradually aggregate information over larger and larger image regions, making it hard to disentangle contributions from different pixels. Very recently two extensions of the CNN framework have made it possible to trace the semantic information back to a precise pixel position: deconvolutional network layers undo the spatial downsampling, and Fully Convolution Networks (FCNs) modify the fully connected classification layers of the network in such a way that the location of individual activations remains explicit. We design a FCN which takes as input intensity and range data and, with the help of aggressive deconvolution and recycling of early network layers, converts them into a pixelwise classification at full resolution. We discuss design choices and intricacies of such a network, and demonstrate that an ensemble of several networks achieves excellent results on challenging data such as the ISPRS semantic labeling benchmark, using only the raw data as input.

  11. Grab a coffee: your aerial images are already analyzed

    NASA Astrophysics Data System (ADS)

    Garetto, Anthony; Rademacher, Thomas; Schulz, Kristian

    2015-07-01

    For over 2 decades the AIMTM platform has been utilized in mask shops as the standard for actinic review of photomask sites in order to perform defect disposition and repair review. Throughout this time the measurement throughput of the systems has been improved in order to keep pace with the requirements demanded by a manufacturing environment, however the analysis of the sites captured has seen little improvement and remained a manual process. This manual analysis of aerial images is time consuming, subject to error and unreliability and contributes to holding up turn-around time (TAT) and slowing process flow in a manufacturing environment. AutoAnalysis, the first application available for the FAVOR® platform, offers a solution to these problems by providing fully automated data transfer and analysis of AIMTM aerial images. The data is automatically output in a customizable format that can be tailored to your internal needs and the requests of your customers. Savings in terms of operator time arise from the automated analysis which no longer needs to be performed. Reliability is improved as human error is eliminated making sure the most defective region is always and consistently captured. Finally the TAT is shortened and process flow for the back end of the line improved as the analysis is fast and runs in parallel to the measurements. In this paper the concept and approach of AutoAnalysis will be presented as well as an update to the status of the project. A look at the benefits arising from the automation and the customizable approach of the solution will be shown.

  12. Phased Contrast X-Ray Imaging

    ScienceCinema

    Erin Miller

    2012-12-31

    The Pacific Northwest National Laboratory is developing a range of technologies to broaden the field of explosives detection. Phased contrast X-ray imaging, which uses silicon gratings to detect distortions in the X-ray wave front, may be applicable to mail or luggage scanning for explosives; it can also be used in detecting other contraband, small-parts inspection, or materials characterization.

  13. Adaptive contrast imaging: transmit frequency optimization

    NASA Astrophysics Data System (ADS)

    Ménigot, Sébastien; Novell, Anthony; Voicu, Iulian; Bouakaz, Ayache; Girault, Jean-Marc

    2010-01-01

    Introduction: Since the introduction of ultrasound (US) contrast imaging, the imaging systems use a fixed emitting frequency. However it is known that the insonified medium is time-varying and therefore an adapted time-varying excitation is expected. We suggest an adaptive imaging technique which selects the optimal transmit frequency that maximizes the acoustic contrast. Two algorithms have been proposed to find an US excitation for which the frequency was optimal with microbubbles. Methods and Materials: Simulations were carried out for encapsulated microbubbles of 2 microns by considering the modified Rayleigh-Plesset equation for 2 MHz transmit frequency and for various pressure levels (20 kPa up to 420kPa). In vitro experiments were carried out using a transducer operating at 2 MHz and using a programmable waveform generator. Contrast agent was then injected into a small container filled with water. Results and discussions: We show through simulations and in vitro experiments that our adaptive imaging technique gives: 1) in case of simulations, a gain of acoustic contrast which can reach 9 dB compared to the traditional technique without optimization and 2) for in vitro experiments, a gain which can reach 18 dB. There is a non negligible discrepancy between simulations and experiments. These differences are certainly due to the fact that our simulations do not take into account the diffraction and nonlinear propagation effects. Further optimizations are underway.

  14. Coastline Extraction from Aerial Images Based on Edge Detection

    NASA Astrophysics Data System (ADS)

    Paravolidakis, V.; Moirogiorgou, K.; Ragia, L.; Zervakis, M.; Synolakis, C.

    2016-06-01

    Nowadays coastline extraction and tracking of its changes become of high importance because of the climate change, global warming and rapid growth of human population. Coastal areas play a significant role for the economy of the entire region. In this paper we propose a new methodology for automatic extraction of the coastline using aerial images. A combination of a four step algorithm is used to extract the coastline in a robust and generalizable way. First, noise distortion is reduced in order to ameliorate the input data for the next processing steps. Then, the image is segmented into two regions, land and sea, through the application of a local threshold to create the binary image. The result is further processed by morphological operators with the aim that small objects are being eliminated and only the objects of interest are preserved. Finally, we perform edge detection and active contours fitting in order to extract and model the coastline. These algorithmic steps are illustrated through examples, which demonstrate the efficacy of the proposed methodology.

  15. Improving photoacoustic imaging contrast of brachytherapy seeds

    NASA Astrophysics Data System (ADS)

    Pan, Leo; Baghani, Ali; Rohling, Robert; Abolmaesumi, Purang; Salcudean, Septimiu; Tang, Shuo

    2013-03-01

    Prostate brachytherapy is a form of radiotherapy for treating prostate cancer where the radiation sources are seeds inserted into the prostate. Accurate localization of seeds during prostate brachytherapy is essential to the success of intraoperative treatment planning. The current standard modality used in intraoperative seeds localization is transrectal ultrasound. Transrectal ultrasound, however, suffers in image quality due to several factors such speckle, shadowing, and off-axis seed orientation. Photoacoustic imaging, based on the photoacoustic phenomenon, is an emerging imaging modality. The contrast generating mechanism in photoacoustic imaging is optical absorption that is fundamentally different from conventional B-mode ultrasound which depicts changes in acoustic impedance. A photoacoustic imaging system is developed using a commercial ultrasound system. To improve imaging contrast and depth penetration, absorption enhancing coating is applied to the seeds. In comparison to bare seeds, approximately 18.5 dB increase in signal-to-noise ratio as well as a doubling of imaging depth are achieved. Our results demonstrate that the coating of the seeds can further improve the discernibility of the seeds.

  16. Nonlinear Estimation Approach to Real-Time Georegistration from Aerial Images

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Padgett, Curtis W.

    2012-01-01

    When taking aerial images, it is important to know locations of specific points of interest in an Earth-centered coordinate system (latitude, longitude, height). The correspondence between a pixel location in the image and its Earth coordinate is known as georegistration. There are two main technical challenges arising in the intended application. The first is that no known features are assumed to be available in any of the images. The second is that the intended applications are real time. Here, images are taken at regular intervals (i.e. once per second), and it is desired to make decisions in real time based on the geolocation of specific objects seen in the images as they arrive. This is in sharp contrast to most current methods for geolocation that operate "after-the-fact" by processing, on the ground, a database of stored images using computationally intensive methods. The solution is a nonlinear estimation algorithm that combines processed realtime camera images with vehicle position and attitude information ob tained from an onboard GPS receiver. This approach provides accurate georegistration estimates (latitude, longitude, height) of arbitrary features and/or points of interest seen in the camera images. This solves the georegistration problem at the modest cost of augmenting the camera information with a GPS receiver carried onboard the vehicle.

  17. Using aerial photography and image analysis to measure changes in giant reed populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted along the Rio Grande in southwest Texas to evaluate color-infrared aerial photography combined with supervised image analysis to quantify changes in giant reed (Arundo donax L.) populations over a 6-year period. Aerial photographs from 2002 and 2008 of the same seven study site...

  18. Intraoperative imaging using intravascular contrast agent

    NASA Astrophysics Data System (ADS)

    Watson, Jeffrey R.; Martirosyan, Nikolay; Garland, Summer; Lemole, G. Michael; Romanowski, Marek

    2016-03-01

    Near-infrared (NIR) contrast agents are becoming more frequently studied in medical imaging due to their advantageous characteristics, most notably the ability to capture near-infrared signal across the tissue and the safety of the technique. This produces a need for imaging technology that can be specific for both the NIR dye and medical application. Indocyanine green (ICG) is currently the primary NIR dye used in neurosurgery. Here we report on using the augmented microscope we described previously for image guidance in a rat glioma resection. Luc-C6 cells were implanted in a rat in the left-frontal lobe and grown for 22 days. Surgical resection was performed by a neurosurgeon using augmented microscopy guidance with ICG contrast. Videos and images were acquired to evaluate image quality and resection margins. ICG accumulated in the tumor tissue due to enhanced permeation and retention from the compromised bloodbrain- barrier. The augmented microscope was capable of guiding the rat glioma resection and intraoperatively highlighted tumor tissue regions via ICG fluorescence under normal illumination of the surgical field.

  19. Contrast Driven Elastica for Image Segmentation.

    PubMed

    El-Zehiry, Noha Youssry; Grady, Leo

    2016-06-01

    Minimization of boundary curvature is a classic regularization technique for image segmentation in the presence of noisy image data. Techniques for minimizing curvature have historically been derived from gradient descent methods which could be trapped by a local minimum and, therefore, required a good initialization. Recently, combinatorial optimization techniques have overcome this barrier by providing solutions that can achieve a global optimum. However, curvature regularization methods can fail when the true object has high curvature. In these circumstances, existing methods depend on a data term to overcome the high curvature of the object. Unfortunately, the data term may be ambiguous in some images, which causes these methods also to fail. To overcome these problems, we propose a contrast driven elastica model (including curvature), which can accommodate high curvature objects and an ambiguous data model. We demonstrate that we can accurately segment extremely challenging synthetic and real images with ambiguous data discrimination, poor boundary contrast, and sharp corners. We provide a quantitative evaluation of our segmentation approach when applied to a standard image segmentation data set. PMID:27019488

  20. Myocardial perfusion imaging using contrast echocardiography.

    PubMed

    Pathan, Faraz; Marwick, Thomas H

    2015-01-01

    Microbubbles are an excellent intravascular tracer, and both the rate of myocardial opacification (analogous to coronary microvascular perfusion) and contrast intensity (analogous to myocardial blood volume) provide unique insights into myocardial perfusion. A strong evidence base has been accumulated to show comparability with nuclear perfusion imaging and incremental diagnostic and prognostic value relative to wall motion analysis. This technique also provides the possibility to measure myocardial perfusion at the bedside. Despite all of these advantages, the technique is complicated, technically challenging, and has failed to scale legislative and financial hurdles. The development of targeted imaging and therapeutic interventions will hopefully rekindle interest in this interesting modality. PMID:25817740

  1. Imaging features of rhinosporidiosis on contrast CT

    PubMed Central

    Prabhu, Shailesh M; Irodi, Aparna; Khiangte, Hannah L; Rupa, V; Naina, P

    2013-01-01

    Context: Rhinosporidiosis is a chronic granulomatous disease endemic in certain regions of India. Computed tomography (CT) imaging appearances of rhinosporidiosis have not been previously described in the literature. Aims: To study imaging features in rhinosporidiosis with contrast-enhanced CT and elucidate its role in the evaluation of this disease. Materials and Methods: Sixteen patients with pathologically proven rhinosporidiosis were included in the study. Contrast-enhanced CT images were analyzed retrospectively and imaging findings were correlated with surgical and histopathologic findings. Results: A total of 29 lesions were found and evaluated. On contrast-enhanced CT, rhinosporidiosis was seen as moderately enhancing lobulated or irregular soft tissue mass lesions in the nasal cavity (n = 13), lesions arising in nasal cavity and extending through choana into nasopharynx (n = 5), pedunculated polypoidal lesions arising from the nasopharyngeal wall (n = 5), oropharyngeal wall (n = 2), larynx (n = 1), bronchus (n = 1), skin and subcutaneous tissue (n = 2). The inferior nasal cavity comprising nasal floor, inferior turbinate, and inferior meatus was the most common site of involvement (n = 13). Surrounding bone involvement was seen in the form of rarefaction (n = 6), partial (n = 3) or complete erosion (n = 3) of inferior turbinate, thinning of medial maxillary wall (n = 2), and septal erosion (n = 2). Nasolacrimal duct involvement was seen in four cases. Conclusions: Contrast-enhanced CT has an important role in delineating the site and extent of the disease, as well as the involvement of surrounding bone, nasolacrimal duct and tracheobronchial tree. This provides a useful roadmap prior to surgery. PMID:24347850

  2. Noise analysis in laser speckle contrast imaging

    NASA Astrophysics Data System (ADS)

    Yuan, Shuai; Chen, Yu; Dunn, Andrew K.; Boas, David A.

    2010-02-01

    Laser speckle contrast imaging (LSCI) is becoming an established method for full-field imaging of blood flow dynamics in animal models. A reliable quantitative model with comprehensive noise analysis is necessary to fully utilize this technique in biomedical applications and clinical trials. In this study, we investigated several major noise sources in LSCI: periodic physiology noise, shot noise and statistical noise. (1) We observed periodic physiology noise in our experiments and found that its sources consist principally of motions induced by heart beats and/or ventilation. (2) We found that shot noise caused an offset of speckle contrast (SC) values, and this offset is directly related to the incident light intensity. (3) A mathematical model of statistical noise was also developed. The model indicated that statistical noise in speckle contrast imaging is related to the SC values and the total number of pixels used in the SC calculation. Our experimental results are consistent with theoretical predications, as well as with other published works.

  3. Diffraction contrast imaging using virtual apertures.

    PubMed

    Gammer, Christoph; Burak Ozdol, V; Liebscher, Christian H; Minor, Andrew M

    2015-08-01

    Two methods on how to obtain the full diffraction information from a sample region and the associated reconstruction of images or diffraction patterns using virtual apertures are demonstrated. In a STEM-based approach, diffraction patterns are recorded for each beam position using a small probe convergence angle. Similarly, a tilt series of TEM dark-field images is acquired. The resulting datasets allow the reconstruction of either electron diffraction patterns, or bright-, dark- or annular dark-field images using virtual apertures. The experimental procedures of both methods are presented in the paper and are applied to a precipitation strengthened and creep deformed ferritic alloy with a complex microstructure. The reconstructed virtual images are compared with conventional TEM images. The major advantage is that arbitrarily shaped virtual apertures generated with image processing software can be designed without facing any physical limitations. In addition, any virtual detector that is specifically designed according to the underlying crystal structure can be created to optimize image contrast. PMID:25840371

  4. Vehicle detection from high-resolution aerial images based on superpixel and color name features

    NASA Astrophysics Data System (ADS)

    Chen, Ziyi; Cao, Liujuan; Yu, Zang; Chen, Yiping; Wang, Cheng; Li, Jonathan

    2016-03-01

    Automatic vehicle detection from aerial images is emerging due to the strong demand of large-area traffic monitoring. In this paper, we present a novel framework for automatic vehicle detection from the aerial images. Through superpixel segmentation, we first segment the aerial images into homogeneous patches, which consist of the basic units during the detection to improve efficiency. By introducing the sparse representation into our method, powerful classification ability is achieved after the dictionary training. To effectively describe a patch, the Histogram of Oriented Gradient (HOG) is used. We further propose to integrate color information to enrich the feature representation by using the color name feature. The final feature consists of both HOG and color name based histogram, by which we get a strong descriptor of a patch. Experimental results demonstrate the effectiveness and robust performance of the proposed algorithm for vehicle detection from aerial images.

  5. Weighted contrast metric for imaging system performance

    NASA Astrophysics Data System (ADS)

    Teaney, Brian P.

    2012-06-01

    There have been significant improvements in the image quality metrics used in the NVESD model suite in recent years. The introduction of the Targeting Task Performance (TTP) metric to replace the Johnson criteria yielded significantly more accurate predictions for under-sampled imaging systems in particular. However, there are certain cases which cause the TTP metric to predict optimistic performance. In this paper a new metric for predicting performance of imaging systems is described. This new weighted contrast metric is characterized as a hybrid of the TTP metric and Johnson criteria. Results from a number of historical perception studies are presented to compare the performance of the TTP metric and Johnson criteria to the newly proposed metric.

  6. Contrast vs noise effects on image quality

    NASA Astrophysics Data System (ADS)

    Hadar, Ofer; Corse, N.; Rotman, Stanley R.; Kopeika, Norman S.

    1996-11-01

    Low noise images are contract-limited, and image restoration techniques can improve resolution significantly. However, as noise level increases, resolution improvements via image processing become more limited because image restoration increases noise. This research attempts to construct a reliable quantitative means of characterizing the perceptual difference between target and background. A method is suggested for evaluating the extent to which it is possible to discriminate an object which has merged with its surroundings, in noise-limited and contrast limited images, i.e., how hard it would be for an observer to recognize the object against various backgrounds as a function of noise level. The suggested model will be a first order model to begin with, using a regular bar-chart with additive uncorrelated Gaussian noise degraded by standard atmospheric blurring filters. The second phase will comprise a model dealing with higher-order images. This computational model relates the detectability or distinctness of the object to measurable parameters. It also must characterize human perceptual response, i.e. the model must develop metrics which are highly correlated to the ease or difficulty which the human observer experiences in discerning the target from its background. This requirement can be fulfilled only by conducting psychophysical experiments quantitatively comparing the perceptual evaluations of the observers with the results of the mathematical model.

  7. Study of Automatic Image Rectification and Registration of Scanned Historical Aerial Photographs

    NASA Astrophysics Data System (ADS)

    Chen, H. R.; Tseng, Y. H.

    2016-06-01

    Historical aerial photographs directly provide good evidences of past times. The Research Center for Humanities and Social Sciences (RCHSS) of Taiwan Academia Sinica has collected and scanned numerous historical maps and aerial images of Taiwan and China. Some maps or images have been geo-referenced manually, but most of historical aerial images have not been registered since there are no GPS or IMU data for orientation assisting in the past. In our research, we developed an automatic process of matching historical aerial images by SIFT (Scale Invariant Feature Transform) for handling the great quantity of images by computer vision. SIFT is one of the most popular method of image feature extracting and matching. This algorithm extracts extreme values in scale space into invariant image features, which are robust to changing in rotation scale, noise, and illumination. We also use RANSAC (Random sample consensus) to remove outliers, and obtain good conjugated points between photographs. Finally, we manually add control points for registration through least square adjustment based on collinear equation. In the future, we can use image feature points of more photographs to build control image database. Every new image will be treated as query image. If feature points of query image match the features in database, it means that the query image probably is overlapped with control images.With the updating of database, more and more query image can be matched and aligned automatically. Other research about multi-time period environmental changes can be investigated with those geo-referenced temporal spatial data.

  8. Angular Differential Imaging: a Powerful High-Contrast Imaging Technique

    SciTech Connect

    Marois, C; Lafreniere, D; Doyon, R; Macintosh, B; Nadeau, D

    2005-11-07

    Angular differential imaging is a high-contrast imaging technique that reduces speckle noise from quasi-static optical aberrations and facilitates the detection of faint nearby companions. A sequence of images is acquired with an altitude/azimuth telescope, the instrument rotator being turned off. This keeps the instrument and telescope optics aligned, stabilizes the instrumental PSF and allows the field of view to rotate with respect to the instrument. For each image, a reference PSF obtained from other images of the sequence is subtracted. All residual images are then rotated to align the field and are median combined. Observed performances are reported for Gemini Altair/NIRI data. Inside the speckle dominated region of the PSF, it is shown that quasi-static PSF noise can be reduced by a factor {approx}5 for each image subtraction. The combination of all residuals then provides an additional gain of the order of the square root of the total number of images acquired. To our knowledge, this is the first time an acquisition strategy and reduction pipeline designed for speckle attenuation and high contrast imaging is demonstrated to significantly get better detection limits with longer integration times at all angular separations. A PSF noise attenuation of 100 was achieved from 2-hour long sequences of images of Vega, reaching a 5-sigma contrast of 20 magnitudes for separations greater than 7''. This technique can be used with currently available instruments to search for {approx} 1 M{sub Jup} exoplanets with orbits of radii between 50 and 300 AU around nearby young stars. The possibility of combining the technique with other high-contrast imaging methods is briefly discussed.

  9. Contrast optimization in broadband polarimetric imaging

    NASA Astrophysics Data System (ADS)

    Thomas, Lijo; Hu, Haofeng; Boffety, Matthieu; Goudail, François

    2016-05-01

    For the sake of polarimetric accuracy, polarization imaging systems based on liquid crystal modulators often work at one given wavelength due to the strong chromatic properties of the liquid crystal retarders. This often requires the use of narrowband filters which reduces the amount of light in the system and thus the signal-to-noise ratio. For applications where the main parameter of interest is the target/background discriminability rather than polarimetric accuracy, spectral filtering may not be the best option. In this work, we investigate the impact of broadening the spectrum of the light entering the system on the discriminability performance of passive and active polarimetric systems. Through simulations, we show that broadening the bandwidth of the illumination can increase the contrast between two regions, as the increase of light flux compensates for the loss of polarimetric precision. Moreover, we show that taking into account the chromatic characteristics of the components of the imaging system can further enhance the contrast. We validate these findings through experiments in passive and active configurations, and demonstrate that the illumination bandwidth can be seen as an additional parameter to optimize polarimetric imaging set-ups.

  10. Image fusion algorithm for differential phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Roessl, Ewald; Koehler, Thomas; van Stevendaal, Udo; Martens, Gerhard; Hauser, Nik; Wang, Zhentian; Stampanoni, Marco

    2012-03-01

    Differential phase-contrast imaging in the x-ray domain provides three physically complementary signals:1, 2 the attenuation, the differential phase-contrast, related to the refractive index, and the dark-field signal, strongly influenced by the total amount of radiation scattered into very small angles. In medical applications, it is of the utmost importance to present to the radiologist all clinically relevant information in as compact a way as possible. Hence, the need arises for a method to combine two or more of the above mentioned signals into one image containing all information relevant for diagnosis. We present an image composition algorithm that fuses the attenuation image and the differential phase contrast image into a composite, final image based on the assumption that the real and imaginary part of the complex refractive index of the sample can be related by a constant scaling factor. The merging is performed in such a way that the composite image is characterized by minimal noise-power at each frequency component.

  11. Image fusion for dynamic contrast enhanced magnetic resonance imaging

    PubMed Central

    Twellmann, Thorsten; Saalbach, Axel; Gerstung, Olaf; Leach, Martin O; Nattkemper, Tim W

    2004-01-01

    Background Multivariate imaging techniques such as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) have been shown to provide valuable information for medical diagnosis. Even though these techniques provide new information, integrating and evaluating the much wider range of information is a challenging task for the human observer. This task may be assisted with the use of image fusion algorithms. Methods In this paper, image fusion based on Kernel Principal Component Analysis (KPCA) is proposed for the first time. It is demonstrated that a priori knowledge about the data domain can be easily incorporated into the parametrisation of the KPCA, leading to task-oriented visualisations of the multivariate data. The results of the fusion process are compared with those of the well-known and established standard linear Principal Component Analysis (PCA) by means of temporal sequences of 3D MRI volumes from six patients who took part in a breast cancer screening study. Results The PCA and KPCA algorithms are able to integrate information from a sequence of MRI volumes into informative gray value or colour images. By incorporating a priori knowledge, the fusion process can be automated and optimised in order to visualise suspicious lesions with high contrast to normal tissue. Conclusion Our machine learning based image fusion approach maps the full signal space of a temporal DCE-MRI sequence to a single meaningful visualisation with good tissue/lesion contrast and thus supports the radiologist during manual image evaluation. PMID:15494072

  12. A featureless approach to 3D polyhedral building modeling from aerial images.

    PubMed

    Hammoudi, Karim; Dornaika, Fadi

    2011-01-01

    This paper presents a model-based approach for reconstructing 3D polyhedral building models from aerial images. The proposed approach exploits some geometric and photometric properties resulting from the perspective projection of planar structures. Data are provided by calibrated aerial images. The novelty of the approach lies in its featurelessness and in its use of direct optimization based on image rawbrightness. The proposed framework avoids feature extraction and matching. The 3D polyhedral model is directly estimated by optimizing an objective function that combines an image-based dissimilarity measure and a gradient score over several aerial images. The optimization process is carried out by the Differential Evolution algorithm. The proposed approach is intended to provide more accurate 3D reconstruction than feature-based approaches. Fast 3D model rectification and updating can take advantage of the proposed method. Several results and evaluations of performance from real and synthetic images show the feasibility and robustness of the proposed approach. PMID:22346575

  13. A Featureless Approach to 3D Polyhedral Building Modeling from Aerial Images

    PubMed Central

    Hammoudi, Karim; Dornaika, Fadi

    2011-01-01

    This paper presents a model-based approach for reconstructing 3D polyhedral building models from aerial images. The proposed approach exploits some geometric and photometric properties resulting from the perspective projection of planar structures. Data are provided by calibrated aerial images. The novelty of the approach lies in its featurelessness and in its use of direct optimization based on image rawbrightness. The proposed framework avoids feature extraction and matching. The 3D polyhedral model is directly estimated by optimizing an objective function that combines an image-based dissimilarity measure and a gradient score over several aerial images. The optimization process is carried out by the Differential Evolution algorithm. The proposed approach is intended to provide more accurate 3D reconstruction than feature-based approaches. Fast 3D model rectification and updating can take advantage of the proposed method. Several results and evaluations of performance from real and synthetic images show the feasibility and robustness of the proposed approach. PMID:22346575

  14. Line Matching Algorithm for Aerial Image Combining image and object space similarity constraints

    NASA Astrophysics Data System (ADS)

    Wang, Jingxue; Wang, Weixi; Li, Xiaoming; Cao, Zhenyu; Zhu, Hong; Li, Miao; He, Biao; Zhao, Zhigang

    2016-06-01

    A new straight line matching method for aerial images is proposed in this paper. Compared to previous works, similarity constraints combining radiometric information in image and geometry attributes in object plane are employed in these methods. Firstly, initial candidate lines and the elevation values of lines projection plane are determined by corresponding points in neighborhoods of reference lines. Secondly, project reference line and candidate lines back forward onto the plane, and then similarity measure constraints are enforced to reduce the number of candidates and to determine the finial corresponding lines in a hierarchical way. Thirdly, "one-to-many" and "many-to-one" matching results are transformed into "one-to-one" by merging many lines into the new one, and the errors are eliminated simultaneously. Finally, endpoints of corresponding lines are detected by line expansion process combing with "image-object-image" mapping mode. Experimental results show that the proposed algorithm can be able to obtain reliable line matching results for aerial images.

  15. Aerial imaging study of the mask-induced line-width roughness of EUV lithography masks

    NASA Astrophysics Data System (ADS)

    Wojdyla, Antoine; Donoghue, Alexander; Benk, Markus P.; Naulleau, Patrick P.; Goldberg, Kenneth A.

    2016-03-01

    EUV lithography uses reflective photomasks to print features on a wafer through the formation of an aerial image. The aerial image is influenced by the mask's substrate and pattern roughness and by photon shot noise, which collectively affect the line-width on wafer prints, with an impact on local critical dimension uniformity (LCDU). We have used SHARP, an actinic mask-imaging microscope, to study line-width roughness (LWR) in aerial images at sub-nanometer resolution. We studied the impact of photon density and the illumination partial coherence on recorded images, and found that at low coherence settings, the line-width roughness is dominated by photon noise, while at high coherence setting, the effect of speckle becomes more prominent, dominating photon noise for exposure levels of 4 photons/nm2 at threshold on the mask size.

  16. Critical Assessment of Object Segmentation in Aerial Image Using Geo-Hausdorff Distance

    NASA Astrophysics Data System (ADS)

    Sun, H.; Ding, Y.; Huang, Y.; Wang, G.

    2016-06-01

    Aerial Image records the large-range earth objects with the ever-improving spatial and radiometric resolution. It becomes a powerful tool for earth observation, land-coverage survey, geographical census, etc., and helps delineating the boundary of different kinds of objects on the earth both manually and automatically. In light of the geo-spatial correspondence between the pixel locations of aerial image and the spatial coordinates of ground objects, there is an increasing need of super-pixel segmentation and high-accuracy positioning of objects in aerial image. Besides the commercial software package of eCognition and ENVI, many algorithms have also been developed in the literature to segment objects of aerial images. But how to evaluate the segmentation results remains a challenge, especially in the context of the geo-spatial correspondence. The Geo-Hausdorff Distance (GHD) is proposed to measure the geo-spatial distance between the results of various object segmentation that can be done with the manual ground truth or with the automatic algorithms.Based on the early-breaking and random-sampling design, the GHD calculates the geographical Hausdorff distance with nearly-linear complexity. Segmentation results of several state-of-the-art algorithms, including those of the commercial packages, are evaluated with a diverse set of aerial images. They have different signal-to-noise ratio around the object boundaries and are hard to trace correctly even for human operators. The GHD value is analyzed to comprehensively measure the suitability of different object segmentation methods for aerial images of different spatial resolution. By critically assessing the strengths and limitations of the existing algorithms, the paper provides valuable insight and guideline for extensive research in automating object detection and classification of aerial image in the nation-wide geographic census. It is also promising for the optimal design of operational specification of remote

  17. Ionic contrast terahertz near field imaging

    NASA Astrophysics Data System (ADS)

    Gallot, Guilhem

    2013-09-01

    We demonstrated the direct and noninvasive imaging of functional neurons by Ionic Contrast Terahertz (ICT) near-field microscopy. This technique provides quantitative measurements of ionic concentrations in both the intracellular and extracellular compartments and opens the way to direct noninvasive imaging of neurons during electrical, toxin, or thermal stresses. Furthermore, neuronal activity results from both a precise control of transient variations in ionic conductance and a much less studied water exchange between the extracellular matrix and the intraaxonal compartment. The developed ICT technique associated with a full three-dimensional simulation of the axon-aperture near-field system allows a precise measurement of the axon geometry and therefore the direct visualization of neuron swelling induced by temperature change or neurotoxin poisoning. We also developed Terahertz Attenuated Total Reflection (ATR) devices perfectly suited for studying cell layers. Inserted in a terahertz time-domain system, and using a high resistivity low loss silicon prism to couple the terahertz wave into the sample, the detection scheme is based on the relative differential spectral phase of two orthogonal polarizations. Biological sample imaging as well as subwavelength (λ/16) longitudinal resolution are demonstrated.

  18. Design and realization of an image mosaic system on the CCD aerial camera

    NASA Astrophysics Data System (ADS)

    Liu, Hai ying; Wang, Peng; Zhu, Hai bin; Li, Yan; Zhang, Shao jun

    2015-08-01

    It has long been difficulties in aerial photograph to stitch multi-route images into a panoramic image in real time for multi-route flight framing CCD camera with very large amount of data, and high accuracy requirements. An automatic aerial image mosaic system based on GPU development platform is described in this paper. Parallel computing of SIFT feature extraction and matching algorithm module is achieved by using CUDA technology for motion model parameter estimation on the platform, which makes it's possible to stitch multiple CCD images in real-time. Aerial tests proved that the mosaic system meets the user's requirements with 99% accuracy and 30 to 50 times' speed improvement of the normal mosaic system.

  19. Aerial image simulation for partial coherent system with programming development in MATLAB

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Nazmul; Rahman, Md. Momtazur; Udoy, Ariful Banna

    2014-10-01

    Aerial image can be calculated by either Abbe's method or sum of coherent system decomposition (SOCS) method for partial coherent system. This paper introduces a programming with Matlab code that changes the analytical representation of Abbe's method to the matrix form, which has advantages for both Abbe's method and SOCS since matrix calculation is easier than double integration over object plane or pupil plane. First a singular matrix P is derived from a pupil function and effective light source in the spatial frequency domain. By applying Singular Value Decomposition (SVD) to the matrix P, eigenvalues and eigenfunctions are obtained. The aerial image can then be computed by the eigenvalues and eigenfunctions without calculation of Transmission Cross Coefficient (TCC). The aerial final image is almost identical as an original cross mask and the intensity distribution on image plane shows that it is almost uniform across the linewidth of the mask.

  20. Undetectable Changes in Image Resolution of Luminance-Contrast Gradients Affect Depth Perception

    PubMed Central

    Tsushima, Yoshiaki; Komine, Kazuteru; Sawahata, Yasuhito; Morita, Toshiya

    2016-01-01

    A great number of studies have suggested a variety of ways to get depth information from two dimensional images such as binocular disparity, shape-from-shading, size gradient/foreshortening, aerial perspective, and so on. Are there any other new factors affecting depth perception? A recent psychophysical study has investigated the correlation between image resolution and depth sensation of Cylinder images (A rectangle contains gradual luminance-contrast changes.). It was reported that higher resolution images facilitate depth perception. However, it is still not clear whether or not the finding generalizes to other kinds of visual stimuli, because there are more appropriate visual stimuli for exploration of depth perception of luminance-contrast changes, such as Gabor patch. Here, we further examined the relationship between image resolution and depth perception by conducting a series of psychophysical experiments with not only Cylinders but also Gabor patches having smoother luminance-contrast gradients. As a result, higher resolution images produced stronger depth sensation with both images. This finding suggests that image resolution affects depth perception of simple luminance-contrast differences (Gabor patch) as well as shape-from-shading (Cylinder). In addition, this phenomenon was found even when the resolution difference was undetectable. This indicates the existence of consciously available and unavailable information in our visual system. These findings further support the view that image resolution is a cue for depth perception that was previously ignored. It partially explains the unparalleled viewing experience of novel high resolution displays. PMID:26941693

  1. High Density Aerial Image Matching: State-Of and Future Prospects

    NASA Astrophysics Data System (ADS)

    Haala, N.; Cavegn, S.

    2016-06-01

    Ongoing innovations in matching algorithms are continuously improving the quality of geometric surface representations generated automatically from aerial images. This development motivated the launch of the joint ISPRS/EuroSDR project "Benchmark on High Density Aerial Image Matching", which aims on the evaluation of photogrammetric 3D data capture in view of the current developments in dense multi-view stereo-image matching. Originally, the test aimed on image based DSM computation from conventional aerial image flights for different landuse and image block configurations. The second phase then put an additional focus on high quality, high resolution 3D geometric data capture in complex urban areas. This includes both the extension of the test scenario to oblique aerial image flights as well as the generation of filtered point clouds as additional output of the respective multi-view reconstruction. The paper uses the preliminary outcomes of the benchmark to demonstrate the state-of-the-art in airborne image matching with a special focus of high quality geometric data capture in urban scenarios.

  2. A two-camera imaging system for pest detection and aerial application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This presentation reports on the design and testing of an airborne two-camera imaging system for pest detection and aerial application assessment. The system consists of two digital cameras with 5616 x 3744 effective pixels. One camera captures normal color images with blue, green and red bands, whi...

  3. A low-cost dual-camera imaging system for aerial applicators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural aircraft provide a readily available remote sensing platform as low-cost and easy-to-use consumer-grade cameras are being increasingly used for aerial imaging. In this article, we report on a dual-camera imaging system we recently assembled that can capture RGB and near-infrared (NIR) i...

  4. Automatic geolocation of targets tracked by aerial imaging platforms using satellite imagery

    NASA Astrophysics Data System (ADS)

    Shukla, P. K.; Goel, S.; Singh, P.; Lohani, B.

    2014-11-01

    Tracking of targets from aerial platforms is an important activity in several applications, especially surveillance. Knowled ge of geolocation of these targets adds additional significant and useful information to the application. This paper determines the geolocation of a target being tracked from an aerial platform using the technique of image registration. Current approaches utilize a POS to determine the location of the aerial platform and then use the same for geolocation of the targets using the principle of photogrammetry. The constraints of cost and low-payload restrict the applicability of this approach using UAV platforms. This paper proposes a methodology for determining the geolocation of a target tracked from an aerial platform in a partially GPS devoid environment. The method utilises automatic feature based registration technique of a georeferenced satellite image with an ae rial image which is already stored in UAV's database to retrieve the geolocation of the target. Since it is easier to register subsequent aerial images due to similar viewing parameters, the subsequent overlapping images are registered together sequentially thus resulting in the registration of each of the images with georeferenced satellite image thus leading to geolocation of the target under interest. Using the proposed approach, the target can be tracked in all the frames in which it is visible. The proposed concept is verified experimentally and the results are found satisfactory. Using the proposed method, a user can obtain location of target of interest as well features on ground without requiring any POS on-board the aerial platform. The proposed approach has applications in surveillance for target tracking, target geolocation as well as in disaster management projects like search and rescue operations.

  5. Imaging microvascular flow characteristics using laser speckle contrast imaging.

    PubMed

    Rege, Abhishek; Murari, Kartikeya; Li, Nan; Thakor, Nitish V

    2010-01-01

    Laser speckle contrast imaging (LSCI) has classically been used to image regional blood flow changes in animal models. In this paper, we demonstrate the use of LSCI for elucidating blood flow characteristics in individual microvessels with diameters as small as 24µm. We extracted profiles of speckle contrast values within individual vessels, both along their diameters and along their lengths and inferred that they could be attributed to the flow within the vessel. Profiles along the diameter of vessels revealed maxima at the center of vessels, consistent with fluid dynamics. These observed profiles could be fitted with parabolic curves with a mean coefficient of determination of 0.92. Similarly, analysis of speckle contrast values in the axial direction revealed profiles that progressively decreased in discreet quanta at branch points indicating blood flow bifurcations. Flow estimates obtained from speckle contrast values within branches of vessels obeyed the law of mass conservation with a mean error of only 3.5%. This allowed us to elucidate the percentage distribution of blood flow into each of the downstream branches. This ability of LSCI to resolve blood flow distribution in branching microvessel trees in a minimally invasive and dye free environment over a wide field of view promises to find application in both the neuroscience laboratory as well as intraoperative neurosurgery. PMID:21096787

  6. Low-Altitude Coastal Aerial Photogrammetry for High-Resolution Seabed Imaging and Habitat Mapping of Shallow Areas

    NASA Astrophysics Data System (ADS)

    Alevizos, E.

    2012-04-01

    This paper explores the application of Kite Aerial Photography at the coastal environment along with digital photogrammetry for seabed geomorphological mapping. This method takes advantage of sea-water clearance that allows the transmission of sunlight through the water column and backscatter of seabed reflection under certain conditions of sunlight, weather and sea state. We analyze the procedure of acquisition, processing and interpretation of kite aerial imagery from the sub-littoral zone up to 5 meters depth. Using a calibrated non-metric digital compact camera we managed to acquire several vertical aerial images from two coastal sites in the Attica Peninsula (Greece) covering an area of approximately 200x100 meters. Both sites express significant geomorphological variability and they have a relatively smooth slope profile. For the photogrammetric processing we acquired topographic and bathymetric survey simultaneously with Kite Aerial Photography using a portable GPS of sub-meter accuracy. In order to deal with bottom control measurements we developed Bottom Control Points which were placed on the seabed. These act like the Ground Control Points and they can be easily deployed in the marine environment. The processing included interior and exterior orientation as well as ortho-rectification of images. This produced final orthomosaics for each site at scales 1:500 - 1:1500 with a resolution of a few centimeters. Interpretation of the seabed was based on color and texture features of certain areas with explicit seabed reflectivity and was supported by underwater photographs for ground truthing. At the final stage of image analysis, we recognized the boundaries (contrasting reflectivity) between different bottom types and digitized them as 2D objects using GIS. Concluding, this project emphasizes on the advantages and physical restrictions of Kite Aerial Photography in mapping small-scale geomorphological features in coastal, estuarine and lagoonal environments

  7. Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast

    NASA Astrophysics Data System (ADS)

    Qiu, Jianjun; Li, Pengcheng; Luo, Weihua; Wang, Jia; Zhang, Hongyan; Luo, Qingming

    2010-01-01

    Laser speckle contrast imaging is a technique used for imaging blood flow without scanning. Though several studies have attempted to combine spatial and temporal statistics of laser speckle images for reducing image noise as well as preserving acceptable spatiotemporal resolution, the statistical accuracy of these spatiotemporal methods has not been thoroughly compared. Through numerical simulation and animal experiments, this study investigates the changes in the mean speckle contrast values and the relative noise of the speckle contrast images computed by these methods with various numbers of frames and spatial windows. The simulation results show that the maximum relative error of the mean speckle contrast computed by the spatiotemporal laser speckle contrast analysis (STLASCA) method, in which the speckle contrast images are computed by analyzing the 3-D spatiotemporal speckle image cube, is approximately 5%, while it is higher than 13% for other methods. Changes in the mean speckle contrast values and the relative noise computed by these methods for animal experiment data are consistent with the simulation results. Our results demonstrate that STLASCA achieves more accurate speckle contrast, and suggest that STLASCA most effectively utilizes the number of pixels, thus achieving maximized speckle contrast, and thereby maximizing the variation of the laser speckle contrast image.

  8. Monitoring stem cells in phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Lam, K. P.; Dempsey, K. P.; Collins, D. J.; Richardson, J. B.

    2016-04-01

    Understanding the mechanisms behind the proliferation of Mesenchymal Stem cells (MSCs) can offer a greater insight into the behaviour of these cells throughout their life cycles. Traditional methods of determining the rate of MSC differentiation rely on population based studies over an extended time period. However, such methods can be inadequate as they are unable to track cells as they interact; for example, in autologous cell therapies for osteoarthritis, the development of biological assays that could predict in vivo functional activity and biological action are particularly challenging. Here further research is required to determine non-histochemical biomarkers which provide correlations between cell survival and predictive functional outcome. This paper proposes using a (previously developed) advanced texture-based analysis algorithm to facilitate in vitro cells tracking using time-lapsed microscopy. The technique was adopted to monitor stem cells in the context of unlabelled, phase contrast imaging, with the goal of examining the cell to cell interactions in both monoculture and co-culture systems. The results obtained are analysed using established exploratory procedures developed for time series data and compared with the typical fluorescent-based approach of cell labelling. A review of the progress and the lessons learned are also presented.

  9. High contrast imaging polarimetry of circumstellar environments

    NASA Astrophysics Data System (ADS)

    Canovas Cabrera, H.

    2011-09-01

    The work presented in this thesis is based on the analysis of the results produced by ExPo, the Extreme Polarimeter. ExPo is an imaging polarimeter that has been designed and built by the group of prof. Christoph Keller, at Utrecht University. The purpose of this instrument is to use polarimetry to detect and characterize the circumstellar environments around different types of stars. In this work I focus on the polarized features that are produced by scattering by dust grains. Depending on the properties of the particles producing the scattering (size, shape...) and the scattering angle (forward, backward scattering), the light becomes polarized in higher or lower degree. The main problem when studying circumstellar environments is the high contrast ratios that are faced. For example, a young star is typically four orders of magnitude (10000 times) brighter than its protoplanetary disk. On the other hand, the light emitted by the star is largely unpolarized, while the light that is scattered (by the protoplanetary disk in this example) is polarized. Therefore, polarimetry offers a very elegant way to remove most of the starlight, allowing the detection of only the polarized photons. Furthermore, and as explained before, by studying the polarization of the light that we measure we can learn more about the properties of the circumstellar environments (dust composition, geometry, etc.). ExPo has produced a wealth of data, combining observations of very different targets such as protoplanetary disks, post-AGB stars, comets and planets of our Solar System (Venus and Saturn).

  10. Orientation contrast of secondary electron images from electropolished metals.

    PubMed

    Chen, D; Chang, C P; Loretto, M H

    2015-09-01

    Orientation contrast obtained by an in-lens secondary electron detector in a scanning electron microscope from electropolished/etched metals is reported. The imaging conditions for obtaining such orientation contrast are defined. The mechanism responsible for the formation of the orientation contrast is explained, and an application example of this new imaging method is given. PMID:25980953

  11. Semi-Automated Classification of Gray Scale Aerial Photographs using Geographic Object Based Image Analysis (GEOBIA) Technique

    NASA Astrophysics Data System (ADS)

    Harb Rabia, Ahmed; Terribile, Fabio

    2013-04-01

    Aerial photography is an important source of high resolution remotely sensed data. Before 1970, aerial photographs were the only remote sensing data source for land use and land cover classification. Using these old aerial photographs improve the final output of land use and land cover change detection. However, classic techniques of aerial photographs classification like manual interpretation or screen digitization require great experience, long processing time and vast effort. A new technique needs to be developed in order to reduce processing time and effort and to give better results. Geographic object based image analysis (GEOBIA) is a newly developed area of Geographic Information Science and remote sensing in which automatic segmentation of images into objects of similar spectral, temporal and spatial characteristics is undertaken. Unlike pixel-based technique, GEOBIA deals with the object properties such as texture, square fit, roundness and many other properties that can improve classification results. GEOBIA technique can be divided into two main steps; segmentation and classification. Segmentation process is grouping adjacent pixels into objects of similar spectral and spatial characteristics. Classification process is assigning classes to the generated objects based on the characteristics of the individual objects. This study aimed to use GEOBIA technique to develop a novel approach for land use and land cover classification of aerial photographs that saves time and effort and gives improved results. Aerial photographs from 1954 of Valle Telesina in Italy were used in this study. Images were rectified and georeferenced in Arcmap using topographic maps. Images were then processed in eCognition software to generate land use and land cover map of 1954. A decision tree rule set was developed in eCognition to classify images and finally nine classes of general land use and land cover in the study area were recognized (forest, trees stripes, agricultural

  12. Microbubbles as contrast agent for in-line x-ray phase-contrast imaging

    SciTech Connect

    Xi Yan; Zhao Jun; Tang Rongbiao; Wang Yujie

    2011-07-04

    In the present study, we investigated the potential of gas-filled microbubbles as contrast agents for in-line x-ray phase-contrast imaging (PCI) in biomedical applications. When imaging parameters are optimized, the microbubbles function as microlenses that focus the incoming x-rays to form bright spots, which can significantly enhance the image contrast. Since microbubbles have been shown to be safe contrast agents in clinical ultrasonography, this contrast-enhancement procedure for PCI may have promising utility in biomedical applications, especially when the dose of radiation is a serious concern. In this study, we performed both numerical simulations and ex vivo experiments to investigate the formation of the contrast and the effectiveness of microbubbles as contrast agents in PCI.

  13. Phase contrast image guidance for synchrotron microbeam radiotherapy

    NASA Astrophysics Data System (ADS)

    Pelliccia, Daniele; Crosbie, Jeffrey C.; Larkin, Kieran G.

    2016-08-01

    Recent image guidance developments for preclinical synchrotron microbeam radiotherapy represent a necessary step for future clinical translation of the technique. Image quality can be further improved using x-ray phase contrast, which is readily available at synchrotron facilities. We here describe a methodology for phase contrast image guidance at the Imaging and Medical Beamline at the Australian Synchrotron. Differential phase contrast is measured alongside conventional attenuation and used to improve the image quality. Post-processing based on the inverse Riesz transform is employed on the measured data to obtain noticeably sharper images. The procedure is extremely well suited for applications such as image guidance which require both visual assessment and sample alignment based on semi automatic image registration. Moreover, our approach can be combined with all other differential phase contrast imaging techniques, in all cases where a quantitative evaluation of the refractive index is not required.

  14. Phase contrast image guidance for synchrotron microbeam radiotherapy.

    PubMed

    Pelliccia, Daniele; Crosbie, Jeffrey C; Larkin, Kieran G

    2016-08-21

    Recent image guidance developments for preclinical synchrotron microbeam radiotherapy represent a necessary step for future clinical translation of the technique. Image quality can be further improved using x-ray phase contrast, which is readily available at synchrotron facilities. We here describe a methodology for phase contrast image guidance at the Imaging and Medical Beamline at the Australian Synchrotron. Differential phase contrast is measured alongside conventional attenuation and used to improve the image quality. Post-processing based on the inverse Riesz transform is employed on the measured data to obtain noticeably sharper images. The procedure is extremely well suited for applications such as image guidance which require both visual assessment and sample alignment based on semi automatic image registration. Moreover, our approach can be combined with all other differential phase contrast imaging techniques, in all cases where a quantitative evaluation of the refractive index is not required. PMID:27436750

  15. Appropriate Contrast Enhancement Measures for Brain and Breast Cancer Images

    PubMed Central

    Gupta, Suneet; Porwal, Rabins

    2016-01-01

    Medical imaging systems often produce images that require enhancement, such as improving the image contrast as they are poor in contrast. Therefore, they must be enhanced before they are examined by medical professionals. This is necessary for proper diagnosis and subsequent treatment. We do have various enhancement algorithms which enhance the medical images to different extents. We also have various quantitative metrics or measures which evaluate the quality of an image. This paper suggests the most appropriate measures for two of the medical images, namely, brain cancer images and breast cancer images. PMID:27127497

  16. An Interactive Technique for Cartographic Feature Extraction from Aerial and Satellite Image Sensors

    PubMed Central

    Kicherer, Stefan; Malpica, Jose A.; Alonso, Maria C.

    2008-01-01

    In this paper, an interactive technique for extracting cartographic features from aerial and spatial images is presented. The method is essentially an interactive method of image region segmentation based on pixel grey level and texture information. The underlying segmentation method is seeded region growing. The criterion for growing regions is based on both texture and grey level, where texture is quantified using co-occurrence matrices. The Kullback distance is utilised with co-occurrence matrices in order to describe the image texture, then the Theory of Evidence is applied to merge the information coming from texture and grey level image from the RGB bands. Several results from aerial and spatial images that support the technique are presented

  17. Vehicle Detection of Aerial Image Using TV-L1 Texture Decomposition

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wang, G.; Li, Y.; Huang, Y.

    2016-06-01

    Vehicle detection from high-resolution aerial image facilitates the study of the public traveling behavior on a large scale. In the context of road, a simple and effective algorithm is proposed to extract the texture-salient vehicle among the pavement surface. Texturally speaking, the majority of pavement surface changes a little except for the neighborhood of vehicles and edges. Within a certain distance away from the given vector of the road network, the aerial image is decomposed into a smoothly-varying cartoon part and an oscillatory details of textural part. The variational model of Total Variation regularization term and L1 fidelity term (TV-L1) is adopted to obtain the salient texture of vehicles and the cartoon surface of pavement. To eliminate the noise of texture decomposition, regions of pavement surface are refined by seed growing and morphological operation. Based on the shape saliency analysis of the central objects in those regions, vehicles are detected as the objects of rectangular shape saliency. The proposed algorithm is tested with a diverse set of aerial images that are acquired at various resolution and scenarios around China. Experimental results demonstrate that the proposed algorithm can detect vehicles at the rate of 71.5% and the false alarm rate of 21.5%, and that the speed is 39.13 seconds for a 4656 x 3496 aerial image. It is promising for large-scale transportation management and planning.

  18. Aerial-image enables diagrams and animation to be inserted in motion pictures

    NASA Technical Reports Server (NTRS)

    Andrews, S. J., Jr.; Tressel, G. W.

    1967-01-01

    Aerial-image unit makes it possible to insert diagrams and animation into live motion pictures, and also lift an element from a confusing background by suppressing general details. The unit includes a combination of two separate lens systems, the camera-projector system and the field lens system.

  19. Application of high resolution images from unmanned aerial vehicles for hydrology and range science

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A common problem in many natural resource disciplines is the lack of high-enough spatial resolution images that can be used for monitoring and modeling purposes. Advances have been made in the utilization of Unmanned Aerial Vehicles (UAVs) in hydrology and rangeland science. By utilizing low fligh...

  20. Crop Status Monitoring using Multispectral and Thermal Imaging systems for Accessible Aerial Platforms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural aircraft and unmanned aerial systems (UAS) are easily scheduled and accessible remote sensing platforms. Canopy temperature data were taken with an Electrophysics PV-320T thermal imaging camera mounted in agricultural aircraft. Weather data and soil water potential were monitored and th...

  1. Complex dark-field contrast in grating-based x-ray phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Tang, Xiangyang

    2015-03-01

    Without assuming that the sub-pixel microstructures of an object to be imaged distribute in space randomly, we investigate the influence of the object's microstructures on grating-based x-ray phase contrast imaging. Our theoretical analysis and 3D computer simulation study based on the paraxial Fresnel-Kirchhoff theory show that the existing dark-field contrast can be generalized into a complex dark-field contrast in a way such that its imaginary part quantifies the effect of the object's sub-pixel microstructures on the phase of intensity oscillations. A method based on the phase-attenuation duality that holds for soft tissues to be imaged at high x-ray energies is proposed to retrieve the imaginary part of the complex dark-field contrast for imaging. In comparison to the existing dark-field contrast, the imaginary part of complex dark-field contrast exhibits significantly stronger selectivity on the shape of the object's sub-pixel microstructures. Thus the x-ray imaging corresponding to the imaginary part of complex dark-field contrast can provide additional and complementary information to that corresponding to the attenuation contrast, phase contrast and the existing dark-field contrast.

  2. Enhancement of multispectral thermal infrared images - Decorrelation contrast stretching

    NASA Technical Reports Server (NTRS)

    Gillespie, Alan R.

    1992-01-01

    Decorrelation contrast stretching is an effective method for displaying information from multispectral thermal infrared (TIR) images. The technique involves transformation of the data to principle components ('decorrelation'), independent contrast 'stretching' of data from the new 'decorrelated' image bands, and retransformation of the stretched data back to the approximate original axes, based on the inverse of the principle component rotation. The enhancement is robust in that colors of the same scene components are similar in enhanced images of similar scenes, or the same scene imaged at different times. Decorrelation contrast stretching is reviewed in the context of other enhancements applied to TIR images.

  3. Semi-automatic detection of linear archaeological traces from orthorectified aerial images

    NASA Astrophysics Data System (ADS)

    Figorito, Benedetto; Tarantino, Eufemia

    2014-02-01

    This paper presents a semi-automatic approach for archaeological traces detection from aerial images. The method developed was based on the multiphase active contour model (ACM). The image was segmented into three competing regions to improve the visibility of buried remains showing in the image as crop marks (i.e. centuriations, agricultural allocations, ancient roads, etc.). An initial determination of relevant traces can be quickly carried out by the operator by sketching straight lines close to the traces. Subsequently, tuning parameters (i.e. eccentricity, orientation, minimum area and distance from input line) are used to remove non-target objects and parameterize the detected traces. The algorithm and graphical user interface for this method were developed in a MATLAB environment and tested on high resolution orthorectified aerial images. A qualitative analysis of the method was lastly performed by comparing the traces extracted with ancient traces verified by archaeologists.

  4. Aerial Vehicle Surveys of other Planetary Atmospheres and Surfaces: Imaging, Remote-sensing, and Autonomy Technology Requirements

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Gregory; Ippolito, Corey; Alena, Rick

    2005-01-01

    The objective of this paper is to review the anticipated imaging and remote-sensing technology requirements for aerial vehicle survey missions to other planetary bodies in our Solar system that can support in-atmosphere flight. In the not too distant future such planetary aerial vehicle (a.k.a. aerial explorers) exploration missions will become feasible. Imaging and remote-sensing observations will be a key objective for these missions. Accordingly, it is imperative that optimal solutions in terms of imaging acquisition and real-time autonomous analysis of image data sets be developed for such vehicles.

  5. Registration of multitemporal aerial optical images using line features

    NASA Astrophysics Data System (ADS)

    Zhao, Chenyang; Goshtasby, A. Ardeshir

    2016-07-01

    Registration of multitemporal images is generally considered difficult because scene changes can occur between the times the images are obtained. Since the changes are mostly radiometric in nature, features are needed that are insensitive to radiometric differences between the images. Lines are geometric features that represent straight edges of rigid man-made structures. Because such structures rarely change over time, lines represent stable geometric features that can be used to register multitemporal remote sensing images. An algorithm to establish correspondence between lines in two images of a planar scene is introduced and formulas to relate the parameters of a homography transformation to the parameters of corresponding lines in images are derived. Results of the proposed image registration on various multitemporal images are presented and discussed.

  6. RIM-13: A high-resolution imaging tool for aerial image monitoring of patterned and blank EUV reticles

    NASA Astrophysics Data System (ADS)

    Booth, M.; Brunton, A.; Cashmore, J.; Elbourn, P.; Elliner, G.; Gower, M.; Greuters, J.; Hirsch, J.; Kling, L.; McEntee, N.; Richards, P.; Truffert, V.; Wallhead, I.; Whitfield, M.

    2006-03-01

    Key features of the RIM-13 EUV actinic reticle imaging microscope are summarised. This is a tool which generates aerial images from blank or patterned EUV masks, emulating the illumination and projection optics of an exposure tool. Such images of mask defects, acquired by a CCD camera, are analysed using the tool software to predict their effect on resist exposure. Optical, mechanical and software performance of the tool are reported.

  7. Phase contrast imaging of buccal mucosa tissues-Feasibility study

    NASA Astrophysics Data System (ADS)

    Fatima, A.; Tripathi, S.; Shripathi, T.; Kulkarni, V. K.; Banda, N. R.; Agrawal, A. K.; Sarkar, P. S.; Kashyap, Y.; Sinha, A.

    2015-06-01

    Phase Contrast Imaging (PCI) technique has been used to interpret physical parameters obtained from the image taken on the normal buccal mucosa tissue extracted from cheek of a patient. The advantages of this method over the conventional imaging techniques are discussed. PCI technique uses the X-ray phase shift at the edges differentiated by very minute density differences and the edge enhanced high contrast images reveal details of soft tissues. The contrast in the images produced is related to changes in the X-ray refractive index of the tissues resulting in higher clarity compared with conventional absorption based X-ray imaging. The results show that this type of imaging has better ability to visualize microstructures of biological soft tissues with good contrast, which can lead to the diagnosis of lesions at an early stage of the diseases.

  8. Contrast-based image fusion using the discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Pu, Tian; Ni, GuoGiang

    2000-08-01

    We introduce a contrast-based image fusion method using the wavelet multiresolution analysis. This method includes three steps. First, the multiresolution architectures of the two original input images are obtained using the discrete wavelet transform. A new concept called directive contrast is presented. Second, the multiresolution architecture of the fused image can be achieved by selecting the corresponding subband signals of each input image based on the directive contrast. Finally, the fused image is reconstructed using the inverse wavelet transform. This algorithm is relevant to visual sensitivity and is tested by merging visual and IR images. The result shows that the fused image can integrate the details of each original image. The visual aesthetics and the computed SNRs of the fused images show that the new approaches can provide better fusion results than some previous multiresolution fusion methods.

  9. Increased productivity of repair verification by offline analysis of aerial images

    NASA Astrophysics Data System (ADS)

    Villa, Ernesto; Sartelli, Luca; Miyashita, Hiroyuki; Scheruebl, Thomas; Richter, Rigo; Thaler, Thomas

    2010-05-01

    Using AIMSTM to qualify repairs of defects on photomasks is the industry standard. AIMSTM provides a reasonable matching of lithographic imaging performances without the need of wafer prints. The need of utilisation of this capability by photomask manufacturers has risen due to the increased complexity of layouts incorporating aggressive RET and phase shift technologies as well as tighter specifications have pushed aerial image metrology to consider CD performance results in addition to the traditional intensity verification. The content of the paper describes the utilisation of the AIMSTM Repair Verification (RV) software for the verification of aerial images in a mask shop production environment. The software is used to analyze images from various AIMSTM tool generations and the two main routines, Multi Slice Analysis (MSA) and Image Compare (IC), are used to compare defective and non-defective areas of aerial images. It is detailed how the RV software cleans "non real" errors potentially induced by operator misjudgements, thus providing accurate and repeatable analyses all proven against the results achieved manually. A user friendly GUI drives the user through few simple, fast and safe operations and automatically provides summary tables containing all the relevant results of the analysis that can be easily exported in a proper format and sent out to the customer as a technical documentation. This results in a sensible improvement of the throughput of the printability evaluation process in a mask manufacturing environment, providing reliable analyses at a higher productivity.

  10. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection

    PubMed Central

    Sinharay, Sanhita; Pagel, Mark D.

    2016-01-01

    Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized 13C to detect the agent with outstanding sensitivity. These hyperpolarized 13C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection. PMID:27049630

  11. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection.

    PubMed

    Sinharay, Sanhita; Pagel, Mark D

    2016-06-12

    Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized (13)C to detect the agent with outstanding sensitivity. These hyperpolarized (13)C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection. PMID:27049630

  12. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection

    NASA Astrophysics Data System (ADS)

    Sinharay, Sanhita; Pagel, Mark D.

    2016-06-01

    Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized 13C to detect the agent with outstanding sensitivity. These hyperpolarized 13C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection.

  13. An adaptive algorithm for low contrast infrared image enhancement

    NASA Astrophysics Data System (ADS)

    Liu, Sheng-dong; Peng, Cheng-yuan; Wang, Ming-jia; Wu, Zhi-guo; Liu, Jia-qi

    2013-08-01

    An adaptive infrared image enhancement algorithm for low contrast is proposed in this paper, to deal with the problem that conventional image enhancement algorithm is not able to effective identify the interesting region when dynamic range is large in image. This algorithm begin with the human visual perception characteristics, take account of the global adaptive image enhancement and local feature boost, not only the contrast of image is raised, but also the texture of picture is more distinct. Firstly, the global image dynamic range is adjusted from the overall, the dynamic range of original image and display grayscale form corresponding relationship, the gray scale of bright object is raised and the the gray scale of dark target is reduced at the same time, to improve the overall image contrast. Secondly, the corresponding filtering algorithm is used on the current point and its neighborhood pixels to extract image texture information, to adjust the brightness of the current point in order to enhance the local contrast of the image. The algorithm overcomes the default that the outline is easy to vague in traditional edge detection algorithm, and ensure the distinctness of texture detail in image enhancement. Lastly, we normalize the global luminance adjustment image and the local brightness adjustment image, to ensure a smooth transition of image details. A lot of experiments is made to compare the algorithm proposed in this paper with other convention image enhancement algorithm, and two groups of vague IR image are taken in experiment. Experiments show that: the contrast ratio of the picture is boosted after handled by histogram equalization algorithm, but the detail of the picture is not clear, the detail of the picture can be distinguished after handled by the Retinex algorithm. The image after deal with by self-adaptive enhancement algorithm proposed in this paper becomes clear in details, and the image contrast is markedly improved in compared with Retinex

  14. Algorithms for contrast enhancement of electronic portal images

    NASA Astrophysics Data System (ADS)

    Díez, S.; Sánchez, S.

    2015-11-01

    An implementation of two new automatized image processing algorithms for contrast enhancement of portal images is presented as suitable tools which facilitate the setup verification and visualization of patients during radiotherapy treatments. In the first algorithm, called Automatic Segmentation and Histogram Stretching (ASHS), the portal image is automatically segmented in two sub-images delimited by the conformed treatment beam: one image consisting of the imaged patient obtained directly from the radiation treatment field, and the second one is composed of the imaged patient outside it. By segmenting the original image, a histogram stretching can be independently performed and improved in both regions. The second algorithm involves a two-step process. In the first step, a Normalization to Local Mean (NLM), an inverse restoration filter is applied by dividing pixel by pixel a portal image by its blurred version. In the second step, named Lineally Combined Local Histogram Equalization (LCLHE), the contrast of the original image is strongly improved by a Local Contrast Enhancement (LCE) algorithm, revealing the anatomical structures of patients. The output image is lineally combined with a portal image of the patient. Finally the output images of the previous algorithms (NLM and LCLHE) are lineally combined, once again, in order to obtain a contrast enhanced image. These two algorithms have been tested on several portal images with great results.

  15. Contrast-enhanced imaging of cerebral vasculature with laser speckle

    NASA Astrophysics Data System (ADS)

    Murari, K.; Li, N.; Rege, A.; Jia, X.; All, A.; Thakor, N.

    2007-08-01

    High-resolution cerebral vasculature imaging has applications ranging from intraoperative procedures to basic neuroscience research. Laser speckle, with spatial contrast processing, has recently been used to map cerebral blood flow. We present an application of the technique using temporal contrast processing to image cerebral vascular structures with a field of view a few millimeters across and approximately 20 μm resolution through a thinned skull. We validate the images using fluorescent imaging and demonstrate a factor of 2-4 enhancement in contrast-to-noise ratios over reflectance imaging using white or spectrally filtered green light. The contrast enhancement enables the perception of approximately 10%-30% more vascular structures without the introduction of any contrast agent.

  16. New imaging technology: measurement of myocardial perfusion by contrast echocardiography

    NASA Technical Reports Server (NTRS)

    Rubin, D. N.; Thomas, J. D.

    2000-01-01

    Myocardial perfusion imaging has long been a goal for the non-invasive echocardiographic assessment of the heart. However, many factors at play in perfusion imaging have made this goal elusive. Harmonic imaging and triggered imaging with newer contrast agents have made myocardial perfusion imaging potentially practical in the very near future. The application of indicator dilution theory to the coronary circulation and bubble contrast agents is fraught with complexities and sources of error. Therefore, quantification of myocardial perfusion by non-invasive echocardiographic imaging requires further investigation in order to make this technique clinically viable.

  17. Contrast transfer function in grating-based x-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Huang, Jianheng; Du, Yang; Lin, Danying; Liu, Xin; Niu, Hanben

    2014-05-01

    x-Ray grating interferometry is a method for x-ray wave front sensing and phase-contrast imaging that has been developed over past few years. Contrast and resolution are the criteria used to specify the quality of an image. In characterizing the performance of this interferometer, the contrast transfer function is considered in this paper. The oscillatory nature of the contrast transfer function (CTF) is derived and quantified for this interferometer. The illumination source and digital detector are both considered as significant factors controlling image quality, and it can be noted that contrast and resolution in turn depends primarily on the projected intensity profile of the array source and the pixel size of the detector. Furthermore, a test pattern phantom with a well-controlled range of spatial frequencies was designed and imaging of this phantom was simulated by a computer. Contrast transfer function behavior observed in the simulated image is consistent with our theoretical CTF. This might be beneficial for the evaluation and optimization of a grating-based x-ray phase contrast imaging system.

  18. Simultaneous amplitude-contrast and phase-contrast surface plasmon resonance imaging by use of digital holography

    PubMed Central

    Li, Shiping; Zhong, Jingang

    2012-01-01

    The surface plasmon resonance imaging technique provides a tool that allows high-throughput analysis and real-time kinetic measurement. A simultaneous amplitude-contrast and phase-contrast surface plasmon resonance imaging method is presented. The amplitude-contrast and phase-contrast images are simultaneously obtained by use of digital holography. The detection sensitivity of amplitude-contrast imaging and phase-contrast imaging can compensate for each other. Thus, the detectable sample components may cover a wider range of refractive index values for the simultaneous amplitude-contrast and phase-contrast imaging method than for the phase-contrast imaging method or amplitude-contrast imaging method. A detailed description of the theory and an experiment of monitoring the evaporation process of a drop of NaCl injection in real time are presented. In addition, the amplitude-contrast image has less coherent noise by digital holography. PMID:23243569

  19. First results for an image processing workflow for hyperspatial imagery acquired with a low-cost unmanned aerial vehicle (UAV).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Very high-resolution images from unmanned aerial vehicles (UAVs) have great potential for use in rangeland monitoring and assessment, because the imagery fills the gap between ground-based observations and remotely sensed imagery from aerial or satellite sensors. However, because UAV imagery is ofte...

  20. Effect of coherence loss in differential phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Cai, Weixing; Ning, Ruola; Liu, Jiangkun

    2014-03-01

    Coherence property of x-rays is critical in the grating-based differential phase contrast (DPC) imaging because it is the physical foundation that makes any form of phase contrast imaging possible. Loss of coherence is an important experimental issue, which results in increased image noise and reduced object contrast in DPC images and DPC cone beam CT (DPC-CBCT) reconstructions. In this study, experimental results are investigated to characterize the visibility loss (a measurement of coherence loss) in several different applications, including different-sized phantom imaging, specimen imaging and small animal imaging. Key measurements include coherence loss (relative intensity changes in the area of interest in phase-stepping images), contrast and noise level in retrieved DPC images, and contrast and noise level in reconstructed DPC-CBCT images. The influence of size and composition of imaged object (uniform object, bones, skin hairs, tissues, and etc) will be quantified. The same investigation is also applied for moiré pattern-based DPC-CBCT imaging with the same exposure dose. A theoretical model is established to relate coherence loss, noise level in phase stepping images (or moiré images), and the contrast and noise in the retrieved DPC images. Experiment results show that uniform objects lead to a small coherence loss even when the attenuation is higher, while objects with large amount of small structures result in huge coherence loss even when the attenuation is small. The theoretical model predicts the noise level in retrieved DPC images, and it also suggests a minimum dose required for DPC imaging to compensate for coherence loss.

  1. Magnetic field induced differential neutron phase contrast imaging

    SciTech Connect

    Strobl, M.; Treimer, W.; Walter, P.; Keil, S.; Manke, I.

    2007-12-17

    Besides the attenuation of a neutron beam penetrating an object, induced phase changes have been utilized to provide contrast in neutron and x-ray imaging. In analogy to differential phase contrast imaging of bulk samples, the refraction of neutrons by magnetic fields yields image contrast. Here, it will be reported how double crystal setups can provide quantitative tomographic images of magnetic fields. The use of magnetic air prisms adequate to split the neutron spin states enables a distinction of field induced phase shifts and these introduced by interaction with matter.

  2. Observation of coral reefs on Ishigaki Island, Japan, using Landsat TM images and aerial photographs

    SciTech Connect

    Matsunaga, Tsuneo; Kayanne, Hajime

    1997-06-01

    Ishigaki Island is located at the southwestern end of Japanese Islands and famous for its fringing coral reefs. More than twenty LANDSAT TM images in twelve years and aerial photographs taken on 1977 and 1994 were used to survey two shallow reefs on this island, Shiraho and Kabira. Intensive field surveys were also conducted in 1995. All satellite images of Shiraho were geometrically corrected and overlaid to construct a multi-date satellite data set. The effects of solar elevation and tide on satellite imagery were studied with this data set. The comparison of aerial and satellite images indicated that significant changes occurred between 1977 and 1984 in Kabira: rapid formation in the western part and decrease in the eastern part of dark patches. The field surveys revealed that newly formed dark patches in the west contain young corals. These results suggest that remote sensing is useful for not only mapping but also monitoring of shallow coral reefs.

  3. Quantitative analysis of contrast to noise ratio using a phase contrast x-ray imaging prototype

    NASA Astrophysics Data System (ADS)

    Ghani, Muhammad U.; Wu, Di; Li, Yuhua; Kang, Minhua; Chen, Wei R.; Wu, Xizeng; Liu, Hong

    2013-02-01

    The purpose of this study was to determine the Contrast to Noise Ratio (CNR) of the x-ray images taken with the phase contrast imaging mode and compare them with the CNR of the images taken under the conventional mode. For each mode, three images were taken under three exposure conditions of 100 kVp (2.8mAs), 120 kVp (1.9mAs) and 140kVp (1.42mAs). A 1.61cm thick contrast detail phantom was used as an imaging object. For phase contrast, the source to image detector distance (SID) was 182.88 cm and the source to object (SOD) distance was 73.15 cm. The SOD was the same as SID in the conventional imaging mode. A computed radiography (CR) plate was used as a detector and the output CR images were converted to linear form in relation with the incident x-ray exposure. To calculate CNR, an image processing software was used to determine the mean pixel value and the standard deviation of the pixels in the region of interest (ROI) and in the nearby background around ROI. At any given exposure condition investigated in this study, the CNR values for the phase contrast images were better as compared to the corresponding conventional mode images. The superior image quality in terms of CNR is contributed by the phase-shifts resulted contrast, as well as the reduced scatters due to the air gap between the object and the detector.

  4. Application of machine learning for the evaluation of turfgrass plots using aerial images

    NASA Astrophysics Data System (ADS)

    Ding, Ke; Raheja, Amar; Bhandari, Subodh; Green, Robert L.

    2016-05-01

    Historically, investigation of turfgrass characteristics have been limited to visual ratings. Although relevant information may result from such evaluations, final inferences may be questionable because of the subjective nature in which the data is collected. Recent advances in computer vision techniques allow researchers to objectively measure turfgrass characteristics such as percent ground cover, turf color, and turf quality from the digital images. This paper focuses on developing a methodology for automated assessment of turfgrass quality from aerial images. Images of several turfgrass plots of varying quality were gathered using a camera mounted on an unmanned aerial vehicle. The quality of these plots were also evaluated based on visual ratings. The goal was to use the aerial images to generate quality evaluations on a regular basis for the optimization of water treatment. Aerial images are used to train a neural network so that appropriate features such as intensity, color, and texture of the turfgrass are extracted from these images. Neural network is a nonlinear classifier commonly used in machine learning. The output of the neural network trained model is the ratings of the grass, which is compared to the visual ratings. Currently, the quality and the color of turfgrass, measured as the greenness of the grass, are evaluated. The textures are calculated using the Gabor filter and co-occurrence matrix. Other classifiers such as support vector machines and simpler linear regression models such as Ridge regression and LARS regression are also used. The performance of each model is compared. The results show encouraging potential for using machine learning techniques for the evaluation of turfgrass quality and color.

  5. Inorganic nanoparticle-based contrast agents for molecular imaging

    PubMed Central

    Cho, Eun Chul; Glaus, Charles; Chen, Jingyi; Welch, Michael J.; Xia, Younan

    2010-01-01

    Inorganic nanoparticles including semiconductor quantum dots, iron oxide nanoparticles, and gold nanoparticles have been developed as contrast agents for diagnostics by molecular imaging. Compared to traditional contrast agents, nanoparticles offer several advantages: their optical and magnetic properties can be tailored by engineering the composition, structure, size, and shape; their surfaces can be modified with ligands to target specific biomarkers of disease; the contrast enhancement provided can be equivalent to millions of molecular counterparts; and they can be integrated with a combination of different functions for multi-modal imaging. Here, we review recent advances in the development of contrast agents based on inorganic nanoparticles for molecular imaging, with a touch on contrast enhancement, surface modification, tissue targeting, clearance, and toxicity. As research efforts intensify, contrast agents based on inorganic nanoparticles that are highly sensitive, target-specific, and safe to use are expected to enter clinical applications in the near future. PMID:21074494

  6. Brain magnetic resonance imaging with contrast dependent on blood oxygenation

    SciTech Connect

    Ogawa, S.; Lee, T.M.; Kay, A.R.; Tank, D.W. )

    1990-12-01

    Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high yields, the authors demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normal physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complement other techniques that are attempting to provide position emission tomography-like measurements related to regional neural activity.

  7. Brain Magnetic Resonance Imaging with Contrast Dependent on Blood Oxygenation

    NASA Astrophysics Data System (ADS)

    Ogawa, S.; Lee, T. M.; Kay, A. R.; Tank, D. W.

    1990-12-01

    Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high fields, we demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normal physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complements other techniques that are attempting to provide positron emission tomography-like measurements related to regional neural activity.

  8. Resolution enhancement phase-contrast imaging by microsphere digital holography

    NASA Astrophysics Data System (ADS)

    Wang, Yunxin; Guo, Sha; Wang, Dayong; Lin, Qiaowen; Rong, Lu; Zhao, Jie

    2016-05-01

    Microsphere has shown the superiority of super-resolution imaging in the traditional 2D intensity microscope. Here a microsphere digital holography approach is presented to realize the resolution enhancement phase-contrast imaging. The system is designed by combining the microsphere with the image-plane digital holography. A microsphere very close to the object can increase the resolution by transforming the object wave from the higher frequency to the lower one. The resolution enhancement amplitude and phase images can be retrieved from a single hologram. The experiments are carried on the 1D and 2D gratings, and the results demonstrate that the observed resolution has been improved, meanwhile, the phase-contrast image is obtained. The proposed method can improve the transverse resolution in all directions based on a single exposure. Furthermore, this system has extended the application of the microsphere from the conventional 2D microscopic imaging to 3D phase-contrast microscopic imaging.

  9. Shoreline extraction from light detection and ranging digital elevation model data and aerial images

    NASA Astrophysics Data System (ADS)

    Yousef, Amr; Iftekharuddin, Khan M.; Karim, Mohammad A.

    2014-01-01

    There is an increased demand for understanding the accurate position of the shorelines. The automatic extraction of shorelines utilizing the digital elevation models (DEMs) obtained from light detection and ranging (LiDAR), aerial images, and multispectral images has become very promising. In this article, we develop two innovative algorithms that can effectively extract shorelines depending on the available data sources. The first is a multistep morphological technique that works on LiDAR DEM with respect to a tidal datum, whereas the second depends on the availability of training data to extract shorelines from LiDAR DEM fused with aerial images. Unlike similar techniques, the morphological approach detects and eliminates the outliers that result from waves, etc., by means of an anomaly test with neighborhood constraints. Additionally, it eliminates docks, bridges, and fishing piers along the extracted shorelines by means of Hough transform. The second approach extracts the shoreline by means of color space conversion of the aerial images and the support vector machines classifier to segment the fused data into water and land. We perform Monte-Carlo simulations to estimate the confidence interval for the error in shoreline position. Compared with other relevant techniques in literature, the proposed methods offer better accuracy in shoreline extraction.

  10. Detection and clustering of features in aerial images by neuron network-based algorithm

    NASA Astrophysics Data System (ADS)

    Vozenilek, Vit

    2015-12-01

    The paper presents the algorithm for detection and clustering of feature in aerial photographs based on artificial neural networks. The presented approach is not focused on the detection of specific topographic features, but on the combination of general features analysis and their use for clustering and backward projection of clusters to aerial image. The basis of the algorithm is a calculation of the total error of the network and a change of weights of the network to minimize the error. A classic bipolar sigmoid was used for the activation function of the neurons and the basic method of backpropagation was used for learning. To verify that a set of features is able to represent the image content from the user's perspective, the web application was compiled (ASP.NET on the Microsoft .NET platform). The main achievements include the knowledge that man-made objects in aerial images can be successfully identified by detection of shapes and anomalies. It was also found that the appropriate combination of comprehensive features that describe the colors and selected shapes of individual areas can be useful for image analysis.

  11. Mobile Aerial Tracking and Imaging System (MATRIS) for Aeronautical Research

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Blanchard, R. C.; Miller, G. M.

    2004-01-01

    A mobile, rapidly deployable ground-based system to track and image targets of aeronautical interest has been developed. Targets include reentering reusable launch vehicles (RLVs) as well as atmospheric and transatmospheric vehicles. The optics were designed to image targets in the visible and infrared wavelengths. To minimize acquisition cost and development time, the system uses commercially available hardware and software where possible. The conception and initial funding of this system originated with a study of ground-based imaging of global aerothermal characteristics of RLV configurations. During that study NASA teamed with the Missile Defense Agency/Innovative Science and Technology Experimentation Facility (MDA/ISTEF) to test techniques and analysis on two Space Shuttle flights.

  12. EROS main image file - A picture perfect database for Landsat imagery and aerial photography

    NASA Technical Reports Server (NTRS)

    Jack, R. F.

    1984-01-01

    The Earth Resources Observation System (EROS) Program was established by the U.S. Department of the Interior in 1966 under the administration of the Geological Survey. It is primarily concerned with the application of remote sensing techniques for the management of natural resources. The retrieval system employed to search the EROS database is called INORAC (Inquiry, Ordering, and Accounting). A description is given of the types of images identified in EROS, taking into account Landsat imagery, Skylab images, Gemini/Apollo photography, and NASA aerial photography. Attention is given to retrieval commands, geographic coordinate searching, refinement techniques, various online functions, and questions regarding the access to the EROS Main Image File.

  13. Endoluminal contrast for abdomen and pelvis magnetic resonance imaging.

    PubMed

    Gupta, Mohit K; Khatri, Gaurav; Bailey, April; Pinho, Daniella F; Costa, Daniel; Pedrosa, Ivan

    2016-07-01

    Magnetic resonance (MR) imaging of the abdomen and pelvis can be limited for assessment of different conditions when imaging inadequately distended hollow organs. Endoluminal contrast agents may provide improved anatomic definition and detection of subtle pathology in such scenarios. The available routes of administration for endoluminal contrast agents include oral, endorectal, endovaginal, intravesicular, and through non-physiologic accesses. Appropriate use of endoluminal contrast agents requires a thorough understanding of the clinical indications, available contrast agents, patient preparation, and interaction of the contrast agent with the desired MR imaging protocol. For example, biphasic oral enteric contrast agents are preferred in MR enterography as their signal properties on T1- and T2-weighted imaging allow for evaluation of both intraluminal and bowel wall pathology. In specific situations such as with MR enterography, MR defecography, and accurate local staging of certain pelvic tumors, the use of an endoluminal contrast agent is imperative in providing adequate diagnostic imaging. In other clinical scenarios, the use of an endoluminal contrast agent may serve as an indispensable problem-solving tool. PMID:26907710

  14. Orientation and Dense Reconstruction of Unordered Terrestrial and Aerial Wide Baseline Image Sets

    NASA Astrophysics Data System (ADS)

    Bartelsen, J.; Mayer, H.; Hirschmüller, H.; Kuhn, A.; Michelini, M.

    2012-07-01

    In this paper we present an approach for detailed and precise automatic dense 3D reconstruction using images from consumer cameras. The major difference between our approach and many others is that we focus on wide-baseline image sets. We have combined and improved several methods, particularly, least squares matching, RANSAC, scale-space maxima and bundle adjustment, for robust matching and parameter estimation. Point correspondences and the five-point algorithm lead to relative orientation. Due to our robust matching method it is possible to orient images under much more unfavorable conditions, for instance concerning illumination changes or scale differences, than for often used operators such as SIFT. For dense reconstruction, we use our orientation as input for Semiglobal Matching (SGM) resulting into dense depth images. The latter can be fused into a 2.5D model for eliminating the redundancy of the highly overlapping depth images. However, some applications require full 3D models. A solution to this problem is part of our current work, for which preliminary results are presented in this paper. With very small unmanned aerial systems (Micro UAS) it is possible to acquire images which have a perspective similar to terrestrial images and can thus be combined with them. Such a combination is useful for an almost complete 3D reconstruction of urban scenes. We have applied our approach to several hundred aerial and terrestrial images and have generated detailed 2.5D and 3D models of urban areas.

  15. Performance Validation of High Resolution Digital Surface Models Generated by Dense Image Matching with the Aerial Images

    NASA Astrophysics Data System (ADS)

    Yastikli, N.; Bayraktar, H.; Erisir, Z.

    2014-11-01

    The digital surface models (DSM) are the most popular products to determine visible surface of Earth which includes all non-terrain objects such as vegetation, forest, and man-made constructions. The airborne light detection and ranging (LiDAR) is the preferred technique for high resolution DSM generation in local coverage. The automatic generation of the high resolution DSM is also possible with stereo image matching using the aerial images. The image matching algorithms usually rely on the feature based matching for DSM generation. First, feature points are extracted and then corresponding features are searched in the overlapping images. These image matching algorithms face with the problems in the areas which have repetitive pattern such as urban structure and forest. The recent innovation in camera technology and image matching algorithm enabled the automatic dense DSM generation for large scale city and environment modelling. The new pixel-wise matching approaches are generates very high resolution DSMs which corresponds to the ground sample distance (GSD) of the original images. The numbers of the research institutes and photogrammetric software vendors are currently developed software tools for dense DSM generation using the aerial images. This new approach can be used high resolution DSM generation for the larger cities, rural areas and forest even Nation-wide applications. In this study, the performance validation of high resolution DSM generated by pixel-wise dense image matching in part of Istanbul was aimed. The study area in Istanbul is including different land classes such as open areas, forest and built-up areas to test performance of dense image matching in different land classes. The obtained result from this performance validation in Istanbul test area showed that, high resolution DSM which corresponds to the ground sample distance (GSD) of original aerial image can be generated successfully by pixel-wise dense image matching using commercial and

  16. Semi-auto assessment system on building damage caused by landslide disaster with high-resolution satellite and aerial images

    NASA Astrophysics Data System (ADS)

    Sun, Bo; Xu, Qihua; He, Jun; Ge, Fengxiang; Wang, Ying

    2015-10-01

    In recent years, earthquake and heavy rain have triggered more and more landslides, which have caused serious economic losses. The timely detection of the disaster area and the assessment of the hazard are necessary and primary for disaster mitigation and relief. As high-resolution satellite and aerial images have been widely used in the field of environmental monitoring and disaster management, the damage assessment by processing satellite and aerial images has become a hot spot of research work. The rapid assessment of building damage caused by landslides with high-resolution satellite or aerial images is the focus of this article. In this paper, after analyzing the morphological characteristics of the landslide disaster, we proposed a set of criteria for rating building damage, and designed a semi-automatic evaluation system. The system is applied to the satellite and aerial images processing. The performance of the experiments demonstrated the effectiveness of our system.

  17. Moving object detection using dynamic motion modelling from UAV aerial images.

    PubMed

    Saif, A F M Saifuddin; Prabuwono, Anton Satria; Mahayuddin, Zainal Rasyid

    2014-01-01

    Motion analysis based moving object detection from UAV aerial image is still an unsolved issue due to inconsideration of proper motion estimation. Existing moving object detection approaches from UAV aerial images did not deal with motion based pixel intensity measurement to detect moving object robustly. Besides current research on moving object detection from UAV aerial images mostly depends on either frame difference or segmentation approach separately. There are two main purposes for this research: firstly to develop a new motion model called DMM (dynamic motion model) and secondly to apply the proposed segmentation approach SUED (segmentation using edge based dilation) using frame difference embedded together with DMM model. The proposed DMM model provides effective search windows based on the highest pixel intensity to segment only specific area for moving object rather than searching the whole area of the frame using SUED. At each stage of the proposed scheme, experimental fusion of the DMM and SUED produces extracted moving objects faithfully. Experimental result reveals that the proposed DMM and SUED have successfully demonstrated the validity of the proposed methodology. PMID:24892103

  18. The optimal polarizations for achieving maximum contrast in radar images

    NASA Technical Reports Server (NTRS)

    Swartz, A. A.; Yueh, H. A.; Kong, J. A.; Novak, L. M.; Shin, R. T.

    1988-01-01

    There is considerable interest in determining the optimal polarizations that maximize contrast between two scattering classes in polarimetric radar images. A systematic approach is presented for obtaining the optimal polarimetric matched filter, i.e., that filter which produces maximum contrast between two scattering classes. The maximization procedure involves solving an eigenvalue problem where the eigenvector corresponding to the maximum contrast ratio is an optimal polarimetric matched filter. To exhibit the physical significance of this filter, it is transformed into its associated transmitting and receiving polarization states, written in terms of horizontal and vertical vector components. For the special case where the transmitting polarization is fixed, the receiving polarization which maximizes the contrast ratio is also obtained. Polarimetric filtering is then applies to synthetic aperture radar images obtained from the Jet Propulsion Laboratory. It is shown, both numerically and through the use of radar imagery, that maximum image contrast can be realized when data is processed with the optimal polarimeter matched filter.

  19. Molecular Optical Coherence Tomography Contrast Enhancement and Imaging

    NASA Astrophysics Data System (ADS)

    Oldenburg, Amy L.; Applegate, Brian E.; Tucker-Schwartz, Jason M.; Skala, Melissa C.; Kim, Jongsik; Boppart, Stephen A.

    Histochemistry began as early as the nineteenth century, with the development of synthetic dyes that provided spatially mapped chemical contrast in tissue [1]. Stains such as hematoxylin and eosin, which contrast cellular nuclei and cytoplasm, greatly aid in the interpretation of microscopy images. An analogous development is currently taking place in biomedical imaging, whereby techniques adapted for MRI, CT, and PET now provide in vivo molecular imaging over the entire human body, aiding in both fundamental research discovery and in clinical diagnosis and treatment monitoring. Because OCT offers a unique spatial scale that is intermediate between microscopy and whole-body biomedical imaging, molecular contrast OCT (MCOCT) also has great potential for providing new insight into in vivo molecular processes. The strength of MCOCT lies in its ability to isolate signals from a molecule or contrast agent from the tissue scattering background over large scan areas at depths greater than traditional microscopy techniques while maintaining high resolution.

  20. Contrast improvement of terahertz images of thin histopathologic sections

    PubMed Central

    Formanek, Florian; Brun, Marc-Aurèle; Yasuda, Akio

    2011-01-01

    We present terahertz images of 10 μm thick histopathologic sections obtained in reflection geometry with a time-domain spectrometer, and demonstrate improved contrast for sections measured in paraffin with water. Automated segmentation is applied to the complex refractive index data to generate clustered terahertz images distinguishing cancer from healthy tissues. The degree of classification of pixels is then evaluated using registered visible microscope images. Principal component analysis and propagation simulations are employed to investigate the origin and the gain of image contrast. PMID:21326635

  1. Is image quality a function of contrast perception?

    NASA Astrophysics Data System (ADS)

    Haun, Andrew M.; Peli, Eli

    2013-03-01

    In this retrospective we trace in broad strokes the development of image quality measures based on the study of the early stages of the human visual system (HVS), where contrast encoding is fundamental. We find that while presenters at the Human Vision and Electronic Imaging meetings have frequently strived to find points of contact between the study of human contrast psychophysics and the development of computer vision and image quality algorithms. Progress has not always been made on these terms, although indirect impact of vision science on more recent image quality metrics can be observed.

  2. Motility Contrast Imaging and Tissue Dynamics Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nolte, David D.; An, Ran; Turek, John

    Motion is the defining physiological characteristic of living matter. If we are interested in how things function, then the way they move is most informative. Motion provides an endogenous and functional suite of biomarkers that are sensitive to subtle changes that occur under applied pharmacological doses or cellular stresses. This chapter reviews the application of biodynamic imaging to measure cellular dynamics in three-dimensional tissue culture for drug screening applications. Nanoscale and microscale motions are detected through statistical fluctuations in dynamic speckle across an ensemble of cells within each resolution voxel. Tissue dynamics spectroscopy generates drug-response spectrograms that serve as phenotypic fingerprints of drug action and can differentiate responses from heterogeneous regions of tumor tissue.

  3. A Semi-Automated Single Day Image Differencing Technique to Identify Animals in Aerial Imagery

    PubMed Central

    Terletzky, Pat; Ramsey, Robert Douglas

    2014-01-01

    Our research presents a proof-of-concept that explores a new and innovative method to identify large animals in aerial imagery with single day image differencing. We acquired two aerial images of eight fenced pastures and conducted a principal component analysis of each image. We then subtracted the first principal component of the two pasture images followed by heuristic thresholding to generate polygons. The number of polygons represented the number of potential cattle (Bos taurus) and horses (Equus caballus) in the pasture. The process was considered semi-automated because we were not able to automate the identification of spatial or spectral thresholding values. Imagery was acquired concurrently with ground counts of animal numbers. Across the eight pastures, 82% of the animals were correctly identified, mean percent commission was 53%, and mean percent omission was 18%. The high commission error was due to small mis-alignments generated from image-to-image registration, misidentified shadows, and grouping behavior of animals. The high probability of correctly identifying animals suggests short time interval image differencing could provide a new technique to enumerate wild ungulates occupying grassland ecosystems, especially in isolated or difficult to access areas. To our knowledge, this was the first attempt to use standard change detection techniques to identify and enumerate large ungulates. PMID:24454827

  4. Contrast Agents for Photoacoustic and Thermoacoustic Imaging: A Review

    PubMed Central

    Wu, Dan; Huang, Lin; Jiang, Max S.; Jiang, Huabei

    2014-01-01

    Photoacoustic imaging (PAI) and thermoacoustic imaging (TAI) are two emerging biomedical imaging techniques that both utilize ultrasonic signals as an information carrier. Unique advantages of PAI and TAI are their abilities to provide high resolution functional information such as hemoglobin and blood oxygenation and tissue dielectric properties relevant to physiology and pathology. These two methods, however, may have a limited detection depth and lack of endogenous contrast. An exogenous contrast agent is often needed to effectively resolve these problems. Such agents are able to greatly enhance the imaging contrast and potentially break through the imaging depth limit. Furthermore, a receptor-targeted contrast agent could trace the molecular and cellular biological processes in tissues. Thus, photoacoustic and thermoacoustic molecular imaging can be outstanding tools for early diagnosis, precise lesion localization, and molecular typing of various diseases. The agents also could be used for therapy in conjugation with drugs or in photothermal therapy, where it functions as an enhancer for the integration of diagnosis and therapy. In this article, we present a detailed review about various exogenous contrast agents for photoacoustic and thermoacoustic molecular imaging. In addition, challenges and future directions of photoacoustic and thermoacoustic molecular imaging in the field of translational medicine are also discussed. PMID:25530615

  5. Parameter-Based Performance Analysis of Object-Based Image Analysis Using Aerial and Quikbird-2 Images

    NASA Astrophysics Data System (ADS)

    Kavzoglu, T.; Yildiz, M.

    2014-09-01

    Opening new possibilities for research, very high resolution (VHR) imagery acquired by recent commercial satellites and aerial systems requires advanced approaches and techniques that can handle large volume of data with high local variance. Delineation of land use/cover information from VHR images is a hot research topic in remote sensing. In recent years, object-based image analysis (OBIA) has become a popular solution for image analysis tasks as it considers shape, texture and content information associated with the image objects. The most important stage of OBIA is the image segmentation process applied prior to classification. Determination of optimal segmentation parameters is of crucial importance for the performance of the selected classifier. In this study, effectiveness and applicability of the segmentation method in relation to its parameters was analysed using two VHR images, an aerial photo and a Quickbird-2 image. Multi-resolution segmentation technique was employed with its optimal parameters of scale, shape and compactness that were defined after an extensive trail process on the data sets. Nearest neighbour classifier was applied on the segmented images, and then the accuracy assessment was applied. Results show that segmentation parameters have a direct effect on the classification accuracy, and low values of scale-shape combinations produce the highest classification accuracies. Also, compactness parameter was found to be having minimal effect on the construction of image objects, hence it can be set to a constant value in image classification.

  6. Phase-contrast X-ray imaging of breast.

    PubMed

    Keyriläinen, Jani; Bravin, Alberto; Fernández, Manuel; Tenhunen, Mikko; Virkkunen, Pekka; Suortti, Pekka

    2010-10-01

    When an X-ray wave traverses an object, its amplitude and phase change, resulting in attenuation, interference, and refraction, and in phase-contrast X-ray imaging (PCI) these are converted to intensity changes. The relative change of the X-ray phase per unit path length is even orders of magnitude larger than that of the X-ray amplitude, so that the image contrast based on variation of the X-ray phase is potentially much stronger than the contrast based on X-ray amplitude (absorption contrast). An important medical application of PCI methods is soft-tissue imaging, where the absorption contrast is inherently weak. It is shown by in vitro examples that signs of malignant human breast tumor are enhanced in PCI images. Owing to the strong contrast, the radiation dose can be greatly reduced, so that a high-resolution phase-contrast X-ray tomography of the breast is possible with about 1 mGy mean glandular dose. Scattered radiation carries essential information on the atomic and molecular structure of the object, and particularly small-angle X-ray scattering can be used to trace cancer. The imaging methods developed at the synchrotron radiation facilities will become available in the clinical environment with the ongoing development of compact radiation sources, which produce intense X-ray beams of sufficient coherence. Several developments that are under way are described here. PMID:20799921

  7. Contact area as the intuitive definition of contact CD based on aerial image analysis

    NASA Astrophysics Data System (ADS)

    Polonsky, Netanel; Sagiv, Amir; Mangan, Shmoolik

    2009-03-01

    As feature sizes continue to diminish, optical lithography is driven into the extreme low-k1 regime, where the high MEEF increasingly complicates the relationship between the mask pattern and the aerial image. This is true in particular for twodimensional mask patterns, which are by nature much more complicated than patterns possessing one-dimensional symmetry. Thus, the intricacy of 2D image formation typically requires a much broader arsenal of resolution enhancement techniques over complex phase shift masks, including SRAFs and OPC, as well as exotic off-axis illumination geometries. This complexity on the mask side makes the printability effect of a random defect on a 2D pattern a field of rich and delicate phenomenology. This complexity is reflected in the dispute over the CD definition of 2D patterns: some sources use the X and Y values, while others use the contact area. Here, we argue that for compact features, for which the largest dimension is not wider than the PSF of the stepper optics, the area definition is the natural one. We study the response of the aerial image to small perturbations in mask pattern. We show that any perturbation creates an effect extending in all directions, thus affecting the area and not the size in a single direction. We also show that, irrespective of the source of perturbation, the aerial signal is proportional to the variation in the area of the printed feature. The consequence of this effect is that aerial inspection signal scales linearly with the variation of printed area of the tested feature.

  8. U.S. DOE, Kazakhstan government launch aerial imaging project

    SciTech Connect

    Hamm, J.

    1997-10-01

    The US Department of Energy (DOE) and the Kazakhstan government have launched a breakthrough science and technology mission to use DOE technology developed to detect weapons proliferation to search for oil and mineral reserves in Kazakhstan. The Pacific Northwest National Laboratory is leading the research effort, which began in June. This mission to conduct airborne imaging flights over Kazakhstan is the result of a recently signed agreement between Pacific Northwest and Earth Search Sciences Inc., a remote sensing firm based in Idaho, to look for oil and mineral deposits in the Republic of Kazakhstan in central Asia. It is the first time this technology will be used outside the United States.

  9. Phase contrast image segmentation using a Laue analyser crystal

    NASA Astrophysics Data System (ADS)

    Kitchen, Marcus J.; Paganin, David M.; Uesugi, Kentaro; Allison, Beth J.; Lewis, Robert A.; Hooper, Stuart B.; Pavlov, Konstantin M.

    2011-02-01

    Dual-energy x-ray imaging is a powerful tool enabling two-component samples to be separated into their constituent objects from two-dimensional images. Phase contrast x-ray imaging can render the boundaries between media of differing refractive indices visible, despite them having similar attenuation properties; this is important for imaging biological soft tissues. We have used a Laue analyser crystal and a monochromatic x-ray source to combine the benefits of both techniques. The Laue analyser creates two distinct phase contrast images that can be simultaneously acquired on a high-resolution detector. These images can be combined to separate the effects of x-ray phase, absorption and scattering and, using the known complex refractive indices of the sample, to quantitatively segment its component materials. We have successfully validated this phase contrast image segmentation (PCIS) using a two-component phantom, containing an iodinated contrast agent, and have also separated the lungs and ribcage in images of a mouse thorax. Simultaneous image acquisition has enabled us to perform functional segmentation of the mouse thorax throughout the respiratory cycle during mechanical ventilation.

  10. Acoustic radiation pressure: A 'phase contrast' agent for x-ray phase contrast imaging

    SciTech Connect

    Bailat, Claude J.; Hamilton, Theron J.; Rose-Petruck, Christoph; Diebold, Gerald J.

    2004-11-08

    We show that the radiation pressure exerted by a beam of ultrasound can be used for contrast enhancement in high-resolution x-ray imaging of tissue and soft materials. Interfacial features of objects are highlighted as a result of both the displacement introduced by the ultrasound and the inherent sensitivity of x-ray phase contrast imaging to density variations. The potential of the method is demonstrated by imaging microscopic tumor phantoms embedded into tissue with a thickness typically presented in mammography. The detection limit of micrometer size masses exceeds the resolution of currently available mammography imaging systems. The directionality of the acoustic radiation force and its localization in space permits the imaging of ultrasound-selected tissue volumes. The results presented here suggest that the method may permit the detection of tumors in soft tissue in their early stage of development.

  11. Seasonal landslide mapping and estimation of landslide mobilization rates using aerial and satellite images

    NASA Astrophysics Data System (ADS)

    Fiorucci, F.; Cardinali, M.; Carlà, R.; Rossi, M.; Mondini, A. C.; Santurri, L.; Ardizzone, F.; Guzzetti, F.

    2011-06-01

    We tested the possibility of using digital, color aerial ortho-photographs and monoscopic, panchromatic satellite images of comparable spatial and radiometric resolution, to map recent landslides in Italy and to update existing measures of landslide mobilization. In a 90-km 2 area in Umbria, central Apennines, rainfall resulted in abundant landslides in the period from September 2004 to June 2005. Analysis of the rainfall record determined the approximate dates of landslide occurrence and revealed that the slope failures occurred in response to moderately wet rainfall periods. The slope failures occurred primarily in cultivated terrain and left subtle morphological and land cover signatures, making the recognition and mapping of the individual landslides problematic. Despite the difficulty with the identification of the landslides without the use of stereoscopic visualization, visual analysis of the aerial and satellite images allowed mapping 457 new landslides, ranging in area 3.0 × 10 1 < AL < 2.5 × 10 4 m 2, for a total landslide area ALT = 6.92 × 10 5 m 2. To identify the landslides, the investigators adopted the interpretation criteria commonly used to identify and map landslides on aerial photography. The result confirms that monoscopic, very high resolution images taken by airborne and satellite sensors can be used to prepare landslide maps even where slope failures are difficult to detect, provided the imagery has sufficient geometric and radiometric resolutions. The different dates of the aerial (March 2005) and the satellite (June-July 2005) images allowed the temporal segmentation of the landslide information, and studying the statistics of landslide area and volume for different periods. Compared to pre-existing information on the abundance and size of the landslides in the area, the inventory obtained by studying the aerial and satellite images proved more complete. The new mapping showed 145% more landslides and 85% more landslide area than a pre

  12. Two matrix approaches for aerial image formation obtained by extending and modifying the transmission cross coefficients.

    PubMed

    Yamazoe, Kenji

    2010-06-01

    This paper physically compares two different matrix representations of partially coherent imaging with the introduction of matrices E and Z, containing the source, object, and pupil. The matrix E is obtained by extending the Hopkins transmission cross coefficient (TCC) approach such that the pupil function is shifted while the matrix Z is obtained by shifting the object spectrum. The aerial image I can be written as a convex quadratic form I = = , where |phi> is a column vector representing plane waves. It is shown that rank(Z) < or = rank(E) = rank(T) = N, where T is the TCC matrix and N is the number of the point sources for a given unpolarized illumination. Therefore, the matrix Z requires fewer than N eigenfunctions for a complete aerial image formation, while the matrix E or T always requires N eigenfunctions. More importantly, rank(Z) varies depending on the degree of coherence determined by the von Neumann entropy, which is shown to relate to the mutual intensity. For an ideal pinhole as an object, emitting spatially coherent light, only one eigenfunction--i.e., the pupil function--is enough to describe the coherent imaging. In this case, we obtain rank(Z) = 1 and the pupil function as the only eigenfunction regardless of the illumination. However, rank(E) = rank(T) = N even when the object is an ideal pinhole. In this sense, aerial image formation with the matrix Z is physically more meaningful than with the matrix E. The matrix Z is decomposed as B(dagger)B, where B is a singular matrix, suggesting that the matrix B as well as Z is a principal operator characterizing the degree of coherence of the partially coherent imaging. PMID:20508699

  13. Variational contrast enhancement guided by global and local contrast measurements for single-image defogging

    NASA Astrophysics Data System (ADS)

    Zhou, Li; Bi, Du-Yan; He, Lin-Yuan

    2015-01-01

    The visibility of images captured in foggy conditions is impaired severely by a decrease in the contrasts of objects and veiling with a characteristic gray hue, which may limit the performance of visual applications out of doors. Contrast enhancement together with color restoration is a challenging mission for conventional fog-removal methods, as the degrading effect of fog is largely dependent on scene depth information. Nowadays, people change their minds by establishing a variational framework for contrast enhancement based on a physically based analytical model, unexpectedly resulting in color distortion, dark-patch distortion, or fuzzy features of local regions. Unlike previous work, our method treats an atmospheric veil as a scattering disturbance and formulates a foggy image as an energy functional minimization to estimate direct attenuation, originating from the work of image denoising. In addition to a global contrast measurement based on a total variation norm, an additional local measurement is designed in that optimal problem for the purpose of digging out more local details as well as suppressing dark-patch distortion. Moreover, we estimate the airlight precisely by maximization with a geometric constraint and a natural image prior in order to protect the faithfulness of the scene color. With the estimated direct attenuation and airlight, the fog-free image can be restored. Finally, our method is tested on several benchmark and realistic images evaluated by two assessment approaches. The experimental results imply that our proposed method works well compared with the state-of-the-art defogging methods.

  14. Grid-Based Fourier Transform Phase Contrast Imaging

    NASA Astrophysics Data System (ADS)

    Tahir, Sajjad

    Low contrast in x-ray attenuation imaging between different materials of low electron density is a limitation of traditional x-ray radiography. Phase contrast imaging offers the potential to improve the contrast between such materials, but due to the requirements on the spatial coherence of the x-ray beam, practical implementation of such systems with tabletop (i.e. non-synchrotron) sources has been limited. One recently developed phase imaging technique employs multiple fine-pitched gratings. However, the strict manufacturing tolerances and precise alignment requirements have limited the widespread adoption of grating-based techniques. In this work, we have investigated a technique recently demonstrated by Bennett et al. that utilizes a single grid of much coarser pitch. Our system consisted of a low power 100 microm spot Mo source, a CCD with 22 microm pixel pitch, and either a focused mammography linear grid or a stainless steel woven mesh. Phase is extracted from a single image by windowing and comparing data localized about harmonics of the grid in the Fourier domain. A Matlab code was written to perform the image processing. For the first time, the effects on the diffraction phase contrast and scattering amplitude images of varying grid types and periods, and of varying the window function type used to separate the harmonics, and the window widths, were investigated. Using the wire mesh, derivatives of the phase along two orthogonal directions were obtained and new methods investigated to form improved phase contrast images.

  15. Real-time aerial multispectral imaging solutions using dichroic filter arrays

    NASA Astrophysics Data System (ADS)

    Chandler, Eric V.; Fish, David E.

    2014-06-01

    The next generation of multispectral sensors and cameras needs to deliver significant improvements in size, weight, portability, and spectral band customization to support widespread commercial deployment for a variety of purposebuilt aerial, unmanned, and scientific applications. The benefits of multispectral imaging are well established for applications including machine vision, biomedical, authentication, and remote sensing environments - but many aerial and OEM solutions require more compact, robust, and cost-effective production cameras to realize these benefits. A novel implementation uses micropatterning of dichroic filters into Bayer and custom mosaics, enabling true real-time multispectral imaging with simultaneous multi-band image acquisition. Consistent with color camera image processing, individual spectral channels are de-mosaiced with each channel providing an image of the field of view. We demonstrate recent results of 4-9 band dichroic filter arrays in multispectral cameras using a variety of sensors including linear, area, silicon, and InGaAs. Specific implementations range from hybrid RGB + NIR sensors to custom sensors with applicationspecific VIS, NIR, and SWIR spectral bands. Benefits and tradeoffs of multispectral sensors using dichroic filter arrays are compared with alternative approaches - including their passivity, spectral range, customization options, and development path. Finally, we report on the wafer-level fabrication of dichroic filter arrays on imaging sensors for scalable production of multispectral sensors and cameras.

  16. Phase Contrast X-ray Imaging Signatures for Security Applications

    SciTech Connect

    Miller, Erin A.; White, Timothy A.; McDonald, Benjamin S.; Seifert, Allen

    2013-02-01

    Abstract: Differential phase contrast imaging with a grating interferometer is a promising new radiographic technique providing three distinct contrast mechanisms - absorption, phase, and scatter (or dark field) - using a conventional x-ray tube source. We investigate the signatures available in these three contrast mechanisms with attention towards potential security applications. We find that the scatter mode in particular is sensitive to textured materials, enabling lowered detection limits than absorption for materials such as powders. We investigate the length scales to which our imaging system is sensitive.

  17. Film cameras or digital sensors? The challenge ahead for aerial imaging

    USGS Publications Warehouse

    Light, D.L.

    1996-01-01

    Cartographic aerial cameras continue to play the key role in producing quality products for the aerial photography business, and specifically for the National Aerial Photography Program (NAPP). One NAPP photograph taken with cameras capable of 39 lp/mm system resolution can contain the equivalent of 432 million pixels at 11 ??m spot size, and the cost is less than $75 per photograph to scan and output the pixels on a magnetic storage medium. On the digital side, solid state charge coupled device linear and area arrays can yield quality resolution (7 to 12 ??m detector size) and a broader dynamic range. If linear arrays are to compete with film cameras, they will require precise attitude and positioning of the aircraft so that the lines of pixels can be unscrambled and put into a suitable homogeneous scene that is acceptable to an interpreter. Area arrays need to be much larger than currently available to image scenes competitive in size with film cameras. Analysis of the relative advantages and disadvantages of the two systems show that the analog approach is more economical at present. However, as arrays become larger, attitude sensors become more refined, global positioning system coordinate readouts become commonplace, and storage capacity becomes more affordable, the digital camera may emerge as the imaging system for the future. Several technical challenges must be overcome if digital sensors are to advance to where they can support mapping, charting, and geographic information system applications.

  18. Using aberration test patterns to optimize the performance of EUV aerial imaging microscopes

    SciTech Connect

    Mochi, Iacopo; Goldberg, Kenneth A.; Miyakawa, Ryan; Naulleau, Patrick; Han, Hak-Seung; Huh, Sungmin

    2009-06-16

    The SEMATECH Berkeley Actinic Inspection Tool (AIT) is a prototype EUV-wavelength zoneplate microscope that provides high quality aerial image measurements of EUV reticles. To simplify and improve the alignment procedure we have created and tested arrays of aberration-sensitive patterns on EUV reticles and we have compared their images collected with the AIT to the expected shapes obtained by simulating the theoretical wavefront of the system. We obtained a consistent measure of coma and astigmatism in the center of the field of view using two different patterns, revealing a misalignment condition in the optics.

  19. Looking into the water with oblique head tilting: revision of the aerial binocular imaging of underwater objects.

    PubMed

    Horváth, Gábor; Buchta, Krisztián; Varjú, Dezsö

    2003-06-01

    It is a well-known phenomenon that when we look into the water with two aerial eyes, both the apparent position and the apparent shape of underwater objects are different from the real ones because of refraction at the water surface. Earlier studies of the refraction-distorted structure of the underwater binocular visual field of aerial observers were restricted to either vertically or horizontally oriented eyes. We investigate a generalized version of this problem: We calculate the position of the binocular image point of an underwater object point viewed by two arbitrarily positioned aerial eyes, including oblique orientations of the eyes relative to the flat water surface. Assuming that binocular image fusion is performed by appropriate vergent eye movements to bring the object's image onto the foveas, the structure of the underwater binocular visual field is computed and visualized in different ways as a function of the relative positions of the eyes. We show that a revision of certain earlier treatments of the aerial imaging of underwater objects is necessary. We analyze and correct some widespread erroneous or incomplete representations of this classical geometric optical problem that occur in different textbooks. Improving the theory of aerial binocular imaging of underwater objects, we demonstrate that the structure of the underwater binocular visual field of aerial observers distorted by refraction is more complex than has been thought previously. PMID:12801180

  20. Image degradation in aerial imagery duplicates. [photographic processing of photographic film and reproduction (copying)

    NASA Technical Reports Server (NTRS)

    Lockwood, H. E.

    1975-01-01

    A series of Earth Resources Aircraft Program data flights were made over an aerial test range in Arizona for the evaluation of large cameras. Specifically, both medium altitude and high altitude flights were made to test and evaluate a series of color as well as black-and-white films. Image degradation, inherent in duplication processing, was studied. Resolution losses resulting from resolution characteristics of the film types are given. Color duplicates, in general, are shown to be degraded more than black-and-white films because of the limitations imposed by available aerial color duplicating stock. Results indicate that a greater resolution loss may be expected when the original has higher resolution. Photographs of the duplications are shown.

  1. Phase contrast imaging with coherent high energy X-rays

    SciTech Connect

    Snigireva, I.

    1997-02-01

    X-ray imaging concern high energy domain (>6 keV) like a contact radiography, projection microscopy and tomography is used for many years to discern the features of the internal structure non destructively in material science, medicine and biology. In so doing the main contrast formation is absorption that makes some limitations for imaging of the light density materials and what is more the resolution of these techniques is not better than 10-100 {mu}m. It was turned out that there is now way in which to overcome 1{mu}m or even sub-{mu}m resolution limit except phase contrast imaging. It is well known in optics that the phase contrast is realised when interference between reference wave front and transmitted through the sample take place. Examples of this imaging are: phase contrast microscopy suggested by Zernike and Gabor (in-line) holography. Both of this techniques: phase contrast x-ray microscopy and holography are successfully progressing now in soft x-ray region. For imaging in the hard X-rays to enhance the contrast and to be able to resolve phase variations across the beam the high degree of the time and more importantly spatial coherence is needed. Because of this it was reasonable that the perfect crystal optics was involved like Bonse-Hart interferometry, double-crystal and even triple-crystal set-up using Laue and Bragg geometry with asymmetrically cut crystals.

  2. Image enhancement by adjusting the contrast of spatial frequencies

    NASA Astrophysics Data System (ADS)

    Yang, Ching-Chung

    2008-02-01

    We demonstrate a brand-new method for image enhancement by adjusting the contrast of different spatial frequencies. Fine characteristics of an image are well enhanced with negligible side effects. This method is easy to implement owing to its simple optical basis.

  3. The Thinker versus a Quilting Bee: Contrasting Images.

    ERIC Educational Resources Information Center

    Thayer-Bacon, Barbara J.

    1999-01-01

    Offers the image of the quilting bee as a contrasting representation of critical thinking (or constructive thinking), comparing the two images, discussing a quilting bee representation of knowledge construction in terms of the tools used by quilters (knowers), and summarizing the transformation of critical thinking theory that a quilting bee image…

  4. A brief account of nanoparticle contrast agents for photoacoustic imaging.

    PubMed

    Pan, Dipanjan; Kim, Benjamin; Wang, Lihong V; Lanza, Gregory M

    2013-01-01

    Photoacoustic imaging (PAI) is a hybrid, nonionizing modality offering excellent spatial resolution, deep penetration, and high soft tissue contrast. In PAI, signal is generated based on the absorption of laser-generated optical energy by endogenous tissues or exogenous contrast agents leading to acoustic emissions detected by an ultrasound transducer. Research in this area over the years has shown that PAI has the ability to provide both physiological and molecular imaging, which can be viewed alone or used in a hybrid modality fashion to extend the anatomic and hemodynamic sensitivities of clinical ultrasound. PAI may be performed using inherent contrast afforded by light absorbing molecules such as hemoglobin, myoglobin, and melanin or exogenous small molecule contrast agent such as near infrared dyes and porphyrins. However, this review summarizes the potential of exogenous nanoparticle-based agents for PAI applications including contrast based on gold particles, carbon nanotubes, and encapsulated copper compounds. PMID:23983210

  5. A Brief Account of Nanoparticle Contrast Agents for Photoacoustic Imaging

    PubMed Central

    Pan, Dipanjan; Kim, Benjamin; Wang, Lihong V.; Lanza, Gregory M

    2014-01-01

    Photoacoustic imaging (PAI) is a hybrid, nonionizing modality offering excellent spatial resolution, deep penetration, and high soft tissue contrast. In PAI, signal is generated based on the absorption of laser-generated optical energy by endogenous tissues or exogenous contrast agents leading to acoustic emissions detected by an ultrasound transducer. Research in this area over the years has shown that PAI has the ability to provide both physiological and molecular imaging, which can be viewed alone or used in a hybrid modality fashion to extend the anatomic and hemodynamic sensitivities of clinical ultrasound. PAI may be performed using inherent contrast afforded by light absorbing molecules such as hemoglobin, myoglobin, and melanin or exogenous small molecule contrast agent such as near infrared dyes and porphyrins. However, this review summarizes the potential of exogenous nanoparticle-based agents for PAI applications including contrast based on gold particles, carbon nanotubes, and encapsulated copper compounds. PMID:23983210

  6. Development of contrast-enhanced rodent imaging using functional CT

    NASA Astrophysics Data System (ADS)

    Liang, Yun; Stantz, Keith M.; Krishnamurthi, Ganapathy; Steinmetz, Rosemary; Hutchins, Gary D.

    2003-05-01

    Micro-computed tomography (microCT) is capable of obtaining high-resolution images of skeletal tissues. However its image contrast among soft tissues remains inadequate for tumor detection. High speed functional computed tomography will be needed to image tumors by employing x-ray contrast medium. The functional microCT development will not only facilitate the image contrast enhancement among different tissues but also provide information of tumor physiology. To demonstrate the feasibility of functional CT in mouse imaging, sequential computed tomography is performed in mice after contrast material administration using a high-speed clinical CT scanner. Although the resolution of the clinical scanner is not sufficient to dissolve the anatomic details of rodents, bulky physiological parameters in major organs such as liver, kidney, pancreas, and ovaries (testicular) can be examined. For data analysis, a two-compartmental model is employed and implemented to characterize the tissue physiological parameters (regional blood flow, capillary permeability, and relative compartment volumes.) The measured contrast dynamics in kidneys are fitted with the compartmental model to derive the kidney tissue physiology. The study result suggests that it is feasible to extract mouse tissue physiology using functional CT imaging technology.

  7. Cumulative phase delay imaging for contrast-enhanced ultrasound tomography.

    PubMed

    Demi, Libertario; van Sloun, Ruud J G; Wijkstra, Hessel; Mischi, Massimo

    2015-11-01

    Standard dynamic-contrast enhanced ultrasound (DCE-US) imaging detects and estimates ultrasound-contrast-agent (UCA) concentration based on the amplitude of the nonlinear (harmonic) components generated during ultrasound (US) propagation through UCAs. However, harmonic components generation is not specific to UCAs, as it also occurs for US propagating through tissue. Moreover, nonlinear artifacts affect standard DCE-US imaging, causing contrast to tissue ratio reduction, and resulting in possible misclassification of tissue and misinterpretation of UCA concentration. Furthermore, no contrast-specific modality exists for DCE-US tomography; in particular speed-of-sound changes due to UCAs are well within those caused by different tissue types. Recently, a new marker for UCAs has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental component is in fact observable for US propagating through UCAs, and is absent in tissue. In this paper, tomographic US images based on CPD are for the first time presented and compared to speed-of-sound US tomography. Results show the applicability of this marker for contrast specific US imaging, with cumulative phase delay imaging (CPDI) showing superior capabilities in detecting and localizing UCA, as compared to speed-of-sound US tomography. Cavities (filled with UCA) which were down to 1 mm in diameter were clearly detectable. Moreover, CPDI is free of the above mentioned nonlinear artifacts. These results open important possibilities to DCE-US tomography, with potential applications to breast imaging for cancer localization. PMID:26459771

  8. Cumulative phase delay imaging for contrast-enhanced ultrasound tomography

    NASA Astrophysics Data System (ADS)

    Demi, Libertario; van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2015-11-01

    Standard dynamic-contrast enhanced ultrasound (DCE-US) imaging detects and estimates ultrasound-contrast-agent (UCA) concentration based on the amplitude of the nonlinear (harmonic) components generated during ultrasound (US) propagation through UCAs. However, harmonic components generation is not specific to UCAs, as it also occurs for US propagating through tissue. Moreover, nonlinear artifacts affect standard DCE-US imaging, causing contrast to tissue ratio reduction, and resulting in possible misclassification of tissue and misinterpretation of UCA concentration. Furthermore, no contrast-specific modality exists for DCE-US tomography; in particular speed-of-sound changes due to UCAs are well within those caused by different tissue types. Recently, a new marker for UCAs has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental component is in fact observable for US propagating through UCAs, and is absent in tissue. In this paper, tomographic US images based on CPD are for the first time presented and compared to speed-of-sound US tomography. Results show the applicability of this marker for contrast specific US imaging, with cumulative phase delay imaging (CPDI) showing superior capabilities in detecting and localizing UCA, as compared to speed-of-sound US tomography. Cavities (filled with UCA) which were down to 1 mm in diameter were clearly detectable. Moreover, CPDI is free of the above mentioned nonlinear artifacts. These results open important possibilities to DCE-US tomography, with potential applications to breast imaging for cancer localization.

  9. Evaluation of microbubble contrast agents for dynamic imaging with x-ray phase contrast

    PubMed Central

    Millard, T. P.; Endrizzi, M.; Everdell, N.; Rigon, L.; Arfelli, F.; Menk, R. H.; Stride, E.; Olivo, A.

    2015-01-01

    X-rays are commonly used as a means to image the inside of objects opaque to visible light, as their short wavelength allows penetration through matter and the formation of high spatial resolution images. This physical effect has found particular importance in medicine where x-ray based imaging is routinely used as a diagnostic tool. Increasingly, however, imaging modalities that provide functional as well as morphological information are required. In this study the potential to use x-ray phase based imaging as a functional modality through the use of microbubbles that can be targeted to specific biological processes is explored. We show that the concentration of a microbubble suspension can be monitored quantitatively whilst in flow using x-ray phase contrast imaging. This could provide the basis for a dynamic imaging technique that combines the tissue penetration, spatial resolution, and high contrast of x-ray phase based imaging with the functional information offered by targeted imaging modalities. PMID:26219661

  10. Motility contrast imaging of live porcine cumulus-oocyte complexes

    NASA Astrophysics Data System (ADS)

    An, Ran; Turek, John; Machaty, Zoltan; Nolte, David

    2013-02-01

    Freshly-harvested porcine oocytes are invested with cumulus granulosa cells in cumulus-oocyte complexes (COCs). The cumulus cell layer is usually too thick to image the living oocyte under a conventional microscope. Therefore, it is difficult to assess the oocyte viability. The low success rate of implantation is the main problem for in vitro fertilization. In this paper, we demonstrate our dynamic imaging technique called motility contrast imaging (MCI) that provides a non-invasive way to monitor the COCs before and after maturation. MCI shows a change of intracellular activity during oocyte maturation, and a measures dynamic contrast between the cumulus granulosa shell and the oocytes. MCI also shows difference in the spectral response between oocytes that were graded into quality classes. MCI is based on shortcoherence digital holography. It uses intracellular motility as the endogenous imaging contrast of living tissue. MCI presents a new approach for cumulus-oocyte complex assessment.

  11. Algorithm of contrast enhancement for visual document images with underexposure

    NASA Astrophysics Data System (ADS)

    Tian, Da-zeng; Hao, Yong; Ha, Ming-hu; Tian, Xue-dong; Ha, Yan

    2008-03-01

    The visual document image is the electronic image about newspapers, books or magazines taken by the digital camera, the digital vidicon etc. Whose getting is more convenient than got from the scanner. Along with the development of OCR technology, visual document images could be recognized by OCR. Affected by some factors, digital image will be degraded during its acquisition, processing, transmission. One of the main problems affecting image quality, leading to unpleasant pictures, comes from improper exposure to light. So preprocessing is becoming much more significant before recognition in order to get an appropriate image satisfied recognition requirements. For the low contrast images with underexposure, according to the visual document image's characteristic, a new algorithm, based on image background separation, for image object enhance is proposed, The proposed method calculate the threshold of separation firstly, And different processing be taken on foreground and background: Various gray values in image background will be merged into unitary gray value, whereas the contrast of foreground will be enhanced. The proposed algorithm implemented in Visual C++ 6.0, and compared the result of proposed algorithm with the results of Otsu's method and histogram equalization. The experimental results show clearly that this algorithm could enhance the details of image object adequately, increase the recognition rate, and avoid the block effect at the same time.

  12. Underwater binocular imaging of aerial objects versus the position of eyes relative to the flat water surface.

    PubMed

    Barta, András; Horváth, Gábor

    2003-12-01

    The apparent position, size, and shape of aerial objects viewed binocularly from water change as a result of the refraction of light at the water surface. Earlier studies of the refraction-distorted structure of the aerial binocular visual field of underwater observers were restricted to either vertically or horizontally oriented eyes. Here we calculate the position of the binocular image point of an aerial object point viewed by two arbitrarily positioned underwater eyes when the water surface is flat. Assuming that binocular image fusion is performed by appropriate vergent eye movements to bring the object's image onto the foveae, the structure of the aerial binocular visual field is computed and visualized as a function of the relative positions of the eyes. We also analyze two erroneous representations of the underwater imaging of aerial objects that have occurred in the literature. It is demonstrated that the structure of the aerial binocular visual field of underwater observers distorted by refraction is more complex than has been thought previously. PMID:14686517

  13. Exogenous contrast agents for thermoacoustic imaging: An investigation into the underlying sources of contrast

    SciTech Connect

    Ogunlade, Olumide Beard, Paul

    2015-01-15

    Purpose: Thermoacoustic imaging at microwave excitation frequencies is limited by the low differential contrast exhibited by high water content tissues. To overcome this, exogenous thermoacoustic contrast agents based on gadolinium compounds, iron oxide, and single wall carbon nanotubes have previously been suggested and investigated. However, these previous studies did not fully characterize the electric, magnetic, and thermodynamic properties of these agents thus precluding identification of the underlying sources of contrast. To address this, measurements of the complex permittivity, complex permeability, DC conductivity, and Grüneisen parameter have been made. These measurements allowed the origins of the contrast provided by each substance to be identified. Methods: The electric and magnetic properties of the contrast agents were characterized at 3 GHz using two rectangular waveguide cavities. The DC conductivity was measured separately using a conductivity meter. Thermoacoustic signals were then acquired and compared to those generated in water. Finally, 3D electromagnetic simulations were used to decouple the different contributions to the absorbed power density. Results: It was found that the gadolinium compounds provided appreciable electric contrast but not originating from the gadolinium itself. The contrast was either due to dissociation of the gadolinium salt which increased ionic conductivity or its nondissociated polar fraction which increased dielectric polarization loss or a combination of both. In addition, very high concentrations were required to achieve appreciable contrast, to the extent that the Grüneisen parameter increased significantly and became a source of contrast. Iron oxide particles were found to produce low but measurable dielectric contrast due to dielectric polarization loss, but this is attributed to the coating of the particles not the iron oxide. Single wall carbon nanotubes did not provide measurable contrast of any type

  14. Modified natural nanoparticles as contrast agents for medical imaging

    PubMed Central

    Cormode, David P.; Jarzyna, Peter A.; Mulder, Willem J. M.; Fayad, Zahi A.

    2009-01-01

    The development of novel and effective contrast agents is one of the drivers of the ongoing improvement in medical imaging. Many of the new agents reported are nanoparticle-based. There are a variety of natural nanoparticles known, e.g. lipoproteins, viruses or ferritin. Natural nanoparticles have advantages as delivery platforms such as biodegradability. In addition, our understanding of natural nanoparticles is quite advanced, allowing their adaptation as contrast agents. They can be labeled with small molecules or ions such as Gd3+ to act as contrast agents for magnetic resonance imaging, 18F to act as positron emission tomography contrast agents or fluorophores to act as contrast agents for fluorescence techniques. Additionally, inorganic nanoparticles such as iron oxide, gold nanoparticles or quantum dots can be incorporated to add further contrast functionality. Furthermore, these natural nanoparticle contrast agents can be rerouted from their natural targets via the attachment of targeting molecules. In this review, we discuss the various modified natural nanoparticles that have been exploited as contrast agents. PMID:19900496

  15. Damaged road extracting with high-resolution aerial image of post-earthquake

    NASA Astrophysics Data System (ADS)

    Zheng, Zezhong; Pu, Chengjun; Zhu, Mingcang; Xia, Jun; Zhang, Xiang; Liu, Yalan; Li, Jiang

    2015-12-01

    With the rapid development of earth observation technology, remote sensing images have played more important roles, because the high resolution images can provide the original data for object recognition, disaster investigation, and so on. When a disastrous earthquake breaks out, a large number of roads could be damaged instantly. There are a lot of approaches about road extraction, such as region growing, gray threshold, and k-means clustering algorithm. We could not obtain the undamaged roads with these approaches, if the trees or their shadows along the roads are difficult to be distinguished from the damaged road. In the paper, a method is presented to extract the damaged road with high resolution aerial image of post-earthquake. Our job is to extract the damaged road and the undamaged with the aerial image. We utilized the mathematical morphology approach and the k-means clustering algorithm to extract the road. Our method was composed of four ingredients. Firstly, the mathematical morphology filter operators were employed to remove the interferences from the trees or their shadows. Secondly, the k-means algorithm was employed to derive the damaged segments. Thirdly, the mathematical morphology approach was used to extract the undamaged road; Finally, we could derive the damaged segments by overlaying the road networks of pre-earthquake. Our results showed that the earthquake, broken in Yaan, was disastrous for the road, Therefore, we could take more measures to keep it clear.

  16. Bacterial cell identification in differential interference contrast microscopy images

    PubMed Central

    2013-01-01

    Background Microscopy image segmentation lays the foundation for shape analysis, motion tracking, and classification of biological objects. Despite its importance, automated segmentation remains challenging for several widely used non-fluorescence, interference-based microscopy imaging modalities. For example in differential interference contrast microscopy which plays an important role in modern bacterial cell biology. Therefore, new revolutions in the field require the development of tools, technologies and work-flows to extract and exploit information from interference-based imaging data so as to achieve new fundamental biological insights and understanding. Results We have developed and evaluated a high-throughput image analysis and processing approach to detect and characterize bacterial cells and chemotaxis proteins. Its performance was evaluated using differential interference contrast and fluorescence microscopy images of Rhodobacter sphaeroides. Conclusions Results demonstrate that the proposed approach provides a fast and robust method for detection and analysis of spatial relationship between bacterial cells and their chemotaxis proteins. PMID:23617824

  17. Dual-frequency transducer for nonlinear contrast agent imaging.

    PubMed

    Guiroy, Axel; Novell, Anthony; Ringgaard, Erling; Lou-Moeller, Rasmus; Grégoire, Jean-Marc; Abellard, André-Pierre; Zawada, Tomasz; Bouakaz, Ayache; Levassort, Franck

    2013-12-01

    Detection of high-order nonlinear components issued from microbubbles has emerged as a sensitive method for contrast agent imaging. Nevertheless, the detection of these high-frequency components, including the third, fourth, and fifth harmonics, remains challenging because of the lack of transducer sensitivity and bandwidth. In this context, we propose a new design of imaging transducer based on a simple fabrication process for high-frequency nonlinear imaging. The transducer is composed of two elements: the outer low-frequency (LF) element was centered at 4 MHz and used in transmit mode, whereas the inner high-frequency (HF) element centered at 14 MHz was used in receive mode. The center element was pad-printed using a lead zirconate titanate (PZT) paste. The outer element was molded using a commercial PZT, and curved porous unpoled PZT was used as backing. Each piezoelectric element was characterized to determine the electromechanical performance with thickness coupling factor around 45%. After the assembly of the two transducer elements, hydrophone measurements (electroacoustic responses and radiation patterns) were carried out and demonstrated a large bandwidth (70% at -3 dB) of the HF transducer. Finally, the transducer was evaluated for contrast agent imaging using contrast agent microbubbles. The results showed that harmonic components (up to the sixth harmonic) of the microbubbles were successfully detected. Moreover, images from a flow phantom were acquired and demonstrated the potential of the transducer for high-frequency nonlinear contrast imaging. PMID:24297028

  18. Automatic image equalization and contrast enhancement using Gaussian mixture modeling.

    PubMed

    Celik, Turgay; Tjahjadi, Tardi

    2012-01-01

    In this paper, we propose an adaptive image equalization algorithm that automatically enhances the contrast in an input image. The algorithm uses the Gaussian mixture model to model the image gray-level distribution, and the intersection points of the Gaussian components in the model are used to partition the dynamic range of the image into input gray-level intervals. The contrast equalized image is generated by transforming the pixels' gray levels in each input interval to the appropriate output gray-level interval according to the dominant Gaussian component and the cumulative distribution function of the input interval. To take account of the hypothesis that homogeneous regions in the image represent homogeneous silences (or set of Gaussian components) in the image histogram, the Gaussian components with small variances are weighted with smaller values than the Gaussian components with larger variances, and the gray-level distribution is also used to weight the components in the mapping of the input interval to the output interval. Experimental results show that the proposed algorithm produces better or comparable enhanced images than several state-of-the-art algorithms. Unlike the other algorithms, the proposed algorithm is free of parameter setting for a given dynamic range of the enhanced image and can be applied to a wide range of image types. PMID:21775265

  19. Point cloud generation from aerial image data acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still camera.

    PubMed

    Rosnell, Tomi; Honkavaara, Eija

    2012-01-01

    The objective of this investigation was to develop and investigate methods for point cloud generation by image matching using aerial image data collected by quadrocopter type micro unmanned aerial vehicle (UAV) imaging systems. Automatic generation of high-quality, dense point clouds from digital images by image matching is a recent, cutting-edge step forward in digital photogrammetric technology. The major components of the system for point cloud generation are a UAV imaging system, an image data collection process using high image overlaps, and post-processing with image orientation and point cloud generation. Two post-processing approaches were developed: one of the methods is based on Bae Systems' SOCET SET classical commercial photogrammetric software and another is built using Microsoft(®)'s Photosynth™ service available in the Internet. Empirical testing was carried out in two test areas. Photosynth processing showed that it is possible to orient the images and generate point clouds fully automatically without any a priori orientation information or interactive work. The photogrammetric processing line provided dense and accurate point clouds that followed the theoretical principles of photogrammetry, but also some artifacts were detected. The point clouds from the Photosynth processing were sparser and noisier, which is to a large extent due to the fact that the method is not optimized for dense point cloud generation. Careful photogrammetric processing with self-calibration is required to achieve the highest accuracy. Our results demonstrate the high performance potential of the approach and that with rigorous processing it is possible to reach results that are consistent with theory. We also point out several further research topics. Based on theoretical and empirical results, we give recommendations for properties of imaging sensor, data collection and processing of UAV image data to ensure accurate point cloud generation. PMID:22368479

  20. Point Cloud Generation from Aerial Image Data Acquired by a Quadrocopter Type Micro Unmanned Aerial Vehicle and a Digital Still Camera

    PubMed Central

    Rosnell, Tomi; Honkavaara, Eija

    2012-01-01

    The objective of this investigation was to develop and investigate methods for point cloud generation by image matching using aerial image data collected by quadrocopter type micro unmanned aerial vehicle (UAV) imaging systems. Automatic generation of high-quality, dense point clouds from digital images by image matching is a recent, cutting-edge step forward in digital photogrammetric technology. The major components of the system for point cloud generation are a UAV imaging system, an image data collection process using high image overlaps, and post-processing with image orientation and point cloud generation. Two post-processing approaches were developed: one of the methods is based on Bae Systems’ SOCET SET classical commercial photogrammetric software and another is built using Microsoft®’s Photosynth™ service available in the Internet. Empirical testing was carried out in two test areas. Photosynth processing showed that it is possible to orient the images and generate point clouds fully automatically without any a priori orientation information or interactive work. The photogrammetric processing line provided dense and accurate point clouds that followed the theoretical principles of photogrammetry, but also some artifacts were detected. The point clouds from the Photosynth processing were sparser and noisier, which is to a large extent due to the fact that the method is not optimized for dense point cloud generation. Careful photogrammetric processing with self-calibration is required to achieve the highest accuracy. Our results demonstrate the high performance potential of the approach and that with rigorous processing it is possible to reach results that are consistent with theory. We also point out several further research topics. Based on theoretical and empirical results, we give recommendations for properties of imaging sensor, data collection and processing of UAV image data to ensure accurate point cloud generation. PMID:22368479

  1. Phase contrast portal imaging for image-guided microbeam radiation therapy

    NASA Astrophysics Data System (ADS)

    Umetani, Keiji; Kondoh, Takeshi

    2014-03-01

    High-dose synchrotron microbeam radiation therapy is a unique treatment technique used to destroy tumors without severely affecting circumjacent healthy tissue. We applied a phase contrast technique to portal imaging in preclinical microbeam radiation therapy experiments. Phase contrast portal imaging is expected to enable us to obtain higherresolution X-ray images at therapeutic X-ray energies compared to conventional portal imaging. Frontal view images of a mouse head sample were acquired in propagation-based phase contrast imaging. The phase contrast images depicted edge-enhanced fine structures of the parietal bones surrounding the cerebrum. The phase contrast technique is expected to be effective in bony-landmark-based verification for image-guided radiation therapy.

  2. A multi-scale registration of urban aerial image with airborne lidar data

    NASA Astrophysics Data System (ADS)

    Huang, Shuo; Chen, Siying; Zhang, Yinchao; Guo, Pan; Chen, He

    2015-11-01

    This paper presented a multi-scale progressive registration method of airborne LiDAR data with aerial image. The cores of the proposed method lie in the coarse registration with road networks and the fine registration method using regularized building corners. During the two-stage registration, the exterior orientation parameters (EOP) are continually refined. By validation of the actual flight data of Dunhuang, the experimental result shows that the proposed method can obtain accurate results with low-precision initial EOP, also improve the automatic degree of registration.

  3. Density estimation in aerial images of large crowds for automatic people counting

    NASA Astrophysics Data System (ADS)

    Herrmann, Christian; Metzler, Juergen

    2013-05-01

    Counting people is a common topic in the area of visual surveillance and crowd analysis. While many image-based solutions are designed to count only a few persons at the same time, like pedestrians entering a shop or watching an advertisement, there is hardly any solution for counting large crowds of several hundred persons or more. We addressed this problem previously by designing a semi-automatic system being able to count crowds consisting of hundreds or thousands of people based on aerial images of demonstrations or similar events. This system requires major user interaction to segment the image. Our principle aim is to reduce this manual interaction. To achieve this, we propose a new and automatic system. Besides counting the people in large crowds, the system yields the positions of people allowing a plausibility check by a human operator. In order to automatize the people counting system, we use crowd density estimation. The determination of crowd density is based on several features like edge intensity or spatial frequency. They indicate the density and discriminate between a crowd and other image regions like buildings, bushes or trees. We compare the performance of our automatic system to the previous semi-automatic system and to manual counting in images. By counting a test set of aerial images showing large crowds containing up to 12,000 people, the performance gain of our new system will be measured. By improving our previous system, we will increase the benefit of an image-based solution for counting people in large crowds.

  4. Analyzing Spectral Characteristics of Shadow Area from ADS-40 High Radiometric Resolution Aerial Images

    NASA Astrophysics Data System (ADS)

    Hsieh, Yi-Ta; Wu, Shou-Tsung; Chen, Chaur-Tzuhn; Chen, Jan-Chang

    2016-06-01

    The shadows in optical remote sensing images are regarded as image nuisances in numerous applications. The classification and interpretation of shadow area in a remote sensing image are a challenge, because of the reduction or total loss of spectral information in those areas. In recent years, airborne multispectral aerial image devices have been developed 12-bit or higher radiometric resolution data, including Leica ADS-40, Intergraph DMC. The increased radiometric resolution of digital imagery provides more radiometric details of potential use in classification or interpretation of land cover of shadow areas. Therefore, the objectives of this study are to analyze the spectral properties of the land cover in the shadow areas by ADS-40 high radiometric resolution aerial images, and to investigate the spectral and vegetation index differences between the various shadow and non-shadow land covers. According to research findings of spectral analysis of ADS-40 image: (i) The DN values in shadow area are much lower than in nonshadow area; (ii) DN values received from shadowed areas that will also be affected by different land cover, and it shows the possibility of land cover property retrieval as in nonshadow area; (iii) The DN values received from shadowed regions decrease in the visible band from short to long wavelengths due to scattering; (iv) The shadow area NIR of vegetation category also shows a strong reflection; (v) Generally, vegetation indexes (NDVI) still have utility to classify the vegetation and non-vegetation in shadow area. The spectral data of high radiometric resolution images (ADS-40) is potential for the extract land cover information of shadow areas.

  5. New Approach for Segmentation and Extraction of Single Tree from Point Clouds Data and Aerial Images

    NASA Astrophysics Data System (ADS)

    Homainejad, A. S.

    2016-06-01

    This paper addresses a new approach for reconstructing a 3D model from single trees via Airborne Laser Scanners (ALS) data and aerial images. The approach detects and extracts single tree from ALS data and aerial images. The existing approaches are able to provide bulk segmentation from a group of trees; however, some methods focused on detection and extraction of a particular tree from ALS and images. Segmentation of a single tree within a group of trees is mostly a mission impossible since the detection of boundary lines between the trees is a tedious job and basically it is not feasible. In this approach an experimental formula based on the height of the trees was developed and applied in order to define the boundary lines between the trees. As a result, each single tree was segmented and extracted and later a 3D model was created. Extracted trees from this approach have a unique identification and attribute. The output has application in various fields of science and engineering such as forestry, urban planning, and agriculture. For example in forestry, the result can be used for study in ecologically diverse, biodiversity and ecosystem.

  6. D Classification of Crossroads from Multiple Aerial Images Using Markov Random Fields

    NASA Astrophysics Data System (ADS)

    Kosov, S.; Rottensteiner, F.; Heipke, C.; Leitloff, J.; Hinz, S.

    2012-08-01

    The precise classification and reconstruction of crossroads from multiple aerial images is a challenging problem in remote sensing. We apply the Markov Random Fields (MRF) approach to this problem, a probabilistic model that can be used to consider context in classification. A simple appearance-based model is combined with a probabilistic model of the co-occurrence of class label at neighbouring image sites to distinguish up to 14 different classes that are relevant for scenes containing crossroads. The parameters of these models are learnt from training data. We use multiple overlap aerial images to derive a digital surface model (DSM) and a true orthophoto without moving cars. From the DSM and the orthophoto we derive feature vectors that are used in the classification. One of the features is a car confidence value that is supposed to support the classification when the road surface is occluded by static cars. Our approach is evaluated on a dataset of airborne photos of an urban area by a comparison of the results to reference data. Whereas the method has problems in distinguishing classes having a similar appearance, it is shown to produce promising results if a reduced set of classes is considered, yielding an overall classification accuracy of 74.8%.

  7. Adaptive windowing in contrast-enhanced intravascular ultrasound imaging.

    PubMed

    Lindsey, Brooks D; Martin, K Heath; Jiang, Xiaoning; Dayton, Paul A

    2016-08-01

    Intravascular ultrasound (IVUS) is one of the most commonly-used interventional imaging techniques and has seen recent innovations which attempt to characterize the risk posed by atherosclerotic plaques. One such development is the use of microbubble contrast agents to image vasa vasorum, fine vessels which supply oxygen and nutrients to the walls of coronary arteries and typically have diameters less than 200μm. The degree of vasa vasorum neovascularization within plaques is positively correlated with plaque vulnerability. Having recently presented a prototype dual-frequency transducer for contrast agent-specific intravascular imaging, here we describe signal processing approaches based on minimum variance (MV) beamforming and the phase coherence factor (PCF) for improving the spatial resolution and contrast-to-tissue ratio (CTR) in IVUS imaging. These approaches are examined through simulations, phantom studies, ex vivo studies in porcine arteries, and in vivo studies in chicken embryos. In phantom studies, PCF processing improved CTR by a mean of 4.2dB, while combined MV and PCF processing improved spatial resolution by 41.7%. Improvements of 2.2dB in CTR and 37.2% in resolution were observed in vivo. Applying these processing strategies can enhance image quality in conventional B-mode IVUS or in contrast-enhanced IVUS, where signal-to-noise ratio is relatively low and resolution is at a premium. PMID:27161022

  8. Dynamic Studies of Lung Fluid Clearance with Phase Contrast Imaging

    SciTech Connect

    Kitchen, Marcus J.; Williams, Ivan; Irvine, Sarah C.; Morgan, Michael J.; Paganin, David M.; Lewis, Rob A.; Pavlov, Konstantin; Hooper, Stuart B.; Wallace, Megan J.; Siu, Karen K. W.; Yagi, Naoto; Uesugi, Kentaro

    2007-01-19

    Clearance of liquid from the airways at birth is a poorly understood process, partly due to the difficulties of observing and measuring the distribution of air within the lung. Imaging dynamic processes within the lung in vivo with high contrast and spatial resolution is therefore a major challenge. However, phase contrast X-ray imaging is able to exploit inhaled air as a contrast agent, rendering the lungs of small animals visible due to the large changes in the refractive index at air/tissue interfaces. In concert with the high spatial resolution afforded by X-ray imaging systems (<100 {mu}m), propagation-based phase contrast imaging is ideal for studying lung development. To this end we have utilized intense, monochromatic synchrotron radiation, together with a fast readout CCD camera, to study fluid clearance from the lungs of rabbit pups at birth. Local rates of fluid clearance have been measured from the dynamic sequences using a single image phase retrieval algorithm.

  9. In vivo imaging with near-infrared fluorescence lifetime contrast

    NASA Astrophysics Data System (ADS)

    Akers, Walter J.; Berezin, Mikhail Y.; Lee, Hyeran; Achilefu, Samuel

    2009-02-01

    Fluorescence imaging is a mainstay of biomedical research, allowing detection of molecular events in both fixed and living cells, tissues and whole animals. Such high resolution fluorescence imaging is hampered by unwanted signal from intrinsic background fluorescence and scattered light. The signal to background ratio can be improved by using extrinsic contrast agents and greatly enhanced by multispectral imaging methods. Unfortunately, these methods are insufficient for deep tissue imaging where high contrast and speedy acquisition are necessary. Fluorescence lifetime (FLT) is an inherent characteristic of each fluorescent species that can be independent of intensity and spectral properties. Accordingly, FLT-based detection provides an additional contrast mechanism to optical measurements. This contrast is particularly important in the near-infrared (NIR) due to relative transparency of tissue as well as the broad absorption and emission spectra of dyes that are active in this region. Here we report comparative analysis of signal distribution of several NIR fluorescent polymethine dyes in living mice and their correlations with lifetimes obtained in vitro using solution models. The FLT data obtained from dyes dissolved in serum albumin solution correlated well with FLTs measured in vivo. Thus the albumin solution model could be used as a good predictive model for in vivo FLT behavior of newly developed fluorescent reporters. Subsequent experiments in vivo, including monitoring slow release kinetics and detecting proteinuria, demonstrate the complementary nature of FLT for fluorescence intensity imaging.

  10. Dynamic Studies of Lung Fluid Clearance with Phase Contrast Imaging

    NASA Astrophysics Data System (ADS)

    Kitchen, Marcus J.; Lewis, Rob A.; Hooper, Stuart B.; Wallace, Megan J.; Siu, Karen K. W.; Williams, Ivan; Irvine, Sarah C.; Morgan, Michael J.; Paganin, David M.; Pavlov, Konstantin; Yagi, Naoto; Uesugi, Kentaro

    2007-01-01

    Clearance of liquid from the airways at birth is a poorly understood process, partly due to the difficulties of observing and measuring the distribution of air within the lung. Imaging dynamic processes within the lung in vivo with high contrast and spatial resolution is therefore a major challenge. However, phase contrast X-ray imaging is able to exploit inhaled air as a contrast agent, rendering the lungs of small animals visible due to the large changes in the refractive index at air/tissue interfaces. In concert with the high spatial resolution afforded by X-ray imaging systems (<100 μm), propagation-based phase contrast imaging is ideal for studying lung development. To this end we have utilized intense, monochromatic synchrotron radiation, together with a fast readout CCD camera, to study fluid clearance from the lungs of rabbit pups at birth. Local rates of fluid clearance have been measured from the dynamic sequences using a single image phase retrieval algorithm.

  11. Multifunctional Photosensitizer-Based Contrast Agents for Photoacoustic Imaging

    PubMed Central

    Ho, Chris Jun Hui; Balasundaram, Ghayathri; Driessen, Wouter; McLaren, Ross; Wong, Chi Lok; Dinish, U. S.; Attia, Amalina Binte Ebrahim; Ntziachristos, Vasilis; Olivo, Malini

    2014-01-01

    Photoacoustic imaging is a novel hybrid imaging modality combining the high spatial resolution of optical imaging with the high penetration depth of ultrasound imaging. Here, for the first time, we evaluate the efficacy of various photosensitizers that are widely used as photodynamic therapeutic (PDT) agents as photoacoustic contrast agents. Photoacoustic imaging of photosensitizers exhibits advantages over fluorescence imaging, which is prone to photobleaching and autofluorescence interference. In this work, we examined the photoacoustic activity of 5 photosensitizers: zinc phthalocyanine, protoporphyrin IX, 2,4-bis [4-(N,N-dibenzylamino)-2,6-dihydroxyphenyl] squaraine, chlorin e6 and methylene blue in phantoms, among which zinc phthalocyanine showed the highest photoacoustic activity. Subsequently, we evaluated its tumor localization efficiency and biodistribution at multiple time points in a murine model using photoacoustic imaging. We observed that the probe localized at the tumor within 10 minutes post injection, reaching peak accumulation around 1 hour and was cleared within 24 hours, thus, demonstrating the potential of photosensitizers as photoacoustic imaging contrast agents in vivo. This means that the known advantages of photosensitizers such as preferential tumor uptake and PDT efficacy can be combined with photoacoustic imaging capabilities to achieve longitudinal monitoring of cancer progression and therapy in vivo. PMID:24938638

  12. Color contrast enhancement method of infrared polarization fused image

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Xie, Chen

    2015-10-01

    As the traditional color fusion method based on color transfer algorithm has an issue that the color of target and background is similar. A kind of infrared polarization image color fusion method based on color contrast enhancement was proposed. Firstly the infrared radiation intensity image and the polarization image were color fused, and then color transfer technology was used between color reference image and initial fused image in the YCbCr color space. Secondly Otsu segmentation method was used to extract the target area image from infrared polarization image. Lastly the H,S,I component of the color fusion image which obtained by color transfer was adjusted to obtain the final fused image by using target area in the HSI space. Experimental results show that, the fused result which obtained by the proposed method is rich in detail and makes the contrast of target and background more outstanding. And then the ability of target detection and identification can be improved by the method.

  13. Image contrast enhancement based on a local standard deviation model

    SciTech Connect

    Chang, Dah-Chung; Wu, Wen-Rong

    1996-12-31

    The adaptive contrast enhancement (ACE) algorithm is a widely used image enhancement method, which needs a contrast gain to adjust high frequency components of an image. In the literature, the gain is usually inversely proportional to the local standard deviation (LSD) or is a constant. But these cause two problems in practical applications, i.e., noise overenhancement and ringing artifact. In this paper a new gain is developed based on Hunt`s Gaussian image model to prevent the two defects. The new gain is a nonlinear function of LSD and has the desired characteristic emphasizing the LSD regions in which details are concentrated. We have applied the new ACE algorithm to chest x-ray images and the simulations show the effectiveness of the proposed algorithm.

  14. Image contrast enhancement in angular domain optical imaging of turbid media.

    PubMed

    Vasefi, Fartash; Kaminska, Bozena; Chapman, Glenn H; Carson, Jeffrey J L

    2008-12-22

    Imaging structures within a turbid medium using Angular Domain Imaging (ADI) employs an angular filter array to separate weakly scattered photons from those that are highly scattered. At high scattering coefficients, ADI contrast declines due to the large fraction of non-uniform background scattered light still within the acceptance angle. This paper demonstrates various methods to enhance the image contrast in ADI. Experiments where a wedge prism was used to deviate the laser source so that scattered photons could be imaged and subtracted from the image obtained by standard ADI provided the greatest improvement in image contrast. PMID:19104579

  15. Contrast enhancement of propagation based X-ray phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Pan, Adam; Xu, Ling; Petruccelli, Jon C.; Gupta, Rajiv; Barbastathis, George

    2014-09-01

    We demonstrate a quantitative X-ray phase contrast imaging (XPCI) technique derived from propagation dependent phase change. We assume that the absorption and phase components are correlated and solve the Transport of Intensity Equation (TIE). The experimental setup is simple compared to other XPCI techniques; the only requirements are a micro-focus X-ray source with sufficient temporal coherence and an X-ray detector of sufficient spatial resolution. This method was demonstrated in three scenarios, the first of which entails identification of an index-matched sphere. A rubber and nylon sphere were immersed in water and imaged. While the rubber sphere could be plainly seen on a radiograph, the nylon sphere was only visible in the phase reconstruction. Next, the technique was applied to differentiating liquid samples. In this scenario, three liquid samples (acetone, water, and hydrogen peroxide) were analyzed using both conventional computed tomography (CT) and phase contrast CT. While conventional CT was capable of differentiating between acetone and the other two liquids, it failed to distinguish between water and hydrogen peroxide; only phase CT was capable of differentiating all three samples. Finally, the technique was applied to CT imaging of a human artery specimen with extensive atherosclerotic plaque. This scenario demonstrated the increased sensitivity to soft tissue compared to conventional CT; it also uncovered some drawbacks of the method, which will be the target of future work. In all cases, the signal-to-noise ratio of phase contrast was greatly enhanced relative to conventional attenuation-based imaging.

  16. Phase contrast imaging with micro focus x-ray tube

    NASA Astrophysics Data System (ADS)

    Shovkun, V. Y.; Kumakhov, M. A.

    2005-07-01

    Now the phase-contrast (PC) radiography with monochromatic synchmtron radiation sources is very promising for use in non-destructive industrial control, medical and biological X-ray imaging. Unfortunately synchrotron sources are rather expensive for laboratory practice. We are developing a phase-contrast imaging with a micro focus X-ray tube. We performed numerical calculations with Fresnel-Kirchhgoff formalism to obtain values of PC-signals taking into account polychromatic nature of X-ray radiation, a finite size of a source, and a finite resolution of a detector including spectral sensitivity of the detector. We conducted experiments with a micro focus X-ray tube to find absolute values of PC signals for some models of biological tissue and technical materials in presence of scattering X-rays that emerge from the object. By means of simple set of the experimental arrangement it is possible to obtain the phase-contrast image map of the boundaries between regions with the density difference of order ~1 g/cm3. Under experimental conditions the minimal detected PC-signal is found for the plastic fiber 45 tm in diameter. Examples ofthe X-ray PC-images of fishes, images of air bubbles and ribs, slag inclusions in joint weld of Al-Li alloy materials, and images of sapphire microspheres for cellular metallic structures are presented.

  17. Contrast sensitivity function calibration based on image quality prediction

    NASA Astrophysics Data System (ADS)

    Han, Yu; Cai, Yunze

    2014-11-01

    Contrast sensitivity functions (CSFs) describe visual stimuli based on their spatial frequency. However, CSF calibration is limited by the size of the sample collection and this remains an open issue. In this study, we propose an approach for calibrating CSFs that is based on the hypothesis that a precise CSF model can accurately predict image quality. Thus, CSF calibration is regarded as the inverse problem of image quality prediction according to our hypothesis. A CSF could be calibrated by optimizing the performance of a CSF-based image quality metric using a database containing images with known quality. Compared with the traditional method, this would reduce the work involved in sample collection dramatically. In the present study, we employed three image databases to optimize some existing CSF models. The experimental results showed that the performance of a three-parameter CSF model was better than that of other models. The results of this study may be helpful in CSF and image quality research.

  18. Fractal methods for extracting artificial objects from the unmanned aerial vehicle images

    NASA Astrophysics Data System (ADS)

    Markov, Eugene

    2016-04-01

    Unmanned aerial vehicles (UAVs) have become used increasingly in earth surface observations, with a special interest put into automatic modes of environmental control and recognition of artificial objects. Fractal methods for image processing well detect the artificial objects in digital space images but were not applied previously to the UAV-produced imagery. Parameters of photography, on-board equipment, and image characteristics differ considerably for spacecrafts and UAVs. Therefore, methods that work properly with space images can produce different results for the UAVs. In this regard, testing the applicability of fractal methods for the UAV-produced images and determining the optimal range of parameters for these methods represent great interest. This research is dedicated to the solution of this problem. Specific features of the earth's surface images produced with UAVs are described in the context of their interpretation and recognition. Fractal image processing methods for extracting artificial objects are described. The results of applying these methods to the UAV images are presented.

  19. HIGH-CONTRAST IMAGING VIA MODAL CONVERGENCE OF DEFORMABLE MIRROR

    SciTech Connect

    Wang Feiling

    2012-06-01

    For extremely high contrast imaging, such as direct observation of faint stellar companions, an adaptive optics system is required to produce low-halo and low-speckle regions in the focal plane. A method for deformable mirror control is proposed to achieve this goal. The method relies on a modal convergence of the deformable mirror driven by a focal-plane metric. The modal sets are derived from the Walsh functions. The Walsh-function modes serve two purposes: the expansion of the actuator displacements and the expansion of the phase functions. Taking advantage of the unique properties of the modal functions, a universal control algorithm is devised for the realization of high-contrast focal planes with and without the help of conventional coronagraphy. Numerical modeling is conducted to simulate complete imaging systems under various scenarios. It is shown that the proposed method reliably produces high-contrast focal planes using either a segmented or a membrane mirror. In the presence of random aberration the method is shown to be able to maintain high-contrast focal planes. Requiring neither retrieval of electric fields nor detailed knowledge of the deformable mirrors, this technique may allow high-contrast imaging in real time.

  20. Differential phase contrast X-ray imaging system and components

    DOEpatents

    Stutman, Daniel; Finkenthal, Michael

    2014-07-01

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  1. Selective imaging of adherent targeted ultrasound contrast agents

    PubMed Central

    Zhao, S; Kruse, D E; Ferrara, K W; Dayton, P A

    2007-01-01

    The goal of ultrasonic molecular imaging is the detection of targeted contrast agents bound to receptors on endothelial cells. We propose imaging methods that can distinguish adherent microbubbles from tissue and from freely circulating microbubbles, each of which would otherwise obscure signal from molecularly targeted adherent agents. The methods are based on a harmonic signal model of the returned echoes over a train of pulses. The first method utilizes an ‘image–push–image’ pulse sequence where adhesion of contrast agents is rapidly promoted by acoustic radiation force and the presence of adherent agents is detected by the signal change due to targeted microbubble adhesion. The second method rejects tissue echoes using a spectral high-pass filter. Free agent signal is suppressed by a pulse-to-pulse low-pass filter in both methods. An overlay of the adherent and/or flowing contrast agents on B-mode images can be readily created for anatomical reference. Contrast-to-tissue ratios from adherent microbubbles exceeding 30 dB and 20 dB were achieved for the two methods proposed, respectively. The performance of these algorithms is compared, emphasizing the significance and potential applications in ultrasonic molecular imaging. PMID:17404455

  2. Aerial imaging technology for photomask qualification: from a microscope to a metrology tool

    NASA Astrophysics Data System (ADS)

    Garetto, Anthony; Scherübl, Thomas; Peters, Jan Hendrik

    2012-09-01

    Photomasks carry the structured information of the chip designs printed with lithography scanners onto wafers. These structures, for the most modern technologies, are enlarged by a factor of 4 with respect to the final circuit design, and 20-60 of these photomasks are needed for the production of a single completed chip used, for example, in computers or cell phones. Lately, designs have been reported to be on the drawing board with close to 100 of these layers. Each of these photomasks will be reproduced onto the wafer several hundred times and typically 5000-50 000 wafers will be produced with each of them. Hence, the photomasks need to be absolutely defect-free to avoid any fatal electrical shortcut in the design or drastic performance degradation. One well-known method in the semiconductor industry is to analyze the aerial image of the photomask in a dedicated tool referred to as Aerial Imaging Measurement System, which emulates the behavior of the respective lithography scanner used for the imaging of the mask. High-end lithography scanners use light with a wavelength of 193 nm and high numerical apertures (NAs) of 1.35 utilizing a water film between the last lens and the resist to be illuminated (immersion scanners). Complex illumination shapes enable the imaging of structures well below the wavelength used. Future lithography scanners will work at a wavelength of 13.5 nm [extreme ultraviolet (EUV)] and require the optical system to work with mirrors in vacuum instead of the classical lenses used in current systems. The exact behavior of these systems is emulated by the Aerial Image Measurement System (AIMS™; a Trademark of Carl Zeiss). With these systems, any position of the photomask can be imaged under the same illumination condition used by the scanners, and hence, a prediction of the printing behavior of any structure can be derived. This system is used by mask manufacturers in their process flow to review critical defects or verify defect repair

  3. Robust Automatic Focus Algorithm for Low Contrast Images Using a New Contrast Measure

    PubMed Central

    Xu, Xin; Wang, Yinglin; Tang, Jinshan; Zhang, Xiaolong; Liu, Xiaoming

    2011-01-01

    Low contrast images, suffering from a lack of sharpness, are easily influenced by noise. As a result, many local false peaks may be generated in contrast measurements, making it difficult for the camera’s passive auto-focus system to perform its function of locating the focused peak. In this paper, a new passive auto-focus algorithm is proposed to address this problem. First, a noise reduction preprocessing is introduced to make our algorithm robust to both additive noise and multiplicative noise. Then, a new contrast measure is presented to bring in local false peaks, ensuring the presence of a well defined focused peak. In order to gauge the performance of our algorithm, a modified peak search algorithm is used in the experiments. The experimental results from an actual digital camera validate the effectiveness of our proposed algorithm. PMID:22164075

  4. Molecular Imaging and Contrast Agent Database (MICAD): Evolution and Progress

    PubMed Central

    Chopra, Arvind; Shan, Liang; Eckelman, W. C.; Leung, Kam; Latterner, Martin; Bryant, Stephen H.; Menkens, Anne

    2011-01-01

    The purpose of writing this review is to showcase the Molecular Imaging and Contrast Agent Database (MICAD; www.micad.nlm.nih.gov) to students, researchers and clinical investigators interested in the different aspects of molecular imaging. This database provides freely accessible, current, online scientific information regarding molecular imaging (MI) probes and contrast agents (CA) used for positron emission tomography, single-photon emission computed tomography, magnetic resonance imaging, x-ray/computed tomography, optical imaging and ultrasound imaging. Detailed information on >1000 agents in MICAD is provided in a chapter format and can be accessed through PubMed. Lists containing >4250 unique MI probes and CAs published in peer-reviewed journals and agents approved by the United States Food and Drug Administration (FDA) as well as a CSV file summarizing all chapters in the database can be downloaded from the MICAD homepage. Users can search for agents in MICAD on the basis of imaging modality, source of signal/contrast, agent or target category, preclinical or clinical studies, and text words. Chapters in MICAD describe the chemical characteristics (structures linked to PubChem), the in vitro and in vivo activities and other relevant information regarding an imaging agent. All references in the chapters have links to PubMed. A Supplemental Information Section in each chapter is available to share unpublished information regarding an agent. A Guest Author Program is available to facilitate rapid expansion of the database. Members of the imaging community registered with MICAD periodically receive an e-mail announcement (eAnnouncement) that lists new chapters uploaded to the database. Users of MICAD are encouraged to provide feedback, comments or suggestions for further improvement of the database by writing to the editors at: micad@nlm.nih.gov PMID:21989943

  5. Automatic aerial image shadow detection through the hybrid analysis of RGB and HIS color space

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Li, Huilin; Peng, Zhiyong

    2015-12-01

    This paper presents our research on automatic shadow detection from high-resolution aerial image through the hybrid analysis of RGB and HIS color space. To this end, the spectral characteristics of shadow are firstly discussed and three kinds of spectral components including the difference between normalized blue and normalized red component - BR, intensity and saturation components are selected as criterions to obtain initial segmentation of shadow region (called primary segmentation). After that, within the normalized RGB color space and HIS color space, the shadow region is extracted again (called auxiliary segmentation) using the OTSU operation, respectively. Finally, the primary segmentation and auxiliary segmentation are combined through a logical AND-connection operation to obtain reliable shadow region. In this step, small shadow areas are removed from combined shadow region and morphological algorithms are apply to fill small holes as well. The experimental results show that the proposed approach can effectively detect the shadow region from high-resolution aerial image and in high degree of automaton.

  6. Computational inspection applied to a mask inspection system with advanced aerial imaging capability

    NASA Astrophysics Data System (ADS)

    Pang, Linyong; Peng, Danping; He, Lin; Chen, Dongxue; Dam, Thuc; Tolani, Vikram; Tam, Aviram; Staud, Wolf

    2010-03-01

    At the most advanced technology nodes, such as 32nm and 22nm, aggressive OPC and Sub-Resolution Assist Features (SRAFs) are required. However, their use results in significantly increased mask complexity, challenging mask defect dispositioning more than ever. To address these challenges in mask inspection and defect dispositioning, new mask inspection technologies have been developed that not only provide high resolution masks imaged at the same wavelength as the scanner, but that also provide aerial images by using both: software simulation and hardware emulation. The original mask patterns stored by the optics of mask inspection systems can be recovered using a patented algorithm based on the Level Set Method. More accurate lithography simulation models can be used to further evaluate defects on simulated resist patterns using the recovered mask pattern in high resolution and aerial mode. An automated defect classification based on lithography significance and local CD changes is also developed to disposition tens of thousands of potential defects in minutes, so that inspection throughput is not impacted.

  7. Aerial Image Microscopes for the Inspection of Defects in EUV Masks

    SciTech Connect

    Barty, A; Taylor, J S; Hudyma, R; Spiller, E; Sweeney, D W; Shelden, G; Urbach, J-P

    2002-10-22

    The high volume inspection equipment currently available to support development of EUV blanks is non-actinic. The same is anticipated for patterned EUV mask inspection. Once potential defects are identified and located by such non-actinic inspection techniques, it is essential to have instrumentation to perform detailed characterization, and if repairs are performed, re-evaluation. The ultimate metric for the acceptance or rejection of a mask due to a defect, is the wafer level impact. Thus measuring the aerial image for the site under question is required. An EUV Aerial Image Microscope (''AIM'') similar to the current AIM tools for 248nm and 193nm exposure wavelength is the natural solution for this task. Due to the complicated manufacturing process of EUV blanks, AIM measurements might also be beneficial to accurately assessing the severity of a blank defect. This is an additional application for an EUV AIM as compared to today's use In recognition of the critical role of an EUV AIM for the successful implementation of EUV blank and mask supply, International SEMATECH initiated this design study with the purpose to define the technical requirements for accurately simulating EUV scanner performance, demonstrating the feasibility to meet these requirements and to explore various technical approaches to building an EUV AIM tool.

  8. Contrast agents in diagnostic imaging: Present and future.

    PubMed

    Caschera, Luca; Lazzara, Angelo; Piergallini, Lorenzo; Ricci, Domenico; Tuscano, Bruno; Vanzulli, Angelo

    2016-08-01

    Specific contrast agents have been developed for x ray examinations (mainly CT), sonography and Magnetic Resonance Imaging. Most of them are extracellular agents which create different enhancement on basis of different vascularization or on basis of different interstitial network in tissues, but some can be targeted to a particular cell line (e.g. hepatocyte). Microbubbles can be used as carrier for therapeutic drugs which can be released in specific targets under sonographic guidance, decreasing systemic toxicity and increasing therapeutic effect. Radiologists have to choose a particular contrast agent knowing its physical and chemical properties and the possibility of adverse reactions and balancing them with the clinical benefits of a more accurate diagnosis. As for any drug, contrast agents can cause adverse events, which are more frequent with Iodine based CA, but also with Gd based CA and even with sonographic contrast agents hypersensitivity reaction can occur. PMID:27168225

  9. Luminosity and contrast normalization in color retinal images based on standard reference image

    NASA Astrophysics Data System (ADS)

    S. Varnousfaderani, Ehsan; Yousefi, Siamak; Belghith, Akram; Goldbaum, Michael H.

    2016-03-01

    Color retinal images are used manually or automatically for diagnosis and monitoring progression of a retinal diseases. Color retinal images have large luminosity and contrast variability within and across images due to the large natural variations in retinal pigmentation and complex imaging setups. The quality of retinal images may affect the performance of automatic screening tools therefore different normalization methods are developed to uniform data before applying any further analysis or processing. In this paper we propose a new reliable method to remove non-uniform illumination in retinal images and improve their contrast based on contrast of the reference image. The non-uniform illumination is removed by normalizing luminance image using local mean and standard deviation. Then the contrast is enhanced by shifting histograms of uniform illuminated retinal image toward histograms of the reference image to have similar histogram peaks. This process improve the contrast without changing inter correlation of pixels in different color channels. In compliance with the way humans perceive color, the uniform color space of LUV is used for normalization. The proposed method is widely tested on large dataset of retinal images with present of different pathologies such as Exudate, Lesion, Hemorrhages and Cotton-Wool and in different illumination conditions and imaging setups. Results shows that proposed method successfully equalize illumination and enhances contrast of retinal images without adding any extra artifacts.

  10. Examination of contrast mechanisms in optoacoustic imaging of thermal lesions

    NASA Astrophysics Data System (ADS)

    Richter, Christian; Spirou, Gloria; Oraevsky, Alexander A.; Whelan, William M.; Kolios, Michael C.

    2006-02-01

    Optoacoustic Imaging is based on the thermal expansion of tissue caused by a temperature rise due to absorption of short laser pulses. At constant laser fluence, optoacoustic image contrast is proportional to differences in optical absorption and the thermoacoustic efficiency, expressed by the Grueuneisen parameter, Γ. Γ is proportional to the thermal expansion coefficient, the sound velocity squared and the inverse heat capacity at constant pressure. In thermal therapies, these parameters may be modified in the treated area. In this work experiments were performed to examine the influence of these parameters on image contrast. A Laser Optoacoustic Imaging System (LOIS, Fairway Medical Technologies, Houston, Texas) was used to image tissue phantoms comprised of cylindrical Polyvinyl Chloride Plastisol (PVCP) optical absorbing targets imbedded in either gelatin or PVCP as the background medium. Varying concentrations of Black Plastic Color (BPC) and titanium dioxide (TiO II) were added to targets and background to yield desired tissue relevant optical absorption and effective scattering coefficients, respectively. In thermal therapy experiments, ex-vivo bovine liver was heated with laser fibres (805nm laser at 5 W for 600s) to create regions of tissue coagulation. Lesions formed in the liver tissue were visible using the LOIS system with reasonable correspondence to the actual region of tissue coagulation. In the phantom experiments, contrast could be seen with low optical absorbing targets (μ a of 0.50cm -1 down to 0.13cm-1) embedded in a gelatin background (see manuscript for formula). Therefore, the data suggest that small objects (< 5mm) with low absorption coefficients (in the range < 1cm -1) can be imaged using LOIS. PVCP-targets in gelatin were visible, even with the same optical properties as the gelatin, but different Γ. The enhanced contrast may also be caused by differences in the mechanical properties between the target and the surrounding medium

  11. Dynamic contrast-based quantization for lossy wavelet image compression.

    PubMed

    Chandler, Damon M; Hemami, Sheila S

    2005-04-01

    This paper presents a contrast-based quantization strategy for use in lossy wavelet image compression that attempts to preserve visual quality at any bit rate. Based on the results of recent psychophysical experiments using near-threshold and suprathreshold wavelet subband quantization distortions presented against natural-image backgrounds, subbands are quantized such that the distortions in the reconstructed image exhibit root-mean-squared contrasts selected based on image, subband, and display characteristics and on a measure of total visual distortion so as to preserve the visual system's ability to integrate edge structure across scale space. Within a single, unified framework, the proposed contrast-based strategy yields images which are competitive in visual quality with results from current visually lossless approaches at high bit rates and which demonstrate improved visual quality over current visually lossy approaches at low bit rates. This strategy operates in the context of both nonembedded and embedded quantization, the latter of which yields a highly scalable codestream which attempts to maintain visual quality at all bit rates; a specific application of the proposed algorithm to JPEG-2000 is presented. PMID:15825476

  12. Advances in engineering of high contrast CARS imaging endoscopes

    PubMed Central

    Deladurantaye, Pascal; Paquet, Alex; Paré, Claude; Zheng, Huimin; Doucet, Michel; Gay, David; Poirier, Michel; Cormier, Jean-François; Mermut, Ozzy; Wilson, Brian C.; Seibel, Eric J.

    2014-01-01

    The translation of CARS imaging towards real time, high resolution, chemically selective endoscopic tissue imaging applications is limited by a lack of sensitivity in CARS scanning probes sufficiently small for incorporation into endoscopes. We have developed here a custom double clad fiber (DCF)-based CARS probe which is designed to suppress the contaminant Four-Wave-Mixing (FWM) background generated within the fiber and integrated it into a fiber based scanning probe head of a few millimeters in diameter. The DCF includes a large mode area (LMA) core as a first means of reducing FWM generation by ~3 dB compared to commercially available, step-index single mode fibers. A micro-fabricated miniature optical filter (MOF) was grown on the distal end of the DCF to block the remaining FWM background from reaching the sample. The resulting probe was used to demonstrate high contrast images of polystyrene beads in the forward-CARS configuration with > 10 dB suppression of the FWM background. In epi-CARS geometry, images exhibited lower contrast due to the leakage of MOF-reflected FWM from the fiber core. Improvements concepts for the fiber probe are proposed for high contrast epi-CARS imaging to enable endoscopic implementation in clinical tissue assessment contexts, particularly in the early detection of endoluminal cancers and in tumor margin assessment. PMID:25401538

  13. a Robust Matching Method for Unmmaned Aerial Vehicle Images with Different Viewpoint Angles Based on Regional Coherency

    NASA Astrophysics Data System (ADS)

    Shao, Z.; Li, C.; Yang, N.

    2015-08-01

    One of the main challenges confronting high-resolution remote sensing image matching is how to address the issue of geometric deformation between images, especially when the images are obtained from different viewpoints. In this paper, a robust matching method for Unmanned Aerial Vehicle images of different viewpoint angles based on regional coherency is proposed. The literature on the geometric transform analysis reveals that if transformations between different pixel pairs are different, they can't be expressed by a uniform affine transform. While for the same real scene, if the instantaneous field of view or the target depth changes is small, transformation between pixels in the whole image can be approximated by an affine transform. On the basis of this analysis, a region coherency matching method for Unmanned Aerial Vehicle images is proposed. In the proposed method, the simplified mapping from image view change to scale change and rotation change has been derived. Through this processing, the matching between view change images can be converted into the matching between rotation and scale changed images. In the method, firstly local image regions are detected and view changes between these local regions are mapped to rotation and scale change by performing local region simulation. And then, point feature detection and matching are implemented in the simulated image regions. Finally, a group of Unmanned Aerial Vehicle images are adopted to verify the performance of proposed matching method respectively, and a comparative analysis with other methods demonstrates the effectiveness of the proposed method.

  14. A contrast enhancement technique for low light images

    NASA Astrophysics Data System (ADS)

    Singh, Ankita; Gupta, K. K.

    2016-03-01

    Digital Imagery systems are traditionally bad in low light conditions. In this paper, a new algorithm for contrast improvement is proposed. The algorithm consists of two stages. The first stage is decomposing the input image into four subbands by applying two-dimensional discrete wavelet transform and estimates the singular value matrix of sub band image. The second stage is that it reconstructs the enhanced image by applying the inverse DWT. The technique is compared with conventional image equalization technique such as standard General Histogram Equalization (GHE) and other state-of-the-art techniques such as Quadrant Dynamic Histogram Equalization (QDHE), Singular-Value-Wavelet based image Equalization (SVWE) and Singular Value Equalization (SVE) on the basis of their Peak Signal to Noise Ratio (PSNR) and Root Mean Square Error (RMSE) values. The simulation results indicated that the image contrast enhanced by the purposed method was higher than that of the images enhanced by the other conventional state-of-the-art techniques.

  15. An improved image sharpness assessment method based on contrast sensitivity

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Tian, Yan; Yin, Yili

    2015-10-01

    An image sharpness assessment method based on the property of Contrast Sensitivity Function (CSF) was proposed to realize the sharpness assessment of unfocused image. Firstly, image was performed the two-dimensional Discrete Fourier Transform (DFT), and intermediate frequency coefficients and high frequency coefficients are divided into two parts respectively. Secondly the four parts were performed the inverse Discrete Fourier Transform (IDFT) to obtain subimages. Thirdly, using Range Function evaluates the four sub-image sharpness value. Finally, the image sharpness is obtained through the weighted sum of the sub-image sharpness value. In order to comply with the CSF characteristics, weighting factor is setting based on the Contrast Sensitivity Function. The new algorithm and four typical evaluation algorithm: Fourier, Range , Variance and Wavelet are evaluated based on the six quantitative evaluation index, which include the width of steep part of focusing curve, the ration of sharpness, the steepness, the variance of float part of focusing curve, the factor of local extreme and the sensitivity. On the other hand, the effect of noise, and image content on algorithm is analyzed in this paper. The experiment results show that the new algorithm has better performance of sensitivity, anti-nose than the four typical evaluation algorithms. The evaluation results are consistent with human visual characteristics.

  16. Filtering and detection of low contrast structures on ultrasound images

    NASA Astrophysics Data System (ADS)

    Vargas-Quintero, Lorena; Escalante-Ramírez, Boris; Arámbula, Fernando

    2012-06-01

    In this paper, we propose a detection method of low contrast structures in medical ultrasound images. Since noise speckle makes difficult the analysis of ultrasound images, two approaches based on the wavelet and Hermite-transforms for enhancement and noise reduction are compared. These techniques assume that speckle pattern is a random signal characterized by a Rayleigh distribution and affects the image as a multiplicative noise. For the wavelet-based approach, a Bayesian estimator at subband level for pixel classification is used. All the estimation parameters are calculated using an adjustment method derived from the first and second order statistical moments. The Hermite method computes a mask to find those pixels that are corrupted by speckle. In this work, we consider a statistical detection model that depends on the variable size and contrast of the image speckle. The algorithms have been evaluated using several real and synthetic ultrasound images. Combinations of the implemented methods can be helpful for automatic detection applications of tumors in mammographic ultrasound images. The employed filtering techniques are quantitatively and qualitatively compared with other previously published methods applied on ultrasound medical images.

  17. Feature-based registration of historical aerial images by Area Minimization

    NASA Astrophysics Data System (ADS)

    Nagarajan, Sudhagar; Schenk, Toni

    2016-06-01

    The registration of historical images plays a significant role in assessing changes in land topography over time. By comparing historical aerial images with recent data, geometric changes that have taken place over the years can be quantified. However, the lack of ground control information and precise camera parameters has limited scientists' ability to reliably incorporate historical images into change detection studies. Other limitations include the methods of determining identical points between recent and historical images, which has proven to be a cumbersome task due to continuous land cover changes. Our research demonstrates a method of registering historical images using Time Invariant Line (TIL) features. TIL features are different representations of the same line features in multi-temporal data without explicit point-to-point or straight line-to-straight line correspondence. We successfully determined the exterior orientation of historical images by minimizing the area formed between corresponding TIL features in recent and historical images. We then tested the feasibility of the approach with synthetic and real data and analyzed the results. Based on our analysis, this method shows promise for long-term 3D change detection studies.

  18. An aerial remote sensing image's mosaic approach using multi-layer wavelet fusion based on structure similarity

    NASA Astrophysics Data System (ADS)

    Wei, Li; Shi, Junsheng; Huang, Xiaoqiao; Ding, Huimei

    2015-12-01

    In order to solve the problems that image's entropy of information decline obviously and boundary line phenomenon appear obviously in the processing of aerial remote sensing image's mosaic, an image mosaic approach is presented in this paper, which uses wavelet image fusion based on structure similarity and is capable of creating seamless mosaics in real-time. The approach consists of three steps. First, the overlapping area of two aerial images is extracted. Then, the two overlapping area images are fused adaptively by the method of multi-layer wavelet decomposition based on the structure similarity and appointed regulation. Finally, weighted average fusion is used again to avoid the visible boundary line for the both sides of the boundary of the above fusion image. Experimental results show the entropy of information, sharpness and standard deviation have been improved significantly, and the boundary line has been eliminated observably.

  19. Contrast-based sensorless adaptive optics for retinal imaging.

    PubMed

    Zhou, Xiaolin; Bedggood, Phillip; Bui, Bang; Nguyen, Christine T O; He, Zheng; Metha, Andrew

    2015-09-01

    Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In this study we show, for the first time, contrast-based NS-AO ophthalmoscopy for full-frame in vivo imaging of human and animal eyes. We suggest a robust image quality metric that could be used for any imaging modality, and test its performance against other metrics using (physical) model eyes. PMID:26417525

  20. Image fusion in x-ray differential phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Haas, W.; Polyanskaya, M.; Bayer, F.; Gödel, K.; Hofmann, H.; Rieger, J.; Ritter, A.; Weber, T.; Wucherer, L.; Durst, J.; Michel, T.; Anton, G.; Hornegger, J.

    2012-02-01

    Phase-contrast imaging is a novel modality in the field of medical X-ray imaging. The pioneer method is the grating-based interferometry which has no special requirements to the X-ray source and object size. Furthermore, it provides three different types of information of an investigated object simultaneously - absorption, differential phase-contrast and dark-field images. Differential phase-contrast and dark-field images represent a completely new information which has not yet been investigated and studied in context of medical imaging. In order to introduce phase-contrast imaging as a new modality into medical environment the resulting information about the object has to be correctly interpreted. The three output images reflect different properties of the same object the main challenge is to combine and visualize these data in such a way that it diminish the information explosion and reduce the complexity of its interpretation. This paper presents an intuitive image fusion approach which allows to operate with grating-based phase-contrast images. It combines information of the three different images and provides a single image. The approach is implemented in a fusion framework which is aimed to support physicians in study and analysis. The framework provides the user with an intuitive graphical user interface allowing to control the fusion process. The example given in this work shows the functionality of the proposed method and the great potential of phase-contrast imaging in medical practice.

  1. Quantitative evaluation of mask phase defects from through-focus EUV aerial images

    SciTech Connect

    Mochi, Iacopo; Yamazoe, Kenji; Neureuther, Andrew; Goldberg, Kenneth A.

    2011-02-21

    Mask defects inspection and imaging is one of the most important issues for any pattern transfer lithography technology. This is especially true for EUV lithography where the wavelength-specific properties of masks and defects necessitate actinic inspection for a faithful prediction of defect printability and repair performance. In this paper we will present a technique to obtain a quantitative characterization of mask phase defects from EUV aerial images. We apply this technique to measure the aerial image phase of native defects on a blank mask, measured with the SEMATECH Berkeley Actinic Inspection Tool (AIT) an EUV zoneplate microscope that operates at Lawrence Berkeley National Laboratory. The measured phase is compared with predictions made from AFM top-surface measurements of those defects. While amplitude defects are usually easy to recognize and quantify with standard inspection techniques like scanning electron microscopy (SEM), defects or structures that have a phase component can be much more challenging to inspect. A phase defect can originate from the substrate or from any level of the multilayer. In both cases its effect on the reflected field is not directly related to the local topography of the mask surface, but depends on the deformation of the multilayer structure. Using the AIT, we have previously showed that EUV inspection provides a faithful and reliable way to predict the appearance of mask defect on the printed wafer; but to obtain a complete characterization of the defect we need to evaluate quantitatively its phase component. While aerial imaging doesn't provide a direct measurement of the phase of the object, this information is encoded in the through focus evolution of the image intensity distribution. Recently we developed a technique that allows us to extract the complex amplitude of EUV mask defects using two aerial images from different focal planes. The method for the phase reconstruction is derived from the Gerchberg-Saxton (GS

  2. Demonstration of a multimode longwave infrared imaging system on an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Jones, Terry L.; Romanski, John G.; Buckley, John J.; Girata, Anthony J.

    1999-07-01

    The RISTA II sensor was integrated into the Altus Unmanned Aerial Vehicle (UAV) and flown over Camp Roberts and Ft. Hunter Ligget, CA in July 1998. The RISTA II demonstration system consisted of a long-wave IR imager, a digital data link, and a ground processing facility (GPF) containing an aided target recognizer, data storage devices, and operator workstations. Imagery was compressed on the UAV and sent on the GPF over a 10.71 Mbit per second digital data link. Selected image frames from the GPF were sent near real-time over a T1 link to observers in Rosslyn, VA. The sensor operated in a variety of scanning and framing modes. Both manual and automatic sensor pointing were demonstrated. Seven flights were performed at altitudes up to 7500m and range sup to 60 km from the GPF. Applicability to numerous military and civilian scenarios was demonstrated.

  3. Modelling and representation issues in automated feature extraction from aerial and satellite images

    NASA Astrophysics Data System (ADS)

    Sowmya, Arcot; Trinder, John

    New digital systems for the processing of photogrammetric and remote sensing images have led to new approaches to information extraction for mapping and Geographic Information System (GIS) applications, with the expectation that data can become more readily available at a lower cost and with greater currency. Demands for mapping and GIS data are increasing as well for environmental assessment and monitoring. Hence, researchers from the fields of photogrammetry and remote sensing, as well as computer vision and artificial intelligence, are bringing together their particular skills for automating these tasks of information extraction. The paper will review some of the approaches used in knowledge representation and modelling for machine vision, and give examples of their applications in research for image understanding of aerial and satellite imagery.

  4. Three-dimensional building roof boundary extraction using high-resolution aerial image and LiDAR data

    NASA Astrophysics Data System (ADS)

    Dal Poz, A. P.; Fazan, Antonio J.

    2014-10-01

    This paper presents a semiautomatic method for rectilinear building roof boundary extraction, based on the integration of high-resolution aerial image and LiDAR (Light Detection and Ranging) data. The proposed method is formulated as an optimization problem, in which a snakes-based objective function is developed to represent the building roof boundaries in an object-space coordinate system. Three-dimensional polylines representing building roof boundaries are obtained by optimizing the objective function using the dynamic programming optimization technique. The results of our experiments showed that the proposed method satisfactorily performed the task of extracting different building roof boundaries from aerial image and LiDAR data.

  5. Dual-frequency piezoelectric transducers for contrast enhanced ultrasound imaging.

    PubMed

    Martin, K Heath; Lindsey, Brooks D; Ma, Jianguo; Lee, Mike; Li, Sibo; Foster, F Stuart; Jiang, Xiaoning; Dayton, Paul A

    2014-01-01

    For many years, ultrasound has provided clinicians with an affordable and effective imaging tool for applications ranging from cardiology to obstetrics. Development of microbubble contrast agents over the past several decades has enabled ultrasound to distinguish between blood flow and surrounding tissue. Current clinical practices using microbubble contrast agents rely heavily on user training to evaluate degree of localized perfusion. Advances in separating the signals produced from contrast agents versus surrounding tissue backscatter provide unique opportunities for specialized sensors designed to image microbubbles with higher signal to noise and resolution than previously possible. In this review article, we describe the background principles and recent developments of ultrasound transducer technology for receiving signals produced by contrast agents while rejecting signals arising from soft tissue. This approach relies on transmitting at a low-frequency and receiving microbubble harmonic signals at frequencies many times higher than the transmitted frequency. Design and fabrication of dual-frequency transducers and the extension of recent developments in transducer technology for dual-frequency harmonic imaging are discussed. PMID:25375755

  6. Dual-Frequency Piezoelectric Transducers for Contrast Enhanced Ultrasound Imaging

    PubMed Central

    Martin, K. Heath; Lindsey, Brooks D.; Ma, Jianguo; Lee, Mike; Li, Sibo; Foster, F. Stuart; Jiang, Xiaoning; Dayton, Paul A.

    2014-01-01

    For many years, ultrasound has provided clinicians with an affordable and effective imaging tool for applications ranging from cardiology to obstetrics. Development of microbubble contrast agents over the past several decades has enabled ultrasound to distinguish between blood flow and surrounding tissue. Current clinical practices using microbubble contrast agents rely heavily on user training to evaluate degree of localized perfusion. Advances in separating the signals produced from contrast agents versus surrounding tissue backscatter provide unique opportunities for specialized sensors designed to image microbubbles with higher signal to noise and resolution than previously possible. In this review article, we describe the background principles and recent developments of ultrasound transducer technology for receiving signals produced by contrast agents while rejecting signals arising from soft tissue. This approach relies on transmitting at a low-frequency and receiving microbubble harmonic signals at frequencies many times higher than the transmitted frequency. Design and fabrication of dual-frequency transducers and the extension of recent developments in transducer technology for dual-frequency harmonic imaging are discussed. PMID:25375755

  7. Adaptive image contrast enhancement algorithm for point-based rendering

    NASA Astrophysics Data System (ADS)

    Xu, Shaoping; Liu, Xiaoping P.

    2015-03-01

    Surgical simulation is a major application in computer graphics and virtual reality, and most of the existing work indicates that interactive real-time cutting simulation of soft tissue is a fundamental but challenging research problem in virtual surgery simulation systems. More specifically, it is difficult to achieve a fast enough graphic update rate (at least 30 Hz) on commodity PC hardware by utilizing traditional triangle-based rendering algorithms. In recent years, point-based rendering (PBR) has been shown to offer the potential to outperform the traditional triangle-based rendering in speed when it is applied to highly complex soft tissue cutting models. Nevertheless, the PBR algorithms are still limited in visual quality due to inherent contrast distortion. We propose an adaptive image contrast enhancement algorithm as a postprocessing module for PBR, providing high visual rendering quality as well as acceptable rendering efficiency. Our approach is based on a perceptible image quality technique with automatic parameter selection, resulting in a visual quality comparable to existing conventional PBR algorithms. Experimental results show that our adaptive image contrast enhancement algorithm produces encouraging results both visually and numerically compared to representative algorithms, and experiments conducted on the latest hardware demonstrate that the proposed PBR framework with the postprocessing module is superior to the conventional PBR algorithm and that the proposed contrast enhancement algorithm can be utilized in (or compatible with) various variants of the conventional PBR algorithm.

  8. Optimization of grating-based phase-contrast imaging setup

    NASA Astrophysics Data System (ADS)

    Baturin, Pavlo; Shafer, Mark

    2014-03-01

    Phase contrast imaging (PCI) technology has emerged over the last decade as a novel imaging technique capable of probing phase characteristics of an object as complimentary information to conventional absorption properties. In this work, we identified and provided a rationale for optimization of key parameters that determine the performance of a Talbot-Lau PCI system. The study used the Fresnel wave propagation theory and system geometry to predict optimal grating alignment conditions necessary for producing maximum-phase contrast. The moiré fringe pattern frequency and angular orientation produced in the X-ray detector plane were studied as functions of the gratings' axial rotation. The effect of axial displacement between source-to-phase (L) and phase-to-absorption (d) gratings, on system contrast, was discussed in detail. The L-d regions of highest contrast were identified, and the dependence of contrast on the energy of the X-ray spectrum was also studied. The predictions made in this study were tested experimentally and showed excellent agreement. The results indicated that the PCI system performance is highly sensitive to alignment. The rationale and recommendations made should serve as guidance in design, development, and optimization of Talbot-Lau PCI systems.

  9. Characterizing growth patterns in longitudinal MRI using image contrast

    NASA Astrophysics Data System (ADS)

    Vardhan, Avantika; Prastawa, Marcel; Vachet, Clement; Piven, Joseph; Gerig, Guido

    2014-03-01

    Understanding the growth patterns of the early brain is crucial to the study of neuro-development. In the early stages of brain growth, a rapid sequence of biophysical and chemical processes take place. A crucial component of these processes, known as myelination, consists of the formation of a myelin sheath around a nerve fiber, enabling the effective transmission of neural impulses. As the brain undergoes myelination, there is a subsequent change in the contrast between gray matter and white matter as observed in MR scans. In this work, gray-white matter contrast is proposed as an effective measure of appearance which is relatively invariant to location, scanner type, and scanning conditions. To validate this, contrast is computed over various cortical regions for an adult human phantom. MR (Magnetic Resonance) images of the phantom were repeatedly generated using different scanners, and at different locations. Contrast displays less variability over changing conditions of scan compared to intensity-based measures, demonstrating that it is less dependent than intensity on external factors. Additionally, contrast is used to analyze longitudinal MR scans of the early brain, belonging to healthy controls and Down's Syndrome (DS) patients. Kernel regression is used to model subject-specific trajectories of contrast changing with time. Trajectories of contrast changing with time, as well as time-based biomarkers extracted from contrast modeling, show large differences between groups. The preliminary applications of contrast based analysis indicate its future potential to reveal new information not covered by conventional volumetric or deformation-based analysis, particularly for distinguishing between normal and abnormal growth patterns.

  10. Cumulative phase delay imaging - A new contrast enhanced ultrasound modality

    SciTech Connect

    Demi, Libertario Sloun, Ruud J. G. van; Mischi, Massimo; Wijkstra, Hessel

    2015-10-28

    Recently, a new acoustic marker for ultrasound contrast agents (UCAs) has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental pressure wave field components is in fact observable for ultrasound propagating through UCAs. This phenomenon is absent in the case of tissue nonlinearity and is dependent on insonating pressure and frequency, UCA concentration, and propagation path length through UCAs. In this paper, ultrasound images based on this marker are presented. The ULA-OP research platform, in combination with a LA332 linear array probe (Esaote, Firenze Italy), were used to image a gelatin phantom containing a PVC plate (used as a reflector) and a cylindrical cavity measuring 7 mm in diameter (placed in between the observation point and the PVC plate). The cavity contained a 240 µL/L SonoVueO{sup ®} UCA concentration. Two insonating frequencies (3 MHz and 2.5 MHz) were used to scan the gelatine phantom. A mechanical index MI = 0.07, measured in water at the cavity location with a HGL-0400 hydrophone (Onda, Sunnyvale, CA), was utilized. Processing the ultrasound signals backscattered from the plate, ultrasound images were generated in a tomographic fashion using the filtered back-projection method. As already observed in previous studies, significantly higher CPD values are measured when imaging at a frequency of 2.5 MHz, as compared to imaging at 3 MHz. In conclusion, these results confirm the applicability of the discussed CPD as a marker for contrast imaging. Comparison with standard contrast-enhanced ultrasound imaging modalities will be the focus of future work.

  11. Cumulative phase delay imaging - A new contrast enhanced ultrasound modality

    NASA Astrophysics Data System (ADS)

    Demi, Libertario; van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2015-10-01

    Recently, a new acoustic marker for ultrasound contrast agents (UCAs) has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental pressure wave field components is in fact observable for ultrasound propagating through UCAs. This phenomenon is absent in the case of tissue nonlinearity and is dependent on insonating pressure and frequency, UCA concentration, and propagation path length through UCAs. In this paper, ultrasound images based on this marker are presented. The ULA-OP research platform, in combination with a LA332 linear array probe (Esaote, Firenze Italy), were used to image a gelatin phantom containing a PVC plate (used as a reflector) and a cylindrical cavity measuring 7 mm in diameter (placed in between the observation point and the PVC plate). The cavity contained a 240 µL/L SonoVueO® UCA concentration. Two insonating frequencies (3 MHz and 2.5 MHz) were used to scan the gelatine phantom. A mechanical index MI = 0.07, measured in water at the cavity location with a HGL-0400 hydrophone (Onda, Sunnyvale, CA), was utilized. Processing the ultrasound signals backscattered from the plate, ultrasound images were generated in a tomographic fashion using the filtered back-projection method. As already observed in previous studies, significantly higher CPD values are measured when imaging at a frequency of 2.5 MHz, as compared to imaging at 3 MHz. In conclusion, these results confirm the applicability of the discussed CPD as a marker for contrast imaging. Comparison with standard contrast-enhanced ultrasound imaging modalities will be the focus of future work.

  12. Role of contrast enhanced ultrasound in hepatic imaging.

    PubMed

    Dhamija, Ekta; Paul, Shashi B

    2014-01-01

    Grey scale ultrasound (US) is the first line imaging modality used for the evaluation of liver by the radiologists and clinicians worldwide. It is a simple, inexpensive, safe and an easily available technique. US has the ability to delineate the hepatic parenchyma and differentiate the cystic from solid hepatic lesions. However, it has limited accuracy in the detection and characterization of focal liver lesions (FLL). CEUS is a major breakthrough in ultrasound imaging which evolved with the aim of overcoming these limitations of US. With the use of ultrasound contrast agents (UCAs), CEUS has the ability to detect the intranodular hemodynamics and thereby provide information of the enhancement pattern of the lesion resulting in reliable characterization of the FLL. This capability brings it at par with the cross sectional contrast enhanced imaging techniques of computed tomography and magnetic resonance imaging. UCAs are safe, non-nephrotoxic and thus can be used to evaluate patients with renal failure as well. The technique of CEUS is simple, requires few minutes to perform, portable, lacks ionising radiation and above all is a cost-effective modality. These advantages have made CEUS an established modality for hepatic imaging. Besides detection and characterization of FLL, it also plays a vital role in the management and repeated follow up of treated patients of FLL. Newer clinical applications of CEUS with promising results are also being unravelled . This review highlights the multifaceted role of CEUS in hepatic imaging and its upcoming clinical applications. PMID:26012317

  13. Magnetic resonance imaging and contrast enhancement. Scientific report

    SciTech Connect

    Swenberg, C.E.; Movius, E.G.

    1988-01-01

    Chapters II through VI of this report discuss: Relaxation of Nuclear Spins; Echo Techniques; Basic Imaging Pulse Sequences; Partial Saturation Recovery; Inversion Recovery; Spin Echo; Effects of Pulse Sequence on Image Contrast; Contrast Agents; Theoretical Aspects; Pharmacokinetics and Toxicity; and Physiological Rationale for Agent Selection. One of the major goals in all medical imaging techniques is to maximize one's ability to visualize and differentiate adjacent tissue regions in the body on the basis of differences in anatomy, physiology, or various pathological processes. Magnetic resonance (MR) imaging offers distinct advantages over conventional x-ray imaging because of the possibility of selecting specific pulse sequences that can differentiate adjacent structures on the basis of differences in proton density, T/sub 1/ or T/sub 2/ relaxation rates, or flow. As a result of applying these various pulse sequences, numerous images have been obtained of the brain and other organs that demonstrate considerably more-detailed anatomical structure than had previously been available with computerized tomography, ultrasound, or nuclear medicine techniques. In some situations it is clearly superior, such as in the diagnosis of multiple sclerosis.

  14. Research on the processing technology of low-altitude unmanned aerial vehicle images

    NASA Astrophysics Data System (ADS)

    Tang, Shihua; Liu, Yintao; Li, Feida; Zhou, Conglin; Huang, Qing; Xu, Hongwei

    2015-12-01

    The UAV system acts as one of the infrastructure of earth observation, with its mobility, high speed, flexibility, economy and other remarkable technical advantages, has been widely used in various fields of the national economic construction, such as agricultural monitoring, resource development, disaster emergency treatment. Taking an actual engineering as a case study in this paper, the method and the skill of making digital orthophoto map was stated by using the UASMaster, the professional UAV data processing software, based on the eBee unmanned aerial vehicle. Finally, the precision of the DOM was analyzed in detail through two methods, overlapping the DOM with the existing DLG of the region and contrasting the points of the existing DLG of 1:1000 scale with the corresponding checkpoints of the stereomodel.

  15. Object-based Image Classification of Arctic Sea Ice and Melt Ponds through Aerial Photos

    NASA Astrophysics Data System (ADS)

    Miao, X.; Xie, H.; Li, Z.; Lei, R.

    2013-12-01

    The last six years have marked the lowest Arctic summer sea ice extents in the modern era, with a new record summer minimum (3.4 million km2) set on 13 September 2012. It has been predicted that the Arctic could be free of summer ice within the next 25-30. The loss of Arctic summer ice could have serious consequences, such as higher water temperature due to the positive feedback of albedo, more powerful and frequent storms, rising sea levels, diminished habitats for polar animals, and more pollution due to fossil fuel exploitation and/ or increased traffic through the Northwest/ Northeast Passage. In these processes, melt ponds play an important role in Earth's radiation balance since they strongly absorb solar radiation rather than reflecting it as snow and ice do. Therefore, it is necessary to develop the ability of predicting the sea ice/ melt pond extents and space-time evolution, which is pivotal to prepare for the variation and uncertainty of the future environment, political, economic, and military needs. A lot of efforts have been put into Arctic sea ice modeling to simulate sea ice processes. However, these sea ice models were initiated and developed based on limited field surveys, aircraft or satellite image data. Therefore, it is necessary to collect high resolution sea ice aerial photo in a systematic way to tune up, validate, and improve models. Currently there are many sea ice aerial photos available, such as Chinese Arctic Exploration (CHINARE 2008, 2010, 2012), SHEBA 1998 and HOTRAX 2005. However, manually delineating of sea ice and melt pond from these images is time-consuming and labor-intensive. In this study, we use the object-based remote sensing classification scheme to extract sea ice and melt ponds efficiently from 1,727 aerial photos taken during the CHINARE 2010. The algorithm includes three major steps as follows. (1) Image segmentation groups the neighboring pixels into objects according to the similarity of spectral and texture

  16. High Contrast Imaging with the JWST NIRCAM Coronagraph

    NASA Technical Reports Server (NTRS)

    Green, Joseph J.; Beichman, Charles; Basinger, Scott A.; Horner, Scott; Meyer, Michael; Redding, David C.; Rieke, Marcia; Trauger, John T.

    2005-01-01

    Relative to ground-based telescopes, the James Webb Space Telescope (JWST) will have a substantial sensitivity advantage in the 2.2-5pm wavelength range where brown dwarfs and hot Jupiters are thought to have significant brightness enhancements. To facilitate high contrast imaging within this band, the Near-Infrared Camera (NIRCAM) will employ a Lyot coronagraph with an array of band-limited image-plane occulting spots. In this paper, we provide the science motivation for high contrast imaging with NIRCAM, comparing its expected performance to that of the Keck, Gemini and 30 m (TMT) telescopes equipped with Adaptive Optics systems of different capabilities. We then describe our design for the NIRCAM coronagraph that enables imaging over the entire sensitivity range of the instrument while providing significant operational flexibility. We describe the various design tradeoffs that were made in consideration of alignment and aberration sensitivities and present contrast performance in the presence of JWST's expected optical aberrations. Finally we show an example of a that can provide 10-5 companion sensitivity at sub-arcsecond separations.

  17. Optimal Phase Masks for High Contrast Imaging Applications

    NASA Astrophysics Data System (ADS)

    Ruane, Garreth J.

    Phase-only optical elements can provide a number of important functions for high-contrast imaging. This thesis presents analytical and numerical optical design methods for accomplishing specific tasks, the most significant of which is the precise suppression of light from a distant point source. Instruments designed for this purpose are known as coronagraphs. Here, advanced coronagraph designs are presented that offer improved theoretical performance in comparison to the current state-of-the-art. Applications of these systems include the direct imaging and characterization of exoplanets and circumstellar disks with high sensitivity. Several new coronagraph designs are introduced and, in some cases, experimental support is provided. In addition, two novel high-contrast imaging applications are discussed: the measurement of sub-resolution information using coronagraphic optics and the protection of sensors from laser damage. The former is based on experimental measurements of the sensitivity of a coronagraph to source displacement. The latter discussion presents the current state of ongoing theoretical work. Beyond the mentioned applications, the main outcome of this thesis is a generalized theory for the design of optical systems with one of more phase masks that provide precise control of radiation over a large dynamic range, which is relevant in various high-contrast imaging scenarios. The optimal phase masks depend on the necessary tasks, the maximum number of optics, and application specific performance measures. The challenges and future prospects of this work are discussed in detail.

  18. Imaging contrast effects in alginate microbeads containing trapped emulsion droplets

    NASA Astrophysics Data System (ADS)

    Hester-Reilly, Holly J.; Shapley, Nina C.

    2007-09-01

    This study focuses on spherical microparticles made of cross-linked alginate gel and microcapsules composed of an oil-in-water emulsion where the continuous aqueous phase is cross-linked into an alginate gel matrix. We have investigated the use of these easily manufactured microbeads as contrast agents for the study of the flow properties of fluids using nuclear magnetic resonance imaging. Results demonstrate that combined spin-spin ( T2) relaxation and diffusion contrast in proton NMR imaging can be used to distinguish among rigid polymer particles, plain alginate beads, and alginate emulsion beads. Multi-echo CPMG spin-echo imaging indicates that the average spin-lattice ( T1) and spin-spin ( T2) relaxation times of the plain alginate and alginate emulsion beads are comparable. Meanwhile, diffusion-weighted imaging produces sharp contrast between the two types of alginate beads, due to restricted diffusion inside the embedded oil droplets of the alginate emulsion beads. While the signal obtained from most materials is severely attenuated under applied diffusion gradients, the alginate emulsion beads maintain signal strength. The alginate emulsion beads were added to a suspension and imaged in an abrupt, annular expansion flow. The emulsion beads could be clearly distinguished from the surrounding suspending fluid and rigid polystyrene particles, through either T2 relaxation or diffusion contrast. Such a capability allows future use of the alginate emulsion beads as tracer particles and as one particle type among many in a multimodal suspension where detailed concentration profiles or particle size separation must be quantified during flow.

  19. Imaging contrast effects in alginate microbeads containing trapped emulsion droplets.

    PubMed

    Hester-Reilly, Holly J; Shapley, Nina C

    2007-09-01

    This study focuses on spherical microparticles made of cross-linked alginate gel and microcapsules composed of an oil-in-water emulsion where the continuous aqueous phase is cross-linked into an alginate gel matrix. We have investigated the use of these easily manufactured microbeads as contrast agents for the study of the flow properties of fluids using nuclear magnetic resonance imaging. Results demonstrate that combined spin-spin (T(2)) relaxation and diffusion contrast in proton NMR imaging can be used to distinguish among rigid polymer particles, plain alginate beads, and alginate emulsion beads. Multi-echo CPMG spin-echo imaging indicates that the average spin-lattice (T(1)) and spin-spin (T(2)) relaxation times of the plain alginate and alginate emulsion beads are comparable. Meanwhile, diffusion-weighted imaging produces sharp contrast between the two types of alginate beads, due to restricted diffusion inside the embedded oil droplets of the alginate emulsion beads. While the signal obtained from most materials is severely attenuated under applied diffusion gradients, the alginate emulsion beads maintain signal strength. The alginate emulsion beads were added to a suspension and imaged in an abrupt, annular expansion flow. The emulsion beads could be clearly distinguished from the surrounding suspending fluid and rigid polystyrene particles, through either T(2) relaxation or diffusion contrast. Such a capability allows future use of the alginate emulsion beads as tracer particles and as one particle type among many in a multimodal suspension where detailed concentration profiles or particle size separation must be quantified during flow. PMID:17600742

  20. Laser speckle contrast imaging is sensitive to advective flux

    NASA Astrophysics Data System (ADS)

    Khaksari, Kosar; Kirkpatrick, Sean J.

    2016-07-01

    Unlike laser Doppler flowmetry, there has yet to be presented a clear description of the physical variables that laser speckle contrast imaging (LSCI) is sensitive to. Herein, we present a theoretical basis for demonstrating that LSCI is sensitive to total flux and, in particular, the summation of diffusive flux and advective flux. We view LSCI from the perspective of mass transport and briefly derive the diffusion with drift equation in terms of an LSCI experiment. This equation reveals the relative sensitivity of LSCI to both diffusive flux and advective flux and, thereby, to both concentration and the ordered velocity of the scattering particles. We demonstrate this dependence through a short series of flow experiments that yield relationships between the calculated speckle contrast and the concentration of the scatterers (manifesting as changes in scattering coefficient), between speckle contrast and the velocity of the scattering fluid, and ultimately between speckle contrast and advective flux. Finally, we argue that the diffusion with drift equation can be used to support both Lorentzian and Gaussian correlation models that relate observed contrast to the movement of the scattering particles and that a weighted linear combination of these two models is likely the most appropriate model for relating speckle contrast to particle motion.

  1. Multi-Scale Matching for the Automatic Location of Control Points in Large Scale Aerial Images Using Terrestrial Scenes

    NASA Astrophysics Data System (ADS)

    Berveglieri, A.; Tommaselli, A. M. G.

    2014-03-01

    A technique to automatically locate Ground Control Points (GCPs) in large aerial images is presented considering the availability of low accuracy direct georeferencing data. The approach is based on image chips of GCPs extracted from vertical terrestrial images. A strategy combining image matching techniques was implemented to select correct matches. These matches were used to define a 2D transformation with which the GCP is projected close to its correct position, reducing the search space in the aerial image. Area-based matching with some refinements is used to locate GCPs with sub-pixel precision. Experiments were performed with multi-scale images and assessed with a bundle block adjustment simulating an indirect sensor orientation. The accuracy analysis was accomplished based on discrepancies obtained from GCPs and check points. The results were better than interactive measurements and a planimetric accuracy of 1/5 of the Ground Sample Distance (GSD) for the check points was achieved.

  2. VIP: Vortex Image Processing pipeline for high-contrast direct imaging of exoplanets

    NASA Astrophysics Data System (ADS)

    Gomez Gonzalez, Carlos Alberto; Wertz, Olivier; Christiaens, Valentin; Absil, Olivier; Mawet, Dimitri

    2016-03-01

    VIP (Vortex Image Processing pipeline) provides pre- and post-processing algorithms for high-contrast direct imaging of exoplanets. Written in Python, VIP provides a very flexible framework for data exploration and image processing and supports high-contrast imaging observational techniques, including angular, reference-star and multi-spectral differential imaging. Several post-processing algorithms for PSF subtraction based on principal component analysis are available as well as the LLSG (Local Low-rank plus Sparse plus Gaussian-noise decomposition) algorithm for angular differential imaging. VIP also implements the negative fake companion technique coupled with MCMC sampling for rigorous estimation of the flux and position of potential companions.

  3. Semi-automated analysis of high-resolution aerial images to quantify docks in glacial lakes

    NASA Astrophysics Data System (ADS)

    Beck, Marcus W.; Vondracek, Bruce; Hatch, Lorin K.; Vinje, Jason

    2013-07-01

    Lake resources can be negatively affected by environmental stressors originating from multiple sources and different spatial scales. Shoreline development, in particular, can negatively affect lake resources through decline in habitat quality, physical disturbance, and impacts on fisheries. The development of remote sensing techniques that efficiently characterize shoreline development in a regional context could greatly improve management approaches for protecting and restoring lake resources. The goal of this study was to develop an approach using high-resolution aerial photographs to quantify and assess docks as indicators of shoreline development. First, we describe a dock analysis workflow that can be used to quantify the spatial extent of docks using aerial images. Our approach incorporates pixel-based classifiers with object-based techniques to effectively analyze high-resolution digital imagery. Second, we apply the analysis workflow to quantify docks for 4261 lakes managed by the Minnesota Department of Natural Resources. Overall accuracy of the analysis results was 98.4% (87.7% based on K^) after manual post-processing. The analysis workflow was also 74% more efficient than the time required for manual digitization of docks. These analyses have immediate relevance for resource planning in Minnesota, whereas the dock analysis workflow could be used to quantify shoreline development in other regions with comparable imagery. These data can also be used to better understand the effects of shoreline development on aquatic resources and to evaluate the effects of shoreline development relative to other stressors.

  4. Orbital lesions: proton spectroscopic phase-dependent contrast MR imaging.

    PubMed

    Atlas, S W; Grossman, R I; Axel, L; Hackney, D B; Bilaniuk, L T; Goldberg, H I; Zimmerman, R A

    1987-08-01

    Thirteen orbital lesions in 12 patients were evaluated with both conventional spin-echo magnetic resonance (MR) imaging and phase-dependent proton spectroscopic imaging. This technique, which makes use of small differences in the resonant frequencies of water and fat protons, provides excellent high-resolution images with simultaneous chemical shift information. In this method, there is 180 degrees opposition of phase between fat protons and water protons at the time of the gradient echo, resulting in signal cancellation in voxels containing equal signals from fat and water. In this preliminary series, advantages of spectroscopic images in orbital lesions included better lesion delineation, with superior anatomic definition of orbital apex involvement; more specific characterization of high-intensity hemorrhage with a single pulse sequence; elimination of potential confusion from chemical shift misregistration artifact; further clarification of possible intravascular flow abnormalities; and improved apparent intralesional contrast. PMID:3602394

  5. Aerial image measurement technique for automated reticle defect disposition (ARDD) in wafer fabs

    NASA Astrophysics Data System (ADS)

    Zibold, Axel M.; Schmid, Rainer M.; Stegemann, B.; Scheruebl, Thomas; Harnisch, Wolfgang; Kobiyama, Yuji

    2004-08-01

    The Aerial Image Measurement System (AIMS)* for 193 nm lithography emulation has been brought into operation successfully worldwide. A second generation system comprising 193 nm AIMS capability, mini-environment and SMIF, the AIMS fab 193 plus is currently introduced into the market. By adjustment of numerical aperture (NA), illumination type and partial illumination coherence to match the conditions in 193 nm steppers or scanners, it can emulate the exposure tool for any type of reticles like binary, OPC and PSM down to the 65 nm node. The system allows a rapid prediction of wafer printability of defects or defect repairs, and critical features, like dense patterns or contacts on the masks without the need to perform expensive image qualification consisting of test wafer exposures followed by SEM measurements. Therefore, AIMS is a mask quality verification standard for high-end photo masks and established in mask shops worldwide. The progress on the AIMS technology described in this paper will highlight that besides mask shops there will be a very beneficial use of the AIMS in the wafer fab and we propose an Automated Reticle Defect Disposition (ARDD) process. With smaller nodes, where design rules are 65 nm or less, it is expected that smaller defects on reticles will occur in increasing numbers in the wafer fab. These smaller mask defects will matter more and more and become a serious yield limiting factor. With increasing mask prices and increasing number of defects and severability on reticles it will become cost beneficial to perform defect disposition on the reticles in wafer production. Currently ongoing studies demonstrate AIMS benefits for wafer fab applications. An outlook will be given for extension of 193 nm aerial imaging down to the 45 nm node based on emulation of immersion scanners.

  6. Optical imaging via biological object internal structure contrasting

    NASA Astrophysics Data System (ADS)

    Podgaetsky, Vitaly M.; Tereshchenko, Sergei A.; Vorobiev, Nikolai S.; Tomilova, Larisa G.; Smirnov, Alexander V.; Ivanov, Andrei V.

    1995-01-01

    For successful application of laser tomography methods for earlier medical diagnostics the signal-to-noise ratio (contrast) must be increased. For this purpose it is possible to use the absorbing dyes. We have theoretically investigated optical imaging conditions in high scattering medium on a model object. In our experiments a YAG:Nd laser generating picosecond pulses was employed. Output radiation has been recorded by a high speed streak camera with 1.5 ps temporal resolution. The high stability of the laser and of measurement scheme characteristics was provided. We looked for the contrasting substances having tropism with pathologically changed tissue of the tumor. For this purpose some dyphthalocyanines were synthesized. The experiments with laboratory animals have demonstrated that saturated dye concentrations were noticeably lower than toxicologic dangerous concentration values. We have demonstrated a possibility of the contrasting for a model object. The experimental temporal profile of scattered radiation can be explained by the nonstationary two-flow theory.

  7. Monochromatic verification of high-contrast imaging with an occulter.

    PubMed

    Sirbu, Dan; Kasdin, N Jeremy; Vanderbei, Robert J

    2013-12-30

    One of the most promising concepts of starlight suppression for direct imaging of exoplanets is flying a specially-shaped external occulter in formation with a space telescope. Here we present contrast performance verification of an occulter design scaled to laboratory-size using Fresnel numbers corresponding to the space design. Experimental design innovations include usage of an expanding beam to minimize phase aberrations, and an outer ring to minimize hard-edge diffraction effects. The apodizing performance of the optimized occulter edge is compared with a baseline case of a circular occulter and shown to result in contrast improvements. Experimental results in red monochromatic light show that the achieved laboratory contrast exceeds ten orders of magnitude, but with differences from the theoretical diffraction analysis limited by specular reflection from the mask edges. PMID:24514818

  8. High Contrast Imaging Testbed for the Terrestrial Planet Finder Coronagraph

    NASA Technical Reports Server (NTRS)

    Lowmman, Andrew E.; Trauger, John T.; Gordon, Brian; Green, Joseph J.; Moody, Dwight; Niessner, Albert F.; Shi, Fang

    2004-01-01

    The Terrestrial Planet Finder (TPF) mission is planning to launch a visible coronagraphic space telescope in 2014. To achieve TPF science goals, the coronagraph must have extreme levels of wavefront correction (less than 1 Angstrom rms over controllable spatial frequencies) and stability to get the necessary suppression of diffracted starlight (approximately l0(exp -10)) contrast at an angular separation approximately 4 (lamda)/D). TPF Coronagraph's primary platform for experimentation is the High Contrast Imaging Testbed, which will provide laboratory validation of key technologies as well as demonstration of a flight-traceable approach to implementation. Precision wavefront control in the testbed is provided by a high actuator density deformable mirror. Diffracted light control is achieved through use of occulting or apodizing masks and stops. Contrast measurements will establish the technical feasibility of TPF requirements, while model and error budget validation will demonstrate implementation viability. This paper describes the current testbed design, development approach, and recent experimental results.

  9. Ionic versus nonionic MR imaging contrast media: operational definitions.

    PubMed

    Chang, C A; Sieving, P F; Watson, A D; Dewey, T M; Karpishin, T B; Raymond, K N

    1992-01-01

    An experimental rationale is provided to differentiate between the terms ionic and nonionic for magnetic resonance (MR) imaging contrast media such as gadodiamide and gadopentetate dimeglumine. Four independent types of physical measurements (electric conductivity, osmolality, electrophoresis, and ion exchange) were performed on a range of test compounds, including D-glucose, iohexol, gadopentetate dimeglumine, and gadodiamide. Iohexol, D-glucose, and gadodiamide are shown to be nonionic species at physiologic pH (7.4), not measurably dissociating in solution. A range of gadopentetate salts behave as electrolytes, dissociating into constituent charged ions in aqueous media. Operational definitions for the terms ionic and nonionic are provided, and the terms neutral and net zero charge are compared with nonionic for accuracy. The nomenclature nonionic and ionic is deemed appropriate for differentiating MR imaging contrast media. PMID:1623289

  10. Diffeomorphic Registration of Images with Variable Contrast Enhancement

    PubMed Central

    Janssens, Guillaume; Jacques, Laurent; Orban de Xivry, Jonathan; Geets, Xavier; Macq, Benoit

    2011-01-01

    Nonrigid image registration is widely used to estimate tissue deformations in highly deformable anatomies. Among the existing methods, nonparametric registration algorithms such as optical flow, or Demons, usually have the advantage of being fast and easy to use. Recently, a diffeomorphic version of the Demons algorithm was proposed. This provides the advantage of producing invertible displacement fields, which is a necessary condition for these to be physical. However, such methods are based on the matching of intensities and are not suitable for registering images with different contrast enhancement. In such cases, a registration method based on the local phase like the Morphons has to be used. In this paper, a diffeomorphic version of the Morphons registration method is proposed and compared to conventional Morphons, Demons, and diffeomorphic Demons. The method is validated in the context of radiotherapy for lung cancer patients on several 4D respiratory-correlated CT scans of the thorax with and without variable contrast enhancement. PMID:21197460

  11. Polarization enhancement of contrast in infrared ship/background imaging

    NASA Astrophysics Data System (ADS)

    Cooper, A. W.; Lentz, W. J.; Walker, P. L.; Chan, P. M.

    1995-02-01

    During the MAPTIP (Marine Aerosol Properties and Thermal Imager Performance) experiment series in Dutch coastal waters in October 1993 shore-based polarized infrared images were recorded of air (fixed wing and helicopter) and sea targets in sea and air backgrounds, including a number of vertically and horizontally polarized image pairs of the Dutch oceanographic research vessel Hr Ms Tydeman. Complete characterization of the environmental conditions in the measurement area will be available through other MAPTIP participants. These images show no significant polarization features in ship images (less than 5%) or in sky background, but a considerable degree of vertical ('p') polarization in the sea background radiance at low emission (near grazing) angles, which is ascribed to surface emission polarization. This phenomenon for all observed times of day and sun positions, and more strongly in the LWIR than in the MWIR. A horizontal polarization filter provided 10 to 20% ship-to-sea contrast improvement due to suppression of sea background, and enhances horizon sea/sky contrast by up to 15%. These results are consistent with our previous measurements of polarization in the sun glint channel.

  12. Adaptive sigmoid function bihistogram equalization for image contrast enhancement

    NASA Astrophysics Data System (ADS)

    Arriaga-Garcia, Edgar F.; Sanchez-Yanez, Raul E.; Ruiz-Pinales, Jose; Garcia-Hernandez, Ma. de Guadalupe

    2015-09-01

    Contrast enhancement plays a key role in a wide range of applications including consumer electronic applications, such as video surveillance, digital cameras, and televisions. The main goal of contrast enhancement is to increase the quality of images. However, most state-of-the-art methods induce different types of distortion such as intensity shift, wash-out, noise, intensity burn-out, and intensity saturation. In addition, in consumer electronics, simple and fast methods are required in order to be implemented in real time. A bihistogram equalization method based on adaptive sigmoid functions is proposed. It consists of splitting the image histogram into two parts that are equalized independently by using adaptive sigmoid functions. In order to preserve the mean brightness of the input image, the parameter of the sigmoid functions is chosen to minimize the absolute mean brightness metric. Experiments on the Berkeley database have shown that the proposed method improves the quality of images and preserves their mean brightness. An application to improve the colorfulness of images is also presented.

  13. Automatic optic disc segmentation based on image brightness and contrast

    NASA Astrophysics Data System (ADS)

    Lu, Shijian; Liu, Jiang; Lim, Joo Hwee; Zhang, Zhuo; Tan, Ngan Meng; Wong, Wing Kee; Li, Huiqi; Wong, Tien Yin

    2010-03-01

    Untreated glaucoma leads to permanent damage of the optic nerve and resultant visual field loss, which can progress to blindness. As glaucoma often produces additional pathological cupping of the optic disc (OD), cupdisc- ratio is one measure that is widely used for glaucoma diagnosis. This paper presents an OD localization method that automatically segments the OD and so can be applied for the cup-disc-ratio based glaucoma diagnosis. The proposed OD segmentation method is based on the observations that the OD is normally much brighter and at the same time have a smoother texture characteristics compared with other regions within retinal images. Given a retinal image we first capture the ODs smooth texture characteristic by a contrast image that is constructed based on the local maximum and minimum pixel lightness within a small neighborhood window. The centre of the OD can then be determined according to the density of the candidate OD pixels that are detected by retinal image pixels of the lowest contrast. After that, an OD region is approximately determined by a pair of morphological operations and the OD boundary is finally determined by an ellipse that is fitted by the convex hull of the detected OD region. Experiments over 71 retinal images of different qualities show that the OD region overlapping reaches up to 90.37% according to the OD boundary ellipses determined by our proposed method and the one manually plotted by an ophthalmologist.

  14. Characterization of encapsulated quantum dots via electron channeling contrast imaging

    NASA Astrophysics Data System (ADS)

    Deitz, Julia I.; Carnevale, Santino D.; De Graef, Marc; McComb, David W.; Grassman, Tyler J.

    2016-08-01

    A method for characterization of encapsulated epitaxial quantum dots (QD) in plan-view geometry using electron channeling contrast imaging (ECCI) is presented. The efficacy of the method, which requires minimal sample preparation, is demonstrated with proof-of-concept data from encapsulated (sub-surface) epitaxial InAs QDs within a GaAs matrix. Imaging of the QDs under multiple diffraction conditions is presented, establishing that ECCI can provide effectively identical visualization capabilities as conventional two-beam transmission electron microscopy. This method facilitates rapid, non-destructive characterization of sub-surface QDs giving immediate access to valuable nanostructural information.

  15. Image contrast reversals in contact resonance atomic force microscopy

    SciTech Connect

    Ma, Chengfu; Chen, Yuhang Wang, Tian

    2015-02-15

    Multiple image contrast inversions are observed along with the increase of modulation frequency for contact resonance atomic force microscopy (CR-AFM) imaging of a highly oriented pyrolytic graphite (HOPG) specimen. Analysis of the contact vibrational spectra indicates that the inversions can be attributed to structure-induced variations of tip-sample contact mechanics. Contact stiffness and damping at HOPG step edges exhibit significant increases relative to those in the flat regions. For quantitative evaluation of mechanical properties in CR-AFM, coupling effects of the surface geometry must be considered.

  16. Three-Dimensional Building Reconstruction Using Images Obtained by Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Wefelscheid, C.; Hänsch, R.; Hellwich, O.

    2011-09-01

    Unmanned Aerial Vehicles (UAVs) offer several new possibilities in a wide range of applications. One example is the 3D reconstruction of buildings. In former times this was either restricted by earthbound vehicles to the reconstruction of facades or by air-borne sensors to generate only very coarse building models. This paper describes an approach for fully automatic image-based 3D reconstruction of buildings using UAVs. UAVs are able to observe the whole 3D scene and to capture images of the object of interest from completely different perspectives. The platform used by this work is a Falcon 8 octocopter from Ascending Technologies. A slightly modified high-resolution consumer camera serves as sensor for data acquisition. The final 3D reconstruction is computed offline after image acquisition and follows a reconstruction process originally developed for image sequences obtained by earthbound vehicles. The per- formance of the described method is evaluated on benchmark datasets showing that the achieved accuracy is high and even comparable with Light Detection and Ranging (LIDAR). Additionally, the results of the application of the complete processing-chain starting at image acquisition and ending in a dense surface-mesh are presented and discussed.

  17. Detection of Laurel Wilt Disease in Avocado Using Low Altitude Aerial Imaging

    PubMed Central

    de Castro, Ana I.; Ehsani, Reza; Ploetz, Randy C.; Crane, Jonathan H.; Buchanon, Sherrie

    2015-01-01

    Laurel wilt is a lethal disease of plants in the Lauraceae plant family, including avocado (Persea americana). This devastating disease has spread rapidly along the southeastern seaboard of the United States and has begun to affect commercial avocado production in Florida. The main objective of this study was to evaluate the potential to discriminate laurel wilt-affected avocado trees using aerial images taken with a modified camera during helicopter surveys at low-altitude in the commercial avocado production area. The ability to distinguish laurel wilt-affected trees from other factors that produce similar external symptoms was also studied. RmodGB digital values of healthy trees and laurel wilt-affected trees, as well as fruit stress and vines covering trees were used to calculate several vegetation indices (VIs), band ratios, and VI combinations. These indices were subjected to analysis of variance (ANOVA) and an M-statistic was performed in order to quantify the separability of those classes. Significant differences in spectral values among laurel wilt affected and healthy trees were observed in all vegetation indices calculated, although the best results were achieved with Excess Red (ExR), (Red–Green) and Combination 1 (COMB1) in all locations. B/G showed a very good potential for separate the other factors with symptoms similar to laurel wilt-affected trees, such as fruit stress and vines covering trees, from laurel wilt-affected trees. These consistent results prove the usefulness of using a modified camera (RmodGB) to discriminate laurel wilt-affected avocado trees from healthy trees, as well as from other factors that cause the same symptoms and suggest performing the classification in further research. According to our results, ExR and B/G should be utilized to develop an algorithm or decision rules to classify aerial images, since they showed the highest capacity to discriminate laurel wilt-affected trees. This methodology may allow the rapid

  18. Detection of laurel wilt disease in avocado using low altitude aerial imaging.

    PubMed

    de Castro, Ana I; Ehsani, Reza; Ploetz, Randy C; Crane, Jonathan H; Buchanon, Sherrie

    2015-01-01

    Laurel wilt is a lethal disease of plants in the Lauraceae plant family, including avocado (Persea americana). This devastating disease has spread rapidly along the southeastern seaboard of the United States and has begun to affect commercial avocado production in Florida. The main objective of this study was to evaluate the potential to discriminate laurel wilt-affected avocado trees using aerial images taken with a modified camera during helicopter surveys at low-altitude in the commercial avocado production area. The ability to distinguish laurel wilt-affected trees from other factors that produce similar external symptoms was also studied. RmodGB digital values of healthy trees and laurel wilt-affected trees, as well as fruit stress and vines covering trees were used to calculate several vegetation indices (VIs), band ratios, and VI combinations. These indices were subjected to analysis of variance (ANOVA) and an M-statistic was performed in order to quantify the separability of those classes. Significant differences in spectral values among laurel wilt affected and healthy trees were observed in all vegetation indices calculated, although the best results were achieved with Excess Red (ExR), (Red-Green) and Combination 1 (COMB1) in all locations. B/G showed a very good potential for separate the other factors with symptoms similar to laurel wilt-affected trees, such as fruit stress and vines covering trees, from laurel wilt-affected trees. These consistent results prove the usefulness of using a modified camera (RmodGB) to discriminate laurel wilt-affected avocado trees from healthy trees, as well as from other factors that cause the same symptoms and suggest performing the classification in further research. According to our results, ExR and B/G should be utilized to develop an algorithm or decision rules to classify aerial images, since they showed the highest capacity to discriminate laurel wilt-affected trees. This methodology may allow the rapid detection

  19. Comparison of event-based landslide inventory maps obtained interpreting satellite images and aerial photographs

    NASA Astrophysics Data System (ADS)

    Fiorucci, Federica; Cardinali, Mauro; Carlà Roberto; Mondini, Alessandro; Santurri, Leonardo; Guzzetti, Fausto

    2010-05-01

    Landslide inventory maps are a common type of map used for geomorphological investigations, land planning, and hazard and risk assessment. Landslide inventory maps covering medium to large areas are obtained primarily exploiting traditional geomorphological techniques. These techniques combine the visual and heuristic interpretation of stereoscopic aerial photographs with more or less extensive field investigations. Aerial photographs most commonly used to prepare landslide inventory maps range in scale from about 1:10,000 to about 1:40,000. Interpretation of satellite images is a relatively recent, powerful tool to obtain information of the Earth surface potentially useful for the production of landslide inventory maps. The usefulness of satellite information - and the associated technology - for the identification of landslides and the production of landslide inventory maps, remains largely unexplored. In this context, it is of interest to investigate the type, quantity, and quality of the information that can be retrieved analyzing images taken by the last generation of high and very-high resolution satellite sensors, and to compare this information with the information obtained from the analysis of traditional stereoscopic aerial photographs, or in the field. In the framework of the MORFEO project for the exploitation of Earth Observation data and technology for landslide identification and risk assessment, of the Italian Space Agency, we have compared two event-based landslide inventory maps prepared exploiting two different techniques. The two maps portray the geographical distribution and types of landslides triggered by rainfall in the period from November 2004 to May 2005 in the Collazzone area, Umbria, central Italy. The first map was prepared through reconnaissance field surveys carried out mostly along roads. The second map was obtained through the combined visual interpretation of 1:10,000 scale, colour ortho-photo maps, and images taken by the IKONOS

  20. Laboratory Demonstrations of High-contrast Imaging for Space Coronagraphy

    NASA Technical Reports Server (NTRS)

    Trauger, John; Giveon, Amir; Gordon, Brian; Kern, Brian; Krist, John; Kuhnert, Andreas; Moody, Dwight; Traub, Wes; Wilson, Dan

    2008-01-01

    This slide presentation reviews the use of the High Contrast Imaging Testbed (HCIT) in the design and improvement of space coronagraphs. The objectives of the work are to: (1) Advance the technology readiness of space coronagraph hardware, techniques, algorithms, and predictive models; (2) Provide proof-of-concept demonstrations of coronagraph techniques; and (3) Support collaborations across the exoplanet community in pursuit of the optimal space coronagraph architecture.

  1. Molecular nanomagnets as contrast agents for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Rodríguez, Elisenda; Roig, Anna; Molins, Elies; Arús, Carles; Cabañas, Miquel; Quintero, María Rosa; Cerdán, Sebastián; Sanfeliu, Coral

    2003-03-01

    Magnetic resonance imaging (MRI) is a non-invasive technique used in medicine to produce high quality images of human body slices. In order to enhance the contrast between different organs or to reveal altered portions of them such necrosis or tumors, the administration of a contrast agent is highly convenient. Currently Gd-DTPA, a paramagnetic complex, is the most widely administered compound. In this context, we have assayed molecular nanomagnets as MRI contrast agents. The complex [(tacn)_6Fe_8(μ_3-O)_2(μ_2-OH)_12]Br_8·9H_2O^1(Fe8 in brief) has been evaluated and shorter relaxation times, T1 and T_2, have been obtained for Fe8 than those obtained for the commercial Gd-DTPA. No toxic effects have been observed at concentrations up to 1 mM of Fe8 in cultured cells. Phantom studies with T_1-weighted MRI at 9.4 Tesla suggest that Fe8 can have potentiality as T_1-contrast agent. ^1Wieghardt K Angew Chem Intl Ed Engl 23 1 (1984) 77

  2. Laser speckle contrast imaging: theoretical and practical limitations.

    PubMed

    Briers, David; Duncan, Donald D; Hirst, Evan; Kirkpatrick, Sean J; Larsson, Marcus; Steenbergen, Wiendelt; Stromberg, Tomas; Thompson, Oliver B

    2013-06-01

    When laser light illuminates a diffuse object, it produces a random interference effect known as a speckle pattern. If there is movement in the object, the speckles fluctuate in intensity. These fluctuations can provide information about the movement. A simple way of accessing this information is to image the speckle pattern with an exposure time longer than the shortest speckle fluctuation time scale-the fluctuations cause a blurring of the speckle, leading to a reduction in the local speckle contrast. Thus, velocity distributions are coded as speckle contrast variations. The same information can be obtained by using the Doppler effect, but producing a two-dimensional Doppler map requires either scanning of the laser beam or imaging with a high-speed camera: laser speckle contrast imaging (LSCI) avoids the need to scan and can be performed with a normal CCD- or CMOS-camera. LSCI is used primarily to map flow systems, especially blood flow. The development of LSCI is reviewed and its limitations and problems are investigated. PMID:23807512

  3. Semantic Segmentation of Aerial Images in Urban Areas with Class-Specific Higher-Order Cliques

    NASA Astrophysics Data System (ADS)

    Montoya-Zegarra, J. A.; Wegner, J. D.; Ladický, L.; Schindler, K.

    2015-03-01

    In this paper we propose an approach to multi-class semantic segmentation of urban areas in high-resolution aerial images with classspecific object priors for buildings and roads. What makes model design challenging are highly heterogeneous object appearances and shapes that call for priors beyond standard smoothness or co-occurrence assumptions. The data term of our energy function consists of a pixel-wise classifier that learns local co-occurrence patterns in urban environments. To specifically model the structure of roads and buildings, we add high-level shape representations for both classes by sampling large sets of putative object candidates. Buildings are represented by sets of compact polygons, while roads are modeled as a collection of long, narrow segments. To obtain the final pixel-wise labeling, we use a CRF with higher-order potentials that balances the data term with the object candidates. We achieve overall labeling accuracies of > 80%.

  4. Integrating Spray Plane-Based Remote Sensing and Rapid Image Processing with Variable-Rate Aerial Application.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A remote sensing and variable rate application system was configured for agricultural aircraft. This combination system has the potential of providing a completely integrated solution for all aspects of aerial site-specific application and includes remote sensing, image processing and georegistratio...

  5. Flux or speed? Examining speckle contrast imaging of vascular flows.

    PubMed

    Kazmi, S M Shams; Faraji, Ehssan; Davis, Mitchell A; Huang, Yu-Yen; Zhang, Xiaojing J; Dunn, Andrew K

    2015-07-01

    Speckle contrast imaging enables rapid mapping of relative blood flow distributions using camera detection of back-scattered laser light. However, speckle derived flow measures deviate from direct measurements of erythrocyte speeds by 47 ± 15% (n = 13 mice) in vessels of various calibers. Alternatively, deviations with estimates of volumetric flux are on average 91 ± 43%. We highlight and attempt to alleviate this discrepancy by accounting for the effects of multiple dynamic scattering with speckle imaging of microfluidic channels of varying sizes and then with red blood cell (RBC) tracking correlated speckle imaging of vascular flows in the cerebral cortex. By revisiting the governing dynamic light scattering models, we test the ability to predict the degree of multiple dynamic scattering across vessels in order to correct for the observed discrepancies between relative RBC speeds and multi-exposure speckle imaging estimates of inverse correlation times. The analysis reveals that traditional speckle contrast imagery of vascular flows is neither a measure of volumetric flux nor particle speed, but rather the product of speed and vessel diameter. The corrected speckle estimates of the relative RBC speeds have an average 10 ± 3% deviation in vivo with those obtained from RBC tracking. PMID:26203384

  6. Flux or speed? Examining speckle contrast imaging of vascular flows

    PubMed Central

    Kazmi, S. M. Shams; Faraji, Ehssan; Davis, Mitchell A.; Huang, Yu-Yen; Zhang, Xiaojing J.; Dunn, Andrew K.

    2015-01-01

    Speckle contrast imaging enables rapid mapping of relative blood flow distributions using camera detection of back-scattered laser light. However, speckle derived flow measures deviate from direct measurements of erythrocyte speeds by 47 ± 15% (n = 13 mice) in vessels of various calibers. Alternatively, deviations with estimates of volumetric flux are on average 91 ± 43%. We highlight and attempt to alleviate this discrepancy by accounting for the effects of multiple dynamic scattering with speckle imaging of microfluidic channels of varying sizes and then with red blood cell (RBC) tracking correlated speckle imaging of vascular flows in the cerebral cortex. By revisiting the governing dynamic light scattering models, we test the ability to predict the degree of multiple dynamic scattering across vessels in order to correct for the observed discrepancies between relative RBC speeds and multi-exposure speckle imaging estimates of inverse correlation times. The analysis reveals that traditional speckle contrast imagery of vascular flows is neither a measure of volumetric flux nor particle speed, but rather the product of speed and vessel diameter. The corrected speckle estimates of the relative RBC speeds have an average 10 ± 3% deviation in vivo with those obtained from RBC tracking. PMID:26203384

  7. Multiscale entropy study of medical laser speckle contrast images.

    PubMed

    Humeau-Heurtier, Anne; Mahé, Guillaume; Durand, Sylvain; Abraham, Pierre

    2013-03-01

    Laser speckle contrast imaging (LSCI) is a noninvasive full-field optical imaging technique that gives a 2-D microcirculatory blood flow map of tissue. Due to novelty of commercial laser speckle contrast imagers, image processing of LSCI data is new. By opposition, the numerous signal processing works of laser Doppler flowmetry (LDF) data-that give a 1-D view of microvascular blood flow-have led to interesting physiological information. Recently, analysis of multiscale entropy (MSE) of LDF signals has been proposed. A nonmonotonic evolution of MSE with two distinctive scales-probably dominated by the cardiac activity-has been reported. We herein analyze MSE of LSCI data. We compare LSCI results with the ones of LDF signals obtained during the same experiment. We show that when time evolution of LSCI single pixels is studied, MSE presents a monotonic decreasing pattern, similar to the one of Gaussian white noises. By opposition, when the mean of LSCI pixel values is computed in a region of interest (ROI) and followed with time, MSE pattern becomes close to the one of LDF data, for ROI large enough. LSCI is gaining increased interest for blood flow monitoring. The physiological implications of our results require future study. PMID:22868525

  8. Motion corrected photoacoustic difference imaging of fluorescent contrast agents

    NASA Astrophysics Data System (ADS)

    Märk, Julia; Wagener, Asja; Pönick, Sarah; Grötzinger, Carsten; Zhang, Edward; Laufer, Jan

    2016-03-01

    In fluorophores, such as exogenous dyes and genetically expressed proteins, the excited state lifetime can be modulated using pump-probe excitation at wavelengths corresponding to the absorption and fluorescence spectra. Simultaneous pump-probe pulses induce stimulated emission (SE) which, in turn, modulates the thermalized energy, and hence the photoacoustic (PA) signal amplitude. For time-delayed pulses, by contrast, SE is suppressed. Since this is not observed in endogenous chromophores, the location of the fluorophore can be determined by subtracting images acquired using simultaneous and time-delayed pump-probe excitation. This simple experimental approach exploits a fluorophorespecific contrast mechanism, and has the potential to enable deep-tissue molecular imaging at fluences below the MPE. In this study, some of the challenges to its in vivo implementation are addressed. First, the PA signal amplitude generated in fluorophores in vivo is often much smaller than that in blood. Second, tissue motion can give rise to artifacts that correspond to endogenous chromophores in the difference image. This would not allow the unambiguous detection of fluorophores. A method to suppress motion artifacts based on fast switching between simultaneous and time-delayed pump-probe excitation was developed. This enables the acquisition of PA signals using the two excitation modes with minimal time delay (20 ms), thus minimizing the effects of tissue motion. The feasibility of this method is demonstrated by visualizing a fluorophore (Atto680) in tissue phantoms, which were moved during the image acquisition to mimic tissue motion.

  9. Hepatobiliary MR Imaging with Gadolinium Based Contrast Agents

    PubMed Central

    Frydrychowicz, Alex; Lubner, Meghan G.; Brown, Jeffrey J.; Merkle, Elmar M.; Nagle, Scott K.; Rofsky, Neil M.; Reeder, Scott B.

    2011-01-01

    The advent of gadolinium-based “hepatobiliary” contrast agents offers new opportunities for diagnostic MRI and has triggered a great interest for innovative imaging approaches to the liver and bile ducts. In this review article we will discuss the imaging properties of the two gadolinium-based hepatobiliary contrast agents currently available in the USA, gadobenate dimeglumine and gadoxetic acid, as well as important pharmacokinetic differences that affect their diagnostic performance. We will review potential applications, protocol optimization strategies, as well as diagnostic pitfalls. A variety of illustrative case examples will be used to demonstrate the role of these agents in detection and characterization of liver lesions as well as for imaging the biliary system. Changes in MR protocols geared towards optimizing workflow and imaging quality will also be discussed. It is our aim that the information provided in this article will facilitate the optimal utilization of these agents, and will stimulate the reader‘s pursuit of new applications for future benefit. PMID:22334493

  10. Contrast imaging ultrasound detects abnormalities in the marmoset ovary.

    PubMed

    Hastings, J M; Morris, K D; Allan, D; Wilson, H; Millar, R P; Fraser, H M; Moran, C M

    2012-12-01

    The development of a functional vascular tree within the primate ovary is critical for reproductive health. To determine the efficacy of contrast agents to image the microvascular environment within the primate ovary, contrast ultrasonography was performed in six reproductive-aged female common marmosets (Callithrix jacchus) during the late luteal phase of the cycle, following injection of Sonovue™. Regions of interest (ROIs), representing the corpus luteum (CL) and noncorpus luteum ovarian tissue (NCLOT), were selected during gray-scale B-mode ultrasound imaging. The magnitude of backscatter intensity of CL and NCLOT ROIs were calculated in XnView, post hoc: subsequent gamma-variate modeling was implemented in Matlab to determine perfusion parameters. Histological analysis of these ovaries revealed a total of 11 CL, nine of which were identified during contrast ultrasonography. The median enhancement ratio was significantly increased in the CL (5.54AU; 95% CI -2.21-68.71) compared to the NCLOT (2.82AU; 95% CI 2.73-15.06; P < 0.05). There was no difference in time parameters between the CL and NCLOT. An additional avascular ROI was identified in the ovary of Animal 5, both histologically and by ultrasonography. This cystic ROI displayed a markedly lower enhancement ratio (0.79AU) and higher time parameters than mean CL and NCLOT, including time to peak and time to wash out. These data demonstrate, for the first time, the ability of commercially available contrast agents, to differentiate structures within the nonhuman primate ovary. Contrast-enhanced ultrasonography has a promising future in reproductive medicine. PMID:22890799

  11. Exploration of mineral resource deposits based on analysis of aerial and satellite image data employing artificial intelligence methods

    NASA Astrophysics Data System (ADS)

    Osipov, Gennady

    2013-04-01

    We propose a solution to the problem of exploration of various mineral resource deposits, determination of their forms / classification of types (oil, gas, minerals, gold, etc.) with the help of satellite photography of the region of interest. Images received from satellite are processed and analyzed to reveal the presence of specific signs of deposits of various minerals. Course of data processing and making forecast can be divided into some stages: Pre-processing of images. Normalization of color and luminosity characteristics, determination of the necessary contrast level and integration of a great number of separate photos into a single map of the region are performed. Construction of semantic map image. Recognition of bitmapped image and allocation of objects and primitives known to system are realized. Intelligent analysis. At this stage acquired information is analyzed with the help of a knowledge base, which contain so-called "attention landscapes" of experts. Used methods of recognition and identification of images: a) combined method of image recognition, b)semantic analysis of posterized images, c) reconstruction of three-dimensional objects from bitmapped images, d)cognitive technology of processing and interpretation of images. This stage is fundamentally new and it distinguishes suggested technology from all others. Automatic registration of allocation of experts` attention - registration of so-called "attention landscape" of experts - is the base of the technology. Landscapes of attention are, essentially, highly effective filters that cut off unnecessary information and emphasize exactly the factors used by an expert for making a decision. The technology based on denoted principles involves the next stages, which are implemented in corresponding program agents. Training mode -> Creation of base of ophthalmologic images (OI) -> Processing and making generalized OI (GOI) -> Mode of recognition and interpretation of unknown images. Training mode

  12. Building roof segmentation from aerial images using a lineand region-based watershed segmentation technique.

    PubMed

    El Merabet, Youssef; Meurie, Cyril; Ruichek, Yassine; Sbihi, Abderrahmane; Touahni, Raja

    2015-01-01

    In this paper, we present a novel strategy for roof segmentation from aerial images (orthophotoplans) based on the cooperation of edge- and region-based segmentation methods. The proposed strategy is composed of three major steps. The first one, called the pre-processing step, consists of simplifying the acquired image with an appropriate couple of invariant and gradient, optimized for the application, in order to limit illumination changes (shadows, brightness, etc.) affecting the images. The second step is composed of two main parallel treatments: on the one hand, the simplified image is segmented by watershed regions. Even if the first segmentation of this step provides good results in general, the image is often over-segmented. To alleviate this problem, an efficient region merging strategy adapted to the orthophotoplan particularities, with a 2D modeling of roof ridges technique, is applied. On the other hand, the simplified image is segmented by watershed lines. The third step consists of integrating both watershed segmentation strategies into a single cooperative segmentation scheme in order to achieve satisfactory segmentation results. Tests have been performed on orthophotoplans containing 100 roofs with varying complexity, and the results are evaluated with the VINETcriterion using ground-truth image segmentation. A comparison with five popular segmentation techniques of the literature demonstrates the effectiveness and the reliability of the proposed approach. Indeed, we obtain a good segmentation rate of 96% with the proposed method compared to 87.5% with statistical region merging (SRM), 84% with mean shift, 82% with color structure code (CSC), 80% with efficient graph-based segmentation algorithm (EGBIS) and 71% with JSEG. PMID:25648706

  13. An asymmetric re-weighting method for the precision combined bundle adjustment of aerial oblique images

    NASA Astrophysics Data System (ADS)

    Xie, Linfu; Hu, Han; Wang, Jingxue; Zhu, Qing; Chen, Min

    2016-07-01

    Combined bundle adjustment is a fundamental step in the processing of massive oblique images. Traditional bundle adjustment designed for nadir images gives identical weights to different parts of image point observations made from different directions, due to the assumption that the errors in the observations follow the same Gaussian distribution. However, because of their large tilt angles, aerial oblique images have trapezoidal footprints on the ground, and their areas correspond to conspicuously different ground sample distances. The errors in different observations no longer conform to the above assumption, which leads to suboptimal bundle adjustment accuracy and restricts subsequent 3D applications. To model the distribution of the errors correctly for the combined bundle adjustment of oblique images, this paper proposes an asymmetric re-weighting method. The scale of each pixel is used to determine a re-weighting factor, and each pixel is subsequently projected onto the ground to identify another anisotropic re-weighting factor using the shape of its quadrangle. Next, these two factors are integrated into the combined bundle adjustment using asymmetric weights for the image point observations; greater weights are assigned to observations with fine resolutions, and those with coarse resolutions are penalized. This paper analyzes urban and rural images captured by three different five-angle camera systems, from both proprietary datasets and the ISPRS/EuroSDR benchmark. The results reveal that the proposed method outperforms the traditional method in both back-projected and triangulated precision by approximately 5-10% in most cases. Furthermore, the misalignments of point clouds generated by the different cameras are significantly alleviated after combined bundle adjustment.

  14. Photo-magnetic imaging: resolving optical contrast at MRI resolution

    NASA Astrophysics Data System (ADS)

    Lin, Yuting; Gao, Hao; Thayer, David; Luk, Alex L.; Gulsen, Gultekin

    2013-06-01

    In this paper, we establish the mathematical framework of a novel imaging technique, namely photo-magnetic imaging (PMI). PMI uses a laser to illuminate biological tissues and measure the induced temperature variations using magnetic resonance imaging (MRI). PMI overcomes the limitation of conventional optical imaging and allows imaging of the optical contrast at MRI spatial resolution. The image reconstruction for PMI, using a finite-element-based algorithm with an iterative approach, is presented in this paper. The quantitative accuracy of PMI is investigated for various inclusion sizes, depths and absorption values. Then, a comparison between conventional diffuse optical tomography (DOT) and PMI is carried out to illustrate the superior performance of PMI. An example is presented showing that two 2 mm diameter inclusions embedded 4.5 mm deep and located side by side in a 25 mm diameter circular geometry medium are recovered as a single 6 mm diameter object with DOT. However, these two objects are not only effectively resolved with PMI, but their true concentrations are also recovered successfully.

  15. Image segmentation of nanoscale Zernike phase contrast X-ray computed tomography images

    SciTech Connect

    Kumar, Arjun S.; Mandal, Pratiti; Zhang, Yongjie; Litster, Shawn

    2015-05-14

    Zernike phase contrast is a useful technique for nanoscale X-ray computed tomography (CT) imaging of materials with a low X-ray absorption coefficient. It enhances the image contrast by phase shifting X-ray waves to create changes in amplitude. However, it creates artifacts that hinder the use of traditional image segmentation techniques. We propose an image restoration method that models the X-ray phase contrast optics and the three-dimensional image reconstruction method. We generate artifact-free images through an optimization problem that inverts this model. Though similar approaches have been used for Zernike phase contrast in visible light microscopy, this optimization employs an effective edge detection method tailored to handle Zernike phase contrast artifacts. We characterize this optics-based restoration method by removing the artifacts in and thresholding multiple Zernike phase contrast X-ray CT images to produce segmented results that are consistent with the physical specimens. We quantitatively evaluate and compare our method to other segmentation techniques to demonstrate its high accuracy.

  16. An Aerial-Image Dense Matching Approach Based on Optical Flow Field

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Chen, Shiyu; Zhang, Yong; Gong, Jianya; Shibasaki, Ryosuke

    2016-06-01

    Dense matching plays an important role in many fields, such as DEM (digital evaluation model) producing, robot navigation and 3D environment reconstruction. Traditional approaches may meet the demand of accuracy. But the calculation time and out puts density is hardly be accepted. Focus on the matching efficiency and complex terrain surface matching feasibility an aerial image dense matching method based on optical flow field is proposed in this paper. First, some high accurate and uniformed control points are extracted by using the feature based matching method. Then the optical flow is calculated by using these control points, so as to determine the similar region between two images. Second, the optical flow field is interpolated by using the multi-level B-spline interpolation in the similar region and accomplished the pixel by pixel coarse matching. Final, the results related to the coarse matching refinement based on the combined constraint, which recognizes the same points between images. The experimental results have shown that our method can achieve per-pixel dense matching points, the matching accuracy achieves sub-pixel level, and fully meet the three-dimensional reconstruction and automatic generation of DSM-intensive matching's requirements. The comparison experiments demonstrated that our approach's matching efficiency is higher than semi-global matching (SGM) and Patch-based multi-view stereo matching (PMVS) which verifies the feasibility and effectiveness of the algorithm.

  17. Stereoscopic Imaging for Obstacle Detection Onboard Low-Flying Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Hanna, Emad

    Obstacle detection for low-flying unmanned aerial vehicles (UAVs) poses unique engineering challenges in terms of real-time implementation as well as system accuracy. Of all the available techniques for carrying out this task, optical sensors stand out as an inexpensive, lightweight and reliable solution. Image processing methods are used to analyze the images captured by the UAV camera(s) and to generate information pertaining to the location and motion of the obstacles in the field of view. These methods, however, can be computationally intensive and must be optimized if they are to be implemented in a moving vehicle. Additionally, the measurement of distance usually requires a high level of calibration before the results are useful. This thesis proposes a calibration method rooted in image data analysis and shows how this can be used to accurately predict the distance to obstacles. An algorithm tailored specifically to low-flying UAVs (Sparse Edge Reconstruction) is presented. Both the calibration method and the algorithm were used to analyze video gathered on a low-altitude test flight.

  18. Advanced Tie Feature Matching for the Registration of Mobile Mapping Imaging Data and Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Jende, P.; Peter, M.; Gerke, M.; Vosselman, G.

    2016-06-01

    Mobile Mapping's ability to acquire high-resolution ground data is opposing unreliable localisation capabilities of satellite-based positioning systems in urban areas. Buildings shape canyons impeding a direct line-of-sight to navigation satellites resulting in a deficiency to accurately estimate the mobile platform's position. Consequently, acquired data products' positioning quality is considerably diminished. This issue has been widely addressed in the literature and research projects. However, a consistent compliance of sub-decimetre accuracy as well as a correction of errors in height remain unsolved. We propose a novel approach to enhance Mobile Mapping (MM) image orientation based on the utilisation of highly accurate orientation parameters derived from aerial imagery. In addition to that, the diminished exterior orientation parameters of the MM platform will be utilised as they enable the application of accurate matching techniques needed to derive reliable tie information. This tie information will then be used within an adjustment solution to correct affected MM data. This paper presents an advanced feature matching procedure as a prerequisite to the aforementioned orientation update. MM data is ortho-projected to gain a higher resemblance to aerial nadir data simplifying the images' geometry for matching. By utilising MM exterior orientation parameters, search windows may be used in conjunction with a selective keypoint detection and template matching. Originating from different sensor systems, however, difficulties arise with respect to changes in illumination, radiometry and a different original perspective. To respond to these challenges for feature detection, the procedure relies on detecting keypoints in only one image. Initial tests indicate a considerable improvement in comparison to classic detector/descriptor approaches in this particular matching scenario. This method leads to a significant reduction of outliers due to the limited availability

  19. Ultrasound Imaging Beyond the Vasculature with New Generation Contrast Agents

    PubMed Central

    Perera, Reshani H.; Hernandez, Christopher; Zhou, Haoyan; Kota, Pavan; Burke, Alan

    2015-01-01

    Current commercially available ultrasound contrast agents are gas-filled, lipid- or protein-stabilized microbubbles larger than 1 μm in diameter. Because the signal generated by these agents is highly dependent on their size, small yet highly echogenic particles have been historically difficult to produce. This has limited the molecular imaging applications of ultrasound to the blood pool. In the area of cancer imaging, microbubble applications have been constrained to imaging molecular signatures of tumor vasculature and drug delivery enabled by ultrasound-modulated bubble destruction. Recently, with the rise of sophisticated advancements in nanomedicine, ultrasound contrast agents, which are an order of magnitude smaller (100-500 nm) than their currently utilized counterparts, have been undergoing rapid development. These agents are poised to greatly expand the capabilities of ultrasound in the field of targeted cancer detection and therapy by taking advantage of the enhanced permeability and retention phenomenon of many tumors and can extravasate beyond the leaky tumor vasculature. Agent extravasation facilitates highly sensitive detection of cell surface or microenvironment biomarkers, which could advance early cancer detection. Likewise, when combined with appropriate therapeutic agents and ultrasound-mediated deployment on demand, directly at the tumor site, these nanoparticles have been shown to contribute to improved therapeutic outcomes. Ultrasound's safety profile, broad accessibility and relatively low cost make it an ideal modality for the changing face of healthcare today. Aided by the multifaceted nano-sized contrast agents and targeted theranostic moieties described herein, ultrasound can considerably broaden its reach in future applications focused on the diagnosis and staging of cancer. PMID:25580914

  20. Development of a synthetic phase contrast imaging diagnostic

    SciTech Connect

    Rost, J. C.; Lin, L.; Porkolab, M.

    2010-06-15

    A ''synthetic diagnostic'' has been developed to calculate the expected experimental response of phase contrast imaging (PCI), a scattering diagnostic used to measure density fluctuations in laboratory plasmas, to a tokamak discharge modeled with the GYRO nonlinear gyrokinetic code [J. Candy and R. Waltz, J. Comput. Phys. 186, 545 (2003)]. The synthetic PCI includes the spatial response of the experimental diagnostic, primarily implemented as a line integral of plasma density along the beam path, and the minimum and maximum wavenumber response resulting from the detection scheme. The synthetic PCI can be used for comparisons between GYRO and experiment as well as studies of the PCI response.

  1. Screening CEST contrast agents using ultrafast CEST imaging

    NASA Astrophysics Data System (ADS)

    Xu, Xiang; Yadav, Nirbhay N.; Song, Xiaolei; McMahon, Michael T.; Jerschow, Alexej; van Zijl, Peter C. M.; Xu, Jiadi

    2016-04-01

    A chemical exchange saturation transfer (CEST) experiment can be performed in an ultrafast fashion if a gradient field is applied simultaneously with the saturation pulse. This approach has been demonstrated for studying dia- and para-magnetic CEST agents, hyperpolarized Xe gas and in vivo spectroscopy. In this study we present a simple method for the simultaneous screening of multiple samples. Furthermore, by interleaving a number of saturation and readout periods within the TR, a series of images with different saturation times can be acquired, allowing for the quantification of exchange rates using the variable saturation time (QUEST) approach in a much accelerated fashion, thus enabling high throughput screening of CEST contrast agents.

  2. Development of a synthetic phase contrast imaging diagnostic

    NASA Astrophysics Data System (ADS)

    Rost, J. C.; Lin, L.; Porkolab, M.

    2010-06-01

    A "synthetic diagnostic" has been developed to calculate the expected experimental response of phase contrast imaging (PCI), a scattering diagnostic used to measure density fluctuations in laboratory plasmas, to a tokamak discharge modeled with the GYRO nonlinear gyrokinetic code [J. Candy and R. Waltz, J. Comput. Phys. 186, 545 (2003)]. The synthetic PCI includes the spatial response of the experimental diagnostic, primarily implemented as a line integral of plasma density along the beam path, and the minimum and maximum wavenumber response resulting from the detection scheme. The synthetic PCI can be used for comparisons between GYRO and experiment as well as studies of the PCI response.

  3. Mapping temporal changes in connectivity using high-resolution aerial data and object based image analysis

    NASA Astrophysics Data System (ADS)

    Masselink, Rens; Anders, Niels; Keesstra, Saskia; Seeger, Manuel

    2014-05-01

    Within the field of geomorphology mapping has always been an important tool to interpret spatial and temporal distributions of phenomena and processes at the surface. In the field of connectivity however, although throughout the past decade many articles have been published, there are only very few that go into the mapping of connectivity. This study aimed at developing a new, automated method for mapping connectivity within agricultural catchments. The method, which is a combination of Object-Based Image Analysis (OBIA) and traditional geomorphological field mapping, was applied to two agricultural catchments in Navarre, Spain, both with an area of approximately 2 sq.km. An unmanned aerial vehicle (UAV) was used to take aerial photographs with a resolution of 6 cm, of which a DEM with a 12 cm resolution was created using structure-from-motion photogrammetry. Connectivity was mapped within the study areas using OBIA using a top down method, meaning that connectivity was mapped at different scale levels, starting at the largest scale. Firstly sub-catchments were automatically delineated, after which several characteristics and features that affect connectivity within the sub-catchments were classified, e.g. landuse, landslides, rills, gullies, riparian vegetation, changes in slope, ploughing direction etc. In two consecutive years (2013-2014) photographs were taken and connectivity of both catchments of both years will be compared. Future work will include a quantification of the mapped connectivity (highly connected years vs. low connected years), causes and consequences of these differences in connectivity, comparison to existing connectivity indices and comparison of mapped connectivity in sub-catchments and measured discharge.

  4. Impact of image acquisition timing on image quality for dual energy contrast-enhanced breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Hill, Melissa L.; Mainprize, James G.; Puong, Sylvie; Carton, Ann-Katherine; Iordache, Razvan; Muller, Serge; Yaffe, Martin J.

    2012-03-01

    Dual-energy contrast-enhanced digital breast tomosynthesis (DE CE-DBT) image quality is affected by a large parameter space including the tomosynthesis acquisition geometry, imaging technique factors, the choice of reconstruction algorithm, and the subject breast characteristics. The influence of most of these factors on reconstructed image quality is well understood for DBT. However, due to the contrast agent uptake kinetics in CE imaging, the subject breast characteristics change over time, presenting a challenge for optimization . In this work we experimentally evaluate the sensitivity of the reconstructed image quality to timing of the low-energy and high-energy images and changes in iodine concentration during image acquisition. For four contrast uptake patterns, a variety of acquisition protocols were tested with different timing and geometry. The influence of the choice of reconstruction algorithm (SART or FBP) was also assessed. Image quality was evaluated in terms of the lesion signal-difference-to-noise ratio (LSDNR) in the central slice of DE CE-DBT reconstructions. Results suggest that for maximum image quality, the low- and high-energy image acquisitions should be made within one x-ray tube sweep, as separate low- and high-energy tube sweeps can degrade LSDNR. In terms of LSDNR per square-root dose, the image quality is nearly equal between SART reconstructions with 9 and 15 angular views, but using fewer angular views can result in a significant improvement in the quantitative accuracy of the reconstructions due to the shorter imaging time interval.

  5. Small-animal microangiography using phase-contrast X-ray imaging and gas as contrast agent

    NASA Astrophysics Data System (ADS)

    Lundström, Ulf; Larsson, Daniel H.; Westermark, Ulrica K.; Burvall, Anna; Hertz, Hans M.

    2014-03-01

    We use propagation-based phase-contrast X-ray imaging with gas as contrast agent to visualize the microvasculature in small animals like mice and rats. The radiation dose required for absorption X-ray imaging is proportional to the minus fourth power of the structure size to be detected. This makes small vessels impossible to image at reasonable radiation doses using the absorption of conventional iodinated contrast agents. Propagation-based phase contrast gives enhanced contrast for high spatial frequencies by moving the detector away from the sample to let phase variations in the transmitted X-rays develop into intensity variations at the detector. Blood vessels are normally difficult to observe in phase contrast even with iodinated contrast agents as the density difference between blood and most tissues is relatively small. By injecting gas into the blood stream this density difference can be greatly enhanced giving strong phase contrast. One possible gas to use is carbon dioxide, which is a clinically accepted X-ray contrast agent. The gas is injected into the blood stream of patients to temporarily displace the blood in a region and thereby reduce the X-ray absorption in the blood vessels. We have shown that this method can be used to image blood vessels down to 8 μm in diameter in mouse ears. The low dose requirements of this method indicate a potential for live small-animal imaging and longitudinal studies of angiogenesis.

  6. Evaluation of imaging characteristics in CTDI phantom size on contrast imaging

    NASA Astrophysics Data System (ADS)

    Jeon, Pil-Hyun; Lee, Won-Hyung; Jeon, Seong-Su; Kim, Hee-Joung

    2015-03-01

    Recently, there have been several physics and clinical studies on the use of lower tube potentials in CT imaging, with the purpose of improving image quality or further reducing radiation dose. We investigated an experimental study using a series of different sized, polymethyl methacrylate (PMMA) phantoms, demonstrating the potential strategy for dose reduction and to distinguish component of plaque by imaging their energy responses using CT. We investigated the relationship between different sizes of cylinderic PMMA-equivalent phantoms with diameter of 12, 16, 20, 24, and 32 cm and used contrast at various tube voltages (80, 100, 120, and 140 kVp) using a 16-detector row CT scanner. The contrast represented CT numbers as different materials for the water, calcium chloride, and iodine. Phantom insertions also allow quantitative measures of image noise, contrast, contrast-to-noise ratio (CNR) and figure of merit (FOM). When evaluating FOM, it was found that the lower kVp provided the better CNR. An experimental study was performed to demonstrate reduced dose for both dose efficient and practical feasibility for different patient sizes and diagnostic tasks by relating achievable CNR and the volume CT dose index (CTDIvol). The use of spectra optimized to the specific application could provide further improvements of distinguishing iodine, calcium and plaque component for patient size. The purpose of this study was to evaluate variations in image noise and contrast using different tube potentials in a CTDI phantom on contrast imaging.

  7. Effect of irradiation distance on image contrast in epi-optoacoustic imaging of human volunteers

    PubMed Central

    Held, Gerrit; Preisser, Stefan; Akarçay, H. Günhan; Peeters, Sara; Frenz, Martin; Jaeger, Michael

    2014-01-01

    In combined clinical optoacoustic (OA) and ultrasound (US) imaging, epi-mode irradiation and detection integrated into one single probe offers flexible imaging of the human body. The imaging depth in epi-illumination is, however, strongly affected by clutter. As shown in previous phantom experiments, the location of irradiation plays an important role in clutter generation. We investigated the influence of the irradiation geometry on the local image contrast of clinical images, by varying the separation distance between the irradiated area and the acoustic imaging plane of a linear ultrasound transducer in an automated scanning setup. The results for different volunteers show that the image contrast can be enhanced on average by 25% and locally by more than a factor of two, when the irradiated area is slightly separated from the probe. Our findings have an important impact on the design of future optoacoustic probes for clinical application. PMID:25426309

  8. Modeled and measured image-plane polychromatic speckle contrast

    NASA Astrophysics Data System (ADS)

    Van Zandt, Noah R.; McCrae, Jack E.; Fiorino, Steven T.

    2016-02-01

    The statistical properties of speckle relevant to short- to medium-range (tactical) active tracking involving polychromatic illumination are investigated. A numerical model is developed to allow rapid simulation of speckled images including the speckle contrast reduction effects of illuminator bandwidth, surface slope, and roughness, and the polarization properties of both the source and the reflection. Regarding surface slope (relative orientation of the surface normal and illumination/observation directions), Huntley's theory for speckle contrast, which employs geometrical approximations to decrease computation time, is modified to increase accuracy by incorporation of a geometrical correction factor and better treatment of roughness and polarization. The resulting model shows excellent agreement with more exact theory over a wide range. An experiment is conducted to validate both the numerical model developed here and existing theory. A diode laser source with coherence length of 259±7 μm is reflected off of a silver-coated diffuse surface. Speckle data are gathered for 16 surface slope angles corresponding to speckle contrast between about 0.55 and 1. Taking the measured data as truth, both equations show error mean and standard deviation of less than 3%. Thus, the theory is validated over the range of this experiment.

  9. Mass image data storage system for high resolution aerial photographic survey

    NASA Astrophysics Data System (ADS)

    Zen, Luan; Tan, Jiubin; Zhao, Zhongwen

    2008-10-01

    In order to make it possible for an image data acquisition and storage system used for aerial photographic survey to have a continuous storage speed of 144 MB/s and data storage capacity of 260GB, three main problems have been solved in this paper. First, with multi-channel synchronous DMA transfer, parallel data storage of four SCSI hard disks is realized. It solved the problem of the data transfer rate too high for direct storage. Then, to increase the data transfer rate, a high speed BUS based on LVDS and a SCSI control circuit based on FAS368M were designed. It solved the problem of PCI BUS limiting the storage speed. Finally, the problem of the SCSI hard disk continuous storage speed declining led by much time interval between two DMA transfers is solved by optimizing DMA channel. The practical system test shows that the acquisition and storage system has a continuous storage speed of 150 MB/s and a data storage capacity of 280GB. Therefore, it is a new storage method for high speed and mass image data.

  10. The Need of Nested Grids for Aerial and Satellite Images and Digital Elevation Models

    NASA Astrophysics Data System (ADS)

    Villa, G.; Mas, S.; Fernández-Villarino, X.; Martínez-Luceño, J.; Ojeda, J. C.; Pérez-Martín, B.; Tejeiro, J. A.; García-González, C.; López-Romero, E.; Soteres, C.

    2016-06-01

    Usual workflows for production, archiving, dissemination and use of Earth observation images (both aerial and from remote sensing satellites) pose big interoperability problems, as for example: non-alignment of pixels at the different levels of the pyramids that makes it impossible to overlay, compare and mosaic different orthoimages, without resampling them and the need to apply multiple resamplings and compression-decompression cycles. These problems cause great inefficiencies in production, dissemination through web services and processing in "Big Data" environments. Most of them can be avoided, or at least greatly reduced, with the use of a common "nested grid" for mutiresolution production, archiving, dissemination and exploitation of orthoimagery, digital elevation models and other raster data. "Nested grids" are space allocation schemas that organize image footprints, pixel sizes and pixel positions at all pyramid levels, in order to achieve coherent and consistent multiresolution coverage of a whole working area. A "nested grid" must be complemented by an appropriate "tiling schema", ideally based on the "quad-tree" concept. In the last years a "de facto standard" grid and Tiling Schema has emerged and has been adopted by virtually all major geospatial data providers. It has also been adopted by OGC in its "WMTS Simple Profile" standard. In this paper we explain how the adequate use of this tiling schema as common nested grid for orthoimagery, DEMs and other types of raster data constitutes the most practical solution to most of the interoperability problems of these types of data.

  11. Miniaturization of sub-meter resolution hyperspectral imagers on unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Hill, Samuel L.; Clemens, Peter

    2014-05-01

    Traditional airborne environmental monitoring has frequently deployed hyperspectral imaging as a leading tool for characterizing and analyzing a scene's critical spectrum-based signatures for applications in agriculture genomics and crop health, vegetation and mineral monitoring, and hazardous material detection. As the acceptance of hyperspectral evaluation grows in the airborne community, there has been a dramatic trend in moving the technology from use on midsize aircraft to Unmanned Aerial Systems (UAS). The use of UAS accomplishes a number of goals including the reduction in cost to run multiple seasonal evaluations over smaller but highly valuable land-areas, the ability to use frequent data collections to make rapid decisions on land management, and the improvement of spatial resolution by flying at lower altitudes (< 150 m). Despite this trend, there are several key parameters affecting the use of traditional hyperspectral instruments in UAS with payloads less than 0.5 kg (~1lb) where size, weight and power (SWaP) are critical to how high and how far a given UAS can fly. Additionally, on many of the light-weight UAS, users are frequently trying to capture data from one or more instruments to augment the hyperspectral data collection, thus reducing the amount of SWaP available to the hyperspectral instrumentation. The following manuscript will provide an analysis on a newly-developed miniaturized hyperspectral imaging platform that provides full hyperspectral resolution and traditional hyperspectral capabilities without sacrificing performance to accommodate the decreasing SWaP of smaller and smaller UAS platforms.

  12. pH-induced contrast in viscoelasticity imaging of biopolymers

    NASA Astrophysics Data System (ADS)

    Yapp, R. D.; Insana, M. F.

    2009-03-01

    Understanding contrast mechanisms and identifying discriminating features is at the heart of diagnostic imaging development. This paper focuses on how pH influences the viscoelastic properties of biopolymers to better understand the effects of extracellular pH on breast tumour elasticity imaging. Extracellular pH is known to decrease as much as 1 pH unit in breast tumours, thus creating a dangerous environment that increases cellular mutatation rates and therapeutic resistance. We used a gelatin hydrogel phantom to isolate the effects of pH on a polymer network with similarities to the extracellular matrix in breast stroma. Using compressive unconfined creep and stress relaxation measurements, we systematically measured the viscoelastic features sensitive to pH by way of time-domain models and complex modulus analysis. These results are used to determine the sensitivity of quasi-static ultrasonic elasticity imaging to pH. We found a strong elastic response of the polymer network to pH, such that the matrix stiffness decreases as pH was reduced; however, the viscous response of the medium to pH was negligible. While physiological features of breast stroma such as proteoglycans and vascular networks are not included in our hydrogel model, observations in this study provide insight into viscoelastic features specific to pH changes in the collagenous stromal network. These observations suggest that the large contrast common in breast tumours with desmoplasia may be reduced under acidic conditions, and that viscoelastic features are unlikely to improve discriminability.

  13. The CHARIS IFS for high contrast imaging at Subaru

    NASA Astrophysics Data System (ADS)

    Groff, Tyler D.; Kasdin, N. Jeremy; Limbach, Mary Anne; Galvin, Michael; Carr, Michael A.; Knapp, Gillian; Brandt, Timothy; Loomis, Craig; Jarosik, Norman; Mede, Kyle; McElwain, Michael W.; Leviton, Douglas B.; Miller, Kevin H.; Quijada, Manuel A.; Guyon, Olivier; Jovanovic, Nemanja; Takato, Naruhisa; Hayashi, Masahiko

    2015-09-01

    The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an integral field spectrograph (IFS) being built for the Subaru telescope. CHARIS will take spectra of brown dwarfs and hot Jovian planets in the coronagraphic image provided by the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) and AO188 adaptive optics systems.1, 2 The system is designed to detect objects five orders of magnitude dimmer than their parent star down to an 80 milliarcsecond inner working angle. For characterization, CHARIS has a high-resolution prism providing an average spectral resolution of R82, R69, and R82 in J, H, and K bands respectively. The so-called discovery mode uses a second low-resolution prism with an average spectral resolution of R19 spanning 1.15-2.37 microns (J+H+K bands). This is unique compared to other high contrast IFS designs. It augments low inner working angle performance by reducing the separation at which we can rely on spectral differential imaging. The principal challenge for a high-contrast IFS is quasi-static speckles, which cause undue levels of spectral crosstalk. CHARIS has addressed this through several key design aspects that should constrain crosstalk between adjacent spectral features to be below 1%. Sitting on the Nasmyth platform, the alignment between the lenslet array, prism, and detector will be highly stable, key for the performance of the data pipeline. Nearly every component has arrived and the project is entering its final build phase. Here we review the science case, the resulting design, status of final construction, and lessons learned that are directly applicable to future exoplanet instruments.

  14. MR phase-contrast imaging in pulmonary hypertension.

    PubMed

    Reiter, Ursula; Reiter, Gert; Fuchsjäger, Michael

    2016-07-01

    Pulmonary hypertension (PH) is a life-threatening, multifactorial pathophysiological haemodynamic condition, diagnosed when the mean pulmonary arterial pressure equals or exceeds 25 mmHg at rest during right heart catheterization. Cardiac MRI, in general, and MR phase-contrast (PC) imaging, in particular, have emerged as potential techniques for the standardized assessment of cardiovascular function, morphology and haemodynamics in PH. Allowing the quantification and characterization of macroscopic cardiovascular blood flow, MR PC imaging offers non-invasive evaluation of haemodynamic alterations associated with PH. Techniques used to study the PH include both the routine two-dimensional (2D) approach measuring predominant velocities through an acquisition plane and the rapidly evolving four-dimensional (4D) PC imaging, which enables the assessment of the complete time-resolved, three-directional blood-flow velocity field in a volume. Numerous parameters such as pulmonary arterial mean velocity, vessel distensibility, flow acceleration time and volume and tricuspid regurgitation peak velocity, as well as the duration and onset of vortical blood flow in the main pulmonary artery, have been explored to either diagnose PH or find non-invasive correlates to right heart catheter parameters. Furthermore, PC imaging-based analysis of pulmonary arterial pulse-wave velocities, wall shear stress and kinetic energy losses grants novel insights into cardiopulmonary remodelling in PH. This review aimed to outline the current applications of 2D and 4D PC imaging in PH and show why this technique has the potential to contribute significantly to early diagnosis and characterization of PH. PMID:26942293

  15. Confidence Level and Sensitivity Limits in High Contrast Imaging

    SciTech Connect

    Marois, C

    2007-11-07

    In long adaptive optics corrected exposures, exoplanet detections are currently limited by speckle noise originating from the telescope and instrument optics, and it is expected that such noise will also limit future high-contrast imaging instruments for both ground and space-based telescopes. Previous theoretical analysis have shown that the time intensity variations of a single speckle follows a modified Rician. It is first demonstrated here that for a circular pupil this temporal intensity distribution also represents the speckle spatial intensity distribution at a fix separation from the point spread function center; this fact is demonstrated using numerical simulations for coronagraphic and non-coronagraphic data. The real statistical distribution of the noise needs to be taken into account explicitly when selecting a detection threshold appropriate for some desired confidence level. In this paper, a technique is described to obtain the pixel intensity distribution of an image and its corresponding confidence level as a function of the detection threshold. Using numerical simulations, it is shown that in the presence of speckles noise, a detection threshold up to three times higher is required to obtain a confidence level equivalent to that at 5{sigma} for Gaussian noise. The technique is then tested using TRIDENT CFHT and angular differential imaging NIRI Gemini adaptive optics data. It is found that the angular differential imaging technique produces quasi-Gaussian residuals, a remarkable result compared to classical adaptive optic imaging. A power-law is finally derived to predict the 1-3 x 10{sup -7} confidence level detection threshold when averaging a partially correlated non-Gaussian noise.

  16. Confidence Level and Sensitivity Limits in High Contrast Imaging

    SciTech Connect

    Marois, C; LaFreniere, D; Macintosh, B; Doyon, R

    2008-06-02

    In long adaptive optics corrected exposures, exoplanet detections are currently limited by speckle noise originating from the telescope and instrument optics, and it is expected that such noise will also limit future high-contrast imaging instruments for both ground and space-based telescopes. Previous theoretical analysis have shown that the time intensity variations of a single speckle follows a modified Rician. It is first demonstrated here that for a circular pupil this temporal intensity distribution also represents the speckle spatial intensity distribution at a fix separation from the point spread function center; this fact is demonstrated using numerical simulations for coronagraphic and non-coronagraphic data. The real statistical distribution of the noise needs to be taken into account explicitly when selecting a detection threshold appropriate for some desired confidence level. In this paper, a technique is described to obtain the pixel intensity distribution of an image and its corresponding confidence level as a function of the detection threshold. Using numerical simulations, it is shown that in the presence of speckles noise, a detection threshold up to three times higher is required to obtain a confidence level equivalent to that at 5{sigma} for Gaussian noise. The technique is then tested using TRIDENT CFHT and angular differential imaging NIRI Gemini adaptive optics data. It is found that the angular differential imaging technique produces quasi-Gaussian residuals, a remarkable result compared to classical adaptive optic imaging. A power-law is finally derived to predict the 1-3 x 10{sup -7} confidence level detection threshold when averaging a partially correlated non-Gaussian noise.

  17. Second harmonic inversion for ultrasound contrast harmonic imaging

    NASA Astrophysics Data System (ADS)

    Pasovic, Mirza; Danilouchkine, Mike; Faez, Telli; van Neer, Paul L. M. J.; Cachard, Christian; van der Steen, Antonius F. W.; Basset, Olivier; de Jong, Nico

    2011-06-01

    Ultrasound contrast agents (UCAs) are small micro-bubbles that behave nonlinearly when exposed to an ultrasound wave. This nonlinear behavior can be observed through the generated higher harmonics in a back-scattered echo. In past years several techniques have been proposed to detect or image harmonics produced by UCAs. In these proposed works, the harmonics generated in the medium during the propagation of the ultrasound wave played an important role, since these harmonics compete with the harmonics generated by the micro-bubbles. We present a method for the reduction of the second harmonic generated during nonlinear-propagation-dubbed second harmonic inversion (SHI). A general expression for the suppression signals is also derived. The SHI technique uses two pulses, p' and p'', of the same frequency f0 and the same amplitude P0 to cancel out the second harmonic generated by nonlinearities of the medium. Simulations show that the second harmonic is reduced by 40 dB on a large axial range. Experimental SHI B-mode images, from a tissue-mimicking phantom and UCAs, show an improvement in the agent-to-tissue ratio (ATR) of 20 dB compared to standard second harmonic imaging and 13 dB of improvement in harmonic power Doppler.

  18. Sensitivity, noise and quantitative model of Laser Speckle Contrast Imaging

    NASA Astrophysics Data System (ADS)

    Yuan, Shuai

    In the dissertation, I present several studies on Laser Speckle Contrast Imaging (LSCI). The two major goals of those studies are: (1) to improve the signal-noise-ratio (SNR) of LSCI so it can be used to detect small blood flow change due to brain activities; (2) to find a reliable quantitative model so LSCI results can be compared among experiments and subjects and even with results from other blood flow monitoring techniques. We sought to improve SNR in the following ways: (1) We investigated the relationship between exposure time and the sensitivities of LSCI. We found that relative sensitivity reaches its maximum at an exposure time of around 5 ms. (2) We studied the relationship between laser speckle and camera aperture stop, which is actually the relationship between laser speckle and speckle/pixel size ratio. In general, speckle and pixel size should be approximately 1.5 - 2 to reach the maximum of detection factor beta as well as speckle contrast (SC) value and absolute sensitivity. This is also an important study for quantitative model development. (3) We worked on noise analysis and modeling. Noise affects both SNR and quantitative model. Usually random noise is more critical for SNR analysis. The main random noises in LSCI are statistical noise and physiological noise. Some physiological noises are caused by the small motions induced by heart beat or breathing. These are periodic and can be eliminated using methods discussed in this dissertation. Statistical noise is more fundamental and cannot be eliminated entirely. However it can be greatly reduced by increasing the effective pixel number N for speckle contrast processing. To develop the quantitative model, we did the following: (1) We considered more experimental factors in the quantitative model and removed several ideal case assumptions. In particular, in our model we considered the general detection factor beta, static scatterers and systematic noise. A simple calibration procedure is suggested

  19. Low-Level Tie Feature Extraction of Mobile Mapping Data (mls/images) and Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Jende, P.; Hussnain, Z.; Peter, M.; Oude Elberink, S.; Gerke, M.; Vosselman, G.

    2016-03-01

    Mobile Mapping (MM) is a technique to obtain geo-information using sensors mounted on a mobile platform or vehicle. The mobile platform's position is provided by the integration of Global Navigation Satellite Systems (GNSS) and Inertial Navigation Systems (INS). However, especially in urban areas, building structures can obstruct a direct line-of-sight between the GNSS receiver and navigation satellites resulting in an erroneous position estimation. Therefore, derived MM data products, such as laser point clouds or images, lack the expected positioning reliability and accuracy. This issue has been addressed by many researchers, whose aim to mitigate these effects mainly concentrates on utilising tertiary reference data. However, current approaches do not consider errors in height, cannot achieve sub-decimetre accuracy and are often not designed to work in a fully automatic fashion. We propose an automatic pipeline to rectify MM data products by employing high resolution aerial nadir and oblique imagery as horizontal and vertical reference, respectively. By exploiting the MM platform's defective, and therefore imprecise but approximate orientation parameters, accurate feature matching techniques can be realised as a pre-processing step to minimise the MM platform's three-dimensional positioning error. Subsequently, identified correspondences serve as constraints for an orientation update, which is conducted by an estimation or adjustment technique. Since not all MM systems employ laser scanners and imaging sensors simultaneously, and each system and data demands different approaches, two independent workflows are developed in parallel. Still under development, both workflows will be presented and preliminary results will be shown. The workflows comprise of three steps; feature extraction, feature matching and the orientation update. In this paper, initial results of low-level image and point cloud feature extraction methods will be discussed as well as an outline of

  20. Construction and status of the CHARIS high contrast imaging spectrograph

    NASA Astrophysics Data System (ADS)

    Groff, Tyler D.; Kasdin, N. J.; Limbach, Mary A.; Galvin, Michael; Carr, Michael A.; Knapp, Gillian; Brandt, Timothy; Loomis, Craig; Jarosik, Norm; Mede, Kyle; McElwain, Michael W.; Janson, Markus; Guyon, Olivier; Jovanovic, Nemanja; Takato, Naruhisa; Martinache, Frantz; Hayashi, Masahiko

    2014-07-01

    Princeton University is building the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS), an integral field spectrograph (IFS) for the Subaru telescope. CHARIS is funded by the National Astronomical Observatory of Japan and is designed to take high contrast spectra of brown dwarfs and hot Jovian planets in the coronagraphic image provided by the Coronagraphic Extreme Adaptive Optics (SCExAO) and the AO188 adaptive optics systems. The project is now in the build and test phase at Princeton University. Once laboratory testing has been completed CHARIS will be integrated with SCExAO and AO188 in the winter of 2016. CHARIS has a high-resolution characterization mode in J, H, and K bands. The average spectral resolution in J, H, and K bands are R82, R68, and R82 respectively, the uniformity of which is a direct result of a new high index material, L-BBH2. CHARIS also has a second low-resolution imaging mode that spans J,H, and K bands with an average spectral resolution of R19, a feature unique to this instrument. The field of view in both imaging modes is 2.07x2.07 arcseconds. SCExAO+CHARIS will detect objects five orders of magnitude dimmer than their parent star down to an 80 milliarcsecond inner working angle. The primary challenge with exoplanet imaging is the presence of quasi-static speckles in the coronagraphic image. SCExAO has a wavefront control system to suppress these speckles and CHARIS will address their impact on spectral crosstalk through hardware design, which drives its optical and mechanical design. CHARIS constrains crosstalk to be below 1% for an adjacent source that is a full order of magnitude brighter than the neighboring spectra. Since CHARIS is on the Nasmyth platform, the optical alignment between the lenslet array and prism is highly stable. This improves the stability of the spectra and their orientation on the detector and results in greater stability in the wavelength solution for the data pipeline. This means less

  1. Three-dimensional imaging applications in Earth Sciences using video data acquired from an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    McLeod, Tara

    For three dimensional (3D) aerial images, unmanned aerial vehicles (UAVs) are cheaper to operate and easier to fly than the typical manned craft mounted with a laser scanner. This project explores the feasibility of using 2D video images acquired with a UAV and transforming them into 3D point clouds. The Aeryon Scout -- a quad-copter micro UAV -- flew two missions: the first at York University Keele campus and the second at the Canadian Wollastonite Mine Property. Neptec's ViDAR software was used to extract 3D information from the 2D video using structure from motion. The resulting point clouds were sparsely populated, yet captured vegetation well. They were used successfully to measure fracture orientation in rock walls. Any improvement in the video resolution would cascade through the processing and improve the overall results.

  2. Screening CEST contrast agents using ultrafast CEST imaging.

    PubMed

    Xu, Xiang; Yadav, Nirbhay N; Song, Xiaolei; McMahon, Michael T; Jerschow, Alexej; van Zijl, Peter C M; Xu, Jiadi

    2016-04-01

    A chemical exchange saturation transfer (CEST) experiment can be performed in an ultrafast fashion if a gradient field is applied simultaneously with the saturation pulse. This approach has been demonstrated for studying dia- and para-magnetic CEST agents, hyperpolarized Xe gas and in vivo spectroscopy. In this study we present a simple method for the simultaneous screening of multiple samples. Furthermore, by interleaving a number of saturation and readout periods within the TR, a series of images with different saturation times can be acquired, allowing for the quantification of exchange rates using the variable saturation time (QUEST) approach in a much accelerated fashion, thus enabling high throughput screening of CEST contrast agents. PMID:26969814

  3. SNR and Contrast Enhancement Techniques for the Photoacoustic Radar Imaging

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Mandelis, Andreas

    2016-07-01

    This paper presents two methods for photoacoustic signal enhancement in biological tissues. One such method is based on the fact that temperature can affect the signals of the photoacoustic radar. Therefore, thermally assisted methods have been used for photoacoustic imaging contrast improvement. Another method is based on harmonic wavelength modulation which results in a differential PA radar signal to strengthen early cancer detection. Two chirped waveforms modulated out-of-phase between 680 nm and 800 nm can effectively suppress the background noise, greatly enhance the SNR and detect small variations in hemoglobin oxygenation levels, thereby distinguishing pre-malignant tumors. Experimental results demonstrate the accuracy of the frequency-modulated differential measurement with sheep blood at different hemoglobin oxygenation (S_tO2) levels.

  4. Polarization interferometric nulling coronagraph for high-contrast imaging.

    PubMed

    Murakami, Naoshi; Yokochi, Kaito; Nishikawa, Jun; Tamura, Motohide; Kurokawa, Takashi; Takeda, Mitsuo; Baba, Naoshi

    2010-06-01

    We propose a novel, high-contrast imager called a polarization interferometric nulling coronagraph (PINC) for direct detection of extrasolar planets. The PINC uses achromatic half-wave plates (HWPs) installed in a fully symmetric beam combiner based on polarizing beam splitters. Jones calculus suggests that a stellar halo suppression level of 10(-10) can be achieved at 5 lambda/D for a broad wavelength range from 1.6 to 2.2 microm by using Fresnel-rhomb HWPs made of BK7. Laboratory experiments on the PINC used two laser light sources (wavelengths of lambda=532 and 671 nm), and we obtained a halo suppression level of approximately 10(-6) at 5 lambda/D for both wavelengths. PMID:20517351

  5. A supervised method for object-based 3D building change detection on aerial stereo images

    NASA Astrophysics Data System (ADS)

    Qin, R.; Gruen, A.

    2014-08-01

    There is a great demand for studying the changes of buildings over time. The current trend for building change detection combines the orthophoto and DSM (Digital Surface Models). The pixel-based change detection methods are very sensitive to the quality of the images and DSMs, while the object-based methods are more robust towards these problems. In this paper, we propose a supervised method for building change detection. After a segment-based SVM (Support Vector Machine) classification with features extracted from the orthophoto and DSM, we focus on the detection of the building changes of different periods by measuring their height and texture differences, as well as their shapes. A decision tree analysis is used to assess the probability of change for each building segment and the traffic lighting system is used to indicate the status "change", "non-change" and "uncertain change" for building segments. The proposed method is applied to scanned aerial photos of the city of Zurich in 2002 and 2007, and the results have demonstrated that our method is able to achieve high detection accuracy.

  6. Confidence Level and Sensitivity Limits in High-Contrast Imaging

    NASA Astrophysics Data System (ADS)

    Marois, Christian; Lafrenière, David; Macintosh, Bruce; Doyon, René

    2008-01-01

    In long adaptive optics corrected exposures, exoplanet detections are currently limited by speckle noise originating from the telescope and instrument optics, and it is expected that such noise will also limit future high-contrast imaging instruments for both ground- and space-based telescopes. Previous theoretical analyses have shown that the time intensity variations of a single speckle follow a modified Rician. It is first demonstrated here that for a circular pupil, this temporal intensity distribution also represents the speckle spatial intensity distribution at a fixed separation from the point-spread function center; this fact is demonstrated using numerical simulations for coronagraphic and noncoronagraphic data. The real statistical distribution of the noise needs to be taken into account explicitly when selecting a detection threshold appropriate for some desired confidence level (CL). In this paper, a technique is described to obtain the pixel intensity distribution of an image and its corresponding CL as a function of the detection threshold. Using numerical simulations, it is shown that in the presence of speckle noise, a detection threshold up to 3 times higher is required to obtain a CL equivalent to that at 5 σ for Gaussian noise. The technique is then tested on data acquired by simultaneous spectral differential imaging with TRIDENT and by angular differential imaging with NIRI. It is found that the angular differential imaging technique produces quasi-Gaussian residuals, a remarkable result compared to classical adaptive optic imaging. Finally, a power law is derived to predict the 1 - 3 × 10-7 CL detection threshold when averaging a partially correlated non-Gaussian noise. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of

  7. Whole-cell phase contrast imaging at the nanoscale using Fresnel Coherent Diffractive Imaging Tomography

    PubMed Central

    Jones, Michael W. M.; van Riessen, Grant A.; Abbey, Brian; Putkunz, Corey T.; Junker, Mark D.; Balaur, Eugeniu; Vine, David J.; McNulty, Ian; Chen, Bo; Arhatari, Benedicta D.; Frankland, Sarah; Nugent, Keith A.; Tilley, Leann; Peele, Andrew G.

    2013-01-01

    X-ray tomography can provide structural information of whole cells in close to their native state. Radiation-induced damage, however, imposes a practical limit to image resolution, and as such, a choice between damage, image contrast, and image resolution must be made. New coherent diffractive imaging techniques, such Fresnel Coherent Diffractive Imaging (FCDI), allows quantitative phase information with exceptional dose efficiency, high contrast, and nano-scale resolution. Here we present three-dimensional quantitative images of a whole eukaryotic cell by FCDI at a spatial resolution below 70 nm with sufficient phase contrast to distinguish major cellular components. From our data, we estimate that the minimum dose required for a similar resolution is close to that predicted by the Rose criterion, considerably below accepted estimates of the maximum dose a frozen-hydrated cell can tolerate. Based on the dose efficiency, contrast, and resolution achieved, we expect this technique will find immediate applications in tomographic cellular characterisation. PMID:23887204

  8. Optical Fourier techniques for medical image processing and phase contrast imaging

    PubMed Central

    Yelleswarapu, Chandra S.; Kothapalli, Sri-Rajasekhar; Rao, D.V.G.L.N.

    2008-01-01

    This paper briefly reviews the basics of optical Fourier techniques (OFT) and applications for medical image processing as well as phase contrast imaging of live biological specimens. Enhancement of microcalcifications in a mammogram for early diagnosis of breast cancer is the main focus. Various spatial filtering techniques such as conventional 4f filtering using a spatial mask, photoinduced polarization rotation in photosensitive materials, Fourier holography, and nonlinear transmission characteristics of optical materials are discussed for processing mammograms. We also reviewed how the intensity dependent refractive index can be exploited as a phase filter for phase contrast imaging with a coherent source. This novel approach represents a significant advance in phase contrast microscopy. PMID:18458764

  9. Optical Fourier techniques for medical image processing and phase contrast imaging.

    PubMed

    Yelleswarapu, Chandra S; Kothapalli, Sri-Rajasekhar; Rao, D V G L N

    2008-04-01

    This paper briefly reviews the basics of optical Fourier techniques (OFT) and applications for medical image processing as well as phase contrast imaging of live biological specimens. Enhancement of microcalcifications in a mammogram for early diagnosis of breast cancer is the main focus. Various spatial filtering techniques such as conventional 4f filtering using a spatial mask, photoinduced polarization rotation in photosensitive materials, Fourier holography, and nonlinear transmission characteristics of optical materials are discussed for processing mammograms. We also reviewed how the intensity dependent refractive index can be exploited as a phase filter for phase contrast imaging with a coherent source. This novel approach represents a significant advance in phase contrast microscopy. PMID:18458764

  10. Miniaturization of high spectral spatial resolution hyperspectral imagers on unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Hill, Samuel L.; Clemens, Peter

    2015-06-01

    Traditional airborne environmental monitoring has frequently deployed hyperspectral imaging as a leading tool for characterizing and analyzing a scene's critical spectrum-based signatures for applications in agriculture genomics and crop health, vegetation and mineral monitoring, and hazardous material detection. As the acceptance of hyperspectral evaluation grows in the airborne community, there has been a dramatic trend in moving the technology from use on midsize aircraft to Unmanned Aerial Systems (UAS). The use of UAS accomplishes a number of goals including the reduction in cost to run multiple seasonal evaluations over smaller but highly valuable land-areas, the ability to use frequent data collections to make rapid decisions on land management, and the improvement of spatial resolution by flying at lower altitudes (<500 ft.). Despite this trend, there are several key parameters affecting the use of traditional hyperspectral instruments in UAS with payloads less than 10 lbs. where size, weight and power (SWAP) are critical to how high and how far a given UAS can fly. Additionally, on many of the light-weight UAS, users are frequently trying to capture data from one or more instruments to augment the hyperspectral data collection, thus reducing the amount of SWAP available to the hyperspectral instrumentation. The following manuscript will provide an analysis on a newly-developed miniaturized hyperspectral imaging platform, the Nano-Hyperspec®, which provides full hyperspectral resolution and traditional hyperspectral capabilities without sacrificing performance to accommodate the decreasing SWAP of smaller and smaller UAS platforms. The analysis will examine the Nano-Hyperspec flown in several UAS airborne environments and the correlation of the systems data with LiDAR and other GIS datasets.

  11. Registration of Laser Scanning Point Clouds and Aerial Images Using either Artificial or Natural Tie Features

    NASA Astrophysics Data System (ADS)

    Rönnholm, P.; Haggrén, H.

    2012-07-01

    Integration of laser scanning data and photographs is an excellent combination regarding both redundancy and complementary. Applications of integration vary from sensor and data calibration to advanced classification and scene understanding. In this research, only airborne laser scanning and aerial images are considered. Currently, the initial registration is solved using direct orientation sensors GPS and inertial measurements. However, the accuracy is not usually sufficient for reliable integration of data sets, and thus the initial registration needs to be improved. A registration of data from different sources requires searching and measuring of accurate tie features. Usually, points, lines or planes are preferred as tie features. Therefore, the majority of resent methods rely highly on artificial objects, such as buildings, targets or road paintings. However, in many areas no such objects are available. For example in forestry areas, it would be advantageous to be able to improve registration between laser data and images without making additional ground measurements. Therefore, there is a need to solve registration using only natural features, such as vegetation and ground surfaces. Using vegetation as tie features is challenging, because the shape and even location of vegetation can change because of wind, for example. The aim of this article was to compare registration accuracies derived by using either artificial or natural tie features. The test area included urban objects as well as trees and other vegetation. In this area, two registrations were performed, firstly, using mainly built objects and, secondly, using only vegetation and ground surface. The registrations were solved applying the interactive orientation method. As a result, using artificial tie features leaded to a successful registration in all directions of the coordinate system axes. In the case of using natural tie features, however, the detection of correct heights was difficult causing

  12. Dynamic manipulation of magnetic contrast agents in photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Jia, Congxian; Xia, Jinjun; Pelivanov, Ivan M.; Seo, Chi Hyung; Hu, Xiaoge; Jin, Yongdong; Gao, Xiaohu; O'Donnell, Matthew

    2011-03-01

    Magnetic nanoparticles (MNPs) have been used extensively ex vivo for cellular and molecular separations. We recently showed that a coupled nanoparticle combining a superparamagnetic core with a thin, isolated gold shell providing strong absorption in the near infrared can be used for magnetomotive photoacoustic imaging (mmPA), a new technique in which magnetic manipulation of the particle during PA imaging greatly enhances molecular contrast specificity. This particle can also be biologically targeted for in vivo applications, where mmPA imaging provides a spatially localized readout of magnetic manipulations. As an initial test of potential in vivo molecular assays and integrated molecular therapeutics using magnetic manipulation of nanoparticles, we present experiments demonstrating PA readout of trapped magnetic particles in a flow field. An aqueous solution containing a concentration of 0.05-mg/ml 10-μM superparamagnetic iron oxide particles flowed in a 1.65-mm diameter Zeus PTFE (Teflon) sublite wall tubing at three velocities of 0.8, 1.5 and 3.0-mm/s. Opposed permanent magnets separated by 40-mm were positioned on both sides of the tube. As expected, the targeted objects can be magnetically captured and accumulated locally. By translating the magnets, a dynamic magnetic field (0.1-0.3-T) was alternately generated on the side of the tube closest to one of the magnets and created a synchronous PA motion from accumulated targeted objects. This synchronized motion can be used to differentiate the stationary background or other PA sources moving asynchronously with magnetic manipulations (e.g., moving blood) from targeted cells moving synchronously with the magnetic field. This technology can potentially provide sensitive molecular assays of cellular targets travelling in the vasculature (e.g., metastatic tumor cells).

  13. Learning Scene Categories from High Resolution Satellite Image for Aerial Video Analysis

    SciTech Connect

    Cheriyadat, Anil M

    2011-01-01

    Automatic scene categorization can benefit various aerial video processing applications. This paper addresses the problem of predicting the scene category from aerial video frames using a prior model learned from satellite imagery. We show that local and global features in the form of line statistics and 2-D power spectrum parameters respectively can characterize the aerial scene well. The line feature statistics and spatial frequency parameters are useful cues to distinguish between different urban scene categories. We learn the scene prediction model from highresolution satellite imagery to test the model on the Columbus Surrogate Unmanned Aerial Vehicle (CSUAV) dataset ollected by high-altitude wide area UAV sensor platform. e compare the proposed features with the popular Scale nvariant Feature Transform (SIFT) features. Our experimental results show that proposed approach outperforms te SIFT model when the training and testing are conducted n disparate data sources.

  14. Aerial Images from AN Uav System: 3d Modeling and Tree Species Classification in a Park Area

    NASA Astrophysics Data System (ADS)

    Gini, R.; Passoni, D.; Pinto, L.; Sona, G.

    2012-07-01

    The use of aerial imagery acquired by Unmanned Aerial Vehicles (UAVs) is scheduled within the FoGLIE project (Fruition of Goods Landscape in Interactive Environment): it starts from the need to enhance the natural, artistic and cultural heritage, to produce a better usability of it by employing audiovisual movable systems of 3D reconstruction and to improve monitoring procedures, by using new media for integrating the fruition phase with the preservation ones. The pilot project focus on a test area, Parco Adda Nord, which encloses various goods' types (small buildings, agricultural fields and different tree species and bushes). Multispectral high resolution images were taken by two digital compact cameras: a Pentax Optio A40 for RGB photos and a Sigma DP1 modified to acquire the NIR band. Then, some tests were performed in order to analyze the UAV images' quality with both photogrammetric and photo-interpretation purposes, to validate the vector-sensor system, the image block geometry and to study the feasibility of tree species classification. Many pre-signalized Control Points were surveyed through GPS to allow accuracy analysis. Aerial Triangulations (ATs) were carried out with photogrammetric commercial software, Leica Photogrammetry Suite (LPS) and PhotoModeler, with manual or automatic selection of Tie Points, to pick out pros and cons of each package in managing non conventional aerial imagery as well as the differences in the modeling approach. Further analysis were done on the differences between the EO parameters and the corresponding data coming from the on board UAV navigation system.

  15. Satellite Images and Aerial Photographs of the Effects of Hurricanes Katrina and Rita on Coastal Louisiana

    USGS Publications Warehouse

    Barras, John A.

    2007-01-01

    -water datasets derived from the Landsat TM satellite imagery were combined with 2001 marsh vegetative communities (Chabreck and others, unpub. data, 2001) to identify land-water configurations by marsh community before and after the hurricanes. Links to the Landsat TM images and aerial photographs are given below (figs. 1-29). Comparison of land area before the storms to land area after the storms is made possible by the inclusion of Landsat TM images and aerial photographs taken in the years and months before the storms. The figures are arranged geographically from east to west to follow the chronology of the effects of the storms. For a more detailed analysis of the changes wrought by these storms, see 'Land Area Changes in Coastal Louisiana After Hurricanes Katrina and Rita' (Barras, in press).

  16. High-Contrast NIR Polarization Imaging of MWC480

    NASA Technical Reports Server (NTRS)

    McElwain, M. W.; Kusakabe, N.; Hashimoto, J.; Kudo, T.; Kandori, R.; Miyama, S.; Morino, J.-I.; Suto, H.; Suzuki, R.; Tamura, M.; Grady, C. A.; Sitko, M. L.; Werren, C.; Day, A. N.; Beerman, C.; Iye, M.; Lynch, D. K.; Russell, R. W.; Brafford, S. M.

    2012-01-01

    One of the key predictions of modeling from the IR excess of Herbig Ae stars is that for protoplanetary disks, where significant grain growth and settling has occurred, the dust disk has flattened to the point that it can be partially or largely shadowed by the innermost material at or near the dust sublimation radius. When the self-shadowing has already started, the outer disk is expected to be detected in scattered light only in the exceptional cases that the scale height of the dust disk at the sublimation radius is smaller than usual. High-contrast imaging combined with the IR spectral energy distribution allow us to measure the degree of flattening of the disk, as well as to determine the properties of the outer disk. We present polarimetric differential imaging in H band obtained with Subaru/HiCIAO of one such system, MWC 480. The HiCIAO data were obtained at a historic minimum of the NIR excess. The disk is detected in scattered light from 0".2-1"0 (27.4-137 AU). Together with the marginal detection of the disk from 1998 February 24 by HST / NICMOS, our data constrain the opening half angle for the disk to lie between 1.3 <= Theta <=2.2 deg. When compared with similar measures in CO for the gas disk from the literature, the dust disk subtends only approx 30% of the gas disk scale height (H/R approx 0. 03). Such a dust disk is a factor of 5-7 flatter than transitional disks, which have structural signatures that giant planets have formed.

  17. Digital Camera Calibration Using Images Taken from AN Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Pérez, M.; Agüera, F.; Carvajal, F.

    2011-09-01

    For calibrating the camera, an accurate determination of the interior orientation parameters is needed. For more accurate results, the calibration images should be taken under conditions that are similar to the field samples. The aim of this work is the establishment of an efficient and accurate digital camera calibration method to be used in particular working conditions, as it can be found with our UAV (Unmanned Aerial Vehicle) photogrammetric projects. The UAV used in this work was md4-200 modelled by Microdrones. The microdrone is also equipped with a standard digital non- metric camera, the Pentax Optio A40 camera. To find out the interior orientation parameters of the digital camera, two calibration methods were done. A lab calibration based on a flat pattern and a field calibration were fulfilled. To carry out the calibration, Photomodeler Scanner software was used in both cases. The lab calibration process was completely automatic using a calibration grid. The focal length was fixed at widest angle and the network included a total of twelve images with± 90º roll angles. In order to develop the field calibration, a flight plan was programmed including a total of twelve images. In the same way as in the lab calibration, the focal length was fixed at widest angle. The field test used in the study was a flat surface located on the University of Almería campus and a set of 67 target points were placed. The calibration field area was 25 × 25 m approximately and the altitude flight over ground was 50 m. After the software processing, the camera calibration parameter values were obtained. The paper presents the process, the results and the accuracy of these calibration methods. The field calibration method reduced the final total error obtained in the previous lab calibration. Furthermore the overall RMSs obtained from both methods are similar. Therefore we will apply the field calibration results to all our photogrammetric projects in which the flight high

  18. Application of high resolution images from unmanned aerial vehicles for hydrology and rangeland science

    NASA Astrophysics Data System (ADS)

    Rango, A.; Vivoni, E. R.; Anderson, C. A.; Perini, N. A.; Saripalli, S.; Laliberte, A.

    2012-12-01

    A common problem in many natural resource disciplines is the lack of high-enough spatial resolution images that can be used for monitoring and modeling purposes. Advances have been made in the utilization of Unmanned Aerial Vehicles (UAVs) in hydrology and rangeland science. By utilizing low flight altitudes and velocities, UAVs are able to produce high resolution (5 cm) images as well as stereo coverage (with 75% forward overlap and 40% sidelap) to extract digital elevation models (DEM). Another advantage of flying at low altitude is that the potential problems of atmospheric haze obscuration are eliminated. Both small fixed-wing and rotary-wing aircraft have been used in our experiments over two rangeland areas in the Jornada Experimental Range in southern New Mexico and the Santa Rita Experimental Range in southern Arizona. The fixed-wing UAV has a digital camera in the wing and six-band multispectral camera in the nose, while the rotary-wing UAV carries a digital camera as payload. Because we have been acquiring imagery for several years, there are now > 31,000 photos at one of the study sites, and 177 mosaics over rangeland areas have been constructed. Using the DEM obtained from the imagery we have determined the actual catchment areas of three watersheds and compared these to previous estimates. At one site, the UAV-derived watershed area is 4.67 ha which is 22% smaller compared to a manual survey using a GPS unit obtained several years ago. This difference can be significant in constructing a watershed model of the site. From a vegetation species classification, we also determined that two of the shrub types in this small watershed(mesquite and creosote with 6.47 % and 5.82% cover, respectively) grow in similar locations(flat upland areas with deep soils), whereas the most predominant shrub(mariola with 11.9% cover) inhabits hillslopes near stream channels(with steep shallow soils). The positioning of these individual shrubs throughout the catchment using

  19. Estimating Mixed Broadleaves Forest Stand Volume Using Dsm Extracted from Digital Aerial Images

    NASA Astrophysics Data System (ADS)

    Sohrabi, H.

    2012-07-01

    In mixed old growth broadleaves of Hyrcanian forests, it is difficult to estimate stand volume at plot level by remotely sensed data while LiDar data is absent. In this paper, a new approach has been proposed and tested for estimating stand forest volume. The approach is based on this idea that forest volume can be estimated by variation of trees height at plots. In the other word, the more the height variation in plot, the more the stand volume would be expected. For testing this idea, 120 circular 0.1 ha sample plots with systematic random design has been collected in Tonekaon forest located in Hyrcanian zone. Digital surface model (DSM) measure the height values of the first surface on the ground including terrain features, trees, building etc, which provides a topographic model of the earth's surface. The DSMs have been extracted automatically from aerial UltraCamD images so that ground pixel size for extracted DSM varied from 1 to 10 m size by 1m span. DSMs were checked manually for probable errors. Corresponded to ground samples, standard deviation and range of DSM pixels have been calculated. For modeling, non-linear regression method was used. The results showed that standard deviation of plot pixels with 5 m resolution was the most appropriate data for modeling. Relative bias and RMSE of estimation was 5.8 and 49.8 percent, respectively. Comparing to other approaches for estimating stand volume based on passive remote sensing data in mixed broadleaves forests, these results are more encouraging. One big problem in this method occurs when trees canopy cover is totally closed. In this situation, the standard deviation of height is low while stand volume is high. In future studies, applying forest stratification could be studied.

  20. Automated hotspot analysis with aerial image CD metrology for advanced logic devices

    NASA Astrophysics Data System (ADS)

    Buttgereit, Ute; Trautzsch, Thomas; Kim, Min-ho; Seo, Jung-Uk; Yoon, Young-Keun; Han, Hak-Seung; Chung, Dong Hoon; Jeon, Chan-Uk; Meyers, Gary

    2014-09-01

    Continuously shrinking designs by further extension of 193nm technology lead to a much higher probability of hotspots especially for the manufacturing of advanced logic devices. The CD of these potential hotspots needs to be precisely controlled and measured on the mask. On top of that, the feature complexity increases due to high OPC load in the logic mask design which is an additional challenge for CD metrology. Therefore the hotspot measurements have been performed on WLCD from ZEISS, which provides the benefit of reduced complexity by measuring the CD in the aerial image and qualifying the printing relevant CD. This is especially of advantage for complex 2D feature measurements. Additionally, the data preparation for CD measurement becomes more critical due to the larger amount of CD measurements and the increasing feature diversity. For the data preparation this means to identify these hotspots and mark them automatically with the correct marker required to make the feature specific CD measurement successful. Currently available methods can address generic pattern but cannot deal with the pattern diversity of the hotspots. The paper will explore a method how to overcome those limitations and to enhance the time-to-result in the marking process dramatically. For the marking process the Synopsys WLCD Output Module was utilized, which is an interface between the CATS mask data prep software and the WLCD metrology tool. It translates the CATS marking directly into an executable WLCD measurement job including CD analysis. The paper will describe the utilized method and flow for the hotspot measurement. Additionally, the achieved results on hotspot measurements utilizing this method will be presented.

  1. Modeling and Analysis of Phase Contrast Imaging Measurements

    NASA Astrophysics Data System (ADS)

    Rost, J. C.; Porkolab, M.; Dorris, J. R.; Candy, J.; Burrell, K. H.

    2007-11-01

    The phase contrast imaging (PCI) diagnostic on DIII-D has been operated in several configurations over its lifetime. The beam path was changed in 2003 from tangential at the midplane LCFS to a path passing through the edge at an angle near 45 degrees and reaching typically r/a=0.8, and the maximum wavenumber has been increased from 7 to 30 cm-1. A synthetic diagnostic (SD) has been created to model all configurations of the PCI by post-processing the output of the GYRO gyrokinetic simulation. The SD includes line integration along the full path and models the detector to obtain the high- and low-k cutoffs. Modeling of a plasma discharge typical of DIII-D is used to interpret the PCI spectra S(k,f) in terms of turbulent ballooning modes and local S(kr,kθ,f). This allows us to identify parts of the PCI spectra with different plasma modes (ITG, TEM, ETG), separate effects of Doppler shift and intrinsic mode velocity in the measurement, and improve comparisons with other diagnostics. The SD will contribute to validation of the model through comparison between simulation and experiment.

  2. Evaluation of edge effect due to phase contrast imaging for mammography

    SciTech Connect

    Matsuo, Satoru; Katafuchi, Tetsuro; Tohyama, Keiko; Morishita, Junji; Yamada, Katsuhiko; Fujita, Hiroshi

    2005-08-15

    It is well-known that the edge effect produced by phase contrast imaging results in the edge enhancement of x-ray images and thereby sharpens those images. It has recently been reported that phase contrast imaging using practical x-ray tubes with small focal spots has improved image sharpness as observed in the phase contrast imaging with x-ray from synchrotron radiation or micro-focus x-ray tubes. In this study, we conducted the phase contrast imaging of a plastic fiber and plant seeds using a customized mammography equipment with a 0.1 mm focal spot, and the improvement of image sharpness was evaluated in terms of spatial frequency response of the images. We observed that the image contrast of the plastic fiber was increased by edge enhancement, and, as predicted elsewhere, spectral analysis revealed that as the spatial frequencies of the x-ray images increased, so did the sharpness gained through phase contrast imaging. Thus, phase contrast imaging using a practical molybdenum anode tube with a 0.1 mm-focal spot would benefit mammography, in which the morphological detectability of small species such as micro-calcifications is of great concern. And detectability of tumor-surrounded glandular tissues in dense breast would be also improved by the phase contrast imaging.

  3. Fabrication and characteristics of experimental radiographic amplifier screens. [image transducers with improved image contrast and resolution

    NASA Technical Reports Server (NTRS)

    Szepesi, Z.

    1978-01-01

    The fabrication process and transfer characteristics for solid state radiographic image transducers (radiographic amplifier screens) are described. These screens are for use in realtime nondestructive evaluation procedures that require large format radiographic images with contrast and resolution capabilities unavailable with conventional fluoroscopic screens. The screens are suitable for in-motion, on-line radiographic inspection by means of closed circuit television. Experimental effort was made to improve image quality and response to low energy (5 kV and up) X-rays.

  4. Laser speckle contrast imaging with extended depth of field for in-vivo tissue imaging

    PubMed Central

    Sigal, Iliya; Gad, Raanan; Caravaca-Aguirre, Antonio M.; Atchia, Yaaseen; Conkey, Donald B.; Piestun, Rafael; Levi, Ofer

    2013-01-01

    This work presents, to our knowledge, the first demonstration of the Laser Speckle Contrast Imaging (LSCI) technique with extended depth of field (DOF). We employ wavefront coding on the detected beam to gain quantitative information on flow speeds through a DOF extended two-fold compared to the traditional system. We characterize the system in-vitro using controlled microfluidic experiments, and apply it in-vivo to imaging the somatosensory cortex of a rat, showing improved ability to image flow in a larger number of vessels simultaneously. PMID:24466481

  5. Contrast Induced Nephropathy with Intravenous Iodinated Contrast Media in Routine Diagnostic Imaging: An Initial Experience in a Tertiary Care Hospital

    PubMed Central

    Bhatt, Shuchi; Rajpal, Nipun; Rathi, Vineeta; Avasthi, Rajneesh

    2016-01-01

    Background. Contrast induced nephropathy (CIN) is common cause of hospital acquired renal failure, defined as iatrogenic deterioration of renal function following intravascular contrast administration in the absence of another nephrotoxic event. Objectives. Objectives were to calculate incidence of CIN with routine IV contrast usage and to identify its risk factors. Materials and Methods. Study was conducted on 250 patients (having eGFR ≥ 45 mL/min/1.73 m2) receiving intravenous contrast. Various clinical risk factors and details of contrast media were recorded. Patients showing 25% increase in postprocedural serum creatinine value or an absolute increase of 0.5 mg/dL (44.2 mmol/L) were diagnosed as having CIN. Results and Conclusions. Postprocedural serum creatinine showed significant increase from baseline levels. 25 patients (10%) developed CIN. CIN was transient in 21 (84%) patients developing CIN. One patient (4%) developed renal failure and another died due to unknown cause. Dehydration, preexisting renal disease, cardiac failure, previous contrast administration, and volume of contrast had significant correlation with development of CIN (p < 0.05); whereas demographic variables, baseline serum creatinine/eGFR, previous renal surgery, diabetes mellitus, hypertension, nephrotoxic drug intake, abnormal routine hematology, and contrast characteristics had no correlation with CIN. CIN is a matter of concern even in routine imaging requiring intravenous contrast media, in our set-up. PMID:27069686

  6. Ultrasound contrast agent imaging: Real-time imaging of the superharmonics

    SciTech Connect

    Peruzzini, D.; Viti, J.; Tortoli, P.; Verweij, M. D.; Jong, N. de; Vos, H. J.

    2015-10-28

    Currently, in medical ultrasound contrast agent (UCA) imaging the second harmonic scattering of the microbubbles is regularly used. This scattering is in competition with the signal that is caused by nonlinear wave propagation in tissue. It was reported that UCA imaging based on the third or higher harmonics, i.e. “superharmonic” imaging, shows better contrast. However, the superharmonic scattering has a lower signal level compared to e.g. second harmonic signals. This study investigates the contrast-to-tissue ratio (CTR) and signal to noise ratio (SNR) of superharmonic UCA scattering in a tissue/vessel mimicking phantom using a real-time clinical scanner. Numerical simulations were performed to estimate the level of harmonics generated by the microbubbles. Data were acquired with a custom built dual-frequency cardiac phased array probe. Fundamental real-time images were produced while beam formed radiofrequency (RF) data was stored for further offline processing. The phantom consisted of a cavity filled with UCA surrounded by tissue mimicking material. The acoustic pressure in the cavity of the phantom was 110 kPa (MI = 0.11) ensuring non-destructivity of UCA. After processing of the acquired data from the phantom, the UCA-filled cavity could be clearly observed in the images, while tissue signals were suppressed at or below the noise floor. The measured CTR values were 36 dB, >38 dB, and >32 dB, for the second, third, and fourth harmonic respectively, which were in agreement with those reported earlier for preliminary contrast superharmonic imaging. The single frame SNR values (in which ‘signal’ denotes the signal level from the UCA area) were 23 dB, 18 dB, and 11 dB, respectively. This indicates that noise, and not the tissue signal, is the limiting factor for the UCA detection when using the superharmonics in nondestructive mode.

  7. Ultrasound contrast agent imaging: Real-time imaging of the superharmonics

    NASA Astrophysics Data System (ADS)

    Peruzzini, D.; Viti, J.; Tortoli, P.; Verweij, M. D.; de Jong, N.; Vos, H. J.

    2015-10-01

    Currently, in medical ultrasound contrast agent (UCA) imaging the second harmonic scattering of the microbubbles is regularly used. This scattering is in competition with the signal that is caused by nonlinear wave propagation in tissue. It was reported that UCA imaging based on the third or higher harmonics, i.e. "superharmonic" imaging, shows better contrast. However, the superharmonic scattering has a lower signal level compared to e.g. second harmonic signals. This study investigates the contrast-to-tissue ratio (CTR) and signal to noise ratio (SNR) of superharmonic UCA scattering in a tissue/vessel mimicking phantom using a real-time clinical scanner. Numerical simulations were performed to estimate the level of harmonics generated by the microbubbles. Data were acquired with a custom built dual-frequency cardiac phased array probe. Fundamental real-time images were produced while beam formed radiofrequency (RF) data was stored for further offline processing. The phantom consisted of a cavity filled with UCA surrounded by tissue mimicking material. The acoustic pressure in the cavity of the phantom was 110 kPa (MI = 0.11) ensuring non-destructivity of UCA. After processing of the acquired data from the phantom, the UCA-filled cavity could be clearly observed in the images, while tissue signals were suppressed at or below the noise floor. The measured CTR values were 36 dB, >38 dB, and >32 dB, for the second, third, and fourth harmonic respectively, which were in agreement with those reported earlier for preliminary contrast superharmonic imaging. The single frame SNR values (in which `signal' denotes the signal level from the UCA area) were 23 dB, 18 dB, and 11 dB, respectively. This indicates that noise, and not the tissue signal, is the limiting factor for the UCA detection when using the superharmonics in nondestructive mode.

  8. Influence of illumination position on image contrast in epi-optoacoustic imaging of human volunteers

    NASA Astrophysics Data System (ADS)

    Preisser, Stefan; Held, Gerrit; Peeters, Sara; Jaeger, Michael; Frenz, Martin

    2014-03-01

    In a multi-modal combination of optoacoustic (OA) and pulse-echo ultrasound (US) imaging, epi-mode irradiation with the irradiation optics integrated with the acoustic probe has the advantage of flexible clinical application on any part of the body that is already accessible to US. In epi-mode strong clutter limits the OA imaging depth to often around one centimetre. We investigated clutter in automated scanning of volunteer forearms using a real-time combined OA and US system. The results agree well with our theory that clutter arises from strong optical absorption at the location of tissue illumination. As a consequence, we show that an intermediate separation distance between imaging plane and irradiation region leads to superior OA image contrast compared to an irradiation close to the imaging plane.

  9. Dynamic contrast-enhanced magnetic resonance imaging: definitive imaging of placental function?

    PubMed

    Chalouhi, G E; Deloison, B; Siauve, N; Aimot, S; Balvay, D; Cuenod, C A; Ville, Y; Clément, O; Salomon, L J

    2011-02-01

    The placenta constitutes a complex circulatory interface between the mother and fetus, but the relationship between the maternal and fetal circulation is still very difficult to study in vivo. There is growing evidence that magnetic resonance imaging (MRI) is useful and safe during pregnancy, and MRI is increasingly used for fetal and placental anatomical imaging. MRI functional imaging is now a modern obstetric tool and has the potential to provide new insights into the physiology of the human placenta. Placental perfusion has been studied during the first pass of an MR contrast agent, by arterial spin labeling, diffusion imaging, T1 and T2 relaxation time measurement using echo-planar imaging, and by a combination of magnetization transfer with established stereological methods. The BOLD (blood oxygen level-dependent) effect offers new perspectives for functional MRI evaluation of the placenta. PMID:20851065

  10. Grating-based x-ray phase-contrast imaging at PETRA III

    NASA Astrophysics Data System (ADS)

    Hipp, A.; Beckmann, F.; Lytaev, P.; Greving, I.; Lottermoser, L.; Dose, T.; Kirchhof, R.; Burmester, H.; Schreyer, A.; Herzen, J.

    2014-09-01

    Conventional absorption-based imaging often lacks in good contrast at special applications like visualization of soft tissue or weak absorbing material in general. To overcome this limitation, several new X-ray phase-contrast imaging methods have been developed at synchrotron radiation facilities. Our aim was to establish the possibility of different phase-contrast imaging modalities at the Imaging Beamline (IBL, P05) and the High Energy Material Science beamline (HEMS, P07) at Petra III (DESY, Germany). Here we present the instrumentation and the status of the currently successfully established phase-contrast imaging techniques. First results from measurements of biomedical samples will be presented as demonstration.

  11. Feature and Contrast Enhancement of Mammographic Image Based on Multiscale Analysis and Morphology

    PubMed Central

    Wu, Shibin; Xie, Yaoqin

    2013-01-01

    A new algorithm for feature and contrast enhancement of mammographic images is proposed in this paper. The approach bases on multiscale transform and mathematical morphology. First of all, the Laplacian Gaussian pyramid operator is applied to transform the mammography into different scale subband images. In addition, the detail or high frequency subimages are equalized by contrast limited adaptive histogram equalization (CLAHE) and low-pass subimages are processed by mathematical morphology. Finally, the enhanced image of feature and contrast is reconstructed from the Laplacian Gaussian pyramid coefficients modified at one or more levels by contrast limited adaptive histogram equalization and mathematical morphology, respectively. The enhanced image is processed by global nonlinear operator. The experimental results show that the presented algorithm is effective for feature and contrast enhancement of mammogram. The performance evaluation of the proposed algorithm is measured by contrast evaluation criterion for image, signal-noise-ratio (SNR), and contrast improvement index (CII). PMID:24416072

  12. Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging.

    PubMed

    Hannah, Alexander; Luke, Geoffrey; Wilson, Katheryne; Homan, Kimberly; Emelianov, Stanislav

    2014-01-28

    Recently, perfluorocarbon (PFC) nanodroplets were introduced as contrast agents for imaging and image-guided therapy. For example, in sonography, high-intensity ultrasound pulses were used to phase-transition liquid perfluorocarbon to produce gas microbubbles. More recently, perfluorocarbon nanodroplets with encapsulated gold nanorods were used as dual ultrasound/photoacoustic contrast agents. To expedite clinical translation, we synthesized and characterized ICG-loaded perfluorocarbon nanodroplets, i.e., constructs comprising biocompatible, nontoxic and biologically safe materials. We then demonstrated enhanced photoacoustic contrast through optically triggered phase transition of PFC nanodroplets and ultrasound contrast from the resulting PFC bubbles. We assessed the quality enhancement of photoacoustic and ultrasound images through analysis of contrast and contrast-to-noise ratio. We further investigated the changes in image contrast due to increased ambient temperature. Our studies suggest that ICG-loaded perfluorocarbon nanodroplets may become a valuable tool for various imaging modalities, and have promising therapeutic applications. PMID:24303934

  13. Tumor Characterization with Dynamic Contrast Enhanced Magnetic Resonance Imaging and Biodegradable Macromolecular Contrast Agents in Mice

    PubMed Central

    Wu, Xueming; Feng, Yi; Jeong, Eun-Kee; Emerson, Lyska; Lu, Zheng-Rong

    2009-01-01

    Purpose To investigate the efficacy of polydisulfide-based biodegradable macromolecular contrast agents of different degradability and molecular weight for tumor characterization based on angiogenesis using dynamic contrast enhanced MRI (DCE-MRI). Methods Biodegradable macromolecular MRI contrast agents, GDCC and GDCP, with molecular weight of 20 and 70 KDa were evaluated for tumor characterization. The DCE-MRI studies were performed in nude mice bearing MDA PCa 2b and PC-3 human prostate tumor xenografts. Tumor angiogenic kinetic parameters, endothelium transfer coefficient (Ktrans) and fractional tumor plasma volume (fPV), were calculated from the DCE-MRI data using a two-compartment model. Results There was no significant difference in the fPV values between two tumor models estimated with the same agent except for GDCC-70. The Ktrans values in both tumor models decreased with increasing molecular weight of the agents. GDCC-70 showed a higher Ktrans values than GDCP-70 due to high degradability of the former in both tumor models (p < 0.05). The Ktrans values of MDA PCa 2b tumors were significantly higher than those of PC-3 tumors estimated by Gd(DTPA-BMA), GDCC-20, GDCC-70, GDCP-70, and albumin-(Gd-DTPA) (p < 0.05). Conclusions The polydisulfide based biodegradable macromolecular MRI contrast agents are promising in tumor characterization with dynamic contrast enhanced MRI. PMID:19597972

  14. CO2-based in-line phase contrast imaging of small intestine in mice

    PubMed Central

    Tang, Rongbiao; Li, Wei-Xia; Huang, Wei; Yan, Fuhua; Chai, Wei-Min; Yang, Guo-Yuan; Chen, Ke-Min

    2013-01-01

    The objective of this study was to explore the potential of CO2 single contrast in-line phase contrast imaging (PCI) for pre-clinical small intestine investigation. The absorption and phase contrast images of CO2 gas production were attained and compared. A further increase in image contrast was observed in PCI. Compared with CO2-based absorption contrast imaging (ACI), CO2-based PCI significantly enhanced the detection of mucosal microstructures, such as pits and folds. The CO2-based PCI could provide sufficient image contrast for clearly showing the intestinal mucosa in living mice without using barium. We concluded that CO2-based PCI might be a novel and promising imaging method for future studies of gastrointestinal disorders. PMID:23896957

  15. CO2-based in-line phase contrast imaging of small intestine in mice

    NASA Astrophysics Data System (ADS)

    Tang, Rongbiao; Li, Wei-Xia; Huang, Wei; Yan, Fuhua; Chai, Wei-Min; Yang, Guo-Yuan; Chen, Ke-Min

    2013-07-01

    The objective of this study was to explore the potential of CO2 single contrast in-line phase contrast imaging (PCI) for pre-clinical small intestine investigation. The absorption and phase contrast images of CO2 gas production were attained and compared. A further increase in image contrast was observed in PCI. Compared with CO2-based absorption contrast imaging (ACI), CO2-based PCI significantly enhanced the detection of mucosal microstructures, such as pits and folds. The CO2-based PCI could provide sufficient image contrast for clearly showing the intestinal mucosa in living mice without using barium. We concluded that CO2-based PCI might be a novel and promising imaging method for future studies of gastrointestinal disorders.

  16. Diffraction enhance x-ray imaging for quantitative phase contrast studies

    NASA Astrophysics Data System (ADS)

    Agrawal, A. K.; Singh, B.; Kashyap, Y. S.; Shukla, Mayank; Sarkar, P. S.; Sinha, Amar

    2016-05-01

    Conventional X-ray imaging based on absorption contrast permits limited visibility of feature having small density and thickness variations. For imaging of weakly absorbing material or materials possessing similar densities, a novel phase contrast imaging techniques called diffraction enhanced imaging has been designed and developed at imaging beamline Indus-2 RRCAT Indore. The technique provides improved visibility of the interfaces and show high contrast in the image forsmall density or thickness gradients in the bulk. This paper presents basic principle, instrumentation and analysis methods for this technique. Initial results of quantitative phase retrieval carried out on various samples have also been presented.

  17. Medical image visual appearance improvement using bihistogram Bezier curve contrast enhancement: data from the Osteoarthritis Initiative.

    PubMed

    Gan, Hong-Seng; Swee, Tan Tian; Abdul Karim, Ahmad Helmy; Sayuti, Khairil Amir; Abdul Kadir, Mohammed Rafiq; Tham, Weng-Kit; Wong, Liang-Xuan; Chaudhary, Kashif T; Ali, Jalil; Yupapin, Preecha P

    2014-01-01

    Well-defined image can assist user to identify region of interest during segmentation. However, complex medical image is usually characterized by poor tissue contrast and low background luminance. The contrast improvement can lift image visual quality, but the fundamental contrast enhancement methods often overlook the sudden jump problem. In this work, the proposed bihistogram Bezier curve contrast enhancement introduces the concept of "adequate contrast enhancement" to overcome sudden jump problem in knee magnetic resonance image. Since every image produces its own intensity distribution, the adequate contrast enhancement checks on the image's maximum intensity distortion and uses intensity discrepancy reduction to generate Bezier transform curve. The proposed method improves tissue contrast and preserves pertinent knee features without compromising natural image appearance. Besides, statistical results from Fisher's Least Significant Difference test and the Duncan test have consistently indicated that the proposed method outperforms fundamental contrast enhancement methods to exalt image visual quality. As the study is limited to relatively small image database, future works will include a larger dataset with osteoarthritic images to assess the clinical effectiveness of the proposed method to facilitate the image inspection. PMID:24977191

  18. Large-scale aerial images capture details of invasive plant populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Satellite and aerial remote sensing have been successfully used to measure invasive weed infestations over very large areas, but have limited resolution. Ground-based methods have provided detailed measurements of invasive weeds, but can measure only limited areas. Here we test a novel approach th...

  19. ISSUES IN DIGITAL IMAGE PROCESSING OF AERIAL PHOTOGRAPHY FOR MAPPING SUBMERSED AQUATIC VEGETATION

    EPA Science Inventory

    The paper discusses the numerous issues that needed to be addressed when developing a methodology for mapping Submersed Aquatic Vegetation (SAV) from digital aerial photography. Specifically, we discuss 1) choice of film; 2) consideration of tide and weather constraints; 3) in-s...

  20. Visualization of perfusion changes with laser speckle contrast imaging using the method of motion history image.

    PubMed

    Ansari, Mohammad Zaheer; Humeau-Heurtier, Anne; Offenhauser, Nikolas; Dreier, Jens P; Nirala, Anil Kumar

    2016-09-01

    Laser speckle contrast imaging (LSCI) is a real-time imaging modality reflecting microvascular perfusion. We report on the application of the motion history image (MHI) method on LSCI data obtained from the two hemispheres of a mouse. Through the generation of a single image, MHI stresses the microvascular perfusion changes. Our experimental results performed during a pinprick-triggered spreading depolarization demonstrate the effectiveness of MHI: MHI allows the visualization of perfusion changes without loss of resolution and definition. Moreover, MHI provides close results to the ones given by the generalized differences (GD) algorithm. However, MHI has the advantage of giving information on the temporal evolution of the perfusion variations, which GD does not. PMID:27321386

  1. Experimental characterization, comparison and image quality assessment of two ultrasound contrast agents: Optison and Definity

    NASA Astrophysics Data System (ADS)

    Hughes, Amy C.; Day, Steven W.; Linte, Cristian A.; Schwarz, Karl Q.

    2016-04-01

    Microbubble-based contrast agents are commonly used in ultrasound imaging to help differentiate the blood pool from the endocardial wall. It is essential to use an agent which produces high image intensity relative to the surrounding tissue, commonly referred to contrast effect. When exposed to ultrasound waves, microbubbles produce an intense backscatter signal in addition to the contrast produced by the fluctuating size of the microbubbles. However, over time, the microbubble concentration depletes, leading to reduced visual enhancement. The retention time associated with contrast effect varies according to the frequency and power level of the ultrasound wave, as well as the contrast agent used. The primary objective of this study was to investigate and identify the most appropriate image acquisition parameters that render optimal contrast effect for two intravenous contrast agents, Optison™ and Definity™. Several controlled in vitro experiments were conducted using an experimental apparatus that featured a perfused tissue-emulating phantom. A continuous flow of contrast agent was imaged using ultrasound at different frequencies and power levels, while a pulse wave Doppler device was used to monitor the concentration of the contrast agent solution. The contrast effect was determined based on the image intensity inside the flow pipe mimicking the blood-pool relative to the intensity of the surrounding phantom material mimicking cardiac tissue. To identify the combination of parameters that yielded optimal visualization for each contrast agent tested, the contrast effect was assessed at different microbubble concentrations and different ultrasound imaging frequencies and transmission power levels.

  2. Feasibility study of hidden flow imaging based on laser speckle technique using multiperspectives contrast images

    NASA Astrophysics Data System (ADS)

    Abookasis, David; Moshe, Tomer

    2014-11-01

    This paper demonstrates the insertion of lens array in the front of a CCD camera in a laser speckle imaging (LSI) like-technique to acquire multiple speckle reflectance projections for imaging blood flow in an intact biological tissue. In some of LSI applications, flow imaging is obtained by thinning or removing of the upper tissue layers to access blood vessels. In contrast, with the proposed approach flow imaging can be achieved while the tissue is intact. In the system, each lens from an hexagonal lens array observed the sample from slightly different perspectives and captured with a CCD camera. In the computer, these multiview raw images are converted to speckled contrast maps. Then, a self-deconvolution shift-and-add algorithm is employed for processing yields high contrast flow information. The method is experimentally validated first with a plastic tube filled with scattering liquid running at different controlled flow rates hidden in a biological tissue and then extensively tested for imaging of cerebral blood flow in an intact rodent head experience different conditions. A total of fifteen mice were used in the experiments divided randomly into three groups as follows: Group 1 (n=5) consisted of injured mice experience hypoxic ischemic brain injury monitored for ~40 min. Group 2 (n=5) injured mice experience anoxic brain injury monitored up to 20 min. Group 3 (n=5) experience functional activation monitored up to ~35 min. To increase tissue transparency and the penetration depth of photons through head tissue layers, an optical clearing method was employed. To our knowledge, this work presents for the first time the use of lens array in LSI scheme.

  3. High contrast optical imaging methods for image guided laser ablation of dental caries lesions

    NASA Astrophysics Data System (ADS)

    LaMantia, Nicole R.; Tom, Henry; Chan, Kenneth H.; Simon, Jacob C.; Darling, Cynthia L.; Fried, Daniel

    2014-02-01

    Laser based methods are well suited for automation and can be used to selectively remove dental caries to minimize the loss of healthy tissues and render the underlying enamel more resistant to acid dissolution. The purpose of this study was to determine which imaging methods are best suited for image-guided ablation of natural non-cavitated carious lesions on occlusal surfaces. Multiple caries imaging methods were compared including near-IR and visible reflectance and quantitative light fluorescence (QLF). In order for image-guided laser ablation to be feasible, chemical and physical modification of tooth surfaces due to laser irradiation cannot greatly reduce the contrast between sound and demineralized dental hard tissues. Sound and demineralized surfaces of 48 extracted human molar teeth with non-cavitated lesions were examined. Images were acquired before and after laser irradiation using visible and near-IR reflectance and QLF at several wavelengths. Polarization sensitive-optical coherence tomography was used to confirm that lesions were present. The highest contrast was attained at 1460-nm and 1500-1700-nm, wavelengths coincident with higher water absorption. The reflectance did not decrease significantly after laser irradiation for those wavelengths.

  4. High contrast optical imaging methods for image guided laser ablation of dental caries lesions

    PubMed Central

    LaMantia, Nicole R.; Tom, Henry; Chan, Kenneth H.; Simon, Jacob C.; Darling, Cynthia L.; Fried, Daniel

    2014-01-01

    Laser based methods are well suited for automation and can be used to selectively remove dental caries to minimize the loss of healthy tissues and render the underlying enamel more resistant to acid dissolution. The purpose of this study was to determine which imaging methods are best suited for image-guided ablation of natural non-cavitated carious lesions on occlusal surfaces. Multiple caries imaging methods were compared including near-IR and visible reflectance and quantitative light fluorescence (QLF). In order for image-guided laser ablation to be feasible, chemical and physical modification of tooth surfaces due to laser irradiation cannot greatly reduce the contrast between sound and demineralized dental hard tissues. Sound and demineralized surfaces of 48 extracted human molar teeth with non-cavitated lesions were examined. Images were acquired before and after laser irradiation using visible and near-IR reflectance and QLF at several wavelengths. Polarization sensitive-optical coherence tomography was used to confirm that lesions were present. The highest contrast was attained at 1460-nm and 1500–1700-nm, wavelengths coincident with higher water absorption. The reflectance did not decrease significantly after laser irradiation for those wavelengths. PMID:24791129

  5. Wavefront aberration measurement method for a hyper-NA lithographic projection lens based on principal component analysis of an aerial image.

    PubMed

    Zhu, Boer; Wang, Xiangzhao; Li, Sikun; Yan, Guanyong; Shen, Lina; Duan, Lifeng

    2016-04-20

    A wavefront aberration measurement method for a hyper-NA lithographic projection lens by use of an aerial image based on principal component analysis is proposed. Aerial images of the hyper-NA lithographic projection lens are expressed accurately by using polarized light and a vector imaging model, as well as by considering the polarization properties. As a result, the wavefront aberrations of the hyper-NA lithographic projection lens are measured accurately. The lithographic simulator PROLITH is used to validate the accuracies of the wavefront aberration measurement and analyze the impact of the polarization rotation of illumination on the accuracy of the wavefront aberration measurement, as well as the degree of polarized light and the sample interval of aerial images. The result shows that the proposed method can retrieve 33 terms of Zernike coefficients (Z5-Z37) with a maximum error of less than 0.00085λ. PMID:27140087

  6. High Contrast Ultrafast Imaging of the Human Heart

    PubMed Central

    Papadacci, Clement; Pernot, Mathieu; Couade, Mathieu; Fink, Mathias; Tanter, Mickael

    2014-01-01

    Non-invasive ultrafast imaging for human cardiac applications is a big challenge to image intrinsic waves such as electromechanical waves or remotely induced shear waves in elastography imaging techniques. In this paper we propose to perform ultrafast imaging of the heart with adapted sector size by using diverging waves emitted from a classical transthoracic cardiac phased array probe. As in ultrafast imaging with plane wave coherent compounding, diverging waves can be summed coherently to obtain high-quality images of the entire heart at high frame rate in a full field-of-view. To image shear waves propagation at high SNR, the field-of-view can be adapted by changing the angular aperture of the transmitted wave. Backscattered echoes from successive circular wave acquisitions are coherently summed at every location in the image to improve the image quality while maintaining very high frame rates. The transmitted diverging waves, angular apertures and subapertures size are tested in simulation and ultrafast coherent compounding is implemented on a commercial scanner. The improvement of the imaging quality is quantified in phantom and in vivo on human heart. Imaging shear wave propagation at 2500 frame/s using 5 diverging waves provides a strong increase of the Signal to noise ratio of the tissue velocity estimates while maintaining a high frame rate. Finally, ultrafast imaging with a 1 to 5 diverging waves is used to image the human heart at a frame rate of 900 frames/s over an entire cardiac cycle. Thanks to spatial coherent compounding, a strong improvement of imaging quality is obtained with a small number of transmitted diverging waves and a high frame rate, which allows imaging the propagation of electromechanical and shear waves with good image quality. PMID:24474135

  7. A contrast correction method for dental images based on histogram registration

    PubMed Central

    Economopoulos, TL; Asvestas, PA; Matsopoulos, GK; Gröndahl, K; Gröndahl, H-G

    2010-01-01

    Contrast correction is often required in digital subtraction radiography when comparing medical data acquired over different time periods owing to dissimilarities in the acquisition process. This paper focuses on dental radiographs and introduces a novel approach for correcting the contrast in dental image pairs. The proposed method modifies the subject images by applying typical registration techniques on their histograms. The proposed histogram registration method reshapes the histograms of the two subject images in such a way that these images are matched in terms of their contrast deviation. The method was extensively tested over 4 sets of dental images, consisting of 72 registered dental image pairs with unknown contrast differences as well as 20 dental pairs with known contrast differences. The proposed method was directly compared against the well-known histogram-based contrast correction method. The two methods were qualitatively and quantitatively evaluated for all 92 available dental image pairs. The two methods were compared in terms of the contrast root mean square difference between the reference image and the corrected image in each case. The obtained results were also verified statistically using appropriate t-tests in each set. The proposed method exhibited superior performance compared with the well-established method, in terms of the contrast root mean square difference between the reference and the corrected images. After suitable statistical analysis, it was deduced that the performance advantage of the proposed approach was statistically significant. PMID:20587655

  8. Novel Imaging Contrast Methods for Hyperpolarized 13 C Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Reed, Galen Durant

    Magnetic resonance imaging using hyperpolarized 13C-labeled small molecules has emerged as an extremely powerful tool for the in vivo monitoring of perfusion and metabolism. This work presents methods for improved imaging, parameter mapping, and image contrast generation for in vivo hyperpolarized 13C MRI. Angiography using hyperpolarized urea was greatly improved with a highly T2-weighted acquisition in combination with 15N labeling of the urea amide groups. This is due to the fact that the T2 of [13C]urea is strongly limited by the scalar coupling to the neighboring quadrupolar 14N. The long in vivo T2 values of [13C, 15N2]urea were utilized for sub-millimeter projection angiography using a contrast agent that could be safely injected in concentrations of 10-100 mM while still tolerated in patients with renal insufficiency. This study also presented the first method for in vivo T2 mapping of hyperpolarized 13C compounds. The in vivo T2 of urea was short in the blood and long within the kidneys. This persistent signal component was isolated to the renal filtrate, thus enabling for the first time direct detection of an imaging contrast agent undergoing glomerular filtration. While highly T2-weighted acquisitions select for molecules with short rotational correlation times, high diffusion weighting selects for those with the long translational correlation times. A specialized spin-echo EPI sequence was developed in order to generate highly diffusion-weighted hyperpolarized 13C images on a clinical MRI system operating within clinical peak- RF and gradient amplitude constraints. Low power adiabatic spin echo pulses were developed in order to generate a sufficiently large refocused bandwidth while maintaining low nominal power. This diffusion weighted acquisition gave enhanced tumor contrast-to-noise ratio when imaging [1-13C]lactate after infusion of [1-13C]pyruvate. Finally, the first in-man hyperpolarized 13C MRI clinical trial is discussed.

  9. Imaging microscopy by phase-contrast engine: retardation-modulated differential interference contrast microscope

    NASA Astrophysics Data System (ADS)

    Ishiwata, Hiroshi; Itoh, Masahide

    2014-11-01

    In the field of biology and medicine, observation object of the microscope has been changing from the thin specimen to the thick living tissue. Furthermore, observation of the internal structure of a living tissue is also desired by low invasion. However, the real structure of a phase object with three-dimensional distribution such as a living tissue is difficult to observe, because of the influence of the phase distribution before and behind of observation position. We enabled observation of the internal structure of living tissue without stain, by adding a new function to reduce the influence of phase distribution to our Retardation-Modulated differential interference contrast (RM-DIC) microscope system.

  10. [Building Change Detection Based on Multi-Level Rules Classification with Airborne LiDAR Data and Aerial Images].

    PubMed

    Gong, Yi-long; Yan, Li

    2015-05-01

    The present paper proposes a new building change detection method combining Lidar point cloud with aerial image, using multi-level rules classification algorithm, to solve building change detection problem between these two kinds of heterogeneous data. Then, a morphological post-processing method combined with area threshold is proposed. Thus, a complete building change detection processing flow that can be applied to actual production is proposed. Finally, the effectiveness of the building change detection method is evaluated, processing the 2010 airborne LiDAR point cloud data and 2009 high resolution aerial image of Changchun City, Jilin province, China; in addition, compared with the object-oriented building change detection method based on support vector machine (SVM) classification, more analysis and evaluation of the suggested method is given. Experiment results show that the performance of the proposed building change detection method is ideal. Its Kappa index is 0. 90, and correctness is 0. 87, which is higher than the object-oriented building change detection method based on SVM classification. PMID:26415454

  11. 75 FR 875 - Guidance for Industry on New Contrast Imaging Indication Considerations for Devices and Approved...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-06

    ... September 30, 2008 (73 FR 58604, October 7, 2008); the comment period closed on January 5, 2009. FDA held.../biological products that provide image contrast enhancement. The final guidance announced in this document... developers of medical imaging devices and imaging drug/ biological products that provide image...

  12. Using GPS/INS data to enhance image matching for real-time aerial triangulation

    NASA Astrophysics Data System (ADS)

    Tanathong, Supannee; Lee, Impyeong

    2014-11-01

    Direct georeferencing is a promising technique for determining the exterior orientation parameters (EO) of a camera in real-time through the integration of GPS/INS sensors. Instead of using expensive devices, we improve the accuracy of the directly measured EOs through aerial triangulation (AT) and rely on tie-points. In this work, using GPS/INS data, we enhance the KLT tracker to achieve accuracy and speed that is compatible with real-time aerial triangulation. Given GPS/INS data from medium-grade sensors, the proposed system is 48% faster than the original work and tie-points extracted by our system are 6.33% more accurate and more evenly distributed than tie-points extracted by the original work. The AT processing results show that tie-points from the proposed work can reduce the RMSE of the directly measured EOs by 17.87% for position and 23.37% for attitude. Thus, we conclude that our proposed system can be integrated with real-time aerial triangulation.

  13. Dynamic measures of regional lung air volume using phase contrast x-ray imaging

    NASA Astrophysics Data System (ADS)

    Kitchen, M. J.; Lewis, R. A.; Morgan, M. J.; Wallace, M. J.; Siew, M. L.; Siu, K. K. W.; Habib, A.; Fouras, A.; Yagi, N.; Uesugi, K.; Hooper, S. B.

    2008-11-01

    Phase contrast x-ray imaging can provide detailed images of lung morphology with sufficient spatial resolution to observe the terminal airways (alveoli). We demonstrate that quantitative functional and anatomical imaging of lung ventilation can be achieved in vivo using two-dimensional phase contrast x-ray images with high contrast and spatial resolution (<100 µm) in near real time. Changes in lung air volume as small as 25 µL were calculated from the images of term and preterm rabbit pup lungs (n = 28) using a single-image phase retrieval algorithm. Comparisons with plethysmography and computed tomography showed that the technique provided an accurate and robust method of measuring total lung air volumes. Furthermore, regional ventilation was measured by partitioning the phase contrast images, which revealed differences in aeration for different ventilation strategies.

  14. X-ray elastography: Modification of x-ray phase contrast images using ultrasonic radiation pressure

    SciTech Connect

    Hamilton, Theron J.; Bailat, Claude; Rose-Petruck, Christoph; Diebold, Gerald J.; Gehring, Stephan; Laperle, Christopher M.; Wands, Jack

    2009-05-15

    The high resolution characteristic of in-line x-ray phase contrast imaging can be used in conjunction with directed ultrasound to detect small displacements in soft tissue generated by differential acoustic radiation pressure. The imaging method is based on subtraction of two x-ray images, the first image taken with, and the second taken without the presence of ultrasound. The subtraction enhances phase contrast features and, to a large extent, removes absorption contrast so that differential movement of tissues with different acoustic impedances or relative ultrasonic absorption is highlighted in the image. Interfacial features of objects with differing densities are delineated in the image as a result of both the displacement introduced by the ultrasound and the inherent sensitivity of x-ray phase contrast imaging to density variations. Experiments with ex vivo murine tumors and human tumor phantoms point out a diagnostic capability of the method for identifying tumors.

  15. Chemical contrast observed in thermal images of blood-stained fabrics exposed to steam.

    PubMed

    O'Brien, Wayne L; Boltin, Nicholas D; Lu, Zhenyu; Cassidy, Brianna M; Belliveau, Raymond G; Straub, Emory J; DeJong, Stephanie A; Morgan, Stephen L; Myrick, M L

    2015-09-21

    Thermal imaging is not ordinarily a good way to visualize chemical contrast. In recent work, however, we observed strong and reproducible images with chemical contrasts on blood-stained fabrics, especially on more hydrophobic fabrics like acrylic and polyester. PMID:26225800

  16. X-ray spatial frequency heterodyne imaging of protein-based nanobubble contrast agents.

    PubMed

    Rand, Danielle; Uchida, Masaki; Douglas, Trevor; Rose-Petruck, Christoph

    2014-09-22

    Spatial Frequency Heterodyne Imaging (SFHI) is a novel x-ray scatter imaging technique that utilizes nanoparticle contrast agents. The enhanced sensitivity of this new technique relative to traditional absorption-based x-ray radiography makes it promising for applications in biomedical and materials imaging. Although previous studies on SFHI have utilized only metal nanoparticle contrast agents, we show that nanomaterials with a much lower electron density are also suitable. We prepared protein-based "nanobubble" contrast agents that are comprised of protein cage architectures filled with gas. Results show that these nanobubbles provide contrast in SFHI comparable to that of gold nanoparticles of similar size. PMID:25321797

  17. X-ray spatial frequency heterodyne imaging of protein-based nanobubble contrast agents

    PubMed Central

    Rand, Danielle; Uchida, Masaki; Douglas, Trevor; Rose-Petruck, Christoph

    2014-01-01

    Spatial Frequency Heterodyne Imaging (SFHI) is a novel x-ray scatter imaging technique that utilizes nanoparticle contrast agents. The enhanced sensitivity of this new technique relative to traditional absorption-based x-ray radiography makes it promising for applications in biomedical and materials imaging. Although previous studies on SFHI have utilized only metal nanoparticle contrast agents, we show that nanomaterials with a much lower electron density are also suitable. We prepared protein-based “nanobubble” contrast agents that are comprised of protein cage architectures filled with gas. Results show that these nanobubbles provide contrast in SFHI comparable to that of gold nanoparticles of similar size. PMID:25321797

  18. Magnetic Resonance Imaging with Hyperpolarized 13C Contrast Agents

    NASA Astrophysics Data System (ADS)

    Gordon, Jeremy W.

    Hyperpolarized 13C substrates offer the potential to non-invasively image metabolism and enzymatic activity. However, hyperpolarization introduces a number of difficulties, and imaging is hampered by non-equilibrium magnetization and the need for spectral encoding. There is therefore a need for fast and RF efficient spectral imaging techniques. This work presents a number of new methods that can be used to improve polarization, increase RF efficiency and improve modeling accuracy in hyperpolarized 13C experiments. In particular, a novel encoding and reconstruction algorithm is presented that can generate spatially and spectrally resolved images with a single RF excitation and echo time. This reconstruction framework increases data acquisition efficiency, enabling accelerated acquisition speed, preserved polarization, and/or improved temporal or spatial resolution. Overall, the methods enumerated in this dissertation have the potential to improve modeling accuracy and to mitigate the conventional tradeoffs between SNR, spatial resolution, and temporal resolution that govern image quality in hyperpolarized 13C experiments.

  19. Contrast medium administration and image acquisition parameters in renal CT angiography: what radiologists need to know

    PubMed Central

    Saade, Charbel; Deeb, Ibrahim Alsheikh; Mohamad, Maha; Al-Mohiy, Hussain; El-Merhi, Fadi

    2016-01-01

    Over the last decade, exponential advances in computed tomography (CT) technology have resulted in improved spatial and temporal resolution. Faster image acquisition enabled renal CT angiography to become a viable and effective noninvasive alternative in diagnosing renal vascular pathologies. However, with these advances, new challenges in contrast media administration have emerged. Poor synchronization between scanner and contrast media administration have reduced the consistency in image quality with poor spatial and contrast resolution. Comprehensive understanding of contrast media dynamics is essential in the design and implementation of contrast administration and image acquisition protocols. This review includes an overview of the parameters affecting renal artery opacification and current protocol strategies to achieve optimal image quality during renal CT angiography with iodinated contrast media, with current safety issues highlighted. PMID:26728701

  20. Contrast Media for X-ray and Magnetic Resonance Imaging: Development, Current Status and Future Perspectives.

    PubMed

    Frenzel, Thomas; Lawaczeck, Rüdiger; Taupitz, Matthias; Jost, Gregor; Lohrke, Jessica; Sieber, Martin A; Pietsch, Hubertus

    2015-09-01

    Over the last 120 years, the extensive advances in medical imaging allowed enhanced diagnosis and therapy of many diseases and thereby improved the quality of life of many patient generations. From the beginning, all technical solutions and imaging procedures were combined with dedicated pharmaceutical developments of contrast media, to further enhance the visualization of morphology and physiology. This symbiosis of imaging hardware and contrast media development was of high importance for the development of modern clinical radiology. Today, all available clinically approved contrast media fulfill the highest requirements for clinical safety and efficacy. All new concepts to increase the efficacy of contrast media have also to consider the high clinical safety standards and cost of goods of current marketed contrast media. Nevertheless, diagnostic imaging will contribute significantly to the progresses in medicine, and new contrast media developments are mandatory to address the medical needs of the future. PMID:26207928

  1. Training set size, scale, and features in Geographic Object-Based Image Analysis of very high resolution unmanned aerial vehicle imagery

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Cheng, Liang; Li, Manchun; Liu, Yongxue; Ma, Xiaoxue

    2015-04-01

    Unmanned Aerial Vehicle (UAV) has been used increasingly for natural resource applications in recent years due to their greater availability and the miniaturization of sensors. In addition, Geographic Object-Based Image Analysis (GEOBIA) has received more attention as a novel paradigm for remote sensing earth observation data. However, GEOBIA generates some new problems compared with pixel-based methods. In this study, we developed a strategy for the semi-automatic optimization of object-based classification, which involves an area-based accuracy assessment that analyzes the relationship between scale and the training set size. We found that the Overall Accuracy (OA) increased as the training set ratio (proportion of the segmented objects used for training) increased when the Segmentation Scale Parameter (SSP) was fixed. The OA increased more slowly as the training set ratio became larger and a similar rule was obtained according to the pixel-based image analysis. The OA decreased as the SSP increased when the training set ratio was fixed. Consequently, the SSP should not be too large during classification using a small training set ratio. By contrast, a large training set ratio is required if classification is performed using a high SSP. In addition, we suggest that the optimal SSP for each class has a high positive correlation with the mean area obtained by manual interpretation, which can be summarized by a linear correlation equation. We expect that these results will be applicable to UAV imagery classification to determine the optimal SSP for each class.

  2. Digital contrast enhancement of 18Fluorine-fluorodeoxyglucose positron emission tomography images in hepatocellular carcinoma

    PubMed Central

    Pandey, Anil Kumar; Sharma, Sanjay Kumar; Agarwal, Krishan Kant; Sharma, Punit; Bal, Chandrasekhar; Kumar, Rakesh

    2016-01-01

    Purpose: The role of 18fluorodeoxyglucose positron emission tomography (PET) is limited for detection of primary hepatocellular carcinoma (HCC) due to low contrast to the tumor, and normal hepatocytes (background). The aim of the present study was to improve the contrast between the tumor and background by standardizing the input parameters of a digital contrast enhancement technique. Materials and Methods: A transverse slice of PET image was adjusted for the best possible contrast, and saved in JPEG 2000 format. We processed this image with a contrast enhancement technique using 847 possible combinations of input parameters (threshold “m” and slope “e”). The input parameters which resulted in an image having a high value of 2nd order entropy, and edge content, and low value of absolute mean brightness error, and saturation evaluation metrics, were considered as standardized input parameters. The same process was repeated for total nine PET-computed tomography studies, thus analyzing 7623 images. Results: The selected digital contrast enhancement technique increased the contrast between the HCC tumor and background. In seven out of nine images, the standardized input parameters “m” had values between 150 and 160, and for other two images values were 138 and 175, respectively. The value of slope “e” was 4 in 4 images, 3 in 3 images and 1 in 2 images. It was found that it is important to optimize the input parameters for the best possible contrast for each image; a particular value was not sufficient for all the HCC images. Conclusion: The use of above digital contrast enhancement technique improves the tumor to background ratio in PET images of HCC and appears to be useful. Further clinical validation of this finding is warranted. PMID:26917889

  3. MaNIAC-UAV - a methodology for automatic pavement defects detection using images obtained by Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Henrique Castelo Branco, Luiz; César Lima Segantine, Paulo

    2015-09-01

    Intelligent Transportation Systems - ITS is a set of integrated technologies (Remote Sensing, Image Processing, Communications Systems and others) that aim to offer services and advanced traffic management for the several transportation modes (road, air and rail). Collect data on the characteristics and conditions of the road surface and keep them update is an important and difficult task that needs to be currently managed in order to reduce accidents and vehicle maintenance costs. Nowadays several roads and highways are paved, but usually there is insufficient updated data about current condition and status. There are different types of pavement defects on the roads and to keep them in good condition they should be constantly monitored and maintained according to pavement management strategy. This paper presents a methodology to obtain, automatically, information about the conditions of the highway asphalt pavement. Data collection was done through remote sensing using an UAV (Unmanned Aerial Vehicle) and the image processing and pattern recognition techniques through Geographic Information System.

  4. Cell cycle imaging with quantitative differential interference contrast microscopy

    NASA Astrophysics Data System (ADS)

    Kostyk, Piotr; Phelan, Shelley; Xu, Min

    2013-02-01

    We report a microscopic approach for determining cell cycle stages by measuring the nuclear optical path length (OPL) with quantitative differential interference contrast (DIC) microscopy. The approach is validated by the excellent agreement between the proportion of proliferating-to-quiescent cancerous breast epithelial cells obtained from DIC microscopy, and that from a standard immunofluorescence assay.

  5. Electrical biasing and voltage contrast imaging in a focused ion beam system

    SciTech Connect

    Campbell, A.N.; Soden, J.M.; Rife, J.L.; Lee, R.G.

    1995-09-01

    We present two new techniques that enhance conventional focused ion beam (FIB) system capabilities for integrated circuit (IC) analysis: in situ electrical biasing and voltage contrast imaging. We have used in situ electrical biasing to enable a number of advanced failure analysis applications including (1) real time evaluation of device electrical behavior during milling and deposition, (2) verification of IC functional modifications without removal from the FIB system, and (3) ultraprecision control for cross sectioning of deep submicron structures, such as programmed amorphous silicon antifuses. We have also developed FIB system voltage contrast imaging that can be used for a variety of failure analysis applications. The use of passive voltage contrast imaging for defect localization and for navigation on planarized devices will be illustrated. In addition, we describe new, biased voltage contrast imaging techniques and provide examples of their application to the failure analysis of complex ICs. We discuss the necessary changes in system operating parameters to perform biased voltage contrast imaging.

  6. Ultrasound phase contrast thermal imaging with reflex transmission imaging methods in tissue phantoms

    PubMed Central

    Farny, Caleb H.; Clement, Gregory T.

    2009-01-01

    Thermal imaging measurements using ultrasound phase contrast have been performed in tissue phantoms heated with a focused ultrasound source. Back projection and reflex transmission imaging principles were employed to detect sound speed-induced changes in the phase caused by an increase in the temperature. The temperature was determined from an empirical relationship for the temperature dependence on sound speed. The phase contrast was determined from changes in the sound field measured with a hydrophone scan conducted before and during applied heating. The lengthy scanning routine used to mimic a large two-dimensional array required a steady-state temperature distribution within the phantom. The temperature distribution in the phantom was validated with magnetic resonance (MR) thermal imaging measurements. The peak temperature was found to agree within 1°C with MR and good agreement was found between the temperature profiles. The spatial resolution was 0.3 × 0.3 × 0.3 mm, comparing favorably with the 0.625 × 0.625 × 1.5 mm MR spatial resolution. PMID:19683380

  7. Heralded phase-contrast imaging using an orbital angular momentum phase-filter

    NASA Astrophysics Data System (ADS)

    Aspden, Reuben S.; Morris, Peter A.; He, Ruiqing; Chen, Qian; Padgett, Miles J.

    2016-05-01

    We utilise the position and orbital angular momentum (OAM) correlations between the signal and idler photons generated in the down-conversion process to obtain ghost images of a phase object. By using an OAM phase filter, which is non-local with respect to the object, the images exhibit isotropic edge-enhancement. This imaging technique is the first demonstration of a full-field, phase-contrast imaging system with non-local edge enhancement, and enables imaging of phase objects using significantly fewer photons than standard phase-contrast imaging techniques.

  8. Estimation of chromatic errors from broadband images for high contrast imaging

    NASA Astrophysics Data System (ADS)

    Sirbu, Dan; Belikov, Ruslan

    2015-09-01

    Usage of an internal coronagraph with an adaptive optical system for wavefront correction for direct imaging of exoplanets is currently being considered for many mission concepts, including as an instrument addition to the WFIRST-AFTA mission to follow the James Web Space Telescope. The main technical challenge associated with direct imaging of exoplanets with an internal coronagraph is to effectively control both the diffraction and scattered light from the star so that the dim planetary companion can be seen. For the deformable mirror (DM) to recover a dark hole region with sufficiently high contrast in the image plane, wavefront errors are usually estimated using probes on the DM. To date, most broadband lab demonstrations use narrowband filters to estimate the chromaticity of the wavefront error, but this reduces the photon flux per filter and requires a filter system. Here, we propose a method to estimate the chromaticity of wavefront errors using only a broadband image. This is achieved by using special DM probes that have sufficient chromatic diversity. As a case example, we simulate the retrieval of the spectrum of the central wavelength from broadband images for a simple shaped- pupil coronagraph with a conjugate DM and compute the resulting estimation error.

  9. Contrast and harmonic imaging improves accuracy and efficiency of novice readers for dobutamine stress echocardiography

    NASA Technical Reports Server (NTRS)

    Vlassak, Irmien; Rubin, David N.; Odabashian, Jill A.; Garcia, Mario J.; King, Lisa M.; Lin, Steve S.; Drinko, Jeanne K.; Morehead, Annitta J.; Prior, David L.; Asher, Craig R.; Klein, Allan L.; Thomas, James D.

    2002-01-01

    BACKGROUND: Newer contrast agents as well as tissue harmonic imaging enhance left ventricular (LV) endocardial border delineation, and therefore, improve LV wall-motion analysis. Interpretation of dobutamine stress echocardiography is observer-dependent and requires experience. This study was performed to evaluate whether these new imaging modalities would improve endocardial visualization and enhance accuracy and efficiency of the inexperienced reader interpreting dobutamine stress echocardiography. METHODS AND RESULTS: Twenty-nine consecutive patients with known or suspected coronary artery disease underwent dobutamine stress echocardiography. Both fundamental (2.5 MHZ) and harmonic (1.7 and 3.5 MHZ) mode images were obtained in four standard views at rest and at peak stress during a standard dobutamine infusion stress protocol. Following the noncontrast images, Optison was administered intravenously in bolus (0.5-3.0 ml), and fundamental and harmonic images were obtained. The dobutamine echocardiography studies were reviewed by one experienced and one inexperienced echocardiographer. LV segments were graded for image quality and function. Time for interpretation also was recorded. Contrast with harmonic imaging improved the diagnostic concordance of the novice reader to the expert reader by 7.1%, 7.5%, and 12.6% (P < 0.001) as compared with harmonic imaging, fundamental imaging, and fundamental imaging with contrast, respectively. For the novice reader, reading time was reduced by 47%, 55%, and 58% (P < 0.005) as compared with the time needed for fundamental, fundamental contrast, and harmonic modes, respectively. With harmonic imaging, the image quality score was 4.6% higher (P < 0.001) than for fundamental imaging. Image quality scores were not significantly different for noncontrast and contrast images. CONCLUSION: Harmonic imaging with contrast significantly improves the accuracy and efficiency of the novice dobutamine stress echocardiography reader. The use

  10. Ethanol fixed brain imaging by phase-contrast X-ray technique

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Thet-Thet-Lwin; Kunii, Takuya; Sirai, Ryota; Ohizumi, Takahito; Maruyama, Hiroko; Hyodo, Kazuyuki; Yoneyama, Akio; Ueda, Kazuhiro

    2013-03-01

    The two-crystal phase-contrast X-ray imaging technique using an X-ray crystal interferometer can depict the fine structures of rat's brain such as cerebral cortex, white matter, and basal ganglia. Image quality and contrast by ethanol fixed brain showed significantly better than those by usually used formalin fixation at 35 keV X-ray energy. Image contrast of cortex by ethanol fixation was more than 3-times higher than that by formalin fixation. Thus, the technique of ethanol fixation might be better suited to image cerebral structural detail at 35 keV X-ray energy.

  11. Cross Polarization for 1H NMR Image Contrast in Solids

    NASA Astrophysics Data System (ADS)

    Nakai, Toshihito; Fukunaga, Yasuhiro; Nonaka, Masayuki; Matsui, Shigeru; Inouye, Tamon

    1998-09-01

    A novel1H imaging method for solids, yielding images reflecting1H-13C dipolar interactions through cross relaxation timeTIS, is presented. Phase-alternating multiple-contact cross polarization (PAMC CP) was incorporated into the magic-echo frequency-encoding imaging scheme; the PAMC CP sequence may partly but efficiently destroy the initial1H magnetization depending on theTISvalues. A theory describing the effects of the PAMC CP sequence was developed, which was used for the assessment of the sequence as well as the analysis for the experimental results. It was demonstrated that theTIS-weighted1H image and theTISmapping for a phantom, constituted of adamantane and ferrocene, can distinguish these compounds clearly.

  12. A methodology for near real-time change detection between Unmanned Aerial Vehicle and wide area satellite images

    NASA Astrophysics Data System (ADS)

    Fytsilis, Anastasios L.; Prokos, Anthony; Koutroumbas, Konstantinos D.; Michail, Dimitrios; Kontoes, Charalambos C.

    2016-09-01

    In this paper a novel integrated hybrid methodology for unsupervised change detection between Unmanned Aerial Vehicle (UAV) and satellite images, which can be utilized in various fields like security applications (e.g. border surveillance) and damage assessment, is proposed. This is a challenging problem mainly due to the difference in geographic coverage and the spatial resolution of the two images, as well as to the acquisition modes which lead to misregistration errors. The methodology consists of the following steps: (a) pre-processing, where the part of the satellite image that corresponds to the UAV image is determined and the UAV image is ortho-rectified using information provided by a Digital Terrain Model, (b) the detection of potential changes, which is based exclusively on intensity and image gradient information, (c) the generation of the region map, where homogeneous regions are produced by the previous potential changes via a seeded region growing algorithm and placed on the region map, and (d) the evaluation of the above regions, in order to characterize them as true changes or not. The methodology has been applied on demanding real datasets with very encouraging results. Finally, its robustness to the misregistration errors is assessed via extensive experimentation.

  13. Material decomposition and virtual non-contrast imaging in photon counting computed tomography: an animal study

    NASA Astrophysics Data System (ADS)

    Gutjahr, R.; Polster, C.; Kappler, S.; Pietsch, H.; Jost, G.; Hahn, K.; Schöck, F.; Sedlmair, M.; Allmendinger, T.; Schmidt, B.; Krauss, B.; Flohr, T. G.

    2016-03-01

    The energy resolving capabilities of Photon Counting Detectors (PCD) in Computed Tomography (CT) facilitate energy-sensitive measurements. The provided image-information can be processed with Dual Energy and Multi Energy algorithms. A research PCD-CT firstly allows acquiring images with a close to clinical configuration of both the X-ray tube and the CT-detector. In this study, two algorithms (Material Decomposition and Virtual Non-Contrast-imaging (VNC)) are applied on a data set acquired from an anesthetized rabbit scanned using the PCD-CT system. Two contrast agents (CA) are applied: A gadolinium (Gd) based CA used to enhance contrasts for vascular imaging, and xenon (Xe) and air as a CA used to evaluate local ventilation of the animal's lung. Four different images are generated: a) A VNC image, suppressing any traces of the injected Gd imitating a native scan, b) a VNC image with a Gd-image as an overlay, where contrast enhancements in the vascular system are highlighted using colored labels, c) another VNC image with a Xe-image as an overlay, and d) a 3D rendered image of the animal's lung, filled with Xe, indicating local ventilation characteristics. All images are generated from two images based on energy bin information. It is shown that a modified version of a commercially available dual energy software framework is capable of providing images with diagnostic value obtained from the research PCD-CT system.

  14. Quantitative Characterization of Inertial Confinement Fusion Capsules Using Phase Contrast Enhanced X-Ray Imaging

    SciTech Connect

    Kozioziemski, B J; Koch, J A; Barty, A; Martz, H E; Lee, W; Fezzaa, K

    2004-05-07

    Current designs for inertial confinement fusion capsules for the National Ignition Facility (NIF) consist of a solid deuterium-tritium (D-T) fuel layer inside of a copper doped beryllium capsule. Phase contrast enhanced x-ray imaging is shown to render the D-T layer visible inside the Be(Cu) capsule. Phase contrast imaging is experimentally demonstrated for several surrogate capsules and validates computational models. Polyimide and low density divinyl benzene foam capsules were imaged at the Advanced Photon Source synchrotron. The surrogates demonstrate that phase contrast enhanced imaging provides a method to characterize surfaces when absorption imaging cannot be used. Our computational models demonstrate that a rough surface can be accurately reproduced in phase contrast enhanced x-ray images.

  15. Three-dimensional phase-contrast imaging of single floating cells

    SciTech Connect

    Kobayashi, Hiroaki; Ishimaru, Ichirou; Yasokawa, Toshiki; Ishizaki, Katsumi; Kuriyama, Shigeki; Masaki, Tsutomu; Nakai, Seiji; Takegawa, Kaoru; Tanaka, Naotaka

    2006-12-11

    A three-dimensional phase-contrast imaging technique that does not involve fluorescent labeling has been developed for observing floating cells. In this method, a single floating cell is made to rotate and images are acquired at several orientations of the cell using a phase-contrast microscope. From these two-dimensional phase-contrast images, three-dimensional cross-sectional images are obtained using the conventional computed tomography algorithm. This proposed method enabled successful rotation of a floating cell (a breast cancer cell line) and reconstruction of three-dimensional phase-contrast images. In these reconstructed three-dimensional images, the distribution of cell organelles is obtained and the cell nucleus is clearly distinguishable.

  16. Combined ultrasound and photoacoustic imaging of pancreatic cancer using nanocage contrast agents

    NASA Astrophysics Data System (ADS)

    Homan, Kimberly; Shah, Jignesh; Gomez, Sobeyda; Gensler, Heidi; Karpiouk, Andrei; Brannon-Peppas, L.; Emelianov, Stanislav

    2009-02-01

    A new metallodielectric nanoparticle consisting of a silica core and silver outer cage was developed for the purpose of enhancing photoacoustic imaging contrast in pancreatic tissue. These nanocages were injected into an ex vivo porcine pancreas and imaged using a combined photoacoustic and ultrasound (PAUS) assembly. This custom-designed PAUS assembly delivered 800 nm light through a fiber optical light delivery system integrated with 128 element linear array transducer operating at 7.5 MHz center frequency. Imaging results prove that the nanocage contrast agents have the ability to enhance photoacoustic imaging contrast. Furthermore, the value of the combined PAUS imaging modality was demonstrated as the location of nanocages against background native tissue was evident. Future applications of these nanocage contrast agents could include targeting them to pancreatic cancer for enhancement of photoacoustic imaging for diagnosis and therapy.

  17. Single-shot x-ray phase contrast imaging with an algorithmic approach using spectral detection

    NASA Astrophysics Data System (ADS)

    Das, Mini; Park, Chan-Soo; Fredette, Nathaniel R.

    2016-04-01

    X-ray phase contrast imaging has been investigated during the last two decades for potential benefits in soft tissue imaging. Long imaging time, high radiation dose and general measurement complexity involving motion of x-ray optical components have prevented the clinical translation of these methods. In all existing popular phase contrast imaging methods, multiple measurements per projection angle involving motion of optical components are required to achieve quantitatively accurate estimation of absorption, phase and differential phase. Recently we proposed an algorithmic approach to use spectral detection data in a phase contrast imaging setup to obtain absorption, phase and differential phase in a single-step. Our generic approach has been shown via simulations in all three types of phase contrast imaging: propagation, coded aperture and grating interferometry. While other groups have used spectral detector in phase contrast imaging setups, our proposed method is unique in outlining an approach to use this spectral data to simplify phase contrast imaging. In this abstract we show the first experimental proof of our single-shot phase retrieval using a Medipix3 photon counting detector in an edge illumination aperture (also referred to as coded aperture) phase contrast set up as well as for a free space propagation setup. Our preliminary results validate our new transport equation for edge illumination PCI and our spectral phase retrieval algorithm for both PCI methods being investigated. Comparison with simulations also point to excellent performance of Medipix3 built-in charge sharing correction mechanism.

  18. An efficient method for accurate segmentation of LV in contrast-enhanced cardiac MR images

    NASA Astrophysics Data System (ADS)

    Suryanarayana K., Venkata; Mitra, Abhishek; Srikrishnan, V.; Jo, Hyun Hee; Bidesi, Anup

    2016-03-01

    Segmentation of left ventricle (LV) in contrast-enhanced cardiac MR images is a challenging task because of high variability in the image intensity. This is due to a) wash-in and wash-out of the contrast agent over time and b) poor contrast around the epicardium (outer wall) region. Current approaches for segmentation of the endocardium (inner wall) usually involve application of a threshold within the region of interest, followed by refinement techniques like active contours. A limitation of this method is under-segmentation of the inner wall because of gradual loss of contrast at the wall boundary. On the other hand, the challenge in outer wall segmentation is the lack of reliable boundaries because of poor contrast. There are four main contributions in this paper to address the aforementioned issues. First, a seed image is selected using variance based approach on 4D time-frame images over which initial endocardium and epicardium is segmented. Secondly, we propose a patch based feature which overcomes the problem of gradual contrast loss for LV endocardium segmentation. Third, we propose a novel Iterative-Edge-Refinement (IER) technique for epicardium segmentation. Fourth, we propose a greedy search algorithm for propagating the initial contour segmented on seed-image across other time frame images. We have experimented our technique on five contrast-enhanced cardiac MR Datasets (4D) having a total of 1097 images. The segmentation results for all 1097 images have been visually inspected by a clinical expert and have shown good accuracy.

  19. Development of a platform for co-registered ultrasound and MR contrast imaging in vivo

    NASA Astrophysics Data System (ADS)

    Chandrana, Chaitanya; Bevan, Peter; Hudson, John; Pang, Ian; Burns, Peter; Plewes, Donald; Chopra, Rajiv

    2011-02-01

    Imaging of the microvasculature is often performed using contrast agents in combination with either ultrasound (US) or magnetic resonance (MR) imaging. Contrast agents are used to enhance medical imaging by highlighting microvascular properties and function. Dynamic signal changes arising from the passage of contrast agents through the microvasculature can be used to characterize different pathologies; however, comparisons across modalities are difficult due to differences in the interactions of contrast agents with the microvasculature. Better knowledge of the relationship of contrast enhancement patterns with both modalities could enable better characterization of tissue microvasculature. We developed a co-registration platform for multi-modal US and MR imaging using clinical imaging systems in order to study the relationship between US and MR contrast enhancement. A preliminary validation study was performed in phantoms to determine the registration accuracy of the platform. In phantoms, the in-plane registration accuracy was measured to be 0.2 ± 0.2 and 0.3 ± 0.2 mm, in the lateral and axial directions, respectively. The out-of-plane registration accuracy was estimated to be 0.5 mm ±0.1. Co-registered US and MR imaging was performed in a rabbit model to evaluate contrast kinetics in different tissue types after bolus injections of US and MR contrast agents. The arrival time of the contrast agent in the plane of imaging was relatively similar for both modalities. We studied three different tissue types: muscle, large vessels and fat. In US, the temporal kinetics of signal enhancement were not strongly dependent on tissue type. In MR, however, due to the different amounts of agent extravasation in each tissue type, tissue-specific contrast kinetics were observed. This study demonstrates the feasibility of performing in vivo co-registered contrast US and MR imaging to study the relationships of the enhancement patterns with each modality.

  20. Detection of Tree Crowns Based on Reclassification Using Aerial Images and LIDAR Data

    NASA Astrophysics Data System (ADS)

    Talebi, S.; Zarea, A.; Sadeghian, S.; Arefi, H.

    2013-09-01

    Tree detection using aerial sensors in early decades was focused by many researchers in different fields including Remote Sensing and Photogrammetry. This paper is intended to detect trees in complex city areas using aerial imagery and laser scanning data. Our methodology is a hierarchal unsupervised method consists of some primitive operations. This method could be divided into three sections, in which, first section uses aerial imagery and both second and third sections use laser scanners data. In the first section a vegetation cover mask is created in both sunny and shadowed areas. In the second section Rate of Slope Change (RSC) is used to eliminate grasses. In the third section a Digital Terrain Model (DTM) is obtained from LiDAR data. By using DTM and Digital Surface Model (DSM) we would get to Normalized Digital Surface Model (nDSM). Then objects which are lower than a specific height are eliminated. Now there are three result layers from three sections. At the end multiplication operation is used to get final result layer. This layer will be smoothed by morphological operations. The result layer is sent to WG III/4 to evaluate. The evaluation result shows that our method has a good rank in comparing to other participants' methods in ISPRS WG III/4, when assessed in terms of 5 indices including area base completeness, area base correctness, object base completeness, object base correctness and boundary RMS. With regarding of being unsupervised and automatic, this method is improvable and could be integrate with other methods to get best results.

  1. Image processing of head CT images using neuro best contrast (NBC) and lesion detection performance

    NASA Astrophysics Data System (ADS)

    Tipnis, Sameer; Vincent, Diana; Rumboldt, Zoran; Huda, Walter

    2011-03-01

    Purpose: The purpose of this study was to objectively compare lesion detection performance of head CT images reconstructed using filtered back projection (FBP) algorithms with those reconstructed using NBC. Method: The observer study was conducted using the 2-AFC methodology. An AFC experiment consists of 128 observer choices and permits the computation of the intensity needed to achieve 92% correct (I92%). High values of I92% corresponds to a poor level of detection performance, and vice versa. Head CT images were acquired at an x-ray tube voltage of 120 kVp with a CTDIvol value of 75 mGy in a helical scan. Nine randomly selected normal images from three patients and at three anatomical head locations were reconstructed using filtered back projection (FBP) and neuro-best-contrast (NBC) processing. Circular lesions were generated by projecting spheres onto the image plane, followed by blurring function, with lesion sizes of 2.8 mm, 6.5 mm and 9.8 mm used in these experiments. Four readers were used, with 18 experiments performed by each observer (2 processing techniques × 3 lesion sizes × 3 repeats). The experimental order of the 18 experiments was randomized to eliminate learning curve and/or observer fatigue. The ratio R of the I92% value for NBC to the corresponding I92% value for FBP was calculated for each observer and each lesion size. Values of R greater than unity indicate that NBC is inferior to FBP, and vice versa. Results: Analysis of data from each observer showed that a total of four data points had R less than unity, and eight data points were greater than unity. Eleven of the twelve individual observer R values with one standard deviation of unity. When data for the four observers were pooled, the resultant average R values were 0.98 +/- 0.38, 0.96 +/- 0.33 and 1.15 +/- 0.45, for the 2.8 mm, 6.5 mm and 9.8 mm lesions respectively. The overall average R for all three lesions sizes was 1.03 +/- 0.67. Conclusion: Our AFC investigation has shown no

  2. Synchrotron-based phase-contrast images of zebrafish and its anatomical structures

    NASA Astrophysics Data System (ADS)

    Rao Donepudi, Venkateswara; Melumai, Bhaskaraiah; Thallapaka, Balasaidulu; Sandeep, Konam; Cesareo, Roberto; Brunetti, Antonio; Zhong, Zhong; Akatsuka, Takao; Yuasa, Tetsuya; Takeda, Tohoru; Gigante, Giovanni E.

    2014-08-01

    Images of vertebrates (zebrafish and zebrafish eye) have been obtained by using an X-ray phase-contrast imaging technique, namely, synchrotron-based diffraction-enhanced imaging (SY-DEI) (or analyzer based imaging) and synchrotron-based diffraction imaging in tomography mode (SY-DEI-CT). Due to the limitations of the conventional radiographic imaging in visualizing the internal complex feature of the sample, we utilized the upgraded SY-DEI and SY-DEI-CT systems to acquire the images at 20, 30 and 40 keV, to observe the enhanced contrast. SY-DEI and SY-DEI-CT techniques exploits the refraction properties, and have great potential in studies of soft biological tissues, in particular for low (Z) elements, such as, C, H, O and N, which constitutes the soft tissue. Recently, these techniques are characterized by its extraordinary image quality, with improved contrast, by imaging invertebrates. We have chosen the vertebrate sample of zebrafish (Danio rerio), a model organism widely used in developmental biology and oncology. For biological imaging, these techniques are most sensitive to enhance the contrast. For the present study, images of the sample, in planar and tomography modes offer more clarity on the contrast enhancement of anatomical features of the eye, especially the nerve bundle, swim bladder, grills and some internal organs in gut with more visibility.

  3. Modified Sigmoid Function Based Gray Scale Image Contrast Enhancement Using Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Verma, Harish Kumar; Pal, Sandeep

    2016-06-01

    The main objective of an image enhancement is to improve eminence by maximizing the information content in the test image. Conventional contrast enhancement techniques either often fails to produce reasonable results for a broad variety of low-contrast and high contrast images, or cannot be automatically applied to different images, because they are parameters dependent. Hence this paper introduces a novel hybrid image enhancement approach by taking both the local and global information of an image. In the present work, sigmoid function is being modified on the basis of contrast of the images. The gray image enhancement problem is treated as nonlinear optimization problem with several constraints and solved by particle swarm optimization. The entropy and edge information is included in the objective function as quality measure of an image. The effectiveness of modified sigmoid function based enhancement over conventional methods namely linear contrast stretching, histogram equalization, and adaptive histogram equalization are better revealed by the enhanced images and further validated by statistical analysis of these images.

  4. Quantitative analysis of drainage obtained from aerial photographs and RBV/LANDSAT images

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Formaggio, A. R.; Epiphanio, J. C. N.; Filho, M. V.

    1981-01-01

    Data obtained from aerial photographs (1:60,000) and LANDSAT return beam vidicon imagery (1:100,000) concerning drainage density, drainage texture, hydrography density, and the average length of channels were compared. Statistical analysis shows that significant differences exist in data from the two sources. The highly drained area lost more information than the less drained area. In addition, it was observed that the loss of information about the number of rivers was higher than that about the length of the channels.

  5. Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging

    PubMed Central

    Wang, Taejun; Jang, Won Hyuk; Lee, Seunghun; Yoon, Calvin J.; Lee, Jun Ho; Kim, Bumju; Hwang, Sekyu; Hong, Chun-Pyo; Yoon, Yeoreum; Lee, Gilgu; Le, Viet-Hoan; Bok, Seoyeon; Ahn, G-One; Lee, Jaewook; Gho, Yong Song; Chung, Euiheon; Kim, Sungjee; Jang, Myoung Ho; Myung, Seung-Jae; Kim, Myoung Joon; So, Peter T. C.; Kim, Ki Hean

    2016-01-01

    Multiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM. Moxifloxacin has bright intrinsic multiphoton fluorescence, good tissue penetration and high intracellular concentration. MPM with moxifloxacin was demonstrated in various cell lines, and animal tissues of cornea, skin, small intestine and bladder. Clinical application is promising since imaging based on moxifloxacin labeling could be 10 times faster than imaging based on endogenous fluorescence. PMID:27283889

  6. Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging.

    PubMed

    Wang, Taejun; Jang, Won Hyuk; Lee, Seunghun; Yoon, Calvin J; Lee, Jun Ho; Kim, Bumju; Hwang, Sekyu; Hong, Chun-Pyo; Yoon, Yeoreum; Lee, Gilgu; Le, Viet-Hoan; Bok, Seoyeon; Ahn, G-One; Lee, Jaewook; Gho, Yong Song; Chung, Euiheon; Kim, Sungjee; Jang, Myoung Ho; Myung, Seung-Jae; Kim, Myoung Joon; So, Peter T C; Kim, Ki Hean

    2016-01-01

    Multiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM. Moxifloxacin has bright intrinsic multiphoton fluorescence, good tissue penetration and high intracellular concentration. MPM with moxifloxacin was demonstrated in various cell lines, and animal tissues of cornea, skin, small intestine and bladder. Clinical application is promising since imaging based on moxifloxacin labeling could be 10 times faster than imaging based on endogenous fluorescence. PMID:27283889

  7. Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging

    NASA Astrophysics Data System (ADS)

    Wang, Taejun; Jang, Won Hyuk; Lee, Seunghun; Yoon, Calvin J.; Lee, Jun Ho; Kim, Bumju; Hwang, Sekyu; Hong, Chun-Pyo; Yoon, Yeoreum; Lee, Gilgu; Le, Viet-Hoan; Bok, Seoyeon; Ahn, G.-One; Lee, Jaewook; Gho, Yong Song; Chung, Euiheon; Kim, Sungjee; Jang, Myoung Ho; Myung, Seung-Jae; Kim, Myoung Joon; So, Peter T. C.; Kim, Ki Hean

    2016-06-01

    Multiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM. Moxifloxacin has bright intrinsic multiphoton fluorescence, good tissue penetration and high intracellular concentration. MPM with moxifloxacin was demonstrated in various cell lines, and animal tissues of cornea, skin, small intestine and bladder. Clinical application is promising since imaging based on moxifloxacin labeling could be 10 times faster than imaging based on endogenous fluorescence.

  8. High contrast two-photon imaging of fingermarks

    NASA Astrophysics Data System (ADS)

    Stoltzfus, Caleb R.; Rebane, Aleksander

    2016-04-01

    Optically-acquired fingermarks are widely used as evidence across law enforcement agencies as well as in the courts of law. A common technique for visualizing latent fingermarks on nonporous surfaces consists of cyanoacrylate fuming of the fingerprint material, followed by impregnation with a fluorescent dye, which under ultra violet (UV) illumination makes the fingermarks visible and thus accessible for digital recording. However, there exist critical circumstances, when the image quality is compromised due to high background scattering, high auto-fluorescence of the substrate material, or other detrimental photo-physical and photo-chemical effects such as light-induced damage to the sample. Here we present a novel near-infrared (NIR), two-photon induced fluorescence imaging modality, which significantly enhances the quality of the fingermark images, especially when obtained from highly reflective and/or scattering surfaces, while at the same time reducing photo-damage to sensitive forensic samples.

  9. High contrast two-photon imaging of fingermarks.

    PubMed

    Stoltzfus, Caleb R; Rebane, Aleksander

    2016-01-01

    Optically-acquired fingermarks are widely used as evidence across law enforcement agencies as well as in the courts of law. A common technique for visualizing latent fingermarks on nonporous surfaces consists of cyanoacrylate fuming of the fingerprint material, followed by impregnation with a fluorescent dye, which under ultra violet (UV) illumination makes the fingermarks visible and thus accessible for digital recording. However, there exist critical circumstances, when the image quality is compromised due to high background scattering, high auto-fluorescence of the substrate material, or other detrimental photo-physical and photo-chemical effects such as light-induced damage to the sample. Here we present a novel near-infrared (NIR), two-photon induced fluorescence imaging modality, which significantly enhances the quality of the fingermark images, especially when obtained from highly reflective and/or scattering surfaces, while at the same time reducing photo-damage to sensitive forensic samples. PMID:27053515

  10. High contrast two-photon imaging of fingermarks

    PubMed Central

    Stoltzfus, Caleb R.; Rebane, Aleksander

    2016-01-01

    Optically-acquired fingermarks are widely used as evidence across law enforcement agencies as well as in the courts of law. A common technique for visualizing latent fingermarks on nonporous surfaces consists of cyanoacrylate fuming of the fingerprint material, followed by impregnation with a fluorescent dye, which under ultra violet (UV) illumination makes the fingermarks visible and thus accessible for digital recording. However, there exist critical circumstances, when the image quality is compromised due to high background scattering, high auto-fluorescence of the substrate material, or other detrimental photo-physical and photo-chemical effects such as light-induced damage to the sample. Here we present a novel near-infrared (NIR), two-photon induced fluorescence imaging modality, which significantly enhances the quality of the fingermark images, especially when obtained from highly reflective and/or scattering surfaces, while at the same time reducing photo-damage to sensitive forensic samples. PMID:27053515

  11. Semi-automted analysis of high-resolution aerial images to quantify docks in Upper Midwest glacial lakes

    USGS Publications Warehouse

    Beck, Marcus W.; Vondracek, Bruce C.; Hatch, Lorin K.; Vinje, Jason

    2013-01-01

    Lake resources can be negatively affected by environmental stressors originating from multiple sources and different spatial scales. Shoreline development, in particular, can negatively affect lake resources through decline in habitat quality, physical disturbance, and impacts on fisheries. The development of remote sensing techniques that efficiently characterize shoreline development in a regional context could greatly improve management approaches for protecting and restoring lake resources. The goal of this study was to develop an approach using high-resolution aerial photographs to quantify and assess docks as indicators of shoreline development. First, we describe a dock analysis workflow that can be used to quantify the spatial extent of docks using aerial images. Our approach incorporates pixel-based classifiers with object-based techniques to effectively analyze high-resolution digital imagery. Second, we apply the analysis workflow to quantify docks for 4261 lakes managed by the Minnesota Department of Natural Resources. Overall accuracy of the analysis results was 98.4% (87.7% based on ) after manual post-processing. The analysis workflow was also 74% more efficient than the time required for manual digitization of docks. These analyses have immediate relevance for resource planning in Minnesota, whereas the dock analysis workflow could be used to quantify shoreline development in other regions with comparable imagery. These data can also be used to better understand the effects of shoreline development on aquatic resources and to evaluate the effects of shoreline development relative to other stressors.

  12. Counter-propagating wave interaction for contrast-enhanced ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Renaud, G.; Bosch, J. G.; ten Kate, G. L.; Shamdasani, V.; Entrekin, R.; de Jong, N.; van der Steen, A. F. W.

    2012-11-01

    Most techniques for contrast-enhanced ultrasound imaging require linear propagation to detect nonlinear scattering of contrast agent microbubbles. Waveform distortion due to nonlinear propagation impairs their ability to distinguish microbubbles from tissue. As a result, tissue can be misclassified as microbubbles, and contrast agent concentration can be overestimated; therefore, these artifacts can significantly impair the quality of medical diagnoses. Contrary to biological tissue, lipid-coated gas microbubbles used as a contrast agent allow the interaction of two acoustic waves propagating in opposite directions (counter-propagation). Based on that principle, we describe a strategy to detect microbubbles that is free from nonlinear propagation artifacts. In vitro images were acquired with an ultrasound scanner in a phantom of tissue-mimicking material with a cavity containing a contrast agent. Unlike the default mode of the scanner using amplitude modulation to detect microbubbles, the pulse sequence exploiting counter-propagating wave interaction creates no pseudoenhancement behind the cavity in the contrast image.

  13. Fusion of aerial images with mean shift-based upsampled elevation data for improved building block classification

    NASA Astrophysics Data System (ADS)

    Gyftakis, S.; Tsenoglou, T.; Bratsolis, E.; Charou, Eleni; Vassilas, N.

    2014-10-01

    Nowadays there is an increasing demand for detailed 3D modeling of buildings using elevation data such as those acquired from LiDAR airborne scanners. The various techniques that have been developed for this purpose typically perform segmentation into homogeneous regions followed by boundary extraction and are based on some combination of LiDAR data, digital maps, satellite images and aerial orthophotographs. In the present work, our dataset includes an aerial RGB orthophoto, a DSM and a DTM with spatial resolutions of 20cm, 1m and 2m respectively. Next, a normalized DSM (nDSM) is generated and fused with the optical data in order to increase its resolution to 20cm. The proposed methodology can be described as a two-step approach. First, a nearest neighbor interpolation is applied on the low resolution nDSM to obtain a low quality, ragged, elevation image. Next, we performed a mean shift-based discontinuity preserving smoothing on the fused data. The outcome is on the one hand a more homogeneous RGB image, with smoothed terrace coloring while at the same time preserving the optical edges and on the other hand an upsampled elevation data with considerable improvement regarding region filling and "straightness" of elevation discontinuities. Besides the apparent visual assessment of the increased accuracy of building boundaries, the effectiveness of the proposed method is demonstrated using the processed dataset as input to five supervised classification methods. The performance of each method is evaluated using a subset of the test area as ground truth. Comparisons with classification results obtained with the original data demonstrate that preprocessing the input dataset using the mean shift algorithm improves significantly the performance of all tested classifiers for building block extraction.

  14. Diagnostic image quality of hysterosalpingography: ionic versus non ionic water soluble iodinated contrast media

    PubMed Central

    Mohd Nor, H; Jayapragasam, KJ; Abdullah, BJJ

    2009-01-01

    Objective To compare the diagnostic image quality between three different water soluble iodinated contrast media in hysterosalpingography (HSG). Material and method In a prospective randomised study of 204 patients, the diagnostic quality of images obtained after hysterosalpingography were evaluated using Iopramide (106 patients) and Ioxaglate (98 patients). 114 patients who had undergone HSG examination using Iodamide were analysed retrospectively. Image quality was assessed by three radiologists independently based on an objective set of criteria. The obtained results were statistically analysed using Kruskal-Wallis and Mann-Whitney U test. Results Visualisation of fimbrial rugae was significantly better with Iopramide and Ioxaglate than Iodamide. All contrast media provided acceptable diagnostic image quality with regard to uterine, fallopian tubes outline and peritoneal spill. Uterine opacification was noted to be too dense in all three contrast media and not optimal for the assessment of intrauterine pathology. Higher incidence of contrast intravasation was noted in the Iodamide group. Similarly, the numbers of patients diagnosed with bilateral blocked fallopian tubes were also higher in the Iodamide group. Conclusion HSG using low osmolar contrast media (Iopramide and Ioxaglate) demonstrated diagnostic image qualities similar to HSG using conventional high osmolar contrast media (Iodamide). However, all three contrast media were found to be too dense for the detection of intrauterine pathology. Better visualisation of the fimbrial outline using Ioxaglate and Iopramide were attributed to their low contrast viscosity. The increased incidence of contrast media intravasation and bilateral tubal blockage using Iodamide are probably related to the high viscosity. PMID:21611058

  15. Dyke Award. Evaluation of contrast-enhanced MR imaging in a brain-abscess model.

    PubMed

    Runge, V M; Clanton, J A; Price, A C; Herzer, W A; Allen, J H; Partain, C L; James, A E

    1985-01-01

    An alpha-streptococcus brain abscess was produced in five dogs and studied with magnetic resonance (MR) imaging (0.5 T) and computed tomography (CT). Non-contrast- and contrast-enhanced CT scans were obtained using gadolinium diethylenetriamine-pentaacetic acid (Gd DTPA) for MR imaging and meglumine iothalamate for CT scanning. Each animal was evaluated in the early and later cerebritis stages of abscess evolution. On MR, the area of cerebritis enhanced after administration of Gd DTPA in a manner similar to that observed with contrast-enhanced CT. However, contrast enhancement was greater on the MR examination. Early lesions in two animals were detected only with contrast-enhanced MR imaging. This experience suggests that intravenously administered agents such as Gd DTPA should increase the diagnostic potential of MR imaging in neurologic diseases, especially those altering the blood-brain barrier. PMID:3920873

  16. Object Based Agricultural Land Cover Classification Map of Shadowed Areas from Aerial Image and LIDAR Data Using Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Alberto, R. T.; Serrano, S. C.; Damian, G. B.; Camaso, E. E.; Celestino, A. B.; Hernando, P. J. C.; Isip, M. F.; Orge, K. M.; Quinto, M. J. C.; Tagaca, R. C.

    2016-06-01

    Aerial image and LiDAR data offers a great possibility for agricultural land cover mapping. Unfortunately, these images leads to shadowy pixels. Management of shadowed areas for classification without image enhancement were investigated. Image segmentation approach using three different segmentation scales were used and tested to segment the image for ground features since only the ground features are affected by shadow caused by tall features. The RGB band and intensity were the layers used for the segmentation having an equal weights. A segmentation scale of 25 was found to be the optimal scale that will best fit for the shadowed and non-shadowed area classification. The SVM using Radial Basis Function kernel was then applied to extract classes based on properties extracted from the Lidar data and orthophoto. Training points for different classes including shadowed areas were selected homogeneously from the orthophoto. Separate training points for shadowed areas were made to create additional classes to reduced misclassification. Texture classification and object-oriented classifiers have been examined to reduced heterogeneity problem. The accuracy of the land cover classification using 25 scale segmentation after accounting for the shadow detection and classification was significantly higher compared to higher scale of segmentation.

  17. A preliminary evaluation of self-made nanobubble in contrast-enhanced ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Li, Chunfang; Wu, Kaizhi; Li, Jing; Liu, Haijuan; Zhou, Qibing; Ding, Mingyue

    2014-03-01

    Nanoscale bubbles (nanobubbles) have been reported to improve contrast in tumor-targeted ultrasound imaging due to the enhanced permeation and retention effects at tumor vascular leaks. In this work, a self-made nanobubble ultrasound contrast agent was preliminarily characterized and evaluated in-vitro and in-vivo. Fundamental properties such as morphology appearance, size distribution, zeta potential, bubble concentration (bubble numbers per milliliter contrast agent suspension) and the stability of nanobubbles were assessed by light microscope and particle sizing analysis. Then the concentration intensity curve and time intensity curves (TICs) were acquired by ultrasound imaging experiment in-vitro. Finally, the contrast-enhanced ultrasonography was performed on rat to investigate the procedure of liver perfusion. The results showed that the nanobubbles had good shape and uniform distribution with the average diameter of 507.9 nm, polydispersity index (PDI) of 0.527, and zeta potential of -19.17 mV. Significant contrast enhancement was observed in in-vitro ultrasound imaging, demonstrating that the self-made nanobubbles can enhance the contrast effect of ultrasound imaging efficiently in-vitro. Slightly contrast enhancement was observed in in-vivo ultrasound imaging, indicating that the nanobubbles are not stable enough in-vivo. Future work will be focused on improving the ultrasonic imaging performance, stability, and antibody binding of the nanoscale ultrasound contrast agent.

  18. Estimation of chromatic errors from broadband images for high contrast imaging: sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Sirbu, Dan; Belikov, Ruslan

    2016-01-01

    Many concepts have been proposed to enable direct imaging of planets around nearby stars, and which would enable spectroscopic observations of their atmospheric observations and the potential discovery of biomarkers. The main technical challenge associated with direct imaging of exoplanets is to effectively control both the diffraction and scattered light from the star so that the dim planetary companion can be seen. Usage of an internal coronagraph with an adaptive optical system for wavefront correction is one of the most mature methods and is being developed as an instrument addition to the WFIRST-AFTA space mission. In addition, such instruments as GPI and SPHERE are already being used on the ground and are yielding spectra of giant planets. For the deformable mirror (DM) to recover a dark hole region with sufficiently high contrast in the image plane, mid-spatial frequency wavefront errors must be estimated. To date, most broadband lab demonstrations use narrowband filters to obtain an estimate of the the chromaticity of the wavefront error and this can result in usage of a large percentage of the total integration time. Previously, we have proposed a method to estimate the chromaticity of wavefront errors using only broadband images; we have demonstrated that under idealized conditions wavefront errors can be estimated from images composed of discrete wavelengths. This is achieved by using DM probes with sufficient spatially-localized chromatic diversity. Here we report on the results of a study of the performance of this method with respect to realistic broadband images including noise. Additionally, we study optimal probe patterns that enable reduction of the number of probes used and compare the integration time with narrowband and IFS estimation methods.

  19. Color-coded LED microscopy for multi-contrast and quantitative phase-gradient imaging.

    PubMed

    Lee, Donghak; Ryu, Suho; Kim, Uihan; Jung, Daeseong; Joo, Chulmin

    2015-12-01

    We present a multi-contrast microscope based on color-coded illumination and computation. A programmable three-color light-emitting diode (LED) array illuminates a specimen, in which each color corresponds to a different illumination angle. A single color image sensor records light transmitted through the specimen, and images at each color channel are then separated and utilized to obtain bright-field, dark-field, and differential phase contrast (DPC) images simultaneously. Quantitative phase imaging is also achieved based on DPC images acquired with two different LED illumination patterns. The multi-contrast and quantitative phase imaging capabilities of our method are demonstrated by presenting images of various transparent biological samples. PMID:26713205

  20. In vivo optical imaging and dynamic contrast methods for biomedical research

    PubMed Central

    Hillman, Elizabeth M. C.; Amoozegar, Cyrus B.; Wang, Tracy; McCaslin, Addason F. H.; Bouchard, Matthew B.; Mansfield, James; Levenson, Richard M.

    2011-01-01

    This paper provides an overview of optical imaging methods commonly applied to basic research applications. Optical imaging is well suited for non-clinical use, since it can exploit an enormous range of endogenous and exogenous forms of contrast that provide information about the structure and function of tissues ranging from single cells to entire organisms. An additional benefit of optical imaging that is often under-exploited is its ability to acquire data at high speeds; a feature that enables it to not only observe static distributions of contrast, but to probe and characterize dynamic events related to physiology, disease progression and acute interventions in real time. The benefits and limitations of in vivo optical imaging for biomedical research applications are described, followed by a perspective on future applications of optical imaging for basic research centred on a recently introduced real-time imaging technique called dynamic contrast-enhanced small animal molecular imaging (DyCE). PMID:22006910

  1. Color-coded LED microscopy for multi-contrast and quantitative phase-gradient imaging

    PubMed Central

    Lee, Donghak; Ryu, Suho; Kim, Uihan; Jung, Daeseong; Joo, Chulmin

    2015-01-01

    We present a multi-contrast microscope based on color-coded illumination and computation. A programmable three-color light-emitting diode (LED) array illuminates a specimen, in which each color corresponds to a different illumination angle. A single color image sensor records light transmitted through the specimen, and images at each color channel are then separated and utilized to obtain bright-field, dark-field, and differential phase contrast (DPC) images simultaneously. Quantitative phase imaging is also achieved based on DPC images acquired with two different LED illumination patterns. The multi-contrast and quantitative phase imaging capabilities of our method are demonstrated by presenting images of various transparent biological samples. PMID:26713205

  2. In vivo optical imaging and dynamic contrast methods for biomedical research.

    PubMed

    Hillman, Elizabeth M C; Amoozegar, Cyrus B; Wang, Tracy; McCaslin, Addason F H; Bouchard, Matthew B; Mansfield, James; Levenson, Richard M

    2011-11-28

    This paper provides an overview of optical imaging methods commonly applied to basic research applications. Optical imaging is well suited for non-clinical use, since it can exploit an enormous range of endogenous and exogenous forms of contrast that provide information about the structure and function of tissues ranging from single cells to entire organisms. An additional benefit of optical imaging that is often under-exploited is its ability to acquire data at high speeds; a feature that enables it to not only observe static distributions of contrast, but to probe and characterize dynamic events related to physiology, disease progression and acute interventions in real time. The benefits and limitations of in vivo optical imaging for biomedical research applications are described, followed by a perspective on future applications of optical imaging for basic research centred on a recently introduced real-time imaging technique called dynamic contrast-enhanced small animal molecular imaging (DyCE). PMID:22006910

  3. The use of photographic methods in contrast enhancement of ERTS-1 images

    NASA Technical Reports Server (NTRS)

    Harris, L. F.

    1973-01-01

    The contrast of ERTS 70mm positive images can be enhanced to varying degrees by rephotographing the images with different types of negative films, and by overdeveloping the films with different developers. A combination of high contrast copy film (Kodak 5069) and a high energy developer (Kodak D-11) yields high contrast. Still greater contrast may be otbained by using a film of higher contrast capability and a developer of higher energy capability. Contrast can also be enhanced in the printing process with the use of highcontrast photographic papers, or with the use of polycontrast photographic paper and filters. Contrast enhancement by photocopying delineates topographic boundaries and may aid in the objective measurement of topographic parameters.

  4. Aerial Explorers

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg; Ippolito, Corey

    2005-01-01

    This paper presents recent results from a mission architecture study of planetary aerial explorers. In this study, several mission scenarios were developed in simulation and evaluated on success in meeting mission goals. This aerial explorer mission architecture study is unique in comparison with previous Mars airplane research activities. The study examines how aerial vehicles can find and gain access to otherwise inaccessible terrain features of interest. The aerial explorer also engages in a high-level of (indirect) surface interaction, despite not typically being able to takeoff and land or to engage in multiple flights/sorties. To achieve this goal, a new mission paradigm is proposed: aerial explorers should be considered as an additional element in the overall Entry, Descent, Landing System (EDLS) process. Further, aerial vehicles should be considered primarily as carrier/utility platforms whose purpose is to deliver air-deployed sensors and robotic devices, or symbiotes, to those high-value terrain features of interest.

  5. Ion mobility imaging and contrast mechanism of apparent conductivity in MREIT.

    PubMed

    Oh, Tong In; Kim, Young Tae; Minhas, Atul; Seo, Jin Keun; Kwon, Oh In; Woo, Eung Je

    2011-04-01

    Magnetic resonance electrical impedance tomography (MREIT) aims to produce high-resolution cross-sectional images of conductivity distribution inside the human body. Injected current into an imaging object induces a distribution of internal magnetic flux density, which is measured by using an MRI scanner. We can reconstruct a conductivity image based on its relation with the measured magnetic flux density. In this paper, we explain the contrast mechanism in MREIT by performing and analyzing a series of numerical simulations and imaging experiments. We built a stable conductivity phantom including a hollow insulating cylinder with holes. Filling both inside and outside the hollow cylinder with the same saline, we controlled ion mobilities to create a conductivity contrast without being affected by the ion diffusion process. From numerical simulations and imaging experiments, we found that slopes of induced magnetic flux densities change with hole diameters and therefore conductivity contrasts. Associating the hole diameter with apparent conductivity of the region inside the hollow cylinder with holes, we could experimentally validate the contrast mechanism in MREIT. Interpreting reconstructed apparent conductivity images of the phantom as ion mobility images, we discuss the meaning of the apparent conductivity seen by a certain probing method. In designing MREIT imaging experiments, the ion mobility imaging method using the proposed stable conductivity phantom will enable us to estimate a distinguishable conductivity contrast for a given set of imaging parameters. PMID:21411866

  6. Adaptive polarimetric image representation for contrast optimization of a polarized beacon through fog

    NASA Astrophysics Data System (ADS)

    Panigrahi, Swapnesh; Fade, Julien; Alouini, Mehdi

    2015-06-01

    We present a contrast-maximizing optimal linear representation of polarimetric images obtained from a snapshot polarimetric camera for enhanced vision of a polarized light source in obscured weather conditions (fog, haze, cloud) over long distances (above 1 km). We quantitatively compare the gain in contrast obtained by different linear representations of the experimental polarimetric images taken during rapidly varying foggy conditions. It is shown that the adaptive image representation that depends on the correlation in background noise fluctuations in the two polarimetric images provides an optimal contrast enhancement over all weather conditions as opposed to a simple difference image which underperforms during low visibility conditions. Finally, we derive the analytic expression of the gain in contrast obtained with this optimal representation and show that the experimental results are in agreement with the assumed correlated Gaussian noise model.

  7. Managing the optical wavefront for high contrast exoplanet imaging with the WFIRST-AFTA coronagraph

    NASA Astrophysics Data System (ADS)

    Trauger, John T.; Krist, John E.; Moody, Dwight

    2016-01-01

    The prospect of extreme high contrast astronomical imaging from space has inspired developments of new coronagraph methods for exoplanet imaging and spectroscopy. However, the requisite contrast, at levels of a billion to one or better for the direct imaging of cool mature exoplanets in reflected visible starlight, leads to challenging new requirements on the stability and control of the optical wavefront at levels currently beyond the reach of ground based telescopes. We briefly review the designs, laboratory validations, and science prospects for direct imaging and spectroscopic characterization of exoplanet systems with an actively corrected Lyot coronagraph. We review exoplanet science performance predicted for NASA's WFIRST-AFTA coronagraph. Together with a pair of deformable mirrors for optical wavefront control, the Lyot coronagraph creates high contrast dark fields of view extending to angular separations within 0.1 arcsec from the central star at visible wavelengths. Performance metrics are presented, including image contrast and spectral bandwidth, and laboratory validation experience.

  8. Optimization of polarizer azimuth in improving domain image contrast in magneto-optical Kerr microscope

    NASA Astrophysics Data System (ADS)

    Wang, X.; Lian, J.; Li, P.; Li, X.; Li, M. M.; Wang, Y.; Liu, Y. X.

    2016-02-01

    The magneto-optical Kerr effect (MOKE) is a widely used technique in magnetic domain imaging for its high surface sensitivity and external magnetic compatibility. In this work, we use the generalized magneto-optical ellipsometry technique to study the influence of polarizer and analyzer azimuth on domain image contrast in the Kerr microscope. Results show that the image contrasts around the extinction place are larger than other area. When the polarizer and analyzer are set slightly deviated from the extinction condition (0.35°,89.7°), the maximum image contrast can be obtained. The color map of image contrast on polarizer and analyzer angle is given by measuring the MOKE response of 200 nm permalloy. Results verify the validity of the conclusion.

  9. Contrast enhanced-magnetic resonance imaging as a surrogate to map verteporfin delivery in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Samkoe, Kimberley S.; Bryant, Amber; Gunn, Jason R.; Pereira, Stephen P.; Hasan, Tayyaba; Pogue, Brian W.

    2013-12-01

    The use of in vivo contrast-enhanced magnetic resonance (MR) imaging as a surrogate for photosensitizer (verteporfin) dosimetry in photodynamic therapy of pancreas cancer is demonstrated by correlating MR contrast uptake to ex vivo fluorescence images on excised tissue. An orthotopic pancreatic xenograft mouse model was used for the study. A strong correlation (r=0.57) was found for bulk intensity measurements of T1-weighted gadolinium enhancement and verteporfin fluorescence in the tumor region of interest. The use of contrast-enhanced MR imaging shows promise as a method for treatment planning and photosensitizer dosimetry in human photodynamic therapy (PDT) of pancreas cancer.

  10. A contrast and registration template for magnetic resonance image data guided dental implant placement

    NASA Astrophysics Data System (ADS)

    Eggers, Georg; Cosgarea, Raluca; Rieker, Marcus; Kress, Bodo; Dickhaus, Hartmut; Mühling, Joachim

    2009-02-01

    An oral imaging template was developed to address the shortcomings of MR image data for image guided dental implant planning and placement. The template was conctructed as a gadolinium filled plastic shell to give contrast to the dentition and also to be accurately re-attachable for use in image guided dental implant placement. The result of segmentation and modelling of the dentition from MR Image data with the template was compared to plaster casts of the dentition. In a phantom study dental implant placement was performed based on MR image data. MR imaging with the contrast template allowed complete representation of the existing dentition. In the phantom study, a commercially available system for image guided dental implant placement was used. Transformation of the imaging contrast template into a surgical drill guide based on the MR image data resulted in pilot burr hole placement with an accuracy of 2 mm. MRI based imaging of the existing dentition for proper image guided planning is possible with the proposed template. Using the image data and the template resulted in less accurate pilot burr hole placement in comparison to CT-based image guided implant placement.

  11. High Quality Image of Biomedical Object by X-ray Refraction Based Contrast Computed Tomography

    NASA Astrophysics Data System (ADS)

    Hashimoto, E.; Maksimenko, A.; Sugiyama, H.; Hirano, K.; Hyodo, K.; Shimao, D.; Nishino, Y.; Ishikawa, T.; Yuasa, T.; Ichihara, S.; Arai, Y.; Ando, M.

    2007-01-01

    Recently we have developed a new Computed Tomography (CT) algorithm for refraction contrast that uses the optics of diffraction-enhanced imaging. We applied this new method to visualize soft tissue which is not visualized by the current absorption based contrast. The meaning of the contrast that appears in refraction-contrast X-ray CT images must be clarified from a biologic or anatomic point of view. It has been reported that the contrast is made with the specific gravity map with a range of approximately 10 μarc sec. However, the relationship between the contrast and biologic or anatomic findings has not been investigated, to our knowledge. We compared refraction-contrast X-ray CT images with microscopic X-ray images, and we evaluated refractive indexes of pathologic lesions on phase-contrast X-ray CT images. We focused our attenuation of breast cancer and lung cancer as samples. X-ray refraction based Computed Tomography was appeared to be a pathological ability to depict the boundary between cancer nest and normal tissue, and inner structure of the disease.

  12. Beam hardening effects in grating-based x-ray phase-contrast imaging

    SciTech Connect

    Chabior, Michael; Donath, Tilman; David, Christian; Bunk, Oliver; Schuster, Manfred; Schroer, Christian; Pfeiffer, Franz

    2011-03-15

    Purpose: In this work, the authors investigate how beam hardening affects the image formation in x-ray phase-contrast imaging and consecutively develop a correction algorithm based on the results of the analysis. Methods: The authors' approach utilizes a recently developed x-ray imaging technique using a grating interferometer capable of visualizing the differential phase shift of a wave front traversing an object. An analytical description of beam hardening is given, highlighting differences between attenuation and phase-contrast imaging. The authors present exemplary beam hardening artifacts for a number of well-defined samples in measurements at a compact laboratory setup using a polychromatic source. Results: Despite the differences in image formation, the authors show that beam hardening leads to a similar reduction of image quality in phase-contrast imaging as in conventional attenuation-contrast imaging. Additionally, the authors demonstrate that for homogeneous objects, beam hardening artifacts can be corrected by a linearization technique, applicable to all kinds of phase-contrast methods using polychromatic sources. Conclusions: The evaluated correction algorithm is shown to yield good results for a number of simple test objects and can thus be advocated in medical imaging and nondestructive testing.

  13. Evaluation of a targeted nanobubble ultrasound contrast agent for potential tumor imaging

    NASA Astrophysics Data System (ADS)

    Li, Chunfang; Shen, Chunxu; Liu, Haijuan; Wu, Kaizhi; Zhou, Qibing; Ding, Mingyue

    2015-03-01

    Targeted nanobubbles have been reported to improve the contrast effect of ultrasound imaging due to the enhanced permeation and retention effects at tumor vascular leaks. In this work, the contrast enhancement abilities and the tumor targeting potential of a self-made VEGFR2-targeted nanobubble ultrasound contrast agent was evaluated in-vitro and in-vivo. Size distribution and zeta potential were assessed. Then the contrast-enhanced ultrasound imaging of the VEGFR2 targeted nanobubbles were evaluated with a custom-made experimental apparatus and in normal Wistar rats. Finally, the in-vivo tumor-targeting ability was evaluated on nude mice with subcutaneous tumor. The results showed that the target nanobubbles had uniform distribution with the average diameter of 208.1 nm, polydispersity index (PDI) of 0.411, and zeta potential of -13.21 mV. Significant contrast enhancement was observed in both in-vitro and in-vivo ultrasound imaging, demonstrating that the self-made target nanobubbles can enhance the contrast effect of ultrasound imaging efficiently. Targeted tumor imaging showed less promising result, due to the fact that the targeted nanobubbles arriving and permeating through tumor vessels were not many enough to produce significant enhancement. Future work will focus on exploring new imaging algorithm which is sensitive to targeted nanobubbles, so as to correctly detect the contrast agent, particularly at a low bubble concentration.

  14. Directed evolution of a magnetic resonance imaging contrast agent for noninvasive imaging of dopamine

    PubMed Central

    Shapiro, Mikhail G; Westmeyer, Gil G; Romero, Philip A; Szablowski, Jerzy O; Küster, Benedict; Shah, Ameer; Otey, Christopher R; Langer, Robert; Arnold, Frances H; Jasanoff, Alan

    2011-01-01

    The development of molecular probes that allow in vivo imaging of neural signaling processes with high temporal and spatial resolution remains challenging. Here we applied directed evolution techniques to create magnetic resonance imaging (MRI) contrast agents sensitive to the neurotransmitter dopamine. The sensors were derived from the heme domain of the bacterial cytochrome P450-BM3 (BM3h). Ligand binding to a site near BM3h’s paramagnetic heme iron led to a drop in MRI signal enhancement and a shift in optical absorbance. Using an absorbance-based screen, we evolved the specificity of BM3h away from its natural ligand and toward dopamine, producing sensors with dissociation constants for dopamine of 3.3–8.9 μM. These molecules were used to image depolarization-triggered neurotransmitter release from PC12 cells and in the brains of live animals. Our results demonstrate the feasibility of molecular-level functional MRI using neural activity–dependent sensors, and our protein engineering approach can be generalized to create probes for other targets. PMID:20190737

  15. Graphene Meets Microbubbles: A Superior Contrast Agent for Photoacoustic Imaging.

    PubMed

    Toumia, Yosra; Domenici, Fabio; Orlanducci, Silvia; Mura, Francesco; Grishenkov, Dmitry; Trochet, Philippe; Lacerenza, Savino; Bordi, Federico; Paradossi, Gaio

    2016-06-29

    Coupling graphene with a soft polymer surface offers the possibility to build hybrid constructs with new electrical, optical, and mechanical properties. However, the low reactivity of graphene is a hurdle in the synthesis of such systems which is often bypassed by oxidizing its carbon planar structure. However, the defects introduced with this process jeopardize the properties of graphene. In this paper we present a different approach, applicable to many different polymer surfaces, which uses surfactant assisted ultrasonication to exfoliate, and simultaneously suspend, graphene in water in its intact form. Tethering pristine graphene sheets to the surfaces is accomplished by using suitable reactive functional groups of the surfactant scaffold. We focused on applying this approach to the fabrication of a hybrid system, made of pristine graphene tethered to poly(vinyl alcohol) based microbubbles (PVA MBs), designed for enhancing photoacoustic signals. Photoacoustic imaging (PAI) is a powerful preclinical diagnostic tool which provides real time images at a resolution of 40 μm. The leap toward clinical imaging has so far been hindered by the limited tissues penetration of near-infrared (NIR) pulsed laser radiation. Many academic and industrial research laboratories have met this challenge by designing devices, each with pros and cons, to enhance the photoacoustic (PA) signal. The major advantages of the hybrid graphene/PVA MBs construct, however, are (i) the preservation of graphene properties, (ii) biocompatibility, a consequence of the robust anchoring of pristine graphene to the bioinert surface of the PVA bubble, and (iii) a very good enhancement in a NIR spectral region of the PA signal, which does not overlap with the signals of PA active endogenous molecules such as hemoglobin. PMID:27269868

  16. Application of Z-contrast imaging to obtain column-by-column spectroscopic analysis of materials

    SciTech Connect

    Browning, N.D.; Pennycook, S.J.

    1993-01-01

    Z-contrast imaging has been shown to be an effective method for obtaining a high-resolution image from a scanning transmission electron microscope (STEM). The incoherent nature of the high-angle scattering makes image interpretation straightforward and intuitive with the resolution limited only by the 2.2 {Angstrom} electron probe. The optimum experimental conditions for Z-contrast imaging also coincide with those used for analytical microscopy, enabling microanalysis to be performed with the same spatial resolution as the image. The detection limits afforded by a parallel detection system for electron energy loss spectroscopy (EELS) allows column-by-column core-loss spectroscopy to be performed using the Z-contrast image to position the electron probe. Preliminary results from the study of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} illustrate the spatial resolution available with this technique and the potential applications for materials science.

  17. ULTRASONIC IMAGING USING A FLEXIBLE ARRAY: IMPROVEMENTS TO THE MAXIMUM CONTRAST AUTOFOCUS ALGORITHM

    SciTech Connect

    Hunter, A. J.; Drinkwater, B. W.; Wilcox, P. D.

    2009-03-03

    In previous work, we have presented the maximum contrast autofocus algorithm for estimating unknown imaging parameters, e.g., for imaging through complicated surfaces using a flexible ultrasonic array. This paper details recent improvements to the algorithm. The algorithm operates by maximizing the image contrast metric with respect to the imaging parameters. For a flexible array, the relative positions of the array elements are parameterized using a cubic spline function and the spline control points are estimated by iterative maximisation of the image contrast via simulated annealing. The resultant spline gives an estimate of the array geometry and the profile of the surface that it has conformed to, allowing the generation of a well-focused image. A pre-processing step is introduced to obtain an initial estimate of the array geometry, reducing the time taken for the algorithm to convergence. Experimental results are demonstrated using a flexible array prototype.

  18. Microbubble embedded with upconversion nanoparticles as a bimodal contrast agent for fluorescence and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Jin, Birui; Lin, Min; You, Minli; Zong, Yujin; Wan, Mingxi; Xu, Feng; Duan, Zhenfeng; Lu, Tianjian

    2015-08-01

    Bimodal imaging offers additional imaging signal thus finds wide spread application in clinical diagnostic imaging. Fluorescence/ultrasound bimodal imaging contrast agent using fluorescent dyes or quantum dots for fluorescence signal has emerged as a promising method, which however requires visible light or UV irradiation resulting in photobleaching, photoblinking, auto-fluorescence and limited tissue penetration depth. To surmount these problems, we developed a novel bimodal contrast agent using layer-by-layer assembly of upconversion nanoparticles onto the surface of microbubbles. The resulting microbubbles with average size of 2 μm provide enhanced ultrasound echo for ultrasound imaging and upconversion emission upon near infrared irradiation for fluorescence imaging. The developed bimodal contrast agent holds great potential to be applied in ultrasound target technique for targeted diseases diagnostics and therapy.

  19. Building Roof Segmentation from Aerial Images Using a Line-and Region-Based Watershed Segmentation Technique

    PubMed Central

    Merabet, Youssef El; Meurie, Cyril; Ruichek, Yassine; Sbihi, Abderrahmane; Touahni, Raja

    2015-01-01

    In this paper, we present a novel strategy for roof segmentation from aerial images (orthophotoplans) based on the cooperation of edge- and region-based segmentation methods. The proposed strategy is composed of three major steps. The first one, called the pre-processing step, consists of simplifying the acquired image with an appropriate couple of invariant and gradient, optimized for the application, in order to limit illumination changes (shadows, brightness, etc.) affecting the images. The second step is composed of two main parallel treatments: on the one hand, the simplified image is segmented by watershed regions. Even if the first segmentation of this step provides good results in general, the image is often over-segmented. To alleviate this problem, an efficient region merging strategy adapted to the orthophotoplan particularities, with a 2D modeling of roof ridges technique, is applied. On the other hand, the simplified image is segmented by watershed lines. The third step consists of integrating both watershed segmentation strategies into a single cooperative segmentation scheme in order to achieve satisfactory segmentation results. Tests have been performed on orthophotoplans containing 100 roofs with varying complexity, and the results are evaluated with the VINETcriterion using ground-truth image segmentation. A comparison with five popular segmentation techniques of the literature demonstrates the effectiveness and the reliability of the proposed approach. Indeed, we obtain a good segmentation rate of 96% with the proposed method compared to 87.5% with statistical region merging (SRM), 84% with mean shift, 82% with color structure code (CSC), 80% with efficient graph-based segmentation algorithm (EGBIS) and 71% with JSEG. PMID:25648706

  20. A Mobile System for Measuring Water Surface Velocities Using Unmanned Aerial Vehicle and Large-Scale Particle Image Velocimetry

    NASA Astrophysics Data System (ADS)

    Chen, Y. L.

    2015-12-01

    Measurement technologies for velocity of river flow are divided into intrusive and nonintrusive methods. Intrusive method requires infield operations. The measuring process of intrusive methods are time consuming, and likely to cause damages of operator and instrument. Nonintrusive methods require fewer operators and can reduce instrument damages from directly attaching to the flow. Nonintrusive measurements may use radar or image velocimetry to measure the velocities at the surface of water flow. The image velocimetry, such as large scale particle image velocimetry (LSPIV) accesses not only the point velocity but the flow velocities in an area simultaneously. Flow properties of an area hold the promise of providing spatially information of flow fields. This study attempts to construct a mobile system UAV-LSPIV by using an unmanned aerial vehicle (UAV) with LSPIV to measure flows in fields. The mobile system consists of a six-rotor UAV helicopter, a Sony nex5T camera, a gimbal, an image transfer device, a ground station and a remote control device. The activate gimbal helps maintain the camera lens orthogonal to the water surface and reduce the extent of images being distorted. The image transfer device can monitor the captured image instantly. The operator controls the UAV by remote control device through ground station and can achieve the flying data such as flying height and GPS coordinate of UAV. The mobile system was then applied to field experiments. The deviation of velocities measured by UAV-LSPIV of field experiments and handhold Acoustic Doppler Velocimeter (ADV) is under 8%. The results of the field experiments suggests that the application of UAV-LSPIV can be effectively applied to surface flow studies.

  1. Unsupervised and stable LBG algorithm for data classification: application to aerial multicomponent images

    NASA Astrophysics Data System (ADS)

    Taher, A.; Chehdi, K.; Cariou, C.

    2015-10-01

    In this paper a stable and unsupervised Linde-Buzo-Gray (LBG) algorithm named LBGO is presented. The originality of the proposed algorithm relies: i) on the utilization of an adaptive incremental technique to initialize the class centres that calls into question the intermediate initializations; this technique makes the algorithm stable and deterministic, and the classification results do not vary from a run to another, and ii) on the unsupervised evaluation criteria of the intermediate classification result to estimate the optimal number of classes; this makes the algorithm unsupervised. The efficiency of this optimized version of LBG is shown through some experimental results on synthetic and real aerial hyperspectral data. More precisely we have tested our proposed classification approach regarding three aspects: firstly for its stability, secondly for its correct classification rate, and thirdly for the correct estimation of number of classes.

  2. Theoretical analysis of x-ray CT phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Feng, Sheng; Liu, Song; Zhang, Xuelong

    2008-12-01

    Recently phase contrast imaging has attracted much attention. An obvious advantage of using X-rays for imaging the internal structure of relatively thick samples lies in its high degree of penetration of solid objects. However, often leads to poor image contrast for soft tissue. Phase contrast imaging can be very useful in such situation, as the phase of the transmitted beam may often be more sensitive indicator of density of sample than convention contrast. On the other hand, Computed Tomography is the best technology in the aspect of X-rays detection. Using the technology, the detected object can be imaged to three-dimensional image, so as to observe the inner structure of object, and be convenient to the disease examination. If the phase contrast imaging can be used to the technology of Computed Tomography, the high resolution image can be gained. The technology will become the development orientation of medical image. The aim of this article was to apply the theory of X-rays phase contrast imaging to the traditional X-CT technique. For this purpose, the formula deduced from the imaging theory with parallel monochromatic X-rays illuminating the object based on the Fresnel-Kircohhof theory had been completed and a formula similar to that of the traditional X-CT reconstruction had been gained, which was Radon transform formula. At last, X-rays reconstruction simulation had been carried out according to the formula, and proved that the method could be used in clinical medical imaging. The method discussed in this paper had a very bright prospect for application.

  3. Closed loop, DM diversity-based, wavefront correction algorithm for high contrast imaging systems.

    PubMed

    Give'on, Amir; Belikov, Ruslan; Shaklan, Stuart; Kasdin, Jeremy

    2007-09-17

    High contrast imaging from space relies on coronagraphs to limit diffraction and a wavefront control systems to compensate for imperfections in both the telescope optics and the coronagraph. The extreme contrast required (up to 10(-10) for terrestrial planets) puts severe requirements on the wavefront control system, as the achievable contrast is limited by the quality of the wavefront. This paper presents a general closed loop correction algorithm for high contrast imaging coronagraphs by minimizing the energy in a predefined region in the image where terrestrial planets could be found. The estimation part of the algorithm reconstructs the complex field in the image plane using phase diversity caused by the deformable mirror. This method has been shown to achieve faster and better correction than classical speckle nulling. PMID:19547602

  4. Investigating the visual inspection subjectivity on the contrast-detail evaluation in digital mammography images

    NASA Astrophysics Data System (ADS)

    Sousa, Maria A. Z.; Medeiros, Regina B.; Schiabel, Homero

    2014-03-01

    A major difficulty in the interpretation of mammographic images is the low contrast and, in the case of early detection of breast cancer, the reduced size of the features of malignancy on findings such as microcalcifications. Furthermore, image assessment is subject to significant reliance of the capacity of observation of the expert that will perform it, compromising the final diagnosis accuracy. Thinking about this aspect, this study evaluated the subjectivity of visual inspection to assess the contrast-detail in mammographic images. For this, we compared the human readings of images generated with the CDMAM phantom performed by four observers, enabling to determining a threshold of contrast visibility in each diameter disks present in the phantom. These thresholds were compared graphically and by statistical measures allowing us to build a strategy for use of contrast and detail (dimensions) as parameters of quality in mammography.

  5. Wavelength-Dependent Differential Interference Contrast Microscopy: Selectively Imaging Nanoparticle Probes in Live Cells

    SciTech Connect

    Sun, Wei; Wang, Gufeng; Fang, Ning; and Yeung, Edward S.

    2009-11-15

    Gold and silver nanoparticles display extraordinarily large apparent refractive indices near their plasmon resonance (PR) wavelengths. These nanoparticles show good contrast in a narrow spectral band but are poorly resolved at other wavelengths in differential interference contrast (DIC) microscopy. The wavelength dependence of DIC contrast of gold/silver nanoparticles is interpreted in terms of Mie's theory and DIC working principles. We further exploit this wavelength dependence by modifying a DIC microscope to enable simultaneous imaging at two wavelengths. We demonstrate that gold/silver nanoparticles immobilized on the same glass slides through hybridization can be differentiated and imaged separately. High-contrast, video-rate images of living cells can be recorded both with and without illuminating the gold nanoparticle probes, providing definitive probe identification. Dual-wavelength DIC microscopy thus presents a new approach to the simultaneous detection of multiple probes of interest for high-speed live-cell imaging.

  6. A phantom study to characterize the imaging quality of a phase-contrast tomosynthesis prototype

    NASA Astrophysics Data System (ADS)

    Wu, Di; Ghani, Muhammad U.; Miao, Hui; Li, Yuhua; Chen, Wei R.; Wu, Xizeng; Liu, Hong

    2013-02-01

    This research is aimed at studying the advantages of an x-ray phase-contrast tomosynthesis prototype by using phantoms. A prototype system is assembled with a micro-focus x-ray source, a rotating stage and a computed radiography detector mounted on an optical rail. A custom designed bubble wrap phantom is used in experiments. Angular projection images are acquired from -20° to +20° with 2° interval. The in-plane slices are reconstructed. The feature area on the phantom is observed. The prototype system provides an intrinsic way to investigate the potential and imaging quality of a phase-contrast tomosynthesis imaging method. As the result, phase-contrast tomosynthesis imaging method is demonstrated for its advantages in avoiding structure noise and overlapping issues by comparing the results acquired by computed radiography and phase-contrast radiography.

  7. Phase-contrast enhanced mammography: A new diagnostic tool for breast imaging

    SciTech Connect

    Wang Zhentian; Thuering, Thomas; David, Christian; Roessl, Ewald; Trippel, Mafalda; Kubik-Huch, Rahel A.; Singer, Gad; Hohl, Michael K.; Hauser, Nik; Stampanoni, Marco

    2012-07-31

    Phase contrast and scattering-based X-ray imaging can potentially revolutionize the radiological approach to breast imaging by providing additional and complementary information to conventional, absorption-based methods. We investigated native, non-fixed whole breast samples using a grating interferometer with an X-ray tube-based configuration. Our approach simultaneously recorded absorption, differential phase contrast and small-angle scattering signals. The results show that this novel technique - combined with a dedicated image fusion algorithm - has the potential to deliver enhanced breast imaging with complementary information for an improved diagnostic process.

  8. A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources

    SciTech Connect

    Olivo, Alessandro; Speller, Robert

    2007-08-13

    Phase contrast imaging (PCI) solves the basic limitation of x-ray imaging, i.e., poor image contrast resulting from small absorption differences. Up to now, it has been mostly limited to synchrotron radiation facilities, due to the stringent requirements on the x-ray source and detectors, and only one technique was shown to provide PCI images with conventional sources but with limits in practical implementation. The authors propose a different approach, based on coded apertures, which provides high PCI signals with conventional sources and detectors and imposes practically no applicability limits. They expect this method to cast the basis of a widespread diffusion of PCI.

  9. Phase-contrast enhanced mammography: A new diagnostic tool for breast imaging

    NASA Astrophysics Data System (ADS)

    Wang, Zhentian; Thuering, Thomas; David, Christian; Roessl, Ewald; Trippel, Mafalda; Kubik-Huch, Rahel A.; Singer, Gad; Hohl, Michael K.; Hauser, Nik; Stampanoni, Marco

    2012-07-01

    Phase contrast and scattering-based X-ray imaging can potentially revolutionize the radiological approach to breast imaging by providing additional and complementary information to conventional, absorption-based methods. We investigated native, non-fixed whole breast samples using a grating interferometer with an X-ray tube-based configuration. Our approach simultaneously recorded absorption, differential phase contrast and small-angle scattering signals. The results show that this novel technique - combined with a dedicated image fusion algorithm - has the potential to deliver enhanced breast imaging with complementary information for an improved diagnostic process.

  10. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents

    PubMed Central

    Estelrich, Joan; Sánchez-Martín, María Jesús; Busquets, Maria Antònia

    2015-01-01

    Magnetic resonance imaging (MRI) has become one of the most widely used and powerful tools for noninvasive clinical diagnosis owing to its high degree of soft tissue contrast, spatial resolution, and depth of penetration. MRI signal intensity is related to the relaxation times (T1, spin–lattice relaxation and T2, spin–spin relaxation) of in vivo water protons. To increase contrast, various inorganic nanoparticles and complexes (the so-called contrast agents) are administered prior to the scanning. Shortening T1 and T2 increases the corresponding relaxation rates, 1/T1 and 1/T2, producing hyperintense and hypointense signals respectively in shorter times. Moreover, the signal-to-noise ratio can be improved with the acquisition of a large number of measurements. The contrast agents used are generally based on either iron oxide nanoparticles or ferrites, providing negative contrast in T2-weighted images; or complexes of lanthanide metals (mostly containing gadolinium ions), providing positive contrast in T1-weighted images. Recently, lanthanide complexes have been immobilized in nanostructured materials in order to develop a new class of contrast agents with functions including blood-pool and organ (or tumor) targeting. Meanwhile, to overcome the limitations of individual imaging modalities, multimodal imaging techniques have been developed. An important challenge is to design all-in-one contrast agents that can be detected by multimodal techniques. Magnetoliposomes are efficient multimodal contrast agents. They can simultaneously bear both kinds of contrast and can, furthermore, incorporate targeting ligands and chains of polyethylene glycol to enhance the accumulation of nanoparticles at the site of interest and the bioavailability, respectively. Here, we review the most important characteristics of the nanoparticles or complexes used as MRI contrast agents. PMID:25834422

  11. Tailored Near-Infrared Contrast Agents for Image Guided Surgery

    PubMed Central

    Njiojob, Costyl N.; Owens, Eric A.; Narayana, Lakshminarayana; Hyun, Hoon; Choi, Hak Soo; Henary, Maged

    2015-01-01

    The success of near-infrared (NIR) fluorescence to be employed for intraoperative imaging relies on the ability to develop a highly stable, NIR fluorescent, nontoxic, biocompatible, and highly excreted compound that retains a reactive functionality for conjugation to a cancer-recognizing peptide. Herein, systematic modifications to previously detailed fluorophore ZW800-1 are explored. Specific modifications, including the isosteric replacement of the O atom of ZW800-1, include nucleophilic amine and sulfur species attached to the heptamethine core. These novel compounds have shown similar satisfactory results in biodistribution and clearance while also expressing increased stability in serum. Most importantly, all of the synthesized and evaluated compounds display a reactive functionality (either a free amino group or carboxylic acid moiety) for further bioconjugation. The results obtained from the newly prepared derivatives demonstrate that the central substitution with the studied linking agents retains the ultralow background in vivo performance of the fluorophores regardless of the total net charge. PMID:25711712

  12. High contrast imaging at the LBT: the LEECH exoplanet imaging survey

    NASA Astrophysics Data System (ADS)

    Skemer, Andrew J.; Hinz, Philip; Esposito, Simone; Skrutskie, Michael F.; Defrère, Denis; Bailey, Vanessa; Leisenring, Jarron; Apai, Daniel; Biller, Beth; Bonnefoy, Mickaël.; Brandner, Wolfgang; Buenzli, Esther; Close, Laird; Crepp, Justin; De Rosa, Robert J.; Desidera, Silvano; Eisner, Josh; Fortney, Jonathan; Henning, Thomas; Hofmann, Karl-Heinz; Kopytova, Taisiya; Maire, Anne-Lise; Males, Jared R.; Millan-Gabet, Rafael; Morzinski, Katie; Oza, Apurva; Patience, Jenny; Rajan, Abhijith; Rieke, George; Schertl, Dieter; Schlieder, Joshua; Su, Kate; Vaz, Amali; Ward-Duong, Kimberly; Weigelt, Gerd; Woodward, Charles E.; Zimmerman, Neil

    2014-07-01

    In Spring 2013, the LEECH (LBTI Exozodi Exoplanet Common Hunt) survey began its ~130-night campaign from the Large Binocular Telescope (LBT) atop Mt Graham, Arizona. This survey benefits from the many technological achievements of the LBT, including two 8.4-meter mirrors on a single fixed mount, dual adaptive secondary mirrors for high Strehl performance, and a cold beam combiner to dramatically reduce the telescope's overall background emissivity. LEECH neatly complements other high-contrast planet imaging efforts by observing stars at L' (3.8 μm), as opposed to the shorter wavelength near-infrared bands (1-2.4 μm) of other surveys. This portion of the spectrum offers deep mass sensitivity, especially around nearby adolescent (~0.1-1 Gyr) stars. LEECH's contrast is competitive with other extreme adaptive optics systems, while providing an alternative survey strategy. Additionally, LEECH is characterizing known exoplanetary systems with observations from 3-5μm in preparation for JWST.

  13. In-line phase-contrast imaging based on Tsinghua Thomson scattering x-ray source.

    PubMed

    Zhang, Zhen; Du, Yingchao; Yan, Lixin; Hua, Jianfei; Yang, Jin; Xiao, Yongshun; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang

    2014-08-01

    Thomson scattering x-ray sources can produce ultrashort, energy tunable x-ray pulses characterized by high brightness, quasi-monochromatic, and high spatial coherence, which make it an ideal source for in-line phase-contrast imaging. We demonstrate the capacity of in-line phase-contrast imaging based on Tsinghua Thomson scattering X-ray source. Clear edge enhancement effect has been observed in the experiment. PMID:25173262

  14. Region-Based 3d Surface Reconstruction Using Images Acquired by Low-Cost Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Lari, Z.; Al-Rawabdeh, A.; He, F.; Habib, A.; El-Sheimy, N.

    2015-08-01

    Accurate 3D surface reconstruction of our environment has become essential for an unlimited number of emerging applications. In the past few years, Unmanned Aerial Systems (UAS) are evolving as low-cost and flexible platforms for geospatial data collection that could meet the needs of aforementioned application and overcome limitations of traditional airborne and terrestrial mobile mapping systems. Due to their payload restrictions, these systems usually include consumer-grade imaging and positioning sensor which will negatively impact the quality of the collected geospatial data and reconstructed surfaces. Therefore, new surface reconstruction surfaces are needed to mitigate the impact of using low-cost sensors on the final products. To date, different approaches have been proposed to for 3D surface construction using overlapping images collected by imaging sensor mounted on moving platforms. In these approaches, 3D surfaces are mainly reconstructed based on dense matching techniques. However, generated 3D point clouds might not accurately represent the scanned surfaces due to point density variations and edge preservation problems. In order to resolve these problems, a new region-based 3D surface renostruction trchnique is introduced in this paper. This approach aims to generate a 3D photo-realistic model of individually scanned surfaces within the captured images. This approach is initiated by a Semi-Global dense Matching procedure is carried out to generate a 3D point cloud from the scanned area within the collected images. The generated point cloud is then segmented to extract individual planar surfaces. Finally, a novel region-based texturing technique is implemented for photorealistic reconstruction of the extracted planar surfaces. Experimental results using images collected by a camera mounted on a low-cost UAS demonstrate the feasibility of the proposed approach for photorealistic 3D surface reconstruction.

  15. Poly(Lactic-co-Glycolic) Acid as a Carrier for Imaging Contrast Agents

    PubMed Central

    Doiron, Amber L.; Homan, Kimberly A.; Emelianov, Stanislav; Brannon-Peppas, Lisa

    2010-01-01

    Purpose With the broadening field of nanomedicine poised for future molecular level therapeutics, nano-and microparticles intended for the augmentation of either single- or multimodal imaging are created with PLGA as the chief constituent and carrier. Methods Emulsion techniques were used to encapsulate hydrophilic and hydrophobic imaging contrast agents in PLGA particles. The imaging contrast properties of these PLGA particles were further enhanced by reducing silver onto the PLGA surface, creating a silver cage around the polymeric core. Results The MRI contrast agent Gd-DTPA and the exogenous dye rhodamine 6G were both encapsulated in PLGA and shown to enhance MR and fluorescence contrast, respectively. The silver nanocage built around PLGA nanoparticles exhibited strong near infrared light absorbance properties, making it a suitable contrast agent for optical imaging strategies such as photoacoustic imaging. Conclusions The biodegradable polymer PLGA is an extremely versatile nano- and micro-carrier for several imaging contrast agents with the possibility of targeting diseased states at a molecular level. PMID:19034628

  16. Measurement of the optimum surround ratio inducing the highest perceived image contrast

    NASA Astrophysics Data System (ADS)

    Baek, Ye Seul; Kim, Youn Jin; Kim, Hong-Suk; Park, Seung-Ok

    2010-10-01

    Much research has shown that perceived image contrast increases as the surround luminance increases, but a number of recent studies reported opposite trends under higher surround luminance levels. We measured the change in perceived image contrast under a wide range of surround luminance levels covering from dark up to 2087 cd/m2. A large-area illuminator was used to illuminate the surround. It consists of 23 dimmable fluorescent lamps and a diffuser. Its maximum luminance is 2087 cd/m2 and could be adjusted to six lower levels. A set of paired comparison experiments was conducted to compare the perception of image contrast under seven different surround luminance levels. The results showed that the perceived image contrast varies with surround luminance and the maximum perceived image contrast is found near a surround ratio (SR) of 1. As SR increases from 0 to 1, the z score is increased, which can be fully expected by the Bartleson and Breneman effect. However, it is drastically decreased in the region of SR > 1; thus, the perceived image contrast is eventually decreased.

  17. in vivo laser speckle imaging by adaptive contrast computation for microvasculature assessment

    NASA Astrophysics Data System (ADS)

    Basak, Kausik; Dey, Goutam; Mahadevappa, Manjunatha; Mandal, Mahitosh; Dutta, Pranab Kumar

    2014-11-01

    Interference of light backscattered from a diffused surface leads to speckle formation in laser speckle imaging. These time integrated speckle patterns can be statistically analyzed to study the flow profile of moving scatterers. Simple speckle contrast analysis techniques have limited ability to distinguish thin structures due to presence of corrupting speckles. This paper presents a high resolution imaging technique by adaptive computation of contrast for laser speckle contrast analysis (adLASCA). Speckle images of retinal microvasculature in mice model are acquired during normal and reduced blood flow conditions. Initially, the speckle images are registered to compensate for movements, associated with heart beating and respiration. Adaptive computation is performed using local image statistics, estimated within a spatially moving window over successive time frames. Experimental evidence suggests that adLASCA outperforms other contrast analysis methods, substantiating significant improvement in contrast resolution. Fine vessels can be distinguished more efficiently with reduced fluctuations in contrast level. Quantitative performance of adLASCA is evaluated by computing standard deviation, corresponding to speckle fluctuations due to unwanted speckles. There is a significant reduction in standard deviation compared to other methods. Therefore, adLASCA can be used for enhancing microvasculature in high resolution perfusion imaging with reduced effect of corrupting speckles for effective assessment.

  18. Refracting Roentgen's rays: Propagation-based x-ray phase contrast for biomedical imaging

    SciTech Connect

    Gureyev, T. E.; Mayo, S. C.; Nesterets, Ya.; Pogany, A.; Stevenson, A. W.; Wilkins, S. W.; Myers, D. E.; Paganin, D. M.

    2009-05-15

    Absorption-contrast x-ray imaging serves to visualize the variation in x-ray attenuation within the volume of a given sample, whereas phase contrast allows one to visualize variations in x-ray refractive index. The former imaging mechanism has been well known and widely utilized since the time of Roentgen's Nobel prize winning work, whereas the latter mechanism--sought for, but not found, by Roentgen himself--has laid the foundation for a revolution in x-ray imaging which is the central topic of this review. We consider the physical imaging mechanisms underlying both absorption contrast and phase contrast, together with the associated inverse problem of how one may obtain quantitative two- or three-dimensional information regarding a sample, given one or more phase-contrast images of the same. Practical questions are considered, regarding optimized phase-contrast imaging geometries as a function of detector resolution, source size, x-ray spectrum, and dose. Experimental examples pertaining to biomedical applications are given, and prospects for the future outlined.

  19. Grating-Based Phase-Contrast Imaging of Tumor Angiogenesis in Lung Metastases

    PubMed Central

    Li, Xiangting; Wang, Yujie; Ding, Bei; Shi, Chen; Liu, Huanhuan; Tang, Rongbiao; Sun, Jianqi; Yan, Fuhua; Zhang, Huan

    2015-01-01

    Purpose To assess the feasibility of the grating-based phase-contrast imaging (GPI) technique for studying tumor angiogenesis in nude BALB/c mice, without contrast agents. Methods We established lung metastatic models of human gastric cancer by injecting the moderately differentiated SGC-7901 gastric cancer cell line into the tail vein of nude mice. Samples were embedded in a 10% formalin suspension and dried before imaging. Grating-based X-ray phase-contrast images were obtained at the BL13W beamline of the Shanghai Synchrotron Radiation Facility (SSRF) and compared with histological sections. Results Without contrast agents, grating-based X-ray phase-contrast imaging still differentiated angiogenesis within metastatic tumors with high spatial resolution. Vessels, down to tens of microns, showed gray values that were distinctive from those of the surrounding tumors, which made them easily identifiable. The vessels depicted in the imaging study were similar to those identified on histopathology, both in size and shape. Conclusions Our preliminary study demonstrates that grating-based X-ray phase-contrast imaging has the potential to depict angiogenesis in lung metastases. PMID:25811626

  20. Comparison of laser Doppler and laser speckle contrast imaging using a concurrent processing system

    NASA Astrophysics Data System (ADS)

    Sun, Shen; Hayes-Gill, Barrie R.; He, Diwei; Zhu, Yiqun; Huynh, Nam T.; Morgan, Stephen P.

    2016-08-01

    Full field laser Doppler imaging (LDI) and single exposure laser speckle contrast imaging (LSCI) are directly compared using a novel instrument which can concurrently image blood flow using both LDI and LSCI signal processing. Incorporating a commercial CMOS camera chip and a field programmable gate array (FPGA) the flow images of LDI and the contrast maps of LSCI are simultaneously processed by utilizing the same detected optical signals. The comparison was carried out by imaging a rotating diffuser. LDI has a linear response to the velocity. In contrast, LSCI is exposure time dependent and does not provide a linear response in the presence of static speckle. It is also demonstrated that the relationship between LDI and LSCI can be related through a power law which depends on the exposure time of LSCI.

  1. Interferometric hard x-ray phase contrast imaging at 204 nm grating period

    SciTech Connect

    Wen Han; Gomella, Andrew A.; Miao, Houxun; Lynch, Susanna K.; Wolfe, Douglas E.; Xiao Xianghui; Liu Chian; Morgan, Nicole

    2013-01-15

    We report on hard x-ray phase contrast imaging experiments using a grating interferometer of approximately 1/10th the grating period achieved in previous studies. We designed the gratings as a staircase array of multilayer stacks which are fabricated in a single thin film deposition process. We performed the experiments at 19 keV x-ray energy and 0.8 {mu}m pixel resolution. The small grating period resulted in clear separation of different diffraction orders and multiple images on the detector. A slitted beam was used to remove overlap of the images from the different diffraction orders. The phase contrast images showed detailed features as small as 10 {mu}m, and demonstrated the feasibility of high resolution x-ray phase contrast imaging with nanometer scale gratings.

  2. TECHNIQUE FOR ENHANCING DIGITAL COLOR IMAGES BY CONTRAST STRETCHING IN MUNSELL COLOR SPACE.

    USGS Publications Warehouse

    Kruse, Fred A.; Raines, Gary L.

    1984-01-01

    The Munsell color system can be used to further enhance the appearance of high-quality digital color-composite images. A color-balanced 'standard' color-composite image is first produced using any desired contrast stretching algorithm. The stretched digital data are then transformed into the cylindrical Munsell color space. An enhanced version of a color-composite image is produced by stretching the saturation parameter over the full digital range and inverting the modified Munsell coordinates to red-blue-green (tristimulus) data space. The resulting image has greater color-saturation contrast than the original image, without hue change. Contrast stretching in Munsell color space reduces the correlation between individual bands or ratios and is similar to decorrelation processing based on principal-components transforms. However, principal components are based on data variance, with less variance being explained by each higher order component.

  3. Photoacoustic imaging of human lymph nodes with endogenous lipid and hemoglobin contrast

    NASA Astrophysics Data System (ADS)

    Guggenheim, James A.; Allen, Thomas J.; Plumb, Andrew; Zhang, Edward Z.; Rodriguez-Justo, Manuel; Punwani, Shonit; Beard, Paul C.

    2015-05-01

    Lymph nodes play a central role in metastatic cancer spread and are a key clinical assessment target. Abnormal node vascularization, morphology, and size may be indicative of disease but can be difficult to visualize with sufficient accuracy using existing clinical imaging modalities. To explore the potential utility of photoacoustic imaging for the assessment of lymph nodes, images of ex vivo samples were obtained at multiple wavelengths using a high-resolution three-dimensional photoacoustic scanner. These images showed that hemoglobin based contrast reveals nodal vasculature and lipid-based contrast reveals the exterior node size, shape, and boundary integrity. These two sources of complementary contrast may allow indirect observation of cancer, suggesting a future role for photoacoustic imaging as a tool for the clinical assessment of lymph nodes.

  4. Analytical reconstructions of intensity modulated x-ray phase-contrast imaging of human scale phantoms.

    PubMed

    Włodarczyk, Bartłomiej; Pietrzak, Jakub

    2015-11-01

    This paper presents analytical approach to modeling of a full planar and volumetric acquisition system with image reconstructions originated from partial illumination x-ray phase-contrast imaging at a human scale using graphics processor units. The model is based on x-ray tracing and wave optics methods to develop a numerical framework for predicting the performance of a preclinical phase-contrast imaging system of a human-scaled phantom. In this study, experimental images of simple numerical phantoms and high resolution anthropomorphic phantoms of head and thorax based on non-uniform rational b-spline shapes (NURBS) prove the correctness of the model. Presented results can be used to simulate the performance of partial illumination x-ray phase-contrast imaging system on various preclinical applications. PMID:26600991

  5. Calculating Contrast Stretching Variables in Order to Improve Dental Radiology Image Quality

    NASA Astrophysics Data System (ADS)

    Widodo, Haris B.; Soelaiman, Arief; Ramadhani, Yogi; Supriyanti, Retno

    2016-01-01

    Teeth are one of the body's digestive tract that serves as a softener food that can be digested easily. One branch of science that was instrumental in the treatment and diagnosis of teeth is Dental Radiology. However, in reality many dental radiology images has low resolution, thus inhibiting in making diagnosis of dental disease perfectly. This research aims to improve low resolution dental radiology image using image processing techniques. This paper discussed the use of contrast stretching method to improve the dental radiology image quality, especially relating to the calculation of the variable contrast stretching method. The results showed that contrast stretching method is promising for use in improving the image quality in a simple but efficient.

  6. Diagnosis of Popliteal Venous Entrapment Syndrome by Magnetic Resonance Imaging Using Blood-Pool Contrast Agents

    SciTech Connect

    Beitzke, Dietrich Wolf, Florian; Juelg, Gregor; Lammer, Johannes; Loewe, Christian

    2011-02-15

    Popliteal vascular entrapment syndrome is caused by aberrations or hypertrophy of the gastrocnemius muscles, which compress the neurovascular structures of the popliteal fossa, leading to symptoms of vascular and degeneration as well as aneurysm formation. Imaging of popliteal vascular entrapment may be performed with ultrasound, magnetic resonance imaging (MRI), computed tomography angiography, and conventional angiography. The use of blood-pool contrast agents in MRI when popliteal vascular entrapment is suspected offers the possibility to perform vascular imaging with first-pass magnetic resonance angiographic, high-resolution, steady-state imaging and allows functional tests all within one examination with a single dose of contrast agent. We present imaging findings in a case of symptomatic popliteal vein entrapment diagnosed by the use of blood pool contrast-enhanced MRI.

  7. Analytical reconstructions of intensity modulated x-ray phase-contrast imaging of human scale phantoms

    PubMed Central

    Włodarczyk, Bartłomiej; Pietrzak, Jakub

    2015-01-01

    This paper presents analytical approach to modeling of a full planar and volumetric acquisition system with image reconstructions originated from partial illumination x-ray phase-contrast imaging at a human scale using graphics processor units. The model is based on x-ray tracing and wave optics methods to develop a numerical framework for predicting the performance of a preclinical phase-contrast imaging system of a human-scaled phantom. In this study, experimental images of simple numerical phantoms and high resolution anthropomorphic phantoms of head and thorax based on non-uniform rational b-spline shapes (NURBS) prove the correctness of the model. Presented results can be used to simulate the performance of partial illumination x-ray phase-contrast imaging system on various preclinical applications. PMID:26600991

  8. Optical contrast enhancement of high-resolution ocular fundus imaging in vivo using polarimetry

    NASA Astrophysics Data System (ADS)

    Yang, Hansheng; Rao, Xuejun; Zhang, Yudong

    2007-11-01

    The adaptive optics (AO) retina imaging was performed with contrast enhancement by characterizing polarization parameters of the living retina. A removable pair of polarization state generating unit near the optical source and analysis unit near the CCD camera was incorporated into the basic 37-channle deformable mirror AO microscopic ophthalmoscope. Double-pass imaging polarimetry of the human eye was carried out, then incomplete Mueller matrix was calculated and analyzed to optimize the retina imaging condition using polarized light, which caused the subretinal structures with different polarization properties to emerge from the scattering light background, so the contrast of the image can be substantially enhanced. This method is demonstrated briefly and its validity was tested in the laboratory. The high-resolution images of ocular fundus are compared with 8-frame-averaging images we obtained prior to this method. The experiment results now show improved visualization of fundus structures to some extent without greatly sacrificing image resolution.

  9. Automatic neuron segmentation and neural network analysis method for phase contrast microscopy images

    PubMed Central

    Pang, Jincheng; Özkucur, Nurdan; Ren, Michael; Kaplan, David L.; Levin, Michael; Miller, Eric L.

    2015-01-01

    Phase Contrast Microscopy (PCM) is an important tool for the long term study of living cells. Unlike fluorescence methods which suffer from photobleaching of fluorophore or dye molecules, PCM image contrast is generated by the natural variations in optical index of refraction. Unfortunately, the same physical principles which allow for these studies give rise to complex artifacts in the raw PCM imagery. Of particular interest in this paper are neuron images where these image imperfections manifest in very different ways for the two structures of specific interest: cell bodies (somas) and dendrites. To address these challenges, we introduce a novel parametric image model using the level set framework and an associated variational approach which simultaneously restores and segments this class of images. Using this technique as the basis for an automated image analysis pipeline, results for both the synthetic and real images validate and demonstrate the advantages of our approach. PMID:26601004

  10. A technique for multi-dimensional optimization of radiation dose, contrast dose, and image quality in CT imaging

    NASA Astrophysics Data System (ADS)

    Sahbaee, Pooyan; Abadi, Ehsan; Sanders, Jeremiah; Becchetti, Marc; Zhang, Yakun; Agasthya, Greeshma; Segars, Paul; Samei, Ehsan

    2016-03-01

    The purpose of this study was to substantiate the interdependency of image quality, radiation dose, and contrast material dose in CT towards the patient-specific optimization of the imaging protocols. The study deployed two phantom platforms. First, a variable sized phantom containing an iodinated insert was imaged on a representative CT scanner at multiple CTDI values. The contrast and noise were measured from the reconstructed images for each phantom diameter. Linearly related to iodine-concentration, contrast to noise ratio (CNR), was calculated for different iodine-concentration levels. Second, the analysis was extended to a recently developed suit of 58 virtual human models (5D-XCAT) with added contrast dynamics. Emulating a contrast-enhanced abdominal image procedure and targeting a peak-enhancement in aorta, each XCAT phantom was "imaged" using a CT simulation platform. 3D surfaces for each patient/size established the relationship between iodine-concentration, dose, and CNR. The Sensitivity of Ratio (SR), defined as ratio of change in iodine-concentration versus dose to yield a constant change in CNR was calculated and compared at high and low radiation dose for both phantom platforms. The results show that sensitivity of CNR to iodine concentration is larger at high radiation dose (up to 73%). The SR results were highly affected by radiation dose metric; CTDI or organ dose. Furthermore, results showed that the presence of contrast material could have a profound impact on optimization results (up to 45%).

  11. Development and application of a multimodal contrast agent for SPECT/CT hybrid imaging.

    PubMed

    Criscione, Jason M; Dobrucki, Lawrence W; Zhuang, Zhen W; Papademetris, Xenophon; Simons, Michael; Sinusas, Albert J; Fahmy, Tarek M

    2011-09-21

    Hybrid or multimodality imaging is often applied in order to take advantage of the unique and complementary strengths of individual imaging modalities. This hybrid noninvasive imaging approach can provide critical information about anatomical structure in combination with physiological function or targeted molecular signals. While recent advances in software image fusion techniques and hybrid imaging systems have enabled efficient multimodal imaging, accessing the full potential of this technique requires development of a new toolbox of multimodal contrast agents that enhance the imaging process. Toward that goal, we report the development of a hybrid probe for both single photon emission computed tomography (SPECT) and X-ray computed tomography (CT) imaging that facilitates high-sensitivity SPECT and high spatial resolution CT imaging. In this work, we report the synthesis and evaluation of a novel intravascular, multimodal dendrimer-based contrast agent for use in preclinical SPECT/CT hybrid imaging systems. This multimodal agent offers a long intravascular residence time (t(1/2) = 43 min) and sufficient contrast-to-noise for effective serial intravascular and blood pool imaging with both SPECT and CT. The colocalization of the dendritic nuclear and X-ray contrasts offers the potential to facilitate image analysis and quantification by enabling correction for SPECT attenuation and partial volume errors at specified times with the higher resolution anatomic information provided by the circulating CT contrast. This may allow absolute quantification of intramyocardial blood volume and blood flow and may enable the ability to visualize active molecular targeting following clearance from the blood. PMID:21851119

  12. On Detailed Contrast of Biomedical Object in X-ray Dark-Field Imaging

    SciTech Connect

    Shimao, Daisuke; Mori, Koichi; Sugiyama, Hiroshi; Kunisada, Toshiyuki; Hyodo, Kazuyuki; Ando, Masami

    2007-01-19

    Over the past 10 years, refraction-based X-ray imaging has been studied together with a perspective view to clinical application. X-ray Dark-Field Imaging that utilizes a Laue geometry analyzer has recently been proposed and has the proven ability to depict articular cartilage in an intact human finger. In the current study, we researched detailed image contrast using X-ray Dark-Field Imaging by observing the edge contrast of an acrylic rod as a simple case, and found differences in image contrast between the right and left edges of the rod. This effect could cause undesirable contrast in the thin articular cartilage on the head of the phalanx. To avoid overlapping with this contrast at the articular cartilage, which would lead to a wrong diagnosis, we suggest that a joint surface on which articular cartilage is located should be aligned in the same sense as the scattering vector of the Laue case analyzer crystal. Defects of articular cartilage were successfully detected under this condition. When utilized under appropriate imaging conditions, X-ray Dark-Field Imaging will be a powerful tool for the diagnosis of arthropathy, as minute changes in articular cartilage may be early-stage features of this disease.

  13. Towards the clinical application of X-ray phase contrast imaging.

    PubMed

    Williams, I M; Siu, K K W; Gan, R; Runxuan, G; He, X; Hart, S A; Styles, C B; Lewis, R A

    2008-12-01

    Synchrotron-based propagation-based imaging, a type of phase contrast imaging, produces better soft tissue image contrast than conventional radiography. To determine whether the technique is directly transferable to the clinical environment for routine diagnostic or screening imaging, a micro-focus (100 microm spot-size) Molybdenum X-ray source with 0.03 mm molybdenum filtration was installed at a local hospital. Breast tissue samples, excised masses and mastectomies, were obtained directly from surgery and imaged at three geometries. The first geometry was optimised for visualizing phase contrast effects using a ray-line argument, the second was the same as that employed by Konica-Minolta in their commercial phase contrast system, and the third was the conventional contact arrangement. The three images taken of each tissue sample were comparatively scored in a pair-wise fashion. Scoring was performed by radiologist expert in mammography, general radiologists, associated clinicians and radiographers on high-resolution mammography rated monitors at two separate locations. Scoring indicated that the optimised and Konica geometries both outperformed the conventional mammographic geometry. An unexpected complication within the trial was the effect that the scoring platform and the associated display tools had on some of the scorer's responses. Additionally, the trial revealed that none of the conventional descriptors for image quality were adequate in the presence of phase contrast enhancements. PMID:18996661

  14. Phase-contrast x-ray imaging of the breast: recent developments towards clinics

    NASA Astrophysics Data System (ADS)

    Coan, P.; Bravin, A.; Tromba, G.

    2013-12-01

    Breast imaging is one of the most demanding and delicate radiological applications. Mammography is the primary diagnosis tool in breast cancer detection and national screening programmes. Recognition of breast cancer depends on the detection of subtle architectural distortion, masses showing near normal breast tissue density, skin thickening and microcalcifications. The small differences in attenuation of x-rays between normal and malignant tissue result in low contrast and make cancer detection difficult in conventional x-ray absorption mammography. Because of these challenging aspects, breast imaging has been the first and most explored diagnostic field in phase-contrast imaging research. This novel imaging method has been extensively used and has demonstrated a unique capability in producing high-contrast and sensitive images at quasi-histological resolution. The most recent and significant technical developments are introduced and results obtained by the application of various phase-contrast imaging techniques for breast imaging are reported. The first phase-contrast mammography clinical trials project is also presented and the short- and long-term future perspectives of the method are discussed.

  15. Optimisation of image reconstruction for phase-contrast x-ray Talbot–Lau imaging with regard to mechanical robustness

    NASA Astrophysics Data System (ADS)

    Seifert, M.; Kaeppler, S.; Hauke, C.; Horn, F.; Pelzer, G.; Rieger, J.; Michel, T.; Riess, C.; Anton, G.

    2016-09-01

    X-ray grating-based phase-contrast imaging opens new opportunities, inter alia, in medical imaging and non-destructive testing. Because, information about the attenuation properties and about the refractive properties of an object are gained simultaneously. Talbot–Lau imaging requires the knowledge of a reference or free-field image. The long-term stability of a Talbot–Lau interferometer is related to the time span of the validity of a measured reference image. It would be desirable to keep the validity of the reference image for a day or longer to improve feasibility of Talbot–Lau imaging. However, for example thermal and other long-term external influences result in drifting effects of the phase images. Therefore, phases are shifting over time and the reference image is not valid for long-term measurements. Thus, artifacts occur in differential phase-contrast images. We developed an algorithm to determine the differential phase-contrast image with the help of just one calibration image, which is valid for a long time-period. With the help of this algorithm, called phase-plane-fit method, it is possible to save measurement-time, as it is not necessary to take a reference image for each measurement. Additionally, transferring the interferometer technique from laboratory setups to conventional imaging systems the necessary rigidity of the system is difficult to achieve. Therefore, short-term effects like vibrations or distortions of the system lead to imperfections within the phase-stepping procedure. Consequently, artifacts occur in all three image modalities (differential phase-contrast image, attenuation image and dark-field image) of Talbot–Lau imaging. This is a problem with regard to the intended use of phase-contrast imaging for example in clinical routine or non-destructive testing. In this publication an algorithm of Vargas et al is applied and complemented to correct inaccurate phase-step positions with the help of a principal component analysis

  16. Optimisation of image reconstruction for phase-contrast x-ray Talbot-Lau imaging with regard to mechanical robustness.

    PubMed

    Seifert, M; Kaeppler, S; Hauke, C; Horn, F; Pelzer, G; Rieger, J; Michel, T; Riess, C; Anton, G

    2016-09-01

    X-ray grating-based phase-contrast imaging opens new opportunities, inter alia, in medical imaging and non-destructive testing. Because, information about the attenuation properties and about the refractive properties of an object are gained simultaneously. Talbot-Lau imaging requires the knowledge of a reference or free-field image. The long-term stability of a Talbot-Lau interferometer is related to the time span of the validity of a measured reference image. It would be desirable to keep the validity of the reference image for a day or longer to improve feasibility of Talbot-Lau imaging. However, for example thermal and other long-term external influences result in drifting effects of the phase images. Therefore, phases are shifting over time and the reference image is not valid for long-term measurements. Thus, artifacts occur in differential phase-contrast images. We developed an algorithm to determine the differential phase-contrast image with the help of just one calibration image, which is valid for a long time-period. With the help of this algorithm, called phase-plane-fit method, it is possible to save measurement-time, as it is not necessary to take a reference image for each measurement. Additionally, transferring the interferometer technique from laboratory setups to conventional imaging systems the necessary rigidity of the system is difficult to achieve. Therefore, short-term effects like vibrations or distortions of the system lead to imperfections within the phase-stepping procedure. Consequently, artifacts occur in all three image modalities (differential phase-contrast image, attenuation image and dark-field image) of Talbot-Lau imaging. This is a problem with regard to the intended use of phase-contrast imaging for example in clinical routine or non-destructive testing. In this publication an algorithm of Vargas et al is applied and complemented to correct inaccurate phase-step positions with the help of a principal component analysis (PCA

  17. Intravenous Imaging Contrast Media Complications: The Basics That Every Clinician Needs to Know.

    PubMed

    Rose, Trevor A; Choi, Jung W

    2015-09-01

    Intravenous contrast is commonly used in noninvasive imaging procedures such as magnetic resonance imaging and computed tomography and can evaluate blood vessels and better characterize soft-tissue lesions. Although the incidence of adverse events after administration of contrast is low, it is important that clinicians and radiologists minimize risks and respond quickly and effectively when reactions occur. We will discuss a range of adverse events to iodinated and gadolinium-based contrast agents, including allergic-like reactions, nephrotoxicity, extravasation, and nephrogenic systemic fibrosis. We will review risk stratification for patients, as well as premedication and treatment of adverse events. PMID:25820169

  18. Grating-based X-ray phase contrast for biomedical imaging applications.

    PubMed

    Pfeiffer, Franz; Herzen, Julia; Willner, Marian; Chabior, Michael; Auweter, Sigrid; Reiser, Maximilian; Bamberg, Fabian

    2013-09-01

    In this review article we describe the development of grating-based X-ray phase-contrast imaging, with particular emphasis on potential biomedical applications of the technology. We review the basics of image formation in grating-based phase-contrast and dark-field radiography and present some exemplary multimodal radiography results obtained with laboratory X-ray sources. Furthermore, we discuss the theoretical concepts to extend grating-based multimodal radiography to quantitative transmission, phase-contrast, and dark-field scattering computed tomography. PMID:23453793

  19. Optimizing magnetomotive contrast of SPIO-labeled platelets for thrombosis imaging in optical coherence tomography

    PubMed Central

    Oldenburg, Amy L.; Spivak, Dmitry; Wu, Gongting; Tsui, Frank; Fischer, Thomas H.

    2012-01-01

    Rehydratable, lyophilized platelets loaded with superparamagnetic iron oxides (SPIOs) has the potential to provide magnetomotive imaging contrast to sites of vascular damage, including thrombosis complicating atherosclerosis and hemorrhage. Magnetomotive optical coherence tomography (MMOCT) contrasts SPIO-platelets based on their nanoscale, magnetically-induced motion. We report improvements in MMOCT imaging contrast and sensitivity by optimizing the magnetic properties and SPIO loading of the platelets. SPIO-platelets have been shown to specifically adhere to sites of vascular damage in porcine arteries ex vivo. This may lead to new methods for detecting internal bleeding and monitoring the formation of blood clots using infused SPIO-platelets. PMID:22506092

  20. Optimizing magnetomotive contrast of SPIO-labeled platelets for thrombosis imaging in optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Oldenburg, Amy L.; Spivak, Dmitry; Wu, Gongting; Tsui, Frank; Fischer, Thomas H.

    2012-01-01

    Rehydratable, lyophilized platelets loaded with superparamagnetic iron oxides (SPIOs) has the potential to provide magnetomotive imaging contrast to sites of vascular damage, including thrombosis complicating atherosclerosis and hemorrhage. Magnetomotive optical coherence tomography (MMOCT) contrasts SPIO-platelets based on their nanoscale, magnetically-induced motion. We report improvements in MMOCT imaging contrast and sensitivity by optimizing the magnetic properties and SPIO loading of the platelets. SPIO-platelets have been shown to specifically adhere to sites of vascular damage in porcine arteries ex vivo. This may lead to new methods for detecting internal bleeding and monitoring the formation of blood clots using infused SPIO-platelets.

  1. An optimal point spread function subtraction algorithm for high-contrast imaging: a demonstration with angular differential imaging

    SciTech Connect

    Lafreniere, D; Marois, C; Doyon, R; Artigau, E; Nadeau, D

    2006-09-19

    Direct imaging of exoplanets is limited by bright quasi-static speckles in the point spread function (PSF) of the central star. This limitation can be reduced by subtraction of reference PSF images. We have developed an algorithm to construct an optimal reference PSF image from an arbitrary set of reference images. This image is built as a linear combination of all available images and is optimized independently inside multiple subsections of the image to ensure that the absolute minimum residual noise is achieved within each subsection. The algorithm developed is completely general and can be used with many high contrast imaging observing strategies, such as angular differential imaging (ADI), roll subtraction, spectral differential imaging, reference star observations, etc. The performance of the algorithm is demonstrated for ADI data. It is shown that for this type of data the new algorithm provides a gain in sensitivity by up 22 to a factor 3 at small separation over the algorithm previously used.

  2. Visualization of water drying in porous materials by X-ray phase contrast imaging.

    PubMed

    Yang, F; Griffa, M; Bonnin, A; Mokso, R; DI Bella, C; Münch, B; Kaufmann, R; Lura, P

    2015-01-01

    We present in this study results from X-ray tomographic microscopy with synchrotron radiation performed both in attenuation and phase contrast modes on a limestone sample during two stages of water drying. No contrast agent was used in order to increase the X-ray attenuation by water. We show that only by using the phase contrast mode it is possible to achieve enough water content change resolution to investigate the drying process at the pore-scale. We performed 3D image analysis of the time-differential phase contrast tomogram. We show by the results of such analysis that it is possible to obtain a reliable characterization of the spatial redistribution of water in the resolved pore system in agreement with what expected from the theory of drying in porous media and from measurements performed with other approaches. We thus show the potential of X-ray phase contrast imaging for pore-scale investigations of reactive water transport processes which cannot be imaged by adding a contrast agent for exploiting the standard attenuation contrast imaging mode. PMID:26469285

  3. Validation of Vehicle Candidate Areas in Aerial Images Using Color Co-Occurrence Histograms

    NASA Astrophysics Data System (ADS)

    Leister, W.; Tuermer, S.; Reinartz, P.; Hoffmann, K. H.; Stilla, U.

    2013-10-01

    Traffic monitoring plays an important role in transportation management. In addition, airborne acquisition enables a flexible and realtime mapping for special traffic situations e.g. mass events and disasters. Also the automatic extraction of vehicles from aerial imagery is a common application. However, many approaches focus on the target object only. As an extension to previously developed car detection techniques, a validation scheme is presented. The focus is on exploiting the background of the vehicle candidates as well as their color properties in the HSV color space. Therefore, texture of the vehicle background is described by color co-occurrence histograms. From all resulting histograms a likelihood function is calculated giving a quantity value to indicate whether the vehicle candidate is correctly classified. Only a few robust parameters have to be determined. Finally, the strategy is tested with a dataset of dense urban areas from the inner city of Munich, Germany. First results show that certain regions which are often responsible for false positive detections, such as vegetation or road markings, can be excluded successfully.

  4. Mapping potential of digitized aerial photographs and space images for site-specific crop management

    NASA Astrophysics Data System (ADS)

    Nielsen, Gerald A.; Long, Daniel S.; Queen, Lloyd P.

    1996-11-01

    In site-specific crop management, treatments (e.g., fertilizer and herbicides) are applied precisely where they are needed. Global positioning system receivers allow accurate navigation of field implements and creation of crop yield maps. Remote sensing products help producers explain the wide range of yields shown on these maps and become the basis for digitized field management maps. Previous sources of remote sensing products for agriculture did not provide services that generated a sustained demand by crop producers, often because data were not delivered quickly enough. Public Access Resource Centers could provide a nearly uninterrupted electronic flow of data from NASA's MODIS and other sensors that could help producers and their advisors monitor crop conditions. This early warning/opportunity system would provide a low-cost way to discover conditions that merit examination on the ground. High-spatial-resolution digital aerial photographs or data from new commercial satellite companies would provide the basis for site-specific treatments. These detailed data are too expensive to acquire often and must be timed so as to represent differences in water supply characteristics and crop yield potentials. Remote sensing products must be linked to specific prescriptions that crop produces use to control operations and improve outcomes.

  5. A new hardware-efficient algorithm and reconfigurable architecture for image contrast enhancement.

    PubMed

    Huang, Shih-Chia; Chen, Wen-Chieh

    2014-10-01

    Contrast enhancement is crucial when generating high quality images for image processing applications, such as digital image or video photography, liquid crystal display processing, and medical image analysis. In order to achieve real-time performance for high-definition video applications, it is necessary to design efficient contrast enhancement hardware architecture to meet the needs of real-time processing. In this paper, we propose a novel hardware-oriented contrast enhancement algorithm which can be implemented effectively for hardware design. In order to be considered for hardware implementation, approximation techniques are proposed to reduce these complex computations during performance of the contrast enhancement algorithm. The proposed hardware-oriented contrast enhancement algorithm achieves good image quality by measuring the results of qualitative and quantitative analyzes. To decrease hardware cost and improve hardware utilization for real-time performance, a reduction in circuit area is proposed through use of parameter-controlled reconfigurable architecture. The experiment results show that the proposed hardware-oriented contrast enhancement algorithm can provide an average frame rate of 48.23 frames/s at high definition resolution 1920 × 1080. PMID:25148665

  6. X-ray phase-contrast imaging of the breast—advances towards clinical implementation

    PubMed Central

    Herzen, J; Willner, M; Grandl, S; Scherer, K; Bamberg, F; Reiser, M F; Pfeiffer, F; Hellerhoff, K

    2014-01-01

    Breast cancer constitutes about one-quarter of all cancers and is the leading cause of cancer death in women. To reduce breast cancer mortality, mammographic screening programmes have been implemented in many Western countries. However, these programmes remain controversial because of the associated radiation exposure and the need for improvement in terms of diagnostic accuracy. Phase-contrast imaging is a new X-ray-based technology that has been shown to provide enhanced soft-tissue contrast and improved visualization of cancerous structures. Furthermore, there is some indication that these improvements of image quality can be maintained at reduced radiation doses. Thus, X-ray phase-contrast mammography may significantly contribute to advancements in early breast cancer diagnosis. Feasibility studies of X-ray phase-contrast breast CT have provided images that allow resolution of the fine structure of tissue that can otherwise only be obtained by histology. This implies that X-ray phase-contrast imaging may also lead to the development of entirely new (micro-) radiological applications. This review provides a brief overview of the physical characteristics of this new technology and describes recent developments towards clinical implementation of X-ray phase-contrast imaging of the breast. PMID:24452106

  7. Direct in vitro comparison of six 3D positive contrast methods for susceptibility marker imaging

    PubMed Central

    Vonken, Evert-jan P. A.; Schär, Michael; Yu, Jing; Bakker, Chris J. G.; Stuber, Matthias

    2012-01-01

    Purpose To compare different techniques for positive contrast imaging of susceptibility markers with MRI for 3D visualization. As several different techniques have been reported, the choice of the suitable method depends on its properties with regard to the amount of positive contrast and the desired background suppression, as well as other imaging constraints needed for a specific application. Materials and methods Six different positive contrast techniques are investigated for their ability to image at 3T a single susceptibility marker in vitro. The white marker method (WM), susceptibility gradient mapping (SGM), inversion recovery with on-resonant water suppression (IRON), frequency selective excitation (FSX), fast low flip-angle positive contrast SSFP (FLAPS), and iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) were implemented and investigated. Results The different methods were compared with respect to the volume of positive contrast, the product of volume and signal intensity, imaging time, and the level of background suppression. Quantitative results are provided and strengths and weaknesses of the different approaches are discussed. Conclusion The appropriate choice of positive contrast imaging technique depends on the desired level of background suppression, acquisition speed, and robustness against artifacts, for which in vitro comparative data is now available. PMID:23281151

  8. Local Force Interactions and Image Contrast Reversal on Graphite Observed with Noncontact Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Dagdeviren, Omur; Goetzen, Jan; Altman, Eric; Schwarz, Udo

    Surface interactions of graphene-based nanostructures remain a topic of considerable interest in nanotechnology. Similarly, tip-dependent imaging contrasts have attracted attention as they allow conclusions to be made about the surface's chemical structure and local reactivity. In this talk, we present noncontact atomic force microscopy data recorded in the attractive regime on highly oriented pyrolytic graphite that reveals image contrast reversal for the first time. While larger tip-sample separations feature bright spots on atomic sites, the maximum of the tip-sample interaction flips to the hollow site positions upon further approach, which represents the contrast predominantly observed in previous studies during attractive-mode imaging. This cross over of the local chemical interaction is confirmed in force spectroscopy experiments. The results will be discussed in light of recent theoretical simulations that have predicted the occurrence of such contrast reversal for specific tip terminations.

  9. A combined light sheet fluorescence and differential interference contrast microscope for live imaging of multicellular specimens.

    PubMed

    Baker, R P; Taormina, M J; Jemielita, M; Parthasarathy, R

    2015-05-01

    We describe a microscope capable of both light sheet fluorescence microscopy and differential interference contrast microscopy (DICM). The two imaging modes, which to the best of our knowledge have not previously been combined, are complementary: light sheet fluorescence microscopy provides three-dimensional imaging of fluorescently labelled components of multicellular systems with high speed, large fields of view, and low phototoxicity, whereas differential interference contrast microscopy reveals the unlabelled neighbourhood of tissues, organs, and other structures with high contrast and inherent optical sectioning. Use of a single Nomarski prism for differential interference contrast microscopy and a shared detection path for both imaging modes enables simple integration of the two techniques in one custom microscope. We provide several examples of the utility of the resulting instrument, focusing especially on the digestive tract of the larval zebrafish, revealing in this complex and heterogeneous environment anatomical features, the behaviour of commensal microbes, immune cell motions, and more. PMID:25611324

  10. CW-THz image contrast enhancement using wavelet transform and Retinex

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Zhang, Min; Hu, Qi-fan; Huang, Ying-Xue; Liang, Hua-Wei

    2015-10-01

    To enhance continuous wave terahertz (CW-THz) scanning images contrast and denoising, a method based on wavelet transform and Retinex theory was proposed. In this paper, the factors affecting the quality of CW-THz images were analysed. Second, an approach of combination of the discrete wavelet transform (DWT) and a designed nonlinear function in wavelet domain for the purpose of contrast enhancing was applied. Then, we combine the Retinex algorithm for further contrast enhancement. To evaluate the effectiveness of the proposed method in qualitative and quantitative, it was compared with the adaptive histogram equalization method, the homomorphic filtering method and the SSR(Single-Scale-Retinex) method. Experimental results demonstrated that the presented algorithm can effectively enhance the contrast of CW-THZ image and obtain better visual effect.

  11. AFM Imaging of Mercaptobenzoic Acid on Au(110): Submolecular Contrast with Metal Tips.

    PubMed

    Hauptmann, Nadine; Robles, Roberto; Abufager, Paula; Lorente, Nicolas; Berndt, Richard

    2016-06-01

    A self-assembled monolayer of mercaptobenzoic acid (MBA) on Au(110) is investigated with scanning tunneling and atomic force microscopy (STM and AFM) and density functional calculations. High-resolution AFM images obtained with metallic tips show clear contrasts between oxygen atoms and phenyl moieties. The contrast above the oxygen atoms is due to attractive covalent interactions, which is different than previously reported high-resolution images, where Pauli repulsion dominated the image contrast. We show that the bonding of MBA to the substrate occurs mainly through dispersion interactions, whereas the thiol-Au bond contributes only a quarter of the adsorption energy. No indication of Au adatoms mediating the thiol-Au interaction was found in contrast to other thiol-bonded systems. However, MBA lifts the Au(110)-(2 × 1) reconstruction. PMID:27183144