Science.gov

Sample records for aerial image measurement

  1. Accuracy of Measurements in Oblique Aerial Images for Urban Environment

    NASA Astrophysics Data System (ADS)

    Ostrowski, W.

    2016-10-01

    Oblique aerial images have been a source of data for urban areas for several years. However, the accuracy of measurements in oblique images during this time has been limited to a single meter due to the use of direct -georeferencing technology and the underlying digital elevation model. Therefore, oblique images have been used mostly for visualization purposes. This situation changed in recent years as new methods, which allowed for a higher accuracy of exterior orientation, were developed. Current developments include the process of determining exterior orientation and the previous but still crucial process of tie point extraction. Progress in this area was shown in the ISPRS/EUROSDR Benchmark on Multi-Platform Photogrammetry and is also noticeable in the growing interest in the use of this kind of imagery. The higher level of accuracy in the orientation of oblique aerial images that has become possible in the last few years should result in a higher level of accuracy in the measurements of these types of images. The main goal of this research was to set and empirically verify the accuracy of measurements in oblique aerial images. The research focused on photogrammetric measurements composed of many images, which use a high overlap within an oblique dataset and different view angles. During the experiments, two series of images of urban areas were used. Both were captured using five DigiCam cameras in a Maltese cross configuration. The tilt angles of the oblique cameras were 45 degrees, and the position of the cameras during flight used a high grade GPS/INS navigation system. The orientation of the images was set using the Pix4D Mapper Pro software with both measurements of the in-flight camera position and the ground control points (measured with GPS RTK technology). To control the accuracy, check points were used (which were also measured with GPS RTK technology). As reference data for the whole study, an area of the city-based map was used. The archived results

  2. Aberration measurement based on principal component analysis of aerial images of optimized marks

    NASA Astrophysics Data System (ADS)

    Yan, Guanyong; Wang, Xiangzhao; Li, Sikun; Yang, Jishuo; Xu, Dongbo

    2014-10-01

    We propose an aberration measurement technique based on principal component analysis of aerial images of optimized marks (AMAI-OM). Zernike aberrations are retrieved using a linear relationship between the aerial image and Zernike coefficients. The linear relationship is composed of the principal components (PCs) and regression matrix. A centering process is introduced to compensate position offsets of the measured aerial image. A new test mark is designed in order to improve the centering accuracy and theoretical accuracy of aberration measurement together. The new test marks are composed of three spaces with different widths, and their parameters are optimized by using an accuracy evaluation function. The offsets of the measured aerial image are compensated in the centering process and the adjusted PC coefficients are obtained. Then the Zernike coefficients are calculated according to these PC coefficients using a least square method. The simulations using the lithography simulators PROLITH and Dr.LiTHO validate the accuracy of our method. Compared with the previous aberration measurement technique based on principal component analysis of aerial image (AMAI-PCA), the measurement accuracy of Zernike aberrations under the real measurement condition of the aerial image is improved by about 50%.

  3. Aerial Image Systems

    NASA Astrophysics Data System (ADS)

    Clapp, Robert E.

    1987-09-01

    Aerial images produce the best stereoscopic images of the viewed world. Despite the fact that every optic in existence produces an aerial image, few persons are aware of their existence and possible uses. Constant reference to the eye and other optical systems have produced a psychosis of design that only considers "focal planes" in the design and analysis of optical systems. All objects in the field of view of the optical device are imaged by the device as an aerial image. Use of aerial images in vision and visual display systems can provide a true stereoscopic representation of the viewed world. This paper discusses aerial image systems - their applications and designs and presents designs and design concepts that utilize aerial images to obtain superior visual displays, particularly with application to visual simulation.

  4. Using aerial photography and image analysis to measure changes in giant reed populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted along the Rio Grande in southwest Texas to evaluate color-infrared aerial photography combined with supervised image analysis to quantify changes in giant reed (Arundo donax L.) populations over a 6-year period. Aerial photographs from 2002 and 2008 of the same seven study site...

  5. Aerial Photographs and Satellite Images

    USGS Publications Warehouse

    ,

    1997-01-01

    Photographs and other images of the Earth taken from the air and from space show a great deal about the planet's landforms, vegetation, and resources. Aerial and satellite images, known as remotely sensed images, permit accurate mapping of land cover and make landscape features understandable on regional, continental, and even global scales. Transient phenomena, such as seasonal vegetation vigor and contaminant discharges, can be studied by comparing images acquired at different times. The U.S. Geological Survey (USGS), which began using aerial photographs for mapping in the 1930's, archives photographs from its mapping projects and from those of some other Federal agencies. In addition, many images from such space programs as Landsat, begun in 1972, are held by the USGS. Most satellite scenes can be obtained only in digital form for use in computer-based image processing and geographic information systems, but in some cases are also available as photographic products.

  6. Aerial Video Imaging

    NASA Technical Reports Server (NTRS)

    1991-01-01

    When Michael Henry wanted to start an aerial video service, he turned to Johnson Space Center for assistance. Two NASA engineers - one had designed and developed TV systems in Apollo, Skylab, Apollo- Soyuz and Space Shuttle programs - designed a wing-mounted fiberglass camera pod. Camera head and angles are adjustable, and the pod is shaped to reduce vibration. The controls are located so a solo pilot can operate the system. A microprocessor displays latitude, longitude, and bearing, and a GPS receiver provides position data for possible legal references. The service has been successfully utilized by railroads, oil companies, real estate companies, etc.

  7. A Mobile System for Measuring Water Surface Velocities Using Unmanned Aerial Vehicle and Large-Scale Particle Image Velocimetry

    NASA Astrophysics Data System (ADS)

    Chen, Y. L.

    2015-12-01

    Measurement technologies for velocity of river flow are divided into intrusive and nonintrusive methods. Intrusive method requires infield operations. The measuring process of intrusive methods are time consuming, and likely to cause damages of operator and instrument. Nonintrusive methods require fewer operators and can reduce instrument damages from directly attaching to the flow. Nonintrusive measurements may use radar or image velocimetry to measure the velocities at the surface of water flow. The image velocimetry, such as large scale particle image velocimetry (LSPIV) accesses not only the point velocity but the flow velocities in an area simultaneously. Flow properties of an area hold the promise of providing spatially information of flow fields. This study attempts to construct a mobile system UAV-LSPIV by using an unmanned aerial vehicle (UAV) with LSPIV to measure flows in fields. The mobile system consists of a six-rotor UAV helicopter, a Sony nex5T camera, a gimbal, an image transfer device, a ground station and a remote control device. The activate gimbal helps maintain the camera lens orthogonal to the water surface and reduce the extent of images being distorted. The image transfer device can monitor the captured image instantly. The operator controls the UAV by remote control device through ground station and can achieve the flying data such as flying height and GPS coordinate of UAV. The mobile system was then applied to field experiments. The deviation of velocities measured by UAV-LSPIV of field experiments and handhold Acoustic Doppler Velocimeter (ADV) is under 8%. The results of the field experiments suggests that the application of UAV-LSPIV can be effectively applied to surface flow studies.

  8. Telemetry of Aerial Radiological Measurements

    SciTech Connect

    H. W. Clark, Jr.

    2002-10-01

    Telemetry has been added to National Nuclear Security Administration's (NNSA's) Aerial Measuring System (AMS) Incident Response aircraft to accelerate availability of aerial radiological mapping data. Rapid aerial radiological mapping is promptly performed by AMS Incident Response aircraft in the event of a major radiological dispersal. The AMS airplane flies the entire potentially affected area, plus a generous margin, to provide a quick look at the extent and severity of the event. The primary result of the AMS Incident Response over flight is a map of estimated exposure rate on the ground along the flight path. Formerly, it was necessary to wait for the airplane to land before the map could be seen. Now, while the flight is still in progress, data are relayed via satellite directly from the aircraft to an operations center, where they are displayed and disseminated. This permits more timely utilization of results by decision makers and redirection of the mission to optimize its value. The current telemetry capability can cover all of North America. Extension to a global capability is under consideration.

  9. Detection of linear features in aerial images

    NASA Astrophysics Data System (ADS)

    Gao, Rui

    Over the past decades, considerable progress had been made to develop automatic image interpretation tools in remote sensing. However, there is still a gap between the results and the requirements for accuracy and robustness. Noisy aerial image interpretation, especially for low resolution images, is still difficult. In this thesis, we propose a fully automatic system for linear feature detection in aerial images. We present how the system works on the application of extraction and reconstruction of road and pipeline networks. The work in this thesis is divided by three parts: line detection, feature interpretation, and feature tracking. An improved Hough transform based on orientation information is introduced for the line detection. We explore the Markov random field model and Bayesian filtering for feature interpretation and tracking. Experimental results show that our proposed system is robust and effective to deal with low resolution aerial images.

  10. System for interactive management of aerial imaging campaigns

    NASA Astrophysics Data System (ADS)

    Wypych, Tom; Kuester, Falko

    We present a system to enable real time management of interchangeable imaging platforms aboard commodity unmanned aerial vehicles (UAVs) to improve interactivity during aerial imaging campaigns. We argue that this improvement in interactivity enables powerful immediate-mode inspection by the ground operator, and implements a more intuitive, flexible, and ultimately useful control interface to aerial imaging systems.

  11. Orientation Strategies for Aerial Oblique Images

    NASA Astrophysics Data System (ADS)

    Wiedemann, A.; Moré, J.

    2012-07-01

    Oblique aerial images become more and more distributed to fill the gap between vertical aerial images and mobile mapping systems. Different systems are on the market. For some applications, like texture mapping, precise orientation data are required. One point is the stable interior orientation, which can be achieved by stable camera systems, the other a precise exterior orientation. A sufficient exterior orientation can be achieved by a large effort in direct sensor orientation, whereas minor errors in the angles have a larger effect than in vertical imagery. The more appropriate approach is by determine the precise orientation parameters by photogrammetric methods using an adapted aerial triangulation. Due to the different points of view towards the object the traditional aerotriangulation matching tools fail, as they produce a bunch of blunders and require a lot of manual work to achieve a sufficient solution. In this paper some approaches are discussed and results are presented for the most promising approaches. We describe a single step approach with an aerotriangulation using all available images; a two step approach with an aerotriangulation only of the vertical images plus a mathematical transformation of the oblique images using the oblique cameras excentricity; and finally the extended functional model for a bundle block adjustment considering the mechanical connection between vertical and oblique images. Beside accuracy also other aspects like efficiency and required manual work have to be considered.

  12. Aerial photographs and satellite images

    USGS Publications Warehouse

    ,

    1995-01-01

    Because photographs and images taken from the air or from space are acquired without direct contact with the ground, they are referred to as remotely sensed images. The U.S. Geological Survey (USGS) has used remote sensing from the early years of the 20th century to support earth science studies and for mapping purposes.

  13. Investigating an Aerial Image First

    ERIC Educational Resources Information Center

    Wyrembeck, Edward P.; Elmer, Jeffrey S.

    2006-01-01

    Most introductory optics lab activities begin with students locating the real image formed by a converging lens. The method is simple and straightforward--students move a screen back and forth until the real image is in sharp focus on the screen. Students then draw a simple ray diagram to explain the observation using only two or three special…

  14. Laser Doppler velocimeter aerial spray measurements

    NASA Technical Reports Server (NTRS)

    Zalay, A. D.; Eberle, W. R.; Howle, R. E.; Shrider, K. R.

    1978-01-01

    An experimental research program for measuring the location, spatial extent, and relative concentration of airborne spray clouds generated by agricultural aircraft is described. The measurements were conducted with a ground-based laser Doppler velocimeter. The remote sensing instrumentation, experimental tests, and the results of the flight tests are discussed. The cross section of the aerial spray cloud and the observed location, extent, and relative concentration of the airborne particulates are presented. It is feasible to use a mobile laser Doppler velocimeter to track and monitor the transport and dispersion of aerial spray generated by an agricultural aircraft.

  15. An automatic high precision registration method between large area aerial images and aerial light detection and ranging data

    NASA Astrophysics Data System (ADS)

    Du, Q.; Xie, D.; Sun, Y.

    2015-06-01

    The integration of digital aerial photogrammetry and Light Detetion And Ranging (LiDAR) is an inevitable trend in Surveying and Mapping field. We calculate the external orientation elements of images which identical with LiDAR coordinate to realize automatic high precision registration between aerial images and LiDAR data. There are two ways to calculate orientation elements. One is single image spatial resection using image matching 3D points that registered to LiDAR. The other one is Position and Orientation System (POS) data supported aerotriangulation. The high precision registration points are selected as Ground Control Points (GCPs) instead of measuring GCPs manually during aerotriangulation. The registration experiments indicate that the method which registering aerial images and LiDAR points has a great advantage in higher automation and precision compare with manual registration.

  16. HISTORIC IMAGE: AERIAL VIEW WITH THE CEMETERY IN BACKGROUND. PHOTOGRAPH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HISTORIC IMAGE: AERIAL VIEW WITH THE CEMETERY IN BACKGROUND. PHOTOGRAPH 29 OCTOBER 1959. NCA HISTORY COLLECTION. - Black Hills National Cemetery, 20901 Pleasant Valley Drive, Sturgis, Meade County, SD

  17. HISTORIC IMAGE: AERIAL VIEW WITH NEW EXPRESSWAY IN FOREGROUND. PHOTOGRAPH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HISTORIC IMAGE: AERIAL VIEW WITH NEW EXPRESSWAY IN FOREGROUND. PHOTOGRAPH 19 SEPTEMBER 1978. NCA HISTORY COLLECTION. - Black Hills National Cemetery, 20901 Pleasant Valley Drive, Sturgis, Meade County, SD

  18. Calculation and uses of the lithographic aerial image

    NASA Astrophysics Data System (ADS)

    Flagello, Donis G.; Smith, Daniel G.

    2012-09-01

    Beginning with the seminal Dill papers of 1975, the aerial image has been essential for understanding the process of microlithography. From the aerial image, we can predict the performance of a given lithographic process in terms of depth of focus, exposure latitude, etc. As lithographic technologies improved, reaching smaller and smaller printed features, the sophistication of aerial image calculations has had to increase from simple incoherent imaging theory, to partial coherence, polarization effects, thin film effects at the resist, thick mask effects, and so on. This tutorial provides an overview and semihistorical development of the aerial image calculation and then provides a review of some of the various ways in which the aerial image is typically used to estimate the performance of the lithographic process.

  19. Application of Technical Measures and Software in Constructing Photorealistic 3D Models of Historical Building Using Ground-Based and Aerial (UAV) Digital Images

    NASA Astrophysics Data System (ADS)

    Zarnowski, Aleksander; Banaszek, Anna; Banaszek, Sebastian

    2015-12-01

    Preparing digital documentation of historical buildings is a form of protecting cultural heritage. Recently there have been several intensive studies using non-metric digital images to construct realistic 3D models of historical buildings. Increasingly often, non-metric digital images are obtained with unmanned aerial vehicles (UAV). Technologies and methods of UAV flights are quite different from traditional photogrammetric approaches. The lack of technical guidelines for using drones inhibits the process of implementing new methods of data acquisition. This paper presents the results of experiments in the use of digital images in the construction of photo-realistic 3D model of a historical building (Raphaelsohns' Sawmill in Olsztyn). The aim of the study at the first stage was to determine the meteorological and technical conditions for the acquisition of aerial and ground-based photographs. At the next stage, the technology of 3D modelling was developed using only ground-based or only aerial non-metric digital images. At the last stage of the study, an experiment was conducted to assess the possibility of 3D modelling with the comprehensive use of aerial (UAV) and ground-based digital photographs in terms of their labour intensity and precision of development. Data integration and automatic photo-realistic 3D construction of the models was done with Pix4Dmapper and Agisoft PhotoScan software Analyses have shown that when certain parameters established in an experiment are kept, the process of developing the stock-taking documentation for a historical building moves from the standards of analogue to digital technology with considerably reduced cost.

  20. U. S. Department of Energy Aerial Measuring Systems

    SciTech Connect

    J. J. Lease

    1998-10-01

    The Aerial Measuring Systems (AMS) is an aerial surveillance system. This system consists of remote sensing equipment to include radiation detectors; multispectral, thermal, radar, and laser scanners; precision cameras; and electronic imaging and still video systems. This equipment, in varying combinations, is mounted in an airplane or helicopter and flown at different heights in specific patterns to gather various types of data. This system is a key element in the US Department of Energy's (DOE) national emergency response assets. The mission of the AMS program is twofold--first, to respond to emergencies involving radioactive materials by conducting aerial surveys to rapidly track and map the contamination that may exist over a large ground area and second, to conduct routinely scheduled, aerial surveys for environmental monitoring and compliance purposes through the use of credible science and technology. The AMS program evolved from an early program, begun by a predecessor to the DOE--the Atomic Energy Commission--to map the radiation that may have existed within and around the terrestrial environments of DOE facilities, which produced, used, or stored radioactive materials.

  1. An algorithm for approximate rectification of digital aerial images

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-resolution aerial photography is one of the most valuable tools available for managing extensive landscapes. With recent advances in digital camera technology, computer hardware, and software, aerial photography is easier to collect, store, and transfer than ever before. Images can be automa...

  2. HISTORIC IMAGE: AERIAL VIEW OF CEMETERY AND ITS ENVIRONS. PHOTOGRAPH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HISTORIC IMAGE: AERIAL VIEW OF CEMETERY AND ITS ENVIRONS. PHOTOGRAPH 15 SEPTEMBER 1950. NCA HISTORY COLLECTION. - San Francisco National Cemetery, 1 Lincoln Boulevard, San Francisco, San Francisco County, CA

  3. Use of simulated neural networks of aerial image classification

    NASA Technical Reports Server (NTRS)

    Medina, Frances I.; Vasquez, Ramon

    1991-01-01

    The utility of one layer neural network in aerial image classification is examined. The network was trained with the delta rule. This method was shown to be useful as a classifier in aerial images with good resolution. It is fast, it is easy to implement, because it is distribution-free, nothing about statistical distribution of the data is needed, and it is very efficient as a boundary detector.

  4. A featureless approach to 3D polyhedral building modeling from aerial images.

    PubMed

    Hammoudi, Karim; Dornaika, Fadi

    2011-01-01

    This paper presents a model-based approach for reconstructing 3D polyhedral building models from aerial images. The proposed approach exploits some geometric and photometric properties resulting from the perspective projection of planar structures. Data are provided by calibrated aerial images. The novelty of the approach lies in its featurelessness and in its use of direct optimization based on image rawbrightness. The proposed framework avoids feature extraction and matching. The 3D polyhedral model is directly estimated by optimizing an objective function that combines an image-based dissimilarity measure and a gradient score over several aerial images. The optimization process is carried out by the Differential Evolution algorithm. The proposed approach is intended to provide more accurate 3D reconstruction than feature-based approaches. Fast 3D model rectification and updating can take advantage of the proposed method. Several results and evaluations of performance from real and synthetic images show the feasibility and robustness of the proposed approach.

  5. A Featureless Approach to 3D Polyhedral Building Modeling from Aerial Images

    PubMed Central

    Hammoudi, Karim; Dornaika, Fadi

    2011-01-01

    This paper presents a model-based approach for reconstructing 3D polyhedral building models from aerial images. The proposed approach exploits some geometric and photometric properties resulting from the perspective projection of planar structures. Data are provided by calibrated aerial images. The novelty of the approach lies in its featurelessness and in its use of direct optimization based on image rawbrightness. The proposed framework avoids feature extraction and matching. The 3D polyhedral model is directly estimated by optimizing an objective function that combines an image-based dissimilarity measure and a gradient score over several aerial images. The optimization process is carried out by the Differential Evolution algorithm. The proposed approach is intended to provide more accurate 3D reconstruction than feature-based approaches. Fast 3D model rectification and updating can take advantage of the proposed method. Several results and evaluations of performance from real and synthetic images show the feasibility and robustness of the proposed approach. PMID:22346575

  6. Advanced Image Processing of Aerial Imagery

    NASA Technical Reports Server (NTRS)

    Woodell, Glenn; Jobson, Daniel J.; Rahman, Zia-ur; Hines, Glenn

    2006-01-01

    Aerial imagery of the Earth is an invaluable tool for the assessment of ground features, especially during times of disaster. Researchers at the NASA Langley Research Center have developed techniques which have proven to be useful for such imagery. Aerial imagery from various sources, including Langley's Boeing 757 Aries aircraft, has been studied extensively. This paper discusses these studies and demonstrates that better-than-observer imagery can be obtained even when visibility is severely compromised. A real-time, multi-spectral experimental system will be described and numerous examples will be shown.

  7. Critical Assessment of Object Segmentation in Aerial Image Using Geo-Hausdorff Distance

    NASA Astrophysics Data System (ADS)

    Sun, H.; Ding, Y.; Huang, Y.; Wang, G.

    2016-06-01

    Aerial Image records the large-range earth objects with the ever-improving spatial and radiometric resolution. It becomes a powerful tool for earth observation, land-coverage survey, geographical census, etc., and helps delineating the boundary of different kinds of objects on the earth both manually and automatically. In light of the geo-spatial correspondence between the pixel locations of aerial image and the spatial coordinates of ground objects, there is an increasing need of super-pixel segmentation and high-accuracy positioning of objects in aerial image. Besides the commercial software package of eCognition and ENVI, many algorithms have also been developed in the literature to segment objects of aerial images. But how to evaluate the segmentation results remains a challenge, especially in the context of the geo-spatial correspondence. The Geo-Hausdorff Distance (GHD) is proposed to measure the geo-spatial distance between the results of various object segmentation that can be done with the manual ground truth or with the automatic algorithms.Based on the early-breaking and random-sampling design, the GHD calculates the geographical Hausdorff distance with nearly-linear complexity. Segmentation results of several state-of-the-art algorithms, including those of the commercial packages, are evaluated with a diverse set of aerial images. They have different signal-to-noise ratio around the object boundaries and are hard to trace correctly even for human operators. The GHD value is analyzed to comprehensively measure the suitability of different object segmentation methods for aerial images of different spatial resolution. By critically assessing the strengths and limitations of the existing algorithms, the paper provides valuable insight and guideline for extensive research in automating object detection and classification of aerial image in the nation-wide geographic census. It is also promising for the optimal design of operational specification of remote

  8. Measured Noise from Small Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph; McSwain, Robert; Grosveld, Ferdinand

    2016-01-01

    Proposed uses of small unmanned aerial vehicles (UAVs), including home package delivery, have the potential to expose large portions of communities to a new noise source. This paper discusses results of flyover noise measurements of four small UAVs, including an internal combustion-powered model airplane and three battery-powered multicopters. Basic noise characteristics of these vehicles are discussed, including spectral properties and sound level metrics such as sound pressure level, effective perceived noise level, and sound exposure level. The size and aerodynamic characteristics of the multicopters in particular make their flight path susceptible to atmospheric disturbances such as wind gusts. These gusts, coupled with a flight control system that varies rotor speed to maintain vehicle stability, create an unsteady acoustic signature. The spectral variations resulting from this unsteadiness are explored, in both hover and flyover conditions for the multicopters. The time varying noise, which differs from the relatively steady noise generated by large transport aircraft, may complicate the prediction of human annoyance using conventional sound level metrics.

  9. Grab a coffee: your aerial images are already analyzed

    NASA Astrophysics Data System (ADS)

    Garetto, Anthony; Rademacher, Thomas; Schulz, Kristian

    2015-07-01

    For over 2 decades the AIMTM platform has been utilized in mask shops as the standard for actinic review of photomask sites in order to perform defect disposition and repair review. Throughout this time the measurement throughput of the systems has been improved in order to keep pace with the requirements demanded by a manufacturing environment, however the analysis of the sites captured has seen little improvement and remained a manual process. This manual analysis of aerial images is time consuming, subject to error and unreliability and contributes to holding up turn-around time (TAT) and slowing process flow in a manufacturing environment. AutoAnalysis, the first application available for the FAVOR® platform, offers a solution to these problems by providing fully automated data transfer and analysis of AIMTM aerial images. The data is automatically output in a customizable format that can be tailored to your internal needs and the requests of your customers. Savings in terms of operator time arise from the automated analysis which no longer needs to be performed. Reliability is improved as human error is eliminated making sure the most defective region is always and consistently captured. Finally the TAT is shortened and process flow for the back end of the line improved as the analysis is fast and runs in parallel to the measurements. In this paper the concept and approach of AutoAnalysis will be presented as well as an update to the status of the project. A look at the benefits arising from the automation and the customizable approach of the solution will be shown.

  10. The cleaning effects of mask aerial image after FIB repair in sub-80nm node

    NASA Astrophysics Data System (ADS)

    Lee, Hyemi; Jeong, Goomin; Jeong, Sookyeong; Kim, Sangchul; Han, Oscar

    2007-10-01

    The Aerial Image Measurement Tool (AIMS) can estimate the wafer printability without exposure to wafer by using scanner. Since measured aerial images are similar with wafer prints, using AIMS becomes normal for verifying issue points of a mask. Also because mask design rule continues to shrink, defects and CD uniformity are at issues as factors decreasing mask yield. Occurred defects on a mask are removed by existing mask repair techniques such as nanomachining, electron beam and focused ion beam. But damages and contaminants by chemical and physical action are found on the mask surface and contaminants above special size lead to defects on a wafer. So cleaning has been necessary after repair process and detergency has been important. Before AIMS measurement, cleaning is done to make same condition with shipped mask, which method brings repeated process - repair and cleaning - if aerial image was not usual. So cleaning effect after the FIB repair is tested by using the AIMS to find the optimized process minimizing the repeated process and to get similar scanner results. First, programmed defect mask that includes various defect size and type is manufactured on some kinds of patterns in DRAM device and sub-80nm tech. Next the defects on the programmed mask are repaired by FIB repair machine. And aerial images are compared after the chemical cleaning, non-chemical cleaning and without cleaning. Finally, approximate aerial images to scanner results are taken regardless of cleaning process. It means that residue originated from repair process doesn't affect aerial images and flexible process is possible between AIMS, repair and cleaning process. But as the effect of minute particles and contaminations will be increased if pattern size is much smaller, it needs to reconfirm the effect below the sub-60nm in DRAM device.

  11. Comparison of analysis techniques for aerial image metrology on advanced photomask

    NASA Astrophysics Data System (ADS)

    Hwang, Seolchong; Woo, Sungha; Jang, Heeyeon; Lee, Youngmo; Kim, Sangpyo; Yang, Hyunjo; Schulz, Kristian; Garetto, Anthony

    2016-05-01

    The standard method for defect disposition and verification of repair success in the mask shop is through the utilization of the aerial imaging platform, AIMSTM. The CD (Critical Dimension) deviation of the defective or repaired region as well as the pattern shift can be calculated by comparing the measured aerial images of this region to that of a reference. Through this analysis it can be determined if the defect or repaired region will be printed on the wafer under the illumination conditions of the scanner. The analysis of the measured aerial images from the AIMSTM are commonly performed manually using the analysis software available on the system or with the help of an analysis software called RV (Repair Verification). Because the process is manual, it is not standardized and is subject to operator variations. This method of manual aerial image analysis is time consuming, dependent on the skill level of the operator and significantly contributes to the overall mask manufacturing process flow. AutoAnalysis (AA), the first application available for the FAVOR® platform, provides fully automated analysis of AIMSTM aerial images [1] and runs in parallel to the measurement of the aerial images. In this paper, we investigate the initial AutoAnalysis performance compared to the conventional method using RV and its application to a production environment. The evaluation is based on the defect CD of three pattern types: contact holes, dense line and spaces and peripheral structure. The defect analysis results for different patterns and illumination conditions will be correlated and challenges in transitioning to the new approach will be discussed.

  12. Research of aerial camera focal pane micro-displacement measurement system based on Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Wang, Shu-juan; Zhao, Yu-liang; Li, Shu-jun

    2014-09-01

    The aerial camera focal plane in the correct position is critical to the imaging quality. In order to adjust the aerial camera focal plane displacement caused in the process of maintenance, a new micro-displacement measuring system of aerial camera focal plane in view of the Michelson interferometer has been designed in this paper, which is based on the phase modulation principle, and uses the interference effect to realize the focal plane of the micro-displacement measurement. The system takes He-Ne laser as the light source, uses the Michelson interference mechanism to produce interference fringes, changes with the motion of the aerial camera focal plane interference fringes periodically, and records the periodicity of the change of the interference fringes to obtain the aerial camera plane displacement; Taking linear CCD and its driving system as the interference fringes picking up tool, relying on the frequency conversion and differentiating system, the system determines the moving direction of the focal plane. After data collecting, filtering, amplifying, threshold comparing, counting, CCD video signals of the interference fringes are sent into the computer processed automatically, and output the focal plane micro displacement results. As a result, the focal plane micro displacement can be measured automatically by this system. This system uses linear CCD as the interference fringes picking up tool, greatly improving the counting accuracy and eliminated the artificial counting error almost, improving the measurement accuracy of the system. The results of the experiments demonstrate that: the aerial camera focal plane displacement measurement accuracy is 0.2nm. While tests in the laboratory and flight show that aerial camera focal plane positioning is accurate and can satisfy the requirement of the aerial camera imaging.

  13. HISTORIC IMAGE: AERIAL VIEW OF THE CEMETERY AND ITS ENVIRONS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HISTORIC IMAGE: AERIAL VIEW OF THE CEMETERY AND ITS ENVIRONS. PHOTOGRAPH TAKEN ON 6 APRIL 1968. NCA HISTORY COLLECTION. - Rock Island National Cemetery, Rock Island Arsenal, 0.25 mile north of southern tip of Rock Island, Rock Island, Rock Island County, IL

  14. A Low-Cost Imaging System for Aerial Applicators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural aircraft provide a readily available and versatile platform for airborne remote sensing. Although various airborne imaging systems are being used for research and commercial applications, most of these systems are either too expensive or too complex to be of practical use for aerial app...

  15. An improved dehazing algorithm of aerial high-definition image

    NASA Astrophysics Data System (ADS)

    Jiang, Wentao; Ji, Ming; Huang, Xiying; Wang, Chao; Yang, Yizhou; Li, Tao; Wang, Jiaoying; Zhang, Ying

    2016-01-01

    For unmanned aerial vehicle(UAV) images, the sensor can not get high quality images due to fog and haze weather. To solve this problem, An improved dehazing algorithm of aerial high-definition image is proposed. Based on the model of dark channel prior, the new algorithm firstly extracts the edges from crude estimated transmission map and expands the extracted edges. Then according to the expended edges, the algorithm sets a threshold value to divide the crude estimated transmission map into different areas and makes different guided filter on the different areas compute the optimized transmission map. The experimental results demonstrate that the performance of the proposed algorithm is substantially the same as the one based on dark channel prior and guided filter. The average computation time of the new algorithm is around 40% of the one as well as the detection ability of UAV image is improved effectively in fog and haze weather.

  16. CMOS Imaging Sensor Technology for Aerial Mapping Cameras

    NASA Astrophysics Data System (ADS)

    Neumann, Klaus; Welzenbach, Martin; Timm, Martin

    2016-06-01

    In June 2015 Leica Geosystems launched the first large format aerial mapping camera using CMOS sensor technology, the Leica DMC III. This paper describes the motivation to change from CCD sensor technology to CMOS for the development of this new aerial mapping camera. In 2002 the DMC first generation was developed by Z/I Imaging. It was the first large format digital frame sensor designed for mapping applications. In 2009 Z/I Imaging designed the DMC II which was the first digital aerial mapping camera using a single ultra large CCD sensor to avoid stitching of smaller CCDs. The DMC III is now the third generation of large format frame sensor developed by Z/I Imaging and Leica Geosystems for the DMC camera family. It is an evolution of the DMC II using the same system design with one large monolithic PAN sensor and four multi spectral camera heads for R,G, B and NIR. For the first time a 391 Megapixel large CMOS sensor had been used as PAN chromatic sensor, which is an industry record. Along with CMOS technology goes a range of technical benefits. The dynamic range of the CMOS sensor is approx. twice the range of a comparable CCD sensor and the signal to noise ratio is significantly better than with CCDs. Finally results from the first DMC III customer installations and test flights will be presented and compared with other CCD based aerial sensors.

  17. Water Plume Temperature Measurements by an Unmanned Aerial System (UAS)

    PubMed Central

    DeMario, Anthony; Lopez, Pete; Plewka, Eli; Wix, Ryan; Xia, Hai; Zamora, Emily; Gessler, Dan; Yalin, Azer P.

    2017-01-01

    We report on the development and testing of a proof of principle water temperature measurement system deployed on an unmanned aerial system (UAS), for field measurements of thermal discharges into water. The primary elements of the system include a quad-copter UAS to which has been integrated, for the first time, both a thermal imaging infrared (IR) camera and an immersible probe that can be dipped below the water surface to obtain vertical water temperature profiles. The IR camera is used to take images of the overall water surface to geo-locate the plume, while the immersible probe provides quantitative temperature depth profiles at specific locations. The full system has been tested including the navigation of the UAS, its ability to safely carry the sensor payload, and the performance of both the IR camera and the temperature probe. Finally, the UAS sensor system was successfully deployed in a pilot field study at a coal burning power plant, and obtained images and temperature profiles of the thermal effluent. PMID:28178215

  18. Water Plume Temperature Measurements by an Unmanned Aerial System (UAS).

    PubMed

    DeMario, Anthony; Lopez, Pete; Plewka, Eli; Wix, Ryan; Xia, Hai; Zamora, Emily; Gessler, Dan; Yalin, Azer P

    2017-02-07

    We report on the development and testing of a proof of principle water temperature measurement system deployed on an unmanned aerial system (UAS), for field measurements of thermal discharges into water. The primary elements of the system include a quad-copter UAS to which has been integrated, for the first time, both a thermal imaging infrared (IR) camera and an immersible probe that can be dipped below the water surface to obtain vertical water temperature profiles. The IR camera is used to take images of the overall water surface to geo-locate the plume, while the immersible probe provides quantitative temperature depth profiles at specific locations. The full system has been tested including the navigation of the UAS, its ability to safely carry the sensor payload, and the performance of both the IR camera and the temperature probe. Finally, the UAS sensor system was successfully deployed in a pilot field study at a coal burning power plant, and obtained images and temperature profiles of the thermal effluent.

  19. Line Matching Algorithm for Aerial Image Combining image and object space similarity constraints

    NASA Astrophysics Data System (ADS)

    Wang, Jingxue; Wang, Weixi; Li, Xiaoming; Cao, Zhenyu; Zhu, Hong; Li, Miao; He, Biao; Zhao, Zhigang

    2016-06-01

    A new straight line matching method for aerial images is proposed in this paper. Compared to previous works, similarity constraints combining radiometric information in image and geometry attributes in object plane are employed in these methods. Firstly, initial candidate lines and the elevation values of lines projection plane are determined by corresponding points in neighborhoods of reference lines. Secondly, project reference line and candidate lines back forward onto the plane, and then similarity measure constraints are enforced to reduce the number of candidates and to determine the finial corresponding lines in a hierarchical way. Thirdly, "one-to-many" and "many-to-one" matching results are transformed into "one-to-one" by merging many lines into the new one, and the errors are eliminated simultaneously. Finally, endpoints of corresponding lines are detected by line expansion process combing with "image-object-image" mapping mode. Experimental results show that the proposed algorithm can be able to obtain reliable line matching results for aerial images.

  20. Aerial image databases for pipeline rights-of-way management

    NASA Astrophysics Data System (ADS)

    Jadkowski, Mark A.

    1996-03-01

    Pipeline companies that own and manage extensive rights-of-way corridors are faced with ever-increasing regulatory pressures, operating issues, and the need to remain competitive in today's marketplace. Automation has long been an answer to the problem of having to do more work with less people, and Automated Mapping/Facilities Management/Geographic Information Systems (AM/FM/GIS) solutions have been implemented at several pipeline companies. Until recently, the ability to cost-effectively acquire and incorporate up-to-date aerial imagery into these computerized systems has been out of the reach of most users. NASA's Earth Observations Commercial Applications Program (EOCAP) is providing a means by which pipeline companies can bridge this gap. The EOCAP project described in this paper includes a unique partnership with NASA and James W. Sewall Company to develop an aircraft-mounted digital camera system and a ground-based computer system to geometrically correct and efficiently store and handle the digital aerial images in an AM/FM/GIS environment. This paper provides a synopsis of the project, including details on (1) the need for aerial imagery, (2) NASA's interest and role in the project, (3) the design of a Digital Aerial Rights-of-Way Monitoring System, (4) image georeferencing strategies for pipeline applications, and (5) commercialization of the EOCAP technology through a prototype project at Algonquin Gas Transmission Company which operates major gas pipelines in New England, New York, and New Jersey.

  1. A Comparison of Visual Statistics for the Image Enhancement of FORESITE Aerial Images with Those of Major Image Classes

    NASA Technical Reports Server (NTRS)

    Johnson, Daniel J.; Rahman, Zia-ur; Woodell, Glenn A.; Hines, Glenn D.

    2006-01-01

    Aerial images from the Follow-On Radar, Enhanced and Synthetic Vision Systems Integration Technology Evaluation (FORESITE) flight tests with the NASA Langley Research Center's research Boeing 757 were acquired during severe haze and haze/mixed clouds visibility conditions. These images were enhanced using the Visual Servo (VS) process that makes use of the Multiscale Retinex. The images were then quantified with visual quality metrics used internally with the VS. One of these metrics, the Visual Contrast Measure, has been computed for hundreds of FORESITE images, and for major classes of imaging--terrestrial (consumer), orbital Earth observations, orbital Mars surface imaging, NOAA aerial photographs, and underwater imaging. The metric quantifies both the degree of visual impairment of the original, un-enhanced images as well as the degree of visibility improvement achieved by the enhancement process. The large aggregate data exhibits trends relating to degree of atmospheric visibility attenuation, and its impact on limits of enhancement performance for the various image classes. Overall results support the idea that in most cases that do not involve extreme reduction in visibility, large gains in visual contrast are routinely achieved by VS processing. Additionally, for very poor visibility imaging, lesser, but still substantial, gains in visual contrast are also routinely achieved. Further, the data suggest that these visual quality metrics can be used as external standalone metrics for establishing performance parameters.

  2. Intra-field CDU map correlation between SEMs and aerial image characterization

    NASA Astrophysics Data System (ADS)

    Ning, Guoxiang; Philipp, Peter; Litt, Lloyd C.; Meusemann, Stefan; Thaler, Thomas; Schulz, Kristian; Tschinkl, Martin; Ackmann, Paul

    2014-09-01

    Reticle critical dimension uniformity (CDU) is one of the major sources of wafer CD variations which include both inter-field variations and intra-field variations. Generally, wafer critical dimension (CD) measurement sample size interfield is much less than intra-field. Intra-field CDU correction requires time-consumption of metrology. In order to improve wafer intra-field CDU, several methods can be applied such as intra-field dose correction to improve wafer intra-field CDU. Corrections can be based on CD(SEM) or aerial image metrology data from the reticle. Reticle CDU and wafer CDU maps are based on scanning electron microscope (SEM) metrology, while reticle inspection intensity mapping (NuFLare 6000) and wafer level critical dimension (WLCD) utilize aerial images or optical techniques. Reticle inspecton tools such as those from KLA and NuFlare, offer the ability to collect optical measurement data to produce an optical CDU map. WLCD of Zeiss has the advantage of using the same illumination condition as the scanner to measure the aerial images or optical CD. In this study, the intra-field wafer CDU map correlation between SEMs and aerial images are characterized. The layout of metrology structures is very important for the correlation between wafer intra-field CDU, measured by SEM, and the CDU determined by aerial images. The selection of metrology structures effects on the correlation to SEM CD to wafer is also demonstrated. Both reticle CDU, intensity CDU and WLCD are candidates for intra-field wafer CDU characterization and the advantages and limitations of each approach are discussed.

  3. D City Transformations by Time Series of Aerial Images

    NASA Astrophysics Data System (ADS)

    Adami, A.

    2015-02-01

    Recent photogrammetric applications, based on dense image matching algorithms, allow to use not only images acquired by digital cameras, amateur or not, but also to recover the vast heritage of analogue photographs. This possibility opens up many possibilities in the use and enhancement of existing photos heritage. The research of the original figuration of old buildings, the virtual reconstruction of disappeared architectures and the study of urban development are some of the application areas that exploit the great cultural heritage of photography. Nevertheless there are some restrictions in the use of historical images for automatic reconstruction of buildings such as image quality, availability of camera parameters and ineffective geometry of image acquisition. These constrains are very hard to solve and it is difficult to discover good dataset in the case of terrestrial close range photogrammetry for the above reasons. Even the photographic archives of museums and superintendence, while retaining a wealth of documentation, have no dataset for a dense image matching approach. Compared to the vast collection of historical photos, the class of aerial photos meets both criteria stated above. In this paper historical aerial photographs are used with dense image matching algorithms to realize 3d models of a city in different years. The models can be used to study the urban development of the city and its changes through time. The application relates to the city centre of Verona, for which some time series of aerial photographs have been retrieved. The models obtained in this way allowed, right away, to observe the urban development of the city, the places of expansion and new urban areas. But a more interesting aspect emerged from the analytical comparison between models. The difference, as the Euclidean distance, between two models gives information about new buildings or demolitions. As considering accuracy it is necessary point out that the quality of final

  4. Feature extraction with LIDAR data and aerial images

    NASA Astrophysics Data System (ADS)

    Mao, Jianhua; Liu, Yanjing; Cheng, Penggen; Li, Xianhua; Zeng, Qihong; Xia, Jing

    2006-10-01

    Raw LIDAR data is a irregular spacing 3D point cloud including reflections from bare ground, buildings, vegetation and vehicles etc., and the first task of the data analyses of point cloud is feature extraction. However, the interpretability of LIDAR point cloud is often limited due to the fact that no object information is provided, and the complex earth topography and object morphology make it impossible for a single operator to classify all the point cloud precisely 100%. In this paper, a hierarchy method for feature extraction with LIDAR data and aerial images is discussed. The aerial images provide us information of objects figuration and spatial distribution, and hierarchic classification of features makes it easy to apply automatic filters progressively. And the experiment results show that, using this method, it was possible to detect more object information and get a better result of feature extraction than using automatic filters alone.

  5. Deep person re-identification in aerial images

    NASA Astrophysics Data System (ADS)

    Schumann, Arne; Schuchert, Tobias

    2016-10-01

    Person re-identification is the problem of matching multiple occurrences of a person in large amounts of image or video data. In this work we propose an approach specifically tailored to re-identify people across different camera views in aerial video recordings. New challenges that arise in aerial data include unusual and more varied view angles, a moving camera and potentially large changes in environment and other in uences between recordings (i.e. between flights). Our approach addresses these new challenges. Due to their recent successes, we apply deep learning to automatically learn features for person re-identification on a number of public datasets. We evaluate these features on aerial data and propose a method to automatically select suitable pretrained features without requiring person id labels on the aerial data. We further show that tailored data augmentation methods are well suited to better cope with the larger variety in view angles. Finally, we combine our model with a metric learning approach to allow for interactive improvement of re-identification results through user feedback. We evaluate the approach on our own video dataset which contains 12 persons recorded from a UAV.

  6. Building 3D aerial image in photoresist with reconstructed mask image acquired with optical microscope

    NASA Astrophysics Data System (ADS)

    Chou, C. S.; Tang, Y. P.; Chu, F. S.; Huang, W. C.; Liu, R. G.; Gau, T. S.

    2012-03-01

    Calibration of mask images on wafer becomes more important as features shrink. Two major types of metrology have been commonly adopted. One is to measure the mask image with scanning electron microscope (SEM) to obtain the contours on mask and then simulate the wafer image with optical simulator. The other is to use an optical imaging tool Aerial Image Measurement System (AIMSTM) to emulate the image on wafer. However, the SEM method is indirect. It just gathers planar contours on a mask with no consideration of optical characteristics such as 3D topography structures. Hence, the image on wafer is not predicted precisely. Though the AIMSTM method can be used to directly measure the intensity at the near field of a mask but the image measured this way is not quite the same as that on the wafer due to reflections and refractions in the films on wafer. Here, a new approach is proposed to emulate the image on wafer more precisely. The behavior of plane waves with different oblique angles is well known inside and between planar film stacks. In an optical microscope imaging system, plane waves can be extracted from the pupil plane with a coherent point source of illumination. Once plane waves with a specific coherent illumination are analyzed, the partially coherent component of waves could be reconstructed with a proper transfer function, which includes lens aberration, polarization, reflection and refraction in films. It is a new method that we can transfer near light field of a mask into an image on wafer without the disadvantages of indirect SEM measurement such as neglecting effects of mask topography, reflections and refractions in the wafer film stacks. Furthermore, with this precise latent image, a separated resist model also becomes more achievable.

  7. International-Aerial Measuring System (I-AMS) Training Program

    SciTech Connect

    Wasiolek, Piotre T.; Malchor, Russell L.; Maurer, Richard J.; Adams, Henry L.

    2015-10-01

    Since the Fukushima reactor accident in 2011, there has been an increased interest worldwide in developing national capabilities to rapidly map and assess ground contamination resulting from nuclear reactor accidents. The capability to rapidly measure the size of the contaminated area, determine the activity level, and identify the radionuclides can aid emergency managers and decision makers in providing timely protective action recommendations to the public and first responders. The development of an aerial detection capability requires interagency coordination to assemble the radiation experts, detection system operators, and aviation aircrews to conduct the aerial measurements, analyze and interpret the data, and provide technical assessments. The Office of International Emergency Management and Cooperation (IEMC) at the U.S. Department of Energy, National Nuclear Security Administration (DOE/NNSA) sponsors an International - Aerial Measuring System (I-AMS) training program for partner nations to develop and enhance their response to radiological emergencies. An initial series of courses can be conducted in the host country to assist in developing an aerial detection capability. As the capability develops and expands, additional experience can be gained through advanced courses with the opportunity to conduct aerial missions over a broad range of radiation environments.

  8. Detection of Aspens Using High Resolution Aerial Laser Scanning Data and Digital Aerial Images

    PubMed Central

    Säynäjoki, Raita; Packalén, Petteri; Maltamo, Matti; Vehmas, Mikko; Eerikäinen, Kalle

    2008-01-01

    The aim was to use high resolution Aerial Laser Scanning (ALS) data and aerial images to detect European aspen (Populus tremula L.) from among other deciduous trees. The field data consisted of 14 sample plots of 30 m × 30 m size located in the Koli National Park in the North Karelia, Eastern Finland. A Canopy Height Model (CHM) was interpolated from the ALS data with a pulse density of 3.86/m2, low-pass filtered using Height-Based Filtering (HBF) and binarized to create the mask needed to separate the ground pixels from the canopy pixels within individual areas. Watershed segmentation was applied to the low-pass filtered CHM in order to create preliminary canopy segments, from which the non-canopy elements were extracted to obtain the final canopy segmentation, i.e. the ground mask was analysed against the canopy mask. A manual classification of aerial images was employed to separate the canopy segments of deciduous trees from those of coniferous trees. Finally, linear discriminant analysis was applied to the correctly classified canopy segments of deciduous trees to classify them into segments belonging to aspen and those belonging to other deciduous trees. The independent variables used in the classification were obtained from the first pulse ALS point data. The accuracy of discrimination between aspen and other deciduous trees was 78.6%. The independent variables in the classification function were the proportion of vegetation hits, the standard deviation of in pulse heights, accumulated intensity at the 90th percentile and the proportion of laser points reflected at the 60th height percentile. The accuracy of classification corresponded to the validation results of earlier ALS-based studies on the classification of individual deciduous trees to tree species. PMID:27873799

  9. Radiological Disaster Simulators for Field and Aerial Measurements

    SciTech Connect

    H. W. Clark, Jr

    2002-11-01

    Simulators have been developed to dramatically improve the fidelity of play for field monitors and aircraft participating in radiological disaster drills and exercises. Simulated radiological measurements for the current Global Positioning System (GPS) location are derived from realistic models of radiological consequences for accidents and malicious acts. The aerial version outputs analog pulses corresponding to the signal that would be produced by various NaI (Tl) detectors at that location. The field monitor version reports the reading for any make/model of survey instrument selected. Position simulation modes are included in the aerial and field versions. The aerial version can generate a flight path based on input parameters or import an externally generated sequence of latitude and longitude coordinates. The field version utilizes a map-based point and click/drag interface to generate individual or a sequence of evenly spaced instrument measurements.

  10. a Fast Approach for Stitching of Aerial Images

    NASA Astrophysics Data System (ADS)

    Moussa, A.; El-Sheimy, N.

    2016-06-01

    The last few years have witnessed an increasing volume of aerial image data because of the extensive improvements of the Unmanned Aerial Vehicles (UAVs). These newly developed UAVs have led to a wide variety of applications. A fast assessment of the achieved coverage and overlap of the acquired images of a UAV flight mission is of great help to save the time and cost of the further steps. A fast automatic stitching of the acquired images can help to visually assess the achieved coverage and overlap during the flight mission. This paper proposes an automatic image stitching approach that creates a single overview stitched image using the acquired images during a UAV flight mission along with a coverage image that represents the count of overlaps between the acquired images. The main challenge of such task is the huge number of images that are typically involved in such scenarios. A short flight mission with image acquisition frequency of one second can capture hundreds to thousands of images. The main focus of the proposed approach is to reduce the processing time of the image stitching procedure by exploiting the initial knowledge about the images positions provided by the navigation sensors. The proposed approach also avoids solving for all the transformation parameters of all the photos together to save the expected long computation time if all the parameters were considered simultaneously. After extracting the points of interest of all the involved images using Scale-Invariant Feature Transform (SIFT) algorithm, the proposed approach uses the initial image's coordinates to build an incremental constrained Delaunay triangulation that represents the neighborhood of each image. This triangulation helps to match only the neighbor images and therefore reduces the time-consuming features matching step. The estimated relative orientation between the matched images is used to find a candidate seed image for the stitching process. The pre-estimated transformation

  11. Generating object proposals for improved object detection in aerial images

    NASA Astrophysics Data System (ADS)

    Sommer, Lars W.; Schuchert, Tobias; Beyerer, Jürgen

    2016-10-01

    Screening of aerial images covering large areas is important for many applications such as surveillance, tracing or rescue tasks. To reduce the workload of image analysts, an automatic detection of candidate objects is required. In general, object detection is performed by applying classifiers or a cascade of classifiers within a sliding window algorithm. However, the huge number of windows to classify, especially in case of multiple object scales, makes these approaches computationally expensive. To overcome this challenge, we reduce the number of candidate windows by generating so called object proposals. Object proposals are a set of candidate regions in an image that are likely to contain an object. We apply the Selective Search approach that has been broadly used as proposals method for detectors like R-CNN or Fast R-CNN. Therefore, a set of small regions is generated by initial segmentation followed by hierarchical grouping of the initial regions to generate proposals at different scales. To reduce the computational costs of the original approach, which consists of 80 combinations of segmentation settings and grouping strategies, we only apply the most appropriate combination. Therefore, we analyze the impact of varying segmentation settings, different merging strategies, and various colour spaces by calculating the recall with regard to the number of object proposals and the intersection over union between generated proposals and ground truth annotations. As aerial images differ considerably from datasets that are typically used for exploring object proposals methods, in particular in object size and the image fraction occupied by an object, we further adapt the Selective Search algorithm to aerial images by replacing the random order of generated proposals by a weighted order based on the object proposal size and integrate a termination criterion for the merging strategies. Finally, the adapted approach is compared to the original Selective Search algorithm

  12. Large-Scale Aerial Image Categorization Using a Multitask Topological Codebook.

    PubMed

    Zhang, Luming; Wang, Meng; Hong, Richang; Yin, Bao-Cai; Li, Xuelong

    2016-02-01

    Fast and accurately categorizing the millions of aerial images on Google Maps is a useful technique in pattern recognition. Existing methods cannot handle this task successfully due to two reasons: 1) the aerial images' topologies are the key feature to distinguish their categories, but they cannot be effectively encoded by a conventional visual codebook and 2) it is challenging to build a realtime image categorization system, as some geo-aware Apps update over 20 aerial images per second. To solve these problems, we propose an efficient aerial image categorization algorithm. It focuses on learning a discriminative topological codebook of aerial images under a multitask learning framework. The pipeline can be summarized as follows. We first construct a region adjacency graph (RAG) that describes the topology of each aerial image. Naturally, aerial image categorization can be formulated as RAG-to-RAG matching. According to graph theory, RAG-to-RAG matching is conducted by enumeratively comparing all their respective graphlets (i.e., small subgraphs). To alleviate the high time consumption, we propose to learn a codebook containing topologies jointly discriminative to multiple categories. The learned topological codebook guides the extraction of the discriminative graphlets. Finally, these graphlets are integrated into an AdaBoost model for predicting aerial image categories. Experimental results show that our approach is competitive to several existing recognition models. Furthermore, over 24 aerial images are processed per second, demonstrating that our approach is ready for real-world applications.

  13. Application of machine learning for the evaluation of turfgrass plots using aerial images

    NASA Astrophysics Data System (ADS)

    Ding, Ke; Raheja, Amar; Bhandari, Subodh; Green, Robert L.

    2016-05-01

    Historically, investigation of turfgrass characteristics have been limited to visual ratings. Although relevant information may result from such evaluations, final inferences may be questionable because of the subjective nature in which the data is collected. Recent advances in computer vision techniques allow researchers to objectively measure turfgrass characteristics such as percent ground cover, turf color, and turf quality from the digital images. This paper focuses on developing a methodology for automated assessment of turfgrass quality from aerial images. Images of several turfgrass plots of varying quality were gathered using a camera mounted on an unmanned aerial vehicle. The quality of these plots were also evaluated based on visual ratings. The goal was to use the aerial images to generate quality evaluations on a regular basis for the optimization of water treatment. Aerial images are used to train a neural network so that appropriate features such as intensity, color, and texture of the turfgrass are extracted from these images. Neural network is a nonlinear classifier commonly used in machine learning. The output of the neural network trained model is the ratings of the grass, which is compared to the visual ratings. Currently, the quality and the color of turfgrass, measured as the greenness of the grass, are evaluated. The textures are calculated using the Gabor filter and co-occurrence matrix. Other classifiers such as support vector machines and simpler linear regression models such as Ridge regression and LARS regression are also used. The performance of each model is compared. The results show encouraging potential for using machine learning techniques for the evaluation of turfgrass quality and color.

  14. Velocity measurements and changes in position of Thwaites Glacier/iceberg tongue from aerial photography, Landsat images and NOAA AVHRR data

    USGS Publications Warehouse

    Ferrigno, Jane G.; Lucchitta, Baerbel K.; Mullinsallison, A. L.; Allen, Robert J.; Gould, W. G.

    1993-01-01

    The Thwaites Glacier/iceberg tongue complex has been a significant feature of the Antarctic coastline for at least 50 years. In 1986, major changes began to occur in this area. Fast ice melted and several icebergs calved from the base of the iceberg tongue and the terminus of Thwaites Glacier. The iceberg tongue rotated to an east-west orientation and drifted westward. Between 1986 and 1992, a total of 140 km of drift has occurred. Remote digital velocity measurements were made on Thwaites Glacier using sequential Landsat images to try to determine if changes in velocity had occurred in conjunction with the changes in ice position. Examination of the morphology of the glacier/iceberg tongue showed no evidence of surge activity.

  15. Algorithm for unmanned aerial vehicle aerial different-source image matching

    NASA Astrophysics Data System (ADS)

    Zuo, Yujia; Liu, Jinghong; Yang, Mingyu; Wang, Xuan; Sun, Mingchao

    2016-12-01

    The fusion between visible and infrared images captured by unmanned aerial vehicles (UAVs), both complementary to each other, can improve the reliability of target detection and recognition and other tasks. The images captured by UAV are featured by high dynamics and complex air-ground target background. Pixel-level matching should be conducted for the two different-source images, prior to their fusion. Therefore, an improved matching algorithm has been proposed that combines the improved Shi-Tomasi algorithm with the shape context (SC)-based algorithm. First, the Shi-Tomasi algorithm is employed to conduct feature-point detection in the scale space. The tangential direction of the edge contour where the feature-point lies is taken as its main direction, so as to guarantee the algorithm's rotational invariance. Then, this paper conducts the block description for the extracted feature-point within the n×n neighborhood of its edge contour to obtain its descriptors. Finally, a fast library for approximate nearest neighbors matching algorithm is adopted to match all the feature-points. And the experimental results show that, in the scene where the shape of the main target is clear, the algorithm can achieve better matching and registration results for infrared and visible images that have been transformed through rotation, translation, or zooming.

  16. Obtaining biophysical measurements of woody vegetation from high resolution digital aerial photography in tropical and arid environments: Northern Territory, Australia

    NASA Astrophysics Data System (ADS)

    Staben, G. W.; Lucieer, A.; Evans, K. G.; Scarth, P.; Cook, G. D.

    2016-10-01

    Biophysical parameters obtained from woody vegetation are commonly measured using field based techniques which require significant investment in resources. Quantitative measurements of woody vegetation provide important information for ecological studies investigating landscape change. The fine spatial resolution of aerial photography enables identification of features such as trees and shrubs. Improvements in spatial and spectral resolution of digital aerial photographic sensors have increased the possibility of using these data in quantitative remote sensing. Obtaining biophysical measurements from aerial photography has the potential to enable it to be used as a surrogate for the collection of field data. In this study quantitative measurements obtained from digital aerial photography captured at ground sampling distance (GSD) of 15 cm (n = 50) and 30 cm (n = 52) were compared to woody biophysical parameters measured from 1 ha field plots. Supervised classification of the aerial photography using object based image analysis was used to quantify woody and non-woody vegetation components in the imagery. There was a high correlation (r ≥ 0.92) between all field measured woody canopy parameters and aerial derived green woody cover measurements, however only foliage projective cover (FPC) was found to be statistically significant (paired t-test; α = 0.01). There was no significant difference between measurements derived from imagery captured at either GSD of 15 cm and 30 cm over the same field site (n = 20). Live stand basal area (SBA) (m2 ha-1) was predicted from the aerial photographs by applying an allometric equation developed between field-measured live SBA and woody FPC. The results show that there was very little difference between live SBA predicted from FPC measured in the field or from aerial photography. The results of this study show that accurate woody biophysical parameters can be obtained from aerial photography from a range of woody vegetation

  17. a New Paradigm for Matching - and Aerial Images

    NASA Astrophysics Data System (ADS)

    Koch, T.; Zhuo, X.; Reinartz, P.; Fraundorfer, F.

    2016-06-01

    This paper investigates the performance of SIFT-based image matching regarding large differences in image scaling and rotation, as this is usually the case when trying to match images captured from UAVs and airplanes. This task represents an essential step for image registration and 3d-reconstruction applications. Various real world examples presented in this paper show that SIFT, as well as A-SIFT perform poorly or even fail in this matching scenario. Even if the scale difference in the images is known and eliminated beforehand, the matching performance suffers from too few feature point detections, ambiguous feature point orientations and rejection of many correct matches when applying the ratio-test afterwards. Therefore, a new feature matching method is provided that overcomes these problems and offers thousands of matches by a novel feature point detection strategy, applying a one-to-many matching scheme and substitute the ratio-test by adding geometric constraints to achieve geometric correct matches at repetitive image regions. This method is designed for matching almost nadir-directed images with low scene depth, as this is typical in UAV and aerial image matching scenarios. We tested the proposed method on different real world image pairs. While standard SIFT failed for most of the datasets, plenty of geometrical correct matches could be found using our approach. Comparing the estimated fundamental matrices and homographies with ground-truth solutions, mean errors of few pixels can be achieved.

  18. Error Estimation Techniques to Refine Overlapping Aerial Image Mosaic Processes via Detected Parameters

    ERIC Educational Resources Information Center

    Bond, William Glenn

    2012-01-01

    In this paper, I propose to demonstrate a means of error estimation preprocessing in the assembly of overlapping aerial image mosaics. The mosaic program automatically assembles several hundred aerial images from a data set by aligning them, via image registration using a pattern search method, onto a GIS grid. The method presented first locates…

  19. Evaluation of Color Settings in Aerial Images with the Use of Eye-Tracking User Study

    NASA Astrophysics Data System (ADS)

    Mirijovsky, J.; Popelka, S.

    2016-06-01

    The main aim of presented paper is to find the most realistic and preferred color settings for four different types of surfaces on the aerial images. This will be achieved through user study with the use of eye-movement recording. Aerial images taken by the unmanned aerial system were used as stimuli. From each image, squared crop area containing one of the studied types of surfaces (asphalt, concrete, water, soil, and grass) was selected. For each type of surface, the real value of reflectance was found with the use of precise spectroradiometer ASD HandHeld 2 which measures the reflectance. The device was used at the same time as aerial images were captured, so lighting conditions and state of vegetation were equal. The spectral resolution of the ASD device is better than 3.0 nm. For defining the RGB values of selected type of surface, the spectral reflectance values recorded by the device were merged into wider groups. Finally, we get three groups corresponding to RGB color system. Captured images were edited with the graphic editor Photoshop CS6. Contrast, clarity, and brightness were edited for all surface types on images. Finally, we get a set of 12 images of the same area with different color settings. These images were put into the grid and used as stimuli for the eye-tracking experiment. Eye-tracking is one of the methods of usability studies and it is considered as relatively objective. Eye-tracker SMI RED 250 with the sampling frequency 250 Hz was used in the study. As respondents, a group of 24 students of Geoinformatics and Geography was used. Their task was to select which image in the grid has the best color settings. The next task was to select which color settings they prefer. Respondents' answers were evaluated and the most realistic and most preferable color settings were found. The advantage of the eye-tracking evaluation was that also the process of the selection of the answers was analyzed. Areas of Interest were marked around each image in the

  20. Using aberration test patterns to optimize the performance of EUV aerial imaging microscopes

    SciTech Connect

    Mochi, Iacopo; Goldberg, Kenneth A.; Miyakawa, Ryan; Naulleau, Patrick; Han, Hak-Seung; Huh, Sungmin

    2009-06-16

    The SEMATECH Berkeley Actinic Inspection Tool (AIT) is a prototype EUV-wavelength zoneplate microscope that provides high quality aerial image measurements of EUV reticles. To simplify and improve the alignment procedure we have created and tested arrays of aberration-sensitive patterns on EUV reticles and we have compared their images collected with the AIT to the expected shapes obtained by simulating the theoretical wavefront of the system. We obtained a consistent measure of coma and astigmatism in the center of the field of view using two different patterns, revealing a misalignment condition in the optics.

  1. Realization of an aerial 3D image that occludes the background scenery.

    PubMed

    Kakeya, Hideki; Ishizuka, Shuta; Sato, Yuya

    2014-10-06

    In this paper we describe an aerial 3D image that occludes far background scenery based on coarse integral volumetric imaging (CIVI) technology. There have been many volumetric display devices that present floating 3D images, most of which have not reproduced the visual occlusion. CIVI is a kind of multilayered integral imaging and realizes an aerial volumetric image with visual occlusion by combining multiview and volumetric display technologies. The conventional CIVI, however, cannot show a deep space, for the number of layered panels is limited because of the low transmittance of each panel. To overcome this problem, we propose a novel optical design to attain an aerial 3D image that occludes far background scenery. In the proposed system, a translucent display panel with 120 Hz refresh rate is located between the CIVI system and the aerial 3D image. The system modulates between the aerial image mode and the background image mode. In the aerial image mode, the elemental images are shown on the CIVI display and the inserted translucent display is uniformly translucent. In the background image mode, the black shadows of the elemental images in a white background are shown on the CIVI display and the background scenery is displayed on the inserted translucent panel. By alternation of these two modes at 120 Hz, an aerial 3D image that visually occludes the far background scenery is perceived by the viewer.

  2. Line matching based on planar homography for stereo aerial images

    NASA Astrophysics Data System (ADS)

    Sun, Yanbiao; Zhao, Liang; Huang, Shoudong; Yan, Lei; Dissanayake, Gamini

    2015-06-01

    We propose an efficient line matching algorithm for a pair of calibrated aerial photogrammetric images, which makes use of sparse 3D points triangulated from 2D point feature correspondences to guide line matching based on planar homography. Two different strategies are applied in the proposed line matching algorithm for two different cases. When three or more points can be found coplanar with the line segment to be matched, the points are used to fit a plane and obtain an accurate planar homography. When one or two points can be found, the approximate terrain plane parallel to the line segment is utilized to compute an approximate planar homography. Six pairs of rural or urban aerial images are used to demonstrate the efficiency and validity of the proposed algorithm. Compared with line matching based on 2D point feature correspondences, the proposed method can increase the number of correctly matched line segments. In addition, compared with most line matching methods that do not use 2D point feature correspondences, the proposed method has better efficiency, although it obtains fewer matches. The C/C++ source code for the proposed algorithm is available at

  3. Direct Penguin Counting Using Unmanned Aerial Vehicle Image

    NASA Astrophysics Data System (ADS)

    Hyun, C. U.; Kim, H. C.; Kim, J. H.; Hong, S. G.

    2015-12-01

    This study presents an application of unmanned aerial vehicle (UAV) images to monitor penguin colony in Baton Peninsula, King George Island, Antarctica. The area around Narębski Point located on the southeast coast of Barton Peninsula was designated as Antarctic Specially Protected Area No. 171 (ASPA 171), and Chinstrap and Gentoo penguins inhabit in this area. The UAV images were acquired in a part of ASPA 171 from four flights in a single day, Jan 18, 2014. About 360 images were mosaicked as an image of about 3 cm spatial resolution and then a subset including representative penguin rookeries was selected. The subset image was segmented based on gradient map of pixel values, and spectral and spatial attributes were assigned to each segment. The object based image analysis (OBIA) was conducted with consideration of spectral attributes including mean and minimum values of each segment and various shape attributes such as area, length, compactness and roundness to detect individual penguin. The segments indicating individual penguin were effectively detected on rookeries with high contrasts in the spectral and shape attributes. The importance of periodic and precise monitoring of penguins has been recognized because variations of their populations reflect environmental changes and disturbance from human activities. Utilization of very high resolution imaging method shown in this study can be applied to other penguin habitats in Antarctica, and the results will be able to support establishing effective environmental management plans.

  4. Precision Relative Positioning for Automated Aerial Refueling from a Stereo Imaging System

    DTIC Science & Technology

    2015-03-01

    PRECISION RELATIVE POSITIONING FOR AUTOMATED AERIAL REFUELING FROM A STEREO IMAGING SYSTEM THESIS Kyle P. Werner, 2Lt, USAF AFIT-ENG-MS-15-M-048...Government and is not subject to copyright protection in the United States. AFIT-ENG-MS-15-M-048 PRECISION RELATIVE POSITIONING FOR AUTOMATED AERIAL...RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENG-MS-15-M-048 PRECISION RELATIVE POSITIONING FOR AUTOMATED AERIAL REFUELING FROM A STEREO IMAGING SYSTEM THESIS

  5. Region Three Aerial Measurement System Flight Planning Tool - 12006

    SciTech Connect

    Messick, Chuck; Pham, Minh; Smith, Ron; Isiminger, Dave

    2012-07-01

    The Region 3 Aerial Measurement System Flight Planning Tool is used by the National Nuclear Security Agency (NNSA), United States Department of Energy, Radiological Assistance Program, Region 3, to respond to emergency radiological situations. The tool automates the flight planning package process while decreasing Aerial Measuring System response times and decreases the potential for human error. Deployment of the Region Three Aerial Measurement System Flight Planning Tool has resulted in an immediate improvement to the flight planning process in that time required for mission planning has been reduced from 1.5 hours to 15 minutes. Anecdotally, the RAP team reports that the rate of usable data acquired during surveys has improved from 40-60 percent to over 90 percent since they began using the tool. Though the primary product of the flight planning tool is a pdf format document for use by the aircraft flight crew, the RAP team has begun carrying their laptop computer on the aircraft during missions. By connecting a Global Positioning System (GPS) device to the laptop and using ESRI ArcMap's GPS tool bar to overlay the aircraft position directly on the flight plan in real time, the RAP team can evaluate and correct the aircraft position as the mission is executed. (authors)

  6. Automated updating of road databases from aerial images

    NASA Astrophysics Data System (ADS)

    Baltsavias, Emmanuel; Zhang, Chunsun

    2005-03-01

    This paper presents a practical system for automated 3-D road network reconstruction from aerial images using knowledge-based image analysis. The system integrates processing of color image data and information from digital spatial databases, extracts and fuses multiple object cues, takes into account context information, employs existing knowledge, rules and models, and treats each road subclass accordingly. The key of the system is the use of knowledge as much as possible to increase success rate and reliability of the results, working in 2-D images and 3-D object space, and use of 2-D and 3-D interaction when needed. Another advantage of the developed system is that it can correctly and reliably handle problematic areas caused by shadows and occlusions. This work is part of a project to improve and update the 1:25,000 vector maps of Switzerland. The system was originally developed to processed stereo images. Recently, it has been modified to work also with single orthoimages. The system has been implemented as a stand-alone software package, and has been tested on a large number of images with different landscape. In this paper, various parts of the developed system are discussed, and the results of our system in the tests conducted independently by our project partner in Switzerland, and the test results with orthoimages in a test site in The Netherlands are presented together with the system performance evaluation.

  7. Integration of aerial imaging and variable-rate technology for site-specific aerial herbicide application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As remote sensing and variable rate technology are becoming more available for aerial applicators, practical methodologies on effective integration of these technologies are needed for site-specific aerial applications of crop production and protection materials. The objectives of this study were to...

  8. Moving object detection using dynamic motion modelling from UAV aerial images.

    PubMed

    Saif, A F M Saifuddin; Prabuwono, Anton Satria; Mahayuddin, Zainal Rasyid

    2014-01-01

    Motion analysis based moving object detection from UAV aerial image is still an unsolved issue due to inconsideration of proper motion estimation. Existing moving object detection approaches from UAV aerial images did not deal with motion based pixel intensity measurement to detect moving object robustly. Besides current research on moving object detection from UAV aerial images mostly depends on either frame difference or segmentation approach separately. There are two main purposes for this research: firstly to develop a new motion model called DMM (dynamic motion model) and secondly to apply the proposed segmentation approach SUED (segmentation using edge based dilation) using frame difference embedded together with DMM model. The proposed DMM model provides effective search windows based on the highest pixel intensity to segment only specific area for moving object rather than searching the whole area of the frame using SUED. At each stage of the proposed scheme, experimental fusion of the DMM and SUED produces extracted moving objects faithfully. Experimental result reveals that the proposed DMM and SUED have successfully demonstrated the validity of the proposed methodology.

  9. Aerial imaging manages pipeline right-of-way programs

    SciTech Connect

    Jadkowski, M.A.; Convery, P.

    1996-02-01

    Pipeline companies that own and manage extensive rights-of-way corridors are facing ever-increasing regulatory pressures, operating issues and ongoing needs to remain competitive in today`s marketplace. The digital aerial rights-of-way monitoring system (DARMS) is a personal computer-based digital charge-coupled device (CCD) camera integrated with a high-capacity tape recorder. DARMS was developed through NASA by the Stennis Space Center for use in a Sewall aircraft. Sewall is responsible for its operational testing and developing the image products for pipeline monitoring. DARMS consists of a personal computer main control unit (MCU), a Kodak Megaplus 1.4-CCD camera head, a monochrome video monitor for in-flight operation, and an Exabyte 8500 8-millimeter tape recorder for image data storage. The system is designed to be operated in a small, unpressurized aircraft flown by a single pilot. The control program software provides a highly autonomous turnkey operation. After a mission has been flown, Exabyte tape is loaded onto a Sun workstation and the images are contrast-balanced and spatially enhanced using a mid-high filtering algorithm. Depending on client requirements, images also may be geo-referenced to a coordinate system or mosaicked together. The resulting image frames are indexed using their GPS location, delivered to the client and archived.

  10. Application of Digital Image Correlation Method to Improve the Accuracy of Aerial Photo Stitching

    NASA Astrophysics Data System (ADS)

    Tung, Shih-Heng; Jhou, You-Liang; Shih, Ming-Hsiang; Hsiao, Han-Wei; Sung, Wen-Pei

    2016-04-01

    Satellite images and traditional aerial photos have been used in remote sensing for a long time. However, there are some problems with these images. For example, the resolution of satellite image is insufficient, the cost to obtain traditional images is relatively high and there is also human safety risk in traditional flight. These result in the application limitation of these images. In recent years, the control technology of unmanned aerial vehicle (UAV) is rapidly developed. This makes unmanned aerial vehicle widely used in obtaining aerial photos. Compared to satellite images and traditional aerial photos, these aerial photos obtained using UAV have the advantages of higher resolution, low cost. Because there is no crew in UAV, it is still possible to take aerial photos using UAV under unstable weather conditions. Images have to be orthorectified and their distortion must be corrected at first. Then, with the help of image matching technique and control points, these images can be stitched or used to establish DEM of ground surface. These images or DEM data can be used to monitor the landslide or estimate the volume of landslide. For the image matching, we can use such as Harris corner method, SIFT or SURF to extract and match feature points. However, the accuracy of these methods for matching is about pixel or sub-pixel level. The accuracy of digital image correlation method (DIC) during image matching can reach about 0.01pixel. Therefore, this study applies digital image correlation method to match extracted feature points. Then the stitched images are observed to judge the improvement situation. This study takes the aerial photos of a reservoir area. These images are stitched under the situations with and without the help of DIC. The results show that the misplacement situation in the stitched image using DIC to match feature points has been significantly improved. This shows that the use of DIC to match feature points can actually improve the accuracy of

  11. Initial Efforts toward Mission-Representative Imaging Surveys from Aerial Explorers

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Plice, Laura; Ippolito, Corey; Young, Larry A.; Lau, Benton; Lee, Pascal

    2004-01-01

    Numerous researchers have proposed the use of robotic aerial explorers to perform scientific investigation of planetary bodies in our solar system. One of the essential tasks for any aerial explorer is to be able to perform scientifically valuable imaging surveys. The focus of this paper is to discuss the challenges implicit in, and recent observations related to, acquiring mission-representative imaging data from a small fixed-wing UAV, acting as a surrogate planetary aerial explorer. This question of successfully performing aerial explorer surveys is also tied to other topics of technical investigation, including the development of unique bio-inspired technologies.

  12. Research of aerial imaging spectrometer data acquisition technology based on USB 3.0

    NASA Astrophysics Data System (ADS)

    Huang, Junze; Wang, Yueming; He, Daogang; Yu, Yanan

    2016-11-01

    With the emergence of UAV (unmanned aerial vehicle) platform for aerial imaging spectrometer, research of aerial imaging spectrometer DAS(data acquisition system) faces new challenges. Due to the limitation of platform and other factors, the aerial imaging spectrometer DAS requires small-light, low-cost and universal. Traditional aerial imaging spectrometer DAS system is expensive, bulky, non-universal and unsupported plug-and-play based on PCIe. So that has been unable to meet promotion and application of the aerial imaging spectrometer. In order to solve these problems, the new data acquisition scheme bases on USB3.0 interface.USB3.0 can provide guarantee of small-light, low-cost and universal relying on the forward-looking technology advantage. USB3.0 transmission theory is up to 5Gbps.And the GPIF programming interface achieves 3.2Gbps of the effective theoretical data bandwidth.USB3.0 can fully meet the needs of the aerial imaging spectrometer data transmission rate. The scheme uses the slave FIFO asynchronous data transmission mode between FPGA and USB3014 interface chip. Firstly system collects spectral data from TLK2711 of high-speed serial interface chip. Then FPGA receives data in DDR2 cache after ping-pong data processing. Finally USB3014 interface chip transmits data via automatic-dma approach and uploads to PC by USB3.0 cable. During the manufacture of aerial imaging spectrometer, the DAS can achieve image acquisition, transmission, storage and display. All functions can provide the necessary test detection for aerial imaging spectrometer. The test shows that system performs stable and no data lose. Average transmission speed and storage speed of writing SSD can stabilize at 1.28Gbps. Consequently ,this data acquisition system can meet application requirements for aerial imaging spectrometer.

  13. Semantic Segmentation of Aerial Images with AN Ensemble of Cnns

    NASA Astrophysics Data System (ADS)

    Marmanis, D.; Wegner, J. D.; Galliani, S.; Schindler, K.; Datcu, M.; Stilla, U.

    2016-06-01

    This paper describes a deep learning approach to semantic segmentation of very high resolution (aerial) images. Deep neural architectures hold the promise of end-to-end learning from raw images, making heuristic feature design obsolete. Over the last decade this idea has seen a revival, and in recent years deep convolutional neural networks (CNNs) have emerged as the method of choice for a range of image interpretation tasks like visual recognition and object detection. Still, standard CNNs do not lend themselves to per-pixel semantic segmentation, mainly because one of their fundamental principles is to gradually aggregate information over larger and larger image regions, making it hard to disentangle contributions from different pixels. Very recently two extensions of the CNN framework have made it possible to trace the semantic information back to a precise pixel position: deconvolutional network layers undo the spatial downsampling, and Fully Convolution Networks (FCNs) modify the fully connected classification layers of the network in such a way that the location of individual activations remains explicit. We design a FCN which takes as input intensity and range data and, with the help of aggressive deconvolution and recycling of early network layers, converts them into a pixelwise classification at full resolution. We discuss design choices and intricacies of such a network, and demonstrate that an ensemble of several networks achieves excellent results on challenging data such as the ISPRS semantic labeling benchmark, using only the raw data as input.

  14. Automatic Line Network Extraction from Aerial Imagery of Urban Areas through Knowledge Based Image Analysis

    DTIC Science & Technology

    1989-08-01

    Automatic Line Network Extraction from Aerial Imangery of Urban Areas Sthrough KnowledghBased Image Analysis N 04 Final Technical ReportI December...Automatic Line Network Extraction from Aerial Imagery of Urban Areas through Knowledge Based Image Analysis Accesion For NTIS CRA&I DTIC TAB 0...paittern re’ognlition. blac’kboardl oriented symbollic processing, knowledge based image analysis , image understanding, aer’ial imsagery, urban area, 17

  15. A registration strategy for long spatio-temporal aerial remote sensing image sequence

    NASA Astrophysics Data System (ADS)

    Cao, Yutian; Yan, Dongmei; Li, Jianming; Wang, Gang

    2015-12-01

    A novel registration strategy for aerial image sequence is put forward to adapt to the long spatio-temporal span of the aerial remote sensing imaging. By setting keyframe, this strategy aligns all images in sequence to a unified datum with high registration sustainability and precision. The contrast experiment on different registration strategies is carried out based on SIFT feature matching of mid-infrared aerial sequences. The experiment results show that the proposed strategy performs well on long spatio-temporal sequences with different imaging resolutions and scenes.

  16. Computer vision-based orthorectification and georeferencing of aerial image sets

    NASA Astrophysics Data System (ADS)

    Faraji, Mohammad Reza; Qi, Xiaojun; Jensen, Austin

    2016-07-01

    Generating a georeferenced mosaic map from unmanned aerial vehicle (UAV) imagery is a challenging task. Direct and indirect georeferencing methods may fail to generate an accurate mosaic map due to the erroneous exterior orientation parameters stored in the inertial measurement unit (IMU), erroneous global positioning system (GPS) data, and difficulty in locating ground control points (GCPs) or having a sufficient number of GCPs. This paper presents a practical framework to orthorectify and georeference aerial images using the robust features-based matching method. The proposed georeferencing process is fully automatic and does not require any GCPs. It is also a near real-time process which can be used to determine whether aerial images taken by UAV cover the entire target area. We also extend this framework to use the inverse georeferencing process to update the IMU/GPS data which can be further used to calibrate the camera of the UAV, reduce IMU/GPS errors, and thus produce more accurate mosaic maps by employing any georeferencing method. Our experiments demonstrate the effectiveness of the proposed framework in producing comparable mosaic maps as commercial software Agisoft and the effectiveness of the extended framework in significantly reducing the errors in the IMU/GPS data.

  17. Moment feature based fast feature extraction algorithm for moving object detection using aerial images.

    PubMed

    Saif, A F M Saifuddin; Prabuwono, Anton Satria; Mahayuddin, Zainal Rasyid

    2015-01-01

    Fast and computationally less complex feature extraction for moving object detection using aerial images from unmanned aerial vehicles (UAVs) remains as an elusive goal in the field of computer vision research. The types of features used in current studies concerning moving object detection are typically chosen based on improving detection rate rather than on providing fast and computationally less complex feature extraction methods. Because moving object detection using aerial images from UAVs involves motion as seen from a certain altitude, effective and fast feature extraction is a vital issue for optimum detection performance. This research proposes a two-layer bucket approach based on a new feature extraction algorithm referred to as the moment-based feature extraction algorithm (MFEA). Because a moment represents the coherent intensity of pixels and motion estimation is a motion pixel intensity measurement, this research used this relation to develop the proposed algorithm. The experimental results reveal the successful performance of the proposed MFEA algorithm and the proposed methodology.

  18. Coastline Extraction from Aerial Images Based on Edge Detection

    NASA Astrophysics Data System (ADS)

    Paravolidakis, V.; Moirogiorgou, K.; Ragia, L.; Zervakis, M.; Synolakis, C.

    2016-06-01

    Nowadays coastline extraction and tracking of its changes become of high importance because of the climate change, global warming and rapid growth of human population. Coastal areas play a significant role for the economy of the entire region. In this paper we propose a new methodology for automatic extraction of the coastline using aerial images. A combination of a four step algorithm is used to extract the coastline in a robust and generalizable way. First, noise distortion is reduced in order to ameliorate the input data for the next processing steps. Then, the image is segmented into two regions, land and sea, through the application of a local threshold to create the binary image. The result is further processed by morphological operators with the aim that small objects are being eliminated and only the objects of interest are preserved. Finally, we perform edge detection and active contours fitting in order to extract and model the coastline. These algorithmic steps are illustrated through examples, which demonstrate the efficacy of the proposed methodology.

  19. Aerial Measuring System (AMS) Baseline Surveys for Emergency Planning

    SciTech Connect

    Lyons, C

    2012-06-04

    Originally established in the 1960s to support the Nuclear Test Program, the AMS mission is to provide a rapid and comprehensive worldwide aerial measurement, analysis, and interpretation capability in response to a nuclear/radiological emergency. AMS provides a responsive team of individuals whose processes allow for a mission to be conducted and completed with results available within hours. This presentation slide-show reviews some of the history of the AMS, summarizes present capabilities and methods, and addresses the value of the surveys.

  20. Efficient registration of multitemporal and multisensor aerial images based on alignment of nonparametric edge features

    NASA Astrophysics Data System (ADS)

    Makrogiannis, Sokratis; Bourbakis, Nikolaos G.

    2010-01-01

    The topic of aerial image registration attracts considerable interest within the imaging research community due to its significance for several applications, including change detection, sensor fusion, and topographic mapping. Our interest is focused on finding the optimal transformation between two aerial images that depict the same visual scene in the presence of pronounced spatial, temporal, and sensor variations. We first introduce a stochastic edge estimation process suitable for geometric shape-based registration, which we also compare to intensity-based registration. Furthermore, we propose an objective function that weights the L2 distances of the edge estimates by the feature points' energy, which we denote by sum of normalized squared differences and compare to standard objective functions, such as mutual information and the sum of absolute centered differences. In the optimization stage, we employ a genetic algorithm scheme in a multiscale image representation scheme to enhance the registration accuracy and reduce the computational load. Our experimental tests, measuring registration accuracy, rate of convergence, and statistical properties of registration errors, suggest that the proposed edge-based representation and objective function in conjunction with genetic algorithm optimization are capable of addressing several forms of imaging variations and producing encouraging registration results.

  1. Automatic orthorectification and mosaicking of oblique images from a zoom lens aerial camera

    NASA Astrophysics Data System (ADS)

    Zhou, Qianfei; Liu, Jinghong

    2015-01-01

    For the purpose of image distortion caused by the oblique photography of a zoom lens aerial camera, a fast and accurate image autorectification and mosaicking method in a ground control points (GCPs)-free environment was proposed. With the availability of integrated global positioning system (GPS) and inertial measurement units, the camera's exterior orientation parameters (EOPs) were solved through direct georeferencing. The one-parameter division model was adopted to estimate the distortion coefficient and the distortion center coordinates for the zoom lens to correct the lens distortion. Using the camera's EOPs and the lens distortion parameters, the oblique aerial images specified in the camera frame were geo-orthorectified into the mapping frame and then were mosaicked together based on the mapping coordinates to produce a larger field and high-resolution georeferenced image. Experimental results showed that the orthorectification error was less than 1.80 m at an 1100 m flight height above ground level, when compared with 14 presurveyed ground checkpoints which were measured by differential GPS. The mosaic error was about 1.57 m compared with 18 checkpoints. The accuracy was considered sufficient for urgent response such as military reconnaissance and disaster monitoring where GCPs were not available.

  2. Automatic Line Network Extraction from Aerial Imagery of Urban Areas through Knowledge-Based Image Analysis.

    DTIC Science & Technology

    1988-01-19

    approach for the analysis of aerial images. In this approach image analysis is performed ast three levels of abstraction, namely iconic or low-level... image analysis , symbolic or medium-level image analysis , and semantic or high-level image analysis . Domain dependent knowledge about prototypical urban

  3. Detection of object motion regions in aerial image pairs with a multilayer markovian model.

    PubMed

    Benedek, Csaba; Szirányi, Tamás; Kato, Zoltan; Zerubia, Josiane

    2009-10-01

    We propose a new Bayesian method for detecting the regions of object displacements in aerial image pairs. We use a robust but coarse 2-D image registration algorithm. Our main challenge is to eliminate the registration errors from the extracted change map. We introduce a three-layer Markov random field (L(3)MRF) model which integrates information from two different features, and ensures connected homogenous regions in the segmented images. Validation is given on real aerial photos.

  4. Damaged road extracting with high-resolution aerial image of post-earthquake

    NASA Astrophysics Data System (ADS)

    Zheng, Zezhong; Pu, Chengjun; Zhu, Mingcang; Xia, Jun; Zhang, Xiang; Liu, Yalan; Li, Jiang

    2015-12-01

    With the rapid development of earth observation technology, remote sensing images have played more important roles, because the high resolution images can provide the original data for object recognition, disaster investigation, and so on. When a disastrous earthquake breaks out, a large number of roads could be damaged instantly. There are a lot of approaches about road extraction, such as region growing, gray threshold, and k-means clustering algorithm. We could not obtain the undamaged roads with these approaches, if the trees or their shadows along the roads are difficult to be distinguished from the damaged road. In the paper, a method is presented to extract the damaged road with high resolution aerial image of post-earthquake. Our job is to extract the damaged road and the undamaged with the aerial image. We utilized the mathematical morphology approach and the k-means clustering algorithm to extract the road. Our method was composed of four ingredients. Firstly, the mathematical morphology filter operators were employed to remove the interferences from the trees or their shadows. Secondly, the k-means algorithm was employed to derive the damaged segments. Thirdly, the mathematical morphology approach was used to extract the undamaged road; Finally, we could derive the damaged segments by overlaying the road networks of pre-earthquake. Our results showed that the earthquake, broken in Yaan, was disastrous for the road, Therefore, we could take more measures to keep it clear.

  5. Model-based neural network algorithm for coffee ripeness prediction using Helios UAV aerial images

    NASA Astrophysics Data System (ADS)

    Furfaro, R.; Ganapol, B. D.; Johnson, L. F.; Herwitz, S.

    2005-10-01

    Over the past few years, NASA has had a great interest in exploring the feasibility of using Unmanned Aerial Vehicles (UAVs), equipped with multi-spectral imaging systems, as long-duration platform for crop monitoring. To address the problem of predicting the ripeness level of the Kauai coffee plantation field using UAV aerial images, we proposed a neural network algorithm based on a nested Leaf-Canopy radiative transport Model (LCM2). A model-based, multi-layer neural network using backpropagation has been designed and trained to learn the functional relationship between the airborne reflectance and the percentage of ripe, over-ripe and under-ripe cherries present in the field. LCM2 was used to generate samples of the desired map. Post-processing analysis and tests on synthetic coffee field data showed that the network has accurately learn the map. A new Domain Projection Technique (DPT) was developed to deal with situations where the measured reflectance fell outside the training set. DPT projected the reflectance into the domain forcing the network to provide a physical solution. Tests were conducted to estimate the error bound. The synergistic combination of neural network algorithms and DPT lays at the core of a more complex algorithm designed to process UAV images. The application of the algorithm to real airborne images shows predictions consistent with post-harvesting data and highlights the potential of the overall methodology.

  6. Comparison of SLAR images and small-scale, low-sun aerial photographs.

    NASA Technical Reports Server (NTRS)

    Clark, M. M.

    1971-01-01

    A comparison of side-looking airborne radar (SLAR) images and black and white aerial photos of similar scale and illumination of an area in the Mojave Desert of California shows that aerial photos yield far more information about geology than do SLAR images because of greater resolution, tonal range, and geometric fidelity, and easier use in stereo. Nevertheless, radar can differentiate some materials or surfaces that aerial photos cannot; thus, they should be considered as complementary, rather than competing tools in geologic investigations. The most significant advantage of SLAR, however, is its freedom from the stringent conditions of weather, date, and time that are required by small-scale aerial photos taken with a specified direction and angle of illumination. Indeed, in low latitudes, SLAR is the only way to obtain small-scale images with low illumination from certain directions; moreover, in areas of nearly continuous cloudiness, radar may be the only practical source of small-scale images.

  7. Study of Automatic Image Rectification and Registration of Scanned Historical Aerial Photographs

    NASA Astrophysics Data System (ADS)

    Chen, H. R.; Tseng, Y. H.

    2016-06-01

    Historical aerial photographs directly provide good evidences of past times. The Research Center for Humanities and Social Sciences (RCHSS) of Taiwan Academia Sinica has collected and scanned numerous historical maps and aerial images of Taiwan and China. Some maps or images have been geo-referenced manually, but most of historical aerial images have not been registered since there are no GPS or IMU data for orientation assisting in the past. In our research, we developed an automatic process of matching historical aerial images by SIFT (Scale Invariant Feature Transform) for handling the great quantity of images by computer vision. SIFT is one of the most popular method of image feature extracting and matching. This algorithm extracts extreme values in scale space into invariant image features, which are robust to changing in rotation scale, noise, and illumination. We also use RANSAC (Random sample consensus) to remove outliers, and obtain good conjugated points between photographs. Finally, we manually add control points for registration through least square adjustment based on collinear equation. In the future, we can use image feature points of more photographs to build control image database. Every new image will be treated as query image. If feature points of query image match the features in database, it means that the query image probably is overlapped with control images.With the updating of database, more and more query image can be matched and aligned automatically. Other research about multi-time period environmental changes can be investigated with those geo-referenced temporal spatial data.

  8. Time delay for aerial ammonia concentration measurements in livestock buildings.

    PubMed

    Rom, Hans Benny; Zhang, Guo-Qiang

    2010-01-01

    Correct measurements of ammonia concentration in air still present considerable challenges. The high water solubility and polarity can cause it to adsorb on surfaces in the entire sampling system, including sampling lines, filters, valves, pumps and instruments, causing substantial measuring errors and time delays. To estimate time delay characteristics of a Photo Acoustic Multi Gas Monitor 1312 and a Multi Point Sampler continuous measurement of aerial ammonia concentrations at different levels was performed. In order to obtain reproducible data, a wind tunnel was used to generate selected concentrations inside and a background concentration representing the air inlet of the tunnel. Four different concentration levels (0.8 ppm, 6.2 ppm, 9.7 ppm and 13.7 ppm) were used in the experiments, with an additional outdoor concentration level as background. The results indicated a substantial time delay when switching between the measuring positions with high and low concentration and vice versa. These properties may course serious errors for estimation of e.g. gas emissions whenever more than one measuring channel is applied. To reduce the measurement errors, some suggestions regarding design of the measurement setup and measuring strategies were presented.

  9. Density estimation in aerial images of large crowds for automatic people counting

    NASA Astrophysics Data System (ADS)

    Herrmann, Christian; Metzler, Juergen

    2013-05-01

    Counting people is a common topic in the area of visual surveillance and crowd analysis. While many image-based solutions are designed to count only a few persons at the same time, like pedestrians entering a shop or watching an advertisement, there is hardly any solution for counting large crowds of several hundred persons or more. We addressed this problem previously by designing a semi-automatic system being able to count crowds consisting of hundreds or thousands of people based on aerial images of demonstrations or similar events. This system requires major user interaction to segment the image. Our principle aim is to reduce this manual interaction. To achieve this, we propose a new and automatic system. Besides counting the people in large crowds, the system yields the positions of people allowing a plausibility check by a human operator. In order to automatize the people counting system, we use crowd density estimation. The determination of crowd density is based on several features like edge intensity or spatial frequency. They indicate the density and discriminate between a crowd and other image regions like buildings, bushes or trees. We compare the performance of our automatic system to the previous semi-automatic system and to manual counting in images. By counting a test set of aerial images showing large crowds containing up to 12,000 people, the performance gain of our new system will be measured. By improving our previous system, we will increase the benefit of an image-based solution for counting people in large crowds.

  10. Aerial wetting contact angle measurement using confocal microscopy

    NASA Astrophysics Data System (ADS)

    Chesna, Jacob W.; Wiedmaier, Bob F.; Wang, Jinlin; Samara, Ayman; Leach, Richard K.; Her, Tsing-Hua; Smith, Stuart T.

    2016-12-01

    A method is presented in which the wetting contact angle of a sessile drop is acquired aerially using confocal techniques to measure the radius and the height of a droplet deposited on a planar surface. The repeatability of this method is typically less than 0.25°, and often less than 0.1°, for droplet diameters less than 1 mm. To evaluate accuracy of this method, an instrument uncertainty budget is developed, which predicts a combined uncertainty of 0.91° for a 1 mm diameter water droplet with a contact angle of 110°. For droplets having diameters less than 1 mm and contact angles between 15° and 160°, these droplets approach spherical shape and their contact angles can be computed analytically with less than 1% error. For larger droplets, gravitational deformation needs to be considered.

  11. Aerial Image Microscopes for the Inspection of Defects in EUV Masks

    SciTech Connect

    Barty, A; Taylor, J S; Hudyma, R; Spiller, E; Sweeney, D W; Shelden, G; Urbach, J-P

    2002-10-22

    The high volume inspection equipment currently available to support development of EUV blanks is non-actinic. The same is anticipated for patterned EUV mask inspection. Once potential defects are identified and located by such non-actinic inspection techniques, it is essential to have instrumentation to perform detailed characterization, and if repairs are performed, re-evaluation. The ultimate metric for the acceptance or rejection of a mask due to a defect, is the wafer level impact. Thus measuring the aerial image for the site under question is required. An EUV Aerial Image Microscope (''AIM'') similar to the current AIM tools for 248nm and 193nm exposure wavelength is the natural solution for this task. Due to the complicated manufacturing process of EUV blanks, AIM measurements might also be beneficial to accurately assessing the severity of a blank defect. This is an additional application for an EUV AIM as compared to today's use In recognition of the critical role of an EUV AIM for the successful implementation of EUV blank and mask supply, International SEMATECH initiated this design study with the purpose to define the technical requirements for accurately simulating EUV scanner performance, demonstrating the feasibility to meet these requirements and to explore various technical approaches to building an EUV AIM tool.

  12. Comparison of binary mask defect printability analysis using virtual stepper system and aerial image microscope system

    NASA Astrophysics Data System (ADS)

    Phan, Khoi A.; Spence, Chris A.; Dakshina-Murthy, S.; Bala, Vidya; Williams, Alvina M.; Strener, Steve; Eandi, Richard D.; Li, Junling; Karklin, Linard

    1999-12-01

    As advanced process technologies in the wafer fabs push the patterning processes toward lower k1 factor for sub-wavelength resolution printing, reticles are required to use optical proximity correction (OPC) and phase-shifted mask (PSM) for resolution enhancement. For OPC/PSM mask technology, defect printability is one of the major concerns. Current reticle inspection tools available on the market sometimes are not capable of consistently differentiating between an OPC feature and a true random defect. Due to the process complexity and high cost associated with the making of OPC/PSM reticles, it is important for both mask shops and lithography engineers to understand the impact of different defect types and sizes to the printability. Aerial Image Measurement System (AIMS) has been used in the mask shops for a number of years for reticle applications such as aerial image simulation and transmission measurement of repaired defects. The Virtual Stepper System (VSS) provides an alternative method to do defect printability simulation and analysis using reticle images captured by an optical inspection or review system. In this paper, pre- programmed defects and repairs from a Defect Sensitivity Monitor (DSM) reticle with 200 nm minimum features (at 1x) will be studied for printability. The simulated resist lines by AIMS and VSS are both compared to SEM images of resist wafers qualitatively and quantitatively using CD verification.Process window comparison between unrepaired and repaired defects for both good and bad repair cases will be shown. The effect of mask repairs to resist pattern images for the binary mask case will be discussed. AIMS simulation was done at the International Sematech, Virtual stepper simulation at Zygo and resist wafers were processed at AMD-Submicron Development Center using a DUV lithographic process for 0.18 micrometer Logic process technology.

  13. Measurement of atmospheric surface layer turbulence using unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Witte, Brandon; Smith, Lorli; Schlagenhauf, Cornelia; Bailey, Sean

    2016-11-01

    We describe measurements of the turbulence within the atmospheric surface layer using highly instrumented and autonomous unmanned aerial vehicles (UAVs). Results from the CLOUDMAP measurement campaign in Stillwater Oklahoma are presented including turbulence statistics measured during the transition from stably stratified to convective conditions. The measurements were made using pre-fabricated fixed-wing remote-control aircraft adapted to fly autonomously and carry multi-hole pressure probes, pressure, temperature and humidity sensors. Two aircraft were flown simultaneously, with one flying a flight path intended to profile the boundary layer up to 100 m and the other flying at a constant fixed altitude of 50 m. The evolution of various turbulent statistics was determined from these flights, including Reynolds stresses, correlations, spectra and structure functions. These results were compared to those measured by a sonic anemometer located on a 7.5 m tower. This work was supported by the National Science Foundation through Grant #CBET-1351411 and by National Science Foundation award #1539070, Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics (CLOUDMAP).

  14. Measurement Capabilities of the DOE ARM Aerial Facility

    NASA Astrophysics Data System (ADS)

    Schmid, B.; Tomlinson, J. M.; Hubbe, J.; Comstock, J. M.; Kluzek, C. D.; Chand, D.; Pekour, M. S.

    2012-12-01

    The Department of Energy Atmospheric Radiation Measurement (ARM) Program is a climate research user facility operating stationary ground sites in three important climatic regimes that provide long-term measurements of climate relevant properties. ARM also operates mobile ground- and ship-based facilities to conduct shorter field campaigns (6-12 months) to investigate understudied climate regimes around the globe. Finally, airborne observations by ARM's Aerial Facility (AAF) enhance the surface-based ARM measurements by providing high-resolution in situ measurements for process understanding, retrieval algorithm development, and model evaluation that is not possible using ground-based techniques. AAF started out in 2007 as a "virtual hangar" with no dedicated aircraft and only a small number of instruments owned by ARM. In this mode, AAF successfully carried out several missions contracting with organizations and investigators who provided their research aircraft and instrumentation. In 2009, the Battelle owned G-1 aircraft was included in the ARM facility. The G-1 is a large twin turboprop aircraft, capable of measurements up to altitudes of 7.5 km and a range of 2,800 kilometers. Furthermore the American Recovery and Reinvestment Act of 2009 provided funding for the procurement of seventeen new instruments to be used aboard the G-1 and other AAF virtual-hangar aircraft. AAF now executes missions in the virtual- and real-hangar mode producing freely available datasets for studying aerosol, cloud, and radiative processes in the atmosphere. AAF is also heavily engaged in the maturation and testing of newly developed airborne sensors to help foster the next generation of airborne instruments. In the presentation we will showcase science applications based on measurements from recent field campaigns such as CARES, CALWATER and TCAP.

  15. Atmospheric Radiation Measurement (ARM) Data from the ARM Aerial Facility

    DOE Data Explorer

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. ARM data is collected both through permanent monitoring stations and field campaigns around the world. Airborne measurements required to answer science questions from researchers or to validate ground data are also collected. To find data from all categories of aerial operations, follow the links from the AAF information page at http://www.arm.gov/sites/aaf. Tables of information will provide start dates, duration, lead scientist, and the research site for each of the named campaigns. The title of a campaign leads, in turn, to a project description, contact information, and links to the data. Users will be requested to create a password, but the data files are free for viewing and downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  16. DOE/NNSA Aerial Measuring System (AMS): Flying the 'Real' Thing

    SciTech Connect

    Craig Lyons

    2011-06-24

    This slide show documents aerial radiation surveys over Japan. Map product is a compilation of daily aerial measuring system missions from the Fukushima Daiichi power plant to 80 km radius. In addition, other flights were conducted over US military bases and the US embassy.

  17. Aerial Radiation Measurements from the Fukushima Dai-ichi Nuclear Power Plant Accident

    SciTech Connect

    Guss, P. P.

    2012-07-16

    This document is a slide show type presentation concerning DOE and Aerial Measuring System (AMS) activities and results with respect to assessing the consequences of the releases from the Fukushima Dai-ichi Nuclear Power Plant. These include ground monitoring and aerial monitoring.

  18. Aerial image simulation for partial coherent system with programming development in MATLAB

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Nazmul; Rahman, Md. Momtazur; Udoy, Ariful Banna

    2014-10-01

    Aerial image can be calculated by either Abbe's method or sum of coherent system decomposition (SOCS) method for partial coherent system. This paper introduces a programming with Matlab code that changes the analytical representation of Abbe's method to the matrix form, which has advantages for both Abbe's method and SOCS since matrix calculation is easier than double integration over object plane or pupil plane. First a singular matrix P is derived from a pupil function and effective light source in the spatial frequency domain. By applying Singular Value Decomposition (SVD) to the matrix P, eigenvalues and eigenfunctions are obtained. The aerial image can then be computed by the eigenvalues and eigenfunctions without calculation of Transmission Cross Coefficient (TCC). The aerial final image is almost identical as an original cross mask and the intensity distribution on image plane shows that it is almost uniform across the linewidth of the mask.

  19. Design and realization of an image mosaic system on the CCD aerial camera

    NASA Astrophysics Data System (ADS)

    Liu, Hai ying; Wang, Peng; Zhu, Hai bin; Li, Yan; Zhang, Shao jun

    2015-08-01

    It has long been difficulties in aerial photograph to stitch multi-route images into a panoramic image in real time for multi-route flight framing CCD camera with very large amount of data, and high accuracy requirements. An automatic aerial image mosaic system based on GPU development platform is described in this paper. Parallel computing of SIFT feature extraction and matching algorithm module is achieved by using CUDA technology for motion model parameter estimation on the platform, which makes it's possible to stitch multiple CCD images in real-time. Aerial tests proved that the mosaic system meets the user's requirements with 99% accuracy and 30 to 50 times' speed improvement of the normal mosaic system.

  20. Automatic forest-fire measuring using ground stations and Unmanned Aerial Systems.

    PubMed

    Martínez-de Dios, José Ramiro; Merino, Luis; Caballero, Fernando; Ollero, Anibal

    2011-01-01

    This paper presents a novel system for automatic forest-fire measurement using cameras distributed at ground stations and mounted on Unmanned Aerial Systems (UAS). It can obtain geometrical measurements of forest fires in real-time such as the location and shape of the fire front, flame height and rate of spread, among others. Measurement of forest fires is a challenging problem that is affected by numerous potential sources of error. The proposed system addresses them by exploiting the complementarities between infrared and visual cameras located at different ground locations together with others onboard Unmanned Aerial Systems (UAS). The system applies image processing and geo-location techniques to obtain forest-fire measurements individually from each camera and then integrates the results from all the cameras using statistical data fusion techniques. The proposed system has been extensively tested and validated in close-to-operational conditions in field fire experiments with controlled safety conditions carried out in Portugal and Spain from 2001 to 2006.

  1. Automatic Forest-Fire Measuring Using Ground Stations and Unmanned Aerial Systems

    PubMed Central

    Martínez-de Dios, José Ramiro; Merino, Luis; Caballero, Fernando; Ollero, Anibal

    2011-01-01

    This paper presents a novel system for automatic forest-fire measurement using cameras distributed at ground stations and mounted on Unmanned Aerial Systems (UAS). It can obtain geometrical measurements of forest fires in real-time such as the location and shape of the fire front, flame height and rate of spread, among others. Measurement of forest fires is a challenging problem that is affected by numerous potential sources of error. The proposed system addresses them by exploiting the complementarities between infrared and visual cameras located at different ground locations together with others onboard Unmanned Aerial Systems (UAS). The system applies image processing and geo-location techniques to obtain forest-fire measurements individually from each camera and then integrates the results from all the cameras using statistical data fusion techniques. The proposed system has been extensively tested and validated in close-to-operational conditions in field fire experiments with controlled safety conditions carried out in Portugal and Spain from 2001 to 2006. PMID:22163958

  2. aerial and ground measurements of emissions from agricultural and forest burns

    EPA Science Inventory

    This poster describes our measurement capabilities, particularly as they relate to interests within Region 7. Aerial instrumentation systems are discussed and field measurement campaigns are described in text and photos.

  3. [Automatic houses detection with color aerial images based on image segmentation].

    PubMed

    He, Pei-Pei; Wan, You-Chuan; Jiang, Peng-Rui; Gao, Xian-Jun; Qin, Jia-Xin

    2014-07-01

    In order to achieve housing automatic detection from high-resolution aerial imagery, the present paper utilized the color information and spectral characteristics of the roofing material, with the image segmentation theory, to study the housing automatic detection method. Firstly, This method proposed in this paper converts the RGB color space to HIS color space, uses the characteristics of each component of the HIS color space and the spectral characteristics of the roofing material for image segmentation to isolate red tiled roofs and gray cement roof areas, and gets the initial segmentation housing areas by using the marked watershed algorithm. Then, region growing is conducted in the hue component with the seed segment sample by calculating the average hue in the marked region. Finally through the elimination of small spots and rectangular fitting process to obtain a clear outline of the housing area. Compared with the traditional pixel-based region segmentation algorithm, the improved method proposed in this paper based on segment growing is in a one-dimensional color space to reduce the computation without human intervention, and can cater to the geometry information of the neighborhood pixels so that the speed and accuracy of the algorithm has been significantly improved. A case study was conducted to apply the method proposed in this paper to high resolution aerial images, and the experimental results demonstrate that this method has a high precision and rational robustness.

  4. High Density Aerial Image Matching: State-Of and Future Prospects

    NASA Astrophysics Data System (ADS)

    Haala, N.; Cavegn, S.

    2016-06-01

    Ongoing innovations in matching algorithms are continuously improving the quality of geometric surface representations generated automatically from aerial images. This development motivated the launch of the joint ISPRS/EuroSDR project "Benchmark on High Density Aerial Image Matching", which aims on the evaluation of photogrammetric 3D data capture in view of the current developments in dense multi-view stereo-image matching. Originally, the test aimed on image based DSM computation from conventional aerial image flights for different landuse and image block configurations. The second phase then put an additional focus on high quality, high resolution 3D geometric data capture in complex urban areas. This includes both the extension of the test scenario to oblique aerial image flights as well as the generation of filtered point clouds as additional output of the respective multi-view reconstruction. The paper uses the preliminary outcomes of the benchmark to demonstrate the state-of-the-art in airborne image matching with a special focus of high quality geometric data capture in urban scenarios.

  5. A two-camera imaging system for pest detection and aerial application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This presentation reports on the design and testing of an airborne two-camera imaging system for pest detection and aerial application assessment. The system consists of two digital cameras with 5616 x 3744 effective pixels. One camera captures normal color images with blue, green and red bands, whi...

  6. A low-cost dual-camera imaging system for aerial applicators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural aircraft provide a readily available remote sensing platform as low-cost and easy-to-use consumer-grade cameras are being increasingly used for aerial imaging. In this article, we report on a dual-camera imaging system we recently assembled that can capture RGB and near-infrared (NIR) i...

  7. Aerial Measuring System Technical Integration Annual Report 2002

    SciTech Connect

    Bechtel Nevada Remote Sensing Laboratory

    2003-06-01

    Fiscal Year 2002 is the second year of a five-year commitment by the U.S. Department of Energy, National Nuclear Security Administration (NNSA) to invest in development of new and state-of-the-art technologies for the Aerial Measuring Systems (AMS) project. In 2000, NNSA committed to two million dollars for AMS Technical Integration (TI) for each of five years. The tragedy of September 11, 2001, profoundly influenced the program. NNSA redirected people and funding resources at the Remote Sensing Laboratory (RSL) to more immediate needs. Funds intended for AMS TI were redirected to NNSA's new posture of leaning further forward throughout. AMS TI was brought to a complete halt on December 10, 2001. Then on April 30, 2002, NNSA Headquarters allowed the restart of AMS TI at the reduced level of $840,000. The year's events resulted in a slow beginning of several projects, some of which were resumed only a few weeks before the AMS TI Symposium held at RSL on July 30.

  8. Aerial image mosaics built using images with vegetation index pre-calculated

    NASA Astrophysics Data System (ADS)

    Rosendo Candido, Leandro; de Castro Jorge, Lúcio André; Luppe, Maximiliam

    2016-10-01

    Precision agriculture (PA) has offered a multitude of benefits to farmers, such as cost reduction, accuracy and speed in decision making. Among the tools that work with PA, the aerial image mosaics have key role in accurate mapping of diseases and pests in crops. A mosaic is the combination of multiple images, creating a new image that covers the property or plots accurately. One of the important analysis for farmers is based on the properties of the reflectance in each range of the electromagnetic spectrum of vegetation. Performing mathematical combinations of the different spectral bands has a better understanding of the spectral response of the vegetation. These combinations are called vegetation index (VI) and are useful for the control of the biomass, water content in leaf, chlorophyll content and others. It is usually calculated VI after the construction of the mosaic, as well the farmer has an accurate analysis of its vegetation. However, building a mosaic of images, it has a high computational cost, taking hours to complete and then apply the VI and to have the first test results. In order to reduce the computational cost of this process, this work aims to present a mosaic of images constructed from images with the VI already pre-calculated providing faster analysis to the farmer, given the fact that applying VI on the image came a this reduction in density image and thus have the gain in computational cost to build the mosaic.

  9. Antarctica: measuring glacier velocity from satellite images

    SciTech Connect

    Lucchitta, B.K.; Ferguson, H.M.

    1986-11-28

    Many Landsat images of Antarctica show distinctive flow and crevasse features in the floating part of ice streams and outlet glaciers immediately below their grounding zones. Some of the features, which move with the glacier or ice stream, remain visible over many years and thus allow time-lapse measurements of ice velocities. Measurements taken from Landsat images of features on Byrd Glacier agree well with detailed ground and aerial observations. The satellite-image technique thus offers a rapid and cost-effective method of obtaining average velocities, to a first order of accuracy, of many ice streams and outlet glaciers near their termini.

  10. Spectral properties of agricultural crops and soils measured from space, aerial, field, and laboratory sensors

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator); Vanderbilt, V. C.; Robinson, B. F.; Daughtry, C. S. T.

    1981-01-01

    Investigations of the multispectral reflectance characteristics of crops and soils as measured from laboratory, field, aerial, and satellite sensor systems are reviewed. The relationships of important biological and physical characteristics to the spectral properties of crops and soils are addressed.

  11. Spatial Feature Evaluation for Aerial Scene Analysis

    SciTech Connect

    Swearingen, Thomas S; Cheriyadat, Anil M

    2013-01-01

    High-resolution aerial images are becoming more readily available, which drives the demand for robust, intelligent and efficient systems to process increasingly large amounts of image data. However, automated image interpretation still remains a challenging problem. Robust techniques to extract and represent features to uniquely characterize various aerial scene categories is key for automated image analysis. In this paper we examined the role of spatial features to uniquely characterize various aerial scene categories. We studied low-level features such as colors, edge orientations, and textures, and examined their local spatial arrangements. We computed correlograms representing the spatial correlation of features at various distances, then measured the distance between correlograms to identify similar scenes. We evaluated the proposed technique on several aerial image databases containing challenging aerial scene categories. We report detailed evaluation of various low-level features by quantitatively measuring accuracy and parameter sensitivity. To demonstrate the feature performance, we present a simple query-based aerial scene retrieval system.

  12. Measurements from an Aerial Vehicle: A New Tool for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Wright, Henry S.; Levine, Joel S.; Croom, Mark A.; Edwards, William C.; Qualls, Garry D.; Gasbarre, Joseph F.

    2004-01-01

    Aerial vehicles fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Aerial vehicles used in planetary exploration bridge the scale and resolution measurement gaps between orbiters (global perspective with limited spatial resolution) and landers (local perspective with high spatial resolution) thus complementing and extending orbital and landed measurements. Planetary aerial vehicles can also survey scientifically interesting terrain that is inaccessible or hazardous to landed missions. The use of aerial assets for performing observations on Mars, Titan, or Venus will enable direct measurements and direct follow-ons to recent discoveries. Aerial vehicles can be used for remote sensing of the interior, surface and atmosphere of Mars, Venus and Titan. Types of aerial vehicles considered are airplane "heavier than air" and airships and balloons "lighter than air". Interdependencies between the science measurements, science goals and objectives, and platform implementation illustrate how the proper balance of science, engineering, and cost, can be achieved to allow for a successful mission. Classification of measurement types along with how those measurements resolve science questions and how these instruments are accommodated within the mission context are discussed.

  13. Measurements from an aerial vehicle: a new tool for planetary exploration

    NASA Astrophysics Data System (ADS)

    Wright, Henry S.; Levine, Joel S.; Croom, Mark A.; Edwards, William C.; Qualls, Garry D.; Gasbarre, Joseph F.

    2004-12-01

    Aerial vehicles fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Aerial vehicles used in planetary exploration bridge the scale and resolution measurement gaps between orbiters (global perspective with limited spatial resolution) and landers (local perspective with high spatial resolution) thus complementing and extending orbital and landed measurements. Planetary aerial vehicles can also survey scientifically interesting terrain that is inaccessible or hazardous to landed missions. The use of aerial assets for performing observations on Mars, Titan, or Venus will enable direct measurements and direct follow-ons to recent discoveries. Aerial vehicles can be used for remote sensing of the interior, surface and atmosphere of Mars, Venus and Titan. Types of aerial vehicles considered are airplane "heavier than air" and airships and balloons "lighter than air." Interdependencies between the science measurements, science goals and objectives, and platform implementation illustrate how the proper balance of science, engineering, and cost, can be achieved to allow for a successful mission. Classification of measurement types along with how those measurements resolve science questions and how these instruments are accommodated within the mission context are discussed.

  14. Measuring orthometric water heights from lightweight Unmanned Aerial Vehicles (UAVs)

    NASA Astrophysics Data System (ADS)

    Bandini, Filippo; Olesen, Daniel; Jakobsen, Jakob; Reyna-Gutierrez, Jose Antonio; Bauer-Gottwein, Peter

    2016-04-01

    A better quantitative understanding of hydrologic processes requires better observations of hydrological variables, such as surface water area, water surface level, its slope and its temporal change. However, ground-based measurements of water heights are restricted to the in-situ measuring stations. Hence, the objective of remote sensing hydrology is to retrieve these hydraulic variables from spaceborne and airborne platforms. The forthcoming Surface Water and Ocean Topography (SWOT) satellite mission will be able to acquire water heights with an expected accuracy of 10 centimeters for rivers that are at least 100 m wide. Nevertheless, spaceborne missions will always face the limitations of: i) a low spatial resolution which makes it difficult to separate water from interfering surrounding areas and a tracking of the terrestrial water bodies not able to detect water heights in small rivers or lakes; ii) a limited temporal resolution which limits the ability to determine rapid temporal changes, especially during extremes. Unmanned Aerial Vehicles (UAVs) are one technology able to fill the gap between spaceborne and ground-based observations, ensuring 1) high spatial resolution; 2) tracking of the water bodies better than any satellite technology; 3) timing of the sampling which only depends on the operator 4) flexibility of the payload. Hence, this study focused on categorizing and testing sensors capable of measuring the range between the UAV and the water surface. The orthometric height of the water surface is then retrieved by subtracting the height above water measured by the sensors from the altitude above sea level retrieved by the onboard GPS. The following sensors were tested: a) a radar, b) a sonar c) a laser digital-camera based prototype developed at Technical University of Denmark. The tested sensors comply with the weight constraint of small UAVs (around 1.5 kg). The sensors were evaluated in terms of accuracy, maximum ranging distance and beam

  15. Aerial-image enables diagrams and animation to be inserted in motion pictures

    NASA Technical Reports Server (NTRS)

    Andrews, S. J., Jr.; Tressel, G. W.

    1967-01-01

    Aerial-image unit makes it possible to insert diagrams and animation into live motion pictures, and also lift an element from a confusing background by suppressing general details. The unit includes a combination of two separate lens systems, the camera-projector system and the field lens system.

  16. Application of high resolution images from unmanned aerial vehicles for hydrology and range science

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A common problem in many natural resource disciplines is the lack of high-enough spatial resolution images that can be used for monitoring and modeling purposes. Advances have been made in the utilization of Unmanned Aerial Vehicles (UAVs) in hydrology and rangeland science. By utilizing low fligh...

  17. Vehicle Detection of Aerial Image Using TV-L1 Texture Decomposition

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wang, G.; Li, Y.; Huang, Y.

    2016-06-01

    Vehicle detection from high-resolution aerial image facilitates the study of the public traveling behavior on a large scale. In the context of road, a simple and effective algorithm is proposed to extract the texture-salient vehicle among the pavement surface. Texturally speaking, the majority of pavement surface changes a little except for the neighborhood of vehicles and edges. Within a certain distance away from the given vector of the road network, the aerial image is decomposed into a smoothly-varying cartoon part and an oscillatory details of textural part. The variational model of Total Variation regularization term and L1 fidelity term (TV-L1) is adopted to obtain the salient texture of vehicles and the cartoon surface of pavement. To eliminate the noise of texture decomposition, regions of pavement surface are refined by seed growing and morphological operation. Based on the shape saliency analysis of the central objects in those regions, vehicles are detected as the objects of rectangular shape saliency. The proposed algorithm is tested with a diverse set of aerial images that are acquired at various resolution and scenarios around China. Experimental results demonstrate that the proposed algorithm can detect vehicles at the rate of 71.5% and the false alarm rate of 21.5%, and that the speed is 39.13 seconds for a 4656 x 3496 aerial image. It is promising for large-scale transportation management and planning.

  18. A low-cost single-camera imaging system for aerial applicators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural aircraft provide a readily available and versatile platform for airborne remote sensing. Although various airborne imaging systems are available, most of these systems are either too expensive or too complex to be of practical use for aerial applicators. The objective of this study was ...

  19. Auditory masking in three pinnipeds: Aerial critical ratios and direct critical bandwidth measurements

    NASA Astrophysics Data System (ADS)

    Southall, Brandon L.; Schusterman, Ronald J.; Kastak, David

    2003-09-01

    This study expands the limited understanding of pinniped aerial auditory masking and includes measurements at some of the relatively low frequencies predominant in many pinniped vocalizations. Behavioral techniques were used to obtain aerial critical ratios (CRs) within a hemianechoic chamber for a northern elephant seal (Mirounga angustirostris), a harbor seal (Phoca vitulina), and a California sea lion (Zalophus californianus). Simultaneous, octave-band noise maskers centered at seven test frequencies (0.2-8.0 kHz) were used to determine aerial CRs. Narrower and variable bandwidth masking noise was also used in order to obtain direct critical bandwidths (CBWs). The aerial CRs are very similar in magnitude and in frequency-specific differences (increasing gradually with test frequency) to underwater CRs for these subjects, demonstrating that pinniped cochlear processes are similar both in air and water. While, like most mammals, these pinniped subjects apparently lack specialization for enhanced detection of specific frequencies over masking noise, they consistently detect signals across a wide range of frequencies at relatively low signal-to-noise ratios. Direct CBWs are 3.2 to 14.2 times wider than estimated based on aerial CRs. The combined masking data are significant in terms of assessing aerial anthropogenic noise impacts, effective aerial communicative ranges, and amphibious aspects of pinniped cochlear mechanics.

  20. Low-Altitude Coastal Aerial Photogrammetry for High-Resolution Seabed Imaging and Habitat Mapping of Shallow Areas

    NASA Astrophysics Data System (ADS)

    Alevizos, E.

    2012-04-01

    This paper explores the application of Kite Aerial Photography at the coastal environment along with digital photogrammetry for seabed geomorphological mapping. This method takes advantage of sea-water clearance that allows the transmission of sunlight through the water column and backscatter of seabed reflection under certain conditions of sunlight, weather and sea state. We analyze the procedure of acquisition, processing and interpretation of kite aerial imagery from the sub-littoral zone up to 5 meters depth. Using a calibrated non-metric digital compact camera we managed to acquire several vertical aerial images from two coastal sites in the Attica Peninsula (Greece) covering an area of approximately 200x100 meters. Both sites express significant geomorphological variability and they have a relatively smooth slope profile. For the photogrammetric processing we acquired topographic and bathymetric survey simultaneously with Kite Aerial Photography using a portable GPS of sub-meter accuracy. In order to deal with bottom control measurements we developed Bottom Control Points which were placed on the seabed. These act like the Ground Control Points and they can be easily deployed in the marine environment. The processing included interior and exterior orientation as well as ortho-rectification of images. This produced final orthomosaics for each site at scales 1:500 - 1:1500 with a resolution of a few centimeters. Interpretation of the seabed was based on color and texture features of certain areas with explicit seabed reflectivity and was supported by underwater photographs for ground truthing. At the final stage of image analysis, we recognized the boundaries (contrasting reflectivity) between different bottom types and digitized them as 2D objects using GIS. Concluding, this project emphasizes on the advantages and physical restrictions of Kite Aerial Photography in mapping small-scale geomorphological features in coastal, estuarine and lagoonal environments

  1. Registering aerial video images using the projective constraint.

    PubMed

    Jackson, Brian P; Goshtasby, A Ardeshir

    2010-03-01

    To separate object motion from camera motion in an aerial video, consecutive frames are registered at their planar background. Feature points are selected in consecutive frames and those that belong to the background are identified using the projective constraint. Corresponding background feature points are then used to register and align the frames. By aligning video frames at the background and knowing that objects move against the background, a means to detect and track moving objects is provided. Only scenes with planar background are considered in this study. Experimental results show improvement in registration accuracy when using the projective constraint to determine the registration parameters as opposed to finding the registration parameters without the projective constraint.

  2. Aerial Vehicle Surveys of other Planetary Atmospheres and Surfaces: Imaging, Remote-sensing, and Autonomy Technology Requirements

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Gregory; Ippolito, Corey; Alena, Rick

    2005-01-01

    The objective of this paper is to review the anticipated imaging and remote-sensing technology requirements for aerial vehicle survey missions to other planetary bodies in our Solar system that can support in-atmosphere flight. In the not too distant future such planetary aerial vehicle (a.k.a. aerial explorers) exploration missions will become feasible. Imaging and remote-sensing observations will be a key objective for these missions. Accordingly, it is imperative that optimal solutions in terms of imaging acquisition and real-time autonomous analysis of image data sets be developed for such vehicles.

  3. Semi-automatic detection of linear archaeological traces from orthorectified aerial images

    NASA Astrophysics Data System (ADS)

    Figorito, Benedetto; Tarantino, Eufemia

    2014-02-01

    This paper presents a semi-automatic approach for archaeological traces detection from aerial images. The method developed was based on the multiphase active contour model (ACM). The image was segmented into three competing regions to improve the visibility of buried remains showing in the image as crop marks (i.e. centuriations, agricultural allocations, ancient roads, etc.). An initial determination of relevant traces can be quickly carried out by the operator by sketching straight lines close to the traces. Subsequently, tuning parameters (i.e. eccentricity, orientation, minimum area and distance from input line) are used to remove non-target objects and parameterize the detected traces. The algorithm and graphical user interface for this method were developed in a MATLAB environment and tested on high resolution orthorectified aerial images. A qualitative analysis of the method was lastly performed by comparing the traces extracted with ancient traces verified by archaeologists.

  4. Combining satellite, aerial and ground measurements to assess forest carbon stocks in Democratic Republic of Congo

    NASA Astrophysics Data System (ADS)

    Beaumont, Benjamin; Bouvy, Alban; Stephenne, Nathalie; Mathoux, Pierre; Bastin, Jean-François; Baudot, Yves; Akkermans, Tom

    2015-04-01

    Monitoring tropical forest carbon stocks changes has been a rising topic in the recent years as a result of REDD+ mechanisms negotiations. Such monitoring will be mandatory for each project/country willing to benefit from these financial incentives in the future. Aerial and satellite remote sensing technologies offer cost advantages in implementing large scale forest inventories. Despite the recent progress made in the use of airborne LiDAR for carbon stocks estimation, no widely operational and cost effective method has yet been delivered for central Africa forest monitoring. Within the Maï Ndombe region of Democratic Republic of Congo, the EO4REDD project develops a method combining satellite, aerial and ground measurements. This combination is done in three steps: [1] mapping and quantifying forest cover changes using an object-based semi-automatic change detection (deforestation and forest degradation) methodology based on very high resolution satellite imagery (RapidEye), [2] developing an allometric linear model for above ground biomass measurements based on dendrometric parameters (tree crown areas and heights) extracted from airborne stereoscopic image pairs and calibrated using ground measurements of individual trees on a data set of 18 one hectare plots and [3] relating these two products to assess carbon stocks changes at a regional scale. Given the high accuracies obtained in [1] (> 80% for deforestation and 77% for forest degradation) and the suitable, but still to be improved with a larger calibrating sample, model (R² of 0.7) obtained in [2], EO4REDD products can be seen as a valid and replicable option for carbon stocks monitoring in tropical forests. Further improvements are planned to strengthen the cost effectiveness value and the REDD+ suitability in the second phase of EO4REDD. This second phase will include [A] specific model developments per forest type; [B] measurements of afforestation, reforestation and natural regeneration processes and

  5. Registration of multitemporal aerial optical images using line features

    NASA Astrophysics Data System (ADS)

    Zhao, Chenyang; Goshtasby, A. Ardeshir

    2016-07-01

    Registration of multitemporal images is generally considered difficult because scene changes can occur between the times the images are obtained. Since the changes are mostly radiometric in nature, features are needed that are insensitive to radiometric differences between the images. Lines are geometric features that represent straight edges of rigid man-made structures. Because such structures rarely change over time, lines represent stable geometric features that can be used to register multitemporal remote sensing images. An algorithm to establish correspondence between lines in two images of a planar scene is introduced and formulas to relate the parameters of a homography transformation to the parameters of corresponding lines in images are derived. Results of the proposed image registration on various multitemporal images are presented and discussed.

  6. Mapping temporal changes in connectivity using high-resolution aerial data and object based image analysis

    NASA Astrophysics Data System (ADS)

    Masselink, Rens; Anders, Niels; Keesstra, Saskia; Seeger, Manuel

    2014-05-01

    Within the field of geomorphology mapping has always been an important tool to interpret spatial and temporal distributions of phenomena and processes at the surface. In the field of connectivity however, although throughout the past decade many articles have been published, there are only very few that go into the mapping of connectivity. This study aimed at developing a new, automated method for mapping connectivity within agricultural catchments. The method, which is a combination of Object-Based Image Analysis (OBIA) and traditional geomorphological field mapping, was applied to two agricultural catchments in Navarre, Spain, both with an area of approximately 2 sq.km. An unmanned aerial vehicle (UAV) was used to take aerial photographs with a resolution of 6 cm, of which a DEM with a 12 cm resolution was created using structure-from-motion photogrammetry. Connectivity was mapped within the study areas using OBIA using a top down method, meaning that connectivity was mapped at different scale levels, starting at the largest scale. Firstly sub-catchments were automatically delineated, after which several characteristics and features that affect connectivity within the sub-catchments were classified, e.g. landuse, landslides, rills, gullies, riparian vegetation, changes in slope, ploughing direction etc. In two consecutive years (2013-2014) photographs were taken and connectivity of both catchments of both years will be compared. Future work will include a quantification of the mapped connectivity (highly connected years vs. low connected years), causes and consequences of these differences in connectivity, comparison to existing connectivity indices and comparison of mapped connectivity in sub-catchments and measured discharge.

  7. Automated hotspot analysis with aerial image CD metrology for advanced logic devices

    NASA Astrophysics Data System (ADS)

    Buttgereit, Ute; Trautzsch, Thomas; Kim, Min-ho; Seo, Jung-Uk; Yoon, Young-Keun; Han, Hak-Seung; Chung, Dong Hoon; Jeon, Chan-Uk; Meyers, Gary

    2014-09-01

    Continuously shrinking designs by further extension of 193nm technology lead to a much higher probability of hotspots especially for the manufacturing of advanced logic devices. The CD of these potential hotspots needs to be precisely controlled and measured on the mask. On top of that, the feature complexity increases due to high OPC load in the logic mask design which is an additional challenge for CD metrology. Therefore the hotspot measurements have been performed on WLCD from ZEISS, which provides the benefit of reduced complexity by measuring the CD in the aerial image and qualifying the printing relevant CD. This is especially of advantage for complex 2D feature measurements. Additionally, the data preparation for CD measurement becomes more critical due to the larger amount of CD measurements and the increasing feature diversity. For the data preparation this means to identify these hotspots and mark them automatically with the correct marker required to make the feature specific CD measurement successful. Currently available methods can address generic pattern but cannot deal with the pattern diversity of the hotspots. The paper will explore a method how to overcome those limitations and to enhance the time-to-result in the marking process dramatically. For the marking process the Synopsys WLCD Output Module was utilized, which is an interface between the CATS mask data prep software and the WLCD metrology tool. It translates the CATS marking directly into an executable WLCD measurement job including CD analysis. The paper will describe the utilized method and flow for the hotspot measurement. Additionally, the achieved results on hotspot measurements utilizing this method will be presented.

  8. First results for an image processing workflow for hyperspatial imagery acquired with a low-cost unmanned aerial vehicle (UAV).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Very high-resolution images from unmanned aerial vehicles (UAVs) have great potential for use in rangeland monitoring and assessment, because the imagery fills the gap between ground-based observations and remotely sensed imagery from aerial or satellite sensors. However, because UAV imagery is ofte...

  9. Observation of coral reefs on Ishigaki Island, Japan, using Landsat TM images and aerial photographs

    SciTech Connect

    Matsunaga, Tsuneo; Kayanne, Hajime

    1997-06-01

    Ishigaki Island is located at the southwestern end of Japanese Islands and famous for its fringing coral reefs. More than twenty LANDSAT TM images in twelve years and aerial photographs taken on 1977 and 1994 were used to survey two shallow reefs on this island, Shiraho and Kabira. Intensive field surveys were also conducted in 1995. All satellite images of Shiraho were geometrically corrected and overlaid to construct a multi-date satellite data set. The effects of solar elevation and tide on satellite imagery were studied with this data set. The comparison of aerial and satellite images indicated that significant changes occurred between 1977 and 1984 in Kabira: rapid formation in the western part and decrease in the eastern part of dark patches. The field surveys revealed that newly formed dark patches in the west contain young corals. These results suggest that remote sensing is useful for not only mapping but also monitoring of shallow coral reefs.

  10. Image Dependent Relative Formation Navigation for Autonomous Aerial Refueling

    DTIC Science & Technology

    2011-03-01

    sensors that do not emit any electro- magnetic energy) to reduce the likelihood of detection when operating in unfriendly areas of interest. This would...modification and analysis of the images in other ways. By modifying the values of the pixels, images can be sharpened, smoothed, darken, lightened , and

  11. Detection and clustering of features in aerial images by neuron network-based algorithm

    NASA Astrophysics Data System (ADS)

    Vozenilek, Vit

    2015-12-01

    The paper presents the algorithm for detection and clustering of feature in aerial photographs based on artificial neural networks. The presented approach is not focused on the detection of specific topographic features, but on the combination of general features analysis and their use for clustering and backward projection of clusters to aerial image. The basis of the algorithm is a calculation of the total error of the network and a change of weights of the network to minimize the error. A classic bipolar sigmoid was used for the activation function of the neurons and the basic method of backpropagation was used for learning. To verify that a set of features is able to represent the image content from the user's perspective, the web application was compiled (ASP.NET on the Microsoft .NET platform). The main achievements include the knowledge that man-made objects in aerial images can be successfully identified by detection of shapes and anomalies. It was also found that the appropriate combination of comprehensive features that describe the colors and selected shapes of individual areas can be useful for image analysis.

  12. Canopy Measurements with a Small Unmanned Aerial System

    NASA Astrophysics Data System (ADS)

    Peschel, J.

    2015-12-01

    This work discusses the use of a small unmanned aerial system (UAS) for the remote placement of wireless environmental sensors in tree canopies. Remote presence applications occur when one or more humans use a robot to project themselves into an environment in order to complete an inaccessible or time-critical mission. The more difficult problem of physical object manipulation goes one step further by incorporating physical-based interaction, in additional to visualization. Forested environments present especially unique challenges for small UAS versus similar domains (e.g., disaster response, inspection of critical infrastructure) due to the navigation and interaction required with dense tree canopies. This work describes two field investigations that inform: i) the type of physical object manipulation and visualization necessary for sensor placement (ventral, frontal, dorsal), ii) the necessary display form (hybrid) for piloting and sensor placement, and iii) visual feedback mechanisms useful for handling human-robot team role conflicts.

  13. Geomorphic changes of a coral shingle cay measured using Kite Aerial Photography

    NASA Astrophysics Data System (ADS)

    Bryson, Mitch; Duce, Stephanie; Harris, Dan; Webster, Jody M.; Thompson, Alisha; Vila-Concejo, Ana; Williams, Stefan B.

    2016-10-01

    Measurements of geomorphic change in the intertidal zones of coral reefs are made using a variety of remote sensing and in-situ techniques, where variations in the coverage and spatial-temporal precision achieved are directly related to the cost of data acquisition. We present a novel, low-cost technique for measuring high-resolution changes in reef environments based on Kite Aerial Photography (KAP) and photogrammetry/structure-from-motion post-processing. KAP images are used to measure fine-scale changes in intertidal topography and sediment texture characteristics, including rubble particle size, of a coral shingle cay at One Tree Island, Great Barrier Reef in the context of storm activity. Validation using Real Time Kinematic DGPS demonstrates the ability to measure topographic elevation with an error of 5.53 cm (RMSE) and a spatial resolution of 5 cm per point, an accuracy/resolution that is superior to airborne LiDAR and equivalent to terrestrial LiDAR, but at a fraction of the equipment cost.

  14. EROS main image file - A picture perfect database for Landsat imagery and aerial photography

    NASA Technical Reports Server (NTRS)

    Jack, R. F.

    1984-01-01

    The Earth Resources Observation System (EROS) Program was established by the U.S. Department of the Interior in 1966 under the administration of the Geological Survey. It is primarily concerned with the application of remote sensing techniques for the management of natural resources. The retrieval system employed to search the EROS database is called INORAC (Inquiry, Ordering, and Accounting). A description is given of the types of images identified in EROS, taking into account Landsat imagery, Skylab images, Gemini/Apollo photography, and NASA aerial photography. Attention is given to retrieval commands, geographic coordinate searching, refinement techniques, various online functions, and questions regarding the access to the EROS Main Image File.

  15. Counter Unmanned Aerial Systems Testing: Evaluation of VIS SWIR MWIR and LWIR passive imagers.

    SciTech Connect

    Birch, Gabriel Carlisle; Woo, Bryana Lynn

    2017-01-01

    This report contains analysis of unmanned aerial systems as imaged by visible, short-wave infrared, mid-wave infrared, and long-wave infrared passive devices. Testing was conducted at the Nevada National Security Site (NNSS) during the week of August 15, 2016. Target images in all spectral bands are shown and contrast versus background is reported. Calculations are performed to determine estimated pixels-on-target for detection and assessment levels, and the number of pixels needed to cover a hemisphere for detection or assessment at defined distances. Background clutter challenges are qualitatively discussed for different spectral bands, and low contrast scenarios are highlighted for long-wave infrared imagers.

  16. Mobile Aerial Tracking and Imaging System (MATRIS) for Aeronautical Research

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Blanchard, R. C.; Miller, G. M.

    2004-01-01

    A mobile, rapidly deployable ground-based system to track and image targets of aeronautical interest has been developed. Targets include reentering reusable launch vehicles (RLVs) as well as atmospheric and transatmospheric vehicles. The optics were designed to image targets in the visible and infrared wavelengths. To minimize acquisition cost and development time, the system uses commercially available hardware and software where possible. The conception and initial funding of this system originated with a study of ground-based imaging of global aerothermal characteristics of RLV configurations. During that study NASA teamed with the Missile Defense Agency/Innovative Science and Technology Experimentation Facility (MDA/ISTEF) to test techniques and analysis on two Space Shuttle flights.

  17. Semi-auto assessment system on building damage caused by landslide disaster with high-resolution satellite and aerial images

    NASA Astrophysics Data System (ADS)

    Sun, Bo; Xu, Qihua; He, Jun; Ge, Fengxiang; Wang, Ying

    2015-10-01

    In recent years, earthquake and heavy rain have triggered more and more landslides, which have caused serious economic losses. The timely detection of the disaster area and the assessment of the hazard are necessary and primary for disaster mitigation and relief. As high-resolution satellite and aerial images have been widely used in the field of environmental monitoring and disaster management, the damage assessment by processing satellite and aerial images has become a hot spot of research work. The rapid assessment of building damage caused by landslides with high-resolution satellite or aerial images is the focus of this article. In this paper, after analyzing the morphological characteristics of the landslide disaster, we proposed a set of criteria for rating building damage, and designed a semi-automatic evaluation system. The system is applied to the satellite and aerial images processing. The performance of the experiments demonstrated the effectiveness of our system.

  18. Aerial imaging with manned aircraft for precision agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the last two decades, numerous commercial and custom-built airborne imaging systems have been developed and deployed for diverse remote sensing applications, including precision agriculture. More recently, unmanned aircraft systems (UAS) have emerged as a versatile and cost-effective platform f...

  19. Parameter-Based Performance Analysis of Object-Based Image Analysis Using Aerial and Quikbird-2 Images

    NASA Astrophysics Data System (ADS)

    Kavzoglu, T.; Yildiz, M.

    2014-09-01

    Opening new possibilities for research, very high resolution (VHR) imagery acquired by recent commercial satellites and aerial systems requires advanced approaches and techniques that can handle large volume of data with high local variance. Delineation of land use/cover information from VHR images is a hot research topic in remote sensing. In recent years, object-based image analysis (OBIA) has become a popular solution for image analysis tasks as it considers shape, texture and content information associated with the image objects. The most important stage of OBIA is the image segmentation process applied prior to classification. Determination of optimal segmentation parameters is of crucial importance for the performance of the selected classifier. In this study, effectiveness and applicability of the segmentation method in relation to its parameters was analysed using two VHR images, an aerial photo and a Quickbird-2 image. Multi-resolution segmentation technique was employed with its optimal parameters of scale, shape and compactness that were defined after an extensive trail process on the data sets. Nearest neighbour classifier was applied on the segmented images, and then the accuracy assessment was applied. Results show that segmentation parameters have a direct effect on the classification accuracy, and low values of scale-shape combinations produce the highest classification accuracies. Also, compactness parameter was found to be having minimal effect on the construction of image objects, hence it can be set to a constant value in image classification.

  20. A semi-automated single day image differencing technique to identify animals in aerial imagery.

    PubMed

    Terletzky, Pat; Ramsey, Robert Douglas

    2014-01-01

    Our research presents a proof-of-concept that explores a new and innovative method to identify large animals in aerial imagery with single day image differencing. We acquired two aerial images of eight fenced pastures and conducted a principal component analysis of each image. We then subtracted the first principal component of the two pasture images followed by heuristic thresholding to generate polygons. The number of polygons represented the number of potential cattle (Bos taurus) and horses (Equus caballus) in the pasture. The process was considered semi-automated because we were not able to automate the identification of spatial or spectral thresholding values. Imagery was acquired concurrently with ground counts of animal numbers. Across the eight pastures, 82% of the animals were correctly identified, mean percent commission was 53%, and mean percent omission was 18%. The high commission error was due to small mis-alignments generated from image-to-image registration, misidentified shadows, and grouping behavior of animals. The high probability of correctly identifying animals suggests short time interval image differencing could provide a new technique to enumerate wild ungulates occupying grassland ecosystems, especially in isolated or difficult to access areas. To our knowledge, this was the first attempt to use standard change detection techniques to identify and enumerate large ungulates.

  1. Aerial measurements of convection cell elements in heated lakes

    NASA Astrophysics Data System (ADS)

    Villa-Aleman, E.; Salaymeh, S. R.; Brown, T. B.; Garrett, A. J.; Nichols, L. S.; Pendergast, M. M.

    2008-03-01

    Power plant-heated lakes are characterized by a temperature gradient in the thermal plume originating at the discharge of the power plant and terminating at the water intake. The maximum water temperature discharged by the power plant into the lake depends on the power generated at the facility and environmental regulations on the temperature of the lake. Besides the observed thermal plume, cloud-like thermal cells (convection cell elements) are also observed on the water surface. The size, shape and temperature of the convection cell elements depends on several parameters such as the lake water temperature, wind speed, surfactants and the depth of the thermocline. The Savannah River National Laboratory (SRNL) and Clemson University are collaborating to determine the applicability of laboratory empirical correlations between surface heat flux and thermal convection intensity. Laboratory experiments at Clemson University have demonstrated a simple relationship between the surface heat flux and the standard deviation of temperature fluctuations. Similar results were observed in the aerial thermal imagery SRNL collected at different locations along the thermal plume and at different elevations. SRNL will present evidence that the results at Clemson University are applicable to cooling lakes.

  2. AERIAL MEASUREMENTS OF CONVECTION CELL ELEMENTS IN HEATED LAKES

    SciTech Connect

    Villa-Aleman, E; Saleem Salaymeh, S; Timothy Brown, T; Alfred Garrett, A; Malcolm Pendergast, M; Linda Nichols, L

    2007-12-19

    Power plant-heated lakes are characterized by a temperature gradient in the thermal plume originating at the discharge of the power plant and terminating at the water intake. The maximum water temperature discharged by the power plant into the lake depends on the power generated at the facility and environmental regulations on the temperature of the lake. Besides the observed thermal plume, cloud-like thermal cells (convection cell elements) are also observed on the water surface. The size, shape and temperature of the convection cell elements depends on several parameters such as the lake water temperature, wind speed, surfactants and the depth of the thermocline. The Savannah River National Laboratory (SRNL) and Clemson University are collaborating to determine the applicability of laboratory empirical correlations between surface heat flux and thermal convection intensity. Laboratory experiments at Clemson University have demonstrated a simple relationship between the surface heat flux and the standard deviation of temperature fluctuations. Similar results were observed in the aerial thermal imagery SRNL collected at different locations along the thermal plume and at different elevations. SRNL will present evidence that the results at Clemson University are applicable to cooling lakes.

  3. Land Use Classification from Vhr Aerial Images Using Invariant Colour Components and Texture

    NASA Astrophysics Data System (ADS)

    Movia, A.; Beinat, A.; Sandri, T.

    2016-06-01

    Very high resolution (VHR) aerial images can provide detailed analysis about landscape and environment; nowadays, thanks to the rapid growing airborne data acquisition technology an increasing number of high resolution datasets are freely available. In a VHR image the essential information is contained in the red-green-blue colour components (RGB) and in the texture, therefore a preliminary step in image analysis concerns the classification in order to detect pixels having similar characteristics and to group them in distinct classes. Common land use classification approaches use colour at a first stage, followed by texture analysis, particularly for the evaluation of landscape patterns. Unfortunately RGB-based classifications are significantly influenced by image setting, as contrast, saturation, and brightness, and by the presence of shadows in the scene. The classification methods analysed in this work aim to mitigate these effects. The procedures developed considered the use of invariant colour components, image resampling, and the evaluation of a RGB texture parameter for various increasing sizes of a structuring element. To identify the most efficient solution, the classification vectors obtained were then processed by a K-means unsupervised classifier using different metrics, and the results were compared with respect to corresponding user supervised classifications. The experiments performed and discussed in the paper let us evaluate the effective contribution of texture information, and compare the most suitable vector components and metrics for automatic classification of very high resolution RGB aerial images.

  4. Real-time aerial multispectral imaging solutions using dichroic filter arrays

    NASA Astrophysics Data System (ADS)

    Chandler, Eric V.; Fish, David E.

    2014-06-01

    The next generation of multispectral sensors and cameras needs to deliver significant improvements in size, weight, portability, and spectral band customization to support widespread commercial deployment for a variety of purposebuilt aerial, unmanned, and scientific applications. The benefits of multispectral imaging are well established for applications including machine vision, biomedical, authentication, and remote sensing environments - but many aerial and OEM solutions require more compact, robust, and cost-effective production cameras to realize these benefits. A novel implementation uses micropatterning of dichroic filters into Bayer and custom mosaics, enabling true real-time multispectral imaging with simultaneous multi-band image acquisition. Consistent with color camera image processing, individual spectral channels are de-mosaiced with each channel providing an image of the field of view. We demonstrate recent results of 4-9 band dichroic filter arrays in multispectral cameras using a variety of sensors including linear, area, silicon, and InGaAs. Specific implementations range from hybrid RGB + NIR sensors to custom sensors with applicationspecific VIS, NIR, and SWIR spectral bands. Benefits and tradeoffs of multispectral sensors using dichroic filter arrays are compared with alternative approaches - including their passivity, spectral range, customization options, and development path. Finally, we report on the wafer-level fabrication of dichroic filter arrays on imaging sensors for scalable production of multispectral sensors and cameras.

  5. Real-time observations of extreme-ultraviolet aerial images by fluorescence microimaging

    SciTech Connect

    La Fontaine, B. ); White, D.L. ); Wood, O.R. II ); MacDowell, A.A.; Tan, Z. ); Taylor, G.N. ); Tennant, D.M. ); Hulbert, S.L. )

    1994-11-01

    A new technique, fluorescence microimaging (FMI), using single-crystal phosphors was used to look directly at aerial images produced by an extreme-ultraviolet (EUV) camera operating at a wavelength of 139 A. The achieved spatial resolution was estimated to be [similar to]0.2 [mu]m. A comparison of this technique with the usual resist-exposure scanning electron microscopy inspection technique as a means of focusing a 20[times]EUV Schwarzschild camera was performed. FMI could in principle be improved to view fluorescent images with features as small as 0.07 [mu]m, in real time.

  6. Film cameras or digital sensors? The challenge ahead for aerial imaging

    USGS Publications Warehouse

    Light, D.L.

    1996-01-01

    Cartographic aerial cameras continue to play the key role in producing quality products for the aerial photography business, and specifically for the National Aerial Photography Program (NAPP). One NAPP photograph taken with cameras capable of 39 lp/mm system resolution can contain the equivalent of 432 million pixels at 11 ??m spot size, and the cost is less than $75 per photograph to scan and output the pixels on a magnetic storage medium. On the digital side, solid state charge coupled device linear and area arrays can yield quality resolution (7 to 12 ??m detector size) and a broader dynamic range. If linear arrays are to compete with film cameras, they will require precise attitude and positioning of the aircraft so that the lines of pixels can be unscrambled and put into a suitable homogeneous scene that is acceptable to an interpreter. Area arrays need to be much larger than currently available to image scenes competitive in size with film cameras. Analysis of the relative advantages and disadvantages of the two systems show that the analog approach is more economical at present. However, as arrays become larger, attitude sensors become more refined, global positioning system coordinate readouts become commonplace, and storage capacity becomes more affordable, the digital camera may emerge as the imaging system for the future. Several technical challenges must be overcome if digital sensors are to advance to where they can support mapping, charting, and geographic information system applications.

  7. Looking into the water with oblique head tilting: revision of the aerial binocular imaging of underwater objects

    NASA Astrophysics Data System (ADS)

    Horváth, Gábor; Buchta, Krisztián; Varjú, Dezsö

    2003-06-01

    It is a well-known phenomenon that when we look into the water with two aerial eyes, both the apparent position and the apparent shape of underwater objects are different from the real ones because of refraction at the water surface. Earlier studies of the refraction-distorted structure of the underwater binocular visual field of aerial observers were restricted to either vertically or horizontally oriented eyes. We investigate a generalized version of this problem: We calculate the position of the binocular image point of an underwater object point viewed by two arbitrarily positioned aerial eyes, including oblique orientations of the eyes relative to the flat water surface. Assuming that binocular image fusion is performed by appropriate vergent eye movements to bring the object's image onto the foveas, the structure of the underwater binocular visual field is computed and visualized in different ways as a function of the relative positions of the eyes. We show that a revision of certain earlier treatments of the aerial imaging of underwater objects is necessary. We analyze and correct some widespread erroneous or incomplete representations of this classical geometric optical problem that occur in different textbooks. Improving the theory of aerial binocular imaging of underwater objects, we demonstrate that the structure of the underwater binocular visual field of aerial observers distorted by refraction is more complex than has been thought previously. (vision).

  8. Image degradation in aerial imagery duplicates. [photographic processing of photographic film and reproduction (copying)

    NASA Technical Reports Server (NTRS)

    Lockwood, H. E.

    1975-01-01

    A series of Earth Resources Aircraft Program data flights were made over an aerial test range in Arizona for the evaluation of large cameras. Specifically, both medium altitude and high altitude flights were made to test and evaluate a series of color as well as black-and-white films. Image degradation, inherent in duplication processing, was studied. Resolution losses resulting from resolution characteristics of the film types are given. Color duplicates, in general, are shown to be degraded more than black-and-white films because of the limitations imposed by available aerial color duplicating stock. Results indicate that a greater resolution loss may be expected when the original has higher resolution. Photographs of the duplications are shown.

  9. An airport runway centerline location method for one-off aerial imaging system

    NASA Astrophysics Data System (ADS)

    Ge, Shule; Xu, Tingfa; Ni, Guoqiang; Shao, Xiaoguang

    2010-11-01

    An airport runway centerline location method is proposed for extracting airport runway in images from one-off aerial imaging system. One-off aerial imaging system captures image at an altitude about one kilometer or below, thus detailed feature of the scenery reveals itself clearly. The proposed method relies on this precondition to detect and locate centerline of airport runway. This method has four steps: edge detection, dominating line orientation extraction, distance histogram building and centerline location. A salient edge detection method is developed with Sobel detector, which could detect edges of runway strips at the disturbance of edges features from surrounding objects. Then, a traditional Hough transform is performed to build a Hough map, within which the dominating line orientation is extracted. After getting the dominating line orientation, a reference straight line is chosen for building distance histogram. This distance histogram is a one-dimensional one, built up with the distance of all edge pixels in the edge map to the reference line. Airport centerline has a three-peak pattern in the one-dimensional distance histogram, and the center peak is corresponding to the centerline of airport runway. Experiments with simulated images show this method could location airport runway centerline effectively.

  10. Algorithm for automatic image dodging of unmanned aerial vehicle images using two-dimensional radiometric spatial attributes

    NASA Astrophysics Data System (ADS)

    Li, Wenzhuo; Sun, Kaimin; Li, Deren; Bai, Ting

    2016-07-01

    Unmanned aerial vehicle (UAV) remote sensing technology has come into wide use in recent years. The poor stability of the UAV platform, however, produces more inconsistencies in hue and illumination among UAV images than other more stable platforms. Image dodging is a process used to reduce these inconsistencies caused by different imaging conditions. We propose an algorithm for automatic image dodging of UAV images using two-dimensional radiometric spatial attributes. We use object-level image smoothing to smooth foreground objects in images and acquire an overall reference background image by relative radiometric correction. We apply the Contourlet transform to separate high- and low-frequency sections for every single image, and replace the low-frequency section with the low-frequency section extracted from the corresponding region in the overall reference background image. We apply the inverse Contourlet transform to reconstruct the final dodged images. In this process, a single image must be split into reasonable block sizes with overlaps due to large pixel size. Experimental mosaic results show that our proposed method reduces the uneven distribution of hue and illumination. Moreover, it effectively eliminates dark-bright interstrip effects caused by shadows and vignetting in UAV images while maximally protecting image texture information.

  11. Shadow detection in color aerial images based on HSI space and color attenuation relationship

    NASA Astrophysics Data System (ADS)

    Shi, Wenxuan; Li, Jie

    2012-12-01

    Many problems in image processing and computer vision arise from shadows in a single color aerial image. This article presents a new algorithm by which shadows are extracted from a single color aerial image. Apart from using the ratio value of the hue over the intensity in some state-of-the-art algorithms, this article introduces another ratio map, which is obtained by applying the saturation over the intensity. Candidate shadow and nonshadow regions are separated by applying Otus's thresholding method. The color attenuation relationship that describes the relationship between the attenuation of each color channel is derived from the Planck's blackbody irradiance law. For each region, the color attenuation relationship and other determination conditions are performed iteratively to segment it into smaller sub-regions and to identify whether each sub-region is a true shadow region. Compared with previous methods, the proposed algorithm presents better shadow detection accuracy in the images that contain some dark green lawn, river, or low brightness shadow regions. The experimental results demonstrate the advantage of the proposed algorithm.

  12. Reconstruction of former glacier surface topography from archive oblique aerial images

    NASA Astrophysics Data System (ADS)

    Midgley, N. G.; Tonkin, T. N.

    2017-04-01

    Archive oblique aerial imagery offers the potential to reconstruct the former geometry of valley glaciers and other landscape surfaces. Whilst the use of Structure-from-Motion (SfM) photogrammetry with multiview stereopsis (MVS) to process small-format imagery is now well established in the geosciences, the potential of the technique for extracting topographic data from archive oblique aerial imagery is unclear. Here, SfM-MVS is used to reconstruct the former topography of two high-Arctic glaciers (Midtre and Austre Lovénbreen, Svalbard, Norway) using three archive oblique aerial images obtained by the Norwegian Polar Institute in 1936. The 1936 point cloud was produced using seven LiDAR-derived ground control points located on stable surfaces in proximity to the former piedmont glacier termini. To assess accuracy, the 1936 data set was compared to a LiDAR data set using the M3C2 algorithm to calculate cloud-to-cloud differences. For stable areas (such as nonglacial surfaces), vertical differences were detected between the two point clouds (RMS M3C2 vertical difference of 8.5 m), with the outwash zones adjacent to the assessed glacier termini showing less extensive vertical discrepancies (94% of M3C2 vertical differences between ± 5 m). This

  13. Improving Measurement of Forest Structural Parameters by Co-Registering of High Resolution Aerial Imagery and Low Density LiDAR Data.

    PubMed

    Huang, Huabing; Gong, Peng; Cheng, Xiao; Clinton, Nick; Li, Zengyuan

    2009-01-01

    Forest structural parameters, such as tree height and crown width, are indispensable for evaluating forest biomass or forest volume. LiDAR is a revolutionary technology for measurement of forest structural parameters, however, the accuracy of crown width extraction is not satisfactory when using a low density LiDAR, especially in high canopy cover forest. We used high resolution aerial imagery with a low density LiDAR system to overcome this shortcoming. A morphological filtering was used to generate a DEM (Digital Elevation Model) and a CHM (Canopy Height Model) from LiDAR data. The LiDAR camera image is matched to the aerial image with an automated keypoints search algorithm. As a result, a high registration accuracy of 0.5 pixels was obtained. A local maximum filter, watershed segmentation, and object-oriented image segmentation are used to obtain tree height and crown width. Results indicate that the camera data collected by the integrated LiDAR system plays an important role in registration with aerial imagery. The synthesis with aerial imagery increases the accuracy of forest structural parameter extraction when compared to only using the low density LiDAR data.

  14. Point cloud generation from aerial image data acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still camera.

    PubMed

    Rosnell, Tomi; Honkavaara, Eija

    2012-01-01

    The objective of this investigation was to develop and investigate methods for point cloud generation by image matching using aerial image data collected by quadrocopter type micro unmanned aerial vehicle (UAV) imaging systems. Automatic generation of high-quality, dense point clouds from digital images by image matching is a recent, cutting-edge step forward in digital photogrammetric technology. The major components of the system for point cloud generation are a UAV imaging system, an image data collection process using high image overlaps, and post-processing with image orientation and point cloud generation. Two post-processing approaches were developed: one of the methods is based on Bae Systems' SOCET SET classical commercial photogrammetric software and another is built using Microsoft(®)'s Photosynth™ service available in the Internet. Empirical testing was carried out in two test areas. Photosynth processing showed that it is possible to orient the images and generate point clouds fully automatically without any a priori orientation information or interactive work. The photogrammetric processing line provided dense and accurate point clouds that followed the theoretical principles of photogrammetry, but also some artifacts were detected. The point clouds from the Photosynth processing were sparser and noisier, which is to a large extent due to the fact that the method is not optimized for dense point cloud generation. Careful photogrammetric processing with self-calibration is required to achieve the highest accuracy. Our results demonstrate the high performance potential of the approach and that with rigorous processing it is possible to reach results that are consistent with theory. We also point out several further research topics. Based on theoretical and empirical results, we give recommendations for properties of imaging sensor, data collection and processing of UAV image data to ensure accurate point cloud generation.

  15. Point Cloud Generation from Aerial Image Data Acquired by a Quadrocopter Type Micro Unmanned Aerial Vehicle and a Digital Still Camera

    PubMed Central

    Rosnell, Tomi; Honkavaara, Eija

    2012-01-01

    The objective of this investigation was to develop and investigate methods for point cloud generation by image matching using aerial image data collected by quadrocopter type micro unmanned aerial vehicle (UAV) imaging systems. Automatic generation of high-quality, dense point clouds from digital images by image matching is a recent, cutting-edge step forward in digital photogrammetric technology. The major components of the system for point cloud generation are a UAV imaging system, an image data collection process using high image overlaps, and post-processing with image orientation and point cloud generation. Two post-processing approaches were developed: one of the methods is based on Bae Systems’ SOCET SET classical commercial photogrammetric software and another is built using Microsoft®’s Photosynth™ service available in the Internet. Empirical testing was carried out in two test areas. Photosynth processing showed that it is possible to orient the images and generate point clouds fully automatically without any a priori orientation information or interactive work. The photogrammetric processing line provided dense and accurate point clouds that followed the theoretical principles of photogrammetry, but also some artifacts were detected. The point clouds from the Photosynth processing were sparser and noisier, which is to a large extent due to the fact that the method is not optimized for dense point cloud generation. Careful photogrammetric processing with self-calibration is required to achieve the highest accuracy. Our results demonstrate the high performance potential of the approach and that with rigorous processing it is possible to reach results that are consistent with theory. We also point out several further research topics. Based on theoretical and empirical results, we give recommendations for properties of imaging sensor, data collection and processing of UAV image data to ensure accurate point cloud generation. PMID:22368479

  16. A multi-scale registration of urban aerial image with airborne lidar data

    NASA Astrophysics Data System (ADS)

    Huang, Shuo; Chen, Siying; Zhang, Yinchao; Guo, Pan; Chen, He

    2015-11-01

    This paper presented a multi-scale progressive registration method of airborne LiDAR data with aerial image. The cores of the proposed method lie in the coarse registration with road networks and the fine registration method using regularized building corners. During the two-stage registration, the exterior orientation parameters (EOP) are continually refined. By validation of the actual flight data of Dunhuang, the experimental result shows that the proposed method can obtain accurate results with low-precision initial EOP, also improve the automatic degree of registration.

  17. Using GPS/INS data to enhance image matching for real-time aerial triangulation

    NASA Astrophysics Data System (ADS)

    Tanathong, Supannee; Lee, Impyeong

    2014-11-01

    Direct georeferencing is a promising technique for determining the exterior orientation parameters (EO) of a camera in real-time through the integration of GPS/INS sensors. Instead of using expensive devices, we improve the accuracy of the directly measured EOs through aerial triangulation (AT) and rely on tie-points. In this work, using GPS/INS data, we enhance the KLT tracker to achieve accuracy and speed that is compatible with real-time aerial triangulation. Given GPS/INS data from medium-grade sensors, the proposed system is 48% faster than the original work and tie-points extracted by our system are 6.33% more accurate and more evenly distributed than tie-points extracted by the original work. The AT processing results show that tie-points from the proposed work can reduce the RMSE of the directly measured EOs by 17.87% for position and 23.37% for attitude. Thus, we conclude that our proposed system can be integrated with real-time aerial triangulation.

  18. Estimating Mixed Broadleaves Forest Stand Volume Using Dsm Extracted from Digital Aerial Images

    NASA Astrophysics Data System (ADS)

    Sohrabi, H.

    2012-07-01

    In mixed old growth broadleaves of Hyrcanian forests, it is difficult to estimate stand volume at plot level by remotely sensed data while LiDar data is absent. In this paper, a new approach has been proposed and tested for estimating stand forest volume. The approach is based on this idea that forest volume can be estimated by variation of trees height at plots. In the other word, the more the height variation in plot, the more the stand volume would be expected. For testing this idea, 120 circular 0.1 ha sample plots with systematic random design has been collected in Tonekaon forest located in Hyrcanian zone. Digital surface model (DSM) measure the height values of the first surface on the ground including terrain features, trees, building etc, which provides a topographic model of the earth's surface. The DSMs have been extracted automatically from aerial UltraCamD images so that ground pixel size for extracted DSM varied from 1 to 10 m size by 1m span. DSMs were checked manually for probable errors. Corresponded to ground samples, standard deviation and range of DSM pixels have been calculated. For modeling, non-linear regression method was used. The results showed that standard deviation of plot pixels with 5 m resolution was the most appropriate data for modeling. Relative bias and RMSE of estimation was 5.8 and 49.8 percent, respectively. Comparing to other approaches for estimating stand volume based on passive remote sensing data in mixed broadleaves forests, these results are more encouraging. One big problem in this method occurs when trees canopy cover is totally closed. In this situation, the standard deviation of height is low while stand volume is high. In future studies, applying forest stratification could be studied.

  19. Urban road extraction based on shadow removal and road clues detection from high resolution RGB aerial image

    NASA Astrophysics Data System (ADS)

    Herumurti, Darlis; Uchimura, Keiichi; Koutaki, Gou; Uemura, Takumi

    2014-10-01

    In urban areas, the shadow cast by buildings, trees along the road, abundant objects and complex image texture make the extraction of the road on very high Resolution RGB aerial image very difficult and challenging. We propose a method of road extraction from RGB aerial image in the followings steps: Shadow removal, enhanced sobel transform, keypoints extraction based on Maximally Stable Extremal Regions (MSER), feature extraction based on Speeded Up Robust Features (SURF) and road construction based on multi-resolution segmentation. The experimental results show that the proposed method achieves a good result.

  20. Unmanned Aerial Vehicle Systems for Remote Estimation of Flooded Areas Based on Complex Image Processing

    PubMed Central

    Popescu, Dan; Ichim, Loretta; Stoican, Florin

    2017-01-01

    Floods are natural disasters which cause the most economic damage at the global level. Therefore, flood monitoring and damage estimation are very important for the population, authorities and insurance companies. The paper proposes an original solution, based on a hybrid network and complex image processing, to this problem. As first novelty, a multilevel system, with two components, terrestrial and aerial, was proposed and designed by the authors as support for image acquisition from a delimited region. The terrestrial component contains a Ground Control Station, as a coordinator at distance, which communicates via the internet with more Ground Data Terminals, as a fixed nodes network for data acquisition and communication. The aerial component contains mobile nodes—fixed wing type UAVs. In order to evaluate flood damage, two tasks must be accomplished by the network: area coverage and image processing. The second novelty of the paper consists of texture analysis in a deep neural network, taking into account new criteria for feature selection and patch classification. Color and spatial information extracted from chromatic co-occurrence matrix and mass fractal dimension were used as well. Finally, the experimental results in a real mission demonstrate the validity of the proposed methodologies and the performances of the algorithms. PMID:28241479

  1. Unmanned Aerial Vehicle Systems for Remote Estimation of Flooded Areas Based on Complex Image Processing.

    PubMed

    Popescu, Dan; Ichim, Loretta; Stoican, Florin

    2017-02-23

    Floods are natural disasters which cause the most economic damage at the global level. Therefore, flood monitoring and damage estimation are very important for the population, authorities and insurance companies. The paper proposes an original solution, based on a hybrid network and complex image processing, to this problem. As first novelty, a multilevel system, with two components, terrestrial and aerial, was proposed and designed by the authors as support for image acquisition from a delimited region. The terrestrial component contains a Ground Control Station, as a coordinator at distance, which communicates via the internet with more Ground Data Terminals, as a fixed nodes network for data acquisition and communication. The aerial component contains mobile nodes-fixed wing type UAVs. In order to evaluate flood damage, two tasks must be accomplished by the network: area coverage and image processing. The second novelty of the paper consists of texture analysis in a deep neural network, taking into account new criteria for feature selection and patch classification. Color and spatial information extracted from chromatic co-occurrence matrix and mass fractal dimension were used as well. Finally, the experimental results in a real mission demonstrate the validity of the proposed methodologies and the performances of the algorithms.

  2. New Approach for Segmentation and Extraction of Single Tree from Point Clouds Data and Aerial Images

    NASA Astrophysics Data System (ADS)

    Homainejad, A. S.

    2016-06-01

    This paper addresses a new approach for reconstructing a 3D model from single trees via Airborne Laser Scanners (ALS) data and aerial images. The approach detects and extracts single tree from ALS data and aerial images. The existing approaches are able to provide bulk segmentation from a group of trees; however, some methods focused on detection and extraction of a particular tree from ALS and images. Segmentation of a single tree within a group of trees is mostly a mission impossible since the detection of boundary lines between the trees is a tedious job and basically it is not feasible. In this approach an experimental formula based on the height of the trees was developed and applied in order to define the boundary lines between the trees. As a result, each single tree was segmented and extracted and later a 3D model was created. Extracted trees from this approach have a unique identification and attribute. The output has application in various fields of science and engineering such as forestry, urban planning, and agriculture. For example in forestry, the result can be used for study in ecologically diverse, biodiversity and ecosystem.

  3. High resolution measurements of aerial rainfall with X-band radars in New Zealand

    NASA Astrophysics Data System (ADS)

    Sutherland-Stacey, Luke; Shucksmith, Paul; Austin, Geoff

    2010-05-01

    gauge networks. Due to the relatively long range and lower spatial and temporal resolution the C-band images contained less information than X-band scans of the same hydrometeors. On the other hand, per event statistics indicate that the majority of variance in rain gauge measurements can be explained from the co-located X-band radar pixel. Quantitative retrieval of accumulation was possible out to about 15km range after applying range and bias correction.

  4. Application of high resolution images from unmanned aerial vehicles for hydrology and rangeland science

    NASA Astrophysics Data System (ADS)

    Rango, A.; Vivoni, E. R.; Anderson, C. A.; Perini, N. A.; Saripalli, S.; Laliberte, A.

    2012-12-01

    A common problem in many natural resource disciplines is the lack of high-enough spatial resolution images that can be used for monitoring and modeling purposes. Advances have been made in the utilization of Unmanned Aerial Vehicles (UAVs) in hydrology and rangeland science. By utilizing low flight altitudes and velocities, UAVs are able to produce high resolution (5 cm) images as well as stereo coverage (with 75% forward overlap and 40% sidelap) to extract digital elevation models (DEM). Another advantage of flying at low altitude is that the potential problems of atmospheric haze obscuration are eliminated. Both small fixed-wing and rotary-wing aircraft have been used in our experiments over two rangeland areas in the Jornada Experimental Range in southern New Mexico and the Santa Rita Experimental Range in southern Arizona. The fixed-wing UAV has a digital camera in the wing and six-band multispectral camera in the nose, while the rotary-wing UAV carries a digital camera as payload. Because we have been acquiring imagery for several years, there are now > 31,000 photos at one of the study sites, and 177 mosaics over rangeland areas have been constructed. Using the DEM obtained from the imagery we have determined the actual catchment areas of three watersheds and compared these to previous estimates. At one site, the UAV-derived watershed area is 4.67 ha which is 22% smaller compared to a manual survey using a GPS unit obtained several years ago. This difference can be significant in constructing a watershed model of the site. From a vegetation species classification, we also determined that two of the shrub types in this small watershed(mesquite and creosote with 6.47 % and 5.82% cover, respectively) grow in similar locations(flat upland areas with deep soils), whereas the most predominant shrub(mariola with 11.9% cover) inhabits hillslopes near stream channels(with steep shallow soils). The positioning of these individual shrubs throughout the catchment using

  5. Nonlinear Estimation Approach to Real-Time Georegistration from Aerial Images

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Padgett, Curtis W.

    2012-01-01

    When taking aerial images, it is important to know locations of specific points of interest in an Earth-centered coordinate system (latitude, longitude, height). The correspondence between a pixel location in the image and its Earth coordinate is known as georegistration. There are two main technical challenges arising in the intended application. The first is that no known features are assumed to be available in any of the images. The second is that the intended applications are real time. Here, images are taken at regular intervals (i.e. once per second), and it is desired to make decisions in real time based on the geolocation of specific objects seen in the images as they arrive. This is in sharp contrast to most current methods for geolocation that operate "after-the-fact" by processing, on the ground, a database of stored images using computationally intensive methods. The solution is a nonlinear estimation algorithm that combines processed realtime camera images with vehicle position and attitude information ob tained from an onboard GPS receiver. This approach provides accurate georegistration estimates (latitude, longitude, height) of arbitrary features and/or points of interest seen in the camera images. This solves the georegistration problem at the modest cost of augmenting the camera information with a GPS receiver carried onboard the vehicle.

  6. Identification and measurement of shrub type vegetation on large scale aerial photography

    NASA Technical Reports Server (NTRS)

    Driscoll, R. S.

    1970-01-01

    Important range-shrub species were identified at acceptable levels of accuracy on large-scale 70 mm color and color infrared aerial photographs. Identification of individual shrubs was significantly higher, however, on color infrared. Photoscales smaller than 1:2400 had limited value except for mature individuals of relatively tall species, and then only if crown margins did not overlap and sharp contrast was evident between the species and background. Larger scale photos were required for low-growing species in dense stands. The crown cover for individual species was estimated from the aerial photos either with a measuring magnifier or a projected-scale micrometer. These crown cover measurements provide techniques for earth-resource analyses when used in conjunction with space and high-altitude remotely procured photos.

  7. Automatic aerial image shadow detection through the hybrid analysis of RGB and HIS color space

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Li, Huilin; Peng, Zhiyong

    2015-12-01

    This paper presents our research on automatic shadow detection from high-resolution aerial image through the hybrid analysis of RGB and HIS color space. To this end, the spectral characteristics of shadow are firstly discussed and three kinds of spectral components including the difference between normalized blue and normalized red component - BR, intensity and saturation components are selected as criterions to obtain initial segmentation of shadow region (called primary segmentation). After that, within the normalized RGB color space and HIS color space, the shadow region is extracted again (called auxiliary segmentation) using the OTSU operation, respectively. Finally, the primary segmentation and auxiliary segmentation are combined through a logical AND-connection operation to obtain reliable shadow region. In this step, small shadow areas are removed from combined shadow region and morphological algorithms are apply to fill small holes as well. The experimental results show that the proposed approach can effectively detect the shadow region from high-resolution aerial image and in high degree of automaton.

  8. Neural-network classifiers for automatic real-world aerial image recognition

    NASA Astrophysics Data System (ADS)

    Greenberg, Shlomo; Guterman, Hugo

    1996-08-01

    We describe the application of the multilayer perceptron (MLP) network and a version of the adaptive resonance theory version 2-A (ART 2-A) network to the problem of automatic aerial image recognition (AAIR). The classification of aerial images, independent of their positions and orientations, is required for automatic tracking and target recognition. Invariance is achieved by the use of different invariant feature spaces in combination with supervised and unsupervised neural networks. The performance of neural-network-based classifiers in conjunction with several types of invariant AAIR global features, such as the Fourier-transform space, Zernike moments, central moments, and polar transforms, are examined. The advantages of this approach are discussed. The performance of the MLP network is compared with that of a classical correlator. The MLP neural-network correlator outperformed the binary phase-only filter (BPOF) correlator. It was found that the ART 2-A distinguished itself with its speed and its low number of required training vectors. However, only the MLP classifier was able to deal with a combination of shift and rotation geometric distortions.

  9. Feature-based registration of historical aerial images by Area Minimization

    NASA Astrophysics Data System (ADS)

    Nagarajan, Sudhagar; Schenk, Toni

    2016-06-01

    The registration of historical images plays a significant role in assessing changes in land topography over time. By comparing historical aerial images with recent data, geometric changes that have taken place over the years can be quantified. However, the lack of ground control information and precise camera parameters has limited scientists' ability to reliably incorporate historical images into change detection studies. Other limitations include the methods of determining identical points between recent and historical images, which has proven to be a cumbersome task due to continuous land cover changes. Our research demonstrates a method of registering historical images using Time Invariant Line (TIL) features. TIL features are different representations of the same line features in multi-temporal data without explicit point-to-point or straight line-to-straight line correspondence. We successfully determined the exterior orientation of historical images by minimizing the area formed between corresponding TIL features in recent and historical images. We then tested the feasibility of the approach with synthetic and real data and analyzed the results. Based on our analysis, this method shows promise for long-term 3D change detection studies.

  10. Object-based Image Classification of Arctic Sea Ice and Melt Ponds through Aerial Photos

    NASA Astrophysics Data System (ADS)

    Miao, X.; Xie, H.; Li, Z.; Lei, R.

    2013-12-01

    The last six years have marked the lowest Arctic summer sea ice extents in the modern era, with a new record summer minimum (3.4 million km2) set on 13 September 2012. It has been predicted that the Arctic could be free of summer ice within the next 25-30. The loss of Arctic summer ice could have serious consequences, such as higher water temperature due to the positive feedback of albedo, more powerful and frequent storms, rising sea levels, diminished habitats for polar animals, and more pollution due to fossil fuel exploitation and/ or increased traffic through the Northwest/ Northeast Passage. In these processes, melt ponds play an important role in Earth's radiation balance since they strongly absorb solar radiation rather than reflecting it as snow and ice do. Therefore, it is necessary to develop the ability of predicting the sea ice/ melt pond extents and space-time evolution, which is pivotal to prepare for the variation and uncertainty of the future environment, political, economic, and military needs. A lot of efforts have been put into Arctic sea ice modeling to simulate sea ice processes. However, these sea ice models were initiated and developed based on limited field surveys, aircraft or satellite image data. Therefore, it is necessary to collect high resolution sea ice aerial photo in a systematic way to tune up, validate, and improve models. Currently there are many sea ice aerial photos available, such as Chinese Arctic Exploration (CHINARE 2008, 2010, 2012), SHEBA 1998 and HOTRAX 2005. However, manually delineating of sea ice and melt pond from these images is time-consuming and labor-intensive. In this study, we use the object-based remote sensing classification scheme to extract sea ice and melt ponds efficiently from 1,727 aerial photos taken during the CHINARE 2010. The algorithm includes three major steps as follows. (1) Image segmentation groups the neighboring pixels into objects according to the similarity of spectral and texture

  11. The U.S. Department of Energy's Aerial Measuring System (AMS)

    SciTech Connect

    Craig Marianno

    2008-03-01

    For nearly 40 years, aerial radiological search and survey missions have been performed by the United States Department of Energy's (USDOE) Remote Sensing Laboratory (RSL). Originally created in 1967 as Aerial Measurement Operations (AMO), the AMS mission has expanded to include acquiring baseline measurements, performing periodic area monitoring, and responding to radiological emergencies. In an accident scenario, AMS fixed-wing and/or rotary-wing systems can be deployed to map radiological deposition. A fixed-wing system is on standby twenty-fours per day, seven days per week and can be deployed within four hours of notification. It can quickly evaluate high levels of radiation which may constitute immediate health risks. To accomplish its mission the fixed-wing aircraft utilizes the Spectral Aerial Radiological Computer System (SPARCS) which records gross count and spectral information. Data from SPARCS is telemetered to ground stations and secure websites where it can be viewed and evaluated in near-real time. The rotary-wing system deploys following the critical phase of an accident and supports the DOE's Consequence Management Response Team (CMRT) in determining long term consequences of the accident. The rotary wing aircraft utilizes the Radiation and Environmental Data Acquisition and Recording System (REDAR). A 25-liter sodium iodide (NaI) spectral system and precise positioning allow distributed man-made activity of less than 1 {micro}R/hr at ground level to be precisely mapped. This talk will discuss history of the USDOE's AMS program and its current efforts to conduct baseline aerial surveys of some US cities.

  12. Adaptive vision-based control of an unmanned aerial vehicle without linear velocity measurements.

    PubMed

    Jabbari Asl, Hamed; Yoon, Jungwon

    2016-11-01

    In this paper, an image-based visual servo controller is designed for an unmanned aerial vehicle. The main objective is to use flow of image features as the velocity cue to compensate for the low quality of linear velocity information obtained from accelerometers. Nonlinear observers are designed to estimate this flow. The proposed controller is bounded, which can help to keep the target points in the field of view of the camera. The main advantages over the previous full dynamic observer-based methods are that, the controller is robust with respect to unknown image depth, and also no yaw information is required. The complete stability analysis is presented and asymptotic convergence of the error signals is guaranteed. Simulation results show the effectiveness of the proposed approach.

  13. Vehicle Detection in Aerial Images Based on Region Convolutional Neural Networks and Hard Negative Example Mining

    PubMed Central

    Tang, Tianyu; Zhou, Shilin; Deng, Zhipeng; Zou, Huanxin; Lei, Lin

    2017-01-01

    Detecting vehicles in aerial imagery plays an important role in a wide range of applications. The current vehicle detection methods are mostly based on sliding-window search and handcrafted or shallow-learning-based features, having limited description capability and heavy computational costs. Recently, due to the powerful feature representations, region convolutional neural networks (CNN) based detection methods have achieved state-of-the-art performance in computer vision, especially Faster R-CNN. However, directly using it for vehicle detection in aerial images has many limitations: (1) region proposal network (RPN) in Faster R-CNN has poor performance for accurately locating small-sized vehicles, due to the relatively coarse feature maps; and (2) the classifier after RPN cannot distinguish vehicles and complex backgrounds well. In this study, an improved detection method based on Faster R-CNN is proposed in order to accomplish the two challenges mentioned above. Firstly, to improve the recall, we employ a hyper region proposal network (HRPN) to extract vehicle-like targets with a combination of hierarchical feature maps. Then, we replace the classifier after RPN by a cascade of boosted classifiers to verify the candidate regions, aiming at reducing false detection by negative example mining. We evaluate our method on the Munich vehicle dataset and the collected vehicle dataset, with improvements in accuracy and robustness compared to existing methods. PMID:28208587

  14. Vehicle Detection in Aerial Images Based on Region Convolutional Neural Networks and Hard Negative Example Mining.

    PubMed

    Tang, Tianyu; Zhou, Shilin; Deng, Zhipeng; Zou, Huanxin; Lei, Lin

    2017-02-10

    Detecting vehicles in aerial imagery plays an important role in a wide range of applications. The current vehicle detection methods are mostly based on sliding-window search and handcrafted or shallow-learning-based features, having limited description capability and heavy computational costs. Recently, due to the powerful feature representations, region convolutional neural networks (CNN) based detection methods have achieved state-of-the-art performance in computer vision, especially Faster R-CNN. However, directly using it for vehicle detection in aerial images has many limitations: (1) region proposal network (RPN) in Faster R-CNN has poor performance for accurately locating small-sized vehicles, due to the relatively coarse feature maps; and (2) the classifier after RPN cannot distinguish vehicles and complex backgrounds well. In this study, an improved detection method based on Faster R-CNN is proposed in order to accomplish the two challenges mentioned above. Firstly, to improve the recall, we employ a hyper region proposal network (HRPN) to extract vehicle-like targets with a combination of hierarchical feature maps. Then, we replace the classifier after RPN by a cascade of boosted classifiers to verify the candidate regions, aiming at reducing false detection by negative example mining. We evaluate our method on the Munich vehicle dataset and the collected vehicle dataset, with improvements in accuracy and robustness compared to existing methods.

  15. Detection of laurel wilt disease in avocado using low altitude aerial imaging.

    PubMed

    de Castro, Ana I; Ehsani, Reza; Ploetz, Randy C; Crane, Jonathan H; Buchanon, Sherrie

    2015-01-01

    Laurel wilt is a lethal disease of plants in the Lauraceae plant family, including avocado (Persea americana). This devastating disease has spread rapidly along the southeastern seaboard of the United States and has begun to affect commercial avocado production in Florida. The main objective of this study was to evaluate the potential to discriminate laurel wilt-affected avocado trees using aerial images taken with a modified camera during helicopter surveys at low-altitude in the commercial avocado production area. The ability to distinguish laurel wilt-affected trees from other factors that produce similar external symptoms was also studied. RmodGB digital values of healthy trees and laurel wilt-affected trees, as well as fruit stress and vines covering trees were used to calculate several vegetation indices (VIs), band ratios, and VI combinations. These indices were subjected to analysis of variance (ANOVA) and an M-statistic was performed in order to quantify the separability of those classes. Significant differences in spectral values among laurel wilt affected and healthy trees were observed in all vegetation indices calculated, although the best results were achieved with Excess Red (ExR), (Red-Green) and Combination 1 (COMB1) in all locations. B/G showed a very good potential for separate the other factors with symptoms similar to laurel wilt-affected trees, such as fruit stress and vines covering trees, from laurel wilt-affected trees. These consistent results prove the usefulness of using a modified camera (RmodGB) to discriminate laurel wilt-affected avocado trees from healthy trees, as well as from other factors that cause the same symptoms and suggest performing the classification in further research. According to our results, ExR and B/G should be utilized to develop an algorithm or decision rules to classify aerial images, since they showed the highest capacity to discriminate laurel wilt-affected trees. This methodology may allow the rapid detection

  16. Detection of Laurel Wilt Disease in Avocado Using Low Altitude Aerial Imaging

    PubMed Central

    de Castro, Ana I.; Ehsani, Reza; Ploetz, Randy C.; Crane, Jonathan H.; Buchanon, Sherrie

    2015-01-01

    Laurel wilt is a lethal disease of plants in the Lauraceae plant family, including avocado (Persea americana). This devastating disease has spread rapidly along the southeastern seaboard of the United States and has begun to affect commercial avocado production in Florida. The main objective of this study was to evaluate the potential to discriminate laurel wilt-affected avocado trees using aerial images taken with a modified camera during helicopter surveys at low-altitude in the commercial avocado production area. The ability to distinguish laurel wilt-affected trees from other factors that produce similar external symptoms was also studied. RmodGB digital values of healthy trees and laurel wilt-affected trees, as well as fruit stress and vines covering trees were used to calculate several vegetation indices (VIs), band ratios, and VI combinations. These indices were subjected to analysis of variance (ANOVA) and an M-statistic was performed in order to quantify the separability of those classes. Significant differences in spectral values among laurel wilt affected and healthy trees were observed in all vegetation indices calculated, although the best results were achieved with Excess Red (ExR), (Red–Green) and Combination 1 (COMB1) in all locations. B/G showed a very good potential for separate the other factors with symptoms similar to laurel wilt-affected trees, such as fruit stress and vines covering trees, from laurel wilt-affected trees. These consistent results prove the usefulness of using a modified camera (RmodGB) to discriminate laurel wilt-affected avocado trees from healthy trees, as well as from other factors that cause the same symptoms and suggest performing the classification in further research. According to our results, ExR and B/G should be utilized to develop an algorithm or decision rules to classify aerial images, since they showed the highest capacity to discriminate laurel wilt-affected trees. This methodology may allow the rapid

  17. Spectral properties of agricultural crops and soils measured from space, aerial, field and laboratory sensors

    NASA Technical Reports Server (NTRS)

    Bauer, M. E.; Vanderbilt, V. C.; Robinson, B. F.; Daughtry, C. S. T.

    1980-01-01

    It is pointed out that in order to develop the full potential of multispectral measurements acquired from satellite or aircraft sensors to monitor, map, and inventory agricultural resources, increased knowledge and understanding of the spectral properties of crops and soils are needed. The present state of knowledge is reviewed, emphasizing current investigations of the multispectral reflectance characteristics of crops and soils as measured from laboratory, field, aerial, and satellite sensor systems. The relationships of important biological and physical characteristics to their spectral properties of crops and soils are discussed. Future research needs are also indicated.

  18. Integrating Spray Plane-Based Remote Sensing and Rapid Image Processing with Variable-Rate Aerial Application.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A remote sensing and variable rate application system was configured for agricultural aircraft. This combination system has the potential of providing a completely integrated solution for all aspects of aerial site-specific application and includes remote sensing, image processing and georegistratio...

  19. Method of measuring speed of LOS for optics-electricity system of unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Li, Hong-guang; Ji, Ming; Zhao, Miyang; Zhang, Tingting; Jia, Tao

    2016-10-01

    In order to resolve issue of azimuth framework stability of optics-electricity system for unmanned aerial vehicle depressing, reason of azimuth platform stability depressing and noise caused by secant compensation was analyzed, which work in big pitching angle with tradition mode of measuring speed. Stabilization controlling method with big pitching angle is designed in which azimuth platform install azimuth and roll gyro which was apeaked mutual, and azimuth angle velocity of line of sight was calculated. In the end, simulate experiment validate that, azimuth platform stability controlling performance of two axes platform with big pitching angle was advanced, and influence of gyro noise on controlling performance was depressed.

  20. An Aerial-Image Dense Matching Approach Based on Optical Flow Field

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Chen, Shiyu; Zhang, Yong; Gong, Jianya; Shibasaki, Ryosuke

    2016-06-01

    Dense matching plays an important role in many fields, such as DEM (digital evaluation model) producing, robot navigation and 3D environment reconstruction. Traditional approaches may meet the demand of accuracy. But the calculation time and out puts density is hardly be accepted. Focus on the matching efficiency and complex terrain surface matching feasibility an aerial image dense matching method based on optical flow field is proposed in this paper. First, some high accurate and uniformed control points are extracted by using the feature based matching method. Then the optical flow is calculated by using these control points, so as to determine the similar region between two images. Second, the optical flow field is interpolated by using the multi-level B-spline interpolation in the similar region and accomplished the pixel by pixel coarse matching. Final, the results related to the coarse matching refinement based on the combined constraint, which recognizes the same points between images. The experimental results have shown that our method can achieve per-pixel dense matching points, the matching accuracy achieves sub-pixel level, and fully meet the three-dimensional reconstruction and automatic generation of DSM-intensive matching's requirements. The comparison experiments demonstrated that our approach's matching efficiency is higher than semi-global matching (SGM) and Patch-based multi-view stereo matching (PMVS) which verifies the feasibility and effectiveness of the algorithm.

  1. Advanced Tie Feature Matching for the Registration of Mobile Mapping Imaging Data and Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Jende, P.; Peter, M.; Gerke, M.; Vosselman, G.

    2016-06-01

    Mobile Mapping's ability to acquire high-resolution ground data is opposing unreliable localisation capabilities of satellite-based positioning systems in urban areas. Buildings shape canyons impeding a direct line-of-sight to navigation satellites resulting in a deficiency to accurately estimate the mobile platform's position. Consequently, acquired data products' positioning quality is considerably diminished. This issue has been widely addressed in the literature and research projects. However, a consistent compliance of sub-decimetre accuracy as well as a correction of errors in height remain unsolved. We propose a novel approach to enhance Mobile Mapping (MM) image orientation based on the utilisation of highly accurate orientation parameters derived from aerial imagery. In addition to that, the diminished exterior orientation parameters of the MM platform will be utilised as they enable the application of accurate matching techniques needed to derive reliable tie information. This tie information will then be used within an adjustment solution to correct affected MM data. This paper presents an advanced feature matching procedure as a prerequisite to the aforementioned orientation update. MM data is ortho-projected to gain a higher resemblance to aerial nadir data simplifying the images' geometry for matching. By utilising MM exterior orientation parameters, search windows may be used in conjunction with a selective keypoint detection and template matching. Originating from different sensor systems, however, difficulties arise with respect to changes in illumination, radiometry and a different original perspective. To respond to these challenges for feature detection, the procedure relies on detecting keypoints in only one image. Initial tests indicate a considerable improvement in comparison to classic detector/descriptor approaches in this particular matching scenario. This method leads to a significant reduction of outliers due to the limited availability

  2. Ground-based spectral reflectance measurements for efficacy evaluation of aerially applied glyphosate treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerial application of herbicides is a common tool in agricultural field management. The objective of this study was to evaluate the efficacy of glyphosate herbicide applied aerially with both conventional and emerging aerial nozzle technologies. A Texas A&M University Plantation weed field was set u...

  3. Ground-based spectral reflectance measurements for evaluating the efficacy of aerially-applied glyphosate treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerial application of herbicides is a common tool in agricultural field management. The objective of this study was to evaluate the efficacy of glyphosate herbicide applied aerially with both conventional and emerging aerial nozzle technologies. A Texas A&M University Plantation weed field was set...

  4. Three dimensional monitoring of urban development by means of ortho-rectified aerial photographs and high-resolution satellite images.

    PubMed

    Ayhan, E; Erden, O; Gormus, E T

    2008-12-01

    Nowadays, cities are developing and changing rapidly due to the increases in the population and immigration. Rapid changing brings obligation to control the cities by planning. The satellite images and the aerial photographs enable us to track the urban development and provide the opportunity to get the current data about urban. With the help of these images, cities may have interrogated dynamic structures. This study is composed of three steps. In the first step, orthophoto images have been generated in order to track urban developments by using the aerial photographs and the satellite images. In this step, the panchromatic (PAN), the multi spectral (MS) and the pan-sharpened image of IKONOS satellite have been used as input satellite data and the accuracy of orthophoto images has been investigated in detail, in terms of digital elevation model (DEM), control points, input images and their properties. In the second step, a 3D city model with database has been generated with the help of orthophoto images and the vector layouts. And in the last step, up to date urban information obtained from 3D city model. This study shows that it is possible to detect the unlicensed buildings and the areas which are going to be nationalized and it also shows that it is easy to document the existing alterations in the cities with the help of current development plans and orthophoto images. And since accessing updated data is very essential to control development and monitor the temporal alterations in urban areas, in this study it is proven that the orthophoto images generated by using aerial photos and satellite images are very reliable to use in obtaining topographical information, in change detection and in city planning. When digital orthophoto images used with GIS, they provide quick decision control mechanisms and quick data collection. Besides, they help to find efficient solutions in a short time in the planning applications.

  5. The Need of Nested Grids for Aerial and Satellite Images and Digital Elevation Models

    NASA Astrophysics Data System (ADS)

    Villa, G.; Mas, S.; Fernández-Villarino, X.; Martínez-Luceño, J.; Ojeda, J. C.; Pérez-Martín, B.; Tejeiro, J. A.; García-González, C.; López-Romero, E.; Soteres, C.

    2016-06-01

    Usual workflows for production, archiving, dissemination and use of Earth observation images (both aerial and from remote sensing satellites) pose big interoperability problems, as for example: non-alignment of pixels at the different levels of the pyramids that makes it impossible to overlay, compare and mosaic different orthoimages, without resampling them and the need to apply multiple resamplings and compression-decompression cycles. These problems cause great inefficiencies in production, dissemination through web services and processing in "Big Data" environments. Most of them can be avoided, or at least greatly reduced, with the use of a common "nested grid" for mutiresolution production, archiving, dissemination and exploitation of orthoimagery, digital elevation models and other raster data. "Nested grids" are space allocation schemas that organize image footprints, pixel sizes and pixel positions at all pyramid levels, in order to achieve coherent and consistent multiresolution coverage of a whole working area. A "nested grid" must be complemented by an appropriate "tiling schema", ideally based on the "quad-tree" concept. In the last years a "de facto standard" grid and Tiling Schema has emerged and has been adopted by virtually all major geospatial data providers. It has also been adopted by OGC in its "WMTS Simple Profile" standard. In this paper we explain how the adequate use of this tiling schema as common nested grid for orthoimagery, DEMs and other types of raster data constitutes the most practical solution to most of the interoperability problems of these types of data.

  6. Using aerial-acquired images to improve cotton and peanut production systems

    NASA Astrophysics Data System (ADS)

    Kvien, Craig; Waters, Deborah; Pocknee, Stuart; Usery, Lynn; Wells, Natasha

    1996-11-01

    Modern agriculture management is an extraordinarily complex task. The most complex tasks are management for environmental benefits. Chemical, physical and biological characteristics are known to vary over short distances in a field. However, most fields are treated as uniform, leading to over application and environmental pollution, or under application and suboptimal yields. Affordable navigation and positioning systems linked to sensing technologies and integrated into a geographic information system (GIS) are revolutionizing the way agriculture can address environmental variabilities. One challenge to better management of within field variability is the establishment of management zones for various inputs. Our research and development group is currently using aerial acquired images to help establish management zones for nutrients, pest scouting, and to monitor crop growth and development. These images are ground truthed and coupled with additional information layers such as maps of yield, disease, insect and weed pests, soil properties, topography to help establish relationships between the various components affecting crop growth and to help improve management decisions during the growing season.

  7. Near-vent measurements of volcanic gases and aerosols with multiple small unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Pieri, D. C.; Diaz, J. A.; Bland, G.; Fladeland, M. M.; Schumann, J. M.

    2013-12-01

    Dynamic phenomena occurring on the earth's surface and in the atmosphere are almost always distributed over a volume or area that changes progressively over time (e.g., explosive eruption plumes, lava flows, floods, toxic materials releases, wildfires). 'Snapshot' views of such phenomena traditionally capture a small part of the area or volume of the event in successive time slices. Such time series are fundamentally limited in providing accurate boundary conditions for models of such processes, or even to create descriptions or observations at spatial scales relevant to the characteristic dimensions of the process. High spatial resolution (e.g., ~1-3m/pixel) imaging views of such spatially extended phenomena that capture the entire extent of the event are not usually possible with a single low altitude aircraft, for instance. Synoptic satellite and high altitude airborne views are often at spatial resolutions that an order of magnitude coarser. Airborne in situ sampling faces a similar problem in that point measurements are acquired along a flight line in a time-series. Source conditions changing at timescales shorter than an airborne sortie interval (typical for most dynamic phenomena) render such flight line observations incomplete. The ability to capture hi-spatial resolution, synchronous, full volume or area data over dynamically evolving (possibly hazardous) features (e.g., volcanic plumes, air pollution layers, oil slicks, wildfires) requires a distributed 2D or 3D mesh of observation platforms. Small (e.g., <25kg) unmanned aerial vehicles (UAVs) are an emerging technology that can provide distributed formations or networks of observation platforms that can be dynamically reconfigured to encompass areas or volumes of interest for imaging or other kinds of in situ observations (e.g., SO2 or CO2 sampling of volcanic gas emissions). Such data are crucial for the calibration and validation of remotely sensed concentration retrievals (e.g., from multi

  8. Low-Level Tie Feature Extraction of Mobile Mapping Data (mls/images) and Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Jende, P.; Hussnain, Z.; Peter, M.; Oude Elberink, S.; Gerke, M.; Vosselman, G.

    2016-03-01

    Mobile Mapping (MM) is a technique to obtain geo-information using sensors mounted on a mobile platform or vehicle. The mobile platform's position is provided by the integration of Global Navigation Satellite Systems (GNSS) and Inertial Navigation Systems (INS). However, especially in urban areas, building structures can obstruct a direct line-of-sight between the GNSS receiver and navigation satellites resulting in an erroneous position estimation. Therefore, derived MM data products, such as laser point clouds or images, lack the expected positioning reliability and accuracy. This issue has been addressed by many researchers, whose aim to mitigate these effects mainly concentrates on utilising tertiary reference data. However, current approaches do not consider errors in height, cannot achieve sub-decimetre accuracy and are often not designed to work in a fully automatic fashion. We propose an automatic pipeline to rectify MM data products by employing high resolution aerial nadir and oblique imagery as horizontal and vertical reference, respectively. By exploiting the MM platform's defective, and therefore imprecise but approximate orientation parameters, accurate feature matching techniques can be realised as a pre-processing step to minimise the MM platform's three-dimensional positioning error. Subsequently, identified correspondences serve as constraints for an orientation update, which is conducted by an estimation or adjustment technique. Since not all MM systems employ laser scanners and imaging sensors simultaneously, and each system and data demands different approaches, two independent workflows are developed in parallel. Still under development, both workflows will be presented and preliminary results will be shown. The workflows comprise of three steps; feature extraction, feature matching and the orientation update. In this paper, initial results of low-level image and point cloud feature extraction methods will be discussed as well as an outline of

  9. Emissions from Southeastern U.S. Grasslands and Pine Savannas: Comparison of Aerial and Ground Field Measurements with Laboratory Burns

    EPA Science Inventory

    Emissions from prescribed burns of forest and grass stands in western Florida were measured by simultaneous aerial and ground sampling. Results were compared with biomass gathered from the same stands and tested in an open burn laboratory test facility. Measurements included pol...

  10. Stream Morphologic Measurements from Airborne Laser Swath Mapping: Comparisons with Field Surveys, Traditional DEMs, and Aerial Photographs

    NASA Astrophysics Data System (ADS)

    Snyder, N. P.; Schultz, L. L.

    2005-12-01

    Precise measurement of stream morphology over entire watersheds is one of the great research opportunities provided by airborne laser swath mapping (ALSM). ALSM surveys allow for rapid quantification of factors, such as channel width and gradient, that control stream hydraulic and ecologic properties. We compare measurements from digital elevation models (DEMs) derived from ALSM data collected by the National Center for Airborne Laser Mapping (NCALM) to field surveys, traditional DEMs (rasterized from topographic maps), and aerial photographs. The field site is in the northern Black Mountains in arid Death Valley National Park (California). The area is unvegetated, and therefore is excellent for testing DEM analysis methods because the ALSM data required minimal filtering, and the resulting DEM contains relatively few unphysical sinks. Algorithms contained in geographic information systems (GIS) software used to extract stream networks from DEMs yield best results where streams are steep enough for resolvable pixel-to-pixel elevation change, and channel width is on the order of pixel resolution. This presents a new challenge with ALSM-derived DEMs because the pixel size (1 m) is often an order of magnitude or more smaller than channel width. We find the longitudinal profile of Gower Gulch in the northern Black Mountains (~4 km total length) extracted using the ALSM DEM and a flow accumulation algorithm is 14% longer than a traditional 10-m DEM, and 13% longer than a field survey. These differences in length (and therefore gradient) are due to the computed channel path following small-scale topographic variations within the channel bottom that are not relevant during high flows. However, visual analysis of shaded-relief images created from high-resolution ALSM data is an excellent method for digitizing channel banks and thalweg paths. We used these lines to measure distance, elevation, and width. In Gower Gulch, the algorithm-derived profile is 10% longer than that

  11. Aerial Images from AN Uav System: 3d Modeling and Tree Species Classification in a Park Area

    NASA Astrophysics Data System (ADS)

    Gini, R.; Passoni, D.; Pinto, L.; Sona, G.

    2012-07-01

    The use of aerial imagery acquired by Unmanned Aerial Vehicles (UAVs) is scheduled within the FoGLIE project (Fruition of Goods Landscape in Interactive Environment): it starts from the need to enhance the natural, artistic and cultural heritage, to produce a better usability of it by employing audiovisual movable systems of 3D reconstruction and to improve monitoring procedures, by using new media for integrating the fruition phase with the preservation ones. The pilot project focus on a test area, Parco Adda Nord, which encloses various goods' types (small buildings, agricultural fields and different tree species and bushes). Multispectral high resolution images were taken by two digital compact cameras: a Pentax Optio A40 for RGB photos and a Sigma DP1 modified to acquire the NIR band. Then, some tests were performed in order to analyze the UAV images' quality with both photogrammetric and photo-interpretation purposes, to validate the vector-sensor system, the image block geometry and to study the feasibility of tree species classification. Many pre-signalized Control Points were surveyed through GPS to allow accuracy analysis. Aerial Triangulations (ATs) were carried out with photogrammetric commercial software, Leica Photogrammetry Suite (LPS) and PhotoModeler, with manual or automatic selection of Tie Points, to pick out pros and cons of each package in managing non conventional aerial imagery as well as the differences in the modeling approach. Further analysis were done on the differences between the EO parameters and the corresponding data coming from the on board UAV navigation system.

  12. Satellite Images and Aerial Photographs of the Effects of Hurricanes Katrina and Rita on Coastal Louisiana

    USGS Publications Warehouse

    Barras, John A.

    2007-01-01

    -water datasets derived from the Landsat TM satellite imagery were combined with 2001 marsh vegetative communities (Chabreck and others, unpub. data, 2001) to identify land-water configurations by marsh community before and after the hurricanes. Links to the Landsat TM images and aerial photographs are given below (figs. 1-29). Comparison of land area before the storms to land area after the storms is made possible by the inclusion of Landsat TM images and aerial photographs taken in the years and months before the storms. The figures are arranged geographically from east to west to follow the chronology of the effects of the storms. For a more detailed analysis of the changes wrought by these storms, see 'Land Area Changes in Coastal Louisiana After Hurricanes Katrina and Rita' (Barras, in press).

  13. Matching Aerial Images to 3d Building Models Based on Context-Based Geometric Hashing

    NASA Astrophysics Data System (ADS)

    Jung, J.; Bang, K.; Sohn, G.; Armenakis, C.

    2016-06-01

    In this paper, a new model-to-image framework to automatically align a single airborne image with existing 3D building models using geometric hashing is proposed. As a prerequisite process for various applications such as data fusion, object tracking, change detection and texture mapping, the proposed registration method is used for determining accurate exterior orientation parameters (EOPs) of a single image. This model-to-image matching process consists of three steps: 1) feature extraction, 2) similarity measure and matching, and 3) adjustment of EOPs of a single image. For feature extraction, we proposed two types of matching cues, edged corner points representing the saliency of building corner points with associated edges and contextual relations among the edged corner points within an individual roof. These matching features are extracted from both 3D building and a single airborne image. A set of matched corners are found with given proximity measure through geometric hashing and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on co-linearity equations. The result shows that acceptable accuracy of single image's EOP can be achievable by the proposed registration approach as an alternative to labour-intensive manual registration process.

  14. Coherent Scatter Imaging Measurements

    NASA Astrophysics Data System (ADS)

    Ur Rehman, Mahboob

    In conventional radiography, anatomical information of the patients can be obtained, distinguishing different tissue types, e.g. bone and soft tissue. However, it is difficult to obtain appreciable contrast between two different types of soft tissues. Instead, coherent x-ray scattering can be utilized to obtain images which can differentiate between normal and cancerous cells of breast. An x-ray system using a conventional source and simple slot apertures was tested. Materials with scatter signatures that mimic breast cancer were buried in layers of fat of increasing thickness and imaged. The result showed that the contrast and signal to noise ratio (SNR) remained high even with added fat layers and short scan times.

  15. Soot Imaging and Measurement

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Soot, sometimes referred to as smoke, is made up primarily of the carbon particles generated by most combustion processes. For example, large quantities of soot can be seen issuing from the exhaust pipes of diesel-powered vehicles. Heated soot also is responsible for the warm orange color of candle flames, though that soot is generally consumed before it can exit the flame. Research has suggested that heavy atmospheric soot concentrations aggravate conditions such as pneumonia and asthma, causing many deaths each year. To understand the formation and oxidation of soot, NASA Lewis Research Center scientists, together with several university investigators, are investigating the properties of soot generated in reduced gravity, where the absence of buoyancy allows more time for the particles to grow. The increased time allows researchers to better study the life cycle of these particles, with the hope that increased understanding will lead to better control strategies. To quantify the amount of soot present in a flame, Lewis scientists developed a unique imaging technique that provides quantitative and qualitative soot data over a large field of view. There is significant improvement over the single-point methods normally used. The technique is shown in the sketch, where light from a laser is expanded with a microscope objective, rendered parallel, and passed through a flame where soot particles reduce the amount of light transmitted to the camera. A filter only allows light at the wavelength of the laser to pass to the camera, preventing any extraneous signals. When images of the laser light with and without the flame are compared, a quantitative map of the soot concentration is produced. In addition to that data, a qualitative image of the soot in the flame is also generated, an example of which is displayed in the photo. This technique has the potential to be adapted to real-time process control in industrial powerplants.

  16. Aerial measurements of artificial radionuclides in Germany in case of a nuclear accident.

    PubMed

    Winkelmann, I; Strobl, C; Thomas, M

    2004-01-01

    Gamma-ray spectrometric systems carried by helicopters prove to be indispensable for the surveillance of environmental radioactivity. The aerial measurements are an important tool for rapid and large-scale nuclide specific determination of soil contamination after an accidental release of radionuclides from a nuclear facility. Furthermore this technique is also applied for the determination of anomalies of elevated radioactivity of natural radionuclides, the detection of lost radioactive sources and geological mapping. For the measurements the helicopters are equipped with a NaI(Tl)-detector array and a high purity germanium-semiconductor (HPGe) detector. Especially with the HPGe-detector it is possible to clearly identify individual radionuclides. To improve and to guarantee the quality of this method several exercises with different fields of interest have been carried out during the last years. Thereby the main focus is on the improvement of the instrumentation, data handling and data analysis. The results of the airborne radionuclide measurements from the Black Forest which was performed in co-operation with the Swiss National Emergency Operation Centre, are presented here. During this exercise the gamma dose rate, soil contamination due to 137Cs and the specific activities of natural radionuclides in soil were determined.

  17. Measurements of Atmospheric Aerosol Vertical Distributions above Svalbard, Norway using Unmanned Aerial Systems (UAS)

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Johnson, J. E.; Stalin, S.; Telg, H.; Murphy, D. M.; Burkhart, J. F.; Quinn, P.; Storvold, R.

    2015-12-01

    Atmospheric aerosol vertical distributions were measured above Svalbard, Norway in April 2015 to investigate the processes controlling aerosol concentrations and radiative effects. The aerosol payload was flown in a NOAA/PMEL MANTA Unmanned Aerial System (UAS) on 9 flights totaling 19 flight hours. Measurements were made of particle number concentration and aerosol light absorption at three wavelengths, similar to those conducted in April 2011 (Bates et al., Atmos. Meas. Tech., 6, 2115-2120, 2013). A filter sample was collected on each flight for analyses of trace elements. Additional measurements in the aerosol payload in 2015 included aerosol size distributions obtained using a Printed Optical Particle Spectrometer (POPS) and aerosol optical depth obtained using a four wavelength miniature Scanning Aerosol Sun Photometer (miniSASP). The data show most of the column aerosol mass and resulting optical depth in the boundary layer but frequent aerosol layers aloft with high particle number concentration (2000 cm-3) and enhanced aerosol light absorption (1 Mm-1). Transport of these aerosol layers was assessed using FLEXPART particle dispersion models. The data contribute to an assessment of sources of BC to the Arctic and potential climate impacts.

  18. Aerial Measuring System (AMS)/Israel Atomic Energy Commission (IAEC) Joint Comparison Study Report

    SciTech Connect

    Wasiolek, P.; Halevy, I.

    2013-12-23

    Under the 13th Bilateral Meeting to Combat Nuclear Terrorism conducted on January 8–9, 2013, the committee approved the development of a cost-effective proposal to conduct a Comparison Study of the Aerial Measuring System (AMS) of the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) and Israel Atomic Energy Commission (IAEC). The study was to be held at the Remote Sensing Laboratory (RSL), Nellis Air Force Base, Las Vegas, Nevada, with measurements at the Nevada National Security Site (NNSS). The goal of the AMS and the IAEC joint survey was to compare the responses of the two agencies’ aerial radiation detection systems to varied radioactive surface contamination levels and isotopic composition experienced at the NNSS, and the differing data processing techniques utilized by the respective teams. Considering that for the comparison both teams were using custom designed and built systems, the main focus of the short campaign was to investigate the impact of the detector size and data analysis techniques used by both teams. The AMS system, SPectral Advanced Radiological Computer System, Model A (SPARCS-A), designed and built by RSL, incorporates four different size sodium iodide (NaI) crystals: 1" × 1", 2" × 4" × 4", 2" × 4" ×16", and an “up-looking” 2" × 4" × 4". The Israel AMS System, Air RAM 2000, was designed by the IAEC Nuclear Research Center – Negev (NRCN) and built commercially by ROTEM Industries (Israel) and incorporates two 2" diameter × 2" long NaI crystals. The operational comparison was conducted at RSL-Nellis in Las Vegas, Nevada, during week of June 24–27, 2013. The Israeli system, Air RAM 2000, was shipped to RSL-Nellis and mounted together with the DOE SPARCS on a DOE Bell-412 helicopter for a series of aerial comparison measurements at local test ranges, including the Desert Rock Airport and Area 3 at the NNSS. A 4-person Israeli team from the IAEC NRCN supported the activity together with 11

  19. Aerial and in situ Measurements of Submesoscale Eddies, Fronts, and Filaments

    NASA Astrophysics Data System (ADS)

    Baschek, Burkard; Maarten Molemaker, Jeroen

    2010-05-01

    Submesoscale eddies, fronts, and filaments on scales of 10 m to 20 km are common features of many coastal regions of the world. Modeling results suggest that these submesoscale phenomena play an important role in local energy cascades, transferring energy from the large-scale ocean circulation to turbulence. It is also likely that submesoscale features are important for mixing, vertical transport, or biogeochemical processes. While submesoscale features have been observed using SAR satellite imagery, only very limited in situ measurements exist that reveal the dynamically relevant internal structure. Submesoscale features have a life time of several hours to a few days and advective speeds of up to 0.5 ms-1, which makes it very hard to measure them with traditional in situ sampling. Also satellite sea surface temperature (SST) data cannot sufficiently resolve the small scales of these features. We present aerial and in situ measurements of submesoscale eddies, fronts, and filaments, and believe to have carried out the first time in situ measurements of a spiral eddy (~2.5 km diameter) during a 5-day experiment in September 2009 off Catalina Island, CA. The observations are taken with a cost efficient and pragmatic observational approach for repeat quasi-synoptic measurements of submesoscale features in real-time and on the required small spatial and temporal scales of ~30min and ~20m. An IR camera mounted on a small plane is used to derive fine-resolution SST maps of this area and to guide a fast response vessel to distinct submesoscale features. A temperature/pressure array is towed in the upper 45m at speeds of 5 ms-1 through the features. The properties of the submesoscale features are examined within the context of the larger-scale circulation patterns of this highly variable coastal region combined with the analysis of satellite SST, coastal radar, and mooring data.

  20. Preliminary applications of Landsat images and aerial photography for determining land-use, geologic, and hydrologic characteristics, Yampa River basin, Colorado and Wyoming

    USGS Publications Warehouse

    Heimes, F.J.; Moore, G.K.; Steele, T.D.

    1978-01-01

    Expanded energy- and recreation-related activities in the Yampa River basin, Colorado and Wyoming, have caused a rapid increase in economic development which will result in increased demand and competition for natural resources. In planning for efficient allocation of the basin 's natural resources, Landsat images and small-scale color and color-infrared photographs were used for selected geologic, hydrologic and land-use applications within the Yampa River basin. Applications of Landsat data included: (1) regional land-use classification and mapping, (2) lineament mapping, and (3) areal snow-cover mapping. Results from the Landsat investigations indicated that: (1) Landsat land-use classification maps, at a regional level, compared favorably with areal land-use patterns that were defined from available ground information, (2) lineaments were mapped in sufficient detail using recently developed techniques for interpreting aerial photographs, (3) snow cover generally could be mapped for large areas with the exception of some densely forested areas of the basin and areas having a large percentage of winter-season cloud cover. Aerial photographs were used for estimation of turbidity for eight stream locations in the basin. Spectral reflectance values obtained by digitizing photographs were compared with measured turbidity values. Results showed strong correlations (variances explained of greater than 90 percent) between spectral reflectance obtained from color photographs and measured turbidity values. (Woodard-USGS)

  1. ISSUES IN DIGITAL IMAGE PROCESSING OF AERIAL PHOTOGRAPHY FOR MAPPING SUBMERSED AQUATIC VEGETATION

    EPA Science Inventory

    The paper discusses the numerous issues that needed to be addressed when developing a methodology for mapping Submersed Aquatic Vegetation (SAV) from digital aerial photography. Specifically, we discuss 1) choice of film; 2) consideration of tide and weather constraints; 3) in-s...

  2. Constraining the Sulfur Dioxide Degassing Flux from Turrialba Volcano, Costa Rica Using Unmanned Aerial System Measurements

    NASA Technical Reports Server (NTRS)

    Xi, Xin; Johnson, Matthew S.; Jeong, Seongeun; Fladeland, Matthew; Pieri, David; Diaz, Jorge Andres; Bland, Geoffrey L.

    2016-01-01

    Observed sulfur dioxide (SO2)mixing ratios onboard unmanned aerial systems (UAS) duringMarch 11-13, 2013 are used to constrain the three-day averaged SO2 degassing flux fromTurrialba volcanowithin a Bayesian inverse modeling framework. A mesoscale model coupled with Lagrangian stochastic particle backward trajectories is used to quantify the source-receptor relationships at very high spatial resolutions (i.e., b1 km). The model shows better performance in reproducing the near-surface meteorological properties and observed SO2 variations when using a first-order closure non-local planetary boundary layer (PBL) scheme. The optimized SO2 degassing fluxes vary from 0.59 +/- 0.37 to 0.83 +/- 0.33 kt d-1 depending on the PBL scheme used. These fluxes are in good agreement with ground-based gas flux measurements, and correspond to corrective scale factors of 8-12 to the posteruptive SO2 degassing rate in the AeroCom emission inventory. The maximum a posteriori solution for the SO2 flux is highly sensitive to the specification of prior and observational errors, and relatively insensitive to the SO2 loss term and temporal averaging of observations. Our results indicate relatively low degassing activity but sustained sulfur emissions from Turrialba volcano to the troposphere during March 2013. This study demonstrates the utility of low-cost small UAS platforms for volcanic gas composition and flux analysis.

  3. Constraining the sulfur dioxide degassing flux from Turrialba volcano, Costa Rica using unmanned aerial system measurements

    NASA Astrophysics Data System (ADS)

    Xi, Xin; Johnson, Matthew S.; Jeong, Seongeun; Fladeland, Matthew; Pieri, David; Diaz, Jorge Andres; Bland, Geoffrey L.

    2016-10-01

    Observed sulfur dioxide (SO2) mixing ratios onboard unmanned aerial systems (UAS) during March 11-13, 2013 are used to constrain the three-day averaged SO2 degassing flux from Turrialba volcano within a Bayesian inverse modeling framework. A mesoscale model coupled with Lagrangian stochastic particle backward trajectories is used to quantify the source-receptor relationships at very high spatial resolutions (i.e., < 1 km). The model shows better performance in reproducing the near-surface meteorological properties and observed SO2 variations when using a first-order closure non-local planetary boundary layer (PBL) scheme. The optimized SO2 degassing fluxes vary from 0.59 ± 0.37 to 0.83 ± 0.33 kt d- 1 depending on the PBL scheme used. These fluxes are in good agreement with ground-based gas flux measurements, and correspond to corrective scale factors of 8-12 to the posteruptive SO2 degassing rate in the AeroCom emission inventory. The maximum a posteriori solution for the SO2 flux is highly sensitive to the specification of prior and observational errors, and relatively insensitive to the SO2 loss term and temporal averaging of observations. Our results indicate relatively low degassing activity but sustained sulfur emissions from Turrialba volcano to the troposphere during March 2013. This study demonstrates the utility of low-cost small UAS platforms for volcanic gas composition and flux analysis.

  4. Effects of light pollution revealed during a nocturnal aerial survey by two hyperspectral imagers

    NASA Astrophysics Data System (ADS)

    Barducci, Alessandro; Marcoionni, Paolo; Pippi, Ivan; Poggesi, Marco

    2003-07-01

    A remote-sensing campaign was performed in September 2001 at nighttime under clear-sky conditions before moonrise to assess the level of light pollution of urban and industrial origin. Two hyperspectral sensors, namely, the Multispectral Infrared and Visible Imaging Spectrometer and the Visible Infrared Scanner-200, which provide spectral coverage from the visible to the thermal infrared, were flown over the Tuscany coast (Italy) on board a Casa 212 airplane. The acquired images were processed to produce radiometrically calibrated data, which were then analyzed and compared with ground-based spectral measurements. Calibrated data acquired at high spectral resolution (~2.5 nm) showed a maximum scene brightness almost of the same order of magnitude as that observed during similar daytime measurements, whereas their average luminosity was 3 orders of magnitude lower. The measurement analysis confirmed that artificial illumination hinders astronomical observations and produces noticeable effects even at great distances from the sources of the illumination.

  5. Effects of light pollution revealed during a nocturnal aerial survey by two hyperspectral imagers.

    PubMed

    Barducci, Alessandro; Marcoionni, Paolo; Pippi, Ivan; Poggesi, Marco

    2003-07-20

    A remote-sensing campaign was performed in September 2001 at nighttime under clear-sky conditions before moonrise to assess the level of light pollution of urban and industrial origin. Two hyperspectral sensors, namely, the Multispectral Infrared and Visible Imaging Spectrometer and the Visible Infrared Scanner-200, which provide spectral coverage from the visible to the thermal infrared, were flown over the Tuscany coast (Italy) on board a Casa 212 airplane. The acquired images were processed to produce radiometrically calibrated data, which were then analyzed and compared with ground-based spectral measurements. Calibrated data acquired at high spectral resolution (approximately 2.5 nm) showed a maximum scene brightness almost of the same order of magnitude as that observed during similar daytime measurements, whereas their average luminosity was 3 orders of magnitude lower. The measurement analysis confirmed that artificial illumination hinders astronomical observations and produces noticeable effects even at great distances from the sources of the illumination.

  6. Collecting Inexpensive High Resolution Aerial and Stereo Images of Small- to Mid-Scale Geomorphic and Tectonic Features

    NASA Astrophysics Data System (ADS)

    Wheelwright, R. J.; White, W. S.; Willis, J. B.

    2010-12-01

    Methods for collecting accurate, mm- to cm-scale stereoscopic aerial imagery of both small- and mid-scale geomorphic features are developed for a one-time cost of under $1500. High resolution aerial images are valuable for documenting and analyzing small- to mid-scale geomorphic and tectonic features. However, collecting images of mid-scale features such as landslides, rock glaciers, fault scarps, and cinder cones is expensive and makes studies that rely on high resolution repeat imagery prohibitive for undergraduate geology departments with limited budgets. In addition to cost, collecting images of smaller scale geomorphic features such as gravel bars is often impeded by overhanging vegetation or other features in the immediate environment that make impractical the collection of aerial images using standard airborne techniques. The methods provide high resolution stereo photos suitable for image processing and stereographic analysis; the images are potentially suitable for change analyses, velocity tracking, and construction of lidar-resolution digital elevation models. We developed two techniques. The technique suitable for small-scale features (such as gravel bars) utilizes two Nikon D3000 digital single-lens reflex (DSLR) cameras attached to a system of poles that suspends the cameras at a height of 4 meters with a variable camera separation of 0.6 to 0.9 m. The poles are oriented such that they do not appear in the photographs. The cameras are simultaneously remotely activated to collect stereo pairs at a resolution of 64 pixels/cm2 (pixel length is 1.2 mm). Ground control on the images is provided by pegs placed 5 meters apart, GPS positioning, and a meter-stick included in each photograph. Initial photo data gathered of a gravel bar on the Henry’s Fork of the Snake River, north of Rexburg, Idaho is sharp and readily segmented using the MatLab-based CLASTS image processing algorithm. The technique developed for imaging mid-scale features (such as cinder

  7. Amphibious hearing in ringed seals (Pusa hispida): underwater audiograms, aerial audiograms and critical ratio measurements.

    PubMed

    Sills, Jillian M; Southall, Brandon L; Reichmuth, Colleen

    2015-07-01

    Ringed seals (Pusa hispida) are semi-aquatic marine mammals with a circumpolar Arctic distribution. In this study, we investigate the amphibious hearing capabilities of ringed seals to provide auditory profiles for this species across the full range of hearing. Using psychophysical methods with two trained ringed seals, detection thresholds for narrowband signals were measured under quiet, carefully controlled environmental conditions to generate aerial and underwater audiograms. Masked underwater thresholds were measured in the presence of octave-band noise to determine critical ratios. Results indicate that ringed seals possess hearing abilities comparable to those of spotted seals (Phoca largha) and harbor seals (Phoca vitulina), and considerably better than previously reported for ringed and harp seals. Best sensitivity was 49 dB re. 1 µPa (12.8 kHz) in water, and -12 dB re. 20 µPa (4.5 kHz) in air, rivaling the acute hearing abilities of some fully aquatic and terrestrial species in their respective media. Critical ratio measurements ranged from 14 dB at 0.1 kHz to 31 dB at 25.6 kHz, suggesting that ringed seals--like other true seals--can efficiently extract signals from background noise across a broad range of frequencies. The work described herein extends similar research on amphibious hearing in spotted seals recently published by the authors. These parallel studies enhance our knowledge of the auditory capabilities of ice-living seals, and inform effective management strategies for these and related species in a rapidly changing Arctic environment.

  8. Thermal Imaging of Subsurface Coal Fires by means of an Unmanned Aerial Vehicle (UAV) in the Autonomous Province Xinjiang, PRC

    NASA Astrophysics Data System (ADS)

    Vasterling, Margarete; Schloemer, Stefan; Fischer, Christian; Ehrler, Christoph

    2010-05-01

    Spontaneous combustion of coal and resulting coal fires lead to very high temperatures in the subsurface. To a large amount the heat is transferred to the surface by convective and conductive transport inducing a more or less pronounced thermal anomaly. During the past decade satellite-based infrared-imaging (ASTER, MODIS) was the method of choice for coal fire detection on a local and regional scale. However, the resolution is by far too low for a detailed analysis of single coal fires which is essential prerequisite for corrective measures (i.e. fire fighting) and calculation of carbon dioxide emission based on a complex correlation between energy release and CO2 generation. Consequently, within the framework of the Sino-German research project "Innovative Technologies for Exploration, Extinction and Monitoring of Coal Fires in Northern China", a new concept was developed and successfully tested. An unmanned aerial vehicle (UAV) was equipped with a lightweight camera for thermografic (resolution 160 by 120 pixel, dynamic range -20 to 250°C) and for visual imaging. The UAV designed as an octocopter is able to hover at GPS controlled waypoints during predefined flight missions. The application of a UAV has several advantages. Compared to point measurements on the ground the thermal imagery quickly provides the spatial distribution of the temperature anomaly with a much better resolution. Areas otherwise not accessible (due to topography, fire induced cracks, etc.) can easily be investigated. The results of areal surveys on two coal fires in Xinjiang are presented. Georeferenced thermal and visual images were mosaicked together and analyzed. UAV-born data do well compared to temperatures measured directly on the ground and cover large areas in detail. However, measuring surface temperature alone is not sufficient. Simultaneous measurements made at the surface and in roughly 15cm depth proved substantial temperature gradients in the upper soil. Thus the temperature

  9. Geomatics techniques applied to time series of aerial images for multitemporal geomorphological analysis of the Miage Glacier (Mont Blanc).

    NASA Astrophysics Data System (ADS)

    Perotti, Luigi; Carletti, Roberto; Giardino, Marco; Mortara, Giovanni

    2010-05-01

    The Miage glacier is the major one in the Italian side of the Mont Blanc Massif, the third by area and the first by longitudinal extent among Italian glaciers. It is a typical debris covered glacier, since the end of the L.I.A. The debris coverage reduces ablation, allowing a relative stability of the glacier terminus, which is characterized by a wide and articulated moraine apparatus. For its conservative landforms, the Miage Glacier has a great importance for the analysis of the geomorphological response to recent climatic changes. Thanks to an organized existing archive of multitemporal aerial images (1935 to present) a photogrammetric approach has been applied to detect recent geomorphological changes in the Miage glacial basin. The research team provided: a) to digitize all the available images (still in analogic form) through photogrammetric scanners (very low image distortions devices) taking care of correctly defining the resolution of the acquisition compared to the scale mapping images are suitable for; b) to import digitized images into an appropriate digital photogrammetry software environment; c) to manage images in order, where possible, to carried out the stereo models orientation necessary for 3D navigation and plotting of critical geometric features of the glacier. Recognized geometric feature, referring to different periods, can be transferred to vector layers and imported in a GIS for further comparisons and investigations; d) to produce multi-temporal Digital Elevation Models for glacier volume changes; e) to perform orthoprojection of such images to obtain multitemporal orthoimages useful for areal an planar terrain evaluation and thematic analysis; f) to evaluate both planimetric positioning and height determination accuracies reachable through the photogrammetric process. Users have to known reliability of the measures they can do over such products. This can drive them to define the applicable field of this approach and this can help them to

  10. Measuring cloud thermodynamic phase with shortwave infrared imaging spectroscopy

    SciTech Connect

    Thompson, David R.; McCubbin, Ian; Gao, Bo Cai; Green, Robert O.; Matthews, Alyssa A.; Mei, Fan; Meyer, Kerry G.; Platnick, Steven; Schmid, Beat; Tomlinson, Jason; Wilcox, Eric

    2016-08-12

    Shortwave Infrared imaging spectroscopy enables accurate remote mapping of cloud thermodynamic phase at high spatial resolution. We describe a measurement strategy to exploit signatures of liquid and ice absorption in cloud top apparent reflectance spectra from 1.4 to 1.8 μm. This signal is generally insensitive to confounding factors such as solar angles, view angles, and surface albedo. We first evaluate the approach in simulation and then apply it to airborne data acquired in the Calwater-2/ACAPEX campaign of Winter 2015. Here NASA’s “Classic” Airborne Visible Infrared Imaging Spectrometer (AVIRIS-C) remotely observed diverse cloud formations while the U.S. Department of Energy ARM Aerial Facility G-1 aircraft measured cloud integral and microphysical properties in situ. Finally, the coincident measurements demonstrate good separation of the thermodynamic phases for relatively homogeneous clouds.

  11. Measuring cloud thermodynamic phase with shortwave infrared imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Thompson, David R.; McCubbin, Ian; Gao, Bo Cai; Green, Robert O.; Matthews, Alyssa A.; Mei, Fan; Meyer, Kerry G.; Platnick, Steven; Schmid, Beat; Tomlinson, Jason; Wilcox, Eric

    2016-08-01

    Shortwave Infrared imaging spectroscopy enables accurate remote mapping of cloud thermodynamic phase at high spatial resolution. We describe a measurement strategy to exploit signatures of liquid and ice absorption in cloud top apparent reflectance spectra from 1.4 to 1.8 μm. This signal is generally insensitive to confounding factors such as solar angles, view angles, and surface albedo. We first evaluate the approach in simulation and then apply it to airborne data acquired in the Calwater-2/ACAPEX campaign of Winter 2015. Here NASA's "Classic" Airborne Visible Infrared Imaging Spectrometer (AVIRIS-C) remotely observed diverse cloud formations while the U.S. Department of Energy ARM Aerial Facility G-1 aircraft measured cloud integral and microphysical properties in situ. The coincident measurements demonstrate good separation of the thermodynamic phases for relatively homogeneous clouds.

  12. Matching Aerial Images to 3D Building Models Using Context-Based Geometric Hashing.

    PubMed

    Jung, Jaewook; Sohn, Gunho; Bang, Kiin; Wichmann, Andreas; Armenakis, Costas; Kada, Martin

    2016-06-22

    A city is a dynamic entity, which environment is continuously changing over time. Accordingly, its virtual city models also need to be regularly updated to support accurate model-based decisions for various applications, including urban planning, emergency response and autonomous navigation. A concept of continuous city modeling is to progressively reconstruct city models by accommodating their changes recognized in spatio-temporal domain, while preserving unchanged structures. A first critical step for continuous city modeling is to coherently register remotely sensed data taken at different epochs with existing building models. This paper presents a new model-to-image registration method using a context-based geometric hashing (CGH) method to align a single image with existing 3D building models. This model-to-image registration process consists of three steps: (1) feature extraction; (2) similarity measure; and matching, and (3) estimating exterior orientation parameters (EOPs) of a single image. For feature extraction, we propose two types of matching cues: edged corner features representing the saliency of building corner points with associated edges, and contextual relations among the edged corner features within an individual roof. A set of matched corners are found with given proximity measure through geometric hashing, and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on collinearity equations. The result shows that acceptable accuracy of EOPs of a single image can be achievable using the proposed registration approach as an alternative to a labor-intensive manual registration process.

  13. Matching Aerial Images to 3D Building Models Using Context-Based Geometric Hashing

    PubMed Central

    Jung, Jaewook; Sohn, Gunho; Bang, Kiin; Wichmann, Andreas; Armenakis, Costas; Kada, Martin

    2016-01-01

    A city is a dynamic entity, which environment is continuously changing over time. Accordingly, its virtual city models also need to be regularly updated to support accurate model-based decisions for various applications, including urban planning, emergency response and autonomous navigation. A concept of continuous city modeling is to progressively reconstruct city models by accommodating their changes recognized in spatio-temporal domain, while preserving unchanged structures. A first critical step for continuous city modeling is to coherently register remotely sensed data taken at different epochs with existing building models. This paper presents a new model-to-image registration method using a context-based geometric hashing (CGH) method to align a single image with existing 3D building models. This model-to-image registration process consists of three steps: (1) feature extraction; (2) similarity measure; and matching, and (3) estimating exterior orientation parameters (EOPs) of a single image. For feature extraction, we propose two types of matching cues: edged corner features representing the saliency of building corner points with associated edges, and contextual relations among the edged corner features within an individual roof. A set of matched corners are found with given proximity measure through geometric hashing, and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on collinearity equations. The result shows that acceptable accuracy of EOPs of a single image can be achievable using the proposed registration approach as an alternative to a labor-intensive manual registration process. PMID:27338410

  14. Combined aerial and terrestrial images for complete 3D documentation of Singosari Temple based on Structure from Motion algorithm

    NASA Astrophysics Data System (ADS)

    Hidayat, Husnul; Cahyono, A. B.

    2016-11-01

    Singosaritemple is one of cultural heritage building in East Java, Indonesia which was built in 1300s and restorated in 1934-1937. Because of its history and importance, complete documentation of this temple is required. Nowadays with the advent of low cost UAVs combining aerial photography with terrestrial photogrammetry gives more complete data for 3D documentation. This research aims to make complete 3D model of this landmark from aerial and terrestrial photographs with Structure from Motion algorithm. To establish correct scale, position, and orientation, the final 3D model was georeferenced with Ground Control Points in UTM 49S coordinate system. The result shows that all facades, floor, and upper structures can be modeled completely in 3D. In terms of 3D coordinate accuracy, the Root Mean Square Errors (RMSEs) are RMSEx=0,041 m; RMSEy=0,031 m; RMSEz=0,049 m which represent 0.071 m displacement in 3D space. In addition the mean difference of lenght measurements of the object is 0,057 m. With this accuracy, this method can be used to map the site up to 1:237 scale. Although the accuracy level is still in centimeters, the combined aerial and terrestrial photographs with Structure from Motion algorithm can provide complete and visually interesting 3D model.

  15. [Building Change Detection Based on Multi-Level Rules Classification with Airborne LiDAR Data and Aerial Images].

    PubMed

    Gong, Yi-long; Yan, Li

    2015-05-01

    The present paper proposes a new building change detection method combining Lidar point cloud with aerial image, using multi-level rules classification algorithm, to solve building change detection problem between these two kinds of heterogeneous data. Then, a morphological post-processing method combined with area threshold is proposed. Thus, a complete building change detection processing flow that can be applied to actual production is proposed. Finally, the effectiveness of the building change detection method is evaluated, processing the 2010 airborne LiDAR point cloud data and 2009 high resolution aerial image of Changchun City, Jilin province, China; in addition, compared with the object-oriented building change detection method based on support vector machine (SVM) classification, more analysis and evaluation of the suggested method is given. Experiment results show that the performance of the proposed building change detection method is ideal. Its Kappa index is 0. 90, and correctness is 0. 87, which is higher than the object-oriented building change detection method based on SVM classification.

  16. High clearance phenotyping systems for season-long measurement of corn, sorghum and other row crops to complement unmanned aerial vehicle systems

    NASA Astrophysics Data System (ADS)

    Murray, Seth C.; Knox, Leighton; Hartley, Brandon; Méndez-Dorado, Mario A.; Richardson, Grant; Thomasson, J. Alex; Shi, Yeyin; Rajan, Nithya; Neely, Haly; Bagavathiannan, Muthukumar; Dong, Xuejun; Rooney, William L.

    2016-05-01

    The next generation of plant breeding progress requires accurately estimating plant growth and development parameters to be made over routine intervals within large field experiments. Hand measurements are laborious and time consuming and the most promising tools under development are sensors carried by ground vehicles or unmanned aerial vehicles, with each specific vehicle having unique limitations. Previously available ground vehicles have primarily been restricted to monitoring shorter crops or early growth in corn and sorghum, since plants taller than a meter could be damaged by a tractor or spray rig passing over them. Here we have designed two and already constructed one of these self-propelled ground vehicles with adjustable heights that can clear mature corn and sorghum without damage (over three meters of clearance), which will work for shorter row crops as well. In addition to regular RGB image capture, sensor suites are incorporated to estimate plant height, vegetation indices, canopy temperature and photosynthetically active solar radiation, all referenced using RTK GPS to individual plots. These ground vehicles will be useful to validate data collected from unmanned aerial vehicles and support hand measurements taken on plots.

  17. MaNIAC-UAV - a methodology for automatic pavement defects detection using images obtained by Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Henrique Castelo Branco, Luiz; César Lima Segantine, Paulo

    2015-09-01

    Intelligent Transportation Systems - ITS is a set of integrated technologies (Remote Sensing, Image Processing, Communications Systems and others) that aim to offer services and advanced traffic management for the several transportation modes (road, air and rail). Collect data on the characteristics and conditions of the road surface and keep them update is an important and difficult task that needs to be currently managed in order to reduce accidents and vehicle maintenance costs. Nowadays several roads and highways are paved, but usually there is insufficient updated data about current condition and status. There are different types of pavement defects on the roads and to keep them in good condition they should be constantly monitored and maintained according to pavement management strategy. This paper presents a methodology to obtain, automatically, information about the conditions of the highway asphalt pavement. Data collection was done through remote sensing using an UAV (Unmanned Aerial Vehicle) and the image processing and pattern recognition techniques through Geographic Information System.

  18. A methodology for near real-time change detection between Unmanned Aerial Vehicle and wide area satellite images

    NASA Astrophysics Data System (ADS)

    Fytsilis, Anastasios L.; Prokos, Anthony; Koutroumbas, Konstantinos D.; Michail, Dimitrios; Kontoes, Charalambos C.

    2016-09-01

    In this paper a novel integrated hybrid methodology for unsupervised change detection between Unmanned Aerial Vehicle (UAV) and satellite images, which can be utilized in various fields like security applications (e.g. border surveillance) and damage assessment, is proposed. This is a challenging problem mainly due to the difference in geographic coverage and the spatial resolution of the two images, as well as to the acquisition modes which lead to misregistration errors. The methodology consists of the following steps: (a) pre-processing, where the part of the satellite image that corresponds to the UAV image is determined and the UAV image is ortho-rectified using information provided by a Digital Terrain Model, (b) the detection of potential changes, which is based exclusively on intensity and image gradient information, (c) the generation of the region map, where homogeneous regions are produced by the previous potential changes via a seeded region growing algorithm and placed on the region map, and (d) the evaluation of the above regions, in order to characterize them as true changes or not. The methodology has been applied on demanding real datasets with very encouraging results. Finally, its robustness to the misregistration errors is assessed via extensive experimentation.

  19. Comprehensive emission measurements from prescribed burning in Florida: field and laboratory, aerial and ground

    EPA Science Inventory

    Simultaneous aerial- and ground-based emission sampling was conducted during prescribed burns at Eglin Air Force Base in November 2012 on a short grass/shrub field and a pine forest. Cumulative emission samples for volatile organic compounds, elemental carbon, organic carbon, c...

  20. “Comprehensive emission measurements from prescribed burning in Florida: field and laboratory, aerial and ground”

    EPA Science Inventory

    Simultaneous aerial- and ground-based emission sampling was conducted during prescribed burns at Eglin Air Force Base in November 2012 on a short grass/shrub field and a pine forest. Cumulative emission samples for volatile organic comounds, elemental carbon, organic carbon, ch...

  1. Detection of Tree Crowns Based on Reclassification Using Aerial Images and LIDAR Data

    NASA Astrophysics Data System (ADS)

    Talebi, S.; Zarea, A.; Sadeghian, S.; Arefi, H.

    2013-09-01

    Tree detection using aerial sensors in early decades was focused by many researchers in different fields including Remote Sensing and Photogrammetry. This paper is intended to detect trees in complex city areas using aerial imagery and laser scanning data. Our methodology is a hierarchal unsupervised method consists of some primitive operations. This method could be divided into three sections, in which, first section uses aerial imagery and both second and third sections use laser scanners data. In the first section a vegetation cover mask is created in both sunny and shadowed areas. In the second section Rate of Slope Change (RSC) is used to eliminate grasses. In the third section a Digital Terrain Model (DTM) is obtained from LiDAR data. By using DTM and Digital Surface Model (DSM) we would get to Normalized Digital Surface Model (nDSM). Then objects which are lower than a specific height are eliminated. Now there are three result layers from three sections. At the end multiplication operation is used to get final result layer. This layer will be smoothed by morphological operations. The result layer is sent to WG III/4 to evaluate. The evaluation result shows that our method has a good rank in comparing to other participants' methods in ISPRS WG III/4, when assessed in terms of 5 indices including area base completeness, area base correctness, object base completeness, object base correctness and boundary RMS. With regarding of being unsupervised and automatic, this method is improvable and could be integrate with other methods to get best results.

  2. Volcanic sulfur dioxide and carbon dioxide measurements using small unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Pieri, D. C.; Diaz, J. A.; Fladeland, M. M.; Bland, G.; Alan, A., Jr.; Alegria, O.; Buongiorno, M. F.; Christensen, L. E.; Corrales, E.; Linick, J.; Mouginis-Mark, P. J.; Ramsey, M. S.; Realmuto, V. J.; Schwandner, F. M.

    2015-12-01

    Volcanoes emit gases continuously with significant pre-post-eruption changes, mainly H2O and CO2, plus SO2, and others. The SO2/CO2 ratio changes within volcanic life cycles making it an indicator of oncoming eruption phases: it can dip weeks to months before eruptions, then increase, and decrease back to background after eruptions. Over the last five years, we have made an effort to develop small and inexpensive lighter-than-air and fixed wing unmanned aerial vehicle (UAV) platforms in Costa Rica at Turrialba Volcano. Turrialba is an appropriate natural laboratory to test and prove platforms and instrumentation in low-level steady state volcanogenic gas and aerosol emissions at moderate altitudes (<12Kft ASL), where good technical infrastructure exists, with good physical access to the volcano. Our program in Costa Rica includes: (1) systematic monitoring of Turrialba from orbit with the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), with its thermal infrared (TIR) camera for SO2 retrieval, and more recently with GOSAT and OCO-2 for CO2; (2) in situ observations from aerostats and UAVs during ASTER overpasses, and (3) reconciliation of the orbital results with in situ data to validate mass retrieval and transport models. As part of the NASA HyspIRI Preparatory Airborne Activities program, we will conduct similar observations at Kilauea volcano using small UAVs and for both SO2 and CO2 in situ. One of the salient characteristics of the long lived Kilauea eruptions since 1983 has been the emission of SO2 in significant amounts, generating environmental stresses on local inhabitants due to lowered air quality, and stress on vegetation. Kilauea volcanic plumes, as with Turrialba, are mainly gases and liquid--SO2 is hydrolyzed to H2SO4 and the resulting highly acidic liquid aerosol is termed "vog," an environmental health hazard. Measurement of the diffuse CO2 emissions at Kilauea will also be of interest. Such measurements at Turrialba

  3. Semi-automted analysis of high-resolution aerial images to quantify docks in Upper Midwest glacial lakes

    USGS Publications Warehouse

    Beck, Marcus W.; Vondracek, Bruce C.; Hatch, Lorin K.; Vinje, Jason

    2013-01-01

    Lake resources can be negatively affected by environmental stressors originating from multiple sources and different spatial scales. Shoreline development, in particular, can negatively affect lake resources through decline in habitat quality, physical disturbance, and impacts on fisheries. The development of remote sensing techniques that efficiently characterize shoreline development in a regional context could greatly improve management approaches for protecting and restoring lake resources. The goal of this study was to develop an approach using high-resolution aerial photographs to quantify and assess docks as indicators of shoreline development. First, we describe a dock analysis workflow that can be used to quantify the spatial extent of docks using aerial images. Our approach incorporates pixel-based classifiers with object-based techniques to effectively analyze high-resolution digital imagery. Second, we apply the analysis workflow to quantify docks for 4261 lakes managed by the Minnesota Department of Natural Resources. Overall accuracy of the analysis results was 98.4% (87.7% based on ) after manual post-processing. The analysis workflow was also 74% more efficient than the time required for manual digitization of docks. These analyses have immediate relevance for resource planning in Minnesota, whereas the dock analysis workflow could be used to quantify shoreline development in other regions with comparable imagery. These data can also be used to better understand the effects of shoreline development on aquatic resources and to evaluate the effects of shoreline development relative to other stressors.

  4. Quantitative analysis of drainage obtained from aerial photographs and RBV/LANDSAT images

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Formaggio, A. R.; Epiphanio, J. C. N.; Filho, M. V.

    1981-01-01

    Data obtained from aerial photographs (1:60,000) and LANDSAT return beam vidicon imagery (1:100,000) concerning drainage density, drainage texture, hydrography density, and the average length of channels were compared. Statistical analysis shows that significant differences exist in data from the two sources. The highly drained area lost more information than the less drained area. In addition, it was observed that the loss of information about the number of rivers was higher than that about the length of the channels.

  5. Object Based Agricultural Land Cover Classification Map of Shadowed Areas from Aerial Image and LIDAR Data Using Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Alberto, R. T.; Serrano, S. C.; Damian, G. B.; Camaso, E. E.; Celestino, A. B.; Hernando, P. J. C.; Isip, M. F.; Orge, K. M.; Quinto, M. J. C.; Tagaca, R. C.

    2016-06-01

    Aerial image and LiDAR data offers a great possibility for agricultural land cover mapping. Unfortunately, these images leads to shadowy pixels. Management of shadowed areas for classification without image enhancement were investigated. Image segmentation approach using three different segmentation scales were used and tested to segment the image for ground features since only the ground features are affected by shadow caused by tall features. The RGB band and intensity were the layers used for the segmentation having an equal weights. A segmentation scale of 25 was found to be the optimal scale that will best fit for the shadowed and non-shadowed area classification. The SVM using Radial Basis Function kernel was then applied to extract classes based on properties extracted from the Lidar data and orthophoto. Training points for different classes including shadowed areas were selected homogeneously from the orthophoto. Separate training points for shadowed areas were made to create additional classes to reduced misclassification. Texture classification and object-oriented classifiers have been examined to reduced heterogeneity problem. The accuracy of the land cover classification using 25 scale segmentation after accounting for the shadow detection and classification was significantly higher compared to higher scale of segmentation.

  6. Fusion of aerial images with mean shift-based upsampled elevation data for improved building block classification

    NASA Astrophysics Data System (ADS)

    Gyftakis, S.; Tsenoglou, T.; Bratsolis, E.; Charou, Eleni; Vassilas, N.

    2014-10-01

    Nowadays there is an increasing demand for detailed 3D modeling of buildings using elevation data such as those acquired from LiDAR airborne scanners. The various techniques that have been developed for this purpose typically perform segmentation into homogeneous regions followed by boundary extraction and are based on some combination of LiDAR data, digital maps, satellite images and aerial orthophotographs. In the present work, our dataset includes an aerial RGB orthophoto, a DSM and a DTM with spatial resolutions of 20cm, 1m and 2m respectively. Next, a normalized DSM (nDSM) is generated and fused with the optical data in order to increase its resolution to 20cm. The proposed methodology can be described as a two-step approach. First, a nearest neighbor interpolation is applied on the low resolution nDSM to obtain a low quality, ragged, elevation image. Next, we performed a mean shift-based discontinuity preserving smoothing on the fused data. The outcome is on the one hand a more homogeneous RGB image, with smoothed terrace coloring while at the same time preserving the optical edges and on the other hand an upsampled elevation data with considerable improvement regarding region filling and "straightness" of elevation discontinuities. Besides the apparent visual assessment of the increased accuracy of building boundaries, the effectiveness of the proposed method is demonstrated using the processed dataset as input to five supervised classification methods. The performance of each method is evaluated using a subset of the test area as ground truth. Comparisons with classification results obtained with the original data demonstrate that preprocessing the input dataset using the mean shift algorithm improves significantly the performance of all tested classifiers for building block extraction.

  7. Tidal Flooding and Vegetation Patterns in a Salt Marsh Tidal Creek Imaged by Low-altitude Balloon Aerial Photography

    NASA Astrophysics Data System (ADS)

    White, S. M.; Madsen, E.

    2013-12-01

    Inundation of marsh surfaces by tidal creek flooding has implications for the headward erosion of salt marsh creeks, effect of rising sea levels, biological zonation, and marsh ecosystem services. The hydroperiod; as the frequency, duration, depth and flux of water across the marsh surface; is a key factor in salt marsh ecology, but remains poorly understood due to lack of data at spatial scales relevant to tracking the spatial movement of water across the marsh. This study examines how hydroperiod, drainage networks, and tidal creek geomorphology on the vegetation at Crab Haul Creek. Crab Haul Creek is the farthest landward tidal basin in North Inlet, a bar-built estuary in South Carolina. This study measures the hydroperiod in the headwaters Crab Haul Creek with normal and near-IR photos from a helium balloon Helikite at 75-100 m altitude. Photos provide detail necessary to resolve the waterline and delineate the hydroperiod during half tidal cycles by capturing the waterline hourly from the headwaters to a piezometer transect 260 meters north. The Helikite is an ideal instrument for local investigations of surface hydrology due to its maneuverability, low cost, ability to remain aloft for extended time over a fixed point, and ability to capture high-resolution images. Photographs taken from aircraft do not provide the detail necessary to determine the waterline on the marsh surface. The near-IR images make the waterline more distinct by increasing the difference between wet and dry ground. In the headwaters of Crab Haul Creek, individual crab burrows are detected by automated image classification and the number of crab burrows and their spatial density is tracked from January-August. Crab burrows are associated with the unvegetated region at the creek head, and we relate their change over time to the propagation of the creek farther into the tidal basin. Plant zonation is influenced by the hydroperiod, but also may be affected by salinity, water table depth, and

  8. Digital image mosaics of the nearshore coastal waters of selected areas on the Hawaiian Islands of Hawai‘i, Maui, Moloka‘i, and O‘ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data

    USGS Publications Warehouse

    Chavez, P. S.; Isbrecht, JoAnn; Velasco, Miguel G.; Cochran, Susan

    2016-01-01

    The lack of geographic and thematic maps of coral reefs limits our understanding of reefs and our ability to assess change. The U.S. Geological Survey (USGS) has the capability to compile digital image mosaics that are useful for creating detailed map products. Image maps covering the shallow near-shore coastal waters have been produced for several of the main Hawaiian Islands, including Hawai‘i, Maui, Moloka‘i, and O‘ahu and are presented in JPEG2000 (.jp2) format. The digital-image mosaics were generated by first scanning historical aerial photographs. At the time, available satellite image resolutions were not acceptable and the aerial photographs used were the best option. The individually scanned digital images were tone-and color-matched and then digitally mosaicked together using spatial matching. Separately, black and white digital orthophoto quads (DOQs) or digital raster graphics (DRGs) of the same areas were merged with shaded-relief images generated from lidar bathymetry data. The resulting black and white images covering both near-shore coastal waters and on-land areas became the geometric ‘masters’ for the mosaics generated from the aerial photographs. The aerial-photograph mosaics were geometrically corrected to overlay the master data set by using hundreds of image-to-image geometric control points and ‘slaving’ the mosaic onto the master. The USGS has been investigating the use of remotely sensed image and spatial data to help map and study coral reef environments. Interpretation of these data is corroborated by extensive field mapping and correlation with field measured distribution and density of coral cover and other coral reef cover types. An immediate result of this effort was the generation of very-high spatial resolution georeferenced image maps of critical coral reef habitat areas being studied by the USGS and others.

  9. Building Roof Segmentation from Aerial Images Using a Line-and Region-Based Watershed Segmentation Technique

    PubMed Central

    Merabet, Youssef El; Meurie, Cyril; Ruichek, Yassine; Sbihi, Abderrahmane; Touahni, Raja

    2015-01-01

    In this paper, we present a novel strategy for roof segmentation from aerial images (orthophotoplans) based on the cooperation of edge- and region-based segmentation methods. The proposed strategy is composed of three major steps. The first one, called the pre-processing step, consists of simplifying the acquired image with an appropriate couple of invariant and gradient, optimized for the application, in order to limit illumination changes (shadows, brightness, etc.) affecting the images. The second step is composed of two main parallel treatments: on the one hand, the simplified image is segmented by watershed regions. Even if the first segmentation of this step provides good results in general, the image is often over-segmented. To alleviate this problem, an efficient region merging strategy adapted to the orthophotoplan particularities, with a 2D modeling of roof ridges technique, is applied. On the other hand, the simplified image is segmented by watershed lines. The third step consists of integrating both watershed segmentation strategies into a single cooperative segmentation scheme in order to achieve satisfactory segmentation results. Tests have been performed on orthophotoplans containing 100 roofs with varying complexity, and the results are evaluated with the VINETcriterion using ground-truth image segmentation. A comparison with five popular segmentation techniques of the literature demonstrates the effectiveness and the reliability of the proposed approach. Indeed, we obtain a good segmentation rate of 96% with the proposed method compared to 87.5% with statistical region merging (SRM), 84% with mean shift, 82% with color structure code (CSC), 80% with efficient graph-based segmentation algorithm (EGBIS) and 71% with JSEG. PMID:25648706

  10. Aerial Explorers

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg; Ippolito, Corey

    2005-01-01

    This paper presents recent results from a mission architecture study of planetary aerial explorers. In this study, several mission scenarios were developed in simulation and evaluated on success in meeting mission goals. This aerial explorer mission architecture study is unique in comparison with previous Mars airplane research activities. The study examines how aerial vehicles can find and gain access to otherwise inaccessible terrain features of interest. The aerial explorer also engages in a high-level of (indirect) surface interaction, despite not typically being able to takeoff and land or to engage in multiple flights/sorties. To achieve this goal, a new mission paradigm is proposed: aerial explorers should be considered as an additional element in the overall Entry, Descent, Landing System (EDLS) process. Further, aerial vehicles should be considered primarily as carrier/utility platforms whose purpose is to deliver air-deployed sensors and robotic devices, or symbiotes, to those high-value terrain features of interest.

  11. Research on the processing technology of low-altitude unmanned aerial vehicle images

    NASA Astrophysics Data System (ADS)

    Tang, Shihua; Liu, Yintao; Li, Feida; Zhou, Conglin; Huang, Qing; Xu, Hongwei

    2015-12-01

    The UAV system acts as one of the infrastructure of earth observation, with its mobility, high speed, flexibility, economy and other remarkable technical advantages, has been widely used in various fields of the national economic construction, such as agricultural monitoring, resource development, disaster emergency treatment. Taking an actual engineering as a case study in this paper, the method and the skill of making digital orthophoto map was stated by using the UASMaster, the professional UAV data processing software, based on the eBee unmanned aerial vehicle. Finally, the precision of the DOM was analyzed in detail through two methods, overlapping the DOM with the existing DLG of the region and contrasting the points of the existing DLG of 1:1000 scale with the corresponding checkpoints of the stereomodel.

  12. USE OF THE AERIAL MEASUREMENT SYSTEM HELICOPTER EMERGENCY RESPONSE ACQUISITION SYSTEMS WITH GEOGRAPHIC INFORMATION SYSTEM FOR RADIOACTIVE SOIL REMEDIATION - [11504

    SciTech Connect

    BROCK CT

    2011-02-15

    The Aerial Measurement System (AMS) Helicopter Emergency Response Acquisition System provides a thorough and economical means to identify and characterize the contaminants for large area radiological surveys. The helicopter system can provide a 100-percent survey of an area that qualifies as a scoping survey under the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) methodology. If the sensitivity is adequate when compared to the clean up values, it may also be used for the characterization survey. The data from the helicopter survey can be displayed and manipulated to provide invaluable data during remediation activities.

  13. Multi-stage classification method oriented to aerial image based on low-rank recovery and multi-feature fusion sparse representation.

    PubMed

    Ma, Xu; Cheng, Yongmei; Hao, Shuai

    2016-12-10

    Automatic classification of terrain surfaces from an aerial image is essential for an autonomous unmanned aerial vehicle (UAV) landing at an unprepared site by using vision. Diverse terrain surfaces may show similar spectral properties due to the illumination and noise that easily cause poor classification performance. To address this issue, a multi-stage classification algorithm based on low-rank recovery and multi-feature fusion sparse representation is proposed. First, color moments and Gabor texture feature are extracted from training data and stacked as column vectors of a dictionary. Then we perform low-rank matrix recovery for the dictionary by using augmented Lagrange multipliers and construct a multi-stage terrain classifier. Experimental results on an aerial map database that we prepared verify the classification accuracy and robustness of the proposed method.

  14. Region-Based 3d Surface Reconstruction Using Images Acquired by Low-Cost Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Lari, Z.; Al-Rawabdeh, A.; He, F.; Habib, A.; El-Sheimy, N.

    2015-08-01

    Accurate 3D surface reconstruction of our environment has become essential for an unlimited number of emerging applications. In the past few years, Unmanned Aerial Systems (UAS) are evolving as low-cost and flexible platforms for geospatial data collection that could meet the needs of aforementioned application and overcome limitations of traditional airborne and terrestrial mobile mapping systems. Due to their payload restrictions, these systems usually include consumer-grade imaging and positioning sensor which will negatively impact the quality of the collected geospatial data and reconstructed surfaces. Therefore, new surface reconstruction surfaces are needed to mitigate the impact of using low-cost sensors on the final products. To date, different approaches have been proposed to for 3D surface construction using overlapping images collected by imaging sensor mounted on moving platforms. In these approaches, 3D surfaces are mainly reconstructed based on dense matching techniques. However, generated 3D point clouds might not accurately represent the scanned surfaces due to point density variations and edge preservation problems. In order to resolve these problems, a new region-based 3D surface renostruction trchnique is introduced in this paper. This approach aims to generate a 3D photo-realistic model of individually scanned surfaces within the captured images. This approach is initiated by a Semi-Global dense Matching procedure is carried out to generate a 3D point cloud from the scanned area within the collected images. The generated point cloud is then segmented to extract individual planar surfaces. Finally, a novel region-based texturing technique is implemented for photorealistic reconstruction of the extracted planar surfaces. Experimental results using images collected by a camera mounted on a low-cost UAS demonstrate the feasibility of the proposed approach for photorealistic 3D surface reconstruction.

  15. Automated Identification of Rivers and Shorelines in Aerial Imagery Using Image Texture

    DTIC Science & Technology

    2011-01-01

    defining the criteria for segmenting the image. For these cases certain automated, unsupervised (or minimally supervised), image classification ...banks, image analysis, edge finding, photography, satellite, texture, entropy 16. SECURITY CLASSIFICATION OF: a. REPORT Unclassified b. ABSTRACT...high resolution bank geometry. Much of the globe is covered by various sorts of multi- or hyperspectral imagery and numerous techniques have been

  16. Combining LANDSAT MSS, aerial photographs and ground measurements to estimate rangeland productivity

    NASA Technical Reports Server (NTRS)

    Gialdini, M. J.

    1981-01-01

    The production of a vegetation map of over 2.2 million acres with detail down to the plant community level, and the production of estimates of rangeland productivity (pounds of usable forage per acre for cattle) for a 500,000 acre subset of area with a design goal for accuracy and precision of + or - 20% at the 80% confidence level, are considered. The data consist of five groups: maps of area, LANDSAT data, digital terrain data, large scale aerial photography, and ground plots. An outline of the data acquisition and data reduction schemes are presented.

  17. Aerial Scene Recognition using Efficient Sparse Representation

    SciTech Connect

    Cheriyadat, Anil M

    2012-01-01

    Advanced scene recognition systems for processing large volumes of high-resolution aerial image data are in great demand today. However, automated scene recognition remains a challenging problem. Efficient encoding and representation of spatial and structural patterns in the imagery are key in developing automated scene recognition algorithms. We describe an image representation approach that uses simple and computationally efficient sparse code computation to generate accurate features capable of producing excellent classification performance using linear SVM kernels. Our method exploits unlabeled low-level image feature measurements to learn a set of basis vectors. We project the low-level features onto the basis vectors and use simple soft threshold activation function to derive the sparse features. The proposed technique generates sparse features at a significantly lower computational cost than other methods~\\cite{Yang10, newsam11}, yet it produces comparable or better classification accuracy. We apply our technique to high-resolution aerial image datasets to quantify the aerial scene classification performance. We demonstrate that the dense feature extraction and representation methods are highly effective for automatic large-facility detection on wide area high-resolution aerial imagery.

  18. A Texture Thesaurus for Browsing Large Aerial Photographs.

    ERIC Educational Resources Information Center

    Ma, Wei-Ying; Manjunath, B. S.

    1998-01-01

    Presents a texture-based image-retrieval system for browsing large-scale aerial photographs. System components include texture-feature extraction, image segmentation and grouping, learning-similarity measure, and a texture-thesaurus model for fast search and indexing. Testing has demonstrated the system's effectiveness in searching and selecting…

  19. Emissions from southeastern U.S. Grasslands and pine savannas: Comparison of aerial and ground field measurements with laboratory burns

    NASA Astrophysics Data System (ADS)

    Aurell, Johanna; Gullett, Brian K.; Tabor, Dennis

    2015-06-01

    Emissions from prescribed burns of a managed longleaf pine (Pinus palustris) forest and grass/savanna fields in western Florida were measured by simultaneous aerial and ground sampling. Results were compared with measurements made in an open burn laboratory test facility using biomass gathered from the same stands. Measurements included polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), particulate matter (PM2.5), elemental carbon (EC), organic carbon (OC), black carbon (BC), brown carbon (BrC), polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs). The flaming phase (high modified combustion efficiency) was characterized by high levels of BC and BrC yet low levels of VOCs. In general, ground-based measurements of PM2.5, BC, and BrC reported marginally higher emission factors than those measured in the plume by aerostat (balloon)-lofted instruments. The optically-determined BC emission factor was approximately ten times higher than many previously reported results. Simultaneous BC and EC measurements showed that EC values were, on average, 42% lower than the BC values, lending uncertainty to the common use of EC measurements as a BC surrogate. PAH emission factors were indistinguishable across the sampling scenarios, while PCDDs/PCDFs saw a significant decline in the laboratory testing. Limited distinctions in particle-related emissions between aerial and ground measurements suggest sampling bias between these methods. Emission factor distinctions between laboratory burn simulations and field tests appear primarily related to lower combustion efficiencies in the latter, perhaps due to higher biomass moisture or surface wetness.

  20. Experimental analysis on classification of unmanned aerial vehicle images using the probabilistic latent semantic analysis

    NASA Astrophysics Data System (ADS)

    Yi, Wenbin; Tang, Hong

    2009-10-01

    In this paper, we present a novel algorithm to classify UAV images through the image annotation which is a semi-supervised method. During the annotation process, we first divide whole image into different sizes of blocks and generate suitable visual words which are the K-means clustering centers or just pixels in small size image block. Then, given a set of image blocks for each semantic concept as training data, learning is based on the Probabilistic Latent Semantic Analysis (PLSA). The probability distributions of visual words in every document can be learned through the PLSA model. The labeling of every document (image block) is done by computing the similarity of its feature distribution to the distribution of the training documents with the Kullback-Leibler (K-L) divergence. Finally, the classification of the UAV images will be done by combining all the image blocks in every block size. The UAV images using in our experiments was acquired during Sichuan earthquake in 2008. The results show that smaller size block image will get better classification results.

  1. Measuring Sunflower Nitrogen Status from AN Unmanned Aerial Vehicle-Based System and AN on the Ground Device

    NASA Astrophysics Data System (ADS)

    Agüera, F.; Carvajal, F.; Pérez, M.

    2011-09-01

    Precision agriculture recognizes the inherent spatial variability associated with soil characteristics, land morphology and crop growth, and uses this information to prescribe the most appropriate management strategy on a site-specific basis. To reach this task, the most important information related with crop growth is nutrient status, weed infestation, disease and pet affectation and water management. The application of fertilizer nitrogen to field crops is of critical importance because it determines plant's gro wth, vigour, colour and yield. Furthermore, nitrogen has been observed as a nutrient with high spatial variability in a single field, related to its high mobility. Some previous works have shown that is possible to measure crop nitrogen status with optical instruments. Since most leaf nitrogen is contained in chlorophyll molecules, there is a strong relationship between leaf nitrogen and leaf chlorophyll content, which is the basis for predicting crop nitrogen status by measuring leaf reflectance. So, sensors that can easily monitor crop nitrogen amount throughout the growing season at a high resolution to allow producers to reach their production goals, will give useful information to prescribe a crop management on a site-specific basis. Sunflower is a crop which is taking importance again because it can be used both for food and biofuel purposes, and it is widely cultivated in the South of Spain and other European countries.The aim of this work was to compare an index related with sunflower nitrogen status, deduced from multispectral images taken from an Unmanned Aerial Vehicle (UAV), with optical data collected with a ground-based platform.An ADC Lite Tetracam digital cam was mounted on a md4-200 Microdrones to take pictures of a sunflower field during the crop season. ADC Lite Tetracam is a single sensor digital camera designed for capture of visible light wavelength longer than 520 nm and near-infrared wavelength up to 920 nm. The md4

  2. Investigation of an MLE Algorithm for Quantification of Aerial Radiological Measurements

    SciTech Connect

    Reed, Michael; Essex, James

    2012-05-10

    Aerial radiation detection is routinely used by many organizations (DHS, DOE, EPA, etc.) for the purposes of identifying the presence of and quantifying the existence of radiation along the ground. This work involves the search for lost or missing sources, as well as the characterization of large-scale releases such as might occur in a nuclear power plant accident. The standard in aerial radiological surveys involves flying large arrays of sodium-iodide detectors at altitude (15 to 700 meters) to acquire geo-referenced, 1 Hz, 1024-channel spectra. The historical shortfalls of this technology include: • Very low spatial resolution (typical field of view is circle of two-times altitude) • Relatively low detectability associated with large stand-off distances • Fundamental challenges in performing ground-level quantification This work uses modern computational power in conjunction with multi-dimensional deconvolution algorithms in an effort to improve spatial resolution, enhance detectability, and provide a robust framework for quantification.

  3. Exploration of mineral resource deposits based on analysis of aerial and satellite image data employing artificial intelligence methods

    NASA Astrophysics Data System (ADS)

    Osipov, Gennady

    2013-04-01

    includes noncontact registration of eye motion, reconstruction of "attention landscape" fixed by the expert, recording the comments of the expert who is a specialist in the field of images` interpretation, and transfer this information into knowledge base.Creation of base of ophthalmologic images (OI) includes making semantic contacts from great number of OI based on analysis of OI and expert's comments.Processing of OI and making generalized OI (GOI) is realized by inductive logic algorithms and consists in synthesis of structural invariants of OI. The mode of recognition and interpretation of unknown images consists of several stages, which include: comparison of unknown image with the base of structural invariants of OI; revealing of structural invariants in unknown images; ynthesis of interpretive message of the structural invariants base and OI base (the experts` comments stored in it). We want to emphasize that the training mode does not assume special involvement of experts to teach the system - it is realized in the process of regular experts` work on image interpretation and it becomes possible after installation of a special apparatus for non contact registration of experts` attention. Consequently, the technology, which principles is described there, provides fundamentally new effective solution to the problem of exploration of mineral resource deposits based on computer analysis of aerial and satellite image data.

  4. Validation of Vehicle Candidate Areas in Aerial Images Using Color Co-Occurrence Histograms

    NASA Astrophysics Data System (ADS)

    Leister, W.; Tuermer, S.; Reinartz, P.; Hoffmann, K. H.; Stilla, U.

    2013-10-01

    Traffic monitoring plays an important role in transportation management. In addition, airborne acquisition enables a flexible and realtime mapping for special traffic situations e.g. mass events and disasters. Also the automatic extraction of vehicles from aerial imagery is a common application. However, many approaches focus on the target object only. As an extension to previously developed car detection techniques, a validation scheme is presented. The focus is on exploiting the background of the vehicle candidates as well as their color properties in the HSV color space. Therefore, texture of the vehicle background is described by color co-occurrence histograms. From all resulting histograms a likelihood function is calculated giving a quantity value to indicate whether the vehicle candidate is correctly classified. Only a few robust parameters have to be determined. Finally, the strategy is tested with a dataset of dense urban areas from the inner city of Munich, Germany. First results show that certain regions which are often responsible for false positive detections, such as vegetation or road markings, can be excluded successfully.

  5. Measuring the Return on Investment and Real Option Value of Weather Sensor Bundles for Air Force Unmanned Aerial Vehicles

    DTIC Science & Technology

    2016-04-30

    qÜáêíÉÉåíÜ=^ååì~ä= ^Åèìáëáíáçå=oÉëÉ~êÅÜ= póãéçëáìã= tÉÇåÉëÇ~ó=pÉëëáçåë= sçäìãÉ=f= = Measuring the Return on Investment and Real Option Value of Weather Sensor ...Maryland Peter Sandborn, Professor, University of Maryland Measuring the Return on Investment and Real Option Value of Weather Sensor Bundles for...35 - Measuring the Return on Investment and Real Option Value of Weather Sensor Bundles for Air Force Unmanned Aerial Vehicles Thomas J. Housel

  6. Image Understanding Research and Its Application to Cartography and Computer-Based Analysis of Aerial Imagery

    DTIC Science & Technology

    1983-05-01

    manipulation routines, David Smith for the image access software, and David McKeown, assisted by Steve Clark, Joe Mattis , and Jerry Denlinger, for the...1980. [PietikainenB2] M. Pietikainen . A. Rosenfeld, and I. Walter, "Split-and-Link Algorithms for Image Seg- mentation," Pattern Recognition, Vol. 15

  7. Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images.

    PubMed

    Peña, José Manuel; Torres-Sánchez, Jorge; de Castro, Ana Isabel; Kelly, Maggi; López-Granados, Francisca

    2013-01-01

    The use of remote imagery captured by unmanned aerial vehicles (UAV) has tremendous potential for designing detailed site-specific weed control treatments in early post-emergence, which have not possible previously with conventional airborne or satellite images. A robust and entirely automatic object-based image analysis (OBIA) procedure was developed on a series of UAV images using a six-band multispectral camera (visible and near-infrared range) with the ultimate objective of generating a weed map in an experimental maize field in Spain. The OBIA procedure combines several contextual, hierarchical and object-based features and consists of three consecutive phases: 1) classification of crop rows by application of a dynamic and auto-adaptive classification approach, 2) discrimination of crops and weeds on the basis of their relative positions with reference to the crop rows, and 3) generation of a weed infestation map in a grid structure. The estimation of weed coverage from the image analysis yielded satisfactory results. The relationship of estimated versus observed weed densities had a coefficient of determination of r(2)=0.89 and a root mean square error of 0.02. A map of three categories of weed coverage was produced with 86% of overall accuracy. In the experimental field, the area free of weeds was 23%, and the area with low weed coverage (<5% weeds) was 47%, which indicated a high potential for reducing herbicide application or other weed operations. The OBIA procedure computes multiple data and statistics derived from the classification outputs, which permits calculation of herbicide requirements and estimation of the overall cost of weed management operations in advance.

  8. Weed Mapping in Early-Season Maize Fields Using Object-Based Analysis of Unmanned Aerial Vehicle (UAV) Images

    PubMed Central

    Peña, José Manuel; Torres-Sánchez, Jorge; de Castro, Ana Isabel; Kelly, Maggi; López-Granados, Francisca

    2013-01-01

    The use of remote imagery captured by unmanned aerial vehicles (UAV) has tremendous potential for designing detailed site-specific weed control treatments in early post-emergence, which have not possible previously with conventional airborne or satellite images. A robust and entirely automatic object-based image analysis (OBIA) procedure was developed on a series of UAV images using a six-band multispectral camera (visible and near-infrared range) with the ultimate objective of generating a weed map in an experimental maize field in Spain. The OBIA procedure combines several contextual, hierarchical and object-based features and consists of three consecutive phases: 1) classification of crop rows by application of a dynamic and auto-adaptive classification approach, 2) discrimination of crops and weeds on the basis of their relative positions with reference to the crop rows, and 3) generation of a weed infestation map in a grid structure. The estimation of weed coverage from the image analysis yielded satisfactory results. The relationship of estimated versus observed weed densities had a coefficient of determination of r2=0.89 and a root mean square error of 0.02. A map of three categories of weed coverage was produced with 86% of overall accuracy. In the experimental field, the area free of weeds was 23%, and the area with low weed coverage (<5% weeds) was 47%, which indicated a high potential for reducing herbicide application or other weed operations. The OBIA procedure computes multiple data and statistics derived from the classification outputs, which permits calculation of herbicide requirements and estimation of the overall cost of weed management operations in advance. PMID:24146963

  9. Pantir - a Dual Camera Setup for Precise Georeferencing and Mosaicing of Thermal Aerial Images

    NASA Astrophysics Data System (ADS)

    Weber, I.; Jenal, A.; Kneer, C.; Bongartz, J.

    2015-03-01

    Research and monitoring in fields like hydrology and agriculture are applications of airborne thermal infrared (TIR) cameras, which suffer from low spatial resolution and low quality lenses. Common ground control points (GCPs), lacking thermal activity and being relatively small in size, cannot be used in TIR images. Precise georeferencing and mosaicing however is necessary for data analysis. Adding a high resolution visible light camera (VIS) with a high quality lens very close to the TIR camera, in the same stabilized rig, allows us to do accurate geoprocessing with standard GCPs after fusing both images (VIS+TIR) using standard image registration methods.

  10. Aerial low-frequency hearing in captive and free-ranging harbour seals (Phoca vitulina) measured using auditory brainstem responses.

    PubMed

    Lucke, Klaus; Hastie, Gordon D; Ternes, Kerstin; McConnell, Bernie; Moss, Simon; Russell, Deborah J F; Weber, Heike; Janik, Vincent M

    2016-12-01

    The hearing sensitivity of 18 free-ranging and 10 captive harbour seals (Phoca vitulina) to aerial sounds was measured in the presence of typical environmental noise through auditory brainstem response measurements. A focus was put on the comparative hearing sensitivity at low frequencies. Low- and mid-frequency thresholds appeared to be elevated in both captive and free-ranging seals, but this is likely due to masking effects and limitations of the methodology used. The data also showed individual variability in hearing sensitivity with probable age-related hearing loss found in two old harbour seals. These results suggest that the acoustic sensitivity of free-ranging animals was not negatively affected by the soundscape they experienced in the wild.

  11. An Automated Approach to Extracting River Bank Locations from Aerial Imagery Using Image Texture

    DTIC Science & Technology

    2015-11-04

    being analyzed, rl is the local range of values across the pixels and rm is the maximum possible range of values. Algorithm Imagery must first be...River, LA The case presented in Figures 1 and 6 represents an ideal case for demonstrating the algorithm in that the surface of the water appears uniform...x 1400 pixel image. A human operator loaded the image in the open source Quantum GIS programme and traced the edges to create a ESRI shape file, which

  12. Multimodal imaging measures predict rearrest

    PubMed Central

    Steele, Vaughn R.; Claus, Eric D.; Aharoni, Eyal; Vincent, Gina M.; Calhoun, Vince D.; Kiehl, Kent A.

    2015-01-01

    Rearrest has been predicted by hemodynamic activity in the anterior cingulate cortex (ACC) during error-processing (Aharoni et al., 2013). Here, we evaluate the predictive power after adding an additional imaging modality in a subsample of 45 incarcerated males from Aharoni et al. (2013). Event-related potentials (ERPs) and hemodynamic activity were collected during a Go/NoGo response inhibition task. Neural measures of error-processing were obtained from the ACC and two ERP components, the error-related negativity (ERN/Ne) and the error positivity (Pe). Measures from the Pe and ACC differentiated individuals who were and were not subsequently rearrested. Cox regression, logistic regression, and support vector machine (SVM) neuroprediction models were calculated. Each of these models proved successful in predicting rearrest and SVM provided the strongest results. Multimodal neuroprediction SVM models with out of sample cross-validating accurately predicted rearrest (83.33%). Offenders with increased Pe amplitude and decreased ACC activation, suggesting abnormal error-processing, were at greatest risk of rearrest. PMID:26283947

  13. Mobile Aerial Tracking and Imaging System (MATrIS) for Aeronautical Research

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Blanchard, Robert C.; Miller, Geoffrey M.

    2004-01-01

    A mobile, rapidly deployable ground-based system to track and image targets of aeronautical interest has been developed. Targets include reentering reusable launch vehicles as well as atmospheric and transatmospheric vehicles. The optics were designed to image targets in the visible and infrared wavelengths. To minimize acquisition cost and development time, the system uses commercially available hardware and software where possible. The conception and initial funding of this system originated with a study of ground-based imaging of global aerothermal characteristics of reusable launch vehicle configurations. During that study the National Aeronautics and Space Administration teamed with the Missile Defense Agency/Innovative Science and Technology Experimentation Facility to test techniques and analysis on two Space Shuttle flights.

  14. Infrared Surveys of Hawaiian Volcanoes: Aerial surveys with infrared imaging radiometer depict volcanic thermal patterns and structural features.

    PubMed

    Fisher, W A; Moxham, R M; Polcyn, F; Landis, G H

    1964-11-06

    Aerial infrared-sensor surveys of Kilauea volcano have depicted the areal extent and the relative intensity of abnormal thermal features in the caldera area of the volcano and along its associated rift zones. Many of these anomalies show correlation with visible steaming and reflect convective transfer of heat to the surface from subterranean sources. Structural details of the volcano, some not evident from surface observation, are also delineated by their thermal abnormalities. Several changes were observed in the patterns of infrared emission during the period of study; two such changes show correlation in location with subsequent eruptions, but the cause-and-effect relationship is uncertain. Thermal anomalies were also observed on the southwest flank of Mauna Loa; images of other volcanoes on the island of Hawaii, and of Haleakala on the island of Maui, revealed no thermal abnormalities. Approximately 25 large springs issuing into the ocean around the periphery of Hawaii have been detected. Infrared emission varies widely with surface texture and composition, suggesting that similar observations may have value for estimating surface conditions on the moon or planets.

  15. Agricultural cropland mapping using black-and-white aerial photography, Object-Based Image Analysis and Random Forests

    NASA Astrophysics Data System (ADS)

    Vogels, M. F. A.; de Jong, S. M.; Sterk, G.; Addink, E. A.

    2017-02-01

    Land-use and land-cover (LULC) conversions have an important impact on land degradation, erosion and water availability. Information on historical land cover (change) is crucial for studying and modelling land- and ecosystem degradation. During the past decades major LULC conversions occurred in Africa, Southeast Asia and South America as a consequence of a growing population and economy. Most distinct is the conversion of natural vegetation into cropland. Historical LULC information can be derived from satellite imagery, but these only date back until approximately 1972. Before the emergence of satellite imagery, landscapes were monitored by black-and-white (B&W) aerial photography. This photography is often visually interpreted, which is a very time-consuming approach. This study presents an innovative, semi-automated method to map cropland acreage from B&W photography. Cropland acreage was mapped on two study sites in Ethiopia and in The Netherlands. For this purpose we used Geographic Object-Based Image Analysis (GEOBIA) and a Random Forest classification on a set of variables comprising texture, shape, slope, neighbour and spectral information. Overall mapping accuracies attained are 90% and 96% for the two study areas respectively. This mapping method increases the timeline at which historical cropland expansion can be mapped purely from brightness information in B&W photography up to the 1930s, which is beneficial for regions where historical land-use statistics are mostly absent.

  16. Sea Ice Mapping using Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Solbø, S.; Storvold, R.

    2011-12-01

    Mapping of sea ice extent and sea ice features is an important task in climate research. Since the arctic coastal and oceanic areas have a high probability of cloud coverage, aerial platforms are superior to satellite measurements for high-resolution optical measurements. However, routine observations of sea ice conditions present a variety of problems using conventional piloted aircrafts. Specially, the availability of suitable aircrafts for lease does not cover the demand in major parts of the arctic. With the recent advances in unmanned aerial systems (UAS), there is a high possibility of establishing routine, cost effective aerial observations of sea ice conditions in the near future. Unmanned aerial systems can carry a wide variety of sensors useful for characterizing sea-ice features. For instance, the CryoWing UAS, a system initially designed for measurements of the cryosphere, can be equipped with digital cameras, surface thermometers and laser altimeters for measuring freeboard of ice flows. In this work we will present results from recent CryoWing sea ice flights on Svalbard, Norway. The emphasis will be on data processing for stitching together images acquired with the non-stabilized camera payload, to form high-resolution mosaics covering large spatial areas. These data are being employed to map ice conditions; including ice and lead features and melt ponds. These high-resolution mosaics are also well suited for sea-ice mechanics, classification studies and for validation of satellite sea-ice products.

  17. Assessing the Accuracy of Ortho-image using Photogrammetric Unmanned Aerial System

    NASA Astrophysics Data System (ADS)

    Jeong, H. H.; Park, J. W.; Kim, J. S.; Choi, C. U.

    2016-06-01

    Smart-camera can not only be operated under network environment anytime and any place but also cost less than the existing photogrammetric UAV since it provides high-resolution image, 3D location and attitude data on a real-time basis from a variety of built-in sensors. This study's proposed UAV photogrammetric method, low-cost UAV and smart camera were used. The elements of interior orientation were acquired through camera calibration. The image triangulation was conducted in accordance with presence or absence of consideration of the interior orientation (IO) parameters determined by camera calibration, The Digital Elevation Model (DEM) was constructed using the image data photographed at the target area and the results of the ground control point survey. This study also analyzes the proposed method's application possibility by comparing a Ortho-image the results of the ground control point survey. Considering these study findings, it is suggested that smartphone is very feasible as a payload for UAV system. It is also expected that smartphone may be loaded onto existing UAV playing direct or indirect roles significantly.

  18. Evaluating Similarity Measures for Brain Image Registration.

    PubMed

    Razlighi, Q R; Kehtarnavaz, N; Yousefi, S

    2013-10-01

    Evaluation of similarity measures for image registration is a challenging problem due to its complex interaction with the underlying optimization, regularization, image type and modality. We propose a single performance metric, named robustness, as part of a new evaluation method which quantifies the effectiveness of similarity measures for brain image registration while eliminating the effects of the other parts of the registration process. We show empirically that similarity measures with higher robustness are more effective in registering degraded images and are also more successful in performing intermodal image registration. Further, we introduce a new similarity measure, called normalized spatial mutual information, for 3D brain image registration whose robustness is shown to be much higher than the existing ones. Consequently, it tolerates greater image degradation and provides more consistent outcomes for intermodal brain image registration.

  19. An Overview of Small Unmanned Aerial Vehicles for Air Quality Measurements: Present Applications and Future Prospectives.

    PubMed

    Villa, Tommaso Francesco; Gonzalez, Felipe; Miljievic, Branka; Ristovski, Zoran D; Morawska, Lidia

    2016-07-12

    Assessment of air quality has been traditionally conducted by ground based monitoring, and more recently by manned aircrafts and satellites. However, performing fast, comprehensive data collection near pollution sources is not always feasible due to the complexity of sites, moving sources or physical barriers. Small Unmanned Aerial Vehicles (UAVs) equipped with different sensors have been introduced for in-situ air quality monitoring, as they can offer new approaches and research opportunities in air pollution and emission monitoring, as well as for studying atmospheric trends, such as climate change, while ensuring urban and industrial air safety. The aims of this review were to: (1) compile information on the use of UAVs for air quality studies; and (2) assess their benefits and range of applications. An extensive literature review was conducted using three bibliographic databases (Scopus, Web of Knowledge, Google Scholar) and a total of 60 papers was found. This relatively small number of papers implies that the field is still in its early stages of development. We concluded that, while the potential of UAVs for air quality research has been established, several challenges still need to be addressed, including: the flight endurance, payload capacity, sensor dimensions/accuracy, and sensitivity. However, the challenges are not simply technological, in fact, policy and regulations, which differ between countries, represent the greatest challenge to facilitating the wider use of UAVs in atmospheric research.

  20. An Overview of Small Unmanned Aerial Vehicles for Air Quality Measurements: Present Applications and Future Prospectives

    PubMed Central

    Villa, Tommaso Francesco; Gonzalez, Felipe; Miljievic, Branka; Ristovski, Zoran D.; Morawska, Lidia

    2016-01-01

    Assessment of air quality has been traditionally conducted by ground based monitoring, and more recently by manned aircrafts and satellites. However, performing fast, comprehensive data collection near pollution sources is not always feasible due to the complexity of sites, moving sources or physical barriers. Small Unmanned Aerial Vehicles (UAVs) equipped with different sensors have been introduced for in-situ air quality monitoring, as they can offer new approaches and research opportunities in air pollution and emission monitoring, as well as for studying atmospheric trends, such as climate change, while ensuring urban and industrial air safety. The aims of this review were to: (1) compile information on the use of UAVs for air quality studies; and (2) assess their benefits and range of applications. An extensive literature review was conducted using three bibliographic databases (Scopus, Web of Knowledge, Google Scholar) and a total of 60 papers was found. This relatively small number of papers implies that the field is still in its early stages of development. We concluded that, while the potential of UAVs for air quality research has been established, several challenges still need to be addressed, including: the flight endurance, payload capacity, sensor dimensions/accuracy, and sensitivity. However, the challenges are not simply technological, in fact, policy and regulations, which differ between countries, represent the greatest challenge to facilitating the wider use of UAVs in atmospheric research. PMID:27420065

  1. Measuring Pinhole Images of the Sun.

    ERIC Educational Resources Information Center

    Kriss, Victor

    1996-01-01

    Describes a measurement lab that introduces measurement and presents a simple example of how to use error analysis with an obvious illustration of its value. The experiment measures the diameters of pinhole images of the sun and uses them to calculate the heights of the leafy canopy that created the images. (JRH)

  2. Normalized entropy measure for multimodality image alignment

    NASA Astrophysics Data System (ADS)

    Studholme, Colin; Hawkes, David J.; Hill, Derek L.

    1998-06-01

    Automated multi-modality 3D medical image alignment has been an active area of research for many years. There have been a number of recent papers proposing and investigating the use of entropy derived measures of brain image alignment. Any registration measure must allow us to choose between transformation estimates based on the similarity of images within their volume of overlap. Since 3D medical images often have a limited extent and overlap, the similarity measure for the two transformation estimates may be derived from two very different regions within the images. Direct measures of information such as the joint entropy and mutual information will therefore be a function of, not only image similarity in the region of overlap, but also of the local image content within the overlap. In this paper we present a new measure, normalized mutual information, which is simply the ratio of the sum of the marginal entropies and the joint entropy. The effect of changing overlap on current entropy measures and this normalized measure are compared using a simple image model and experiments on clinical MR-PET and MR-CT image data. Results indicate that the normalized entropy measure provides significantly improved behavior over a range of imaged fields of view.

  3. Remote sensing for precision agriculture: Within-field spatial variability analysis and mapping with aerial digital multispectral images

    NASA Astrophysics Data System (ADS)

    Gopalapillai, Sreekala

    2000-10-01

    Advances in remote sensing technology and biological sensors provided the motivation for this study on the applications of aerial multispectral remote sensing in precision agriculture. The feasibility of using high-resolution multispectral remote sensing for precision farming applications such as soil type delineation, identification of crop nitrogen levels, and modeling and mapping of weed density distribution and yield potential within a crop field was explored in this study. Some of the issues such as image calibration for variable lighting conditions and soil background influence were also addressed. Intensity normalization and band ratio methods were found to be adequate image calibration methods to compensate for variable illumination and soil background influence. Several within-field variability factors such as growth stage, field conditions, nutrient availability, crop cultivar, and plant population were found to be dominant in different periods. Unsupervised clustering of color infrared (CIR) image of a field soil was able to identify soil mapping units with an average accuracy of 76%. Spectral reflectance from a crop field was highly correlated to the chlorophyll reading. A regression model developed to predict nitrogen stress in corn identified nitrogen-stressed areas from nitrogen-sufficient areas with a high accuracy (R2 = 0.93). Weed density was highly correlated to the spectral reflectance from a field. One month after planting was found to be a good time to map spatial weed density. The optimum range of resolution for weed mapping was 4 m to 4.5 m for the remote sensing system and the experimental field used in this study. Analysis of spatial yield with respect to spectral reflectance showed that the visible and NIR reflectance were negatively correlated to yield and crop population in heavily weed-infested areas. The yield potential was highly correlated to image indices, especially to normalized brightness. The ANN model developed for one of the

  4. Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) from an Unmanned Aerial Vehicle (UAV): status and perspectives

    NASA Astrophysics Data System (ADS)

    Merlaud, Alexis; Tack, Frederik; Constantin, Daniel-Eduard; Fayt, Caroline; Maes, Jeroen; Mingireanu, Florin; Mocanu, Ionut; Georgescu, Lucian; Van Roozendael, Michel

    2014-05-01

    The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) is a recently developed instrument dedicated to trace gas measurements from Unmanned Aerial Vehicles (UAVs). The payload is based on a compact ultra-violet visible spectrometer and a scanning mirror. Its weight, size, and power consumption are respectively 920 g, 27x12x12 cm3, and 6 W. The custom-built UAV is an electrically powered flying wing and can reach an altitude of 3 km at a mean airspeed of 100 km/h. The whole flight can be preprogrammed and controlled by an autopilot. The spectra are analyzed using Differential Optical Absorption Spectroscopy (DOAS). One major objective is the mapping of NO2 columns at high spatial resolution allowing to subsample satellite measurements within the extent of a typical ground pixel. We present the preliminary results of two test flights of the SWING-UAV observation system in the vicinity of Galati, Romania (45.45°N, 28.05°E), performed on 11 May 2013 and 20 September 2013. Several atmospheric species are identified in the spectral range covered by the spectrometer (300-600 nm): NO2, water vapor, O4, and O3. From the measurements, the detection limit for NO2 is estimated to lie around 2 ppb. We investigate: (1) the georeferencing issues and the effective spatial resolution achievable with SWING-UAV from the instantaneous field of view and the plane dynamics (2) the main parameters influencing the air mass factors, and (3) the reproducibility of NO2 measurements over the same area during the second flight which included repeated transects. We also present the near-future (2014-2015) campaigns planned for the SWING-UAV observation system.

  5. Integration of historical aerial and satellite photos, recent satellite images and geophysical surveys for the knowledge of the ancient Dyrrachium (Durres, Albania)

    NASA Astrophysics Data System (ADS)

    Malfitana, Daniele; Shehi, Eduard; Masini, Nicola; Scardozzi, Giuseppe

    2010-05-01

    The paper presents the preliminary results of an integrated multidiscipliary research project concerning the urban area of the modern Durres (ancient Dyrrachium). Here a joint Italian and Albanian researcher are starting preliminary investigations on the place of an ancient roman villa placed in the urban centre of the modern town. In a initial phase are offering interesting results the use of a rich multitemporal remote sensing data-set, historical aerial photos of 1920s and 1930s, photos of USA spy satellites of 1960s and 1970s (Corona KH-4A and KH-4B), and very high resolution satellite imagery. The historical aerial documentation is very rich and includes aerial photogrammetrich flights of two Italian Institutions: the private company SARA - Società Anonima Rilevamenti Aerofotogrammetrici in Rome (1928) and the IGM - Istituto Geografico Militare (1936, 1937 e 1941), which flew on Durres for purposes of cartographic production and military. These photos offer an image of the city before the urban expansion after the Second World War and in recent decades, progressively documented by satellite images of the 1960s-1970s and recent years. They enable a reconstruction of the ancient topography of the urban area, even with the possibility of detailed analysis, as in the case of the the Roman villa, nowadays buried under a modern garden, but also investigated with a GPR survey, in order to rebuild its plan and contextualize the villa in relation to the urban area of the ancient Dyrrachium.

  6. Design and development of a smart aerial platform for surface hydrological measurements

    NASA Astrophysics Data System (ADS)

    Tauro, F.; Pagano, C.; Porfiri, M.; Grimaldi, S.

    2013-12-01

    Currently available experimental methodologies for surface hydrological monitoring rely on the use of intrusive sensing technologies which tend to provide local rather than distributed information on the flow physics. In this context, drawbacks deriving from the use of invasive instrumentation are partially alleviated by Large Scale Particle Image Velocimetry (LSPIV). LSPIV is based on the use of cameras mounted on masts along river banks which capture images of artificial tracers or naturally occurring objects floating on water surfaces. Images are then georeferenced and the displacement of groups of floating tracers statistically analyzed to reconstruct flow velocity maps at specific river cross-sections. In this work, we mitigate LSPIV spatial limitations and inaccuracies due to image calibration by designing and developing a smart platform which integrates digital acquisition system and laser calibration units onboard of a custom-built quadricopter. The quadricopter is designed to be lightweight, low cost as compared to kits available on the market, highly customizable, and stable to guarantee minimal vibrations during image acquisition. The onboard digital system includes an encased GoPro Hero 3 camera whose axis is constantly kept orthogonal to the water surface by means of an in-house developed gimbal. The gimbal is connected to the quadricopter through a shock absorber damping device which further reduces eventual vibrations. Image calibration is performed through laser units mounted at known distances on the quadricopter landing apparatus. The vehicle can be remotely controlled by the open-source Ardupilot microcontroller. Calibration tests and field experiments are conducted in outdoor environments to assess the feasibility of using the smart platform for acquisition of high quality images of natural streams. Captured images are processed by LSPIV algorithms and average flow velocities are compared to independently acquired flow estimates. Further, videos

  7. Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) from an Unmanned Aerial Vehicle (UAV): Results from the 2014 AROMAT campaign

    NASA Astrophysics Data System (ADS)

    Merlaud, Alexis; Tack, Frederik; Constantin, Daniel; Fayt, Caroline; Maes, Jeroen; Mingireanu, Florin; Mocanu, Ionut; Georgescu, Lucian; Van Roozendael, Michel

    2015-04-01

    The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) is an instrument dedicated to atmospheric trace gas retrieval from an Unmanned Aerial Vehicle (UAV). The payload is based on a compact visible spectrometer and a scanning mirror to collect scattered sunlight. Its weight, size, and power consumption are respectively 920 g, 27x12x12 cm3, and 6 W. The custom-built 2.5 m flying wing UAV is electrically powered, has a typical airspeed of 100 km/h, and can operate at a maximum altitude of 3 km. Both the payload and the UAV were developed in the framework of a collaboration between the Belgian Institute for Space Aeronomy (BIRA-IASB) and the Dunarea de Jos University of Galati, Romania. We present here SWING-UAV test flights dedicated to NO2 measurements and performed in Romania on 10 and 11 September 2014, during the Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign. The UAV performed 5 flights in the vicinity of the large thermal power station of Turceni (44.67° N, 23.4° E). The UAV was operated in visual range during the campaign, up to 900 m AGL , downwind of the plant and crossing its exhaust plume. The spectra recorded on flight are analyzed with the Differential Optical Absorption Spectroscopy (DOAS) method. The retrieved NO2 Differential Slant Column Densities (DSCDs) are up to 1.5e17 molec/cm2 and reveal the horizontal gradients around the plant. The DSCDs are converted to vertical columns and compared with coincident car-based DOAS measurements. We also present the near-future perspective of the SWING-UAV observation system, which includes flights in 2015 above the Black Sea to quantify ship emissions, the addition of SO2 as a target species, and autopilot flights at higher altitudes to cover a typical satellite pixel extent (10x10 km2).

  8. Hyperspatial Thermal Imaging of Surface Hydrothermal Features at Pilgrim Hot Springs, Alaska using a small Unmanned Aerial System (sUAS)

    NASA Astrophysics Data System (ADS)

    Haselwimmer, C. E.; Wilson, R.; Upton, C.; Prakash, A.; Holdmann, G.; Walker, G.

    2013-12-01

    Thermal remote sensing provides a valuable tool for mapping and monitoring surface hydrothermal features associated with geothermal activity. The increasing availability of low-cost, small Unmanned Aerial Systems (sUAS) with integrated thermal imaging sensors offers a means to undertake very high spatial resolution (hyperspatial), quantitative thermal remote sensing of surface geothermal features in support of exploration and long-term monitoring efforts. Results from the deployment of a quadcopter sUAS equipped with a thermal camera over Pilgrim Hot Springs, Alaska for detailed mapping and heat flux estimation for hot springs, seeps, and thermal pools are presented. Hyperspatial thermal infrared imagery (4 cm pixels) was acquired over Pilgrim Hot Springs in July 2013 using a FLIR TAU 640 camera operating from an Aeryon Scout sUAS flying at an altitude of 40m. The registered and mosaicked thermal imagery is calibrated to surface temperature values using in-situ measurements of uniform blackbody tarps and the temperatures of geothermal and other surface pools acquired with a series of water temperature loggers. Interpretation of the pre-processed thermal imagery enables the delineation of hot springs, the extents of thermal pools, and the flow and mixing of individual geothermal outflow plumes with an unprecedented level of detail. Using the surface temperatures of thermal waters derived from the FLIR data and measured in-situ meteorological parameters the hot spring heat flux and outflow rate is calculated using a heat budget model for a subset of the thermal drainage. The heat flux/outflow rate estimates derived from the FLIR data are compared against in-situ measurements of the hot spring outflow rate recorded at the time of the thermal survey.

  9. Calibration of imaging luminance measuring devices (ILMD)

    NASA Astrophysics Data System (ADS)

    Liu, Liying; Zheng, Feng; Zhu, Lingxi; Li, Ye; Huan, Kewei; Shi, Xiaoguang

    2015-11-01

    A method of calibration of imaging luminance measuring devices has been studied. By the device-independent color space transformation, the color image by digital camera could be converted to the CIE's absolute color space lab. Then, the calibration model is fitted between ln(L/t) and luminance. At last, luminance image is obtained and the dynamic range of luminance image could be adjusted by shutter speed.

  10. Research on autofocusing method with automatic calibration for aerial camera based on imaging resolution

    NASA Astrophysics Data System (ADS)

    Zhao, Yu-liang; Zhao, Hong-qiang; Li, Shu-jun; Zhang, Yu-ye

    2014-09-01

    Air materiel depot is a warehouse which store consumed all the parts and equipment vault of the plane. In order to ensure the various aviation equipment integrity of the backup piece rate, the inside temperature of depot must be controlled within a certain range. Therefore, the depot must be equipped a self-contained temperature real-time monitoring system. This paper presents a distributed temperature sensing alarm system to apply to real-time measure spatial distribution of temperature field. In order to eliminate influence to the scattering strength from the light source instability and the fiber bending splice loss and to improve temperature measurement accuracy, the system design used dual-channel dual-wavelength comparison method which make Anti-Stokes as signal channel and Stokes as a reference channel to collect signals of two channel respectively and detect the ratio of the two channels' signals. The light of LD directional coupling to the sensing optical fiber in the temperature field to test, domain reflect light from the sensing optical fiber directional coupling to receive channel again, Rayleigh domain reflect light is filtered after optical filter, the Anti-Stokes and Stokes are both taken out, converted and magnified, the two signals is digitalized by A/D Converter, and written to the storage machine , which linear cumulative to the content of the storage unit, The distributed measurement of the temperature field to test is finished. The collected 2900 measuring points real-time on 2km of optical fiber. The spatial resolution of the system was 0.7m, measurement range was -20-370 °C, and measurement error was +/- 2 °C. All index of the system achieved the desired objective. To get an accurate temperature field spatial distribution and the information of temporal variation, the system enabled real-time temperature of aviation depot monitoring and early warning. As a new sensing technology, the distributed fiber optic sensor has the functions of self

  11. Monotonic correlation analysis of image quality measures for image fusion

    NASA Astrophysics Data System (ADS)

    Kaplan, Lance M.; Burks, Stephen D.; Moore, Richard K.; Nguyen, Quang

    2008-04-01

    The next generation of night vision goggles will fuse image intensified and long wave infra-red to create a hybrid image that will enable soldiers to better interpret their surroundings during nighttime missions. Paramount to the development of such goggles is the exploitation of image quality (IQ) measures to automatically determine the best image fusion algorithm for a particular task. This work introduces a novel monotonic correlation coefficient to investigate how well possible IQ features correlate to actual human performance, which is measured by a perception study. The paper will demonstrate how monotonic correlation can identify worthy features that could be overlooked by traditional correlation values.

  12. Repeat, Low Altitude Measurements of Vegetation Status and Biomass Using Manned Aerial and UAS Imagery in a Piñon-Juniper Woodland

    NASA Astrophysics Data System (ADS)

    Krofcheck, D. J.; Lippitt, C.; Loerch, A.; Litvak, M. E.

    2015-12-01

    Measuring the above ground biomass of vegetation is a critical component of any ecological monitoring campaign. Traditionally, biomass of vegetation was measured with allometric-based approach. However, it is also time-consuming, labor-intensive, and extremely expensive to conduct over large scales and consequently is cost-prohibitive at the landscape scale. Furthermore, in semi-arid ecosystems characterized by vegetation with inconsistent growth morphologies (e.g., piñon-juniper woodlands), even ground-based conventional allometric approaches are often challenging to execute consistently across individuals and through time, increasing the difficulty of the required measurements and consequently the accuracy of the resulting products. To constrain the uncertainty associated with these campaigns, and to expand the extent of our measurement capability, we made repeat measurements of vegetation biomass in a semi-arid piñon-juniper woodland using structure-from-motion (SfM) techniques. We used high-spatial resolution overlapping aerial images and high-accuracy ground control points collected from both manned aircraft and multi-rotor UAS platforms, to generate digital surface model (DSM) for our experimental region. We extracted high-precision canopy volumes from the DSM and compared these to the vegetation allometric data, s to generate high precision canopy volume models. We used these models to predict the drivers of allometric equations for Pinus edulis and Juniperous monosperma (canopy height, diameter at breast height, and root collar diameter). Using this approach, we successfully accounted for the carbon stocks in standing live and standing dead vegetation across a 9 ha region, which contained 12.6 Mg / ha of standing dead biomass, with good agreement to our field plots. Here we present the initial results from an object oriented workflow which aims to automate the biomass estimation process of tree crown delineation and volume calculation, and partition

  13. An Improved Snake Model for Refinement of Lidar-Derived Building Roof Contours Using Aerial Images

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Wang, Shugen; Liu, Xiuguo

    2016-06-01

    Building roof contours are considered as very important geometric data, which have been widely applied in many fields, including but not limited to urban planning, land investigation, change detection and military reconnaissance. Currently, the demand on building contours at a finer scale (especially in urban areas) has been raised in a growing number of studies such as urban environment quality assessment, urban sprawl monitoring and urban air pollution modelling. LiDAR is known as an effective means of acquiring 3D roof points with high elevation accuracy. However, the precision of the building contour obtained from LiDAR data is restricted by its relatively low scanning resolution. With the use of the texture information from high-resolution imagery, the precision can be improved. In this study, an improved snake model is proposed to refine the initial building contours extracted from LiDAR. First, an improved snake model is constructed with the constraints of the deviation angle, image gradient, and area. Then, the nodes of the contour are moved in a certain range to find the best optimized result using greedy algorithm. Considering both precision and efficiency, the candidate shift positions of the contour nodes are constrained, and the searching strategy for the candidate nodes is explicitly designed. The experiments on three datasets indicate that the proposed method for building contour refinement is effective and feasible. The average quality index is improved from 91.66% to 93.34%. The statistics of the evaluation results for every single building demonstrated that 77.0% of the total number of contours is updated with higher quality index.

  14. A fast and mobile system for registration of low-altitude visual and thermal aerial images using multiple small-scale UAVs

    NASA Astrophysics Data System (ADS)

    Yahyanejad, Saeed; Rinner, Bernhard

    2015-06-01

    The use of multiple small-scale UAVs to support first responders in disaster management has become popular because of their speed and low deployment costs. We exploit such UAVs to perform real-time monitoring of target areas by fusing individual images captured from heterogeneous aerial sensors. Many approaches have already been presented to register images from homogeneous sensors. These methods have demonstrated robustness against scale, rotation and illumination variations and can also cope with limited overlap among individual images. In this paper we focus on thermal and visual image registration and propose different methods to improve the quality of interspectral registration for the purpose of real-time monitoring and mobile mapping. Images captured by low-altitude UAVs represent a very challenging scenario for interspectral registration due to the strong variations in overlap, scale, rotation, point of view and structure of such scenes. Furthermore, these small-scale UAVs have limited processing and communication power. The contributions of this paper include (i) the introduction of a feature descriptor for robustly identifying corresponding regions of images in different spectrums, (ii) the registration of image mosaics, and (iii) the registration of depth maps. We evaluated the first method using a test data set consisting of 84 image pairs. In all instances our approach combined with SIFT or SURF feature-based registration was superior to the standard versions. Although we focus mainly on aerial imagery, our evaluation shows that the presented approach would also be beneficial in other scenarios such as surveillance and human detection. Furthermore, we demonstrated the advantages of the other two methods in case of multiple image pairs.

  15. Aerial Photography

    NASA Technical Reports Server (NTRS)

    1985-01-01

    John Hill, a pilot and commercial aerial photographer, needed an information base. He consulted NERAC and requested a search of the latest developments in camera optics. NERAC provided information; Hill contacted the manufacturers of camera equipment and reduced his photographic costs significantly.

  16. Novel permutation measures for image encryption algorithms

    NASA Astrophysics Data System (ADS)

    Abd-El-Hafiz, Salwa K.; AbdElHaleem, Sherif H.; Radwan, Ahmed G.

    2016-10-01

    This paper proposes two measures for the evaluation of permutation techniques used in image encryption. First, a general mathematical framework for describing the permutation phase used in image encryption is presented. Using this framework, six different permutation techniques, based on chaotic and non-chaotic generators, are described. The two new measures are, then, introduced to evaluate the effectiveness of permutation techniques. These measures are (1) Percentage of Adjacent Pixels Count (PAPC) and (2) Distance Between Adjacent Pixels (DBAP). The proposed measures are used to evaluate and compare the six permutation techniques in different scenarios. The permutation techniques are applied on several standard images and the resulting scrambled images are analyzed. Moreover, the new measures are used to compare the permutation algorithms on different matrix sizes irrespective of the actual parameters used in each algorithm. The analysis results show that the proposed measures are good indicators of the effectiveness of the permutation technique.

  17. Analysis of the reasons for accidents and of protective measures against induced voltage on aerial electrical transmission lines

    SciTech Connect

    Misrikhanov, M. Sh.; Mirzaabdullaev, A. O.

    2009-01-15

    The problem of safety during work on aerial transmission lines under an induced voltage is examined. Results are presented from a study of the causes of accidents over the last 20 years in electrical grids in this country. A determination of different levels of induced voltage on disconnected aerial transmission lines as a function of their grounding scheme is proposed. The order of magnitudes for each level are given, along with approximate expressions for calculating them.

  18. Industrial computed tomography image size measurement

    NASA Astrophysics Data System (ADS)

    Ping, Chen; Jin-Xiao, Pan; Bin, Liu

    2009-09-01

    As one of the most useful modern detection technologies, Industrial Computed Tomography (ICT) image size measurement can correctly non-destructively measure the size of workpieces' inner construction, and it is considered as the standard for quality assurance and reverse engineering. In view of the advantages and disadvantages compared to conventional methods, this paper improves the precision of image size measurement with a new algorithm that uses an approximate function to describe edge degradation. First, this algorithm constructs the approximate function and determines the optimal point of edge detection, based on image intensity and inflexions. Then, in order to accurately extract the image edge, this algorithm is used to revise the primary image, completing construction of the CT image. Excellent results are obtained from simulations and experiments. The experimental results indicate that the relative error is 2% for the CT image when the step evolution of the image edge is pooled. The relative error of this method is decreased by as much as 1.5% compared to wavelet transformation and ridgelet transformation. Therefore, this new algorithm demonstrates increased effectiveness in extracting an accurate measurement of the CT image edge.

  19. Image quality measures and their performance

    NASA Technical Reports Server (NTRS)

    Eskicioglu, Ahmet M.; Fisher, Paul S.; Chen, Si-Yuan

    1994-01-01

    A number of quality measures are evaluated for gray scale image compression. They are all bivariate exploiting the differences between corresponding pixels in the original and degraded images. It is shown that although some numerical measures correlate well with the observers' response for a given compression technique, they are not reliable for an evaluation across different techniques. The two graphical measures (histograms and Hosaka plots), however, can be used to appropriately specify not only the amount, but also the type of degradation in reconstructed images.

  20. Thermal Imaging Using Small-Aerial Platforms for Assessment of Crop Water Stress in Humid Subtropical Climates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf- or canopy-to-air temperature difference (hereafter called CATD) can provide information on crop energy status. Thermal imagery from agricultural aircraft or Unmanned Aerial Vehicles (UAVs) have the potential of providing thermal data for calculation of CATD and visual snapshots that can guide ...

  1. Development of a laser remote sensing instrument to measure sub-aerial volcanic CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Queisser, Manuel; Burton, Mike

    2016-04-01

    A thorough quantification of volcanic CO2 fluxes would lead to an enhanced understanding of the role of volcanoes in the geological carbon cycle. This would enable a more subtle understanding of human impact on that cycle. Furthermore, variations in volcanic CO2 emissions are a key to understanding volcanic processes such as eruption phenomenology. However, measuring fluxes of volcanic CO2 is challenging as volcanic CO2 concentrations are modest compared with the ambient CO2 concentration (~400 ppm) . Volcanic CO2 quickly dilutes with the background air. For Mt. Etna (Italy), for instance, 1000 m downwind from the crater, dispersion modelling yields a signal of ~4 ppm only. It is for this reason that many magmatic CO2 concentration measurements focus on in situ techniques, such as direct sampling Giggenbach bottles, chemical sensors, IR absorption spectrometers or mass spectrometers. However, emission rates are highly variable in time and space. Point measurements fail to account for this variability. Inferring 1-D or 2-D gas concentration profiles, necessary to estimate gas fluxes, from point measurements may thus lead to erroneous flux estimations. Moreover, in situ probing is time consuming and, since many volcanoes emit toxic gases and are dangerous as mountains, may raise safety concerns. In addition, degassing is often diffuse and spatially extended, which makes a measurement approach with spatial coverage desirable. There are techniques that allow to indirectly retrieve CO2 fluxes from correlated SO2 concentrations and fluxes. However, they still rely on point measurements of CO2 and are prone to errors of SO2 fluxes due to light dilution and depend on blue sky conditions. Here, we present a new remote sensing instrument, developed with the ERC project CO2Volc, which measures 1-D column amounts of CO2 in the atmosphere with sufficient sensitivity to reveal the contribution of magmatic CO2. Based on differential absorption LIDAR (DIAL) the instrument measures

  2. Parameter optimization of image classification techniques to delineate crowns of coppice trees on UltraCam-D aerial imagery in woodlands

    NASA Astrophysics Data System (ADS)

    Erfanifard, Yousef; Stereńczak, Krzysztof; Behnia, Negin

    2014-01-01

    Estimating the optimal parameters of some classification techniques becomes their negative aspect as it affects their performance for a given dataset and reduces classification accuracy. It was aimed to optimize the combination of effective parameters of support vector machine (SVM), artificial neural network (ANN), and object-based image analysis (OBIA) classification techniques by the Taguchi method. The optimized techniques were applied to delineate crowns of Persian oak coppice trees on UltraCam-D very high spatial resolution aerial imagery in Zagros semiarid woodlands, Iran. The imagery was classified and the maps were assessed by receiver operating characteristic curve and other performance metrics. The results showed that Taguchi is a robust approach to optimize the combination of effective parameters in these image classification techniques. The area under curve (AUC) showed that the optimized OBIA could well discriminate tree crowns on the imagery (AUC=0.897), while SVM and ANN yielded slightly less AUC performances of 0.819 and 0.850, respectively. The indices of accuracy (0.999) and precision (0.999) and performance metrics of specificity (0.999) and sensitivity (0.999) in the optimized OBIA were higher than with other techniques. The optimization of effective parameters of image classification techniques by the Taguchi method, thus, provided encouraging results to discriminate the crowns of Persian oak coppice trees on UltraCam-D aerial imagery in Zagros semiarid woodlands.

  3. Multifunctional aerial display through use of polarization-processing display

    NASA Astrophysics Data System (ADS)

    Uchida, Keitaro; Ito, Shusei; Yamamoto, Hirotsugu

    2017-02-01

    We have realized a multifunctional aerial display. An aerial image of a polarization-processing display is formed through aerial imaging by retro-reflection. By changing the polarization modulation patterns, we can switch between a three-layered display and a secure display.

  4. An Analysis of Meteorological Measurements Using a Miniature Quad-Rotor Unmanned Aerial System

    DTIC Science & Technology

    2015-06-01

    2014) and Moti (2014), where temperature comparison between day and night balloon soundings revealed a reproducibility of less than 0.1 C, with a...correction table RSN2010 for RS92 temperature sensor,” Vaisala, Sounding Data Continuity tables, [Available online at: http://www.vaisala.com/en...accuracy of temperature and pressure profiles in the surface layer. In unstable atmospheres temperature measurements made in the surface layer are as

  5. Historic Rio Grande Channel Change: Relating Channel Adjustments Measured from Aerial Photography to Human and Climate Induced Changes in Hydrology

    NASA Astrophysics Data System (ADS)

    Meyer, G. A.; Swanson, B. J.; Coonrod, J.

    2008-12-01

    Over the last century, flow regulation, changes in land and water use, and climate change, including severe droughts, have altered geomorphic processes along the Middle Rio Grande. In association with the USACE Urban Flood Demonstration Program, we investigated changes in channel and island widths and areas as measured on 1972-2006 aerial photographs in relation to average and peak flows in the Rio Grande through Bernalillo County, NM (Albuquerque). We employed all recent (1992-2006) photographs, which were often taken annually or biannually. Digitized and georeferenced photographs were analyzed using a GIS, with particular attention paid to quantifying potential measurement error and its propagation through estimates of channel areas and bank erosion rates. Average total channel widths decreased from 169 m in 1972 to 130 m in 2006. Narrowing was concentrated in the upper and lower sections of the study reach where tributary sediment inputs and degradation related to dam operations constrict the active channel. Decreases in channel width and area coincide with periods of low flows, although the area changes are associated with large errors. Vegetated island areas have greatly increased since 1972, although islands per se were also lost during the later study period by bank attachment. Bank erosion estimates also have large associated errors. Nonetheless, erosion rates appear to be generally decreasing over time, but accelerated during the 2005 high flows. Additional research will compare geomorphic change along the Rio Grande study reach to channel adjustments along the Rio Chama, both below and above El Vado Dam, to better understand regional channel responses to dam operations and drought cycles. Initial investigations reveal that channel responses to these perturbations along the Rio Chama, a major Rio Grande tributary, are similar to the adjustments observed along the Rio Grande through Albuquerque, but the magnitude of the change is not as dramatic.

  6. Amphibious hearing in spotted seals (Phoca largha): underwater audiograms, aerial audiograms and critical ratio measurements.

    PubMed

    Sills, Jillian M; Southall, Brandon L; Reichmuth, Colleen

    2014-03-01

    Spotted seals (Phoca largha) inhabit Arctic regions that are facing both rapid climate change and increasing industrialization. While little is known about their sensory capabilities, available knowledge suggests that spotted seals and other ice seals use sound to obtain information from the surrounding environment. To quantitatively assess their auditory capabilities, the hearing of two young spotted seals was tested using a psychophysical paradigm. Absolute detection thresholds for tonal sounds were measured in air and under water over the frequency range of hearing, and critical ratios were determined using octave-band masking noise in both media. The behavioral audiograms show a range of best sensitivity spanning four octaves in air, from approximately 0.6 to 11 kHz. The range of sensitive hearing extends across seven octaves in water, with lowest thresholds between 0.3 and 56 kHz. Critical ratio measurements were similar in air and water and increased monotonically from 12 dB at 0.1 kHz to 30 dB at 25.6 kHz, indicating that the auditory systems of these seals are quite efficient at extracting signals from background noise. This study demonstrates that spotted seals possess sound reception capabilities different from those previously described for ice seals, and more similar to those reported for harbor seals (Phoca vitulina). The results are consistent with the amphibious lifestyle of these seals and their apparent reliance on sound. The hearing data reported herein are the first available for spotted seals and can inform best management practices for this vulnerable species in a changing Arctic.

  7. Guided Dropsonde: Unmanned aerial technology for measuring/sampling volcanic ash plumes in the atmosphere

    NASA Astrophysics Data System (ADS)

    Wardell, L. J.; Douglas, J.

    2011-12-01

    Given the constraints associated with current airborne host platforms, a technological solution is needed for efficiently obtaining in situ atmospheric data/samples at targeted locations and altitudes for hazardous situations such as volcanic ash clouds. Guided dropsondes have significant implications to advance research requiring in situ atmospheric measurements. Compared to conventional free-fall dropsondes that rely on parachutes, guided dropsondes could offer speed controlled descents combined with loiter abilities therefore yielding time averaged data for a particular region-a feature not currently available with existing dropsonde technology. The guided dropsonde's ability to move to targeted areas of interest gains sensors/samplers an unprecedented level of access to extreme areas and events. With flight controls, the guided system can be retrievable as well as deployed from high altitudes. The system to be presented offers additional advantages over conventional UAVs in regards to aviation and technology transfer restrictions and regulations making rapid deployment possible. For large volcanic eruptions this can become a powerful new tool where few options, if any, currently exist to collect in situ data and/or samples. The most recent results from flight tests and evaluations of the guided dropsonde will be presented.

  8. Acoustic property measurements in a photoacoustic imager

    NASA Astrophysics Data System (ADS)

    Willemink, René G. H.; Manohar, Srirang; Slump, Cornelis H.; van der Heijden, Ferdi; van Leeuwen, Ton

    2007-07-01

    Photoacoustics is a hybrid imaging technique that combines the contrast available to optical imaging with the resolution that is possessed by ultrasound imaging. The technique is based on generating ultrasound from absorbing structures in tissue using pulsed light. In photoacoustic (PA) computerized tomography (CT) imaging, reconstruction of the optical absorption in a subject, is performed for example by filtered backprojection. The backprojection is performed along circular paths in image space instead of along straight lines as in X-ray CT imaging. To achieve this, the speed-of-sound through the subject is usually assumed constant. An unsuitable speed-of-sound can degrade resolution and contrast. We discuss here a method of actually measuring the speed-of- sound distribution using ultrasound transmission through the subject under photoacoustic investigation. This is achieved in a simple approach that does not require any additional ultrasound transmitter. The method uses a passive element (carbon fiber) that is placed in the imager in the path of the illumination which generates ultrasound by the photoacoustic effect and behaves as an ultrasound source. Measuring the time-of-flight of this ultrasound transient by the same detector used for conventional photoacoustics, allows a speed-of-sound image to be reconstructed. This concept is validated on phantoms.

  9. New techniques to measure cliff change from historical oblique aerial photographs and structure-from-motion photogrammetry

    USGS Publications Warehouse

    Warrick, Jonathan; Ritchie, Andy; Adelman, Gabrielle; Adelman, Ken; Limber, Patrick W

    2017-01-01

    Oblique aerial photograph surveys are commonly used to document coastal landscapes. Here it is shown that adequate overlap may exist in these photographic records to develop topographic models with Structure-from-Motion (SfM) photogrammetric techniques. Using photographs of Fort Funston, California, from the California Coastal Records Project, imagery were combined with ground control points in a four-dimensional analysis that produced topographic point clouds of the study area’s cliffs for 5 years spanning 2002 to 2010. Uncertainty was assessed by comparing point clouds with airborne LIDAR data, and these uncertainties were related to the number and spatial distribution of ground control points used in the SfM analyses. With six or more ground control points, the root mean squared errors between the SfM and LIDAR data were less than 0.30 m (minimum 1⁄4 0.18 m), and the mean systematic error was less than 0.10 m. The SfM results had several benefits over traditional airborne LIDAR in that they included point coverage on vertical- to-overhanging sections of the cliff and resulted in 10–100 times greater point densities. Time series of the SfM results revealed topographic changes, including landslides, rock falls, and the erosion of landslide talus along the Fort Funston beach. Thus, it was concluded that SfM photogrammetric techniques with historical oblique photographs allow for the extraction of useful quantitative information for mapping coastal topography and measuring coastal change. The new techniques presented here are likely applicable to many photograph collections and problems in the earth sciences.

  10. D Surface Generation from Aerial Thermal Imagery

    NASA Astrophysics Data System (ADS)

    Khodaei, B.; Samadzadegan, F.; Dadras Javan, F.; Hasani, H.

    2015-12-01

    Aerial thermal imagery has been recently applied to quantitative analysis of several scenes. For the mapping purpose based on aerial thermal imagery, high accuracy photogrammetric process is necessary. However, due to low geometric resolution and low contrast of thermal imaging sensors, there are some challenges in precise 3D measurement of objects. In this paper the potential of thermal video in 3D surface generation is evaluated. In the pre-processing step, thermal camera is geometrically calibrated using a calibration grid based on emissivity differences between the background and the targets. Then, Digital Surface Model (DSM) generation from thermal video imagery is performed in four steps. Initially, frames are extracted from video, then tie points are generated by Scale-Invariant Feature Transform (SIFT) algorithm. Bundle adjustment is then applied and the camera position and orientation parameters are determined. Finally, multi-resolution dense image matching algorithm is used to create 3D point cloud of the scene. Potential of the proposed method is evaluated based on thermal imaging cover an industrial area. The thermal camera has 640×480 Uncooled Focal Plane Array (UFPA) sensor, equipped with a 25 mm lens which mounted in the Unmanned Aerial Vehicle (UAV). The obtained results show the comparable accuracy of 3D model generated based on thermal images with respect to DSM generated from visible images, however thermal based DSM is somehow smoother with lower level of texture. Comparing the generated DSM with the 9 measured GCPs in the area shows the Root Mean Square Error (RMSE) value is smaller than 5 decimetres in both X and Y directions and 1.6 meters for the Z direction.

  11. Adapting astronomical source detection software to help detect animals in thermal images obtained by unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Longmore, S. N.; Collins, R. P.; Pfeifer, S.; Fox, S. E.; Mulero-Pazmany, M.; Bezombes, F.; Goodwind, A.; de Juan Ovelar, M.; Knapen, J. H.; Wich, S. A.

    2017-02-01

    In this paper we describe an unmanned aerial system equipped with a thermal-infrared camera and software pipeline that we have developed to monitor animal populations for conservation purposes. Taking a multi-disciplinary approach to tackle this problem, we use freely available astronomical source detection software and the associated expertise of astronomers, to efficiently and reliably detect humans and animals in aerial thermal-infrared footage. Combining this astronomical detection software with existing machine learning algorithms into a single, automated, end-to-end pipeline, we test the software using aerial video footage taken in a controlled, field-like environment. We demonstrate that the pipeline works reliably and describe how it can be used to estimate the completeness of different observational datasets to objects of a given type as a function of height, observing conditions etc. - a crucial step in converting video footage to scientifically useful information such as the spatial distribution and density of different animal species. Finally, having demonstrated the potential utility of the system, we describe the steps we are taking to adapt the system for work in the field, in particular systematic monitoring of endangered species at National Parks around the world.

  12. Neutron Imaging Calibration to Measure Void Fraction

    SciTech Connect

    Geoghegan, Patrick J; Bilheux, Hassina Z; Sharma, Vishaldeep; Fricke, Brian A

    2015-01-01

    Void fraction is an intuitive parameter that describes the fraction of vapor in a two-phase flow. It appears as a key variable in most heat transfer and pressure drop correlations used to design evaporating and condensing heat exchangers, as well as determining charge inventory in refrigeration systems. Void fraction measurement is not straightforward, however, and assumptions on the invasiveness of the measuring technique must be made. Neutron radiography or neutron imaging has the potential to be a truly non-invasive void fraction measuring technique but has until recently only offered qualitative descriptions of two-phase flow, in terms of flow maldistributions, for example. This paper describes the calibration approach necessary to employ neutron imaging to measure steady-state void fraction. Experiments were conducted at the High Flux Isotope Reactor (HFIR) Cold Guide 1D neutron imaging facility at Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA.

  13. Voxel similarity measures for automated image registration

    NASA Astrophysics Data System (ADS)

    Hill, Derek L.; Studholme, Colin; Hawkes, David J.

    1994-09-01

    We present the concept of the feature space sequence: 2D distributions of voxel features of two images generated at registration and a sequence of misregistrations. We provide an explanation of the structure seen in these images. Feature space sequences have been generated for a pair of MR image volumes identical apart from the addition of Gaussian noise to one, MR image volumes with and without Gadolinium enhancement, MR and PET-FDG image volumes and MR and CT image volumes, all of the head. The structure seen in the feature space sequences was used to devise two new measures of similarity which in turn were used to produce plots of cost versus misregistration for the 6 degrees of freedom of rigid body motion. One of these, the third order moment of the feature space histogram, was used to register the MR image volumes with and without Gadolinium enhancement. These techniques have the potential for registration accuracy to within a small fraction of a voxel or resolution element and therefore interpolation errors in image transformation can be the dominant source of error in subtracted images. We present a method for removing these errors using sinc interpolation and show how interpolation errors can be reduced by over two orders of magnitude.

  14. "Conventional" CT images from spectral measurements

    NASA Astrophysics Data System (ADS)

    Rajbhandary, Paurakh L.; Pelc, Norbert J.

    2016-03-01

    Spectral imaging systems need to be able to produce "conventional" images, and it's been shown that systems with energy discriminating detectors can achieve higher CNR than conventional systems by optimal weighting. Combining measured data in energy bins (EBs) and also combining basis material images have previously been proposed, but there are no studies systematically comparing the two methods. In this paper, we analytically evaluate the two methods for systems with ideal photon counting detectors using CNR and beam hardening (BH) artifact as metrics. For a 120-kVp polychromatic simulations of a water phantom with low contrast inserts, the difference of the optimal CNR between the two methods for the studied phantom is within 2%. For a polychromatic spectrum, beam-hardening artifacts are noticeable in EB weighted images (BH artifact of 3.8% for 8 EB and 6.9% for 2 EB), while weighted basis material images are free of such artifacts.

  15. Reliability-guided digital image correlation for image deformation measurement

    SciTech Connect

    Pan Bing

    2009-03-10

    A universally applicable reliability-guided digital image correlation (DIC) method is proposed for reliable image deformation measurement. The zero-mean normalized cross correlation (ZNCC) coefficient is used to identify the reliability of the point computed. The correlation calculation begins with a seed point and is then guided by the ZNCC coefficient. That means the neighbors of the point with the highest ZNCC coefficient in a queue for computed points will be processed first. Thus the calculation path is always along the most reliable direction, and possible error propagation of the conventional DIC method can be avoided. The proposed novel DIC method is universally applicable to the images with shadows, discontinuous areas, and deformation discontinuity. Two image pairs were used to evaluate the performance of the proposed technique, and the successful results clearly demonstrate its robustness and effectiveness.

  16. Monitoring a BLM level 5 watershed with very-large aerial imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A fifth order BLM watershed in central Wyoming was flown using a Sport-airplane to acquire high-resolution aerial images from 2 cameras at 2 altitudes. Project phases 1 and 2 obtained images for measuring ground cover, species composition and canopy cover of Wyoming big sagebrush by ecological site....

  17. Scaling Sap Flow Results Over Wide Areas Using High-Resolution Aerial Multispectral Digital Imaging, Leaf Area Index (LAI) and MODIS Satellite Imagery in Saltcedar Stands on the Lower Colorado River

    NASA Astrophysics Data System (ADS)

    Murray, R.; Neale, C.; Nagler, P. L.; Glenn, E. P.

    2008-12-01

    Heat-balance sap flow sensors provide direct estimates of water movement through plant stems and can be used to accurately measure leaf-level transpiration (EL) and stomatal conductance (GS) over time scales ranging from 20-minutes to a month or longer in natural stands of plants. However, their use is limited to relatively small branches on shrubs or trees, as the gauged stem section needs to be uniformly heated by the heating coil to produce valid measurements. This presents a scaling problem in applying the results to whole plants, stands of plants, and larger landscape areas. We used high-resolution aerial multispectral digital imaging with green, red and NIR bands as a bridge between ground measurements of EL and GS, and MODIS satellite imagery of a flood plain on the Lower Colorado River dominated by saltcedar (Tamarix ramosissima). Saltcedar is considered to be a high-water-use plant, and saltcedar removal programs have been proposed to salvage water. Hence, knowledge of actual saltcedar ET rates is needed on western U.S. rivers. Scaling EL and GS to large landscape units requires knowledge of leaf area index (LAI) over large areas. We used a LAI model developed for riparian habitats on Bosque del Apache, New Mexico, to estimate LAI at our study site on the Colorado River. We compared the model estimates to ground measurements of LAI, determined with a Li-Cor LAI-2000 Plant Canopy Analyzer calibrated by leaf harvesting to determine Specific Leaf Area (SLA) (m2 leaf area per g dry weight leaves) of the different species on the floodplain. LAI could be adequately predicted from NDVI from aerial multispectral imagery and could be cross-calibrated with MODIS NDVI and EVI. Hence, we were able to project point measurements of sap flow and LAI over multiple years and over large areas of floodplain using aerial multispectral imagery as a bridge between ground and satellite data. The methods are applicable to riparian corridors throughout the western U.S.

  18. Applicability of New Approaches of Sensor Orientation to Micro Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Rehak, M.; Skaloud, J.

    2016-06-01

    This study highlights the benefits of precise aerial position and attitude control in the context of mapping with Micro Aerial Vehicles (MAVs). Accurate mapping with MAVs is gaining importance in applications such as corridor mapping, road and pipeline inspections or mapping of large areas with homogeneous surface structure, e.g. forests or agricultural fields. There, accurate aerial control plays a major role in successful terrain reconstruction and artifact-free ortophoto generation. The presented experiments focus on new approaches of aerial control. We confirm practically that the relative aerial position and attitude control can improve accuracy in difficult mapping scenarios. Indeed, the relative orientation method represents an attractive alternative in the context of MAVs for two reasons. First, the procedure is somewhat simplified, e.g. the angular misalignment, so called boresight, between the camera and the inertial measurement unit (IMU) does not have to be determined and, second, the effect of possible systematic errors in satellite positioning (e.g. due to multipath and/or incorrect recovery of differential carrier-phase ambiguities) is mitigated. First, we present a typical mapping project over an agricultural field and second, we perform a corridor road mapping. We evaluate the proposed methods in scenarios with and without automated image observations. We investigate a recently proposed concept where adjustment is performed using image observations limited to ground control and check points, so called fast aerial triangulation (Fast AT). In this context we show that accurate aerial control (absolute or relative) together with a few image observations can deliver accurate results comparable to classical aerial triangulation with thousands of image measurements. This procedure in turns reduces the demands on processing time and the requirements on the existence of surface texture. Finally, we compare the above mentioned procedures with direct sensor

  19. Reflectometric measurement of plasma imaging and applications

    NASA Astrophysics Data System (ADS)

    Mase, A.; Ito, N.; Oda, M.; Komada, Y.; Nagae, D.; Zhang, D.; Kogi, Y.; Tobimatsu, S.; Maruyama, T.; Shimazu, H.; Sakata, E.; Sakai, F.; Kuwahara, D.; Yoshinaga, T.; Tokuzawa, T.; Nagayama, Y.; Kawahata, K.; Yamaguchi, S.; Tsuji-Iio, S.; Domier, C. W.; Luhmann, N. C., Jr.; Park, H. K.; Yun, G.; Lee, W.; Padhi, S.; Kim, K. W.

    2012-01-01

    Progress in microwave and millimeter-wave technologies has made possible advanced diagnostics for application to various fields, such as, plasma diagnostics, radio astronomy, alien substance detection, airborne and spaceborne imaging radars called as synthetic aperture radars, living body measurements. Transmission, reflection, scattering, and radiation processes of electromagnetic waves are utilized as diagnostic tools. In this report we focus on the reflectometric measurements and applications to biological signals (vital signal detection and breast cancer detection) as well as plasma diagnostics, specifically by use of imaging technique and ultra-wideband radar technique.

  20. Measuring glomerular number from kidney MRI images

    NASA Astrophysics Data System (ADS)

    Thiagarajan, Jayaraman J.; Natesan Ramamurthy, Karthikeyan; Kanberoglu, Berkay; Frakes, David; Bennett, Kevin; Spanias, Andreas

    2016-03-01

    Measuring the glomerular number in the entire, intact kidney using non-destructive techniques is of immense importance in studying several renal and systemic diseases. Commonly used approaches either require destruction of the entire kidney or perform extrapolation from measurements obtained from a few isolated sections. A recent magnetic resonance imaging (MRI) method, based on the injection of a contrast agent (cationic ferritin), has been used to effectively identify glomerular regions in the kidney. In this work, we propose a robust, accurate, and low-complexity method for estimating the number of glomeruli from such kidney MRI images. The proposed technique has a training phase and a low-complexity testing phase. In the training phase, organ segmentation is performed on a few expert-marked training images, and glomerular and non-glomerular image patches are extracted. Using non-local sparse coding to compute similarity and dissimilarity graphs between the patches, the subspace in which the glomerular regions can be discriminated from the rest are estimated. For novel test images, the image patches extracted after pre-processing are embedded using the discriminative subspace projections. The testing phase is of low computational complexity since it involves only matrix multiplications, clustering, and simple morphological operations. Preliminary results with MRI data obtained from five kidneys of rats show that the proposed non-invasive, low-complexity approach performs comparably to conventional approaches such as acid maceration and stereology.

  1. Refined measurement of digital image texture loss

    NASA Astrophysics Data System (ADS)

    Burns, Peter D.

    2013-01-01

    Image texture is the term given to the information-bearing fluctuations such as those for skin, grass and fabrics. Since image processing aimed at reducing unwanted fluctuations (noise are other artifacts) can also remove important texture, good product design requires a balance between the two. The texture-loss MTF method, currently under international standards development, is aimed at the evaluation of digital and mobile-telephone cameras for capture of image texture. The method uses image fields of pseudo-random objects, such as overlapping disks, often referred to as `dead-leaves' targets. The analysis of these target images is based on noise-power spectrum (NPS) measurements, which are subject to estimation error. We describe a simple method for compensation of non-stationary image statistics, aimed at improving practical NPS estimates. A benign two-dimensional linear function (plane) is fit to the data and subtracted. This method was implemented and results were compared with those without compensation. The adapted analysis method resulted in reduced NPS and MTF measurement variation (20%) and low-frequency bias error. This is a particular advantage at low spatial frequencies, where texture-MTF scaling is performed. We conclude that simple trend removal should be used.

  2. Identification of disrupted surfaces due to military activity at the Ft. Irwin National Training Center: An aerial photograph and satellite image analysis

    SciTech Connect

    McCarthy, L.E.; Marsh, S.E.; Lee, C.

    1996-07-01

    Concern for environmental management of our natural resources is most often focused on the anthropogenic impacts placed upon these resources. Desert landscapes, in particular, are fragile environments, and minimal stresses on surficial materials can greatly increase the rate and character of erosional responses. The National Training Center, Ft. Irwin, located in the middle of the Mojave Desert, California, provides an isolated study area of intense ORV activity occurring over a 50-year period. Geomorphic surfaces, and surficial disruption from two study sites within the Ft. Irwin area were mapped from 1947, 1:28,400, and 1993 1:12,000 black and white aerial photographs. Several field checks were conducted to verify this mapping. However, mapping from black and white aerial photography relies heavily on tonal differences, patterns, and morphological criteria. Satellite imagery, sensitive to changes in mineralogy, can help improve the ability to distinguish geomorphic units in desert regions. In order to assess both the extent of disrupted surfaces and the surficial geomorphology discemable from satellite imagery, analysis was done on SPOT panchromatic and Landsat Thematic Mapper (TM) multispectral imagery acquired during the spring of 1987 and 1993. The resulting classified images provide a clear indication of the capabilities of the satellite data to aid in the delineation of disrupted geomorphic surfaces.

  3. Automatic Lumbar Spondylolisthesis Measurement in CT Images.

    PubMed

    Liao, Shu; Zhan, Yiqiang; Dong, Zhongxing; Yan, Ruyi; Gong, Liyan; Zhou, Xiang Sean; Salganicoff, Marcos; Fei, Jun

    2016-07-01

    Lumbar spondylolisthesis is one of the most common spinal diseases. It is caused by the anterior shift of a lumbar vertebrae relative to subjacent vertebrae. In current clinical practices, staging of spondylolisthesis is often conducted in a qualitative way. Although meyerding grading opens the door to stage spondylolisthesis in a more quantitative way, it relies on the manual measurement, which is time consuming and irreproducible. Thus, an automatic measurement algorithm becomes desirable for spondylolisthesis diagnosis and staging. However, there are two challenges. 1) Accurate detection of the most anterior and posterior points on the superior and inferior surfaces of each lumbar vertebrae. Due to the small size of the vertebrae, slight errors of detection may lead to significant measurement errors, hence, wrong disease stages. 2) Automatic localize and label each lumbar vertebrae is required to provide the semantic meaning of the measurement. It is difficult since different lumbar vertebraes have high similarity of both shape and image appearance. To resolve these challenges, a new auto measurement framework is proposed with two major contributions: First, a learning based spine labeling method that integrates both the image appearance and spine geometry information is designed to detect lumbar vertebrae. Second, a hierarchical method using both the population information from atlases and domain-specific information in the target image is proposed for most anterior and posterior points positioning. Validated on 258 CT spondylolisthesis patients, our method shows very similar results to manual measurements by radiologists and significantly increases the measurement efficiency.

  4. Diffusion measurements by microscopic NMR imaging

    NASA Astrophysics Data System (ADS)

    Meyer, Ronald A.; Brown, Truman R.

    Proton NMR images of the brains of living mice with voxel sizes as small as 80 × 80 × 500 μm were acquired at 9.3 T by the 2D FT spin-echo method. Using gradients of 3.75 G/cm, images with pixel dimensions below 50 μm were of low sensitivity because of degradation of the echo due to diffusion and flow. In the absence of bulk flow, this decrease in image intensity as image pixel size is decreased can be used to measure the local self-diffusion coefficient of water ( DH 2O ) in small samples. By this method, DH 2O at 22°C was estimated to be 2.59, 2.13, 1.59, and 0.84 × 10 -5 cm 2/s in pure water, 10% gelatin, mouse skeletal muscle, and rat liver, respectively.

  5. Measuring toothbrush interproximal penetration using image analysis

    NASA Astrophysics Data System (ADS)

    Hayworth, Mark S.; Lyons, Elizabeth K.

    1994-09-01

    An image analysis method of measuring the effectiveness of a toothbrush in reaching the interproximal spaces of teeth is described. Artificial teeth are coated with a stain that approximates real plaque and then brushed with a toothbrush on a brushing machine. The teeth are then removed and turned sideways so that the interproximal surfaces can be imaged. The areas of stain that have been removed within masked regions that define the interproximal regions are measured and reported. These areas correspond to the interproximal areas of the tooth reached by the toothbrush bristles. The image analysis method produces more precise results (10-fold decrease in standard deviation) in a fraction (22%) of the time as compared to our prior visual grading method.

  6. Physical measures of image quality in mammography

    NASA Astrophysics Data System (ADS)

    Chakraborty, Dev P.

    1996-04-01

    A recently introduced method for quantitative analysis of images of the American College of Radiology (ACR) mammography accreditation phantom has been extended to include signal- to-noise-ratio (SNR) measurements, and has been applied to survey the image quality of 54 mammography machines from 17 hospitals. Participants sent us phantom images to be evaluated for each mammography machine at their hospital. Each phantom was loaned to us for obtaining images of the wax insert plate on a reference machine at our institution. The images were digitized and analyzed to yield indices that quantified the image quality of the machines precisely. We have developed methods for normalizing for the variation of the individual speck sizes between different ACR phantoms, for the variation of the speck sizes within a microcalcification group, and for variations in overall speeds of the mammography systems. In terms of the microcalcification SNR, the variability of the x-ray machines was 40.5% when no allowance was made for phantom or mAs variations. This dropped to 17.1% when phantom variability was accounted for, and to 12.7% when mAs variability was also allowed for. Our work shows the feasibility of practical, low-cost, objective and accurate evaluations, as a useful adjunct to the present ACR method.

  7. The Kilauea 1974 Flow: Quantitative Morphometry of Lava Flows using Low Altitude Aerial Image Data using a Kite-based Platform in the Field

    NASA Astrophysics Data System (ADS)

    Scheidt, S. P.; Whelley, P.; Hamilton, C.; Bleacher, J. E.; Garry, W. B.

    2015-12-01

    The December 31, 1974 lava flow from Kilauea Caldera, Hawaii within the Hawaii Volcanoes National Park was selected for field campaigns as a terrestrial analog for Mars in support of NASA Planetary Geology and Geophysics (PGG) research and the Remote, In Situ and Synchrotron Studies for Science and Exploration (RIS4E) node of the Solar System Exploration Research Virtual Institute (SSERVI) program). The lava flow was a rapidly emplaced unit that was strongly influenced by existing topography, which favored the formation of a tributary lava flow system. The unit includes a diverse range of surface textures (e.g., pāhoehoe, ´áā, and transitional lavas), and structural features (e.g., streamlined islands, pits, and interactions with older tumuli). However, these features are generally below the threshold of visibility within previously acquired airborne and spacecraft data. In this study, we have generated unique, high-resolution digital images using low-altitude Kite Aerial Photography (KAP) system during field campaigns in 2014 and 2015 (National Park Service permit #HAVO-2012-SCI-0025). The kite-based mapping platform (nadir-viewing) and a radio-controlled gimbal (allowing pointing) provided similar data as from an unmanned aerial vehicle (UAV), but with longer flight time, larger total data volumes per sortie, and fewer regulatory challenges and cost. Images acquired from KAP and UAVs are used to create orthomosaics and DEMs using Multi-View Stereo-Photogrammetry (MVSP) software. The 3-Dimensional point clouds are extremely dense, resulting in a grid resolution of < 2 cm. Airborne Light Detection and Ranging (LiDAR) / Terrestrial Laser Scanning (TLS) data have been collected for these areas and provide a basis of comparison or "ground truth" for the photogrammetric data. Our results show a good comparison with LiDAR/TLS data, each offering their own unique advantages and potential for data fusion.

  8. An Automated Approach to Agricultural Tile Drain Detection and Extraction Utilizing High Resolution Aerial Imagery and Object-Based Image Analysis

    NASA Astrophysics Data System (ADS)

    Johansen, Richard A.

    Subsurface drainage from agricultural fields in the Maumee River watershed is suspected to adversely impact the water quality and contribute to the formation of harmful algal blooms (HABs) in Lake Erie. In early August of 2014, a HAB developed in the western Lake Erie Basin that resulted in over 400,000 people being unable to drink their tap water due to the presence of a toxin from the bloom. HAB development in Lake Erie is aided by excess nutrients from agricultural fields, which are transported through subsurface tile and enter the watershed. Compounding the issue within the Maumee watershed, the trend within the watershed has been to increase the installation of tile drains in both total extent and density. Due to the immense area of drained fields, there is a need to establish an accurate and effective technique to monitor subsurface farmland tile installations and their associated impacts. This thesis aimed at developing an automated method in order to identify subsurface tile locations from high resolution aerial imagery by applying an object-based image analysis (OBIA) approach utilizing eCognition. This process was accomplished through a set of algorithms and image filters, which segment and classify image objects by their spectral and geometric characteristics. The algorithms utilized were based on the relative location of image objects and pixels, in order to maximize the robustness and transferability of the final rule-set. These algorithms were coupled with convolution and histogram image filters to generate results for a 10km2 study area located within Clay Township in Ottawa County, Ohio. The eCognition results were compared to previously collected tile locations from an associated project that applied heads-up digitizing of aerial photography to map field tile. The heads-up digitized locations were used as a baseline for the accuracy assessment. The accuracy assessment generated a range of agreement values from 67.20% - 71.20%, and an average

  9. High resolution image measurements of nuclear tracks

    NASA Technical Reports Server (NTRS)

    Shirk, E. K.; Price, P. B.

    1980-01-01

    The striking clarity and high contrast of the mouths of tracks etched in CR-39 plastic detectors allow automatic measurement of track parameters to be made with simple image-recognition equipment. Using a commercially available Vidicon camera system with a microprocessor-controlled digitizer, resolution for normally incident C-12 and N-14 ions at 32 MeV/amu equivalent to a 14sigma separation of adjacent charges was demonstrated.

  10. Radio Plasma Imager Simulations and Measurements

    NASA Technical Reports Server (NTRS)

    Green, J. L.; Benson, R. F.; Fung, S. F.; Taylor, W. W. L.; Boardsen, S. A.; Reinisch, B. W.; Haines, D. M.; Bibl, K.; Cheney, G.; Galkin, I. A.

    1999-01-01

    The Radio Plasma Imager (RPI) will be the first-of-its kind instrument designed to use radio wave sounding techniques to perform repetitive remote sensing measurements of electron number density (N(sub e)) structures and the dynamics of the magnetosphere and plasmasphere. RPI will fly on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) mission to be launched early in the year 2000. The design of the RPI is based on recent advances in radio transmitter and receiver design and modern digital processing techniques perfected for ground-based ionospheric sounding over the last two decades. Free-space electromagnetic waves transmitted by the RPI located in the low density magnetospheric cavity will be reflected at distant plasma cutoffs. The location and characteristics of the plasma at those remote reflection points can then be derived from measurements of the echo amplitude, phase, delay time, frequency, polarization, Doppler shift, and echo direction. The 500 m tip-to-tip X and Y (spin plane) antennas and 20 m boom Z axis antenna on RPI will be used to measures echoes coming from distances of several R(sub E).

  11. Image analysis for measuring rod network properties

    NASA Astrophysics Data System (ADS)

    Kim, Dongjae; Choi, Jungkyu; Nam, Jaewook

    2015-12-01

    In recent years, metallic nanowires have been attracting significant attention as next-generation flexible transparent conductive films. The performance of films depends on the network structure created by nanowires. Gaining an understanding of their structure, such as connectivity, coverage, and alignment of nanowires, requires the knowledge of individual nanowires inside the microscopic images taken from the film. Although nanowires are flexible up to a certain extent, they are usually depicted as rigid rods in many analysis and computational studies. Herein, we propose a simple and straightforward algorithm based on the filtering in the frequency domain for detecting the rod-shape objects inside binary images. The proposed algorithm uses a specially designed filter in the frequency domain to detect image segments, namely, the connected components aligned in a certain direction. Those components are post-processed to be combined under a given merging rule in a single rod object. In this study, the microscopic properties of the rod networks relevant to the analysis of nanowire networks were measured for investigating the opto-electric performance of transparent conductive films and their alignment distribution, length distribution, and area fraction. To verify and find the optimum parameters for the proposed algorithm, numerical experiments were performed on synthetic images with predefined properties. By selecting proper parameters, the algorithm was used to investigate silver nanowire transparent conductive films fabricated by the dip coating method.

  12. Measuring techniques in induced polarisation imaging

    NASA Astrophysics Data System (ADS)

    Dahlin, Torleif; Leroux, Virginie; Nissen, Johan

    2002-06-01

    Multi-electrode geoelectrical imaging has become very popular and is used for many different purposes. For some of these, the inclusion of IP data would be desirable as it would allow the interpreter to distinguish between, e.g. sand formations with saltwater infiltration and clay formations or help delineate landfills. However, present-day IP measuring techniques require the use of nonpolarisable potential electrodes and special wire layout and are thus cumbersome and expensive. In this paper, we suggest making IP measurements with multi-electrode cables and just one set of steel electrodes. The polarisation potentials on the potential electrodes are corrected for by subtracting the polarisation potential measured when no primary current and no IP signal are present. Test measurements indicate that the polarisation potentials vary slowly and that the correction procedure is feasible. At two sites in southern Sweden, we have compared measurements with only stainless steel electrodes and measurements with both stainless steel and Pb-PbCl nonpolarisable electrodes using one or two sets of multicore cables, respectively. Almost no difference between the two data sets was observed. At one site, the charge-up effect on the potential electrodes was not important, while at the other site, the correction procedure was crucial. Though only two sites have been studied so far, it seems that time-domain IP imaging measurements can be taken with only steel electrodes and ordinary multicore cables. Coupling in the multicore cables has not presented any problems at the investigated sites where grounding resistances were moderate, making the coupling effect small. High grounding resistance sites have not yet been investigated.

  13. Aerial Vehicle Surveys of Other Planetary Atmospheres and Surfaces: Imaging, Remote-Sensing, and Autonomy Technology Requirements

    DTIC Science & Technology

    2005-01-01

    hillsides possibly created by water. Sensitive (scanning laser ) altimeter to map terrain. Imaging comparison against known classifier forms at...create overlay maps of different spectral images in parallel. Laser and/or Radar altimeter Can image downward, forward, and off axis. Sensitive to...terrain following autopilot was then designed that closed the loop on an auxiliary sensor, ( laser altimeter), since terrain altitude is an indirect

  14. Measuring Structural Parameters Through Stacking Galaxy Images

    NASA Astrophysics Data System (ADS)

    Li, Yubin; Zheng, Xian Zhong; Gu, Qiu-Sheng; Wang, Yi-Peng; Wen, Zhang Zheng; Guo, Kexin; An, Fang Xia

    2016-12-01

    It remains challenging to detect the low surface brightness structures of faint high-z galaxies, which are key to understanding the structural evolution of galaxies. The technique of image stacking allows us to measure the averaged light profile beneath the detection limit and probe the extended structure of a group of galaxies. We carry out simulations to examine the recovery of the averaged surface brightness profile through stacking model Hubble Space Telescope/Advanced Camera for Surveys images of a set of galaxies as functions of the Sérsic index (n), effective radius (R e) and axis ratio (AR). The Sérsic profile best fitting the radial profile of the stacked image is taken as the recovered profile, in comparison with the intrinsic mean profile of the model galaxies. Our results show that, in general, the structural parameters of the mean profile can be properly determined through stacking, though systematic biases need to be corrected when spreads of R e and AR are counted. We find that the Sérsic index is slightly overestimated and R e is underestimated at {AR}\\lt 0.5 because the stacked image appears to be more compact due to the presence of inclined galaxies; the spread of R e biases the stacked profile to have a higher Sérsic index. We stress that the measurements of structural parameters through stacking should take these biases into account. We estimate the biases in the recovered structural parameters from stacks of galaxies when the samples have distributions of {R}{{e}}, AR and n seen in local galaxies.

  15. Image Algebra Application to Image Measurement and Feature Extraction

    NASA Astrophysics Data System (ADS)

    Ritter, Gerhard X.; Wilson, Joseph N.; Davidson, Jennifer L.

    1989-03-01

    It has been well established that the AFATL (Air Force Armament Technical Laboratory) Image Algebra is capable of expressing all image-to-image transformations [1,2] and that it is ideally suited for parallel image transformations {3,4]. In this paper we show how the algebra can also be applied to compactly express image-to-feature transforms including such sequential image-to-feature transforms as chain coding.

  16. Exploration towards the modeling of gable-roofed buildings using a combination of aerial and street-level imagery

    NASA Astrophysics Data System (ADS)

    Creusen, Ivo; Hazelhoff, Lykele; de With, Peter H. N.

    2015-03-01

    Extraction of residential building properties is helpful for numerous applications, such as computer-guided feasibility analysis for solar panel placement, determination of real-estate taxes and assessment of real-estate insurance policies. Therefore, this work explores the automated modeling of buildings with a gable roof (the most common roof type within Western Europe), based on a combination of aerial imagery and street-level panoramic images. This is a challenging task, since buildings show large variations in shape, dimensions and building extensions, and may additionally be captured under non-ideal lighting conditions. The aerial images feature a coarse overview of the building due to the large capturing distance. The building footprint and an initial estimate of the building height is extracted based on the analysis of stereo aerial images. The estimated model is then refined using street-level images, which feature higher resolution and enable more accurate measurements, however, displaying a single building side only. Initial experiments indicate that the footprint dimensions of the main building can be accurately extracted from aerial images, while the building height is extracted with slightly less accuracy. By combining aerial and street-level images, we have found that the accuracies of these height measurements are significantly increased, thereby improving the overall quality of the extracted building model, and resulting in an average inaccuracy of the estimated volume below 10%.

  17. Training set size, scale, and features in Geographic Object-Based Image Analysis of very high resolution unmanned aerial vehicle imagery

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Cheng, Liang; Li, Manchun; Liu, Yongxue; Ma, Xiaoxue

    2015-04-01

    Unmanned Aerial Vehicle (UAV) has been used increasingly for natural resource applications in recent years due to their greater availability and the miniaturization of sensors. In addition, Geographic Object-Based Image Analysis (GEOBIA) has received more attention as a novel paradigm for remote sensing earth observation data. However, GEOBIA generates some new problems compared with pixel-based methods. In this study, we developed a strategy for the semi-automatic optimization of object-based classification, which involves an area-based accuracy assessment that analyzes the relationship between scale and the training set size. We found that the Overall Accuracy (OA) increased as the training set ratio (proportion of the segmented objects used for training) increased when the Segmentation Scale Parameter (SSP) was fixed. The OA increased more slowly as the training set ratio became larger and a similar rule was obtained according to the pixel-based image analysis. The OA decreased as the SSP increased when the training set ratio was fixed. Consequently, the SSP should not be too large during classification using a small training set ratio. By contrast, a large training set ratio is required if classification is performed using a high SSP. In addition, we suggest that the optimal SSP for each class has a high positive correlation with the mean area obtained by manual interpretation, which can be summarized by a linear correlation equation. We expect that these results will be applicable to UAV imagery classification to determine the optimal SSP for each class.

  18. Land cover mapping using aerial and VHR satellite images for distributed hydrological modelling of periurban catchments: Application to the Yzeron catchment (Lyon, France)

    NASA Astrophysics Data System (ADS)

    Jacqueminet, C.; Kermadi, S.; Michel, K.; Béal, D.; Gagnage, M.; Branger, F.; Jankowfsky, S.; Braud, I.

    2013-04-01

    SummaryThe rapid progression of urbanization in periurban areas affects the hydrological cycle of periurban rivers. To quantify these changes, distributed hydrological modelling tools able to simulate the hydrology of periurban catchments are being developed. Land cover information is one of the data sources used to define the model mesh and parameters. The land cover in periurban catchments is characterized by a very large heterogeneity, where the vegetated and the artificial surfaces are finely overlapping. The study is conducted in the Yzeron catchment (150 km2), close to the city of Lyon, France. We explore the potential of very high-resolution (VHR) optical images (0.50-2.50 m) for retrieving information useful for those distributed hydrological models at two scales. For detailed object-oriented models, applicable to catchments of a few km2, where hydrological units are based on the cadastral units, manual digitizing based on the 0.5 m resolution image, was found to be the most accurate to provide the required information. For larger catchments of about 100 km2, three semi-automated mapping procedures (pixel based and object-oriented classifications), applied to aerial images (BD-Ortho®IGN), and two satellite images (Quickbird and Spot 5) were compared. We showed that each image/processing provided some interesting and accurate information about some of the land cover classes. We proposed to combine them into a synthesis map, taking profit of the strength of each image/processing in identifying the land cover classes and their physical properties. This synthesis map was shown to be more accurate than each map separately. We illustrate the interest of the derived maps in terms of distributed hydrological modelling. The maps were used to propose a classification of the Yzeron sub-catchments in terms of dominant vegetation cover and imperviousness. We showed that according to the image processing and images characteristics, the calculated imperviousness rates

  19. Online phase measuring profilometry for rectilinear moving object by image correction

    NASA Astrophysics Data System (ADS)

    Yuan, Han; Cao, Yi-Ping; Chen, Chen; Wang, Ya-Pin

    2015-11-01

    In phase measuring profilometry (PMP), the object must be static for point-to-point reconstruction with the captured deformed patterns. While the object is rectilinearly moving online, the size and pixel position differences of the object in different captured deformed patterns do not meet the point-to-point requirement. We propose an online PMP based on image correction to measure the three-dimensional shape of the rectilinear moving object. In the proposed method, the deformed patterns captured by a charge-coupled diode camera are reprojected from the oblique view to an aerial view first and then translated based on the feature points of the object. This method makes the object appear stationary in the deformed patterns. Experimental results show the feasibility and efficiency of the proposed method.

  20. Quantitative extraction of bedrock exposed rate based on unmanned aerial vehicle data and TM image in Karst Environment

    NASA Astrophysics Data System (ADS)

    wang, hongyan; li, qiangzi; du, xin; zhao, longcai

    2016-04-01

    In the karst regions of Southwest China, rocky desertification is one of the most serious problems of land degradation. The bedrock exposed rate is one of the important indexes to assess the degree of rocky desertification in the karst regions. Because of the inherent merits of macro scale, frequency, efficiency and synthesis, remote sensing is the promising method to monitor and assess karst rocky desertification on large scale. However, the actual measurement of bedrock exposed rate is difficult and existing remote sensing methods cannot directly be exploited to extract the bedrock exposed rate owing to the high complexity and heterogeneity of karst environments. Therefore, based on the UAV and TM data, the paper selected Xingren County as the research area, and the quantitative extraction of the bedrock exposed rate based on the multi scale remote sensing data was developed. Firstly, we used the object oriented method to carry out the accurate classification of UAV image and based on the results of rock extraction, the bedrock exposed rate was calculated in the 30m grid scale. Parts of the calculated samples were as training data and another samples were as the model validation data. Secondly, in each grid the band reflectivity of TM data was extracted and we also calculated a variety of rock index and vegetation index (NDVI, SAVI etc.). Finally, the network model was established to extract the bedrock exposed rate, the correlation coefficient (R) of the network model was 0.855 and the correlation coefficient (R) of the validation model was 0.677, the root mean square error (RMSE) was 0.073. Based on the quantitative inversion model, the distribution map of the bedrock exposed rate in Xingren County was obtained. Keywords: Bedrock exposed rate, quantitative extraction, UAV and TM data, Karst rocky desertification.

  1. Mass and heat flux balance of La Soufrière volcano (Guadeloupe) from aerial infrared thermal imaging

    NASA Astrophysics Data System (ADS)

    Gaudin, Damien; Beauducel, François; Coutant, Olivier; Delacourt, Christophe; Richon, Patrick; de Chabalier, Jean-Bernard; Hammouya, Gilbert

    2016-06-01

    La Soufrière of Guadeloupe is an active volcano of Lesser Antilles that is closely monitored due to a high eruptive hazard potential. Since 1992 it exhibits a medium-level but sustained background hydrothermal activity with low-energy and shallow seismicity, hot springs temperature increase and high flux acidic gas fumaroles at the summit. The problem of estimating the heat balance and quantifying the evolution of hydrothermal activity has become a key challenge for surveillance. This work is the first attempt of a global mapping and quantification of La Soufrière thermal activity performed in February 2010 using aerial thermal infrared imagery. After instrument calibration and data processing, we present a global map of thermal anomalies allowing to spot the main active sites: the summit area (including the fumaroles of Tarissan Pit and South Crater), the Ty Fault fumarolic zone, and the hot springs located at the vicinity of the dome. In a second step, we deduce the mass and the energy fluxes released by the volcano. In particular, we propose a simple model of energy balance to estimate the mass flux of the summit fumaroles from their brightness temperature and size. In February 2010, Tarissan Pit had a 22.8 ± 8.1 kg s -1 flux (1970 ± 704 tons day -1), while South Crater vents had a total of 19.5 ± 4.0 kg s -1 (1687 ± 348 tons day -1). Once converted into energy flux, summit fumaroles represent 98% of the 106 ± 30 MW released by the volcano, the 2% remaining being split between the hot springs and the thermal anomalies at the summit and at the Ty Fault fumarolic zone. These values are in the high range of the previous estimations, highlighting the short-term variability of the expelled fluxes. Such a heat flux requires the cooling of 1500 m 3 of magma per day, in good agreement with previous geochemical studies.

  2. Locating buildings in aerial photos

    NASA Technical Reports Server (NTRS)

    Green, James S.

    1994-01-01

    Algorithms and techniques for use in the identification and location of large buildings in digitized copies of aerial photographs are developed and tested. The building data would be used in the simulation of objects located in the vicinity of an airport that may be detected by aircraft radar. Two distinct approaches are considered. Most building footprints are rectangular in form. The first approach studied is to search for right-angled corners that characterize rectangular objects and then to connect these corners to complete the building. This problem is difficult because many nonbuilding objects, such as street corners, parking lots, and ballparks often have well defined corners which are often difficult to distinguish from rooftops. Furthermore, rooftops come in a number of shapes, sizes, shadings, and textures which also limit the discrimination task. The strategy used linear sequences of different samples to detect straight edge segments at multiple angles and to determine when these segments meet at approximately right-angles with respect to each other. This technique is effective in locating corners. The test image used has a fairly rectangular block pattern oriented about thirty degrees clockwise from a vertical alignment, and the overall measurement data reflect this. However, this technique does not discriminate between buildings and other objects at an operationally suitable rate. In addition, since multiple paths are tested for each image pixel, this is a time consuming task. The process can be speeded up by preprocessing the image to locate the more optimal sampling paths. The second approach is to rely on a human operator to identify and select the building objects and then to have the computer determine the outline and location of the selected structures. When presented with a copy of a digitized aerial photograph, the operator uses a mouse and cursor to select a target building. After a button on the mouse is pressed, with the cursor fully within

  3. Measuring the Environment through Digital Images

    NASA Astrophysics Data System (ADS)

    Pickle, J.; Schloss, A. L.

    2009-12-01

    A network of sites for citizen scientists to take a consistent time sequence of digital photographs of the landscape and an Internet site (http://picturepost.unh.edu/) that efficiently stores and distributes the digital images creates a low-cost and sustainable resource for scientific environmental monitoring and formal and informal science education. Digital photographs taken from the same location and positioned in the same direction and orientation allow scientists to monitor a variety of environmental parameters, including plant health, growth, and phenology; erosion and deposition; water levels; and cloud and canopy cover. The PicturePost platform is simply an octagon placed in the center of a flat surface and secured to a post anchored in the ground or onto a building. The edges of the octagon allow positioning of the camera so the complete landscape may be photographed in less than a minute. A NASA-funded project, Digital Earth Watch (aka Measuring Vegetation Health, (http://mvh.sr.unh.edu) provides educational activities and background materials that help people learn about plants as environmental “green canaries” and about the basics of cameras and digital images. The website also provides free software to analyze digital images. Although this project has been in development for four years, it is only beginning to find partners in which the data support multiple efforts. A large part of this integration is a result of recent NASA funding, which has allowed a new website to be developed to archive and display the images. The developing collaborations and the development of the new website at the same time enhanced both efforts. Because the website could include tools/features that appealed to the collaborating groups, all participants contributed ideas facing fewer restrictions. PicturePost made from recycled plastic lumber.

  4. Oblique Aerial Photography Tool for Building Inspection and Damage Assessment

    NASA Astrophysics Data System (ADS)

    Murtiyoso, A.; Remondino, F.; Rupnik, E.; Nex, F.; Grussenmeyer, P.

    2014-11-01

    Aerial photography has a long history of being employed for mapping purposes due to some of its main advantages, including large area imaging from above and minimization of field work. Since few years multi-camera aerial systems are becoming a practical sensor technology across a growing geospatial market, as complementary to the traditional vertical views. Multi-camera aerial systems capture not only the conventional nadir views, but also tilted images at the same time. In this paper, a particular use of such imagery in the field of building inspection as well as disaster assessment is addressed. The main idea is to inspect a building from four cardinal directions by using monoplotting functionalities. The developed application allows to measure building height and distances and to digitize man-made structures, creating 3D surfaces and building models. The realized GUI is capable of identifying a building from several oblique points of views, as well as calculates the approximate height of buildings, ground distances and basic vectorization. The geometric accuracy of the results remains a function of several parameters, namely image resolution, quality of available parameters (DEM, calibration and orientation values), user expertise and measuring capability.

  5. Measuring earthquakes from optical satellite images.

    PubMed

    Van Puymbroeck, N; Michel, R; Binet, R; Avouac, J P; Taboury, J

    2000-07-10

    Système pour l'Observation de la Terre images are used to map ground displacements induced by earthquakes. Deformations (offsets) induced by stereoscopic effect and roll, pitch, and yaw of satellite and detector artifacts are estimated and compensated. Images are then resampled in a cartographic projection with a low-bias interpolator. A subpixel correlator in the Fourier domain provides two-dimensional offset maps with independent measurements approximately every 160 m. Biases on offsets are compensated from calibration. High-frequency noise (0.125 m(-1)) is approximately 0.01 pixels. Low-frequency noise (lower than 0.001 m(-1)) exceeds 0.2 pixels and is partially compensated from modeling. Applied to the Landers earthquake, measurements show the fault with an accuracy of a few tens of meters and yields displacement on the fault with an accuracy of better than 20 cm. Comparison with a model derived from geodetic data shows that offsets bring new insights into the faulting process.

  6. Ultrasound image velocimetry for rheological measurements

    NASA Astrophysics Data System (ADS)

    Gurung, A.; Haverkort, J. W.; Drost, S.; Norder, B.; Westerweel, J.; Poelma, C.

    2016-09-01

    Ultrasound image velocimetry (UIV) allows for the non-intrusive measurement of a wide range of flows without the need for optical transparency. In this study, we used UIV to measure the local velocity field of a model drilling fluid that exhibits yield stress flow behavior. The radial velocity profile was used to determine the yield stress and the Herschel-Bulkley model flow index n and the consistency index k. Reference data were obtained using the conventional offline Couette rheometry. A comparison showed reasonable agreement between the two methods. The discrepancy in model parameters could be attributed to inherent differences between the methods, which cannot be captured by the three-parameter model used. Overall, with a whole flow field measurement technique such as UIV, we were able to quantify the complex rheology of a model drilling fluid. These preliminary results show that UIV can be used as a non-intrusive diagnostic for in situ, real-time measurement of complex opaque flow rheology.

  7. Classification of Urban Feature from Unmanned Aerial Vehicle Images Using Gasvm Integration and Multi-Scale Segmentation

    NASA Astrophysics Data System (ADS)

    Modiri, M.; Salehabadi, A.; Mohebbi, M.; Hashemi, A. M.; Masumi, M.

    2015-12-01

    The use of UAV in the application of photogrammetry to obtain cover images and achieve the main objectives of the photogrammetric mapping has been a boom in the region. The images taken from REGGIOLO region in the province of, Italy Reggio -Emilia by UAV with non-metric camera Canon Ixus and with an average height of 139.42 meters were used to classify urban feature. Using the software provided SURE and cover images of the study area, to produce dense point cloud, DSM and Artvqvtv spatial resolution of 10 cm was prepared. DTM area using Adaptive TIN filtering algorithm was developed. NDSM area was prepared with using the difference between DSM and DTM and a separate features in the image stack. In order to extract features, using simultaneous occurrence matrix features mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment, and correlation for each of the RGB band image was used Orthophoto area. Classes used to classify urban problems, including buildings, trees and tall vegetation, grass and vegetation short, paved road and is impervious surfaces. Class consists of impervious surfaces such as pavement conditions, the cement, the car, the roof is stored. In order to pixel-based classification and selection of optimal features of classification was GASVM pixel basis. In order to achieve the classification results with higher accuracy and spectral composition informations, texture, and shape conceptual image featureOrthophoto area was fencing. The segmentation of multi-scale segmentation method was used.it belonged class. Search results using the proposed classification of urban feature, suggests the suitability of this method of classification complications UAV is a city using images. The overall accuracy and kappa coefficient method proposed in this study, respectively, 47/93% and 84/91% was.

  8. Collection and Analysis of Crowd Data with Aerial, Rooftop, and Ground Views

    DTIC Science & Technology

    2014-11-10

    and cost, as well as a brief description of the projects on which they were used. We have purchased aerial platforms, imaging systems, and flight...have purchased aerial platforms, imaging systems, and flight control systems and used them different projects that will be discussed in the following...servos Aerial Platform Long flight-time aerial paltform for imaging applications UavFactory Ltd $15,885.00 80W Onboard Generator upgrade Power

  9. Aerial radiation surveys

    SciTech Connect

    Jobst, J.

    1980-01-01

    A recent aerial radiation survey of the surroundings of the Vitro mill in Salt Lake City shows that uranium mill tailings have been removed to many locations outside their original boundary. To date, 52 remote sites have been discovered within a 100 square kilometer aerial survey perimeter surrounding the mill; 9 of these were discovered with the recent aerial survey map. Five additional sites, also discovered by aerial survey, contained uranium ore, milling equipment, or radioactive slag. Because of the success of this survey, plans are being made to extend the aerial survey program to other parts of the Salt Lake valley where diversions of Vitro tailings are also known to exist.

  10. Control of a Quadcopter Aerial Robot Using Optic Flow Sensing

    NASA Astrophysics Data System (ADS)

    Hurd, Michael Brandon

    This thesis focuses on the motion control of a custom-built quadcopter aerial robot using optic flow sensing. Optic flow sensing is a vision-based approach that can provide a robot the ability to fly in global positioning system (GPS) denied environments, such as indoor environments. In this work, optic flow sensors are used to stabilize the motion of quadcopter robot, where an optic flow algorithm is applied to provide odometry measurements to the quadcopter's central processing unit to monitor the flight heading. The optic-flow sensor and algorithm are capable of gathering and processing the images at 250 frames/sec, and the sensor package weighs 2.5 g and has a footprint of 6 cm2 in area. The odometry value from the optic flow sensor is then used a feedback information in a simple proportional-integral-derivative (PID) controller on the quadcopter. Experimental results are presented to demonstrate the effectiveness of using optic flow for controlling the motion of the quadcopter aerial robot. The technique presented herein can be applied to different types of aerial robotic systems or unmanned aerial vehicles (UAVs), as well as unmanned ground vehicles (UGV).

  11. Errors Associated With Measurements from Imaging Probes

    NASA Astrophysics Data System (ADS)

    Heymsfield, A.; Bansemer, A.

    2015-12-01

    Imaging probes, collecting data on particles from about 20 or 50 microns to several centimeters, are the probes that have been collecting data on the droplet and ice microphysics for more than 40 years. During that period, a number of problems associated with the measurements have been identified, including questions about the depth of field of particles within the probes' sample volume, and ice shattering, among others, have been identified. Many different software packages have been developed to process and interpret the data, leading to differences in the particle size distributions and estimates of the extinction, ice water content and radar reflectivity obtained from the same data. Given the numerous complications associated with imaging probe data, we have developed an optical array probe simulation package to explore the errors that can be expected with actual data. We simulate full particle size distributions with known properties, and then process the data with the same software that is used to process real-life data. We show that there are significant errors in the retrieved particle size distributions as well as derived parameters such as liquid/ice water content and total number concentration. Furthermore, the nature of these errors change as a function of the shape of the simulated size distribution and the physical and electronic characteristics of the instrument. We will introduce some methods to improve the retrieval of particle size distributions from real-life data.

  12. National Uranium Resource Evaluation. General procedure for calibration and reduction of aerial gamma-ray measurements: specification BFEC 1250-B

    SciTech Connect

    Purvance, D.; Novak, E.

    1983-12-01

    The information contained in this specification was acquired over the course of the US Department of Energy (DOE) National Uranium Resource Evaluation (NURE) program during the period 1974 through 1982. NURE was a program of the DOE Grand Junction Area Office to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States. Bendix Field Engineering Corporation (BFEC) has been the operating contractor for the DOE Grand Junction facility. The requirements stipulated herein had been incorporated as contractual specifications for the various subcontractors engaged in the aerial gamma-ray surveys, which were a major aspect of the NURE program. Although this phase of NURE activities has been completed, there exists valuable knowledge gained from these years of experience in the calibration of gamma-ray spectrometer systems and in the reduction of calibration data. Specification BFEC 1250-B is being open-filed by the US Department of Energy at this time to make this knowledge available to those desiring to apply gamma-ray spectrometry to other geophysical problems.

  13. Ultrasonic measurement models for imaging with phased arrays

    NASA Astrophysics Data System (ADS)

    Schmerr, Lester W., Jr.; Engle, Brady J.; Sedov, Alexander; Li, Xiongbing

    2014-02-01

    Ultrasonic imaging measurement models (IMMs) are developed that generate images of flaws by inversion of ultrasonic measurement models. These IMMs are generalizations of the synthetic aperture focusing technique (SAFT) and the total focusing method (TFM). A special case when the flaw is small is shown to generalize physical optics far field inverse scattering (POFFIS) images. The ultrasonic IMMs provide a rational basis for generating and understanding the ultrasonic images produced by delay-and-sum imaging methods.

  14. Toward autonomous avian-inspired grasping for micro aerial vehicles.

    PubMed

    Thomas, Justin; Loianno, Giuseppe; Polin, Joseph; Sreenath, Koushil; Kumar, Vijay

    2014-06-01

    Micro aerial vehicles, particularly quadrotors, have been used in a wide range of applications. However, the literature on aerial manipulation and grasping is limited and the work is based on quasi-static models. In this paper, we draw inspiration from agile, fast-moving birds such as raptors, that are able to capture moving prey on the ground or in water, and develop similar capabilities for quadrotors. We address dynamic grasping, an approach to prehensile grasping in which the dynamics of the robot and its gripper are significant and must be explicitly modeled and controlled for successful execution. Dynamic grasping is relevant for fast pick-and-place operations, transportation and delivery of objects, and placing or retrieving sensors. We show how this capability can be realized (a) using a motion capture system and (b) without external sensors relying only on onboard sensors. In both cases we describe the dynamic model, and trajectory planning and control algorithms. In particular, we present a methodology for flying and grasping a cylindrical object using feedback from a monocular camera and an inertial measurement unit onboard the aerial robot. This is accomplished by mapping the dynamics of the quadrotor to a level virtual image plane, which in turn enables dynamically-feasible trajectory planning for image features in the image space, and a vision-based controller with guaranteed convergence properties. We also present experimental results obtained with a quadrotor equipped with an articulated gripper to illustrate both approaches.

  15. A new method of ICCD imaging system MRC measurement

    NASA Astrophysics Data System (ADS)

    Li, Sheng-cai; Jin, Wei-qi; Wang, Xia; Zhang, Wei-qiang; Dong, Hai-yan

    2005-02-01

    Based on analysis of the working principle of ICCD imaging system, the paper develops a new testing system for synthetic performance of ICCD imaging system. With the help of this testing system for integrative performance and the theory of Weibull psychometric function, a new method for MRC measurement of Space Light Modulation (SLM) is proposed, and the paper firstly implements measurement for minimum resolvable contrast performance of ICCD imaging system. The method provides reference for MRC performance measurement of other imaging system.

  16. Comparisons between high-resolution profiles of squared refractive index gradient M2 measured by the Middle and Upper Atmosphere Radar and unmanned aerial vehicles (UAVs) during the Shigaraki UAV-Radar Experiment 2015 campaign

    NASA Astrophysics Data System (ADS)

    Luce, Hubert; Kantha, Lakshmi; Hashiguchi, Hiroyuki; Lawrence, Dale; Yabuki, Masanori; Tsuda, Toshitaka; Mixa, Tyler

    2017-03-01

    New comparisons between the square of the generalized potential refractive index gradient M2, estimated from the very high-frequency (VHF) Middle and Upper Atmosphere (MU) Radar, located at Shigaraki, Japan, and unmanned aerial vehicle (UAV) measurements are presented. These comparisons were performed at unprecedented temporal and range resolutions (1-4 min and ˜ 20 m, respectively) in the altitude range ˜ 1.27-4.5 km from simultaneous and nearly collocated measurements made during the ShUREX (Shigaraki UAV-Radar Experiment) 2015 campaign. Seven consecutive UAV flights made during daytime on 7 June 2015 were used for this purpose. The MU Radar was operated in range imaging mode for improving the range resolution at vertical incidence (typically a few tens of meters). The proportionality of the radar echo power to M2 is reported for the first time at such high time and range resolutions for stratified conditions for which Fresnel scatter or a reflection mechanism is expected. In more complex features obtained for a range of turbulent layers generated by shear instabilities or associated with convective cloud cells, M2 estimated from UAV data does not reproduce observed radar echo power profiles. Proposed interpretations of this discrepancy are presented.

  17. Automatic 3D Building Model Generation by Integrating LiDAR and Aerial Images Using a Hybrid Approach

    NASA Astrophysics Data System (ADS)

    Kwak, Eunju

    The development of sensor technologies and the increase in user requirements have resulted in many different approaches for efficient building model generation. Three-dimensional building models are important in various applications, such as disaster management and urban planning. Despite this importance, generation of these models lacks economical and reliable techniques which take advantage of the available multi-sensory data from single and multiple platforms. Therefore, this research develops a framework for fully-automated building model generation by integrating data-driven and model-driven methods as well as exploiting the advantages of images and LiDAR datasets. The building model generation starts by employing LiDAR data for building detection and approximate boundary determination. The generated building boundaries are then integrated into a model-based image processing strategy, because LiDAR derived planes show irregular boundaries due to the nature of LiDAR point acquisition. The focus of the research is generating models for the buildings with right-angled-corners, which can be described with a collection of rectangles (e.g., L-shape, T-shape, U-shape, gable roofs, and more complex building shapes which are combinations of the aforementioned shapes), under the assumption that the majority of the buildings in urban areas belong to this category. Therefore, by applying the Minimum Bounding Rectangle (MBR) algorithm recursively, the LiDAR boundaries are decomposed into sets of rectangles for further processing. At the same time the quality of the MBRs are examined to verify that the buildings, from which the boundaries are generated, are buildings with right-angled-corners. These rectangles are preliminary model primitives. The parameters that define the model primitives are adjusted using detected edges in the imagery through the least-squares adjustment procedure, i.e., model-based image fitting. The level of detail in the final Digital Building Model

  18. Information Theoretic Similarity Measures for Content Based Image Retrieval.

    ERIC Educational Resources Information Center

    Zachary, John; Iyengar, S. S.

    2001-01-01

    Content-based image retrieval is based on the idea of extracting visual features from images and using them to index images in a database. Proposes similarity measures and an indexing algorithm based on information theory that permits an image to be represented as a single number. When used in conjunction with vectors, this method displays…

  19. Sfm_georef: Automating image measurement of ground control points for SfM-based projects

    NASA Astrophysics Data System (ADS)

    James, Mike R.

    2016-04-01

    Deriving accurate DEM and orthomosaic image products from UAV surveys generally involves the use of multiple ground control points (GCPs). Here, we demonstrate the automated collection of GCP image measurements for SfM-MVS processed projects, using sfm_georef software (James & Robson, 2012; http://www.lancaster.ac.uk/staff/jamesm/software/sfm_georef.htm). Sfm_georef was originally written to provide geo-referencing procedures for SfM-MVS projects. It has now been upgraded with a 3-D patch-based matching routine suitable for automating GCP image measurement in both aerial and ground-based (oblique) projects, with the aim of reducing the time required for accurate geo-referencing. Sfm_georef is compatible with a range of SfM-MVS software and imports the relevant files that describe the image network, including camera models and tie points. 3-D survey measurements of ground control are then provided, either for natural features or artificial targets distributed over the project area. Automated GCP image measurement is manually initiated through identifying a GCP position in an image by mouse click; the GCP is then represented by a square planar patch in 3-D, textured from the image and oriented parallel to the local topographic surface (as defined by the 3-D positions of nearby tie points). Other images are then automatically examined by projecting the patch into the images (to account for differences in viewing geometry) and carrying out a sub-pixel normalised cross-correlation search in the local area. With two or more observations of a GCP, its 3-D co-ordinates are then derived by ray intersection. With the 3-D positions of three or more GCPs identified, an initial geo-referencing transform can be derived to relate the SfM-MVS co-ordinate system to that of the GCPs. Then, if GCPs are symmetric and identical, image texture from one representative GCP can be used to search automatically for all others throughout the image set. Finally, the GCP observations can be

  20. Converting aerial imagery to application maps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the last couple of years in Agricultural Aviation and at the 2014 and 2015 NAAA conventions, we have written about and presented both single-camera and two-camera imaging systems for use on agricultural aircraft. Many aerial applicators have shown a great deal of interest in the imaging systems...

  1. Quantitative measurement of holographic image quality using Adobe Photoshop

    NASA Astrophysics Data System (ADS)

    Wesly, E.

    2013-02-01

    Measurement of the characteristics of image holograms in regards to diffraction efficiency and signal to noise ratio are demonstrated, using readily available digital cameras and image editing software. Illustrations and case studies, using currently available holographic recording materials, are presented.

  2. Fusing complementary images for pavement cracking measurements

    NASA Astrophysics Data System (ADS)

    Yao, Ming; Zhao, Zuyun; Yao, Xun; Xu, Bugao

    2015-02-01

    Cracking is a major pavement distress that jeopardizes road serviceability and traffic safety. Automated pavement distress survey (APDS) systems have been developed using digital imaging technology to replace human surveys for more timely and accurate inspections. Most APDS systems require special lighting devices to illuminate pavements and prevent shadows of roadside objects that distort cracks in the image. Most artificial lighting devices are laser based, and are either hazardous to unprotected people or require dedicated power supplies on the vehicle. This study was aimed to develop a new imaging system that can scan pavement surface at highway speed and determine the level of severity of pavement cracking without using any artificial lighting. The new system consists of dual line-scan cameras that are installed side by side to scan the same pavement area as the vehicle moves. Cameras are controlled with different exposure settings so that both sunlit and shadowed areas can be visible in two separate images. The paired images contain complementary details useful for reconstructing an image in which the shadows are eliminated. This paper intends to present (1) the design of the dual line-scan camera system, (2) a new calibration method for line-scan cameras to rectify and register paired images, (3) a customized image-fusion algorithm that merges the multi-exposure images into one shadow-free image for crack detection, and (4) the results of the field tests on a selected road over a long period.

  3. Structural Imaging Measures of Brain Aging

    PubMed Central

    Lockhart, Samuel N.

    2014-01-01

    During the course of normal aging, biological changes occur in the brain that are associated with changes in cognitive ability. This review presents data from neuroimaging studies of primarily “normal” or healthy brain aging. As such, we focus on research in unimpaired or nondemented older adults, but also include findings from lifespan studies that include younger and middle aged individuals as well as from populations with prodromal or clinically symptomatic disease such as cerebrovascular or Alzheimer’s disease. This review predominantly addresses structural MRI biomarkers, such as volumetric or thickness measures from anatomical images, and measures of white matter injury and integrity respectively from FLAIR or DTI, and includes complementary data from PET and cognitive or clinical testing as appropriate. The findings reveal highly consistent age-related differences in brain structure, particularly frontal lobe and medial temporal regions that are also accompanied by age-related differences in frontal and medial temporal lobe mediated cognitive abilities. Newer findings also suggest that degeneration of specific white matter tracts such as those passing through the genu and splenium of the corpus callosum may also be related to age-related differences in cognitive performance. Interpretation of these findings, however, must be tempered by the fact that comorbid diseases such as cerebrovascular and Alzheimer’s disease also increase in prevalence with advancing age. As such, this review discusses challenges related to interpretation of current theories of cognitive aging in light of the common occurrence of these later-life diseases. Understanding the differences between “Normal” and “Healthy” brain aging and identifying potential modifiable risk factors for brain aging is critical to inform potential treatments to stall or reverse the effects of brain aging and possibly extend cognitive health for our aging society. PMID:25146995

  4. Measurement & Imaging for the Reconnection Scaling Experiment

    NASA Astrophysics Data System (ADS)

    Swan, H.; Sears, J.; Feng, Y.; Intrator, T.

    2013-10-01

    The Reconnection Scaling Experiment (RSX) is a fundamental investigation of the detailed behavior and interactions of plasma flux ropes, both within the framework of MHD and on electron inertial length scales (mm). Effectively determining the dynamics of flux ropes requires precisely located, 3D measurements of a wide array of parameters: density and temperature (pressure), ion velocity, current density (electron fluid flow), and magnetic fields. To achieve this, RSX employs a large suite of diagnostic probes, which are inserted directly into the plasma in various locations and orientations, as well as external cameras and other optical tools. We describe several useful experimental diagnostic developments. These include a homebrew recipe for fabricating Mach probes, with directionality that is easy to implement at construction time, and a straightforward but powerful 3D imaging technique that allows precision location of probes within the experiment, using no more sophisticated hardware than standard webcams. We discuss the challenges of reconstructing plasma dynamics from the myriad data channels involved, and how the new diagnostics help solve these challenges.

  5. Aerial audiograms of several California sea lions (Zalophus californianus) and Steller sea lions (Eumetopias jubatus) measured using single and multiple simultaneous auditory steady-state response methods.

    PubMed

    Mulsow, Jason; Reichmuth, Colleen; Gulland, Frances; Rosen, David A S; Finneran, James J

    2011-04-01

    Measurements of the electrophysiological auditory steady-state response (ASSR) have proven to be efficient for evaluating hearing sensitivity in odontocete cetaceans. In an effort to expand these methods to pinnipeds, ASSRs elicited by single and multiple simultaneous tones were used to measure aerial hearing thresholds in several California sea lions (Zalophus californianus) and Steller sea lions (Eumetopias jubatus). There were no significant differences between thresholds measured using the single and multiple ASSR methods, despite the more rapid nature of data collection using the multiple ASSR method. There was a high degree of variability in ASSR thresholds among subjects; thresholds covered a range of ∼40 dB at each tested frequency. As expected, ASSR thresholds were elevated relative to previously reported psychophysical thresholds for California and Steller sea lions. The features of high-frequency hearing limit and relative sensitivity of most ASSR audiograms were, however, similar to those of psychophysical audiograms, suggesting that ASSR methods can be used to improve understanding of hearing demographics in sea lions, especially with respect to high-frequency hearing. Thresholds for one Steller sea lion were substantially elevated relative to all other subjects, demonstrating that ASSR methods can be used to detect hearing loss in sea lions.

  6. Looking for an old aerial photograph

    USGS Publications Warehouse

    ,

    1997-01-01

    Attempts to photograph the surface of the Earth date from the 1800's, when photographers attached cameras to balloons, kites, and even pigeons. Today, aerial photographs and satellite images are commonplace. The rate of acquiring aerial photographs and satellite images has increased rapidly in recent years. Views of the Earth obtained from aircraft or satellites have become valuable tools to Government resource planners and managers, land-use experts, environmentalists, engineers, scientists, and a wide variety of other users. Many people want historical aerial photographs for business or personal reasons. They may want to locate the boundaries of an old farm or a piece of family property. Or they may want a photograph as a record of changes in their neighborhood, or as a gift. The U.S. Geological Survey (USGS) maintains the Earth Science Information Centers (ESIC?s) to sell aerial photographs, remotely sensed images from satellites, a wide array of digital geographic and cartographic data, as well as the Bureau?s wellknown maps. Declassified photographs from early spy satellites were recently added to the ESIC offerings of historical images. Using the Aerial Photography Summary Record System database, ESIC researchers can help customers find imagery in the collections of other Federal agencies and, in some cases, those of private companies that specialize in esoteric products.

  7. Uncertainty Quantification for Quantitative Imaging Holdup Measurements

    SciTech Connect

    Bevill, Aaron M; Bledsoe, Keith C

    2016-01-01

    In nuclear fuel cycle safeguards, special nuclear material "held up" in pipes, ducts, and glove boxes causes significant uncertainty in material-unaccounted-for estimates. Quantitative imaging is a proposed non-destructive assay technique with potential to estimate the holdup mass more accurately and reliably than current techniques. However, uncertainty analysis for quantitative imaging remains a significant challenge. In this work we demonstrate an analysis approach for data acquired with a fast-neutron coded aperture imager. The work includes a calibrated forward model of the imager. Cross-validation indicates that the forward model predicts the imager data typically within 23%; further improvements are forthcoming. A new algorithm based on the chi-squared goodness-of-fit metric then uses the forward model to calculate a holdup confidence interval. The new algorithm removes geometry approximations that previous methods require, making it a more reliable uncertainty estimator.

  8. On digital image processing technology and application in geometric measure

    NASA Astrophysics Data System (ADS)

    Yuan, Jiugen; Xing, Ruonan; Liao, Na

    2014-04-01

    Digital image processing technique is an emerging science that emerging with the development of semiconductor integrated circuit technology and computer science technology since the 1960s.The article introduces the digital image processing technique and principle during measuring compared with the traditional optical measurement method. It takes geometric measure as an example and introduced the development tendency of digital image processing technology from the perspective of technology application.

  9. Quantifying the Accuracy of a Quad-Rotor Unmanned Aerial Vehicle as a Platform for Atmospheric Pressure, Temperature and Humidity Measurements near the Surface.

    NASA Astrophysics Data System (ADS)

    Guest, P. S.

    2014-12-01

    Miniature multi-rotor unmanned aerial vehicles (UAVs) can be used to directly sample the lower atmosphere over land and over the ocean in the vicinity of ships or shorelines. These UAVs are generally inexpensive and easy to operate. The author used the InstantEye quad-rotor UAV, manufactured by Physical Sciences Inc., as a test platform for meteorological measurements. In this case, the atmospheric sensor was the RS-92 radiosonde manufactured by Vaisala Inc. The author will present quantitative results of several experiments performed over land at Camp Roberts, California in which the InstantEye with radiosonde sensors was flown alongside a calibrated meteorological tower, thus allowing the accuracy of the UAV measurements to be quantified. Measurements near the surface were most strongly affected by turbulent fluctuations during sunny, low wind days over a dry surface. The rotor wash (1) provides sensor aeration which counteracts radiation contamination effects (2) creates a dynamic pressure effect in lowest 1.5 m and (3) moves air from a different level (1 - 2 m). Horizontal motion of the UAV had little effect on the measurements. The accuracy of the mean temperature measurements in the surface layer during unstable conditions was estimated to be 0.2 to 0.3 C, if samples are taken for at least one minute, except in the lowest 1.5 m above the surface, where rotor wash effects brought hot surface air to the sensors, degrading the accuracy. Above the turbulent surface layer, the temperature measurements approached a 0.1 C accuracy.

  10. Identifying Areas of Potential Wetland Hydrology in Irrigated Croplands Using Aerial Image Interpretation and Analysis of Rainfall Normality

    DTIC Science & Technology

    2016-06-01

    4.19 5.36 Wet 3 2 6 Normal = 10-14 most recent Mar 1.60 3.90 2.28 Normal 2 3 6 Wet = 15-18 Month examined Apr Total 15 WET...Score Result 3rd Feb 1.33 4.19 5.36 Wet 3 1 3 Dry = 6-9 2nd Mar 1.60 3.90 2.28 Normal 2 2 4 Normal = 10-14 most recent Apr 0.52 1.54 0.89 Normal...percentile Measured Rainfall Condition Condition Value Month Weight Score Result 3rd Mar 1.60 3.90 2.28 Normal 2 1 2 Dry = 6-9 2nd Apr 0.52

  11. Geometrical measures of the similarity of gray-scale images

    NASA Astrophysics Data System (ADS)

    Starovoitov, Valery V.

    1995-08-01

    There are papers describing measures of correspondence or similarity between two binary images or their parts, but only two papers suggest a measure for a comparison of objects of two grey-scale images. However, there are numerous applications of a measure for grey-scale images as whole entities. A useful application is the comparison of different algorithms devoted to the same task (edge detection, thresholding, image enhancement, segmentation and image reconstruction). This paper proposes some results to define such a measure. They are based on two different representations of grey-scale images: as `surfaces' and as `stacks' or umbra. We study an adaptation of some known formulas used for binary images to grey-scale images, and present a geometrical variant of such a measurement. We study different measures of diversity, based on different digital metrics, direct calculations of distances, and digital functions adapted to grey-scale images. We show that the `stack' representation needs more calculation time and that measures based on the representation are not sensitive to small image shifts, but very sensitive to noise.

  12. DESICCATION INDEX: A MEASURE OF DAMAGE CAUSED BY ADVERSE AERIAL EXPOSURE ON INTERTIDAL EELGRASS (ZOSTERA MARINA) IN AN OREGON (USA) ESTUARY

    EPA Science Inventory

    Eelgrass (Zostera marina) blade necrosis resulting from intertidal aerial exposure is describe. A desiccation index was developed to quantitatively assess this damage. This index was then used to evaluate the extent of desiccation damage across intertidal bathymetric slopes (st...

  13. Image measurement technique on vibration amplitude of ultrasonic horn

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-bin; Wu, Zhi-qun; Zhu, Jian-ping; He, Jian-guo; Liu, Guang-min

    2013-10-01

    The paper proposes a method to measure vibration amplitude of ultrasonic horn which is a very important component in the spindle for micro-electrical-chemical discharging machining. The method of image measuring amplitude on high frequency vibration is introduced. Non-contact measurement system based on vision technology is constructed. High precision location algorithm on image centroid, quadratic location algorithm, is presented to find the center of little light spot. Measurement experiments have been done to show the effect of image measurement technique on vibration amplitude of ultrasonic horn. In the experiments, precise calibration of the vision system is implemented using a normal graticule to obtain the scale factor between image pixel and real distance. The vibration amplitude of ultrasonic horn is changed by modifying the voltage amplitude of pulse power supply. The image of feature on ultrasonic horn is captured and image processing is carried out. The vibration amplitudes are got at different voltages.

  14. Use of passive UAS imaging to measure biophysical parameters in a southern Rocky Mountain subalpine forest

    NASA Astrophysics Data System (ADS)

    Caldwell, M. K.; Sloan, J.; Mladinich, C. S.; Wessman, C. A.

    2013-12-01

    Unmanned Aerial Systems (UAS) can provide detailed, fine spatial resolution imagery for ecological uses not otherwise obtainable through standard methods. The use of UAS imagery for ecology is a rapidly -evolving field, where the study of forest landscape ecology can be augmented using UAS imagery to scale and validate biophysical data from field measurements to spaceborne observations. High resolution imagery provided by UAS (30 cm2 pixels) offers detailed canopy cover and forest structure data in a time efficient and inexpensive manner. Using a GoPro Hero2 (2 mm focal length) camera mounted in the nose cone of a Raven unmanned system, we collected aerial and thermal data monthly during the summer 2013, over two subalpine forests in the Southern Rocky Mountains in Colorado. These forests are dominated by lodgepole pine (Pinus ponderosae) and have experienced insect-driven (primarily mountain pine beetle; MPB, Dendroctonus ponderosae) mortality. Objectives of this study include observations of forest health variables such as canopy water content (CWC) from thermal imagery and leaf area index (LAI), biomass and forest productivity from the Normalized Difference Vegetation Index (NDVI) from UAS imagery. Observations were, validated with ground measurements. Images were processed using a combination of AgiSoft Photoscan professional software and ENVI remote imaging software. We utilized the software Leaf Area Index Calculator (LAIC) developed by Córcoles et al. (2013) for calculating LAI from digital images and modified to conform to leaf area of needle-leaf trees as in Chen and Cihlar (1996) . LAIC uses a K-means cluster analysis to decipher the RGB levels for each pixel and distinguish between green aboveground vegetation and other materials, and project leaf area per unit of ground surface area (i.e. half total needle surface area per unit area). Preliminary LAIC UAS data shows summer average LAI was 3.8 in the most dense forest stands and 2.95 in less dense

  15. Analysis of aerial multispectral imagery to assess water quality parameters of Mississippi water bodies

    NASA Astrophysics Data System (ADS)

    Irvin, Shane Adison

    The goal of this study was to demonstrate the application of aerial imagery as a tool in detecting water quality indicators in a three mile segment of Tibbee Creek in, Clay County, Mississippi. Water samples from 10 transects were collected per sampling date over two periods in 2010 and 2011. Temperature and dissolved oxygen (DO) were measured at each point, and water samples were tested for turbidity and total suspended solids (TSS). Relative reflectance was extracted from high resolution (0.5 meter) multispectral aerial images. A regression model was developed for turbidity and TSS as a function of values for specific sampling dates. The best model was used to predict turbidity and TSS using datasets outside the original model date. The development of an appropriate predictive model for water quality assessment based on the relative reflectance of aerial imagery is affected by the quality of imagery and time of sampling.

  16. Multiscale assessment of green leaf area in a semi-arid rangeland with a small unmanned aerial vehicle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spatial variability in green leaf cover of a western rangeland was studied by comparing field measurements on 50 m crossed transects to aerial and satellite imagery. The normalized difference vegetation index was calculated for multiple 2 cm resolution images collected over the field transects with ...

  17. Monitoring and Assuring the Quality of Digital Aerial Data

    NASA Technical Reports Server (NTRS)

    Christopherson, Jon

    2007-01-01

    This viewgraph presentation explains the USGS plan for monitoring and assuring the quality of digital aerial data. The contents include: 1) History of USGS Aerial Imaging Involvement; 2) USGS Research and Results; 3) Outline of USGS Quality Assurance Plan; 4) Other areas of Interest; and 5) Summary

  18. Kite Aerial Photography (KAP) as a Tool for Field Teaching

    ERIC Educational Resources Information Center

    Sander, Lasse

    2014-01-01

    Kite aerial photography (KAP) is proposed as a creative tool for geography field teaching and as a medium to approach the complexity of readily available geodata. The method can be integrated as field experiment, surveying technique or group activity. The acquired aerial images can instantaneously be integrated in geographic information systems…

  19. Robust Aerial Object Tracking in High Dynamic Flight Maneuvers

    NASA Astrophysics Data System (ADS)

    Nussberger, A.; Grabner, H.; van Gool, L.

    2015-08-01

    Integrating drones into the civil airspace is one of the biggest challenges for civil aviation, responsible authorities and involved com- panies around the world in the upcoming years. For a full integration into non-segregated airspace such a system has to provide the capability to automatically detect and avoid other airspace users. Electro-optical cameras have proven to be an adequate sensor to detect all types of aerial objects, especially for smaller ones such as gliders or paragliders. Robust detection and tracking of approaching traffic on a potential collision course is the key component for a successful avoidance maneuver. In this paper we focus on the aerial object tracking during dynamic flight maneuvers of the own-ship where accurate attitude information corresponding to the camera images is essential. Because the 'detect and avoid' functionality typically extends existing autopilot systems the received attitude measurements have unknown delays and dynamics. We present an efficient method to calculate the angular rates from a multi camera rig which we fuse with the delayed attitude measurements. This allows for estimating accurate absolute attitude angles for every camera frame. The proposed method is further integrated into an aerial object tracking framework. A detailed evaluation of the pipeline on real collision encounter scenarios shows that the multi camera rig based attitude estimation enables the correct tracking of approaching traffic during dynamic flight, at which the tracking framework previously failed.

  20. Aerial robotic data acquisition system

    SciTech Connect

    Hofstetter, K.J.; Hayes, D.W.; Pendergast, M.M.; Corban, J.E.

    1993-12-31

    A small, unmanned aerial vehicle (UAV), equipped with sensors for physical and chemical measurements of remote environments, is described. A miniature helicopter airframe is used as a platform for sensor testing and development. The sensor output is integrated with the flight control system for real-time, interactive, data acquisition and analysis. Pre-programmed flight missions will be flown with several sensors to demonstrate the cost-effective surveillance capabilities of this new technology.

  1. Method for measuring anterior chamber volume by image analysis

    NASA Astrophysics Data System (ADS)

    Zhai, Gaoshou; Zhang, Junhong; Wang, Ruichang; Wang, Bingsong; Wang, Ningli

    2007-12-01

    Anterior chamber volume (ACV) is very important for an oculist to make rational pathological diagnosis as to patients who have some optic diseases such as glaucoma and etc., yet it is always difficult to be measured accurately. In this paper, a method is devised to measure anterior chamber volumes based on JPEG-formatted image files that have been transformed from medical images using the anterior-chamber optical coherence tomographer (AC-OCT) and corresponding image-processing software. The corresponding algorithms for image analysis and ACV calculation are implemented in VC++ and a series of anterior chamber images of typical patients are analyzed, while anterior chamber volumes are calculated and are verified that they are in accord with clinical observation. It shows that the measurement method is effective and feasible and it has potential to improve accuracy of ACV calculation. Meanwhile, some measures should be taken to simplify the handcraft preprocess working as to images.

  2. Near infrared-red models for the remote estimation of chlorophyll- a concentration in optically complex turbid productive waters: From in situ measurements to aerial imagery

    NASA Astrophysics Data System (ADS)

    Gurlin, Daniela

    Today the water quality of many inland and coastal waters is compromised by cultural eutrophication in consequence of increased human agricultural and industrial activities and remote sensing is widely applied to monitor the trophic state of these waters. This study explores near infrared-red models for the remote estimation of chlorophyll-a concentration in turbid productive waters and compares several near infrared-red models developed within the last 35 years. Three of these near infrared-red models were calibrated for a dataset with chlorophyll-a concentrations from 2.3 to 81.2 mg m -3 and validated for independent and statistically significantly different datasets with chlorophyll-a concentrations from 4.0 to 95.5 mg m-3 and 4.0 to 24.2 mg m-3 for the spectral bands of the MEdium Resolution Imaging Spectrometer (MERIS) and Moderate-resolution Imaging Spectroradiometer (MODIS). The developed MERIS two-band algorithm estimated chlorophyll-a concentrations from 4.0 to 24.2 mg m-3, which are typical for many inland and coastal waters, very accurately with a mean absolute error 1.2 mg m-3. These results indicate a high potential of the simple MERIS two-band algorithm for the reliable estimation of chlorophyll-a concentration without any reduction in accuracy compared to more complex algorithms, even though more research seems required to analyze the sensitivity of this algorithm to differences in the chlorophyll-a specific absorption coefficient of phytoplankton. Three near infrared-red models were calibrated and validated for a smaller dataset of atmospherically corrected multi-temporal aerial imagery collected by the hyperspectral airborne imaging spectrometer for applications (AisaEAGLE). The developed algorithms successfully captured the spatial and temporal variability of the chlorophyll-a concentrations and estimated chlorophyll- a concentrations from 2.3 to 81.2 mg m-3 with mean absolute errors from 4.4 mg m-3 for the AISA two band algorithm to 5.2 mg m-3

  3. Distance measurement based on pixel variation of CCD images.

    PubMed

    Hsu, Chen-Chien; Lu, Ming-Chih; Wang, Wei-Yen; Lu, Yin-Yu

    2009-10-01

    This paper presents a distance measurement method based on pixel number variation of CCD images by referencing to two arbitrarily designated points in the image frames. By establishing a relationship between the displacement of the camera movement along the photographing direction and the difference in pixel count between reference points in the images, the distance from an object can be calculated via the proposed method. To integrate the measuring functions into digital cameras, a circuit design implementing the proposed measuring system in selecting reference points, measuring distance, and displaying measurement results on CCD panel of the digital camera is proposed in this paper. In comparison to pattern recognition or image analysis methods, the proposed measuring approach is simple and straightforward for practical implementation into digital cameras. To validate the performance of the proposed method, measurement results using the proposed method and ultrasonic rangefinders are also presented in this paper.

  4. Ultrasound, normal fetus - head measurements (image)

    MedlinePlus

    ... Many health care providers like to have fetal measurements to verify the size of the fetus and ... any abnormalities. This ultrasound is of a head measurement, indicated by the cross hairs and dotted lines.

  5. Ultrasound, normal fetus - abdomen measurements (image)

    MedlinePlus

    ... Many health care providers like to have fetal measurements to verify the size of the fetus and ... any abnormalities. This ultrasound is of an abdominal measurement. It shows a cross-section of the abdomen, ...

  6. A new technique for the detection of large scale landslides in glacio-lacustrine deposits using image correlation based upon aerial imagery: A case study from the French Alps

    NASA Astrophysics Data System (ADS)

    Fernandez, Paz; Whitworth, Malcolm

    2016-10-01

    Landslide monitoring has benefited from recent advances in the use of image correlation of high resolution optical imagery. However, this approach has typically involved satellite imagery that may not be available for all landslides depending on their time of movement and location. This study has investigated the application of image correlation techniques applied to a sequence of aerial imagery to an active landslide in the French Alps. We apply an indirect landslide monitoring technique (COSI-Corr) based upon the cross-correlation between aerial photographs, to obtain horizontal displacement rates. Results for the 2001-2003 time interval are presented, providing a spatial model of landslide activity and motion across the landslide, which is consistent with previous studies. The study has identified areas of new landslide activity in addition to known areas and through image decorrelation has identified and mapped two new lateral landslides within the main landslide complex. This new approach for landslide monitoring is likely to be of wide applicability to other areas characterised by complex ground displacements.

  7. Measurement and infrared image prediction of a heated exhaust flow

    NASA Astrophysics Data System (ADS)

    Nelson, Edward L.; Mahan, J. Robert; Turk, Jeffrey A.; Birckelbaw, Larry D.; Wardwell, Douglas A.; Hange, Craig E.

    1994-06-01

    The focus of the current research is to numerically predict an infrared image of a jet engine exhaust plume, given field variables such as temperature, pressure, and exhaust plume constituents as a function of spatial position within the plume, and to compare this predicted image directly with measured data. This work is motivated by the need to validate CFD codes through infrared imaging. The technique of reducing the 3D field-variable domain to a 2D infrared image invokes the use of an inverse Monte-Carlo ray trace algorithm and an infrared band model for exhaust gases. This paper describes an experiment in which the above- mentioned field variables were carefully measured. Data from this experiment in the form of velocity plots are shown. The inverse Monte-Carlo ray trace technique is described. Finally, an experimentally obtained infrared image is directly compared to an infrared image predicted from the measured field variables.

  8. Field power measurements of imaging equipment

    SciTech Connect

    McWhinney, Marla; Homan, Gregory; Brown, Richard; Roberson, Judy; Nordman, Bruce; Busch, John

    2004-05-14

    According to the U.S. Department of Energy, electricity use by non-PC commercial office equipment is growing at an annual rate of nearly 5 percent (AEO 2003). To help address this growth in consumption, U.S. EPA periodically updates its ENERGY STAR specifications as products and markets change. This report presents background research conducted to help EPA update the ENERGY STAR specification for imaging equipment, which covers printers, fax machines, copiers, scanners, and multifunction devices (MFDs). We first estimated the market impact of the current ENERGY STAR imaging specification, finding over 90 percent of the current market complies with the specification. We then analyzed a sample of typical new imaging products, including 11 faxes, 57 printers and 19 copiers/MFD. For these devices we metered power levels in the most common modes: active/ready/sleep/off, and recorded features that would most likely affect energy consumption. Our metering indicates that for many products and speed bins, current models consume substantially less power than the current specification. We also found that for all product categories, power consumption varied most considerably across technology (i.e. inkjet vs. laser). Although inkjet printers consumed less energy than laser printers in active, ready and sleep-mode, they consumed more power on average while off, mostly due to the use of external power supplies. Based on these findings, we developed strategies for the ENERGY STAR program to achieve additional energy reductions. Finally, we present an assessment of manufacturer's ENERGY STAR labeling practices.

  9. Superresolution border segmentation and measurement in remote sensing images

    NASA Astrophysics Data System (ADS)

    Cipolletti, Marina P.; Delrieux, Claudio A.; Perillo, Gerardo M. E.; Cintia Piccolo, M.

    2012-03-01

    Segmentation and measurement of linear characteristics in remote sensing imagery are among the first stages in several geomorphologic studies, including the length estimation of geographic features such as perimeters, coastal lines, and borders. However, unlike area measurement algorithms, widely used methods for perimeter estimation in digital images have high systematic errors. No precision improvement can be achieved with finer spatial resolution images because of the inherent geometrical inaccuracies they commit. In this work, a superresolution border segmentation and measurement algorithm is presented. The method is based on minimum distance segmentation over the initial image, followed by contour tracking using a superresolution enhancement of the marching squares algorithm. Thorough testing with synthetic and validated field images shows that this algorithm outperforms traditional border measuring methods, regardless of the image resolution or the orientation, size, and shape of the object to be analyzed.

  10. Screw thread parameter measurement system based on image processing method

    NASA Astrophysics Data System (ADS)

    Rao, Zhimin; Huang, Kanggao; Mao, Jiandong; Zhang, Yaya; Zhang, Fan

    2013-08-01

    In the industrial production, as an important transmission part, the screw thread is applied extensively in many automation equipments. The traditional measurement methods of screw thread parameter, including integrated test methods of multiparameters and the single parameter measurement method, belong to contact measurement method. In practical the contact measurement exists some disadvantages, such as relatively high time cost, introducing easily human error and causing thread damage. In this paper, as a new kind of real-time and non-contact measurement method, a screw thread parameter measurement system based on image processing method is developed to accurately measure the outside diameter, inside diameter, pitch diameter, pitch, thread height and other parameters of screw thread. In the system the industrial camera is employed to acquire the image of screw thread, some image processing methods are used to obtain the image profile of screw thread and a mathematics model is established to compute the parameters. The C++Builder 6.0 is employed as the software development platform to realize the image process and computation of screw thread parameters. For verifying the feasibility of the measurement system, some experiments were carried out and the measurement errors were analyzed. The experiment results show the image measurement system satisfies the measurement requirements and suitable for real-time detection of screw thread parameters mentioned above. Comparing with the traditional methods the system based on image processing method has some advantages, such as, non-contact, easy operation, high measuring accuracy, no work piece damage, fast error analysis and so on. In the industrial production, this measurement system can provide an important reference value for development of similar parameter measurement system.

  11. Digital image quality measurements by objective and subjective methods from series of parametrically degraded images

    NASA Astrophysics Data System (ADS)

    Tachó, Aura; Mitjà, Carles; Martínez, Bea; Escofet, Jaume; Ralló, Miquel

    2013-11-01

    Many digital image applications like digitization of cultural heritage for preservation purposes operate with compressed files in one or more image observing steps. For this kind of applications JPEG compression is one of the most widely used. Compression level, final file size and quality loss are parameters that must be managed optimally. Although this loss can be monitored by means of objective image quality measurements, the real challenge is to know how it can be related with the perceived image quality by observers. A pictorial image has been degraded by two different procedures. The first, applying different levels of low pass filtering by convolving the image with progressively broad Gauss kernels. The second, saving the original file to a series of JPEG compression levels. In both cases, the objective image quality measurement is done by analysis of the image power spectrum. In order to obtain a measure of the perceived image quality, both series of degraded images are displayed on a computer screen organized in random pairs. The observers are compelled to choose the best image of each pair. Finally, a ranking is established applying Thurstone scaling method. Results obtained by both measurements are compared between them and with other objective measurement method as the Slanted Edge Test.

  12. "A" Is for Aerial Maps and Art

    ERIC Educational Resources Information Center

    Todd, Reese H.; Delahunty, Tina

    2007-01-01

    The technology of satellite imagery and remote sensing adds a new dimension to teaching and learning about maps with elementary school children. Just a click of the mouse brings into view some images of the world that could only be imagined a generation ago. Close-up aerial pictures of the school and neighborhood quickly catch the interest of…

  13. AERIAL METHODS OF EXPLORATION

    DTIC Science & Technology

    The development of photointerpretation techniques for identifying kimberlite pipes on aerial photographs is discussed. The geographic area considered is the Daldyn region, which lies in the zone of Northern Taiga of Yakutiya.

  14. Galileo infrared imaging spectroscopy measurements at venus

    USGS Publications Warehouse

    Carlson, R.W.; Baines, K.H.; Encrenaz, Th.; Taylor, F.W.; Drossart, P.; Kamp, L.W.; Pollack, James B.; Lellouch, E.; Collard, A.D.; Calcutt, S.B.; Grinspoon, D.; Weissman, P.R.; Smythe, W.D.; Ocampo, A.C.; Danielson, G.E.; Fanale, F.P.; Johnson, T.V.; Kieffer, H.H.; Matson, D.L.; McCord, T.B.; Soderblom, L.A.

    1991-01-01

    During the 1990 Galileo Venus flyby, the Near Infrared Mapping Spectrometer investigated the night-side atmosphere of Venus in the spectral range 0.7 to 5.2 micrometers. Multispectral images at high spatial resolution indicate substantial cloud opacity variations in the lower cloud levels, centered at 50 kilometers altitude. Zonal and meridional winds were derived for this level and are consistent with motion of the upper branch of a Hadley cell. Northern and southern hemisphere clouds appear to be markedly different. Spectral profiles were used to derive lower atmosphere abundances of water vapor and other species.

  15. Spatial coherence in human tissue: implications for imaging and measurement

    PubMed Central

    Pinton, Gianmarco; Trahey, Gregg; Dahl, Jeremy

    2014-01-01

    The spatial coherence properties of the signal backscattered by human tissue and measured by an ultrasound transducer array are investigated. Fourier acoustics are used to describe the propagation of ultrasound through a model of tissue that includes reverberation and random scatterering in the imaging plane. The theoretical development describes how the near-field tissue layer, transducer aperture properties, and reflectivity function at the focus reduce the spatial coherence of the imaging wave measured at the transducer surface. Simulations are used to propagate the acoustic field through a histologically characterized sample of the human abdomen and to validate the theoretical predictions. In vivo measurements performed with a diagnostic ultrasound scanner demonstrate that simulations and theory closely match the measured spatial coherence characteristics in the human body across the transducer array’s entire spatial extent. The theoretical framework and simulations are then used to describe the physics of spatial coherence imaging, a type of ultrasound imaging that measures coherence properties instead of echo brightness. The same echo data from an F/2 transducer was used to generate B-mode and short lag spatial coherence images. For an anechoic lesion at the focus the contrast to noise ratio is 1.21 for conventional B-mode imaging and 1.95 for spatial coherence imaging. It is shown that the contrast in spatial coherence imaging depends on the properties of the near-field tissue layer and the backscattering function in the focal plane. PMID:25474774

  16. Operation Greenhouse. Scientific Director's report of atomic weapon tests at Eniwetok, 1951. Annex 1. 6, blast measurements. Part 3. Pressure near ground level. Section 4. Blast asymmetry from aerial photographs. Section 5. Ball-crusher-gauge measurements of peak pressure

    SciTech Connect

    Not Available

    1985-04-01

    Aerial motion pictures from manned aircraft were taken of the Dog, Easy, and George Shots and from a drone aircraft on Dog Shot to determine whether asymmetries in the blast waves could be detected and measured. Only one film, that taken of Dog Shot from a drone, was considered good enough to warrant detailed analysis, but this failed to yield any positive information on asymmetries. The analysis showed that failure to obtain good arrival-time data arose from a number of cases, but primarily from uncertainities in magnification and timing. Results could only be matched with reliable data from blast-velocity switches by use of large corrections. Asymnetries, if present, were judged to have been too small or to have occurred too early to be detected with the slow-frame speed used. Recommendations for better results include locating the aircraft directly overhead at the time of burst and using a camera having greater frame speed and provided with timing marks.

  17. Performance measurements of a dual-rotor arm mechanism for efficient flight transition of fixed-wing unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    McGill, Karen Ashley Jean

    Reconfigurable systems are a class of systems that can be transformed into different configurations, generally to perform unique functions or to maintain operational efficiency under distinct conditions. A UAV can be considered a reconfigurable system when coupled with various useful features such as vertical take-off and landing (VTOL), hover capability, long-range, and relatively large payload. Currently, a UAV having these capabilities is being designed by the UTSA Mechanical Engineering department. UAVs such as this one have the following potential uses: emergency response/disaster relief, hazard-critical missions, offshore oil rig/wind farm delivery, surveillance, etc. The goal of this thesis is to perform experimental thrust and power measurements for the propulsion system of this fixed-wing UAV. Focus was placed on a rotating truss arm supporting two brushless motors and rotors that will later be integrated to the ends of the UAV wing. These truss arms will rotate via a supporting shaft from 0° to 90° to transition the UAV between a vertical take-off, hover, and forward flight. To make this hover/transition possible, a relationship between thrust, arm angle, and power drawn was established by testing the performance of the arm/motor assembly at arm angles of 0°, 15°, 30°, 45°, 60°, 75°, and 90°. Universal equations for this system of thrust as a function of the arm angle were created by correlating data collected by a load cell. A Solidworks model was created and used to conduct fluid dynamics simulations of the streamlines over the arm/motor assembly.

  18. Digital imaging technology applied to crewstation display measurements

    NASA Astrophysics Data System (ADS)

    Nelson, Leonard Y.; Green, John R.

    1993-12-01

    A `slow scan' CCD camera has been adapted for luminance and radiance measurement of displays used in night vision goggle (NVG) compatible aircraft. A video lightmeter offers several advantages compared to conventional test methods including high speed image capture and color coding of the digital image data. The color coding feature facilitates evaluation of the test display uniformity. Numerical values for luminance and infrared radiance are also extracted from the image data.

  19. Research on fiber diameter automatic measurement based on image detection

    NASA Astrophysics Data System (ADS)

    Chen, Xiaogang; Jiang, Yu; Shen, Wen; Han, Guangjie

    2010-10-01

    In this paper, we present a method of Fiber Diameter Automatic Measurement(FDAM). This design is based on image detection technology in order to provide a rapid and accurate measurement of average fiber diameter. Firstly, a preprocessing mechanism is proposed to the sample fiber image by using improved median filtering algorithm, then we introduce edge detection with Sobel operator to detect target fiber, finally diameter of random point and average diameter of the fiber can be measured precisely with searching shortest path algorithm. Experiments are conducted to prove the accuracy of the measurement, and simulations show that measurement errors caused by human factors could be eliminated to a desirable level.

  20. 1. NORTHWEST OBLIQUE AERIAL VIEW OF FORT DELAWARE AND PEA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. NORTHWEST OBLIQUE AERIAL VIEW OF FORT DELAWARE AND PEA PATCH ISLAND. REMAINS OF SEA WALL VISIBLE IN FOREGROUND AND RIGHT OF IMAGE. - Fort Delaware, Sea Wall, Pea Patch Island, Delaware City, New Castle County, DE

  1. NORTHWEST OBLIQUE AERIAL VIEW OF FORT DELAWARE AND PEA PATCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTHWEST OBLIQUE AERIAL VIEW OF FORT DELAWARE AND PEA PATCH ISLAND. REMAINS OF SEA WALL VISIBLE IN FOREGROUND AND RIGHT OF IMAGE - Fort Delaware, Pea Patch Island, Delaware City, New Castle County, DE

  2. The method of infrared image simulation based on the measured image

    NASA Astrophysics Data System (ADS)

    Lou, Shuli; Liu, Liang; Ren, Jiancun

    2015-10-01

    The development of infrared imaging guidance technology has promoted the research of infrared imaging simulation technology and the key of infrared imaging simulation is the generation of IR image. The generation of IR image is worthful in military and economy. In order to solve the problem of credibility and economy of infrared scene generation, a method of infrared scene generation based on the measured image is proposed. Through researching on optical properties of ship-target and sea background, ship-target images with various gestures are extracted from recorded images based on digital image processing technology. The ship-target image is zoomed in and out to simulate the relative motion between the viewpoint and the target according to field of view and the distance between the target and the sensor. The gray scale of ship-target image is adjusted to simulate the radiation change of the ship-target according to the distance between the viewpoint and the target and the atmospheric transmission. Frames of recorded infrared images without target are interpolated to simulate high frame rate of missile. Processed ship-target images and sea-background infrared images are synthetized to obtain infrared scenes according to different viewpoints. Experiments proved that this method is flexible and applicable, and the fidelity and the reliability of synthesis infrared images can be guaranteed.

  3. Automatic Feature Detection, Description and Matching from Mobile Laser Scanning Data and Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Hussnain, Zille; Oude Elberink, Sander; Vosselman, George

    2016-06-01

    In mobile laser scanning systems, the platform's position is measured by GNSS and IMU, which is often not reliable in urban areas. Consequently, derived Mobile Laser Scanning Point Cloud (MLSPC) lacks expected positioning reliability and accuracy. Many of the current solutions are either semi-automatic or unable to achieve pixel level accuracy. We propose an automatic feature extraction method which involves utilizing corresponding aerial images as a reference data set. The proposed method comprise three steps; image feature detection, description and matching between corresponding patches of nadir aerial and MLSPC ortho images. In the data pre-processing step the MLSPC is patch-wise cropped and converted to ortho images. Furthermore, each aerial image patch covering the area of the corresponding MLSPC patch is also cropped from the aerial image. For feature detection, we implemented an adaptive variant of Harris-operator to automatically detect corner feature points on the vertices of road markings. In feature description phase, we used the LATCH binary descriptor, which is robust to data from different sensors. For descriptor matching, we developed an outlier filtering technique, which exploits the arrangements of relative Euclidean-distances and angles between corresponding sets of feature points. We found that the positioning accuracy of the computed correspondence has achieved the pixel level accuracy, where the image resolution is 12cm. Furthermore, the developed approach is reliable when enough road markings are available in the data sets. We conclude that, in urban areas, the developed approach can reliably extract features necessary to improve the MLSPC accuracy to pixel level.

  4. Combined aerial and ground technique for assessing structural heat loss

    NASA Astrophysics Data System (ADS)

    Snyder, William C.; Schott, John R.

    1994-03-01

    The results of a combined aerial and ground-based structural heat loss survey are presented. The aerial imagery was collected by a thermal IR line scanner. Enhanced quantitative analysis of the imagery gives the roof heat flow and insulation level. The ground images were collected by a video van and converted to still frames stored on a video disk. A computer based presentation system retrieves the images and other information indexed by street address for screening and dissemination to owners. We conclude that the combined aerial and ground survey effectively discriminates between well insulated and poorly insulated structures, and that such a survey is a cost-effective alternative to site audits.

  5. Measuring soil moisture with imaging radars

    NASA Technical Reports Server (NTRS)

    Dubois, Pascale C.; Vanzyl, Jakob; Engman, Ted

    1995-01-01

    An empirical model was developed to infer soil moisture and surface roughness from radar data. The accuracy of the inversion technique is assessed by comparing soil moisture obtained with the inversion technique to in situ measurements. The effect of vegetation on the inversion is studied and a method to eliminate the areas where vegetation impairs the algorithm is described.

  6. Observation of a Large Landslide on La Reunion Island Using Differential Sar Interferometry (JERS and Radarsat) and Correlation of Optical (Spot5 and Aerial) Images.

    PubMed

    Delacourt, Christophe; Raucoules, Daniel; Le Mouélic, Stéphane; Carnec, Claudie; Feurer, Denis; Allemand, Pascal; Cruchet, Marc

    2009-01-01

    Slope instabilities are one of the most important geo-hazards in terms of socio-economic costs. The island of La Réunion (Indian Ocean) is affected by constant slope movements and huge landslides due to a combination of rough topography, wet tropical climate and its specific geological context. We show that remote sensing techniques (Differential SAR Interferometry and correlation of optical images) provide complementary means to characterize landslides on a regional scale. The vegetation cover generally hampers the analysis of C-band interferograms. We used JERS-1 images to show that the L-band can be used to overcome the loss of coherence observed in Radarsat C-band interferograms. Image correlation was applied to optical airborne and SPOT 5 sensors images. The two techniques were applied to a landslide near the town of Hellbourg in order to assess their performance for detecting and quantifying the ground motion associated to this landslide. They allowed the mapping of the unstable areas. Ground displacement of about 0.5 m yr(-1) was measured.

  7. Observation of a Large Landslide on La Reunion Island Using Differential Sar Interferometry (JERS and Radarsat) and Correlation of Optical (Spot5 and Aerial) Images

    PubMed Central

    Delacourt, Christophe; Raucoules, Daniel; Le Mouélic, Stéphane; Carnec, Claudie; Feurer, Denis; Allemand, Pascal; Cruchet, Marc

    2009-01-01

    Slope instabilities are one of the most important geo-hazards in terms of socio-economic costs. The island of La Réunion (Indian Ocean) is affected by constant slope movements and huge landslides due to a combination of rough topography, wet tropical climate and its specific geological context. We show that remote sensing techniques (Differential SAR Interferometry and correlation of optical images) provide complementary means to characterize landslides on a regional scale. The vegetation cover generally hampers the analysis of C–band interferograms. We used JERS-1 images to show that the L-band can be used to overcome the loss of coherence observed in Radarsat C-band interferograms. Image correlation was applied to optical airborne and SPOT 5 sensors images. The two techniques were applied to a landslide near the town of Hellbourg in order to assess their performance for detecting and quantifying the ground motion associated to this landslide. They allowed the mapping of the unstable areas. Ground displacement of about 0.5 m yr-1 was measured. PMID:22389620

  8. Airframe noise measurements by acoustic imaging

    NASA Technical Reports Server (NTRS)

    Kendall, J. M.

    1977-01-01

    Studies of the noise produced by flow past wind tunnel models are presented. The central objective of these is to find the specific locations within a flow which are noisy, and to identify the fluid dynamic processes responsible, with the expectation that noise reduction principles will be discovered. The models tested are mostly simple shapes which result in types of flow that are similar to those occurring on, for example, aircraft landing gear and wheel cavities. A model landing gear and a flap were also tested. Turbulence has been intentionally induced as appropriate in order to simulate full-scale effects more closely. The principal technique involves use of a highly directional microphone system which is scanned about the flow field to be analyzed. The data so acquired are presented as a pictorial image of the noise source distribution. An important finding is that the noise production is highly variable within a flow field and that sources can be attributed to various fluid dynamic features of the flow. Flow separation was not noisy, but separation closure usually was.

  9. Imaging Systems for Size Measurements of Debrisat Fragments

    NASA Technical Reports Server (NTRS)

    Shiotani, B.; Scruggs, T.; Toledo, R.; Fitz-Coy, N.; Liou, J. C.; Sorge, M.; Huynh, T.; Opiela, J.; Krisko, P.; Cowardin, H.

    2017-01-01

    The overall objective of the DebriSat project is to provide data to update existing standard spacecraft breakup models. One of the key sets of parameters used in these models is the physical dimensions of the fragments (i.e., length, average-cross sectional area, and volume). For the DebriSat project, only fragments with at least one dimension greater than 2 mm are collected and processed. Additionally, a significant portion of the fragments recovered from the impact test are needle-like and/or flat plate-like fragments where their heights are almost negligible in comparison to their other dimensions. As a result, two fragment size categories were defined: 2D objects and 3D objects. While measurement systems are commercially available, factors such as measurement rates, system adaptability, size characterization limitations and equipment costs presented significant challenges to the project and a decision was made to develop our own size characterization systems. The size characterization systems consist of two automated image systems, one referred to as the 3D imaging system and the other as the 2D imaging system. Which imaging system to use depends on the classification of the fragment being measured. Both imaging systems utilize point-and-shoot cameras for object image acquisition and create representative point clouds of the fragments. The 3D imaging system utilizes a space-carving algorithm to generate a 3D point cloud, while the 2D imaging system utilizes an edge detection algorithm to generate a 2D point cloud. From the point clouds, the three largest orthogonal dimensions are determined using a convex hull algorithm. For 3D objects, in addition to the three largest orthogonal dimensions, the volume is computed via an alpha-shape algorithm applied to the point clouds. The average cross-sectional area is also computed for 3D objects. Both imaging systems have automated size measurements (image acquisition and image processing) driven by the need to quickly

  10. Wavenumber imaging for damage detection and measurement

    NASA Astrophysics Data System (ADS)

    Rogge, M. D.; Johnston, P. H.

    2012-05-01

    This paper presents a method for analyzing ultrasonic wavefield data using the Continuous Wavelet Transform (CWT) applied in the spatial domain. Unlike data obtained by sparse arrays of transducers, full wavefield data contains information local to the structure and can be used to obtain more detailed measurements of damage type, location, size, etc. By calculating the CWT of the wavefield in the spatial domain, the wavenumber spectrum is determined for the inspected locations. Because wavenumber is affected by the local geometry and material properties of the structure through which Lamb waves propagate, the wavenumber spectrum can be analyzed to assess the location, severity, and size of damage. The technique is first applied to experimental wavefield data obtained using a laser Doppler vibrometer and automated positioning stage. The out-of-plane velocity along the length of a composite stringer was measured to detect the presence of delaminations within the composite overwrap. Next, simulated corrosion is detected and measured within an aluminum plate using the two dimensional CWT. The experimental results show the usefulness of the technique for vehicle structure inspection applications.

  11. Wavenumber Imaging For Damage Detection and Measurement

    NASA Technical Reports Server (NTRS)

    Rogge, Matthew D.; Johnson, Pat H.

    2011-01-01

    This paper presents a method for analyzing ultrasonic wavefield data using the Continuous Wavelet Transform (CWT) applied in the spatial domain. Unlike data obtained by sparse arrays of transducers, full wavefield data contains information local to the structure and can be used to obtain more detailed measurements of damage type, location, size, etc. By calculating the CWT of the wavefield in the spatial domain, the wavenumber spectrum is determined for the inspected locations. Because wavenumber is affected by the local geometry and material properties of the structure through which Lamb waves propagate, the wavenumber spectrum can be analyzed to assess the location, severity, and size of damage. The technique is first applied to experimental wavefield data obtained using a laser Doppler vibrometer and automated positioning stage. The out-of-plane velocity along the length of a composite stringer was measured to detect the presence of delaminations within the composite overwrap. Next, simulated corrosion is detected and measured within an aluminum plate using the two dimensional CWT. The experimental results show the usefulness of the technique for vehicle structure inspection applications.

  12. Sungrabber - Software for Measurements on Solar Synoptic Images

    NASA Astrophysics Data System (ADS)

    Hržina, D.; Roša, D.; Hanslmeier, A.; Ruždjak, V.; Brajša, R.

    Measurement of positions of the tracers on synoptic solar images and conversion to heliographic coordinates is a time-consuming procedure with different sources of errors. To make measurements faster and easier, the application "Sungrabber" was developed. The data of the measured heliographic coordinates are stored in text files which are linked to the related solar images, which allows also a fast and simple comparison of the measurements from different sources. Extension of the software is possible and therefore Sungrabber can be used for different purposes (e.g. determining the solar rotation rate, proper motions of the tracers on the Sun, etc.).

  13. Perceived no reference image quality measurement for chromatic aberration

    NASA Astrophysics Data System (ADS)

    Lamb, Anupama B.; Khambete, Madhuri

    2016-03-01

    Today there is need for no reference (NR) objective perceived image quality measurement techniques as conducting subjective experiments and making reference image available is a very difficult task. Very few NR perceived image quality measurement algorithms are available for color distortions like chromatic aberration (CA), color quantization with dither, and color saturation. We proposed NR image quality assessment (NR-IQA) algorithms for images distorted with CA. CA is mostly observed in images taken with digital cameras, having higher sensor resolution with inexpensive lenses. We compared our metric performance with two state-of-the-art NR blur techniques, one full reference IQA technique and three general-purpose NR-IQA techniques, although they are not tailored for CA. We used a CA dataset in the TID-2013 color image database to evaluate performance. Proposed algorithms give comparable performance with state-of-the-art techniques in terms of performance parameters and outperform them in terms of monotonicity and computational complexity. We have also discovered that the proposed CA algorithm best predicts perceived image quality of images distorted with realistic CA.

  14. Objective measurements to evaluate glottal space segmentation from laryngeal images.

    PubMed

    Gutiérrez-Arriola, J M; Osma-Ruiz, V; Sáenz-Lechón, N; Godino-Llorente, J I; Fraile, R; Arias-Londoño, J D

    2012-01-01

    Objective evaluation of the results of medical image segmentation is a known problem. Applied to the task of automatically detecting the glottal area from laryngeal images, this paper proposes a new objective measurement to evaluate the quality of a segmentation algorithm by comparing with the results given by a human expert. The new figure of merit is called Area Index, and its effectiveness is compared with one of the most used figures of merit found in the literature: the Pratt Index. Results over 110 laryngeal images presented high correlations between both indexes, demonstrating that the proposed measure is comparable to the Pratt Index and it is a good indicator of the segmentation quality.

  15. Measuring corrosion thinning by thermal-wave imaging

    NASA Astrophysics Data System (ADS)

    Favro, Lawrence D.; Han, Xiaoyan; Ahmed, Tasdiq; Kuo, Pao-Kuang; Thomas, Robert L.

    1996-11-01

    We describe an IR thermal wave imaging technique for making corrosion thinning determinations on aging aircraft skins. The technique uses pulsed surface heating and fast, synchronous IR imaging of subsurface structure, such as skin corrosion and disbonded doublers or tear straps. Sensitivity to corrosion thinning of less than two percent is demonstrated. Practical implementation of a simplified numerical measurement algorithm is presented, and the results are compared with profilometry and ultrasonic measurements of calibration standards. Examples are presented of thermal wave imaging of fuselage skin corrosion of a B737 testbed aircraft in a hangar environment at the FAA's Aging Aircraft NDI Validation Center.

  16. Fabric pilling measurement using three-dimensional image

    NASA Astrophysics Data System (ADS)

    Ouyang, Wenbin; Wang, Rongwu; Xu, Bugao

    2013-10-01

    We introduce a stereovision system and the three-dimensional (3-D) image analysis algorithms for fabric pilling measurement. Based on the depth information available in the 3-D image, the pilling detection process starts from the seed searching at local depth maxima to the region growing around the selected seeds using both depth and distance criteria. After the pilling detection, the density, height, and area of individual pills in the image can be extracted to describe the pilling appearance. According to the multivariate regression analysis on the 3-D images of 30 cotton fabrics treated by the random-tumble and home-laundering machines, the pilling grade is highly correlated with the pilling density (R=0.923) but does not consistently change with the pilling height and area. The pilling densities measured from the 3-D images also correlate well with those counted manually from the samples (R=0.985).

  17. Aerial Photography Summary Record System

    USGS Publications Warehouse

    ,

    1998-01-01

    The Aerial Photography Summary Record System (APSRS) describes aerial photography projects that meet specified criteria over a given geographic area of the United States and its territories. Aerial photographs are an important tool in cartography and a number of other professions. Land use planners, real estate developers, lawyers, environmental specialists, and many other professionals rely on detailed and timely aerial photographs. Until 1975, there was no systematic approach to locate an aerial photograph, or series of photographs, quickly and easily. In that year, the U.S. Geological Survey (USGS) inaugurated the APSRS, which has become a standard reference for users of aerial photographs.

  18. Planning Image-Based Measurements in Wind Tunnels by Virtual Imaging

    NASA Technical Reports Server (NTRS)

    Kushner, Laura Kathryn; Schairer, Edward T.

    2011-01-01

    Virtual imaging is routinely used at NASA Ames Research Center to plan the placement of cameras and light sources for image-based measurements in production wind tunnel tests. Virtual imaging allows users to quickly and comprehensively model a given test situation, well before the test occurs, in order to verify that all optical testing requirements will be met. It allows optimization of the placement of cameras and light sources and leads to faster set-up times, thereby decreasing tunnel occupancy costs. This paper describes how virtual imaging was used to plan optical measurements for three tests in production wind tunnels at NASA Ames.

  19. Research on imaging system of vision measurement for the shaft

    NASA Astrophysics Data System (ADS)

    Yang, Zhao; Wang, Xingdong; Liu, Yuanjiong; Liu, Zhao; Gao, Qing

    2015-12-01

    An imaging system is researched for the shaft size measurement, thus to replace the on-line manual measuring method, which is used to measuring diametric sizes and axial sizes of the shaft. Through the research of the characteristics of illumination, a kind of backlight was designed, which could improve the quality of image. For one CCD camera to the large size of the shaft is not easy to achieve, to continue research two CCD cameras imaging, the use of two cameras shoot the shaft two ends, to reduce the field of view to improve accuracy. At the same time, using the drive device to the relative position of the two cameras to achieve measure a variety of specifications of the shaft, improve compatibility. Because of the shaft parts for curved surface, need to extract the characteristics are not in the same plane, the telecentric lens of large depth of field was selected, to ensure the accuracy of image information. The image processing based on HALCON. From the measurement results, the shaft size measurement system measuring accuracy is high.

  20. Measurements of fine particle size using image processing of a laser diffraction image

    NASA Astrophysics Data System (ADS)

    Tsubaki, Kotaro

    2016-08-01

    The measurement of fine particle size is important in spray systems, minimum quantity lubrication, and weather observation. Introducing the recent progress of imaging techniques, the authors developed a portable measurement system. To overcome the large light intensity difference between the incident laser light and diffracted light and the limitation of the dynamic range of imaging devices, the event correlation was adopted. The growth of droplets in fog was experimentally measured.

  1. Observing snow cover using unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Spallek, Waldemar; Witek, Matylda; Niedzielski, Tomasz

    2016-04-01

    Snow cover is a key environmental variable that influences high flow events driven by snow-melt episodes. Estimates of snow extent (SE), snow depth (SD) and snow water equivalent (SWE) allow to approximate runoff caused by snow-melt episodes. These variables are purely spatial characteristics, and hence their pointwise measurements using terrestrial monitoring systems do not offer the comprehensive and fully-spatial information on water storage in snow. Existing satellite observations of snow reveal moderate spatial resolution which, not uncommonly, is not fine enough to estimate the above-mentioned snow-related variables for small catchments. High-resolution aerial photographs and the resulting orthophotomaps and digital surface models (DSMs), obtained using unmanned aerial vehicles (UAVs), may offer spatial resolution of 3 cm/px. The UAV-based observation of snow cover may be done using the near-infrared (NIR) cameras and visible-light cameras. Since the beginning of 2015, in frame of the research project no. LIDER/012/223/L-5/13/NCBR/2014 financed by the National Centre for Research and Development of Poland, we have performed a series of the UAV flights targeted at four sites in the Kwisa catchment in the Izerskie Mts. (part of the Sudetes, SW Poland). Observations are carried out with the ultralight UAV swinglet CAM (produced by senseFly, lightweight 0.5 kg, wingspan 80 cm) which enables on-demand sampling at low costs. The aim of the field work is to acquire aerial photographs taken using the visible-light and NIR cameras for a purpose of producing time series of DSMs and orthophotomaps with snow cover for all sites. The DSMs are used to calculate SD as difference between observational (with snow) and reference (without snow) models. In order to verify such an approach to compute SD we apply several procedures, one of which is the estimation of SE using the corresponding orthophotomaps generated on a basis of visual-light and NIR images. The objective of this

  2. Imaging Laser Ultrasonics Measurement of the Elastodynamic Properties of Paper

    SciTech Connect

    Telschow, Kenneth Louis; Deason, Vance Albert

    2001-10-01

    Many sheet and plate material industries (e.g. paper) desire knowledge of the anisotropic stiffness properties of their material to optimize the manufacturing process. A determination of the anisotropic elastic matrix would be very beneficial for determination of parameters, such as as microstructural texture, fiber or grain orientation and stiffness. The propagation of ultrasonic waves in plates is a method for determining the anisotropic elastic properties in a nondestructive manner. Laser ultrasonics offes a noncontacting means to implement these measurements in the workplace by employing pulsed or modulated light to excite symmetric and antisymmetric plate waves concurrent with optical interferometric detection. Measurements can then be performed along the machine and cross directions to obtain parameters that are used empirically for process monitoring. Recently, the INEEL has developed a full-field view laser based ultrasonic imaging method that allows simultaneous measurement of plate wave motion in all planar directions within a single image without scanning. The imaging measurements are based on dynamic holography using photorefractive materials for interferometric deteciton and are operated as normal video rates. Results from this laser based imaging approach are presented that record Lamb wave mode wavefronts in all planar directions from localized sources in a single image. Specific numerical predictions for flexural wave propagation in distinctly different types of paper accounting fully for orthotropic anisotropy are presented and compared with direct imaging measurements. Very good agreement with theoretical calculations is obtained for the lowest antisymmetric plate mode in all planar directions using paper properties independently determined by others.

  3. Intrinsic Feature Pose Measurement for Awake Animal SPECT Imaging

    SciTech Connect

    Goddard Jr, James Samuel; Baba, Justin S; Lee, Seung Joon; Weisenberger, A G; Stolin, A; McKisson, J; Smith, M F

    2009-01-01

    New developments have been made in optical motion tracking for awake animal imaging that measures 3D position and orientation (pose) for a single photon emission computed tomography (SPECT) imaging system. Ongoing SPECT imaging research has been directed towards head motion measurement for brain studies in awake, unrestrained mice. In contrast to previous results using external markers, this work extracts and tracks intrinsic features from multiple camera images and computes relative pose from the tracked features over time. Motion tracking thus far has been limited to measuring extrinsic features such as retro-reflective markers applied to the mouse s head. While this approach has been proven to be accurate, the additional animal handling required to attach the markers is undesirable. A significant improvement in the procedure is achieved by measuring the pose of the head without extrinsic markers using only the external surface appearance. This approach is currently being developed with initial results presented here. The intrinsic features measurement extracts discrete, sparse natural features from 2D images such as eyes, nose, mouth and other visible structures. Stereo correspondence between features for a camera pair is determined for calculation of 3D positions. These features are also tracked over time to provide continuity for surface model fitting. Experimental results from live images are presented.

  4. Quantitative measure in image segmentation for skin lesion images: A preliminary study

    NASA Astrophysics Data System (ADS)

    Azmi, Nurulhuda Firdaus Mohd; Ibrahim, Mohd Hakimi Aiman; Keng, Lau Hui; Ibrahim, Nuzulha Khilwani; Sarkan, Haslina Md

    2014-12-01

    Automatic Skin Lesion Diagnosis (ASLD) allows skin lesion diagnosis by using a computer or mobile devices. The idea of using a computer to assist in diagnosis of skin lesions was first proposed in the literature around 1985. Images of skin lesions are analyzed by the computer to capture certain features thought to be characteristic of skin diseases. These features (expressed as numeric values) are then used to classify the image and report a diagnosis. Image segmentation is often a critical step in image analysis and it may use statistical classification, thresholding, edge detection, region detection, or any combination of these techniques. Nevertheless, image segmentation of skin lesion images is yet limited to superficial evaluations which merely display images of the segmentation results and appeal to the reader's intuition for evaluation. There is a consistent lack of quantitative measure, thus, it is difficult to know which segmentation present useful results and in which situations they do so. If segmentation is done well, then, all other stages in image analysis are made simpler. If significant features (that are crucial for diagnosis) are not extracted from images, it will affect the accuracy of the automated diagnosis. This paper explore the existing quantitative measure in image segmentation ranging in the application of pattern recognition for example hand writing, plat number, and colour. Selecting the most suitable segmentation measure is highly important so that as much relevant features can be identified and extracted.

  5. Systematic measurements of whole-body imaging dose distributions in image-guided radiation therapy

    SciTech Connect

    Haelg, Roger A.; Besserer, Juergen; Schneider, Uwe

    2012-12-15

    Purpose: The full benefit of the increased precision of contemporary treatment techniques can only be exploited if the accuracy of the patient positioning is guaranteed. Therefore, more and more imaging modalities are used in the process of the patient setup in clinical routine of radiation therapy. The improved accuracy in patient positioning, however, results in additional dose contributions to the integral patient dose. To quantify this, absorbed dose measurements from typical imaging procedures involved in an image-guided radiation therapy treatment were measured in an anthropomorphic phantom for a complete course of treatment. The experimental setup, including the measurement positions in the phantom, was exactly the same as in a preceding study of radiotherapy stray dose measurements. This allows a direct combination of imaging dose distributions with the therapy dose distribution. Methods: Individually calibrated thermoluminescent dosimeters were used to measure absorbed dose in an anthropomorphic phantom at 184 locations. The dose distributions from imaging devices used with treatment machines from the manufacturers Accuray, Elekta, Siemens, and Varian and from computed tomography scanners from GE Healthcare were determined and the resulting effective dose was calculated. The list of investigated imaging techniques consisted of cone beam computed tomography (kilo- and megavoltage), megavoltage fan beam computed tomography, kilo- and megavoltage planar imaging, planning computed tomography with and without gating methods and planar scout views. Results: A conventional 3D planning CT resulted in an effective dose additional to the treatment stray dose of less than 1 mSv outside of the treated volume, whereas a 4D planning CT resulted in a 10 times larger dose. For a daily setup of the patient with two planar kilovoltage images or with a fan beam CT at the TomoTherapy unit, an additional effective dose outside of the treated volume of less than 0.4 mSv and 1

  6. Studies of soundings and imagings measurements from geostationary satellites

    NASA Technical Reports Server (NTRS)

    Suomi, V. E.

    1973-01-01

    Soundings and imaging measurements from geostationary satellites are presented. The subjects discussed are: (1) meteorological data processing techniques, (2) sun glitter, (3) cloud growth rate study, satellite stability characteristics, and (4) high resolution optics. The use of perturbation technique to obtain the motion of sensors aboard a satellite is described. The most conditions, and measurement errors. Several performance evaluation parameters are proposed.

  7. Diamond color measurement instrument based on image processing

    NASA Astrophysics Data System (ADS)

    Takahashi, H.; Mandal, S.; Toosi, M.; Zeng, J.; Wang, W.

    2016-09-01

    Gemological Institute of America (GIA) has developed a diamond color measurement instrument that can provide accurate and reproducible color measurement results. The instrument uses uniform illumination by a daylight-approximating light source; observations from a high-resolution color-camera with nearly zero-distortion bi-telecentric lens, and image processing to calculate color parameters of diamonds. Experiments show the instrument can provide reproducible color measurement results and also identify subtle color differences in diamonds with high sensitivity. The experimental setup of the prototype instrument and the image processing method for calculating diamond color parameters are presented in this report.

  8. Unmanned aerial vehicles in astronomy

    NASA Astrophysics Data System (ADS)

    Biondi, Federico; Magrin, Demetrio; Ragazzoni, Roberto; Farinato, Jacopo; Greggio, Davide; Dima, Marco; Gullieuszik, Marco; Bergomi, Maria; Carolo, Elena; Marafatto, Luca; Portaluri, Elisa

    2016-07-01

    In this work we discuss some options for using Unmanned Aerial Vehicles (UAVs) for daylight alignment activities and maintenance of optical telescopes, relating them to a small numbers of parameters, and tracing which could be the schemes, requirements and benefits for employing them both at the stage of erection and maintenance. UAVs can easily reach the auto-collimation points of optical components of the next class of Extremely Large Telescopes. They can be equipped with tools for the measurement of the co-phasing, scattering, and reflectivity of segmented mirrors or environmental parameters like C2n and C2T to characterize the seeing during both the day and the night.

  9. 3D Building Modeling and Reconstruction using Photometric Satellite and Aerial Imageries

    NASA Astrophysics Data System (ADS)

    Izadi, Mohammad

    In this thesis, the problem of three dimensional (3D) reconstruction of building models using photometric satellite and aerial images is investigated. Here, two systems are pre-sented: 1) 3D building reconstruction using a nadir single-view image, and 2) 3D building reconstruction using slant multiple-view aerial images. The first system detects building rooftops in orthogonal aerial/satellite images using a hierarchical segmentation algorithm and a shadow verification approach. The heights of detected buildings are then estimated using a fuzzy rule-based method, which measures the height of a building by comparing its predicted shadow region with the actual shadow evidence in the image. This system finally generated a KML (Keyhole Markup Language) file as the output, that contains 3D models of detected buildings. The second system uses the geolocation information of a scene containing a building of interest and uploads all slant-view images that contain this scene from an input image dataset. These images are then searched automatically to choose image pairs with different views of the scene (north, east, south and west) based on the geolocation and auxiliary data accompanying the input data (metadata that describes the acquisition parameters at the capture time). The camera parameters corresponding to these images are refined using a novel point matching algorithm. Next, the system independently reconstructs 3D flat surfaces that are visible in each view using an iterative algorithm. 3D surfaces generated for all views are combined, and redundant surfaces are removed to create a complete set of 3D surfaces. Finally, the combined 3D surfaces are connected together to generate a more complete 3D model. For the experimental results, both presented systems are evaluated quantitatively and qualitatively and different aspects of the two systems including accuracy, stability, and execution time are discussed.

  10. [Measurement of ocular position using Purkinje images. Part 1. A new measurement system].

    PubMed

    Watanabe, S

    1993-07-01

    I developed a new system of measuring ocular position using the first and fourth Purkinje images. This method used two images which were reflected from the front surface of the cornea and the back surface of the lens. I got a cross line from the first Purkinje image by putting a cross lens filter in front of the infrared camera. When I superimposed the vertical line upon the fourth image, I could get the optic axis of the eye. In order to measure the ocular position, I measured the angle of the optic axis. The accuracy of this system was +/- 0.1 degrees and the maximum error was smaller than +/- 0.5 degrees. Measurements with this system were easily obtained from squint patients and correlated well with results from the prism cover test (R2: 0.941). This measurement system was more useful than the prism cover test because I was able to measure horizontal deviations more precisely.

  11. A Sensitive Measurement for Estimating Impressions of Image-Contents

    NASA Astrophysics Data System (ADS)

    Sato, Mie; Matouge, Shingo; Mori, Toshifumi; Suzuki, Noboru; Kasuga, Masao

    We have investigated Kansei Content that appeals maker's intention to viewer's kansei. An SD method is a very good way to evaluate subjective impression of image-contents. However, because the SD method is performed after subjects view the image-contents, it is difficult to examine impression of detailed scenes of the image-contents in real time. To measure viewer's impression of the image-contents in real time, we have developed a Taikan sensor. With the Taikan sensor, we investigate relations among the image-contents, the grip strength and the body temperature. We also explore the interface of the Taikan sensor to use it easily. In our experiment, a horror movie is used that largely affects emotion of the subjects. Our results show that there is a possibility that the grip strength increases when the subjects view a strained scene and that it is easy to use the Taikan sensor without its circle base that is originally installed.

  12. Thermochromic liquid crystal temperature measurements through a borescope imaging system

    NASA Astrophysics Data System (ADS)

    Kodzwa, Paul M.; Elkins, Christopher J.; Mukerji, Debjit; Eaton, John K.

    2007-10-01

    Thermochromic liquid crystals (TLCs) have proven to be a valuable tool for the collection of full-field, high-resolution heat transfer data. This paper presents an extension of previously developed calibration techniques to a simplified transonic linear cascade for a highly cambered turbine blade geometry. This required the introduction of miniature periscopes to image the measurement surfaces. The procedures and equipment used to ensure high-accuracy wide-band TLC measurements are presented. These included a geometry-matched calibration device, mechanisms to accurately position the borescope imaging optics, an algorithm to automatically divide the imaging region into a large number of calibration subregions (termed as cells), and algorithms to correct for geometric and optical image distortions. The cell calibration approach is shown to halve calibration times and dramatically reduce memory requirements when compared to a pixel-by-pixel calibration. The results of an extensive validation study are presented.

  13. Aerial Explorers and Robotic Ecosystems

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg

    2004-01-01

    A unique bio-inspired approach to autonomous aerial vehicle, a.k.a. aerial explorer technology is discussed. The work is focused on defining and studying aerial explorer mission concepts, both as an individual robotic system and as a member of a small robotic "ecosystem." Members of this robotic ecosystem include the aerial explorer, air-deployed sensors and robotic symbiotes, and other assets such as rovers, landers, and orbiters.

  14. Measuring track densities in lunar grains using image analysis

    NASA Technical Reports Server (NTRS)

    Blanford, G. E.; Mckay, D. S.; Bernhard, R. P.; Schulz, C. K.

    1994-01-01

    We have used digitized scanning electron micrographs and computer image analysis programs to measure track densities in lunar soil grains. Tracks were formed by highly ionizing solar energetic particles and cosmic rays. Back-scattered electron images produced suitable high contrast images for analysis. We used computer counting and measurement of area to obtain track densities. We found an excellent correlation with manual measurements for track densities below 1x10(exp 8) cm(exp -2). For track densities between 1x10(exp 8) to 1x10(exp 9) cm(exp -2) we found that a regression formula using the percentage area covered by tracks gave good agreement with manual measurements. Measurement of tract densities in lunar samples has been a very rewarding technique for measuring exposure ages and soil maturation processes. We have shown that we can reliably measure track densities in lunar grains using image analysis techniques. Automating track counting may allow application of this technique to important problems in regolith dynamics including the ratio of radiation exposure to reworking in various surface and core samples and in regolith breccias.

  15. Quantum imaging beyond the diffraction limit by optical centroid measurements.

    PubMed

    Tsang, Mankei

    2009-06-26

    I propose a quantum imaging method that can beat the Rayleigh-Abbe diffraction limit and achieve de Broglie resolution without requiring a multiphoton absorber or coincidence detection. Using the same nonclassical states of light as those for quantum lithography, the proposed method requires only optical intensity measurements, followed by image postprocessing, to produce the same complex quantum interference patterns as those in quantum lithography. The method is expected to be experimentally realizable using current technology.

  16. Multiplexed aberration measurement for deep tissue imaging in vivo

    PubMed Central

    Wang, Chen; Liu, Rui; Milkie, Daniel E.; Sun, Wenzhi; Tan, Zhongchao; Kerlin, Aaron; Chen, Tsai-Wen; Kim, Douglas S.; Ji, Na

    2014-01-01

    We describe a multiplexed aberration measurement method that modulates the intensity or phase of light rays at multiple pupil segments in parallel to determine their phase gradients. Applicable to fluorescent-protein-labeled structures of arbitrary complexity, it allows us to obtain diffraction-limited resolution in various samples in vivo. For the strongly scattering mouse brain, a single aberration correction improves structural and functional imaging of fine neuronal processes over a large imaging volume. PMID:25128976

  17. Unmanned aerial survey of elephants.

    PubMed

    Vermeulen, Cédric; Lejeune, Philippe; Lisein, Jonathan; Sawadogo, Prosper; Bouché, Philippe

    2013-01-01

    The use of a UAS (Unmanned Aircraft System) was tested to survey large mammals in the Nazinga Game Ranch in the south of Burkina Faso. The Gatewing ×100™ equipped with a Ricoh GR III camera was used to test animal reaction as the UAS passed, and visibility on the images. No reaction was recorded as the UAS passed at a height of 100 m. Observations, made on a set of more than 7000 images, revealed that only elephants (Loxodonta africana) were easily visible while medium and small sized mammals were not. The easy observation of elephants allows experts to enumerate them on images acquired at a height of 100 m. We, therefore, implemented an aerial strip sample count along transects used for the annual wildlife foot count. A total of 34 elephants were recorded on 4 transects, each overflown twice. The elephant density was estimated at 2.47 elephants/km(2) with a coefficient of variation (CV%) of 36.10%. The main drawback of our UAS was its low autonomy (45 min). Increased endurance of small UAS is required to replace manned aircraft survey of large areas (about 1000 km of transect per day vs 40 km for our UAS). The monitoring strategy should be adapted according to the sampling plan. Also, the UAS is as expensive as a second-hand light aircraft. However the logistic and flight implementation are easier, the running costs are lower and its use is safer. Technological evolution will make civil UAS more efficient, allowing them to compete with light aircraft for aerial wildlife surveys.

  18. Unmanned Aerial Survey of Elephants

    PubMed Central

    Vermeulen, Cédric; Lejeune, Philippe; Lisein, Jonathan; Sawadogo, Prosper; Bouché, Philippe

    2013-01-01

    The use of a UAS (Unmanned Aircraft System) was tested to survey large mammals in the Nazinga Game Ranch in the south of Burkina Faso. The Gatewing ×100™ equipped with a Ricoh GR III camera was used to test animal reaction as the UAS passed, and visibility on the images. No reaction was recorded as the UAS passed at a height of 100 m. Observations, made on a set of more than 7000 images, revealed that only elephants (Loxodonta africana) were easily visible while medium and small sized mammals were not. The easy observation of elephants allows experts to enumerate them on images acquired at a height of 100 m. We, therefore, implemented an aerial strip sample count along transects used for the annual wildlife foot count. A total of 34 elephants were recorded on 4 transects, each overflown twice. The elephant density was estimated at 2.47 elephants/km2 with a coefficient of variation (CV%) of 36.10%. The main drawback of our UAS was its low autonomy (45 min). Increased endurance of small UAS is required to replace manned aircraft survey of large areas (about 1000 km of transect per day vs 40 km for our UAS). The monitoring strategy should be adapted according to the sampling plan. Also, the UAS is as expensive as a second-hand light aircraft. However the logistic and flight implementation are easier, the running costs are lower and its use is safer. Technological evolution will make civil UAS more efficient, allowing them to compete with light aircraft for aerial wildlife surveys. PMID:23405088

  19. Low Cost Surveying Using AN Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Pérez, M.; Agüera, F.; Carvajal, F.

    2013-08-01

    Traditional manned airborne surveys are usually expensive and the resolution of the acquired images is often limited. The main advantage of Unmanned Aerial Vehicle (UAV) system acting as a photogrammetric sensor platform over more traditional manned airborne system is the high flexibility that allows image acquisition from unconventional viewpoints, the low cost in comparison with classical aerial photogrammetry and the high resolution images obtained. Nowadays there is a necessity for surveying small areas and in these cases, it is not economical the use of normal large format aerial or metric cameras to acquire aerial photos, therefore, the use of UAV platforms can be very suitable. Also the large availability of digital cameras has strongly enhanced the capabilities of UAVs. The use of digital non metric cameras together with the UAV could be used for multiple applications such as aerial surveys, GIS, wildfire mapping, stability of landslides, crop monitoring, etc. The aim of this work was to develop a low cost and accurate methodology in the production of orthophotos and Digital Elevation Models (DEM). The study was conducted in the province of Almeria, south of Spain. The photogrammetric flight had an altitude of 50 m over ground, covering an area of 5.000 m2 approximately. The UAV used in this work was the md4-200, which is an electronic battery powered quadrocopter UAV developed by Microdrones GmbH, Germany. It had on-board a Pextax Optio A40 digital non metric camera with 12 Megapixels. It features a 3x optical zoom lens with a focal range covering angles of view equivalent to those of 37-111 mm lens in 35 mm format. The quadrocopter can be programmed to follow a route defined by several waypoints and actions and it has the ability for vertical take off and landing. Proper flight geometry during image acquisition is essential in order to minimize the number of photographs, avoid areas without a good coverage and make the overlaps homogeneous. The flight

  20. Measurement of knee joint motion using digital imaging.

    PubMed

    Bennett, Damien; Hanratty, Brian; Thompson, Neville; Beverland, David

    2009-12-01

    The measurement of joint motion is common practice in many aspects of orthopaedic surgery. A number of techniques and instruments have been developed for this purpose. We describe a method of recording and measuring knee joint motion using digital imaging which demonstrated high inter-observer reliability (r > 0.948) and intra-observer repeatability (r > 0.906). This technique may offer some practical advantages over other methods of measuring joint motion.

  1. Science Measurement Requirements for Imaging Spectrometers from Airborne to Spaceborne

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Asner, Gregory P.; Boardman, Joseph; Ungar, Stephen; Mouroulis, Pantazis

    2006-01-01

    This slide presentation reviews the objectives of the work to create imaging spectrometers. The science objectives are to remotely determine the properties of the surface and atmosphere (physics, chemistry and biology) revealed by the interaction of electromagnetic energy with matter via spectroscopy. It presents a review the understanding of spectral, radiometric and spatial science measurement requirements for imaging spectrometers based upon science research results from past and current airborne and spaceborne instruments. It also examines the future requirements that will enable the next level of imaging spectroscopy science.

  2. Microvascular imaging: techniques and opportunities for clinical physiological measurements.

    PubMed

    Allen, John; Howell, Kevin

    2014-07-01

    The microvasculature presents a particular challenge in physiological measurement because the vessel structure is spatially inhomogeneous and perfusion can exhibit high variability over time. This review describes, with a clinical focus, the wide variety of methods now available for imaging of the microvasculature and their key applications. Laser Doppler perfusion imaging and laser speckle contrast imaging are established, commercially-available techniques for determining microvascular perfusion, with proven clinical utility for applications such as burn-depth assessment. Nailfold capillaroscopy is also commercially available, with significant published literature that supports its use for detecting microangiopathy secondary to specific connective tissue diseases in patients with Raynaud's phenomenon. Infrared thermography measures skin temperature and not perfusion directly, and it has only gained acceptance for some surgical and peripheral microvascular applications. Other emerging technologies including imaging photoplethysmography, optical coherence tomography, photoacoustic tomography, hyperspectral imaging, and tissue viability imaging are also described to show their potential as techniques that could become established tools for clinical microvascular assessment. Growing interest in the microcirculation has helped drive the rapid development in perfusion imaging of the microvessels, bringing exciting opportunities in microvascular research.

  3. Pasadena, California Anaglyph with Aerial Photo Overlay

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This anaglyph shows NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California. Red-blue glasses are required to see the 3-D effect. The surrounding residential areas of La Canada-Flintridge (to the left) and Altadena/Pasadena (to the right) are also shown. JPL is located at the base of the San Gabriel Mountains, an actively growing mountain range, seen towards the top of the image. The large canyon coming out of the mountains (top to bottom of image) is the Arroyo Seco, which is a major drainage channel for the mountains. Sand and gravel removal operations in the lower part of the arroyo (bottom of image) are removing debris brought down by flood and mudflow events. Old landslide scars (lobe-shaped features) are seen in the arroyo, evidence that living near steep canyon slopes in tectonically active areas can be hazardous. The data can also be utilized by recreational users such as hikers enjoying the natural beauty of these rugged mountains.

    This anaglyph was generated using topographic data from the Shuttle Radar Topography Mission to create two differing perspectives of a single image, one perspective for each eye. The detailed aerial image was provided by U. S. Geological Survey digital orthophotography. Each point in the image is shifted slightly, depending on its elevation. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna

  4. Comparative Assessment of Very High Resolution Satellite and Aerial Orthoimagery

    NASA Astrophysics Data System (ADS)

    Agrafiotis, P.; Georgopoulos, A.

    2015-03-01

    This paper aims to assess the accuracy and radiometric quality of orthorectified high resolution satellite imagery from Pleiades-1B satellites through a comparative evaluation of their quantitative and qualitative properties. A Pleiades-B1 stereopair of high resolution images taken in 2013, two adjacent GeoEye-1 stereopairs from 2011 and aerial orthomosaic (LSO) provided by NCMA S.A (Hellenic Cadastre) from 2007 have been used for the comparison tests. As control dataset orthomosaic from aerial imagery provided also by NCMA S.A (0.25m GSD) from 2012 was selected. The process for DSM and orthoimage production was performed using commercial digital photogrammetric workstations. The two resulting orthoimages and the aerial orthomosaic (LSO) were relatively and absolutely evaluated for their quantitative and qualitative properties. Test measurements were performed using the same check points in order to establish their accuracy both as far as the single point coordinates as well as their distances are concerned. Check points were distributed according to JRC Guidelines for Best Practice and Quality Checking of Ortho Imagery and NSSDA standards while areas with different terrain relief and land cover were also included. The tests performed were based also on JRC and NSSDA accuracy standards. Finally, tests were carried out in order to assess the radiometric quality of the orthoimagery. The results are presented with a statistical analysis and they are evaluated in order to present the merits and demerits of the imaging sensors involved for orthoimage production. The results also serve for a critical approach for the usability and cost efficiency of satellite imagery for the production of Large Scale Orthophotos.

  5. A measurement system and image reconstruction in magnetic induction tomography.

    PubMed

    Vauhkonen, M; Hamsch, M; Igney, C H

    2008-06-01

    Magnetic induction tomography (MIT) is a technique for imaging the internal conductivity distribution of an object. In MIT current-carrying coils are used to induce eddy currents in the object and the induced voltages are sensed with other coils. From these measurements, the internal conductivity distribution of the object can be reconstructed. In this paper, we introduce a 16-channel MIT measurement system that is capable of parallel readout of 16 receiver channels. The parallel measurements are carried out using high-quality audio sampling devices. Furthermore, approaches for reconstructing MIT images developed for the 16-channel MIT system are introduced. We consider low conductivity applications, conductivity less than 5 S m(-1), and we use a frequency of 10 MHz. In the image reconstruction, we use time-harmonic Maxwell's equation for the electric field. This equation is solved with the finite element method using edge elements and the images are reconstructed using a generalized Tikhonov regularization approach. Both difference and static image reconstruction approaches are considered. Results from simulations and real measurements collected with the Philips 16-channel MIT system are shown.

  6. Aerial of the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Even in this aerial view at KSC, the Vehicle Assembly Building is imposing. In front of it is the Launch Control Center. In the background is the Rotation/Processing Facility, next to the Banana Creek. In the foreground is the Saturn Causeway that leads to Launch Pads 39A and 39B.

  7. Aerial photographic reproductions

    USGS Publications Warehouse

    ,

    1971-01-01

    Geological Survey vertical aerial photography is obtained primarily for topographic and geologic mapping. Reproductions from this photography are usually satisfactory for general use. Because reproductions are not stocked, but are custom processed for each order, they cannot be returned for credit or refund.

  8. Measurement of irrigated acreage in Western Kansas from LANDSAT images

    USGS Publications Warehouse

    Keene, K.M.; Conley, C.D.

    1980-01-01

    In the past four decades, irrigated acreage in western Kansas has increased rapidly. Optimum utilization of vital groundwater supplies requires implementation of long-term water-management programs. One important variable in such programs is up-to-date information on acreage under irrigation. Conventional ground survey methods of estimating irrigated acreage are too slow to be of maximum use in water-management programs. Visual interpretation of LANDSAT images permits more rapid measurement of irrigated acreage, but procedures are tedious and still relatively slow. For example, using a LANDSAT false-color composite image in areas of western Kansas with few landmarks, it is impossible to keep track of fields by examination under low-power microscope. Irrigated fields are more easily delineated on a photographically enlarged false-color composite and are traced on an overlay for measurement. Interpretation and measurement required 6 weeks for a four-county (3140 mi2, 8133 km2) test area. Video image-analysis equipment permits rapid measurement of irrigated acreage. Spectral response of irrigated summer crops in western Kansas on MSS band 5 (visible red, 0.6-0.7 ??m) images is low in contrast to high response from harvested and fallow fields and from common soil types. Therefore, irrigated acreage in western Kansas can be uniquely discriminated by video image analysis. The area of irrigated crops in a given area of view is measured directly. Sources of error are small in western Kansas. After preliminary preparation of the images, the time required to measure irrigated acreage was 1 h per county (average area, 876 ml2 or 2269 km2). ?? 1980 Springer-Verlag New York Inc.

  9. Weakly-Supervised Multimodal Kernel for Categorizing Aerial Photographs.

    PubMed

    Xia, Yingjie; Zhang, Luming; Liu, Zhenguang; Nie, Liqiang; Li, Xuelong

    2016-12-14

    Accurately distinguishing aerial photographs from different categories is a promising technique in computer vision. It can facilitate a series of applications such as video surveillance and vehicle navigation. In the paper, a new image kernel is proposed for effectively recognizing aerial photographs. The key is to encode high-level semantic cues into local image patches in a weakly-supervised way, and integrate multimodal visual features using a newly-developed hashing algorithm. The flowchart can be elaborated as follows. Given an aerial photo, we first extract a number of graphlets to describe its topological structure. For each graphlet, we utilize color and texture to capture its appearance, and a weakly-supervised algorithm to capture its semantics. Thereafter, aerial photo categorization can be naturally formulated as graphlet-to-graphlet matching. As the number of graphlets from each aerial photo is huge, to accelerate matching, we present a hashing algorithm to seamlessly fuze the multiple visual features into binary codes. Finally, an image kernel is calculated by fast matching the binary codes corresponding to each graphlet. And a multi-class SVM is learned for aerial photo categorization. We demonstrate the advantage of our proposed model by comparing it with state-of-the-art image descriptors. Moreover, an in-depth study of the descriptiveness of the hash-based graphlet is presented.

  10. Absolute gain measurement by the image method under mismatched condition

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Baddour, Maurice F.

    1987-01-01

    Purcell's image method for measuring the absolute gain of an antenna is particularly attractive for small test antennas. The method is simple to use and utilizes only one antenna with a reflecting plane to provide an image for the receiving antenna. However, the method provides accurate results only if the antenna is matched to its waveguide. In this paper, a waveguide junction analysis is developed to determine the gain of an antenna under mismatched condition. Absolute gain measurements for two standard gain horn antennas have been carried out. Experimental results agree closely with published data.

  11. USGS aerial resolution targets.

    USGS Publications Warehouse

    Salamonowicz, P.H.

    1982-01-01

    It is necessary to measure the achievable resolution of any airborne sensor that is to be used for metric purposes. Laboratory calibration facilities may be inadequate or inappropriate for determining the resolution of non-photographic sensors such as optical-mechanical scanners, television imaging tubes, and linear arrays. However, large target arrays imaged in the field can be used in testing such systems. The USGS has constructed an array of resolution targets in order to permit field testing of a variety of airborne sensing systems. The target array permits any interested organization with an airborne sensing system to accurately determine the operational resolution of its system. -from Author

  12. COCOA: tracking in aerial imagery

    NASA Astrophysics Data System (ADS)

    Ali, Saad; Shah, Mubarak

    2006-05-01

    Unmanned Aerial Vehicles (UAVs) are becoming a core intelligence asset for reconnaissance, surveillance and target tracking in urban and battlefield settings. In order to achieve the goal of automated tracking of objects in UAV videos we have developed a system called COCOA. It processes the video stream through number of stages. At first stage platform motion compensation is performed. Moving object detection is performed to detect the regions of interest from which object contours are extracted by performing a level set based segmentation. Finally blob based tracking is performed for each detected object. Global tracks are generated which are used for higher level processing. COCOA is customizable to different sensor resolutions and is capable of tracking targets as small as 100 pixels. It works seamlessly for both visible and thermal imaging modes. The system is implemented in Matlab and works in a batch mode.

  13. Measurements of granular flow dynamics with high speed digital images

    SciTech Connect

    Lee, J.

    1994-12-31

    The flow of granular materials is common to many industrial processes. This dissertation suggests and validates image processing algorithms applied to high speed digital images to measure the dynamics (velocity, temperature and volume fraction) of dry granular solids flowing down an inclined chute under the action of gravity. Glass and acrylic particles have been used as granular solids in the experiment. One technique utilizes block matching for spatially averaged velocity measurements of the glass particles. This technique is compared with the velocity measurement using an optic probe which is a conventional granular flow velocity measurement device. The other technique for measuring the velocities of individual acrylic particles is developed with correspondence using a Hopfield network. This technique first locates the positions of particles with pattern recognition techniques, followed by a clustering technique, which produces point patterns. Also, several techniques are compared for particle recognition: synthetic discriminant function (SDF), minimum average correlation energy (MACE) filter, modified minimum average correlation energy (MMACE) filter and variance normalized correlation. The author proposes an MMACE filter which improves generalization of the MACE filter by adjusting the amount of averaged spectrum of training images in the spectrum whitening stages of the MACE filter. Variance normalized correlation is applied to measure the velocity and temperature of flowing glass particles down the inclined chute. The measurements are taken for the steady and wavy flow and qualitatively compared with a theoretical model of granular flow.

  14. Gradient-based image recovery methods from incomplete Fourier measurements.

    PubMed

    Patel, Vishal M; Maleh, Ray; Gilbert, Anna C; Chellappa, Rama

    2012-01-01

    A major problem in imaging applications such as magnetic resonance imaging and synthetic aperture radar is the task of trying to reconstruct an image with the smallest possible set of Fourier samples, every single one of which has a potential time and/or power cost. The theory of compressive sensing (CS) points to ways of exploiting inherent sparsity in such images in order to achieve accurate recovery using sub-Nyquist sampling schemes. Traditional CS approaches to this problem consist of solving total-variation (TV) minimization programs with Fourier measurement constraints or other variations thereof. This paper takes a different approach. Since the horizontal and vertical differences of a medical image are each more sparse or compressible than the corresponding TV image, CS methods will be more successful in recovering these differences individually. We develop an algorithm called GradientRec that uses a CS algorithm to recover the horizontal and vertical gradients and then estimates the original image from these gradients. We present two methods of solving the latter inverse problem, i.e., one based on least-square optimization and the other based on a generalized Poisson solver. After a thorough derivation of our complete algorithm, we present the results of various experiments that compare the effectiveness of the proposed method against other leading methods.

  15. Shear wave transmissivity measurement by color Doppler shear wave imaging

    NASA Astrophysics Data System (ADS)

    Yamakoshi, Yoshiki; Yamazaki, Mayuko; Kasahara, Toshihiro; Sunaguchi, Naoki; Yuminaka, Yasushi

    2016-07-01

    Shear wave elastography is a useful method for evaluating tissue stiffness. We have proposed a novel shear wave imaging method (color Doppler shear wave imaging: CD SWI), which utilizes a signal processing unit in ultrasound color flow imaging in order to detect the shear wave wavefront in real time. Shear wave velocity is adopted to characterize tissue stiffness; however, it is difficult to measure tissue stiffness with high spatial resolution because of the artifact produced by shear wave diffraction. Spatial average processing in the image reconstruction method also degrades the spatial resolution. In this paper, we propose a novel measurement method for the shear wave transmissivity of a tissue boundary. Shear wave wavefront maps are acquired by changing the displacement amplitude of the shear wave and the transmissivity of the shear wave, which gives the difference in shear wave velocity between two mediums separated by the boundary, is measured from the ratio of two threshold voltages required to form the shear wave wavefronts in the two mediums. From this method, a high-resolution shear wave amplitude imaging method that reconstructs a tissue boundary is proposed.

  16. Effects of vibration measurement error on remote sensing image restoration

    NASA Astrophysics Data System (ADS)

    Sun, Xuan; Wei, Zhang; Zhi, Xiyang

    2016-10-01

    Satellite vibrations would lead to image motion blur. Since the vibration isolators cannot fully suppress the influence of vibrations, image restoration methods are usually adopted, and the vibration characteristics of imaging system are usually required as algorithm inputs for better restoration results, making the vibration measurement error strongly connected to the final outcome. If the measurement error surpass a certain range, the restoration may not be implemented successfully. Therefore it is important to test the applicable scope of restoration algorithms and control the vibrations within the range, on the other hand, if the algorithm is robust, then the requirements for both vibration isolator and vibration detector can be lowered and thus less financial cost is needed. In this paper, vibration-induced degradation is first analyzed, based on which the effects of measurement error on image restoration are further analyzed. The vibration-induced degradation is simulated using high resolution satellite images and then the applicable working condition of typical restoration algorithms are tested with simulation experiments accordingly. The research carried out in this paper provides a valuable reference for future satellite design which plan to implement restoration algorithms.

  17. A study to analyze six band multispectral images and fabricate a Fourier transform detector. [optical data processing - aerial photography/forests

    NASA Technical Reports Server (NTRS)

    Shackelford, R. G.; Walsh, J. R., Jr.

    1975-01-01

    An automatic Fourier transform diffraction pattern sampling system, used to investigate techniques for forestry classification of six band multispectral aerial photography is presented. Photographs and diagrams of the design, development and fabrication of a hybrid optical-digital Fourier transform detector are shown. The detector was designed around a concentric ring fiber optic array. This array was formed from many optical fibers which were sorted into concentric rings about a single fiber. All the fibers in each ring were collected into a bundle and terminated into a single photodetector. An optical/digital interface unit consisting of a high level multiplexer, and an analog-to-digital amplifier was also constructed and is described.

  18. Critical dimension measurement of transparent film layers by multispectral imaging.

    PubMed

    Kwon, Soonyang; Kim, Namyoon; Jo, Taeyong; Pahk, Heui Jae

    2014-07-14

    An optical microscopy system as a non-destructive method for measuring critical dimension (CD) is widely used for its stability and fastness. In case of transparent thin film measurement, it is hard to recognize the pattern under white light illumination due to its transparency and reflectance characteristics. In this paper, the optical measurement system using multispectral imaging for CD measurement of transparent thin film is introduced. The measurement system utilizes an Acousto-Optic Tunable Filter (AOTF) to illuminate the specimen with various monochromatic lights. The relationship between spectral reflectance and CD measurement are deduced from series of measurement experiments with two kinds of Indium Tin Oxide (ITO) patterned samples. When the difference of spectral reflectance between substrate and thin film layers is large enough to yield a large image intensity difference, the thin film layer can be distinguished from substrate, and it is possible to measure the CD of transparent thin films. This paper analyzes CD measurement of transparent thin film with reflectance theory and shows that the CD measurement of transparent thin film can be performed successfully with the proposed system within a certain wavelength range filtered by AOTF.

  19. Measurements and analysis in imaging for biomedical applications

    NASA Astrophysics Data System (ADS)

    Hoeller, Timothy L.

    2009-02-01

    A Total Quality Management (TQM) approach can be used to analyze data from biomedical optical and imaging platforms of tissues. A shift from individuals to teams, partnerships, and total participation are necessary from health care groups for improved prognostics using measurement analysis. Proprietary measurement analysis software is available for calibrated, pixel-to-pixel measurements of angles and distances in digital images. Feature size, count, and color are determinable on an absolute and comparative basis. Although changes in images of histomics are based on complex and numerous factors, the variation of changes in imaging analysis to correlations of time, extent, and progression of illness can be derived. Statistical methods are preferred. Applications of the proprietary measurement software are available for any imaging platform. Quantification of results provides improved categorization of illness towards better health. As health care practitioners try to use quantified measurement data for patient diagnosis, the techniques reported can be used to track and isolate causes better. Comparisons, norms, and trends are available from processing of measurement data which is obtained easily and quickly from Scientific Software and methods. Example results for the class actions of Preventative and Corrective Care in Ophthalmology and Dermatology, respectively, are provided. Improved and quantified diagnosis can lead to better health and lower costs associated with health care. Systems support improvements towards Lean and Six Sigma affecting all branches of biology and medicine. As an example for use of statistics, the major types of variation involving a study of Bone Mineral Density (BMD) are examined. Typically, special causes in medicine relate to illness and activities; whereas, common causes are known to be associated with gender, race, size, and genetic make-up. Such a strategy of Continuous Process Improvement (CPI) involves comparison of patient results

  20. Reduced reference image quality assessment via sub-image similarity based redundancy measurement

    NASA Astrophysics Data System (ADS)

    Mou, Xuanqin; Xue, Wufeng; Zhang, Lei

    2012-03-01

    The reduced reference (RR) image quality assessment (IQA) has been attracting much attention from researchers for its loyalty to human perception and flexibility in practice. A promising RR metric should be able to predict the perceptual quality of an image accurately while using as few features as possible. In this paper, a novel RR metric is presented, whose novelty lies in two aspects. Firstly, it measures the image redundancy by calculating the so-called Sub-image Similarity (SIS), and the image quality is measured by comparing the SIS between the reference image and the test image. Secondly, the SIS is computed by the ratios of NSE (Non-shift Edge) between pairs of sub-images. Experiments on two IQA databases (i.e. LIVE and CSIQ databases) show that by using only 6 features, the proposed metric can work very well with high correlations between the subjective and objective scores. In particular, it works consistently well across all the distortion types.

  1. Area and Elevation Changes of a Debris-Covered Glacier and a Clean-Ice Glacier Between 1952-2013 Using Aerial Images and Structure-from-Motion

    NASA Astrophysics Data System (ADS)

    Lardeux, P.; Glasser, N. F.; Holt, T.; Irvine-Fynn, T. D.; Hubbard, B. P.

    2015-12-01

    Since 1952, the clean-ice Glacier Blanc has retreated twice as fast as the adjacent debris-covered Glacier Noir. Located in the French Alps and separated by only 1 km, both glaciers experience the same climatic conditions, making them ideal to evaluate the impact of debris cover on glacier evolution. We used aerial photographs from 16 acquisitions from 1952 to 2013 to reconstruct and analyze glacier elevation changes using Structure-from-Motion (SfM) techniques. Here, we present the process of developing sub-metric resolution digital elevation models (DEMs) from these aerial photographs. By combining 16 DEMs, we produced a dataset of elevation changes of Glacier Noir and Glacier Blanc, including time-series analysis of lateral and longitudinal profiles, glacier hypsometry and mass balance variation. Our preliminary results indicate that Glacier Noir and Glacier Blanc have both thinned to a similar magnitude, ≤ 20 m, despite a 1 km retreat for Glacier Blanc and only 500 m for Glacier Noir. However, these elevation change reconstructions are hampered by large uncertainties, principally due to the lack of independent camera calibration on the historical imagery. Initial attempts using posteriori correction grids have proven to significantly increase the accuracy of these data. We will present some of the uncertainties and solutions linked to the use of SfM on such a large scale and on such an old dataset. This study demonstrates how SfM can be used to investigate long-term trends in environmental change, allowing glacier monitoring to be up-scaled. It also highlights the need for on-going validation of methods to increase the accuracy and precision of SfM in glaciology. This work is not only advancing our understanding of the role of the debris layer, but will also aid glacial geology more generally with, for example, detailed geomorphological analysis of proglacial terrain and Quaternary sciences with quick and accurate reconstruction of a glacial paleo-environment.

  2. JUPOS : Amateur analysis of Jupiter images with specialized measurement software

    NASA Astrophysics Data System (ADS)

    Jacquesson, M.; Mettig, H.-J.

    2008-09-01

    Introduction - Beginning of JUPOS in 1989, H.J. Mettig and Grischa Hahn in Dresden - 350.000 positional measures on electronic images of almost 180 observers have been gathered since 1998 - What do we mean by "electronic images": o digitized hi-res chemical photographs o traditional CCD technique o webcam images - 2002 started the implementation of WinJUPOS by Grischa, now finished - Cooperation with the Jupiter Section of the BAA for many years - At present, JUPOS has four active measurers: o Gianluigi Adamoli and Marco Vedovato (Italy) o H.J. Mettig (Germany) o Michel Jacquesson (France) How we work together - Each member of the team measures images of several observers (useful to detect and avoid systematic errors) - When necessary, exchange of problems and ideas by e-mail - During the period of visibility of Jupiter, team leader H.J. Mettig: o collects all recent measurements about once a month o produces drift charts - Once a year or two, the JUPOS team helds an informal meeting Criteria for image selection 1) Validity of time and date: Origins of time errors: 1. local zonal times are wrongly (or, not at all) converted to UT. This is still easy to find out: Either "only" the full hour is erroneous, or/and the date (problem of observers with UTC+10) 2. the computer clock has not been synchronised over a longer period 3. exposure of the final image exceeds the recommended two minutes or observers communicate begin or end of the total period of image recording instead of its middle How to test the validity of the time? - Position of a galilean satellite visible on or near Jupiter - Position of a satellite shadow - Measuring the longitude of permanent or long lived objects whose positions are known from former measurements 2) Avoid measuring the same object on different images taken at about the same time. One image every 1 ½ hours is sufficient 3) Duration of exposure: not more than 2-3 minutes because of the rapid rotation of Jupiter 4) Spectral range: Visual

  3. Measuring photometric redshifts using galaxy images and Deep Neural Networks

    NASA Astrophysics Data System (ADS)

    Hoyle, B.

    2016-07-01

    We propose a new method to estimate the photometric redshift of galaxies by using the full galaxy image in each measured band. This method draws from the latest techniques and advances in machine learning, in particular Deep Neural Networks. We pass the entire multi-band galaxy image into the machine learning architecture to obtain a redshift estimate that is competitive, in terms of the measured point prediction metrics, with the best existing standard machine learning techniques. The standard techniques estimate redshifts using post-processed features, such as magnitudes and colours, which are extracted from the galaxy images and are deemed to be salient by the user. This new method removes the user from the photometric redshift estimation pipeline. However we do note that Deep Neural Networks require many orders of magnitude more computing resources than standard machine learning architectures, and as such are only tractable for making predictions on datasets of size ≤50k before implementing parallelisation techniques.

  4. Use of image guided radiation therapy techniques and imaging dose measurement at Indian hospitals: A survey

    PubMed Central

    Deshpande, Sudesh; Dhote, D. S.; Kumar, Rajesh; Naidu, Suresh; Sutar, A.; Kannan, V.

    2015-01-01

    A national survey was conducted to obtain information about the use of image-guided radiotherapy (IGRT) techniques and IGRT dose measurement methods being followed at Indian radiotherapy centers. A questionnaire containing parameters relevant to use of IGRT was prepared to collect the information pertaining to (i) availability and type of IGRT delivery system, (ii) frequency of image acquisition protocol and utilization of these images for different purpose, and (iii) imaging dose measurement. The questionnaire was circulated to 75 hospitals in the country having IGRT facility, and responses of 51 centers were received. Survey results showed that among surveyed hospitals, 86% centers have IGRT facility, 78% centers have kilo voltage three-dimensional volumetric imaging. 75% of hospitals in our study do not perform computed tomography dose index measurements and 89% of centers do not perform patient dose measurements. Moreover, only 29% physicists believe IGRT dose is additional radiation burden to patient. This study has brought into focus the need to design a national protocol for IGRT dose measurement and development of indigenous tools to perform IGRT dose measurements. PMID:26865758

  5. Measurement of the angle of superficial tension by images

    NASA Astrophysics Data System (ADS)

    Yanez M., Javier; Alonso R., Sergio

    2006-02-01

    When a liquid is deposited on a surface, this one form a certain angle with respect to the surface, where depending on its value, it will conclude that so hard it is his adhesion with the surface. By means of the analysis of images we looked for to measure this angle of superficial tension. In order to make this measurement, we propose a technique by means of projective transformations and one method of regression to estimation parameters to conic fitting.

  6. In vivo imaging and vibration measurement of Guinea pig cochlea

    NASA Astrophysics Data System (ADS)

    Choudhury, Niloy; Chen, Fangyi; Zheng, Jiefu; Nuttall, Alfred L.; Jacques, Steven L.

    2008-02-01

    An optical coherence tomography (OCT) system was built to acquire in vivo, both images and vibration measurements of the organ of Corti of the guinea pig. The organ of Corti was viewed through a ~500-μm diameter hole in the bony wall of the scala tympani of the first cochlear turn. In imaging mode, the image was acquired as reflectance R(x,z). In vibration mode, the basilar membrane (BM) or reticular lamina (RL) was selected based on the image. Under software control, the system would move the scanning mirrors to bring the sensing volume of the measurement to the desired tissue location. To address the gain stability problem of the homodyne OCT system, arising from the system moving in and out of the quadrature point and also to resolve the 180 degree ambiguity in the phase measurement using an interferometer, a vibration calibration method is developed by adding a vibrating source to the reference arm to monitor the operating point of the interferometric system. Amplitude gain and phase of various cochlear membranes was measured for different sound pressure level (SPL) varying from 65dB SPL to 93 dB SPL.

  7. Studies of soundings and imaging measurements from geostationary satellites

    NASA Technical Reports Server (NTRS)

    Suomi, V. E.

    1973-01-01

    Soundings and imaging measurements obtained from geostationary satellites for the period 1 Nov. 1972 to 31 Jan. 1973 are reported. The subjects discussed are: (1) investigation of meteorological data processing techniques, (2) sun glitter, (3) cloud growth rate, and (4) comparative studies in satellite stability.

  8. The DOE ARM Aerial Facility

    SciTech Connect

    Schmid, Beat; Tomlinson, Jason M.; Hubbe, John M.; Comstock, Jennifer M.; Mei, Fan; Chand, Duli; Pekour, Mikhail S.; Kluzek, Celine D.; Andrews, Elisabeth; Biraud, S.; McFarquhar, Greg

    2014-05-01

    The Department of Energy Atmospheric Radiation Measurement (ARM) Program is a climate research user facility operating stationary ground sites that provide long-term measurements of climate relevant properties, mobile ground- and ship-based facilities to conduct shorter field campaigns (6-12 months), and the ARM Aerial Facility (AAF). The airborne observations acquired by the AAF enhance the surface-based ARM measurements by providing high-resolution in-situ measurements for process understanding, retrieval-algorithm development, and model evaluation that are not possible using ground- or satellite-based techniques. Several ARM aerial efforts were consolidated into the AAF in 2006. With the exception of a small aircraft used for routine measurements of aerosols and carbon cycle gases, AAF at the time had no dedicated aircraft and only a small number of instruments at its disposal. In this "virtual hangar" mode, AAF successfully carried out several missions contracting with organizations and investigators who provided their research aircraft and instrumentation. In 2009, AAF started managing operations of the Battelle-owned Gulfstream I (G-1) large twin-turboprop research aircraft. Furthermore, the American Recovery and Reinvestment Act of 2009 provided funding for the procurement of over twenty new instruments to be used aboard the G-1 and other AAF virtual-hangar aircraft. AAF now executes missions in the virtual- and real-hangar mode producing freely available datasets for studying aerosol, cloud, and radiative processes in the atmosphere. AAF is also engaged in the maturation and testing of newly developed airborne sensors to help foster the next generation of airborne instruments.

  9. Accurate measurement of curvilinear shapes by Virtual Image Correlation

    NASA Astrophysics Data System (ADS)

    Semin, B.; Auradou, H.; François, M. L. M.

    2011-10-01

    The proposed method allows the detection and the measurement, in the sense of metrology, of smooth elongated curvilinear shapes. Such measurements are required in many fields of physics, for example: mechanical engineering, biology or medicine (deflection of beams, fibers or filaments), fluid mechanics or chemistry (detection of fronts). Contrary to actual methods, the result is given in an analytical form of class C∞ (and not a finite set of locations or pixels) thus curvatures and slopes, often of great interest in science, are given with good confidence. The proposed Virtual Image Correlation (VIC) method uses a virtual beam, an image which consists in a lateral expansion of the curve with a bell-shaped gray level. This figure is deformed until it fits the best the physical image with a method issued from the Digital Image Correlation method in use in solid mechanics. The precision of the identification is studied in a benchmark and successfully compared to two state-of-the-art methods. Three practical examples are given: a bar bending under its own weight, a thin fiber transported by a flow within a fracture and a thermal front. The first allows a comparison with theoretical solution, the second shows the ability of the method to deal with complex shapes and crossings and the third deals with ill-defined image.

  10. Measurement of seasonal and yearly aquatic macrophyte changes in a reservoir using multidate aerial photography and SPOT digital remote sensor data

    SciTech Connect

    Jensen, J.R.; Narumalani, S.; Weatherbee, O. . Dept. of Geography); Mackey, H.E. Jr. )

    1992-01-01

    Wetlands assimilate pollutants, provide flood control, and serve as breeding, nursery, and feeding grounds for fish and wildlife. Information on wetland distribution and condition are essential for their effective protection and management. Unfortunately, wetlands present challenges to effective evaluation and quantification. For example, inland wetlands are found in diverse geographic areas ranging from small tributary streams, shrub/scrub and marsh communities, to open water lacustrine environments. In addition, the type and spatial distribution of wetlands can change dramatically between season, especially when non-persistent species are present. There are four alternatives for collecting aquatic macrophyte wetland information, including: (1) in situ field investigation, ideally using global positioning systems, (2) interpreting aerial photography, (3) analyzing high resolution aircraft multispectral scanner (MSS) data and (4) digital analysis of satellite remote sensor data. An earlier study reviewed these alternatives in detail and provided a case study on the use of (a) multidate color and color-infrared aerial photography, and (b) a single year of SPOT remote sensor data. This study builds on the initial work by demonstrating the use of multiple season and multiple year SPOT panchromatic satellite digital data for aquatic macrophyte inventory and analysis in Par Pond on the Savannah River Site, South Carolina.

  11. Structural Measurements from Images of Noble Gas Diffusion

    NASA Astrophysics Data System (ADS)

    Cadman, Robert V.; Kadlecek, Stephen J.; Emami, Kiarash; MacDuffie Woodburn, John; Vahdat, Vahid; Ishii, Masaru; Rizi, Rahim R.

    2009-03-01

    Magnetic resonance imaging of externally polarized noble gases such as ^3He has been used for pulmonary imaging for more than a decade. Because gas diffusion is impeded by the alveoli, the diffusion coefficient of gas in the lung, measured on a time scale of milliseconds, is reduced compared to that of the same gas mixture in the absence of restrictions. When the alveolar walls decay, as in emphysema, diffusivity in the lung increases. In this paper, the relationship between diffusion measurements and the size of the restricting structures will be discussed. The simple case of diffusion in an impermeable cylinder, a structure similar to the upper respiratory airways in mammals, has been studied. A procedure will be presented by which airways of order 2 mm in diameter may be accurately measured; demonstration experiments with plastic tubes will also be presented. The additional developments needed before this technique becomes practical will be briefly discussed.

  12. Automatic detection and severity measurement of eczema using image processing.

    PubMed

    Alam, Md Nafiul; Munia, Tamanna Tabassum Khan; Tavakolian, Kouhyar; Vasefi, Fartash; MacKinnon, Nick; Fazel-Rezai, Reza

    2016-08-01

    Chronic skin diseases like eczema may lead to severe health and financial consequences for patients if not detected and controlled early. Early measurement of disease severity, combined with a recommendation for skin protection and use of appropriate medication can prevent the disease from worsening. Current diagnosis can be costly and time-consuming. In this paper, an automatic eczema detection and severity measurement model are presented using modern image processing and computer algorithm. The system can successfully detect regions of eczema and classify the identified region as mild or severe based on image color and texture feature. Then the model automatically measures skin parameters used in the most common assessment tool called "Eczema Area and Severity Index (EASI)," by computing eczema affected area score, eczema intensity score, and body region score of eczema allowing both patients and physicians to accurately assess the affected skin.

  13. Measurement and control systems for an imaging electromagnetic flow metre.

    PubMed

    Zhao, Y Y; Lucas, G; Leeungculsatien, T

    2014-03-01

    Electromagnetic flow metres based on the principles of Faraday's laws of induction have been used successfully in many industries. The conventional electromagnetic flow metre can measure the mean liquid velocity in axisymmetric single phase flows. However, in order to achieve velocity profile measurements in single phase flows with non-uniform velocity profiles, a novel imaging electromagnetic flow metre (IEF) has been developed which is described in this paper. The novel electromagnetic flow metre which is based on the 'weight value' theory to reconstruct velocity profiles is interfaced with a 'Microrobotics VM1' microcontroller as a stand-alone unit. The work undertaken in the paper demonstrates that an imaging electromagnetic flow metre for liquid velocity profile measurement is an instrument that is highly suited for control via a microcontroller.

  14. Sand Shear Band Thickness Measurements by Digital Imaging Techniques

    NASA Technical Reports Server (NTRS)

    Alshibli, Khalid A.; Sture, Stein

    1998-01-01

    Digital imaging analysis was used to study localized deformations in granular materials tested under plane strain condition. Two independent techniques were applied and compared. In the first, the digitized optical images of a grid printed on the latex membrane were used to measure the shear band orientation angle and thickness, and were found to be 54.5' and 3.01 mm respectively. The second technique involved introducing an ultra-low viscosity resin into the specimen in preparation for thin- sectioning and microscopic study of the internal fabric. A total of 24 microscopic images obtained from four thin sections were analyzed and void ratio variation was measured. The shear band thickness measurements from images located along the shear band axis (at two locations) were equal to 3.19 mm and 3.29 mm which are very close to the average value obtained from surface analysis. The study was then extended to investigate the effects of sand grain-size and properties, specimen density, and confining pressure on shear band thickness. It was found that the normalized shear band thickness decreases as grain-size and confining pressure increase and as density decreases. Finally, shear band thickness is highly influenced by the specimen dilatancy.

  15. Photogrammetric mapping using unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Graça, N.; Mitishita, E.; Gonçalves, J.

    2014-11-01

    Nowadays Unmanned Aerial Vehicle (UAV) technology has attracted attention for aerial photogrammetric mapping. The low cost and the feasibility to automatic flight along commanded waypoints can be considered as the main advantages of this technology in photogrammetric applications. Using GNSS/INS technologies the images are taken at the planned position of the exposure station and the exterior orientation parameters (position Xo, Yo, Zo and attitude ω, φ, χ) of images can be direct determined. However, common UAVs (off-the-shelf) do not replace the traditional aircraft platform. Overall, the main shortcomings are related to: difficulties to obtain the authorization to perform the flight in urban and rural areas, platform stability, safety flight, stability of the image block configuration, high number of the images and inaccuracies of the direct determination of the exterior orientation parameters of the images. In this paper are shown the obtained results from the project photogrammetric mapping using aerial images from the SIMEPAR UAV system. The PIPER J3 UAV Hydro aircraft was used. It has a micro pilot MP2128g. The system is fully integrated with 3-axis gyros/accelerometers, GPS, pressure altimeter, pressure airspeed sensors. A Sony Cyber-shot DSC-W300 was calibrated and used to get the image block. The flight height was close to 400 m, resulting GSD near to 0.10 m. The state of the art of the used technology, methodologies and the obtained results are shown and discussed. Finally advantages/shortcomings found in the study and main conclusions are presented

  16. Geometric, Kinematic and Radiometric Aspects of Image-Based Measurements

    NASA Technical Reports Server (NTRS)

    Liu, Tianshu

    2002-01-01

    This paper discusses theoretical foundations of quantitative image-based measurements for extracting and reconstructing geometric, kinematic and dynamic properties of observed objects. New results are obtained by using a combination of methods in perspective geometry, differential geometry. radiometry, kinematics and dynamics. Specific topics include perspective projection transformation. perspective developable conical surface, perspective projection under surface constraint, perspective invariants, the point correspondence problem. motion fields of curves and surfaces. and motion equations of image intensity. The methods given in this paper arc useful for determining morphology and motion fields of deformable bodies such as elastic bodies. viscoelastic mediums and fluids.

  17. Effects of frame rate and image resolution on pulse rate measured using multiple camera imaging photoplethysmography

    NASA Astrophysics Data System (ADS)

    Blackford, Ethan B.; Estepp, Justin R.

    2015-03-01

    Non-contact, imaging photoplethysmography uses cameras to facilitate measurements including pulse rate, pulse rate variability, respiration rate, and blood perfusion by measuring characteristic changes in light absorption at the skin's surface resulting from changes in blood volume in the superficial microvasculature. Several factors may affect the accuracy of the physiological measurement including imager frame rate, resolution, compression, lighting conditions, image background, participant skin tone, and participant motion. Before this method can gain wider use outside basic research settings, its constraints and capabilities must be well understood. Recently, we presented a novel approach utilizing a synchronized, nine-camera, semicircular array backed by measurement of an electrocardiogram and fingertip reflectance photoplethysmogram. Twenty-five individuals participated in six, five-minute, controlled head motion artifact trials in front of a black and dynamic color backdrop. Increasing the input channel space for blind source separation using the camera array was effective in mitigating error from head motion artifact. Herein we present the effects of lower frame rates at 60 and 30 (reduced from 120) frames per second and reduced image resolution at 329x246 pixels (one-quarter of the original 658x492 pixel resolution) using bilinear and zero-order downsampling. This is the first time these factors have been examined for a multiple imager array and align well with previous findings utilizing a single imager. Examining windowed pulse rates, there is little observable difference in mean absolute error or error distributions resulting from reduced frame rates or image resolution, thus lowering requirements for systems measuring pulse rate over sufficient length time windows.

  18. Imaging and mechanical property measurements of kerogen via nanoindentation

    NASA Astrophysics Data System (ADS)

    Zeszotarski, Jonathan C.; Chromik, Richard R.; Vinci, Richard P.; Messmer, Marie C.; Michels, Raymond; Larsen, John W.

    2004-10-01

    Most analyses of kerogens rely on samples that have been isolated by dissolving the rock matrix. The properties of the kerogen before and after such isolation may be different and all sample orientation information is lost. We report a method of measuring kerogen mechanical properties in the rock matrix without isolation. An atomic force microscope (AFM) based nanoindenter is used to measure the hardness and reduced modulus of the kerogen within Woodford shale. The same instrument also provides useful images of polished rock sections on a submicrometer scale. Measurements were carried out both parallel and perpendicular to the bedding plane.

  19. Computerized segmentation and measurement of chronic wound images.

    PubMed

    Ahmad Fauzi, Mohammad Faizal; Khansa, Ibrahim; Catignani, Karen; Gordillo, Gayle; Sen, Chandan K; Gurcan, Metin N

    2015-05-01

    An estimated 6.5 million patients in the United States are affected by chronic wounds, with more than US$25 billion and countless hours spent annually for all aspects of chronic wound care. There is a need for an intelligent software tool to analyze wound images, characterize wound tissue composition, measure wound size, and monitor changes in wound in between visits. Performed manually, this process is very time-consuming and subject to intra- and inter-reader variability. In this work, our objective is to develop methods to segment, measure and characterize clinically presented chronic wounds from photographic images. The first step of our method is to generate a Red-Yellow-Black-White (RYKW) probability map, which then guides the segmentation process using either optimal thresholding or region growing. The red, yellow and black probability maps are designed to handle the granulation, slough and eschar tissues, respectively; while the white probability map is to detect the white label card for measurement calibration purposes. The innovative aspects of this work include defining a four-dimensional probability map specific to wound characteristics, a computationally efficient method to segment wound images utilizing the probability map, and auto-calibration of wound measurements using the content of the image. These methods were applied to 80 wound images, captured in a clinical setting at the Ohio State University Comprehensive Wound Center, with the ground truth independently generated by the consensus of at least two clinicians. While the mean inter-reader agreement between the readers varied between 67.4% and 84.3%, the computer achieved an average accuracy of 75.1%.

  20. a Method for Simultaneous Aerial and Terrestrial Geodata Acquisition for Corridor Mapping

    NASA Astrophysics Data System (ADS)

    Molina, P.; Blázquez, M.; Sastre, J.; Colomina, I.

    2015-08-01

    In this paper, we present mapKITE, a new mobile, simultaneous terrestrial and aerial, geodata collection and post-processing method. On one side, the method combines a terrestrial mobile mapping system (TMMS) with an unmanned aerial mapping one, both equipped with remote sensing payloads (at least, a nadir-looking visible-band camera in the UA) by means of which aerial and terrestrial geodata are acquired simultaneously. This tandem geodata acquisition system is based on a terrestrial vehicle (TV) and on an unmanned aircraft (UA) linked by a 'virtual tether', that is, a mechanism based on the real-time supply of UA waypoints by the TV. By means of the TV-to-UA tether, the UA follows the TV keeping a specific relative TV-to-UA spatial configuration enabling the simultaneous operation of both systems to obtain highly redundant and complementary geodata. On the other side, mapKITE presents a novel concept for geodata post-processing favoured by the rich geometrical aspects derived from the mapKITE tandem simultaneous operation. The approach followed for sensor orientation and calibration of the aerial images captured by the UA inherits the principles of Integrated Sensor Orientation (ISO) and adds the pointing-and-scaling photogrammetric measurement of a distinctive element observed in every UA image, which is a coded target mounted on the roof of the TV. By means of the TV navigation system, the orientation of the TV coded target is performed and used in the post-processing UA image orientation approach as a Kinematic Ground Control Point (KGCP). The geometric strength of a mapKITE ISO network is therefore high as it counts with the traditional tie point image measurements, static ground control points, kinematic aerial control and the new point-and-scale measurements of the KGCPs. With such a geometry, reliable system and sensor orientation and calibration and eventual further reduction of the number of traditional ground control points is feasible. The different

  1. Experimentally measured MTF's associated with imaging through turbid water

    NASA Astrophysics Data System (ADS)

    Witherspoon, N.; Strand, M.; Holloway, J., Jr.; Price, B.; Brown, D.

    1988-01-01

    One factor which affects the ability to image an underwater object from the atmosphere is water turbidity. The performance of an imaging system is often expressed by the limiting resolution which is determined from the contrast transfer function (CTF). The image quality is usually expressed in terms of the modulation transfer function (MTF). This paper presents the results from carefully controlled laboratory experiments to determine the CTFs and the MTFs of a turbid water medium for Jackson turbidity units (JTUs) ranging from 0 to 24. MTFs are generated from a narrow strip target and CTFs are generated from standard resolution bar targets. MTF results are compared with earlier work and CTFs calculated from MTFs are compared with measured CTFs.

  2. Beam quality measurements using digitized laser beam images

    SciTech Connect

    Duncan, M.D. ); Mahon, R. )

    1989-11-01

    A method is described for measuring various laser beam characteristics with modest experimental complexity by digital processing of the near and far field images. Gaussian spot sizes, peak intensities, and spatial distributions of the images are easily found. Far field beam focusability is determined by computationally applying apertures of circular of elliptical diameters to the digitized image. Visualization of the magnitude of phase and intensity distortions is accomplished by comparing the 2-D fast Fourier transform of both smoothed and unsmoothed near field data to the actual far field data. The digital processing may be performed on current personal computers to give the experimenter unprecedented capabilities for rapid beam characteriztion at relatively low cost.

  3. Novel Applications of Laser Doppler Vibration Measurements to Medical Imaging.

    PubMed

    Tabatabai, Habib; Oliver, David E; Rohrbaugh, John W; Papadopoulos, Christopher

    2013-01-01

    Laser Doppler Vibrometry (LDV) has been widely used in engineering applications involving non-contact vibration and sound measurements. This technique has also been used in some biomedical applications including hearing research. The detectable frequencies are in the range of near-DC to 1 GHz or higher. This paper reviews applications of LDV in biomedical engineering and proposes new medical imaging applications based on measuring surface vibrations of tissues and organs. Tests were conducted on human skin using single point and scanning laser vibrometers. These tests suggest that skin vibrations due to the forcing excitation from the heart can be used in imaging of blood flow. The results of these tests illustrate the potential of such vibration measurements in a variety of diagnostic medical imaging applications including blood flow/restrictions, real-time monitoring of blood pressure variations, wound healing, muscle movements, etc. The fact that the measurements can be conducted remotely (non-contact) is an important benefit that adds to the promise of this approach.

  4. Learning evaluation of ultrasound image segmentation using combined measures

    NASA Astrophysics Data System (ADS)

    Fang, Mengjie; Luo, Yongkang; Ding, Mingyue

    2016-03-01

    Objective evaluation of medical image segmentation is one of the important steps for proving its validity and clinical applicability. Although there are many researches presenting segmentation methods on medical image, while with few studying the evaluation methods on their results, this paper presents a learning evaluation method with combined measures to make it as close as possible to the clinicians' judgment. This evaluation method is more quantitative and precise for the clinical diagnose. In our experiment, the same data sets include 120 segmentation results of lumen-intima boundary (LIB) and media-adventitia boundary (MAB) of carotid ultrasound images respectively. And the 15 measures of goodness method and discrepancy method are used to evaluate the different segmentation results alone. Furthermore, the experimental results showed that compared with the discrepancy method, the accuracy with the measures of goodness method is poor. Then, by combining with the measures of two methods, the average accuracy and the area under the receiver operating characteristic (ROC) curve of 2 segmentation groups are higher than 93% and 0.9 respectively. And the results of MAB are better than LIB, which proved that this novel method can effectively evaluate the segmentation results. Moreover, it lays the foundation for the non-supervised segmentation evaluation system.

  5. Novel Applications of Laser Doppler Vibration Measurements to Medical Imaging

    NASA Astrophysics Data System (ADS)

    Tabatabai, Habib; Oliver, David E.; Rohrbaugh, John W.; Papadopoulos, Christopher

    2013-06-01

    Laser Doppler Vibrometry (LDV) has been widely used in engineering applications involving non-contact vibration and sound measurements. This technique has also been used in some biomedical applications including hearing research. The detectable frequencies are in the range of near-DC to 1 GHz or higher. This paper reviews applications of LDV in biomedical engineering and proposes new medical imaging applications based on measuring surface vibrations of tissues and organs. Tests were conducted on human skin using single point and scanning laser vibrometers. These tests suggest that skin vibrations due to the forcing excitation from the heart can be used in imaging of blood flow. The results of these tests illustrate the potential of such vibration measurements in a variety of diagnostic medical imaging applications including blood flow/restrictions, real-time monitoring of blood pressure variations, wound healing, muscle movements, etc. The fact that the measurements can be conducted remotely (non-contact) is an important benefit that adds to the promise of this approach.

  6. Ion gyroscale fluctuation measurement with microwave imaging reflectometer on KSTAR

    NASA Astrophysics Data System (ADS)

    Lee, W.; Leem, J.; Yun, G. S.; Park, H. K.; Ko, S. H.; Wang, W. X.; Budny, R. V.; Luhmann, N. C.; Kim, K. W.

    2016-11-01

    Ion gyroscale turbulent fluctuations with the poloidal wavenumber kθ ˜ 3 cm-1 have been measured in the core region of the neutral beam (NB) injected low confinement (L-mode) plasmas on Korea superconducting tokamak advanced research. The turbulence poloidal wavenumbers are deduced from the frequencies and poloidal rotation velocities in the laboratory frame, measured by the multichannel microwave imaging reflectometer. Linear and nonlinear gyrokinetic simulations also predict the unstable modes with the normalized wavenumber kθρs ˜ 0.4, consistent with the measurement. Comparison of the measured frequencies with the intrinsic mode frequencies from the linear simulations indicates that the measured ones are primarily due to the E × B flow velocity in the NB-injected fast rotating plasmas.

  7. High Resolution Urban Land Cover Mapping Using NAIP Aerial Photography and Image Processing for the USEPA National Atlas of Sustainability and Ecosystem Services

    NASA Astrophysics Data System (ADS)

    Pilant, A. N.; Baynes, J.; Dannenberg, M.

    2012-12-01

    The US EPA National Atlas for Sustainability is a web-based, easy-to-use, mapping application that allows users to view and analyze multiple ecosystem services in a specific region. The Atlas provides users with a visual method for interpreting ecosystem services and understanding how they can be conserved and enhanced for a sustainable future. The Urban Atlas component of the National Atlas will provide fine-scale information linking human health and well-being to environmental conditions such as urban heat islands, near-road pollution, resource use, access to recreation, drinking water quality and other quality of life indicators. The National Land Cover Data (NLCD) derived from 30 m scale 2006 Landsat imagery provides the land cover base for the Atlas. However, urban features and phenomena occur at finer spatial scales, so higher spatial resolution and more current LC maps are required. We used 4 band USDA NAIP imagery (1 m pixel size) and various classification approaches to produce urban land cover maps with these classes: impervious surface, grass and herbaceous, trees and forest, soil and barren, and water. Here we present the remote sensing methods used and results from four pilot cities in this effort, highlighting the pros and cons of the approach, and the benefits to sustainability and ecosystem services analysis. Example of high resolution land cover map derived from USDA NAIP aerial photo. Compare 30 m and 1 m resolution land cover maps of downtown Durham, NC.

  8. Imaging photorefractive optical vibration measurement method and device

    DOEpatents

    Telschow, Kenneth L.; Deason, Vance A.; Hale, Thomas C.

    2000-01-01

    A method and apparatus are disclosed for characterizing a vibrating image of an object of interest. The method includes providing a sensing media having a detection resolution within a limited bandwidth and providing an object of interest having a vibrating medium. Two or more wavefronts are provided, with at least one of the wavefronts being modulated by interacting the one wavefront with the vibrating medium of the object of interest. The another wavefront is modulated such that the difference frequency between the one wavefront and the another wavefront is within a response range of the sensing media. The modulated one wavefront and another wavefront are combined in association with the sensing media to interfere and produce simultaneous vibration measurements that are distributed over the object so as to provide an image of the vibrating medium. The image has an output intensity that is substantially linear with small physical variations within the vibrating medium. Furthermore, the method includes detecting the image. In one implementation, the apparatus comprises a vibration spectrum analyzer having an emitter, a modulator, sensing media and a detector configured so as to realize such method. According to another implementation, the apparatus comprises a vibration imaging device.

  9. Image processing system for the measurement of timber truck loads

    NASA Astrophysics Data System (ADS)

    Carvalho, Fernando D.; Correia, Bento A. B.; Davies, Roger; Rodrigues, Fernando C.; Freitas, Jose C. A.

    1993-01-01

    The paper industry uses wood as its raw material. To know the quantity of wood in the pile of sawn tree trunks, every truck load entering the plant is measured to determine its volume. The objective of this procedure is to know the solid volume of wood stocked in the plant. Weighing the tree trunks has its own problems, due to their high capacity for absorbing water. Image processing techniques were used to evaluate the volume of a truck load of logs of wood. The system is based on a PC equipped with an image processing board using data flow processors. Three cameras allow image acquisition of the sides and rear of the truck. The lateral images contain information about the sectional area of the logs, and the rear image contains information about the length of the logs. The machine vision system and the implemented algorithms are described. The results being obtained with the industrial prototype that is now installed in a paper mill are also presented.

  10. Blending zone determination for aerial orthimage mosaicking

    NASA Astrophysics Data System (ADS)

    Lin, Chao-Hung; Chen, Bo-Heng; Lin, Bo-Yi; Chou, Han-Szu

    2016-09-01

    Creating a composed image from a set of aerial images is a fundamental step in orthomosaic generation. One of the processes involved in this technique is determining an optimal seamline in an overlapping region to stitch image patches seamlessly. Most previous studies have solved this optimization problem by searching for a one-pixel-wide seamline with an objective function. This strategy significantly reduced pixel mismatches on the seamline caused by geometric distortions of images but did not fully consider color discontinuity and mismatch problems that occur around the seamline, which sometimes cause mosaicking artifacts. This study proposes a blending zone determination scheme with a novel path finding algorithm to reduce the occurrence of unwanted artifacts. Instead of searching for a one-pixel-wide seamline, a blending zone, which is a k-pixel-wide seamline that passes through high-similarity pixels in the overlapping region, is determined using a hierarchical structure. This strategy allows for not only seamless stitching but also smooth color blending of neighboring image patches. Moreover, the proposed method searches for a blending zone without the pre-process of highly mismatched pixel removal and additional geographic data of road vectors and digital surface/elevation models, which increases the usability of the approach. Qualitative and quantitative analyses of aerial images demonstrate the superiority of the proposed method to related methods in terms of avoidance of passing highly mismatched pixels.

  11. Optical properties of tissue measured using terahertz-pulsed imaging

    NASA Astrophysics Data System (ADS)

    Berry, Elizabeth; Fitzgerald, Anthony J.; Zinov'ev, Nickolay N.; Walker, Gillian C.; Homer-Vanniasinkam, Shervanthi; Sudworth, Caroline D.; Miles, Robert E.; Chamberlain, J. Martyn; Smith, Michael A.

    2003-06-01

    The first demonstrations of terahertz imaging in biomedicine were made several years ago, but few data are available on the optical properties of human tissue at terahertz frequencies. A catalogue of these properties has been established to estimate variability and determine the practicality of proposed medical applications in terms of penetration depth, image contrast and reflection at boundaries. A pulsed terahertz imaging system with a useful bandwidth 0.5-2.5 THz was used. Local ethical committee approval was obtained. Transmission measurements were made through tissue slices of thickness 0.08 to 1 mm, including tooth enamel and dentine, cortical bone, skin, adipose tissue and striated muscle. The mean and standard deviation for refractive index and linear attenuation coefficient, both broadband and as a function of frequency, were calculated. The measurements were used in simple models of the transmission, reflection and propagation of terahertz radiation in potential medical applications. Refractive indices ranged from 1.5 +/- 0.5 for adipose tissue to 3.06 +/- 0.09 for tooth enamel. Significant differences (P < 0.05) were found between the broadband refractive indices of a number of tissues. Terahertz radiation is strongly absorbed in tissue so reflection imaging, which has lower penetration requirements than transmission, shows promise for dental or dermatological applications.

  12. Correlating Function and Imaging Measures of the Medial Longitudinal Fasciculus

    PubMed Central

    Sakaie, Ken; Takahashi, Masaya; Remington, Gina; Wang, Xiaofeng; Conger, Amy; Conger, Darrel; Dimitrov, Ivan; Jones, Stephen; Frohman, Ashley; Frohman, Teresa; Sagiyama, Koji; Togao, Osamu

    2016-01-01

    Objective To test the validity of diffusion tensor imaging (DTI) measures of tissue injury by examining such measures in a white matter structure with well-defined function, the medial longitudinal fasciculus (MLF). Injury to the MLF underlies internuclear ophthalmoparesis (INO). Methods 40 MS patients with chronic INO and 15 healthy controls were examined under an IRB-approved protocol. Tissue integrity of the MLF was characterized by DTI parameters: longitudinal diffusivity (LD), transverse diffusivity (TD), mean diffusivity (MD) and fractional anisotropy (FA). Severity of INO was quantified by infrared oculography to measure versional disconjugacy index (VDI). Results LD was significantly lower in patients than in controls in the medulla-pons region of the MLF (p < 0.03). FA was also lower in patients in the same region (p < 0.0004). LD of the medulla-pons region correlated with VDI (R = -0.28, p < 0.05) as did FA in the midbrain section (R = 0.31, p < 0.02). Conclusions This study demonstrates that DTI measures of brain tissue injury can detect injury to a functionally relevant white matter pathway, and that such measures correlate with clinically accepted evaluation indices for INO. The results validate DTI as a useful imaging measure of tissue integrity. PMID:26800522

  13. Measurement system design of an imaging electromagnetic flow meter

    NASA Astrophysics Data System (ADS)

    Zhao, Y. Y.; Lucas, G.; Leeungculsatien, T.; Zhang, T.

    2012-03-01

    Electromagnetic flow meters based on the principles of Faraday's laws of induction have been used successfully in many industries. In order to achieve velocity profile measurements in single phase and multiphase flows with non-uniform velocity profiles, a novel Imaging Electromagnetic Flow meter (IEF) has been developed which is described in this paper. The novel electromagnetic flow meter uses a microcontroller as the processing core to achieve the function of driving the uniform magnetic field, acquiring voltage signals with electronic system, matrix inversion calculation and result display. The work undertaken in the paper demonstrates that an imaging electromagnetic flow meter for liquid velocity profile measurement is an instrument that is highly suited for control via a microcontroller.

  14. Anaglyph of Perspective View with Aerial Photo Overlay Pasadena, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This anaglyph is a perspective view that shows the western part of the city of Pasadena, California, looking north toward the San Gabriel Mountains. Red-blue glasses are required to see the 3-D effect. Portions of the cities of Altadena and La Canada-Flintridge are also shown. The image was created from two datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation data and U. S. Geological Survey digital aerial photography provided the image detail. The Jet Propulsion Laboratory is the cluster of large buildings left of center, at the base of the mountains. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Wildfires can strip the mountains of vegetation, increasing the hazards from flooding and mudflows. Data shown in this image can be used to predict both how wildfires spread over the terrain and how mudflows are channeled down the canyons.

    This anaglyph was generated using topographic data from the Shuttle Radar Topography Mission to create two differing perspectives of a single image, one perspective for each eye. Each point in the image is shifted slightly, depending on its elevation. When viewed through special glasses, the result is a view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C

  15. Defense Science Board Study on Unmanned Aerial Vehicles and Uninhabited Combat Aerial Vehicles

    DTIC Science & Technology

    2004-02-01

    Defense Science Board Study on Unmanned Aerial Vehicles and Uninhabited Combat Aerial Vehicles February 2004 Office...COVERED - 4. TITLE AND SUBTITLE Defense Science Board Study on Unmanned Aerial Vehicles and Uninhabited Combat Aerial Vehicles 5a. CONTRACT...the Defense Science Board Task Force on Unmanned Aerial Vehicles and Uninhabited Combat Aerial Vehicles I am pleased to forward the final report of

  16. Monocular Vision System for Fixed Altitude Flight of Unmanned Aerial Vehicles.

    PubMed

    Huang, Kuo-Lung; Chiu, Chung-Cheng; Chiu, Sheng-Yi; Teng, Yao-Jen; Hao, Shu-Sheng

    2015-07-13

    The fastest and most economical method of acquiring terrain images is aerial photography. The use of unmanned aerial vehicles (UAVs) has been investigated for this task. However, UAVs present a range of challenges such as flight altitude maintenance. This paper reports a method that combines skyline detection with a stereo vision algorithm to enable the flight altitude of UAVs to be maintained. A monocular camera is mounted on the downside of the aircraft's nose to collect continuous ground images, and the relative altitude is obtained via a stereo vision algorithm from the velocity of the UAV. Image detection is used to obtain terrain images, and to measure the relative altitude from the ground to the UAV. The UAV flight system can be set to fly at a fixed and relatively low altitude to obtain the same resolution of ground images. A forward-looking camera is mounted on the upside of the aircraft's nose. In combination with the skyline detection algorithm, this helps the aircraft to maintain a stable flight pattern. Experimental results show that the proposed system enables UAVs to obtain terrain images at constant resolution, and to detect the relative altitude along the flight path.

  17. Monocular Vision System for Fixed Altitude Flight of Unmanned Aerial Vehicles

    PubMed Central

    Huang, Kuo-Lung; Chiu, Chung-Cheng; Chiu, Sheng-Yi; Teng, Yao-Jen; Hao, Shu-Sheng

    2015-01-01

    The fastest and most economical method of acquiring terrain images is aerial photography. The use of unmanned aerial vehicles (UAVs) has been investigated for this task. However, UAVs present a range of challenges such as flight altitude maintenance. This paper reports a method that combines skyline detection with a stereo vision algorithm to enable the flight altitude of UAVs to be maintained. A monocular camera is mounted on the downside of the aircraft’s nose to collect continuous ground images, and the relative altitude is obtained via a stereo vision algorithm from the velocity of the UAV. Image detection is used to obtain terrain images, and to measure the relative altitude from the ground to the UAV. The UAV flight system can be set to fly at a fixed and relatively low altitude to obtain the same resolution of ground images. A forward-looking camera is mounted on the upside of the aircraft’s nose. In combination with the skyline detection algorithm, this helps the aircraft to maintain a stable flight pattern. Experimental results show that the proposed system enables UAVs to obtain terrain images at constant resolution, and to detect the relative altitude along the flight path. PMID:26184213

  18. Quantitative viscoelastic parameters measured by harmonic motion imaging.

    PubMed

    Vappou, Jonathan; Maleke, Caroline; Konofagou, Elisa E

    2009-06-07

    Quantifying the mechanical properties of soft tissues remains a challenging objective in the field of elasticity imaging. In this work, we propose an ultrasound-based method for quantitatively estimating viscoelastic properties, using the amplitude-modulated harmonic motion imaging (HMI) technique. In HMI, an oscillating acoustic radiation force is generated inside the medium by using focused ultrasound and the resulting displacements are measured using an imaging transducer. The proposed approach is a two-step method that uses both the properties of the propagating shear wave and the phase shift between the applied stress and the measured strain in order to infer to the shear storage (G') and shear loss modulus (G''), which refer to the underlying tissue elasticity and viscosity, respectively. The proposed method was first evaluated on numerical phantoms generated by finite-element simulations, where a very good agreement was found between the input and the measured values of G' and G''. Experiments were then performed on three soft tissue-mimicking gel phantoms. HMI measurements were compared to rotational rheometry (dynamic mechanical analysis), and very good agreement was found at the only overlapping frequency (10 Hz) in the estimate of the shear storage modulus G' (14% relative error, averaged p-value of 0.34), whereas poorer agreement was found in G'' (55% relative error, averaged p-value of 0.0007), most likely due to the significantly lower values of G'' of the gel phantoms, posing thus a greater challenge in the sensitivity of the method. Nevertheless, this work proposes an original model-independent ultrasound-based elasticity imaging method that allows for direct, quantitative estimation of tissue viscoelastic properties, together with a validation against mechanical testing.

  19. Aerial views of the San Andreas Fault

    USGS Publications Warehouse

    Moore, M.

    1988-01-01

    These aerial photographs of the San Andreas fault were taken in 1965 by Robert E. Wallace of the U.S Geological Survey. The pictures were taken with a Rolliflex camera on 20 format black and white flim; Wallace was aboard a light, fixed-wing aircraft, flying mostly at low altitudes. He photographed the fault from San Francisco near its north end where it enters by the Salton Sea. These images represent only a sampling of the more than 300 images prodcued during this project. All the photographs reside in the U.S Geological Survey Library in Menlo Park, California. 

  20. Aerial vehicles collision avoidance using monocular vision

    NASA Astrophysics Data System (ADS)

    Balashov, Oleg; Muraviev, Vadim; Strotov, Valery

    2016-10-01

    In this paper image-based collision avoidance algorithm that provides detection of nearby aircraft and distance estimation is presented. The approach requires a vision system with a single moving camera and additional information about carrier's speed and orientation from onboard sensors. The main idea is to create a multi-step approach based on a preliminary detection, regions of interest (ROI) selection, contour segmentation, object matching and localization. The proposed algorithm is able to detect small targets but unlike many other approaches is designed to work with large-scale objects as well. To localize aerial vehicle position the system of equations relating object coordinates in space and observed image is solved. The system solution gives the current position and speed of the detected object in space. Using this information distance and time to collision can be estimated. Experimental research on real video sequences and modeled data is performed. Video database contained different types of aerial vehicles: aircrafts, helicopters, and UAVs. The presented algorithm is able to detect aerial vehicles from several kilometers under regular daylight conditions.

  1. Borescope Imaging System Developed for Luminescent Paint Measurements

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J.

    2001-01-01

    The luminescent paint measurement technique utilizes a coating that is applied to a test article, allowing the air pressure or temperature of a surface to be measured. These coatings are commonly referred to as pressure- or temperature-sensitive paints. These paints are excited with short wavelength light and emit light at a longer wavelength. By measuring the change of intensity of the emitted light from a known reference condition, researchers can determine the pressure or temperature. The technique of measuring full-field surface pressure and temperatures using luminescent coatings has required a direct line-of-sight from the camera to the surface under study. In most experiments that have used pressure-or temperature-sensitive paints, the test surfaces are mounted so it is straightforward to position the camera and excitation source. In other cases, the luxury of having optical access through a window is not available or even possible. We developed a borescope imaging system to gain optical access in these confined areas. The commercially available 10-mm-diameter rigid borescope contains relay optics to transmit the detected light to a charge-coupled device (CCD) camera as well as an internal fiber-optic light guide to provide the excitation source for the luminescent coatings. The coupled light source can be continuous for the intensity method but also can be pulsed or have a variable intensity for a newer method of acquisition that measures the decay or phase lag of the emitted light. This type of borescope focuses the image directly on the CCD chip without using a fiber-optic relay, eliminating unwanted honeycomb patterns that are typical of fiber-optic type borescopes. This produces images of much higher clarity and uniformity, which are critical for acquiring accurate measurements from the luminescent coatings.

  2. Cooperative Lander-Surface/Aerial Microflyer Missions for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita; Lay, Norman; Hine, Butler; Zornetzer, Steven

    2004-01-01

    Concepts are being investigated for exploratory missions to Mars based on Bioinspired Engineering of Exploration Systems (BEES), which is a guiding principle of this effort to develop biomorphic explorers. The novelty lies in the use of a robust telecom architecture for mission data return, utilizing multiple local relays (including the lander itself as a local relay and the explorers in the dual role of a local relay) to enable ranges 10 to 1,000 km and downlink of color imagery. As illustrated in Figure 1, multiple microflyers that can be both surface or aerially launched are envisioned in shepherding, metamorphic, and imaging roles. These microflyers imbibe key bio-inspired principles in their flight control, navigation, and visual search operations. Honey-bee inspired algorithms utilizing visual cues to perform autonomous navigation operations such as terrain following will be utilized. The instrument suite will consist of a panoramic imager and polarization imager specifically optimized to detect ice and water. For microflyers, particularly at small sizes, bio-inspired solutions appear to offer better alternate solutions than conventional engineered approaches. This investigation addresses a wide range of interrelated issues, including desired scientific data, sizes, rates, and communication ranges that can be accomplished in alternative mission scenarios. The mission illustrated in Figure 1 offers the most robust telecom architecture and the longest range for exploration with two landers being available as main local relays in addition to an ephemeral aerial probe local relay. The shepherding or metamorphic plane are in their dual role as local relays and image data collection/storage nodes. Appropriate placement of the landing site for the scout lander with respect to the main mission lander can allow coverage of extremely large ranges and enable exhaustive survey of the area of interest. In particular, this mission could help with the path planning and risk

  3. Dielectric tensor measurement from a single Mueller matrix image

    NASA Astrophysics Data System (ADS)

    Beaudry, Neil A.; Zhao, Yanming; Chipman, Russell

    2007-03-01

    A technique for measuring dielectric tensors in anisotropic layered structures, such as thin films of biaxial materials, is demonstrated. The ellipsometric data are collected in a quasi-monochromatic Mueller matrix image acquired over a large range of incident and azimuthal angles by illuminating a very small area on the sample with a focused beam from a modulating polarization state generator. After the beam interacts with the sample, the reflected and/or transmitted light is collected using an imaging polarization state analyzer. An image of the exit pupil of a collection objective lens is formed across a CCD such that each pixel collects light from a different angle incident on the sample, thus acquiring ellipsometric data at numerous incident angles simultaneously. The large range of angles and orientations is necessary to accurately determine dielectric tensors. The small but significant polarization aberrations of the low-polarization objective lenses used to create and collect the focused beams provide a significant challenge to accurate measurement. Measurements are presented of a thin-film E-type polarizer and a stretched plastic biaxial film.

  4. Quantitative measurement of aging using image texture entropy

    PubMed Central

    Shamir, Lior; Wolkow, Catherine A.; Goldberg, Ilya G.

    2009-01-01

    Motivation: A key element in understanding the aging of Caenorhabditis elegans is objective quantification of the morphological differences between younger and older animals. Here we propose to use the image texture entropy as an objective measurement that reflects the structural deterioration of the C.elegans muscle tissues during aging. Results: The texture entropy and directionality of the muscle microscopy images were measured using 50 animals on Days 0, 2, 4, 6, 8, 10 and 12 of adulthood. Results show that the entropy of the C.elegans pharynx tissues increases as the animal ages, but a sharper increase was measured between Days 2 and 4, and between Days 8 and 10. These results are in agreement with gene expression findings, and support the contention that the process of C.elegans aging has several distinct stages. This can indicate that C.elegans aging is driven by developmental pathways, rather than stochastic accumulation of damage. Availability: The image data are freely available on the Internet at http://ome.grc.nia.nih.gov/iicbu2008/celegans, and the Haralick and Tamura texture analysis source code can be downloaded at http://ome.grc.nia.nih.gov/wnd-charm. Contact: shamirl@mail.nih.gov PMID:19808878

  5. Imaging motional Stark effect measurements at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Ford, O. P.; Burckhart, A.; McDermott, R.; Pütterich, T.; Wolf, R. C.

    2016-11-01

    This paper presents an overview of results from the Imaging Motional Stark Effect (IMSE) diagnostic obtained during its first measurement campaign at ASDEX Upgrade since installation as a permanent diagnostic. A brief overview of the IMSE technique is given, followed by measurements of a standard H-mode discharge, which are compared to equilibrium reconstructions showing good agreement where expected. The development of special discharges for the calibration of pitch angle is reported and safety factor profile changes during sawteeth crashes are shown, which can be resolved to a few percent due to the high sensitivity at good time resolution of the new IMSE system.

  6. Galileo infrared imaging spectrometry measurements at the Moon

    NASA Astrophysics Data System (ADS)

    McCord, T. B.; Soderblom, L. A.; Carlson, R. W.; Fanale, F. P.; Lopes-Gautier, R.; Ocampo, A. C.; Forsythe, J.; Campell, B.; Granahan, J. C.; Smythe, W. D.; Weissmann, P. R.; Becker, K. J.; Edwards, K.; Kamp, L.; Lo, J.; Mehlman, R.; Torson, J.; Danielson, G. E.; Matson, D. L.; Kieffer, H. H.; Johnson, T. V.

    1994-03-01

    Imaging spectrometer observations were made of the surface of the Moon during the December 1990 flyby of the Earth-Moon system by the Galileo spacecraft. This article documents this data set and presents analyses of some of the data. The near infrared mapping spectrometer (NIMS) investigation obtained 17 separate mosaics of the Moon in 408 spectral channels between about 0.7 and 5.2 micrometers. The instrument was originally designed to operate in orbit about Jupiter and therefore saturates at many spectral channels for most measurement situations at 1 AU. However, sufficient measurements were made of the Moon to verify the proper operation of the instrument and to demonstrate its capabilities. Analysis of these data show that the NIMS worked as expected and produced measurements consistent with previous ground-based telescopic studies. These are the first imaging spectrometer measurements of this type from space for the Moon, and they illustrate several major points concerning this type of observation and about the NIMS capabilities specifically. Of major importance are the difference between framing and scanning instruments and the effects of the spacecraft and the scan platform on the performance of such and experiment. The science return of subsequent NIMS and other investigation measurements will be significantly enhanced by the experience and results gained.

  7. Galileo infrared imaging spectrometry measurements at the Moon

    NASA Technical Reports Server (NTRS)

    Mccord, Thomas B.; Soderblom, Larry A.; Carlson, Robert W.; Fanale, Fraser P.; Lopes-Gautier, Rosaly; Ocampo, Adriano; Forsythe, Jennifer; Campbell, Bruce; Granahan, James C.; Smythe, W. D.

    1994-01-01

    Imaging spectrometer observations were made of the surface of the Moon during the December 1990 flyby of the Earth-Moon system by the Galileo spacecraft. This article documents this data set and presents analyses of some of the data. The near infrared mapping spectrometer (NIMS) investigation obtained 17 separate mosaics of the Moon in 408 spectral channels between about 0.7 and 5.2 micrometers. The instrument was originally designed to operate in orbit about Jupiter and therefore saturates at many spectral channels for most measurement situations at 1 AU. However, sufficient measurements were made of the Moon to verify the proper operation of the instrument and to demonstrate its capabilities. Analysis of these data show that the NIMS worked as expected and produced measurements consistent with previous ground-based telescopic studies. These are the first imaging spectrometer measurements of this type from space for the Moon, and they illustrate several major points concerning this type of observation and about the NIMS capabilities specifically. Of major importance are the difference between framing and scanning instruments and the effects of the spacecraft and the scan platform on the performance of such and experiment. The science return of subsequent NIMS and other investigation measurements will be significantly enhanced by the experience and results gained.

  8. Wind measurements with the High Resolution Doppler Imager (HRDI)

    NASA Technical Reports Server (NTRS)

    Skinner, W. R.; Hays, P. B.; Abreu, V. J.

    1985-01-01

    The Upper Atmosphere Research Satellite (UARS), to be launched in 1989, is to provide a global data set required to understand the mechanisms controlling upper atmosphere structure and processes, as well as the response of the upper atmosphere to natural and human perturbations. The High Resolution Doppler Imager (HRDI) is the primary instrument for measuring the dynamics of the stratosphere and mesosphere. The goal of HRDI is to measure wind velocities in the stratosphere and mesosphere during the day and the mesosphere and thermosphere at night with an accuracy of 5 m/sec. HRDI will determine winds by measuring Doppler shifts of atmosphere absorption and emission features. Line of sight winds will be taken in two directions, thus allowing the wind vector to be formed. The HRDI instrument is overviewed. The basis of the measurement is explained, as is an outline of the instrument. Since neither instrument nor observational techniques is fully mature, only a brief sketch is presented.

  9. Aerial photography for sensing plant anomalies

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Cardenas, R.; Hart, W. G.

    1970-01-01

    Changes in the red tonal response of Kodak Ektrachrome Infrared Aero 8443 film (EIR) are often incorrectly attributed solely to variations in infrared light reflectance of plant leaves, when the primary influence is a difference in visible light reflectance induced by varying chlorophyll contents. Comparisons are made among aerial photographic images of high- and low-chlorophyll foliage. New growth, foot rot, and boron and chloride nutrient toxicites produce low-chlorophyll foliage, and EIR transparency images of light red or white compared with dark-red images of high-chlorophyll foliage. Deposits of the sooty mold fungus that subsists on the honeydew produced by brown soft scale insects, obscure the citrus leaves' green color. Infected trees appear as black images on EIR film transparencies compared with red images of healthy trees.

  10. 2. AERIAL VIEW OF MINUTEMAN SILOS. Low oblique aerial view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. AERIAL VIEW OF MINUTEMAN SILOS. Low oblique aerial view (original in color) of the two launch silos, covered. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Missile Silo Type, Test Area 1-100, northeast end of Test Area 1-100 Road, Boron, Kern County, CA

  11. Pasadena, California Perspective View with Aerial Photo and Landsat Overlay

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This perspective view shows the western part of the city of Pasadena, California, looking north towards the San Gabriel Mountains. Portions of the cities of Altadena and La Canada-Flintridge are also shown. The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation data; Landsat data from November 11, 1986 provided the land surface color (not the sky) and U. S. Geological Survey digital aerial photography provides the image detail. The Rose Bowl, surrounded by a golf course, is the circular feature at the bottom center of the image. The Jet Propulsion Laboratory, is the cluster of large buildings north of the Rose Bowl at the base of the mountains. A large landfill, Scholl Canyon, is the smooth area in the lower left corner of the scene.

    This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Wildfires strip the mountains of vegetation, increasing the hazards from flooding and mudflows for several years afterwards. Data such as shown on this image can be used to predict both how wildfires will spread over the terrain and also how mudflows will be channeled down the canyons.

    For a full-resolution, annotated version of this image, please select Figure 1, below: [figure removed for brevity, see original site]

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation