Science.gov

Sample records for aerial image metrology

  1. PSM and thin OMOG reticles aerial imaging metrology comparison study

    NASA Astrophysics Data System (ADS)

    Cohen, Yaron; Finders, Jo; Mangan, Shmoolik; Englard, Ilan; Mouraille, Orion; Janssen, Maurice; Miyazaki, Junji; Connolly, Brid; Kojima, Yosuke; Higuchi, Masaru

    2012-02-01

    For sub 20nm features, IC (integrated circuits) designs include an increasing number of features approaching the resolution limits of the scanner compared to the previous generation of IC designs. This trend includes stringent design rules and complex, ever smaller optical proximity correction (OPC) structures. In this regime, a new type of mask, known as opaque MoSi on glass (OMOG), has been introduced to overcome the shortcomings of the well-established phase shift masks (PSM). This paper reviews the fundamental aerial imaging differences between identically designed PSM and thin OMOG masks. The masks were designed for scanner qualification tests and therefore contain large selections of 1D and 2D features, including various biases and OPCs. Aerial critical dimension uniformity (CDU) performance for various features on both masks are reported. Furthermore, special efforts have been made to emphasize the advantages of aerial imaging metrology versus wafer metrology in terms of shortening scanner qualification cycle time.

  2. Automated hotspot analysis with aerial image CD metrology for advanced logic devices

    NASA Astrophysics Data System (ADS)

    Buttgereit, Ute; Trautzsch, Thomas; Kim, Min-ho; Seo, Jung-Uk; Yoon, Young-Keun; Han, Hak-Seung; Chung, Dong Hoon; Jeon, Chan-Uk; Meyers, Gary

    2014-09-01

    Continuously shrinking designs by further extension of 193nm technology lead to a much higher probability of hotspots especially for the manufacturing of advanced logic devices. The CD of these potential hotspots needs to be precisely controlled and measured on the mask. On top of that, the feature complexity increases due to high OPC load in the logic mask design which is an additional challenge for CD metrology. Therefore the hotspot measurements have been performed on WLCD from ZEISS, which provides the benefit of reduced complexity by measuring the CD in the aerial image and qualifying the printing relevant CD. This is especially of advantage for complex 2D feature measurements. Additionally, the data preparation for CD measurement becomes more critical due to the larger amount of CD measurements and the increasing feature diversity. For the data preparation this means to identify these hotspots and mark them automatically with the correct marker required to make the feature specific CD measurement successful. Currently available methods can address generic pattern but cannot deal with the pattern diversity of the hotspots. The paper will explore a method how to overcome those limitations and to enhance the time-to-result in the marking process dramatically. For the marking process the Synopsys WLCD Output Module was utilized, which is an interface between the CATS mask data prep software and the WLCD metrology tool. It translates the CATS marking directly into an executable WLCD measurement job including CD analysis. The paper will describe the utilized method and flow for the hotspot measurement. Additionally, the achieved results on hotspot measurements utilizing this method will be presented.

  3. Comparison of analysis techniques for aerial image metrology on advanced photomask

    NASA Astrophysics Data System (ADS)

    Hwang, Seolchong; Woo, Sungha; Jang, Heeyeon; Lee, Youngmo; Kim, Sangpyo; Yang, Hyunjo; Schulz, Kristian; Garetto, Anthony

    2016-05-01

    The standard method for defect disposition and verification of repair success in the mask shop is through the utilization of the aerial imaging platform, AIMSTM. The CD (Critical Dimension) deviation of the defective or repaired region as well as the pattern shift can be calculated by comparing the measured aerial images of this region to that of a reference. Through this analysis it can be determined if the defect or repaired region will be printed on the wafer under the illumination conditions of the scanner. The analysis of the measured aerial images from the AIMSTM are commonly performed manually using the analysis software available on the system or with the help of an analysis software called RV (Repair Verification). Because the process is manual, it is not standardized and is subject to operator variations. This method of manual aerial image analysis is time consuming, dependent on the skill level of the operator and significantly contributes to the overall mask manufacturing process flow. AutoAnalysis (AA), the first application available for the FAVOR® platform, provides fully automated analysis of AIMSTM aerial images [1] and runs in parallel to the measurement of the aerial images. In this paper, we investigate the initial AutoAnalysis performance compared to the conventional method using RV and its application to a production environment. The evaluation is based on the defect CD of three pattern types: contact holes, dense line and spaces and peripheral structure. The defect analysis results for different patterns and illumination conditions will be correlated and challenges in transitioning to the new approach will be discussed.

  4. Aerial imaging technology for photomask qualification: from a microscope to a metrology tool

    NASA Astrophysics Data System (ADS)

    Garetto, Anthony; Scherübl, Thomas; Peters, Jan Hendrik

    2012-09-01

    Photomasks carry the structured information of the chip designs printed with lithography scanners onto wafers. These structures, for the most modern technologies, are enlarged by a factor of 4 with respect to the final circuit design, and 20-60 of these photomasks are needed for the production of a single completed chip used, for example, in computers or cell phones. Lately, designs have been reported to be on the drawing board with close to 100 of these layers. Each of these photomasks will be reproduced onto the wafer several hundred times and typically 5000-50 000 wafers will be produced with each of them. Hence, the photomasks need to be absolutely defect-free to avoid any fatal electrical shortcut in the design or drastic performance degradation. One well-known method in the semiconductor industry is to analyze the aerial image of the photomask in a dedicated tool referred to as Aerial Imaging Measurement System, which emulates the behavior of the respective lithography scanner used for the imaging of the mask. High-end lithography scanners use light with a wavelength of 193 nm and high numerical apertures (NAs) of 1.35 utilizing a water film between the last lens and the resist to be illuminated (immersion scanners). Complex illumination shapes enable the imaging of structures well below the wavelength used. Future lithography scanners will work at a wavelength of 13.5 nm [extreme ultraviolet (EUV)] and require the optical system to work with mirrors in vacuum instead of the classical lenses used in current systems. The exact behavior of these systems is emulated by the Aerial Image Measurement System (AIMS™; a Trademark of Carl Zeiss). With these systems, any position of the photomask can be imaged under the same illumination condition used by the scanners, and hence, a prediction of the printing behavior of any structure can be derived. This system is used by mask manufacturers in their process flow to review critical defects or verify defect repair

  5. Aerial Image Systems

    NASA Astrophysics Data System (ADS)

    Clapp, Robert E.

    1987-09-01

    Aerial images produce the best stereoscopic images of the viewed world. Despite the fact that every optic in existence produces an aerial image, few persons are aware of their existence and possible uses. Constant reference to the eye and other optical systems have produced a psychosis of design that only considers "focal planes" in the design and analysis of optical systems. All objects in the field of view of the optical device are imaged by the device as an aerial image. Use of aerial images in vision and visual display systems can provide a true stereoscopic representation of the viewed world. This paper discusses aerial image systems - their applications and designs and presents designs and design concepts that utilize aerial images to obtain superior visual displays, particularly with application to visual simulation.

  6. Aberration analysis in aerial images formed by lithographic lenses

    NASA Astrophysics Data System (ADS)

    Freitag, Wolfgang; Grossmann, Wilfried; Grunewald, Uwe

    1992-05-01

    A test procedure for the final assembly of lenses that does not need exposed photographic plates is introduced. It is based on the metrological simulation of optical ray tracing. A measuring example illustrates its suitabilty for ultraviolet optical systems in particular. The measuring apparatus displays the distortion vectors directly in the aerial image, gives a wave-front analysis, and performs an analogous distortion analysis.

  7. Aerial Photographs and Satellite Images

    USGS Publications Warehouse

    ,

    1997-01-01

    Photographs and other images of the Earth taken from the air and from space show a great deal about the planet's landforms, vegetation, and resources. Aerial and satellite images, known as remotely sensed images, permit accurate mapping of land cover and make landscape features understandable on regional, continental, and even global scales. Transient phenomena, such as seasonal vegetation vigor and contaminant discharges, can be studied by comparing images acquired at different times. The U.S. Geological Survey (USGS), which began using aerial photographs for mapping in the 1930's, archives photographs from its mapping projects and from those of some other Federal agencies. In addition, many images from such space programs as Landsat, begun in 1972, are held by the USGS. Most satellite scenes can be obtained only in digital form for use in computer-based image processing and geographic information systems, but in some cases are also available as photographic products.

  8. Aerial Video Imaging

    NASA Technical Reports Server (NTRS)

    1991-01-01

    When Michael Henry wanted to start an aerial video service, he turned to Johnson Space Center for assistance. Two NASA engineers - one had designed and developed TV systems in Apollo, Skylab, Apollo- Soyuz and Space Shuttle programs - designed a wing-mounted fiberglass camera pod. Camera head and angles are adjustable, and the pod is shaped to reduce vibration. The controls are located so a solo pilot can operate the system. A microprocessor displays latitude, longitude, and bearing, and a GPS receiver provides position data for possible legal references. The service has been successfully utilized by railroads, oil companies, real estate companies, etc.

  9. MOSAIC: a new wavefront metrology

    SciTech Connect

    Anderson, Christopher; Naulleau, Patrick

    2009-02-02

    MOSAIC is a new wavefront metrology that enables complete wavefront characterization from print or aerial image based measurements. Here we describe MOSAIC and verify its utility with a model-based proof of principle.

  10. Metrological characterization of 3D imaging devices

    NASA Astrophysics Data System (ADS)

    Guidi, G.

    2013-04-01

    Manufacturers often express the performance of a 3D imaging device in various non-uniform ways for the lack of internationally recognized standard requirements for metrological parameters able to identify the capability of capturing a real scene. For this reason several national and international organizations in the last ten years have been developing protocols for verifying such performance. Ranging from VDI/VDE 2634, published by the Association of German Engineers and oriented to the world of mechanical 3D measurements (triangulation-based devices), to the ASTM technical committee E57, working also on laser systems based on direct range detection (TOF, Phase Shift, FM-CW, flash LADAR), this paper shows the state of the art about the characterization of active range devices, with special emphasis on measurement uncertainty, accuracy and resolution. Most of these protocols are based on special objects whose shape and size are certified with a known level of accuracy. By capturing the 3D shape of such objects with a range device, a comparison between the measured points and the theoretical shape they should represent is possible. The actual deviations can be directly analyzed or some derived parameters can be obtained (e.g. angles between planes, distances between barycenters of spheres rigidly connected, frequency domain parameters, etc.). This paper shows theoretical aspects and experimental results of some novel characterization methods applied to different categories of active 3D imaging devices based on both principles of triangulation and direct range detection.

  11. Image-based EUVL aberration metrology

    NASA Astrophysics Data System (ADS)

    Fenger, Germain Louis

    A significant factor in the degradation of nanolithographic image fidelity is optical wavefront aberration. As resolution of nanolithography systems increases, effects of wavefront aberrations on aerial image become more influential. The tolerance of such aberrations is governed by the requirements of features that are being imaged, often requiring lenses that can be corrected with a high degree of accuracy and precision. Resolution of lithographic systems is driven by scaling wavelength down and numerical aperture (NA) up. However, aberrations are also affected from the changes in wavelength and NA. Reduction in wavelength or increase in NA result in greater impact of aberrations, where the latter shows a quadratic dependence. Current demands in semiconductor manufacturing are constantly pushing lithographic systems to operate at the diffraction limit; hence, prompting a need to reduce all degrading effects on image properties to achieve maximum performance. Therefore, the need for highly accurate in-situ aberration measurement and correction is paramount. In this work, an approach has been developed in which several targets including phase wheel, phase disk, phase edges, and binary structures are used to generate optical images to detect and monitor aberrations in extreme ultraviolet (EUV) lithographic systems. The benefit of using printed patterns as opposed to other techniques is that the lithography system is tested under standard operating conditions. Mathematical models in conjunction with iterative lithographic simulations are used to determine pupil phase wavefront errors and describe them as combinations of Zernike polynomials.

  12. Intra-field CDU map correlation between SEMs and aerial image characterization

    NASA Astrophysics Data System (ADS)

    Ning, Guoxiang; Philipp, Peter; Litt, Lloyd C.; Meusemann, Stefan; Thaler, Thomas; Schulz, Kristian; Tschinkl, Martin; Ackmann, Paul

    2014-09-01

    Reticle critical dimension uniformity (CDU) is one of the major sources of wafer CD variations which include both inter-field variations and intra-field variations. Generally, wafer critical dimension (CD) measurement sample size interfield is much less than intra-field. Intra-field CDU correction requires time-consumption of metrology. In order to improve wafer intra-field CDU, several methods can be applied such as intra-field dose correction to improve wafer intra-field CDU. Corrections can be based on CD(SEM) or aerial image metrology data from the reticle. Reticle CDU and wafer CDU maps are based on scanning electron microscope (SEM) metrology, while reticle inspection intensity mapping (NuFLare 6000) and wafer level critical dimension (WLCD) utilize aerial images or optical techniques. Reticle inspecton tools such as those from KLA and NuFlare, offer the ability to collect optical measurement data to produce an optical CDU map. WLCD of Zeiss has the advantage of using the same illumination condition as the scanner to measure the aerial images or optical CD. In this study, the intra-field wafer CDU map correlation between SEMs and aerial images are characterized. The layout of metrology structures is very important for the correlation between wafer intra-field CDU, measured by SEM, and the CDU determined by aerial images. The selection of metrology structures effects on the correlation to SEM CD to wafer is also demonstrated. Both reticle CDU, intensity CDU and WLCD are candidates for intra-field wafer CDU characterization and the advantages and limitations of each approach are discussed.

  13. Floating aerial LED signage based on aerial imaging by retro-reflection (AIRR).

    PubMed

    Yamamoto, Hirotsugu; Tomiyama, Yuka; Suyama, Shiro

    2014-11-01

    We propose a floating aerial LED signage technique by utilizing retro-reflection. The proposed display is composed of LEDs, a half mirror, and retro-reflective sheeting. Directivity of the aerial image formation and size of the aerial image have been investigated. Furthermore, a floating aerial LED sign has been successfully formed in free space.

  14. Calculating aerial images from EUV masks

    NASA Astrophysics Data System (ADS)

    Pistor, Thomas V.; Neureuther, Andrew R.

    1999-06-01

    Aerial images for line/space patterns, arrays of posts and an arbitrary layout pattern are calculated for EUV masks in a 4X EUV imaging system. Both mask parameters and illumination parameters are varied to investigate their effects on the aerial image. To facilitate this study, a parallel version of TEMPEST with a Fourier transform boundary condition was developed and run on a network of 24 microprocessors. Line width variations are observed when absorber thickness or sidewall angle changes. As the line/space pattern scales to smaller dimensions, the aspect ratios of the absorber features increase, introducing geometric shadowing and reducing aerial image intensity and contrast. 100nm square posts have circular images of diameter close to 100nm, but decreasing in diameter significantly when the corner round radius at the mask becomes greater than 50 nm. Exterior mask posts image slightly smaller and with higher ellipticity than interior mask posts. The aerial image of the arbitrary test pattern gives insight into the effects of the off-axis incidence employed in EUV lithography systems.

  15. Aerial photographs and satellite images

    USGS Publications Warehouse

    U.S. Geological Survey

    1995-01-01

    Because photographs and images taken from the air or from space are acquired without direct contact with the ground, they are referred to as remotely sensed images. The U.S. Geological Survey (USGS) has used remote sensing from the early years of the 20th century to support earth science studies and for mapping purposes.

  16. Discovering discriminative graphlets for aerial image categories recognition.

    PubMed

    Zhang, Luming; Han, Yahong; Yang, Yi; Song, Mingli; Yan, Shuicheng; Tian, Qi

    2013-12-01

    Recognizing aerial image categories is useful for scene annotation and surveillance. Local features have been demonstrated to be robust to image transformations, including occlusions and clutters. However, the geometric property of an aerial image (i.e., the topology and relative displacement of local features), which is key to discriminating aerial image categories, cannot be effectively represented by state-of-the-art generic visual descriptors. To solve this problem, we propose a recognition model that mines graphlets from aerial images, where graphlets are small connected subgraphs reflecting both the geometric property and color/texture distribution of an aerial image. More specifically, each aerial image is decomposed into a set of basic components (e.g., road and playground) and a region adjacency graph (RAG) is accordingly constructed to model their spatial interactions. Aerial image categories recognition can subsequently be casted as RAG-to-RAG matching. Based on graph theory, RAG-to-RAG matching is conducted by comparing all their respective graphlets. Because the number of graphlets is huge, we derive a manifold embedding algorithm to measure different-sized graphlets, after which we select graphlets that have highly discriminative and low redundancy topologies. Through quantizing the selected graphlets from each aerial image into a feature vector, we use support vector machine to discriminate aerial image categories. Experimental results indicate that our method outperforms several state-of-the-art object/scene recognition models, and the visualized graphlets indicate that the discriminative patterns are discovered by our proposed approach. PMID:23955764

  17. Design of an integrated aerial image sensor

    NASA Astrophysics Data System (ADS)

    Xue, Jing; Spanos, Costas J.

    2005-05-01

    The subject of this paper is a novel integrated aerial image sensor (IAIS) system suitable for integration within the surface of an autonomous test wafer. The IAIS could be used as a lithography processing monitor, affording a "wafer's eye view" of the process, and therefore facilitating advanced process control and diagnostics without integrating (and dedicating) the sensor to the processing equipment. The IAIS is composed of an aperture mask and an array of photo-detectors. In order to retrieve nanometer scale resolution of the aerial image with a practical photo-detector pixel size, we propose a design of an aperture mask involving a series of spatial phase "moving" aperture groups. We demonstrate a design example aimed at the 65nm technology node through TEMPEST simulation. The optimized, key design parameters include an aperture width in the range of 30nm, aperture thickness in the range of 70nm, and offer a spatial resolution of about 5nm, all with comfortable fabrication tolerances. Our preliminary simulation work indicates the possibility of the IAIS being applied to the immersion lithography. A bench-top far-field experiment verifies that our approach of the spatial frequency down-shift through forming large Moire patterns is feasible.

  18. Increased productivity of repair verification by offline analysis of aerial images

    NASA Astrophysics Data System (ADS)

    Villa, Ernesto; Sartelli, Luca; Miyashita, Hiroyuki; Scheruebl, Thomas; Richter, Rigo; Thaler, Thomas

    2010-05-01

    Using AIMSTM to qualify repairs of defects on photomasks is the industry standard. AIMSTM provides a reasonable matching of lithographic imaging performances without the need of wafer prints. The need of utilisation of this capability by photomask manufacturers has risen due to the increased complexity of layouts incorporating aggressive RET and phase shift technologies as well as tighter specifications have pushed aerial image metrology to consider CD performance results in addition to the traditional intensity verification. The content of the paper describes the utilisation of the AIMSTM Repair Verification (RV) software for the verification of aerial images in a mask shop production environment. The software is used to analyze images from various AIMSTM tool generations and the two main routines, Multi Slice Analysis (MSA) and Image Compare (IC), are used to compare defective and non-defective areas of aerial images. It is detailed how the RV software cleans "non real" errors potentially induced by operator misjudgements, thus providing accurate and repeatable analyses all proven against the results achieved manually. A user friendly GUI drives the user through few simple, fast and safe operations and automatically provides summary tables containing all the relevant results of the analysis that can be easily exported in a proper format and sent out to the customer as a technical documentation. This results in a sensible improvement of the throughput of the printability evaluation process in a mask manufacturing environment, providing reliable analyses at a higher productivity.

  19. Calculation and uses of the lithographic aerial image

    NASA Astrophysics Data System (ADS)

    Flagello, Donis G.; Smith, Daniel G.

    2012-09-01

    Beginning with the seminal Dill papers of 1975, the aerial image has been essential for understanding the process of microlithography. From the aerial image, we can predict the performance of a given lithographic process in terms of depth of focus, exposure latitude, etc. As lithographic technologies improved, reaching smaller and smaller printed features, the sophistication of aerial image calculations has had to increase from simple incoherent imaging theory, to partial coherence, polarization effects, thin film effects at the resist, thick mask effects, and so on. This tutorial provides an overview and semihistorical development of the aerial image calculation and then provides a review of some of the various ways in which the aerial image is typically used to estimate the performance of the lithographic process.

  20. An algorithm for approximate rectification of digital aerial images

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-resolution aerial photography is one of the most valuable tools available for managing extensive landscapes. With recent advances in digital camera technology, computer hardware, and software, aerial photography is easier to collect, store, and transfer than ever before. Images can be automa...

  1. Aerial image retargeting (AIR): achieving litho-friendly designs

    NASA Astrophysics Data System (ADS)

    Yehia Hamouda, Ayman; Word, James; Anis, Mohab; Karim, Karim S.

    2011-04-01

    In this work, we present a new technique to detect non-Litho-Friendly design areas based on their Aerial Image signature. The aerial image is calculated for the litho target (pre-OPC). This is followed by the fixing (retargeting) the design to achieve a litho friendly OPC target. This technique is applied and tested on 28 nm metal layer and shows a big improvement in the process window performance. For an optimized Aerial-Image-Retargeting (AIR) recipe is very computationally efficient and its runtime doesn't consume more than 1% of the OPC flow runtime.

  2. HISTORIC IMAGE: AERIAL VIEW OF CEMETERY AND ITS ENVIRONS. PHOTOGRAPH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HISTORIC IMAGE: AERIAL VIEW OF CEMETERY AND ITS ENVIRONS. PHOTOGRAPH 15 SEPTEMBER 1950. NCA HISTORY COLLECTION. - San Francisco National Cemetery, 1 Lincoln Boulevard, San Francisco, San Francisco County, CA

  3. Historic Image: Aerial view of Mount of Victory Plot. Photograph ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Historic Image: Aerial view of Mount of Victory Plot. Photograph 1961. NCA History Collection - Cypress Hills National Cemetery, Mount of Victory Plot Unit, 625 Jamaica Avenue, Brooklyn, Kings County, NY

  4. Optimization and application of Retinex algorithm in aerial image processing

    NASA Astrophysics Data System (ADS)

    Sun, Bo; He, Jun; Li, Hongyu

    2008-04-01

    In this paper, we provide a segmentation based Retinex for improving the visual quality of aerial images obtained under complex weather conditions. With the method, an aerial image will be segmented into different regions, and then an adaptive Gaussian based on the segmentations will be used to process it. The method addresses the problems existing in previously developed Retinex algorithms, such as halo artifacts and graying-out artifacts. The experimental result also shows evidence of its better effect.

  5. Applications of image diagnostics to metrology quality assurance and process control

    NASA Astrophysics Data System (ADS)

    Allgair, John A.; Boksha, Victor V.; Bunday, Benjamin D.; Diebold, Alain C.; Cole, Daniel C.; Davidson, Mark P.; Hutcheson, Jerry D.; Gurnell, Andrew W.; Joy, David C.; McIntosh, John M.; Muckenhirn, Sylvain G.; Pellegrini, Joseph C.; Larrabee, Robert D.; Potzick, James E.; Vladar, Andras E.; Smith, Nigel P.; Starikov, Alexander; Sullivan, Neal T.; Wells, Oliver C.

    2003-07-01

    The purpose of this paper is to define standard methods for effective and efficient image-based dimensional metrology for microlithography applications in the manufacture of integrated circuits. This paper represents a consensual view of the co-authors, not necessarily in total agreement across all subjects, but in complete agreement on the fundamentals of dimensional metrology in this application. Fundamental expectations in the conventional comparison-based metrology of width are reviewed, with its reliance on calibration and standards, and how it is different from metrology of pitch and image placement. We discuss the wealth of a priori information in an image of a feature on a mask or a wafer. We define the estimates of deviations from these expectations and their applications to effective detection and identification of the measurement errors attributable to the measurement procedure or the metrology tool, as well as to the sample and the process o fits manufacture. Although many individuals and organizations already use such efficient methods, industry-wide standard methods do not exist today. This group of professionals expects that, by placing de facto standard meth-odologies into public domain, we can help reduce waste and risks inherent in a "spontaneous" technology build-out, thereby enabling a seamless proliferation of these methods by equipment vendors and users of dimensional metrology. Progress in this key technology, with the new dimensional metrology capabilities enabled, leads to improved perform-ance and yield of IC products, as well as increased automation and manufacturing efficiency, ensuring the long-term health of our industry.

  6. Advanced Image Processing of Aerial Imagery

    NASA Technical Reports Server (NTRS)

    Woodell, Glenn; Jobson, Daniel J.; Rahman, Zia-ur; Hines, Glenn

    2006-01-01

    Aerial imagery of the Earth is an invaluable tool for the assessment of ground features, especially during times of disaster. Researchers at the NASA Langley Research Center have developed techniques which have proven to be useful for such imagery. Aerial imagery from various sources, including Langley's Boeing 757 Aries aircraft, has been studied extensively. This paper discusses these studies and demonstrates that better-than-observer imagery can be obtained even when visibility is severely compromised. A real-time, multi-spectral experimental system will be described and numerous examples will be shown.

  7. Wafer weak point detection based on aerial images or WLCD

    NASA Astrophysics Data System (ADS)

    Ning, Guoxiang; Philipp, Peter; Litt, Lloyd C.; Ackmann, Paul; Crell, Christian; Chen, Norman

    2015-10-01

    Aerial image measurement is a key technique for model based optical proximity correction (OPC) verification. Actual aerial images obtained by AIMS (aerial image measurement system) or WLCD (wafer level critical dimension) can detect printed wafer weak point structures in advance of wafer exposure and defect inspection. Normally, the potential wafer weak points are determined based on optical rule check (ORC) simulation in advance. However, the correlation to real wafer weak points is often not perfect due to the contribution of mask three dimension (M3D) effects, actual mask errors, and scanner lens effects. If the design weak points can accurately be detected in advance, it will reduce the wafer fab cost and improve cycle time. WLCD or AIMS tools are able to measure the aerial images CD and bossung curve through focus window. However, it is difficult to detect the wafer weak point in advance without defining selection criteria. In this study, wafer weak points sensitive to mask mean-to-nominal values are characterized for a process with very high MEEF (normally more than 4). Aerial image CD uses fixed threshold to detect the wafer weak points. By using WLCD through threshold and focus window, the efficiency of wafer weak point detection is also demonstrated. A novel method using contrast range evaluation is shown in the paper. Use of the slope of aerial images for more accurate detection of the wafer weak points using WLCD is also discussed. The contrast range can also be used to detect the wafer weak points in advance. Further, since the mean to nominal of the reticle contributes to the effective contrast range in a high MEEF area this work shows that control of the mask error is critical for high MEEF layers such as poly, active and metal layers. Wafer process based weak points that cannot be detected by wafer lithography CD or WLCD will be discussed.

  8. 3D spectral imaging system for anterior chamber metrology

    NASA Astrophysics Data System (ADS)

    Anderson, Trevor; Segref, Armin; Frisken, Grant; Frisken, Steven

    2015-03-01

    Accurate metrology of the anterior chamber of the eye is useful for a number of diagnostic and clinical applications. In particular, accurate corneal topography and corneal thickness data is desirable for fitting contact lenses, screening for diseases and monitoring corneal changes. Anterior OCT systems can be used to measure anterior chamber surfaces, however accurate curvature measurements for single point scanning systems are known to be very sensitive to patient movement. To overcome this problem we have developed a parallel 3D spectral metrology system that captures simultaneous A-scans on a 2D lateral grid. This approach enables estimates of the elevation and curvature of anterior and posterior corneal surfaces that are robust to sample movement. Furthermore, multiple simultaneous surface measurements greatly improve the ability to register consecutive frames and enable aggregate measurements over a finer lateral grid. A key element of our approach has been to exploit standard low cost optical components including lenslet arrays and a 2D sensor to provide a path towards low cost implementation. We demonstrate first prototypes based on 6 Mpixel sensor using a 250 μm pitch lenslet array with 300 sample beams to achieve an RMS elevation accuracy of 1μm with 95 dB sensitivity and a 7.0 mm range. Initial tests on Porcine eyes, model eyes and calibration spheres demonstrate the validity of the concept. With the next iteration of designs we expect to be able to achieve over 1000 simultaneous A-scans in excess of 75 frames per second.

  9. An image-processing software package: UU and Fig for optical metrology applications

    NASA Astrophysics Data System (ADS)

    Chen, Lujie

    2013-06-01

    Modern optical metrology applications are largely supported by computational methods, such as phase shifting [1], Fourier Transform [2], digital image correlation [3], camera calibration [4], etc, in which image processing is a critical and indispensable component. While it is not too difficult to obtain a wide variety of image-processing programs from the internet; few are catered for the relatively special area of optical metrology. This paper introduces an image-processing software package: UU (data processing) and Fig (data rendering) that incorporates many useful functions to process optical metrological data. The cross-platform programs UU and Fig are developed based on wxWidgets. At the time of writing, it has been tested on Windows, Linux and Mac OS. The userinterface is designed to offer precise control of the underline processing procedures in a scientific manner. The data input/output mechanism is designed to accommodate diverse file formats and to facilitate the interaction with other independent programs. In terms of robustness, although the software was initially developed for personal use, it is comparably stable and accurate to most of the commercial software of similar nature. In addition to functions for optical metrology, the software package has a rich collection of useful tools in the following areas: real-time image streaming from USB and GigE cameras, computational geometry, computer vision, fitting of data, 3D image processing, vector image processing, precision device control (rotary stage, PZT stage, etc), point cloud to surface reconstruction, volume rendering, batch processing, etc. The software package is currently used in a number of universities for teaching and research.

  10. HISTORIC IMAGE: AERIAL VIEW OF THE CEMETERY AND ITS ENVIRONS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HISTORIC IMAGE: AERIAL VIEW OF THE CEMETERY AND ITS ENVIRONS. PHOTOGRAPH TAKEN ON 6 APRIL 1968. NCA HISTORY COLLECTION. - Rock Island National Cemetery, Rock Island Arsenal, 0.25 mile north of southern tip of Rock Island, Rock Island, Rock Island County, IL

  11. A Low-Cost Imaging System for Aerial Applicators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural aircraft provide a readily available and versatile platform for airborne remote sensing. Although various airborne imaging systems are being used for research and commercial applications, most of these systems are either too expensive or too complex to be of practical use for aerial app...

  12. An improved dehazing algorithm of aerial high-definition image

    NASA Astrophysics Data System (ADS)

    Jiang, Wentao; Ji, Ming; Huang, Xiying; Wang, Chao; Yang, Yizhou; Li, Tao; Wang, Jiaoying; Zhang, Ying

    2016-01-01

    For unmanned aerial vehicle(UAV) images, the sensor can not get high quality images due to fog and haze weather. To solve this problem, An improved dehazing algorithm of aerial high-definition image is proposed. Based on the model of dark channel prior, the new algorithm firstly extracts the edges from crude estimated transmission map and expands the extracted edges. Then according to the expended edges, the algorithm sets a threshold value to divide the crude estimated transmission map into different areas and makes different guided filter on the different areas compute the optimized transmission map. The experimental results demonstrate that the performance of the proposed algorithm is substantially the same as the one based on dark channel prior and guided filter. The average computation time of the new algorithm is around 40% of the one as well as the detection ability of UAV image is improved effectively in fog and haze weather.

  13. CMOS Imaging Sensor Technology for Aerial Mapping Cameras

    NASA Astrophysics Data System (ADS)

    Neumann, Klaus; Welzenbach, Martin; Timm, Martin

    2016-06-01

    In June 2015 Leica Geosystems launched the first large format aerial mapping camera using CMOS sensor technology, the Leica DMC III. This paper describes the motivation to change from CCD sensor technology to CMOS for the development of this new aerial mapping camera. In 2002 the DMC first generation was developed by Z/I Imaging. It was the first large format digital frame sensor designed for mapping applications. In 2009 Z/I Imaging designed the DMC II which was the first digital aerial mapping camera using a single ultra large CCD sensor to avoid stitching of smaller CCDs. The DMC III is now the third generation of large format frame sensor developed by Z/I Imaging and Leica Geosystems for the DMC camera family. It is an evolution of the DMC II using the same system design with one large monolithic PAN sensor and four multi spectral camera heads for R,G, B and NIR. For the first time a 391 Megapixel large CMOS sensor had been used as PAN chromatic sensor, which is an industry record. Along with CMOS technology goes a range of technical benefits. The dynamic range of the CMOS sensor is approx. twice the range of a comparable CCD sensor and the signal to noise ratio is significantly better than with CCDs. Finally results from the first DMC III customer installations and test flights will be presented and compared with other CCD based aerial sensors.

  14. Accuracy of Measurements in Oblique Aerial Images for Urban Environment

    NASA Astrophysics Data System (ADS)

    Ostrowski, W.

    2016-10-01

    Oblique aerial images have been a source of data for urban areas for several years. However, the accuracy of measurements in oblique images during this time has been limited to a single meter due to the use of direct -georeferencing technology and the underlying digital elevation model. Therefore, oblique images have been used mostly for visualization purposes. This situation changed in recent years as new methods, which allowed for a higher accuracy of exterior orientation, were developed. Current developments include the process of determining exterior orientation and the previous but still crucial process of tie point extraction. Progress in this area was shown in the ISPRS/EUROSDR Benchmark on Multi-Platform Photogrammetry and is also noticeable in the growing interest in the use of this kind of imagery. The higher level of accuracy in the orientation of oblique aerial images that has become possible in the last few years should result in a higher level of accuracy in the measurements of these types of images. The main goal of this research was to set and empirically verify the accuracy of measurements in oblique aerial images. The research focused on photogrammetric measurements composed of many images, which use a high overlap within an oblique dataset and different view angles. During the experiments, two series of images of urban areas were used. Both were captured using five DigiCam cameras in a Maltese cross configuration. The tilt angles of the oblique cameras were 45 degrees, and the position of the cameras during flight used a high grade GPS/INS navigation system. The orientation of the images was set using the Pix4D Mapper Pro software with both measurements of the in-flight camera position and the ground control points (measured with GPS RTK technology). To control the accuracy, check points were used (which were also measured with GPS RTK technology). As reference data for the whole study, an area of the city-based map was used. The archived results

  15. D City Transformations by Time Series of Aerial Images

    NASA Astrophysics Data System (ADS)

    Adami, A.

    2015-02-01

    Recent photogrammetric applications, based on dense image matching algorithms, allow to use not only images acquired by digital cameras, amateur or not, but also to recover the vast heritage of analogue photographs. This possibility opens up many possibilities in the use and enhancement of existing photos heritage. The research of the original figuration of old buildings, the virtual reconstruction of disappeared architectures and the study of urban development are some of the application areas that exploit the great cultural heritage of photography. Nevertheless there are some restrictions in the use of historical images for automatic reconstruction of buildings such as image quality, availability of camera parameters and ineffective geometry of image acquisition. These constrains are very hard to solve and it is difficult to discover good dataset in the case of terrestrial close range photogrammetry for the above reasons. Even the photographic archives of museums and superintendence, while retaining a wealth of documentation, have no dataset for a dense image matching approach. Compared to the vast collection of historical photos, the class of aerial photos meets both criteria stated above. In this paper historical aerial photographs are used with dense image matching algorithms to realize 3d models of a city in different years. The models can be used to study the urban development of the city and its changes through time. The application relates to the city centre of Verona, for which some time series of aerial photographs have been retrieved. The models obtained in this way allowed, right away, to observe the urban development of the city, the places of expansion and new urban areas. But a more interesting aspect emerged from the analytical comparison between models. The difference, as the Euclidean distance, between two models gives information about new buildings or demolitions. As considering accuracy it is necessary point out that the quality of final

  16. Semiconductor defect metrology using laser-based quantitative phase imaging

    NASA Astrophysics Data System (ADS)

    Zhou, Renjie; Edwards, Chris; Popescu, Gabriel; Goddard, Lynford

    2015-03-01

    A highly sensitive laser-based quantitative phase imaging tool, using an epi-illumination diffraction phase microscope, has been developed for silicon wafer defect inspection. The first system used a 532 nm solid-state laser and detected 20 nm by 100 nm by 110 nm defects in a 22 nm node patterned silicon wafer. The second system, using a 405 nm diode laser, is more sensitive and has enabled detection of 15 nm by 90 nm by 35 nm defects in a 9 nm node densely patterned silicon wafer. In addition to imaging, wafer scanning and image-post processing are also crucial for defect detection.

  17. a Fast Approach for Stitching of Aerial Images

    NASA Astrophysics Data System (ADS)

    Moussa, A.; El-Sheimy, N.

    2016-06-01

    The last few years have witnessed an increasing volume of aerial image data because of the extensive improvements of the Unmanned Aerial Vehicles (UAVs). These newly developed UAVs have led to a wide variety of applications. A fast assessment of the achieved coverage and overlap of the acquired images of a UAV flight mission is of great help to save the time and cost of the further steps. A fast automatic stitching of the acquired images can help to visually assess the achieved coverage and overlap during the flight mission. This paper proposes an automatic image stitching approach that creates a single overview stitched image using the acquired images during a UAV flight mission along with a coverage image that represents the count of overlaps between the acquired images. The main challenge of such task is the huge number of images that are typically involved in such scenarios. A short flight mission with image acquisition frequency of one second can capture hundreds to thousands of images. The main focus of the proposed approach is to reduce the processing time of the image stitching procedure by exploiting the initial knowledge about the images positions provided by the navigation sensors. The proposed approach also avoids solving for all the transformation parameters of all the photos together to save the expected long computation time if all the parameters were considered simultaneously. After extracting the points of interest of all the involved images using Scale-Invariant Feature Transform (SIFT) algorithm, the proposed approach uses the initial image's coordinates to build an incremental constrained Delaunay triangulation that represents the neighborhood of each image. This triangulation helps to match only the neighbor images and therefore reduces the time-consuming features matching step. The estimated relative orientation between the matched images is used to find a candidate seed image for the stitching process. The pre-estimated transformation

  18. An automatic high precision registration method between large area aerial images and aerial light detection and ranging data

    NASA Astrophysics Data System (ADS)

    Du, Q.; Xie, D.; Sun, Y.

    2015-06-01

    The integration of digital aerial photogrammetry and Light Detetion And Ranging (LiDAR) is an inevitable trend in Surveying and Mapping field. We calculate the external orientation elements of images which identical with LiDAR coordinate to realize automatic high precision registration between aerial images and LiDAR data. There are two ways to calculate orientation elements. One is single image spatial resection using image matching 3D points that registered to LiDAR. The other one is Position and Orientation System (POS) data supported aerotriangulation. The high precision registration points are selected as Ground Control Points (GCPs) instead of measuring GCPs manually during aerotriangulation. The registration experiments indicate that the method which registering aerial images and LiDAR points has a great advantage in higher automation and precision compare with manual registration.

  19. Fitting of Parametric Building Models to Oblique Aerial Images

    NASA Astrophysics Data System (ADS)

    Panday, U. S.; Gerke, M.

    2011-09-01

    In literature and in photogrammetric workstations many approaches and systems to automatically reconstruct buildings from remote sensing data are described and available. Those building models are being used for instance in city modeling or in cadastre context. If a roof overhang is present, the building walls cannot be estimated correctly from nadir-view aerial images or airborne laser scanning (ALS) data. This leads to inconsistent building outlines, which has a negative influence on visual impression, but more seriously also represents a wrong legal boundary in the cadaster. Oblique aerial images as opposed to nadir-view images reveal greater detail, enabling to see different views of an object taken from different directions. Building walls are visible from oblique images directly and those images are used for automated roof overhang estimation in this research. A fitting algorithm is employed to find roof parameters of simple buildings. It uses a least squares algorithm to fit projected wire frames to their corresponding edge lines extracted from the images. Self-occlusion is detected based on intersection result of viewing ray and the planes formed by the building whereas occlusion from other objects is detected using an ALS point cloud. Overhang and ground height are obtained by sweeping vertical and horizontal planes respectively. Experimental results are verified with high resolution ortho-images, field survey, and ALS data. Planimetric accuracy of 1cm mean and 5cm standard deviation was obtained, while buildings' orientation were accurate to mean of 0.23° and standard deviation of 0.96° with ortho-image. Overhang parameters were aligned to approximately 10cm with field survey. The ground and roof heights were accurate to mean of - 9cm and 8cm with standard deviations of 16cm and 8cm with ALS respectively. The developed approach reconstructs 3D building models well in cases of sufficient texture. More images should be acquired for completeness of

  20. MO-G-12A-01: Quantitative Imaging Metrology: What Should Be Assessed and How?

    SciTech Connect

    Giger, M; Petrick, N; Obuchowski, N; Kinahan, P

    2014-06-15

    The first two symposia in the Quantitative Imaging Track focused on 1) the introduction of quantitative imaging (QI) challenges and opportunities, and QI efforts of agencies and organizations such as the RSNA, NCI, FDA, and NIST, and 2) the techniques, applications, and challenges of QI, with specific examples from CT, PET/CT, and MR. This third symposium in the QI Track will focus on metrology and its importance in successfully advancing the QI field. While the specific focus will be on QI, many of the concepts presented are more broadly applicable to many areas of medical physics research and applications. As such, the topics discussed should be of interest to medical physicists involved in imaging as well as therapy. The first talk of the session will focus on the introduction to metrology and why it is critically important in QI. The second talk will focus on appropriate methods for technical performance assessment. The third talk will address statistically valid methods for algorithm comparison, a common problem not only in QI but also in other areas of medical physics. The final talk in the session will address strategies for publication of results that will allow statistically valid meta-analyses, which is critical for combining results of individual studies with typically small sample sizes in a manner that can best inform decisions and advance the field. Learning Objectives: Understand the importance of metrology in the QI efforts. Understand appropriate methods for technical performance assessment. Understand methods for comparing algorithms with or without reference data (i.e., “ground truth”). Understand the challenges and importance of reporting results in a manner that allows for statistically valid meta-analyses.

  1. Vision ray calibration for the quantitative geometric description of general imaging and projection optics in metrology

    SciTech Connect

    Bothe, Thorsten; Li Wansong; Schulte, Michael; von Kopylow, Christoph; Bergmann, Ralf B.; Jueptner, Werner P. O.

    2010-10-20

    Exact geometric calibration of optical devices like projectors or cameras is the basis for utilizing them in quantitative metrological applications. The common state-of-the-art photogrammetric pinhole-imaging-based models with supplemental polynomial corrections fail in the presence of nonsymmetric or high-spatial-frequency distortions and in describing caustics efficiently. These problems are solved by our vision ray calibration (VRC), which is proposed in this paper. The VRC takes an optical mapping system modeled as a black box and directly delivers corresponding vision rays for each mapped pixel. The underlying model, the calibration process, and examples are visualized and reviewed, demonstrating the potential of the VRC.

  2. Large-Scale Aerial Image Categorization Using a Multitask Topological Codebook.

    PubMed

    Zhang, Luming; Wang, Meng; Hong, Richang; Yin, Bao-Cai; Li, Xuelong

    2016-02-01

    Fast and accurately categorizing the millions of aerial images on Google Maps is a useful technique in pattern recognition. Existing methods cannot handle this task successfully due to two reasons: 1) the aerial images' topologies are the key feature to distinguish their categories, but they cannot be effectively encoded by a conventional visual codebook and 2) it is challenging to build a realtime image categorization system, as some geo-aware Apps update over 20 aerial images per second. To solve these problems, we propose an efficient aerial image categorization algorithm. It focuses on learning a discriminative topological codebook of aerial images under a multitask learning framework. The pipeline can be summarized as follows. We first construct a region adjacency graph (RAG) that describes the topology of each aerial image. Naturally, aerial image categorization can be formulated as RAG-to-RAG matching. According to graph theory, RAG-to-RAG matching is conducted by enumeratively comparing all their respective graphlets (i.e., small subgraphs). To alleviate the high time consumption, we propose to learn a codebook containing topologies jointly discriminative to multiple categories. The learned topological codebook guides the extraction of the discriminative graphlets. Finally, these graphlets are integrated into an AdaBoost model for predicting aerial image categories. Experimental results show that our approach is competitive to several existing recognition models. Furthermore, over 24 aerial images are processed per second, demonstrating that our approach is ready for real-world applications. PMID:25794407

  3. Large-Scale Aerial Image Categorization Using a Multitask Topological Codebook.

    PubMed

    Zhang, Luming; Wang, Meng; Hong, Richang; Yin, Bao-Cai; Li, Xuelong

    2016-02-01

    Fast and accurately categorizing the millions of aerial images on Google Maps is a useful technique in pattern recognition. Existing methods cannot handle this task successfully due to two reasons: 1) the aerial images' topologies are the key feature to distinguish their categories, but they cannot be effectively encoded by a conventional visual codebook and 2) it is challenging to build a realtime image categorization system, as some geo-aware Apps update over 20 aerial images per second. To solve these problems, we propose an efficient aerial image categorization algorithm. It focuses on learning a discriminative topological codebook of aerial images under a multitask learning framework. The pipeline can be summarized as follows. We first construct a region adjacency graph (RAG) that describes the topology of each aerial image. Naturally, aerial image categorization can be formulated as RAG-to-RAG matching. According to graph theory, RAG-to-RAG matching is conducted by enumeratively comparing all their respective graphlets (i.e., small subgraphs). To alleviate the high time consumption, we propose to learn a codebook containing topologies jointly discriminative to multiple categories. The learned topological codebook guides the extraction of the discriminative graphlets. Finally, these graphlets are integrated into an AdaBoost model for predicting aerial image categories. Experimental results show that our approach is competitive to several existing recognition models. Furthermore, over 24 aerial images are processed per second, demonstrating that our approach is ready for real-world applications.

  4. Building FAÇADE Separation in Vertical Aerial Images

    NASA Astrophysics Data System (ADS)

    Meixner, P.; Wendel, A.; Bischof, H.; Leberl, F.

    2012-07-01

    Three-dimensional models of urban environments have great appeal and offer promises of interesting applications. While initially it was of interest to just have such 3D data, it increasingly becomes evident that one really would like to have interpreted urban objects. To be able to interpret buildings we have to split a visible whole building block into its different single buildings. Usually this is done using cadastral information to divide the single land parcels. The problem in this case is that sometimes the building boundaries derived from the cadastre are insufficiently accurate due to several reasons like old databases with lower accuracies or inaccuracies due to transformation between two coordinate systems. For this reason it can happen that a cadastral boundary coming from an old map is displaced by up to several meters and therefore divides two buildings incorrectly. To overcome such problems we incorporate the information from vertical aerial images. We introduce a façade separation method that is able to find individual building façades using multi view stereo. The purpose is to identify the individual façades and separate them from one another before on proceeds with the analysis of a façade's details. The source was a set of overlapping, thus "redundant" vertical aerial images taken by an UltraCam digital aerial camera. Therefore in a first step we determine the building block outlines using the building classification and use the height values from the Digital Surface Model (DSM) to determine approximate "façade quadrilaterals". We also incorporate height discontinuities using the height profiles along the building outlines to enhance our façade separation. In a next step we detect repeated pattern in these "façade images" and use them to separate the façades respectively building blocks from one another. We show that this method can be successfully used to separate building façades using vertical aerial images with a very high detection

  5. a New Paradigm for Matching - and Aerial Images

    NASA Astrophysics Data System (ADS)

    Koch, T.; Zhuo, X.; Reinartz, P.; Fraundorfer, F.

    2016-06-01

    This paper investigates the performance of SIFT-based image matching regarding large differences in image scaling and rotation, as this is usually the case when trying to match images captured from UAVs and airplanes. This task represents an essential step for image registration and 3d-reconstruction applications. Various real world examples presented in this paper show that SIFT, as well as A-SIFT perform poorly or even fail in this matching scenario. Even if the scale difference in the images is known and eliminated beforehand, the matching performance suffers from too few feature point detections, ambiguous feature point orientations and rejection of many correct matches when applying the ratio-test afterwards. Therefore, a new feature matching method is provided that overcomes these problems and offers thousands of matches by a novel feature point detection strategy, applying a one-to-many matching scheme and substitute the ratio-test by adding geometric constraints to achieve geometric correct matches at repetitive image regions. This method is designed for matching almost nadir-directed images with low scene depth, as this is typical in UAV and aerial image matching scenarios. We tested the proposed method on different real world image pairs. While standard SIFT failed for most of the datasets, plenty of geometrical correct matches could be found using our approach. Comparing the estimated fundamental matrices and homographies with ground-truth solutions, mean errors of few pixels can be achieved.

  6. Error Estimation Techniques to Refine Overlapping Aerial Image Mosaic Processes via Detected Parameters

    ERIC Educational Resources Information Center

    Bond, William Glenn

    2012-01-01

    In this paper, I propose to demonstrate a means of error estimation preprocessing in the assembly of overlapping aerial image mosaics. The mosaic program automatically assembles several hundred aerial images from a data set by aligning them, via image registration using a pattern search method, onto a GIS grid. The method presented first locates…

  7. Multi-colour microscopic interferometry for optical metrology and imaging applications

    NASA Astrophysics Data System (ADS)

    Upputuri, Paul Kumar; Pramanik, Manojit; Nandigana, Krishna Mohan; Kothiyal, Mahendra Prasad

    2016-09-01

    Interferometry has been widely used for optical metrology and imaging applications because of their precision, reliability, and versatility. Although single-wavelength interferometery can provide high sensitivity and resolution, it has several drawbacks, namely, it fails to quantify large-discontinuities, large-deformations, and shape of unpolished surfaces. Multiple-wavelength techniques have been successfully used to overcome the drawbacks associated with single wavelength analysis. The use of colour CCD camera allows simultaneous acquisition of multiple interferograms. The advances in colour CCD cameras and image processing techniques have made the multi-colour interferometry a faster, simpler, and cost-effective tool for industrial applications. This article reviews the recent advances in multi-colour interferometric techniques and their demanding applications for characterization of micro-systems, non-destructive testing, and bio-imaging applications.

  8. Direct Penguin Counting Using Unmanned Aerial Vehicle Image

    NASA Astrophysics Data System (ADS)

    Hyun, C. U.; Kim, H. C.; Kim, J. H.; Hong, S. G.

    2015-12-01

    This study presents an application of unmanned aerial vehicle (UAV) images to monitor penguin colony in Baton Peninsula, King George Island, Antarctica. The area around Narębski Point located on the southeast coast of Barton Peninsula was designated as Antarctic Specially Protected Area No. 171 (ASPA 171), and Chinstrap and Gentoo penguins inhabit in this area. The UAV images were acquired in a part of ASPA 171 from four flights in a single day, Jan 18, 2014. About 360 images were mosaicked as an image of about 3 cm spatial resolution and then a subset including representative penguin rookeries was selected. The subset image was segmented based on gradient map of pixel values, and spectral and spatial attributes were assigned to each segment. The object based image analysis (OBIA) was conducted with consideration of spectral attributes including mean and minimum values of each segment and various shape attributes such as area, length, compactness and roundness to detect individual penguin. The segments indicating individual penguin were effectively detected on rookeries with high contrasts in the spectral and shape attributes. The importance of periodic and precise monitoring of penguins has been recognized because variations of their populations reflect environmental changes and disturbance from human activities. Utilization of very high resolution imaging method shown in this study can be applied to other penguin habitats in Antarctica, and the results will be able to support establishing effective environmental management plans.

  9. Realization of an aerial 3D image that occludes the background scenery.

    PubMed

    Kakeya, Hideki; Ishizuka, Shuta; Sato, Yuya

    2014-10-01

    In this paper we describe an aerial 3D image that occludes far background scenery based on coarse integral volumetric imaging (CIVI) technology. There have been many volumetric display devices that present floating 3D images, most of which have not reproduced the visual occlusion. CIVI is a kind of multilayered integral imaging and realizes an aerial volumetric image with visual occlusion by combining multiview and volumetric display technologies. The conventional CIVI, however, cannot show a deep space, for the number of layered panels is limited because of the low transmittance of each panel. To overcome this problem, we propose a novel optical design to attain an aerial 3D image that occludes far background scenery. In the proposed system, a translucent display panel with 120 Hz refresh rate is located between the CIVI system and the aerial 3D image. The system modulates between the aerial image mode and the background image mode. In the aerial image mode, the elemental images are shown on the CIVI display and the inserted translucent display is uniformly translucent. In the background image mode, the black shadows of the elemental images in a white background are shown on the CIVI display and the background scenery is displayed on the inserted translucent panel. By alternation of these two modes at 120 Hz, an aerial 3D image that visually occludes the far background scenery is perceived by the viewer.

  10. Image library approach to evaluating parametric uncertainty in metrology of isolated feature width

    NASA Astrophysics Data System (ADS)

    Potzick, James

    2009-03-01

    When measuring the width of an isolated line or space on a wafer or photomask, only the feature's image is measured, not the object itself. Often the largest contributors to measurement uncertainty are the uncertainties in the parameters which affect the image. Measurement repeatability is often smaller than the combined parametric uncertainty. An isolated feature's edges are far enough away from nearest edges of other features that its image does not change if this distance is increased (about 10 wavelengths in an optical microscope or exposure tool, or several effective-beam-widths in a SEM). When the leading and trailing edges of the same feature are not isolated from each other the metrology process becomes nonlinear. Isolated features may not be amenable to measurement by grating methods (e.g., scatterometry), and there is no hard lower limit to how small an isolated feature can be measured. There are several ways to infer the size of an isolated feature from its image in a microscope (SEM, AFM, optical,...), and they all require image modeling. Image modeling accounts for the influence of all of the parameters which can affect the image, and relates the apparent linewidth (in the image) to the true linewidth (on the object). The values of these parameters, however, have uncertainties and these uncertainties propagate through the model and lead to parametric uncertainty in the linewidth measurement, along with the scale factor uncertainty and the measurement repeatability. The combined measurement uncertainty is required in order to decide if the result is adequate for its intended purpose and to ascertain if it is consistent with other similar results. The parametric uncertainty for optical photomask measurements derived using an edge threshold approach has been described previously [1]; this paper describes an image library approach to this issue and shows results for optical photomask metrology over a linewidth and spacewidth range of 10 nm to 4 μm. The

  11. Oblique Aerial Images and Their Use in Cultural Heritage Documentation

    NASA Astrophysics Data System (ADS)

    Höhle, J.

    2013-07-01

    Oblique images enable three-dimensional (3d) modelling of objects with vertical dimensions. Such imagery is nowadays systematically taken of cities and may easily become available. The documentation of cultural heritage can take advantage of these sources of information. Two new oblique camera systems are presented and characteristics of such images are summarized. A first example uses images of a new multi-camera system for the derivation of orthoimages, façade plots with photo texture, 3d scatter plots, and dynamic 3d models of a historic church. The applied methodology is based on automatically derived point clouds of high density. Each point will be supplemented with colour and other attributes. The problems experienced in these processes and the solutions to these problems are presented. The applied tools are a combination of professional tools, free software, and of own software developments. Special attention is given to the quality of input images. Investigations are carried out on edges in the images. The combination of oblique and nadir images enables new possibilities in the processing. The use of the near-infrared channel besides the red, green, and blue channel of the applied multispectral imagery is also of advantage. Vegetation close to the object of interest can easily be removed. A second example describes the modelling of a monument by means of a non-metric camera and a standard software package. The presented results regard achieved geometric accuracy and image quality. It is concluded that the use of oblique aerial images together with image-based processing methods yield new possibilities of economic and accurate documentation of tall monuments.

  12. Aerial imaging manages pipeline right-of-way programs

    SciTech Connect

    Jadkowski, M.A.; Convery, P.

    1996-02-01

    Pipeline companies that own and manage extensive rights-of-way corridors are facing ever-increasing regulatory pressures, operating issues and ongoing needs to remain competitive in today`s marketplace. The digital aerial rights-of-way monitoring system (DARMS) is a personal computer-based digital charge-coupled device (CCD) camera integrated with a high-capacity tape recorder. DARMS was developed through NASA by the Stennis Space Center for use in a Sewall aircraft. Sewall is responsible for its operational testing and developing the image products for pipeline monitoring. DARMS consists of a personal computer main control unit (MCU), a Kodak Megaplus 1.4-CCD camera head, a monochrome video monitor for in-flight operation, and an Exabyte 8500 8-millimeter tape recorder for image data storage. The system is designed to be operated in a small, unpressurized aircraft flown by a single pilot. The control program software provides a highly autonomous turnkey operation. After a mission has been flown, Exabyte tape is loaded onto a Sun workstation and the images are contrast-balanced and spatially enhanced using a mid-high filtering algorithm. Depending on client requirements, images also may be geo-referenced to a coordinate system or mosaicked together. The resulting image frames are indexed using their GPS location, delivered to the client and archived.

  13. Application of Digital Image Correlation Method to Improve the Accuracy of Aerial Photo Stitching

    NASA Astrophysics Data System (ADS)

    Tung, Shih-Heng; Jhou, You-Liang; Shih, Ming-Hsiang; Hsiao, Han-Wei; Sung, Wen-Pei

    2016-04-01

    Satellite images and traditional aerial photos have been used in remote sensing for a long time. However, there are some problems with these images. For example, the resolution of satellite image is insufficient, the cost to obtain traditional images is relatively high and there is also human safety risk in traditional flight. These result in the application limitation of these images. In recent years, the control technology of unmanned aerial vehicle (UAV) is rapidly developed. This makes unmanned aerial vehicle widely used in obtaining aerial photos. Compared to satellite images and traditional aerial photos, these aerial photos obtained using UAV have the advantages of higher resolution, low cost. Because there is no crew in UAV, it is still possible to take aerial photos using UAV under unstable weather conditions. Images have to be orthorectified and their distortion must be corrected at first. Then, with the help of image matching technique and control points, these images can be stitched or used to establish DEM of ground surface. These images or DEM data can be used to monitor the landslide or estimate the volume of landslide. For the image matching, we can use such as Harris corner method, SIFT or SURF to extract and match feature points. However, the accuracy of these methods for matching is about pixel or sub-pixel level. The accuracy of digital image correlation method (DIC) during image matching can reach about 0.01pixel. Therefore, this study applies digital image correlation method to match extracted feature points. Then the stitched images are observed to judge the improvement situation. This study takes the aerial photos of a reservoir area. These images are stitched under the situations with and without the help of DIC. The results show that the misplacement situation in the stitched image using DIC to match feature points has been significantly improved. This shows that the use of DIC to match feature points can actually improve the accuracy of

  14. Initial Efforts toward Mission-Representative Imaging Surveys from Aerial Explorers

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Plice, Laura; Ippolito, Corey; Young, Larry A.; Lau, Benton; Lee, Pascal

    2004-01-01

    Numerous researchers have proposed the use of robotic aerial explorers to perform scientific investigation of planetary bodies in our solar system. One of the essential tasks for any aerial explorer is to be able to perform scientifically valuable imaging surveys. The focus of this paper is to discuss the challenges implicit in, and recent observations related to, acquiring mission-representative imaging data from a small fixed-wing UAV, acting as a surrogate planetary aerial explorer. This question of successfully performing aerial explorer surveys is also tied to other topics of technical investigation, including the development of unique bio-inspired technologies.

  15. Volumetric rendering and metrology of spherical gradient refractive index lens imaged by angular scan optical coherence tomography system.

    PubMed

    Yao, Jianing; Thompson, Kevin P; Ma, Bin; Ponting, Michael; Rolland, Jannick P

    2016-08-22

    In this paper, we develop the methodology, including the refraction correction, geometrical thickness correction, coordinate transformation, and layer segmentation algorithms, for 3D rendering and metrology of a layered spherical gradient refractive index (S-GRIN) lens based on the imaging data collected by an angular scan optical coherence tomography (OCT) system. The 3D mapping and rendering enables direct 3D visualization and internal defect inspection of the lens. The metrology provides assessment of the surface geometry, the lens thickness, the radii of curvature of the internal layer interfaces, and the misalignment of the internal S-GRIN distribution with respect to the lens surface. The OCT metrology results identify the manufacturing defects, and enable targeted process development for optimizing the manufacturing parameters. The newly fabricated S-GRIN lenses show up to a 7x spherical aberration reduction that allows a significantly increased utilizable effective aperture. PMID:27557217

  16. Semantic Segmentation of Aerial Images with AN Ensemble of Cnns

    NASA Astrophysics Data System (ADS)

    Marmanis, D.; Wegner, J. D.; Galliani, S.; Schindler, K.; Datcu, M.; Stilla, U.

    2016-06-01

    This paper describes a deep learning approach to semantic segmentation of very high resolution (aerial) images. Deep neural architectures hold the promise of end-to-end learning from raw images, making heuristic feature design obsolete. Over the last decade this idea has seen a revival, and in recent years deep convolutional neural networks (CNNs) have emerged as the method of choice for a range of image interpretation tasks like visual recognition and object detection. Still, standard CNNs do not lend themselves to per-pixel semantic segmentation, mainly because one of their fundamental principles is to gradually aggregate information over larger and larger image regions, making it hard to disentangle contributions from different pixels. Very recently two extensions of the CNN framework have made it possible to trace the semantic information back to a precise pixel position: deconvolutional network layers undo the spatial downsampling, and Fully Convolution Networks (FCNs) modify the fully connected classification layers of the network in such a way that the location of individual activations remains explicit. We design a FCN which takes as input intensity and range data and, with the help of aggressive deconvolution and recycling of early network layers, converts them into a pixelwise classification at full resolution. We discuss design choices and intricacies of such a network, and demonstrate that an ensemble of several networks achieves excellent results on challenging data such as the ISPRS semantic labeling benchmark, using only the raw data as input.

  17. Grab a coffee: your aerial images are already analyzed

    NASA Astrophysics Data System (ADS)

    Garetto, Anthony; Rademacher, Thomas; Schulz, Kristian

    2015-07-01

    For over 2 decades the AIMTM platform has been utilized in mask shops as the standard for actinic review of photomask sites in order to perform defect disposition and repair review. Throughout this time the measurement throughput of the systems has been improved in order to keep pace with the requirements demanded by a manufacturing environment, however the analysis of the sites captured has seen little improvement and remained a manual process. This manual analysis of aerial images is time consuming, subject to error and unreliability and contributes to holding up turn-around time (TAT) and slowing process flow in a manufacturing environment. AutoAnalysis, the first application available for the FAVOR® platform, offers a solution to these problems by providing fully automated data transfer and analysis of AIMTM aerial images. The data is automatically output in a customizable format that can be tailored to your internal needs and the requests of your customers. Savings in terms of operator time arise from the automated analysis which no longer needs to be performed. Reliability is improved as human error is eliminated making sure the most defective region is always and consistently captured. Finally the TAT is shortened and process flow for the back end of the line improved as the analysis is fast and runs in parallel to the measurements. In this paper the concept and approach of AutoAnalysis will be presented as well as an update to the status of the project. A look at the benefits arising from the automation and the customizable approach of the solution will be shown.

  18. Charged particle imaging methods for CD metrology of sub 22nm 3D device structures

    NASA Astrophysics Data System (ADS)

    Cepler, Aron

    Critical dimension scanning electron microscopes (CD-SEMs) are used to perform highly accurate dimensional metrology on patterned features. In order to ensure optimal feedback for process control, it is necessary that these tools produce highly reproducible measurements. As the smallest device features continue to shrink, and new challenging high aspect ratio (HAR) structures are being introduced, gaps are appearing between process control measurements that are necessary for high volume manufacturing and the capabilities of the CD-SEM. Two possible routes for solving this problem include improvement of the existing CD-SEM technology or the replacement of the CD-SEM. With improved tool monitoring techniques, the uncertainty in the tool measurements may be reduced, leading to an improvement in the tool performance. By using a carefully designed test structure (such as a pseudorandom dot array), the Contrast Transfer Function (CTF) of a given tool can be decoupled from the specimen information, allowing for characterization of the imaging system itself. Test samples are fabricated using nanoimprint lithography and are imaged in a variety of CD-SEMs in order to measure the performance of the microscopes. This technique is used successfully to identify when the tool is not performing optimally, as well as to monitor the performance of a tool over time and match the performance of different tools. Research is being made into CD-SEM replacement technologies, among them, ion microscopy. The Helium Ion Microscope's (HeIM) higher depth of focus than the CD-SEM could be advantageous for the imaging of HAR structures. Studies were conducted in order to determine what imaging signals will be the most useful for CD-metrology and to evaluate the damage that the beam will do to the sample. A technique was developed to determine the depth which that signals were able to escape from the HAR structures, using a series of images acquired with varied tilts. This allows the abilities of

  19. Coastline Extraction from Aerial Images Based on Edge Detection

    NASA Astrophysics Data System (ADS)

    Paravolidakis, V.; Moirogiorgou, K.; Ragia, L.; Zervakis, M.; Synolakis, C.

    2016-06-01

    Nowadays coastline extraction and tracking of its changes become of high importance because of the climate change, global warming and rapid growth of human population. Coastal areas play a significant role for the economy of the entire region. In this paper we propose a new methodology for automatic extraction of the coastline using aerial images. A combination of a four step algorithm is used to extract the coastline in a robust and generalizable way. First, noise distortion is reduced in order to ameliorate the input data for the next processing steps. Then, the image is segmented into two regions, land and sea, through the application of a local threshold to create the binary image. The result is further processed by morphological operators with the aim that small objects are being eliminated and only the objects of interest are preserved. Finally, we perform edge detection and active contours fitting in order to extract and model the coastline. These algorithmic steps are illustrated through examples, which demonstrate the efficacy of the proposed methodology.

  20. Net-Faim: distributed computation of aerial images

    NASA Astrophysics Data System (ADS)

    Hollerbach, Uwe

    1998-06-01

    Simulation of aerial images is an important part of modern microchip manufacturing, but computation of the image of an entire mask is a challenging problem requiring a large amount of memory and CPU time. Fortunately, it is possible to decompose the large problem of computing the full image into many smaller, mostly independent, sub-problems. In this paper, one particular decomposition is described and implemented. The target platform is a heterogeneous group of networked workstations. The program, net-faim, was designed to be robust, to scale well with available resources, and to place modest demands on participating workstations. All of these design criteria have been realized. The overall performance of the distributed computation is linearly proportional to the sum of the performances of the individual processors, up to a rather high level of parallelism. Robustness is achieved by not relying on any one server to complete a given task; instead, if an idle server is available, the task is sent out to the idle server even if it has previously been sent to another server. The task is only retired when a server returns the completed answer. This 'paranoid' method of processing tasks has the pleasant side effect of doing automatic dynamic load balancing. The results of runs with several different configurations, both of participating workstations and of sub- domain sizes, are displayed.

  1. Monte Carlo simulations of image analysis for flexible and high-resolution registration metrology

    NASA Astrophysics Data System (ADS)

    Arnz, M.; Klose, G.; Troll, G.; Beyer, D.; Mueller, A.

    2009-01-01

    The continuous progress of PROVE, the new photomask registration and overlay measurement tool currently under development at Carl Zeiss has been reported at mask related conferences since it's first publication at EMLC 2008. The project has moved in the past year from a final design on paper to functional hardware in the lab. Major tool components such as the climate control unit, the automated mask handling system and the metrology stage have been assembled and successfully tested. The scope of this paper is to report on the current status of PROVE and furthermore present results from simulations utilizing the image analysis routines of the tool. Monte-Carlo simulations were used to analyze the impact of several realistic tool limitations (camera noise, stage and focus noise and imaging telecentricity) on the image analysis process. The evaluation itself was based on a conventional threshold approach to perform both registration and CD measurement simultaneously. The results show, that the routines can deal with the tool imperfections and limit the contribution to the reproducibility error for standard registration markers to a negligible part. Even single contact holes suffer only from small errors, when camera noise is low and image averaging is increased. Employing a generally used test pattern the CD test results also confirm a sufficiently small error contribution to the CD non-uniformity reproducibility.

  2. Vehicle detection from high-resolution aerial images based on superpixel and color name features

    NASA Astrophysics Data System (ADS)

    Chen, Ziyi; Cao, Liujuan; Yu, Zang; Chen, Yiping; Wang, Cheng; Li, Jonathan

    2016-03-01

    Automatic vehicle detection from aerial images is emerging due to the strong demand of large-area traffic monitoring. In this paper, we present a novel framework for automatic vehicle detection from the aerial images. Through superpixel segmentation, we first segment the aerial images into homogeneous patches, which consist of the basic units during the detection to improve efficiency. By introducing the sparse representation into our method, powerful classification ability is achieved after the dictionary training. To effectively describe a patch, the Histogram of Oriented Gradient (HOG) is used. We further propose to integrate color information to enrich the feature representation by using the color name feature. The final feature consists of both HOG and color name based histogram, by which we get a strong descriptor of a patch. Experimental results demonstrate the effectiveness and robust performance of the proposed algorithm for vehicle detection from aerial images.

  3. Study of Automatic Image Rectification and Registration of Scanned Historical Aerial Photographs

    NASA Astrophysics Data System (ADS)

    Chen, H. R.; Tseng, Y. H.

    2016-06-01

    Historical aerial photographs directly provide good evidences of past times. The Research Center for Humanities and Social Sciences (RCHSS) of Taiwan Academia Sinica has collected and scanned numerous historical maps and aerial images of Taiwan and China. Some maps or images have been geo-referenced manually, but most of historical aerial images have not been registered since there are no GPS or IMU data for orientation assisting in the past. In our research, we developed an automatic process of matching historical aerial images by SIFT (Scale Invariant Feature Transform) for handling the great quantity of images by computer vision. SIFT is one of the most popular method of image feature extracting and matching. This algorithm extracts extreme values in scale space into invariant image features, which are robust to changing in rotation scale, noise, and illumination. We also use RANSAC (Random sample consensus) to remove outliers, and obtain good conjugated points between photographs. Finally, we manually add control points for registration through least square adjustment based on collinear equation. In the future, we can use image feature points of more photographs to build control image database. Every new image will be treated as query image. If feature points of query image match the features in database, it means that the query image probably is overlapped with control images.With the updating of database, more and more query image can be matched and aligned automatically. Other research about multi-time period environmental changes can be investigated with those geo-referenced temporal spatial data.

  4. Aberration measurement based on principal component analysis of aerial images of optimized marks

    NASA Astrophysics Data System (ADS)

    Yan, Guanyong; Wang, Xiangzhao; Li, Sikun; Yang, Jishuo; Xu, Dongbo

    2014-10-01

    We propose an aberration measurement technique based on principal component analysis of aerial images of optimized marks (AMAI-OM). Zernike aberrations are retrieved using a linear relationship between the aerial image and Zernike coefficients. The linear relationship is composed of the principal components (PCs) and regression matrix. A centering process is introduced to compensate position offsets of the measured aerial image. A new test mark is designed in order to improve the centering accuracy and theoretical accuracy of aberration measurement together. The new test marks are composed of three spaces with different widths, and their parameters are optimized by using an accuracy evaluation function. The offsets of the measured aerial image are compensated in the centering process and the adjusted PC coefficients are obtained. Then the Zernike coefficients are calculated according to these PC coefficients using a least square method. The simulations using the lithography simulators PROLITH and Dr.LiTHO validate the accuracy of our method. Compared with the previous aberration measurement technique based on principal component analysis of aerial image (AMAI-PCA), the measurement accuracy of Zernike aberrations under the real measurement condition of the aerial image is improved by about 50%.

  5. A Featureless Approach to 3D Polyhedral Building Modeling from Aerial Images

    PubMed Central

    Hammoudi, Karim; Dornaika, Fadi

    2011-01-01

    This paper presents a model-based approach for reconstructing 3D polyhedral building models from aerial images. The proposed approach exploits some geometric and photometric properties resulting from the perspective projection of planar structures. Data are provided by calibrated aerial images. The novelty of the approach lies in its featurelessness and in its use of direct optimization based on image rawbrightness. The proposed framework avoids feature extraction and matching. The 3D polyhedral model is directly estimated by optimizing an objective function that combines an image-based dissimilarity measure and a gradient score over several aerial images. The optimization process is carried out by the Differential Evolution algorithm. The proposed approach is intended to provide more accurate 3D reconstruction than feature-based approaches. Fast 3D model rectification and updating can take advantage of the proposed method. Several results and evaluations of performance from real and synthetic images show the feasibility and robustness of the proposed approach. PMID:22346575

  6. A featureless approach to 3D polyhedral building modeling from aerial images.

    PubMed

    Hammoudi, Karim; Dornaika, Fadi

    2011-01-01

    This paper presents a model-based approach for reconstructing 3D polyhedral building models from aerial images. The proposed approach exploits some geometric and photometric properties resulting from the perspective projection of planar structures. Data are provided by calibrated aerial images. The novelty of the approach lies in its featurelessness and in its use of direct optimization based on image rawbrightness. The proposed framework avoids feature extraction and matching. The 3D polyhedral model is directly estimated by optimizing an objective function that combines an image-based dissimilarity measure and a gradient score over several aerial images. The optimization process is carried out by the Differential Evolution algorithm. The proposed approach is intended to provide more accurate 3D reconstruction than feature-based approaches. Fast 3D model rectification and updating can take advantage of the proposed method. Several results and evaluations of performance from real and synthetic images show the feasibility and robustness of the proposed approach. PMID:22346575

  7. Optical fabrication and metrology for a visible through thermal infrared multi-band imaging system

    SciTech Connect

    Magner, J.; Henson, T.

    1998-04-01

    The optical fabrication, metrology, and system wavefront testing of an off-axis three mirror anastigmatic telescope will be presented. The telescope is part of a multi-band imaging system which includes a single mechanically cooled focal plane with 15 spectral bands covering a wavelength range from 0.45 microns to 10.7 microns and an on board calibration subsystem. The imaging system is to be operated in a low earth orbit in a pushbroom scanning mode. The telescope has a 36 cm aperture, a 1.38 degree cross track by 1.82 degree along-track field of view (FOV), near diffraction limited performance in the visible, and strictly diffraction limited performance from 1.3 microns to 10.7 microns. The primary and the tertiary mirrors are general aspheres which have undergone 80% lightweighting. The secondary mirror is a hyperbola. The primary mirror was extremely difficult to fabricate and test due to its large departure from sphericity, fast f-number, and large off axis distance. The tertiary mirror has a small departure from sphericity and is only slightly off-axis, but it has a very fast f-number also. The surface wavefront measurements for the three mirrors after final figuring and lightweighting are 0.048 waves rms {at}0.6328 microns for the primary mirror and 0.025 waves rms {at}0.6328 microns for the secondary and tertiary mirrors. The telescope wavefront requirement at the center of the along-track FOV is 0.178 waves rms {at}0.6328 microns and at the edge of the along-track FOV is 0.677 waves rms {at} 0.6328 microns.

  8. Line Matching Algorithm for Aerial Image Combining image and object space similarity constraints

    NASA Astrophysics Data System (ADS)

    Wang, Jingxue; Wang, Weixi; Li, Xiaoming; Cao, Zhenyu; Zhu, Hong; Li, Miao; He, Biao; Zhao, Zhigang

    2016-06-01

    A new straight line matching method for aerial images is proposed in this paper. Compared to previous works, similarity constraints combining radiometric information in image and geometry attributes in object plane are employed in these methods. Firstly, initial candidate lines and the elevation values of lines projection plane are determined by corresponding points in neighborhoods of reference lines. Secondly, project reference line and candidate lines back forward onto the plane, and then similarity measure constraints are enforced to reduce the number of candidates and to determine the finial corresponding lines in a hierarchical way. Thirdly, "one-to-many" and "many-to-one" matching results are transformed into "one-to-one" by merging many lines into the new one, and the errors are eliminated simultaneously. Finally, endpoints of corresponding lines are detected by line expansion process combing with "image-object-image" mapping mode. Experimental results show that the proposed algorithm can be able to obtain reliable line matching results for aerial images.

  9. Aerial imaging study of the mask-induced line-width roughness of EUV lithography masks

    NASA Astrophysics Data System (ADS)

    Wojdyla, Antoine; Donoghue, Alexander; Benk, Markus P.; Naulleau, Patrick P.; Goldberg, Kenneth A.

    2016-03-01

    EUV lithography uses reflective photomasks to print features on a wafer through the formation of an aerial image. The aerial image is influenced by the mask's substrate and pattern roughness and by photon shot noise, which collectively affect the line-width on wafer prints, with an impact on local critical dimension uniformity (LCDU). We have used SHARP, an actinic mask-imaging microscope, to study line-width roughness (LWR) in aerial images at sub-nanometer resolution. We studied the impact of photon density and the illumination partial coherence on recorded images, and found that at low coherence settings, the line-width roughness is dominated by photon noise, while at high coherence setting, the effect of speckle becomes more prominent, dominating photon noise for exposure levels of 4 photons/nm2 at threshold on the mask size.

  10. Critical Assessment of Object Segmentation in Aerial Image Using Geo-Hausdorff Distance

    NASA Astrophysics Data System (ADS)

    Sun, H.; Ding, Y.; Huang, Y.; Wang, G.

    2016-06-01

    Aerial Image records the large-range earth objects with the ever-improving spatial and radiometric resolution. It becomes a powerful tool for earth observation, land-coverage survey, geographical census, etc., and helps delineating the boundary of different kinds of objects on the earth both manually and automatically. In light of the geo-spatial correspondence between the pixel locations of aerial image and the spatial coordinates of ground objects, there is an increasing need of super-pixel segmentation and high-accuracy positioning of objects in aerial image. Besides the commercial software package of eCognition and ENVI, many algorithms have also been developed in the literature to segment objects of aerial images. But how to evaluate the segmentation results remains a challenge, especially in the context of the geo-spatial correspondence. The Geo-Hausdorff Distance (GHD) is proposed to measure the geo-spatial distance between the results of various object segmentation that can be done with the manual ground truth or with the automatic algorithms.Based on the early-breaking and random-sampling design, the GHD calculates the geographical Hausdorff distance with nearly-linear complexity. Segmentation results of several state-of-the-art algorithms, including those of the commercial packages, are evaluated with a diverse set of aerial images. They have different signal-to-noise ratio around the object boundaries and are hard to trace correctly even for human operators. The GHD value is analyzed to comprehensively measure the suitability of different object segmentation methods for aerial images of different spatial resolution. By critically assessing the strengths and limitations of the existing algorithms, the paper provides valuable insight and guideline for extensive research in automating object detection and classification of aerial image in the nation-wide geographic census. It is also promising for the optimal design of operational specification of remote

  11. Aerial image simulation for partial coherent system with programming development in MATLAB

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Nazmul; Rahman, Md. Momtazur; Udoy, Ariful Banna

    2014-10-01

    Aerial image can be calculated by either Abbe's method or sum of coherent system decomposition (SOCS) method for partial coherent system. This paper introduces a programming with Matlab code that changes the analytical representation of Abbe's method to the matrix form, which has advantages for both Abbe's method and SOCS since matrix calculation is easier than double integration over object plane or pupil plane. First a singular matrix P is derived from a pupil function and effective light source in the spatial frequency domain. By applying Singular Value Decomposition (SVD) to the matrix P, eigenvalues and eigenfunctions are obtained. The aerial image can then be computed by the eigenvalues and eigenfunctions without calculation of Transmission Cross Coefficient (TCC). The aerial final image is almost identical as an original cross mask and the intensity distribution on image plane shows that it is almost uniform across the linewidth of the mask.

  12. High Density Aerial Image Matching: State-Of and Future Prospects

    NASA Astrophysics Data System (ADS)

    Haala, N.; Cavegn, S.

    2016-06-01

    Ongoing innovations in matching algorithms are continuously improving the quality of geometric surface representations generated automatically from aerial images. This development motivated the launch of the joint ISPRS/EuroSDR project "Benchmark on High Density Aerial Image Matching", which aims on the evaluation of photogrammetric 3D data capture in view of the current developments in dense multi-view stereo-image matching. Originally, the test aimed on image based DSM computation from conventional aerial image flights for different landuse and image block configurations. The second phase then put an additional focus on high quality, high resolution 3D geometric data capture in complex urban areas. This includes both the extension of the test scenario to oblique aerial image flights as well as the generation of filtered point clouds as additional output of the respective multi-view reconstruction. The paper uses the preliminary outcomes of the benchmark to demonstrate the state-of-the-art in airborne image matching with a special focus of high quality geometric data capture in urban scenarios.

  13. A low-cost dual-camera imaging system for aerial applicators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural aircraft provide a readily available remote sensing platform as low-cost and easy-to-use consumer-grade cameras are being increasingly used for aerial imaging. In this article, we report on a dual-camera imaging system we recently assembled that can capture RGB and near-infrared (NIR) i...

  14. A Comparison of Visual Statistics for the Image Enhancement of FORESITE Aerial Images with Those of Major Image Classes

    NASA Technical Reports Server (NTRS)

    Johnson, Daniel J.; Rahman, Zia-ur; Woodell, Glenn A.; Hines, Glenn D.

    2006-01-01

    Aerial images from the Follow-On Radar, Enhanced and Synthetic Vision Systems Integration Technology Evaluation (FORESITE) flight tests with the NASA Langley Research Center's research Boeing 757 were acquired during severe haze and haze/mixed clouds visibility conditions. These images were enhanced using the Visual Servo (VS) process that makes use of the Multiscale Retinex. The images were then quantified with visual quality metrics used internally with the VS. One of these metrics, the Visual Contrast Measure, has been computed for hundreds of FORESITE images, and for major classes of imaging--terrestrial (consumer), orbital Earth observations, orbital Mars surface imaging, NOAA aerial photographs, and underwater imaging. The metric quantifies both the degree of visual impairment of the original, un-enhanced images as well as the degree of visibility improvement achieved by the enhancement process. The large aggregate data exhibits trends relating to degree of atmospheric visibility attenuation, and its impact on limits of enhancement performance for the various image classes. Overall results support the idea that in most cases that do not involve extreme reduction in visibility, large gains in visual contrast are routinely achieved by VS processing. Additionally, for very poor visibility imaging, lesser, but still substantial, gains in visual contrast are also routinely achieved. Further, the data suggest that these visual quality metrics can be used as external standalone metrics for establishing performance parameters.

  15. A comparison of visual statistics for the image enhancement of FORESITE aerial images with those of major image classes

    NASA Astrophysics Data System (ADS)

    Jobson, Daniel J.; Rahman, Zia-ur; Woodell, Glenn A.; Hines, Glenn D.

    2006-05-01

    Aerial images from the Follow-On Radar, Enhanced and Synthetic Vision Systems Integration Technology Evaluation (FORESITE) flight tests with the NASA Langley Research Center's research Boeing 757 were acquired during severe haze and haze/mixed clouds visibility conditions. These images were enhanced using the Visual Servo (VS) process that makes use of the Multiscale Retinex. The images were then quantified with visual quality metrics used internally within the VS. One of these metrics, the Visual Contrast Measure, has been computed for hundreds of FORESITE images, and for major classes of imaging-terrestrial (consumer), orbital Earth observations, orbital Mars surface imaging, NOAA aerial photographs, and underwater imaging. The metric quantifies both the degree of visual impairment of the original, un-enhanced images as well as the degree of visibility improvement achieved by the enhancement process. The large aggregate data exhibits trends relating to degree of atmospheric visibility attenuation, and its impact on the limits of enhancement performance for the various image classes. Overall results support the idea that in most cases that do not involve extreme reduction in visibility, large gains in visual contrast are routinely achieved by VS processing. Additionally, for very poor visibility imaging, lesser, but still substantial, gains in visual contrast are also routinely achieved. Further, the data suggest that these visual quality metrics can be used as external standalone metrics for establishing performance parameters.

  16. Photonic Quantum Metrologies Using Photons: Phase Super-sensitivity and Entanglement-Enhanced Imaging

    NASA Astrophysics Data System (ADS)

    Takeuchi, Shigeki

    Quantum information science has been attracting significant attention recently. It harnesses the intrinsic nature of quantum mechanics such as quantum superposition, the uncertainty principle, and quantum entanglement to realize novel functions. Recently, quantum metrology has been emerging as an application of quantum information science. Among the many physical quanta, photons are an indispensable tool for metrology, as light-based measurements are applicable to fields ranging from astronomy to life science. In quantum metrology, quantum entanglement between photons is the phenomenon utilized.In this chapter, we will try to give a brief overview of this emerging field mainly focusing on two topics: Optical phase measurements beyond the standard quantum limit (SQL) and quantum optical coherence tomography (QOCT). The sensitivity of an optical phase measurement for a given photon number N is usually limited by N sqrt{N} , which is called the SQL or shot noise limit. However, the SQL can be overcome when non-classical light is used. We explain the basic concepts and the recent experimental results that exceed the SQL, and an application of this technology for microscopy. QOCT harnesses the quantum entanglement of photons in frequency to cancel out the dispersion effect, which degrades the resolution of conventional OCT. The mechanism of the dispersion cancellation and the latest experimental results will be given.

  17. Vehicle Detection of Aerial Image Using TV-L1 Texture Decomposition

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wang, G.; Li, Y.; Huang, Y.

    2016-06-01

    Vehicle detection from high-resolution aerial image facilitates the study of the public traveling behavior on a large scale. In the context of road, a simple and effective algorithm is proposed to extract the texture-salient vehicle among the pavement surface. Texturally speaking, the majority of pavement surface changes a little except for the neighborhood of vehicles and edges. Within a certain distance away from the given vector of the road network, the aerial image is decomposed into a smoothly-varying cartoon part and an oscillatory details of textural part. The variational model of Total Variation regularization term and L1 fidelity term (TV-L1) is adopted to obtain the salient texture of vehicles and the cartoon surface of pavement. To eliminate the noise of texture decomposition, regions of pavement surface are refined by seed growing and morphological operation. Based on the shape saliency analysis of the central objects in those regions, vehicles are detected as the objects of rectangular shape saliency. The proposed algorithm is tested with a diverse set of aerial images that are acquired at various resolution and scenarios around China. Experimental results demonstrate that the proposed algorithm can detect vehicles at the rate of 71.5% and the false alarm rate of 21.5%, and that the speed is 39.13 seconds for a 4656 x 3496 aerial image. It is promising for large-scale transportation management and planning.

  18. Aerial-image enables diagrams and animation to be inserted in motion pictures

    NASA Technical Reports Server (NTRS)

    Andrews, S. J., Jr.; Tressel, G. W.

    1967-01-01

    Aerial-image unit makes it possible to insert diagrams and animation into live motion pictures, and also lift an element from a confusing background by suppressing general details. The unit includes a combination of two separate lens systems, the camera-projector system and the field lens system.

  19. Application of high resolution images from unmanned aerial vehicles for hydrology and range science

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A common problem in many natural resource disciplines is the lack of high-enough spatial resolution images that can be used for monitoring and modeling purposes. Advances have been made in the utilization of Unmanned Aerial Vehicles (UAVs) in hydrology and rangeland science. By utilizing low fligh...

  20. A low-cost single-camera imaging system for aerial applicators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural aircraft provide a readily available and versatile platform for airborne remote sensing. Although various airborne imaging systems are available, most of these systems are either too expensive or too complex to be of practical use for aerial applicators. The objective of this study was ...

  1. Registration of multitemporal aerial optical images using line features

    NASA Astrophysics Data System (ADS)

    Zhao, Chenyang; Goshtasby, A. Ardeshir

    2016-07-01

    Registration of multitemporal images is generally considered difficult because scene changes can occur between the times the images are obtained. Since the changes are mostly radiometric in nature, features are needed that are insensitive to radiometric differences between the images. Lines are geometric features that represent straight edges of rigid man-made structures. Because such structures rarely change over time, lines represent stable geometric features that can be used to register multitemporal remote sensing images. An algorithm to establish correspondence between lines in two images of a planar scene is introduced and formulas to relate the parameters of a homography transformation to the parameters of corresponding lines in images are derived. Results of the proposed image registration on various multitemporal images are presented and discussed.

  2. Semi-automatic detection of linear archaeological traces from orthorectified aerial images

    NASA Astrophysics Data System (ADS)

    Figorito, Benedetto; Tarantino, Eufemia

    2014-02-01

    This paper presents a semi-automatic approach for archaeological traces detection from aerial images. The method developed was based on the multiphase active contour model (ACM). The image was segmented into three competing regions to improve the visibility of buried remains showing in the image as crop marks (i.e. centuriations, agricultural allocations, ancient roads, etc.). An initial determination of relevant traces can be quickly carried out by the operator by sketching straight lines close to the traces. Subsequently, tuning parameters (i.e. eccentricity, orientation, minimum area and distance from input line) are used to remove non-target objects and parameterize the detected traces. The algorithm and graphical user interface for this method were developed in a MATLAB environment and tested on high resolution orthorectified aerial images. A qualitative analysis of the method was lastly performed by comparing the traces extracted with ancient traces verified by archaeologists.

  3. Aerial Vehicle Surveys of other Planetary Atmospheres and Surfaces: Imaging, Remote-sensing, and Autonomy Technology Requirements

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Gregory; Ippolito, Corey; Alena, Rick

    2005-01-01

    The objective of this paper is to review the anticipated imaging and remote-sensing technology requirements for aerial vehicle survey missions to other planetary bodies in our Solar system that can support in-atmosphere flight. In the not too distant future such planetary aerial vehicle (a.k.a. aerial explorers) exploration missions will become feasible. Imaging and remote-sensing observations will be a key objective for these missions. Accordingly, it is imperative that optimal solutions in terms of imaging acquisition and real-time autonomous analysis of image data sets be developed for such vehicles.

  4. Evaluation of Color Settings in Aerial Images with the Use of Eye-Tracking User Study

    NASA Astrophysics Data System (ADS)

    Mirijovsky, J.; Popelka, S.

    2016-06-01

    The main aim of presented paper is to find the most realistic and preferred color settings for four different types of surfaces on the aerial images. This will be achieved through user study with the use of eye-movement recording. Aerial images taken by the unmanned aerial system were used as stimuli. From each image, squared crop area containing one of the studied types of surfaces (asphalt, concrete, water, soil, and grass) was selected. For each type of surface, the real value of reflectance was found with the use of precise spectroradiometer ASD HandHeld 2 which measures the reflectance. The device was used at the same time as aerial images were captured, so lighting conditions and state of vegetation were equal. The spectral resolution of the ASD device is better than 3.0 nm. For defining the RGB values of selected type of surface, the spectral reflectance values recorded by the device were merged into wider groups. Finally, we get three groups corresponding to RGB color system. Captured images were edited with the graphic editor Photoshop CS6. Contrast, clarity, and brightness were edited for all surface types on images. Finally, we get a set of 12 images of the same area with different color settings. These images were put into the grid and used as stimuli for the eye-tracking experiment. Eye-tracking is one of the methods of usability studies and it is considered as relatively objective. Eye-tracker SMI RED 250 with the sampling frequency 250 Hz was used in the study. As respondents, a group of 24 students of Geoinformatics and Geography was used. Their task was to select which image in the grid has the best color settings. The next task was to select which color settings they prefer. Respondents' answers were evaluated and the most realistic and most preferable color settings were found. The advantage of the eye-tracking evaluation was that also the process of the selection of the answers was analyzed. Areas of Interest were marked around each image in the

  5. Observation of coral reefs on Ishigaki Island, Japan, using Landsat TM images and aerial photographs

    SciTech Connect

    Matsunaga, Tsuneo; Kayanne, Hajime

    1997-06-01

    Ishigaki Island is located at the southwestern end of Japanese Islands and famous for its fringing coral reefs. More than twenty LANDSAT TM images in twelve years and aerial photographs taken on 1977 and 1994 were used to survey two shallow reefs on this island, Shiraho and Kabira. Intensive field surveys were also conducted in 1995. All satellite images of Shiraho were geometrically corrected and overlaid to construct a multi-date satellite data set. The effects of solar elevation and tide on satellite imagery were studied with this data set. The comparison of aerial and satellite images indicated that significant changes occurred between 1977 and 1984 in Kabira: rapid formation in the western part and decrease in the eastern part of dark patches. The field surveys revealed that newly formed dark patches in the west contain young corals. These results suggest that remote sensing is useful for not only mapping but also monitoring of shallow coral reefs.

  6. First results for an image processing workflow for hyperspatial imagery acquired with a low-cost unmanned aerial vehicle (UAV).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Very high-resolution images from unmanned aerial vehicles (UAVs) have great potential for use in rangeland monitoring and assessment, because the imagery fills the gap between ground-based observations and remotely sensed imagery from aerial or satellite sensors. However, because UAV imagery is ofte...

  7. Application of machine learning for the evaluation of turfgrass plots using aerial images

    NASA Astrophysics Data System (ADS)

    Ding, Ke; Raheja, Amar; Bhandari, Subodh; Green, Robert L.

    2016-05-01

    Historically, investigation of turfgrass characteristics have been limited to visual ratings. Although relevant information may result from such evaluations, final inferences may be questionable because of the subjective nature in which the data is collected. Recent advances in computer vision techniques allow researchers to objectively measure turfgrass characteristics such as percent ground cover, turf color, and turf quality from the digital images. This paper focuses on developing a methodology for automated assessment of turfgrass quality from aerial images. Images of several turfgrass plots of varying quality were gathered using a camera mounted on an unmanned aerial vehicle. The quality of these plots were also evaluated based on visual ratings. The goal was to use the aerial images to generate quality evaluations on a regular basis for the optimization of water treatment. Aerial images are used to train a neural network so that appropriate features such as intensity, color, and texture of the turfgrass are extracted from these images. Neural network is a nonlinear classifier commonly used in machine learning. The output of the neural network trained model is the ratings of the grass, which is compared to the visual ratings. Currently, the quality and the color of turfgrass, measured as the greenness of the grass, are evaluated. The textures are calculated using the Gabor filter and co-occurrence matrix. Other classifiers such as support vector machines and simpler linear regression models such as Ridge regression and LARS regression are also used. The performance of each model is compared. The results show encouraging potential for using machine learning techniques for the evaluation of turfgrass quality and color.

  8. Wafer-based aberration metrology for lithographic systems using overlay measurements on targets imaged from phase-shift gratings.

    PubMed

    van Haver, Sven; Coene, Wim M J; D'havé, Koen; Geypen, Niels; van Adrichem, Paul; de Winter, Laurens; Janssen, Augustus J E M; Cheng, Shaunee

    2014-04-20

    In this paper, a new methodology is presented to derive the aberration state of a lithographic projection system from wafer metrology data. For this purpose, new types of phase-shift gratings (PSGs) are introduced, with special features that give rise to a simple linear relation between the PSG image displacement and the phase aberration function of the imaging system. By using the PSGs as the top grating in a diffraction-based overlay stack, their displacement can be measured as an overlay error using a standard wafer metrology tool. In this way, the overlay error can be used as a measurand based on which the phase aberration function in the exit pupil of the lithographic system can be reconstructed. In practice, the overlay error is measured for a set of different PSG targets, after which this information serves as input to a least-squares optimization problem that, upon solving, provides estimates for the Zernike coefficients describing the aberration state of the lithographic system. In addition to a detailed method description, this paper also deals with the additional complications that arise when the method is implemented experimentally and this leads to a number of model refinements and a required calibration step. Finally, the overall performance of the method is assessed through a number of experiments in which the aberration state of the lithographic system is intentionally detuned and subsequently estimated by the new method. These experiments show a remarkably good agreement, with an error smaller than 5  mλ, among the requested aberrations, the aberrations measured by the on-tool aberration sensor, and the results of the new wafer-based method.

  9. Shoreline extraction from light detection and ranging digital elevation model data and aerial images

    NASA Astrophysics Data System (ADS)

    Yousef, Amr; Iftekharuddin, Khan M.; Karim, Mohammad A.

    2014-01-01

    There is an increased demand for understanding the accurate position of the shorelines. The automatic extraction of shorelines utilizing the digital elevation models (DEMs) obtained from light detection and ranging (LiDAR), aerial images, and multispectral images has become very promising. In this article, we develop two innovative algorithms that can effectively extract shorelines depending on the available data sources. The first is a multistep morphological technique that works on LiDAR DEM with respect to a tidal datum, whereas the second depends on the availability of training data to extract shorelines from LiDAR DEM fused with aerial images. Unlike similar techniques, the morphological approach detects and eliminates the outliers that result from waves, etc., by means of an anomaly test with neighborhood constraints. Additionally, it eliminates docks, bridges, and fishing piers along the extracted shorelines by means of Hough transform. The second approach extracts the shoreline by means of color space conversion of the aerial images and the support vector machines classifier to segment the fused data into water and land. We perform Monte-Carlo simulations to estimate the confidence interval for the error in shoreline position. Compared with other relevant techniques in literature, the proposed methods offer better accuracy in shoreline extraction.

  10. Detection and clustering of features in aerial images by neuron network-based algorithm

    NASA Astrophysics Data System (ADS)

    Vozenilek, Vit

    2015-12-01

    The paper presents the algorithm for detection and clustering of feature in aerial photographs based on artificial neural networks. The presented approach is not focused on the detection of specific topographic features, but on the combination of general features analysis and their use for clustering and backward projection of clusters to aerial image. The basis of the algorithm is a calculation of the total error of the network and a change of weights of the network to minimize the error. A classic bipolar sigmoid was used for the activation function of the neurons and the basic method of backpropagation was used for learning. To verify that a set of features is able to represent the image content from the user's perspective, the web application was compiled (ASP.NET on the Microsoft .NET platform). The main achievements include the knowledge that man-made objects in aerial images can be successfully identified by detection of shapes and anomalies. It was also found that the appropriate combination of comprehensive features that describe the colors and selected shapes of individual areas can be useful for image analysis.

  11. Mobile Aerial Tracking and Imaging System (MATRIS) for Aeronautical Research

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Blanchard, R. C.; Miller, G. M.

    2004-01-01

    A mobile, rapidly deployable ground-based system to track and image targets of aeronautical interest has been developed. Targets include reentering reusable launch vehicles (RLVs) as well as atmospheric and transatmospheric vehicles. The optics were designed to image targets in the visible and infrared wavelengths. To minimize acquisition cost and development time, the system uses commercially available hardware and software where possible. The conception and initial funding of this system originated with a study of ground-based imaging of global aerothermal characteristics of RLV configurations. During that study NASA teamed with the Missile Defense Agency/Innovative Science and Technology Experimentation Facility (MDA/ISTEF) to test techniques and analysis on two Space Shuttle flights.

  12. EROS main image file - A picture perfect database for Landsat imagery and aerial photography

    NASA Technical Reports Server (NTRS)

    Jack, R. F.

    1984-01-01

    The Earth Resources Observation System (EROS) Program was established by the U.S. Department of the Interior in 1966 under the administration of the Geological Survey. It is primarily concerned with the application of remote sensing techniques for the management of natural resources. The retrieval system employed to search the EROS database is called INORAC (Inquiry, Ordering, and Accounting). A description is given of the types of images identified in EROS, taking into account Landsat imagery, Skylab images, Gemini/Apollo photography, and NASA aerial photography. Attention is given to retrieval commands, geographic coordinate searching, refinement techniques, various online functions, and questions regarding the access to the EROS Main Image File.

  13. Semi-auto assessment system on building damage caused by landslide disaster with high-resolution satellite and aerial images

    NASA Astrophysics Data System (ADS)

    Sun, Bo; Xu, Qihua; He, Jun; Ge, Fengxiang; Wang, Ying

    2015-10-01

    In recent years, earthquake and heavy rain have triggered more and more landslides, which have caused serious economic losses. The timely detection of the disaster area and the assessment of the hazard are necessary and primary for disaster mitigation and relief. As high-resolution satellite and aerial images have been widely used in the field of environmental monitoring and disaster management, the damage assessment by processing satellite and aerial images has become a hot spot of research work. The rapid assessment of building damage caused by landslides with high-resolution satellite or aerial images is the focus of this article. In this paper, after analyzing the morphological characteristics of the landslide disaster, we proposed a set of criteria for rating building damage, and designed a semi-automatic evaluation system. The system is applied to the satellite and aerial images processing. The performance of the experiments demonstrated the effectiveness of our system.

  14. Moving object detection using dynamic motion modelling from UAV aerial images.

    PubMed

    Saif, A F M Saifuddin; Prabuwono, Anton Satria; Mahayuddin, Zainal Rasyid

    2014-01-01

    Motion analysis based moving object detection from UAV aerial image is still an unsolved issue due to inconsideration of proper motion estimation. Existing moving object detection approaches from UAV aerial images did not deal with motion based pixel intensity measurement to detect moving object robustly. Besides current research on moving object detection from UAV aerial images mostly depends on either frame difference or segmentation approach separately. There are two main purposes for this research: firstly to develop a new motion model called DMM (dynamic motion model) and secondly to apply the proposed segmentation approach SUED (segmentation using edge based dilation) using frame difference embedded together with DMM model. The proposed DMM model provides effective search windows based on the highest pixel intensity to segment only specific area for moving object rather than searching the whole area of the frame using SUED. At each stage of the proposed scheme, experimental fusion of the DMM and SUED produces extracted moving objects faithfully. Experimental result reveals that the proposed DMM and SUED have successfully demonstrated the validity of the proposed methodology.

  15. Moving Object Detection Using Dynamic Motion Modelling from UAV Aerial Images

    PubMed Central

    Saif, A. F. M. Saifuddin; Prabuwono, Anton Satria; Mahayuddin, Zainal Rasyid

    2014-01-01

    Motion analysis based moving object detection from UAV aerial image is still an unsolved issue due to inconsideration of proper motion estimation. Existing moving object detection approaches from UAV aerial images did not deal with motion based pixel intensity measurement to detect moving object robustly. Besides current research on moving object detection from UAV aerial images mostly depends on either frame difference or segmentation approach separately. There are two main purposes for this research: firstly to develop a new motion model called DMM (dynamic motion model) and secondly to apply the proposed segmentation approach SUED (segmentation using edge based dilation) using frame difference embedded together with DMM model. The proposed DMM model provides effective search windows based on the highest pixel intensity to segment only specific area for moving object rather than searching the whole area of the frame using SUED. At each stage of the proposed scheme, experimental fusion of the DMM and SUED produces extracted moving objects faithfully. Experimental result reveals that the proposed DMM and SUED have successfully demonstrated the validity of the proposed methodology. PMID:24892103

  16. Moving object detection using dynamic motion modelling from UAV aerial images.

    PubMed

    Saif, A F M Saifuddin; Prabuwono, Anton Satria; Mahayuddin, Zainal Rasyid

    2014-01-01

    Motion analysis based moving object detection from UAV aerial image is still an unsolved issue due to inconsideration of proper motion estimation. Existing moving object detection approaches from UAV aerial images did not deal with motion based pixel intensity measurement to detect moving object robustly. Besides current research on moving object detection from UAV aerial images mostly depends on either frame difference or segmentation approach separately. There are two main purposes for this research: firstly to develop a new motion model called DMM (dynamic motion model) and secondly to apply the proposed segmentation approach SUED (segmentation using edge based dilation) using frame difference embedded together with DMM model. The proposed DMM model provides effective search windows based on the highest pixel intensity to segment only specific area for moving object rather than searching the whole area of the frame using SUED. At each stage of the proposed scheme, experimental fusion of the DMM and SUED produces extracted moving objects faithfully. Experimental result reveals that the proposed DMM and SUED have successfully demonstrated the validity of the proposed methodology. PMID:24892103

  17. FOREWORD: Neutron metrology Neutron metrology

    NASA Astrophysics Data System (ADS)

    Thomas, David J.; Nolte, Ralf; Gressier, Vincent

    2011-12-01

    The International Committee for Weights and Measures (CIPM) has consultative committees covering various areas of metrology. The Consultative Committee for Ionizing Radiation (CCRI) differs from the others in having three sections: Section (I) deals with radiation dosimetry, Section (II) with radionuclide metrology and Section (III) with neutron metrology. In 2003 a proposal was made to publish special issues of Metrologia covering the work of the three Sections. Section (II) was the first to complete their task, and their special issue was published in 2007, volume 44(4). This was followed in 2009 by the special issue on radiation dosimetry, volume 46(2). The present issue, volume 48(6), completes the trilogy and attempts to explain neutron metrology, the youngest of the three disciplines, the neutron only having been discovered in 1932, to a wider audience and to highlight the relevance and importance of this field. When originally approached with the idea of this special issue, Section (III) immediately saw the value of a publication specifically on neutron metrology. It is a topic area where papers tend to be scattered throughout the literature in journals covering, for example, nuclear instrumentation, radiation protection or radiation measurements in general. Review articles tend to be few. People new to the field often ask for an introduction to the various topics. There are some excellent older textbooks, but these are now becoming obsolete. More experienced workers in specific areas of neutron metrology can find it difficult to know the latest position in related areas. The papers in this issue attempt, without presenting a purely historical outline, to describe the field in a sufficiently logical way to provide the novice with a clear introduction, while being sufficiently up-to-date to provide the more experienced reader with the latest scientific developments in the different topic areas. Neutron radiation fields obviously occur throughout the nuclear

  18. Parameter-Based Performance Analysis of Object-Based Image Analysis Using Aerial and Quikbird-2 Images

    NASA Astrophysics Data System (ADS)

    Kavzoglu, T.; Yildiz, M.

    2014-09-01

    Opening new possibilities for research, very high resolution (VHR) imagery acquired by recent commercial satellites and aerial systems requires advanced approaches and techniques that can handle large volume of data with high local variance. Delineation of land use/cover information from VHR images is a hot research topic in remote sensing. In recent years, object-based image analysis (OBIA) has become a popular solution for image analysis tasks as it considers shape, texture and content information associated with the image objects. The most important stage of OBIA is the image segmentation process applied prior to classification. Determination of optimal segmentation parameters is of crucial importance for the performance of the selected classifier. In this study, effectiveness and applicability of the segmentation method in relation to its parameters was analysed using two VHR images, an aerial photo and a Quickbird-2 image. Multi-resolution segmentation technique was employed with its optimal parameters of scale, shape and compactness that were defined after an extensive trail process on the data sets. Nearest neighbour classifier was applied on the segmented images, and then the accuracy assessment was applied. Results show that segmentation parameters have a direct effect on the classification accuracy, and low values of scale-shape combinations produce the highest classification accuracies. Also, compactness parameter was found to be having minimal effect on the construction of image objects, hence it can be set to a constant value in image classification.

  19. A Semi-Automated Single Day Image Differencing Technique to Identify Animals in Aerial Imagery

    PubMed Central

    Terletzky, Pat; Ramsey, Robert Douglas

    2014-01-01

    Our research presents a proof-of-concept that explores a new and innovative method to identify large animals in aerial imagery with single day image differencing. We acquired two aerial images of eight fenced pastures and conducted a principal component analysis of each image. We then subtracted the first principal component of the two pasture images followed by heuristic thresholding to generate polygons. The number of polygons represented the number of potential cattle (Bos taurus) and horses (Equus caballus) in the pasture. The process was considered semi-automated because we were not able to automate the identification of spatial or spectral thresholding values. Imagery was acquired concurrently with ground counts of animal numbers. Across the eight pastures, 82% of the animals were correctly identified, mean percent commission was 53%, and mean percent omission was 18%. The high commission error was due to small mis-alignments generated from image-to-image registration, misidentified shadows, and grouping behavior of animals. The high probability of correctly identifying animals suggests short time interval image differencing could provide a new technique to enumerate wild ungulates occupying grassland ecosystems, especially in isolated or difficult to access areas. To our knowledge, this was the first attempt to use standard change detection techniques to identify and enumerate large ungulates. PMID:24454827

  20. FOREWORD: Neutron metrology Neutron metrology

    NASA Astrophysics Data System (ADS)

    Thomas, David J.; Nolte, Ralf; Gressier, Vincent

    2011-12-01

    The International Committee for Weights and Measures (CIPM) has consultative committees covering various areas of metrology. The Consultative Committee for Ionizing Radiation (CCRI) differs from the others in having three sections: Section (I) deals with radiation dosimetry, Section (II) with radionuclide metrology and Section (III) with neutron metrology. In 2003 a proposal was made to publish special issues of Metrologia covering the work of the three Sections. Section (II) was the first to complete their task, and their special issue was published in 2007, volume 44(4). This was followed in 2009 by the special issue on radiation dosimetry, volume 46(2). The present issue, volume 48(6), completes the trilogy and attempts to explain neutron metrology, the youngest of the three disciplines, the neutron only having been discovered in 1932, to a wider audience and to highlight the relevance and importance of this field. When originally approached with the idea of this special issue, Section (III) immediately saw the value of a publication specifically on neutron metrology. It is a topic area where papers tend to be scattered throughout the literature in journals covering, for example, nuclear instrumentation, radiation protection or radiation measurements in general. Review articles tend to be few. People new to the field often ask for an introduction to the various topics. There are some excellent older textbooks, but these are now becoming obsolete. More experienced workers in specific areas of neutron metrology can find it difficult to know the latest position in related areas. The papers in this issue attempt, without presenting a purely historical outline, to describe the field in a sufficiently logical way to provide the novice with a clear introduction, while being sufficiently up-to-date to provide the more experienced reader with the latest scientific developments in the different topic areas. Neutron radiation fields obviously occur throughout the nuclear

  1. Computed tomography: a powerful imaging technique in the fields of dimensional metrology and quality control

    NASA Astrophysics Data System (ADS)

    Probst, Gabriel; Boeckmans, Bart; Dewulf, Wim; Kruth, Jean-Pierre

    2016-05-01

    X-ray computed tomography (CT) is slowly conquering its space in the manufacturing industry for dimensional metrology and quality control purposes. The main advantage is its non-invasive and non-destructive character. Currently, CT is the only measurement technique that allows full 3D visualization of both inner and outer features of an object through a contactless probing system. Using hundreds of radiographs, acquired while rotating the object, a 3D representation is generated and dimensions can be verified. In this research, this non-contact technique was used for the inspection of assembled components. A dental cast model with 8 implants, connected by a screwed retained bar made of titanium. The retained bar includes a mating interface connection that should ensure a perfect fitting without residual stresses when the connection is fixed with screws. CT was used to inspect the mating interfaces between these two components. Gaps at the connections can lead to bacterial growth and potential inconvenience for the patient who would have to face a new surgery to replace his/hers prosthesis. With the aid of CT, flaws in the design or manufacturing process that could lead to gaps at the connections could be assessed.

  2. Metrological digital audio reconstruction

    DOEpatents

    Fadeyev; Vitaliy , Haber; Carl

    2004-02-19

    Audio information stored in the undulations of grooves in a medium such as a phonograph record may be reconstructed, with little or no contact, by measuring the groove shape using precision metrology methods coupled with digital image processing and numerical analysis. The effects of damage, wear, and contamination may be compensated, in many cases, through image processing and analysis methods. The speed and data handling capacity of available computing hardware make this approach practical. Two examples used a general purpose optical metrology system to study a 50 year old 78 r.p.m. phonograph record and a commercial confocal scanning probe to study a 1920's celluloid Edison cylinder. Comparisons are presented with stylus playback of the samples and with a digitally re-mastered version of an original magnetic recording. There is also a more extensive implementation of this approach, with dedicated hardware and software.

  3. Using aberration test patterns to optimize the performance of EUV aerial imaging microscopes

    SciTech Connect

    Mochi, Iacopo; Goldberg, Kenneth A.; Miyakawa, Ryan; Naulleau, Patrick; Han, Hak-Seung; Huh, Sungmin

    2009-06-16

    The SEMATECH Berkeley Actinic Inspection Tool (AIT) is a prototype EUV-wavelength zoneplate microscope that provides high quality aerial image measurements of EUV reticles. To simplify and improve the alignment procedure we have created and tested arrays of aberration-sensitive patterns on EUV reticles and we have compared their images collected with the AIT to the expected shapes obtained by simulating the theoretical wavefront of the system. We obtained a consistent measure of coma and astigmatism in the center of the field of view using two different patterns, revealing a misalignment condition in the optics.

  4. Film cameras or digital sensors? The challenge ahead for aerial imaging

    USGS Publications Warehouse

    Light, D.L.

    1996-01-01

    Cartographic aerial cameras continue to play the key role in producing quality products for the aerial photography business, and specifically for the National Aerial Photography Program (NAPP). One NAPP photograph taken with cameras capable of 39 lp/mm system resolution can contain the equivalent of 432 million pixels at 11 ??m spot size, and the cost is less than $75 per photograph to scan and output the pixels on a magnetic storage medium. On the digital side, solid state charge coupled device linear and area arrays can yield quality resolution (7 to 12 ??m detector size) and a broader dynamic range. If linear arrays are to compete with film cameras, they will require precise attitude and positioning of the aircraft so that the lines of pixels can be unscrambled and put into a suitable homogeneous scene that is acceptable to an interpreter. Area arrays need to be much larger than currently available to image scenes competitive in size with film cameras. Analysis of the relative advantages and disadvantages of the two systems show that the analog approach is more economical at present. However, as arrays become larger, attitude sensors become more refined, global positioning system coordinate readouts become commonplace, and storage capacity becomes more affordable, the digital camera may emerge as the imaging system for the future. Several technical challenges must be overcome if digital sensors are to advance to where they can support mapping, charting, and geographic information system applications.

  5. Image degradation in aerial imagery duplicates. [photographic processing of photographic film and reproduction (copying)

    NASA Technical Reports Server (NTRS)

    Lockwood, H. E.

    1975-01-01

    A series of Earth Resources Aircraft Program data flights were made over an aerial test range in Arizona for the evaluation of large cameras. Specifically, both medium altitude and high altitude flights were made to test and evaluate a series of color as well as black-and-white films. Image degradation, inherent in duplication processing, was studied. Resolution losses resulting from resolution characteristics of the film types are given. Color duplicates, in general, are shown to be degraded more than black-and-white films because of the limitations imposed by available aerial color duplicating stock. Results indicate that a greater resolution loss may be expected when the original has higher resolution. Photographs of the duplications are shown.

  6. Gabor-domain optical coherence microscopy with integrated dual-axis MEMS scanner for fast 3D imaging and metrology

    NASA Astrophysics Data System (ADS)

    Canavesi, Cristina; Cogliati, Andrea; Hayes, Adam; Santhanam, Anand P.; Tankam, Patrice; Rolland, Jannick P.

    2015-10-01

    Fast, robust, nondestructive 3D imaging is needed for characterization of microscopic structures in industrial and clinical applications. A custom micro-electromechanical system (MEMS)-based 2D scanner system was developed to achieve 55 kHz A-scan acquisition in a Gabor-domain optical coherence microscopy (GD-OCM) instrument with a novel multilevel GPU architecture for high-speed imaging. GD-OCM yields high-definition volumetric imaging with dynamic depth of focusing through a bio-inspired liquid lens-based microscope design, which has no moving parts and is suitable for use in a manufacturing setting or in a medical environment. A dual-axis MEMS mirror was chosen to replace two single-axis galvanometer mirrors; as a result, the astigmatism caused by the mismatch between the optical pupil and the scanning location was eliminated and a 12x reduction in volume of the scanning system was achieved. Imaging at an invariant resolution of 2 μm was demonstrated throughout a volume of 1 × 1 × 0.6 mm3, acquired in less than 2 minutes. The MEMS-based scanner resulted in improved image quality, increased robustness and lighter weight of the system - all factors that are critical for on-field deployment. A custom integrated feedback system consisting of a laser diode and a position-sensing detector was developed to investigate the impact of the resonant frequency of the MEMS and the driving signal of the scanner on the movement of the mirror. Results on the metrology of manufactured materials and characterization of tissue samples with GD-OCM are presented.

  7. Automatic orthorectification and mosaicking of oblique images from a zoom lens aerial camera

    NASA Astrophysics Data System (ADS)

    Zhou, Qianfei; Liu, Jinghong

    2015-01-01

    For the purpose of image distortion caused by the oblique photography of a zoom lens aerial camera, a fast and accurate image autorectification and mosaicking method in a ground control points (GCPs)-free environment was proposed. With the availability of integrated global positioning system (GPS) and inertial measurement units, the camera's exterior orientation parameters (EOPs) were solved through direct georeferencing. The one-parameter division model was adopted to estimate the distortion coefficient and the distortion center coordinates for the zoom lens to correct the lens distortion. Using the camera's EOPs and the lens distortion parameters, the oblique aerial images specified in the camera frame were geo-orthorectified into the mapping frame and then were mosaicked together based on the mapping coordinates to produce a larger field and high-resolution georeferenced image. Experimental results showed that the orthorectification error was less than 1.80 m at an 1100 m flight height above ground level, when compared with 14 presurveyed ground checkpoints which were measured by differential GPS. The mosaic error was about 1.57 m compared with 18 checkpoints. The accuracy was considered sufficient for urgent response such as military reconnaissance and disaster monitoring where GCPs were not available.

  8. Damaged road extracting with high-resolution aerial image of post-earthquake

    NASA Astrophysics Data System (ADS)

    Zheng, Zezhong; Pu, Chengjun; Zhu, Mingcang; Xia, Jun; Zhang, Xiang; Liu, Yalan; Li, Jiang

    2015-12-01

    With the rapid development of earth observation technology, remote sensing images have played more important roles, because the high resolution images can provide the original data for object recognition, disaster investigation, and so on. When a disastrous earthquake breaks out, a large number of roads could be damaged instantly. There are a lot of approaches about road extraction, such as region growing, gray threshold, and k-means clustering algorithm. We could not obtain the undamaged roads with these approaches, if the trees or their shadows along the roads are difficult to be distinguished from the damaged road. In the paper, a method is presented to extract the damaged road with high resolution aerial image of post-earthquake. Our job is to extract the damaged road and the undamaged with the aerial image. We utilized the mathematical morphology approach and the k-means clustering algorithm to extract the road. Our method was composed of four ingredients. Firstly, the mathematical morphology filter operators were employed to remove the interferences from the trees or their shadows. Secondly, the k-means algorithm was employed to derive the damaged segments. Thirdly, the mathematical morphology approach was used to extract the undamaged road; Finally, we could derive the damaged segments by overlaying the road networks of pre-earthquake. Our results showed that the earthquake, broken in Yaan, was disastrous for the road, Therefore, we could take more measures to keep it clear.

  9. Temperature metrology

    NASA Astrophysics Data System (ADS)

    Fischer, J.; Fellmuth, B.

    2005-05-01

    The majority of the processes used by the manufacturing industry depend upon the accurate measurement and control of temperature. Thermal metrology is also a key factor affecting the efficiency and environmental impact of many high-energy industrial processes, the development of innovative products and the health and safety of the general population. Applications range from the processing, storage and shipment of perishable foodstuffs and biological materials to the development of more efficient and less environmentally polluting combustion processes for steel-making. Accurate measurement and control of temperature is, for instance, also important in areas such as the characterization of new materials used in the automotive, aerospace and semiconductor industries. This paper reviews the current status of temperature metrology. It starts with the determination of thermodynamic temperatures required on principle because temperature is an intensive quantity. Methods to determine thermodynamic temperatures are reviewed in detail to introduce the underlying physical basis. As these methods cannot usually be applied for practical measurements the need for a practical temperature scale for day-to-day work is motivated. The International Temperature Scale of 1990 and the Provisional Low Temperature Scale PLTS-2000 are described as important parts of the International System of Units to support science and technology. Its main importance becomes obvious in connection with industrial development and international markets. Every country is strongly interested in unique measures, in order to guarantee quality, reproducibility and functionability of products. The eventual realization of an international system, however, is only possible within the well-functioning organization of metrological laboratories. In developed countries the government established scientific institutes have certain metrological duties, as, for instance, the maintenance and dissemination of national

  10. Point cloud generation from aerial image data acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still camera.

    PubMed

    Rosnell, Tomi; Honkavaara, Eija

    2012-01-01

    The objective of this investigation was to develop and investigate methods for point cloud generation by image matching using aerial image data collected by quadrocopter type micro unmanned aerial vehicle (UAV) imaging systems. Automatic generation of high-quality, dense point clouds from digital images by image matching is a recent, cutting-edge step forward in digital photogrammetric technology. The major components of the system for point cloud generation are a UAV imaging system, an image data collection process using high image overlaps, and post-processing with image orientation and point cloud generation. Two post-processing approaches were developed: one of the methods is based on Bae Systems' SOCET SET classical commercial photogrammetric software and another is built using Microsoft(®)'s Photosynth™ service available in the Internet. Empirical testing was carried out in two test areas. Photosynth processing showed that it is possible to orient the images and generate point clouds fully automatically without any a priori orientation information or interactive work. The photogrammetric processing line provided dense and accurate point clouds that followed the theoretical principles of photogrammetry, but also some artifacts were detected. The point clouds from the Photosynth processing were sparser and noisier, which is to a large extent due to the fact that the method is not optimized for dense point cloud generation. Careful photogrammetric processing with self-calibration is required to achieve the highest accuracy. Our results demonstrate the high performance potential of the approach and that with rigorous processing it is possible to reach results that are consistent with theory. We also point out several further research topics. Based on theoretical and empirical results, we give recommendations for properties of imaging sensor, data collection and processing of UAV image data to ensure accurate point cloud generation.

  11. Point Cloud Generation from Aerial Image Data Acquired by a Quadrocopter Type Micro Unmanned Aerial Vehicle and a Digital Still Camera

    PubMed Central

    Rosnell, Tomi; Honkavaara, Eija

    2012-01-01

    The objective of this investigation was to develop and investigate methods for point cloud generation by image matching using aerial image data collected by quadrocopter type micro unmanned aerial vehicle (UAV) imaging systems. Automatic generation of high-quality, dense point clouds from digital images by image matching is a recent, cutting-edge step forward in digital photogrammetric technology. The major components of the system for point cloud generation are a UAV imaging system, an image data collection process using high image overlaps, and post-processing with image orientation and point cloud generation. Two post-processing approaches were developed: one of the methods is based on Bae Systems’ SOCET SET classical commercial photogrammetric software and another is built using Microsoft®’s Photosynth™ service available in the Internet. Empirical testing was carried out in two test areas. Photosynth processing showed that it is possible to orient the images and generate point clouds fully automatically without any a priori orientation information or interactive work. The photogrammetric processing line provided dense and accurate point clouds that followed the theoretical principles of photogrammetry, but also some artifacts were detected. The point clouds from the Photosynth processing were sparser and noisier, which is to a large extent due to the fact that the method is not optimized for dense point cloud generation. Careful photogrammetric processing with self-calibration is required to achieve the highest accuracy. Our results demonstrate the high performance potential of the approach and that with rigorous processing it is possible to reach results that are consistent with theory. We also point out several further research topics. Based on theoretical and empirical results, we give recommendations for properties of imaging sensor, data collection and processing of UAV image data to ensure accurate point cloud generation. PMID:22368479

  12. Point cloud generation from aerial image data acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still camera.

    PubMed

    Rosnell, Tomi; Honkavaara, Eija

    2012-01-01

    The objective of this investigation was to develop and investigate methods for point cloud generation by image matching using aerial image data collected by quadrocopter type micro unmanned aerial vehicle (UAV) imaging systems. Automatic generation of high-quality, dense point clouds from digital images by image matching is a recent, cutting-edge step forward in digital photogrammetric technology. The major components of the system for point cloud generation are a UAV imaging system, an image data collection process using high image overlaps, and post-processing with image orientation and point cloud generation. Two post-processing approaches were developed: one of the methods is based on Bae Systems' SOCET SET classical commercial photogrammetric software and another is built using Microsoft(®)'s Photosynth™ service available in the Internet. Empirical testing was carried out in two test areas. Photosynth processing showed that it is possible to orient the images and generate point clouds fully automatically without any a priori orientation information or interactive work. The photogrammetric processing line provided dense and accurate point clouds that followed the theoretical principles of photogrammetry, but also some artifacts were detected. The point clouds from the Photosynth processing were sparser and noisier, which is to a large extent due to the fact that the method is not optimized for dense point cloud generation. Careful photogrammetric processing with self-calibration is required to achieve the highest accuracy. Our results demonstrate the high performance potential of the approach and that with rigorous processing it is possible to reach results that are consistent with theory. We also point out several further research topics. Based on theoretical and empirical results, we give recommendations for properties of imaging sensor, data collection and processing of UAV image data to ensure accurate point cloud generation. PMID:22368479

  13. Density estimation in aerial images of large crowds for automatic people counting

    NASA Astrophysics Data System (ADS)

    Herrmann, Christian; Metzler, Juergen

    2013-05-01

    Counting people is a common topic in the area of visual surveillance and crowd analysis. While many image-based solutions are designed to count only a few persons at the same time, like pedestrians entering a shop or watching an advertisement, there is hardly any solution for counting large crowds of several hundred persons or more. We addressed this problem previously by designing a semi-automatic system being able to count crowds consisting of hundreds or thousands of people based on aerial images of demonstrations or similar events. This system requires major user interaction to segment the image. Our principle aim is to reduce this manual interaction. To achieve this, we propose a new and automatic system. Besides counting the people in large crowds, the system yields the positions of people allowing a plausibility check by a human operator. In order to automatize the people counting system, we use crowd density estimation. The determination of crowd density is based on several features like edge intensity or spatial frequency. They indicate the density and discriminate between a crowd and other image regions like buildings, bushes or trees. We compare the performance of our automatic system to the previous semi-automatic system and to manual counting in images. By counting a test set of aerial images showing large crowds containing up to 12,000 people, the performance gain of our new system will be measured. By improving our previous system, we will increase the benefit of an image-based solution for counting people in large crowds.

  14. Analyzing Spectral Characteristics of Shadow Area from ADS-40 High Radiometric Resolution Aerial Images

    NASA Astrophysics Data System (ADS)

    Hsieh, Yi-Ta; Wu, Shou-Tsung; Chen, Chaur-Tzuhn; Chen, Jan-Chang

    2016-06-01

    The shadows in optical remote sensing images are regarded as image nuisances in numerous applications. The classification and interpretation of shadow area in a remote sensing image are a challenge, because of the reduction or total loss of spectral information in those areas. In recent years, airborne multispectral aerial image devices have been developed 12-bit or higher radiometric resolution data, including Leica ADS-40, Intergraph DMC. The increased radiometric resolution of digital imagery provides more radiometric details of potential use in classification or interpretation of land cover of shadow areas. Therefore, the objectives of this study are to analyze the spectral properties of the land cover in the shadow areas by ADS-40 high radiometric resolution aerial images, and to investigate the spectral and vegetation index differences between the various shadow and non-shadow land covers. According to research findings of spectral analysis of ADS-40 image: (i) The DN values in shadow area are much lower than in nonshadow area; (ii) DN values received from shadowed areas that will also be affected by different land cover, and it shows the possibility of land cover property retrieval as in nonshadow area; (iii) The DN values received from shadowed regions decrease in the visible band from short to long wavelengths due to scattering; (iv) The shadow area NIR of vegetation category also shows a strong reflection; (v) Generally, vegetation indexes (NDVI) still have utility to classify the vegetation and non-vegetation in shadow area. The spectral data of high radiometric resolution images (ADS-40) is potential for the extract land cover information of shadow areas.

  15. Solving next generation (1x node) metrology challenges using advanced CDSEM capabilities: tilt, high energy and backscatter imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxiao; Snow, Patrick W.; Vaid, Alok; Solecky, Eric; Zhou, Hua; Ge, Zhenhua; Yasharzade, Shay; Shoval, Ori; Adan, Ofer; Schwarzband, Ishai; Bar-Zvi, Maayan

    2015-03-01

    Traditional metrology solutions are facing a range of challenges at the 1X node such as three dimensional (3D) measurement capabilities, shrinking overlay and critical dimension (CD) error budgets driven by multi-patterning and via in trench CD measurements. Hybrid metrology offers promising new capabilities to address some of these challenges but it will take some time before fully realized. This paper explores new capabilities currently offered on the in-line Critical Dimension Scanning Electron Microscope (CD-SEM) to address these challenges and enable the CD-SEM to move beyond measuring bottom CD using top down imaging. Device performance is strongly correlated with Fin geometry causing an urgent need for 3D measurements. New beam tilting capabilities enhance the ability to make 3D measurements in the front-end-of-line (FEOL) of the metal gate FinFET process in manufacturing. We explore these new capabilities for measuring Fin height and build upon the work communicated last year at SPIE1. Furthermore, we extend the application of the tilt beam to the back-end-of-line (BEOL) trench depth measurement and demonstrate its capability in production targeting replacement of the existing Atomic Force Microscope (AFM) measurements by including the height measurement in the existing CDSEM recipe to reduce fab cycle time. In the BEOL, another increasingly challenging measurement for the traditional CD-SEM is the bottom CD of the self-aligned via (SAV) in a trench first via last (TFVL) process. Due to the extremely high aspect ratio of the structure secondary electron (SE) collection from the via bottom is significantly reduced requiring the use of backscatter electrons (BSE) to increase the relevant image quality. Even with this solution, the resulting images are difficult to measure with advanced technology nodes. We explore new methods to increase measurement robustness and combine this with novel segmentation-based measurement algorithm generated specifically for BSE

  16. EDITORIAL: Nanoscale metrology Nanoscale metrology

    NASA Astrophysics Data System (ADS)

    Klapetek, P.; Koenders, L.

    2011-09-01

    This special issue of Measurement Science and Technology presents selected contributions from the NanoScale 2010 seminar held in Brno, Czech Republic. It was the 5th Seminar on Nanoscale Calibration Standards and Methods and the 9th Seminar on Quantitative Microscopy (the first being held in 1995). The seminar was jointly organized with the Czech Metrology Institute (CMI) and the Nanometrology Group of the Technical Committee-Length of EURAMET. There were two workshops that were integrated into NanoScale 2010: first a workshop presenting the results obtained in NANOTRACE, a European Metrology Research Project (EMRP) on displacement-measuring optical interferometers, and second a workshop about the European metrology landscape in nanometrology related to thin films, scanning probe microscopy and critical dimension. The aim of this workshop was to bring together developers, applicants and metrologists working in this field of nanometrology and to discuss future needs. For more information see www.co-nanomet.eu. The articles in this special issue of Measurement Science and Technology cover some novel scientific results. This issue can serve also as a representative selection of topics that are currently being investigated in the field of European and world-wide nanometrology. Besides traditional topics of dimensional metrology, like development of novel interferometers or laser stabilization techniques, some novel interesting trends in the field of nanometrology are observed. As metrology generally reflects the needs of scientific and industrial research, many research topics addressed refer to current trends in nanotechnology, too, focusing on traceability and improved measurement accuracy in this field. While historically the most studied standards in nanometrology were related to simple geometric structures like step heights or 1D or 2D gratings, now we are facing tasks to measure 3D structures and many unforeseen questions arising from interesting physical

  17. New Approach for Segmentation and Extraction of Single Tree from Point Clouds Data and Aerial Images

    NASA Astrophysics Data System (ADS)

    Homainejad, A. S.

    2016-06-01

    This paper addresses a new approach for reconstructing a 3D model from single trees via Airborne Laser Scanners (ALS) data and aerial images. The approach detects and extracts single tree from ALS data and aerial images. The existing approaches are able to provide bulk segmentation from a group of trees; however, some methods focused on detection and extraction of a particular tree from ALS and images. Segmentation of a single tree within a group of trees is mostly a mission impossible since the detection of boundary lines between the trees is a tedious job and basically it is not feasible. In this approach an experimental formula based on the height of the trees was developed and applied in order to define the boundary lines between the trees. As a result, each single tree was segmented and extracted and later a 3D model was created. Extracted trees from this approach have a unique identification and attribute. The output has application in various fields of science and engineering such as forestry, urban planning, and agriculture. For example in forestry, the result can be used for study in ecologically diverse, biodiversity and ecosystem.

  18. Urban Object Extraction from Digital Surface Model and Digital Aerial Images

    NASA Astrophysics Data System (ADS)

    Grigillo, D.; Kanjir, U.

    2012-07-01

    The paper describes two different methods for extraction of two types of urban objects from lidar digital surface model (DSM) and digital aerial images. Within the preprocessing digital terrain model (DTM) and orthoimages for three test areas were generated from aerial images using automatic photogrammetric methods. Automatic building extraction was done using DSM and multispectral orthoimages. First, initial building mask was created from the normalized digital surface model (nDSM), then vegetation was eliminated from the building mask using multispectral orthoimages. The final building mask was produced employing several morphological operations and buildings were vectorised using Hough transform. Automatic extraction of other green urban features (trees and natural ground) started from orthoimages using iterative object-based classification. This method required careful selection of segmentation parameters; in addition to basic spectral bands also information from nDSM was included. After the segmentation of images the segments were classified based on their attributes (spatial, spectral, geometrical, texture) using rule set classificator. First iteration focused on visible (i.e. unshaded) urban features, and second iteration on objects in deep shade. Results from both iterations were merged into appropriate classes. Evaluation of the final results (completeness, correctness and quality) was carried out on a per-area level and on a per-object level by ISPRS Commission III, WG III/4.

  19. Fractal methods for extracting artificial objects from the unmanned aerial vehicle images

    NASA Astrophysics Data System (ADS)

    Markov, Eugene

    2016-04-01

    Unmanned aerial vehicles (UAVs) have become used increasingly in earth surface observations, with a special interest put into automatic modes of environmental control and recognition of artificial objects. Fractal methods for image processing well detect the artificial objects in digital space images but were not applied previously to the UAV-produced imagery. Parameters of photography, on-board equipment, and image characteristics differ considerably for spacecrafts and UAVs. Therefore, methods that work properly with space images can produce different results for the UAVs. In this regard, testing the applicability of fractal methods for the UAV-produced images and determining the optimal range of parameters for these methods represent great interest. This research is dedicated to the solution of this problem. Specific features of the earth's surface images produced with UAVs are described in the context of their interpretation and recognition. Fractal image processing methods for extracting artificial objects are described. The results of applying these methods to the UAV images are presented.

  20. Nonlinear Estimation Approach to Real-Time Georegistration from Aerial Images

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Padgett, Curtis W.

    2012-01-01

    When taking aerial images, it is important to know locations of specific points of interest in an Earth-centered coordinate system (latitude, longitude, height). The correspondence between a pixel location in the image and its Earth coordinate is known as georegistration. There are two main technical challenges arising in the intended application. The first is that no known features are assumed to be available in any of the images. The second is that the intended applications are real time. Here, images are taken at regular intervals (i.e. once per second), and it is desired to make decisions in real time based on the geolocation of specific objects seen in the images as they arrive. This is in sharp contrast to most current methods for geolocation that operate "after-the-fact" by processing, on the ground, a database of stored images using computationally intensive methods. The solution is a nonlinear estimation algorithm that combines processed realtime camera images with vehicle position and attitude information ob tained from an onboard GPS receiver. This approach provides accurate georegistration estimates (latitude, longitude, height) of arbitrary features and/or points of interest seen in the camera images. This solves the georegistration problem at the modest cost of augmenting the camera information with a GPS receiver carried onboard the vehicle.

  1. Comparison of binary mask defect printability analysis using virtual stepper system and aerial image microscope system

    NASA Astrophysics Data System (ADS)

    Phan, Khoi A.; Spence, Chris A.; Dakshina-Murthy, S.; Bala, Vidya; Williams, Alvina M.; Strener, Steve; Eandi, Richard D.; Li, Junling; Karklin, Linard

    1999-12-01

    As advanced process technologies in the wafer fabs push the patterning processes toward lower k1 factor for sub-wavelength resolution printing, reticles are required to use optical proximity correction (OPC) and phase-shifted mask (PSM) for resolution enhancement. For OPC/PSM mask technology, defect printability is one of the major concerns. Current reticle inspection tools available on the market sometimes are not capable of consistently differentiating between an OPC feature and a true random defect. Due to the process complexity and high cost associated with the making of OPC/PSM reticles, it is important for both mask shops and lithography engineers to understand the impact of different defect types and sizes to the printability. Aerial Image Measurement System (AIMS) has been used in the mask shops for a number of years for reticle applications such as aerial image simulation and transmission measurement of repaired defects. The Virtual Stepper System (VSS) provides an alternative method to do defect printability simulation and analysis using reticle images captured by an optical inspection or review system. In this paper, pre- programmed defects and repairs from a Defect Sensitivity Monitor (DSM) reticle with 200 nm minimum features (at 1x) will be studied for printability. The simulated resist lines by AIMS and VSS are both compared to SEM images of resist wafers qualitatively and quantitatively using CD verification.Process window comparison between unrepaired and repaired defects for both good and bad repair cases will be shown. The effect of mask repairs to resist pattern images for the binary mask case will be discussed. AIMS simulation was done at the International Sematech, Virtual stepper simulation at Zygo and resist wafers were processed at AMD-Submicron Development Center using a DUV lithographic process for 0.18 micrometer Logic process technology.

  2. Aerial Image Microscopes for the Inspection of Defects in EUV Masks

    SciTech Connect

    Barty, A; Taylor, J S; Hudyma, R; Spiller, E; Sweeney, D W; Shelden, G; Urbach, J-P

    2002-10-22

    The high volume inspection equipment currently available to support development of EUV blanks is non-actinic. The same is anticipated for patterned EUV mask inspection. Once potential defects are identified and located by such non-actinic inspection techniques, it is essential to have instrumentation to perform detailed characterization, and if repairs are performed, re-evaluation. The ultimate metric for the acceptance or rejection of a mask due to a defect, is the wafer level impact. Thus measuring the aerial image for the site under question is required. An EUV Aerial Image Microscope (''AIM'') similar to the current AIM tools for 248nm and 193nm exposure wavelength is the natural solution for this task. Due to the complicated manufacturing process of EUV blanks, AIM measurements might also be beneficial to accurately assessing the severity of a blank defect. This is an additional application for an EUV AIM as compared to today's use In recognition of the critical role of an EUV AIM for the successful implementation of EUV blank and mask supply, International SEMATECH initiated this design study with the purpose to define the technical requirements for accurately simulating EUV scanner performance, demonstrating the feasibility to meet these requirements and to explore various technical approaches to building an EUV AIM tool.

  3. Automatic aerial image shadow detection through the hybrid analysis of RGB and HIS color space

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Li, Huilin; Peng, Zhiyong

    2015-12-01

    This paper presents our research on automatic shadow detection from high-resolution aerial image through the hybrid analysis of RGB and HIS color space. To this end, the spectral characteristics of shadow are firstly discussed and three kinds of spectral components including the difference between normalized blue and normalized red component - BR, intensity and saturation components are selected as criterions to obtain initial segmentation of shadow region (called primary segmentation). After that, within the normalized RGB color space and HIS color space, the shadow region is extracted again (called auxiliary segmentation) using the OTSU operation, respectively. Finally, the primary segmentation and auxiliary segmentation are combined through a logical AND-connection operation to obtain reliable shadow region. In this step, small shadow areas are removed from combined shadow region and morphological algorithms are apply to fill small holes as well. The experimental results show that the proposed approach can effectively detect the shadow region from high-resolution aerial image and in high degree of automaton.

  4. Feature-based registration of historical aerial images by Area Minimization

    NASA Astrophysics Data System (ADS)

    Nagarajan, Sudhagar; Schenk, Toni

    2016-06-01

    The registration of historical images plays a significant role in assessing changes in land topography over time. By comparing historical aerial images with recent data, geometric changes that have taken place over the years can be quantified. However, the lack of ground control information and precise camera parameters has limited scientists' ability to reliably incorporate historical images into change detection studies. Other limitations include the methods of determining identical points between recent and historical images, which has proven to be a cumbersome task due to continuous land cover changes. Our research demonstrates a method of registering historical images using Time Invariant Line (TIL) features. TIL features are different representations of the same line features in multi-temporal data without explicit point-to-point or straight line-to-straight line correspondence. We successfully determined the exterior orientation of historical images by minimizing the area formed between corresponding TIL features in recent and historical images. We then tested the feasibility of the approach with synthetic and real data and analyzed the results. Based on our analysis, this method shows promise for long-term 3D change detection studies.

  5. Development of ballistics identification—from image comparison to topography measurement in surface metrology

    NASA Astrophysics Data System (ADS)

    Song, J.; Chu, W.; Vorburger, T. V.; Thompson, R.; Renegar, T. B.; Zheng, A.; Yen, J.; Silver, R.; Ols, M.

    2012-05-01

    Fired bullets and ejected cartridge cases have unique ballistics signatures left by the firearm. By analyzing the ballistics signatures, forensic examiners can trace these bullets and cartridge cases to the firearm used in a crime scene. Current automated ballistics identification systems are primarily based on image comparisons using optical microscopy. The correlation accuracy depends on image quality which is largely affected by lighting conditions. Because ballistics signatures are geometrical micro-topographies by nature, direct measurement and correlation of the surface topography is being investigated for ballistics identification. A Two-dimensional and Three-dimensional Topography Measurement and Correlation System was developed at the National Institute of Standards and Technology for certification of Standard Reference Material 2460/2461 bullets and cartridge cases. Based on this system, a prototype system for bullet signature measurement and correlation has been developed for bullet signature identifications, and has demonstrated superior correlation results.

  6. Quantitative evaluation of mask phase defects from through-focus EUV aerial images

    SciTech Connect

    Mochi, Iacopo; Yamazoe, Kenji; Neureuther, Andrew; Goldberg, Kenneth A.

    2011-02-21

    Mask defects inspection and imaging is one of the most important issues for any pattern transfer lithography technology. This is especially true for EUV lithography where the wavelength-specific properties of masks and defects necessitate actinic inspection for a faithful prediction of defect printability and repair performance. In this paper we will present a technique to obtain a quantitative characterization of mask phase defects from EUV aerial images. We apply this technique to measure the aerial image phase of native defects on a blank mask, measured with the SEMATECH Berkeley Actinic Inspection Tool (AIT) an EUV zoneplate microscope that operates at Lawrence Berkeley National Laboratory. The measured phase is compared with predictions made from AFM top-surface measurements of those defects. While amplitude defects are usually easy to recognize and quantify with standard inspection techniques like scanning electron microscopy (SEM), defects or structures that have a phase component can be much more challenging to inspect. A phase defect can originate from the substrate or from any level of the multilayer. In both cases its effect on the reflected field is not directly related to the local topography of the mask surface, but depends on the deformation of the multilayer structure. Using the AIT, we have previously showed that EUV inspection provides a faithful and reliable way to predict the appearance of mask defect on the printed wafer; but to obtain a complete characterization of the defect we need to evaluate quantitatively its phase component. While aerial imaging doesn't provide a direct measurement of the phase of the object, this information is encoded in the through focus evolution of the image intensity distribution. Recently we developed a technique that allows us to extract the complex amplitude of EUV mask defects using two aerial images from different focal planes. The method for the phase reconstruction is derived from the Gerchberg-Saxton (GS

  7. Three-dimensional building roof boundary extraction using high-resolution aerial image and LiDAR data

    NASA Astrophysics Data System (ADS)

    Dal Poz, A. P.; Fazan, Antonio J.

    2014-10-01

    This paper presents a semiautomatic method for rectilinear building roof boundary extraction, based on the integration of high-resolution aerial image and LiDAR (Light Detection and Ranging) data. The proposed method is formulated as an optimization problem, in which a snakes-based objective function is developed to represent the building roof boundaries in an object-space coordinate system. Three-dimensional polylines representing building roof boundaries are obtained by optimizing the objective function using the dynamic programming optimization technique. The results of our experiments showed that the proposed method satisfactorily performed the task of extracting different building roof boundaries from aerial image and LiDAR data.

  8. a computational modeling for image motion velocity on focal plane of aerial & aerospace frame camera

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Jin, G.; Li, Z. Y.

    As the resolving power and geometric accuracy of aerial aerospace imaging is demanded to be higher the researches in technology of IMC become very important In order to compensate the image motion on focal plane the rule of FPIMV Focal Plane Image Motion Velocity should be grasped while the posture of aircraft and the modes of imaging are under changing In this paper a reasonable computational modeling scheme to the problem is introduced Coordinates transformation method is utilized for calculation of forward FPIMV under different condition of vertical and sloped imaging meanwhile integrated with three axes posture and angle velocity of aircraft Forward FPIMV combine with pitch roll and yaw FPIMV is considered simultaneously and the derivation calculating expressions of frame camera FPIMV under different conditions is presented in detail The solution is applied to computational simulation and has been confirmed to be effective based on the calculation result and it lays the foundation for our farther researches on frame camera IMC technology Key words IMC FPIMV Focal Plane Image Motion Velocity Coordinates transformation method

  9. FOREWORD: Materials metrology Materials metrology

    NASA Astrophysics Data System (ADS)

    Bennett, Seton; Valdés, Joaquin

    2010-04-01

    It seems that so much of modern life is defined by the materials we use. From aircraft to architecture, from cars to communications, from microelectronics to medicine, the development of new materials and the innovative application of existing ones have underpinned the technological advances that have transformed the way we live, work and play. Recognizing the need for a sound technical basis for drafting codes of practice and specifications for advanced materials, the governments of countries of the Economic Summit (G7) and the European Commission signed a Memorandum of Understanding in 1982 to establish the Versailles Project on Advanced Materials and Standards (VAMAS). This project supports international trade by enabling scientific collaboration as a precursor to the drafting of standards. The VAMAS participants recognized the importance of agreeing a reliable, universally accepted basis for the traceability of the measurements on which standards depend for their preparation and implementation. Seeing the need to involve the wider metrology community, VAMAS approached the Comité International des Poids et Mesures (CIPM). Following discussions with NMI Directors and a workshop at the BIPM in February 2005, the CIPM decided to establish an ad hoc Working Group on the metrology applicable to the measurement of material properties. The Working Group presented its conclusions to the CIPM in October 2007 and published its final report in 2008, leading to the signature of a Memorandum of Understanding between VAMAS and the BIPM. This MoU recognizes the work that is already going on in VAMAS as well as in the Consultative Committees of the CIPM and establishes a framework for an ongoing dialogue on issues of materials metrology. The question of what is meant by traceability in the metrology of the properties of materials is particularly vexed when the measurement results depend on a specified procedure. In these cases, confidence in results requires not only traceable

  10. Implementation of a segmentation method for agricultural fields in aerial sequences of images based on CSAR model

    NASA Astrophysics Data System (ADS)

    Chen, Haijun; Houkes, Zweitze

    1998-09-01

    In this paper, a segmentation method for agricultural fields in aerial sequences of images based on the Circular Symmetri Auto-Regressive (CSAR) model is presented. The image sequences assumed to be acquired by a video camera (RGB-CCD system) from an aeroplane, which moves linearly over the scene. The objects in the scenes being considered in this paper, are agricultural fields. The classes of agricultural fields to be distinguished are determined by the type of crop, e.g. potatoes sugar beet, wheat, etc. In order to recognize and classify these fields from aerial sequence of images, a reliable segmentatio is required. Here texture features are used for segmentation. The implementation of segmentation for agricultural fields in aerial sequences of images is based on CSAR model in texture analysis. By comparing the estimated parameters of CSAR model from different area in an image, the characteristics and the class of a texture may be determined. The paper describes the segmentation method and its evaluation through experiments. Based on segmentation results, classification for surface texture of vegetation from aerial sequences of images is realized.

  11. Object-based Image Classification of Arctic Sea Ice and Melt Ponds through Aerial Photos

    NASA Astrophysics Data System (ADS)

    Miao, X.; Xie, H.; Li, Z.; Lei, R.

    2013-12-01

    The last six years have marked the lowest Arctic summer sea ice extents in the modern era, with a new record summer minimum (3.4 million km2) set on 13 September 2012. It has been predicted that the Arctic could be free of summer ice within the next 25-30. The loss of Arctic summer ice could have serious consequences, such as higher water temperature due to the positive feedback of albedo, more powerful and frequent storms, rising sea levels, diminished habitats for polar animals, and more pollution due to fossil fuel exploitation and/ or increased traffic through the Northwest/ Northeast Passage. In these processes, melt ponds play an important role in Earth's radiation balance since they strongly absorb solar radiation rather than reflecting it as snow and ice do. Therefore, it is necessary to develop the ability of predicting the sea ice/ melt pond extents and space-time evolution, which is pivotal to prepare for the variation and uncertainty of the future environment, political, economic, and military needs. A lot of efforts have been put into Arctic sea ice modeling to simulate sea ice processes. However, these sea ice models were initiated and developed based on limited field surveys, aircraft or satellite image data. Therefore, it is necessary to collect high resolution sea ice aerial photo in a systematic way to tune up, validate, and improve models. Currently there are many sea ice aerial photos available, such as Chinese Arctic Exploration (CHINARE 2008, 2010, 2012), SHEBA 1998 and HOTRAX 2005. However, manually delineating of sea ice and melt pond from these images is time-consuming and labor-intensive. In this study, we use the object-based remote sensing classification scheme to extract sea ice and melt ponds efficiently from 1,727 aerial photos taken during the CHINARE 2010. The algorithm includes three major steps as follows. (1) Image segmentation groups the neighboring pixels into objects according to the similarity of spectral and texture

  12. Multi-Scale Matching for the Automatic Location of Control Points in Large Scale Aerial Images Using Terrestrial Scenes

    NASA Astrophysics Data System (ADS)

    Berveglieri, A.; Tommaselli, A. M. G.

    2014-03-01

    A technique to automatically locate Ground Control Points (GCPs) in large aerial images is presented considering the availability of low accuracy direct georeferencing data. The approach is based on image chips of GCPs extracted from vertical terrestrial images. A strategy combining image matching techniques was implemented to select correct matches. These matches were used to define a 2D transformation with which the GCP is projected close to its correct position, reducing the search space in the aerial image. Area-based matching with some refinements is used to locate GCPs with sub-pixel precision. Experiments were performed with multi-scale images and assessed with a bundle block adjustment simulating an indirect sensor orientation. The accuracy analysis was accomplished based on discrepancies obtained from GCPs and check points. The results were better than interactive measurements and a planimetric accuracy of 1/5 of the Ground Sample Distance (GSD) for the check points was achieved.

  13. Detection of Laurel Wilt Disease in Avocado Using Low Altitude Aerial Imaging

    PubMed Central

    de Castro, Ana I.; Ehsani, Reza; Ploetz, Randy C.; Crane, Jonathan H.; Buchanon, Sherrie

    2015-01-01

    Laurel wilt is a lethal disease of plants in the Lauraceae plant family, including avocado (Persea americana). This devastating disease has spread rapidly along the southeastern seaboard of the United States and has begun to affect commercial avocado production in Florida. The main objective of this study was to evaluate the potential to discriminate laurel wilt-affected avocado trees using aerial images taken with a modified camera during helicopter surveys at low-altitude in the commercial avocado production area. The ability to distinguish laurel wilt-affected trees from other factors that produce similar external symptoms was also studied. RmodGB digital values of healthy trees and laurel wilt-affected trees, as well as fruit stress and vines covering trees were used to calculate several vegetation indices (VIs), band ratios, and VI combinations. These indices were subjected to analysis of variance (ANOVA) and an M-statistic was performed in order to quantify the separability of those classes. Significant differences in spectral values among laurel wilt affected and healthy trees were observed in all vegetation indices calculated, although the best results were achieved with Excess Red (ExR), (Red–Green) and Combination 1 (COMB1) in all locations. B/G showed a very good potential for separate the other factors with symptoms similar to laurel wilt-affected trees, such as fruit stress and vines covering trees, from laurel wilt-affected trees. These consistent results prove the usefulness of using a modified camera (RmodGB) to discriminate laurel wilt-affected avocado trees from healthy trees, as well as from other factors that cause the same symptoms and suggest performing the classification in further research. According to our results, ExR and B/G should be utilized to develop an algorithm or decision rules to classify aerial images, since they showed the highest capacity to discriminate laurel wilt-affected trees. This methodology may allow the rapid

  14. Detection of laurel wilt disease in avocado using low altitude aerial imaging.

    PubMed

    de Castro, Ana I; Ehsani, Reza; Ploetz, Randy C; Crane, Jonathan H; Buchanon, Sherrie

    2015-01-01

    Laurel wilt is a lethal disease of plants in the Lauraceae plant family, including avocado (Persea americana). This devastating disease has spread rapidly along the southeastern seaboard of the United States and has begun to affect commercial avocado production in Florida. The main objective of this study was to evaluate the potential to discriminate laurel wilt-affected avocado trees using aerial images taken with a modified camera during helicopter surveys at low-altitude in the commercial avocado production area. The ability to distinguish laurel wilt-affected trees from other factors that produce similar external symptoms was also studied. RmodGB digital values of healthy trees and laurel wilt-affected trees, as well as fruit stress and vines covering trees were used to calculate several vegetation indices (VIs), band ratios, and VI combinations. These indices were subjected to analysis of variance (ANOVA) and an M-statistic was performed in order to quantify the separability of those classes. Significant differences in spectral values among laurel wilt affected and healthy trees were observed in all vegetation indices calculated, although the best results were achieved with Excess Red (ExR), (Red-Green) and Combination 1 (COMB1) in all locations. B/G showed a very good potential for separate the other factors with symptoms similar to laurel wilt-affected trees, such as fruit stress and vines covering trees, from laurel wilt-affected trees. These consistent results prove the usefulness of using a modified camera (RmodGB) to discriminate laurel wilt-affected avocado trees from healthy trees, as well as from other factors that cause the same symptoms and suggest performing the classification in further research. According to our results, ExR and B/G should be utilized to develop an algorithm or decision rules to classify aerial images, since they showed the highest capacity to discriminate laurel wilt-affected trees. This methodology may allow the rapid detection

  15. Detection of laurel wilt disease in avocado using low altitude aerial imaging.

    PubMed

    de Castro, Ana I; Ehsani, Reza; Ploetz, Randy C; Crane, Jonathan H; Buchanon, Sherrie

    2015-01-01

    Laurel wilt is a lethal disease of plants in the Lauraceae plant family, including avocado (Persea americana). This devastating disease has spread rapidly along the southeastern seaboard of the United States and has begun to affect commercial avocado production in Florida. The main objective of this study was to evaluate the potential to discriminate laurel wilt-affected avocado trees using aerial images taken with a modified camera during helicopter surveys at low-altitude in the commercial avocado production area. The ability to distinguish laurel wilt-affected trees from other factors that produce similar external symptoms was also studied. RmodGB digital values of healthy trees and laurel wilt-affected trees, as well as fruit stress and vines covering trees were used to calculate several vegetation indices (VIs), band ratios, and VI combinations. These indices were subjected to analysis of variance (ANOVA) and an M-statistic was performed in order to quantify the separability of those classes. Significant differences in spectral values among laurel wilt affected and healthy trees were observed in all vegetation indices calculated, although the best results were achieved with Excess Red (ExR), (Red-Green) and Combination 1 (COMB1) in all locations. B/G showed a very good potential for separate the other factors with symptoms similar to laurel wilt-affected trees, such as fruit stress and vines covering trees, from laurel wilt-affected trees. These consistent results prove the usefulness of using a modified camera (RmodGB) to discriminate laurel wilt-affected avocado trees from healthy trees, as well as from other factors that cause the same symptoms and suggest performing the classification in further research. According to our results, ExR and B/G should be utilized to develop an algorithm or decision rules to classify aerial images, since they showed the highest capacity to discriminate laurel wilt-affected trees. This methodology may allow the rapid detection

  16. Potential use of V-channel Ge(220) monochromators in X-ray metrology and imaging

    PubMed Central

    Korytár, D.; Vagovič, P.; Végsö, K.; Šiffalovič, P.; Dobročka, E.; Jark, W.; Áč, V.; Zápražný, Z.; Ferrari, C.; Cecilia, A.; Hamann, E.; Mikulík, P.; Baumbach, T.; Fiederle, M.; Jergel, M.

    2013-01-01

    While channel-cut crystals, in which the diffracting surfaces in an asymmetric cut are kept parallel, can provide beam collimation and spectral beam shaping, they can in addition provide beam compression or expansion if the cut is V-shaped. The compression/expansion ratio depends in this case on the total asymmetry factor. If the Ge(220) diffraction planes and a total asymmetry factor in excess of 10 are used, the rocking curves of two diffractors will have a sufficient overlap only if the second diffractor is tuned slightly with respect to the first one. This study compares and analyses several ways of overcoming this mismatch, which is due to refraction, when the Cu Kα1 beam is compressed 21-fold in a V21 monochromator. A more than sixfold intensity increase was obtained if the matching was improved either by a compositional variation or by a thermal deformation. This provided an intensity gain compared with the use of a simple slit in a symmetrical channel-cut monochromator. The first attempt to overcome the mismatch by introducing different types of X-ray prisms for the required beam deflection is described as well. The performance of the V-shaped monochromators is demonstrated in two applications. A narrow collimated monochromatic beam obtained in the beam compressing mode was used for high-resolution grazing-incidence small-angle X-ray scattering measurements of a silicon sample with corrupted surface. In addition, a two-dimensional Bragg magnifier, based on two crossed V15 channel monochromators in beam expansion mode and tuned by means of unequal asymmetries, was successfully applied to high-resolution imaging of test structures in combination with a Medipix detector. PMID:24046503

  17. Integrating Spray Plane-Based Remote Sensing and Rapid Image Processing with Variable-Rate Aerial Application.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A remote sensing and variable rate application system was configured for agricultural aircraft. This combination system has the potential of providing a completely integrated solution for all aspects of aerial site-specific application and includes remote sensing, image processing and georegistratio...

  18. Building roof segmentation from aerial images using a lineand region-based watershed segmentation technique.

    PubMed

    El Merabet, Youssef; Meurie, Cyril; Ruichek, Yassine; Sbihi, Abderrahmane; Touahni, Raja

    2015-02-02

    In this paper, we present a novel strategy for roof segmentation from aerial images (orthophotoplans) based on the cooperation of edge- and region-based segmentation methods. The proposed strategy is composed of three major steps. The first one, called the pre-processing step, consists of simplifying the acquired image with an appropriate couple of invariant and gradient, optimized for the application, in order to limit illumination changes (shadows, brightness, etc.) affecting the images. The second step is composed of two main parallel treatments: on the one hand, the simplified image is segmented by watershed regions. Even if the first segmentation of this step provides good results in general, the image is often over-segmented. To alleviate this problem, an efficient region merging strategy adapted to the orthophotoplan particularities, with a 2D modeling of roof ridges technique, is applied. On the other hand, the simplified image is segmented by watershed lines. The third step consists of integrating both watershed segmentation strategies into a single cooperative segmentation scheme in order to achieve satisfactory segmentation results. Tests have been performed on orthophotoplans containing 100 roofs with varying complexity, and the results are evaluated with the VINETcriterion using ground-truth image segmentation. A comparison with five popular segmentation techniques of the literature demonstrates the effectiveness and the reliability of the proposed approach. Indeed, we obtain a good segmentation rate of 96% with the proposed method compared to 87.5% with statistical region merging (SRM), 84% with mean shift, 82% with color structure code (CSC), 80% with efficient graph-based segmentation algorithm (EGBIS) and 71% with JSEG.

  19. An asymmetric re-weighting method for the precision combined bundle adjustment of aerial oblique images

    NASA Astrophysics Data System (ADS)

    Xie, Linfu; Hu, Han; Wang, Jingxue; Zhu, Qing; Chen, Min

    2016-07-01

    Combined bundle adjustment is a fundamental step in the processing of massive oblique images. Traditional bundle adjustment designed for nadir images gives identical weights to different parts of image point observations made from different directions, due to the assumption that the errors in the observations follow the same Gaussian distribution. However, because of their large tilt angles, aerial oblique images have trapezoidal footprints on the ground, and their areas correspond to conspicuously different ground sample distances. The errors in different observations no longer conform to the above assumption, which leads to suboptimal bundle adjustment accuracy and restricts subsequent 3D applications. To model the distribution of the errors correctly for the combined bundle adjustment of oblique images, this paper proposes an asymmetric re-weighting method. The scale of each pixel is used to determine a re-weighting factor, and each pixel is subsequently projected onto the ground to identify another anisotropic re-weighting factor using the shape of its quadrangle. Next, these two factors are integrated into the combined bundle adjustment using asymmetric weights for the image point observations; greater weights are assigned to observations with fine resolutions, and those with coarse resolutions are penalized. This paper analyzes urban and rural images captured by three different five-angle camera systems, from both proprietary datasets and the ISPRS/EuroSDR benchmark. The results reveal that the proposed method outperforms the traditional method in both back-projected and triangulated precision by approximately 5-10% in most cases. Furthermore, the misalignments of point clouds generated by the different cameras are significantly alleviated after combined bundle adjustment.

  20. A Non-destructive Imaging Method for Detecting Defect in Mortal Sample by High-intensity Aerial Ultrasonic Wave

    NASA Astrophysics Data System (ADS)

    Osumi, Ayumu; Ito, Youichi

    We have studied a method of non-contact ultrasonic inspection that uses high-intensity aerial ultrasonic waves and optical equipment. Specially, the object is excited in noncontact way using high-intensity aerial ultrasonic waves and the vibration velocity on the object surface is measured with a laser Doppler vibrometer (LDV). We analysis the vibration information on the surface of the object with the defect area and image the defect shape in materials. In this paper, it was examined to detect the defect in mortal by proposed method.

  1. Nanoelectronics: Metrology and Computation

    SciTech Connect

    Lundstrom, Mark; Clark, Jason V.; Klimeck, Gerhard; Raman, Arvind

    2007-09-26

    Research in nanoelectronics poses new challenges for metrology, but advances in theory, simulation and computing and networking technology provide new opportunities to couple simulation and metrology. This paper begins with a brief overview of current work in computational nanoelectronics. Three examples of how computation can assist metrology will then be discussed. The paper concludes with a discussion of how cyberinfrastructure can help connect computing and metrology using the nanoHUB (www.nanoHUB.org) as a specific example.

  2. Multimodal detection of man-made objects in simulated aerial images

    NASA Astrophysics Data System (ADS)

    Baran, Matthew S.; Tutwiler, Richard L.; Natale, Donald J.; Bassett, Michael S.; Harner, Matthew P.

    2013-05-01

    This paper presents an approach to multi-modal detection of man-made objects from aerial imagery. Detections are made in polarization imagery, hyperspectral imagery, and LIDAR point clouds then fused into a single confidence map. The detections are based on reflective, spectral, and geometric features of man-made objects in airborne images. The polarization imagery detector uses the Stokes parameters and the degree of linear polarization to find highly polarizing objects. The hyperspectral detector matches scene spectra to a library of man-made materials using a combination of the spectral gradient angle and the generalized likelihood ratio test. The LIDAR detector clusters 3D points into objects using principle component analysis and prunes the detections by size and shape. Once the three channels are mapped into detection images, the information can be fused without some of the problems of multi-modal fusion, such as edge reversal. The imagery used in this system was simulated with a first-principles ray tracing image generator known as DIRSIG.

  3. An Aerial-Image Dense Matching Approach Based on Optical Flow Field

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Chen, Shiyu; Zhang, Yong; Gong, Jianya; Shibasaki, Ryosuke

    2016-06-01

    Dense matching plays an important role in many fields, such as DEM (digital evaluation model) producing, robot navigation and 3D environment reconstruction. Traditional approaches may meet the demand of accuracy. But the calculation time and out puts density is hardly be accepted. Focus on the matching efficiency and complex terrain surface matching feasibility an aerial image dense matching method based on optical flow field is proposed in this paper. First, some high accurate and uniformed control points are extracted by using the feature based matching method. Then the optical flow is calculated by using these control points, so as to determine the similar region between two images. Second, the optical flow field is interpolated by using the multi-level B-spline interpolation in the similar region and accomplished the pixel by pixel coarse matching. Final, the results related to the coarse matching refinement based on the combined constraint, which recognizes the same points between images. The experimental results have shown that our method can achieve per-pixel dense matching points, the matching accuracy achieves sub-pixel level, and fully meet the three-dimensional reconstruction and automatic generation of DSM-intensive matching's requirements. The comparison experiments demonstrated that our approach's matching efficiency is higher than semi-global matching (SGM) and Patch-based multi-view stereo matching (PMVS) which verifies the feasibility and effectiveness of the algorithm.

  4. Advanced Tie Feature Matching for the Registration of Mobile Mapping Imaging Data and Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Jende, P.; Peter, M.; Gerke, M.; Vosselman, G.

    2016-06-01

    Mobile Mapping's ability to acquire high-resolution ground data is opposing unreliable localisation capabilities of satellite-based positioning systems in urban areas. Buildings shape canyons impeding a direct line-of-sight to navigation satellites resulting in a deficiency to accurately estimate the mobile platform's position. Consequently, acquired data products' positioning quality is considerably diminished. This issue has been widely addressed in the literature and research projects. However, a consistent compliance of sub-decimetre accuracy as well as a correction of errors in height remain unsolved. We propose a novel approach to enhance Mobile Mapping (MM) image orientation based on the utilisation of highly accurate orientation parameters derived from aerial imagery. In addition to that, the diminished exterior orientation parameters of the MM platform will be utilised as they enable the application of accurate matching techniques needed to derive reliable tie information. This tie information will then be used within an adjustment solution to correct affected MM data. This paper presents an advanced feature matching procedure as a prerequisite to the aforementioned orientation update. MM data is ortho-projected to gain a higher resemblance to aerial nadir data simplifying the images' geometry for matching. By utilising MM exterior orientation parameters, search windows may be used in conjunction with a selective keypoint detection and template matching. Originating from different sensor systems, however, difficulties arise with respect to changes in illumination, radiometry and a different original perspective. To respond to these challenges for feature detection, the procedure relies on detecting keypoints in only one image. Initial tests indicate a considerable improvement in comparison to classic detector/descriptor approaches in this particular matching scenario. This method leads to a significant reduction of outliers due to the limited availability

  5. CSAM Metrology Software Tool

    NASA Technical Reports Server (NTRS)

    Vu, Duc; Sandor, Michael; Agarwal, Shri

    2005-01-01

    CSAM Metrology Software Tool (CMeST) is a computer program for analysis of false-color CSAM images of plastic-encapsulated microcircuits. (CSAM signifies C-mode scanning acoustic microscopy.) The colors in the images indicate areas of delamination within the plastic packages. Heretofore, the images have been interpreted by human examiners. Hence, interpretations have not been entirely consistent and objective. CMeST processes the color information in image-data files to detect areas of delamination without incurring inconsistencies of subjective judgement. CMeST can be used to create a database of baseline images of packages acquired at given times for comparison with images of the same packages acquired at later times. Any area within an image can be selected for analysis, which can include examination of different delamination types by location. CMeST can also be used to perform statistical analyses of image data. Results of analyses are available in a spreadsheet format for further processing. The results can be exported to any data-base-processing software.

  6. The Need of Nested Grids for Aerial and Satellite Images and Digital Elevation Models

    NASA Astrophysics Data System (ADS)

    Villa, G.; Mas, S.; Fernández-Villarino, X.; Martínez-Luceño, J.; Ojeda, J. C.; Pérez-Martín, B.; Tejeiro, J. A.; García-González, C.; López-Romero, E.; Soteres, C.

    2016-06-01

    Usual workflows for production, archiving, dissemination and use of Earth observation images (both aerial and from remote sensing satellites) pose big interoperability problems, as for example: non-alignment of pixels at the different levels of the pyramids that makes it impossible to overlay, compare and mosaic different orthoimages, without resampling them and the need to apply multiple resamplings and compression-decompression cycles. These problems cause great inefficiencies in production, dissemination through web services and processing in "Big Data" environments. Most of them can be avoided, or at least greatly reduced, with the use of a common "nested grid" for mutiresolution production, archiving, dissemination and exploitation of orthoimagery, digital elevation models and other raster data. "Nested grids" are space allocation schemas that organize image footprints, pixel sizes and pixel positions at all pyramid levels, in order to achieve coherent and consistent multiresolution coverage of a whole working area. A "nested grid" must be complemented by an appropriate "tiling schema", ideally based on the "quad-tree" concept. In the last years a "de facto standard" grid and Tiling Schema has emerged and has been adopted by virtually all major geospatial data providers. It has also been adopted by OGC in its "WMTS Simple Profile" standard. In this paper we explain how the adequate use of this tiling schema as common nested grid for orthoimagery, DEMs and other types of raster data constitutes the most practical solution to most of the interoperability problems of these types of data.

  7. Mass image data storage system for high resolution aerial photographic survey

    NASA Astrophysics Data System (ADS)

    Zen, Luan; Tan, Jiubin; Zhao, Zhongwen

    2008-10-01

    In order to make it possible for an image data acquisition and storage system used for aerial photographic survey to have a continuous storage speed of 144 MB/s and data storage capacity of 260GB, three main problems have been solved in this paper. First, with multi-channel synchronous DMA transfer, parallel data storage of four SCSI hard disks is realized. It solved the problem of the data transfer rate too high for direct storage. Then, to increase the data transfer rate, a high speed BUS based on LVDS and a SCSI control circuit based on FAS368M were designed. It solved the problem of PCI BUS limiting the storage speed. Finally, the problem of the SCSI hard disk continuous storage speed declining led by much time interval between two DMA transfers is solved by optimizing DMA channel. The practical system test shows that the acquisition and storage system has a continuous storage speed of 150 MB/s and a data storage capacity of 280GB. Therefore, it is a new storage method for high speed and mass image data.

  8. Model-based recognition and classification for surface texture of vegetation from an aerial sequence of images

    NASA Astrophysics Data System (ADS)

    Chen, Haijun; Houkes, Zweitze

    1997-12-01

    In this paper, a model based recognition and classification method for surface texture of vegetation from aerial sequence of images is presented. The image sequences are assumed to be acquired by a video camera (RGB-CCD system) from an aeroplane, which moves linearly over the scene. The objects in the scenes being considered in this paper, are agricultural fields. The classes of agricultural fields to be distinguished are determined by the type of crop, e.g. potatoes, sugar beet, what, etc. In order to recognize and classify these fields from aerial sequence of images, a common approach is in the use of surface texture. Here the circular symmetric auto- regressive (CSAR) random model is used for texture analysis. By manipulating the estimated value against its real value, the characteristics of a texture image may be determined. A hypothesize-and verify algorithm is used for model recognition. Based on all kinds of models, classification for surface texture of vegetation from aerial sequences of images is realized.

  9. EDITORIAL: Nanoscale metrology Nanoscale metrology

    NASA Astrophysics Data System (ADS)

    Picotto, G. B.; Koenders, L.; Wilkening, G.

    2009-08-01

    characterization. The papers in the first part report on new or improved instrumentation, details of developments of metrology SFM, improvements to SFM, probes and scanning methods in the direction of nanoscale coordinate measuring machines and true 3D measurements as well as of progress of a 2D encoder based on a regular crystalline lattice. To ensure traceability to the SI unit of length many highly sophisticated instruments are equipped with laser interferometers to measure small displacements in the nanometre range very accurately. Improving these techniques is still a challenge and therefore new interferometric techniques are considered in several papers as well as improved sensors for nanodisplacement measurements or the development of a deep UV microscope for micro- and nanostructures. The tactile measurement of small structures also calls for a better control of forces in the nano- and piconewton range. A nanoforce facility, based on a disk-pendulum with electrostatic stiffness reduction and electrostatic force compensation, is presented for the measurement of small forces. In the second part the contributions are related to calibration and correction strategies and standards such as the development of test objects based on 3D silicon structures, and of samples with irregular surface profiles, and their use for calibration. The shape of the tip and its influence on measurements is still a contentious issue and addressed in several papers: use of nanospheres for tip characterization, a geometrical approach for reconstruction errors by tactile probing. Molecular dynamical calculations, classical as well as ab initio (based on density functional theory), are used to discuss effects of tip-sample relaxation on the topography and to have a better base from which to estimate uncertainties in measurements of small particles or features. Some papers report about measurements of air refractivity fluctuations by phase modulation interferometry, angle-scale traceability by laser

  10. Low-Level Tie Feature Extraction of Mobile Mapping Data (mls/images) and Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Jende, P.; Hussnain, Z.; Peter, M.; Oude Elberink, S.; Gerke, M.; Vosselman, G.

    2016-03-01

    Mobile Mapping (MM) is a technique to obtain geo-information using sensors mounted on a mobile platform or vehicle. The mobile platform's position is provided by the integration of Global Navigation Satellite Systems (GNSS) and Inertial Navigation Systems (INS). However, especially in urban areas, building structures can obstruct a direct line-of-sight between the GNSS receiver and navigation satellites resulting in an erroneous position estimation. Therefore, derived MM data products, such as laser point clouds or images, lack the expected positioning reliability and accuracy. This issue has been addressed by many researchers, whose aim to mitigate these effects mainly concentrates on utilising tertiary reference data. However, current approaches do not consider errors in height, cannot achieve sub-decimetre accuracy and are often not designed to work in a fully automatic fashion. We propose an automatic pipeline to rectify MM data products by employing high resolution aerial nadir and oblique imagery as horizontal and vertical reference, respectively. By exploiting the MM platform's defective, and therefore imprecise but approximate orientation parameters, accurate feature matching techniques can be realised as a pre-processing step to minimise the MM platform's three-dimensional positioning error. Subsequently, identified correspondences serve as constraints for an orientation update, which is conducted by an estimation or adjustment technique. Since not all MM systems employ laser scanners and imaging sensors simultaneously, and each system and data demands different approaches, two independent workflows are developed in parallel. Still under development, both workflows will be presented and preliminary results will be shown. The workflows comprise of three steps; feature extraction, feature matching and the orientation update. In this paper, initial results of low-level image and point cloud feature extraction methods will be discussed as well as an outline of

  11. Three-dimensional imaging applications in Earth Sciences using video data acquired from an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    McLeod, Tara

    For three dimensional (3D) aerial images, unmanned aerial vehicles (UAVs) are cheaper to operate and easier to fly than the typical manned craft mounted with a laser scanner. This project explores the feasibility of using 2D video images acquired with a UAV and transforming them into 3D point clouds. The Aeryon Scout -- a quad-copter micro UAV -- flew two missions: the first at York University Keele campus and the second at the Canadian Wollastonite Mine Property. Neptec's ViDAR software was used to extract 3D information from the 2D video using structure from motion. The resulting point clouds were sparsely populated, yet captured vegetation well. They were used successfully to measure fracture orientation in rock walls. Any improvement in the video resolution would cascade through the processing and improve the overall results.

  12. A supervised method for object-based 3D building change detection on aerial stereo images

    NASA Astrophysics Data System (ADS)

    Qin, R.; Gruen, A.

    2014-08-01

    There is a great demand for studying the changes of buildings over time. The current trend for building change detection combines the orthophoto and DSM (Digital Surface Models). The pixel-based change detection methods are very sensitive to the quality of the images and DSMs, while the object-based methods are more robust towards these problems. In this paper, we propose a supervised method for building change detection. After a segment-based SVM (Support Vector Machine) classification with features extracted from the orthophoto and DSM, we focus on the detection of the building changes of different periods by measuring their height and texture differences, as well as their shapes. A decision tree analysis is used to assess the probability of change for each building segment and the traffic lighting system is used to indicate the status "change", "non-change" and "uncertain change" for building segments. The proposed method is applied to scanned aerial photos of the city of Zurich in 2002 and 2007, and the results have demonstrated that our method is able to achieve high detection accuracy.

  13. Miniaturization of high spectral spatial resolution hyperspectral imagers on unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Hill, Samuel L.; Clemens, Peter

    2015-06-01

    Traditional airborne environmental monitoring has frequently deployed hyperspectral imaging as a leading tool for characterizing and analyzing a scene's critical spectrum-based signatures for applications in agriculture genomics and crop health, vegetation and mineral monitoring, and hazardous material detection. As the acceptance of hyperspectral evaluation grows in the airborne community, there has been a dramatic trend in moving the technology from use on midsize aircraft to Unmanned Aerial Systems (UAS). The use of UAS accomplishes a number of goals including the reduction in cost to run multiple seasonal evaluations over smaller but highly valuable land-areas, the ability to use frequent data collections to make rapid decisions on land management, and the improvement of spatial resolution by flying at lower altitudes (<500 ft.). Despite this trend, there are several key parameters affecting the use of traditional hyperspectral instruments in UAS with payloads less than 10 lbs. where size, weight and power (SWAP) are critical to how high and how far a given UAS can fly. Additionally, on many of the light-weight UAS, users are frequently trying to capture data from one or more instruments to augment the hyperspectral data collection, thus reducing the amount of SWAP available to the hyperspectral instrumentation. The following manuscript will provide an analysis on a newly-developed miniaturized hyperspectral imaging platform, the Nano-Hyperspec®, which provides full hyperspectral resolution and traditional hyperspectral capabilities without sacrificing performance to accommodate the decreasing SWAP of smaller and smaller UAS platforms. The analysis will examine the Nano-Hyperspec flown in several UAS airborne environments and the correlation of the systems data with LiDAR and other GIS datasets.

  14. Apollo Metrology Program

    NASA Technical Reports Server (NTRS)

    Porter, W. A.; Ransom, D. G.; Gardner, H. H.

    1966-01-01

    This paper introduces the metrology requirements in the recently published Apollo Program handbook, NHB 5400.2, entitled, 'Apollo Metrology Requirements Manual.' The major elements and control practices required for a comprehensive metrology system are identified. The elements are presented to you with sufficient detail of control practices to provide the scope of a total metrology program. The Manual is for implementation by the Apollo Space Flight Centers, their testing sites and contractors. The benefits of implementing these requirements are equally applicable to any Government or industry standards and calibration laboratory operations.

  15. Learning Scene Categories from High Resolution Satellite Image for Aerial Video Analysis

    SciTech Connect

    Cheriyadat, Anil M

    2011-01-01

    Automatic scene categorization can benefit various aerial video processing applications. This paper addresses the problem of predicting the scene category from aerial video frames using a prior model learned from satellite imagery. We show that local and global features in the form of line statistics and 2-D power spectrum parameters respectively can characterize the aerial scene well. The line feature statistics and spatial frequency parameters are useful cues to distinguish between different urban scene categories. We learn the scene prediction model from highresolution satellite imagery to test the model on the Columbus Surrogate Unmanned Aerial Vehicle (CSUAV) dataset ollected by high-altitude wide area UAV sensor platform. e compare the proposed features with the popular Scale nvariant Feature Transform (SIFT) features. Our experimental results show that proposed approach outperforms te SIFT model when the training and testing are conducted n disparate data sources.

  16. Satellite Images and Aerial Photographs of the Effects of Hurricanes Katrina and Rita on Coastal Louisiana

    USGS Publications Warehouse

    Barras, John A.

    2007-01-01

    -water datasets derived from the Landsat TM satellite imagery were combined with 2001 marsh vegetative communities (Chabreck and others, unpub. data, 2001) to identify land-water configurations by marsh community before and after the hurricanes. Links to the Landsat TM images and aerial photographs are given below (figs. 1-29). Comparison of land area before the storms to land area after the storms is made possible by the inclusion of Landsat TM images and aerial photographs taken in the years and months before the storms. The figures are arranged geographically from east to west to follow the chronology of the effects of the storms. For a more detailed analysis of the changes wrought by these storms, see 'Land Area Changes in Coastal Louisiana After Hurricanes Katrina and Rita' (Barras, in press).

  17. Aerial Images from AN Uav System: 3d Modeling and Tree Species Classification in a Park Area

    NASA Astrophysics Data System (ADS)

    Gini, R.; Passoni, D.; Pinto, L.; Sona, G.

    2012-07-01

    The use of aerial imagery acquired by Unmanned Aerial Vehicles (UAVs) is scheduled within the FoGLIE project (Fruition of Goods Landscape in Interactive Environment): it starts from the need to enhance the natural, artistic and cultural heritage, to produce a better usability of it by employing audiovisual movable systems of 3D reconstruction and to improve monitoring procedures, by using new media for integrating the fruition phase with the preservation ones. The pilot project focus on a test area, Parco Adda Nord, which encloses various goods' types (small buildings, agricultural fields and different tree species and bushes). Multispectral high resolution images were taken by two digital compact cameras: a Pentax Optio A40 for RGB photos and a Sigma DP1 modified to acquire the NIR band. Then, some tests were performed in order to analyze the UAV images' quality with both photogrammetric and photo-interpretation purposes, to validate the vector-sensor system, the image block geometry and to study the feasibility of tree species classification. Many pre-signalized Control Points were surveyed through GPS to allow accuracy analysis. Aerial Triangulations (ATs) were carried out with photogrammetric commercial software, Leica Photogrammetry Suite (LPS) and PhotoModeler, with manual or automatic selection of Tie Points, to pick out pros and cons of each package in managing non conventional aerial imagery as well as the differences in the modeling approach. Further analysis were done on the differences between the EO parameters and the corresponding data coming from the on board UAV navigation system.

  18. Semi-Automated Classification of Gray Scale Aerial Photographs using Geographic Object Based Image Analysis (GEOBIA) Technique

    NASA Astrophysics Data System (ADS)

    Harb Rabia, Ahmed; Terribile, Fabio

    2013-04-01

    Aerial photography is an important source of high resolution remotely sensed data. Before 1970, aerial photographs were the only remote sensing data source for land use and land cover classification. Using these old aerial photographs improve the final output of land use and land cover change detection. However, classic techniques of aerial photographs classification like manual interpretation or screen digitization require great experience, long processing time and vast effort. A new technique needs to be developed in order to reduce processing time and effort and to give better results. Geographic object based image analysis (GEOBIA) is a newly developed area of Geographic Information Science and remote sensing in which automatic segmentation of images into objects of similar spectral, temporal and spatial characteristics is undertaken. Unlike pixel-based technique, GEOBIA deals with the object properties such as texture, square fit, roundness and many other properties that can improve classification results. GEOBIA technique can be divided into two main steps; segmentation and classification. Segmentation process is grouping adjacent pixels into objects of similar spectral and spatial characteristics. Classification process is assigning classes to the generated objects based on the characteristics of the individual objects. This study aimed to use GEOBIA technique to develop a novel approach for land use and land cover classification of aerial photographs that saves time and effort and gives improved results. Aerial photographs from 1954 of Valle Telesina in Italy were used in this study. Images were rectified and georeferenced in Arcmap using topographic maps. Images were then processed in eCognition software to generate land use and land cover map of 1954. A decision tree rule set was developed in eCognition to classify images and finally nine classes of general land use and land cover in the study area were recognized (forest, trees stripes, agricultural

  19. Metrological scanning probe microscope

    NASA Astrophysics Data System (ADS)

    Dorozhovets, N.; Hausotte, T.; Manske, E.; Jäger, G.; Hofmann, N.

    2006-04-01

    Today's technological progress calls for metrologically accurate object measurement, positioning and scanning with nanometre precision and over large measuring ranges. In order to meet that requirement a nanopositioning and nanomeasuring machine (NPM machine) was developed at the Institute of Process Measurement and Sensor Technology of the Technische Universitaet Ilmenau. This device is capable of highly exact long-range positioning and measurement of objects with a resolution of less than 0.1 nm. Due to the structure of the machine many different probe systems can be installed, including scanning probe microscopes (SPMs). A few SPMs have outstanding metrological characteristics and many commercial microscopes only perform as image acquisition tools. Commercial SPMs use piezoelectric actuators in order to move either the sample or the probe. The position measurement sometimes results from the applied voltage to the piezoelectric actuators or from the strain gauge or capacitive displacement sensor data. This means that they suffer from hysteresis, creep, nonlinear characteristics and Abbe offsets. For an accurate measurement the position of the cantilever must be measured in addition to the torsion and bending. The best solution is a combined detection system with a single laser beam. This system has been realized with a special interferometer system, in which the measuring beam is focused on the cantilever backside using a lens. The reflected beam is split with a part being detected by a quadrant photo-diode and the other part being fed back into the interferometer for position measurement. The quadrant photo-diode is used to detect the cantilever torsion and bending.

  20. EDITORIAL: Microflow meets metrology Microflow meets metrology

    NASA Astrophysics Data System (ADS)

    Wolf, Henning

    2010-07-01

    This special feature is dedicated to methods and applications of high-precision flow rate measurements at flow rates in the range of µl/min and below. It comprises papers from authors who gave lectures at the 250th PTB Seminar 'European Meeting on Microflow Metrology', held at the Physikalisch-Technische Bundesanstalt, Germany, on 24-25 June 2009 and sponsored by the Helmholtz Funds e.V., Germany. More than 40 experts from national metrology institutes, universities and manufactures of flowmeters, and from seven European countries, attended the seminar. The main goal of the seminar was to discuss the measurement of very small flow rates on a metrological basis. The lectures covered measurements of flow rates of liquids as well as of gases. Manufacturers discussed their developments of commercial flowmeters for low flow rates, and first approaches towards a measurement traceable to the SI were introduced by the national metrology institutes. Thus, many interesting discussions were stimulated between various groups, in particular between those working in metrology and on applications. The measurement of very low flow rates traceable to the SI is just beginning. So many approaches have not yet been finished or are at the moment only at the status of a proof of principle. The papers in this special feature give an insight into these different approaches and mark the beginning of an exciting way towards the measurement of small and ultrasmall flow rates.

  1. Application of high resolution images from unmanned aerial vehicles for hydrology and rangeland science

    NASA Astrophysics Data System (ADS)

    Rango, A.; Vivoni, E. R.; Anderson, C. A.; Perini, N. A.; Saripalli, S.; Laliberte, A.

    2012-12-01

    A common problem in many natural resource disciplines is the lack of high-enough spatial resolution images that can be used for monitoring and modeling purposes. Advances have been made in the utilization of Unmanned Aerial Vehicles (UAVs) in hydrology and rangeland science. By utilizing low flight altitudes and velocities, UAVs are able to produce high resolution (5 cm) images as well as stereo coverage (with 75% forward overlap and 40% sidelap) to extract digital elevation models (DEM). Another advantage of flying at low altitude is that the potential problems of atmospheric haze obscuration are eliminated. Both small fixed-wing and rotary-wing aircraft have been used in our experiments over two rangeland areas in the Jornada Experimental Range in southern New Mexico and the Santa Rita Experimental Range in southern Arizona. The fixed-wing UAV has a digital camera in the wing and six-band multispectral camera in the nose, while the rotary-wing UAV carries a digital camera as payload. Because we have been acquiring imagery for several years, there are now > 31,000 photos at one of the study sites, and 177 mosaics over rangeland areas have been constructed. Using the DEM obtained from the imagery we have determined the actual catchment areas of three watersheds and compared these to previous estimates. At one site, the UAV-derived watershed area is 4.67 ha which is 22% smaller compared to a manual survey using a GPS unit obtained several years ago. This difference can be significant in constructing a watershed model of the site. From a vegetation species classification, we also determined that two of the shrub types in this small watershed(mesquite and creosote with 6.47 % and 5.82% cover, respectively) grow in similar locations(flat upland areas with deep soils), whereas the most predominant shrub(mariola with 11.9% cover) inhabits hillslopes near stream channels(with steep shallow soils). The positioning of these individual shrubs throughout the catchment using

  2. Estimating Mixed Broadleaves Forest Stand Volume Using Dsm Extracted from Digital Aerial Images

    NASA Astrophysics Data System (ADS)

    Sohrabi, H.

    2012-07-01

    In mixed old growth broadleaves of Hyrcanian forests, it is difficult to estimate stand volume at plot level by remotely sensed data while LiDar data is absent. In this paper, a new approach has been proposed and tested for estimating stand forest volume. The approach is based on this idea that forest volume can be estimated by variation of trees height at plots. In the other word, the more the height variation in plot, the more the stand volume would be expected. For testing this idea, 120 circular 0.1 ha sample plots with systematic random design has been collected in Tonekaon forest located in Hyrcanian zone. Digital surface model (DSM) measure the height values of the first surface on the ground including terrain features, trees, building etc, which provides a topographic model of the earth's surface. The DSMs have been extracted automatically from aerial UltraCamD images so that ground pixel size for extracted DSM varied from 1 to 10 m size by 1m span. DSMs were checked manually for probable errors. Corresponded to ground samples, standard deviation and range of DSM pixels have been calculated. For modeling, non-linear regression method was used. The results showed that standard deviation of plot pixels with 5 m resolution was the most appropriate data for modeling. Relative bias and RMSE of estimation was 5.8 and 49.8 percent, respectively. Comparing to other approaches for estimating stand volume based on passive remote sensing data in mixed broadleaves forests, these results are more encouraging. One big problem in this method occurs when trees canopy cover is totally closed. In this situation, the standard deviation of height is low while stand volume is high. In future studies, applying forest stratification could be studied.

  3. Frequency Standards and Metrology

    NASA Astrophysics Data System (ADS)

    Maleki, Lute

    2009-04-01

    Preface / Lute Maleki -- Symposium history / Jacques Vanier -- Symposium photos -- pt. I. Fundamental physics. Variation of fundamental constants from the big bang to atomic clocks: theory and observations (Invited) / V. V. Flambaum and J. C. Berengut. Alpha-dot or not: comparison of two single atom optical clocks (Invited) / T. Rosenband ... [et al.]. Variation of the fine-structure constant and laser cooling of atomic dysprosium (Invited) / N. A. Leefer ... [et al.]. Measurement of short range forces using cold atoms (Invited) / F. Pereira Dos Santos ... [et al.]. Atom interferometry experiments in fundamental physics (Invited) / S. W. Chiow ... [et al.]. Space science applications of frequency standards and metrology (Invited) / M. Tinto -- pt. II. Frequency & metrology. Quantum metrology with lattice-confined ultracold Sr atoms (Invited) / A. D. Ludlow ... [et al.]. LNE-SYRTE clock ensemble: new [symbol]Rb hyperfine frequency measurement - spectroscopy of [symbol]Hg optical clock transition (Invited) / M. Petersen ... [et al.]. Precise measurements of S-wave scattering phase shifts with a juggling atomic clock (Invited) / S. Gensemer ... [et al.]. Absolute frequency measurement of the [symbol] clock transition (Invited) / M. Chwalla ... [et al.]. The semiclassical stochastic-field/atom interaction problem (Invited) / J. Camparo. Phase and frequency noise metrology (Invited) / E. Rubiola ... [et al.]. Optical spectroscopy of atomic hydrogen for an improved determination of the Rydberg constant / J. L. Flowers ... [et al.] -- pt. III. Clock applications in space. Recent progress on the ACES mission (Invited) / L. Cacciapuoti and C. Salomon. The SAGAS mission (Invited) / P. Wolf. Small mercury microwave ion clock for navigation and radioScience (Invited) / J. D. Prestage ... [et al.]. Astro-comb: revolutionizing precision spectroscopy in astrophysics (Invited) / C. E. Kramer ... [et al.]. High frequency very long baseline interferometry: frequency standards and

  4. EUV Lithography: New Metrology Challenges

    SciTech Connect

    Wood, Obert

    2007-09-26

    Extreme ultraviolet lithography is one of the most promising printing techniques for high volume semiconductor manufacturing at the 22 nm half-pitch device node and beyond. Because its imaging wavelength is approximately twenty times shorter than those currently in use (13.5 nm versus 193-248 nm) and because EUV optics and masks must be provided with highly-precise reflective multilayer coatings, EUV lithography presents a number of new and difficult metrology challenges. In this paper, the current status of the metrology tools being used to characterize the figure and finish of EUV mirror surfaces, the defectivity and flatness of EUV mask blanks and the outgassing rates of EUV resist materials are discussed.

  5. Verification metrology system by using inline reference metrology

    NASA Astrophysics Data System (ADS)

    Abe, Hideaki; Ishibashi, Yasuhiko; Ida, Chihiro; Hamaguchi, Akira; Ikeda, Takahiro; Yamazaki, Yuichiro

    2014-04-01

    For robustness improvement of inline metrology tools, we propose inline reference metrology system "Verification Metrology System (VMS)". This system combines inline metrology tools and non-destructive reference metrology tools. VMS can detect the false alarm error and the not-detectable error caused by measurement robustness decay of inline metrology tools. GI-SAXS was selected as the inline reference metrology tool. GI-SAXS has high robustness capability for under-layer structure changes. VMS with scatterometry and GI-SAXS was evaluated for measurement robustness. The potential to detect metrology system errors was confirmed using VMS. Cost reduction effect of VMS was estimated for the false alarm case. Total cost is obtained as a sum of the false alarm loss and the metrology cost. VMS is effective for total cost reduction with low sampling. And it is important that sampling frequency of reference metrology is optimized based on process qualities.

  6. Verification metrology system by using inline reference metrology

    NASA Astrophysics Data System (ADS)

    Abe, Hideaki; Ishibashi, Yasuhiko; Ida, Chihiro; Hamaguchi, Akira; Ikeda, Takahiro; Yamazaki, Yuichiro

    2014-10-01

    For robustness improvement of inline metrology tools, we propose an inline reference metrology system, named verification metrology system (VMS). This system combines inline metrology and nondestructive reference metrology tools. VMS can detect the false alarm error and the nondetectable error caused by measurement robustness decay of inline metrology tools. Grazing-incidence small-angle x-ray scattering (GI-SAXS) was selected as the inline reference metrology tool. GI-SAXS has high robustness capability for under-layer structural changes. VMS with scatterometry and GI-SAXS was evaluated for measurement robustness. The potential to detect metrology system errors was confirmed using VMS. Cost reduction effect of VMS was estimated for the false alarm case. Total cost is obtained as a sum of the false alarm losses and the metrology costs. VMS is effective for total cost reduction with low sampling. Also, it is important that the sampling frequency of reference metrology is optimized based on process qualities.

  7. ISSUES IN DIGITAL IMAGE PROCESSING OF AERIAL PHOTOGRAPHY FOR MAPPING SUBMERSED AQUATIC VEGETATION

    EPA Science Inventory

    The paper discusses the numerous issues that needed to be addressed when developing a methodology for mapping Submersed Aquatic Vegetation (SAV) from digital aerial photography. Specifically, we discuss 1) choice of film; 2) consideration of tide and weather constraints; 3) in-s...

  8. Collecting Inexpensive High Resolution Aerial and Stereo Images of Small- to Mid-Scale Geomorphic and Tectonic Features

    NASA Astrophysics Data System (ADS)

    Wheelwright, R. J.; White, W. S.; Willis, J. B.

    2010-12-01

    Methods for collecting accurate, mm- to cm-scale stereoscopic aerial imagery of both small- and mid-scale geomorphic features are developed for a one-time cost of under $1500. High resolution aerial images are valuable for documenting and analyzing small- to mid-scale geomorphic and tectonic features. However, collecting images of mid-scale features such as landslides, rock glaciers, fault scarps, and cinder cones is expensive and makes studies that rely on high resolution repeat imagery prohibitive for undergraduate geology departments with limited budgets. In addition to cost, collecting images of smaller scale geomorphic features such as gravel bars is often impeded by overhanging vegetation or other features in the immediate environment that make impractical the collection of aerial images using standard airborne techniques. The methods provide high resolution stereo photos suitable for image processing and stereographic analysis; the images are potentially suitable for change analyses, velocity tracking, and construction of lidar-resolution digital elevation models. We developed two techniques. The technique suitable for small-scale features (such as gravel bars) utilizes two Nikon D3000 digital single-lens reflex (DSLR) cameras attached to a system of poles that suspends the cameras at a height of 4 meters with a variable camera separation of 0.6 to 0.9 m. The poles are oriented such that they do not appear in the photographs. The cameras are simultaneously remotely activated to collect stereo pairs at a resolution of 64 pixels/cm2 (pixel length is 1.2 mm). Ground control on the images is provided by pegs placed 5 meters apart, GPS positioning, and a meter-stick included in each photograph. Initial photo data gathered of a gravel bar on the Henry’s Fork of the Snake River, north of Rexburg, Idaho is sharp and readily segmented using the MatLab-based CLASTS image processing algorithm. The technique developed for imaging mid-scale features (such as cinder

  9. Metrology Measurement Capabilities

    SciTech Connect

    Barnes, L.M.

    2003-11-12

    This document contains descriptions of Federal Manufacturing & Technologies (FM&T) Metrology capabilities, traceability flow charts, and the measurement uncertainty of each measurement capability. Metrology provides NIST traceable precision measurements or equipment calibration for a wide variety of parameters, ranges, and state-of-the-art uncertainties. Metrology laboratories conform to the requirements of the Department of Energy Development and Production Manual Chapter 8.4, ANSI/ISO/IEC ANSI/ISO/IEC 17025:2000, and ANSI/NCSL Z540-1 (equivalent to ISO Guide 25). FM&T Metrology laboratories are accredited by NVLAP for the parameters, ranges, and uncertainties listed in the specific scope of accreditation under NVLAP Lab code 200108-0. See the Internet at http://ts.nist.gov/ts/htdocs/210/214/scopes/2001080.pdf. These parameters are summarized in the table at the bottom of this introduction.

  10. Metrology Measurement Capabilities

    SciTech Connect

    Dr. Glen E. Gronniger

    2007-10-02

    This document contains descriptions of Federal Manufacturing & Technologies (FM&T) Metrology capabilities, traceability flow charts, and the measurement uncertainty of each measurement capability. Metrology provides NIST traceable precision measurements or equipment calibration for a wide variety of parameters, ranges, and state-of-the-art uncertainties. Metrology laboratories conform to the requirements of the Department of Energy Development and Production Manual Chapter 13.2, ANSI/ISO/IEC ANSI/ISO/IEC 17025:2005, and ANSI/NCSL Z540-1. FM&T Metrology laboratories are accredited by NVLAP for the parameters, ranges, and uncertainties listed in the specific scope of accreditation under NVLAP Lab code 200108-0. See the Internet at http://ts.nist.gov/Standards/scopes/2001080.pdf. These parameters are summarized. The Honeywell Federal Manufacturing & Technologies (FM&T) Metrology Department has developed measurement technology and calibration capability in four major fields of measurement: (1) Mechanical; (2) Environmental, Gas, Liquid; (3) Electrical (DC, AC, RF/Microwave); and (4) Optical and Radiation. Metrology Engineering provides the expertise to develop measurement capabilities for virtually any type of measurement in the fields listed above. A strong audit function has been developed to provide a means to evaluate the calibration programs of our suppliers and internal calibration organizations. Evaluation includes measurement audits and technical surveys.

  11. [Building Change Detection Based on Multi-Level Rules Classification with Airborne LiDAR Data and Aerial Images].

    PubMed

    Gong, Yi-long; Yan, Li

    2015-05-01

    The present paper proposes a new building change detection method combining Lidar point cloud with aerial image, using multi-level rules classification algorithm, to solve building change detection problem between these two kinds of heterogeneous data. Then, a morphological post-processing method combined with area threshold is proposed. Thus, a complete building change detection processing flow that can be applied to actual production is proposed. Finally, the effectiveness of the building change detection method is evaluated, processing the 2010 airborne LiDAR point cloud data and 2009 high resolution aerial image of Changchun City, Jilin province, China; in addition, compared with the object-oriented building change detection method based on support vector machine (SVM) classification, more analysis and evaluation of the suggested method is given. Experiment results show that the performance of the proposed building change detection method is ideal. Its Kappa index is 0. 90, and correctness is 0. 87, which is higher than the object-oriented building change detection method based on SVM classification.

  12. Metrology with μCT: precision challenge

    NASA Astrophysics Data System (ADS)

    Suppes, Alexander; Neuser, Eberhard

    2008-08-01

    Over the last years computed tomography (CT) with conventional x-ray sources has evolved from imaging method in medicine to a well established technology for industrial applications in the field of material science, microelectronics, geology, etc. By using modern microfocus and nanofocus® X-ray tubes, parts can be scanned with sub-micrometer resolutions. Currently, micro-CT is used more and more as a technology for metrological applications. Especially if complex parts with hidden or difficult accessible surfaces have to be measured, CT offers big advantages comparing with conventional tactile or optical coordinate measuring machines (CMMs): high density of measurement points and fast capturing of the complete sample's geometry. When using this modern technology the question arises how precise a CT based CMM can measure in comparison to conventional CMMs? To characterize the metrological capabilities of a tactile or optical CMM, internationally standardized characteristics like length measurement error and probing error are used. To increase the acceptance of CT as a metrological method, the definition and usage of these parameters is important. In this paper, an overview of the process chain in CT based metrology will be given and metrological characteristics will be described. With the help of a special material standard designed and calibrated by PTB-National Metrology Institute of Germany-the influence of methods for beam hardening correction and for surface extraction on the metrological characteristics will be analyzed. It will be shown that with modern micro-CT systems length measurement error of less than 1μm for an object diameter of 20 mm can be reached.

  13. MaNIAC-UAV - a methodology for automatic pavement defects detection using images obtained by Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Henrique Castelo Branco, Luiz; César Lima Segantine, Paulo

    2015-09-01

    Intelligent Transportation Systems - ITS is a set of integrated technologies (Remote Sensing, Image Processing, Communications Systems and others) that aim to offer services and advanced traffic management for the several transportation modes (road, air and rail). Collect data on the characteristics and conditions of the road surface and keep them update is an important and difficult task that needs to be currently managed in order to reduce accidents and vehicle maintenance costs. Nowadays several roads and highways are paved, but usually there is insufficient updated data about current condition and status. There are different types of pavement defects on the roads and to keep them in good condition they should be constantly monitored and maintained according to pavement management strategy. This paper presents a methodology to obtain, automatically, information about the conditions of the highway asphalt pavement. Data collection was done through remote sensing using an UAV (Unmanned Aerial Vehicle) and the image processing and pattern recognition techniques through Geographic Information System.

  14. fibmeasure: Python/Cython module to find the center of back-illuminated optical fibers in metrology images

    NASA Astrophysics Data System (ADS)

    Gilbert, James

    2016-03-01

    fibmeasure finds the precise locations of the centers of back-illuminated optical fibers in images. It was developed for astronomical fiber positioning feedback via machine vision cameras and is optimized for high-magnification images where fibers appear as resolvable circles. It was originally written during the design of the WEAVE pick-and-place fiber positioner for the William Herschel Telescope.

  15. A methodology for near real-time change detection between Unmanned Aerial Vehicle and wide area satellite images

    NASA Astrophysics Data System (ADS)

    Fytsilis, Anastasios L.; Prokos, Anthony; Koutroumbas, Konstantinos D.; Michail, Dimitrios; Kontoes, Charalambos C.

    2016-09-01

    In this paper a novel integrated hybrid methodology for unsupervised change detection between Unmanned Aerial Vehicle (UAV) and satellite images, which can be utilized in various fields like security applications (e.g. border surveillance) and damage assessment, is proposed. This is a challenging problem mainly due to the difference in geographic coverage and the spatial resolution of the two images, as well as to the acquisition modes which lead to misregistration errors. The methodology consists of the following steps: (a) pre-processing, where the part of the satellite image that corresponds to the UAV image is determined and the UAV image is ortho-rectified using information provided by a Digital Terrain Model, (b) the detection of potential changes, which is based exclusively on intensity and image gradient information, (c) the generation of the region map, where homogeneous regions are produced by the previous potential changes via a seeded region growing algorithm and placed on the region map, and (d) the evaluation of the above regions, in order to characterize them as true changes or not. The methodology has been applied on demanding real datasets with very encouraging results. Finally, its robustness to the misregistration errors is assessed via extensive experimentation.

  16. Detection of Tree Crowns Based on Reclassification Using Aerial Images and LIDAR Data

    NASA Astrophysics Data System (ADS)

    Talebi, S.; Zarea, A.; Sadeghian, S.; Arefi, H.

    2013-09-01

    Tree detection using aerial sensors in early decades was focused by many researchers in different fields including Remote Sensing and Photogrammetry. This paper is intended to detect trees in complex city areas using aerial imagery and laser scanning data. Our methodology is a hierarchal unsupervised method consists of some primitive operations. This method could be divided into three sections, in which, first section uses aerial imagery and both second and third sections use laser scanners data. In the first section a vegetation cover mask is created in both sunny and shadowed areas. In the second section Rate of Slope Change (RSC) is used to eliminate grasses. In the third section a Digital Terrain Model (DTM) is obtained from LiDAR data. By using DTM and Digital Surface Model (DSM) we would get to Normalized Digital Surface Model (nDSM). Then objects which are lower than a specific height are eliminated. Now there are three result layers from three sections. At the end multiplication operation is used to get final result layer. This layer will be smoothed by morphological operations. The result layer is sent to WG III/4 to evaluate. The evaluation result shows that our method has a good rank in comparing to other participants' methods in ISPRS WG III/4, when assessed in terms of 5 indices including area base completeness, area base correctness, object base completeness, object base correctness and boundary RMS. With regarding of being unsupervised and automatic, this method is improvable and could be integrate with other methods to get best results.

  17. Quantitative analysis of drainage obtained from aerial photographs and RBV/LANDSAT images

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Formaggio, A. R.; Epiphanio, J. C. N.; Filho, M. V.

    1981-01-01

    Data obtained from aerial photographs (1:60,000) and LANDSAT return beam vidicon imagery (1:100,000) concerning drainage density, drainage texture, hydrography density, and the average length of channels were compared. Statistical analysis shows that significant differences exist in data from the two sources. The highly drained area lost more information than the less drained area. In addition, it was observed that the loss of information about the number of rivers was higher than that about the length of the channels.

  18. Metrology measurement capability

    NASA Astrophysics Data System (ADS)

    Shroyer, K.

    1995-01-01

    During the past 36 years, the Kansas City Division's (KCD) Metrology Department has developed measurement technology and calibration capability in four major areas of measurement: (1) Mechanical; (2) Environmental, Gas, Liquid; Electrical (D.C., A.C., RF/Microwave); and (3) Optical and Radiation. The capabilities developed include unique capabilities in many areas of measurement and engineering expertise to develop measurement techniques and resolve measurement problems in these major areas. KCD Metrology was established in 1958 to provide a measurement base for the Kansas City Plant. The Metrology Engineering Department provides the expertise to develop measurement capabilities for virtually any type of measurement which falls into the broad areas listed above. The engineering staff currently averages almost 19 years of measurement experience. A strong audit function has been developed to provide a means to evaluate the calibration programs of our suppliers and internal calibration organizations. This evaluation includes measurement audits and technical surveys. The requirements placed on Metrology require traceability of measurements to the National Institute of Standards and Technology or to nationally recognized methods or natural phenomena. A description of Metrology capabilities, traceability flow charts, and the measurement uncertainty of each of the measurement capabilities is contained in the following pages.

  19. Metrology measurement capabilities

    SciTech Connect

    Barnes, L.M.

    1997-06-01

    Since 1958, the AlliedSignal Federal Manufacturing and Technologies (FM and T) Metrology Department has developed measurement technology and calibration capability in four major areas of measurement: mechanical; environmental, gas, liquid; electrical (D.C., A.C., RF/microwave); and optical and radiation. The capabilities developed include unique capabilities in many areas of measurement and engineering expertise to develop measurement techniques and resolve measurement problems in these major areas. FM and T Metrology was established in 1958 to provide a measurement base for the Department of energy`s Kansas City Plant. The Metrology Engineering Department provides the expertise to develop measurement capabilities for virtually any type of measurement which falls into the broad areas listed above. The engineering staff currently averages almost 16 years of measurement experience. A strong audit function has been developed to provide a means to evaluate the calibration programs of the suppliers and internal calibration organizations. This evaluation includes measurement audits and technical surveys. The requirements placed on Metrology require traceability of measurements to the National Institute of Standards and Technology or to nationally recognized methods or natural phenomena. A description of Metrology capabilities, traceability flow charts, and the measurement uncertainty of each of the measurement capabilities is contained in this report.

  20. Metrology measurement capability

    SciTech Connect

    Shroyer, K.

    1995-01-01

    During the past 36 years, the Kansas City Division`s (KCD) Metrology Department has developed measurement technology and calibration capability in four major areas of measurement: (1) Mechanical; (2) Environmental, Gas, Liquid; Electrical (D.C., A.C., RF/Microwave); and (3) Optical and Radiation. The capabilities developed include unique capabilities in many areas of measurement and engineering expertise to develop measurement techniques and resolve measurement problems in these major areas. KCD Metrology was established in 1958 to provide a measurement base for the Kansas City Plant. The Metrology Engineering Department provides the expertise to develop measurement capabilities for virtually any type of measurement which falls into the broad areas listed above. The engineering staff currently averages almost 19 years of measurement experience. A strong audit function has been developed to provide a means to evaluate the calibration programs of our suppliers and internal calibration organizations. This evaluation includes measurement audits and technical surveys. The requirements placed on Metrology require traceability of measurements to the National Institute of Standards and Technology or to nationally recognized methods or natural phenomena. A description of Metrology capabilities, traceability flow charts, and the measurement uncertainty of each of the measurement capabilities is contained in the following pages.

  1. Semi-automted analysis of high-resolution aerial images to quantify docks in Upper Midwest glacial lakes

    USGS Publications Warehouse

    Beck, Marcus W.; Vondracek, Bruce C.; Hatch, Lorin K.; Vinje, Jason

    2013-01-01

    Lake resources can be negatively affected by environmental stressors originating from multiple sources and different spatial scales. Shoreline development, in particular, can negatively affect lake resources through decline in habitat quality, physical disturbance, and impacts on fisheries. The development of remote sensing techniques that efficiently characterize shoreline development in a regional context could greatly improve management approaches for protecting and restoring lake resources. The goal of this study was to develop an approach using high-resolution aerial photographs to quantify and assess docks as indicators of shoreline development. First, we describe a dock analysis workflow that can be used to quantify the spatial extent of docks using aerial images. Our approach incorporates pixel-based classifiers with object-based techniques to effectively analyze high-resolution digital imagery. Second, we apply the analysis workflow to quantify docks for 4261 lakes managed by the Minnesota Department of Natural Resources. Overall accuracy of the analysis results was 98.4% (87.7% based on ) after manual post-processing. The analysis workflow was also 74% more efficient than the time required for manual digitization of docks. These analyses have immediate relevance for resource planning in Minnesota, whereas the dock analysis workflow could be used to quantify shoreline development in other regions with comparable imagery. These data can also be used to better understand the effects of shoreline development on aquatic resources and to evaluate the effects of shoreline development relative to other stressors.

  2. Object Based Agricultural Land Cover Classification Map of Shadowed Areas from Aerial Image and LIDAR Data Using Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Alberto, R. T.; Serrano, S. C.; Damian, G. B.; Camaso, E. E.; Celestino, A. B.; Hernando, P. J. C.; Isip, M. F.; Orge, K. M.; Quinto, M. J. C.; Tagaca, R. C.

    2016-06-01

    Aerial image and LiDAR data offers a great possibility for agricultural land cover mapping. Unfortunately, these images leads to shadowy pixels. Management of shadowed areas for classification without image enhancement were investigated. Image segmentation approach using three different segmentation scales were used and tested to segment the image for ground features since only the ground features are affected by shadow caused by tall features. The RGB band and intensity were the layers used for the segmentation having an equal weights. A segmentation scale of 25 was found to be the optimal scale that will best fit for the shadowed and non-shadowed area classification. The SVM using Radial Basis Function kernel was then applied to extract classes based on properties extracted from the Lidar data and orthophoto. Training points for different classes including shadowed areas were selected homogeneously from the orthophoto. Separate training points for shadowed areas were made to create additional classes to reduced misclassification. Texture classification and object-oriented classifiers have been examined to reduced heterogeneity problem. The accuracy of the land cover classification using 25 scale segmentation after accounting for the shadow detection and classification was significantly higher compared to higher scale of segmentation.

  3. Fusion of aerial images with mean shift-based upsampled elevation data for improved building block classification

    NASA Astrophysics Data System (ADS)

    Gyftakis, S.; Tsenoglou, T.; Bratsolis, E.; Charou, Eleni; Vassilas, N.

    2014-10-01

    Nowadays there is an increasing demand for detailed 3D modeling of buildings using elevation data such as those acquired from LiDAR airborne scanners. The various techniques that have been developed for this purpose typically perform segmentation into homogeneous regions followed by boundary extraction and are based on some combination of LiDAR data, digital maps, satellite images and aerial orthophotographs. In the present work, our dataset includes an aerial RGB orthophoto, a DSM and a DTM with spatial resolutions of 20cm, 1m and 2m respectively. Next, a normalized DSM (nDSM) is generated and fused with the optical data in order to increase its resolution to 20cm. The proposed methodology can be described as a two-step approach. First, a nearest neighbor interpolation is applied on the low resolution nDSM to obtain a low quality, ragged, elevation image. Next, we performed a mean shift-based discontinuity preserving smoothing on the fused data. The outcome is on the one hand a more homogeneous RGB image, with smoothed terrace coloring while at the same time preserving the optical edges and on the other hand an upsampled elevation data with considerable improvement regarding region filling and "straightness" of elevation discontinuities. Besides the apparent visual assessment of the increased accuracy of building boundaries, the effectiveness of the proposed method is demonstrated using the processed dataset as input to five supervised classification methods. The performance of each method is evaluated using a subset of the test area as ground truth. Comparisons with classification results obtained with the original data demonstrate that preprocessing the input dataset using the mean shift algorithm improves significantly the performance of all tested classifiers for building block extraction.

  4. Metrology measurement capabilities

    SciTech Connect

    Shroyer, K.

    1997-02-01

    Since 1958, the AlliedSignal Federal Manufacturing and Technologies (FM and T) Metrology Department has developed measurement technology and calibration capability in four major areas of measurement: (1) mechanical; (2) environmental, gas, liquid; (3) electrical (D.C., A.C., RF/Microwave); and (4) optical and radiation. The capabilities developed include unique capabilities in many areas of measurement and engineering expertise to develop measurement techniques and resolve measurement problems in these major areas. A strong audit function has been developed to provide a means to evaluate the calibration programs of the suppliers and internal calibration organizations. This evaluation includes measurement audits and technical surveys. The requirements placed on metrology require traceability of measurements to the National Institute of Standards and Technology or to nationally recognized methods or natural phenomena. A description of Metrology capabilities, traceability flow charts, and the measurement uncertainty of each of the measurement capabilities is contained in the report.

  5. Metrology Measurement Capabilities

    SciTech Connect

    Barnes, L.M.

    2000-03-23

    This document contains descriptions of Federal Manufacturing and Technologies (FM and T) Metrology capabilities, traceability flow charts, and the measurement uncertainty of each measurement capability. Metrology provides NIST traceable precision measurements or equipment calibration for a wide variety of parameters, ranges, and state-of-the-art uncertainties in laboratories that conform to the requirements of the Department of Energy Development and Production Manual Chapter 8.4, and ANSI/NCSL Z540-1 (equivalent to ISO Guide 25). FM and T Metrology laboratories are accredited by NVLAP for the parameters, ranges, and uncertainties listed in the specific scope of accreditation under NVLAP Lab code 200108-0. These parameters are summarized.

  6. Rules for Optical Metrology

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2014-01-01

    Based on 30 years of optical testing experience, a lot of mistakes, a lot of learning and a lot of experience, I have defined seven guiding principles for optical testing - regardless of how small or how large the optical testing or metrology task. GUIDING PRINCIPLES 1. Fully Understand the Task 2. Develop an Error Budget 3. Continuous Metrology Coverage 4. Know where you are 5. 'Test like you fly' 6. Independent Cross-Checks 7. Understand All Anomalies. These rules have been applied with great success to the in-process optical testing and final specification compliance testing of the JWST mirrors.

  7. Rules for Optical Metrology

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2014-01-01

    Based on 30 years of optical testing experience, a lot of mistakes, a lot of learning and a lot of experience, I have defined seven guiding principles for optical testing - regardless of how small or how large the optical testing or metrology task. GUIDING PRINCIPLES 1.Fully Understand the Task 2.Develop an Error Budget 3.Continuous Metrology Coverage 4.Know where you are 5. 'Test like you fly' 6.Independent Cross-Checks 7.Understand All Anomalies. These rules have been applied with great success to the in-process optical testing and final specification compliance testing of the JWST mirrors.

  8. Aerial Explorers

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg; Ippolito, Corey

    2005-01-01

    This paper presents recent results from a mission architecture study of planetary aerial explorers. In this study, several mission scenarios were developed in simulation and evaluated on success in meeting mission goals. This aerial explorer mission architecture study is unique in comparison with previous Mars airplane research activities. The study examines how aerial vehicles can find and gain access to otherwise inaccessible terrain features of interest. The aerial explorer also engages in a high-level of (indirect) surface interaction, despite not typically being able to takeoff and land or to engage in multiple flights/sorties. To achieve this goal, a new mission paradigm is proposed: aerial explorers should be considered as an additional element in the overall Entry, Descent, Landing System (EDLS) process. Further, aerial vehicles should be considered primarily as carrier/utility platforms whose purpose is to deliver air-deployed sensors and robotic devices, or symbiotes, to those high-value terrain features of interest.

  9. A Mobile System for Measuring Water Surface Velocities Using Unmanned Aerial Vehicle and Large-Scale Particle Image Velocimetry

    NASA Astrophysics Data System (ADS)

    Chen, Y. L.

    2015-12-01

    Measurement technologies for velocity of river flow are divided into intrusive and nonintrusive methods. Intrusive method requires infield operations. The measuring process of intrusive methods are time consuming, and likely to cause damages of operator and instrument. Nonintrusive methods require fewer operators and can reduce instrument damages from directly attaching to the flow. Nonintrusive measurements may use radar or image velocimetry to measure the velocities at the surface of water flow. The image velocimetry, such as large scale particle image velocimetry (LSPIV) accesses not only the point velocity but the flow velocities in an area simultaneously. Flow properties of an area hold the promise of providing spatially information of flow fields. This study attempts to construct a mobile system UAV-LSPIV by using an unmanned aerial vehicle (UAV) with LSPIV to measure flows in fields. The mobile system consists of a six-rotor UAV helicopter, a Sony nex5T camera, a gimbal, an image transfer device, a ground station and a remote control device. The activate gimbal helps maintain the camera lens orthogonal to the water surface and reduce the extent of images being distorted. The image transfer device can monitor the captured image instantly. The operator controls the UAV by remote control device through ground station and can achieve the flying data such as flying height and GPS coordinate of UAV. The mobile system was then applied to field experiments. The deviation of velocities measured by UAV-LSPIV of field experiments and handhold Acoustic Doppler Velocimeter (ADV) is under 8%. The results of the field experiments suggests that the application of UAV-LSPIV can be effectively applied to surface flow studies.

  10. Building Roof Segmentation from Aerial Images Using a Line-and Region-Based Watershed Segmentation Technique

    PubMed Central

    Merabet, Youssef El; Meurie, Cyril; Ruichek, Yassine; Sbihi, Abderrahmane; Touahni, Raja

    2015-01-01

    In this paper, we present a novel strategy for roof segmentation from aerial images (orthophotoplans) based on the cooperation of edge- and region-based segmentation methods. The proposed strategy is composed of three major steps. The first one, called the pre-processing step, consists of simplifying the acquired image with an appropriate couple of invariant and gradient, optimized for the application, in order to limit illumination changes (shadows, brightness, etc.) affecting the images. The second step is composed of two main parallel treatments: on the one hand, the simplified image is segmented by watershed regions. Even if the first segmentation of this step provides good results in general, the image is often over-segmented. To alleviate this problem, an efficient region merging strategy adapted to the orthophotoplan particularities, with a 2D modeling of roof ridges technique, is applied. On the other hand, the simplified image is segmented by watershed lines. The third step consists of integrating both watershed segmentation strategies into a single cooperative segmentation scheme in order to achieve satisfactory segmentation results. Tests have been performed on orthophotoplans containing 100 roofs with varying complexity, and the results are evaluated with the VINETcriterion using ground-truth image segmentation. A comparison with five popular segmentation techniques of the literature demonstrates the effectiveness and the reliability of the proposed approach. Indeed, we obtain a good segmentation rate of 96% with the proposed method compared to 87.5% with statistical region merging (SRM), 84% with mean shift, 82% with color structure code (CSC), 80% with efficient graph-based segmentation algorithm (EGBIS) and 71% with JSEG. PMID:25648706

  11. Scanning He+ Ion Beam Microscopy and Metrology

    SciTech Connect

    Joy, David C.

    2011-11-10

    The CD-SEM has been the tool of choice for the imaging and metrology of semiconductor devices for the past three decades but now, with critical dimensions at the nanometer scale, electron beam instruments can no longer deliver adequate performance. A scanning microscope using a He+ ion beam offers superior resolution and depth of field, and provides enhanced imaging contrast. Device metrology performed using ion beam imaging produces data which is comparable to or better than that from a conventional CD-SEM although there are significant differences in the experimental conditions required and in the details of image formation. The charging generated by a He+ beam, and the sample damage that it can cause, require care in operation but are not major problems.

  12. Unsupervised and stable LBG algorithm for data classification: application to aerial multicomponent images

    NASA Astrophysics Data System (ADS)

    Taher, A.; Chehdi, K.; Cariou, C.

    2015-10-01

    In this paper a stable and unsupervised Linde-Buzo-Gray (LBG) algorithm named LBGO is presented. The originality of the proposed algorithm relies: i) on the utilization of an adaptive incremental technique to initialize the class centres that calls into question the intermediate initializations; this technique makes the algorithm stable and deterministic, and the classification results do not vary from a run to another, and ii) on the unsupervised evaluation criteria of the intermediate classification result to estimate the optimal number of classes; this makes the algorithm unsupervised. The efficiency of this optimized version of LBG is shown through some experimental results on synthetic and real aerial hyperspectral data. More precisely we have tested our proposed classification approach regarding three aspects: firstly for its stability, secondly for its correct classification rate, and thirdly for the correct estimation of number of classes.

  13. Research on the processing technology of low-altitude unmanned aerial vehicle images

    NASA Astrophysics Data System (ADS)

    Tang, Shihua; Liu, Yintao; Li, Feida; Zhou, Conglin; Huang, Qing; Xu, Hongwei

    2015-12-01

    The UAV system acts as one of the infrastructure of earth observation, with its mobility, high speed, flexibility, economy and other remarkable technical advantages, has been widely used in various fields of the national economic construction, such as agricultural monitoring, resource development, disaster emergency treatment. Taking an actual engineering as a case study in this paper, the method and the skill of making digital orthophoto map was stated by using the UASMaster, the professional UAV data processing software, based on the eBee unmanned aerial vehicle. Finally, the precision of the DOM was analyzed in detail through two methods, overlapping the DOM with the existing DLG of the region and contrasting the points of the existing DLG of 1:1000 scale with the corresponding checkpoints of the stereomodel.

  14. Region-Based 3d Surface Reconstruction Using Images Acquired by Low-Cost Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Lari, Z.; Al-Rawabdeh, A.; He, F.; Habib, A.; El-Sheimy, N.

    2015-08-01

    Accurate 3D surface reconstruction of our environment has become essential for an unlimited number of emerging applications. In the past few years, Unmanned Aerial Systems (UAS) are evolving as low-cost and flexible platforms for geospatial data collection that could meet the needs of aforementioned application and overcome limitations of traditional airborne and terrestrial mobile mapping systems. Due to their payload restrictions, these systems usually include consumer-grade imaging and positioning sensor which will negatively impact the quality of the collected geospatial data and reconstructed surfaces. Therefore, new surface reconstruction surfaces are needed to mitigate the impact of using low-cost sensors on the final products. To date, different approaches have been proposed to for 3D surface construction using overlapping images collected by imaging sensor mounted on moving platforms. In these approaches, 3D surfaces are mainly reconstructed based on dense matching techniques. However, generated 3D point clouds might not accurately represent the scanned surfaces due to point density variations and edge preservation problems. In order to resolve these problems, a new region-based 3D surface renostruction trchnique is introduced in this paper. This approach aims to generate a 3D photo-realistic model of individually scanned surfaces within the captured images. This approach is initiated by a Semi-Global dense Matching procedure is carried out to generate a 3D point cloud from the scanned area within the collected images. The generated point cloud is then segmented to extract individual planar surfaces. Finally, a novel region-based texturing technique is implemented for photorealistic reconstruction of the extracted planar surfaces. Experimental results using images collected by a camera mounted on a low-cost UAS demonstrate the feasibility of the proposed approach for photorealistic 3D surface reconstruction.

  15. Hybrid metrology implementation: server approach

    NASA Astrophysics Data System (ADS)

    Osorio, Carmen; Timoney, Padraig; Vaid, Alok; Elia, Alex; Kang, Charles; Bozdog, Cornel; Yellai, Naren; Grubner, Eyal; Ikegami, Toru; Ikeno, Masahiko

    2015-03-01

    Hybrid metrology (HM) is the practice of combining measurements from multiple toolset types in order to enable or improve metrology for advanced structures. HM is implemented in two phases: Phase-1 includes readiness of the infrastructure to transfer processed data from the first toolset to the second. Phase-2 infrastructure allows simultaneous transfer and optimization of raw data between toolsets such as spectra, images, traces - co-optimization. We discuss the extension of Phase-1 to include direct high-bandwidth communication between toolsets using a hybrid server, enabling seamless fab deployment and further laying the groundwork for Phase-2 high volume manufacturing (HVM) implementation. An example of the communication protocol shows the information that can be used by the hybrid server, differentiating its capabilities from that of a host-based approach. We demonstrate qualification and production implementation of the hybrid server approach using CD-SEM and OCD toolsets for complex 20nm and 14nm applications. Finally we discuss the roadmap for Phase-2 HM implementation through use of the hybrid server.

  16. Fractal metrology for biogeosystems analysis

    NASA Astrophysics Data System (ADS)

    Torres-Argüelles, V.; Oleschko, K.; Tarquis, A. M.; Korvin, G.; Gaona, C.; Parrot, J.-F.; Ventura-Ramos, E.

    2010-06-01

    The solid-pore distribution pattern plays an important role in soil functioning being related with the main physical, chemical and biological multiscale and multitemporal processes. In the present research, this pattern is extracted from the digital images of three soils (Chernozem, Solonetz and "Chocolate'' Clay) and compared in terms of roughness of the gray-intensity distribution (the measurand) quantified by several measurement techniques. Special attention was paid to the uncertainty of each of them and to the measurement function which best fits to the experimental results. Some of the applied techniques are known as classical in the fractal context (box-counting, rescaling-range and wavelets analyses, etc.) while the others have been recently developed by our Group. The combination of all these techniques, coming from Fractal Geometry, Metrology, Informatics, Probability Theory and Statistics is termed in this paper Fractal Metrology (FM). We show the usefulness of FM through a case study of soil physical and chemical degradation applying the selected toolbox to describe and compare the main structural attributes of three porous media with contrasting structure but similar clay mineralogy dominated by montmorillonites.

  17. Fractal Metrology for biogeosystems analysis

    NASA Astrophysics Data System (ADS)

    Torres-Argüelles, V.; Oleschko, K.; Tarquis, A. M.; Korvin, G.; Gaona, C.; Parrot, J.-F.; Ventura-Ramos, E.

    2010-11-01

    The solid-pore distribution pattern plays an important role in soil functioning being related with the main physical, chemical and biological multiscale and multitemporal processes of this complex system. In the present research, we studied the aggregation process as self-organizing and operating near a critical point. The structural pattern is extracted from the digital images of three soils (Chernozem, Solonetz and "Chocolate" Clay) and compared in terms of roughness of the gray-intensity distribution quantified by several measurement techniques. Special attention was paid to the uncertainty of each of them measured in terms of standard deviation. Some of the applied methods are known as classical in the fractal context (box-counting, rescaling-range and wavelets analyses, etc.) while the others have been recently developed by our Group. The combination of these techniques, coming from Fractal Geometry, Metrology, Informatics, Probability Theory and Statistics is termed in this paper Fractal Metrology (FM). We show the usefulness of FM for complex systems analysis through a case study of the soil's physical and chemical degradation applying the selected toolbox to describe and compare the structural attributes of three porous media with contrasting structure but similar clay mineralogy dominated by montmorillonites.

  18. Surface metrology by phase contrast

    NASA Astrophysics Data System (ADS)

    Baker, Lionel R.

    1990-08-01

    Increasing use of electrooptical imaging and detection systems in thermography high density information storage laser instrumentation and X-ray optics has led to a pressing need for machinecompatible sensors for the measurement of surface texture. This paper reviews recent advances in the use of deterministic and parametric noncontact methods for texture measurement and justifies the need for objective simple and yet precise means for displaying the microfinish of a machined surface. The design of a simple two channel phase contrast microscope is described which can be calibrated by test pieces and used as a means for optimising the process parameters involved in the generation of high quality surfaces. Typical results obtained with this technique including dynamic range and ultimate sensitivity are discussed. 1 . NEED FOR SURFACE METROLOGY Surface quality has a direct influence on product acceptability in many different industries including those concerned with optoelectronics and engineering. The influence may be cosmetic as with paint finish on a motor car body or functional for example when excessive wear rates may occur in a bearing surface with inadequate oil retention. Since perfection can never be achieved and overspecification can be costly it is clearly necessary to be able to define thresholds of acceptance in relation to different situations. Such thresholds do of course require agreed methods of measurement with traceability to national standards. The current trends in surface metrology are towards higher

  19. Accuracy in optical overlay metrology

    NASA Astrophysics Data System (ADS)

    Bringoltz, Barak; Marciano, Tal; Yaziv, Tal; DeLeeuw, Yaron; Klein, Dana; Feler, Yoel; Adam, Ido; Gurevich, Evgeni; Sella, Noga; Lindenfeld, Ze'ev; Leviant, Tom; Saltoun, Lilach; Ashwal, Eltsafon; Alumot, Dror; Lamhot, Yuval; Gao, Xindong; Manka, James; Chen, Bryan; Wagner, Mark

    2016-03-01

    In this paper we discuss the mechanism by which process variations determine the overlay accuracy of optical metrology. We start by focusing on scatterometry, and showing that the underlying physics of this mechanism involves interference effects between cavity modes that travel between the upper and lower gratings in the scatterometry target. A direct result is the behavior of accuracy as a function of wavelength, and the existence of relatively well defined spectral regimes in which the overlay accuracy and process robustness degrades (`resonant regimes'). These resonances are separated by wavelength regions in which the overlay accuracy is better and independent of wavelength (we term these `flat regions'). The combination of flat and resonant regions forms a spectral signature which is unique to each overlay alignment and carries certain universal features with respect to different types of process variations. We term this signature the `landscape', and discuss its universality. Next, we show how to characterize overlay performance with a finite set of metrics that are available on the fly, and that are derived from the angular behavior of the signal and the way it flags resonances. These metrics are used to guarantee the selection of accurate recipes and targets for the metrology tool, and for process control with the overlay tool. We end with comments on the similarity of imaging overlay to scatterometry overlay, and on the way that pupil overlay scatterometry and field overlay scatterometry differ from an accuracy perspective.

  20. Frequency Standards and Metrology

    NASA Astrophysics Data System (ADS)

    Maleki, Lute

    2009-04-01

    Preface / Lute Maleki -- Symposium history / Jacques Vanier -- Symposium photos -- pt. I. Fundamental physics. Variation of fundamental constants from the big bang to atomic clocks: theory and observations (Invited) / V. V. Flambaum and J. C. Berengut. Alpha-dot or not: comparison of two single atom optical clocks (Invited) / T. Rosenband ... [et al.]. Variation of the fine-structure constant and laser cooling of atomic dysprosium (Invited) / N. A. Leefer ... [et al.]. Measurement of short range forces using cold atoms (Invited) / F. Pereira Dos Santos ... [et al.]. Atom interferometry experiments in fundamental physics (Invited) / S. W. Chiow ... [et al.]. Space science applications of frequency standards and metrology (Invited) / M. Tinto -- pt. II. Frequency & metrology. Quantum metrology with lattice-confined ultracold Sr atoms (Invited) / A. D. Ludlow ... [et al.]. LNE-SYRTE clock ensemble: new [symbol]Rb hyperfine frequency measurement - spectroscopy of [symbol]Hg optical clock transition (Invited) / M. Petersen ... [et al.]. Precise measurements of S-wave scattering phase shifts with a juggling atomic clock (Invited) / S. Gensemer ... [et al.]. Absolute frequency measurement of the [symbol] clock transition (Invited) / M. Chwalla ... [et al.]. The semiclassical stochastic-field/atom interaction problem (Invited) / J. Camparo. Phase and frequency noise metrology (Invited) / E. Rubiola ... [et al.]. Optical spectroscopy of atomic hydrogen for an improved determination of the Rydberg constant / J. L. Flowers ... [et al.] -- pt. III. Clock applications in space. Recent progress on the ACES mission (Invited) / L. Cacciapuoti and C. Salomon. The SAGAS mission (Invited) / P. Wolf. Small mercury microwave ion clock for navigation and radioScience (Invited) / J. D. Prestage ... [et al.]. Astro-comb: revolutionizing precision spectroscopy in astrophysics (Invited) / C. E. Kramer ... [et al.]. High frequency very long baseline interferometry: frequency standards and

  1. Mapping potential of digitized aerial photographs and space images for site-specific crop management

    NASA Astrophysics Data System (ADS)

    Nielsen, Gerald A.; Long, Daniel S.; Queen, Lloyd P.

    1996-11-01

    In site-specific crop management, treatments (e.g., fertilizer and herbicides) are applied precisely where they are needed. Global positioning system receivers allow accurate navigation of field implements and creation of crop yield maps. Remote sensing products help producers explain the wide range of yields shown on these maps and become the basis for digitized field management maps. Previous sources of remote sensing products for agriculture did not provide services that generated a sustained demand by crop producers, often because data were not delivered quickly enough. Public Access Resource Centers could provide a nearly uninterrupted electronic flow of data from NASA's MODIS and other sensors that could help producers and their advisors monitor crop conditions. This early warning/opportunity system would provide a low-cost way to discover conditions that merit examination on the ground. High-spatial-resolution digital aerial photographs or data from new commercial satellite companies would provide the basis for site-specific treatments. These detailed data are too expensive to acquire often and must be timed so as to represent differences in water supply characteristics and crop yield potentials. Remote sensing products must be linked to specific prescriptions that crop produces use to control operations and improve outcomes.

  2. Exploration of mineral resource deposits based on analysis of aerial and satellite image data employing artificial intelligence methods

    NASA Astrophysics Data System (ADS)

    Osipov, Gennady

    2013-04-01

    includes noncontact registration of eye motion, reconstruction of "attention landscape" fixed by the expert, recording the comments of the expert who is a specialist in the field of images` interpretation, and transfer this information into knowledge base.Creation of base of ophthalmologic images (OI) includes making semantic contacts from great number of OI based on analysis of OI and expert's comments.Processing of OI and making generalized OI (GOI) is realized by inductive logic algorithms and consists in synthesis of structural invariants of OI. The mode of recognition and interpretation of unknown images consists of several stages, which include: comparison of unknown image with the base of structural invariants of OI; revealing of structural invariants in unknown images; ynthesis of interpretive message of the structural invariants base and OI base (the experts` comments stored in it). We want to emphasize that the training mode does not assume special involvement of experts to teach the system - it is realized in the process of regular experts` work on image interpretation and it becomes possible after installation of a special apparatus for non contact registration of experts` attention. Consequently, the technology, which principles is described there, provides fundamentally new effective solution to the problem of exploration of mineral resource deposits based on computer analysis of aerial and satellite image data.

  3. Monitoring morphological changes in an arid zone by spaceborne images and aerial photography between 1945 - 2009; the Yamin Plateau, Israel

    NASA Astrophysics Data System (ADS)

    Hetz, Guy; Blumberg, Dan; Avraham, Dody; Cohen, Hai

    2010-05-01

    This research focuses on a geomorphic mapping of the Yamin Plateau in southern Israel which is part of the Yamin-Rotem Syncline and covers about 200 km2. This area has been restricted since the 1950s and therefore, provides a unique opportunity to study undisturbed geomorphic processes. Nowadays, the national nuclear waste depository is located in this area accepting waste from industrial factories, research institutes and hospitals. This is the main reason why environmental processes are of major interest in terms of landform changes in space and time. The exposed geology section of the Yamin Plateau mostly consists of the Miocene Hazeva Group where sedimentary processes started 20 million years ago and continued for 12-14 million years. Two formations of the Miocene Hazeva Group appear in the study area Zefa and Rotem. The compositions of these two formations are similar and sometimes defined as "the main sand body" in the Hazeva Group. The restriction of the area stopped the grazing and let the development of a biological soil crust on the surface. The research objective was to document and characterize landform changes from 1945 until 2009 within the Yamin Plateau based on spaceborne images and aerial photography. All the parameters we extracted in the laboratory were validated with field measurements. A combination of the spaceborne images, aerial photography and field measurements leads us to the following conclusions: The research results show that soil stabilization processes took place earlier than the area closure. Inspite of decreasing precipitation tendencies as measured during the last 50 years in Yamin Plateau, the vegetation cover increased from 55% in 1945 to 67% in 2009. The main reason for this is the area closure and reduction in grazing along with developing of vegetation and biological soil crusts. Field studies and image processing of aerial photographs and recent QuickBird images alongside grain-size distribution show that in the past there

  4. An aerial composite imaging method with multiple upright cameras based on axis-shift theory

    NASA Astrophysics Data System (ADS)

    Fang, Junyong; Liu, Xue; Xue, Yongqi; Tong, Qingxi

    2010-11-01

    Several composite camera systems were made for wide coverage by using 3 or 4 oblique cameras. A virtual projecting center and image was used for geometrical correction and mosaic with different projecting angles and different spatial resolutions caused by oblique cameras. An imaging method based axis-shift theory is proposed to acquire wide coverage images by several upright cameras. Four upright camera lenses have the same wide angle of view. The optic axis of lens is not on the center of CCD, and each CCD in each camera covers only one part of the whole focus plane. Oblique deformation caused by oblique camera would be avoided by this axis-shift imaging method. The principle and parameters are given and discussed. A prototype camera system is constructed by common DLSR (digital single lens reflex) cameras. The angle of view could exceed 80 degrees along the flight direction when the focal length is 24mm, and the ratio of base line to height could exceed 0.7 when longitudinal overlap is 60%. Some original and mosaic images captured by this prototype system in some ground and airborne experiments are given at last. Experimental results of image test show that the upright imaging method can effectively avoid the oblique deformation and meet the geometrical precision of image mosaic.

  5. A Method for Georeferencing Very-Large-Scale-Aerial (VLSA) Images in Sagebrush Steppe Communities.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    VLSA imagery is captured with a digital camera, mounted on a light, piloted aircraft. VLSA images are high quality and have been used to measure cover of plant functional groups and some species, bare ground, litter, and rock, but the actual image location is known imprecisely (± 30 m). This impreci...

  6. EROS Main Image File: A Picture Perfect Database for Landsat Imagery and Aerial Photography.

    ERIC Educational Resources Information Center

    Jack, Robert F.

    1984-01-01

    Describes Earth Resources Observation System online database, which provides access to computerized images of Earth obtained via satellite. Highlights include retrieval system and commands, types of images, search strategies, other online functions, and interpretation of accessions. Satellite information, sources and samples of accessions, and…

  7. Matching Aerial Images to 3d Building Models Based on Context-Based Geometric Hashing

    NASA Astrophysics Data System (ADS)

    Jung, J.; Bang, K.; Sohn, G.; Armenakis, C.

    2016-06-01

    In this paper, a new model-to-image framework to automatically align a single airborne image with existing 3D building models using geometric hashing is proposed. As a prerequisite process for various applications such as data fusion, object tracking, change detection and texture mapping, the proposed registration method is used for determining accurate exterior orientation parameters (EOPs) of a single image. This model-to-image matching process consists of three steps: 1) feature extraction, 2) similarity measure and matching, and 3) adjustment of EOPs of a single image. For feature extraction, we proposed two types of matching cues, edged corner points representing the saliency of building corner points with associated edges and contextual relations among the edged corner points within an individual roof. These matching features are extracted from both 3D building and a single airborne image. A set of matched corners are found with given proximity measure through geometric hashing and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on co-linearity equations. The result shows that acceptable accuracy of single image's EOP can be achievable by the proposed registration approach as an alternative to labour-intensive manual registration process.

  8. Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images.

    PubMed

    Peña, José Manuel; Torres-Sánchez, Jorge; de Castro, Ana Isabel; Kelly, Maggi; López-Granados, Francisca

    2013-01-01

    The use of remote imagery captured by unmanned aerial vehicles (UAV) has tremendous potential for designing detailed site-specific weed control treatments in early post-emergence, which have not possible previously with conventional airborne or satellite images. A robust and entirely automatic object-based image analysis (OBIA) procedure was developed on a series of UAV images using a six-band multispectral camera (visible and near-infrared range) with the ultimate objective of generating a weed map in an experimental maize field in Spain. The OBIA procedure combines several contextual, hierarchical and object-based features and consists of three consecutive phases: 1) classification of crop rows by application of a dynamic and auto-adaptive classification approach, 2) discrimination of crops and weeds on the basis of their relative positions with reference to the crop rows, and 3) generation of a weed infestation map in a grid structure. The estimation of weed coverage from the image analysis yielded satisfactory results. The relationship of estimated versus observed weed densities had a coefficient of determination of r(2)=0.89 and a root mean square error of 0.02. A map of three categories of weed coverage was produced with 86% of overall accuracy. In the experimental field, the area free of weeds was 23%, and the area with low weed coverage (<5% weeds) was 47%, which indicated a high potential for reducing herbicide application or other weed operations. The OBIA procedure computes multiple data and statistics derived from the classification outputs, which permits calculation of herbicide requirements and estimation of the overall cost of weed management operations in advance.

  9. Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images.

    PubMed

    Peña, José Manuel; Torres-Sánchez, Jorge; de Castro, Ana Isabel; Kelly, Maggi; López-Granados, Francisca

    2013-01-01

    The use of remote imagery captured by unmanned aerial vehicles (UAV) has tremendous potential for designing detailed site-specific weed control treatments in early post-emergence, which have not possible previously with conventional airborne or satellite images. A robust and entirely automatic object-based image analysis (OBIA) procedure was developed on a series of UAV images using a six-band multispectral camera (visible and near-infrared range) with the ultimate objective of generating a weed map in an experimental maize field in Spain. The OBIA procedure combines several contextual, hierarchical and object-based features and consists of three consecutive phases: 1) classification of crop rows by application of a dynamic and auto-adaptive classification approach, 2) discrimination of crops and weeds on the basis of their relative positions with reference to the crop rows, and 3) generation of a weed infestation map in a grid structure. The estimation of weed coverage from the image analysis yielded satisfactory results. The relationship of estimated versus observed weed densities had a coefficient of determination of r(2)=0.89 and a root mean square error of 0.02. A map of three categories of weed coverage was produced with 86% of overall accuracy. In the experimental field, the area free of weeds was 23%, and the area with low weed coverage (<5% weeds) was 47%, which indicated a high potential for reducing herbicide application or other weed operations. The OBIA procedure computes multiple data and statistics derived from the classification outputs, which permits calculation of herbicide requirements and estimation of the overall cost of weed management operations in advance. PMID:24146963

  10. Use of Aerial Images for Regular Updates of Buildings in the Fundamental Base of Geographic Data of the Czech Republic

    NASA Astrophysics Data System (ADS)

    Hron, V.; Halounova, L.

    2015-03-01

    Digital aerial images (DAI) include position, elevation and also spectral information (visible bands and near-infrared band) about the captured area. The aim of this paper is to present the possibilities of automatic analysis of DAI for updating of the Fundamental Base of Geographic Data of the Czech Republic with a focus on buildings. Regular updates of buildings (automatic detection of new and demolished buildings) are based on the analysis of coloured point clouds created by an automatic image matching technique from each time period. The created approach compares point clouds from different time periods to each other. The advantage of this solution is that it is independent of the manner of keeping the buildings in the database. It does not matter whether the buildings in the database have correct positions and their footprints correspond to the roof shapes or external walls. The involved method is robust because a digital surface model generated by image matching techniques can contain numerous errors. Shaded areas and objects with blurred textures are problematic for automatic image correlation algorithms and lead to false results. For this reason, derived layers containing additional information are used. Shadow masks (layers with modelled shadows) are used for the verification of indications and to filter out errors in the shaded areas using a contextual evaluation. Furthermore, additional information about the road and railway networks and morphological operations of opening and closing were used to achieve more accurate results. All these information sources are then evaluated using decision logic, which uses the generally applicable rules that are available for different datasets without the need for modification. The method was tested on different datasets with various types of buildings (villages, suburbs and city centres) which cover more than 20 square kilometres. The developed solution leads to very promising results without the need of acquiring

  11. Weed Mapping in Early-Season Maize Fields Using Object-Based Analysis of Unmanned Aerial Vehicle (UAV) Images

    PubMed Central

    Peña, José Manuel; Torres-Sánchez, Jorge; de Castro, Ana Isabel; Kelly, Maggi; López-Granados, Francisca

    2013-01-01

    The use of remote imagery captured by unmanned aerial vehicles (UAV) has tremendous potential for designing detailed site-specific weed control treatments in early post-emergence, which have not possible previously with conventional airborne or satellite images. A robust and entirely automatic object-based image analysis (OBIA) procedure was developed on a series of UAV images using a six-band multispectral camera (visible and near-infrared range) with the ultimate objective of generating a weed map in an experimental maize field in Spain. The OBIA procedure combines several contextual, hierarchical and object-based features and consists of three consecutive phases: 1) classification of crop rows by application of a dynamic and auto-adaptive classification approach, 2) discrimination of crops and weeds on the basis of their relative positions with reference to the crop rows, and 3) generation of a weed infestation map in a grid structure. The estimation of weed coverage from the image analysis yielded satisfactory results. The relationship of estimated versus observed weed densities had a coefficient of determination of r2=0.89 and a root mean square error of 0.02. A map of three categories of weed coverage was produced with 86% of overall accuracy. In the experimental field, the area free of weeds was 23%, and the area with low weed coverage (<5% weeds) was 47%, which indicated a high potential for reducing herbicide application or other weed operations. The OBIA procedure computes multiple data and statistics derived from the classification outputs, which permits calculation of herbicide requirements and estimation of the overall cost of weed management operations in advance. PMID:24146963

  12. Process window metrology

    NASA Astrophysics Data System (ADS)

    Ausschnitt, Christopher P.; Chu, William; Hadel, Linda M.; Ho, Hok; Talvi, Peter

    2000-06-01

    This paper is the third of a series that defines a new approach to in-line lithography control. The first paper described the use of optically measurable line-shortening targets to enhance signal-to-noise and reduce measurement time. The second described the dual-tone optical critical dimension (OCD) measurement and analysis necessary to distinguish dose and defocus. Here we describe the marriage of dual-tone OCD to SEM-CD metrology that comprises what we call 'process window metrology' (PWM), the means to locate each measured site in dose and focus space relative to the allowed process window. PWM provides in-line process tracking and control essential to the successful implementation of low-k lithography.

  13. Quantum metrology and its application in biology

    NASA Astrophysics Data System (ADS)

    Taylor, Michael A.; Bowen, Warwick P.

    2016-02-01

    Quantum metrology provides a route to overcome practical limits in sensing devices. It holds particular relevance to biology, where sensitivity and resolution constraints restrict applications both in fundamental biophysics and in medicine. Here, we review quantum metrology from this biological context, focusing on optical techniques due to their particular relevance for biological imaging, sensing, and stimulation. Our understanding of quantum mechanics has already enabled important applications in biology, including positron emission tomography (PET) with entangled photons, magnetic resonance imaging (MRI) using nuclear magnetic resonance, and bio-magnetic imaging with superconducting quantum interference devices (SQUIDs). In quantum metrology an even greater range of applications arise from the ability to not just understand, but to engineer, coherence and correlations at the quantum level. In the past few years, quite dramatic progress has been seen in applying these ideas into biological systems. Capabilities that have been demonstrated include enhanced sensitivity and resolution, immunity to imaging artefacts and technical noise, and characterization of the biological response to light at the single-photon level. New quantum measurement techniques offer even greater promise, raising the prospect for improved multi-photon microscopy and magnetic imaging, among many other possible applications. Realization of this potential will require cross-disciplinary input from researchers in both biology and quantum physics. In this review we seek to communicate the developments of quantum metrology in a way that is accessible to biologists and biophysicists, while providing sufficient details to allow the interested reader to obtain a solid understanding of the field. We further seek to introduce quantum physicists to some of the central challenges of optical measurements in biological science. We hope that this will aid in bridging the communication gap that exists

  14. Phase retrieval for optical metrology

    NASA Astrophysics Data System (ADS)

    Pedrini, Giancarlo; Faridian, Ahmad; Singh, Alok Kumar; Osten, Wolfgang

    2014-11-01

    Phase retrieval methods have useful applications for optical imaging, metrology and 3D reconstruction. One such technique to recover the phase of the object wavefront is digital holography. In this paper we will show applications of digital holographic techniques for the time resolved measurement of deformation of microelectromechanical systems (MEMS) and for determination of residual stresses. Furthermore digital holography can be used for the investigations of microscopic samples and its resolution can be increased by using short wavelength and oblique illumination. We will see as well that dark-field digital holographic microscopy can be used to visualize biological specimens. A phase retrieval methods, which does not use a reference wave is also described in the last part of the paper.

  15. Bridging the gaps between mask inspection/review systems and actual wafer printability using computational metrology and inspection (CMI) technologies

    NASA Astrophysics Data System (ADS)

    Pang, Linyong; Tolani, Vikram; Satake, Masaki; Hu, Peter; Peng, Danping; Liu, Tingyang; Chen, Dongxue; Gleason, Bob; Vacca, Anthony

    2012-11-01

    Computational techniques have become increasingly important to improve resolution of optical lithography. Advanced computational lithography technologies, such as inverse lithography (ILT) and source mask optimization (SMO), are needed to print the most challenging layers, such as contact and metal, at the 20nm node and beyond. In order to deploy SMO and ILT into production, improvements and upgrades of mask manufacturing technology are required. These include writing, inspection, defect review, and repair. For example, mask plane inspection detects defect at highest resolution, but does not correlate accurately with scanner images. Aerial plane mask inspection and AIMSTM produce images close to those of a scanner, but except fot the latest AIMS-32TM, it does not have the flexibility needed to capture all the characteristics of free-form illumination. Advanced Computational Inspection and Metrology provides solutions to many of these issues.

  16. Novel applications using maximum-likelihood estimation in optical metrology and nuclear medical imaging: Point-diffraction interferometry and BazookaPET

    NASA Astrophysics Data System (ADS)

    Park, Ryeojin

    This dissertation aims to investigate two different applications in optics using maximum-likelihood (ML) estimation. The first application of ML estimation is used in optical metrology. For this application, an innovative iterative search method called the synthetic phase-shifting (SPS) algorithm is proposed. This search algorithm is used for estimation of a wavefront that is described by a finite set of Zernike Fringe (ZF) polynomials. In this work, we estimate the ZF coefficient, or parameter values of the wavefront using a single interferogram obtained from a point-diffraction interferometer (PDI). In order to find the estimates, we first calculate the squared-difference between the measured and simulated interferograms. Under certain assumptions, this squared-difference image can be treated as an interferogram showing the phase difference between the true wavefront deviation and simulated wavefront deviation. The wavefront deviation is defined as the difference between the reference and the test wavefronts. We calculate the phase difference using a traditional phase-shifting technique without physical phase-shifters. We present a detailed forward model for the PDI interferogram, including the effect of the nite size of a detector pixel. The algorithm was validated with computational studies and its performance and constraints are discussed. A prototype PDI was built and the algorithm was also experimentally validated. A large wavefront deviation was successfully estimated without using null optics or physical phase-shifters. The experimental result shows that the proposed algorithm has great potential to provide an accurate tool for non-null testing. The second application of ML estimation is used in nuclear medical imaging. A high-resolution positron tomography scanner called BazookaPET is proposed. We have designed and developed a novel proof-of-concept detector element for a PET system called BazookaPET. In order to complete the PET configuration, at least

  17. EUV metrology of multilayer optics

    SciTech Connect

    Ray-Chaudhuri, A.K.; Stulen, R.H.; Ng, W.; Cerrina, F.; Spector, S.; Tan, Z.; Bjorkholm, J.; Tennant, D.

    1994-11-01

    EUV metrology is central to the successful commercialization of EUV projection lithography. Metrology carried out at the EUV wavelength of 13 nm enables a gain of {approximately}50 in precision when translated from visible light wavelengths. It also uniquely measures wavefront errors due to lateral variations in the inherent phase shift upon reflection from the multilayer coating. The authors present the development of two metrology techniques: EUV Foucault and Ronchi tests.

  18. Mobile Aerial Tracking and Imaging System (MATrIS) for Aeronautical Research

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Blanchard, Robert C.; Miller, Geoffrey M.

    2004-01-01

    A mobile, rapidly deployable ground-based system to track and image targets of aeronautical interest has been developed. Targets include reentering reusable launch vehicles as well as atmospheric and transatmospheric vehicles. The optics were designed to image targets in the visible and infrared wavelengths. To minimize acquisition cost and development time, the system uses commercially available hardware and software where possible. The conception and initial funding of this system originated with a study of ground-based imaging of global aerothermal characteristics of reusable launch vehicle configurations. During that study the National Aeronautics and Space Administration teamed with the Missile Defense Agency/Innovative Science and Technology Experimentation Facility to test techniques and analysis on two Space Shuttle flights.

  19. Matching Aerial Images to 3D Building Models Using Context-Based Geometric Hashing.

    PubMed

    Jung, Jaewook; Sohn, Gunho; Bang, Kiin; Wichmann, Andreas; Armenakis, Costas; Kada, Martin

    2016-01-01

    A city is a dynamic entity, which environment is continuously changing over time. Accordingly, its virtual city models also need to be regularly updated to support accurate model-based decisions for various applications, including urban planning, emergency response and autonomous navigation. A concept of continuous city modeling is to progressively reconstruct city models by accommodating their changes recognized in spatio-temporal domain, while preserving unchanged structures. A first critical step for continuous city modeling is to coherently register remotely sensed data taken at different epochs with existing building models. This paper presents a new model-to-image registration method using a context-based geometric hashing (CGH) method to align a single image with existing 3D building models. This model-to-image registration process consists of three steps: (1) feature extraction; (2) similarity measure; and matching, and (3) estimating exterior orientation parameters (EOPs) of a single image. For feature extraction, we propose two types of matching cues: edged corner features representing the saliency of building corner points with associated edges, and contextual relations among the edged corner features within an individual roof. A set of matched corners are found with given proximity measure through geometric hashing, and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on collinearity equations. The result shows that acceptable accuracy of EOPs of a single image can be achievable using the proposed registration approach as an alternative to a labor-intensive manual registration process. PMID:27338410

  20. Matching Aerial Images to 3D Building Models Using Context-Based Geometric Hashing

    PubMed Central

    Jung, Jaewook; Sohn, Gunho; Bang, Kiin; Wichmann, Andreas; Armenakis, Costas; Kada, Martin

    2016-01-01

    A city is a dynamic entity, which environment is continuously changing over time. Accordingly, its virtual city models also need to be regularly updated to support accurate model-based decisions for various applications, including urban planning, emergency response and autonomous navigation. A concept of continuous city modeling is to progressively reconstruct city models by accommodating their changes recognized in spatio-temporal domain, while preserving unchanged structures. A first critical step for continuous city modeling is to coherently register remotely sensed data taken at different epochs with existing building models. This paper presents a new model-to-image registration method using a context-based geometric hashing (CGH) method to align a single image with existing 3D building models. This model-to-image registration process consists of three steps: (1) feature extraction; (2) similarity measure; and matching, and (3) estimating exterior orientation parameters (EOPs) of a single image. For feature extraction, we propose two types of matching cues: edged corner features representing the saliency of building corner points with associated edges, and contextual relations among the edged corner features within an individual roof. A set of matched corners are found with given proximity measure through geometric hashing, and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on collinearity equations. The result shows that acceptable accuracy of EOPs of a single image can be achievable using the proposed registration approach as an alternative to a labor-intensive manual registration process. PMID:27338410

  1. The Micro-Arcsecond Metrology Testbed

    NASA Technical Reports Server (NTRS)

    Goullioud, Renaud; Hines, Braden; Bell, Charles; Shen, Tsae-Pyng; Bloemhof, Eric; Zhao, Feng; Regehr, Martin; Holmes, Howard; Irigoyen, Robert; Neat, Gregory

    2003-01-01

    The Micro-Arcsecond Metrology (MAM) testbed is a ground-based system of optical and electronic equipment for testing components, systems, and engineering concepts for the Space Interferometer Mission (SIM) and similar future missions, in which optical interferometers will be operated in outer space. In addition, the MAM testbed is of interest in its own right as a highly precise metrological system. The designs of the SIM interferometer and the MAM testbed reflect a requirement to measure both the position of the starlight central fringe and the change in the internal optical path of the interferometer with sufficient spatial resolution to generate astrometric data with angular resolution at the microarcsecond level. The internal path is to be measured by use of a small metrological laser beam of 1,319-nm wavelength, whereas the position of the starlight fringe is to be estimated by use of a charge-coupled-device (CCD) image detector sampling a large concentric annular beam. For the SIM to succeed, the optical path length determined from the interferometer fringes must be tracked by the metrological subsystem to within tens of picometers, through all operational motions of an interferometer delay line and siderostats. The purpose of the experiments performed on the MAM testbed is to demonstrate this agreement in a large-scale simulation that includes a substantial portion of the system in the planned configuration for operation in outer space. A major challenge in this endeavor is to align the metrological beam with the starlight beam in order to maintain consistency between the metrological and starlight subsystems at the system level. The MAM testbed includes an optical interferometer with a white light source, all major optical components of a stellar interferometer, and heterodyne metrological sensors. The aforementioned subsystems are installed in a large vacuum chamber in order to suppress atmospheric and thermal disturbances. The MAM is divided into two

  2. Assessing the Accuracy of Ortho-image using Photogrammetric Unmanned Aerial System

    NASA Astrophysics Data System (ADS)

    Jeong, H. H.; Park, J. W.; Kim, J. S.; Choi, C. U.

    2016-06-01

    Smart-camera can not only be operated under network environment anytime and any place but also cost less than the existing photogrammetric UAV since it provides high-resolution image, 3D location and attitude data on a real-time basis from a variety of built-in sensors. This study's proposed UAV photogrammetric method, low-cost UAV and smart camera were used. The elements of interior orientation were acquired through camera calibration. The image triangulation was conducted in accordance with presence or absence of consideration of the interior orientation (IO) parameters determined by camera calibration, The Digital Elevation Model (DEM) was constructed using the image data photographed at the target area and the results of the ground control point survey. This study also analyzes the proposed method's application possibility by comparing a Ortho-image the results of the ground control point survey. Considering these study findings, it is suggested that smartphone is very feasible as a payload for UAV system. It is also expected that smartphone may be loaded onto existing UAV playing direct or indirect roles significantly.

  3. Advances in hardware, software, and automation for 193nm aerial image measurement systems

    NASA Astrophysics Data System (ADS)

    Zibold, Axel M.; Schmid, R.; Seyfarth, A.; Waechter, M.; Harnisch, W.; Doornmalen, H. v.

    2005-05-01

    A new, second generation AIMS fab 193 system has been developed which is capable of emulating lithographic imaging of any type of reticles such as binary and phase shift masks (PSM) including resolution enhancement technologies (RET) such as optical proximity correction (OPC) or scatter bars. The system emulates the imaging process by adjustment of the lithography equivalent illumination and imaging conditions of 193nm wafer steppers including circular, annular, dipole and quadrupole type illumination modes. The AIMS fab 193 allows a rapid prediction of wafer printability of critical mask features, including dense patterns and contacts, defects or repairs by acquiring through-focus image stacks by means of a CCD camera followed by quantitative image analysis. Moreover the technology can be readily applied to directly determine the process window of a given mask under stepper imaging conditions. Since data acquisition is performed electronically, AIMS in many applications replaces the need for costly and time consuming wafer prints using a wafer stepper/ scanner followed by CD SEM resist or wafer analysis. The AIMS fab 193 second generation system is designed for 193nm lithography mask printing predictability down to the 65nm node. In addition to hardware improvements a new modular AIMS software is introduced allowing for a fully automated operation mode. Multiple pre-defined points can be visited and through-focus AIMS measurements can be executed automatically in a recipe based mode. To increase the effectiveness of the automated operation mode, the throughput of the system to locate the area of interest, and to acquire the through-focus images is increased by almost a factor of two in comparison with the first generation AIMS systems. In addition a new software plug-in concept is realised for the tools. One new feature has been successfully introduced as "Global CD Map", enabling automated investigation of global mask quality based on the local determination of

  4. Infrared Surveys of Hawaiian Volcanoes: Aerial surveys with infrared imaging radiometer depict volcanic thermal patterns and structural features.

    PubMed

    Fisher, W A; Moxham, R M; Polcyn, F; Landis, G H

    1964-11-01

    Aerial infrared-sensor surveys of Kilauea volcano have depicted the areal extent and the relative intensity of abnormal thermal features in the caldera area of the volcano and along its associated rift zones. Many of these anomalies show correlation with visible steaming and reflect convective transfer of heat to the surface from subterranean sources. Structural details of the volcano, some not evident from surface observation, are also delineated by their thermal abnormalities. Several changes were observed in the patterns of infrared emission during the period of study; two such changes show correlation in location with subsequent eruptions, but the cause-and-effect relationship is uncertain. Thermal anomalies were also observed on the southwest flank of Mauna Loa; images of other volcanoes on the island of Hawaii, and of Haleakala on the island of Maui, revealed no thermal abnormalities. Approximately 25 large springs issuing into the ocean around the periphery of Hawaii have been detected. Infrared emission varies widely with surface texture and composition, suggesting that similar observations may have value for estimating surface conditions on the moon or planets.

  5. Application of Technical Measures and Software in Constructing Photorealistic 3D Models of Historical Building Using Ground-Based and Aerial (UAV) Digital Images

    NASA Astrophysics Data System (ADS)

    Zarnowski, Aleksander; Banaszek, Anna; Banaszek, Sebastian

    2015-12-01

    Preparing digital documentation of historical buildings is a form of protecting cultural heritage. Recently there have been several intensive studies using non-metric digital images to construct realistic 3D models of historical buildings. Increasingly often, non-metric digital images are obtained with unmanned aerial vehicles (UAV). Technologies and methods of UAV flights are quite different from traditional photogrammetric approaches. The lack of technical guidelines for using drones inhibits the process of implementing new methods of data acquisition. This paper presents the results of experiments in the use of digital images in the construction of photo-realistic 3D model of a historical building (Raphaelsohns' Sawmill in Olsztyn). The aim of the study at the first stage was to determine the meteorological and technical conditions for the acquisition of aerial and ground-based photographs. At the next stage, the technology of 3D modelling was developed using only ground-based or only aerial non-metric digital images. At the last stage of the study, an experiment was conducted to assess the possibility of 3D modelling with the comprehensive use of aerial (UAV) and ground-based digital photographs in terms of their labour intensity and precision of development. Data integration and automatic photo-realistic 3D construction of the models was done with Pix4Dmapper and Agisoft PhotoScan software Analyses have shown that when certain parameters established in an experiment are kept, the process of developing the stock-taking documentation for a historical building moves from the standards of analogue to digital technology with considerably reduced cost.

  6. Automated identification of rivers and shorelines in aerial imagery using image texture

    NASA Astrophysics Data System (ADS)

    McKay, Paul; Blain, Cheryl Ann; Linzell, Robert

    2011-06-01

    A method has been developed which automatically extracts river and river bank locations from arbitrarily sourced high resolution (~1m) visual spectrum imagery without recourse to multi-spectral or even color information. This method relies on quantifying the difference in image texture between the relatively smooth surface of the river water and the rougher surface of the vegetated land or built environment bordering it and then segmenting the image into high and low roughness regions. The edges of the low roughness regions then define the river banks. The method can be coded in any language without recourse to proprietary tools and requires minimal operator intervention. As this sort of imagery is increasingly being made freely available through such services as Google Earth or Worldwind this technique can be used to extract river features when more specialized imagery or software is not available.

  7. Effects of light pollution revealed during a nocturnal aerial survey by two hyperspectral imagers.

    PubMed

    Barducci, Alessandro; Marcoionni, Paolo; Pippi, Ivan; Poggesi, Marco

    2003-07-20

    A remote-sensing campaign was performed in September 2001 at nighttime under clear-sky conditions before moonrise to assess the level of light pollution of urban and industrial origin. Two hyperspectral sensors, namely, the Multispectral Infrared and Visible Imaging Spectrometer and the Visible Infrared Scanner-200, which provide spectral coverage from the visible to the thermal infrared, were flown over the Tuscany coast (Italy) on board a Casa 212 airplane. The acquired images were processed to produce radiometrically calibrated data, which were then analyzed and compared with ground-based spectral measurements. Calibrated data acquired at high spectral resolution (approximately 2.5 nm) showed a maximum scene brightness almost of the same order of magnitude as that observed during similar daytime measurements, whereas their average luminosity was 3 orders of magnitude lower. The measurement analysis confirmed that artificial illumination hinders astronomical observations and produces noticeable effects even at great distances from the sources of the illumination.

  8. Urban 3D GIS From LiDAR and digital aerial images

    NASA Astrophysics Data System (ADS)

    Zhou, Guoqing; Song, C.; Simmers, J.; Cheng, P.

    2004-05-01

    This paper presents a method, which integrates image knowledge and Light Detection And Ranging (LiDAR) point cloud data for urban digital terrain model (DTM) and digital building model (DBM) generation. The DBM is an Object-Oriented data structure, in which each building is considered as a building object, i.e., an entity of the building class. The attributes of each building include roof types, polygons of the roof surfaces, height, parameters describing the roof surfaces, and the LiDAR point array within the roof surfaces. Each polygon represents a roof surface of building. This type of data structure is flexible for adding other building attributes in future, such as texture information and wall information. Using image knowledge extracted, we developed a new method of interpolating LiDAR raw data into grid digital surface model (DSM) with considering the steep discontinuities of buildings. In this interpolation method, the LiDAR data points, which are located in the polygon of roof surfaces, first are determined, and then interpolation via planar equation is employed for grid DSM generation. The basic steps of our research are: (1) edge detection by digital image processing algorithms; (2) complete extraction of the building roof edges by digital image processing and human-computer interactive operation; (3) establishment of DBM; (4) generation of DTM by removing surface objects. Finally, we implement the above functions by MS VC++ programming. The outcome of urban 3D DSM, DTM and DBM is exported into urban database for urban 3D GIS.

  9. EUV pattern defect detection sensitivity based on aerial image linewidth measurements

    SciTech Connect

    Goldberg, K. A.; Mochi, I.; Naulleau, P.; Liang, T.; Yan, P.-Y.; Huh, S.

    2010-02-12

    As the quality of EUV-wavelength mask inspection microscopes improves over time, the image properties and intensity profiles of reflected light can be evaluated in ever-greater detail. The SEMATECH Berkeley Actinic Inspection Tool (AIT) is one such microscope, featuring mask resolution values that match or exceed those available through lithographic printing in current photoresists. In order to evaluate the defect detection sensitivity of the AIT for dense line patterns on typical masks, the authors study the line width roughness (LWR) on two masks, as measured in the EUV images. They report the through-focus and pitch dependence of contrast, image log slope, linewidth, and LWR. The AIT currently reaches LWR 3{sigma} values close to 9 nm for 175 nm half-pitch lines. This value is below 10% linewidth for nearly all lines routinely measured in the AIT. Evidence suggests that this lower level may arise from the mask's inherent pattern roughness. While the sensitivity limit of the AlT has not yet been established, it is clear that the AIT has the required sensitivity to detect defects that cause 10% linewidth changes in line sizes of 125 nm and larger.

  10. Theoretical study for aerial image intensity in resist in high numerical aperture projection optics and experimental verification with one-dimensional patterns

    NASA Astrophysics Data System (ADS)

    Shibuya, Masato; Takada, Akira; Nakashima, Toshiharu

    2016-04-01

    In optical lithography, high-performance exposure tools are indispensable to obtain not only fine patterns but also preciseness in pattern width. Since an accurate theoretical method is necessary to predict these values, some pioneer and valuable studies have been proposed. However, there might be some ambiguity or lack of consensus regarding the treatment of diffraction by object, incoming inclination factor onto image plane in scalar imaging theory, and paradoxical phenomenon of the inclined entrance plane wave onto image in vector imaging theory. We have reconsidered imaging theory in detail and also phenomenologically resolved the paradox. By comparing theoretical aerial image intensity with experimental pattern width for one-dimensional pattern, we have validated our theoretical consideration.

  11. Remote sensing for precision agriculture: Within-field spatial variability analysis and mapping with aerial digital multispectral images

    NASA Astrophysics Data System (ADS)

    Gopalapillai, Sreekala

    2000-10-01

    Advances in remote sensing technology and biological sensors provided the motivation for this study on the applications of aerial multispectral remote sensing in precision agriculture. The feasibility of using high-resolution multispectral remote sensing for precision farming applications such as soil type delineation, identification of crop nitrogen levels, and modeling and mapping of weed density distribution and yield potential within a crop field was explored in this study. Some of the issues such as image calibration for variable lighting conditions and soil background influence were also addressed. Intensity normalization and band ratio methods were found to be adequate image calibration methods to compensate for variable illumination and soil background influence. Several within-field variability factors such as growth stage, field conditions, nutrient availability, crop cultivar, and plant population were found to be dominant in different periods. Unsupervised clustering of color infrared (CIR) image of a field soil was able to identify soil mapping units with an average accuracy of 76%. Spectral reflectance from a crop field was highly correlated to the chlorophyll reading. A regression model developed to predict nitrogen stress in corn identified nitrogen-stressed areas from nitrogen-sufficient areas with a high accuracy (R2 = 0.93). Weed density was highly correlated to the spectral reflectance from a field. One month after planting was found to be a good time to map spatial weed density. The optimum range of resolution for weed mapping was 4 m to 4.5 m for the remote sensing system and the experimental field used in this study. Analysis of spatial yield with respect to spectral reflectance showed that the visible and NIR reflectance were negatively correlated to yield and crop population in heavily weed-infested areas. The yield potential was highly correlated to image indices, especially to normalized brightness. The ANN model developed for one of the

  12. Focal Plane Metrology for the LSST Camera

    SciTech Connect

    A Rasmussen, Andrew P.; Hale, Layton; Kim, Peter; Lee, Eric; Perl, Martin; Schindler, Rafe; Takacs, Peter; Thurston, Timothy; /SLAC

    2007-01-10

    Meeting the science goals for the Large Synoptic Survey Telescope (LSST) translates into a demanding set of imaging performance requirements for the optical system over a wide (3.5{sup o}) field of view. In turn, meeting those imaging requirements necessitates maintaining precise control of the focal plane surface (10 {micro}m P-V) over the entire field of view (640 mm diameter) at the operating temperature (T {approx} -100 C) and over the operational elevation angle range. We briefly describe the hierarchical design approach for the LSST Camera focal plane and the baseline design for assembling the flat focal plane at room temperature. Preliminary results of gravity load and thermal distortion calculations are provided, and early metrological verification of candidate materials under cold thermal conditions are presented. A detailed, generalized method for stitching together sparse metrology data originating from differential, non-contact metrological data acquisition spanning multiple (non-continuous) sensor surfaces making up the focal plane, is described and demonstrated. Finally, we describe some in situ alignment verification alternatives, some of which may be integrated into the camera's focal plane.

  13. Integration of historical aerial and satellite photos, recent satellite images and geophysical surveys for the knowledge of the ancient Dyrrachium (Durres, Albania)

    NASA Astrophysics Data System (ADS)

    Malfitana, Daniele; Shehi, Eduard; Masini, Nicola; Scardozzi, Giuseppe

    2010-05-01

    The paper presents the preliminary results of an integrated multidiscipliary research project concerning the urban area of the modern Durres (ancient Dyrrachium). Here a joint Italian and Albanian researcher are starting preliminary investigations on the place of an ancient roman villa placed in the urban centre of the modern town. In a initial phase are offering interesting results the use of a rich multitemporal remote sensing data-set, historical aerial photos of 1920s and 1930s, photos of USA spy satellites of 1960s and 1970s (Corona KH-4A and KH-4B), and very high resolution satellite imagery. The historical aerial documentation is very rich and includes aerial photogrammetrich flights of two Italian Institutions: the private company SARA - Società Anonima Rilevamenti Aerofotogrammetrici in Rome (1928) and the IGM - Istituto Geografico Militare (1936, 1937 e 1941), which flew on Durres for purposes of cartographic production and military. These photos offer an image of the city before the urban expansion after the Second World War and in recent decades, progressively documented by satellite images of the 1960s-1970s and recent years. They enable a reconstruction of the ancient topography of the urban area, even with the possibility of detailed analysis, as in the case of the the Roman villa, nowadays buried under a modern garden, but also investigated with a GPR survey, in order to rebuild its plan and contextualize the villa in relation to the urban area of the ancient Dyrrachium.

  14. Geomatics techniques applied to time series of aerial images for multitemporal geomorphological analysis of the Miage Glacier (Mont Blanc).

    NASA Astrophysics Data System (ADS)

    Perotti, Luigi; Carletti, Roberto; Giardino, Marco; Mortara, Giovanni

    2010-05-01

    The Miage glacier is the major one in the Italian side of the Mont Blanc Massif, the third by area and the first by longitudinal extent among Italian glaciers. It is a typical debris covered glacier, since the end of the L.I.A. The debris coverage reduces ablation, allowing a relative stability of the glacier terminus, which is characterized by a wide and articulated moraine apparatus. For its conservative landforms, the Miage Glacier has a great importance for the analysis of the geomorphological response to recent climatic changes. Thanks to an organized existing archive of multitemporal aerial images (1935 to present) a photogrammetric approach has been applied to detect recent geomorphological changes in the Miage glacial basin. The research team provided: a) to digitize all the available images (still in analogic form) through photogrammetric scanners (very low image distortions devices) taking care of correctly defining the resolution of the acquisition compared to the scale mapping images are suitable for; b) to import digitized images into an appropriate digital photogrammetry software environment; c) to manage images in order, where possible, to carried out the stereo models orientation necessary for 3D navigation and plotting of critical geometric features of the glacier. Recognized geometric feature, referring to different periods, can be transferred to vector layers and imported in a GIS for further comparisons and investigations; d) to produce multi-temporal Digital Elevation Models for glacier volume changes; e) to perform orthoprojection of such images to obtain multitemporal orthoimages useful for areal an planar terrain evaluation and thematic analysis; f) to evaluate both planimetric positioning and height determination accuracies reachable through the photogrammetric process. Users have to known reliability of the measures they can do over such products. This can drive them to define the applicable field of this approach and this can help them to

  15. Comparative evaluation of iterative and non-iterative methods to ground coordinate determination from single aerial images

    NASA Astrophysics Data System (ADS)

    Sheng, Yongwei

    2004-04-01

    The single-ray backprojection problem refers to the process of determining ground coordinates of pixels in a single aerial image with the support of a digital surface model or a digital elevation model. Several methods have been employed to solve this problem. The iterative photogrammetric (IP) method, based on the inverse collinearity equations, is widely used in photogrammetry. The ray-tracing (RT) method, which is popular in computer graphics, computes the coordinates by intersecting the view ray with the surface. A third one is an iterative ray-tracing (IRT) method, which finds the intersection point by extending the view ray towards the surface by a certain step once a time until it hits the surface. Since the methods become diversified, there is a need to compare and evaluate them. This paper analyzes the principles of these three methods, tests them using a variety of data sets, and provides a comprehensive comparison on their strategies, parameter selection, divergence, occlusion-compliance, precision, robustness, and efficiency. The major difference of these methods is in the strategy of computing the intersection between the view ray and the surface, and this leads to their varied performance. It is found that the IP method is the most computationally efficient and can produce precise coordinates for simple surfaces, but it may surfer from the divergence and occlusion-induced problems for complicated ones. The rigorous RT method is precise, occlusion-compliant and parameter-free, but it is computationally intensive. The IRT method is intermediate in terms of efficiency. If the initial step is small enough, it can adequately address the occlusion-induced problem and produce satisfactory coordinates for complicated surfaces. This comparison provides a guide to method selection for the single-ray backprojection problem.

  16. An Improved Snake Model for Refinement of Lidar-Derived Building Roof Contours Using Aerial Images

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Wang, Shugen; Liu, Xiuguo

    2016-06-01

    Building roof contours are considered as very important geometric data, which have been widely applied in many fields, including but not limited to urban planning, land investigation, change detection and military reconnaissance. Currently, the demand on building contours at a finer scale (especially in urban areas) has been raised in a growing number of studies such as urban environment quality assessment, urban sprawl monitoring and urban air pollution modelling. LiDAR is known as an effective means of acquiring 3D roof points with high elevation accuracy. However, the precision of the building contour obtained from LiDAR data is restricted by its relatively low scanning resolution. With the use of the texture information from high-resolution imagery, the precision can be improved. In this study, an improved snake model is proposed to refine the initial building contours extracted from LiDAR. First, an improved snake model is constructed with the constraints of the deviation angle, image gradient, and area. Then, the nodes of the contour are moved in a certain range to find the best optimized result using greedy algorithm. Considering both precision and efficiency, the candidate shift positions of the contour nodes are constrained, and the searching strategy for the candidate nodes is explicitly designed. The experiments on three datasets indicate that the proposed method for building contour refinement is effective and feasible. The average quality index is improved from 91.66% to 93.34%. The statistics of the evaluation results for every single building demonstrated that 77.0% of the total number of contours is updated with higher quality index.

  17. Aerial Photography

    NASA Technical Reports Server (NTRS)

    1985-01-01

    John Hill, a pilot and commercial aerial photographer, needed an information base. He consulted NERAC and requested a search of the latest developments in camera optics. NERAC provided information; Hill contacted the manufacturers of camera equipment and reduced his photographic costs significantly.

  18. Integration of mask and silicon metrology in DFM

    NASA Astrophysics Data System (ADS)

    Matsuoka, Ryoichi; Mito, Hiroaki; Sugiyama, Akiyuki; Toyoda, Yasutaka

    2009-03-01

    We have developed a highly integrated method of mask and silicon metrology. The method adopts a metrology management system based on DBM (Design Based Metrology). This is the high accurate contouring created by an edge detection algorithm used in mask CD-SEM and silicon CD-SEM. We have inspected the high accuracy, stability and reproducibility in the experiments of integration. The accuracy is comparable with that of the mask and silicon CD-SEM metrology. In this report, we introduce the experimental results and the application. As shrinkage of design rule for semiconductor device advances, OPC (Optical Proximity Correction) goes aggressively dense in RET (Resolution Enhancement Technology). However, from the view point of DFM (Design for Manufacturability), the cost of data process for advanced MDP (Mask Data Preparation) and mask producing is a problem. Such trade-off between RET and mask producing is a big issue in semiconductor market especially in mask business. Seeing silicon device production process, information sharing is not completely organized between design section and production section. Design data created with OPC and MDP should be linked to process control on production. But design data and process control data are optimized independently. Thus, we provided a solution of DFM: advanced integration of mask metrology and silicon metrology. The system we propose here is composed of followings. 1) Design based recipe creation: Specify patterns on the design data for metrology. This step is fully automated since they are interfaced with hot spot coordinate information detected by various verification methods. 2) Design based image acquisition: Acquire the images of mask and silicon automatically by a recipe based on the pattern design of CD-SEM.It is a robust automated step because a wide range of design data is used for the image acquisition. 3) Contour profiling and GDS data generation: An image profiling process is applied to the acquired image based

  19. Roughness Estimation from Point Clouds - A Comparison of Terrestrial Laser Scanning and Image Matching by Unmanned Aerial Vehicle Acquisitions

    NASA Astrophysics Data System (ADS)

    Rutzinger, Martin; Bremer, Magnus; Ragg, Hansjörg

    2013-04-01

    Recently, terrestrial laser scanning (TLS) and matching of images acquired by unmanned arial vehicles (UAV) are operationally used for 3D geodata acquisition in Geoscience applications. However, the two systems cover different application domains in terms of acquisition conditions and data properties i.e. accuracy and line of sight. In this study we investigate the major differences between the two platforms for terrain roughness estimation. Terrain roughness is an important input for various applications such as morphometry studies, geomorphologic mapping, and natural process modeling (e.g. rockfall, avalanche, and hydraulic modeling). Data has been collected simultaneously by TLS using an Optech ILRIS3D and a rotary UAV using an octocopter from twins.nrn for a 900 m² test site located in a riverbed in Tyrol, Austria (Judenbach, Mieming). The TLS point cloud has been acquired from three scan positions. These have been registered using iterative closest point algorithm and a target-based referencing approach. For registration geometric targets (spheres) with a diameter of 20 cm were used. These targets were measured with dGPS for absolute georeferencing. The TLS point cloud has an average point density of 19,000 pts/m², which represents a point spacing of about 5 mm. 15 images where acquired by UAV in a height of 20 m using a calibrated camera with focal length of 18.3 mm. A 3D point cloud containing RGB attributes was derived using APERO/MICMAC software, by a direct georeferencing approach based on the aircraft IMU data. The point cloud is finally co-registered with the TLS data to guarantee an optimal preparation in order to perform the analysis. The UAV point cloud has an average point density of 17,500 pts/m², which represents a point spacing of 7.5 mm. After registration and georeferencing the level of detail of roughness representation in both point clouds have been compared considering elevation differences, roughness and representation of different grain

  20. A fast and mobile system for registration of low-altitude visual and thermal aerial images using multiple small-scale UAVs

    NASA Astrophysics Data System (ADS)

    Yahyanejad, Saeed; Rinner, Bernhard

    2015-06-01

    The use of multiple small-scale UAVs to support first responders in disaster management has become popular because of their speed and low deployment costs. We exploit such UAVs to perform real-time monitoring of target areas by fusing individual images captured from heterogeneous aerial sensors. Many approaches have already been presented to register images from homogeneous sensors. These methods have demonstrated robustness against scale, rotation and illumination variations and can also cope with limited overlap among individual images. In this paper we focus on thermal and visual image registration and propose different methods to improve the quality of interspectral registration for the purpose of real-time monitoring and mobile mapping. Images captured by low-altitude UAVs represent a very challenging scenario for interspectral registration due to the strong variations in overlap, scale, rotation, point of view and structure of such scenes. Furthermore, these small-scale UAVs have limited processing and communication power. The contributions of this paper include (i) the introduction of a feature descriptor for robustly identifying corresponding regions of images in different spectrums, (ii) the registration of image mosaics, and (iii) the registration of depth maps. We evaluated the first method using a test data set consisting of 84 image pairs. In all instances our approach combined with SIFT or SURF feature-based registration was superior to the standard versions. Although we focus mainly on aerial imagery, our evaluation shows that the presented approach would also be beneficial in other scenarios such as surveillance and human detection. Furthermore, we demonstrated the advantages of the other two methods in case of multiple image pairs.

  1. Heterodyne Interferometer Angle Metrology

    NASA Technical Reports Server (NTRS)

    Hahn, Inseob; Weilert, Mark A.; Wang, Xu; Goullioud, Renaud

    2010-01-01

    A compact, high-resolution angle measurement instrument has been developed that is based on a heterodyne interferometer. The common-path heterodyne interferometer metrology is used to measure displacements of a reflective target surface. In the interferometer setup, an optical mask is used to sample the measurement laser beam reflecting back from a target surface. Angular rotations, around two orthogonal axes in a plane perpendicular to the measurement- beam propagation direction, are determined simultaneously from the relative displacement measurement of the target surface. The device is used in a tracking telescope system where pitch and yaw measurements of a flat mirror were simultaneously performed with a sensitivity of 0.1 nrad, per second, and a measuring range of 0.15 mrad at a working distance of an order of a meter. The nonlinearity of the device is also measured less than one percent over the measurement range.

  2. Laser Metrology in the Micro-Arcsecond Metrology Testbed

    NASA Technical Reports Server (NTRS)

    An, Xin; Marx, D.; Goullioud, Renaud; Zhao, Feng

    2004-01-01

    The Space Interferometer Mission (SIM), scheduled for launch in 2009, is a space-born visible light stellar interferometer capable of micro-arcsecond-level astrometry. The Micro-Arcsecond Metrology testbed (MAM) is the ground-based testbed that incorporates all the functionalities of SIM minus the telescope, for mission-enabling technology development and verification. MAM employs a laser heterodyne metrology system using the Sub-Aperture Vertex-to-Vertex (SAVV) concept. In this paper, we describe the development and modification of the SAVV metrology launchers and the metrology instrument electronics, precision alignments and pointing control, locating cyclic error sources in the MAM testbed and methods to mitigate the cyclic errors, as well as the performance under the MAM performance metrics.

  3. Status and Strategy for Moisture Metrology in European Metrology Institutes

    NASA Astrophysics Data System (ADS)

    Bell, S.; Boese, N.; Bosma, R.; Buzoianu, M.; Carroll, P.; Fernicola, V.; Georgin, E.; Heinonen, M.; Kentved, A.; Melvad, C.; Nielsen, J.

    2015-08-01

    Measurement of moisture in materials presents many challenges, due to diverse measuring principles, sample interactions with atmosphere, and variation in what is measured (either water content alone or moisture including other liquids). Calibrations are variously referenced to published standard methods, primary calibration facilities, or certified reference materials, but each of these addresses limited substances and ranges of measurement. Overall, metrology infrastructure is not as fully developed or coherent for this field as it is for many other areas of measurement. In order to understand the metrology needs and to support developments, several European national metrology institutes (NMIs) have undertaken some collaborative activities. These have included a "cooperation in research" project for sharing of information, a survey of moisture capabilities at NMIs, the formulation of a strategy for moisture metrology at the NMI level, and a funded research project to develop improved metrology for the moisture field. This paper summarizes the information gathered, giving an overview of the status of moisture metrology at NMIs, and it reports a proposed strategy to improve the current situation.

  4. Tidal Flooding and Vegetation Patterns in a Salt Marsh Tidal Creek Imaged by Low-altitude Balloon Aerial Photography

    NASA Astrophysics Data System (ADS)

    White, S. M.; Madsen, E.

    2013-12-01

    soil water content. These other factors are all directly affected by the hydroperiod, creating a complex system of feedbacks. Inundation frequencies show a pronounced relationship to zonation. Creek bank height and the hydroperiod have a curvilinear relationship at low bank heights such that small decreases in creek bank height can result in large increases in inundation frequency. Biological zonation is not simply a result of bank height and inundation frequency, other contributing factors include species competition, adaptability, and groundwater flow. Vegetation patterns delineated by a ground-based GPS survey and image classification from the aerial photos show that not all changes in eco-zonation are a direct function of elevation. Some asymmetry across the creek is observed in plant habitat, and eliminating topography (and thereby tidal inundation) as a factor, we attribute the remaining variability to groundwater flow.

  5. Metrology of IXO Mirror Segments

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing

    2011-01-01

    For future x-ray astrophysics mission that demands optics with large throughput and excellent angular resolution, many telescope concepts build around assembling thin mirror segments in a Wolter I geometry, such as that originally proposed for the International X-ray Observatory. The arc-second resolution requirement posts unique challenges not just for fabrication, mounting but also for metrology of these mirror segments. In this paper, we shall discuss the metrology of these segments using normal incidence metrological method with interferometers and null lenses. We present results of the calibration of the metrology systems we are currently using, discuss their accuracy and address the precision in measuring near-cylindrical mirror segments and the stability of the measurements.

  6. A Roadmap for Thermal Metrology

    NASA Astrophysics Data System (ADS)

    Bojkovski, J.; Fischer, J.; Machin, G.; Pavese, F.; Peruzzi, A.; Renaot, E.; Tegeler, E.

    2009-02-01

    A provisional roadmap for thermal metrology was developed in Spring 2006 as part of the EUROMET iMERA activity toward increasing impact from national investment in European metrology R&D. This consisted of two parts: one addressing the influence of thermal metrology on society, industry, and science, and the other specifying the requirements of enabling thermal metrology to serve future needs. The roadmap represents the shared vision of the EUROMET TC Therm committee as to how thermal metrology should develop to meet future requirements over the next 15 years. It is important to stress that these documents are a first attempt to roadmap the whole of thermal metrology and will certainly need regular review and revision to remain relevant and useful to the community they seek to serve. The first part of the roadmap, “Thermal metrology for society, industry, and science,” identifies the main social and economic triggers driving developments in thermal metrology—notably citizen safety and security, new production technologies, environment and global climate change, energy, and health. Stemming from these triggers, key targets are identified that require improved thermal measurements. The second part of the roadmap, “Enabling thermal metrology to serve future needs” identifies another set of triggers, like global trade and interoperability, future needs in transport, and the earth radiation budget. Stemming from these triggers, key targets are identified, such as improved realizations and dissemination of the SI unit the kelvin, anchoring the kelvin to the Boltzmann constant, k B, and calculating thermal properties from first principles. To facilitate these outcomes, the roadmap identifies the technical advances required in thermal measurement standards.

  7. Thermal Imaging Using Small-Aerial Platforms for Assessment of Crop Water Stress in Humid Subtropical Climates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf- or canopy-to-air temperature difference (hereafter called CATD) can provide information on crop energy status. Thermal imagery from agricultural aircraft or Unmanned Aerial Vehicles (UAVs) have the potential of providing thermal data for calculation of CATD and visual snapshots that can guide ...

  8. Vision guided automatic measuring in coordinate metrology

    NASA Astrophysics Data System (ADS)

    Qin, Yuhong; Wang, Lei; Xie, Lusheng; Huang, Yuanqing

    2008-12-01

    A novel automatically measuring planning method in coordinate metrology based on computer vision is presented in this paper. An active stereo vision system is established by attaching a CCD camera to the mechanical probe of the coordinate measuring machine (CMM). Through the movement of the probe of the CMM, as well as the camera, 3D edge characters of the object can be acquired, which are used as clues for automatically coordinate measuring. A multi-baseline matching method is presented to overcome the ambiguity in stereo matching, and a quadratic interpolating is used in sub pixel matching to get continuous depth image. The matching is only done on character edges in images, so it is much faster and more robust. Two methods of measuring path planning are put forward, in one way, a 2D characteristic edge image which are often stand for rapidly changes in depth or curvature of object surface can be acquired by projecting 3D edge characters to a scanning plane, and then the sampling points of mechanical probe are selected depending on the edge image. In the other way, surface patches are fitted to these 3D edges, and the sampling grid is determined by the type and area of every patch. Using these techniques, a highly automated high-speed, high-precision, 3-D coordinate acquisition system based on multiple-sensor integration can be developed. It has potential applications in manufacturing problems as metrology, inspection, and reverse engineering.

  9. Thermal Imaging of Subsurface Coal Fires by means of an Unmanned Aerial Vehicle (UAV) in the Autonomous Province Xinjiang, PRC

    NASA Astrophysics Data System (ADS)

    Vasterling, Margarete; Schloemer, Stefan; Fischer, Christian; Ehrler, Christoph

    2010-05-01

    Spontaneous combustion of coal and resulting coal fires lead to very high temperatures in the subsurface. To a large amount the heat is transferred to the surface by convective and conductive transport inducing a more or less pronounced thermal anomaly. During the past decade satellite-based infrared-imaging (ASTER, MODIS) was the method of choice for coal fire detection on a local and regional scale. However, the resolution is by far too low for a detailed analysis of single coal fires which is essential prerequisite for corrective measures (i.e. fire fighting) and calculation of carbon dioxide emission based on a complex correlation between energy release and CO2 generation. Consequently, within the framework of the Sino-German research project "Innovative Technologies for Exploration, Extinction and Monitoring of Coal Fires in Northern China", a new concept was developed and successfully tested. An unmanned aerial vehicle (UAV) was equipped with a lightweight camera for thermografic (resolution 160 by 120 pixel, dynamic range -20 to 250°C) and for visual imaging. The UAV designed as an octocopter is able to hover at GPS controlled waypoints during predefined flight missions. The application of a UAV has several advantages. Compared to point measurements on the ground the thermal imagery quickly provides the spatial distribution of the temperature anomaly with a much better resolution. Areas otherwise not accessible (due to topography, fire induced cracks, etc.) can easily be investigated. The results of areal surveys on two coal fires in Xinjiang are presented. Georeferenced thermal and visual images were mosaicked together and analyzed. UAV-born data do well compared to temperatures measured directly on the ground and cover large areas in detail. However, measuring surface temperature alone is not sufficient. Simultaneous measurements made at the surface and in roughly 15cm depth proved substantial temperature gradients in the upper soil. Thus the temperature

  10. Parameter optimization of image classification techniques to delineate crowns of coppice trees on UltraCam-D aerial imagery in woodlands

    NASA Astrophysics Data System (ADS)

    Erfanifard, Yousef; Stereńczak, Krzysztof; Behnia, Negin

    2014-01-01

    Estimating the optimal parameters of some classification techniques becomes their negative aspect as it affects their performance for a given dataset and reduces classification accuracy. It was aimed to optimize the combination of effective parameters of support vector machine (SVM), artificial neural network (ANN), and object-based image analysis (OBIA) classification techniques by the Taguchi method. The optimized techniques were applied to delineate crowns of Persian oak coppice trees on UltraCam-D very high spatial resolution aerial imagery in Zagros semiarid woodlands, Iran. The imagery was classified and the maps were assessed by receiver operating characteristic curve and other performance metrics. The results showed that Taguchi is a robust approach to optimize the combination of effective parameters in these image classification techniques. The area under curve (AUC) showed that the optimized OBIA could well discriminate tree crowns on the imagery (AUC=0.897), while SVM and ANN yielded slightly less AUC performances of 0.819 and 0.850, respectively. The indices of accuracy (0.999) and precision (0.999) and performance metrics of specificity (0.999) and sensitivity (0.999) in the optimized OBIA were higher than with other techniques. The optimization of effective parameters of image classification techniques by the Taguchi method, thus, provided encouraging results to discriminate the crowns of Persian oak coppice trees on UltraCam-D aerial imagery in Zagros semiarid woodlands.

  11. Metrological multispherical freeform artifact

    NASA Astrophysics Data System (ADS)

    Blobel, Gernot; Wiegmann, Axel; Siepmann, Jens; Schulz, Michael

    2016-07-01

    Precisely known artifacts are required to characterize the accuracy of asphere and freeform measuring instruments. To this end the best knowledge of the surface characteristics in conjunction with a low measurement uncertainty are necessary. Because this is a challenging task for typical freeform surfaces used in optical systems, the concept of "metrological" artifacts is introduced. We have developed a multispherical freeform artifact for performance tests of tactile touch probe and contact-free optical measuring systems. The measurement accuracy of the complete form and the deviation from calibrated spherical sections can thus be determined. The radius calibration of multiple spherical sections is performed with an extended radius measuring procedure by interferometry. Evaluated surface forms of different measuring methods and the radii determined can be compared to each other. In this study, a multispherical freeform specimen made of copper, with two differing radii, has been measured by two optical measuring methods, a full field measuring tilted-wave interferometer and a high accuracy cylinder coordinate measuring machine with an optical probe. The surface form measurements are evaluated and compared, and the radii determined are compared to the results of a radius measurement bench.

  12. Metrological large range scanning probe microscope

    NASA Astrophysics Data System (ADS)

    Dai, Gaoliang; Pohlenz, Frank; Danzebrink, Hans-Ulrich; Xu, Min; Hasche, Klaus; Wilkening, Guenter

    2004-04-01

    We describe a metrological large range scanning probe microscope (LR-SPM) with an Abbe error free design and direct interferometric position measurement capability, aimed at versatile traceable topographic measurements that require nanometer accuracy. A dual-stage positioning system was designed to achieve both a large measurement range and a high measurement speed. This dual-stage system consists of a commercially available stage, referred to as nanomeasuring machine (NMM), with a motion range of 25 mm×25 mm×5 mm along x, y, and z axes, and a compact z-axis piezoelectric positioning stage (compact z stage) with an extension range of 2 μm. The metrological LR-SPM described here senses the surface using a stationary fixed scanning force microscope (SFM) head working in contact mode. During operation, lateral scanning of the sample is performed solely by the NMM. Whereas the z motion, controlled by the SFM signal, is carried out by a combination of the NMM and the compact z stage. In this case the compact z stage, with its high mechanical resonance frequency (greater than 20 kHz), is responsible for the rapid motion while the NMM simultaneously makes slower movements over a larger motion range. To reduce the Abbe offset to a minimum the SFM tip is located at the intersection of three interferometer measurement beams orientated in x, y, and z directions. To improve real time performance two high-end digital signal processing (DSP) systems are used for NMM positioning and SFM servocontrol. Comprehensive DSP firmware and Windows XP-based software are implemented, providing a flexible and user-friendly interface. The instrument is able to perform large area imaging or profile scanning directly without stitching small scanned images. Several measurements on different samples such as flatness standards, nanostep height standards, roughness standards as well as sharp nanoedge samples and 1D gratings demonstrate the outstanding metrological capabilities of the instrument.

  13. The construction of landslides achieves by using 1969 CORONA (KH-4B) image and aerial photos- A case study of the catchment of Te-chi reservoir

    NASA Astrophysics Data System (ADS)

    Jen, Chia-Hung; Dirk, Wenske; Lin, Jiun-Chuan; Böse, Margot

    2010-05-01

    Taiwan before the construction of the Central Cross-Island Highway. The ortho-rectified CORONA image and aerial photos can be used to identify landslides and provide more information about the causes of landslides and the consequences of road construction, landform evolution and agriculture practice. The long term landslide archive can be used in the study of landscape evolution and hazard assessment. There are more than 800 landslides identified in CORONA image and 900 landslides in 1980 aerial photos, which were caused by road construction, farming practice and channel erosion.

  14. Critical issues in overlay metrology

    NASA Astrophysics Data System (ADS)

    Sullivan, Neal T.

    2001-01-01

    In this paper, following an overview of overlay metrology, the difficult relationship of overlay with device performance and yield is discussed and supported with several examples. This is followed by a discussion of the impending collision of metrology equipment performance and "real" process tolerances for sub 0.18 um technologies. This convergence of tolerance and performance is demonstrated to lead to the current emergence of real-time overlay modeling in a feed-forward/feedback process environment and the associated metrology/sampling implications. This modeling takes advantage of the wealth of understanding concerning the systematic behavior of overlay registration errors. Finally, the impact of new process technologies (RET, OAI, CPSM, CMP, & etc.) on the measurement target is discussed and shown to de-stabilize overlay performance on standard overlay measurement target designs.

  15. Metrology - Beyond the Calibration Lab

    NASA Technical Reports Server (NTRS)

    Mimbs, Scott M.

    2008-01-01

    We rely on data from measurements every day; a gas-pump, a speedometer, and a supermarket weight scale are just three examples of measurements we use to make decisions. We generally accept the data from these measurements as "valid." One reason we can accept the data is the "legal metrology" requirements established and regulated by the government in matters of commerce. The measurement data used by NASA, other government agencies, and industry can be critical to decisions which affect everything from economic viability, to mission success, to the security of the nation. Measurement data can even affect life and death decisions. Metrology requirements must adequately provide for risks associated with these decisions. To do this, metrology must be integrated into all aspects of an industry including research, design, testing, and product acceptance. Metrology, the science of measurement, has traditionally focused on the calibration of instruments, and although instrument calibration is vital, it is only a part of the process that assures quality in measurement data. For example, measurements made in research can influence the fundamental premises that establish the design parameters, which then flow down to the manufacturing processes, and eventually impact the final product. Because a breakdown can occur anywhere within this cycle, measurement quality assurance has to be integrated into every part of the life-cycle process starting with the basic research and ending with the final product inspection process. The purpose of this paper is to discuss the role of metrology in the various phases of a product's life-cycle. For simplicity, the cycle will be divided in four broad phases, with discussions centering on metrology within NASA. .

  16. NASA's Metrology and Calibration program

    NASA Technical Reports Server (NTRS)

    Kern, Frederick A.

    1991-01-01

    The success of the National Aeronautics and Space Administration's scientific and engineering projects is often based on the capability and quality of the metrology and calibration programs of its field centers and facilities. A Metrology and Calibration Working Group, having representation from each of the NASA field centers and facilities, was established to develop and implement a program to provide a centralized direction and agency wide focus. A brief history of the Group is presented. The development of the Group's operating philosophy, the long term objectives, the measurement research and development program, and review of accomplishments is discussed.

  17. Quantum metrology with molecular ensembles

    SciTech Connect

    Schaffry, Marcus; Gauger, Erik M.; Morton, John J. L.; Fitzsimons, Joseph; Benjamin, Simon C.; Lovett, Brendon W.

    2010-10-15

    The field of quantum metrology promises measurement devices that are fundamentally superior to conventional technologies. Specifically, when quantum entanglement is harnessed, the precision achieved is supposed to scale more favorably with the resources employed, such as system size and time required. Here, we consider measurement of magnetic-field strength using an ensemble of spin-active molecules. We identify a third essential resource: the change in ensemble polarization (entropy increase) during the metrology experiment. We find that performance depends crucially on the form of decoherence present; for a plausible dephasing model, we describe a quantum strategy, which can indeed beat the standard strategy.

  18. Metrological Reliability of Medical Devices

    NASA Astrophysics Data System (ADS)

    Costa Monteiro, E.; Leon, L. F.

    2015-02-01

    The prominent development of health technologies of the 20th century triggered demands for metrological reliability of physiological measurements comprising physical, chemical and biological quantities, essential to ensure accurate and comparable results of clinical measurements. In the present work, aspects concerning metrological reliability in premarket and postmarket assessments of medical devices are discussed, pointing out challenges to be overcome. In addition, considering the social relevance of the biomeasurements results, Biometrological Principles to be pursued by research and innovation aimed at biomedical applications are proposed, along with the analysis of their contributions to guarantee the innovative health technologies compliance with the main ethical pillars of Bioethics.

  19. NASA metrology and calibration, 1993

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Th sixteenth annual workshop of NASA's Metrology and Calibration Working Group was held April 20-22, 1993. The goals of the Working Group are to provide Agencywide standardization of individual metrology programs, where appropriate; to promote cooperation and exchange of information within NASA, with other Government agencies, and with industry; to serve as the primary Agency interface with the National Institute of Standards and Technology; and to encourage formal quality control techniques such as Measurement Assurance Programs. These proceedings contain unedited reports and presentations from the workshop and are provided for information only.

  20. Preliminary applications of Landsat images and aerial photography for determining land-use, geologic, and hydrologic characteristics, Yampa River basin, Colorado and Wyoming

    USGS Publications Warehouse

    Heimes, F.J.; Moore, G.K.; Steele, T.D.

    1978-01-01

    Expanded energy- and recreation-related activities in the Yampa River basin, Colorado and Wyoming, have caused a rapid increase in economic development which will result in increased demand and competition for natural resources. In planning for efficient allocation of the basin 's natural resources, Landsat images and small-scale color and color-infrared photographs were used for selected geologic, hydrologic and land-use applications within the Yampa River basin. Applications of Landsat data included: (1) regional land-use classification and mapping, (2) lineament mapping, and (3) areal snow-cover mapping. Results from the Landsat investigations indicated that: (1) Landsat land-use classification maps, at a regional level, compared favorably with areal land-use patterns that were defined from available ground information, (2) lineaments were mapped in sufficient detail using recently developed techniques for interpreting aerial photographs, (3) snow cover generally could be mapped for large areas with the exception of some densely forested areas of the basin and areas having a large percentage of winter-season cloud cover. Aerial photographs were used for estimation of turbidity for eight stream locations in the basin. Spectral reflectance values obtained by digitizing photographs were compared with measured turbidity values. Results showed strong correlations (variances explained of greater than 90 percent) between spectral reflectance obtained from color photographs and measured turbidity values. (Woodard-USGS)

  1. Identification of disrupted surfaces due to military activity at the Ft. Irwin National Training Center: An aerial photograph and satellite image analysis

    SciTech Connect

    McCarthy, L.E.; Marsh, S.E.; Lee, C.

    1996-07-01

    Concern for environmental management of our natural resources is most often focused on the anthropogenic impacts placed upon these resources. Desert landscapes, in particular, are fragile environments, and minimal stresses on surficial materials can greatly increase the rate and character of erosional responses. The National Training Center, Ft. Irwin, located in the middle of the Mojave Desert, California, provides an isolated study area of intense ORV activity occurring over a 50-year period. Geomorphic surfaces, and surficial disruption from two study sites within the Ft. Irwin area were mapped from 1947, 1:28,400, and 1993 1:12,000 black and white aerial photographs. Several field checks were conducted to verify this mapping. However, mapping from black and white aerial photography relies heavily on tonal differences, patterns, and morphological criteria. Satellite imagery, sensitive to changes in mineralogy, can help improve the ability to distinguish geomorphic units in desert regions. In order to assess both the extent of disrupted surfaces and the surficial geomorphology discemable from satellite imagery, analysis was done on SPOT panchromatic and Landsat Thematic Mapper (TM) multispectral imagery acquired during the spring of 1987 and 1993. The resulting classified images provide a clear indication of the capabilities of the satellite data to aid in the delineation of disrupted geomorphic surfaces.

  2. SRTM metrology system: flight results

    NASA Technical Reports Server (NTRS)

    Duren, R. M.

    2000-01-01

    An assessment of the inflight performance of the Shuttle Radar Topography Mission (SRTM) Metrology System, also known as the Attitude and Orbit Determination avionics (AODA), is presented. The assessment is based on analysis of raw sensor data obtained during the mission.

  3. Multi-temporal analysis of aerial images for the investigation of spatial-temporal dynamics of shallow erosion - a case study from the Tyrolean Alps

    NASA Astrophysics Data System (ADS)

    Wiegand, C.; Geitner, C.; Heinrich, K.; Rutzinger, M.

    2012-04-01

    Small and shallow eroded areas characterize the landscape of many pastures and meadows in the Alps. The extent of such erosion phenomena varies between 2 m2 and 200 m2. These patches tend to be only a few decimetres thick, with a maximum depth of 2 m. The processes involved are shallow landslides, superficial erosion by snow and livestock trampling. Key parameters that influence the emergence of shallow erosion are the geological, topographical and climatic circumstances in an area as well as its soils, vegetation and land use. The negative impact of this phenomenon includes not only the loss of soil but also the reduced attractiveness of the landscape, especially in tourist regions. One approach identifying and mapping geomorphological elements is remote sensing. The analysis of aerial images is a suitable method for identifying the multi-temporal dynamics of shallow eroded areas because of the good spatial and temporal resolution. For this purpose, we used a pixel-based approach to detect these areas semi-automatically in an orthophoto. In a first step, each aerial image was classified using dynamic thresholds derived from the histogram of the orthophoto. In a second step, the identified areas of erosion were filtered and visually in-terpreted. Based on this procedure, eroded areas with a minimum size of 5 m2 were detected in a test site located in the Inner Schmirn Valley (Tyrol, Austria). The altitude of the test site ranges between 1,980 m and 2,370 m, with a mean inclination of 36°, facing E to SE. Geologically, the slope is part of the "Hohe Tauern Window", characterized by "Bündner schists" deficient in lime and regolith. Until the 1960s, the slope was used as a hay meadow. Orthophotos from 2000, 2003, 2007 and 2010 were used for this investigation. Older aerial images were not suitable because of their lower resolution and poor ortho-rectification. However, they are useful for relating the results of the ten-year time-span to a larger temporal context

  4. Analysis of nanometer-isolated trench diffract aerial image of both conventional and second-generation synchrotron-based proximity x-ray lithography

    NASA Astrophysics Data System (ADS)

    Xie, Changqing; Chen, Dapeng; Liu, Ming; Ye, Tianchun; Yi, Futing

    2005-01-01

    In this paper, Beam Propagation Method (BPM) with Fast Fourier Transforms(FFT) is employed to efficiently calculate the diffract image in the wafer plane for both conventional and second generation synchrotron-based proximity x-ray lithography(PXL). In the simulation, a dark-field isolated space pattern silicon nitride/Ta x-ray mask is used for conventional PXL and a diamond /Ta x-ray mask is used for second generation PXL, the diffract image"s dependency on absorber thickness, mask-wafer gap, effective total blur, linewidth and absorber sidewall slope has been numerically evaluated. For conventional PXL, in order to obtain a isolated trench resolution of 50nm, the mask-wafer gap should be controlled below 5 micron, the optimization condition is mask-wafer gap 5 micron, Ta absorber thickness 300nm, effective total blur 10nm, absorber sidewall slope 3°, the corresponding aerial image contrast is 0.457; For second generation, in order to obtain a isolated trench resolution of 50nm, the mask-wafer gap can be as large as 10 micron. In order to obtain a isolated trench resolution of 35nm, mask-wafer gap should be controlled below 5 micron.

  5. Metrology and ionospheric observation standards

    NASA Astrophysics Data System (ADS)

    Panshin, Evgeniy; Minligareev, Vladimir; Pronin, Anton

    Accuracy and ionospheric observation validity are urgent trends nowadays. WMO, URSI and national metrological and standardisation services bring forward requirements and descriptions of the ionospheric observation means. Researches in the sphere of metrological and standardisation observation moved to the next level in the Russian Federation. Fedorov Institute of Applied Geophysics (IAG) is in charge of ionospheric observation in the Russian Federation and the National Technical Committee, TC-101 , which was set up on the base of IAG- of the standardisation in the sphere. TC-101 can be the platform for initiation of the core international committee in the network of ISO The new type of the ionosounde “Parus-A” is engineered, which is up to the national requirements. “Parus-A” calibration and test were conducted by National metrological Institute (NMI) -D.I. Mendeleyev Institute for Metrology (VNIIM), signed CIMP MRA in 1991. VNIIM is a basic NMI in the sphere of Space weather (including ionospheric observations), the founder of which was celebrated chemist and metrologist Dmitriy I. Mendeleyev. Tests and calibration were carried out for the 1st time throughout 50-year-history of ionosonde exploitation in Russia. The following metrological characteristics were tested: -measurement range of radiofrequency time delay 0.5-10 ms; -time measurement inaccuracy of radio- frequency pulse ±12mcs; -frequency range of radio impulse 1-20 MHz ; -measurement inaccuracy of radio impulse carrier frequency± 5KHz. For example, the sound impulse simulator that was built-in in the ionosounde was used for measurement range of radiofrequency time delay testing. The number of standards on different levels is developed. - “Ionospheric observation guidance”; - “The Earth ionosphere. Terms and definitions”.

  6. The Kilauea 1974 Flow: Quantitative Morphometry of Lava Flows using Low Altitude Aerial Image Data using a Kite-based Platform in the Field

    NASA Astrophysics Data System (ADS)

    Scheidt, S. P.; Whelley, P.; Hamilton, C.; Bleacher, J. E.; Garry, W. B.

    2015-12-01

    The December 31, 1974 lava flow from Kilauea Caldera, Hawaii within the Hawaii Volcanoes National Park was selected for field campaigns as a terrestrial analog for Mars in support of NASA Planetary Geology and Geophysics (PGG) research and the Remote, In Situ and Synchrotron Studies for Science and Exploration (RIS4E) node of the Solar System Exploration Research Virtual Institute (SSERVI) program). The lava flow was a rapidly emplaced unit that was strongly influenced by existing topography, which favored the formation of a tributary lava flow system. The unit includes a diverse range of surface textures (e.g., pāhoehoe, ´áā, and transitional lavas), and structural features (e.g., streamlined islands, pits, and interactions with older tumuli). However, these features are generally below the threshold of visibility within previously acquired airborne and spacecraft data. In this study, we have generated unique, high-resolution digital images using low-altitude Kite Aerial Photography (KAP) system during field campaigns in 2014 and 2015 (National Park Service permit #HAVO-2012-SCI-0025). The kite-based mapping platform (nadir-viewing) and a radio-controlled gimbal (allowing pointing) provided similar data as from an unmanned aerial vehicle (UAV), but with longer flight time, larger total data volumes per sortie, and fewer regulatory challenges and cost. Images acquired from KAP and UAVs are used to create orthomosaics and DEMs using Multi-View Stereo-Photogrammetry (MVSP) software. The 3-Dimensional point clouds are extremely dense, resulting in a grid resolution of < 2 cm. Airborne Light Detection and Ranging (LiDAR) / Terrestrial Laser Scanning (TLS) data have been collected for these areas and provide a basis of comparison or "ground truth" for the photogrammetric data. Our results show a good comparison with LiDAR/TLS data, each offering their own unique advantages and potential for data fusion.

  7. An Automated Approach to Agricultural Tile Drain Detection and Extraction Utilizing High Resolution Aerial Imagery and Object-Based Image Analysis

    NASA Astrophysics Data System (ADS)

    Johansen, Richard A.

    Subsurface drainage from agricultural fields in the Maumee River watershed is suspected to adversely impact the water quality and contribute to the formation of harmful algal blooms (HABs) in Lake Erie. In early August of 2014, a HAB developed in the western Lake Erie Basin that resulted in over 400,000 people being unable to drink their tap water due to the presence of a toxin from the bloom. HAB development in Lake Erie is aided by excess nutrients from agricultural fields, which are transported through subsurface tile and enter the watershed. Compounding the issue within the Maumee watershed, the trend within the watershed has been to increase the installation of tile drains in both total extent and density. Due to the immense area of drained fields, there is a need to establish an accurate and effective technique to monitor subsurface farmland tile installations and their associated impacts. This thesis aimed at developing an automated method in order to identify subsurface tile locations from high resolution aerial imagery by applying an object-based image analysis (OBIA) approach utilizing eCognition. This process was accomplished through a set of algorithms and image filters, which segment and classify image objects by their spectral and geometric characteristics. The algorithms utilized were based on the relative location of image objects and pixels, in order to maximize the robustness and transferability of the final rule-set. These algorithms were coupled with convolution and histogram image filters to generate results for a 10km2 study area located within Clay Township in Ottawa County, Ohio. The eCognition results were compared to previously collected tile locations from an associated project that applied heads-up digitizing of aerial photography to map field tile. The heads-up digitized locations were used as a baseline for the accuracy assessment. The accuracy assessment generated a range of agreement values from 67.20% - 71.20%, and an average

  8. Hierarchical characterization procedures for dimensional metrology

    NASA Astrophysics Data System (ADS)

    MacKinnon, David; Beraldin, Jean-Angelo; Cournoyer, Luc; Carrier, Benjamin

    2011-03-01

    We present a series of dimensional metrology procedures for evaluating the geometrical performance of a 3D imaging system that have either been designed or modified from existing procedures to ensure, where possible, statistical traceability of each characteristic value from the certified reference surface to the certifying laboratory. Because there are currently no internationally-accepted standards for characterizing 3D imaging systems, these procedures have been designed to avoid using characteristic values provided by the vendors of 3D imaging systems. For this paper, we focus only on characteristics related to geometric surface properties, dividing them into surface form precision and surface fit trueness. These characteristics have been selected to be familiar to operators of 3D imaging systems that use Geometrical Dimensioning and Tolerancing (GD&T). The procedures for generating characteristic values would form the basis of either a volumetric or application-specific analysis of the characteristic profile of a 3D imaging system. We use a hierarchical approach in which each procedure builds on either certified reference values or previously-generated characteristic values. Starting from one of three classes of surface forms, we demonstrate how procedures for quantifying for flatness, roundness, angularity, diameter error, angle error, sphere-spacing error, and unidirectional and bidirectional plane-spacing error are built upon each other. We demonstrate how these procedures can be used as part of a process for characterizing the geometrical performance of a 3D imaging system.

  9. High temperature Seebeck coefficient metrology

    SciTech Connect

    Martin, J.; Tritt, T.; Uher, C.

    2010-12-15

    We present an overview of the challenges and practices of thermoelectric metrology on bulk materials at high temperature (300 to 1300 K). The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential property measurement for evaluating the potential performance of novel thermoelectric materials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at high temperature. This has led to the implementation of nonideal practices that have further complicated the confirmation of reported high ZT materials. To ensure meaningful interlaboratory comparison of data, thermoelectric measurements must be reliable, accurate, and consistent. This article will summarize and compare the relevant measurement techniques and apparatus designs required to effectively manage uncertainty, while also providing a reference resource of previous advances in high temperature thermoelectric metrology.

  10. NASA Metrology and Calibration, 1980

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The proceedings of the fourth annual NASA Metrology and Calibration Workshop are presented. This workshop covered (1) review and assessment of NASA metrology and calibration activities by NASA Headquarters, (2) results of audits by the Office of Inspector General, (3) review of a proposed NASA Equipment Management System, (4) current and planned field center activities, (5) National Bureau of Standards (NBS) calibration services for NASA, (6) review of NBS's Precision Measurement and Test Equipment Project activities, (7) NASA instrument loan pool operations at two centers, (8) mobile cart calibration systems at two centers, (9) calibration intervals and decals, (10) NASA Calibration Capabilities Catalog, and (11) development of plans and objectives for FY 1981. Several papers in this proceedings are slide presentations only.

  11. Metrology for meteorology and climate

    NASA Astrophysics Data System (ADS)

    Merlone, Andrea; Bellagarda, Simone; Bertiglia, Fabio; Coppa, Graziano; Lopardo, Giuseppina; Roggero, Guido; Sanna, Francesca

    2014-05-01

    For a few years now, a fruitful collaboration has been growing between the metrology and meteorology communities. The main need expressed by top level Institutions was for the availability of robust data for environmental and meteorological studies and for the benefit of the present and future generations of climatologists. This was translated by the metrology community into two key objectives centred on traceability and uncertainty. Essential Climate Variables (ECVs) are continuously recorded by a multitude of different sensors on satellites, balloon radiosondes, aircraft, surface weather stations, buoys, and deep sea devices; all of them working in different operating environments and affected by different influence quantities. This complex system, as a whole, requires dedicated calibration techniques and methods to guarantee fully documented traceability and measurements uncertainty evaluation, thus ensuring complete comparability of measurement results. The inclusion of measurement uncertainty in historical and future data series represents a fundamental step towards greater public confidence in evaluations of climate change. EURAMET, the European association of national institute of metrology is funding several joint research projects on those topics and is launching a task group of experts, formed by both metrologists and members of environmental, meteorological Institutions and climatologists. One of those projects, "MeteoMet" (www.meteomet.org), started in 2011 and re-funded in 2014, stands out since it hits both targets: improve the traceability of an increasing number of ECVs and promote the involvement of stakeholders in support of their needs. This mission leads to a novel vision: a permanent cooperation between metrology and meteorology based on new and existing institutions and infrastructures.

  12. Increasing the dimensions of metrology

    NASA Astrophysics Data System (ADS)

    Maurer, Wilhelm; Blaesing-Bangert, Carola; Paul, Hans-Helmut

    1990-06-01

    In any process that generates or measures pattern-placement (overlay), these parameters need to be regarded at least as two-dimensional. We show this on our procedure bringing a mask repeater under statistical process control SPC). In order to increase the accuracy of the overlay measurement process itself, plate bending has to be included as a third dimension. By taking the third dimension into account, the LMS 2000 Metrology System significantly reduces the maximum uncertainity of measurement results.

  13. Evaluation of 3D metrology potential using a multiple detector CDSEM

    NASA Astrophysics Data System (ADS)

    Hakii, Hidemitsu; Yonekura, Isao; Nishiyama, Yasushi; Tanaka, Keishi; Komoto, Kenji; Murakawa, Tsutomu; Hiroyama, Mitsuo; Shida, Soichi; Kuribara, Masayuki; Iwai, Toshimichi; Matsumoto, Jun; Nakamura, Takayuki

    2012-06-01

    As feature sizes of semiconductor device structures have continuously decreased, needs for metrology tools with high precision and excellent linearity over actual pattern sizes have been growing. And it has become important to measure not only two-dimensional (2D) but also three-dimensional (3D) shapes of patterns at 22 nm node and beyond. To meet requirements for 3D metrology capabilities, various pattern metrology tools have been developed. Among those, we assume that CDSEM metrology is the most qualified candidate in the light of its non-destructive, high throughput measurement capabilities that are expected to be extended to the much-awaited 3D metrology technology. On the basis of this supposition, we have developed the 3D metrology system, in which side wall angles and heights of photomask patterns can be measured with high accuracy through analyzing CDSEM images generated by multi-channel detectors. In this paper, we will discuss our attempts to measure 3D shapes of defect patterns on a photomask by using Advantest's "Multi Vision Metrology SEM" E3630 (MVM-SEM' E3630).

  14. Precision Metrology Using Weak Measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Lijian; Datta, Animesh; Walmsley, Ian A.

    2015-05-01

    Weak values and measurements have been proposed as a means to achieve dramatic enhancements in metrology based on the greatly increased range of possible measurement outcomes. Unfortunately, the very large values of measurement outcomes occur with highly suppressed probabilities. This raises three vital questions in weak-measurement-based metrology. Namely, (Q1) Does postselection enhance the measurement precision? (Q2) Does weak measurement offer better precision than strong measurement? (Q3) Is it possible to beat the standard quantum limit or to achieve the Heisenberg limit with weak measurement using only classical resources? We analyze these questions for two prototypical, and generic, measurement protocols and show that while the answers to the first two questions are negative for both protocols, the answer to the last is affirmative for measurements with phase-space interactions, and negative for configuration space interactions. Our results, particularly the ability of weak measurements to perform at par with strong measurements in some cases, are instructive for the design of weak-measurement-based protocols for quantum metrology.

  15. Land cover mapping using aerial and VHR satellite images for distributed hydrological modelling of periurban catchments: Application to the Yzeron catchment (Lyon, France)

    NASA Astrophysics Data System (ADS)

    Jacqueminet, C.; Kermadi, S.; Michel, K.; Béal, D.; Gagnage, M.; Branger, F.; Jankowfsky, S.; Braud, I.

    2013-04-01

    SummaryThe rapid progression of urbanization in periurban areas affects the hydrological cycle of periurban rivers. To quantify these changes, distributed hydrological modelling tools able to simulate the hydrology of periurban catchments are being developed. Land cover information is one of the data sources used to define the model mesh and parameters. The land cover in periurban catchments is characterized by a very large heterogeneity, where the vegetated and the artificial surfaces are finely overlapping. The study is conducted in the Yzeron catchment (150 km2), close to the city of Lyon, France. We explore the potential of very high-resolution (VHR) optical images (0.50-2.50 m) for retrieving information useful for those distributed hydrological models at two scales. For detailed object-oriented models, applicable to catchments of a few km2, where hydrological units are based on the cadastral units, manual digitizing based on the 0.5 m resolution image, was found to be the most accurate to provide the required information. For larger catchments of about 100 km2, three semi-automated mapping procedures (pixel based and object-oriented classifications), applied to aerial images (BD-Ortho®IGN), and two satellite images (Quickbird and Spot 5) were compared. We showed that each image/processing provided some interesting and accurate information about some of the land cover classes. We proposed to combine them into a synthesis map, taking profit of the strength of each image/processing in identifying the land cover classes and their physical properties. This synthesis map was shown to be more accurate than each map separately. We illustrate the interest of the derived maps in terms of distributed hydrological modelling. The maps were used to propose a classification of the Yzeron sub-catchments in terms of dominant vegetation cover and imperviousness. We showed that according to the image processing and images characteristics, the calculated imperviousness rates

  16. A new approach to stitching optical metrology data

    NASA Astrophysics Data System (ADS)

    King, Christopher W.

    The next generation of optical instruments, including telescopes and imaging apparatus, will generate an increased requirement for larger and more complex optical forms. A major limiting factor for the production of such optical components is the metrology: how do we measure such parts and with respect to what reference datum This metrology can be thought of as part of a complete cycle in the production of optical components and it is currently the most challenging aspect of production. This thesis investigates a new and complete approach to stitching optical metrology data to extend the effective aperture or, in future, the dynamic range of optical metrology instruments. A practical approach is used to build up a complete process for stitching on piano and spherical parts. The work forms a basis upon which a stitching system for aspheres might be developed in the future, which is inherently more complicated. Beginning with a historical perspective and a review of optical polishing and metrology, the work presented relates the commercially available metrology instruments to the stitching process developed. The stitching is then performed by a numerical optimization routine that seeks to join together overlapping sub-aperture measurements by consideration of the aberrations introduced by the measurement scenario, and by the overlap areas between measurements. The stitching is part of a larger project, the PPARC Optical Manipulation and Metrology project, and was to benefit from new wavefront sensing technology developed by a project partner, and to be used for the sub-aperture measurement. Difficult mathematical problems meant that such a wavefront sensor was not avail able for this work and a work-around was therefore developed using commercial instruments. The techniques developed can be adapted to work on commercial ma chine platforms, and in partuicular, the OMAM NPL/UCL swing-arm profilometer described in chapter 5, or the computer controlled polishing machines

  17. Mass and heat flux balance of La Soufrière volcano (Guadeloupe) from aerial infrared thermal imaging

    NASA Astrophysics Data System (ADS)

    Gaudin, Damien; Beauducel, François; Coutant, Olivier; Delacourt, Christophe; Richon, Patrick; de Chabalier, Jean-Bernard; Hammouya, Gilbert

    2016-06-01

    La Soufrière of Guadeloupe is an active volcano of Lesser Antilles that is closely monitored due to a high eruptive hazard potential. Since 1992 it exhibits a medium-level but sustained background hydrothermal activity with low-energy and shallow seismicity, hot springs temperature increase and high flux acidic gas fumaroles at the summit. The problem of estimating the heat balance and quantifying the evolution of hydrothermal activity has become a key challenge for surveillance. This work is the first attempt of a global mapping and quantification of La Soufrière thermal activity performed in February 2010 using aerial thermal infrared imagery. After instrument calibration and data processing, we present a global map of thermal anomalies allowing to spot the main active sites: the summit area (including the fumaroles of Tarissan Pit and South Crater), the Ty Fault fumarolic zone, and the hot springs located at the vicinity of the dome. In a second step, we deduce the mass and the energy fluxes released by the volcano. In particular, we propose a simple model of energy balance to estimate the mass flux of the summit fumaroles from their brightness temperature and size. In February 2010, Tarissan Pit had a 22.8 ± 8.1 kg s -1 flux (1970 ± 704 tons day -1), while South Crater vents had a total of 19.5 ± 4.0 kg s -1 (1687 ± 348 tons day -1). Once converted into energy flux, summit fumaroles represent 98% of the 106 ± 30 MW released by the volcano, the 2% remaining being split between the hot springs and the thermal anomalies at the summit and at the Ty Fault fumarolic zone. These values are in the high range of the previous estimations, highlighting the short-term variability of the expelled fluxes. Such a heat flux requires the cooling of 1500 m 3 of magma per day, in good agreement with previous geochemical studies.

  18. Assessment of the metrological performance of an in situ storage image sensor ultra-high speed camera for full-field deformation measurements

    NASA Astrophysics Data System (ADS)

    Rossi, Marco; Pierron, Fabrice; Forquin, Pascal

    2014-02-01

    Ultra-high speed (UHS) cameras allow us to acquire images typically up to about 1 million frames s-1 for a full spatial resolution of the order of 1 Mpixel. Different technologies are available nowadays to achieve these performances, an interesting one is the so-called in situ storage image sensor architecture where the image storage is incorporated into the sensor chip. Such an architecture is all solid state and does not contain movable devices as occurs, for instance, in the rotating mirror UHS cameras. One of the disadvantages of this system is the low fill factor (around 76% in the vertical direction and 14% in the horizontal direction) since most of the space in the sensor is occupied by memory. This peculiarity introduces a series of systematic errors when the camera is used to perform full-field strain measurements. The aim of this paper is to develop an experimental procedure to thoroughly characterize the performance of such kinds of cameras in full-field deformation measurement and identify the best operative conditions which minimize the measurement errors. A series of tests was performed on a Shimadzu HPV-1 UHS camera first using uniform scenes and then grids under rigid movements. The grid method was used as full-field measurement optical technique here. From these tests, it has been possible to appropriately identify the camera behaviour and utilize this information to improve actual measurements.

  19. Improving automated 3D reconstruction methods via vision metrology

    NASA Astrophysics Data System (ADS)

    Toschi, Isabella; Nocerino, Erica; Hess, Mona; Menna, Fabio; Sargeant, Ben; MacDonald, Lindsay; Remondino, Fabio; Robson, Stuart

    2015-05-01

    This paper aims to provide a procedure for improving automated 3D reconstruction methods via vision metrology. The 3D reconstruction problem is generally addressed using two different approaches. On the one hand, vision metrology (VM) systems try to accurately derive 3D coordinates of few sparse object points for industrial measurement and inspection applications; on the other, recent dense image matching (DIM) algorithms are designed to produce dense point clouds for surface representations and analyses. This paper strives to demonstrate a step towards narrowing the gap between traditional VM and DIM approaches. Efforts are therefore intended to (i) test the metric performance of the automated photogrammetric 3D reconstruction procedure, (ii) enhance the accuracy of the final results and (iii) obtain statistical indicators of the quality achieved in the orientation step. VM tools are exploited to integrate their main functionalities (centroid measurement, photogrammetric network adjustment, precision assessment, etc.) into the pipeline of 3D dense reconstruction. Finally, geometric analyses and accuracy evaluations are performed on the raw output of the matching (i.e. the point clouds) by adopting a metrological approach. The latter is based on the use of known geometric shapes and quality parameters derived from VDI/VDE guidelines. Tests are carried out by imaging the calibrated Portable Metric Test Object, designed and built at University College London (UCL), UK. It allows assessment of the performance of the image orientation and matching procedures within a typical industrial scenario, characterised by poor texture and known 3D/2D shapes.

  20. Classification of Urban Feature from Unmanned Aerial Vehicle Images Using Gasvm Integration and Multi-Scale Segmentation

    NASA Astrophysics Data System (ADS)

    Modiri, M.; Salehabadi, A.; Mohebbi, M.; Hashemi, A. M.; Masumi, M.

    2015-12-01

    The use of UAV in the application of photogrammetry to obtain cover images and achieve the main objectives of the photogrammetric mapping has been a boom in the region. The images taken from REGGIOLO region in the province of, Italy Reggio -Emilia by UAV with non-metric camera Canon Ixus and with an average height of 139.42 meters were used to classify urban feature. Using the software provided SURE and cover images of the study area, to produce dense point cloud, DSM and Artvqvtv spatial resolution of 10 cm was prepared. DTM area using Adaptive TIN filtering algorithm was developed. NDSM area was prepared with using the difference between DSM and DTM and a separate features in the image stack. In order to extract features, using simultaneous occurrence matrix features mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment, and correlation for each of the RGB band image was used Orthophoto area. Classes used to classify urban problems, including buildings, trees and tall vegetation, grass and vegetation short, paved road and is impervious surfaces. Class consists of impervious surfaces such as pavement conditions, the cement, the car, the roof is stored. In order to pixel-based classification and selection of optimal features of classification was GASVM pixel basis. In order to achieve the classification results with higher accuracy and spectral composition informations, texture, and shape conceptual image featureOrthophoto area was fencing. The segmentation of multi-scale segmentation method was used.it belonged class. Search results using the proposed classification of urban feature, suggests the suitability of this method of classification complications UAV is a city using images. The overall accuracy and kappa coefficient method proposed in this study, respectively, 47/93% and 84/91% was.

  1. Calculations and surface quality measurements of high-asymmetry angle x-ray crystal monochromators for advanced x-ray imaging and metrological applications

    NASA Astrophysics Data System (ADS)

    Zápražný, Zdenko; Korytár, Dušan; Jergel, Matej; Šiffalovič, Peter; Dobročka, Edmund; Vagovič, Patrik; Ferrari, Claudio; Mikulík, Petr; Demydenko, Maksym; Mikloška, Marek

    2015-03-01

    We present the numerical optimization and the technological development progress of x-ray optics based on asymmetric germanium crystals. We show the results of several basic calculations of diffraction properties of germanium x-ray crystal monochromators and of an analyzer-based imaging method for various asymmetry factors using an x-ray energy range from 8 to 20 keV. The important parameter of highly asymmetric monochromators as image magnifiers or compressors is the crystal surface quality. We have applied several crystal surface finishing methods, including advanced nanomachining using single-point diamond turning (SPDT), conventional mechanical lapping, chemical polishing, and chemomechanical polishing, and we have evaluated these methods by means of atomic force microscopy, diffractometry, reciprocal space mapping, and others. Our goal is to exclude the chemical etching methods as the final processing technique because it causes surface undulations. The aim is to implement very precise deterministic methods with a control of surface roughness down to 0.1 nm. The smallest roughness (˜0.3 nm), best planarity, and absence of the subsurface damage were observed for the sample which was machined using an SPDT with a feed rate of 1 mm/min and was consequently polished using a fine polishing 15-min process with a solution containing SiO2 nanoparticles (20 nm).

  2. Aerial radiation surveys

    SciTech Connect

    Jobst, J.

    1980-01-01

    A recent aerial radiation survey of the surroundings of the Vitro mill in Salt Lake City shows that uranium mill tailings have been removed to many locations outside their original boundary. To date, 52 remote sites have been discovered within a 100 square kilometer aerial survey perimeter surrounding the mill; 9 of these were discovered with the recent aerial survey map. Five additional sites, also discovered by aerial survey, contained uranium ore, milling equipment, or radioactive slag. Because of the success of this survey, plans are being made to extend the aerial survey program to other parts of the Salt Lake valley where diversions of Vitro tailings are also known to exist.

  3. Advanced defect and metrology solutions

    NASA Astrophysics Data System (ADS)

    Novak, Erik

    2014-05-01

    Cost, weight, performance, and lifetime requirements for precision components used throughout the aerospace and defense industries are driving innovative mechanical designs, manufacturing processes and use of new materials. In turn, these advanced components typically require tighter dimensional and surface tolerances to function as designed. Scratch testers, microscope-based systems, and other traditional metrology systems are inadequate for roughness, small-scale geometry, and defect determination on many of these parts. This talk will examine the advantages and disadvantages of some of the new technologies developed to provide more robust, versatile, and sensitive measurements of precision components for advanced manufacturing environments.

  4. Loschmidt echo for quantum metrology

    NASA Astrophysics Data System (ADS)

    Macrı, Tommaso; Smerzi, Augusto; Pezzè, Luca

    2016-07-01

    We propose a versatile Loschmidt echo protocol to detect and quantify multiparticle entanglement. It allows us to extract the quantum Fisher information for arbitrary pure states, and finds direct application in quantum metrology. In particular, the protocol applies to states that are generally difficult to characterize, as non-Gaussian states, and states that are not symmetric under particle exchange. We focus on atomic systems, including trapped ions, polar molecules, and Rydberg atoms, where entanglement is generated dynamically via long-range interaction, and show that the protocol is stable against experimental detection errors.

  5. Metrology Careers: Jobs for Good Measure

    ERIC Educational Resources Information Center

    Liming, Drew

    2009-01-01

    What kind of career rewards precision and accuracy? One in metrology--the science of measurement. By evaluating and calibrating the technology in people's everyday lives, metrologists keep their world running smoothly. Metrology is used in the design and production of almost everything people encounter daily, from the cell phones in their pockets…

  6. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    SciTech Connect

    Yuan, Sheng; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Rich; Church, Matthew; McKinney, Wayne R.; Morrison, Greg; Warwick, Tony

    2010-01-31

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situ visible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  7. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    SciTech Connect

    Yuan, S.; Yashchuk, V.V.; Goldberg, K.A.; Celestre, R.; Church, M.; McKinney, W.R.; Morrison, G.; Warwick, T.

    2009-09-18

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situvisible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  8. X-ray microscope assemblies. Final report and metrology report

    SciTech Connect

    Zehnpfennig, T.F.

    1981-04-13

    This is the Final Report and Metrology Report prepared under Lawrence Livermore Laboratory Subcontract 9936205, X-ray Microscope Assemblies. The purpose of this program was to design, fabricate, and perform detailed metrology on an axisymmetric grazing-incidence x-ray microscope (XRMS) to be used as a diagnostic instrument in the Lawrence Livermore Laser Fusion Program. The optical configuration chosen for this device consists of two internally polished surfaces of revolution: an hyperboloid facing the object; and a confocal, co-axial elliposid facing the image. This arrangement is known as the Wolter Type-I configuration. The grazing angle of reflection for both surfaces is approximately 1/sup 0/. The general optical performance goals under this program were to achieve a spatial resolution in the object plane in the soft x-ray region of approximately 1 micron, and to achieve an effective solid collecting angle which is an appreciable fraction of the geometric solid collecting angle.

  9. Application of optical coherence tomography to automated contact lens metrology

    NASA Astrophysics Data System (ADS)

    Davidson, Bryan R.; Barton, Jennifer K.

    2010-01-01

    Optical coherence tomography (OCT) is a nondestructive imaging modality with the potential to make quantitative spatial measurements. OCT's noncontact nature, sensitivity to small refractive index mismatches, and micron-scale resolution make it attractive for contact lens metrology, specifically, measuring prism. Prism is defined as the maximum difference in thickness of the contact lens, measured over a full 360 deg of rotation, at a fixed distance from the contact lens edge. We develop and test a novel algorithm that automatically analyzes OCT images and calculates prism. Images are obtained using a Thorlabs OCT930SR OCT system. The OCT probe is fastened to an automated rotation stage that rotates 360 deg in small increments (typically 10 deg) to acquire OCT images of the edge of the contact lens around the entire circumference. The images are 1.6 mm in optical depth (512 pixels) and 2 mm wide (1000 pixels). Several sets of images are successfully analyzed. The prism measured for a toric lens is 42 μm, which is in line with design parameters. Thickness measurements are repeatable with a standard deviation of 0.5 μm and maximum range of 1.8 μm over ten image sets. This work demonstrates the possibility of using OCT to perform nondestructive contact lens metrology.

  10. Quantum cascade laser THz metrology

    NASA Astrophysics Data System (ADS)

    De Natale, P.; Consolino, L.; Mazzotti, D.; Campa, A.; Ravaro, M.; Vitiello, M. S.; Bartalini, S.

    2015-01-01

    The realization and control of radiation sources is the key for proper development of THz-based metrology. Quantum Cascade Lasers (QCLs) are crucial, towards this purpose, due to their compactness and flexibility and, even more important, to their narrow quantum-limited linewidth. We recently generated an air-propagating THz comb, referenced to an optical frequency comb by nonlinear optical rectification of a mode-locked femtosecond Ti:Sa laser and used it for phase-locking a 2.5 THz QCL. We have now demonstrated that this source can achieve a record low 10 parts per trillion absolute frequency stability (in tens of seconds), enabling high precision molecular spectroscopy. As a proof-ofprinciple, we measured the frequency of a rotational transition in a gas molecule (methanol) with an unprecedented precision (4 parts in one billion). A simple, though sensitive, direct absorption spectroscopy set-up could be used thanks to the mW-level power available from the QCL. The 10 kHz uncertainty level ranks this technique among the most precise ever developed in the THz range, challenging present theoretical molecular models. Hence, we expect that this new class of THz spectrometers opens new scenarios for metrological-grade molecular physics, including novel THzbased astronomy, high-precision trace-gas sensing, cold molecules physics, also helping to improve present theoretical models.

  11. SEM simulation for 2D and 3D inspection metrology and defect review

    NASA Astrophysics Data System (ADS)

    Levi, Shimon; Schwartsband, Ishai; Khristo, Sergey; Ivanchenko, Yan; Adan, Ofer

    2014-03-01

    Advanced SEM simulation has become a key element in the ability of SEM inspection, metrology and defect review to meet the challenges of advanced technologies. It grants additional capabilities to the end user, such as 3D height measurements, accurate virtual metrology, and supports Design Based Metrology to bridge the gap between design layout and SEM image. In this paper we present SEM simulations capabilities, which take into consideration all parts of the SEM physical and electronic path, interaction between Electron beam and material, multi perspective SEM imaging and shadowing derived from proximity effects caused by the interaction of the Secondary Electrons signal with neighboring pattern edges. Optimizing trade-off between simulation accuracy, calibration procedures and computational complexity, the simulation is running in real-time with minimum impact on throughput. Experiment results demonstrate Height measurement capacities, and CAD based simulated pattern is compared with SEM image to evaluate simulated pattern fidelity.

  12. Model-based automatic 3d building model generation by integrating LiDAR and aerial images

    NASA Astrophysics Data System (ADS)

    Habib, A.; Kwak, E.; Al-Durgham, M.

    2011-12-01

    Accurate, detailed, and up-to-date 3D building models are important for several applications such as telecommunication network planning, urban planning, and military simulation. Existing building reconstruction approaches can be classified according to the data sources they use (i.e., single versus multi-sensor approaches), the processing strategy (i.e., data-driven, model-driven, or hybrid), or the amount of user interaction (i.e., manual, semiautomatic, or fully automated). While it is obvious that 3D building models are important components for many applications, they still lack the economical and automatic techniques for their generation while taking advantage of the available multi-sensory data and combining processing strategies. In this research, an automatic methodology for building modelling by integrating multiple images and LiDAR data is proposed. The objective of this research work is to establish a framework for automatic building generation by integrating data driven and model-driven approaches while combining the advantages of image and LiDAR datasets.

  13. Low-cost, quantitative assessment of highway bridges through the use of unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Ellenberg, Andrew; Kontsos, Antonios; Moon, Franklin; Bartoli, Ivan

    2016-04-01

    Many envision that in the near future the application of Unmanned Aerial Vehicles (UAVs) will impact the civil engineering industry. Use of UAVs is currently experiencing tremendous growth, primarily in military and homeland security applications. It is only a matter of time until UAVs will be widely accepted as platforms for implementing monitoring/surveillance and inspection in other fields. Most UAVs already have payloads as well as hardware/software capabilities to incorporate a number of non-contact remote sensors, such as high resolution cameras, multi-spectral imaging systems, and laser ranging systems (LIDARs). Of critical importance to realizing the potential of UAVs within the infrastructure realm is to establish how (and the extent to which) such information may be used to inform preservation and renewal decisions. Achieving this will depend both on our ability to quantify information from images (through, for example, optical metrology techniques) and to fuse data from the array of non-contact sensing systems. Through a series of applications to both laboratory-scale and field implementations on operating infrastructure, this paper will present and evaluate (through comparison with conventional approaches) various image processing and data fusion strategies tailored specifically for the assessment of highway bridges. Example scenarios that guided this study include the assessment of delaminations within reinforced concrete bridge decks, the quantification of the deterioration of steel coatings, assessment of the functionality of movement mechanisms, and the estimation of live load responses (inclusive of both strain and displacement).

  14. A European Roadmap for Thermophysical Properties Metrology

    NASA Astrophysics Data System (ADS)

    Filtz, J.-R.; Wu, J.; Stacey, C.; Hollandt, J.; Monte, C.; Hay, B.; Hameury, J.; Villamañan, M. A.; Thurzo-Andras, E.; Sarge, S.

    2015-03-01

    A roadmap for thermophysical properties metrology was developed in spring 2011 by the Thermophysical Properties Working Group in the EURAMET Technical Committee in charge of Thermometry, Humidity and Moisture, and Thermophysical Properties metrology. This roadmapping process is part of the EURAMET (European Association of National Metrology Institutes) activities aiming to increase impact from national investment in European metrology R&D. The roadmap shows a shared vision of how the development of thermophysical properties metrology should be oriented over the next 15 years to meet future social and economic needs. Since thermophysical properties metrology is a very broad and varied field, the authors have limited this roadmap to the following families of properties: thermal transport properties (thermal conductivity, thermal diffusivity, etc.), radiative properties (emissivity, absorbance, reflectance, and transmittance), caloric quantities (specific heat, enthalpy, etc.), thermodynamic properties (PVT and phase equilibria properties), and temperature-dependent quantities (thermal expansion, compressibility, etc.). This roadmap identifies the main societal and economical triggers that drive developments in thermophysical properties metrology. The key topics considered are energy, environment, advanced manufacturing and processing, public safety, security, and health. Key targets that require improved thermophysical properties measurements are identified in order to address these triggers. Ways are also proposed for defining the necessary skills and the main useful means to be implemented. These proposals will have to be revised as needs and technologies evolve in the future.

  15. MSFC Optical Metrology: A National Resource

    NASA Technical Reports Server (NTRS)

    Burdine, Robert

    1998-01-01

    A national need exists for Large Diameter Optical Metrology Services. These services include the manufacture, testing, and assurance of precision and control necessary to assure the success of large optical projects. "Best Practices" are often relied on for manufacture and quality controls while optical projects are increasingly more demanding and complex. Marshall Space Flight Center (MSFC) has acquired unique optical measurement, testing and metrology capabilities through active participation in a wide variety of NASA optical programs. An overview of existing optical facilities and metrology capabilities is given with emphasis on use by other optical projects. Cost avoidance and project success is stressed through use of existing MSFC facilities and capabilities for measurement and metrology controls. Current issues in large diameter optical metrology are briefly reviewed. The need for a consistent and long duration Large Diameter Optical Metrology Service Group is presented with emphasis on the establishment of a National Large Diameter Optical Standards Laboratory. Proposals are made to develop MSFC optical standards and metrology capabilities as the primary national standards resource, providing access to MSFC Optical Core Competencies for manufacturers and researchers. Plans are presented for the development of a national lending library of precision optical standards with emphasis on cost avoidance while improving measurement assurance.

  16. 11. Photocopy of aerial photograph (original aerial located in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photocopy of aerial photograph (original aerial located in the U.S. Forest Service, Toiyabe National Forest, Carson District Office). AERIAL VIEW OF THE GENOA PEAK ROAD, SPUR. - Genoa Peak Road, Spur, Glenbrook, Douglas County, NV

  17. A Remotely Deployed Laser System for Viewing/Metrology

    SciTech Connect

    Barry, R.E.; Herndon, J.N.; Menon, M.M.; Spampinato, P.T.

    1999-04-25

    A metrology system is being developed for in-vessel inspection of present day experimental, and next generation fusion reactors. It requires accurate measuring capability to verify sub-millimeter alignment of plasma-facing components in the reactor vessel. A metrology system capable of achieving such accuracy for next generation reactors must be compatible with the vessel environment of high gamma radiation, high vacuum, elevated temperature, and magnetic field. This environment requires that the system must be remotely deployed. A coherent, frequency modulated laser radar system that is capable of correcting for environmental vibration meets these requirements. The metrologyhiewing system consists of a compact laser transceiver optics module which is linked through fiber optics to the laser source and imaging units, that are located outside of the harsh environment. The deployment mechanism configured for a next generation reactor was telescopic-mast positioning system. This paper identifies the requirements for the metrology/viewing system having precision ranging and surface mapping capability, and discusses the results of various environmental tests.

  18. Metrology in Pharmaceutical Industry - A Case Study

    NASA Astrophysics Data System (ADS)

    Yuvamoto, Priscila D.; Fermam, Ricardo K. S.; Nascimento, Elizabeth S.

    2016-07-01

    Metrology is recognized by improving production process, increasing the productivity, giving more reliability to the measurements and consequently, it impacts in the economy of a country. Pharmaceutical area developed GMP (Good Manufacture Practice) requeriments, with no introduction of metrological concepts. However, due to Nanomedicines, it is expected this approach and the consequent positive results. The aim of this work is to verify the level of metrology implementation in a Brazilian pharmaceutical industry, using a case study. The purpose is a better mutual comprehension by both areas, acting together and governmental support to robustness of Brazilian pharmaceutical area.

  19. Quantum Error Correction for Metrology

    NASA Astrophysics Data System (ADS)

    Sushkov, Alex; Kessler, Eric; Lovchinsky, Igor; Lukin, Mikhail

    2014-05-01

    The question of the best achievable sensitivity in a quantum measurement is of great experimental relevance, and has seen a lot of attention in recent years. Recent studies [e.g., Nat. Phys. 7, 406 (2011), Nat. Comms. 3, 1063 (2012)] suggest that in most generic scenarios any potential quantum gain (e.g. through the use of entangled states) vanishes in the presence of environmental noise. To overcome these limitations, we propose and analyze a new approach to improve quantum metrology based on quantum error correction (QEC). We identify the conditions under which QEC allows one to improve the signal-to-noise ratio in quantum-limited measurements, and we demonstrate that it enables, in certain situations, Heisenberg-limited sensitivity. We discuss specific applications to nanoscale sensing using nitrogen-vacancy centers in diamond in which QEC can significantly improve the measurement sensitivity and bandwidth under realistic experimental conditions.

  20. Metrology for Fuel Cell Manufacturing

    SciTech Connect

    Stocker, Michael; Stanfield, Eric

    2015-02-04

    The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. The objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.

  1. Quantum resistance metrology in graphene

    SciTech Connect

    Giesbers, A. J. M.; Zeitler, U.; Maan, J. C.; Rietveld, G.; Houtzager, E.; Yang, R.; Novoselov, K. S.; Geim, A. K.

    2008-12-01

    We performed a metrological characterization of the quantum Hall resistance in a 1 {mu}m wide graphene Hall bar. The longitudinal resistivity in the center of the {nu}={+-}2 quantum Hall plateaus vanishes within the measurement noise of 20 m{omega} up to 2 {mu}A. Our results show that the quantization of these plateaus is within the experimental uncertainty (15 ppm for 1.5 {mu}A current) equal to that in conventional semiconductors. The principal limitation of the present experiments is the relatively high contact resistances in the quantum Hall regime, leading to a significantly increased noise across the voltage contacts and a heating of the sample when a high current is applied.

  2. Low cost capacimeter, metrological analysis

    NASA Astrophysics Data System (ADS)

    Kramar, M. G.; Souza, R. U.; Machado, V.

    2016-07-01

    Daily, for electronic professionals, a common need is to measure a capacitance from a capacitor. Often this measurement requires expensive equipments, not portables. This paper describes the development of an electronic circuit capable of measuring capacitance within the range of 100 nF up to 1 mF, providing a reliable and affordable system. Measures had been taken and metrological analyzes were performed on the experimental data. Also, the system theoretical model was evaluated in order to compare the behavior of both: practical and modeled system, investigating the availability of further improvements. A functional circuit with uncertainties compatible to those, provided for the theoretical model was developed. The developed system proved to be accurate, inexpensive and suitable for portable measurements.

  3. Swept Frequency Laser Metrology System

    NASA Technical Reports Server (NTRS)

    Zhao, Feng (Inventor)

    2010-01-01

    A swept frequency laser ranging system having sub-micron accuracy that employs multiple common-path heterodyne interferometers, one coupled to a calibrated delay-line for use as an absolute reference for the ranging system. An exemplary embodiment uses two laser heterodyne interferometers to create two laser beams at two different frequencies to measure distance and motions of target(s). Heterodyne fringes generated from reflections off a reference fiducial X(sub R) and measurement (or target) fiducial X(sub M) are reflected back and are then detected by photodiodes. The measured phase changes Delta phi(sub R) and Delta phi (sub m) resulting from the laser frequency swept gives target position. The reference delay-line is the only absolute reference needed in the metrology system and this provides an ultra-stable reference and simple/economical system.

  4. Draper Laboratory small autonomous aerial vehicle

    NASA Astrophysics Data System (ADS)

    DeBitetto, Paul A.; Johnson, Eric N.; Bosse, Michael C.; Trott, Christian A.

    1997-06-01

    The Charles Stark Draper Laboratory, Inc. and students from Massachusetts Institute of Technology and Boston University have cooperated to develop an autonomous aerial vehicle that won the 1996 International Aerial Robotics Competition. This paper describes the approach, system architecture and subsystem designs for the entry. This entry represents a combination of many technology areas: navigation, guidance, control, vision processing, human factors, packaging, power, real-time software, and others. The aerial vehicle, an autonomous helicopter, performs navigation and control functions using multiple sensors: differential GPS, inertial measurement unit, sonar altimeter, and a flux compass. The aerial transmits video imagery to the ground. A ground based vision processor converts the image data into target position and classification estimates. The system was designed, built, and flown in less than one year and has provided many lessons about autonomous vehicle systems, several of which are discussed. In an appendix, our current research in augmenting the navigation system with vision- based estimates is presented.

  5. Spacetime Metrology with LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Congedo, Giuseppe

    2012-04-01

    LISA is the proposed ESA-NASA gravitational wave detector in the 0.1 mHz - 0.1 Hz band. LISA Pathfinder is the down-scaled version of a single LISA arm. The arm - named Doppler link - can be treated as a differential accelerometer, measuring the relative acceleration between test masses. LISA Pathfinder - the in-flight test of the LISA instrumentation - is currently in the final implementation and planned to be launched in 2014. It will set stringent constraints on the ability to put test masses in geodesic motion to within the required differential acceleration of 3times10^{-14} m s^{-2} Hz^{-1/2} and track their relative motion to within the required differential displacement measurement noise of 9times10^{-12} m Hz^{-1/2}, around 1 mHz. Given the scientific objectives, it will carry out - for the first time with such high accuracy required for gravitational wave detection - the science of spacetime metrology, in which the Doppler link between two free-falling test masses measures the curvature. This thesis contains a novel approach to the calculation of the Doppler response to gravitational waves. It shows that the parallel transport of 4-vectors records the history of gravitational wave signals. In practice, the Doppler link is implemented with 4 bodies in LISA and 3 bodies in LISA Pathfinder. To compensate for noise sources a control logic is implemented during the measurement. The closed-loop dynamics of LISA Pathfinder can be condensed into operators acting on the motion coordinates, handling the couplings, as well as the cross-talks. The scope of system identification is the optimal calibration of the instrument. This thesis describes some data analysis procedures applied to synthetic experiments and shows the relevance of system identification for the success of LISA Pathfinder in demonstrating the principles of spacetime metrology for all future space-based missions.

  6. National Needs for Appearance Metrology

    NASA Astrophysics Data System (ADS)

    Nadal, Maria E.

    2003-04-01

    Appearance greatly influences a customer's judgement of the quality and acceptability of manufactured products, as yearly there is approximately $700 billion worth of shipped goods for which overall appearance is critical to their sale. For example, appearance is reported to be a major factor in about half of automobile purchases. The appearance of an object is the result of a complex interaction of the light field incident upon the object, the scattering and absorption properties of the object, and human perception. The measurable attributes of appearance are divided into color (hue, saturation, and lightness) and geometry (gloss, haze). The nature of the global economy has increased international competition and the need to improve the quality of many manufactured products. Since the manufacturing and marketing of these products is international in scope, the lack of national appearance standard artifacts and measurement protocols results in a direct loss to the supplier. One of the primary missions of the National Institute of Standards and Technology (NIST) is to strengthen the U.S. economy by working with industry to develop and apply technology, measurements and standards. The NIST Physics Laboratory has established an appearance metrology laboratory. This new laboratory provides calibration services for 0^o/45^o color standards and 20^o°, 60^o°, and 85^o° specular gloss, and research in the colorimetric characterization of gonioapparent including a new Standard Reference Material for metallic coatings (SRM 2017) and measurement protocols for pearlescent coatings. These services are NIST's first appearance metrology efforts in many years; a response to needs articulated by industry. These services are designed to meet demands for improved measurements and standards to enhance the acceptability of final products since appearance often plays a major role in their acceptability.

  7. Surface metrology using laser trackers

    NASA Astrophysics Data System (ADS)

    Enriquez, Rogerio; Sampieri, Cesar E.

    2005-02-01

    During the process of manufacture or measuring large components, position and orientation are needed thus; a method based in surveying the surface can be used to describe them. This method requires an ensemble of measurements of fixed points whose coordinates are unknown. Afterwards resulting observations are manipulated to determinate objects position in order to apply surface metrology. In this work, a methodology to reduce uncertainties in surface measuring is presented. When measuring large surfaces, numerical methods can reduce uncertainties in the measures, and this can be done with instruments as such as the Laser Tracker (LT). Calculations use range and angles measures, in order to determinate the coordinates of tridimensional unknown positions from differents surveying points. The purpose of this work, is to solve problems of surface metrology with given tolerances; with advantages in resources and results, instead of making time sacrifices. Here, a hybrid methodology is developed, combining Laser Tracker with GPS theories and analysis. Such a measuring position system can be used in applications where the use of others systems are unpractical, mainly because this kind of measuring instruments are portables and capable to track and report results in real-time, it can be used in virtually anyplace. Simulations to measure panels for the Large Millimetric Telescope (LMT/GTM) in Mexico were done. A first benefit from using this method is that instrument is not isolated from its measuring environment. Instead, the system is thought as a whole with operator, measuring environment and targets. This solution provides an effective way, and a more precise measurement, because it does optimize the use of the instrument and uses additional information to strength the solution.

  8. Metrology, applications and methods with high energy CT systems

    SciTech Connect

    Uhlmann, N.; Voland, V.; Salamon, M.; Hebele, S.; Boehnel, M.; Reims, N.; Schmitt, M.; Kasperl, S.

    2014-02-18

    The increase of Computed Tomography (CT) as an applicable metrology and Non Destructive Testing (NDT) method raises interest on developing the application fields to larger objects, which were rarely used in the past due to their requirements on the imaging system. Especially the classical X-ray generation techniques based on standard equipment restricted the applications of CT to typical material penetration lengths of only a few cm of steel. Even with accelerator technology that offers a suitable way to overcome these restrictions just the 2D radioscopy technique found a widespread application. Beside the production and detection of photons in the MeV range itself, the achievable image quality is limited using standard detectors due to the dominating absorption effect of Compton Scattering at high energies. Especially for CT reconstruction purposes these effects have to be considered on the development path from 2D to 3D imaging. Most High Energy CT applications are therefore based on line detectors shielding scattered radiation to a maximum with an increase in imaging quality but with time consuming large volume scan capabilities. In this contribution we present the High-Energy X-ray Imaging project at the Fraunhofer Development Centre for X-ray Technology with the characterization and the potential of the CT-system according to metrological and other application capabilities.

  9. Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) from an Unmanned Aerial Vehicle (UAV): Results from the 2014 AROMAT campaign

    NASA Astrophysics Data System (ADS)

    Merlaud, Alexis; Tack, Frederik; Constantin, Daniel; Fayt, Caroline; Maes, Jeroen; Mingireanu, Florin; Mocanu, Ionut; Georgescu, Lucian; Van Roozendael, Michel

    2015-04-01

    The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) is an instrument dedicated to atmospheric trace gas retrieval from an Unmanned Aerial Vehicle (UAV). The payload is based on a compact visible spectrometer and a scanning mirror to collect scattered sunlight. Its weight, size, and power consumption are respectively 920 g, 27x12x12 cm3, and 6 W. The custom-built 2.5 m flying wing UAV is electrically powered, has a typical airspeed of 100 km/h, and can operate at a maximum altitude of 3 km. Both the payload and the UAV were developed in the framework of a collaboration between the Belgian Institute for Space Aeronomy (BIRA-IASB) and the Dunarea de Jos University of Galati, Romania. We present here SWING-UAV test flights dedicated to NO2 measurements and performed in Romania on 10 and 11 September 2014, during the Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign. The UAV performed 5 flights in the vicinity of the large thermal power station of Turceni (44.67° N, 23.4° E). The UAV was operated in visual range during the campaign, up to 900 m AGL , downwind of the plant and crossing its exhaust plume. The spectra recorded on flight are analyzed with the Differential Optical Absorption Spectroscopy (DOAS) method. The retrieved NO2 Differential Slant Column Densities (DSCDs) are up to 1.5e17 molec/cm2 and reveal the horizontal gradients around the plant. The DSCDs are converted to vertical columns and compared with coincident car-based DOAS measurements. We also present the near-future perspective of the SWING-UAV observation system, which includes flights in 2015 above the Black Sea to quantify ship emissions, the addition of SO2 as a target species, and autopilot flights at higher altitudes to cover a typical satellite pixel extent (10x10 km2).

  10. Looking for an old aerial photograph

    USGS Publications Warehouse

    ,

    1997-01-01

    Attempts to photograph the surface of the Earth date from the 1800's, when photographers attached cameras to balloons, kites, and even pigeons. Today, aerial photographs and satellite images are commonplace. The rate of acquiring aerial photographs and satellite images has increased rapidly in recent years. Views of the Earth obtained from aircraft or satellites have become valuable tools to Government resource planners and managers, land-use experts, environmentalists, engineers, scientists, and a wide variety of other users. Many people want historical aerial photographs for business or personal reasons. They may want to locate the boundaries of an old farm or a piece of family property. Or they may want a photograph as a record of changes in their neighborhood, or as a gift. The U.S. Geological Survey (USGS) maintains the Earth Science Information Centers (ESIC?s) to sell aerial photographs, remotely sensed images from satellites, a wide array of digital geographic and cartographic data, as well as the Bureau?s wellknown maps. Declassified photographs from early spy satellites were recently added to the ESIC offerings of historical images. Using the Aerial Photography Summary Record System database, ESIC researchers can help customers find imagery in the collections of other Federal agencies and, in some cases, those of private companies that specialize in esoteric products.

  11. Quantitative extraction of bedrock exposed rate based on unmanned aerial vehicle data and TM image in Karst Environment

    NASA Astrophysics Data System (ADS)

    wang, hongyan; li, qiangzi; du, xin; zhao, longcai

    2016-04-01

    In the karst regions of Southwest China, rocky desertification is one of the most serious problems of land degradation. The bedrock exposed rate is one of the important indexes to assess the degree of rocky desertification in the karst regions. Because of the inherent merits of macro scale, frequency, efficiency and synthesis, remote sensing is the promising method to monitor and assess karst rocky desertification on large scale. However, the actual measurement of bedrock exposed rate is difficult and existing remote sensing methods cannot directly be exploited to extract the bedrock exposed rate owing to the high complexity and heterogeneity of karst environments. Therefore, based on the UAV and TM data, the paper selected Xingren County as the research area, and the quantitative extraction of the bedrock exposed rate based on the multi scale remote sensing data was developed. Firstly, we used the object oriented method to carry out the accurate classification of UAV image and based on the results of rock extraction, the bedrock exposed rate was calculated in the 30m grid scale. Parts of the calculated samples were as training data and another samples were as the model validation data. Secondly, in each grid the band reflectivity of TM data was extracted and we also calculated a variety of rock index and vegetation index (NDVI, SAVI etc.). Finally, the network model was established to extract the bedrock exposed rate, the correlation coefficient (R) of the network model was 0.855 and the correlation coefficient (R) of the validation model was 0.677, the root mean square error (RMSE) was 0.073. Based on the quantitative inversion model, the distribution map of the bedrock exposed rate in Xingren County was obtained. Keywords: Bedrock exposed rate, quantitative extraction, UAV and TM data, Karst rocky desertification.

  12. Improving wafer level CD uniformity for logic applications utilizing mask level metrology and process

    NASA Astrophysics Data System (ADS)

    Cohen, Avi; Trautzsch, Thomas; Buttgereit, Ute; Graitzer, Erez; Hanuka, Ori

    2013-09-01

    Critical Dimension Uniformity (CDU) is one of the key parameters necessary to assure good performance and reliable functionality of any integrated circuit (IC). The extension of 193nm based lithography usage combined with design rule shrinkage makes process control, in particular the wafer level CDU control, an extremely important and challenging task in IC manufacturing. In this study the WLCD-CDC closed loop solution offered by Carl Zeiss SMS was examined. This solution aims to improve the wafer level intra-field CDU without the need to run wafer prints and extensive wafer CD metrology. It combines two stand-alone tools: The WLCD tool which measures CD based on aerial imaging technology while applying the exact scanner-used illumination conditions to the photomask and the CDC tool which utilizes an ultra-short femto-second laser to write intra-volume shading elements (Shade-In Elements™) inside the photomask bulk material. The CDC process changes the dose going through the photomask down to the wafer, hence the wafer level intra-field CDU improves. The objective of this study was to evaluate how CDC process is affecting the CD for different type of features and pattern density which are typical for logic and system on chip (SOC) devices. The main findings show that the linearity and proximity behavior is maintained by the CDC process and CDU and CDC Ratio (CDCR) show a linear behavior for the different feature types. Finally, it was demonstrated that the CDU errors of the targeted (critical) feature have been effectively eliminated. In addition, the CDU of all other features have been significantly improved as well.

  13. Aerial photographic reproductions

    USGS Publications Warehouse

    ,

    1975-01-01

    The National Cartographic Information Center of the U.S. Geological Survey maintains records of aerial photographic coverage of the United States and its Territories, based on reports from other Federal agencies as well as State governmental agencies and commercial companies. From these records, the Center furnishes data to prospective purchasers on available photography and the agency holding the aerial film.

  14. Improving metrology for micro-optics manufacturing

    NASA Astrophysics Data System (ADS)

    Davies, Angela D.; Bergner, Brent C.; Gardner, Neil W.

    2003-11-01

    Metrology is one of the critical enabling technologies for realizing the full market potential for micro-optical systems. Measurement capabilities are currently far behind present and future needs. Much of today"s test equipment was developed for the micro-electronics industry and is not optimized for micro-optic materials and geometries. Metrology capabilities currently limit the components that can be realized, in many cases. Improved testing will be come increasingly important as the technology moves to integration where it will become important to "test early and test often" to achieve high yields. In this paper, we focus on micro-refractive components in particular, and describe measurement challenges for this class of components and current and future needs. We also describe a new micro-optics metrology research program at UNC Charlotte under the Center for Precision Metrology and the new Center for Optoelectronics and Optical Communications to address these needs.

  15. Nanomanufacturing metrology for cellulosic nanomaterials: an update

    NASA Astrophysics Data System (ADS)

    Postek, Michael T.

    2014-08-01

    The development of the metrology and standards for advanced manufacturing of cellulosic nanomaterials (or basically, wood-based nanotechnology) is imperative to the success of this rising economic sector. Wood-based nanotechnology is a revolutionary technology that will create new jobs and strengthen America's forest-based economy through industrial development and expansion. It allows this, previously perceived, low-tech industry to leap-frog directly into high-tech products and processes and thus improves its current economic slump. Recent global investments in nanotechnology programs have led to a deeper appreciation of the high performance nature of cellulose nanomaterials. Cellulose, manufactured to the smallest possible-size ( 2 nm x 100 nm), is a high-value material that enables products to be lighter and stronger; have less embodied energy; utilize no catalysts in the manufacturing, are biologically compatible and, come from a readily renewable resource. In addition to the potential for a dramatic impact on the national economy - estimated to be as much as $250 billion worldwide by 2020 - cellulose-based nanotechnology creates a pathway for expanded and new markets utilizing these renewable materials. The installed capacity associated with the US pulp and paper industry represents an opportunity, with investment, to rapidly move to large scale production of nano-based materials. However, effective imaging, characterization and fundamental measurement science for process control and characterization are lacking at the present time. This talk will discuss some of these needed measurements and potential solutions.

  16. TSOM Method for Nanoelectronics Dimensional Metrology

    SciTech Connect

    Attota, Ravikiran

    2011-11-10

    Through-focus scanning optical microscopy (TSOM) is a relatively new method that transforms conventional optical microscopes into truly three-dimensional metrology tools for nanoscale to microscale dimensional analysis. TSOM achieves this by acquiring and analyzing a set of optical images collected at various focus positions going through focus (from above-focus to under-focus). The measurement resolution is comparable to what is possible with typical light scatterometry, scanning electron microscopy (SEM) and atomic force microscopy (AFM). TSOM method is able to identify nanometer scale difference, type of the difference and magnitude of the difference between two nano/micro scale targets using a conventional optical microscope with visible wavelength illumination. Numerous industries could benefit from the TSOM method--such as the semiconductor industry, MEMS, NEMS, biotechnology, nanomanufacturing, data storage, and photonics. The method is relatively simple and inexpensive, has a high throughput, provides nanoscale sensitivity for 3D measurements and could enable significant savings and yield improvements in nanometrology and nanomanufacturing. Potential applications are demonstrated using experiments and simulations.

  17. Hybrid reference metrology exploiting patterning simulation

    NASA Astrophysics Data System (ADS)

    Rana, Narender; Archie, Chas

    2010-03-01

    Workhorse metrology such as CD-SEM is used during process development, process control, and optical proximity correction model generation and verification. Such metrology needs to be calibrated to handle various types of profiles encountered during IC fabrication. Reference metrology is used for calibration of workhorse metrology. There is an astounding need for sub-half and sub-quarter nanometer measurement uncertainty in the near future technology nodes as envisaged in the International Technology Roadmap for Semiconductors. In this regime of desired measurement uncertainty all metrology techniques are deemed limited and hybrid metrology appears promising to offer a solution. Hybrid metrology is the use of multiple metrology techniques, each with particular strength, to reduce the overall measurement uncertainty. CD-AFM makes use of a flared probe in order to scan the sidewalls and bottom of the pattern on a wafer to provide 3D profile and CD measurements at desired location on the profile. As the CD shrinks with technology nodes especially the space, the size of the AFM probe also needs to shrink while maintaining the flared geometry specifications. Unfortunately the fabrication of such probes is a challenge and new techniques are required to extend reference metrology to the smallest space and hole of interest. This paper proposes a reference system combining CD-AFM and patterning simulation model. This hybrid metrology system enables CD metrology in a space not measurable directly by conventional CD-AFM probe. The key idea is to use the successfully measured profile and CD information from the CD-AFM to calibrate or train the patterning simulation optical and resist model. Ability of this model to predict profile and CD measurement is verified on a physically measured dataset including cross sections and additional CD-AFM measurements. It is hypothesized that this model will be able to predict profile and CD measurements in otherwise immeasurable geometries

  18. Two Approaches to Calibration in Metrology

    SciTech Connect

    Campanelli, Mark

    2014-04-01

    Inferring mathematical relationships with quantified uncertainty from measurement data is common to computational science and metrology. Sufficient knowledge of measurement process noise enables Bayesian inference. Otherwise, an alternative approach is required, here termed compartmentalized inference, because collection of uncertain data and model inference occur independently. Bayesian parameterized model inference is compared to a Bayesian-compatible compartmentalized approach for ISO-GUM compliant calibration problems in renewable energy metrology. In either approach, model evidence can help reduce model discrepancy.

  19. NIF Target Assembly Metrology Methodology and Results

    SciTech Connect

    Alger, E. T.; Kroll, J.; Dzenitis, E. G.; Montesanti, R.; Hughes, J.; Swisher, M.; Taylor, J.; Segraves, K.; Lord, D. M.; Reynolds, J.; Castro, C.; Edwards, G.

    2011-01-01

    During our inertial confinement fusion (ICF) experiments at the National Ignition Facility (NIF) we require cryogenic targets at the 1-cm scale to be fabricated, assembled, and metrologized to micron-level tolerances. During assembly of these ICF targets, there are physical dimensmetrology is completed using optical coordinate measurement machines that provide repeatable measurements with micron precision, while also allowing in-process data collection for absolute accuracy in assembly. To date, 51 targets have been assembled and metrologized, and 34 targets have been successfully fielded on NIF relying on these metrology data. In the near future, ignition experiments on NIF will require tighter tolerances and more demanding target assembly and metrology capability. Metrology methods, calculations, and uncertainty estimates will be discussed. Target diagnostic port alignment, target position, and capsule location results will be reviewed for the 2009 Energetics Campaign. The information is presented via control charts showing the effect of process improvements that were made during target production. Certain parameters, including capsule position, met the 2009 campaign specifications but will have much tighter requirements in the future. Finally, in order to meet these new requirements assembly process changes and metrology capability upgrades will be necessary.

  20. Monitoring and Assuring the Quality of Digital Aerial Data

    NASA Technical Reports Server (NTRS)

    Christopherson, Jon

    2007-01-01

    This viewgraph presentation explains the USGS plan for monitoring and assuring the quality of digital aerial data. The contents include: 1) History of USGS Aerial Imaging Involvement; 2) USGS Research and Results; 3) Outline of USGS Quality Assurance Plan; 4) Other areas of Interest; and 5) Summary

  1. Kite Aerial Photography (KAP) as a Tool for Field Teaching

    ERIC Educational Resources Information Center

    Sander, Lasse

    2014-01-01

    Kite aerial photography (KAP) is proposed as a creative tool for geography field teaching and as a medium to approach the complexity of readily available geodata. The method can be integrated as field experiment, surveying technique or group activity. The acquired aerial images can instantaneously be integrated in geographic information systems…

  2. A holistic metrology approach: hybrid metrology utilizing scatterometry, CD-AFM, and CD-SEM

    NASA Astrophysics Data System (ADS)

    Vaid, Alok; Yan, Bin Bin; Jiang, Yun Tao; Kelling, Mark; Hartig, Carsten; Allgair, John; Ebersbach, Peter; Sendelbach, Matthew; Rana, Narender; Katnani, Ahmad; Mclellan, Erin; Archie, Chas; Bozdog, Cornel; Kim, Helen; Sendler, Michael; Ng, Susan; Sherman, Boris; Brill, Boaz; Turovets, Igor; Urensky, Ronen

    2011-03-01

    Shrinking design rules and reduced process tolerances require tight control of CD linewidth, feature shape, and profile of the printed geometry. The Holistic Metrology approach consists of utilizing all available information from different sources like data from other toolsets, multiple optical channels, multiple targets, etc. to optimize metrology recipe and improve measurement performance. Various in-line critical dimension (CD) metrology toolsets like Scatterometry OCD (Optical CD), CD-SEM (CD Scanning Electron Microscope) and CD-AFM (CD Atomic Force Microscope) are typically utilized individually in fabs. Each of these toolsets has its own set of limitations that are intrinsic to specific measurement technique and algorithm. Here we define "Hybrid Metrology" to be the use of any two or more metrology toolsets in combination to measure the same dataset. We demonstrate the benefits of the Hybrid Metrology on two test structures: 22nm node Gate Develop Inspect (DI) & 32nm node FinFET Gate Final Inspect (FI). We will cover measurement results obtained using typical BKM as well as those obtained by utilizing the Hybrid Metrology approach. Measurement performance will be compared using standard metrology metrics for example accuracy and precision.

  3. Nuclear Technology. Course 26: Metrology. Module 27-7, Statistical Techniques in Metrology.

    ERIC Educational Resources Information Center

    Espy, John; Selleck, Ben

    This seventh in a series of eight modules for a course titled Metrology focuses on descriptive and inferential statistical techniques in metrology. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student, (5) subject matter, (6) materials…

  4. Nuclear Technology. Course 27: Metrology. Module 27-1, Fundamentals of Metrology.

    ERIC Educational Resources Information Center

    Selleck, Ben; Espy, John

    This first in a series of eight modules for a course titled Metrology describes the fundamentals of metrology as they pertain to dimensional inspection. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student, (5) subject matter, (6)…

  5. On the benefit of high resolution and low aberrations for in-die mask registration metrology

    NASA Astrophysics Data System (ADS)

    Beyer, Dirk; Seidel, Dirk; Heisig, Sven; Steinert, Steffen; Töpfer, Susanne; Scherübl, Thomas; Hetzler, Jochen

    2014-10-01

    With the introduction of complex lithography schemes like double and multi - patterning and new design principles like gridded designs with cut masks the requirements for mask to mask overlay have increased dramatically. Still, there are some good news too for the mask industry since more mask are needed and qualified. Although always confronted with throughput demands, latest writing tool developments are able to keep pace with ever increasing pattern placement specs not only for global signatures but for in-die features within the active area. Placement specs less than 3nm (max. 3 Sigma) are expected and needed in all cases in order to keep the mask contribution to the overall overlay budget at an accepted level. The qualification of these masks relies on high precision metrology tools which have to fulfill stringent metrology as well as resolution constrains at the same time. Furthermore, multi-patterning and gridded designs with pinhole type cut masks are drivers for a paradigm shift in registration metrology from classical registration crosses to in-die registration metrology on production features. These requirements result in several challenges for registration metrology tools. The resolution of the system must be sufficiently high to resolve small production features. At the same time tighter repeatability is required. Furthermore, tool induced shift (TIS) limit the accuracy of in-die measurements. This paper discusses and demonstrates the importance of low illumination wavelength together with low aberrations for best contrast imaging for in-die registration metrology. Typical effects like tool induced shift are analyzed and evaluated using the ZEISS PROVE® registration metrology tool. Additionally, we will address performance gains when going to higher resolution. The direct impact on repeatability for small features by registration measurements will be discussed as well.

  6. Metrology: Measurement Assurance Program Guidelines

    NASA Technical Reports Server (NTRS)

    Eicke, W. G.; Riley, J. P.; Riley, K. J.

    1995-01-01

    The 5300.4 series of NASA Handbooks for Reliability and Quality Assurance Programs have provisions for the establishment and utilization of a documented metrology system to control measurement processes and to provide objective evidence of quality conformance. The intent of these provisions is to assure consistency and conformance to specifications and tolerances of equipment, systems, materials, and processes procured and/or used by NASA, its international partners, contractors, subcontractors, and suppliers. This Measurement Assurance Program (MAP) guideline has the specific objectives to: (1) ensure the quality of measurements made within NASA programs; (2) establish realistic measurement process uncertainties; (3) maintain continuous control over the measurement processes; and (4) ensure measurement compatibility among NASA facilities. The publication addresses MAP methods as applied within and among NASA installations and serves as a guide to: control measurement processes at the local level (one facility); conduct measurement assurance programs in which a number of field installations are joint participants; and conduct measurement integrity (round robin) experiments in which a number of field installations participate to assess the overall quality of particular measurement processes at a point in time.

  7. Probe microscopy for metrology of next generation devices

    NASA Astrophysics Data System (ADS)

    Humphris, Andrew D. L.; Zhao, Bin; Bastard, David; Bunday, Benjamin

    2016-03-01

    As device geometries shrink and the number of transistors on the wafer grows, new metrology solutions are required to support the development and production of next generation structures for the 10 nm node and beyond. This paper presents an innovative probe based microscope, the Rapid Probe Microscope (RPM), which is capable of obtaining nondestructive high resolution sub-nm information in all 3 dimensions and in a vacuum environment. The RPM is a platform supporting a novel probe detection and actuation system. It enables new imaging modes which are optimized for profiling narrow high aspect ratio structures as found in semiconductor devices. Additionally, the RPM can be operated in a vacuum environment allowing in-situ hybrid metrology solutions, for example operating alongside a CD or defect review SEM. Results are presented showing the imaging of thin lines and trenches, < 20 nm in width, using both a SEM and RPM to provide complementary information about the lateral and vertical dimensions of the structures. Comparison of images collected with different probes and at different sample locations demonstrates the ability of the RPM to operate consistently with long probe life and at high speed which is required for use in the High Volume Manufacturing (HVM) environment.

  8. HVM metrology challenges towards the 5nm node

    NASA Astrophysics Data System (ADS)

    Bunday, Benjamin

    2016-03-01

    This paper will provide a high level overview of the future for in-line high volume manufacturing (HVM) metrology for the semiconductor industry. First, we will take a broad view of the needs of patterned defect, critical dimensional (CD/3D) and films metrology, and present the extensive list of applications for which metrology solutions are needed. Commonalities and differences among the various applications will be shown. We will then report on the gating technical limits of the most important of these metrology solutions to address the metrology challenges of future nodes, highlighting key metrology technology gaps requiring industry attention and investment.

  9. A new technique for the detection of large scale landslides in glacio-lacustrine deposits using image correlation based upon aerial imagery: A case study from the French Alps

    NASA Astrophysics Data System (ADS)

    Fernandez, Paz; Whitworth, Malcolm

    2016-10-01

    Landslide monitoring has benefited from recent advances in the use of image correlation of high resolution optical imagery. However, this approach has typically involved satellite imagery that may not be available for all landslides depending on their time of movement and location. This study has investigated the application of image correlation techniques applied to a sequence of aerial imagery to an active landslide in the French Alps. We apply an indirect landslide monitoring technique (COSI-Corr) based upon the cross-correlation between aerial photographs, to obtain horizontal displacement rates. Results for the 2001-2003 time interval are presented, providing a spatial model of landslide activity and motion across the landslide, which is consistent with previous studies. The study has identified areas of new landslide activity in addition to known areas and through image decorrelation has identified and mapped two new lateral landslides within the main landslide complex. This new approach for landslide monitoring is likely to be of wide applicability to other areas characterised by complex ground displacements.

  10. Oriental - Automatic Geo-Referencing and Ortho-Rectification of Archaeological Aerial Photographs

    NASA Astrophysics Data System (ADS)

    Karel, W.; Doneus, M.; Verhoeve, G.; Bries, C.; Ressl, C.; Pfeifer, N.

    2013-07-01

    This paper presents the newly developed software OrientAL, which aims at providing a fully automated processing chain from aerial photographs to orthophoto maps. It considers the special requirements of archaeological aerial images, including oblique imagery, single images, poor approximate georeferencing, and historic photographs. As a first step the automatic relative orientation of images from an archaeological image archive is presented.

  11. 1.5 nm fabrication of test patterns for characterization of metrological systems

    DOE PAGES

    Babin, Sergey; Calafiore, Giuseppe; Peroz, Christophe; Conley, Raymond; Bouet, Nathalie; Cabrini, Stefano; Chan, Elaine; Lacey, Ian; McKinney, Wayne R.; Yashchuk, Valeriy V.; et al

    2015-11-06

    Any metrology tool is only as good as it is calibrated. The characterization of metrology systems requires test patterns at a scale about ten times smaller than the measured features. The fabrication of patterns with linewidths down to 1.5 nm is described. The test sample was designed in such a way that the distribution of linewidths appears to be random at any location. This pseudorandom test pattern is used to characterize dimensional metrology equipment over its entire dynamic range by extracting the modulation transfer function of the system. The test pattern contains alternating lines of silicon and tungsten silicide, eachmore » according to its designed width. As a result, the fabricated test samples were imaged using a transmission electron microscope, a scanning electron microscope, and an atomic force microscope. (C) 2015 American Vacuum Society.« less

  12. Root cause analysis of overlay metrology excursions with scatterometry overlay technology (SCOL)

    NASA Astrophysics Data System (ADS)

    Gutjahr, Karsten; Park, Dongsuk; Zhou, Yue; Cho, Winston; Ahn, Ki Cheol; Snow, Patrick; McGowan, Richard; Marciano, Tal; Ramanathan, Vidya; Herrera, Pedro; Itzkovich, Tal; Camp, Janay; Adel, Michael

    2016-03-01

    We demonstrate a novel method to establish a root cause for an overlay excursion using optical Scatterometry metrology. Scatterometry overlay metrology consists of four cells (two per directions) of grating on grating structures that are illuminated with a laser and diffracted orders measured in the pupil plane within a certain range of aperture. State of art algorithms permit, with symmetric considerations over the targets, to extract the overlay between the two gratings. We exploit the optical properties of the target to extract further information from the measured pupil images, particularly information that maybe related to any change in the process that may lead to an overlay excursion. Root Cause Analysis or RCA is being developed to identify different kinds of process variations (either within the wafer, or between different wafers) that may indicate overlay excursions. In this manuscript, we demonstrate a collaboration between Globalfoundries and KLA-Tencor to identify a symmetric process variation using scatterometry overlay metrology and RCA technique.

  13. 1.5 nm fabrication of test patterns for characterization of metrological systems

    SciTech Connect

    Babin, Sergey; Calafiore, Giuseppe; Peroz, Christophe; Conley, Raymond; Bouet, Nathalie; Cabrini, Stefano; Chan, Elaine; Lacey, Ian; McKinney, Wayne R.; Yashchuk, Valeriy V.; Vladar, Andras E.

    2015-11-06

    Any metrology tool is only as good as it is calibrated. The characterization of metrology systems requires test patterns at a scale about ten times smaller than the measured features. The fabrication of patterns with linewidths down to 1.5 nm is described. The test sample was designed in such a way that the distribution of linewidths appears to be random at any location. This pseudorandom test pattern is used to characterize dimensional metrology equipment over its entire dynamic range by extracting the modulation transfer function of the system. The test pattern contains alternating lines of silicon and tungsten silicide, each according to its designed width. As a result, the fabricated test samples were imaged using a transmission electron microscope, a scanning electron microscope, and an atomic force microscope. (C) 2015 American Vacuum Society.

  14. Hybrid photonic chip interferometer for embedded metrology

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Martin, H.; Maxwell, G.; Jiang, X.

    2014-03-01

    Embedded metrology is the provision of metrology on the manufacturing platform, enabling measurement without the removal of the work piece. Providing closer integration of metrology upon the manufacturing platform can lead to the better control and increased throughput. In this work we present the development of a high precision hybrid optical chip interferometer metrology device. The complete metrology sensor system is structured into two parts; optical chip and optical probe. The hybrid optical chip interferometer is based on a silica-on-silicon etched integrated-optic motherboard containing waveguide structures and evanescent couplers. Upon the motherboard, electro-optic components such as photodiodes and a semiconductor gain block are mounted and bonded to provide the required functionality. The key structure in the device is a tunable laser module based upon an external-cavity diode laser (ECDL). Within the cavity is a multi-layer thin film filter which is rotated to select the longitudinal mode at which the laser operates. An optical probe, which uses a blazed diffracting grating and collimating objective lens, focuses light of different wavelengths laterally over the measurand. Incident laser light is then tuned in wavelength time to effectively sweep an `optical stylus' over the surface. Wavelength scanning and rapid phase shifting can then retrieve the path length change and thus the surface height. We give an overview of the overall design of the final hybrid photonic chip interferometer, constituent components, device integration and packaging as well as experimental test results from the current version now under evaluation.

  15. "A" Is for Aerial Maps and Art

    ERIC Educational Resources Information Center

    Todd, Reese H.; Delahunty, Tina

    2007-01-01

    The technology of satellite imagery and remote sensing adds a new dimension to teaching and learning about maps with elementary school children. Just a click of the mouse brings into view some images of the world that could only be imagined a generation ago. Close-up aerial pictures of the school and neighborhood quickly catch the interest of…

  16. Aerial Scene Recognition using Efficient Sparse Representation

    SciTech Connect

    Cheriyadat, Anil M

    2012-01-01

    Advanced scene recognition systems for processing large volumes of high-resolution aerial image data are in great demand today. However, automated scene recognition remains a challenging problem. Efficient encoding and representation of spatial and structural patterns in the imagery are key in developing automated scene recognition algorithms. We describe an image representation approach that uses simple and computationally efficient sparse code computation to generate accurate features capable of producing excellent classification performance using linear SVM kernels. Our method exploits unlabeled low-level image feature measurements to learn a set of basis vectors. We project the low-level features onto the basis vectors and use simple soft threshold activation function to derive the sparse features. The proposed technique generates sparse features at a significantly lower computational cost than other methods~\\cite{Yang10, newsam11}, yet it produces comparable or better classification accuracy. We apply our technique to high-resolution aerial image datasets to quantify the aerial scene classification performance. We demonstrate that the dense feature extraction and representation methods are highly effective for automatic large-facility detection on wide area high-resolution aerial imagery.

  17. Integrating optical fabrication and metrology into the optical design process

    NASA Astrophysics Data System (ADS)

    Harvey, James E.

    2014-12-01

    Image degradation due to scattered radiation from residual optical fabrication errors is a serious problem in many short wavelength (X-ray/EUV) imaging systems. Most commercially-available image analysis codes (ZEMAX, Code V, ASAP, FRED, etc.) currently require the scatter behavior (BSDF data) to be provided as input in order to calculate the image quality of such systems. This BSDF data is difficult to measure and rarely available for the operational wavelengths of interest. Since the smooth-surface approximation is often not satisfied at these short wavelengths, the classical Rayleigh-Rice expression that indicates the BRDF is directly proportional to the surface PSD cannot be used to calculate BRDFs from surface metrology data for even slightly rough surfaces. However, an FFTLog numerical Hankel transform algorithm enables the practical use of the computationally intensive Generalized Harvey-Shack (GHS) surface scatter theory [1] to calculate BRDFs from surface PSDs for increasingly short wavelengths that violate the smooth surface approximation implicit in the Rayleigh-Rice surface scatter theory [2-3]. The recent numerical validation [4] of the GHS theory (a generalized linear systems formulation of surface scatter theory), and an analysis of image degradation due to surface scatter in the presence of aberrations [5] has provided credence to the development of a systems engineering analysis of image quality as degraded not only by diffraction effects and geometrical aberrations, but to scattering effects due to residual optical fabrication errors as well. These advances, combined with the continuing increase in computer speed, leave us poised to fully integrate optical metrology and fabrication into the optical design process.

  18. Overlay metrology solutions in a triple patterning scheme

    NASA Astrophysics Data System (ADS)

    Leray, Philippe; Mao, Ming; Baudemprez, Bart; Amir, Nuriel

    2015-03-01

    Overlay metrology tool suppliers are offering today several options to their customers: Different hardware (Image Based Overlay or Diffraction Based Overlay), different target designs (with or without segmentation) or different target sizes (from 5 um to 30 um). All these variations are proposed to resolve issues like robustness of the target towards process variations, be more representative of the design or increase the density of measurements. In the frame of the development of a triple patterning BEOL scheme of 10 nm node layer, we compare IBO targets (standard AIM, AIMid and multilayer AIMid). The metrology tools used for the study are KLA-Tencor's nextgeneration Archer 500 system (scatterometry- and imaging-based measurement technologies on the same tool). The overlay response and fingerprint of these targets will be compared using a very dense sampling (up to 51 pts per field). The benefit of indie measurements compared to the traditional scribes is discussed. The contribution of process effects to overlay values are compared to the contribution of the performance of the target. Different targets are combined in one measurement set to benefit from their different strengths (performance vs size). The results are summarized and possible strategies for a triple patterning schemes are proposed.

  19. X-ray pulse wavefront metrology using speckle tracking

    PubMed Central

    Berujon, Sebastien; Ziegler, Eric; Cloetens, Peter

    2015-01-01

    An instrument allowing the quantitative analysis of X-ray pulsed wavefronts is presented and its processing method explained. The system relies on the X-ray speckle tracking principle to accurately measure the phase gradient of the X-ray beam from which beam optical aberrations can be deduced. The key component of this instrument, a semi-transparent scintillator emitting visible light while transmitting X-rays, allows simultaneous recording of two speckle images at two different propagation distances from the X-ray source. The speckle tracking procedure for a reference-less metrology mode is described with a detailed account on the advanced processing schemes used. A method to characterize and compensate for the imaging detector distortion, whose principle is also based on speckle, is included. The presented instrument is expected to find interest at synchrotrons and at the new X-ray free-electron laser sources under development worldwide where successful exploitation of beams relies on the availability of an accurate wavefront metrology. PMID:26134791

  20. X-ray pulse wavefront metrology using speckle tracking.

    PubMed

    Berujon, Sebastien; Ziegler, Eric; Cloetens, Peter

    2015-07-01

    An instrument allowing the quantitative analysis of X-ray pulsed wavefronts is presented and its processing method explained. The system relies on the X-ray speckle tracking principle to accurately measure the phase gradient of the X-ray beam from which beam optical aberrations can be deduced. The key component of this instrument, a semi-transparent scintillator emitting visible light while transmitting X-rays, allows simultaneous recording of two speckle images at two different propagation distances from the X-ray source. The speckle tracking procedure for a reference-less metrology mode is described with a detailed account on the advanced processing schemes used. A method to characterize and compensate for the imaging detector distortion, whose principle is also based on speckle, is included. The presented instrument is expected to find interest at synchrotrons and at the new X-ray free-electron laser sources under development worldwide where successful exploitation of beams relies on the availability of an accurate wavefront metrology. PMID:26134791

  1. NASA metrology information system: A NEMS subsystem

    NASA Technical Reports Server (NTRS)

    German, E. S., Jr.; Kern, F. A.; Yow, R. P.; Peterson, E.

    1984-01-01

    the NASA Metrology Information Systems (NMIS) is being developed as a standardized tool in managing the NASA field Center's instrument calibration programs. This system, as defined by the NASA Metrology and Calibration Workshop, will function as a subsystem of the newly developed NASA Equipment Management System (NEMS). The Metrology Information System is designed to utilize and update applicable NEMS data fields for controlled property and to function as a stand alone system for noncontrolled property. The NMIS provides automatic instrument calibration recall control, instrument historical performance data storage and analysis, calibration and repair labor and parts cost data, and instrument user and location data. Nineteen standardized reports were developed to analyze calibration system operations.

  2. Advances in Solar Radiometry and Metrology

    SciTech Connect

    Myers, D.; Andreas, A.; Reda, I.; Gotseff, P.; Wilcox, S.; Stoffel, T.; Anderberg, M.

    2005-01-01

    The Solar Radiometry and Metrology task at the National Renewable Energy Laboratory (NREL) provides traceable optical radiometric calibrations and measurements to photovoltaic (PV) researchers and the PV industry. Traceability of NREL solar radiometer calibrations to the World Radiometric Reference (WRR) was accomplished during the NREL Pyrheliometer Comparison in October 2003. The task has calibrated 10 spectral and more than 180 broadband radiometers for solar measurements. Other accomplishments include characterization of pyranometer thermal offset errors with laboratory and spectral modeling tools; developing a simple scheme to correct pyranometer data for known responsivity variations; and measuring detailed spectral distributions of the NREL High Intensity Pulsed Solar Simulator (HIPSS) as a function of lamp voltage and time. The optical metrology functions support the NREL Measurement and Characterization Task effort for ISO 17025 accreditation of NREL Solar Reference Cell Calibrations. Optical metrology functions have been integrated into the NREL quality system and audited for ISO17025 compliance.

  3. Terahertz metrology on power, frequency, spectroscopy, and pulse parameters

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Ying, Cheng Ping; Wang, Heng Fei; Zhang, Peng; Liu, Hong Yuan; Jiang, Bin

    2015-11-01

    Terahertz metrology is becoming more and more important along with the fast development of terahertz technology. This paper reviews the research works of the groups from the physikalisch-technische bundesanstalt (PTB), National institute of standards and technology (NIST), National physical laboratory (NPL), National institute of metrology (NIM) and some other research institutes. The contents mainly focus on the metrology of parameters of power, frequency, spectrum and pulse. At the end of the paper, the prospect of terahertz metrology is predicted.

  4. 1. NORTHWEST OBLIQUE AERIAL VIEW OF FORT DELAWARE AND PEA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. NORTHWEST OBLIQUE AERIAL VIEW OF FORT DELAWARE AND PEA PATCH ISLAND. REMAINS OF SEA WALL VISIBLE IN FOREGROUND AND RIGHT OF IMAGE. - Fort Delaware, Sea Wall, Pea Patch Island, Delaware City, New Castle County, DE

  5. NORTHWEST OBLIQUE AERIAL VIEW OF FORT DELAWARE AND PEA PATCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTHWEST OBLIQUE AERIAL VIEW OF FORT DELAWARE AND PEA PATCH ISLAND. REMAINS OF SEA WALL VISIBLE IN FOREGROUND AND RIGHT OF IMAGE - Fort Delaware, Pea Patch Island, Delaware City, New Castle County, DE

  6. Laser and Optical Fiber Metrology in Romania

    SciTech Connect

    Sporea, Dan; Sporea, Adelina

    2008-04-15

    The Romanian government established in the last five years a National Program for the improvement of country's infrastructure of metrology. The set goal was to develop and accredit testing and calibration laboratories, as well as certification bodies, according to the ISO 17025:2005 norm. Our Institute benefited from this policy, and developed a laboratory for laser and optical fibers metrology in order to provide testing and calibration services for the certification of laser-based industrial, medical and communication products. The paper will present the laboratory accredited facilities and some of the results obtained in the evaluation of irradiation effects of optical and optoelectronic parts, tests run under the EU's Fusion Program.

  7. Laser and Optical Fiber Metrology in Romania

    NASA Astrophysics Data System (ADS)

    Sporea, Dan; Sporea, Adelina

    2008-04-01

    The Romanian government established in the last five years a National Program for the improvement of country's infrastructure of metrology. The set goal was to develop and accredit testing and calibration laboratories, as well as certification bodies, according to the ISO 17025:2005 norm. Our Institute benefited from this policy, and developed a laboratory for laser and optical fibers metrology in order to provide testing and calibration services for the certification of laser-based industrial, medical and communication products. The paper will present the laboratory accredited facilities and some of the results obtained in the evaluation of irradiation effects of optical and optoelectronic parts, tests run under the EU's Fusion Program.

  8. Mask Design for the Space Interferometry Mission Internal Metrology

    NASA Technical Reports Server (NTRS)

    Marx, David; Zhao, Feng; Korechoff, Robert

    2005-01-01

    This slide presentation reviews the mask design used for the internal metrology of the Space Interferometry Mission (SIM). Included is information about the project, the method of measurements with SIM, the internal metrology, numerical model of internal metrology, wavefront examples, performance metrics, and mask design

  9. TSV reveal height and dimension metrology by the TSOM method

    NASA Astrophysics Data System (ADS)

    Vartanian, Victor; Attota, Ravikiran; Park, Haesung; Orji, George; Allen, Richard A.

    2013-04-01

    This paper reports on an investigation to determine whether through-focus scanning optical microscopy (TSOM) is applicable to micrometer-scale through-silicon via (TSV) reveal metrology. TSOM has shown promise as an alternative inspection and dimensional metrology technique for FinFETs and defects. In this paper TSOM measurements were simulated using 546 nm light and applied to copper TSV reveal pillars with height in the 3 μm to 5 μm range and diameter of 5 μm. Simulation results, combined with white light interferometric profilometry, are used in an attempt to correlate TSOM image features to variations in TSV height, diameter, and sidewall angle (SWA). Simulations illustrate the sensitivity of Differential TSOM Images (DTI's) using the metric of Optical Intensity Range (OIR), for 5 μm diameter and 5 μm height TSV Cu reveal structures, for variation of SWA (Δ = 2°, OIR = 2.35), height (Δ = 20 nm, OIR = 0.28), and diameter (Δ = 40 nm, OIR = 0.57), compared to an OIR noise floor of 0.01. In addition, white light interferometric profilometry reference data is obtained on multiple TSV reveal structures in adjacent die, and averages calculated for each die's SWA, height, and diameter. TSOM images are obtained on individual TSV's within each set, with DTI's obtained by comparing TSV's from adjacent die. The TSOM DTI's are compared to average profilometry data from identical die to determine whether there are correlations between DTI and profilometry data. However, with several significant TSV reveal features not accounted for in the simulation model, it is difficult to draw conclusions comparing profilometry measurements to TSOM DTI's when such features generate strong optical interactions. Thus, even for similar DTI images there are no discernible correlations to SWA, diameter, or height evident in the profilometry data. The use of a more controlled set of test structures may be advantageous in correlating TSOM to optical images.

  10. Aerial Photography Summary Record System

    USGS Publications Warehouse

    ,

    1998-01-01

    The Aerial Photography Summary Record System (APSRS) describes aerial photography projects that meet specified criteria over a given geographic area of the United States and its territories. Aerial photographs are an important tool in cartography and a number of other professions. Land use planners, real estate developers, lawyers, environmental specialists, and many other professionals rely on detailed and timely aerial photographs. Until 1975, there was no systematic approach to locate an aerial photograph, or series of photographs, quickly and easily. In that year, the U.S. Geological Survey (USGS) inaugurated the APSRS, which has become a standard reference for users of aerial photographs.

  11. Coherent double-color interference microscope for traceable optical surface metrology

    NASA Astrophysics Data System (ADS)

    Malinovski, I.; França, R. S.; Bessa, M. S.; Silva, C. R.; Couceiro, I. B.

    2016-06-01

    Interference microscopy is an important field of dimensional surface metrology because it provides direct traceability of the measurements to the SI base unit definition of the metre. With a typical measurement range from micrometres to nanometres interference microscopy (IM) covers the gap between classic metrology and nanometrology, providing continuous transfer of dimensional metrology into new areas of nanoscience and nanotechnology. Therefore IM is considered to be an indispensable tool for traceable transfer of the metre unit to different instruments. We report here the metrological study of an absolute Linnik interference microscope (IM) based on two frequency stabilized lasers. The design permits the flexible use of both lasers for measurements depending on the demand of the concrete measurement task. By principle of operation IM is combination of imaging and phase-shifting interferometry (PSI). The traceability is provided by the wavelength reference, that is, a He-Ne 633 nm stabilized laser. The second laser source, that is, a Blue-Green 488 nm grating stabilized laser diode, is used for improvements of resolution, and also for resolving integer fringe discontinuities on sharp features of the surface. The IM was optimized for surface height metrology. We have performed the study of the systematic effects of the measurements. This study allowed us to improve the hardware and software of IM and to find corrections for main systematic errors. The IM is purposed for 1D to 3D height metrology and surface topography in an extended range from nanometres to micrometres. The advantages and disadvantages of the design and developed methods are discussed.

  12. Profile variation impact on FIB cross-section metrology

    NASA Astrophysics Data System (ADS)

    Cordes, Aaron; Bunday, Benjamin; Nadeau, Jim

    2012-03-01

    The focused ion beam (FIB) milling tool is an important component of reference metrology and process characterization, both as a supporting instrument for bulk sample preparation before forwarding to the transmission electron microscope (TEM) and other instruments and as an in situ measurement instrument using angled scanning electron microscopy. As features grow denser, deeper and more demanding, full-profile reference metrology is needed, and this methodology will only grow in importance. Thus, the ability to extract accurate dimensional and profile information out of the crosssectional faces produced by FIB milling is critical. For features that demonstrate perfect symmetry in the plane of the cross section, analyzing images and extracting metrology data are straightforward. However, for industrial materials, symmetry is not a safe assumption: as features shrink, the line edge and sidewall roughness increases as a percentage of the overall feature dimension. Furthermore, with the introduction of more complex architectures such as 3D memory and FinFETs, the areas of greatest interest, such as the intersections of wrap-around gates, cannot be assumed to be symmetrical in any given plane if cut placement is not precisely controlled. Therefore it is important to establish the exact location and repeatability of the cross-section plane, both in terms of coordinate placement and effective angle of the milled surface. To this end, we prepared designed-in line edge roughness samples in the Albany Nanotech facility using SEMATECH's AMAG6 metrology reticle. The samples were thoroughly characterized before being milled by a non-destructive, sidewall-scanning atomic force microscope (AFM). These samples are then milled and measured under varying process and setup parameters using a single-beam FIB with angled SEM. We established methodologies that allow precise alignment of the cut planes of slice-and-view FIB milling to 3D-AFM scan lines to compare repeated sections

  13. Development of metrological NDE methods for microturbine ceramic components

    SciTech Connect

    Lee, H.-R.; Ellingson, W. A.

    1999-12-23

    In this work, X-ray computed tomographic imaging technology with high spatial resolution has been explored for metrological applications to Si{sub 3}N{sub 4} ceramic turbine wheels. X-ray computed tomography (XCT) data were acquired by a charge-coupled device detector coupled to an image intensifier. Cone-beam XCT reconstruction algorithms were used to allow full-volume data acquisition from the turbine wheels. Special software was developed so that edge detection and complex blade contours could be determined from the XCT data. The feasibility of using the XCT for dimensional analyses was compared with that of a coordinate-measuring machine. Details of the XCT system, data acquisition, and dimensional comparisons will be presented.

  14. Optical metrology for Starlight Separated Spacecraft Stellar Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Dubovitsky, S.; Lay, O. P.; Peters, R. D.; Abramovici, A.; Asbury, C. G.; Kuhnert, A. C.; Mulder, J. L.

    2002-01-01

    We describe a high-precision inter-spacecraft metrology system designed for NASA 's StarLight mission, a space-based separated-spacecraft stellar interferometer. It consists of dual-target linear metrology, based on a heterodyne interferometer with carrier phase modulation, and angular metrology designed to sense the pointing of the laser beam and provides bearing information. The dual-target operation enables one metrology beam to sense displacement of two targets independently. We present the current design, breadboard implementation of the Metrology Subsystem in a stellar interferometer testbed and the present state of development of flight qualifiable subsystem components.

  15. Note: Near infrared interferometric silicon wafer metrology.

    PubMed

    Choi, M S; Park, H M; Joo, K N

    2016-04-01

    In this investigation, two near infrared (NIR) interferometric techniques for silicon wafer metrology are described and verified with experimental results. Based on the transparent characteristic of NIR light to a silicon wafer, the fiber based spectrally resolved interferometry can measure the optical thickness of the wafer and stitching low coherence scanning interferometry can reconstruct entire surfaces of the wafer. PMID:27131722

  16. Absolute optical metrology : nanometers to kilometers

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.

    2005-01-01

    We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.

  17. Status of the Metrology Light Source

    SciTech Connect

    Klein, R.; Ulm, G.; Feikes, J.; Hartrott, M. von; Wuestefeld, G.

    2010-06-23

    The Physikalisch-Technische Bundesanstalt (PTB), the German national metrology institute, has set up the low-energy electron storage ring Metrology Light Source (MLS) in close cooperation with the Helmholtz-Zentrum Berlin (HZB, formerly BESSY). This new storage ring has been in regular user operation since April 2008 and is dedicated to synchrotron-radiation-based metrology and technological developments in the far-IR/THz, IR, UV, VUV and EUV spectral range. The MLS has a double-bend-achromate lattice structure, injection is from a 105 MeV racetrack microtron. The electron energy can be ramped to any value from 105 MeV up to 630 MeV and the electron beam current covers the range from one stored electron (1 pA) up to 200 mA. The MLS is the first electron storage ring optimized for the generation of coherent synchrotron radiation, based on an electron bunch shortening mode. In this mode, MLS delivers coherent radiation in the far-IR/THz spectral range with enhanced intensity as compared to the normal mode of operation. Several beamlines are in operation or in construction, including one undulator beamline, bending magnet beamlines for the calibration of radiation sources and detectors and for reflectometry, an EUV metrology beamline and three IR/THz beamlines.

  18. MICROSCALE METROLOGY USING STANDING WAVE PROBES

    SciTech Connect

    Bauza, M B; Woody, S C; Smith, S T; Seugling, R M; Darnell, I; Florando, J N

    2008-08-04

    Miniaturization has been one of the driving forces in the development of new technologies leading to new products in a variety of industries. As a result, the integration of components over several orders of magnitude on the length scale poses enormous challenges for quality assurance and control. Therefore, new solutions are necessary to meet the growing need for more challenging metrology tasks and metrology requirements in nano- and micro-technology. However, with miniaturization, new challenges arise such as the increased influence of adhesion, electrostatic, Van der Waals and meniscus forces that affect the measurement process. Technical solutions to overcome these micro- and nano-metrology challenges will include the need for traceability, new calibration procedures and calibration artifacts. Over the past decade many new metrology tools have been proposed, however; for contact based measurements, adhesion between the measurement probe and the specimen still proves to be one of the more difficult challenges to overcome. To address this issue, a new class of tactile sensing probe referred to as standing wave sensor has been developed and was previously presented. Previous work introduced the principle of operation of the standing wave senor. This work presents new measurements showing applications of the standing wave probe as the sensing element in a microscale high aspect ratio profiling system.

  19. Quantum metrology with Bose-Einstein condensates

    SciTech Connect

    Boixo, Sergio; Datta, Animesh; Davis, Matthew J.; Flammia, Steven T.; Shaji, Anil; Tacla, Alexandre B.; Caves, Carlton M.

    2009-04-13

    We show how a generalized quantum metrology protocol can be implemented in a two-mode Bose-Einstein condensate of n atoms, achieving a sensitivity that scales better than 1/n and approaches 1/n{sup 3/2} for appropriate design of the condensate.

  20. Vortex metrology using Fourier analysis techniques: vortex networks correlation fringes.

    PubMed

    Angel-Toro, Luciano; Sierra-Sosa, Daniel; Tebaldi, Myrian; Bolognini, Néstor

    2012-10-20

    In this work, we introduce an alternative method of analysis in vortex metrology based on the application of the Fourier optics techniques. The first part of the procedure is conducted as is usual in vortex metrology for uniform in-plane displacement determination. On the basis of two recorded intensity speckled distributions, corresponding to two states of a diffuser coherently illuminated, we numerically generate an analytical signal from each recorded intensity pattern by using a version of the Riesz integral transform. Then, from each analytical signal, a two-dimensional pseudophase map is generated in which the vortices are located and characterized in terms of their topological charges and their core's structural properties. The second part of the procedure allows obtaining Young's interference fringes when Fourier transforming the light passing through a diffracting mask with multiple apertures at the locations of the homologous vortices. In fact, we use the Fourier transform as a mathematical operation to compute the far-field diffraction intensity pattern corresponding to the multiaperture set. Each aperture from the set is associated with a rectangular hole that coincides both in shape and size with a pixel from recorded images. We show that the fringe analysis can be conducted as in speckle photography in an extended range of displacement measurements. Effects related with speckled decorrelation are also considered. Our experimental results agree with those of speckle photography in the range in which both techniques are applicable.

  1. Hotspot monitoring system with contour-based metrology

    NASA Astrophysics Data System (ADS)

    Kawamoto, A.; Tanaka, Y.; Tsuda, S.; Shibayama, K.; Furukawa, S.; Abe, H.; Mitsui, T.; Yamazaki, Y.

    2009-03-01

    As design rules shrink, hotspot management is becoming increasingly important. In this paper, an automatic system of hotspot monitoring that is the final step in the hotspot management flow is proposed. The key technology for the automatic hotspot monitoring is contour-based metrology. It is an effective method of evaluating complex patterns, such as hotspots, whose efficiency has been proved in the field of optical proximity correction (OPC) calibration. The contour-based metrology is utilized in our system as a process control tool available on mass-production lines. The pattern evaluation methodology has been developed in order to achieve high sensitivity. Lithography simulation decides a hotspot to be monitored and furthermore indicates the most sensitive points in the field of view (FOV) of a hotspot image. And quantification of the most sensitive points is consistent with an engineer's visual check of a shape of a hotspot. Its validity has been demonstrated in process window determination. This system has the potential to substantially shorten turnaround time (TAT) for hotspot monitoring.

  2. High precision metrology of domes and aspheric optics

    NASA Astrophysics Data System (ADS)

    Murphy, Paul E.; Fleig, Jon; Forbes, Greg; Tricard, Marc

    2005-05-01

    Many defense systems have a critical need for high-precision, complex optics. However, fabrication of high quality, advanced optics is often seriously hampered by the lack of accurate and affordable metrology. QED's Subaperture Stitching Interferometer (SSI®) provides a breakthrough technology, enabling the automatic capture of precise metrology data for large and/or strongly curved (concave and convex) parts. QED"s SSI complements next-generation finishing technologies, such as Magnetorheological Finishing (MRF®), by extending the effective aperture, accuracy and dynamic range of a phase-shifting interferometer. This workstation performs automated sub-aperture stitching measurements of spheres, flats, and mild aspheres. It combines a six-axis precision stage system, a commercial Fizeau interferometer, and specially developed software that automates measurement design, data acquisition, and the reconstruction of the full-aperture figure error map. Aside from the correction of sub-aperture placement errors (such as tilts, optical power, and registration effects), our software also accounts for reference-wave error, distortion and other aberrations in the interferometer"s imaging optics. The SSI can automatically measure the full aperture of high numerical aperture surfaces (such as domes) to interferometric accuracy. The SSI extends the usability of a phase measuring interferometer and allows users with minimal training to produce full-aperture measurements of otherwise untestable parts. Work continues to extend this technology to measure aspheric shapes without the use of dedicated null optics. This SSI technology will be described, sample measurement results shown, and various manufacturing applications discussed.

  3. Comparison of asphere measurements by tactile and optical metrological instruments

    NASA Astrophysics Data System (ADS)

    Bergmans, R. H.; Nieuwenkamp, H. J.; Kok, G. J. P.; Blobel, G.; Nouira, H.; Küng, A.; Baas, M.; Tevoert, M.; Baer, G.; Stuerwald, S.

    2015-10-01

    A comparison of topography measurements of aspherical surfaces was carried out by European metrology institutes, other research institutes and a company as part of an European metrology research project. In this paper the results of this comparison are presented. Two artefacts were circulated, a small polymer coated aspherical lens with a clear aperture of about 12 mm, and a large conical convex lens with a clear aperture of 300 mm developed for the ESO Very Large Telescope. The participating laboratories were allowed to follow their own measurement strategies. Both tactile and optical measuring instruments were used, as well as single point and imaging techniques. The measured data were compared with respect to the root-mean-square (RMS), peak-to-valley and Zernike polynomial representations of the measured deviations from the nominal shape. The comparison shows for five out of eight measuring instruments/methods a very good agreement of the measured topographies within 14 nm (RMS).

  4. An alternative method to achieve metrological confirmation in measurement process

    NASA Astrophysics Data System (ADS)

    Villeta, M.; Rubio, E. M.; Sanz, A.; Sevilla, L.

    2012-04-01

    Metrological confirmation process must be designed and implemented to ensure that metrological characteristics of the measurement system meet metrological requirements of the measurement process. The aim of this paper is to present an alternative method to the traditional metrological requirements about the relationship between tolerance and measurement uncertainty, to develop such confirmation processes. The proposed way to metrological confirmation considers a given inspection task of the measurement process into the manufacturing system, and it is based on the Index of Contamination of the Capability, ICC. Metrological confirmation process is then developed taking into account the producer risks and economic considerations on this index. As a consequence, depending on the capability of the manufacturing process, the measurement system will be or will not be in adequate state of metrological confirmation for the measurement process.

  5. Aerial Explorers and Robotic Ecosystems

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg

    2004-01-01

    A unique bio-inspired approach to autonomous aerial vehicle, a.k.a. aerial explorer technology is discussed. The work is focused on defining and studying aerial explorer mission concepts, both as an individual robotic system and as a member of a small robotic "ecosystem." Members of this robotic ecosystem include the aerial explorer, air-deployed sensors and robotic symbiotes, and other assets such as rovers, landers, and orbiters.

  6. Unmanned aerial survey of elephants.

    PubMed

    Vermeulen, Cédric; Lejeune, Philippe; Lisein, Jonathan; Sawadogo, Prosper; Bouché, Philippe

    2013-01-01

    The use of a UAS (Unmanned Aircraft System) was tested to survey large mammals in the Nazinga Game Ranch in the south of Burkina Faso. The Gatewing ×100™ equipped with a Ricoh GR III camera was used to test animal reaction as the UAS passed, and visibility on the images. No reaction was recorded as the UAS passed at a height of 100 m. Observations, made on a set of more than 7000 images, revealed that only elephants (Loxodonta africana) were easily visible while medium and small sized mammals were not. The easy observation of elephants allows experts to enumerate them on images acquired at a height of 100 m. We, therefore, implemented an aerial strip sample count along transects used for the annual wildlife foot count. A total of 34 elephants were recorded on 4 transects, each overflown twice. The elephant density was estimated at 2.47 elephants/km(2) with a coefficient of variation (CV%) of 36.10%. The main drawback of our UAS was its low autonomy (45 min). Increased endurance of small UAS is required to replace manned aircraft survey of large areas (about 1000 km of transect per day vs 40 km for our UAS). The monitoring strategy should be adapted according to the sampling plan. Also, the UAS is as expensive as a second-hand light aircraft. However the logistic and flight implementation are easier, the running costs are lower and its use is safer. Technological evolution will make civil UAS more efficient, allowing them to compete with light aircraft for aerial wildlife surveys.

  7. Unmanned Aerial Survey of Elephants

    PubMed Central

    Vermeulen, Cédric; Lejeune, Philippe; Lisein, Jonathan; Sawadogo, Prosper; Bouché, Philippe

    2013-01-01

    The use of a UAS (Unmanned Aircraft System) was tested to survey large mammals in the Nazinga Game Ranch in the south of Burkina Faso. The Gatewing ×100™ equipped with a Ricoh GR III camera was used to test animal reaction as the UAS passed, and visibility on the images. No reaction was recorded as the UAS passed at a height of 100 m. Observations, made on a set of more than 7000 images, revealed that only elephants (Loxodonta africana) were easily visible while medium and small sized mammals were not. The easy observation of elephants allows experts to enumerate them on images acquired at a height of 100 m. We, therefore, implemented an aerial strip sample count along transects used for the annual wildlife foot count. A total of 34 elephants were recorded on 4 transects, each overflown twice. The elephant density was estimated at 2.47 elephants/km2 with a coefficient of variation (CV%) of 36.10%. The main drawback of our UAS was its low autonomy (45 min). Increased endurance of small UAS is required to replace manned aircraft survey of large areas (about 1000 km of transect per day vs 40 km for our UAS). The monitoring strategy should be adapted according to the sampling plan. Also, the UAS is as expensive as a second-hand light aircraft. However the logistic and flight implementation are easier, the running costs are lower and its use is safer. Technological evolution will make civil UAS more efficient, allowing them to compete with light aircraft for aerial wildlife surveys. PMID:23405088

  8. Application of the modified voltage-dividing potentiometer to overlay metrology in a CMOS/bulk process

    SciTech Connect

    Allen, R.A.; Cresswell, M.W.; Linholm, L.W.; Owen, J.C. III; Ellenwood, C.H.; Hill, T.A.; Benecke, J.D.; Volk, S.R.; Stewart, H.D.

    1994-02-01

    The measurement of layer-to-layer feature overlay will, in the foreseeable future, continue to be a critical metrological requirement for the semiconductor industry. Meeting the image placement metrology demands of accuracy, precision, and measurement speed favors the use of electrical test structures. In this paper, a two-dimensional, modified voltage-dividing potentiometer is applied to a short-loop VLSI process to measure image placement. The contributions of feature placement on the reticle and overlay on the wafer to the overall measurement are analyzed and separated. Additional sources of uncertainty are identified, and methods developed to monitor and reduce them are described.

  9. Aerial Perspective Artistry

    ERIC Educational Resources Information Center

    Wolfe, Linda

    2010-01-01

    This article presents a lesson centering on aerial perspective artistry of students and offers suggestions on how art teachers should carry this project out. This project serves to develop students' visual perception by studying reproductions by famous artists. This lesson allows one to imagine being lured into a landscape capable of captivating…

  10. Aerial of the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Even in this aerial view at KSC, the Vehicle Assembly Building is imposing. In front of it is the Launch Control Center. In the background is the Rotation/Processing Facility, next to the Banana Creek. In the foreground is the Saturn Causeway that leads to Launch Pads 39A and 39B.

  11. Aerial photographic reproductions

    USGS Publications Warehouse

    U.S. Geological Survey

    1971-01-01

    Geological Survey vertical aerial photography is obtained primarily for topographic and geologic mapping. Reproductions from this photography are usually satisfactory for general use. Because reproductions are not stocked, but are custom processed for each order, they cannot be returned for credit or refund.

  12. COCOA: tracking in aerial imagery

    NASA Astrophysics Data System (ADS)

    Ali, Saad; Shah, Mubarak

    2006-05-01

    Unmanned Aerial Vehicles (UAVs) are becoming a core intelligence asset for reconnaissance, surveillance and target tracking in urban and battlefield settings. In order to achieve the goal of automated tracking of objects in UAV videos we have developed a system called COCOA. It processes the video stream through number of stages. At first stage platform motion compensation is performed. Moving object detection is performed to detect the regions of interest from which object contours are extracted by performing a level set based segmentation. Finally blob based tracking is performed for each detected object. Global tracks are generated which are used for higher level processing. COCOA is customizable to different sensor resolutions and is capable of tracking targets as small as 100 pixels. It works seamlessly for both visible and thermal imaging modes. The system is implemented in Matlab and works in a batch mode.

  13. Optical Metrology for the Segmented Optics on the Constellation-X Spectroscopy X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Content, David; Colella, David; Fleetwood, Charles; Hadjimichael, Theo; Lehan, John; McMann, Joseph; Reid, Paul; Saha, Timo; Wright, Geraldine; Zhang, William

    2004-01-01

    We present the metrology requirements and metrology implementation necessary to prove out the reflector technology for the Constellation X(C-X) spectroscopy X-ray telescope (SXT). This segmented, 1.6m diameter highly nested Wolter-1 telescope presents many metrology and alignment challenges. In particular, these mirrors have a stringent imaging error budget as compared to their intrinsic stiffness; This is required for Constellation-X to have sufficient effective area with the weight requirement. This has implications for the metrology that can be used. A variety of contract and noncontact optical profiling and interferometric methods are combined to test the formed glass substrates before replication and the replicated reflector segments.The reflectors are tested both stand-alone and in-situ in an alignment tower.Some of these methods have not been used on prior X-ray telescopes and some are feasible only because of the segmented approach used on the SXT. Methods discussed include high precision coordinate measurement machines using very low force or optical probe axial interferometric profiling azimuthal circularity profiling and use of advanced null optics such as conical computer generated hologram (CGHs).

  14. A study to analyze six band multispectral images and fabricate a Fourier transform detector. [optical data processing - aerial photography/forests

    NASA Technical Reports Server (NTRS)

    Shackelford, R. G.; Walsh, J. R., Jr.

    1975-01-01

    An automatic Fourier transform diffraction pattern sampling system, used to investigate techniques for forestry classification of six band multispectral aerial photography is presented. Photographs and diagrams of the design, development and fabrication of a hybrid optical-digital Fourier transform detector are shown. The detector was designed around a concentric ring fiber optic array. This array was formed from many optical fibers which were sorted into concentric rings about a single fiber. All the fibers in each ring were collected into a bundle and terminated into a single photodetector. An optical/digital interface unit consisting of a high level multiplexer, and an analog-to-digital amplifier was also constructed and is described.

  15. Metrology: Calibration and measurement processes guidelines

    NASA Technical Reports Server (NTRS)

    Castrup, Howard T.; Eicke, Woodward G.; Hayes, Jerry L.; Mark, Alexander; Martin, Robert E.; Taylor, James L.

    1994-01-01

    The guide is intended as a resource to aid engineers and systems contracts in the design, implementation, and operation of metrology, calibration, and measurement systems, and to assist NASA personnel in the uniform evaluation of such systems supplied or operated by contractors. Methodologies and techniques acceptable in fulfilling metrology quality requirements for NASA programs are outlined. The measurement process is covered from a high level through more detailed discussions of key elements within the process, Emphasis is given to the flowdown of project requirements to measurement system requirements, then through the activities that will provide measurements with defined quality. In addition, innovations and techniques for error analysis, development of statistical measurement process control, optimization of calibration recall systems, and evaluation of measurement uncertainty are presented.

  16. Area and Elevation Changes of a Debris-Covered Glacier and a Clean-Ice Glacier Between 1952-2013 Using Aerial Images and Structure-from-Motion

    NASA Astrophysics Data System (ADS)

    Lardeux, P.; Glasser, N. F.; Holt, T.; Irvine-Fynn, T. D.; Hubbard, B. P.

    2015-12-01

    Since 1952, the clean-ice Glacier Blanc has retreated twice as fast as the adjacent debris-covered Glacier Noir. Located in the French Alps and separated by only 1 km, both glaciers experience the same climatic conditions, making them ideal to evaluate the impact of debris cover on glacier evolution. We used aerial photographs from 16 acquisitions from 1952 to 2013 to reconstruct and analyze glacier elevation changes using Structure-from-Motion (SfM) techniques. Here, we present the process of developing sub-metric resolution digital elevation models (DEMs) from these aerial photographs. By combining 16 DEMs, we produced a dataset of elevation changes of Glacier Noir and Glacier Blanc, including time-series analysis of lateral and longitudinal profiles, glacier hypsometry and mass balance variation. Our preliminary results indicate that Glacier Noir and Glacier Blanc have both thinned to a similar magnitude, ≤ 20 m, despite a 1 km retreat for Glacier Blanc and only 500 m for Glacier Noir. However, these elevation change reconstructions are hampered by large uncertainties, principally due to the lack of independent camera calibration on the historical imagery. Initial attempts using posteriori correction grids have proven to significantly increase the accuracy of these data. We will present some of the uncertainties and solutions linked to the use of SfM on such a large scale and on such an old dataset. This study demonstrates how SfM can be used to investigate long-term trends in environmental change, allowing glacier monitoring to be up-scaled. It also highlights the need for on-going validation of methods to increase the accuracy and precision of SfM in glaciology. This work is not only advancing our understanding of the role of the debris layer, but will also aid glacial geology more generally with, for example, detailed geomorphological analysis of proglacial terrain and Quaternary sciences with quick and accurate reconstruction of a glacial paleo-environment.

  17. Wideband ultrafast fiber laser sources for OCT and metrology

    NASA Astrophysics Data System (ADS)

    Nishizawa, Norihiko

    2016-09-01

    Fiber lasers, which use optical fibers as ideal waveguides, have been attracting a great deal of attention as stable, practical, and maintenance-free lasers. Using a combination of an ultrashort-pulse fiber laser and a nonlinear fiber, we can realize wideband highly functional ultrafast fiber laser sources. The generation of ultrashort pulses with wide wavelength tunability and supercontinua based on fiber lasers and nonlinear fibers has been demonstrated. These techniques are useful for laser applications, especially for imaging and metrology. In this topical review, the fundamentals of and recent progress in wideband ultrafast fiber laser sources and their applications are reviewed mainly based on the author’s work. First, a new pulse source based on a passively-mode-locked ultrashort-pulse fiber laser using carbon nanotubes is explained. Next, the development of wideband ultrafast fiber laser sources and their applications in ultrahigh-resolution optical coherence tomography, optical frequency combs, and nonlinear microscopy are reviewed.

  18. Robust speckle metrology for stress measurements outside the lab

    NASA Astrophysics Data System (ADS)

    Viotti, Matias R.; Albertazzi G., Armando, Jr.

    2015-05-01

    Optical techniques are usually related to laboratory rooms, which are places equipped with temperature, humidity and vibration control. These techniques are very suitable for fast measurements due to their non-contact nature and full-field capability. Among them, optical methods based on the speckle phenomenon have had a great development during the last two decades because of the development of digital image processing, cameras, computers, lasers and optical components. Speckle techniques have the advantages cited for optical methods. Additionally, they are adequate for the evaluation of real components without further preparation of the surface and without high time consuming to be analyzed. This paper supplies tools, tips and reference parameters to develop interferometers based on the speckle phenomenon to be used outside the laboratory room. Finally, applications outside the lab for the measurement of mechanical and residual stresses are presented. These examples show the high potential of speckle metrology as an auxiliary tool for structure integrity assessment.

  19. Formation metrology and control for large separated optics space telescopes

    NASA Technical Reports Server (NTRS)

    Mettler, E.; Quadrelli, M.; Breckenridge, W.

    2002-01-01

    In this paper we present formation flying performance analysis initial results for a representative large space telescope composed of separated optical elements [Mett 02]. A virtual-structure construct (an equivalent rigid body) is created by unique metrology and control that combines both centralized and decentralized methods. The formation may be in orbit at GEO for super-resolution Earth observation, as in the case of Figure 1, or it may be in an Earth-trailing orbit for astrophysics, Figure 2. Extended applications are envisioned for exo-solar planet interferometric imaging by a formation of very large separated optics telescopes, Figure 3. Space telescopes, with such large apertures and f/10 to f/100 optics, are not feasible if connected by massive metering structures. Instead, the new virtual-structure paradigm of information and control connectivity between the formation elements provides the necessary spatial rigidity and alignment precision for the telescope.

  20. A scatterometry inverse problem in optical mask metrology

    NASA Astrophysics Data System (ADS)

    Model, R.; Rathsfeld, A.; Gross, H.; Wurm, M.; Bodermann, B.

    2008-11-01

    We discuss the solution of the inverse problem in scatterometry i.e. the determination of periodic surface structures from light diffraction patterns. With decreasing details of lithography masks, increasing demands on metrology techniques arise. By scatterometry as a non-imaging indirect optical method critical dimensions (CD) like side-wall angles, heights, top and bottom widths are determined. The numerical simulation of diffraction is based on the finite element solution of the Helmholtz equation. The inverse problem seeks to reconstruct the grating geometry from measured diffraction patterns. The inverse operator maps efficiencies of diffracted plane wave modes to the grating parameters. We employ a Newton type iterative method to solve the resulting minimum problem. The reconstruction quality surely depends on the angles of incidence, on the wave lengths and/or the number of propagating scattered wave modes and will be discussed by numerical examples.

  1. Super-resolution PMD camera for applied metrology

    NASA Astrophysics Data System (ADS)

    Lietz, Henrik; Eberhardt, Jörg

    2016-03-01

    Currently, photonic mixing device (PMD) cameras undergo a great deal of attention. They allow simultaneous recordings of amplitude and distance images with one shot. This opens up new application possibilities like drivers' assistance in vehicles or gesture control in the multimedia sector. Unfortunately, PMD cameras reach only low spatial resolution. Wherein the pixel resolution for state-of-the-art indoor cameras ranging about VGA resolution, they are even lower for outdoor applications. This limits the possibilities for object recognition. From two-dimensional (2D) imaging there are already methods known for increasing spatial resolution virtually. It means resolution enhancement without changing physically given sensor specifications like pixel dimension or sensor size. In this context, often referred as superresolution (SR). This work compares four well-known geometric SR algorithms from 2D imaging adapted to PMD imaging. Resolution enhancement and quality of the SR results are evaluated objectively by measuring the spatial frequency response (SFR) and investigating the noise performance in amplitude and distance images. Based on these results, SR algorithms for possible measurement tasks in metrological or photographic applications are proposed.

  2. Optical thin film metrology for optoelectronics

    NASA Astrophysics Data System (ADS)

    Petrik, Peter

    2012-12-01

    The manufacturing of optoelectronic thin films is of key importance, because it underpins a significant number of industries. The aim of the European joint research project for optoelectronic thin film characterization (IND07) in the European Metrology Research Programme of EURAMET is to develop optical and X-ray metrologies for the assessment of quality as well as key parameters of relevant materials and layer systems. This work is intended to be a step towards the establishment of validated reference metrologies for the reliable characterization, and the development of calibrated reference samples with well-defined and controlled parameters. In a recent comprehensive study (including XPS, AES, GD-OES, GD-MS, SNMS, SIMS, Raman, SE, RBS, ERDA, GIXRD), Abou-Ras et al. (Microscopy and Microanalysis 17 [2011] 728) demonstrated that most characterization techniques have limitations and bottle-necks, and the agreement of the measurement results in terms of accurate, absolute values is not as perfect as one would expect. This paper focuses on optical characterization techniques, laying emphasis on hardware and model development, which determine the kind and number of parameters that can be measured, as well as their accuracy. Some examples will be discussed including optical techniques and materials for photovoltaics, biosensors and waveguides.

  3. Optical metrology at the NSLS-II

    SciTech Connect

    Kaznatcheev, K.; Takacs, P. Z.

    2010-12-08

    Rapid progress in synchrotron optics performance places a high demand on optical characterization techniques used to validate surface parameters prior to installation of the X-ray optics. It is now necessary to characterize optical surface figure and slope errors and roughness on meter-long optics over spatial frequencies as short as 0.1 {micro}m The new NSLS-II Optical Metrology Laboratory (OML) includes instruments for measuring: (1) long spatial frequency figure errors with a ZYGO MST Fizeau-type 4* interferometer, capable of 0.1 nm sensitivity, (2) mid spatial frequencies with an upgraded ZYGO NewView 6300 white light interferometric microscope, capable of reaching 0.1 nm accuracy at a lateral resolution of 1 {micro}m, (3) high frequency roughness with an AFM (Nanosurf AG) with linearity better than 0.2% over the 80 {micro}m measurement area and sensitivity approaching 0.01 nm, and (4) slope errors with a long trace profiler currently under development that will be able to reach 50 nrad slope error accuracy. At present, the OML supports the NSLS-II R&D efforts and provides ongoing testing for NSLS optics. Future plans include the construction of a specialized metrology beamline for at-wavelength metrology, radiometry, in situ surface figuring, crystal optics characterization, and instrumentation development.

  4. Metrology Techniques for the Assembly of NCSX

    SciTech Connect

    C. Priniski, T. Dodson, M. Duco, S. Raftopoulos, R. Ellis, and A. Brooks

    2009-09-24

    In support of the National Compact Stellerator Experiment (NCSX), stellerator assembly activities continued this past year at the Princeton Plasma Physics Laboratory (PPPL) in partnership with the Oak Ridge National Laboratory (ORNL). The construction program saw the completion of the first two Half Field-Period Assemblies (HPA), each consisting of three modular coils. The full machine includes six such sub-assemblies. A single HPA consists of three of the NCSX modular coils wound and assembled at PPPL. These geometrically-complex threedimensional coils were wound using computer-aided metrology and CAD models to tolerances within +/- 0.5mm. The assembly of these coils required similar accuracy on a larger scale with the added complexity of more individual parts and fewer degrees of freedom for correction. Several new potential positioning issues developed for which measurement and control techniques were developed. To accomplish this, CAD coordinate-based computer metrology equipment and software similar to the solutions employed for winding the modular coils was used. Given the size of the assemblies, the primary tools were both interferometeraided and Absolute Distance Measurement (ADM)-only based laser trackers. In addition, portable Coordinate Measurement Machine (CMM) arms and some novel indirect measurement techniques were employed. This paper will detail both the use of CAD coordinate-based metrology technology and the techniques developed and employed for dimensional control of NSCX subassemblies. The results achieved and possible improvements to techniques will be discussed.

  5. Sea Ice Mapping using Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Solbø, S.; Storvold, R.

    2011-12-01

    Mapping of sea ice extent and sea ice features is an important task in climate research. Since the arctic coastal and oceanic areas have a high probability of cloud coverage, aerial platforms are superior to satellite measurements for high-resolution optical measurements. However, routine observations of sea ice conditions present a variety of problems using conventional piloted aircrafts. Specially, the availability of suitable aircrafts for lease does not cover the demand in major parts of the arctic. With the recent advances in unmanned aerial systems (UAS), there is a high possibility of establishing routine, cost effective aerial observations of sea ice conditions in the near future. Unmanned aerial systems can carry a wide variety of sensors useful for characterizing sea-ice features. For instance, the CryoWing UAS, a system initially designed for measurements of the cryosphere, can be equipped with digital cameras, surface thermometers and laser altimeters for measuring freeboard of ice flows. In this work we will present results from recent CryoWing sea ice flights on Svalbard, Norway. The emphasis will be on data processing for stitching together images acquired with the non-stabilized camera payload, to form high-resolution mosaics covering large spatial areas. These data are being employed to map ice conditions; including ice and lead features and melt ponds. These high-resolution mosaics are also well suited for sea-ice mechanics, classification studies and for validation of satellite sea-ice products.

  6. AERIAL RADIOLOGICAL SURVEYS

    SciTech Connect

    Proctor, A.E.

    1997-06-09

    Measuring terrestrial gamma radiation from airborne platforms has proved to be a useful method for characterizing radiation levels over large areas. Over 300 aerial radiological surveys have been carried out over the past 25 years including U.S. Department of Energy (DOE) sites, commercial nuclear power plants, Formerly Utilized Sites Remedial Action Program/Uranium Mine Tailing Remedial Action Program (FUSRAP/UMTRAP) sites, nuclear weapons test sites, contaminated industrial areas, and nuclear accident sites. This paper describes the aerial measurement technology currently in use by the Remote Sensing Laboratory (RSL) for routine environmental surveys and emergency response activities. Equipment, data-collection and -analysis methods, and examples of survey results are described.

  7. Metrology of 3D nanostructures.

    SciTech Connect

    Barsic, Anthony; Piestun, Rafael; Boye, Robert R.

    2012-10-01

    We propose a superresolution technique to resolve dense clusters of blinking emitters. The method relies on two basic assumptions: the emitters are statistically independent, and a model of the imaging system is known. We numerically analyze the performance limits of the method as a function of the emitter density and the noise level. Numerical simulations show that five closely packed emitters can be resolved and localized to a precision of 17nm. The experimental resolution of five quantum dots located within a diffraction limited spot confirms the applicability of this approach.

  8. High-throughput parallel SPM for metrology, defect, and mask inspection

    NASA Astrophysics Data System (ADS)

    Sadeghian, H.; Herfst, R. W.; van den Dool, T. C.; Crowcombe, W. E.; Winters, J.; Kramer, G. F. I. J.

    2014-10-01

    Scanning probe microscopy (SPM) is a promising candidate for accurate assessment of metrology and defects on wafers and masks, however it has traditionally been too slow for high-throughput applications, although recent developments have significantly pushed the speed of SPM [1,2]. In this paper we present new results obtained with our previously presented high-throughput parallel SPM system [3,4] that showcase two key advances that are required for a successful deployment of SPM in high-throughput metrology, defect and mask inspection. The first is a very fast (up to 40 lines/s) image acquisition and a comparison of the image quality as function of speed. Secondly, a fast approach method: measurements of the scan-head approaching the sample from 0.2 and 1.0 mm distance in under 1.4 and 6 seconds respectively.

  9. Metrology of steel micronozzles using x-ray propagation-based phase-enhanced microimaging

    NASA Astrophysics Data System (ADS)

    Lee, Wah-Keat; Fezzaa, Kamel; Wang, Jin

    2005-08-01

    With high-energy and high-brilliance x-rays available at third-generation synchrotron sources, propagation-based phase-enhanced imaging was developed as a unique metrology technique to visualize the internal structure of high-pressure fuel-injection micronozzles. We have visualized the micrometer-scale machining and finishing defects inside a 200-μm-fuel-injection micronozzle in a 3-mm-thick steel housing using phase-enhanced x-ray imaging. Because of the phase enhancement, this new microimaging-based metrology technique has paved the way to directly study highly transient fluid dynamics in the micronozzles in situ and in real time, which is virtually impossible by any other means.

  10. Efficient Algorithm for Optimizing Adaptive Quantum Metrology Processes

    NASA Astrophysics Data System (ADS)

    Hentschel, Alexander; Sanders, Barry C.

    2011-12-01

    Quantum-enhanced metrology infers an unknown quantity with accuracy beyond the standard quantum limit (SQL). Feedback-based metrological techniques are promising for beating the SQL but devising the feedback procedures is difficult and inefficient. Here we introduce an efficient self-learning swarm-intelligence algorithm for devising feedback-based quantum metrological procedures. Our algorithm can be trained with simulated or real-world trials and accommodates experimental imperfections, losses, and decoherence.

  11. Comparisons organized by Ionizing Radiation Metrology Laboratory of FTMC, Lithuania.

    PubMed

    Gudelis, A; Gorina, I

    2016-03-01

    The newly established Ionizing Radiation Metrology Laboratory of the National Metrology Institute (FTMC) in Lithuania organized four comparisons in the field of low-level radioactivity measurements in water. For gamma-ray emitters, the activity concentration in the samples was in the range 1-25Bq/kg, while for tritium it was around 2Bq/g. The assigned values of all comparisons were traceable to the primary standards of the Czech Metrology Institute (CMI). PMID:26585643

  12. Efficient algorithm for optimizing adaptive quantum metrology processes.

    PubMed

    Hentschel, Alexander; Sanders, Barry C

    2011-12-01

    Quantum-enhanced metrology infers an unknown quantity with accuracy beyond the standard quantum limit (SQL). Feedback-based metrological techniques are promising for beating the SQL but devising the feedback procedures is difficult and inefficient. Here we introduce an efficient self-learning swarm-intelligence algorithm for devising feedback-based quantum metrological procedures. Our algorithm can be trained with simulated or real-world trials and accommodates experimental imperfections, losses, and decoherence.

  13. Use of design pattern layout for automatic metrology recipe generation

    NASA Astrophysics Data System (ADS)

    Tabery, Cyrus; Page, Lorena

    2005-05-01

    As critical dimension control requirements become more challenging, due to complex designs, aggressive lithography, and the constant need to shrink,metrology recipe generation and design evaluation have also become very complex. Hundreds of unique sites must be measured and monitored to ensure good device performance and high yield. The use of the design and layout for automated metrology recipe generation will be critical to that challenge. The DesignGauge from Hitachi implements a system enabling arbitrary recipe generation and control of SEM observations performed on the wafer, based only on the design information. This concept for recipe generation can reduce the time to develop a technology node from RET and design rule selection, through OPC model calibration and verification, and all the way to high volume manufacturing. Conventional recipe creation for a large number of measurement targets requires a significant amount of engineering time. Often these recipes are used only once or twice during mask and process verification or OPC calibration data acquisition. This process of manual setup and analysis is also potentially error prone. CD-SEM recipe creation typically requires an actual wafer, so the recipe creation cannot occur until the scanner and reticle are in house. All of these problems with conventional CD SEM lead to increased development time and reduced final process quality. The new model of CD-SEM recipe generation and management utilizes design-to-SEM matching technology. This new technology extracts an idealized shape from the designed pattern, and utilizes the shape information for pattern matching. As a result, the designed pattern is used as basis for the template instead of the actual SEM image. Recipe creation can be achieved in a matter of seconds once the target site list is finalized. The sequence of steps for creating a recipe are: generate a target site list, pass the design polygons (GDS) and site list to the CD SEM, define references

  14. Photogrammetric mapping using unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Graça, N.; Mitishita, E.; Gonçalves, J.

    2014-11-01

    Nowadays Unmanned Aerial Vehicle (UAV) technology has attracted attention for aerial photogrammetric mapping. The low cost and the feasibility to automatic flight along commanded waypoints can be considered as the main advantages of this technology in photogrammetric applications. Using GNSS/INS technologies the images are taken at the planned position of the exposure station and the exterior orientation parameters (position Xo, Yo, Zo and attitude ω, φ, χ) of images can be direct determined. However, common UAVs (off-the-shelf) do not replace the traditional aircraft platform. Overall, the main shortcomings are related to: difficulties to obtain the authorization to perform the flight in urban and rural areas, platform stability, safety flight, stability of the image block configuration, high number of the images and inaccuracies of the direct determination of the exterior orientation parameters of the images. In this paper are shown the obtained results from the project photogrammetric mapping using aerial images from the SIMEPAR UAV system. The PIPER J3 UAV Hydro aircraft was used. It has a micro pilot MP2128g. The system is fully integrated with 3-axis gyros/accelerometers, GPS, pressure altimeter, pressure airspeed sensors. A Sony Cyber-shot DSC-W300 was calibrated and used to get the image block. The flight height was close to 400 m, resulting GSD near to 0.10 m. The state of the art of the used technology, methodologies and the obtained results are shown and discussed. Finally advantages/shortcomings found in the study and main conclusions are presented

  15. PREFACE: VII Brazilian Congress on Metrology (Metrologia 2013)

    NASA Astrophysics Data System (ADS)

    Costa-Félix, Rodrigo; Bernardes, Americo; Valente de Oliveira, José Carlos; Mauro Granjeiro, José; Epsztejn, Ruth; Ihlenfeld, Waldemar; Smarçaro da Cunha, Valnei

    2015-01-01

    SEVENTH BRAZILIAN CONGRESS ON METROLOGY (METROLOGIA 2013) Metrology and Quality for a Sustainable Development From November 24th to 27th 2013 was issued the Seventh Brazilian Congress on Metrology (Metrologia 2013), which is a biannual conference organized and sponsored by the Brazilian Society of Metrology (SBM) and the Brazilian National Institute of Metrology, Quality and Technology (Inmetro). This edition was held in the charming and historical city of Ouro Preto, MG, Brazil, and aimed to join people and institutions devoted to the dissemination of the metrology and conformity assessment. The Metrologia 2013 Conference consisted of Keynote Speeches (7) and regular papers (204). Among the regular papers, the 47 most outstanding ones, comprising a high quality content on Metrology and Conformity Assessment, were selected to be published in this issue of the Journal of Physics: Conference Series. The topics of the conference covered all important areas of Metrology, which were agglutinated in the following sessions in the present issue: . Physical Metrology (Acoustics, Vibration and Ultrasound; Electricity and Magnetism; Mechanics; Optics); . Metrology on Ionizing Radiations; . Time and Frequency; . Chemistry Metrology; . Materials Metrology; . Biotechnology; . Uncertainty, Statistics and Mathematics; . Legal Metrology; . Conformity Assessment. It is our great pleasure to present this volume of IOP Journal of Physics: Conference Series (JPCS) to the scientific community to promote further research in Metrology and related areas. We believe that this volume will be both an excellent source of scientific material in the fast evolving fields that were covered by Metrologia 2013. President of the congress Americo Bernardes Federal University of Ouro Preto atb@iceb.ufop.br Editor-in-chief Rodrigo Costa-Félix Brazilian National Institute of Metrology, Quality and Technology rpfelix@inmetro.gov.br Editors José Carlos Valente de Oliveira (Editor on Mechanical Metrology

  16. Integrating optical fabrication and metrology into the optical design process.

    PubMed

    Harvey, James E

    2015-03-20

    The recent validation of a generalized linear systems formulation of surface scatter theory and an analysis of image degradation due to surface scatter in the presence of aberrations has provided credence to the development of a systems engineering analysis of image quality as degraded not only by diffraction effects and geometrical aberrations, but to scattering effects due to residual optical fabrication errors as well. This generalized surface scatter theory provides insight and understanding by characterizing surface scatter behavior with a surface transfer function closely related to the modulation transfer function of classical image formation theory. Incorporating the inherently band-limited relevant surface roughness into the surface scatter theory provides mathematical rigor into surface scatter analysis, and implementing a fast Fourier transform algorithm with logarithmically spaced data points facilitates the practical calculation of scatter behavior from surfaces with a large dynamic range of relevant spatial frequencies. These advances, combined with the continuing increase in computer speed, leave the optical design community in a position to routinely derive the optical fabrication tolerances necessary to satisfy specific image quality requirements during the design phase of a project; i.e., to integrate optical metrology and fabrication into the optical design process.

  17. High Resolution Urban Land Cover Mapping Using NAIP Aerial Photography and Image Processing for the USEPA National Atlas of Sustainability and Ecosystem Services

    NASA Astrophysics Data System (ADS)

    Pilant, A. N.; Baynes, J.; Dannenberg, M.

    2012-12-01

    The US EPA National Atlas for Sustainability is a web-based, easy-to-use, mapping application that allows users to view and analyze multiple ecosystem services in a specific region. The Atlas provides users with a visual method for interpreting ecosystem services and understanding how they can be conserved and enhanced for a sustainable future. The Urban Atlas component of the National Atlas will provide fine-scale information linking human health and well-being to environmental conditions such as urban heat islands, near-road pollution, resource use, access to recreation, drinking water quality and other quality of life indicators. The National Land Cover Data (NLCD) derived from 30 m scale 2006 Landsat imagery provides the land cover base for the Atlas. However, urban features and phenomena occur at finer spatial scales, so higher spatial resolution and more current LC maps are required. We used 4 band USDA NAIP imagery (1 m pixel size) and various classification approaches to produce urban land cover maps with these classes: impervious surface, grass and herbaceous, trees and forest, soil and barren, and water. Here we present the remote sensing methods used and results from four pilot cities in this effort, highlighting the pros and cons of the approach, and the benefits to sustainability and ecosystem services analysis. Example of high resolution land cover map derived from USDA NAIP aerial photo. Compare 30 m and 1 m resolution land cover maps of downtown Durham, NC.

  18. FOREWORD: Special issue on radionuclide metrology

    NASA Astrophysics Data System (ADS)

    Simpson, Bruce; Judge, Steven

    2007-08-01

    This special issue of Metrologia on radionuclide metrology is the first of a trilogy on the subject of ionizing radiation measurement, a field that is overseen by Sections I, II and III of the CIPM's Consultative Committee for Ionizing Radiation (CCRI). The idea was first proposed at the 2003 series of CCRI Section meetings, with the general aim of showcasing the relevance and importance of metrology in ionizing radiation to a broader metrological audience. After the 2005 meeting of Section II (measurement of radionuclides), the radioactivity aspect of the project began to move forward in earnest. A working group was set up with the brief that the special issue should be of use by experienced metrologists as an overview of the 'state of the art' to compare progress and scientific content with those in other fields of metrology, as a resource for new metrologists joining the field and as a guide for users of radioactivity to explain how traceability to the international measurement system may be achieved. Since mankind first became aware of the existence of radioactivity just over a century ago (due to its discovery by Becquerel and further work by the Curies), much has been learnt and understood in the interim period. The field of radionuclide metrology that developed subsequently is broad-based and encompasses, amongst others, nuclear physics (experimental and theory), chemistry, mathematics, mathematical statistics, uncertainty analysis and advanced computing for data analysis, simulation and modelling. To determine the activity of radionuclides accurately requires elements of all of these subjects. In more recent decades the focus has been on the practical applications of radioactivity in industry and the health field in particular. In addition, low-level environmental radioactivity monitoring has taken on ever greater importance in the nuclear power era. These developments have required new detection instrumentation and techniques on an ongoing basis to ensure

  19. Gaining insight into effective metrology height through the use of a compact CDSEM model for lithography simulation

    NASA Astrophysics Data System (ADS)

    Fang, Chao; Graves, Trey; Vaglio Pret, Alessandro; Robertson, Stewart; Smith, Mark

    2016-03-01

    Computer simulation of lithographic performance, including resist CD, film thickness, sidewall angle and profile has been extensively studied during the past three decades. Lithography simulation has been widely adopted as an enabling technology for high-volume chip manufacturing. However, measurement artifacts arising from CD-SEM metrology are typically ignored in simulation, due to the difficulty of accurately modeling the effect of the CD-SEM at acceptable computational speed. In this paper, we demonstrate how CD measurements can be improved by including a fast, compact CD-SEM model. For example, the variation in effective resist metrology height along contour lines extracted from a simulated CD-SEM image is characterized for a range of structures through focus. We also demonstrate how SEM settings affect the shape of extracted SEM contour and metrology height at contour edge. The Edge Placement Error (EPE) caused by SEM artifact is carefully studied.

  20. Blending zone determination for aerial orthimage mosaicking

    NASA Astrophysics Data System (ADS)

    Lin, Chao-Hung; Chen, Bo-Heng; Lin, Bo-Yi; Chou, Han-Szu

    2016-09-01

    Creating a composed image from a set of aerial images is a fundamental step in orthomosaic generation. One of the processes involved in this technique is determining an optimal seamline in an overlapping region to stitch image patches seamlessly. Most previous studies have solved this optimization problem by searching for a one-pixel-wide seamline with an objective function. This strategy significantly reduced pixel mismatches on the seamline caused by geometric distortions of images but did not fully consider color discontinuity and mismatch problems that occur around the seamline, which sometimes cause mosaicking artifacts. This study proposes a blending zone determination scheme with a novel path finding algorithm to reduce the occurrence of unwanted artifacts. Instead of searching for a one-pixel-wide seamline, a blending zone, which is a k-pixel-wide seamline that passes through high-similarity pixels in the overlapping region, is determined using a hierarchical structure. This strategy allows for not only seamless stitching but also smooth color blending of neighboring image patches. Moreover, the proposed method searches for a blending zone without the pre-process of highly mismatched pixel removal and additional geographic data of road vectors and digital surface/elevation models, which increases the usability of the approach. Qualitative and quantitative analyses of aerial images demonstrate the superiority of the proposed method to related methods in terms of avoidance of passing highly mismatched pixels.

  1. A Texture Thesaurus for Browsing Large Aerial Photographs.

    ERIC Educational Resources Information Center

    Ma, Wei-Ying; Manjunath, B. S.

    1998-01-01

    Presents a texture-based image-retrieval system for browsing large-scale aerial photographs. System components include texture-feature extraction, image segmentation and grouping, learning-similarity measure, and a texture-thesaurus model for fast search and indexing. Testing has demonstrated the system's effectiveness in searching and selecting…

  2. New method of 2-dimensional metrology using mask contouring

    NASA Astrophysics Data System (ADS)

    Matsuoka, Ryoichi; Yamagata, Yoshikazu; Sugiyama, Akiyuki; Toyoda, Yasutaka

    2008-10-01

    We have developed a new method of accurately profiling and measuring of a mask shape by utilizing a Mask CD-SEM. The method is intended to realize high accuracy, stability and reproducibility of the Mask CD-SEM adopting an edge detection algorithm as the key technology used in CD-SEM for high accuracy CD measurement. In comparison with a conventional image processing method for contour profiling, this edge detection method is possible to create the profiles with much higher accuracy which is comparable with CD-SEM for semiconductor device CD measurement. This method realizes two-dimensional metrology for refined pattern that had been difficult to measure conventionally by utilizing high precision contour profile. In this report, we will introduce the algorithm in general, the experimental results and the application in practice. As shrinkage of design rule for semiconductor device has further advanced, an aggressive OPC (Optical Proximity Correction) is indispensable in RET (Resolution Enhancement Technology). From the view point of DFM (Design for Manufacturability), a dramatic increase of data processing cost for advanced MDP (Mask Data Preparation) for instance and surge of mask making cost have become a big concern to the device manufacturers. This is to say, demands for quality is becoming strenuous because of enormous quantity of data growth with increasing of refined pattern on photo mask manufacture. In the result, massive amount of simulated error occurs on mask inspection that causes lengthening of mask production and inspection period, cost increasing, and long delivery time. In a sense, it is a trade-off between the high accuracy RET and the mask production cost, while it gives a significant impact on the semiconductor market centered around the mask business. To cope with the problem, we propose the best method of a DFM solution using two-dimensional metrology for refined pattern.

  3. Photomask Dimensional Metrology in the SEM: Has Anything Really Changed?

    NASA Astrophysics Data System (ADS)

    Postek, Michael T., Jr.; Vladar, Andras E.; Bennett, Marylyn H.

    2002-12-01

    Photomask dimensional metrology in the scanning electron microscope (SEM) has not evolved as rapidly as the metrology of resists and integrated circuit features on wafers. This has been due partly to the 4x (or 5x) reduction in the optical steppers and scanners used in the lithography process, and partly for the lesser need to account for the real three-dimensionality of the mask structures. So, where photomasks are concerned, many of the issues challenging wafer dimensional metrology at 1x are reduced by a factor of 4 or 5 and thus could be temporarily swept aside. This is rapidly changing with the introduction of advanced masks with optical proximity correction and phase shifting features used in 100 nm and smaller circuit generations. Fortunately, photomask metrology generally benefits from the advances made for wafer metrology, but there are still unique issues to be solved in this form of dimensional metrology. It is likely that no single metrology method or tool will ever provide all necessary answers. As with other types of metrology, resolution, sensitivity and linearity in the three-dimensional measurements of the shape of the lines and phase shifting features in general (width, height and wall angles) and the departures from the desired shape (surface and edge roughness, etc.) are the key parameters. Different methods and tools differ in their ability to collect averaged and localized signals with an acceptable speed, but in any case, application of this thorough knowledge of the physics of the given metrology is essential to extract the needed information. This paper will discuss the topics of precision, accuracy and traceability in the SEM metrology of photomasks. Current and possible new techniques utilized in the measurements of photomasks including charge suppression and highly accurate modeling for electron beam metrology will also be explored to answer the question "Has anything really changed?"

  4. Locating buildings in aerial photos

    NASA Technical Reports Server (NTRS)

    Green, James S.

    1994-01-01

    Algorithms and techniques for use in the identification and location of large buildings in digitized copies of aerial photographs are developed and tested. The building data would be used in the simulation of objects located in the vicinity of an airport that may be detected by aircraft radar. Two distinct approaches are considered. Most building footprints are rectangular in form. The first approach studied is to search for right-angled corners that characterize rectangular objects and then to connect these corners to complete the building. This problem is difficult because many nonbuilding objects, such as street corners, parking lots, and ballparks often have well defined corners which are often difficult to distinguish from rooftops. Furthermore, rooftops come in a number of shapes, sizes, shadings, and textures which also limit the discrimination task. The strategy used linear sequences of different samples to detect straight edge segments at multiple angles and to determine when these segments meet at approximately right-angles with respect to each other. This technique is effective in locating corners. The test image used has a fairly rectangular block pattern oriented about thirty degrees clockwise from a vertical alignment, and the overall measurement data reflect this. However, this technique does not discriminate between buildings and other objects at an operationally suitable rate. In addition, since multiple paths are tested for each image pixel, this is a time consuming task. The process can be speeded up by preprocessing the image to locate the more optimal sampling paths. The second approach is to rely on a human operator to identify and select the building objects and then to have the computer determine the outline and location of the selected structures. When presented with a copy of a digitized aerial photograph, the operator uses a mouse and cursor to select a target building. After a button on the mouse is pressed, with the cursor fully within

  5. Aerial views of the San Andreas Fault

    USGS Publications Warehouse

    Moore, M.

    1988-01-01

    These aerial photographs of the San Andreas fault were taken in 1965 by Robert E. Wallace of the U.S Geological Survey. The pictures were taken with a Rolliflex camera on 20 format black and white flim; Wallace was aboard a light, fixed-wing aircraft, flying mostly at low altitudes. He photographed the fault from San Francisco near its north end where it enters by the Salton Sea. These images represent only a sampling of the more than 300 images prodcued during this project. All the photographs reside in the U.S Geological Survey Library in Menlo Park, California. 

  6. Integrated ODP Metrology Matching To Reference Metrology For Lithography Process Control

    NASA Astrophysics Data System (ADS)

    Kearney, Patrick; Uchida, Junichi; Weichert, Heiko; Likhachev, Dmitriy; Hetzer, David; Fleischer, Göran

    2009-09-01

    Advanced DRAM manufacturing demands rigorous and tight process control using high measurement precision, accurate, traceable and high throughput metrology solutions. Scatterometry is one of the advanced metrology techniques which satisfies all of these requirements. Scatterometry has been implemented in semiconductor manufacturing for monitoring and controlling critical dimensions and other important structural parameters. One of the major contributing factors to the acceptance and implementation of scatterometry systems is the ability to match to reference metrology. Failure to understand the optimum matching conditions, can lead to wrong conclusions with respect to hardware stability and/or incorrect analysis of production data. This paper shows the use of the integrated scatterometry system to control the lithography processes in a real production environment. In the control system, the scatterometry Optical Digital Profilometry (ODP™) data is referenced to sampled CD-SEM data. A significant improvement in matching between the two metrology systems was achieved following the implementation of a new ODP-function. The results also reveal a clearer roadmap for the implementation of an integrated scatterometry based control loop system. The results also pointed to how to achieve a reduced setup time as well as a deeper understanding of the relationship between test data and production data. It has been clearly shown that to achieve the desired sub-nanometer matching in scatterometry measurements for advanced process control, we need to pay scrupulous attention to matching data not only from test wafers but from production data in order to derive functions that will produce the optimum matching conditions.

  7. Overview of Lithography: Challenges and Metrologies

    NASA Astrophysics Data System (ADS)

    Levinson, Harry J.

    2003-09-01

    Semiconductor microlithography is rapidly reaching a point where it becomes exceedingly difficult to shrink features at historical rates. We will no longer be able to increase process windows by going to shorter wavelengths with optical lithography, because we are running out of useable wavelengths. This necessitates either the implementation of processes with very small process windows or a transition to radically new types of lithographic technologies. Either situation presents numerous challenges to lithographers and metrologists. Particularly daunting are the requirements for gate linewidth control for microprocessors. Reducing variation requires improvement in the components of variation, each of which must be smaller than the total result. In order to improve a particular parameter, such as CD variation, metrology must be adequate for identifying improvements in the components of that parameter, not just the total. This places very tight requirements on metrology capability. Departing from optical lithography into the Brave New World of Next Generation Lithography will necessitate new metrology capabilities in several areas, not just the measurement of features on wafers. Creating the capabilities that will be needed in the future requires that funding be available for the requisite development. The need for huge amounts of funding to develop new lithographic technologies will likely necessitate a slowing down in the pace at which we shrink features. It is absolutely essential that a balance is re-established between the prices that purchasers of chips are willing to pay and chip development and manufacturing costs. This will be very challenging with 300 mm wafer fabs coming on-line, since low chip prices have historically been associated with overcapacity in the semiconductor industry, and it is anticipated that new lithographic technologies will be very expensive.

  8. Metrology for graphene and 2D materials

    NASA Astrophysics Data System (ADS)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  9. Aerial photography for sensing plant anomalies

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Cardenas, R.; Hart, W. G.

    1970-01-01

    Changes in the red tonal response of Kodak Ektrachrome Infrared Aero 8443 film (EIR) are often incorrectly attributed solely to variations in infrared light reflectance of plant leaves, when the primary influence is a difference in visible light reflectance induced by varying chlorophyll contents. Comparisons are made among aerial photographic images of high- and low-chlorophyll foliage. New growth, foot rot, and boron and chloride nutrient toxicites produce low-chlorophyll foliage, and EIR transparency images of light red or white compared with dark-red images of high-chlorophyll foliage. Deposits of the sooty mold fungus that subsists on the honeydew produced by brown soft scale insects, obscure the citrus leaves' green color. Infected trees appear as black images on EIR film transparencies compared with red images of healthy trees.

  10. CD SEM metrology macro CD technology: beyond the average

    NASA Astrophysics Data System (ADS)

    Bunday, Benjamin D.; Michelson, Di K.; Allgair, John A.; Tam, Aviram; Chase-Colin, David; Dajczman, Asaf; Adan, Ofer; Har-Zvi, Michael

    2005-05-01

    Downscaling of semiconductor fabrication technology requires an ever-tighter control of the production process. CD-SEM, being the major image-based critical dimension metrology tool, is constantly being improved in order to fulfill these requirements. One of the methods used for increasing precision is averaging over several or many (ideally identical) features, usually referred to as "Macro CD". In this paper, we show that there is much more to Macro CD technology- metrics characterizing an arbitrary array of similar features within a single SEM image-than just the average. A large amount of data is accumulated from a single scan of a SEM image, providing informative and statistically valid local process characterization. As opposed to other technologies, Macro CD not only provides extremely precise average metrics, but also allows for the reporting of full information on each of the measured features and of various statistics (such as the variability) on all currently reported CD SEM metrics. We present the mathematical background behind Macro CD technology and the opportunity for reducing number of sites for SPC, along with providing enhanced-sensitivity CD metrics.

  11. Metrology in health: a pilot study

    NASA Astrophysics Data System (ADS)

    Ferreira, M.; Matos, A.

    2015-02-01

    The purpose of this paper is to identify and analyze some relevant issues which arise when the concept of metrological traceability is applied to health care facilities. Discussion is structured around the results that were obtained through a characterization and comparative description of the practices applied in 45 different Portuguese health entities. Following a qualitative exploratory approach, the information collected was the support for the initial research hypotheses and the development of the questionnaire survey. It was also applied a quantitative methodology that included a descriptive and inferential statistical analysis of the experimental data set.

  12. Quantum metrology for gravitational wave astronomy.

    PubMed

    Schnabel, Roman; Mavalvala, Nergis; McClelland, David E; Lam, Ping K

    2010-11-16

    Einstein's general theory of relativity predicts that accelerating mass distributions produce gravitational radiation, analogous to electromagnetic radiation from accelerating charges. These gravitational waves (GWs) have not been directly detected to date, but are expected to open a new window to the Universe once the detectors, kilometre-scale laser interferometers measuring the distance between quasi-free-falling mirrors, have achieved adequate sensitivity. Recent advances in quantum metrology may now contribute to provide the required sensitivity boost. The so-called squeezed light is able to quantum entangle the high-power laser fields in the interferometer arms, and could have a key role in the realization of GW astronomy.

  13. Metrology For High-Frequency Nanoelectronics

    SciTech Connect

    Wallis, T. Mitch; Imtiaz, Atif; Nembach, Hans T.; Rice, Paul; Kabos, Pavel

    2007-09-26

    Two metrological tools for high-frequency measurements of nanoscale systems are described: (i) two/N-port analysis of nanoscale devices as well as (ii) near-field scanning microwave microscopy (NSMM) for materials characterization. Calibrated two/N-port measurements were made on multiwalled carbon nanotubes (MWNT) welded to a coplanar waveguide. Significant changes in the extracted high-frequency electrical response of the welded MWNT were measured when the contacts to the MWNT were modified. Additionally, NSMM was used to characterize films of nanotube soot deposited on copper and sapphire substrates. The material properties of the films showed a strong dependence on the substrate material.

  14. Metrologies for the Phase Characterization of Attosecond

    SciTech Connect

    CXRO; Mccall, Monnikue M; Aquila, Andrew; Salmassi, Farhad; Gullikson, Eric

    2008-01-17

    EUV optics play a key role in attosecond science since only with higher photon energies is it possible to achieve the wide spectral bandwidth required for ultrashort pulses. Multilayer EUV mirrors have been proposed and are being developed to temporally shape (compress) attosecond pulses. To fully characterize a multilayer optic for pulse applications requires not only knowledge of the reflectivity, as a function of photon energy, but also the reflected phase of the mirror. This work develops the metrologies to determine the reflected phase of an EUV multilayer mirror using the photoelectric effect. The proposed method allows one to determine the optic's impulse response and hence its pulse characteristics.

  15. Infrared wire grid polarizers: metrology and modeling

    NASA Astrophysics Data System (ADS)

    George, Matthew C.; Bergquist, Jonathon; Petrova, Rumyana; Wang, Bin; Gardner, Eric

    2013-09-01

    Broad and narrow-band wire grid polarizer (WGP) products suitable for MWIR and LWIR applications requiring high contrast were developed on antireflection (AR) coated silicon using Moxtek nanowire patterning capabilities. Accurate metrology was gathered in both transmission and reflection from the SWIR to LWIR using a combination of FTIR and dispersive spectrometers, as well as laser-based light sources. The WGP structures were analyzed using SEM, FIB, and STEM techniques and optical data was derived from IR VASE, transmission, and reflectance measurements. Modeling of device performance was achieved using rigorous coupled wave analysis. Laser damage thresholds were determined and various damage mechanisms identified.

  16. Quantum metrology for gravitational wave astronomy.

    PubMed

    Schnabel, Roman; Mavalvala, Nergis; McClelland, David E; Lam, Ping K

    2010-01-01

    Einstein's general theory of relativity predicts that accelerating mass distributions produce gravitational radiation, analogous to electromagnetic radiation from accelerating charges. These gravitational waves (GWs) have not been directly detected to date, but are expected to open a new window to the Universe once the detectors, kilometre-scale laser interferometers measuring the distance between quasi-free-falling mirrors, have achieved adequate sensitivity. Recent advances in quantum metrology may now contribute to provide the required sensitivity boost. The so-called squeezed light is able to quantum entangle the high-power laser fields in the interferometer arms, and could have a key role in the realization of GW astronomy. PMID:21081919

  17. D Surface Generation from Aerial Thermal Imagery

    NASA Astrophysics Data System (ADS)

    Khodaei, B.; Samadzadegan, F.; Dadras Javan, F.; Hasani, H.

    2015-12-01

    Aerial thermal imagery has been recently applied to quantitative analysis of several scenes. For the mapping purpose based on aerial thermal imagery, high accuracy photogrammetric process is necessary. However, due to low geometric resolution and low contrast of thermal imaging sensors, there are some challenges in precise 3D measurement of objects. In this paper the potential of thermal video in 3D surface generation is evaluated. In the pre-processing step, thermal camera is geometrically calibrated using a calibration grid based on emissivity differences between the background and the targets. Then, Digital Surface Model (DSM) generation from thermal video imagery is performed in four steps. Initially, frames are extracted from video, then tie points are generated by Scale-Invariant Feature Transform (SIFT) algorithm. Bundle adjustment is then applied and the camera position and orientation parameters are determined. Finally, multi-resolution dense image matching algorithm is used to create 3D point cloud of the scene. Potential of the proposed method is evaluated based on thermal imaging cover an industrial area. The thermal camera has 640×480 Uncooled Focal Plane Array (UFPA) sensor, equipped with a 25 mm lens which mounted in the Unmanned Aerial Vehicle (UAV). The obtained results show the comparable accuracy of 3D model generated based on thermal images with respect to DSM generated from visible images, however thermal based DSM is somehow smoother with lower level of texture. Comparing the generated DSM with the 9 measured GCPs in the area shows the Root Mean Square Error (RMSE) value is smaller than 5 decimetres in both X and Y directions and 1.6 meters for the Z direction.

  18. Nondestructive metrology of layered polymeric optical materials using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yao, Jianing; Meemon, Panomsak; Lee, Kye-Sung; Xu, Ke; Rolland, Jannick P.

    2012-09-01

    In recent years, there has been an ever-growing interest in exploring novel, highly efficient optical materials to develop compact and effective optical components. The design and fabrication of high-performance optics require nondestructive metrology techniques to inspect the samples. We have investigated the capability of optical coherence tomography (OCT) to nondestructively characterize layered polymeric materials. Using a swept-source OCT system with a wavelength range of 1.25 - 1.41 μm, we achieved micron-scale three-dimensional visualization of the interior structures and details of the layered polymers. The 3D OCT imaging also enabled accurate identification of the locations of defects within the samples. Based on the imaging data, nondestructive metrology of the thickness of each observed layer was accomplished and the obtained layer thickness profiles over depth offered valuable feedback to the manufacturing process. Our results correlated well with light microscope observance, however caused no surface damage in comparison. In this paper we present the technique of nondestructive metrology enabled by OCT and discuss the experimental results on typical layered polymeric samples.

  19. Observations on the Performance of X-Ray Computed Tomography for Dimensional Metrology

    NASA Astrophysics Data System (ADS)

    Corcoran, H. C.; Brown, S. B.; Robson, S.; Speller, R. D.; McCarthy, M. B.

    2016-06-01

    X-ray computed tomography (XCT) is a rising technology within many industries and sectors with a demand for dimensional metrology, defect, void analysis and reverse engineering. There are many variables that can affect the dimensional metrology of objects imaged using XCT, this paper focusses on the effects of beam hardening due to the orientation of the workpiece, in this case a holeplate, and the volume of material the X-rays travel through. Measurements discussed include unidirectional and bidirectional dimensions, radii of cylinders, fit point deviations of the fitted shapes and cylindricity. Results indicate that accuracy and precision of these dimensional measurements are affected in varying amounts, both by the amount of material the X-rays have travelled through and the orientation of the object.

  20. Evaluation of the short-term sea cliff retreat along the Tróia-Sines Embayed Coast (Costa da Galé sector), using stereo digital aerial images and Bayesian inference

    NASA Astrophysics Data System (ADS)

    Gama, C.; Jalobeanu, A.

    2011-12-01

    Monitoring the sediment budget of coastal systems is essential to understand the costal equilibrium, and is an important aspect to be considered in coastal management. Thus, the identification and the quantitative evaluation of sedimentary sources and sinks are the first steps towards a better understanding of the dynamics of coastal morphology. The Tróia-Sines Embayed Coast (TSEC) in the southwest Portuguese coast corresponds to a continuous sandy beach that extends for approximately 65 km. It is limited at north by the Sado river estuary and at south by the Sines cape. Beaches are discontinuously limited landward by dunes (≈42 km) and by sea cliffs (≈18 km) made of poorly consolidated Plio-Plistocene detrital deposits. Cliff erosion by subaerial processes or gullying is a continuous phenomenon that contributes a significant amount of sediment to the TSEC coastal system, which is what we want to measure. Mainly due to winter rainfall, sea cliffs develop debris fans at the backshore inner limit, therefore we chose to make morphological measurements at one year interval. Thus, two series digital aerial images at 20 cm resolution were acquired in Oct 2008 and July 2009, supported by a collection of ground control points (GCP) to constrain the sensor orientation. Digital aerial stereo image pairs are used as main data source to reconstruct digital surface models (DSM). A new stereo photogrammetric method is used, based on dense disparity maps and Bayesian inference (Jalobeanu et al, 2010 and Jalobeanu, 2011). The originality of this method is in the computation of the spatial distribution of elevation errors in the DSM using stochastic modelling and probabilistic inference, which helps to detect the statistically significant changes in the estimated topography. The difference between the two generated DSMs is used to characterize the variability of the main subaerial beach morphodynamics parameters, such as: i) the alongshore beach configuration; ii) the beach

  1. Infrared film for aerial photography

    USGS Publications Warehouse

    Anderson, William H.

    1979-01-01

    Considerable interest has developed recently in the use of aerial photographs for agricultural management. Even the simplest hand-held aerial photographs, especially those taken with color infrared film, often provide information not ordinarily available through routine ground observation. When fields are viewed from above, patterns and variations become more apparent, often allowing problems to be spotted which otherwise may go undetected.

  2. METROLOGICAL CHALLENGES OF SYNCHROTRON RADIATION OPTICS.

    SciTech Connect

    SOSTERO,G.

    1999-05-25

    Modern third generation storage rings, require state-of-the-art grazing incidence x-ray optics, in order to monochromate the Synchrotrons Radiation (SR) source photons, and focus them into the experimental stations. Slope error tolerances in the order of 0.5 {micro}Rad RMS, and surface roughness well below 5 {angstrom} RMS, are frequently specified for mirrors and gratings exceeding 300 mm in length. Non-contact scanning instruments were developed, in order to characterize SR optical surfaces, of spherical and aspherical shape. Among these, the Long Trace Profiler (LTP), a double pencil slope measuring interferometer, has proved to be particularly reliable, and was adopted by several SR optics metrology laboratories. The ELETTRA soft x-rays and optics metrology laboratory, has operated an LTP since 1992. We review the basic operating principles of this instrument, and some major instrumental and environmental improvements, that were developed in order to detect slope errors lower than 1 {micro}Rad RMS on optical surfaces up to one metre in length. A comparison among measurements made on the same reference flat, by different interferometers (most of them were LTPs) can give some helpful indications in order to optimize the quality of measurement.

  3. Reference data sets for testing metrology software

    NASA Astrophysics Data System (ADS)

    Kok, G. J. P.; Harris, P. M.; Smith, I. M.; Forbes, A. B.

    2016-08-01

    Many fields of metrology rely on calculations that are implemented in software. When such software is used to provide a measurement result, which is required to be traceable, it is necessary to recognise explicitly the software and show it to be operating correctly. An approach to testing the performance of calculation software is based on using reference pairs each of which comprises reference input data applied as input to the software and corresponding reference output data against which the output data of the software is compared. However, to make the reference pair useful for verifying and validating calculation software, information is needed about the numerical accuracy of the reference pair, the numerical sensitivity of the reference output data to perturbations in the reference input data, and the measurement uncertainty associated with the reference output data arising from simulated measurement uncertainty associated with the reference input data. Such information is important as a means to express quantitatively the quality of the reference pair as a numerical artefact to test calculation software, and as a basis for performance metrics to express quantitatively the numerical performance of software. In this paper these additional components of a reference data set are described, and various approaches to calculating them are discussed. An example, concerned with the calculation of the Gaussian (least-squares) best-fit plane to measured data, which is typical of calculations undertaken in coordinate metrology, is used to illustrate the ideas presented.

  4. Quantum metrology with imperfect states and detectors

    SciTech Connect

    Datta, Animesh; Zhang Lijian; Thomas-Peter, Nicholas; Smith, Brian J.; Walmsley, Ian A.; Dorner, Uwe

    2011-06-15

    Quantum enhancements of precision in metrology can be compromised by system imperfections. These may be mitigated by appropriate optimization of the input state to render it robust, at the expense of making the state difficult to prepare. In this paper, we identify the major sources of imperfection of an optical sensor: input state preparation inefficiency, sensor losses, and detector inefficiency. The second of these has received much attention; we show that it is the least damaging to surpassing the standard quantum limit in a optical interferometric sensor. Further, we show that photonic states that can be prepared in the laboratory using feasible resources allow a measurement strategy using photon-number-resolving detectors that not only attain the Heisenberg limit for phase estimation in the absence of losses, but also deliver close to the maximum possible precision in realistic scenarios including losses and inefficiencies. In particular, we give bounds for the tradeoff between the three sources of imperfection that will allow true quantum-enhanced optical metrology

  5. Automatic Sea Bird Detection from High Resolution Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Mader, S.; Grenzdörffer, G. J.

    2016-06-01

    Great efforts are presently taken in the scientific community to develop computerized and (fully) automated image processing methods allowing for an efficient and automatic monitoring of sea birds and marine mammals in ever-growing amounts of aerial imagery. Currently the major part of the processing, however, is still conducted by especially trained professionals, visually examining the images and detecting and classifying the requested subjects. This is a very tedious task, particularly when the rate of void images regularly exceeds the mark of 90%. In the content of this contribution we will present our work aiming to support the processing of aerial images by modern methods from the field of image processing. We will especially focus on the combination of local, region-based feature detection and piecewise global image segmentation for automatic detection of different sea bird species. Large image dimensions resulting from the use of medium and large-format digital cameras in aerial surveys inhibit the applicability of image processing methods based on global operations. In order to efficiently handle those image sizes and to nevertheless take advantage of globally operating segmentation algorithms, we will describe the combined usage of a simple performant feature detector based on local operations on the original image with a complex global segmentation algorithm operating on extracted sub-images. The resulting exact segmentation of possible candidates then serves as a basis for the determination of feature vectors for subsequent elimination of false candidates and for classification tasks.

  6. Observation of a Large Landslide on La Reunion Island Using Differential Sar Interferometry (JERS and Radarsat) and Correlation of Optical (Spot5 and Aerial) Images.

    PubMed

    Delacourt, Christophe; Raucoules, Daniel; Le Mouélic, Stéphane; Carnec, Claudie; Feurer, Denis; Allemand, Pascal; Cruchet, Marc

    2009-01-01

    Slope instabilities are one of the most important geo-hazards in terms of socio-economic costs. The island of La Réunion (Indian Ocean) is affected by constant slope movements and huge landslides due to a combination of rough topography, wet tropical climate and its specific geological context. We show that remote sensing techniques (Differential SAR Interferometry and correlation of optical images) provide complementary means to characterize landslides on a regional scale. The vegetation cover generally hampers the analysis of C-band interferograms. We used JERS-1 images to show that the L-band can be used to overcome the loss of coherence observed in Radarsat C-band interferograms. Image correlation was applied to optical airborne and SPOT 5 sensors images. The two techniques were applied to a landslide near the town of Hellbourg in order to assess their performance for detecting and quantifying the ground motion associated to this landslide. They allowed the mapping of the unstable areas. Ground displacement of about 0.5 m yr(-1) was measured.

  7. Observation of a Large Landslide on La Reunion Island Using Differential Sar Interferometry (JERS and Radarsat) and Correlation of Optical (Spot5 and Aerial) Images

    PubMed Central

    Delacourt, Christophe; Raucoules, Daniel; Le Mouélic, Stéphane; Carnec, Claudie; Feurer, Denis; Allemand, Pascal; Cruchet, Marc

    2009-01-01

    Slope instabilities are one of the most important geo-hazards in terms of socio-economic costs. The island of La Réunion (Indian Ocean) is affected by constant slope movements and huge landslides due to a combination of rough topography, wet tropical climate and its specific geological context. We show that remote sensing techniques (Differential SAR Interferometry and correlation of optical images) provide complementary means to characterize landslides on a regional scale. The vegetation cover generally hampers the analysis of C–band interferograms. We used JERS-1 images to show that the L-band can be used to overcome the loss of coherence observed in Radarsat C-band interferograms. Image correlation was applied to optical airborne and SPOT 5 sensors images. The two techniques were applied to a landslide near the town of Hellbourg in order to assess their performance for detecting and quantifying the ground motion associated to this landslide. They allowed the mapping of the unstable areas. Ground displacement of about 0.5 m yr-1 was measured. PMID:22389620

  8. Observation of a Large Landslide on La Reunion Island Using Differential Sar Interferometry (JERS and Radarsat) and Correlation of Optical (Spot5 and Aerial) Images.

    PubMed

    Delacourt, Christophe; Raucoules, Daniel; Le Mouélic, Stéphane; Carnec, Claudie; Feurer, Denis; Allemand, Pascal; Cruchet, Marc

    2009-01-01

    Slope instabilities are one of the most important geo-hazards in terms of socio-economic costs. The island of La Réunion (Indian Ocean) is affected by constant slope movements and huge landslides due to a combination of rough topography, wet tropical climate and its specific geological context. We show that remote sensing techniques (Differential SAR Interferometry and correlation of optical images) provide complementary means to characterize landslides on a regional scale. The vegetation cover generally hampers the analysis of C-band interferograms. We used JERS-1 images to show that the L-band can be used to overcome the loss of coherence observed in Radarsat C-band interferograms. Image correlation was applied to optical airborne and SPOT 5 sensors images. The two techniques were applied to a landslide near the town of Hellbourg in order to assess their performance for detecting and quantifying the ground motion associated to this landslide. They allowed the mapping of the unstable areas. Ground displacement of about 0.5 m yr(-1) was measured. PMID:22389620

  9. 1:500 Scale Aerial Triangulation Test with Unmanned Airship in Hubei Province

    NASA Astrophysics Data System (ADS)

    Feifei, Xie; Zongjian, Lin; Dezhu, Gui

    2014-03-01

    A new UAVS (Unmanned Aerial Vehicle System) for low altitude aerial photogrammetry is introduced for fine surveying and mapping, including the platform airship, sensor system four-combined wide-angle camera and photogrammetry software MAP-AT. It is demonstrated that this low-altitude aerial photogrammetric system meets the precision requirements of 1:500 scale aerial triangulation based on the test of this system in Hubei province, including the working condition of the airship, the quality of image data and the data processing report. This work provides a possibility for fine surveying and mapping.

  10. AERIAL MEASURING SYSTEM IN JAPAN

    SciTech Connect

    Lyons, Craig; Colton, David

    2012-01-01

    The U.S. Department of Energy National Nuclear Security Agency’s Aerial Measuring System deployed personnel and equipment to partner with the U.S. Air Force in Japan to conduct multiple aerial radiological surveys. These were the first and most comprehensive sources of actionable information for U.S. interests in Japan and provided early confirmation to the government of Japan as to the extent of the release from the Fukushima Daiichi Nuclear Power Generation Station. Many challenges were overcome quickly during the first 48 hours; including installation and operation of Aerial Measuring System equipment on multiple U.S. Air Force Japan aircraft, flying over difficult terrain, and flying with talented pilots who were unfamiliar with the Aerial Measuring System flight patterns. These all combined to make for a dynamic and non-textbook situation. In addition, the data challenges of the multiple and on-going releases, and integration with the Japanese government to provide valid aerial radiological survey products that both military and civilian customers could use to make informed decisions, was extremely complicated. The Aerial Measuring System Fukushima response provided insight in addressing these challenges and gave way to an opportunity for the expansion of the Aerial Measuring System’s mission beyond the borders of the US.

  11. Analysis of key technologies for virtual instruments metrology

    NASA Astrophysics Data System (ADS)

    Liu, Guixiong; Xu, Qingui; Gao, Furong; Guan, Qiuju; Fang, Qiang

    2008-12-01

    Virtual instruments (VIs) require metrological verification when applied as measuring instruments. Owing to the software-centered architecture, metrological evaluation of VIs includes two aspects: measurement functions and software characteristics. Complexity of software imposes difficulties on metrological testing of VIs. Key approaches and technologies for metrology evaluation of virtual instruments are investigated and analyzed in this paper. The principal issue is evaluation of measurement uncertainty. The nature and regularity of measurement uncertainty caused by software and algorithms can be evaluated by modeling, simulation, analysis, testing and statistics with support of powerful computing capability of PC. Another concern is evaluation of software features like correctness, reliability, stability, security and real-time of VIs. Technologies from software engineering, software testing and computer security domain can be used for these purposes. For example, a variety of black-box testing, white-box testing and modeling approaches can be used to evaluate the reliability of modules, components, applications and the whole VI software. The security of a VI can be assessed by methods like vulnerability scanning and penetration analysis. In order to facilitate metrology institutions to perform metrological verification of VIs efficiently, an automatic metrological tool for the above validation is essential. Based on technologies of numerical simulation, software testing and system benchmarking, a framework for the automatic tool is proposed in this paper. Investigation on implementation of existing automatic tools that perform calculation of measurement uncertainty, software testing and security assessment demonstrates the feasibility of the automatic framework advanced.

  12. Metrology in physics, chemistry, and biology: differing perceptions.

    PubMed

    Iyengar, Venkatesh

    2007-04-01

    The association of physics and chemistry with metrology (the science of measurements) is well documented. For practical purposes, basic metrological measurements in physics are governed by two components, namely, the measure (i.e., the unit of measurement) and the measurand (i.e., the entity measured), which fully account for the integrity of a measurement process. In simple words, in the case of measuring the length of a room (the measurand), the SI unit meter (the measure) provides a direct answer sustained by metrological concepts. Metrology in chemistry, as observed through physical chemistry (measures used to express molar relationships, volume, pressure, temperature, surface tension, among others) follows the same principles of metrology as in physics. The same basis percolates to classical analytical chemistry (gravimetry for preparing high-purity standards, related definitive analytical techniques, among others). However, certain transition takes place in extending the metrological principles to chemical measurements in complex chemical matrices (e.g., food samples), as it adds a third component, namely, indirect measurements (e.g., AAS determination of Zn in foods). This is a practice frequently used in field assays, and calls for additional steps to account for traceability of such chemical measurements for safeguarding reliability concerns. Hence, the assessment that chemical metrology is still evolving.

  13. Improving OCD time to solution using Signal Response Metrology

    NASA Astrophysics Data System (ADS)

    Fang, Fang; Zhang, Xiaoxiao; Vaid, Alok; Pandev, Stilian; Sanko, Dimitry; Ramanathan, Vidya; Venkataraman, Kartik; Haupt, Ronny

    2016-03-01

    In recent technology nodes, advanced process and novel integration scheme have challenged the precision limits of conventional metrology; with critical dimensions (CD) of device reduce to sub-nanometer region. Optical metrology has proved its capability to precisely detect intricate details on the complex structures, however, conventional RCWA-based (rigorous coupled wave analysis) scatterometry has the limitations of long time-to-results and lack of flexibility to adapt to wide process variations. Signal Response Metrology (SRM) is a new metrology technique targeted to alleviate the consumption of engineering and computation resources by eliminating geometric/dispersion modeling and spectral simulation from the workflow. This is achieved by directly correlating the spectra acquired from a set of wafers with known process variations encoded. In SPIE 2015, we presented the results of SRM application in lithography metrology and control [1], accomplished the mission of setting up a new measurement recipe of focus/dose monitoring in hours. This work will demonstrate our recent field exploration of SRM implementation in 20nm technology and beyond, including focus metrology for scanner control; post etch geometric profile measurement, and actual device profile metrology.

  14. Investigations into mirror fabrication metrology analysis

    NASA Astrophysics Data System (ADS)

    Dimmock, John O.

    1994-08-01

    This final report describes the work performed under this delivery order from June 1993 through August 1994. The scope of work included three distinct tasks in support of the AXAF-I program. The objective of the first task was to perform investigations of the grinding and polishing characteristics of the zerodur material by fabricating several samples. The second task was to continue the development of the integrated optical performance modeling software for AXAF-I. The purpose of third and final task was to develop and update the database of AXAF technical documents for an easy and rapid access. The MSFC optical and metrology shops were relocated from the B-wing of Building 4487 to Room BC 144 of Building 4466 in the beginning of this contract. This included dismantling, packing, and moving the equipment from its old location, and then reassembling it at the new location. A total of 65 zerodur samples, measuring 1 inch x 2 inches x 6 inches were ground and polished to a surface figure of lambda/10 p-v, and a surface finish of 5A rms were fabricated for coating tests. A number of special purpose tools and metal mirrors were also fabricated to support various AXAF-I development activities. In the metrology area, the ZYGO Mark 4 interferometer was relocated and also upgraded with a faster and more powerful processor. Surface metrology work was also performed on the coating samples and other optics using ZYGO interferometer and WYKO profilometer. A number of new features have been added to the GRAZTRACE program to enhance its analysis and modeling capabilities. A number of new commands have been added to the command mode GRAZTRACE program to provide a better control to the user on the program execution and data manipulation. Some commands and parameter entries have been reorganized for a uniform format. The command mode version of the convolution program CONVOLVE has been developed. An on-line help system and a user's manual have also been developed for the benefit of

  15. Investigations into mirror fabrication metrology analysis

    NASA Technical Reports Server (NTRS)

    Dimmock, John O.

    1994-01-01

    This final report describes the work performed under this delivery order from June 1993 through August 1994. The scope of work included three distinct tasks in support of the AXAF-I program. The objective of the first task was to perform investigations of the grinding and polishing characteristics of the zerodur material by fabricating several samples. The second task was to continue the development of the integrated optical performance modeling software for AXAF-I. The purpose of third and final task was to develop and update the database of AXAF technical documents for an easy and rapid access. The MSFC optical and metrology shops were relocated from the B-wing of Building 4487 to Room BC 144 of Building 4466 in the beginning of this contract. This included dismantling, packing, and moving the equipment from its old location, and then reassembling it at the new location. A total of 65 zerodur samples, measuring 1 inch x 2 inches x 6 inches were ground and polished to a surface figure of lambda/10 p-v, and a surface finish of 5A rms were fabricated for coating tests. A number of special purpose tools and metal mirrors were also fabricated to support various AXAF-I development activities. In the metrology area, the ZYGO Mark 4 interferometer was relocated and also upgraded with a faster and more powerful processor. Surface metrology work was also performed on the coating samples and other optics using ZYGO interferometer and WYKO profilometer. A number of new features have been added to the GRAZTRACE program to enhance its analysis and modeling capabilities. A number of new commands have been added to the command mode GRAZTRACE program to provide a better control to the user on the program execution and data manipulation. Some commands and parameter entries have been reorganized for a uniform format. The command mode version of the convolution program CONVOLVE has been developed. An on-line help system and a user's manual have also been developed for the benefit of

  16. Aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.

    1978-01-01

    Thermal infrared scanning from an aircraft is a convenient and commercially available means for determining relative rates of energy loss from building roofs. The need to conserve energy as fuel costs makes the mass survey capability of aerial thermography an attractive adjunct to community energy awareness programs. Background information on principles of aerial thermography is presented. Thermal infrared scanning systems, flight and environmental requirements for data acquisition, preparation of thermographs for display, major users and suppliers of thermography, and suggested specifications for obtaining aerial scanning services were reviewed.

  17. Advanced Sensors for Accurate, Broadband AC Voltage Metrology

    NASA Astrophysics Data System (ADS)

    Lipe, Thomas E.; Kinard, Joseph R.; Novotny, Donald B.; Sims, June E.

    2013-06-01

    We report on advances in ac voltage metrology made possible by a new generation of Multijunction Thermal Converters (MJTCs). Although intended for use primarily in high-frequency (1 MHz to 100 MHz) metrology, their exceptional low-frequency qualities, combined with a large dynamic range, makes these MJTCs excellent devices for the frequency range 10 Hz to 100 MHz at voltages from 1 V to 20 V, depending on the design. We anticipate that these devices will form the future basis for ac voltage metrology at the National Institute of Standards and Technology (NIST).

  18. IT Security Standards and Legal Metrology - Transfer and Validation

    NASA Astrophysics Data System (ADS)

    Thiel, F.; Hartmann, V.; Grottker, U.; Richter, D.

    2014-08-01

    Legal Metrology's requirements can be transferred into the IT security domain applying a generic set of standardized rules provided by the Common Criteria (ISO/IEC 15408). We will outline the transfer and cross validation of such an approach. As an example serves the integration of Legal Metrology's requirements into a recently developed Common Criteria based Protection Profile for a Smart Meter Gateway designed under the leadership of the Germany's Federal Office for Information Security. The requirements on utility meters laid down in the Measuring Instruments Directive (MID) are incorporated. A verification approach to check for meeting Legal Metrology's requirements by their interpretation through Common Criteria's generic requirements is also presented.

  19. Advances in weak-values based metrology

    NASA Astrophysics Data System (ADS)

    Jordan, Andrew; Viza, Gerardo; Martínez-Rincón, Julián; Alves, Gabriel; Howell, John; Kwiat, Paul

    2015-03-01

    We theoretically and experimentally describe the relative advantages of implementing weak-values-based metrology versus standard methods. To accomplish this, we measure small optical beam deflections both a weak-values-based technique, and a standard technique. By introducing controlled external modulations of the detector, and transverse beam-jitter, we quantify the mitigation of these sources in the weak values-based experiment versus the standard experiment. In all cases, the weak-values technique performs the same or better than the standard technique by up to two orders of magnitude in precision for our parameters. We further measure the statistical efficiency of the weak-values-based technique. By post-selecting on 1% of the photons, we obtain 99% of the available Fisher information of the beam deflection parameter. We also discuss ways to recycle the discarded events, obtaining much greater precision on a measured parameter.

  20. Atomic Layer Deposition - Process Models and Metrologies

    SciTech Connect

    Burgess, D.R. Jr.; Maslar, J.E.; Hurst, W.S.; Moore, E.F.; Kimes, W.A.; Fink, R.R.; Nguyen, N.V.

    2005-09-09

    We report on the status of a combined experimental and modeling study for atomic layer deposition (ALD) of HfO2 and Al2O3. Hafnium oxide films were deposited from tetrakis(dimethylamino)hafnium and water. Aluminum oxide films from trimethyl aluminum and water are being studied through simulations. In this work, both in situ metrologies and process models are being developed. Optically-accessible ALD reactors have been constructed for in situ, high-sensitivity Raman and infrared absorption spectroscopic measurements to monitor gas phase and surface species. A numerical model using computational fluid dynamics codes has been developed to simulate the gas flow and temperature profiles in the experimental reactor. Detailed chemical kinetic models are being developed with assistance from quantum chemical calculations to explore reaction pathways and energetics. This chemistry is then incorporated into the overall reactor models.

  1. Phasing metrology system for the GMT

    NASA Astrophysics Data System (ADS)

    Acton, D. Scott; Bouchez, Antonin

    2012-09-01

    The Giant Magellan Telescope (GMT) is a 25.4 m diameter ground-based segmented Gregorian telescope, composed of 7 8.4 meter diameter primary mirror segments, and 7 1 meter diameter adaptive secondary mirror segments. Co-phasing of the integrated optical system will be partially achieved by making real-time measurements of the wavefront of an offaxis guide star. However, slowly varying aberrations due to thermal and gravitational effects, as well as wind buffeting, will make it difficult to maintain alignment using real-time optical measurements alone. Consequently, we are proposing internal metrology systems to maintain the relative alignment of the optical elements. In this paper we describe a differential capacitive edge sensing system to maintain the relative alignment of the adaptive secondary mirror reference bodies. We also propose an interferometric system for sensing of the relative displacements of primary mirror segments.

  2. SPC qualification strategy for CD metrology

    NASA Astrophysics Data System (ADS)

    Chain, Elizabeth E.; Ridens, Martin G.; Annand, James P.

    1996-09-01

    Effective statistical process control (SPC) necessitates the use of the proper control chart, used to monitor and control the important process characteristics. The control chart can be used to monitor stability for a process which is normally distributed. Scanning electron microscopy (SEM) critical dimension (CD) measurement, however, shows a systematic variation in repeated measurements of a sample in addition to the Gaussian variation, due to the nature of electron beam irradiation of materials. Because of this systematic variation the standard control charts do not work well for the control of this process. Addition of a slope-subtraction algorithm to the data collection system provides display of the slope-corrected data in addition to the raw data display, and permits the stability of the metrology tool to be demonstrated.

  3. Precise 3D dimensional metrology using high-resolution x-ray computed tomography (μCT)

    NASA Astrophysics Data System (ADS)

    Brunke, Oliver; Santillan, Javier; Suppes, Alexander

    2010-09-01

    Over the past decade computed tomography (CT) with conventional x-ray sources has evolved from an imaging method in medicine to a well established technology for industrial applications in fields such as material science, light metals and plastics processing, microelectronics and geology. By using modern microfocus and nanofocus X-ray tubes, parts can be scanned with sub-micrometer resolutions. Currently, micro-CT is a technology increasingly used for metrology applications in the automotive industry. CT offers big advantages compared with conventional tactile or optical coordinate measuring machines (CMMs). This is of greater importance if complex parts with hidden or difficult accessible surfaces have to be measured. In these cases, CT offers the advantage of a high density of measurement points and a non-destructive and fast capturing of the sample's complete geometry. When using this growing technology the question arises how precise a μCT based CMM can measure as compared to conventional and established methods for coordinate measurements. For characterizing the metrological capabilities of a tactile or optical CMM, internationally standardized parameters like length measurement error and probing error are defined and used. To increase the acceptance of CT as a metrological method, our work seeks to clarify the definition and usage of parameters used in the field of metrology as these apply to CT. In this paper, an overview of the process chain in CT based metrology will be given and metrological characteristics will be described. For the potential user of CT as 3D metrology tool it is important to show the measurement accuracy and repeatability on realistic samples. Following a discussion of CT metrology techniques, two samples are discussed. The first compares a measured CT Data set to CAD data using CMM data as a standard for comparison of results. The second data second realistic data set will compare the results of applying both the CMM method of

  4. Applications of surface metrology in firearm identification

    NASA Astrophysics Data System (ADS)

    Zheng, X.; Soons, J.; Vorburger, T. V.; Song, J.; Renegar, T.; Thompson, R.

    2014-01-01

    Surface metrology is commonly used to characterize functional engineering surfaces. The technologies developed offer opportunities to improve forensic toolmark identification. Toolmarks are created when a hard surface, the tool, comes into contact with a softer surface and causes plastic deformation. Toolmarks are commonly found on fired bullets and cartridge cases. Trained firearms examiners use these toolmarks to link an evidence bullet or cartridge case to a specific firearm, which can lead to a criminal conviction. Currently, identification is typically based on qualitative visual comparison by a trained examiner using a comparison microscope. In 2009, a report by the National Academies called this method into question. Amongst other issues, they questioned the objectivity of visual toolmark identification by firearms examiners. The National Academies recommended the development of objective toolmark identification criteria and confidence limits. The National Institute of Standards and Technology (NIST) have applied its experience in surface metrology to develop objective identification criteria, measurement methods, and reference artefacts for toolmark identification. NIST developed the Standard Reference Material SRM 2460 standard bullet and SRM 2461 standard cartridge case to facilitate quality control and traceability of identifications performed in crime laboratories. Objectivity is improved through measurement of surface topography and application of unambiguous surface similarity metrics, such as the maximum value (ACCFMAX) of the areal cross correlation function. Case studies were performed on consecutively manufactured tools, such as gun barrels and breech faces, to demonstrate that, even in this worst case scenario, all the tested tools imparted unique surface topographies that were identifiable. These studies provide scientific support for toolmark evidence admissibility in criminal court cases.

  5. Metrology of vibration measurements by laser techniques

    NASA Astrophysics Data System (ADS)

    von Martens, Hans-Jürgen

    2008-06-01

    Metrology as the art of careful measurement has been understood as uniform methodology for measurements in natural sciences, covering methods for the consistent assessment of experimental data and a corpus of rules regulating application in technology and in trade and industry. The knowledge, methods and tools available for precision measurements can be exploited for measurements at any level of uncertainty in any field of science and technology. A metrological approach to the preparation, execution and evaluation (including expression of uncertainty) of measurements of translational and rotational motion quantities using laser interferometer methods and techniques will be presented. The realization and dissemination of the SI units of motion quantities (vibration and shock) have been based on laser interferometer methods specified in international documentary standards. New and upgraded ISO standards are reviewed with respect to their suitability for ensuring traceable vibration measurements and calibrations in an extended frequency range of 0.4 Hz to higher than 100 kHz. Using adequate vibration exciters to generate sufficient displacement or velocity amplitudes, the upper frequency limits of the laser interferometer methods specified in ISO 16063-11 for frequencies <= 10 kHz can be expanded to 100 kHz and beyond. A comparison of different methods simultaneously used for vibration measurements at 100 kHz will be demonstrated. A statistical analysis of numerous experimental results proves the highest accuracy achievable currently in vibration measurements by specific laser methods, techniques and procedures (i.e. measurement uncertainty 0.05 % at frequencies <= 10 kHz, <= 1 % up to 100 kHz).

  6. Vehicle detection in aerial surveillance using dynamic Bayesian networks.

    PubMed

    Cheng, Hsu-Yung; Weng, Chih-Chia; Chen, Yi-Ying

    2012-04-01

    We present an automatic vehicle detection system for aerial surveillance in this paper. In this system, we escape from the stereotype and existing frameworks of vehicle detection in aerial surveillance, which are either region based or sliding window based. We design a pixelwise classification method for vehicle detection. The novelty lies in the fact that, in spite of performing pixelwise classification, relations among neighboring pixels in a region are preserved in the feature extraction process. We consider features including vehicle colors and local features. For vehicle color extraction, we utilize a color transform to separate vehicle colors and nonvehicle colors effectively. For edge detection, we apply moment preserving to adjust the thresholds of the Canny edge detector automatically, which increases the adaptability and the accuracy for detection in various aerial images. Afterward, a dynamic Bayesian network (DBN) is constructed for the classification purpose. We convert regional local features into quantitative observations that can be referenced when applying pixelwise classification via DBN. Experiments were conducted on a wide variety of aerial videos. The results demonstrate flexibility and good generalization abilities of the proposed method on a challenging data set with aerial surveillance images taken at different heights and under different camera angles.

  7. Modeling aerial refueling operations

    NASA Astrophysics Data System (ADS)

    McCoy, Allen B., III

    Aerial Refueling (AR) is the act of offloading fuel from one aircraft (the tanker) to another aircraft (the receiver) in mid flight. Meetings between tanker and receiver aircraft are referred to as AR events and are scheduled to: escort one or more receivers across a large body of water; refuel one or more receivers; or train receiver pilots, tanker pilots, and boom operators. In order to efficiently execute the Aerial Refueling Mission, the Air Mobility Command (AMC) of the United States Air Force (USAF) depends on computer models to help it make tanker basing decisions, plan tanker sorties, schedule aircraft, develop new organizational doctrines, and influence policy. We have worked on three projects that have helped AMC improve its modeling and decision making capabilities. Optimal Flight Planning. Currently Air Mobility simulation and optimization software packages depend on algorithms which iterate over three dimensional fuel flow tables to compute aircraft fuel consumption under changing flight conditions. When a high degree of fidelity is required, these algorithms use a large amount of memory and CPU time. We have modeled the rate of aircraft fuel consumption with respect to AC GrossWeight, Altitude and Airspeed. When implemented, this formula will decrease the amount of memory and CPU time needed to compute sortie fuel costs and cargo capacity values. We have also shown how this formula can be used in optimal control problems to find minimum costs flight plans. Tanker Basing Demand Mismatch Index. Since 1992, AMC has relied on a Tanker Basing/AR Demand Mismatch Index which aggregates tanker capacity and AR demand data into six regions. This index was criticized because there were large gradients along regional boundaries. Meanwhile tankers frequently cross regional boundaries to satisfy the demand for AR support. In response we developed continuous functions to score locations with respect to their proximity to demand for AR support as well as their

  8. Assessment of the present NASA optical metrology capabilities and recommendations for establishing an in-house NASA Optical Metrology Group

    NASA Technical Reports Server (NTRS)

    Parks, Robert E.

    1991-01-01

    An investigation into when it was first recognized that there was a deficiency in NASA optical metrology oversight capability, why this deficiency existed unnoticed for so long, and a proposal for correcting the problem is presented. It is explained why this optical metrology oversight is so critical to program success and at the same time, why it is difficult to establish due to the nature of the technology. The solution proposed is the establishment of an Optics Metrology Group within the NASA/MSFC Optics Branch with a line of authority from NASA S & MA.

  9. Velocity measurements and changes in position of Thwaites Glacier/iceberg tongue from aerial photography, Landsat images and NOAA AVHRR data

    USGS Publications Warehouse

    Ferrigno, Jane G.; Lucchitta, Baerbel K.; Mullinsallison, A. L.; Allen, Robert J.; Gould, W. G.

    1993-01-01

    The Thwaites Glacier/iceberg tongue complex has been a significant feature of the Antarctic coastline for at least 50 years. In 1986, major changes began to occur in this area. Fast ice melted and several icebergs calved from the base of the iceberg tongue and the terminus of Thwaites Glacier. The iceberg tongue rotated to an east-west orientation and drifted westward. Between 1986 and 1992, a total of 140 km of drift has occurred. Remote digital velocity measurements were made on Thwaites Glacier using sequential Landsat images to try to determine if changes in velocity had occurred in conjunction with the changes in ice position. Examination of the morphology of the glacier/iceberg tongue showed no evidence of surge activity.

  10. Use of archive aerial photography for monitoring black mangrove populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted on the south Texas Gulf Coast to evaluate archive aerial color-infrared (CIR) photography combined with supervised image analysis techniques to quantify changes in black mangrove [Avicennia germinans (L.) L.] populations over a 26-year period. Archive CIR film from two study si...

  11. High throughput phenotyping using an unmanned aerial vehicle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field trials are expensive and labor-intensive to carry out. Strategies to maximize data collection from these trials will improve research efficiencies. We have purchased a small unmanned aerial vehicle (AEV) to collect digital images from field plots. The AEV is remote-controlled and can be guided...

  12. A Multichannel Averaging Phasemeter for Picometer Precision Laser Metrology

    NASA Technical Reports Server (NTRS)

    Halverson, Peter G.; Johnson, Donald R.; Kuhnert, Andreas; Shaklan, Stuart B.; Sero, Robert

    1999-01-01

    The Micro-Arcsecond Metrology (MAM) team at the Jet Propulsion Laboratory has developed a precision phasemeter for the Space Interferometry Mission (SIM). The current version of the phasemeter is well-suited for picometer accuracy distance measurements and tracks at speeds up to 50 cm/sec, when coupled to SIM's 1.3 micron wavelength heterodyne laser metrology gauges. Since the phasemeter is implemented with industry standard FPGA chips, other accuracy/speed trade-off points can be programmed for applications such as metrology for earth-based long-baseline astronomical interferometry (planet finding), and industrial applications such as translation stage and machine tool positioning. The phasemeter is a standard VME module, supports 6 metrology gauges, a 128 MHz clock, has programmable hardware averaging, and a maximum range of 232 cycles (2000 meters at 1.3 microns).

  13. Hybrid enabled thin film metrology using XPS and optical

    NASA Astrophysics Data System (ADS)

    Vaid, Alok; Iddawela, Givantha; Mahendrakar, Sridhar; Lenahan, Michael; Hossain, Mainul; Timoney, Padraig; Bello, Abner F.; Bozdog, Cornel; Pois, Heath; Lee, Wei Ti; Klare, Mark; Kwan, Michael; Kang, Byung Cheol; Isbester, Paul; Sendelbach, Matthew; Yellai, Naren; Dasari, Prasad; Larson, Tom

    2016-03-01

    Complexity of process steps integration and material systems for next-generation technology nodes is reaching unprecedented levels, the appetite for higher sampling rates is on the rise, while the process window continues to shrink. Current thickness metrology specifications reach as low as 0.1A for total error budget - breathing new life into an old paradigm with lower visibility for past few metrology nodes: accuracy. Furthermore, for advance nodes there is growing demand to measure film thickness and composition on devices/product instead of surrogate planar simpler pads. Here we extend our earlier work in Hybrid Metrology to the combination of X-Ray based reference technologies (high performance) with optical high volume manufacturing (HVM) workhorse metrology (high throughput). Our stated goal is: put more "eyes" on the wafer (higher sampling) and enable move to films on pattern structure (control what matters). Examples of 1X front-end applications are used to setup and validate the benefits.

  14. Photogrammetric Metrology for the James Webb Space Telescope Integrated Science Instrument Module

    NASA Technical Reports Server (NTRS)

    Nowak, Maria; Crane, Allen; Davila, Pam; Eichhorn, William; Gill, James; Herrera, Acey; Hill, Michael; Hylan, Jason; Jetten, Mark; Marsh, James; Ohl, Raymond; Quigley, Rob; Redman, Kevin; Sampler, Henry; Wright, Geraldine; Young, Philip

    2007-01-01

    The James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (approximately 40K). The JWST Observatory architecture includes the Optical Telescope Element and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. The ISM optical metering structure is a roughly 2.2x1.7x2.2m, asymmetric frame that is composed of carbon fiber and resin tubes bonded to invar end fittings and composite gussets and clips. The structure supports the SIs, isolates the SIs from the OTE, and supports thermal and electrical subsystems. The structure is attached to the OTE structure via strut-like kinematic mounts. The ISIM structure must meet its requirements at the approximately 40K cryogenic operating temperature. The SIs are aligned to the structure's coordinate system under ambient, clean room conditions using laser tracker and theodolite metrology. The ISIM structure is thermally cycled for stress relief and in order to measure temperature-induced mechanical, structural changes. These ambient-to-cryogenic changes in the alignment of SI and OTE-related interfaces are an important component in the JWST Observatory alignment plan and must be verified. We report on the planning for and preliminary testing of a cryogenic metrology system for ISIM based on photogrammetry. Photogrammetry is the measurement of the location of custom targets via triangulation using images obtained at a suite of digital camera locations and orientations. We describe metrology system requirements, plans, and ambient photogrammetric measurements of a mock-up of the ISIM structure to design targeting and obtain resolution estimates. We compare these measurements with those taken from a well known ambient metrology system, namely, the Leica laser tracker system. We also describe the data reduction algorithm planned to interpret cryogenic data from the Flight structure. Photogrammetry was

  15. Nonlinear Acoustics in Ultrasound Metrology and other Selected Applications.

    PubMed

    Lewin, Peter A

    2010-01-01

    A succinct background explaining why, initially, both the scientific community and industry were skeptical about the existence of the nonlinear (NL) wave propagation in tissue will be given and the design of an adequately wideband piezoelectric polymer hydrophone probe that was eventually used to verify that the 1-5 MHz probing wave then used in diagnostic ultrasound imaging was undergoing nonlinear distortion and generated harmonics in tissue will be discussed. The far-reaching implications of the advent of the piezoelectric PVDF polymer material will be reviewed and the advances in ultrasound metrology prompted by the regulatory agencies such as US Food and Drug Administration (FDA) and International Electrotechnical Commission (IEC) will be presented. These advances include the development of absolute calibration techniques for hydrophones along with the methods of accounting for spatial averaging corrections up to 100 MHz and the development of "point-receiver" hydrophone probes utilizing acousto-optic sensors. Next, selected therapeutic applications of nonlinear ultrasonics (NLU), including lithotripters will be briefly discussed. Also, the use of shock waves as pain relief tool and in abating penicillin resistant bacteria that develop rock hard "biofilm" that can be shattered by the finite amplitude wave will also be mentioned. The growing applications of NLU in cosmetic industry where it is used for redistribution and reduction of fatty tissue within the body will be briefly reviewed, and, finally, selected examples of NLU applications in retail and entertainment industry will also be pointed out.

  16. Nonlinear Acoustics in Ultrasound Metrology and other Selected Applications

    PubMed Central

    Lewin, Peter A.

    2011-01-01

    A succinct background explaining why, initially, both the scientific community and industry were skeptical about the existence of the nonlinear (NL) wave propagation in tissue will be given and the design of an adequately wideband piezoelectric polymer hydrophone probe that was eventually used to verify that the 1-5 MHz probing wave then used in diagnostic ultrasound imaging was undergoing nonlinear distortion and generated harmonics in tissue will be discussed. The far-reaching implications of the advent of the piezoelectric PVDF polymer material will be reviewed and the advances in ultrasound metrology prompted by the regulatory agencies such as US Food and Drug Administration (FDA) and International Electrotechnical Commission (IEC) will be presented. These advances include the development of absolute calibration techniques for hydrophones along with the methods of accounting for spatial averaging corrections up to 100 MHz and the development of “point-receiver” hydrophone probes utilizing acousto-optic sensors. Next, selected therapeutic applications of nonlinear ultrasonics (NLU), including lithotripters will be briefly discussed. Also, the use of shock waves as pain relief tool and in abating penicillin resistant bacteria that develop rock hard “biofilm” that can be shattered by the finite amplitude wave will also be mentioned. The growing applications of NLU in cosmetic industry where it is used for redistribution and reduction of fatty tissue within the body will be briefly reviewed, and, finally, selected examples of NLU applications in retail and entertainment industry will also be pointed out. PMID:21472037

  17. Nonlinear acoustics in ultrasound metrology and other selected applications

    NASA Astrophysics Data System (ADS)

    Lewin, Peter A.

    2010-01-01

    A succinct background explaining why, initially, both the scientific community and industry were skeptical about the existence of the nonlinear (NL) wave propagation in tissue will be given and the design of an adequately wideband piezoelectric polymer hydrophone probe that was eventually used to verify that the 1-5 MHz probing wave then used in diagnostic ultrasound imaging was undergoing nonlinear distortion and generated harmonics in tissue will be discussed. The far-reaching implications of the advent of the piezoelectric PVDF polymer material will be reviewed and the advances in ultrasound metrology prompted by the regulatory agencies such as US Food and Drug Administration (FDA) and International Electrotechnical Commission (IEC) will be presented. These advances include the development of absolute calibration techniques for hydrophones along with the methods of accounting for spatial averaging corrections up to 100 MHz and the development of 'point-receiver' hydrophone probes utilizing acousto-optic sensors. Next, selected therapeutic applications of nonlinear ultrasonics (NLU), including lithotripters will be briefly discussed. Also, the use of shock waves as pain relief tool and in abating penicillin resistant bacteria that develop rock hard 'biofilm' that can be shattered by the finite amplitude wave will also be mentioned. The growing applications of NLU in cosmetic industry where it is used for redistribution and reduction of fatty tissue within the body will be briefly reviewed, and, finally, selected examples of NLU applications in retail and entertainment industry will also be pointed out.

  18. In situ CTE measurements and damage detection using optical metrology

    NASA Astrophysics Data System (ADS)

    Rajaram, Satish; Cuadra, Jefferson; Saralaya, Raghav; Bartoli, Ivan; Kontsos, Antonios

    2016-02-01

    This paper presents a methodology to make coefficient of thermal expansion measurements through the combined use of two non-contact and full field optical metrology methods including digital image correlation and infrared thermography. In this context, active Infrared Thermography techniques combined with contact and non-contact deformation measurement methods have already been reported to measure materials’ thermal expansion. In addition, such techniques have been reported to be capable to detect surface and subsurface defects from changes in homogenous heat diffusion due to damage. Based on this knowledge, it is hypothesized in this article that the material response induced by thermal loading and quantified by coefficient of thermal expansion measurements could be further used as an indicator of damage. To validate the hypothesis three measurements were performed. The first established the effectiveness of using deformation and thermal full field data for coefficient of thermal expansion measurements. The second intended to demonstrate the advantage of using such full field data in order to provide site-specific measurements of thermal expansion. Finally damage was a priori induced to a metallic specimen, and the measured variations of local CTE confirmed the potential of using the described approach as a means of damage quantification in materials and structures.

  19. Automated CD-SEM metrology for efficient TD and HVM

    NASA Astrophysics Data System (ADS)

    Starikov, Alexander; Mulapudi, Satya P.

    2008-03-01

    CD-SEM is the metrology tool of choice for patterning process development and production process control. We can make these applications more efficient by extracting more information from each CD-SEM image. This enables direct monitors of key process parameters, such as lithography dose and focus, or predicting the outcome of processing, such as etched dimensions or electrical parameters. Automating CD-SEM recipes at the early stages of process development can accelerate technology characterization, segmentation of variance and process improvements. This leverages the engineering effort, reduces development costs and helps to manage the risks inherent in new technology. Automating CD-SEM for manufacturing enables efficient operations. Novel SEM Alarm Time Indicator (SATI) makes this task manageable. SATI pulls together data mining, trend charting of the key recipe and Operations (OPS) indicators, Pareto of OPS losses and inputs for root cause analysis. This approach proved natural to our FAB personnel. After minimal initial training, we applied new methods in 65nm FLASH manufacture. This resulted in significant lasting improvements of CD-SEM recipe robustness, portability and automation, increased CD-SEM capacity and MT productivity.

  20. Advanced process control with design-based metrology

    NASA Astrophysics Data System (ADS)

    Yang, Hyunjo; Kim, Jungchan; Hong, Jongkyun; Yim, Donggyu; Kim, Jinwoong; Hasebe, Toshiaki; Yamamoto, Masahiro

    2007-03-01

    K1 factor for development and mass-production of memory devices has been decreased down to below 0.30 in recent years. Process technology has responded with extreme resolution enhancement technologies (RET) and much more complex OPC technologies than before. ArF immersion lithography is expected to remain the major patterning technology through under 35 nm node, where the degree of process difficulties and the sensitivity to process variations grow even higher. So, Design for manufacturing (DFM) is proposed to lower the degree of process difficulties and advanced process control (APC) is required to reduce the process variations. However, both DFM and APC need much feed-back from the wafer side such as hot spot inspection results and total CDU measurements at the lot, wafer, field and die level. In this work, we discuss a new design based metrology which can compare SEM image with CAD data and measure the whole CD deviations from the original layouts in a full die. It can provide the full information of hot spots and the whole CD distribution diagram of various transistors in peripheral regions as well as cell layout. So, it is possible to analyze the root cause of the CD distribution of some specific transistors or cell layout, such as OPC error, mask CDU, lens aberrations or etch process variation and so on. The applications of this new inspection tool will be introduced and APC using the analysis result will be presented in detail.

  1. Metrological analysis of the human foot: 3D multisensor exploration

    NASA Astrophysics Data System (ADS)

    Muñoz Potosi, A.; Meneses Fonseca, J.; León Téllez, J.

    2011-08-01

    In the podiatry field, many of the foot dysfunctions are mainly generated due to: Congenital malformations, accidents or misuse of footwear. For the treatment or prevention of foot disorders, the podiatrist diagnoses prosthesis or specific adapted footwear, according to the real dimension of foot. Therefore, it is necessary to acquire 3D information of foot with 360 degrees of observation. As alternative solution, it was developed and implemented an optical system of threedimensional reconstruction based in the principle of laser triangulation. The system is constituted by an illumination unit that project a laser plane into the foot surface, an acquisition unit with 4 CCD cameras placed around of axial foot axis, an axial moving unit that displaces the illumination and acquisition units in the axial axis direction and a processing and exploration unit. The exploration software allows the extraction of distances on three-dimensional image, taking into account the topography of foot. The optical system was tested and their metrological performances were evaluated in experimental conditions. The optical system was developed to acquire 3D information in order to design and make more appropriate footwear.

  2. Consultative committee on ionizing radiation: Impact on radionuclide metrology.

    PubMed

    Karam, L R; Ratel, G

    2016-03-01

    In response to the CIPM MRA, and to improve radioactivity measurements in the face of advancing technologies, the CIPM's consultative committee on ionizing radiation developed a strategic approach to the realization and validation of measurement traceability for radionuclide metrology. As a consequence, measurement institutions throughout the world have devoted no small effort to establish radionuclide metrology capabilities, supported by active quality management systems and validated through prioritized participation in international comparisons, providing a varied stakeholder community with measurement confidence. PMID:26688351

  3. The importance of metrological metadata in the environmental monitoring

    NASA Astrophysics Data System (ADS)

    Santana, Márcio A. A.; Guimarães, Patrícia L. O.; Almêida, Eugênio S.; Eklin, Tero

    2016-07-01

    The metrological metadata propagation contributes significantly to improve the data analysis of the meteorological observation systems. An overview of the scenarios data and metadata treatment in environmental monitoring is presented in this article. We also discussed the ways of use of the calibration results on the meteorological measurement systems as well as the convergence of the methods used in the corrections treatment and estimation of the measuring uncertainty in metrological and meteorological areas.

  4. New techniques in large scale metrology toolset data mining to accelerate integrated chip technology development and increase manufacturing efficiencies

    NASA Astrophysics Data System (ADS)

    Solecky, Eric; Rana, Narender; Minns, Allan; Gustafson, Carol; Lindo, Patrick; Cornell, Roger; Llanos, Paul

    2014-04-01

    Today, metrology toolsets report out more information than ever. This information applies not only to process performance but also metrology toolset and recipe performance through various diagnostic metrics. This is most evident on the Critical Dimension Scanning Electron Microscope (CD-SEM). Today state of the art CD-SEMs report out over 250 individual data points and several images per measurement. It is typical for a state of the art fab with numerous part numbers to generate at least 20TB of information over the course of a year on the CD-SEM fleet alone pushing metrology toolsets into the big data regime. Most of this comes from improvements in throughput, increased sampling and new data outputs relative to previous generations of tools. Oftentimes, these new data outputs are useful for helping to determine if the process, metrology recipe or tool is deviating from an ideal state. Many issues could be missed by singularly looking at the key process control metric like the bottom critical dimension (CD) or a small subset of this available information. By leveraging the entire data set the mean time to detect and finding the root cause of issues can be significantly reduced. In this paper a new data mining system is presented that achieves this goal. Examples are shown with a focus on the benefits realized using this new system which helps speed up development cycles of learning and reducing manufacturing cycle-time. This paper concludes discussing future directions to make this capability more effective.

  5. On the evaluation of photogrammetric methods for dense 3D surface reconstruction in a metrological context

    NASA Astrophysics Data System (ADS)

    Toschi, I.; Capra, A.; De Luca, L.; Beraldin, J.-A.; Cournoyer, L.

    2014-05-01

    This paper discusses a methodology to evaluate the accuracy of recently developed image-based 3D modelling techniques. So far, the emergence of these novel methods has not been supported by the definition of an internationally recognized standard which is fundamental for user confidence and market growth. In order to provide an element of reflection and solution to the different communities involved in 3D imaging, a promising approach is presented in this paper for the assessment of both metric quality and limitations of an open-source suite of tools (Apero/MicMac), developed for the extraction of dense 3D point clouds from a set of unordered 2D images. The proposed procedural workflow is performed within a metrological context, through inter-comparisons with "reference" data acquired with two hemispherical laser scanners, one total station, and one laser tracker. The methodology is applied to two case studies, designed in order to analyse the software performances in dealing with both outdoor and environmentally controlled conditions, i.e. the main entrance of Cathédrale de la Major (Marseille, France) and a custom-made scene located at National Research Council of Canada 3D imaging Metrology Laboratory (Ottawa). Comparative data and accuracy evidence produced for both tests allow the study of some key factors affecting 3D model accuracy.

  6. Examination of phase retrieval algorithms for patterned EUV mask metrology

    NASA Astrophysics Data System (ADS)

    Claus, Rene A.; Wang, Yow-Gwo; Wojdyla, Antoine; Benk, Markus P.; Goldberg, Kenneth A.; Neureuther, Andrew R.; Naulleau, Patrick P.

    2015-10-01

    We evaluate the performance of several phase retrieval algorithms using through-focus aerial image measurements of patterned EUV photomasks. Patterns present a challenge for phase retrieval algorithms due to the high- contrast and strong diffraction they produce. For this study, we look at the ability to correctly recover phase for line-space patterns on an EUV mask with a TaN absorber and for an etched EUV multilayer phase shift mask. The recovered phase and amplitude extracted from measurements taken using the SHARP EUV microscope at Lawrence Berkeley National Laboratory is compared to rigorous, 3D electromagnetic simulations. The impact of uncertainty in background intensity, coherence, and focus on the recovered field is evaluated to see if the algorithms respond differently.

  7. PREFACE: 3rd International Congress on Mechanical Metrology (CIMMEC2014)

    NASA Astrophysics Data System (ADS)

    2015-10-01

    From October 14th to 16th 2014, The Brazilian National Institute of Metrology, Quality, and Technology (Inmetro) and the Brazilian Society of Metrology (SBM) organized the 3rd International Congress on Mechanical Metrology (3rd CIMMEC). The 3rd CIMMEC was held in the city of Gramado, Rio Grande do Sul, Brazil. Anticipating the interest and enthusiasm of the technical-scientific community, the Organizing Institutions invite people and organizations to participate in this important congress, reiterating the commitment to organize an event according to highest international standards. This event has been conceived to integrate people and organizations from Brazil and abroad in the discussion of advanced themes in metrology. Manufacturers and dealers of measuring equipment and standards, as well as of auxiliary accessories and bibliographic material, had the chance to promote their products and services in stands at the Fair, which has taken place alongside the Congress. The 3rd CIMMEC consisted of five Keynote Speeches and 116 regular papers. Among the regular papers, the 25 most outstanding ones, comprising a high quality content on Mechanical Metrology, were selected to be published in this issue of Journal of Physics: Conference Series. It is our great pleasure to present this volume of Journal of Physics: Conference Series to the scientific community to promote further research in Mechanical Metrology and related areas. We believe that this volume will be both an excellent source of scientific material in the fast evolving fields that were covered by CIMMEC 2014.

  8. Metrology Challenges for High Energy Density Science Target Manufacture

    SciTech Connect

    Seugling, R M; Bono, M J; Davis, P

    2009-02-19

    Currently, High Energy Density Science (HEDS) experiments are used to support and qualify predictive physics models. These models assume ideal conditions such as energy (input) and device (target) geometry. The experiments rely on precision targets constructed from components with dimensions in the millimeter range, while having micrometer-scale, functional features, including planar steps, sine waves, and step-joint geometry on hemispherical targets. Future target designs will likely have features and forms that rival or surpass current manufacturing and characterization capability. The dimensional metrology of these features is important for a number of reasons, including qualification of sub-components prior to assembly, quantification of critical features on the as-built assemblies and as a feedback mechanism for fabrication process development. Variations in geometry from part to part can lead to functional limitations, such as unpredictable instabilities during an experiment and the inability to assemble a target from poorly matched sub-components. Adding to the complexity are the large number and variety of materials, components, and shapes that render any single metrology technique difficult to use with low uncertainty. Common materials include metal and glass foams, doped transparent and opaque plastics and a variety of deposited and wrought metals. A suite of metrology tools and techniques developed to address the many critical issues relevant to the manufacture of HEDS targets including interferometry, x-ray radiography and contact metrology are presented including two sided interferometry for absolute thickness metrology and low force probe technology for micrometer feature coordinate metrology.

  9. Quantum metrology from a quantum information science perspective

    NASA Astrophysics Data System (ADS)

    Tóth, Géza; Apellaniz, Iagoba

    2014-10-01

    We summarize important recent advances in quantum metrology, in connection to experiments in cold gases, trapped cold atoms and photons. First we review simple metrological setups, such as quantum metrology with spin squeezed states, with Greenberger-Horne-Zeilinger states, Dicke states and singlet states. We calculate the highest precision achievable in these schemes. Then, we present the fundamental notions of quantum metrology, such as shot-noise scaling, Heisenberg scaling, the quantum Fisher information and the Cramér-Rao bound. Using these, we demonstrate that entanglement is needed to surpass the shot-noise scaling in very general metrological tasks with a linear interferometer. We discuss some applications of the quantum Fisher information, such as how it can be used to obtain a criterion for a quantum state to be a macroscopic superposition. We show how it is related to the speed of a quantum evolution, and how it appears in the theory of the quantum Zeno effect. Finally, we explain how uncorrelated noise limits the highest achievable precision in very general metrological tasks. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘50 years of Bell’s theorem’.

  10. VisNAV 100: a robust, compact imaging sensor for enabling autonomous air-to-air refueling of aircraft and unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Katake, Anup; Choi, Heeyoul

    2010-01-01

    To enable autonomous air-to-refueling of manned and unmanned vehicles a robust high speed relative navigation sensor capable of proving high accuracy 3DOF information in diverse operating conditions is required. To help address this problem, StarVision Technologies Inc. has been developing a compact, high update rate (100Hz), wide field-of-view (90deg) direction and range estimation imaging sensor called VisNAV 100. The sensor is fully autonomous requiring no communication from the tanker aircraft and contains high reliability embedded avionics to provide range, azimuth, elevation (3 degrees of freedom solution 3DOF) and closing speed relative to the tanker aircraft. The sensor is capable of providing 3DOF with an error of 1% in range and 0.1deg in azimuth/elevation up to a range of 30m and 1 deg error in direction for ranges up to 200m at 100Hz update rates. In this paper we will discuss the algorithms that were developed in-house to enable robust beacon pattern detection, outlier rejection and 3DOF estimation in adverse conditions and present the results of several outdoor tests. Results from the long range single beacon detection tests will also be discussed.

  11. 13th TC1/TC7 Symposium Fundamental and Applied Metrology September 01-03, 2010, London, UK: Effects of radiation dose reduction in digital radiography using wavelet-based image processing

    NASA Astrophysics Data System (ADS)

    Watanabe, H.; Tsai, D. Y.; Lee, Y.; Matsuyama, E.; Kojima, K.

    2010-07-01

    In this paper, we investigated the effect of the use of wavelet transform on dose reduction in computed radiography (CR). The physical properties of the processed CR images were measured using the modulation transfer function (MTF), noise power spectrum (NPS), contrast-to-noise ratio, and peak signal-to-noise ratio. Furthermore, visual evaluation was performed by Scheffe's pair comparison method. Experimental results showed that sigmoid-type transfer curves for wavelet coefficient weighting adjustment could improve the MTF, and three soft-threshold methods could improve the NPS at all spatial frequency ranges. Moreover, our visual evaluation showed that an approximately 40% reduction in exposure dose might be achieved with the sigmoid-type transfer curve in hip joint radiography.

  12. Metrology of Large Parts. Chapter 5

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2012-01-01

    As discussed in the first chapter of this book, there are many different methods to measure a part using optical technology. Chapter 2 discussed the use of machine vision to measure macroscopic features such as length and position, which was extended to the use of interferometry as a linear measurement tool in chapter 3, and laser or other trackers to find the relation of key points on large parts in chapter 4. This chapter looks at measuring large parts to optical tolerances in the sub-micron range using interferometry, ranging, and optical tools discussed in the previous chapters. The purpose of this chapter is not to discuss specific metrology tools (such as interferometers or gauges), but to describe a systems engineering approach to testing large parts. Issues such as material warpage and temperature drifts that may be insignificant when measuring a part to micron levels under a microscope, as will be discussed in later chapters, can prove to be very important when making the same measurement over a larger part. In this chapter, we will define a set of guiding principles for successfully overcoming these challenges and illustrate the application of these principles with real world examples. While these examples are drawn from specific large optical testing applications, they inform the problems associated with testing any large part to optical tolerances. Manufacturing today relies on micrometer level part performance. Fields such as energy and transportation are demanding higher tolerances to provide increased efficiencies and fuel savings. By looking at how the optics industry approaches sub-micrometer metrology, one can gain a better understanding of the metrology challenges for any larger part specified to micrometer tolerances. Testing large parts, whether optical components or precision structures, to optical tolerances is just like testing small parts, only harder. Identical with what one does for small parts, a metrologist tests large parts and optics

  13. Applicability Evaluation of Object Detection Method to Satellite and Aerial Imageries

    NASA Astrophysics Data System (ADS)

    Kamiya, K.; Fuse, T.; Takahashi, M.

    2016-06-01

    Since satellite and aerial imageries are recently widely spread and frequently observed, combination of them are expected to complement spatial and temporal resolution each other. One of the prospective applications is traffic monitoring, where objects of interest, or vehicles, need to be recognized automatically. Techniques that employ object detection before object recognition can save a computational time and cost, and thus take a significant role. However, there is not enough knowledge whether object detection method can perform well on satellite and aerial imageries. In addition, it also has to be studied how characteristics of satellite and aerial imageries affect the object detection performance. This study employ binarized normed gradients (BING) method that runs significantly fast and is robust to rotation and noise. For our experiments, 11-bits BGR-IR satellite imageries from WorldView-3, and BGR-color aerial imageries are used respectively, and we create thousands of ground truth samples. We conducted several experiments to compare the performances with different images, to verify whether combination of different resolution images improved the performance, and to analyze the applicability of mixing satellite and aerial imageries. The results showed that infrared band had little effect on the detection rate, that 11-bit images performed less than 8-bit images and that the better spatial resolution brought the better performance. Another result might imply that mixing higher and lower resolution images for training dataset could help detection performance. Furthermore, we found that aerial images improved the detection performance on satellite images.

  14. Moving Obstacle Avoidance for Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Lin, Yucong

    There has been a vast increase in applications of Unmanned Aerial Vehicles (UAVs) in civilian domains. To operate in the civilian airspace, a UAV must be able to sense and avoid both static and moving obstacles for flight safety. While indoor and low-altitude environments are mainly occupied by static obstacles, risks in space of higher altitude primarily come from moving obstacles such as other aircraft or flying vehicles in the airspace. Therefore, the ability to avoid moving obstacles becomes a necessity for Unmanned Aerial Vehicles. Towards enabling a UAV to autonomously sense and avoid moving obstacles, this thesis makes the following contributions. Initially, an image-based reactive motion planner is developed for a quadrotor to avoid a fast approaching obstacle. Furthermore, A Dubin's curve based geometry method is developed as a global path planner for a fixed-wing UAV to avoid collisions with aircraft. The image-based method is unable to produce an optimal path and the geometry method uses a simplified UAV model. To compensate these two disadvantages, a series of algorithms built upon the Closed-Loop Rapid Exploratory Random Tree are developed as global path planners to generate collision avoidance paths in real time. The algorithms are validated in Software-In-the-Loop (SITL) and Hardware-In-the-Loop (HIL) simulations using a fixed-wing UAV model and in real flight experiments using quadrotors. It is observed that the algorithm enables a UAV to avoid moving obstacles approaching to it with different directions and speeds.

  15. Welcome to Surface Topography: Metrology and Properties

    NASA Astrophysics Data System (ADS)

    Leach, Richard

    2013-11-01

    I am delighted to welcome readers to this inaugural issue of Surface Topography: Metrology and Properties (STMP). In these days of citation indexes and academic reviews, it is a tough, and maybe a brave, job to start a new journal. But the subject area has never been more active and we are seeing genuine breakthroughs in the use of surfaces to control functional performance. Most manufactured parts rely on some form of control of their surface characteristics. The surface is usually defined as that feature on a component or device, which interacts with either the environment in which it is housed (or in which the device operates), or with another surface. The surface topography and material characteristics of a part can affect how fluids interact with it, how the part looks and feels and how two bearing parts will slide together. The need to control, and hence measure, surface features is becoming increasingly important as we move into a miniaturized world. Surface features can become the dominant functional features of a part and may become large in comparison to the overall size of an object. Research into surface texture measurement and characterization has been carried out for over a century and is now more active than ever, especially as new areal surface texture specification standards begin to be introduced. The range of disciplines for which the function of a surface relates to its topography is very diverse; from metal sheet manufacturing to art restoration, from plastic electronics to forensics. Until now, there has been no obvious publishing venue to bring together all these applications with the underlying research and theory, or to unite those working in academia with engineering and industry. Hence the creation of Surface Topography: Metrology and Properties . STMP will publish the best work being done across this broad discipline in one journal, helping researchers to share common themes and highlighting and promoting the extraordinary benefits this

  16. Metrology for ocean salinity and acidity- the European Metrology Research Project ENV05

    NASA Astrophysics Data System (ADS)

    Spitzer, Petra; Seitz, Steffen; Lago, Simona; Stoica, Daniela; Mariassy, Michal; Clough, Robert; Camões, Maria Filomena

    2013-04-01

    An overview and status report on the EMRP (European Metrology Research Project) "Metrology for ocean salinity and acidity" will be given. The project has been started in September 2011. The consortium consists of partners from ten European metrology institutes and two universities. Need for the project The project covers the thermodynamic quantities salinity, conductivity, density, speed of sound, and temperature, and the chemical quantities pH, oxygen content and composition. It aims to develop methods, standards and tools to improve the databases used for climate models. Measurement standards with well characterized uncertainties will enable calibration of in-situ observing sensor networks and satellite systems traceable to SI units. The results will improve the metrological infrastructure required for a reliable monitoring and modelling of ocean processes. This will allow scientists to measure more accurately small changes in long-term oceanographic data series. Expected results and potential impact The basis for data at higher pressure of up to 70 MPa and in a temperature range between 0 ° C and 40 ° C for the Equation of State will be improved by measurements of density, salinity and speed of sound. A novel primary conductivity sensor which can be used at high pressure will be developed, tested and linked to primary improved density measurements at the same high pressure. Improved and robust speed of sound measurement data for both high accuracy laboratory and in situ measurements of seawater, will provided by means of an ultrasonic double-reflector pulse-echo overlap technique. This also includes improved temperature measurements with an uncertainty of 5 mK. The determination of dissolved oxygen measurement methods will be optimised for the special requirements of seawater. A reduction of the uncertainty by a least a factor of three is anticipated. Harmonised pH measurement procedures will be provided to underpin the traceability of the pH data of seawater

  17. Usefulness of entanglement-assisted quantum metrology

    NASA Astrophysics Data System (ADS)

    Huang, Zixin; Macchiavello, Chiara; Maccone, Lorenzo

    2016-07-01

    Entanglement-assisted quantum communication employs preshared entanglement between sender and receiver as a resource. We apply the same framework to quantum metrology, introducing shared entanglement between the probe and the ancilla in the preparation stage and allowing entangling operations at the measurement stage, i.e., using some entangled ancillary system that does not interact with the system to be sampled. This is known to be useless in the noiseless case, but was recently shown to be useful in the presence of noise [R. Demkowicz-Dobrzanski and L. Maccone, Phys. Rev. Lett. 113, 250801 (2014), 10.1103/PhysRevLett.113.250801; W. Dür, M. Skotiniotis, F. Fröwis, and B. Kraus, Phys. Rev. Lett. 112, 080801 (2014), 10.1103/PhysRevLett.112.080801; E. M. Kessler, I. Lovchinsky, A. O. Sushkov, and M. D. Lukin, Phys. Rev. Lett. 112, 150802 (2014);, 10.1103/PhysRevLett.112.150802 R. Demkowicz-Dobrzański and J. Kolodynski, New J. Phys. 15, 073043 (2013), 10.1088/1367-2630/15/7/073043]. Here we detail how and when it can be of use. For example, surprisingly it is useful when two channels are randomly alternated, for both of which ancillas do not help (depolarizing). We show that it is useful for all levels of noise for many noise models and propose a simple optical experiment to test these results.

  18. Defects and metrology of ultrathin resist films

    NASA Astrophysics Data System (ADS)

    Okoroanyanwu, Uzodinma; Cobb, Jonathan L.; Dentinger, Paul M.; Henderson, Craig C.; Rao, Veena; Monahan, Kevin M.; Luo, David; Pike, Christopher

    2000-06-01

    Defectivity in spin-coated, but unpatterned ultrathin resist (UTR) films (= 3500 Angstrom) processed under similar condition as the ultra-thin resists. The results show that for a well-optimized coating process and within the thickness range explored (800 - 4200 Angstrom), there is no discernible dependence of defectivity on film thickness of the particular resists studied and on spin speed. Also assessed is the capability of the current metrology toolset for inspecting, reviewing, and classifying the various types of defects in UTR films.

  19. Metrology on phase-shift masks

    NASA Astrophysics Data System (ADS)

    Roeth, Klaus-Dieter; Maurer, Wilhelm; Blaesing-Bangert, Carola

    1992-06-01

    In the evaluation of new manufacturing processes, metrology is a key function, beginning with the first step of process development through the final step of everyday mass production at the fabrication floor level. RIM-type phase shift masks are expected to be the first application of phase shift masks in high volume production, since they provide improved lithography process capability at the expense of only moderate complexity in their manufacturing. Measurements of critical dimension (CD) and pattern position (overlay) on experimental rim-type and chromeless phase shift masks are reported. Pattern placement (registration) was measured using the Leitz LMS 2000. The overall design and important components were already described. The pattern placement of the RIM type phase shift structures on the photomask described above was determined within a tolerance of 25 nm (3s); nominal accuracy was within 45 nm (3s). On the chromeless phase shift mask the measurement results were easily obtained using a wafer intensity algorithm available with the system. The measurement uncertainties were less than 25 nm and 50 nm for precision and nominal accuracy respectively. The measurement results from the Leitz CD 200 using transmitted light were: a CD- distribution of 135 nm (3s) on a typical 6 micrometers structure all over the mask; the 0.9 micrometers RIM structure had a distribution of 43 nm (3s). Typical long term precision performance values for the CD 200 on both chrome and phase shift structures have been less than 15 nm.

  20. Oscillator metrology with software defined radio.

    PubMed

    Sherman, Jeff A; Jördens, Robert

    2016-05-01

    Analog electrical elements such as mixers, filters, transfer oscillators, isolating buffers, dividers, and even transmission lines contribute technical noise and unwanted environmental coupling in time and frequency measurements. Software defined radio (SDR) techniques replace many of these analog components with digital signal processing (DSP) on rapidly sampled signals. We demonstrate that, generically, commercially available multi-channel SDRs are capable of time and frequency metrology, outperforming purpose-built devices by as much as an order-of-magnitude. For example, for signals at 10 MHz and 6 GHz, we observe SDR time deviation noise floors of about 20 fs and 1 fs, respectively, in under 10 ms of averaging. Examining the other complex signal component, we find a relative amplitude measurement instability of 3 × 10(-7) at 5 MHz. We discuss the scalability of a SDR-based system for simultaneous measurement of many clocks. SDR's frequency agility allows for comparison of oscillators at widely different frequencies. We demonstrate a novel and extreme example with optical clock frequencies differing by many terahertz: using a femtosecond-laser frequency comb and SDR, we show femtosecond-level time comparisons of ultra-stable lasers with zero measurement dead-time. PMID:27250455

  1. An edge-from-focus approach to 3D inspection and metrology

    NASA Astrophysics Data System (ADS)

    Deng, Fuqin; Chen, Jia; Liu, Jianyang; Zhang, Zhijun; Deng, Jiangwen; Fung, Kenneth S. M.; Lam, Edmund Y.

    2015-02-01

    We propose an edge-based depth-from-focus technique for high-precision non-contact industrial inspection and metrology applications. In our system, an objective lens with a large numerical aperture is chosen to resolve the edge details of the measured object. By motorizing this imaging system, we capture the high-resolution edges within every narrow depth of field. We can therefore extend the measured range and keep a high resolution at the same time. Yet, on the surfaces with a large depth variation, a significant amount of data around each measured point are out of focus within the captured images. Then, it is difficult to extract the valuable information from these out-of-focus data due to the depth-variant blur. Moreover, these data impede the extraction of continuous contours for the measurement objects in high-level machine vision applications. The proposed approach however makes use of the out-of-focus data to synthesize a depth-invariant smoothed image, and then robustly locates the positions of high contrast edges based on non-maximum suppression and hysteresis thresholding. Furthermore, by focus analysis of both the in-focus and the out-of-focus data, we reconstruct the high-precision 3D edges for metrology applications.

  2. Faster, better, cheaper metrology of lobster-eye (square-pore) optics

    NASA Astrophysics Data System (ADS)

    Irving, Thomas H. K.; Peele, Andrew G.; Nugent, Keith A.; Brumby, Steven P.

    2001-01-01

    Lobster-eye optics have attracted much attention and effort in recent years due to their unique x-ray focusing capabilities. While many advances have been made in the manufacture and analysis of these optics, their characterization and the determination of their metrology remains constrained by the shortcomings of current techniques. We present a faster, better and cheaper method for the determination of many of the metrological parameters of lobster-eye optics. Optical images of the entrance and exit surfaces of an optic are taken. Applying our technique to these images allows measurement of all the geometrical properties that previously have been found to be the major contributors to focusing defects. In addition, the number of free parameters required in fitting a simulated to a measured x-ray image can be greatly reduced. We present results for the characterization of an existing lobster-eye optic and the improved modeling thereby obtained which are in very good agreement with experimental x-ray focusing data.

  3. BOREAS Level-0 C-130 Aerial Photography

    NASA Technical Reports Server (NTRS)

    Newcomer, Jeffrey A.; Dominguez, Roseanne; Hall, Forrest G. (Editor)

    2000-01-01

    For BOReal Ecosystem-Atmosphere Study (BOREAS), C-130 and other aerial photography was collected to provide finely detailed and spatially extensive documentation of the condition of the primary study sites. The NASA C-130 Earth Resources aircraft can accommodate two mapping cameras during flight, each of which can be fitted with 6- or 12-inch focal-length lenses and black-and-white, natural-color, or color-IR film, depending upon requirements. Both cameras were often in operation simultaneously, although sometimes only the lower resolution camera was deployed. When both cameras were in operation, the higher resolution camera was often used in a more limited fashion. The acquired photography covers the period of April to September 1994. The aerial photography was delivered as rolls of large format (9 x 9 inch) color transparency prints, with imagery from multiple missions (hundreds of prints) often contained within a single roll. A total of 1533 frames were collected from the C-130 platform for BOREAS in 1994. Note that the level-0 C-130 transparencies are not contained on the BOREAS CD-ROM set. An inventory file is supplied on the CD-ROM to inform users of all the data that were collected. Some photographic prints were made from the transparencies. In addition, BORIS staff digitized a subset of the tranparencies and stored the images in JPEG format. The CD-ROM set contains a small subset of the collected aerial photography that were the digitally scanned and stored as JPEG files for most tower and auxiliary sites in the NSA and SSA. See Section 15 for information about how to acquire additional imagery.

  4. Effect of measurement error budgets and hybrid metrology on qualification metrology sampling

    NASA Astrophysics Data System (ADS)

    Sendelbach, Matthew; Sarig, Niv; Wakamoto, Koichi; Kim, Hyang Kyun (Helen); Isbester, Paul; Asano, Masafumi; Matsuki, Kazuto; Osorio, Carmen; Archie, Chas

    2014-10-01

    Until now, metrologists had no statistics-based method to determine the sampling needed for an experiment before the start that accuracy experiment. We show a solution to this problem called inverse total measurement uncertainty (TMU) analysis, by presenting statistically based equations that allow the user to estimate the needed sampling after providing appropriate inputs, allowing him to make important "risk versus reward" sampling, cost, and equipment decisions. Application examples using experimental data from scatterometry and critical dimension scanning electron microscope tools are used first to demonstrate how the inverse TMU analysis methodology can be used to make intelligent sampling decisions and then to reveal why low sampling can lead to unstable and misleading results. One model is developed that can help experimenters minimize sampling costs. A second cost model reveals the inadequacy of some current sampling practices-and the enormous costs associated with sampling that provides reasonable levels of certainty in the result. We introduce the strategies on how to manage and mitigate these costs and begin the discussion on how fabs are able to manufacture devices using minimal reference sampling when qualifying metrology steps. Finally, the relationship between inverse TMU analysis and hybrid metrology is explored.

  5. USGS aerial resolution targets.

    USGS Publications Warehouse

    Salamonowicz, P.H.

    1982-01-01

    It is necessary to measure the achievable resolution of any airborne sensor that is to be used for metric purposes. Laboratory calibration facilities may be inadequate or inappropriate for determining the resolution of non-photographic sensors such as optical-mechanical scanners, television imaging tubes, and linear arrays. However, large target arrays imaged in the field can be used in testing such systems. The USGS has constructed an array of resolution targets in order to permit field testing of a variety of airborne sensing systems. The target array permits any interested organization with an airborne sensing system to accurately determine the operational resolution of its system. -from Author

  6. Dynamics of aerial target pursuit

    NASA Astrophysics Data System (ADS)

    Pal, S.

    2015-12-01

    During pursuit and predation, aerial species engage in multitasking behavior that involve simultaneous target detection, tracking, decision-making, approach and capture. The mobility of the pursuer and the target in a three dimensional environment during predation makes the capture task highly complex. Many researchers have studied and analyzed prey capture dynamics in different aerial species such as insects and bats. This article focuses on reviewing the capture strategies adopted by these species while relying on different sensory variables (vision and acoustics) for navigation. In conclusion, the neural basis of these capture strategies and some applications of these strategies in bio-inspired navigation and control of engineered systems are discussed.

  7. AERIAL OF VEHICLE ASSEMBLY BUILDING & SURROUNDING AREA

    NASA Technical Reports Server (NTRS)

    1977-01-01

    AERIAL OF VEHICLE ASSEMBLY BUILDING & SURROUNDING AREA KSC-377C-0082.41 116-KSC-377C-82.41, P-15877, ARCHIVE-04151 Aerial view - Shuttle construction progress - VAB and Orbiter Processing Facilities - direction northwest.

  8. [The EFS metrology: From the production to the reason].

    PubMed

    Reifenberg, J-M; Riout, E; Leroy, A; Begue, S

    2014-06-01

    In order to answer statutory requirements and to anticipate the future needs and standards, the EFS is committed, since a few years, in a process of harmonization of its metrology function. In particular, the institution has opted for the skills development by internalizing the metrological traceability of the main critical quantities (temperature, volumetric) measurements. The development of metrology so resulted in a significant increase in calibration and testing activities. Methods are homogenized and improved through accreditations. The investment strategies are based on more and more demanding specifications. The performance of the equipments is better known and mastered. Technical expertise and maturity of the national metrology function today are assets to review in more informed ways the appropriateness of the applied periodicities. Analysis of numerous information and data in the calibration and testing reports could be pooled and operated on behalf of the unique establishment. The objective of this article is to illustrate these reflections with a few examples from of a feedback of the EFS Pyrénées Méditerranée. The analysis of some methods of qualification, the exploitation of the historical metrology in order to quantify the risk of non-compliance, and to adapt the control strategy, analysis of the criticality of an instrument in a measurement process, risk analyses are tools that deserve to be more widely exploited for that discipline wins in efficiency at the national level. PMID:24950925

  9. The Development of a Deflectometer for Accurate Surface Figure Metrology

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Eberhardt, Andrew; Ramsey, Brian; Atkins, Carolyn

    2015-01-01

    Marshall Space Flight Center is developing the method of direct fabrication for high resolution full-shell x-ray optics. In this technique the x-ray optics axial profiles are figured and polished using a computer-controlled ZeekoIRP600X polishing machine. Based on the Chandra optics fabrication history about one third of the manufacturing time is spent on moving a mirror between fabrication and metrology sites, reinstallation and alignment with either the metrology or fabrication instruments. Also, the accuracy of the alignment significantly affects the ultimate accuracy of the resulting mirrors. In order to achieve higher convergence rate it is highly desirable to have a metrology technique capable of in situ surface figure measurements of the optics under fabrication, so the overall fabrication costs would be greatly reduced while removing the surface errors due to the re-alignment necessary after each metrology cycle during the fabrication. The goal of this feasibility study is to demonstrate if the Phase Measuring Deflectometry can be applied for in situ metrology of full shell x-ray optics. Examples of the full-shell mirror substrates suitable for the direct fabrication

  10. Architecture of the metrology for the SRT

    NASA Astrophysics Data System (ADS)

    Pisanu, Tonino; Buffa, Franco; Deiana, Gian Luigi; Marongiu, Pasqualino; Morsiani, Marco; Pernechele, Claudio; Poppi, Sergio; Serra, Giampaolo; Vargiu, Giampaolo

    2012-09-01

    The Sardinia Radio Telescope (SRT) Metrology team is planning to install an initial group of devices on the new 64 meters radio-telescope. These devices will be devoted for the realization of the antenna deformation control system: an electronic inclinometer able to monitor the alidade deformations and a Position Sensing Device (PSD) able to map the antenna secondary mirror (M2) displacements and tilts. The inclinometer will be used to map the rail conditions, the azimuthal axis inclination and the thermal effects on the alidade structure. The PSD will be used to measure the secondary mirror displacements induced by the gravity and by the thermal deformations that produce shifts and tilts with respect to its ideal optical alignment. The PSD will be traced by diode laser installed on a mechanically stable position inside the elevation equipment room. The inclinometer has been tested in laboratory with the aim to compare its performances with a reference measurement system. The PSD and the laser have been characterized by a long-term tests to assess their stability and accuracy, thus simulating the open air conditions that will be experienced by the device during its operative life. M2 may move freely in space thanks to a six axis actuator system (hexapod). The PSD measurements are processed by a hexapod kinematic model (HKM) to evaluate the correct actuator elongations, thus closing the control loop. The sensors will be acquired and recorded by a dedicated PC installed in the Alidade equipment room and connected to the sensors via the Ethernet network.

  11. Remote metrology system (RMS) design concept

    SciTech Connect

    1995-10-19

    A 3D remote metrology system (RMS) is needed to map the interior plasma-facing components of the International Thermonuclear Experimental Reactor (ITER). The performance and survival of these components within the reactor vessel are strongly dependent on their precise alignment and positioning with respect to the plasma edge. Without proper positioning and alignment, plasma-facing surfaces will erode rapidly. A RMS design involving Coleman Research Corporation (CRC) fiber optic coherent laser radar (CLR) technology is examined in this study. The fiber optic CLR approach was selected because its high precision should be able to meet the ITER 0.1 mm accuracy requirement and because the CLR`s fiber optic implementation allows a 3D scanner to operate remotely from the RMS system`s vulnerable components. This design study has largely verified that a fiber optic CLR based RMS can survive the ITER environment and map the ITER interior at the required accuracy at a one measurement/cm{sup 2} density with a total measurement time of less than one hour from each of six or more vertically deployed measurement probes. The design approach employs a sealed and pressurized measurement probe which is attached with an umbilical spiral bellows conduit. This conduit bears fiber optic and electronic links plus a stream of air to lower the temperature in the interior of the probe. Lowering the probe temperature is desirable because probe electromechanical components which could survive the radiation environment often were not rated for the 200 C temperature. The tip of the probe whose outer shell has a flexible bellows joint can swivel in two degrees of freedom to allow mapping operations at each probe deployment level. This design study has concluded that the most successful scanner design will involve a hybrid AO beam deflector and mechanical scanner.

  12. Monitoring climate from space: a metrology perspective

    NASA Astrophysics Data System (ADS)

    Revercomb, Hank; Best, Fred; Tobin, Dave; Knuteson, Bob; Smith, Nadia; Smith, William L.; Weisz, Elisabeth

    2016-05-01

    Application of the principles of metrology for the NASA Climate Absolute Radiance and Refractivity Observatory (CLARREO) infrared high spectral resolution measurements is presented, starting with the use of a Standard International (SI) reference source on orbit, developing uncertainty traceability for intercalibration to other spaceborne sensors, and finally tracing the direct effects of radiance uncertainty on climate products originating from state parameter retrievals. The Absolute Radiance Interferometer (ARI) IR prototype employs an On-orbit Absolute Radiance Standard (OARS), developed under the NASA Instrument Incubator Program for CLARREO, for on-orbit calibration verification to better than 0.1 K 3-sigma. The OARS consists of a variable temperature, high emissivity blackbody with temperature calibration established to better than 16 mK on-orbit and provision for on-orbit emissivity monitoring. The temperature scale is established using miniature melt cells of Ga, H2O, and Hg. Transferring the high accuracy of ARI measurements to other IR instruments, especially the high spectral resolution operational sounders (AIRS, CrIS and IASI), is an important objective of CLARREO. The mathematical approach to rigorous traceability of sampling uncertainties is explained and applied in simulations of the intercalibration process. Results show that it will be possible to make intercomparisons of better than 0.05 K 3-sigma with just 6 months of observations from a single CLARREO in true polar orbit. Finally, the effects of radiance perturbations representing realistic uncertainties (for the CrIS on Suomi NPP) on retrieved temperature and water vapor profiles are evaluated. The results demonstrate a stable, physically reasonable impact of Dual regression retrievals.

  13. MAPPING NON-INDIGENOUS EELGRASS ZOSTERA JAPONICA, ASSOCIATED MACROALGAE AND EMERGENT AQUATIC VEGETARIAN HABITATS IN A PACIFIC NORTHWEST ESTUARY USING NEAR-INFRARED COLOR AERIAL PHOTOGRAPHY AND A HYBRID IMAGE CLASSIFICATION TECHNIQUE

    EPA Science Inventory

    We conducted aerial photographic surveys of Oregon's Yaquina Bay estuary during consecutive summers from 1997 through 2001. Imagery was obtained during low tide exposures of intertidal mudflats, allowing use of near-infrared color film to detect and discriminate plant communitie...

  14. MAPPING EELGRASS SPECIES ZOSTERA ZAPONICA AND Z. MARINA, ASSOCIATED MACROALGAE AND EMERGENT AQUATIC VEGETATION HABITATS IN PACIFIC NORTHWEST ESTUARIES USING NEAR-INFRARED COLOR AERIAL PHOTOGRAPHY AND A HYBRID IMAGE CLASSIFICATION TECHNIQUE

    EPA Science Inventory

    Aerial photographic surveys of Oregon's Yaquina Bay estuary were conducted during consecutive summers from 1997 through 2000. Imagery was obtained during low tide exposures of intertidal mudflats, allowing use of near-infrared color film to detect and discriminate plant communit...

  15. Laser metrology — a diagnostic tool in automotive development processes

    NASA Astrophysics Data System (ADS)

    Beeck, Manfred-Andreas; Hentschel, Werner

    2000-08-01

    Laser measurement techniques are widely used in automotive development processes. Applications at Volkswagen are presented where laser metrology works as a diagnostic tool for analysing and optimising complex coupled processes inside and between automotive components and structures such as the reduction of a vehicle's interior or outer acoustic noise, including brake noise, and the combustion analysis for diesel and gasoline engines to further reduce fuel consumption and pollution. Pulsed electronic speckle pattern interferometry (ESPI) and holographic interferometry are used for analysing the knocking behaviour of modern engines and for correct positioning of knocking sensors. Holographic interferometry shows up the vibrational behaviour of brake components and their interaction during braking, and allows optimisation for noise-free brake systems. Scanning laser vibrometry analyses structure-born noise of a whole car body for the optimisation of its interior acoustical behaviour.Modern engine combustion concepts such as in direct-injection (DI) gasoline and diesel engines benefit from laser diagnostic tools which permit deeper insight into the in-cylinder processes such as flow generation, fuel injection and spray formation, atomisation and mixing, ignition and combustion, and formation and reduction of pollutants. The necessary optical access inside a cylinder is realised by so-called 'transparent engines' allowing measurements nearly during the whole engine cycle. Measurement techniques and results on double-pulse particle image velocimetry (PIV) with a frequency-doubled YAG laser for in-cylinder flow analysis are presented, as well as Mie-scattering on droplets using a copper vapour laser combined with high-speed filming, and laser-induced fluorescence (LIF) with an excimer laser for spray and fuel vapour analysis.

  16. Reconnaissance mapping from aerial photographs

    NASA Technical Reports Server (NTRS)

    Weeden, H. A.; Bolling, N. B. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Engineering soil and geology maps were successfully made from Pennsylvania aerial photographs taken at scales from 1:4,800 to 1:60,000. The procedure involved a detailed study of a stereoscopic model while evaluating landform, drainage, erosion, color or gray tones, tone and texture patterns, vegetation, and cultural or land use patterns.

  17. Efficient pedestrian detection from aerial vehicles with object proposals and deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Minnehan, Breton; Savakis, Andreas

    2016-05-01

    As Unmanned Aerial Systems grow in numbers, pedestrian detection from aerial platforms is becoming a topic of increasing importance. By providing greater contextual information and a reduced potential for occlusion, the aerial vantage point provided by Unmanned Aerial Systems is highly advantageous for many surveillance applications, such as target detection, tracking, and action recognition. However, due to the greater distance between the camera and scene, targets of interest in aerial imagery are generally smaller and have less detail. Deep Convolutional Neural Networks (CNN's) have demonstrated excellent object classification performance and in this paper we adopt them to the problem of pedestrian detection from aerial platforms. We train a CNN with five layers consisting of three convolution-pooling layers and two fully connected layers. We also address the computational inefficiencies of the sliding window method for object detection. In the sliding window configuration, a very large number of candidate patches are generated from each frame, while only a small number of them contain pedestrians. We utilize the Edge Box object proposal generation method to screen candidate patches based on an "objectness" criterion, so that only regions that are likely to contain objects are processed. This method significantly reduces the number of image patches processed by the neural network and makes our classification method very efficient. The resulting two-stage system is a good candidate for real-time implementation onboard modern aerial vehicles. Furthermore, testing on three datasets confirmed that our system offers high detection accuracy for terrestrial pedestrian detection in aerial imagery.

  18. Metrology system for the calibration of multi-dof mechanisms

    NASA Astrophysics Data System (ADS)

    Zago, Lorenzo; Sarajlic, Mirsad; Chevalley, Fabien

    2014-07-01

    This paper presents a novel absolute position metrology system developed in our institute based on a concept using industrial vision by which USB cameras observe targets provided with special dots patterns. The system was originally devised for precision 2D measurements, then extended to 6-degree-of-freedom setups. This particular metrology system has been developed for testing and calibrating the precision hexapods aligning the secondary mirrors of the ESO VLTI auxiliary telescopes but its principle can be used for measuring the accuracy of any multi-degree-of-freedom mechanisms. The accuracy/resolution of the metrology system is typically 2-5 μm along linear degrees of freedom, respectively 5 arcsec for tip-tilt. This method is particularly affordable in cost, robust, yet accurate enough for most precision measurements in astronomical optomechanics.

  19. Development of a deflectometer for accurate surface figure metrology

    NASA Astrophysics Data System (ADS)

    Gubarev, Mikhail V.; Ramsey, Brian; Atkins, Carolyn; Eberhardt, Andrew

    2015-09-01

    Marshall Space Flight Center is developing a direct fabrication technique in which high resolution x-ray optics are fabricated through surface polishing and figuring of a full-shell substrate. The use of a computer controlled polishing machine leads to quick convergence to high resolution mirrors. The vailability of an in situ surface figure metrology technique would permit even higher convergence rates and reduce the surface profile errors associated with installation and re-alignment of the x-ray mirror shell between the metrology and polishing processes. A surface-figure-metrology instrument based on an optical deflectometer scheme is under development at the Marshall Space Flight Center (MSFC). The current status of the deflectometer instrument development is presented here.

  20. Three-dimensional digital holographic aperture synthesis for rapid and highly-accurate large-volume metrology

    NASA Astrophysics Data System (ADS)

    Crouch, Stephen; Kaylor, Brant M.; Barber, Zeb W.; Reibel, Randy R.

    2015-09-01

    Currently large volume, high accuracy three-dimensional (3D) metrology is dominated by laser trackers, which typically utilize a laser scanner and cooperative reflector to estimate points on a given surface. The dependency upon the placement of cooperative targets dramatically inhibits the speed at which metrology can be conducted. To increase speed, laser scanners or structured illumination systems can be used directly on the surface of interest. Both approaches are restricted in their axial and lateral resolution at longer stand-off distances due to the diffraction limit of the optics used. Holographic aperture ladar (HAL) and synthetic aperture ladar (SAL) can enhance the lateral resolution of an imaging system by synthesizing much larger apertures by digitally combining measurements from multiple smaller apertures. Both of these approaches only produce two-dimensional imagery and are therefore not suitable for large volume 3D metrology. We combined the SAL and HAL approaches to create a swept frequency digital holographic 3D imaging system that provides rapid measurement speed for surface coverage with unprecedented axial and lateral resolution at longer standoff ranges. The technique yields a "data cube" of Fourier domain data, which can be processed with a 3D Fourier transform to reveal a 3D estimate of the surface. In this paper, we provide the theoretical background for the technique and show experimental results based on an ultra-wideband frequency modulated continuous wave (FMCW) chirped heterodyne ranging system showing ~100 micron lateral and axial precisions at >2 m standoff distances.