Science.gov

Sample records for aerial imaging technology

  1. CMOS Imaging Sensor Technology for Aerial Mapping Cameras

    NASA Astrophysics Data System (ADS)

    Neumann, Klaus; Welzenbach, Martin; Timm, Martin

    2016-06-01

    In June 2015 Leica Geosystems launched the first large format aerial mapping camera using CMOS sensor technology, the Leica DMC III. This paper describes the motivation to change from CCD sensor technology to CMOS for the development of this new aerial mapping camera. In 2002 the DMC first generation was developed by Z/I Imaging. It was the first large format digital frame sensor designed for mapping applications. In 2009 Z/I Imaging designed the DMC II which was the first digital aerial mapping camera using a single ultra large CCD sensor to avoid stitching of smaller CCDs. The DMC III is now the third generation of large format frame sensor developed by Z/I Imaging and Leica Geosystems for the DMC camera family. It is an evolution of the DMC II using the same system design with one large monolithic PAN sensor and four multi spectral camera heads for R,G, B and NIR. For the first time a 391 Megapixel large CMOS sensor had been used as PAN chromatic sensor, which is an industry record. Along with CMOS technology goes a range of technical benefits. The dynamic range of the CMOS sensor is approx. twice the range of a comparable CCD sensor and the signal to noise ratio is significantly better than with CCDs. Finally results from the first DMC III customer installations and test flights will be presented and compared with other CCD based aerial sensors.

  2. Aerial Image Systems

    NASA Astrophysics Data System (ADS)

    Clapp, Robert E.

    1987-09-01

    Aerial images produce the best stereoscopic images of the viewed world. Despite the fact that every optic in existence produces an aerial image, few persons are aware of their existence and possible uses. Constant reference to the eye and other optical systems have produced a psychosis of design that only considers "focal planes" in the design and analysis of optical systems. All objects in the field of view of the optical device are imaged by the device as an aerial image. Use of aerial images in vision and visual display systems can provide a true stereoscopic representation of the viewed world. This paper discusses aerial image systems - their applications and designs and presents designs and design concepts that utilize aerial images to obtain superior visual displays, particularly with application to visual simulation.

  3. Aerial Vehicle Surveys of other Planetary Atmospheres and Surfaces: Imaging, Remote-sensing, and Autonomy Technology Requirements

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Gregory; Ippolito, Corey; Alena, Rick

    2005-01-01

    The objective of this paper is to review the anticipated imaging and remote-sensing technology requirements for aerial vehicle survey missions to other planetary bodies in our Solar system that can support in-atmosphere flight. In the not too distant future such planetary aerial vehicle (a.k.a. aerial explorers) exploration missions will become feasible. Imaging and remote-sensing observations will be a key objective for these missions. Accordingly, it is imperative that optimal solutions in terms of imaging acquisition and real-time autonomous analysis of image data sets be developed for such vehicles.

  4. Aerial imaging technology for photomask qualification: from a microscope to a metrology tool

    NASA Astrophysics Data System (ADS)

    Garetto, Anthony; Scherübl, Thomas; Peters, Jan Hendrik

    2012-09-01

    Photomasks carry the structured information of the chip designs printed with lithography scanners onto wafers. These structures, for the most modern technologies, are enlarged by a factor of 4 with respect to the final circuit design, and 20-60 of these photomasks are needed for the production of a single completed chip used, for example, in computers or cell phones. Lately, designs have been reported to be on the drawing board with close to 100 of these layers. Each of these photomasks will be reproduced onto the wafer several hundred times and typically 5000-50 000 wafers will be produced with each of them. Hence, the photomasks need to be absolutely defect-free to avoid any fatal electrical shortcut in the design or drastic performance degradation. One well-known method in the semiconductor industry is to analyze the aerial image of the photomask in a dedicated tool referred to as Aerial Imaging Measurement System, which emulates the behavior of the respective lithography scanner used for the imaging of the mask. High-end lithography scanners use light with a wavelength of 193 nm and high numerical apertures (NAs) of 1.35 utilizing a water film between the last lens and the resist to be illuminated (immersion scanners). Complex illumination shapes enable the imaging of structures well below the wavelength used. Future lithography scanners will work at a wavelength of 13.5 nm [extreme ultraviolet (EUV)] and require the optical system to work with mirrors in vacuum instead of the classical lenses used in current systems. The exact behavior of these systems is emulated by the Aerial Image Measurement System (AIMS™; a Trademark of Carl Zeiss). With these systems, any position of the photomask can be imaged under the same illumination condition used by the scanners, and hence, a prediction of the printing behavior of any structure can be derived. This system is used by mask manufacturers in their process flow to review critical defects or verify defect repair

  5. Aerial Photographs and Satellite Images

    USGS Publications Warehouse

    U.S. Geological Survey

    1997-01-01

    Photographs and other images of the Earth taken from the air and from space show a great deal about the planet's landforms, vegetation, and resources. Aerial and satellite images, known as remotely sensed images, permit accurate mapping of land cover and make landscape features understandable on regional, continental, and even global scales. Transient phenomena, such as seasonal vegetation vigor and contaminant discharges, can be studied by comparing images acquired at different times. The U.S. Geological Survey (USGS), which began using aerial photographs for mapping in the 1930's, archives photographs from its mapping projects and from those of some other Federal agencies. In addition, many images from such space programs as Landsat, begun in 1972, are held by the USGS. Most satellite scenes can be obtained only in digital form for use in computer-based image processing and geographic information systems, but in some cases are also available as photographic products.

  6. Aerial Video Imaging

    NASA Technical Reports Server (NTRS)

    1991-01-01

    When Michael Henry wanted to start an aerial video service, he turned to Johnson Space Center for assistance. Two NASA engineers - one had designed and developed TV systems in Apollo, Skylab, Apollo- Soyuz and Space Shuttle programs - designed a wing-mounted fiberglass camera pod. Camera head and angles are adjustable, and the pod is shaped to reduce vibration. The controls are located so a solo pilot can operate the system. A microprocessor displays latitude, longitude, and bearing, and a GPS receiver provides position data for possible legal references. The service has been successfully utilized by railroads, oil companies, real estate companies, etc.

  7. Calculation and uses of the lithographic aerial image

    NASA Astrophysics Data System (ADS)

    Flagello, Donis G.; Smith, Daniel G.

    2012-09-01

    Beginning with the seminal Dill papers of 1975, the aerial image has been essential for understanding the process of microlithography. From the aerial image, we can predict the performance of a given lithographic process in terms of depth of focus, exposure latitude, etc. As lithographic technologies improved, reaching smaller and smaller printed features, the sophistication of aerial image calculations has had to increase from simple incoherent imaging theory, to partial coherence, polarization effects, thin film effects at the resist, thick mask effects, and so on. This tutorial provides an overview and semihistorical development of the aerial image calculation and then provides a review of some of the various ways in which the aerial image is typically used to estimate the performance of the lithographic process.

  8. Research on the processing technology of low-altitude unmanned aerial vehicle images

    NASA Astrophysics Data System (ADS)

    Tang, Shihua; Liu, Yintao; Li, Feida; Zhou, Conglin; Huang, Qing; Xu, Hongwei

    2015-12-01

    The UAV system acts as one of the infrastructure of earth observation, with its mobility, high speed, flexibility, economy and other remarkable technical advantages, has been widely used in various fields of the national economic construction, such as agricultural monitoring, resource development, disaster emergency treatment. Taking an actual engineering as a case study in this paper, the method and the skill of making digital orthophoto map was stated by using the UASMaster, the professional UAV data processing software, based on the eBee unmanned aerial vehicle. Finally, the precision of the DOM was analyzed in detail through two methods, overlapping the DOM with the existing DLG of the region and contrasting the points of the existing DLG of 1:1000 scale with the corresponding checkpoints of the stereomodel.

  9. An algorithm for approximate rectification of digital aerial images

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-resolution aerial photography is one of the most valuable tools available for managing extensive landscapes. With recent advances in digital camera technology, computer hardware, and software, aerial photography is easier to collect, store, and transfer than ever before. Images can be automa...

  10. Research of Active Contour Model in Aerial Images

    NASA Astrophysics Data System (ADS)

    Kun, Wang; Li, Guo

    With the development of computer and aviation technology, the aerial image is facing an important issue is how to automate, including aerial images of the automatic extraction of the target. In this paper, the issue of aerial images to study the active contour model is introduced, that is, Snake model, to achieve the target aerial image of the semi-automatic contour extraction method. Snake model used the unique characteristic of the energy minimization, carried out on the image contour extraction, to obtain a clear, consistent and accurate image contour. The model is defined through the energy minimization of the function, given in the initial position of artificial circumstances, through the iterative calculation of Snake model will eventually form the minimum energy function has been described in the outline of the target partition. The results indicate that Snake model for aerial images of the edge contour extraction, verification, concluded that the Snake-based edge detection methods could be more objectively and accurately extract the edge of the outline of aerial images.

  11. Design of an integrated aerial image sensor

    NASA Astrophysics Data System (ADS)

    Xue, Jing; Spanos, Costas J.

    2005-05-01

    The subject of this paper is a novel integrated aerial image sensor (IAIS) system suitable for integration within the surface of an autonomous test wafer. The IAIS could be used as a lithography processing monitor, affording a "wafer's eye view" of the process, and therefore facilitating advanced process control and diagnostics without integrating (and dedicating) the sensor to the processing equipment. The IAIS is composed of an aperture mask and an array of photo-detectors. In order to retrieve nanometer scale resolution of the aerial image with a practical photo-detector pixel size, we propose a design of an aperture mask involving a series of spatial phase "moving" aperture groups. We demonstrate a design example aimed at the 65nm technology node through TEMPEST simulation. The optimized, key design parameters include an aperture width in the range of 30nm, aperture thickness in the range of 70nm, and offer a spatial resolution of about 5nm, all with comfortable fabrication tolerances. Our preliminary simulation work indicates the possibility of the IAIS being applied to the immersion lithography. A bench-top far-field experiment verifies that our approach of the spatial frequency down-shift through forming large Moire patterns is feasible.

  12. Calculating aerial images from EUV masks

    NASA Astrophysics Data System (ADS)

    Pistor, Thomas V.; Neureuther, Andrew R.

    1999-06-01

    Aerial images for line/space patterns, arrays of posts and an arbitrary layout pattern are calculated for EUV masks in a 4X EUV imaging system. Both mask parameters and illumination parameters are varied to investigate their effects on the aerial image. To facilitate this study, a parallel version of TEMPEST with a Fourier transform boundary condition was developed and run on a network of 24 microprocessors. Line width variations are observed when absorber thickness or sidewall angle changes. As the line/space pattern scales to smaller dimensions, the aspect ratios of the absorber features increase, introducing geometric shadowing and reducing aerial image intensity and contrast. 100nm square posts have circular images of diameter close to 100nm, but decreasing in diameter significantly when the corner round radius at the mask becomes greater than 50 nm. Exterior mask posts image slightly smaller and with higher ellipticity than interior mask posts. The aerial image of the arbitrary test pattern gives insight into the effects of the off-axis incidence employed in EUV lithography systems.

  13. Aerial photographs and satellite images

    USGS Publications Warehouse

    U.S. Geological Survey

    1995-01-01

    Because photographs and images taken from the air or from space are acquired without direct contact with the ground, they are referred to as remotely sensed images. The U.S. Geological Survey (USGS) has used remote sensing from the early years of the 20th century to support earth science studies and for mapping purposes.

  14. Initial Efforts toward Mission-Representative Imaging Surveys from Aerial Explorers

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Plice, Laura; Ippolito, Corey; Young, Larry A.; Lau, Benton; Lee, Pascal

    2004-01-01

    Numerous researchers have proposed the use of robotic aerial explorers to perform scientific investigation of planetary bodies in our solar system. One of the essential tasks for any aerial explorer is to be able to perform scientifically valuable imaging surveys. The focus of this paper is to discuss the challenges implicit in, and recent observations related to, acquiring mission-representative imaging data from a small fixed-wing UAV, acting as a surrogate planetary aerial explorer. This question of successfully performing aerial explorer surveys is also tied to other topics of technical investigation, including the development of unique bio-inspired technologies.

  15. 3D Buildings Extraction from Aerial Images

    NASA Astrophysics Data System (ADS)

    Melnikova, O.; Prandi, F.

    2011-09-01

    This paper introduces a semi-automatic method for buildings extraction through multiple-view aerial image analysis. The advantage of the used semi-automatic approach is that it allows processing of each building individually finding the parameters of buildings features extraction more precisely for each area. On the early stage the presented technique uses an extraction of line segments that is done only inside of areas specified manually. The rooftop hypothesis is used further to determine a subset of quadrangles, which could form building roofs from a set of extracted lines and corners obtained on the previous stage. After collecting of all potential roof shapes in all images overlaps, the epipolar geometry is applied to find matching between images. This allows to make an accurate selection of building roofs removing false-positive ones and to identify their global 3D coordinates given camera internal parameters and coordinates. The last step of the image matching is based on geometrical constraints in contrast to traditional correlation. The correlation is applied only in some highly restricted areas in order to find coordinates more precisely, in such a way significantly reducing processing time of the algorithm. The algorithm has been tested on a set of Milan's aerial images and shows highly accurate results.

  16. Application of Digital Image Correlation Method to Improve the Accuracy of Aerial Photo Stitching

    NASA Astrophysics Data System (ADS)

    Tung, Shih-Heng; Jhou, You-Liang; Shih, Ming-Hsiang; Hsiao, Han-Wei; Sung, Wen-Pei

    2016-04-01

    Satellite images and traditional aerial photos have been used in remote sensing for a long time. However, there are some problems with these images. For example, the resolution of satellite image is insufficient, the cost to obtain traditional images is relatively high and there is also human safety risk in traditional flight. These result in the application limitation of these images. In recent years, the control technology of unmanned aerial vehicle (UAV) is rapidly developed. This makes unmanned aerial vehicle widely used in obtaining aerial photos. Compared to satellite images and traditional aerial photos, these aerial photos obtained using UAV have the advantages of higher resolution, low cost. Because there is no crew in UAV, it is still possible to take aerial photos using UAV under unstable weather conditions. Images have to be orthorectified and their distortion must be corrected at first. Then, with the help of image matching technique and control points, these images can be stitched or used to establish DEM of ground surface. These images or DEM data can be used to monitor the landslide or estimate the volume of landslide. For the image matching, we can use such as Harris corner method, SIFT or SURF to extract and match feature points. However, the accuracy of these methods for matching is about pixel or sub-pixel level. The accuracy of digital image correlation method (DIC) during image matching can reach about 0.01pixel. Therefore, this study applies digital image correlation method to match extracted feature points. Then the stitched images are observed to judge the improvement situation. This study takes the aerial photos of a reservoir area. These images are stitched under the situations with and without the help of DIC. The results show that the misplacement situation in the stitched image using DIC to match feature points has been significantly improved. This shows that the use of DIC to match feature points can actually improve the accuracy of

  17. High-resolution EUV imaging tools for resist exposure and aerial image monitoring

    NASA Astrophysics Data System (ADS)

    Booth, M.; Brisco, O.; Brunton, A.; Cashmore, J.; Elbourn, P.; Elliner, G.; Gower, M.; Greuters, J.; Grunewald, P.; Gutierrez, R.; Hill, T.; Hirsch, J.; Kling, L.; McEntee, N.; Mundair, S.; Richards, P.; Truffert, V.; Wallhead, I.; Whitfield, M.; Hudyma, R.

    2005-05-01

    Key features are presented of two high-resolution EUV imaging tools: the MS-13 Microstepper wafer exposure and the RIM-13 reticle imaging microscope. The MS-13 has been developed for EUV resist testing and technology evaluation at the 32nm node and beyond, while the RIM-13 is designed for actinic aerial image monitoring of blank and patterned EUV reticles. Details of the design architecture, module layout, major subsystems and performance are presented for both tools.

  18. Aerial image retargeting (AIR): achieving litho-friendly designs

    NASA Astrophysics Data System (ADS)

    Yehia Hamouda, Ayman; Word, James; Anis, Mohab; Karim, Karim S.

    2011-04-01

    In this work, we present a new technique to detect non-Litho-Friendly design areas based on their Aerial Image signature. The aerial image is calculated for the litho target (pre-OPC). This is followed by the fixing (retargeting) the design to achieve a litho friendly OPC target. This technique is applied and tested on 28 nm metal layer and shows a big improvement in the process window performance. For an optimized Aerial-Image-Retargeting (AIR) recipe is very computationally efficient and its runtime doesn't consume more than 1% of the OPC flow runtime.

  19. Historic Image: Aerial view of cemetery and its environs. Photograph ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Historic Image: Aerial view of cemetery and its environs. Photograph 2 November 1961. NCA History Collection - Cypress Hills National Cemetery, Jamaica Avenue Unit, 625 Jamaica Avenue, Brooklyn, Kings County, NY

  20. HISTORIC IMAGE: AERIAL VIEW OF CEMETERY AND ITS ENVIRONS. PHOTOGRAPH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HISTORIC IMAGE: AERIAL VIEW OF CEMETERY AND ITS ENVIRONS. PHOTOGRAPH 15 SEPTEMBER 1950. NCA HISTORY COLLECTION. - San Francisco National Cemetery, 1 Lincoln Boulevard, San Francisco, San Francisco County, CA

  1. Historic Image: Aerial view of Mount of Victory Plot. Photograph ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Historic Image: Aerial view of Mount of Victory Plot. Photograph 1961. NCA History Collection - Cypress Hills National Cemetery, Mount of Victory Plot Unit, 625 Jamaica Avenue, Brooklyn, Kings County, NY

  2. Advanced Image Processing of Aerial Imagery

    NASA Technical Reports Server (NTRS)

    Woodell, Glenn; Jobson, Daniel J.; Rahman, Zia-ur; Hines, Glenn

    2006-01-01

    Aerial imagery of the Earth is an invaluable tool for the assessment of ground features, especially during times of disaster. Researchers at the NASA Langley Research Center have developed techniques which have proven to be useful for such imagery. Aerial imagery from various sources, including Langley's Boeing 757 Aries aircraft, has been studied extensively. This paper discusses these studies and demonstrates that better-than-observer imagery can be obtained even when visibility is severely compromised. A real-time, multi-spectral experimental system will be described and numerous examples will be shown.

  3. Design and realization of an image mosaic system on the CCD aerial camera

    NASA Astrophysics Data System (ADS)

    Liu, Hai ying; Wang, Peng; Zhu, Hai bin; Li, Yan; Zhang, Shao jun

    2015-08-01

    It has long been difficulties in aerial photograph to stitch multi-route images into a panoramic image in real time for multi-route flight framing CCD camera with very large amount of data, and high accuracy requirements. An automatic aerial image mosaic system based on GPU development platform is described in this paper. Parallel computing of SIFT feature extraction and matching algorithm module is achieved by using CUDA technology for motion model parameter estimation on the platform, which makes it's possible to stitch multiple CCD images in real-time. Aerial tests proved that the mosaic system meets the user's requirements with 99% accuracy and 30 to 50 times' speed improvement of the normal mosaic system.

  4. Wafer weak point detection based on aerial images or WLCD

    NASA Astrophysics Data System (ADS)

    Ning, Guoxiang; Philipp, Peter; Litt, Lloyd C.; Ackmann, Paul; Crell, Christian; Chen, Norman

    2015-10-01

    Aerial image measurement is a key technique for model based optical proximity correction (OPC) verification. Actual aerial images obtained by AIMS (aerial image measurement system) or WLCD (wafer level critical dimension) can detect printed wafer weak point structures in advance of wafer exposure and defect inspection. Normally, the potential wafer weak points are determined based on optical rule check (ORC) simulation in advance. However, the correlation to real wafer weak points is often not perfect due to the contribution of mask three dimension (M3D) effects, actual mask errors, and scanner lens effects. If the design weak points can accurately be detected in advance, it will reduce the wafer fab cost and improve cycle time. WLCD or AIMS tools are able to measure the aerial images CD and bossung curve through focus window. However, it is difficult to detect the wafer weak point in advance without defining selection criteria. In this study, wafer weak points sensitive to mask mean-to-nominal values are characterized for a process with very high MEEF (normally more than 4). Aerial image CD uses fixed threshold to detect the wafer weak points. By using WLCD through threshold and focus window, the efficiency of wafer weak point detection is also demonstrated. A novel method using contrast range evaluation is shown in the paper. Use of the slope of aerial images for more accurate detection of the wafer weak points using WLCD is also discussed. The contrast range can also be used to detect the wafer weak points in advance. Further, since the mean to nominal of the reticle contributes to the effective contrast range in a high MEEF area this work shows that control of the mask error is critical for high MEEF layers such as poly, active and metal layers. Wafer process based weak points that cannot be detected by wafer lithography CD or WLCD will be discussed.

  5. HISTORIC IMAGE: AERIAL VIEW OF THE CEMETERY AND ITS ENVIRONS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HISTORIC IMAGE: AERIAL VIEW OF THE CEMETERY AND ITS ENVIRONS. PHOTOGRAPH TAKEN ON 6 APRIL 1968. NCA HISTORY COLLECTION. - Rock Island National Cemetery, Rock Island Arsenal, 0.25 mile north of southern tip of Rock Island, Rock Island, Rock Island County, IL

  6. A Low-Cost Imaging System for Aerial Applicators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural aircraft provide a readily available and versatile platform for airborne remote sensing. Although various airborne imaging systems are being used for research and commercial applications, most of these systems are either too expensive or too complex to be of practical use for aerial app...

  7. An improved dehazing algorithm of aerial high-definition image

    NASA Astrophysics Data System (ADS)

    Jiang, Wentao; Ji, Ming; Huang, Xiying; Wang, Chao; Yang, Yizhou; Li, Tao; Wang, Jiaoying; Zhang, Ying

    2016-01-01

    For unmanned aerial vehicle(UAV) images, the sensor can not get high quality images due to fog and haze weather. To solve this problem, An improved dehazing algorithm of aerial high-definition image is proposed. Based on the model of dark channel prior, the new algorithm firstly extracts the edges from crude estimated transmission map and expands the extracted edges. Then according to the expended edges, the algorithm sets a threshold value to divide the crude estimated transmission map into different areas and makes different guided filter on the different areas compute the optimized transmission map. The experimental results demonstrate that the performance of the proposed algorithm is substantially the same as the one based on dark channel prior and guided filter. The average computation time of the new algorithm is around 40% of the one as well as the detection ability of UAV image is improved effectively in fog and haze weather.

  8. Improved land cover mapping using aerial photographs and satellite images

    NASA Astrophysics Data System (ADS)

    Varga, Katalin; Szabó, Szilárd; Szabó, Gergely; Dévai, György; Tóthmérész, Béla

    2014-10-01

    Manual Land Cover Mapping using aerial photographs provides sufficient level of resolution for detailed vegetation or land cover maps. However, in some cases it is not possible to achieve the desired information over large areas, for example from historical data where the quality and amount of available images is definitely lower than from modern data. The use of automated and semiautomated methods offers the means to identify the vegetation cover using remotely sensed data. In this paper automated methods were tested on aerial photographs and satellite images to extract better and more reliable information about vegetation cover. These testswere performed by using automated analysis of LANDSAT7 images (with and without the surface model of the Shuttle Radar Topography Mission (SRTM)) and two temporally similar aerial photographs. The spectral bands were analyzed with supervised (maximum likelihood) methods. In conclusion, the SRTM and the combination of two temporally similar aerial photographs from earlier years were useful in separating the vegetation cover on a floodplain area. In addition the different date of the vegetation season also gave reliable information about the land cover. High quality information about old and present vegetation on a large area is an essential prerequisites ensuring the conservation of ecosystems

  9. A Comparison of Visual Statistics for the Image Enhancement of FORESITE Aerial Images with Those of Major Image Classes

    NASA Technical Reports Server (NTRS)

    Johnson, Daniel J.; Rahman, Zia-ur; Woodell, Glenn A.; Hines, Glenn D.

    2006-01-01

    Aerial images from the Follow-On Radar, Enhanced and Synthetic Vision Systems Integration Technology Evaluation (FORESITE) flight tests with the NASA Langley Research Center's research Boeing 757 were acquired during severe haze and haze/mixed clouds visibility conditions. These images were enhanced using the Visual Servo (VS) process that makes use of the Multiscale Retinex. The images were then quantified with visual quality metrics used internally with the VS. One of these metrics, the Visual Contrast Measure, has been computed for hundreds of FORESITE images, and for major classes of imaging--terrestrial (consumer), orbital Earth observations, orbital Mars surface imaging, NOAA aerial photographs, and underwater imaging. The metric quantifies both the degree of visual impairment of the original, un-enhanced images as well as the degree of visibility improvement achieved by the enhancement process. The large aggregate data exhibits trends relating to degree of atmospheric visibility attenuation, and its impact on limits of enhancement performance for the various image classes. Overall results support the idea that in most cases that do not involve extreme reduction in visibility, large gains in visual contrast are routinely achieved by VS processing. Additionally, for very poor visibility imaging, lesser, but still substantial, gains in visual contrast are also routinely achieved. Further, the data suggest that these visual quality metrics can be used as external standalone metrics for establishing performance parameters.

  10. Development of sea ice monitoring with aerial remote sensing technology

    NASA Astrophysics Data System (ADS)

    Jiang, Xuhui; Han, Lei; Dong, Liang; Cui, Lulu; Bie, Jun; Fan, Xuewei

    2014-11-01

    In the north China Sea district, sea ice disaster is very serious every winter, which brings a lot of adverse effects to shipping transportation, offshore oil exploitation, and coastal engineering. In recent years, along with the changing of global climate, the sea ice situation becomes too critical. The monitoring of sea ice is playing a very important role in keeping human life and properties in safety, and undertaking of marine scientific research. The methods to monitor sea ice mainly include: first, shore observation; second, icebreaker monitoring; third, satellite remote sensing; and then aerial remote sensing monitoring. The marine station staffs use relevant equipments to monitor the sea ice in the shore observation. The icebreaker monitoring means: the workers complete the test of the properties of sea ice, such as density, salinity and mechanical properties. MODIS data and NOAA data are processed to get sea ice charts in the satellite remote sensing means. Besides, artificial visual monitoring method and some airborne remote sensors are adopted in the aerial remote sensing to monitor sea ice. Aerial remote sensing is an important means in sea ice monitoring because of its strong maneuverability, wide watching scale, and high resolution. In this paper, several methods in the sea ice monitoring using aerial remote sensing technology are discussed.

  11. D City Transformations by Time Series of Aerial Images

    NASA Astrophysics Data System (ADS)

    Adami, A.

    2015-02-01

    Recent photogrammetric applications, based on dense image matching algorithms, allow to use not only images acquired by digital cameras, amateur or not, but also to recover the vast heritage of analogue photographs. This possibility opens up many possibilities in the use and enhancement of existing photos heritage. The research of the original figuration of old buildings, the virtual reconstruction of disappeared architectures and the study of urban development are some of the application areas that exploit the great cultural heritage of photography. Nevertheless there are some restrictions in the use of historical images for automatic reconstruction of buildings such as image quality, availability of camera parameters and ineffective geometry of image acquisition. These constrains are very hard to solve and it is difficult to discover good dataset in the case of terrestrial close range photogrammetry for the above reasons. Even the photographic archives of museums and superintendence, while retaining a wealth of documentation, have no dataset for a dense image matching approach. Compared to the vast collection of historical photos, the class of aerial photos meets both criteria stated above. In this paper historical aerial photographs are used with dense image matching algorithms to realize 3d models of a city in different years. The models can be used to study the urban development of the city and its changes through time. The application relates to the city centre of Verona, for which some time series of aerial photographs have been retrieved. The models obtained in this way allowed, right away, to observe the urban development of the city, the places of expansion and new urban areas. But a more interesting aspect emerged from the analytical comparison between models. The difference, as the Euclidean distance, between two models gives information about new buildings or demolitions. As considering accuracy it is necessary point out that the quality of final

  12. An improved algorithm of mask image dodging for aerial image

    NASA Astrophysics Data System (ADS)

    Zhang, Zuxun; Zou, Songbai; Zuo, Zhiqi

    2011-12-01

    The technology of Mask image dodging based on Fourier transform is a good algorithm in removing the uneven luminance within a single image. At present, the difference method and the ratio method are the methods in common use, but they both have their own defects .For example, the difference method can keep the brightness uniformity of the whole image, but it is deficient in local contrast; meanwhile the ratio method can work better in local contrast, but sometimes it makes the dark areas of the original image too bright. In order to remove the defects of the two methods effectively, this paper on the basis of research of the two methods proposes a balance solution. Experiments show that the scheme not only can combine the advantages of the difference method and the ratio method, but also can avoid the deficiencies of the two algorithms.

  13. Detection of Aspens Using High Resolution Aerial Laser Scanning Data and Digital Aerial Images

    PubMed Central

    Säynäjoki, Raita; Packalén, Petteri; Maltamo, Matti; Vehmas, Mikko; Eerikäinen, Kalle

    2008-01-01

    The aim was to use high resolution Aerial Laser Scanning (ALS) data and aerial images to detect European aspen (Populus tremula L.) from among other deciduous trees. The field data consisted of 14 sample plots of 30 m × 30 m size located in the Koli National Park in the North Karelia, Eastern Finland. A Canopy Height Model (CHM) was interpolated from the ALS data with a pulse density of 3.86/m2, low-pass filtered using Height-Based Filtering (HBF) and binarized to create the mask needed to separate the ground pixels from the canopy pixels within individual areas. Watershed segmentation was applied to the low-pass filtered CHM in order to create preliminary canopy segments, from which the non-canopy elements were extracted to obtain the final canopy segmentation, i.e. the ground mask was analysed against the canopy mask. A manual classification of aerial images was employed to separate the canopy segments of deciduous trees from those of coniferous trees. Finally, linear discriminant analysis was applied to the correctly classified canopy segments of deciduous trees to classify them into segments belonging to aspen and those belonging to other deciduous trees. The independent variables used in the classification were obtained from the first pulse ALS point data. The accuracy of discrimination between aspen and other deciduous trees was 78.6%. The independent variables in the classification function were the proportion of vegetation hits, the standard deviation of in pulse heights, accumulated intensity at the 90th percentile and the proportion of laser points reflected at the 60th height percentile. The accuracy of classification corresponded to the validation results of earlier ALS-based studies on the classification of individual deciduous trees to tree species.

  14. Increased productivity of repair verification by offline analysis of aerial images

    NASA Astrophysics Data System (ADS)

    Villa, Ernesto; Sartelli, Luca; Miyashita, Hiroyuki; Scheruebl, Thomas; Richter, Rigo; Thaler, Thomas

    2010-05-01

    Using AIMSTM to qualify repairs of defects on photomasks is the industry standard. AIMSTM provides a reasonable matching of lithographic imaging performances without the need of wafer prints. The need of utilisation of this capability by photomask manufacturers has risen due to the increased complexity of layouts incorporating aggressive RET and phase shift technologies as well as tighter specifications have pushed aerial image metrology to consider CD performance results in addition to the traditional intensity verification. The content of the paper describes the utilisation of the AIMSTM Repair Verification (RV) software for the verification of aerial images in a mask shop production environment. The software is used to analyze images from various AIMSTM tool generations and the two main routines, Multi Slice Analysis (MSA) and Image Compare (IC), are used to compare defective and non-defective areas of aerial images. It is detailed how the RV software cleans "non real" errors potentially induced by operator misjudgements, thus providing accurate and repeatable analyses all proven against the results achieved manually. A user friendly GUI drives the user through few simple, fast and safe operations and automatically provides summary tables containing all the relevant results of the analysis that can be easily exported in a proper format and sent out to the customer as a technical documentation. This results in a sensible improvement of the throughput of the printability evaluation process in a mask manufacturing environment, providing reliable analyses at a higher productivity.

  15. a Fast Approach for Stitching of Aerial Images

    NASA Astrophysics Data System (ADS)

    Moussa, A.; El-Sheimy, N.

    2016-06-01

    The last few years have witnessed an increasing volume of aerial image data because of the extensive improvements of the Unmanned Aerial Vehicles (UAVs). These newly developed UAVs have led to a wide variety of applications. A fast assessment of the achieved coverage and overlap of the acquired images of a UAV flight mission is of great help to save the time and cost of the further steps. A fast automatic stitching of the acquired images can help to visually assess the achieved coverage and overlap during the flight mission. This paper proposes an automatic image stitching approach that creates a single overview stitched image using the acquired images during a UAV flight mission along with a coverage image that represents the count of overlaps between the acquired images. The main challenge of such task is the huge number of images that are typically involved in such scenarios. A short flight mission with image acquisition frequency of one second can capture hundreds to thousands of images. The main focus of the proposed approach is to reduce the processing time of the image stitching procedure by exploiting the initial knowledge about the images positions provided by the navigation sensors. The proposed approach also avoids solving for all the transformation parameters of all the photos together to save the expected long computation time if all the parameters were considered simultaneously. After extracting the points of interest of all the involved images using Scale-Invariant Feature Transform (SIFT) algorithm, the proposed approach uses the initial image's coordinates to build an incremental constrained Delaunay triangulation that represents the neighborhood of each image. This triangulation helps to match only the neighbor images and therefore reduces the time-consuming features matching step. The estimated relative orientation between the matched images is used to find a candidate seed image for the stitching process. The pre-estimated transformation

  16. The Ground Control Room as an Enabling Technology in the Unmanned Aerial System

    NASA Technical Reports Server (NTRS)

    Gear, Gary; Mace, Thomas

    2007-01-01

    This viewgraph presentation reviews the development of the ground control room as an required technology for the use of an Unmanned Aerial system. The Unmanned Aerial system is a strategic component of the Global Observing System, which will serve global science needs. The unmanned aerial system will use the same airspace as manned aircraft, therefore there will be unique telemetry needs.

  17. Orientation-selective building detection in aerial images

    NASA Astrophysics Data System (ADS)

    Manno-Kovacs, Andrea; Sziranyi, Tamas

    2015-10-01

    This paper introduces a novel aerial building detection method based on region orientation as a new feature, which is used in various steps throughout the presented framework. As building objects are expected to be connected with each other on a regional level, exploiting the main orientation obtained from the local gradient analysis provides further information for detection purposes. The orientation information is applied for an improved edge map design, which is integrated with classical features like shadow and color. Moreover, an orthogonality check is introduced for finding building candidates, and their final shapes defined by the Chan-Vese active contour algorithm are refined based on the orientation information, resulting in smooth and accurate building outlines. The proposed framework is evaluated on multiple data sets, including aerial and high resolution optical satellite images, and compared to six state-of-the-art methods in both object and pixel level evaluation, proving the algorithm's efficiency.

  18. Evaluation of Selected Features for CAR Detection in Aerial Images

    NASA Astrophysics Data System (ADS)

    Tuermer, S.; Leitloff, J.; Reinartz, P.; Stilla, U.

    2011-09-01

    The extraction of vehicles from aerial images provides a wide area traffic situation within a short time. Applications for the gathered data are various and reach from smart routing in the case of congestions to usability validation of roads in the case of disasters. The challenge of the vehicle detection task is finding adequate features which are capable to separate cars from other objects; especially those that look similar. We present an experiment where selected features show their ability of car detection. Precisely, Haar-like and HoG features are utilized and passed to the AdaBoost algorithm for calculating the final detector. Afterwards the classifying power of the features is accurately analyzed and evaluated. The tests a carried out on aerial data from the inner city of Munich, Germany and include small inner city roads with rooftops close by which raise the complexity factor.

  19. An automatic high precision registration method between large area aerial images and aerial light detection and ranging data

    NASA Astrophysics Data System (ADS)

    Du, Q.; Xie, D.; Sun, Y.

    2015-06-01

    The integration of digital aerial photogrammetry and Light Detetion And Ranging (LiDAR) is an inevitable trend in Surveying and Mapping field. We calculate the external orientation elements of images which identical with LiDAR coordinate to realize automatic high precision registration between aerial images and LiDAR data. There are two ways to calculate orientation elements. One is single image spatial resection using image matching 3D points that registered to LiDAR. The other one is Position and Orientation System (POS) data supported aerotriangulation. The high precision registration points are selected as Ground Control Points (GCPs) instead of measuring GCPs manually during aerotriangulation. The registration experiments indicate that the method which registering aerial images and LiDAR points has a great advantage in higher automation and precision compare with manual registration.

  20. Fitting of Parametric Building Models to Oblique Aerial Images

    NASA Astrophysics Data System (ADS)

    Panday, U. S.; Gerke, M.

    2011-09-01

    In literature and in photogrammetric workstations many approaches and systems to automatically reconstruct buildings from remote sensing data are described and available. Those building models are being used for instance in city modeling or in cadastre context. If a roof overhang is present, the building walls cannot be estimated correctly from nadir-view aerial images or airborne laser scanning (ALS) data. This leads to inconsistent building outlines, which has a negative influence on visual impression, but more seriously also represents a wrong legal boundary in the cadaster. Oblique aerial images as opposed to nadir-view images reveal greater detail, enabling to see different views of an object taken from different directions. Building walls are visible from oblique images directly and those images are used for automated roof overhang estimation in this research. A fitting algorithm is employed to find roof parameters of simple buildings. It uses a least squares algorithm to fit projected wire frames to their corresponding edge lines extracted from the images. Self-occlusion is detected based on intersection result of viewing ray and the planes formed by the building whereas occlusion from other objects is detected using an ALS point cloud. Overhang and ground height are obtained by sweeping vertical and horizontal planes respectively. Experimental results are verified with high resolution ortho-images, field survey, and ALS data. Planimetric accuracy of 1cm mean and 5cm standard deviation was obtained, while buildings' orientation were accurate to mean of 0.23° and standard deviation of 0.96° with ortho-image. Overhang parameters were aligned to approximately 10cm with field survey. The ground and roof heights were accurate to mean of - 9cm and 8cm with standard deviations of 16cm and 8cm with ALS respectively. The developed approach reconstructs 3D building models well in cases of sufficient texture. More images should be acquired for completeness of

  1. The application of GPS precise point positioning technology in aerial triangulation

    NASA Astrophysics Data System (ADS)

    Yuan, Xiuxiao; Fu, Jianhong; Sun, Hongxing; Toth, Charles

    In traditional GPS-supported aerotriangulation, differential GPS (DGPS) positioning technology is used to determine the 3-dimensional coordinates of the perspective centers at exposure time with an accuracy of centimeter to decimeter level. This method can significantly reduce the number of ground control points (GCPs). However, the establishment of GPS reference stations for DGPS positioning is not only labor-intensive and costly, but also increases the implementation difficulty of aerial photography. This paper proposes aerial triangulation supported with GPS precise point positioning (PPP) as a way to avoid the use of the GPS reference stations and simplify the work of aerial photography. Firstly, we present the algorithm for GPS PPP in aerial triangulation applications. Secondly, the error law of the coordinate of perspective centers determined using GPS PPP is analyzed. Thirdly, based on GPS PPP and aerial triangulation software self-developed by the authors, four sets of actual aerial images taken from surveying and mapping projects, different in both terrain and photographic scale, are given as experimental models. The four sets of actual data were taken over a flat region at a scale of 1:2500, a mountainous region at a scale of 1:3000, a high mountainous region at a scale of 1:32000 and an upland region at a scale of 1:60000 respectively. In these experiments, the GPS PPP results were compared with results obtained through DGPS positioning and traditional bundle block adjustment. In this way, the empirical positioning accuracy of GPS PPP in aerial triangulation can be estimated. Finally, the results of bundle block adjustment with airborne GPS controls from GPS PPP are analyzed in detail. The empirical results show that GPS PPP applied in aerial triangulation has a systematic error of half-meter level and a stochastic error within a few decimeters. However, if a suitable adjustment solution is adopted, the systematic error can be eliminated in GPS

  2. a New Paradigm for Matching - and Aerial Images

    NASA Astrophysics Data System (ADS)

    Koch, T.; Zhuo, X.; Reinartz, P.; Fraundorfer, F.

    2016-06-01

    This paper investigates the performance of SIFT-based image matching regarding large differences in image scaling and rotation, as this is usually the case when trying to match images captured from UAVs and airplanes. This task represents an essential step for image registration and 3d-reconstruction applications. Various real world examples presented in this paper show that SIFT, as well as A-SIFT perform poorly or even fail in this matching scenario. Even if the scale difference in the images is known and eliminated beforehand, the matching performance suffers from too few feature point detections, ambiguous feature point orientations and rejection of many correct matches when applying the ratio-test afterwards. Therefore, a new feature matching method is provided that overcomes these problems and offers thousands of matches by a novel feature point detection strategy, applying a one-to-many matching scheme and substitute the ratio-test by adding geometric constraints to achieve geometric correct matches at repetitive image regions. This method is designed for matching almost nadir-directed images with low scene depth, as this is typical in UAV and aerial image matching scenarios. We tested the proposed method on different real world image pairs. While standard SIFT failed for most of the datasets, plenty of geometrical correct matches could be found using our approach. Comparing the estimated fundamental matrices and homographies with ground-truth solutions, mean errors of few pixels can be achieved.

  3. Performance Validation of High Resolution Digital Surface Models Generated by Dense Image Matching with the Aerial Images

    NASA Astrophysics Data System (ADS)

    Yastikli, N.; Bayraktar, H.; Erisir, Z.

    2014-11-01

    The digital surface models (DSM) are the most popular products to determine visible surface of Earth which includes all non-terrain objects such as vegetation, forest, and man-made constructions. The airborne light detection and ranging (LiDAR) is the preferred technique for high resolution DSM generation in local coverage. The automatic generation of the high resolution DSM is also possible with stereo image matching using the aerial images. The image matching algorithms usually rely on the feature based matching for DSM generation. First, feature points are extracted and then corresponding features are searched in the overlapping images. These image matching algorithms face with the problems in the areas which have repetitive pattern such as urban structure and forest. The recent innovation in camera technology and image matching algorithm enabled the automatic dense DSM generation for large scale city and environment modelling. The new pixel-wise matching approaches are generates very high resolution DSMs which corresponds to the ground sample distance (GSD) of the original images. The numbers of the research institutes and photogrammetric software vendors are currently developed software tools for dense DSM generation using the aerial images. This new approach can be used high resolution DSM generation for the larger cities, rural areas and forest even Nation-wide applications. In this study, the performance validation of high resolution DSM generated by pixel-wise dense image matching in part of Istanbul was aimed. The study area in Istanbul is including different land classes such as open areas, forest and built-up areas to test performance of dense image matching in different land classes. The obtained result from this performance validation in Istanbul test area showed that, high resolution DSM which corresponds to the ground sample distance (GSD) of original aerial image can be generated successfully by pixel-wise dense image matching using commercial and

  4. Error Estimation Techniques to Refine Overlapping Aerial Image Mosaic Processes via Detected Parameters

    ERIC Educational Resources Information Center

    Bond, William Glenn

    2012-01-01

    In this paper, I propose to demonstrate a means of error estimation preprocessing in the assembly of overlapping aerial image mosaics. The mosaic program automatically assembles several hundred aerial images from a data set by aligning them, via image registration using a pattern search method, onto a GIS grid. The method presented first locates…

  5. The Development and Industrialization Recommendation of Current Aerial Remote Sensing Technology

    NASA Astrophysics Data System (ADS)

    Hong, Z.

    2013-07-01

    At present, the research development and industrialization of aerial remote sensing technology in China are faced with enormous requirements and developing chance. It is the strategic selection for remote sensing technology to perfect the construction of remote sensing technology system, implement the three strategies of science and technology development, standardize and improve the producing ability of remote sensing products, and make the remote sensing technology become a kind of industries. Based on industry economics principle and the characteristics of aerial remote sensing technology, this paper put forward the suggestions on technological development, industrialization, and market competition of aerial remote sensing industrialization.

  6. Direct Penguin Counting Using Unmanned Aerial Vehicle Image

    NASA Astrophysics Data System (ADS)

    Hyun, C. U.; Kim, H. C.; Kim, J. H.; Hong, S. G.

    2015-12-01

    This study presents an application of unmanned aerial vehicle (UAV) images to monitor penguin colony in Baton Peninsula, King George Island, Antarctica. The area around Narębski Point located on the southeast coast of Barton Peninsula was designated as Antarctic Specially Protected Area No. 171 (ASPA 171), and Chinstrap and Gentoo penguins inhabit in this area. The UAV images were acquired in a part of ASPA 171 from four flights in a single day, Jan 18, 2014. About 360 images were mosaicked as an image of about 3 cm spatial resolution and then a subset including representative penguin rookeries was selected. The subset image was segmented based on gradient map of pixel values, and spectral and spatial attributes were assigned to each segment. The object based image analysis (OBIA) was conducted with consideration of spectral attributes including mean and minimum values of each segment and various shape attributes such as area, length, compactness and roundness to detect individual penguin. The segments indicating individual penguin were effectively detected on rookeries with high contrasts in the spectral and shape attributes. The importance of periodic and precise monitoring of penguins has been recognized because variations of their populations reflect environmental changes and disturbance from human activities. Utilization of very high resolution imaging method shown in this study can be applied to other penguin habitats in Antarctica, and the results will be able to support establishing effective environmental management plans.

  7. Land Use Classification from Vhr Aerial Images Using Invariant Colour Components and Texture

    NASA Astrophysics Data System (ADS)

    Movia, A.; Beinat, A.; Sandri, T.

    2016-06-01

    Very high resolution (VHR) aerial images can provide detailed analysis about landscape and environment; nowadays, thanks to the rapid growing airborne data acquisition technology an increasing number of high resolution datasets are freely available. In a VHR image the essential information is contained in the red-green-blue colour components (RGB) and in the texture, therefore a preliminary step in image analysis concerns the classification in order to detect pixels having similar characteristics and to group them in distinct classes. Common land use classification approaches use colour at a first stage, followed by texture analysis, particularly for the evaluation of landscape patterns. Unfortunately RGB-based classifications are significantly influenced by image setting, as contrast, saturation, and brightness, and by the presence of shadows in the scene. The classification methods analysed in this work aim to mitigate these effects. The procedures developed considered the use of invariant colour components, image resampling, and the evaluation of a RGB texture parameter for various increasing sizes of a structuring element. To identify the most efficient solution, the classification vectors obtained were then processed by a K-means unsupervised classifier using different metrics, and the results were compared with respect to corresponding user supervised classifications. The experiments performed and discussed in the paper let us evaluate the effective contribution of texture information, and compare the most suitable vector components and metrics for automatic classification of very high resolution RGB aerial images.

  8. Oblique Aerial Images and Their Use in Cultural Heritage Documentation

    NASA Astrophysics Data System (ADS)

    Höhle, J.

    2013-07-01

    Oblique images enable three-dimensional (3d) modelling of objects with vertical dimensions. Such imagery is nowadays systematically taken of cities and may easily become available. The documentation of cultural heritage can take advantage of these sources of information. Two new oblique camera systems are presented and characteristics of such images are summarized. A first example uses images of a new multi-camera system for the derivation of orthoimages, façade plots with photo texture, 3d scatter plots, and dynamic 3d models of a historic church. The applied methodology is based on automatically derived point clouds of high density. Each point will be supplemented with colour and other attributes. The problems experienced in these processes and the solutions to these problems are presented. The applied tools are a combination of professional tools, free software, and of own software developments. Special attention is given to the quality of input images. Investigations are carried out on edges in the images. The combination of oblique and nadir images enables new possibilities in the processing. The use of the near-infrared channel besides the red, green, and blue channel of the applied multispectral imagery is also of advantage. Vegetation close to the object of interest can easily be removed. A second example describes the modelling of a monument by means of a non-metric camera and a standard software package. The presented results regard achieved geometric accuracy and image quality. It is concluded that the use of oblique aerial images together with image-based processing methods yield new possibilities of economic and accurate documentation of tall monuments.

  9. Semantic Segmentation of Aerial Images with AN Ensemble of Cnns

    NASA Astrophysics Data System (ADS)

    Marmanis, D.; Wegner, J. D.; Galliani, S.; Schindler, K.; Datcu, M.; Stilla, U.

    2016-06-01

    This paper describes a deep learning approach to semantic segmentation of very high resolution (aerial) images. Deep neural architectures hold the promise of end-to-end learning from raw images, making heuristic feature design obsolete. Over the last decade this idea has seen a revival, and in recent years deep convolutional neural networks (CNNs) have emerged as the method of choice for a range of image interpretation tasks like visual recognition and object detection. Still, standard CNNs do not lend themselves to per-pixel semantic segmentation, mainly because one of their fundamental principles is to gradually aggregate information over larger and larger image regions, making it hard to disentangle contributions from different pixels. Very recently two extensions of the CNN framework have made it possible to trace the semantic information back to a precise pixel position: deconvolutional network layers undo the spatial downsampling, and Fully Convolution Networks (FCNs) modify the fully connected classification layers of the network in such a way that the location of individual activations remains explicit. We design a FCN which takes as input intensity and range data and, with the help of aggressive deconvolution and recycling of early network layers, converts them into a pixelwise classification at full resolution. We discuss design choices and intricacies of such a network, and demonstrate that an ensemble of several networks achieves excellent results on challenging data such as the ISPRS semantic labeling benchmark, using only the raw data as input.

  10. Grab a coffee: your aerial images are already analyzed

    NASA Astrophysics Data System (ADS)

    Garetto, Anthony; Rademacher, Thomas; Schulz, Kristian

    2015-07-01

    For over 2 decades the AIMTM platform has been utilized in mask shops as the standard for actinic review of photomask sites in order to perform defect disposition and repair review. Throughout this time the measurement throughput of the systems has been improved in order to keep pace with the requirements demanded by a manufacturing environment, however the analysis of the sites captured has seen little improvement and remained a manual process. This manual analysis of aerial images is time consuming, subject to error and unreliability and contributes to holding up turn-around time (TAT) and slowing process flow in a manufacturing environment. AutoAnalysis, the first application available for the FAVOR® platform, offers a solution to these problems by providing fully automated data transfer and analysis of AIMTM aerial images. The data is automatically output in a customizable format that can be tailored to your internal needs and the requests of your customers. Savings in terms of operator time arise from the automated analysis which no longer needs to be performed. Reliability is improved as human error is eliminated making sure the most defective region is always and consistently captured. Finally the TAT is shortened and process flow for the back end of the line improved as the analysis is fast and runs in parallel to the measurements. In this paper the concept and approach of AutoAnalysis will be presented as well as an update to the status of the project. A look at the benefits arising from the automation and the customizable approach of the solution will be shown.

  11. Coastline Extraction from Aerial Images Based on Edge Detection

    NASA Astrophysics Data System (ADS)

    Paravolidakis, V.; Moirogiorgou, K.; Ragia, L.; Zervakis, M.; Synolakis, C.

    2016-06-01

    Nowadays coastline extraction and tracking of its changes become of high importance because of the climate change, global warming and rapid growth of human population. Coastal areas play a significant role for the economy of the entire region. In this paper we propose a new methodology for automatic extraction of the coastline using aerial images. A combination of a four step algorithm is used to extract the coastline in a robust and generalizable way. First, noise distortion is reduced in order to ameliorate the input data for the next processing steps. Then, the image is segmented into two regions, land and sea, through the application of a local threshold to create the binary image. The result is further processed by morphological operators with the aim that small objects are being eliminated and only the objects of interest are preserved. Finally, we perform edge detection and active contours fitting in order to extract and model the coastline. These algorithmic steps are illustrated through examples, which demonstrate the efficacy of the proposed methodology.

  12. Damaged road extracting with high-resolution aerial image of post-earthquake

    NASA Astrophysics Data System (ADS)

    Zheng, Zezhong; Pu, Chengjun; Zhu, Mingcang; Xia, Jun; Zhang, Xiang; Liu, Yalan; Li, Jiang

    2015-12-01

    With the rapid development of earth observation technology, remote sensing images have played more important roles, because the high resolution images can provide the original data for object recognition, disaster investigation, and so on. When a disastrous earthquake breaks out, a large number of roads could be damaged instantly. There are a lot of approaches about road extraction, such as region growing, gray threshold, and k-means clustering algorithm. We could not obtain the undamaged roads with these approaches, if the trees or their shadows along the roads are difficult to be distinguished from the damaged road. In the paper, a method is presented to extract the damaged road with high resolution aerial image of post-earthquake. Our job is to extract the damaged road and the undamaged with the aerial image. We utilized the mathematical morphology approach and the k-means clustering algorithm to extract the road. Our method was composed of four ingredients. Firstly, the mathematical morphology filter operators were employed to remove the interferences from the trees or their shadows. Secondly, the k-means algorithm was employed to derive the damaged segments. Thirdly, the mathematical morphology approach was used to extract the undamaged road; Finally, we could derive the damaged segments by overlaying the road networks of pre-earthquake. Our results showed that the earthquake, broken in Yaan, was disastrous for the road, Therefore, we could take more measures to keep it clear.

  13. Point cloud generation from aerial image data acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still camera.

    PubMed

    Rosnell, Tomi; Honkavaara, Eija

    2012-01-01

    The objective of this investigation was to develop and investigate methods for point cloud generation by image matching using aerial image data collected by quadrocopter type micro unmanned aerial vehicle (UAV) imaging systems. Automatic generation of high-quality, dense point clouds from digital images by image matching is a recent, cutting-edge step forward in digital photogrammetric technology. The major components of the system for point cloud generation are a UAV imaging system, an image data collection process using high image overlaps, and post-processing with image orientation and point cloud generation. Two post-processing approaches were developed: one of the methods is based on Bae Systems' SOCET SET classical commercial photogrammetric software and another is built using Microsoft(®)'s Photosynth™ service available in the Internet. Empirical testing was carried out in two test areas. Photosynth processing showed that it is possible to orient the images and generate point clouds fully automatically without any a priori orientation information or interactive work. The photogrammetric processing line provided dense and accurate point clouds that followed the theoretical principles of photogrammetry, but also some artifacts were detected. The point clouds from the Photosynth processing were sparser and noisier, which is to a large extent due to the fact that the method is not optimized for dense point cloud generation. Careful photogrammetric processing with self-calibration is required to achieve the highest accuracy. Our results demonstrate the high performance potential of the approach and that with rigorous processing it is possible to reach results that are consistent with theory. We also point out several further research topics. Based on theoretical and empirical results, we give recommendations for properties of imaging sensor, data collection and processing of UAV image data to ensure accurate point cloud generation. PMID:22368479

  14. Point Cloud Generation from Aerial Image Data Acquired by a Quadrocopter Type Micro Unmanned Aerial Vehicle and a Digital Still Camera

    PubMed Central

    Rosnell, Tomi; Honkavaara, Eija

    2012-01-01

    The objective of this investigation was to develop and investigate methods for point cloud generation by image matching using aerial image data collected by quadrocopter type micro unmanned aerial vehicle (UAV) imaging systems. Automatic generation of high-quality, dense point clouds from digital images by image matching is a recent, cutting-edge step forward in digital photogrammetric technology. The major components of the system for point cloud generation are a UAV imaging system, an image data collection process using high image overlaps, and post-processing with image orientation and point cloud generation. Two post-processing approaches were developed: one of the methods is based on Bae Systems’ SOCET SET classical commercial photogrammetric software and another is built using Microsoft®’s Photosynth™ service available in the Internet. Empirical testing was carried out in two test areas. Photosynth processing showed that it is possible to orient the images and generate point clouds fully automatically without any a priori orientation information or interactive work. The photogrammetric processing line provided dense and accurate point clouds that followed the theoretical principles of photogrammetry, but also some artifacts were detected. The point clouds from the Photosynth processing were sparser and noisier, which is to a large extent due to the fact that the method is not optimized for dense point cloud generation. Careful photogrammetric processing with self-calibration is required to achieve the highest accuracy. Our results demonstrate the high performance potential of the approach and that with rigorous processing it is possible to reach results that are consistent with theory. We also point out several further research topics. Based on theoretical and empirical results, we give recommendations for properties of imaging sensor, data collection and processing of UAV image data to ensure accurate point cloud generation. PMID:22368479

  15. Analysis of Unmanned Aerial Vehicle (UAV) hyperspectral remote sensing monitoring key technology in coastal wetland

    NASA Astrophysics Data System (ADS)

    Ma, Yi; Zhang, Jie; Zhang, Jingyu

    2016-01-01

    The coastal wetland, a transitional zone between terrestrial ecosystems and marine ecosystems, is the type of great value to ecosystem services. For the recent 3 decades, area of the coastal wetland is decreasing and the ecological function is gradually degraded with the rapid development of economy, which restricts the sustainable development of economy and society in the coastal areas of China in turn. It is a major demand of the national reality to carry out the monitoring of coastal wetlands, to master the distribution and dynamic change. UAV, namely unmanned aerial vehicle, is a new platform for remote sensing. Compared with the traditional satellite and manned aerial remote sensing, it has the advantage of flexible implementation, no cloud cover, strong initiative and low cost. Image-spectrum merging is one character of high spectral remote sensing. At the same time of imaging, the spectral curve of each pixel is obtained, which is suitable for quantitative remote sensing, fine classification and target detection. Aimed at the frontier and hotspot of remote sensing monitoring technology, and faced the demand of the coastal wetland monitoring, this paper used UAV and the new remote sensor of high spectral imaging instrument to carry out the analysis of the key technologies of monitoring coastal wetlands by UAV on the basis of the current situation in overseas and domestic and the analysis of developing trend. According to the characteristic of airborne hyperspectral data on UAV, that is "three high and one many", the key technology research that should develop are promoted as follows: 1) the atmosphere correction of the UAV hyperspectral in coastal wetlands under the circumstance of complex underlying surface and variable geometry, 2) the best observation scale and scale transformation method of the UAV platform while monitoring the coastal wetland features, 3) the classification and detection method of typical features with high precision from multi scale

  16. Using aerial photography and image analysis to measure changes in giant reed populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted along the Rio Grande in southwest Texas to evaluate color-infrared aerial photography combined with supervised image analysis to quantify changes in giant reed (Arundo donax L.) populations over a 6-year period. Aerial photographs from 2002 and 2008 of the same seven study site...

  17. Computational inspection applied to a mask inspection system with advanced aerial imaging capability

    NASA Astrophysics Data System (ADS)

    Pang, Linyong; Peng, Danping; He, Lin; Chen, Dongxue; Dam, Thuc; Tolani, Vikram; Tam, Aviram; Staud, Wolf

    2010-03-01

    At the most advanced technology nodes, such as 32nm and 22nm, aggressive OPC and Sub-Resolution Assist Features (SRAFs) are required. However, their use results in significantly increased mask complexity, challenging mask defect dispositioning more than ever. To address these challenges in mask inspection and defect dispositioning, new mask inspection technologies have been developed that not only provide high resolution masks imaged at the same wavelength as the scanner, but that also provide aerial images by using both: software simulation and hardware emulation. The original mask patterns stored by the optics of mask inspection systems can be recovered using a patented algorithm based on the Level Set Method. More accurate lithography simulation models can be used to further evaluate defects on simulated resist patterns using the recovered mask pattern in high resolution and aerial mode. An automated defect classification based on lithography significance and local CD changes is also developed to disposition tens of thousands of potential defects in minutes, so that inspection throughput is not impacted.

  18. Vehicle detection from high-resolution aerial images based on superpixel and color name features

    NASA Astrophysics Data System (ADS)

    Chen, Ziyi; Cao, Liujuan; Yu, Zang; Chen, Yiping; Wang, Cheng; Li, Jonathan

    2016-03-01

    Automatic vehicle detection from aerial images is emerging due to the strong demand of large-area traffic monitoring. In this paper, we present a novel framework for automatic vehicle detection from the aerial images. Through superpixel segmentation, we first segment the aerial images into homogeneous patches, which consist of the basic units during the detection to improve efficiency. By introducing the sparse representation into our method, powerful classification ability is achieved after the dictionary training. To effectively describe a patch, the Histogram of Oriented Gradient (HOG) is used. We further propose to integrate color information to enrich the feature representation by using the color name feature. The final feature consists of both HOG and color name based histogram, by which we get a strong descriptor of a patch. Experimental results demonstrate the effectiveness and robust performance of the proposed algorithm for vehicle detection from aerial images.

  19. U.S. DOE, Kazakhstan government launch aerial imaging project

    SciTech Connect

    Hamm, J.

    1997-10-01

    The US Department of Energy (DOE) and the Kazakhstan government have launched a breakthrough science and technology mission to use DOE technology developed to detect weapons proliferation to search for oil and mineral reserves in Kazakhstan. The Pacific Northwest National Laboratory is leading the research effort, which began in June. This mission to conduct airborne imaging flights over Kazakhstan is the result of a recently signed agreement between Pacific Northwest and Earth Search Sciences Inc., a remote sensing firm based in Idaho, to look for oil and mineral deposits in the Republic of Kazakhstan in central Asia. It is the first time this technology will be used outside the United States.

  20. Study of Automatic Image Rectification and Registration of Scanned Historical Aerial Photographs

    NASA Astrophysics Data System (ADS)

    Chen, H. R.; Tseng, Y. H.

    2016-06-01

    Historical aerial photographs directly provide good evidences of past times. The Research Center for Humanities and Social Sciences (RCHSS) of Taiwan Academia Sinica has collected and scanned numerous historical maps and aerial images of Taiwan and China. Some maps or images have been geo-referenced manually, but most of historical aerial images have not been registered since there are no GPS or IMU data for orientation assisting in the past. In our research, we developed an automatic process of matching historical aerial images by SIFT (Scale Invariant Feature Transform) for handling the great quantity of images by computer vision. SIFT is one of the most popular method of image feature extracting and matching. This algorithm extracts extreme values in scale space into invariant image features, which are robust to changing in rotation scale, noise, and illumination. We also use RANSAC (Random sample consensus) to remove outliers, and obtain good conjugated points between photographs. Finally, we manually add control points for registration through least square adjustment based on collinear equation. In the future, we can use image feature points of more photographs to build control image database. Every new image will be treated as query image. If feature points of query image match the features in database, it means that the query image probably is overlapped with control images.With the updating of database, more and more query image can be matched and aligned automatically. Other research about multi-time period environmental changes can be investigated with those geo-referenced temporal spatial data.

  1. Fluxless flip chip bonding processes and aerial fluxless bonding technology

    NASA Astrophysics Data System (ADS)

    Kim, Dongwook

    believed that the processes presented in this dissertation offer additional process windows to lead-free flip chip technology and have various applications where flux cannot be used such as optoelectronic devices, biomedical devices, and MEMS (MicroElectroMechanical Systems) devices. Aerial fluxless bonding technology was also reported for the first time in my knowledge. Although conventional fluxless bonding processes has been successfully adopted in many application, the need of specific ambient gases such as forming gas or hydrogen is not compatible with pick-and-place bonding machines in the electronic industry. Thus, fluxless bonding technology in air ambient could provide a valuable and economical alternative way to the electronic and photonic packaging industries. (Abstract shortened by UMI.)

  2. A featureless approach to 3D polyhedral building modeling from aerial images.

    PubMed

    Hammoudi, Karim; Dornaika, Fadi

    2011-01-01

    This paper presents a model-based approach for reconstructing 3D polyhedral building models from aerial images. The proposed approach exploits some geometric and photometric properties resulting from the perspective projection of planar structures. Data are provided by calibrated aerial images. The novelty of the approach lies in its featurelessness and in its use of direct optimization based on image rawbrightness. The proposed framework avoids feature extraction and matching. The 3D polyhedral model is directly estimated by optimizing an objective function that combines an image-based dissimilarity measure and a gradient score over several aerial images. The optimization process is carried out by the Differential Evolution algorithm. The proposed approach is intended to provide more accurate 3D reconstruction than feature-based approaches. Fast 3D model rectification and updating can take advantage of the proposed method. Several results and evaluations of performance from real and synthetic images show the feasibility and robustness of the proposed approach. PMID:22346575

  3. A Featureless Approach to 3D Polyhedral Building Modeling from Aerial Images

    PubMed Central

    Hammoudi, Karim; Dornaika, Fadi

    2011-01-01

    This paper presents a model-based approach for reconstructing 3D polyhedral building models from aerial images. The proposed approach exploits some geometric and photometric properties resulting from the perspective projection of planar structures. Data are provided by calibrated aerial images. The novelty of the approach lies in its featurelessness and in its use of direct optimization based on image rawbrightness. The proposed framework avoids feature extraction and matching. The 3D polyhedral model is directly estimated by optimizing an objective function that combines an image-based dissimilarity measure and a gradient score over several aerial images. The optimization process is carried out by the Differential Evolution algorithm. The proposed approach is intended to provide more accurate 3D reconstruction than feature-based approaches. Fast 3D model rectification and updating can take advantage of the proposed method. Several results and evaluations of performance from real and synthetic images show the feasibility and robustness of the proposed approach. PMID:22346575

  4. Line Matching Algorithm for Aerial Image Combining image and object space similarity constraints

    NASA Astrophysics Data System (ADS)

    Wang, Jingxue; Wang, Weixi; Li, Xiaoming; Cao, Zhenyu; Zhu, Hong; Li, Miao; He, Biao; Zhao, Zhigang

    2016-06-01

    A new straight line matching method for aerial images is proposed in this paper. Compared to previous works, similarity constraints combining radiometric information in image and geometry attributes in object plane are employed in these methods. Firstly, initial candidate lines and the elevation values of lines projection plane are determined by corresponding points in neighborhoods of reference lines. Secondly, project reference line and candidate lines back forward onto the plane, and then similarity measure constraints are enforced to reduce the number of candidates and to determine the finial corresponding lines in a hierarchical way. Thirdly, "one-to-many" and "many-to-one" matching results are transformed into "one-to-one" by merging many lines into the new one, and the errors are eliminated simultaneously. Finally, endpoints of corresponding lines are detected by line expansion process combing with "image-object-image" mapping mode. Experimental results show that the proposed algorithm can be able to obtain reliable line matching results for aerial images.

  5. Aerial imaging study of the mask-induced line-width roughness of EUV lithography masks

    NASA Astrophysics Data System (ADS)

    Wojdyla, Antoine; Donoghue, Alexander; Benk, Markus P.; Naulleau, Patrick P.; Goldberg, Kenneth A.

    2016-03-01

    EUV lithography uses reflective photomasks to print features on a wafer through the formation of an aerial image. The aerial image is influenced by the mask's substrate and pattern roughness and by photon shot noise, which collectively affect the line-width on wafer prints, with an impact on local critical dimension uniformity (LCDU). We have used SHARP, an actinic mask-imaging microscope, to study line-width roughness (LWR) in aerial images at sub-nanometer resolution. We studied the impact of photon density and the illumination partial coherence on recorded images, and found that at low coherence settings, the line-width roughness is dominated by photon noise, while at high coherence setting, the effect of speckle becomes more prominent, dominating photon noise for exposure levels of 4 photons/nm2 at threshold on the mask size.

  6. Mobile Aerial Tracking and Imaging System (MATRIS) for Aeronautical Research

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Blanchard, R. C.; Miller, G. M.

    2004-01-01

    A mobile, rapidly deployable ground-based system to track and image targets of aeronautical interest has been developed. Targets include reentering reusable launch vehicles (RLVs) as well as atmospheric and transatmospheric vehicles. The optics were designed to image targets in the visible and infrared wavelengths. To minimize acquisition cost and development time, the system uses commercially available hardware and software where possible. The conception and initial funding of this system originated with a study of ground-based imaging of global aerothermal characteristics of RLV configurations. During that study NASA teamed with the Missile Defense Agency/Innovative Science and Technology Experimentation Facility (MDA/ISTEF) to test techniques and analysis on two Space Shuttle flights.

  7. Critical Assessment of Object Segmentation in Aerial Image Using Geo-Hausdorff Distance

    NASA Astrophysics Data System (ADS)

    Sun, H.; Ding, Y.; Huang, Y.; Wang, G.

    2016-06-01

    Aerial Image records the large-range earth objects with the ever-improving spatial and radiometric resolution. It becomes a powerful tool for earth observation, land-coverage survey, geographical census, etc., and helps delineating the boundary of different kinds of objects on the earth both manually and automatically. In light of the geo-spatial correspondence between the pixel locations of aerial image and the spatial coordinates of ground objects, there is an increasing need of super-pixel segmentation and high-accuracy positioning of objects in aerial image. Besides the commercial software package of eCognition and ENVI, many algorithms have also been developed in the literature to segment objects of aerial images. But how to evaluate the segmentation results remains a challenge, especially in the context of the geo-spatial correspondence. The Geo-Hausdorff Distance (GHD) is proposed to measure the geo-spatial distance between the results of various object segmentation that can be done with the manual ground truth or with the automatic algorithms.Based on the early-breaking and random-sampling design, the GHD calculates the geographical Hausdorff distance with nearly-linear complexity. Segmentation results of several state-of-the-art algorithms, including those of the commercial packages, are evaluated with a diverse set of aerial images. They have different signal-to-noise ratio around the object boundaries and are hard to trace correctly even for human operators. The GHD value is analyzed to comprehensively measure the suitability of different object segmentation methods for aerial images of different spatial resolution. By critically assessing the strengths and limitations of the existing algorithms, the paper provides valuable insight and guideline for extensive research in automating object detection and classification of aerial image in the nation-wide geographic census. It is also promising for the optimal design of operational specification of remote

  8. Comparison of event-based landslide inventory maps obtained interpreting satellite images and aerial photographs

    NASA Astrophysics Data System (ADS)

    Fiorucci, Federica; Cardinali, Mauro; Carlà Roberto; Mondini, Alessandro; Santurri, Leonardo; Guzzetti, Fausto

    2010-05-01

    Landslide inventory maps are a common type of map used for geomorphological investigations, land planning, and hazard and risk assessment. Landslide inventory maps covering medium to large areas are obtained primarily exploiting traditional geomorphological techniques. These techniques combine the visual and heuristic interpretation of stereoscopic aerial photographs with more or less extensive field investigations. Aerial photographs most commonly used to prepare landslide inventory maps range in scale from about 1:10,000 to about 1:40,000. Interpretation of satellite images is a relatively recent, powerful tool to obtain information of the Earth surface potentially useful for the production of landslide inventory maps. The usefulness of satellite information - and the associated technology - for the identification of landslides and the production of landslide inventory maps, remains largely unexplored. In this context, it is of interest to investigate the type, quantity, and quality of the information that can be retrieved analyzing images taken by the last generation of high and very-high resolution satellite sensors, and to compare this information with the information obtained from the analysis of traditional stereoscopic aerial photographs, or in the field. In the framework of the MORFEO project for the exploitation of Earth Observation data and technology for landslide identification and risk assessment, of the Italian Space Agency, we have compared two event-based landslide inventory maps prepared exploiting two different techniques. The two maps portray the geographical distribution and types of landslides triggered by rainfall in the period from November 2004 to May 2005 in the Collazzone area, Umbria, central Italy. The first map was prepared through reconnaissance field surveys carried out mostly along roads. The second map was obtained through the combined visual interpretation of 1:10,000 scale, colour ortho-photo maps, and images taken by the IKONOS

  9. Three-Dimensional Building Reconstruction Using Images Obtained by Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Wefelscheid, C.; Hänsch, R.; Hellwich, O.

    2011-09-01

    Unmanned Aerial Vehicles (UAVs) offer several new possibilities in a wide range of applications. One example is the 3D reconstruction of buildings. In former times this was either restricted by earthbound vehicles to the reconstruction of facades or by air-borne sensors to generate only very coarse building models. This paper describes an approach for fully automatic image-based 3D reconstruction of buildings using UAVs. UAVs are able to observe the whole 3D scene and to capture images of the object of interest from completely different perspectives. The platform used by this work is a Falcon 8 octocopter from Ascending Technologies. A slightly modified high-resolution consumer camera serves as sensor for data acquisition. The final 3D reconstruction is computed offline after image acquisition and follows a reconstruction process originally developed for image sequences obtained by earthbound vehicles. The per- formance of the described method is evaluated on benchmark datasets showing that the achieved accuracy is high and even comparable with Light Detection and Ranging (LIDAR). Additionally, the results of the application of the complete processing-chain starting at image acquisition and ending in a dense surface-mesh are presented and discussed.

  10. Quantitative evaluation of mask phase defects from through-focus EUV aerial images

    SciTech Connect

    Mochi, Iacopo; Yamazoe, Kenji; Neureuther, Andrew; Goldberg, Kenneth A.

    2011-02-21

    Mask defects inspection and imaging is one of the most important issues for any pattern transfer lithography technology. This is especially true for EUV lithography where the wavelength-specific properties of masks and defects necessitate actinic inspection for a faithful prediction of defect printability and repair performance. In this paper we will present a technique to obtain a quantitative characterization of mask phase defects from EUV aerial images. We apply this technique to measure the aerial image phase of native defects on a blank mask, measured with the SEMATECH Berkeley Actinic Inspection Tool (AIT) an EUV zoneplate microscope that operates at Lawrence Berkeley National Laboratory. The measured phase is compared with predictions made from AFM top-surface measurements of those defects. While amplitude defects are usually easy to recognize and quantify with standard inspection techniques like scanning electron microscopy (SEM), defects or structures that have a phase component can be much more challenging to inspect. A phase defect can originate from the substrate or from any level of the multilayer. In both cases its effect on the reflected field is not directly related to the local topography of the mask surface, but depends on the deformation of the multilayer structure. Using the AIT, we have previously showed that EUV inspection provides a faithful and reliable way to predict the appearance of mask defect on the printed wafer; but to obtain a complete characterization of the defect we need to evaluate quantitatively its phase component. While aerial imaging doesn't provide a direct measurement of the phase of the object, this information is encoded in the through focus evolution of the image intensity distribution. Recently we developed a technique that allows us to extract the complex amplitude of EUV mask defects using two aerial images from different focal planes. The method for the phase reconstruction is derived from the Gerchberg-Saxton (GS

  11. Aerial image measurement technique for automated reticle defect disposition (ARDD) in wafer fabs

    NASA Astrophysics Data System (ADS)

    Zibold, Axel M.; Schmid, Rainer M.; Stegemann, B.; Scheruebl, Thomas; Harnisch, Wolfgang; Kobiyama, Yuji

    2004-08-01

    The Aerial Image Measurement System (AIMS)* for 193 nm lithography emulation has been brought into operation successfully worldwide. A second generation system comprising 193 nm AIMS capability, mini-environment and SMIF, the AIMS fab 193 plus is currently introduced into the market. By adjustment of numerical aperture (NA), illumination type and partial illumination coherence to match the conditions in 193 nm steppers or scanners, it can emulate the exposure tool for any type of reticles like binary, OPC and PSM down to the 65 nm node. The system allows a rapid prediction of wafer printability of defects or defect repairs, and critical features, like dense patterns or contacts on the masks without the need to perform expensive image qualification consisting of test wafer exposures followed by SEM measurements. Therefore, AIMS is a mask quality verification standard for high-end photo masks and established in mask shops worldwide. The progress on the AIMS technology described in this paper will highlight that besides mask shops there will be a very beneficial use of the AIMS in the wafer fab and we propose an Automated Reticle Defect Disposition (ARDD) process. With smaller nodes, where design rules are 65 nm or less, it is expected that smaller defects on reticles will occur in increasing numbers in the wafer fab. These smaller mask defects will matter more and more and become a serious yield limiting factor. With increasing mask prices and increasing number of defects and severability on reticles it will become cost beneficial to perform defect disposition on the reticles in wafer production. Currently ongoing studies demonstrate AIMS benefits for wafer fab applications. An outlook will be given for extension of 193 nm aerial imaging down to the 45 nm node based on emulation of immersion scanners.

  12. Status of thermal imaging technology as applied to conservation-update 1

    SciTech Connect

    Snow, F.J.; Wood, J.T.; Barthle, R.C.

    1980-07-01

    This document updates the 1978 report on the status of thermal imaging technology as applied to energy conservation in buildings. Thermal imaging technology is discussed in terms of airborne surveys, ground survey programs, and application needs such as standards development and lower cost equipment. Information on the various thermal imaging devices was obtained from manufacturer's standard product literature. Listings are provided of infrared projects of the DOE building diagnostics program, of aerial thermographic firms, and of aerial survey programs. (LCL)

  13. Aerial image simulation for partial coherent system with programming development in MATLAB

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Nazmul; Rahman, Md. Momtazur; Udoy, Ariful Banna

    2014-10-01

    Aerial image can be calculated by either Abbe's method or sum of coherent system decomposition (SOCS) method for partial coherent system. This paper introduces a programming with Matlab code that changes the analytical representation of Abbe's method to the matrix form, which has advantages for both Abbe's method and SOCS since matrix calculation is easier than double integration over object plane or pupil plane. First a singular matrix P is derived from a pupil function and effective light source in the spatial frequency domain. By applying Singular Value Decomposition (SVD) to the matrix P, eigenvalues and eigenfunctions are obtained. The aerial image can then be computed by the eigenvalues and eigenfunctions without calculation of Transmission Cross Coefficient (TCC). The aerial final image is almost identical as an original cross mask and the intensity distribution on image plane shows that it is almost uniform across the linewidth of the mask.

  14. EDITORIAL: Molecular Imaging Technology

    NASA Astrophysics Data System (ADS)

    Asai, Keisuke; Okamoto, Koji

    2006-06-01

    'Molecular Imaging Technology' focuses on image-based techniques using nanoscale molecules as sensor probes to measure spatial variations of various species (molecular oxygen, singlet oxygen, carbon dioxide, nitric monoxide, etc) and physical properties (pressure, temperature, skin friction, velocity, mechanical stress, etc). This special feature, starting on page 1237, contains selected papers from The International Workshop on Molecular Imaging for Interdisciplinary Research, sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan, which was held at the Sendai Mediatheque, Sendai, Japan, on 8 9 November 2004. The workshop was held as a sequel to the MOSAIC International Workshop that was held in Tokyo in 2003, to summarize the outcome of the 'MOSAIC Project', a five-year interdisciplinary project supported by Techno-Infrastructure Program, the Special Coordination Fund for Promotion of Science Technology to develop molecular sensor technology for aero-thermodynamic research. The workshop focused on molecular imaging technology and its applications to interdisciplinary research areas. More than 110 people attended this workshop from various research fields such as aerospace engineering, automotive engineering, radiotechnology, fluid dynamics, bio-science/engineering and medical engineering. The purpose of this workshop is to stimulate intermixing of these interdisciplinary fields for further development of molecular sensor and imaging technology. It is our pleasure to publish the seven papers selected from our workshop as a special feature in Measurement and Science Technology. We will be happy if this issue inspires people to explore the future direction of molecular imaging technology for interdisciplinary research.

  15. The application of the unmanned aerial vehicle remote sensing technology in the FAST project construction

    NASA Astrophysics Data System (ADS)

    Zhu, Boqin

    2015-08-01

    The purpose of using unmanned aerial vehicle (UAV) remote sensing application in Five-hundred-meter aperture spherical telescope (FAST) project is to dynamically record the construction process with high resolution image, monitor the environmental impact, and provide services for local environmental protection and the reserve immigrants. This paper introduces the use of UAV remote sensing system and the course design and implementation for the FAST site. Through the analysis of the time series data, we found that: (1) since the year 2012, the project has been widely carried out; (2) till 2013, the internal project begun to take shape;(3) engineering excavation scope was kept stable in 2014, and the initial scale of the FAST engineering construction has emerged as in the meantime, the vegetation recovery went well on the bare soil area; (4) in 2015, none environmental problems caused by engineering construction and other engineering geological disaster were found in the work area through the image interpretation of UAV images. This paper also suggested that the UAV technology need some improvements to fulfill the requirements of surveying and mapping specification., including a new data acquisition and processing measures assigned with the background of highly diverse elevation, usage of telephoto camera, hierarchical photography with different flying height, and adjustment with terrain using the joint empty three settlement method.

  16. High Density Aerial Image Matching: State-Of and Future Prospects

    NASA Astrophysics Data System (ADS)

    Haala, N.; Cavegn, S.

    2016-06-01

    Ongoing innovations in matching algorithms are continuously improving the quality of geometric surface representations generated automatically from aerial images. This development motivated the launch of the joint ISPRS/EuroSDR project "Benchmark on High Density Aerial Image Matching", which aims on the evaluation of photogrammetric 3D data capture in view of the current developments in dense multi-view stereo-image matching. Originally, the test aimed on image based DSM computation from conventional aerial image flights for different landuse and image block configurations. The second phase then put an additional focus on high quality, high resolution 3D geometric data capture in complex urban areas. This includes both the extension of the test scenario to oblique aerial image flights as well as the generation of filtered point clouds as additional output of the respective multi-view reconstruction. The paper uses the preliminary outcomes of the benchmark to demonstrate the state-of-the-art in airborne image matching with a special focus of high quality geometric data capture in urban scenarios.

  17. A two-camera imaging system for pest detection and aerial application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This presentation reports on the design and testing of an airborne two-camera imaging system for pest detection and aerial application assessment. The system consists of two digital cameras with 5616 x 3744 effective pixels. One camera captures normal color images with blue, green and red bands, whi...

  18. A low-cost dual-camera imaging system for aerial applicators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural aircraft provide a readily available remote sensing platform as low-cost and easy-to-use consumer-grade cameras are being increasingly used for aerial imaging. In this article, we report on a dual-camera imaging system we recently assembled that can capture RGB and near-infrared (NIR) i...

  19. Automatic geolocation of targets tracked by aerial imaging platforms using satellite imagery

    NASA Astrophysics Data System (ADS)

    Shukla, P. K.; Goel, S.; Singh, P.; Lohani, B.

    2014-11-01

    Tracking of targets from aerial platforms is an important activity in several applications, especially surveillance. Knowled ge of geolocation of these targets adds additional significant and useful information to the application. This paper determines the geolocation of a target being tracked from an aerial platform using the technique of image registration. Current approaches utilize a POS to determine the location of the aerial platform and then use the same for geolocation of the targets using the principle of photogrammetry. The constraints of cost and low-payload restrict the applicability of this approach using UAV platforms. This paper proposes a methodology for determining the geolocation of a target tracked from an aerial platform in a partially GPS devoid environment. The method utilises automatic feature based registration technique of a georeferenced satellite image with an ae rial image which is already stored in UAV's database to retrieve the geolocation of the target. Since it is easier to register subsequent aerial images due to similar viewing parameters, the subsequent overlapping images are registered together sequentially thus resulting in the registration of each of the images with georeferenced satellite image thus leading to geolocation of the target under interest. Using the proposed approach, the target can be tracked in all the frames in which it is visible. The proposed concept is verified experimentally and the results are found satisfactory. Using the proposed method, a user can obtain location of target of interest as well features on ground without requiring any POS on-board the aerial platform. The proposed approach has applications in surveillance for target tracking, target geolocation as well as in disaster management projects like search and rescue operations.

  20. Turbine imaging technology assessment

    SciTech Connect

    Moursund, R. A.; Carlson, T. J.

    2004-12-01

    The goal of this project was to identify and evaluate imaging technologies for observing juvenile fish within a Kaplan turbine, and specifically that would enable scientists to determine mechanisms of fish injury within an operating turbine unit. This report documents the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. These observations were used to make modifications to dam structures and operations to improve conditions for fish passage while maintaining or improving hydropower production. The physical and hydraulic environment that fish experience as they pass through the hydroelectric plants were studied and the regions with the greatest potential for injury were defined. Biological response data were also studied to determine the probable types of injuries sustained in the turbine intake and what types of injuries are detectable with imaging technologies. The study grouped injury-causing mechanisms into two categories: fluid (pressure/cavitation, shear, turbulence) and mechanical (strike/collision, grinding/pinching, scraping). The physical constraints of the environment, together with the likely types of injuries to fish, provided the parameters needed for a rigorous imaging technology evaluation. Types of technology evaluated included both tracking and imaging systems using acoustic technologies (such as sonar and acoustic tags) and optic technologies (such as pulsed-laser videography, which is high-speed videography using a laser as the flash). Criteria for determining image data quality such as frame rate, target detectability, and resolution were used to quantify the minimum requirements of an imaging sensor.

  1. Estimating growth status of winter wheat based on aerial images and hyperspectral data

    NASA Astrophysics Data System (ADS)

    Han, Yunxia; Li, Minzan; Jia, Liangliang; Zhang, Xijie; Zhang, Fusuo

    2005-08-01

    The aim of this paper is to estimate the growth status and yield of winter wheat using aerial images and hyperspectral data obtained by unmanned aircraft, and then to perform precision management to the crop. The test farm was divided into 48 cells. Twenty-four cells were selected as variable rate fertilization area, and the other 24 cells were used as contrast area with low fertilization in growth season. In 2004, the aerial images of winter wheat canopy were measured from an unmanned aircraft. The SPAD value of crop leaf was acquired using a SPAD-502 chlorophyll meter, and then the hyperspectral reflectance of the crop canopy was measured by a handheld spectroradiometer. The vegetation indices, NDVI and DVI, were calculated from the hyperspectral data. The characteristics of the aerial images were used to evaluate the growth status. The RGB values of all cells were calculated from aerial images. The result showed that total nitrogen had better correlation with SPAD, NDVI, DVI, and RGB. NDVI and DVI had high correlation with the growth condition, and R/(R+G+B) and G/(R+G+B) had good correlation with the growth status and yield. The variable rate fertilization based on aerial images and NDVI was executed in the experimental cells. The yield map showed that the spatial variation of the yield was reduced and the total yield was increased. While in contrast cells, the spatial variation of the yield is greater than in experimental cells because of the spatial variation of the field nutrition. Therefore, it is practical to use aerial images and hyperspectral data of the crop canopy in estimation of the crop growth status.

  2. Field scale evaluation of spray drift reduction technologies from ground and aerial application systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this work is to evaluate a proposed Test Plan for the validation testing of pesticide spray drift reduction technologies for row and field crops, focusing on the testing of ground and aerial application systems under full-scale field evaluations. The measure of performance for a gi...

  3. Can reliable sage-grouse lek counts be obtained using aerial infrared technology

    USGS Publications Warehouse

    Gillette, Gifford L.; Coates, Peter S.; Petersen, Steven; Romero, John P.

    2013-01-01

    More effective methods for counting greater sage-grouse (Centrocercus urophasianus) are needed to better assess population trends through enumeration or location of new leks. We describe an aerial infrared technique for conducting sage-grouse lek counts and compare this method with conventional ground-based lek count methods. During the breeding period in 2010 and 2011, we surveyed leks from fixed-winged aircraft using cryogenically cooled mid-wave infrared cameras and surveyed the same leks on the same day from the ground following a standard lek count protocol. We did not detect significant differences in lek counts between surveying techniques. These findings suggest that using a cryogenically cooled mid-wave infrared camera from an aerial platform to conduct lek surveys is an effective alternative technique to conventional ground-based methods, but further research is needed. We discuss multiple advantages to aerial infrared surveys, including counting in remote areas, representing greater spatial variation, and increasing the number of counted leks per season. Aerial infrared lek counts may be a valuable wildlife management tool that releases time and resources for other conservation efforts. Opportunities exist for wildlife professionals to refine and apply aerial infrared techniques to wildlife monitoring programs because of the increasing reliability and affordability of this technology.

  4. An Interactive Technique for Cartographic Feature Extraction from Aerial and Satellite Image Sensors

    PubMed Central

    Kicherer, Stefan; Malpica, Jose A.; Alonso, Maria C.

    2008-01-01

    In this paper, an interactive technique for extracting cartographic features from aerial and spatial images is presented. The method is essentially an interactive method of image region segmentation based on pixel grey level and texture information. The underlying segmentation method is seeded region growing. The criterion for growing regions is based on both texture and grey level, where texture is quantified using co-occurrence matrices. The Kullback distance is utilised with co-occurrence matrices in order to describe the image texture, then the Theory of Evidence is applied to merge the information coming from texture and grey level image from the RGB bands. Several results from aerial and spatial images that support the technique are presented

  5. Vehicle Detection of Aerial Image Using TV-L1 Texture Decomposition

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wang, G.; Li, Y.; Huang, Y.

    2016-06-01

    Vehicle detection from high-resolution aerial image facilitates the study of the public traveling behavior on a large scale. In the context of road, a simple and effective algorithm is proposed to extract the texture-salient vehicle among the pavement surface. Texturally speaking, the majority of pavement surface changes a little except for the neighborhood of vehicles and edges. Within a certain distance away from the given vector of the road network, the aerial image is decomposed into a smoothly-varying cartoon part and an oscillatory details of textural part. The variational model of Total Variation regularization term and L1 fidelity term (TV-L1) is adopted to obtain the salient texture of vehicles and the cartoon surface of pavement. To eliminate the noise of texture decomposition, regions of pavement surface are refined by seed growing and morphological operation. Based on the shape saliency analysis of the central objects in those regions, vehicles are detected as the objects of rectangular shape saliency. The proposed algorithm is tested with a diverse set of aerial images that are acquired at various resolution and scenarios around China. Experimental results demonstrate that the proposed algorithm can detect vehicles at the rate of 71.5% and the false alarm rate of 21.5%, and that the speed is 39.13 seconds for a 4656 x 3496 aerial image. It is promising for large-scale transportation management and planning.

  6. Aerial-image enables diagrams and animation to be inserted in motion pictures

    NASA Technical Reports Server (NTRS)

    Andrews, S. J., Jr.; Tressel, G. W.

    1967-01-01

    Aerial-image unit makes it possible to insert diagrams and animation into live motion pictures, and also lift an element from a confusing background by suppressing general details. The unit includes a combination of two separate lens systems, the camera-projector system and the field lens system.

  7. Application of high resolution images from unmanned aerial vehicles for hydrology and range science

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A common problem in many natural resource disciplines is the lack of high-enough spatial resolution images that can be used for monitoring and modeling purposes. Advances have been made in the utilization of Unmanned Aerial Vehicles (UAVs) in hydrology and rangeland science. By utilizing low fligh...

  8. Crop Status Monitoring using Multispectral and Thermal Imaging systems for Accessible Aerial Platforms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural aircraft and unmanned aerial systems (UAS) are easily scheduled and accessible remote sensing platforms. Canopy temperature data were taken with an Electrophysics PV-320T thermal imaging camera mounted in agricultural aircraft. Weather data and soil water potential were monitored and th...

  9. Miniaturization of sub-meter resolution hyperspectral imagers on unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Hill, Samuel L.; Clemens, Peter

    2014-05-01

    Traditional airborne environmental monitoring has frequently deployed hyperspectral imaging as a leading tool for characterizing and analyzing a scene's critical spectrum-based signatures for applications in agriculture genomics and crop health, vegetation and mineral monitoring, and hazardous material detection. As the acceptance of hyperspectral evaluation grows in the airborne community, there has been a dramatic trend in moving the technology from use on midsize aircraft to Unmanned Aerial Systems (UAS). The use of UAS accomplishes a number of goals including the reduction in cost to run multiple seasonal evaluations over smaller but highly valuable land-areas, the ability to use frequent data collections to make rapid decisions on land management, and the improvement of spatial resolution by flying at lower altitudes (< 150 m). Despite this trend, there are several key parameters affecting the use of traditional hyperspectral instruments in UAS with payloads less than 0.5 kg (~1lb) where size, weight and power (SWaP) are critical to how high and how far a given UAS can fly. Additionally, on many of the light-weight UAS, users are frequently trying to capture data from one or more instruments to augment the hyperspectral data collection, thus reducing the amount of SWaP available to the hyperspectral instrumentation. The following manuscript will provide an analysis on a newly-developed miniaturized hyperspectral imaging platform that provides full hyperspectral resolution and traditional hyperspectral capabilities without sacrificing performance to accommodate the decreasing SWaP of smaller and smaller UAS platforms.

  10. Semi-automatic detection of linear archaeological traces from orthorectified aerial images

    NASA Astrophysics Data System (ADS)

    Figorito, Benedetto; Tarantino, Eufemia

    2014-02-01

    This paper presents a semi-automatic approach for archaeological traces detection from aerial images. The method developed was based on the multiphase active contour model (ACM). The image was segmented into three competing regions to improve the visibility of buried remains showing in the image as crop marks (i.e. centuriations, agricultural allocations, ancient roads, etc.). An initial determination of relevant traces can be quickly carried out by the operator by sketching straight lines close to the traces. Subsequently, tuning parameters (i.e. eccentricity, orientation, minimum area and distance from input line) are used to remove non-target objects and parameterize the detected traces. The algorithm and graphical user interface for this method were developed in a MATLAB environment and tested on high resolution orthorectified aerial images. A qualitative analysis of the method was lastly performed by comparing the traces extracted with ancient traces verified by archaeologists.

  11. Registration of multitemporal aerial optical images using line features

    NASA Astrophysics Data System (ADS)

    Zhao, Chenyang; Goshtasby, A. Ardeshir

    2016-07-01

    Registration of multitemporal images is generally considered difficult because scene changes can occur between the times the images are obtained. Since the changes are mostly radiometric in nature, features are needed that are insensitive to radiometric differences between the images. Lines are geometric features that represent straight edges of rigid man-made structures. Because such structures rarely change over time, lines represent stable geometric features that can be used to register multitemporal remote sensing images. An algorithm to establish correspondence between lines in two images of a planar scene is introduced and formulas to relate the parameters of a homography transformation to the parameters of corresponding lines in images are derived. Results of the proposed image registration on various multitemporal images are presented and discussed.

  12. RIM-13: A high-resolution imaging tool for aerial image monitoring of patterned and blank EUV reticles

    NASA Astrophysics Data System (ADS)

    Booth, M.; Brunton, A.; Cashmore, J.; Elbourn, P.; Elliner, G.; Gower, M.; Greuters, J.; Hirsch, J.; Kling, L.; McEntee, N.; Richards, P.; Truffert, V.; Wallhead, I.; Whitfield, M.

    2006-03-01

    Key features of the RIM-13 EUV actinic reticle imaging microscope are summarised. This is a tool which generates aerial images from blank or patterned EUV masks, emulating the illumination and projection optics of an exposure tool. Such images of mask defects, acquired by a CCD camera, are analysed using the tool software to predict their effect on resist exposure. Optical, mechanical and software performance of the tool are reported.

  13. Synthetic Foveal Imaging Technology

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael; Monacos, Steve; Nikzad, Shouleh

    2009-01-01

    Synthetic Foveal imaging Technology (SyFT) is an emerging discipline of image capture and image-data processing that offers the prospect of greatly increased capabilities for real-time processing of large, high-resolution images (including mosaic images) for such purposes as automated recognition and tracking of moving objects of interest. SyFT offers a solution to the image-data processing problem arising from the proposed development of gigapixel mosaic focal-plane image-detector assemblies for very wide field-of-view imaging with high resolution for detecting and tracking sparse objects or events within narrow subfields of view. In order to identify and track the objects or events without the means of dynamic adaptation to be afforded by SyFT, it would be necessary to post-process data from an image-data space consisting of terabytes of data. Such post-processing would be time-consuming and, as a consequence, could result in missing significant events that could not be observed at all due to the time evolution of such events or could not be observed at required levels of fidelity without such real-time adaptations as adjusting focal-plane operating conditions or aiming of the focal plane in different directions to track such events. The basic concept of foveal imaging is straightforward: In imitation of a natural eye, a foveal-vision image sensor is designed to offer higher resolution in a small region of interest (ROI) within its field of view. Foveal vision reduces the amount of unwanted information that must be transferred from the image sensor to external image-data-processing circuitry. The aforementioned basic concept is not new in itself: indeed, image sensors based on these concepts have been described in several previous NASA Tech Briefs articles. Active-pixel integrated-circuit image sensors that can be programmed in real time to effect foveal artificial vision on demand are one such example. What is new in SyFT is a synergistic combination of recent

  14. Evaluation of Color Settings in Aerial Images with the Use of Eye-Tracking User Study

    NASA Astrophysics Data System (ADS)

    Mirijovsky, J.; Popelka, S.

    2016-06-01

    The main aim of presented paper is to find the most realistic and preferred color settings for four different types of surfaces on the aerial images. This will be achieved through user study with the use of eye-movement recording. Aerial images taken by the unmanned aerial system were used as stimuli. From each image, squared crop area containing one of the studied types of surfaces (asphalt, concrete, water, soil, and grass) was selected. For each type of surface, the real value of reflectance was found with the use of precise spectroradiometer ASD HandHeld 2 which measures the reflectance. The device was used at the same time as aerial images were captured, so lighting conditions and state of vegetation were equal. The spectral resolution of the ASD device is better than 3.0 nm. For defining the RGB values of selected type of surface, the spectral reflectance values recorded by the device were merged into wider groups. Finally, we get three groups corresponding to RGB color system. Captured images were edited with the graphic editor Photoshop CS6. Contrast, clarity, and brightness were edited for all surface types on images. Finally, we get a set of 12 images of the same area with different color settings. These images were put into the grid and used as stimuli for the eye-tracking experiment. Eye-tracking is one of the methods of usability studies and it is considered as relatively objective. Eye-tracker SMI RED 250 with the sampling frequency 250 Hz was used in the study. As respondents, a group of 24 students of Geoinformatics and Geography was used. Their task was to select which image in the grid has the best color settings. The next task was to select which color settings they prefer. Respondents' answers were evaluated and the most realistic and most preferable color settings were found. The advantage of the eye-tracking evaluation was that also the process of the selection of the answers was analyzed. Areas of Interest were marked around each image in the

  15. First results for an image processing workflow for hyperspatial imagery acquired with a low-cost unmanned aerial vehicle (UAV).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Very high-resolution images from unmanned aerial vehicles (UAVs) have great potential for use in rangeland monitoring and assessment, because the imagery fills the gap between ground-based observations and remotely sensed imagery from aerial or satellite sensors. However, because UAV imagery is ofte...

  16. Polarimetric Multispectral Imaging Technology

    NASA Technical Reports Server (NTRS)

    Cheng, L.-J.; Chao, T.-H.; Dowdy, M.; Mahoney, C.; Reyes, G.

    1993-01-01

    The Jet Propulsion Laboratory is developing a remote sensing technology on which a new generation of compact, lightweight, high-resolution, low-power, reliable, versatile, programmable scientific polarimetric multispectral imaging instruments can be built to meet the challenge of future planetary exploration missions. The instrument is based on the fast programmable acousto-optic tunable filter (AOTF) of tellurium dioxide (TeO2) that operates in the wavelength range of 0.4-5 microns. Basically, the AOTF multispectral imaging instrument measures incoming light intensity as a function of spatial coordinates, wavelength, and polarization. Its operation can be in either sequential, random access, or multiwavelength mode as required. This provides observation flexibility, allowing real-time alternation among desired observations, collecting needed data only, minimizing data transmission, and permitting implementation of new experiments. These will result in optimization of the mission performance with minimal resources. Recently we completed a polarimetric multispectral imaging prototype instrument and performed outdoor field experiments for evaluating application potentials of the technology. We also investigated potential improvements on AOTF performance to strengthen technology readiness for applications. This paper will give a status report on the technology and a prospect toward future planetary exploration.

  17. Observation of coral reefs on Ishigaki Island, Japan, using Landsat TM images and aerial photographs

    SciTech Connect

    Matsunaga, Tsuneo; Kayanne, Hajime

    1997-06-01

    Ishigaki Island is located at the southwestern end of Japanese Islands and famous for its fringing coral reefs. More than twenty LANDSAT TM images in twelve years and aerial photographs taken on 1977 and 1994 were used to survey two shallow reefs on this island, Shiraho and Kabira. Intensive field surveys were also conducted in 1995. All satellite images of Shiraho were geometrically corrected and overlaid to construct a multi-date satellite data set. The effects of solar elevation and tide on satellite imagery were studied with this data set. The comparison of aerial and satellite images indicated that significant changes occurred between 1977 and 1984 in Kabira: rapid formation in the western part and decrease in the eastern part of dark patches. The field surveys revealed that newly formed dark patches in the west contain young corals. These results suggest that remote sensing is useful for not only mapping but also monitoring of shallow coral reefs.

  18. Application of machine learning for the evaluation of turfgrass plots using aerial images

    NASA Astrophysics Data System (ADS)

    Ding, Ke; Raheja, Amar; Bhandari, Subodh; Green, Robert L.

    2016-05-01

    Historically, investigation of turfgrass characteristics have been limited to visual ratings. Although relevant information may result from such evaluations, final inferences may be questionable because of the subjective nature in which the data is collected. Recent advances in computer vision techniques allow researchers to objectively measure turfgrass characteristics such as percent ground cover, turf color, and turf quality from the digital images. This paper focuses on developing a methodology for automated assessment of turfgrass quality from aerial images. Images of several turfgrass plots of varying quality were gathered using a camera mounted on an unmanned aerial vehicle. The quality of these plots were also evaluated based on visual ratings. The goal was to use the aerial images to generate quality evaluations on a regular basis for the optimization of water treatment. Aerial images are used to train a neural network so that appropriate features such as intensity, color, and texture of the turfgrass are extracted from these images. Neural network is a nonlinear classifier commonly used in machine learning. The output of the neural network trained model is the ratings of the grass, which is compared to the visual ratings. Currently, the quality and the color of turfgrass, measured as the greenness of the grass, are evaluated. The textures are calculated using the Gabor filter and co-occurrence matrix. Other classifiers such as support vector machines and simpler linear regression models such as Ridge regression and LARS regression are also used. The performance of each model is compared. The results show encouraging potential for using machine learning techniques for the evaluation of turfgrass quality and color.

  19. Image processing technology

    SciTech Connect

    Van Eeckhout, E.; Pope, P.; Balick, L.

    1996-07-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The primary objective of this project was to advance image processing and visualization technologies for environmental characterization. This was effected by developing and implementing analyses of remote sensing data from satellite and airborne platforms, and demonstrating their effectiveness in visualization of environmental problems. Many sources of information were integrated as appropriate using geographic information systems.

  20. Technology challenges for exploration of planets with aerial platforms

    NASA Astrophysics Data System (ADS)

    Cutts, James; Balint, Tibor; Hall, Jeffery; Kerzhanovich, Viktor; Jones, Jack; Kolawa, Elizabeth; Nott, Julian

    The planets Mars and Venus, and Saturn's moon Titan all possess sufficiently dense atmospheres for exploration with lighter than air (LTA) vehicles, capable of long duration scientific investigations. After a long hiatus since the first use of balloons in planetary exploration - the VEGA mission in 1984 - there is rapidly growing interest in using LTA platforms - also referred to as aerobots for carrying out key scientific measurements. These include measurements of the atmosphere, observations of the surface, sampling of the surface and sounding beneath the surface. Some technological challenges are common to all these targets - namely entry, deployment and inflation of the balloon system, which is normally most efficient during parachute descent to the surface. However, some challenges are considered very destination specific. For Mars, the very thin atmosphere could make it challenging to deploy and inflate a balloon before making surface contact, and small payload fractions may demand miniaturization of instruments. For Venus, the technological challenges depend on which region of the atmosphere the vehicle operates in. For operation near 55 km altitude, temperature and density conditions are similar to those near the Earth's surface, which would make a super pressure balloon practicable. Furthermore, robust enveloped balloon designs exist which are tolerant of the sulfurous atmosphere, and also to the stresses of transiting from the nightside to the dayside of Venus, while riding its super rotating upper atmosphere. Operation in the midand lower-atmosphere is expected to be more technologically demanding, where the use of metallic flotation modules could be the most suitable approach. On Titan, the environmental conditions are extraordinarily favorable for lighter than air flight, due to the dense atmosphere, lack of diurnal variation, and little UV radiation contributing to the benign conditions for envelope design. Moreover, at the sub-100K temperature of

  1. Shoreline extraction from light detection and ranging digital elevation model data and aerial images

    NASA Astrophysics Data System (ADS)

    Yousef, Amr; Iftekharuddin, Khan M.; Karim, Mohammad A.

    2014-01-01

    There is an increased demand for understanding the accurate position of the shorelines. The automatic extraction of shorelines utilizing the digital elevation models (DEMs) obtained from light detection and ranging (LiDAR), aerial images, and multispectral images has become very promising. In this article, we develop two innovative algorithms that can effectively extract shorelines depending on the available data sources. The first is a multistep morphological technique that works on LiDAR DEM with respect to a tidal datum, whereas the second depends on the availability of training data to extract shorelines from LiDAR DEM fused with aerial images. Unlike similar techniques, the morphological approach detects and eliminates the outliers that result from waves, etc., by means of an anomaly test with neighborhood constraints. Additionally, it eliminates docks, bridges, and fishing piers along the extracted shorelines by means of Hough transform. The second approach extracts the shoreline by means of color space conversion of the aerial images and the support vector machines classifier to segment the fused data into water and land. We perform Monte-Carlo simulations to estimate the confidence interval for the error in shoreline position. Compared with other relevant techniques in literature, the proposed methods offer better accuracy in shoreline extraction.

  2. Detection and clustering of features in aerial images by neuron network-based algorithm

    NASA Astrophysics Data System (ADS)

    Vozenilek, Vit

    2015-12-01

    The paper presents the algorithm for detection and clustering of feature in aerial photographs based on artificial neural networks. The presented approach is not focused on the detection of specific topographic features, but on the combination of general features analysis and their use for clustering and backward projection of clusters to aerial image. The basis of the algorithm is a calculation of the total error of the network and a change of weights of the network to minimize the error. A classic bipolar sigmoid was used for the activation function of the neurons and the basic method of backpropagation was used for learning. To verify that a set of features is able to represent the image content from the user's perspective, the web application was compiled (ASP.NET on the Microsoft .NET platform). The main achievements include the knowledge that man-made objects in aerial images can be successfully identified by detection of shapes and anomalies. It was also found that the appropriate combination of comprehensive features that describe the colors and selected shapes of individual areas can be useful for image analysis.

  3. Crop pest management with an aerial imaging system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing along with Global Positioning Systems, Geographic Information Systems, and variable rate technology has been developed, which scientists can implement to help farmers maximize the economic and environmental benefits of crop pest management through precision agriculture. Airborne remo...

  4. EROS main image file - A picture perfect database for Landsat imagery and aerial photography

    NASA Technical Reports Server (NTRS)

    Jack, R. F.

    1984-01-01

    The Earth Resources Observation System (EROS) Program was established by the U.S. Department of the Interior in 1966 under the administration of the Geological Survey. It is primarily concerned with the application of remote sensing techniques for the management of natural resources. The retrieval system employed to search the EROS database is called INORAC (Inquiry, Ordering, and Accounting). A description is given of the types of images identified in EROS, taking into account Landsat imagery, Skylab images, Gemini/Apollo photography, and NASA aerial photography. Attention is given to retrieval commands, geographic coordinate searching, refinement techniques, various online functions, and questions regarding the access to the EROS Main Image File.

  5. Orientation and Dense Reconstruction of Unordered Terrestrial and Aerial Wide Baseline Image Sets

    NASA Astrophysics Data System (ADS)

    Bartelsen, J.; Mayer, H.; Hirschmüller, H.; Kuhn, A.; Michelini, M.

    2012-07-01

    In this paper we present an approach for detailed and precise automatic dense 3D reconstruction using images from consumer cameras. The major difference between our approach and many others is that we focus on wide-baseline image sets. We have combined and improved several methods, particularly, least squares matching, RANSAC, scale-space maxima and bundle adjustment, for robust matching and parameter estimation. Point correspondences and the five-point algorithm lead to relative orientation. Due to our robust matching method it is possible to orient images under much more unfavorable conditions, for instance concerning illumination changes or scale differences, than for often used operators such as SIFT. For dense reconstruction, we use our orientation as input for Semiglobal Matching (SGM) resulting into dense depth images. The latter can be fused into a 2.5D model for eliminating the redundancy of the highly overlapping depth images. However, some applications require full 3D models. A solution to this problem is part of our current work, for which preliminary results are presented in this paper. With very small unmanned aerial systems (Micro UAS) it is possible to acquire images which have a perspective similar to terrestrial images and can thus be combined with them. Such a combination is useful for an almost complete 3D reconstruction of urban scenes. We have applied our approach to several hundred aerial and terrestrial images and have generated detailed 2.5D and 3D models of urban areas.

  6. Semi-auto assessment system on building damage caused by landslide disaster with high-resolution satellite and aerial images

    NASA Astrophysics Data System (ADS)

    Sun, Bo; Xu, Qihua; He, Jun; Ge, Fengxiang; Wang, Ying

    2015-10-01

    In recent years, earthquake and heavy rain have triggered more and more landslides, which have caused serious economic losses. The timely detection of the disaster area and the assessment of the hazard are necessary and primary for disaster mitigation and relief. As high-resolution satellite and aerial images have been widely used in the field of environmental monitoring and disaster management, the damage assessment by processing satellite and aerial images has become a hot spot of research work. The rapid assessment of building damage caused by landslides with high-resolution satellite or aerial images is the focus of this article. In this paper, after analyzing the morphological characteristics of the landslide disaster, we proposed a set of criteria for rating building damage, and designed a semi-automatic evaluation system. The system is applied to the satellite and aerial images processing. The performance of the experiments demonstrated the effectiveness of our system.

  7. Miniaturization of high spectral spatial resolution hyperspectral imagers on unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Hill, Samuel L.; Clemens, Peter

    2015-06-01

    Traditional airborne environmental monitoring has frequently deployed hyperspectral imaging as a leading tool for characterizing and analyzing a scene's critical spectrum-based signatures for applications in agriculture genomics and crop health, vegetation and mineral monitoring, and hazardous material detection. As the acceptance of hyperspectral evaluation grows in the airborne community, there has been a dramatic trend in moving the technology from use on midsize aircraft to Unmanned Aerial Systems (UAS). The use of UAS accomplishes a number of goals including the reduction in cost to run multiple seasonal evaluations over smaller but highly valuable land-areas, the ability to use frequent data collections to make rapid decisions on land management, and the improvement of spatial resolution by flying at lower altitudes (<500 ft.). Despite this trend, there are several key parameters affecting the use of traditional hyperspectral instruments in UAS with payloads less than 10 lbs. where size, weight and power (SWAP) are critical to how high and how far a given UAS can fly. Additionally, on many of the light-weight UAS, users are frequently trying to capture data from one or more instruments to augment the hyperspectral data collection, thus reducing the amount of SWAP available to the hyperspectral instrumentation. The following manuscript will provide an analysis on a newly-developed miniaturized hyperspectral imaging platform, the Nano-Hyperspec®, which provides full hyperspectral resolution and traditional hyperspectral capabilities without sacrificing performance to accommodate the decreasing SWAP of smaller and smaller UAS platforms. The analysis will examine the Nano-Hyperspec flown in several UAS airborne environments and the correlation of the systems data with LiDAR and other GIS datasets.

  8. MaNIAC-UAV - a methodology for automatic pavement defects detection using images obtained by Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Henrique Castelo Branco, Luiz; César Lima Segantine, Paulo

    2015-09-01

    Intelligent Transportation Systems - ITS is a set of integrated technologies (Remote Sensing, Image Processing, Communications Systems and others) that aim to offer services and advanced traffic management for the several transportation modes (road, air and rail). Collect data on the characteristics and conditions of the road surface and keep them update is an important and difficult task that needs to be currently managed in order to reduce accidents and vehicle maintenance costs. Nowadays several roads and highways are paved, but usually there is insufficient updated data about current condition and status. There are different types of pavement defects on the roads and to keep them in good condition they should be constantly monitored and maintained according to pavement management strategy. This paper presents a methodology to obtain, automatically, information about the conditions of the highway asphalt pavement. Data collection was done through remote sensing using an UAV (Unmanned Aerial Vehicle) and the image processing and pattern recognition techniques through Geographic Information System.

  9. Moving object detection using dynamic motion modelling from UAV aerial images.

    PubMed

    Saif, A F M Saifuddin; Prabuwono, Anton Satria; Mahayuddin, Zainal Rasyid

    2014-01-01

    Motion analysis based moving object detection from UAV aerial image is still an unsolved issue due to inconsideration of proper motion estimation. Existing moving object detection approaches from UAV aerial images did not deal with motion based pixel intensity measurement to detect moving object robustly. Besides current research on moving object detection from UAV aerial images mostly depends on either frame difference or segmentation approach separately. There are two main purposes for this research: firstly to develop a new motion model called DMM (dynamic motion model) and secondly to apply the proposed segmentation approach SUED (segmentation using edge based dilation) using frame difference embedded together with DMM model. The proposed DMM model provides effective search windows based on the highest pixel intensity to segment only specific area for moving object rather than searching the whole area of the frame using SUED. At each stage of the proposed scheme, experimental fusion of the DMM and SUED produces extracted moving objects faithfully. Experimental result reveals that the proposed DMM and SUED have successfully demonstrated the validity of the proposed methodology. PMID:24892103

  10. A Semi-Automated Single Day Image Differencing Technique to Identify Animals in Aerial Imagery

    PubMed Central

    Terletzky, Pat; Ramsey, Robert Douglas

    2014-01-01

    Our research presents a proof-of-concept that explores a new and innovative method to identify large animals in aerial imagery with single day image differencing. We acquired two aerial images of eight fenced pastures and conducted a principal component analysis of each image. We then subtracted the first principal component of the two pasture images followed by heuristic thresholding to generate polygons. The number of polygons represented the number of potential cattle (Bos taurus) and horses (Equus caballus) in the pasture. The process was considered semi-automated because we were not able to automate the identification of spatial or spectral thresholding values. Imagery was acquired concurrently with ground counts of animal numbers. Across the eight pastures, 82% of the animals were correctly identified, mean percent commission was 53%, and mean percent omission was 18%. The high commission error was due to small mis-alignments generated from image-to-image registration, misidentified shadows, and grouping behavior of animals. The high probability of correctly identifying animals suggests short time interval image differencing could provide a new technique to enumerate wild ungulates occupying grassland ecosystems, especially in isolated or difficult to access areas. To our knowledge, this was the first attempt to use standard change detection techniques to identify and enumerate large ungulates. PMID:24454827

  11. Parameter-Based Performance Analysis of Object-Based Image Analysis Using Aerial and Quikbird-2 Images

    NASA Astrophysics Data System (ADS)

    Kavzoglu, T.; Yildiz, M.

    2014-09-01

    Opening new possibilities for research, very high resolution (VHR) imagery acquired by recent commercial satellites and aerial systems requires advanced approaches and techniques that can handle large volume of data with high local variance. Delineation of land use/cover information from VHR images is a hot research topic in remote sensing. In recent years, object-based image analysis (OBIA) has become a popular solution for image analysis tasks as it considers shape, texture and content information associated with the image objects. The most important stage of OBIA is the image segmentation process applied prior to classification. Determination of optimal segmentation parameters is of crucial importance for the performance of the selected classifier. In this study, effectiveness and applicability of the segmentation method in relation to its parameters was analysed using two VHR images, an aerial photo and a Quickbird-2 image. Multi-resolution segmentation technique was employed with its optimal parameters of scale, shape and compactness that were defined after an extensive trail process on the data sets. Nearest neighbour classifier was applied on the segmented images, and then the accuracy assessment was applied. Results show that segmentation parameters have a direct effect on the classification accuracy, and low values of scale-shape combinations produce the highest classification accuracies. Also, compactness parameter was found to be having minimal effect on the construction of image objects, hence it can be set to a constant value in image classification.

  12. Contact area as the intuitive definition of contact CD based on aerial image analysis

    NASA Astrophysics Data System (ADS)

    Polonsky, Netanel; Sagiv, Amir; Mangan, Shmoolik

    2009-03-01

    As feature sizes continue to diminish, optical lithography is driven into the extreme low-k1 regime, where the high MEEF increasingly complicates the relationship between the mask pattern and the aerial image. This is true in particular for twodimensional mask patterns, which are by nature much more complicated than patterns possessing one-dimensional symmetry. Thus, the intricacy of 2D image formation typically requires a much broader arsenal of resolution enhancement techniques over complex phase shift masks, including SRAFs and OPC, as well as exotic off-axis illumination geometries. This complexity on the mask side makes the printability effect of a random defect on a 2D pattern a field of rich and delicate phenomenology. This complexity is reflected in the dispute over the CD definition of 2D patterns: some sources use the X and Y values, while others use the contact area. Here, we argue that for compact features, for which the largest dimension is not wider than the PSF of the stepper optics, the area definition is the natural one. We study the response of the aerial image to small perturbations in mask pattern. We show that any perturbation creates an effect extending in all directions, thus affecting the area and not the size in a single direction. We also show that, irrespective of the source of perturbation, the aerial signal is proportional to the variation in the area of the printed feature. The consequence of this effect is that aerial inspection signal scales linearly with the variation of printed area of the tested feature.

  13. Seasonal landslide mapping and estimation of landslide mobilization rates using aerial and satellite images

    NASA Astrophysics Data System (ADS)

    Fiorucci, F.; Cardinali, M.; Carlà, R.; Rossi, M.; Mondini, A. C.; Santurri, L.; Ardizzone, F.; Guzzetti, F.

    2011-06-01

    We tested the possibility of using digital, color aerial ortho-photographs and monoscopic, panchromatic satellite images of comparable spatial and radiometric resolution, to map recent landslides in Italy and to update existing measures of landslide mobilization. In a 90-km 2 area in Umbria, central Apennines, rainfall resulted in abundant landslides in the period from September 2004 to June 2005. Analysis of the rainfall record determined the approximate dates of landslide occurrence and revealed that the slope failures occurred in response to moderately wet rainfall periods. The slope failures occurred primarily in cultivated terrain and left subtle morphological and land cover signatures, making the recognition and mapping of the individual landslides problematic. Despite the difficulty with the identification of the landslides without the use of stereoscopic visualization, visual analysis of the aerial and satellite images allowed mapping 457 new landslides, ranging in area 3.0 × 10 1 < AL < 2.5 × 10 4 m 2, for a total landslide area ALT = 6.92 × 10 5 m 2. To identify the landslides, the investigators adopted the interpretation criteria commonly used to identify and map landslides on aerial photography. The result confirms that monoscopic, very high resolution images taken by airborne and satellite sensors can be used to prepare landslide maps even where slope failures are difficult to detect, provided the imagery has sufficient geometric and radiometric resolutions. The different dates of the aerial (March 2005) and the satellite (June-July 2005) images allowed the temporal segmentation of the landslide information, and studying the statistics of landslide area and volume for different periods. Compared to pre-existing information on the abundance and size of the landslides in the area, the inventory obtained by studying the aerial and satellite images proved more complete. The new mapping showed 145% more landslides and 85% more landslide area than a pre

  14. Updating road databases from shape-files using aerial images

    NASA Astrophysics Data System (ADS)

    Häufel, Gisela; Bulatov, Dimitri; Pohl, Melanie

    2015-10-01

    Road databases are an important part of geo data infrastructure. The knowledge about their characteristics and course is essential for urban planning, navigation or evacuation tasks. Starting from OpenStreetMap (OSM) shape-file data for street networks, we introduce an algorithm to enrich these available road maps by new maps which are based on other airborne sensor technology. In our case, these are results of our context-based urban terrain reconstruction process. We wish to enhance the use of road databases by computing additional junctions, narrow passages and other items which may emerge due to changes in the terrain. This is relevant for various military and civil applications.

  15. Two matrix approaches for aerial image formation obtained by extending and modifying the transmission cross coefficients.

    PubMed

    Yamazoe, Kenji

    2010-06-01

    This paper physically compares two different matrix representations of partially coherent imaging with the introduction of matrices E and Z, containing the source, object, and pupil. The matrix E is obtained by extending the Hopkins transmission cross coefficient (TCC) approach such that the pupil function is shifted while the matrix Z is obtained by shifting the object spectrum. The aerial image I can be written as a convex quadratic form I = = , where |phi> is a column vector representing plane waves. It is shown that rank(Z) < or = rank(E) = rank(T) = N, where T is the TCC matrix and N is the number of the point sources for a given unpolarized illumination. Therefore, the matrix Z requires fewer than N eigenfunctions for a complete aerial image formation, while the matrix E or T always requires N eigenfunctions. More importantly, rank(Z) varies depending on the degree of coherence determined by the von Neumann entropy, which is shown to relate to the mutual intensity. For an ideal pinhole as an object, emitting spatially coherent light, only one eigenfunction--i.e., the pupil function--is enough to describe the coherent imaging. In this case, we obtain rank(Z) = 1 and the pupil function as the only eigenfunction regardless of the illumination. However, rank(E) = rank(T) = N even when the object is an ideal pinhole. In this sense, aerial image formation with the matrix Z is physically more meaningful than with the matrix E. The matrix Z is decomposed as B(dagger)B, where B is a singular matrix, suggesting that the matrix B as well as Z is a principal operator characterizing the degree of coherence of the partially coherent imaging. PMID:20508699

  16. Real-time aerial multispectral imaging solutions using dichroic filter arrays

    NASA Astrophysics Data System (ADS)

    Chandler, Eric V.; Fish, David E.

    2014-06-01

    The next generation of multispectral sensors and cameras needs to deliver significant improvements in size, weight, portability, and spectral band customization to support widespread commercial deployment for a variety of purposebuilt aerial, unmanned, and scientific applications. The benefits of multispectral imaging are well established for applications including machine vision, biomedical, authentication, and remote sensing environments - but many aerial and OEM solutions require more compact, robust, and cost-effective production cameras to realize these benefits. A novel implementation uses micropatterning of dichroic filters into Bayer and custom mosaics, enabling true real-time multispectral imaging with simultaneous multi-band image acquisition. Consistent with color camera image processing, individual spectral channels are de-mosaiced with each channel providing an image of the field of view. We demonstrate recent results of 4-9 band dichroic filter arrays in multispectral cameras using a variety of sensors including linear, area, silicon, and InGaAs. Specific implementations range from hybrid RGB + NIR sensors to custom sensors with applicationspecific VIS, NIR, and SWIR spectral bands. Benefits and tradeoffs of multispectral sensors using dichroic filter arrays are compared with alternative approaches - including their passivity, spectral range, customization options, and development path. Finally, we report on the wafer-level fabrication of dichroic filter arrays on imaging sensors for scalable production of multispectral sensors and cameras.

  17. Film cameras or digital sensors? The challenge ahead for aerial imaging

    USGS Publications Warehouse

    Light, D.L.

    1996-01-01

    Cartographic aerial cameras continue to play the key role in producing quality products for the aerial photography business, and specifically for the National Aerial Photography Program (NAPP). One NAPP photograph taken with cameras capable of 39 lp/mm system resolution can contain the equivalent of 432 million pixels at 11 ??m spot size, and the cost is less than $75 per photograph to scan and output the pixels on a magnetic storage medium. On the digital side, solid state charge coupled device linear and area arrays can yield quality resolution (7 to 12 ??m detector size) and a broader dynamic range. If linear arrays are to compete with film cameras, they will require precise attitude and positioning of the aircraft so that the lines of pixels can be unscrambled and put into a suitable homogeneous scene that is acceptable to an interpreter. Area arrays need to be much larger than currently available to image scenes competitive in size with film cameras. Analysis of the relative advantages and disadvantages of the two systems show that the analog approach is more economical at present. However, as arrays become larger, attitude sensors become more refined, global positioning system coordinate readouts become commonplace, and storage capacity becomes more affordable, the digital camera may emerge as the imaging system for the future. Several technical challenges must be overcome if digital sensors are to advance to where they can support mapping, charting, and geographic information system applications.

  18. Using aberration test patterns to optimize the performance of EUV aerial imaging microscopes

    SciTech Connect

    Mochi, Iacopo; Goldberg, Kenneth A.; Miyakawa, Ryan; Naulleau, Patrick; Han, Hak-Seung; Huh, Sungmin

    2009-06-16

    The SEMATECH Berkeley Actinic Inspection Tool (AIT) is a prototype EUV-wavelength zoneplate microscope that provides high quality aerial image measurements of EUV reticles. To simplify and improve the alignment procedure we have created and tested arrays of aberration-sensitive patterns on EUV reticles and we have compared their images collected with the AIT to the expected shapes obtained by simulating the theoretical wavefront of the system. We obtained a consistent measure of coma and astigmatism in the center of the field of view using two different patterns, revealing a misalignment condition in the optics.

  19. Looking into the water with oblique head tilting: revision of the aerial binocular imaging of underwater objects.

    PubMed

    Horváth, Gábor; Buchta, Krisztián; Varjú, Dezsö

    2003-06-01

    It is a well-known phenomenon that when we look into the water with two aerial eyes, both the apparent position and the apparent shape of underwater objects are different from the real ones because of refraction at the water surface. Earlier studies of the refraction-distorted structure of the underwater binocular visual field of aerial observers were restricted to either vertically or horizontally oriented eyes. We investigate a generalized version of this problem: We calculate the position of the binocular image point of an underwater object point viewed by two arbitrarily positioned aerial eyes, including oblique orientations of the eyes relative to the flat water surface. Assuming that binocular image fusion is performed by appropriate vergent eye movements to bring the object's image onto the foveas, the structure of the underwater binocular visual field is computed and visualized in different ways as a function of the relative positions of the eyes. We show that a revision of certain earlier treatments of the aerial imaging of underwater objects is necessary. We analyze and correct some widespread erroneous or incomplete representations of this classical geometric optical problem that occur in different textbooks. Improving the theory of aerial binocular imaging of underwater objects, we demonstrate that the structure of the underwater binocular visual field of aerial observers distorted by refraction is more complex than has been thought previously. PMID:12801180

  20. Image degradation in aerial imagery duplicates. [photographic processing of photographic film and reproduction (copying)

    NASA Technical Reports Server (NTRS)

    Lockwood, H. E.

    1975-01-01

    A series of Earth Resources Aircraft Program data flights were made over an aerial test range in Arizona for the evaluation of large cameras. Specifically, both medium altitude and high altitude flights were made to test and evaluate a series of color as well as black-and-white films. Image degradation, inherent in duplication processing, was studied. Resolution losses resulting from resolution characteristics of the film types are given. Color duplicates, in general, are shown to be degraded more than black-and-white films because of the limitations imposed by available aerial color duplicating stock. Results indicate that a greater resolution loss may be expected when the original has higher resolution. Photographs of the duplications are shown.

  1. Application of Technical Measures and Software in Constructing Photorealistic 3D Models of Historical Building Using Ground-Based and Aerial (UAV) Digital Images

    NASA Astrophysics Data System (ADS)

    Zarnowski, Aleksander; Banaszek, Anna; Banaszek, Sebastian

    2015-12-01

    Preparing digital documentation of historical buildings is a form of protecting cultural heritage. Recently there have been several intensive studies using non-metric digital images to construct realistic 3D models of historical buildings. Increasingly often, non-metric digital images are obtained with unmanned aerial vehicles (UAV). Technologies and methods of UAV flights are quite different from traditional photogrammetric approaches. The lack of technical guidelines for using drones inhibits the process of implementing new methods of data acquisition. This paper presents the results of experiments in the use of digital images in the construction of photo-realistic 3D model of a historical building (Raphaelsohns' Sawmill in Olsztyn). The aim of the study at the first stage was to determine the meteorological and technical conditions for the acquisition of aerial and ground-based photographs. At the next stage, the technology of 3D modelling was developed using only ground-based or only aerial non-metric digital images. At the last stage of the study, an experiment was conducted to assess the possibility of 3D modelling with the comprehensive use of aerial (UAV) and ground-based digital photographs in terms of their labour intensity and precision of development. Data integration and automatic photo-realistic 3D construction of the models was done with Pix4Dmapper and Agisoft PhotoScan software Analyses have shown that when certain parameters established in an experiment are kept, the process of developing the stock-taking documentation for a historical building moves from the standards of analogue to digital technology with considerably reduced cost.

  2. Automated hotspot analysis with aerial image CD metrology for advanced logic devices

    NASA Astrophysics Data System (ADS)

    Buttgereit, Ute; Trautzsch, Thomas; Kim, Min-ho; Seo, Jung-Uk; Yoon, Young-Keun; Han, Hak-Seung; Chung, Dong Hoon; Jeon, Chan-Uk; Meyers, Gary

    2014-09-01

    Continuously shrinking designs by further extension of 193nm technology lead to a much higher probability of hotspots especially for the manufacturing of advanced logic devices. The CD of these potential hotspots needs to be precisely controlled and measured on the mask. On top of that, the feature complexity increases due to high OPC load in the logic mask design which is an additional challenge for CD metrology. Therefore the hotspot measurements have been performed on WLCD from ZEISS, which provides the benefit of reduced complexity by measuring the CD in the aerial image and qualifying the printing relevant CD. This is especially of advantage for complex 2D feature measurements. Additionally, the data preparation for CD measurement becomes more critical due to the larger amount of CD measurements and the increasing feature diversity. For the data preparation this means to identify these hotspots and mark them automatically with the correct marker required to make the feature specific CD measurement successful. Currently available methods can address generic pattern but cannot deal with the pattern diversity of the hotspots. The paper will explore a method how to overcome those limitations and to enhance the time-to-result in the marking process dramatically. For the marking process the Synopsys WLCD Output Module was utilized, which is an interface between the CATS mask data prep software and the WLCD metrology tool. It translates the CATS marking directly into an executable WLCD measurement job including CD analysis. The paper will describe the utilized method and flow for the hotspot measurement. Additionally, the achieved results on hotspot measurements utilizing this method will be presented.

  3. Underwater binocular imaging of aerial objects versus the position of eyes relative to the flat water surface.

    PubMed

    Barta, András; Horváth, Gábor

    2003-12-01

    The apparent position, size, and shape of aerial objects viewed binocularly from water change as a result of the refraction of light at the water surface. Earlier studies of the refraction-distorted structure of the aerial binocular visual field of underwater observers were restricted to either vertically or horizontally oriented eyes. Here we calculate the position of the binocular image point of an aerial object point viewed by two arbitrarily positioned underwater eyes when the water surface is flat. Assuming that binocular image fusion is performed by appropriate vergent eye movements to bring the object's image onto the foveae, the structure of the aerial binocular visual field is computed and visualized as a function of the relative positions of the eyes. We also analyze two erroneous representations of the underwater imaging of aerial objects that have occurred in the literature. It is demonstrated that the structure of the aerial binocular visual field of underwater observers distorted by refraction is more complex than has been thought previously. PMID:14686517

  4. A multi-scale registration of urban aerial image with airborne lidar data

    NASA Astrophysics Data System (ADS)

    Huang, Shuo; Chen, Siying; Zhang, Yinchao; Guo, Pan; Chen, He

    2015-11-01

    This paper presented a multi-scale progressive registration method of airborne LiDAR data with aerial image. The cores of the proposed method lie in the coarse registration with road networks and the fine registration method using regularized building corners. During the two-stage registration, the exterior orientation parameters (EOP) are continually refined. By validation of the actual flight data of Dunhuang, the experimental result shows that the proposed method can obtain accurate results with low-precision initial EOP, also improve the automatic degree of registration.

  5. Density estimation in aerial images of large crowds for automatic people counting

    NASA Astrophysics Data System (ADS)

    Herrmann, Christian; Metzler, Juergen

    2013-05-01

    Counting people is a common topic in the area of visual surveillance and crowd analysis. While many image-based solutions are designed to count only a few persons at the same time, like pedestrians entering a shop or watching an advertisement, there is hardly any solution for counting large crowds of several hundred persons or more. We addressed this problem previously by designing a semi-automatic system being able to count crowds consisting of hundreds or thousands of people based on aerial images of demonstrations or similar events. This system requires major user interaction to segment the image. Our principle aim is to reduce this manual interaction. To achieve this, we propose a new and automatic system. Besides counting the people in large crowds, the system yields the positions of people allowing a plausibility check by a human operator. In order to automatize the people counting system, we use crowd density estimation. The determination of crowd density is based on several features like edge intensity or spatial frequency. They indicate the density and discriminate between a crowd and other image regions like buildings, bushes or trees. We compare the performance of our automatic system to the previous semi-automatic system and to manual counting in images. By counting a test set of aerial images showing large crowds containing up to 12,000 people, the performance gain of our new system will be measured. By improving our previous system, we will increase the benefit of an image-based solution for counting people in large crowds.

  6. Analyzing Spectral Characteristics of Shadow Area from ADS-40 High Radiometric Resolution Aerial Images

    NASA Astrophysics Data System (ADS)

    Hsieh, Yi-Ta; Wu, Shou-Tsung; Chen, Chaur-Tzuhn; Chen, Jan-Chang

    2016-06-01

    The shadows in optical remote sensing images are regarded as image nuisances in numerous applications. The classification and interpretation of shadow area in a remote sensing image are a challenge, because of the reduction or total loss of spectral information in those areas. In recent years, airborne multispectral aerial image devices have been developed 12-bit or higher radiometric resolution data, including Leica ADS-40, Intergraph DMC. The increased radiometric resolution of digital imagery provides more radiometric details of potential use in classification or interpretation of land cover of shadow areas. Therefore, the objectives of this study are to analyze the spectral properties of the land cover in the shadow areas by ADS-40 high radiometric resolution aerial images, and to investigate the spectral and vegetation index differences between the various shadow and non-shadow land covers. According to research findings of spectral analysis of ADS-40 image: (i) The DN values in shadow area are much lower than in nonshadow area; (ii) DN values received from shadowed areas that will also be affected by different land cover, and it shows the possibility of land cover property retrieval as in nonshadow area; (iii) The DN values received from shadowed regions decrease in the visible band from short to long wavelengths due to scattering; (iv) The shadow area NIR of vegetation category also shows a strong reflection; (v) Generally, vegetation indexes (NDVI) still have utility to classify the vegetation and non-vegetation in shadow area. The spectral data of high radiometric resolution images (ADS-40) is potential for the extract land cover information of shadow areas.

  7. New Approach for Segmentation and Extraction of Single Tree from Point Clouds Data and Aerial Images

    NASA Astrophysics Data System (ADS)

    Homainejad, A. S.

    2016-06-01

    This paper addresses a new approach for reconstructing a 3D model from single trees via Airborne Laser Scanners (ALS) data and aerial images. The approach detects and extracts single tree from ALS data and aerial images. The existing approaches are able to provide bulk segmentation from a group of trees; however, some methods focused on detection and extraction of a particular tree from ALS and images. Segmentation of a single tree within a group of trees is mostly a mission impossible since the detection of boundary lines between the trees is a tedious job and basically it is not feasible. In this approach an experimental formula based on the height of the trees was developed and applied in order to define the boundary lines between the trees. As a result, each single tree was segmented and extracted and later a 3D model was created. Extracted trees from this approach have a unique identification and attribute. The output has application in various fields of science and engineering such as forestry, urban planning, and agriculture. For example in forestry, the result can be used for study in ecologically diverse, biodiversity and ecosystem.

  8. D Classification of Crossroads from Multiple Aerial Images Using Markov Random Fields

    NASA Astrophysics Data System (ADS)

    Kosov, S.; Rottensteiner, F.; Heipke, C.; Leitloff, J.; Hinz, S.

    2012-08-01

    The precise classification and reconstruction of crossroads from multiple aerial images is a challenging problem in remote sensing. We apply the Markov Random Fields (MRF) approach to this problem, a probabilistic model that can be used to consider context in classification. A simple appearance-based model is combined with a probabilistic model of the co-occurrence of class label at neighbouring image sites to distinguish up to 14 different classes that are relevant for scenes containing crossroads. The parameters of these models are learnt from training data. We use multiple overlap aerial images to derive a digital surface model (DSM) and a true orthophoto without moving cars. From the DSM and the orthophoto we derive feature vectors that are used in the classification. One of the features is a car confidence value that is supposed to support the classification when the road surface is occluded by static cars. Our approach is evaluated on a dataset of airborne photos of an urban area by a comparison of the results to reference data. Whereas the method has problems in distinguishing classes having a similar appearance, it is shown to produce promising results if a reduced set of classes is considered, yielding an overall classification accuracy of 74.8%.

  9. Fractal methods for extracting artificial objects from the unmanned aerial vehicle images

    NASA Astrophysics Data System (ADS)

    Markov, Eugene

    2016-04-01

    Unmanned aerial vehicles (UAVs) have become used increasingly in earth surface observations, with a special interest put into automatic modes of environmental control and recognition of artificial objects. Fractal methods for image processing well detect the artificial objects in digital space images but were not applied previously to the UAV-produced imagery. Parameters of photography, on-board equipment, and image characteristics differ considerably for spacecrafts and UAVs. Therefore, methods that work properly with space images can produce different results for the UAVs. In this regard, testing the applicability of fractal methods for the UAV-produced images and determining the optimal range of parameters for these methods represent great interest. This research is dedicated to the solution of this problem. Specific features of the earth's surface images produced with UAVs are described in the context of their interpretation and recognition. Fractal image processing methods for extracting artificial objects are described. The results of applying these methods to the UAV images are presented.

  10. Nonlinear Estimation Approach to Real-Time Georegistration from Aerial Images

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Padgett, Curtis W.

    2012-01-01

    When taking aerial images, it is important to know locations of specific points of interest in an Earth-centered coordinate system (latitude, longitude, height). The correspondence between a pixel location in the image and its Earth coordinate is known as georegistration. There are two main technical challenges arising in the intended application. The first is that no known features are assumed to be available in any of the images. The second is that the intended applications are real time. Here, images are taken at regular intervals (i.e. once per second), and it is desired to make decisions in real time based on the geolocation of specific objects seen in the images as they arrive. This is in sharp contrast to most current methods for geolocation that operate "after-the-fact" by processing, on the ground, a database of stored images using computationally intensive methods. The solution is a nonlinear estimation algorithm that combines processed realtime camera images with vehicle position and attitude information ob tained from an onboard GPS receiver. This approach provides accurate georegistration estimates (latitude, longitude, height) of arbitrary features and/or points of interest seen in the camera images. This solves the georegistration problem at the modest cost of augmenting the camera information with a GPS receiver carried onboard the vehicle.

  11. Automatic aerial image shadow detection through the hybrid analysis of RGB and HIS color space

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Li, Huilin; Peng, Zhiyong

    2015-12-01

    This paper presents our research on automatic shadow detection from high-resolution aerial image through the hybrid analysis of RGB and HIS color space. To this end, the spectral characteristics of shadow are firstly discussed and three kinds of spectral components including the difference between normalized blue and normalized red component - BR, intensity and saturation components are selected as criterions to obtain initial segmentation of shadow region (called primary segmentation). After that, within the normalized RGB color space and HIS color space, the shadow region is extracted again (called auxiliary segmentation) using the OTSU operation, respectively. Finally, the primary segmentation and auxiliary segmentation are combined through a logical AND-connection operation to obtain reliable shadow region. In this step, small shadow areas are removed from combined shadow region and morphological algorithms are apply to fill small holes as well. The experimental results show that the proposed approach can effectively detect the shadow region from high-resolution aerial image and in high degree of automaton.

  12. Aerial Image Microscopes for the Inspection of Defects in EUV Masks

    SciTech Connect

    Barty, A; Taylor, J S; Hudyma, R; Spiller, E; Sweeney, D W; Shelden, G; Urbach, J-P

    2002-10-22

    The high volume inspection equipment currently available to support development of EUV blanks is non-actinic. The same is anticipated for patterned EUV mask inspection. Once potential defects are identified and located by such non-actinic inspection techniques, it is essential to have instrumentation to perform detailed characterization, and if repairs are performed, re-evaluation. The ultimate metric for the acceptance or rejection of a mask due to a defect, is the wafer level impact. Thus measuring the aerial image for the site under question is required. An EUV Aerial Image Microscope (''AIM'') similar to the current AIM tools for 248nm and 193nm exposure wavelength is the natural solution for this task. Due to the complicated manufacturing process of EUV blanks, AIM measurements might also be beneficial to accurately assessing the severity of a blank defect. This is an additional application for an EUV AIM as compared to today's use In recognition of the critical role of an EUV AIM for the successful implementation of EUV blank and mask supply, International SEMATECH initiated this design study with the purpose to define the technical requirements for accurately simulating EUV scanner performance, demonstrating the feasibility to meet these requirements and to explore various technical approaches to building an EUV AIM tool.

  13. Exploration of mineral resource deposits based on analysis of aerial and satellite image data employing artificial intelligence methods

    NASA Astrophysics Data System (ADS)

    Osipov, Gennady

    2013-04-01

    includes noncontact registration of eye motion, reconstruction of "attention landscape" fixed by the expert, recording the comments of the expert who is a specialist in the field of images` interpretation, and transfer this information into knowledge base.Creation of base of ophthalmologic images (OI) includes making semantic contacts from great number of OI based on analysis of OI and expert's comments.Processing of OI and making generalized OI (GOI) is realized by inductive logic algorithms and consists in synthesis of structural invariants of OI. The mode of recognition and interpretation of unknown images consists of several stages, which include: comparison of unknown image with the base of structural invariants of OI; revealing of structural invariants in unknown images; ynthesis of interpretive message of the structural invariants base and OI base (the experts` comments stored in it). We want to emphasize that the training mode does not assume special involvement of experts to teach the system - it is realized in the process of regular experts` work on image interpretation and it becomes possible after installation of a special apparatus for non contact registration of experts` attention. Consequently, the technology, which principles is described there, provides fundamentally new effective solution to the problem of exploration of mineral resource deposits based on computer analysis of aerial and satellite image data.

  14. a Robust Matching Method for Unmmaned Aerial Vehicle Images with Different Viewpoint Angles Based on Regional Coherency

    NASA Astrophysics Data System (ADS)

    Shao, Z.; Li, C.; Yang, N.

    2015-08-01

    One of the main challenges confronting high-resolution remote sensing image matching is how to address the issue of geometric deformation between images, especially when the images are obtained from different viewpoints. In this paper, a robust matching method for Unmanned Aerial Vehicle images of different viewpoint angles based on regional coherency is proposed. The literature on the geometric transform analysis reveals that if transformations between different pixel pairs are different, they can't be expressed by a uniform affine transform. While for the same real scene, if the instantaneous field of view or the target depth changes is small, transformation between pixels in the whole image can be approximated by an affine transform. On the basis of this analysis, a region coherency matching method for Unmanned Aerial Vehicle images is proposed. In the proposed method, the simplified mapping from image view change to scale change and rotation change has been derived. Through this processing, the matching between view change images can be converted into the matching between rotation and scale changed images. In the method, firstly local image regions are detected and view changes between these local regions are mapped to rotation and scale change by performing local region simulation. And then, point feature detection and matching are implemented in the simulated image regions. Finally, a group of Unmanned Aerial Vehicle images are adopted to verify the performance of proposed matching method respectively, and a comparative analysis with other methods demonstrates the effectiveness of the proposed method.

  15. Feature-based registration of historical aerial images by Area Minimization

    NASA Astrophysics Data System (ADS)

    Nagarajan, Sudhagar; Schenk, Toni

    2016-06-01

    The registration of historical images plays a significant role in assessing changes in land topography over time. By comparing historical aerial images with recent data, geometric changes that have taken place over the years can be quantified. However, the lack of ground control information and precise camera parameters has limited scientists' ability to reliably incorporate historical images into change detection studies. Other limitations include the methods of determining identical points between recent and historical images, which has proven to be a cumbersome task due to continuous land cover changes. Our research demonstrates a method of registering historical images using Time Invariant Line (TIL) features. TIL features are different representations of the same line features in multi-temporal data without explicit point-to-point or straight line-to-straight line correspondence. We successfully determined the exterior orientation of historical images by minimizing the area formed between corresponding TIL features in recent and historical images. We then tested the feasibility of the approach with synthetic and real data and analyzed the results. Based on our analysis, this method shows promise for long-term 3D change detection studies.

  16. An aerial remote sensing image's mosaic approach using multi-layer wavelet fusion based on structure similarity

    NASA Astrophysics Data System (ADS)

    Wei, Li; Shi, Junsheng; Huang, Xiaoqiao; Ding, Huimei

    2015-12-01

    In order to solve the problems that image's entropy of information decline obviously and boundary line phenomenon appear obviously in the processing of aerial remote sensing image's mosaic, an image mosaic approach is presented in this paper, which uses wavelet image fusion based on structure similarity and is capable of creating seamless mosaics in real-time. The approach consists of three steps. First, the overlapping area of two aerial images is extracted. Then, the two overlapping area images are fused adaptively by the method of multi-layer wavelet decomposition based on the structure similarity and appointed regulation. Finally, weighted average fusion is used again to avoid the visible boundary line for the both sides of the boundary of the above fusion image. Experimental results show the entropy of information, sharpness and standard deviation have been improved significantly, and the boundary line has been eliminated observably.

  17. A Mobile System for Measuring Water Surface Velocities Using Unmanned Aerial Vehicle and Large-Scale Particle Image Velocimetry

    NASA Astrophysics Data System (ADS)

    Chen, Y. L.

    2015-12-01

    Measurement technologies for velocity of river flow are divided into intrusive and nonintrusive methods. Intrusive method requires infield operations. The measuring process of intrusive methods are time consuming, and likely to cause damages of operator and instrument. Nonintrusive methods require fewer operators and can reduce instrument damages from directly attaching to the flow. Nonintrusive measurements may use radar or image velocimetry to measure the velocities at the surface of water flow. The image velocimetry, such as large scale particle image velocimetry (LSPIV) accesses not only the point velocity but the flow velocities in an area simultaneously. Flow properties of an area hold the promise of providing spatially information of flow fields. This study attempts to construct a mobile system UAV-LSPIV by using an unmanned aerial vehicle (UAV) with LSPIV to measure flows in fields. The mobile system consists of a six-rotor UAV helicopter, a Sony nex5T camera, a gimbal, an image transfer device, a ground station and a remote control device. The activate gimbal helps maintain the camera lens orthogonal to the water surface and reduce the extent of images being distorted. The image transfer device can monitor the captured image instantly. The operator controls the UAV by remote control device through ground station and can achieve the flying data such as flying height and GPS coordinate of UAV. The mobile system was then applied to field experiments. The deviation of velocities measured by UAV-LSPIV of field experiments and handhold Acoustic Doppler Velocimeter (ADV) is under 8%. The results of the field experiments suggests that the application of UAV-LSPIV can be effectively applied to surface flow studies.

  18. Demonstration of a multimode longwave infrared imaging system on an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Jones, Terry L.; Romanski, John G.; Buckley, John J.; Girata, Anthony J.

    1999-07-01

    The RISTA II sensor was integrated into the Altus Unmanned Aerial Vehicle (UAV) and flown over Camp Roberts and Ft. Hunter Ligget, CA in July 1998. The RISTA II demonstration system consisted of a long-wave IR imager, a digital data link, and a ground processing facility (GPF) containing an aided target recognizer, data storage devices, and operator workstations. Imagery was compressed on the UAV and sent on the GPF over a 10.71 Mbit per second digital data link. Selected image frames from the GPF were sent near real-time over a T1 link to observers in Rosslyn, VA. The sensor operated in a variety of scanning and framing modes. Both manual and automatic sensor pointing were demonstrated. Seven flights were performed at altitudes up to 7500m and range sup to 60 km from the GPF. Applicability to numerous military and civilian scenarios was demonstrated.

  19. Modelling and representation issues in automated feature extraction from aerial and satellite images

    NASA Astrophysics Data System (ADS)

    Sowmya, Arcot; Trinder, John

    New digital systems for the processing of photogrammetric and remote sensing images have led to new approaches to information extraction for mapping and Geographic Information System (GIS) applications, with the expectation that data can become more readily available at a lower cost and with greater currency. Demands for mapping and GIS data are increasing as well for environmental assessment and monitoring. Hence, researchers from the fields of photogrammetry and remote sensing, as well as computer vision and artificial intelligence, are bringing together their particular skills for automating these tasks of information extraction. The paper will review some of the approaches used in knowledge representation and modelling for machine vision, and give examples of their applications in research for image understanding of aerial and satellite imagery.

  20. Three-dimensional building roof boundary extraction using high-resolution aerial image and LiDAR data

    NASA Astrophysics Data System (ADS)

    Dal Poz, A. P.; Fazan, Antonio J.

    2014-10-01

    This paper presents a semiautomatic method for rectilinear building roof boundary extraction, based on the integration of high-resolution aerial image and LiDAR (Light Detection and Ranging) data. The proposed method is formulated as an optimization problem, in which a snakes-based objective function is developed to represent the building roof boundaries in an object-space coordinate system. Three-dimensional polylines representing building roof boundaries are obtained by optimizing the objective function using the dynamic programming optimization technique. The results of our experiments showed that the proposed method satisfactorily performed the task of extracting different building roof boundaries from aerial image and LiDAR data.

  1. Synthetic Foveal Imaging Technology

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P. (Inventor); Hoenk, Michael E. (Inventor); Nikzad, Shouleh (Inventor)

    2013-01-01

    Apparatuses and methods are disclosed that create a synthetic fovea in order to identify and highlight interesting portions of an image for further processing and rapid response. Synthetic foveal imaging implements a parallel processing architecture that uses reprogrammable logic to implement embedded, distributed, real-time foveal image processing from different sensor types while simultaneously allowing for lossless storage and retrieval of raw image data. Real-time, distributed, adaptive processing of multi-tap image sensors with coordinated processing hardware used for each output tap is enabled. In mosaic focal planes, a parallel-processing network can be implemented that treats the mosaic focal plane as a single ensemble rather than a set of isolated sensors. Various applications are enabled for imaging and robotic vision where processing and responding to enormous amounts of data quickly and efficiently is important.

  2. Object-based Image Classification of Arctic Sea Ice and Melt Ponds through Aerial Photos

    NASA Astrophysics Data System (ADS)

    Miao, X.; Xie, H.; Li, Z.; Lei, R.

    2013-12-01

    The last six years have marked the lowest Arctic summer sea ice extents in the modern era, with a new record summer minimum (3.4 million km2) set on 13 September 2012. It has been predicted that the Arctic could be free of summer ice within the next 25-30. The loss of Arctic summer ice could have serious consequences, such as higher water temperature due to the positive feedback of albedo, more powerful and frequent storms, rising sea levels, diminished habitats for polar animals, and more pollution due to fossil fuel exploitation and/ or increased traffic through the Northwest/ Northeast Passage. In these processes, melt ponds play an important role in Earth's radiation balance since they strongly absorb solar radiation rather than reflecting it as snow and ice do. Therefore, it is necessary to develop the ability of predicting the sea ice/ melt pond extents and space-time evolution, which is pivotal to prepare for the variation and uncertainty of the future environment, political, economic, and military needs. A lot of efforts have been put into Arctic sea ice modeling to simulate sea ice processes. However, these sea ice models were initiated and developed based on limited field surveys, aircraft or satellite image data. Therefore, it is necessary to collect high resolution sea ice aerial photo in a systematic way to tune up, validate, and improve models. Currently there are many sea ice aerial photos available, such as Chinese Arctic Exploration (CHINARE 2008, 2010, 2012), SHEBA 1998 and HOTRAX 2005. However, manually delineating of sea ice and melt pond from these images is time-consuming and labor-intensive. In this study, we use the object-based remote sensing classification scheme to extract sea ice and melt ponds efficiently from 1,727 aerial photos taken during the CHINARE 2010. The algorithm includes three major steps as follows. (1) Image segmentation groups the neighboring pixels into objects according to the similarity of spectral and texture

  3. Multi-Scale Matching for the Automatic Location of Control Points in Large Scale Aerial Images Using Terrestrial Scenes

    NASA Astrophysics Data System (ADS)

    Berveglieri, A.; Tommaselli, A. M. G.

    2014-03-01

    A technique to automatically locate Ground Control Points (GCPs) in large aerial images is presented considering the availability of low accuracy direct georeferencing data. The approach is based on image chips of GCPs extracted from vertical terrestrial images. A strategy combining image matching techniques was implemented to select correct matches. These matches were used to define a 2D transformation with which the GCP is projected close to its correct position, reducing the search space in the aerial image. Area-based matching with some refinements is used to locate GCPs with sub-pixel precision. Experiments were performed with multi-scale images and assessed with a bundle block adjustment simulating an indirect sensor orientation. The accuracy analysis was accomplished based on discrepancies obtained from GCPs and check points. The results were better than interactive measurements and a planimetric accuracy of 1/5 of the Ground Sample Distance (GSD) for the check points was achieved.

  4. Semi-automated analysis of high-resolution aerial images to quantify docks in glacial lakes

    NASA Astrophysics Data System (ADS)

    Beck, Marcus W.; Vondracek, Bruce; Hatch, Lorin K.; Vinje, Jason

    2013-07-01

    Lake resources can be negatively affected by environmental stressors originating from multiple sources and different spatial scales. Shoreline development, in particular, can negatively affect lake resources through decline in habitat quality, physical disturbance, and impacts on fisheries. The development of remote sensing techniques that efficiently characterize shoreline development in a regional context could greatly improve management approaches for protecting and restoring lake resources. The goal of this study was to develop an approach using high-resolution aerial photographs to quantify and assess docks as indicators of shoreline development. First, we describe a dock analysis workflow that can be used to quantify the spatial extent of docks using aerial images. Our approach incorporates pixel-based classifiers with object-based techniques to effectively analyze high-resolution digital imagery. Second, we apply the analysis workflow to quantify docks for 4261 lakes managed by the Minnesota Department of Natural Resources. Overall accuracy of the analysis results was 98.4% (87.7% based on K^) after manual post-processing. The analysis workflow was also 74% more efficient than the time required for manual digitization of docks. These analyses have immediate relevance for resource planning in Minnesota, whereas the dock analysis workflow could be used to quantify shoreline development in other regions with comparable imagery. These data can also be used to better understand the effects of shoreline development on aquatic resources and to evaluate the effects of shoreline development relative to other stressors.

  5. Detection of Laurel Wilt Disease in Avocado Using Low Altitude Aerial Imaging

    PubMed Central

    de Castro, Ana I.; Ehsani, Reza; Ploetz, Randy C.; Crane, Jonathan H.; Buchanon, Sherrie

    2015-01-01

    Laurel wilt is a lethal disease of plants in the Lauraceae plant family, including avocado (Persea americana). This devastating disease has spread rapidly along the southeastern seaboard of the United States and has begun to affect commercial avocado production in Florida. The main objective of this study was to evaluate the potential to discriminate laurel wilt-affected avocado trees using aerial images taken with a modified camera during helicopter surveys at low-altitude in the commercial avocado production area. The ability to distinguish laurel wilt-affected trees from other factors that produce similar external symptoms was also studied. RmodGB digital values of healthy trees and laurel wilt-affected trees, as well as fruit stress and vines covering trees were used to calculate several vegetation indices (VIs), band ratios, and VI combinations. These indices were subjected to analysis of variance (ANOVA) and an M-statistic was performed in order to quantify the separability of those classes. Significant differences in spectral values among laurel wilt affected and healthy trees were observed in all vegetation indices calculated, although the best results were achieved with Excess Red (ExR), (Red–Green) and Combination 1 (COMB1) in all locations. B/G showed a very good potential for separate the other factors with symptoms similar to laurel wilt-affected trees, such as fruit stress and vines covering trees, from laurel wilt-affected trees. These consistent results prove the usefulness of using a modified camera (RmodGB) to discriminate laurel wilt-affected avocado trees from healthy trees, as well as from other factors that cause the same symptoms and suggest performing the classification in further research. According to our results, ExR and B/G should be utilized to develop an algorithm or decision rules to classify aerial images, since they showed the highest capacity to discriminate laurel wilt-affected trees. This methodology may allow the rapid

  6. Detection of laurel wilt disease in avocado using low altitude aerial imaging.

    PubMed

    de Castro, Ana I; Ehsani, Reza; Ploetz, Randy C; Crane, Jonathan H; Buchanon, Sherrie

    2015-01-01

    Laurel wilt is a lethal disease of plants in the Lauraceae plant family, including avocado (Persea americana). This devastating disease has spread rapidly along the southeastern seaboard of the United States and has begun to affect commercial avocado production in Florida. The main objective of this study was to evaluate the potential to discriminate laurel wilt-affected avocado trees using aerial images taken with a modified camera during helicopter surveys at low-altitude in the commercial avocado production area. The ability to distinguish laurel wilt-affected trees from other factors that produce similar external symptoms was also studied. RmodGB digital values of healthy trees and laurel wilt-affected trees, as well as fruit stress and vines covering trees were used to calculate several vegetation indices (VIs), band ratios, and VI combinations. These indices were subjected to analysis of variance (ANOVA) and an M-statistic was performed in order to quantify the separability of those classes. Significant differences in spectral values among laurel wilt affected and healthy trees were observed in all vegetation indices calculated, although the best results were achieved with Excess Red (ExR), (Red-Green) and Combination 1 (COMB1) in all locations. B/G showed a very good potential for separate the other factors with symptoms similar to laurel wilt-affected trees, such as fruit stress and vines covering trees, from laurel wilt-affected trees. These consistent results prove the usefulness of using a modified camera (RmodGB) to discriminate laurel wilt-affected avocado trees from healthy trees, as well as from other factors that cause the same symptoms and suggest performing the classification in further research. According to our results, ExR and B/G should be utilized to develop an algorithm or decision rules to classify aerial images, since they showed the highest capacity to discriminate laurel wilt-affected trees. This methodology may allow the rapid detection

  7. Turbine Imaging Technology Assessment

    SciTech Connect

    Moursund, Russell A.; Carlson, Thomas J.

    2004-12-31

    The goal of this project was to identify and evaluate imaging alternatives for observing the behavior of juvenile fish within an operating Kaplan turbine unit with a focus on methods to quantify fish injury mechanisms inside an operating turbine unit. Imaging methods are particularly needed to observe the approach and interaction of fish with turbine structural elements. This evaluation documents both the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. The information may be used to acquire the scientific knowledge to make structural improvements and create opportunities for industry to modify turbines and improve fish passage conditions.

  8. Semantic Segmentation of Aerial Images in Urban Areas with Class-Specific Higher-Order Cliques

    NASA Astrophysics Data System (ADS)

    Montoya-Zegarra, J. A.; Wegner, J. D.; Ladický, L.; Schindler, K.

    2015-03-01

    In this paper we propose an approach to multi-class semantic segmentation of urban areas in high-resolution aerial images with classspecific object priors for buildings and roads. What makes model design challenging are highly heterogeneous object appearances and shapes that call for priors beyond standard smoothness or co-occurrence assumptions. The data term of our energy function consists of a pixel-wise classifier that learns local co-occurrence patterns in urban environments. To specifically model the structure of roads and buildings, we add high-level shape representations for both classes by sampling large sets of putative object candidates. Buildings are represented by sets of compact polygons, while roads are modeled as a collection of long, narrow segments. To obtain the final pixel-wise labeling, we use a CRF with higher-order potentials that balances the data term with the object candidates. We achieve overall labeling accuracies of > 80%.

  9. Integrating Spray Plane-Based Remote Sensing and Rapid Image Processing with Variable-Rate Aerial Application.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A remote sensing and variable rate application system was configured for agricultural aircraft. This combination system has the potential of providing a completely integrated solution for all aspects of aerial site-specific application and includes remote sensing, image processing and georegistratio...

  10. Building roof segmentation from aerial images using a lineand region-based watershed segmentation technique.

    PubMed

    El Merabet, Youssef; Meurie, Cyril; Ruichek, Yassine; Sbihi, Abderrahmane; Touahni, Raja

    2015-01-01

    In this paper, we present a novel strategy for roof segmentation from aerial images (orthophotoplans) based on the cooperation of edge- and region-based segmentation methods. The proposed strategy is composed of three major steps. The first one, called the pre-processing step, consists of simplifying the acquired image with an appropriate couple of invariant and gradient, optimized for the application, in order to limit illumination changes (shadows, brightness, etc.) affecting the images. The second step is composed of two main parallel treatments: on the one hand, the simplified image is segmented by watershed regions. Even if the first segmentation of this step provides good results in general, the image is often over-segmented. To alleviate this problem, an efficient region merging strategy adapted to the orthophotoplan particularities, with a 2D modeling of roof ridges technique, is applied. On the other hand, the simplified image is segmented by watershed lines. The third step consists of integrating both watershed segmentation strategies into a single cooperative segmentation scheme in order to achieve satisfactory segmentation results. Tests have been performed on orthophotoplans containing 100 roofs with varying complexity, and the results are evaluated with the VINETcriterion using ground-truth image segmentation. A comparison with five popular segmentation techniques of the literature demonstrates the effectiveness and the reliability of the proposed approach. Indeed, we obtain a good segmentation rate of 96% with the proposed method compared to 87.5% with statistical region merging (SRM), 84% with mean shift, 82% with color structure code (CSC), 80% with efficient graph-based segmentation algorithm (EGBIS) and 71% with JSEG. PMID:25648706

  11. An asymmetric re-weighting method for the precision combined bundle adjustment of aerial oblique images

    NASA Astrophysics Data System (ADS)

    Xie, Linfu; Hu, Han; Wang, Jingxue; Zhu, Qing; Chen, Min

    2016-07-01

    Combined bundle adjustment is a fundamental step in the processing of massive oblique images. Traditional bundle adjustment designed for nadir images gives identical weights to different parts of image point observations made from different directions, due to the assumption that the errors in the observations follow the same Gaussian distribution. However, because of their large tilt angles, aerial oblique images have trapezoidal footprints on the ground, and their areas correspond to conspicuously different ground sample distances. The errors in different observations no longer conform to the above assumption, which leads to suboptimal bundle adjustment accuracy and restricts subsequent 3D applications. To model the distribution of the errors correctly for the combined bundle adjustment of oblique images, this paper proposes an asymmetric re-weighting method. The scale of each pixel is used to determine a re-weighting factor, and each pixel is subsequently projected onto the ground to identify another anisotropic re-weighting factor using the shape of its quadrangle. Next, these two factors are integrated into the combined bundle adjustment using asymmetric weights for the image point observations; greater weights are assigned to observations with fine resolutions, and those with coarse resolutions are penalized. This paper analyzes urban and rural images captured by three different five-angle camera systems, from both proprietary datasets and the ISPRS/EuroSDR benchmark. The results reveal that the proposed method outperforms the traditional method in both back-projected and triangulated precision by approximately 5-10% in most cases. Furthermore, the misalignments of point clouds generated by the different cameras are significantly alleviated after combined bundle adjustment.

  12. Extracting roads based on Retinex and improved Canny operator with shape criteria in vague and unevenly illuminated aerial images

    NASA Astrophysics Data System (ADS)

    Ronggui, Ma; Weixing, Wang; Sheng, Liu

    2012-01-01

    An automatic road extraction method for vague aerial images is proposed in this paper. First, a high-resolution but low-contrast image is enhanced by using a Retinex-based algorithm. Then, the enhanced image is segmented with an improved Canny edge detection operator that can automatically threshold the image into a binary edge image. Subsequently, the linear and curved road segments are regulated by the Hough line transform and extracted based on several thresholds of road size and shapes, in which a number of morphological operators are used such as thinning (skeleton), junction detection, and endpoint detection. In experiments, a number of vague aerial images with bad uniformity are selected for testing. Similarity and discontinuation-based algorithms, such as Otsu thresholding, merge and split, edge detection-based algorithms, and the graph-based algorithm are compared with the new method. The experiment and comparison results show that the studied method can enhance vague, low-contrast, and unevenly illuminated color aerial road images; it can detect most road edges with fewer disturb elements and trace roads with good quality. The method in this study is promising.

  13. An Aerial-Image Dense Matching Approach Based on Optical Flow Field

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Chen, Shiyu; Zhang, Yong; Gong, Jianya; Shibasaki, Ryosuke

    2016-06-01

    Dense matching plays an important role in many fields, such as DEM (digital evaluation model) producing, robot navigation and 3D environment reconstruction. Traditional approaches may meet the demand of accuracy. But the calculation time and out puts density is hardly be accepted. Focus on the matching efficiency and complex terrain surface matching feasibility an aerial image dense matching method based on optical flow field is proposed in this paper. First, some high accurate and uniformed control points are extracted by using the feature based matching method. Then the optical flow is calculated by using these control points, so as to determine the similar region between two images. Second, the optical flow field is interpolated by using the multi-level B-spline interpolation in the similar region and accomplished the pixel by pixel coarse matching. Final, the results related to the coarse matching refinement based on the combined constraint, which recognizes the same points between images. The experimental results have shown that our method can achieve per-pixel dense matching points, the matching accuracy achieves sub-pixel level, and fully meet the three-dimensional reconstruction and automatic generation of DSM-intensive matching's requirements. The comparison experiments demonstrated that our approach's matching efficiency is higher than semi-global matching (SGM) and Patch-based multi-view stereo matching (PMVS) which verifies the feasibility and effectiveness of the algorithm.

  14. Stereoscopic Imaging for Obstacle Detection Onboard Low-Flying Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Hanna, Emad

    Obstacle detection for low-flying unmanned aerial vehicles (UAVs) poses unique engineering challenges in terms of real-time implementation as well as system accuracy. Of all the available techniques for carrying out this task, optical sensors stand out as an inexpensive, lightweight and reliable solution. Image processing methods are used to analyze the images captured by the UAV camera(s) and to generate information pertaining to the location and motion of the obstacles in the field of view. These methods, however, can be computationally intensive and must be optimized if they are to be implemented in a moving vehicle. Additionally, the measurement of distance usually requires a high level of calibration before the results are useful. This thesis proposes a calibration method rooted in image data analysis and shows how this can be used to accurately predict the distance to obstacles. An algorithm tailored specifically to low-flying UAVs (Sparse Edge Reconstruction) is presented. Both the calibration method and the algorithm were used to analyze video gathered on a low-altitude test flight.

  15. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology.

    PubMed

    Torres-Sánchez, Jorge; López-Granados, Francisca; Serrano, Nicolás; Arquero, Octavio; Peña, José M

    2015-01-01

    The geometric features of agricultural trees such as canopy area, tree height and crown volume provide useful information about plantation status and crop production. However, these variables are mostly estimated after a time-consuming and hard field work and applying equations that treat the trees as geometric solids, which produce inconsistent results. As an alternative, this work presents an innovative procedure for computing the 3-dimensional geometric features of individual trees and tree-rows by applying two consecutive phases: 1) generation of Digital Surface Models with Unmanned Aerial Vehicle (UAV) technology and 2) use of object-based image analysis techniques. Our UAV-based procedure produced successful results both in single-tree and in tree-row plantations, reporting up to 97% accuracy on area quantification and minimal deviations compared to in-field estimations of tree heights and crown volumes. The maps generated could be used to understand the linkages between tree grown and field-related factors or to optimize crop management operations in the context of precision agriculture with relevant agro-environmental implications. PMID:26107174

  16. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology

    PubMed Central

    Torres-Sánchez, Jorge; López-Granados, Francisca; Serrano, Nicolás; Arquero, Octavio; Peña, José M.

    2015-01-01

    The geometric features of agricultural trees such as canopy area, tree height and crown volume provide useful information about plantation status and crop production. However, these variables are mostly estimated after a time-consuming and hard field work and applying equations that treat the trees as geometric solids, which produce inconsistent results. As an alternative, this work presents an innovative procedure for computing the 3-dimensional geometric features of individual trees and tree-rows by applying two consecutive phases: 1) generation of Digital Surface Models with Unmanned Aerial Vehicle (UAV) technology and 2) use of object-based image analysis techniques. Our UAV-based procedure produced successful results both in single-tree and in tree-row plantations, reporting up to 97% accuracy on area quantification and minimal deviations compared to in-field estimations of tree heights and crown volumes. The maps generated could be used to understand the linkages between tree grown and field-related factors or to optimize crop management operations in the context of precision agriculture with relevant agro-environmental implications. PMID:26107174

  17. Advanced Tie Feature Matching for the Registration of Mobile Mapping Imaging Data and Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Jende, P.; Peter, M.; Gerke, M.; Vosselman, G.

    2016-06-01

    Mobile Mapping's ability to acquire high-resolution ground data is opposing unreliable localisation capabilities of satellite-based positioning systems in urban areas. Buildings shape canyons impeding a direct line-of-sight to navigation satellites resulting in a deficiency to accurately estimate the mobile platform's position. Consequently, acquired data products' positioning quality is considerably diminished. This issue has been widely addressed in the literature and research projects. However, a consistent compliance of sub-decimetre accuracy as well as a correction of errors in height remain unsolved. We propose a novel approach to enhance Mobile Mapping (MM) image orientation based on the utilisation of highly accurate orientation parameters derived from aerial imagery. In addition to that, the diminished exterior orientation parameters of the MM platform will be utilised as they enable the application of accurate matching techniques needed to derive reliable tie information. This tie information will then be used within an adjustment solution to correct affected MM data. This paper presents an advanced feature matching procedure as a prerequisite to the aforementioned orientation update. MM data is ortho-projected to gain a higher resemblance to aerial nadir data simplifying the images' geometry for matching. By utilising MM exterior orientation parameters, search windows may be used in conjunction with a selective keypoint detection and template matching. Originating from different sensor systems, however, difficulties arise with respect to changes in illumination, radiometry and a different original perspective. To respond to these challenges for feature detection, the procedure relies on detecting keypoints in only one image. Initial tests indicate a considerable improvement in comparison to classic detector/descriptor approaches in this particular matching scenario. This method leads to a significant reduction of outliers due to the limited availability

  18. Mapping temporal changes in connectivity using high-resolution aerial data and object based image analysis

    NASA Astrophysics Data System (ADS)

    Masselink, Rens; Anders, Niels; Keesstra, Saskia; Seeger, Manuel

    2014-05-01

    Within the field of geomorphology mapping has always been an important tool to interpret spatial and temporal distributions of phenomena and processes at the surface. In the field of connectivity however, although throughout the past decade many articles have been published, there are only very few that go into the mapping of connectivity. This study aimed at developing a new, automated method for mapping connectivity within agricultural catchments. The method, which is a combination of Object-Based Image Analysis (OBIA) and traditional geomorphological field mapping, was applied to two agricultural catchments in Navarre, Spain, both with an area of approximately 2 sq.km. An unmanned aerial vehicle (UAV) was used to take aerial photographs with a resolution of 6 cm, of which a DEM with a 12 cm resolution was created using structure-from-motion photogrammetry. Connectivity was mapped within the study areas using OBIA using a top down method, meaning that connectivity was mapped at different scale levels, starting at the largest scale. Firstly sub-catchments were automatically delineated, after which several characteristics and features that affect connectivity within the sub-catchments were classified, e.g. landuse, landslides, rills, gullies, riparian vegetation, changes in slope, ploughing direction etc. In two consecutive years (2013-2014) photographs were taken and connectivity of both catchments of both years will be compared. Future work will include a quantification of the mapped connectivity (highly connected years vs. low connected years), causes and consequences of these differences in connectivity, comparison to existing connectivity indices and comparison of mapped connectivity in sub-catchments and measured discharge.

  19. Draper Laboratory small autonomous aerial vehicle

    NASA Astrophysics Data System (ADS)

    DeBitetto, Paul A.; Johnson, Eric N.; Bosse, Michael C.; Trott, Christian A.

    1997-06-01

    The Charles Stark Draper Laboratory, Inc. and students from Massachusetts Institute of Technology and Boston University have cooperated to develop an autonomous aerial vehicle that won the 1996 International Aerial Robotics Competition. This paper describes the approach, system architecture and subsystem designs for the entry. This entry represents a combination of many technology areas: navigation, guidance, control, vision processing, human factors, packaging, power, real-time software, and others. The aerial vehicle, an autonomous helicopter, performs navigation and control functions using multiple sensors: differential GPS, inertial measurement unit, sonar altimeter, and a flux compass. The aerial transmits video imagery to the ground. A ground based vision processor converts the image data into target position and classification estimates. The system was designed, built, and flown in less than one year and has provided many lessons about autonomous vehicle systems, several of which are discussed. In an appendix, our current research in augmenting the navigation system with vision- based estimates is presented.

  20. Mass image data storage system for high resolution aerial photographic survey

    NASA Astrophysics Data System (ADS)

    Zen, Luan; Tan, Jiubin; Zhao, Zhongwen

    2008-10-01

    In order to make it possible for an image data acquisition and storage system used for aerial photographic survey to have a continuous storage speed of 144 MB/s and data storage capacity of 260GB, three main problems have been solved in this paper. First, with multi-channel synchronous DMA transfer, parallel data storage of four SCSI hard disks is realized. It solved the problem of the data transfer rate too high for direct storage. Then, to increase the data transfer rate, a high speed BUS based on LVDS and a SCSI control circuit based on FAS368M were designed. It solved the problem of PCI BUS limiting the storage speed. Finally, the problem of the SCSI hard disk continuous storage speed declining led by much time interval between two DMA transfers is solved by optimizing DMA channel. The practical system test shows that the acquisition and storage system has a continuous storage speed of 150 MB/s and a data storage capacity of 280GB. Therefore, it is a new storage method for high speed and mass image data.

  1. The Need of Nested Grids for Aerial and Satellite Images and Digital Elevation Models

    NASA Astrophysics Data System (ADS)

    Villa, G.; Mas, S.; Fernández-Villarino, X.; Martínez-Luceño, J.; Ojeda, J. C.; Pérez-Martín, B.; Tejeiro, J. A.; García-González, C.; López-Romero, E.; Soteres, C.

    2016-06-01

    Usual workflows for production, archiving, dissemination and use of Earth observation images (both aerial and from remote sensing satellites) pose big interoperability problems, as for example: non-alignment of pixels at the different levels of the pyramids that makes it impossible to overlay, compare and mosaic different orthoimages, without resampling them and the need to apply multiple resamplings and compression-decompression cycles. These problems cause great inefficiencies in production, dissemination through web services and processing in "Big Data" environments. Most of them can be avoided, or at least greatly reduced, with the use of a common "nested grid" for mutiresolution production, archiving, dissemination and exploitation of orthoimagery, digital elevation models and other raster data. "Nested grids" are space allocation schemas that organize image footprints, pixel sizes and pixel positions at all pyramid levels, in order to achieve coherent and consistent multiresolution coverage of a whole working area. A "nested grid" must be complemented by an appropriate "tiling schema", ideally based on the "quad-tree" concept. In the last years a "de facto standard" grid and Tiling Schema has emerged and has been adopted by virtually all major geospatial data providers. It has also been adopted by OGC in its "WMTS Simple Profile" standard. In this paper we explain how the adequate use of this tiling schema as common nested grid for orthoimagery, DEMs and other types of raster data constitutes the most practical solution to most of the interoperability problems of these types of data.

  2. Image Sensors Enhance Camera Technologies

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In the 1990s, a Jet Propulsion Laboratory team led by Eric Fossum researched ways of improving complementary metal-oxide semiconductor (CMOS) image sensors in order to miniaturize cameras on spacecraft while maintaining scientific image quality. Fossum s team founded a company to commercialize the resulting CMOS active pixel sensor. Now called the Aptina Imaging Corporation, based in San Jose, California, the company has shipped over 1 billion sensors for use in applications such as digital cameras, camera phones, Web cameras, and automotive cameras. Today, one of every three cell phone cameras on the planet feature Aptina s sensor technology.

  3. Trends in infrared imaging detecting technology

    NASA Astrophysics Data System (ADS)

    Fan, Jinxiang; Yang, Jianyu

    2013-10-01

    In this paper, the current status of infrared imaging detecting technology was introduced briefly. The impact of changes of target, environment and mission on the development of infrared imaging detecting technology was analyzed. The main innovation strategies of infrared imaging detecting technology-modifying information acquisition mode, enhancing realization ability and increasing resources utilization were discussed. The promoting effects of the advancement of basic theories and the revolution of relevant technologies on the development of infrared imaging detecting technology were analyzed. The fundamental law of the development of infrared imaging detecting technology was summarized as stepwise evolution from low into high dimension detection. And the developing trends and main characteristics of future infrared imaging detecting technology were deduced based on this fundamental law. Furthermore, technology directions that should be concerned were introduced according to the development of new concept and technologies for infrared imaging detecting, especially, meeting the new requirements through new concept imaging mechanism such as novel optical technology and computing imaging.

  4. Low-Level Tie Feature Extraction of Mobile Mapping Data (mls/images) and Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Jende, P.; Hussnain, Z.; Peter, M.; Oude Elberink, S.; Gerke, M.; Vosselman, G.

    2016-03-01

    Mobile Mapping (MM) is a technique to obtain geo-information using sensors mounted on a mobile platform or vehicle. The mobile platform's position is provided by the integration of Global Navigation Satellite Systems (GNSS) and Inertial Navigation Systems (INS). However, especially in urban areas, building structures can obstruct a direct line-of-sight between the GNSS receiver and navigation satellites resulting in an erroneous position estimation. Therefore, derived MM data products, such as laser point clouds or images, lack the expected positioning reliability and accuracy. This issue has been addressed by many researchers, whose aim to mitigate these effects mainly concentrates on utilising tertiary reference data. However, current approaches do not consider errors in height, cannot achieve sub-decimetre accuracy and are often not designed to work in a fully automatic fashion. We propose an automatic pipeline to rectify MM data products by employing high resolution aerial nadir and oblique imagery as horizontal and vertical reference, respectively. By exploiting the MM platform's defective, and therefore imprecise but approximate orientation parameters, accurate feature matching techniques can be realised as a pre-processing step to minimise the MM platform's three-dimensional positioning error. Subsequently, identified correspondences serve as constraints for an orientation update, which is conducted by an estimation or adjustment technique. Since not all MM systems employ laser scanners and imaging sensors simultaneously, and each system and data demands different approaches, two independent workflows are developed in parallel. Still under development, both workflows will be presented and preliminary results will be shown. The workflows comprise of three steps; feature extraction, feature matching and the orientation update. In this paper, initial results of low-level image and point cloud feature extraction methods will be discussed as well as an outline of

  5. Three-dimensional imaging applications in Earth Sciences using video data acquired from an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    McLeod, Tara

    For three dimensional (3D) aerial images, unmanned aerial vehicles (UAVs) are cheaper to operate and easier to fly than the typical manned craft mounted with a laser scanner. This project explores the feasibility of using 2D video images acquired with a UAV and transforming them into 3D point clouds. The Aeryon Scout -- a quad-copter micro UAV -- flew two missions: the first at York University Keele campus and the second at the Canadian Wollastonite Mine Property. Neptec's ViDAR software was used to extract 3D information from the 2D video using structure from motion. The resulting point clouds were sparsely populated, yet captured vegetation well. They were used successfully to measure fracture orientation in rock walls. Any improvement in the video resolution would cascade through the processing and improve the overall results.

  6. A supervised method for object-based 3D building change detection on aerial stereo images

    NASA Astrophysics Data System (ADS)

    Qin, R.; Gruen, A.

    2014-08-01

    There is a great demand for studying the changes of buildings over time. The current trend for building change detection combines the orthophoto and DSM (Digital Surface Models). The pixel-based change detection methods are very sensitive to the quality of the images and DSMs, while the object-based methods are more robust towards these problems. In this paper, we propose a supervised method for building change detection. After a segment-based SVM (Support Vector Machine) classification with features extracted from the orthophoto and DSM, we focus on the detection of the building changes of different periods by measuring their height and texture differences, as well as their shapes. A decision tree analysis is used to assess the probability of change for each building segment and the traffic lighting system is used to indicate the status "change", "non-change" and "uncertain change" for building segments. The proposed method is applied to scanned aerial photos of the city of Zurich in 2002 and 2007, and the results have demonstrated that our method is able to achieve high detection accuracy.

  7. Registration of Laser Scanning Point Clouds and Aerial Images Using either Artificial or Natural Tie Features

    NASA Astrophysics Data System (ADS)

    Rönnholm, P.; Haggrén, H.

    2012-07-01

    Integration of laser scanning data and photographs is an excellent combination regarding both redundancy and complementary. Applications of integration vary from sensor and data calibration to advanced classification and scene understanding. In this research, only airborne laser scanning and aerial images are considered. Currently, the initial registration is solved using direct orientation sensors GPS and inertial measurements. However, the accuracy is not usually sufficient for reliable integration of data sets, and thus the initial registration needs to be improved. A registration of data from different sources requires searching and measuring of accurate tie features. Usually, points, lines or planes are preferred as tie features. Therefore, the majority of resent methods rely highly on artificial objects, such as buildings, targets or road paintings. However, in many areas no such objects are available. For example in forestry areas, it would be advantageous to be able to improve registration between laser data and images without making additional ground measurements. Therefore, there is a need to solve registration using only natural features, such as vegetation and ground surfaces. Using vegetation as tie features is challenging, because the shape and even location of vegetation can change because of wind, for example. The aim of this article was to compare registration accuracies derived by using either artificial or natural tie features. The test area included urban objects as well as trees and other vegetation. In this area, two registrations were performed, firstly, using mainly built objects and, secondly, using only vegetation and ground surface. The registrations were solved applying the interactive orientation method. As a result, using artificial tie features leaded to a successful registration in all directions of the coordinate system axes. In the case of using natural tie features, however, the detection of correct heights was difficult causing

  8. Low-Altitude Coastal Aerial Photogrammetry for High-Resolution Seabed Imaging and Habitat Mapping of Shallow Areas

    NASA Astrophysics Data System (ADS)

    Alevizos, E.

    2012-04-01

    This paper explores the application of Kite Aerial Photography at the coastal environment along with digital photogrammetry for seabed geomorphological mapping. This method takes advantage of sea-water clearance that allows the transmission of sunlight through the water column and backscatter of seabed reflection under certain conditions of sunlight, weather and sea state. We analyze the procedure of acquisition, processing and interpretation of kite aerial imagery from the sub-littoral zone up to 5 meters depth. Using a calibrated non-metric digital compact camera we managed to acquire several vertical aerial images from two coastal sites in the Attica Peninsula (Greece) covering an area of approximately 200x100 meters. Both sites express significant geomorphological variability and they have a relatively smooth slope profile. For the photogrammetric processing we acquired topographic and bathymetric survey simultaneously with Kite Aerial Photography using a portable GPS of sub-meter accuracy. In order to deal with bottom control measurements we developed Bottom Control Points which were placed on the seabed. These act like the Ground Control Points and they can be easily deployed in the marine environment. The processing included interior and exterior orientation as well as ortho-rectification of images. This produced final orthomosaics for each site at scales 1:500 - 1:1500 with a resolution of a few centimeters. Interpretation of the seabed was based on color and texture features of certain areas with explicit seabed reflectivity and was supported by underwater photographs for ground truthing. At the final stage of image analysis, we recognized the boundaries (contrasting reflectivity) between different bottom types and digitized them as 2D objects using GIS. Concluding, this project emphasizes on the advantages and physical restrictions of Kite Aerial Photography in mapping small-scale geomorphological features in coastal, estuarine and lagoonal environments

  9. Learning Scene Categories from High Resolution Satellite Image for Aerial Video Analysis

    SciTech Connect

    Cheriyadat, Anil M

    2011-01-01

    Automatic scene categorization can benefit various aerial video processing applications. This paper addresses the problem of predicting the scene category from aerial video frames using a prior model learned from satellite imagery. We show that local and global features in the form of line statistics and 2-D power spectrum parameters respectively can characterize the aerial scene well. The line feature statistics and spatial frequency parameters are useful cues to distinguish between different urban scene categories. We learn the scene prediction model from highresolution satellite imagery to test the model on the Columbus Surrogate Unmanned Aerial Vehicle (CSUAV) dataset ollected by high-altitude wide area UAV sensor platform. e compare the proposed features with the popular Scale nvariant Feature Transform (SIFT) features. Our experimental results show that proposed approach outperforms te SIFT model when the training and testing are conducted n disparate data sources.

  10. Aerial Images from AN Uav System: 3d Modeling and Tree Species Classification in a Park Area

    NASA Astrophysics Data System (ADS)

    Gini, R.; Passoni, D.; Pinto, L.; Sona, G.

    2012-07-01

    The use of aerial imagery acquired by Unmanned Aerial Vehicles (UAVs) is scheduled within the FoGLIE project (Fruition of Goods Landscape in Interactive Environment): it starts from the need to enhance the natural, artistic and cultural heritage, to produce a better usability of it by employing audiovisual movable systems of 3D reconstruction and to improve monitoring procedures, by using new media for integrating the fruition phase with the preservation ones. The pilot project focus on a test area, Parco Adda Nord, which encloses various goods' types (small buildings, agricultural fields and different tree species and bushes). Multispectral high resolution images were taken by two digital compact cameras: a Pentax Optio A40 for RGB photos and a Sigma DP1 modified to acquire the NIR band. Then, some tests were performed in order to analyze the UAV images' quality with both photogrammetric and photo-interpretation purposes, to validate the vector-sensor system, the image block geometry and to study the feasibility of tree species classification. Many pre-signalized Control Points were surveyed through GPS to allow accuracy analysis. Aerial Triangulations (ATs) were carried out with photogrammetric commercial software, Leica Photogrammetry Suite (LPS) and PhotoModeler, with manual or automatic selection of Tie Points, to pick out pros and cons of each package in managing non conventional aerial imagery as well as the differences in the modeling approach. Further analysis were done on the differences between the EO parameters and the corresponding data coming from the on board UAV navigation system.

  11. Satellite Images and Aerial Photographs of the Effects of Hurricanes Katrina and Rita on Coastal Louisiana

    USGS Publications Warehouse

    Barras, John A.

    2007-01-01

    -water datasets derived from the Landsat TM satellite imagery were combined with 2001 marsh vegetative communities (Chabreck and others, unpub. data, 2001) to identify land-water configurations by marsh community before and after the hurricanes. Links to the Landsat TM images and aerial photographs are given below (figs. 1-29). Comparison of land area before the storms to land area after the storms is made possible by the inclusion of Landsat TM images and aerial photographs taken in the years and months before the storms. The figures are arranged geographically from east to west to follow the chronology of the effects of the storms. For a more detailed analysis of the changes wrought by these storms, see 'Land Area Changes in Coastal Louisiana After Hurricanes Katrina and Rita' (Barras, in press).

  12. Semi-Automated Classification of Gray Scale Aerial Photographs using Geographic Object Based Image Analysis (GEOBIA) Technique

    NASA Astrophysics Data System (ADS)

    Harb Rabia, Ahmed; Terribile, Fabio

    2013-04-01

    Aerial photography is an important source of high resolution remotely sensed data. Before 1970, aerial photographs were the only remote sensing data source for land use and land cover classification. Using these old aerial photographs improve the final output of land use and land cover change detection. However, classic techniques of aerial photographs classification like manual interpretation or screen digitization require great experience, long processing time and vast effort. A new technique needs to be developed in order to reduce processing time and effort and to give better results. Geographic object based image analysis (GEOBIA) is a newly developed area of Geographic Information Science and remote sensing in which automatic segmentation of images into objects of similar spectral, temporal and spatial characteristics is undertaken. Unlike pixel-based technique, GEOBIA deals with the object properties such as texture, square fit, roundness and many other properties that can improve classification results. GEOBIA technique can be divided into two main steps; segmentation and classification. Segmentation process is grouping adjacent pixels into objects of similar spectral and spatial characteristics. Classification process is assigning classes to the generated objects based on the characteristics of the individual objects. This study aimed to use GEOBIA technique to develop a novel approach for land use and land cover classification of aerial photographs that saves time and effort and gives improved results. Aerial photographs from 1954 of Valle Telesina in Italy were used in this study. Images were rectified and georeferenced in Arcmap using topographic maps. Images were then processed in eCognition software to generate land use and land cover map of 1954. A decision tree rule set was developed in eCognition to classify images and finally nine classes of general land use and land cover in the study area were recognized (forest, trees stripes, agricultural

  13. Remote sensing for precision agriculture: Within-field spatial variability analysis and mapping with aerial digital multispectral images

    NASA Astrophysics Data System (ADS)

    Gopalapillai, Sreekala

    2000-10-01

    Advances in remote sensing technology and biological sensors provided the motivation for this study on the applications of aerial multispectral remote sensing in precision agriculture. The feasibility of using high-resolution multispectral remote sensing for precision farming applications such as soil type delineation, identification of crop nitrogen levels, and modeling and mapping of weed density distribution and yield potential within a crop field was explored in this study. Some of the issues such as image calibration for variable lighting conditions and soil background influence were also addressed. Intensity normalization and band ratio methods were found to be adequate image calibration methods to compensate for variable illumination and soil background influence. Several within-field variability factors such as growth stage, field conditions, nutrient availability, crop cultivar, and plant population were found to be dominant in different periods. Unsupervised clustering of color infrared (CIR) image of a field soil was able to identify soil mapping units with an average accuracy of 76%. Spectral reflectance from a crop field was highly correlated to the chlorophyll reading. A regression model developed to predict nitrogen stress in corn identified nitrogen-stressed areas from nitrogen-sufficient areas with a high accuracy (R2 = 0.93). Weed density was highly correlated to the spectral reflectance from a field. One month after planting was found to be a good time to map spatial weed density. The optimum range of resolution for weed mapping was 4 m to 4.5 m for the remote sensing system and the experimental field used in this study. Analysis of spatial yield with respect to spectral reflectance showed that the visible and NIR reflectance were negatively correlated to yield and crop population in heavily weed-infested areas. The yield potential was highly correlated to image indices, especially to normalized brightness. The ANN model developed for one of the

  14. "A" Is for Aerial Maps and Art

    ERIC Educational Resources Information Center

    Todd, Reese H.; Delahunty, Tina

    2007-01-01

    The technology of satellite imagery and remote sensing adds a new dimension to teaching and learning about maps with elementary school children. Just a click of the mouse brings into view some images of the world that could only be imagined a generation ago. Close-up aerial pictures of the school and neighborhood quickly catch the interest of…

  15. Digital Camera Calibration Using Images Taken from AN Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Pérez, M.; Agüera, F.; Carvajal, F.

    2011-09-01

    For calibrating the camera, an accurate determination of the interior orientation parameters is needed. For more accurate results, the calibration images should be taken under conditions that are similar to the field samples. The aim of this work is the establishment of an efficient and accurate digital camera calibration method to be used in particular working conditions, as it can be found with our UAV (Unmanned Aerial Vehicle) photogrammetric projects. The UAV used in this work was md4-200 modelled by Microdrones. The microdrone is also equipped with a standard digital non- metric camera, the Pentax Optio A40 camera. To find out the interior orientation parameters of the digital camera, two calibration methods were done. A lab calibration based on a flat pattern and a field calibration were fulfilled. To carry out the calibration, Photomodeler Scanner software was used in both cases. The lab calibration process was completely automatic using a calibration grid. The focal length was fixed at widest angle and the network included a total of twelve images with± 90º roll angles. In order to develop the field calibration, a flight plan was programmed including a total of twelve images. In the same way as in the lab calibration, the focal length was fixed at widest angle. The field test used in the study was a flat surface located on the University of Almería campus and a set of 67 target points were placed. The calibration field area was 25 × 25 m approximately and the altitude flight over ground was 50 m. After the software processing, the camera calibration parameter values were obtained. The paper presents the process, the results and the accuracy of these calibration methods. The field calibration method reduced the final total error obtained in the previous lab calibration. Furthermore the overall RMSs obtained from both methods are similar. Therefore we will apply the field calibration results to all our photogrammetric projects in which the flight high

  16. Application of high resolution images from unmanned aerial vehicles for hydrology and rangeland science

    NASA Astrophysics Data System (ADS)

    Rango, A.; Vivoni, E. R.; Anderson, C. A.; Perini, N. A.; Saripalli, S.; Laliberte, A.

    2012-12-01

    A common problem in many natural resource disciplines is the lack of high-enough spatial resolution images that can be used for monitoring and modeling purposes. Advances have been made in the utilization of Unmanned Aerial Vehicles (UAVs) in hydrology and rangeland science. By utilizing low flight altitudes and velocities, UAVs are able to produce high resolution (5 cm) images as well as stereo coverage (with 75% forward overlap and 40% sidelap) to extract digital elevation models (DEM). Another advantage of flying at low altitude is that the potential problems of atmospheric haze obscuration are eliminated. Both small fixed-wing and rotary-wing aircraft have been used in our experiments over two rangeland areas in the Jornada Experimental Range in southern New Mexico and the Santa Rita Experimental Range in southern Arizona. The fixed-wing UAV has a digital camera in the wing and six-band multispectral camera in the nose, while the rotary-wing UAV carries a digital camera as payload. Because we have been acquiring imagery for several years, there are now > 31,000 photos at one of the study sites, and 177 mosaics over rangeland areas have been constructed. Using the DEM obtained from the imagery we have determined the actual catchment areas of three watersheds and compared these to previous estimates. At one site, the UAV-derived watershed area is 4.67 ha which is 22% smaller compared to a manual survey using a GPS unit obtained several years ago. This difference can be significant in constructing a watershed model of the site. From a vegetation species classification, we also determined that two of the shrub types in this small watershed(mesquite and creosote with 6.47 % and 5.82% cover, respectively) grow in similar locations(flat upland areas with deep soils), whereas the most predominant shrub(mariola with 11.9% cover) inhabits hillslopes near stream channels(with steep shallow soils). The positioning of these individual shrubs throughout the catchment using

  17. Estimating Mixed Broadleaves Forest Stand Volume Using Dsm Extracted from Digital Aerial Images

    NASA Astrophysics Data System (ADS)

    Sohrabi, H.

    2012-07-01

    In mixed old growth broadleaves of Hyrcanian forests, it is difficult to estimate stand volume at plot level by remotely sensed data while LiDar data is absent. In this paper, a new approach has been proposed and tested for estimating stand forest volume. The approach is based on this idea that forest volume can be estimated by variation of trees height at plots. In the other word, the more the height variation in plot, the more the stand volume would be expected. For testing this idea, 120 circular 0.1 ha sample plots with systematic random design has been collected in Tonekaon forest located in Hyrcanian zone. Digital surface model (DSM) measure the height values of the first surface on the ground including terrain features, trees, building etc, which provides a topographic model of the earth's surface. The DSMs have been extracted automatically from aerial UltraCamD images so that ground pixel size for extracted DSM varied from 1 to 10 m size by 1m span. DSMs were checked manually for probable errors. Corresponded to ground samples, standard deviation and range of DSM pixels have been calculated. For modeling, non-linear regression method was used. The results showed that standard deviation of plot pixels with 5 m resolution was the most appropriate data for modeling. Relative bias and RMSE of estimation was 5.8 and 49.8 percent, respectively. Comparing to other approaches for estimating stand volume based on passive remote sensing data in mixed broadleaves forests, these results are more encouraging. One big problem in this method occurs when trees canopy cover is totally closed. In this situation, the standard deviation of height is low while stand volume is high. In future studies, applying forest stratification could be studied.

  18. Mobile Aerial Tracking and Imaging System (MATrIS) for Aeronautical Research

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Blanchard, Robert C.; Miller, Geoffrey M.

    2004-01-01

    A mobile, rapidly deployable ground-based system to track and image targets of aeronautical interest has been developed. Targets include reentering reusable launch vehicles as well as atmospheric and transatmospheric vehicles. The optics were designed to image targets in the visible and infrared wavelengths. To minimize acquisition cost and development time, the system uses commercially available hardware and software where possible. The conception and initial funding of this system originated with a study of ground-based imaging of global aerothermal characteristics of reusable launch vehicle configurations. During that study the National Aeronautics and Space Administration teamed with the Missile Defense Agency/Innovative Science and Technology Experimentation Facility to test techniques and analysis on two Space Shuttle flights.

  19. Aerial Explorers and Robotic Ecosystems

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg

    2004-01-01

    A unique bio-inspired approach to autonomous aerial vehicle, a.k.a. aerial explorer technology is discussed. The work is focused on defining and studying aerial explorer mission concepts, both as an individual robotic system and as a member of a small robotic "ecosystem." Members of this robotic ecosystem include the aerial explorer, air-deployed sensors and robotic symbiotes, and other assets such as rovers, landers, and orbiters.

  20. Large-scale aerial images capture details of invasive plant populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Satellite and aerial remote sensing have been successfully used to measure invasive weed infestations over very large areas, but have limited resolution. Ground-based methods have provided detailed measurements of invasive weeds, but can measure only limited areas. Here we test a novel approach th...

  1. ISSUES IN DIGITAL IMAGE PROCESSING OF AERIAL PHOTOGRAPHY FOR MAPPING SUBMERSED AQUATIC VEGETATION

    EPA Science Inventory

    The paper discusses the numerous issues that needed to be addressed when developing a methodology for mapping Submersed Aquatic Vegetation (SAV) from digital aerial photography. Specifically, we discuss 1) choice of film; 2) consideration of tide and weather constraints; 3) in-s...

  2. Wavefront aberration measurement method for a hyper-NA lithographic projection lens based on principal component analysis of an aerial image.

    PubMed

    Zhu, Boer; Wang, Xiangzhao; Li, Sikun; Yan, Guanyong; Shen, Lina; Duan, Lifeng

    2016-04-20

    A wavefront aberration measurement method for a hyper-NA lithographic projection lens by use of an aerial image based on principal component analysis is proposed. Aerial images of the hyper-NA lithographic projection lens are expressed accurately by using polarized light and a vector imaging model, as well as by considering the polarization properties. As a result, the wavefront aberrations of the hyper-NA lithographic projection lens are measured accurately. The lithographic simulator PROLITH is used to validate the accuracies of the wavefront aberration measurement and analyze the impact of the polarization rotation of illumination on the accuracy of the wavefront aberration measurement, as well as the degree of polarized light and the sample interval of aerial images. The result shows that the proposed method can retrieve 33 terms of Zernike coefficients (Z5-Z37) with a maximum error of less than 0.00085λ. PMID:27140087

  3. Advances in hardware, software, and automation for 193nm aerial image measurement systems

    NASA Astrophysics Data System (ADS)

    Zibold, Axel M.; Schmid, R.; Seyfarth, A.; Waechter, M.; Harnisch, W.; Doornmalen, H. v.

    2005-05-01

    A new, second generation AIMS fab 193 system has been developed which is capable of emulating lithographic imaging of any type of reticles such as binary and phase shift masks (PSM) including resolution enhancement technologies (RET) such as optical proximity correction (OPC) or scatter bars. The system emulates the imaging process by adjustment of the lithography equivalent illumination and imaging conditions of 193nm wafer steppers including circular, annular, dipole and quadrupole type illumination modes. The AIMS fab 193 allows a rapid prediction of wafer printability of critical mask features, including dense patterns and contacts, defects or repairs by acquiring through-focus image stacks by means of a CCD camera followed by quantitative image analysis. Moreover the technology can be readily applied to directly determine the process window of a given mask under stepper imaging conditions. Since data acquisition is performed electronically, AIMS in many applications replaces the need for costly and time consuming wafer prints using a wafer stepper/ scanner followed by CD SEM resist or wafer analysis. The AIMS fab 193 second generation system is designed for 193nm lithography mask printing predictability down to the 65nm node. In addition to hardware improvements a new modular AIMS software is introduced allowing for a fully automated operation mode. Multiple pre-defined points can be visited and through-focus AIMS measurements can be executed automatically in a recipe based mode. To increase the effectiveness of the automated operation mode, the throughput of the system to locate the area of interest, and to acquire the through-focus images is increased by almost a factor of two in comparison with the first generation AIMS systems. In addition a new software plug-in concept is realised for the tools. One new feature has been successfully introduced as "Global CD Map", enabling automated investigation of global mask quality based on the local determination of

  4. Quantifying Efficacy and Limits of Unmanned Aerial Vehicle (UAV) Technology for Weed Seedling Detection as Affected by Sensor Resolution

    PubMed Central

    Peña, José M.; Torres-Sánchez, Jorge; Serrano-Pérez, Angélica; de Castro, Ana I.; López-Granados, Francisca

    2015-01-01

    In order to optimize the application of herbicides in weed-crop systems, accurate and timely weed maps of the crop-field are required. In this context, this investigation quantified the efficacy and limitations of remote images collected with an unmanned aerial vehicle (UAV) for early detection of weed seedlings. The ability to discriminate weeds was significantly affected by the imagery spectral (type of camera), spatial (flight altitude) and temporal (the date of the study) resolutions. The colour-infrared images captured at 40 m and 50 days after sowing (date 2), when plants had 5–6 true leaves, had the highest weed detection accuracy (up to 91%). At this flight altitude, the images captured before date 2 had slightly better results than the images captured later. However, this trend changed in the visible-light images captured at 60 m and higher, which had notably better results on date 3 (57 days after sowing) because of the larger size of the weed plants. Our results showed the requirements on spectral and spatial resolutions needed to generate a suitable weed map early in the growing season, as well as the best moment for the UAV image acquisition, with the ultimate objective of applying site-specific weed management operations. PMID:25756867

  5. Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution.

    PubMed

    Peña, José M; Torres-Sánchez, Jorge; Serrano-Pérez, Angélica; de Castro, Ana I; López-Granados, Francisca

    2015-01-01

    In order to optimize the application of herbicides in weed-crop systems, accurate and timely weed maps of the crop-field are required. In this context, this investigation quantified the efficacy and limitations of remote images collected with an unmanned aerial vehicle (UAV) for early detection of weed seedlings. The ability to discriminate weeds was significantly affected by the imagery spectral (type of camera), spatial (flight altitude) and temporal (the date of the study) resolutions. The colour-infrared images captured at 40 m and 50 days after sowing (date 2), when plants had 5-6 true leaves, had the highest weed detection accuracy (up to 91%). At this flight altitude, the images captured before date 2 had slightly better results than the images captured later. However, this trend changed in the visible-light images captured at 60 m and higher, which had notably better results on date 3 (57 days after sowing) because of the larger size of the weed plants. Our results showed the requirements on spectral and spatial resolutions needed to generate a suitable weed map early in the growing season, as well as the best moment for the UAV image acquisition, with the ultimate objective of applying site-specific weed management operations. PMID:25756867

  6. The application of ghost imaging in infrared imaging detection technology

    NASA Astrophysics Data System (ADS)

    Peng, Hongtao; Yang, Zhaohua; Li, Dapeng; Wu, Ling-an

    2015-11-01

    Traditional imaging are mostly based on the principle of lens imaging which is simple but the imaging result is heavily dependent on the quality of detector. It is usual to increase the detector array density or reduce the size of pixels to improve the imaging resolution, especially for infrared imaging. It will decrease the light flux causing the noise enhance relatively and add the cost on the contrary. Besides, there is a novel imaging technology called ghost imaging. We present a new infrared imaging method named computational ghost imaging only using a bucket detector without spatial resolution, which avoiding the allocation of flux on the pixel dimension as well as reducing the cost.

  7. [Building Change Detection Based on Multi-Level Rules Classification with Airborne LiDAR Data and Aerial Images].

    PubMed

    Gong, Yi-long; Yan, Li

    2015-05-01

    The present paper proposes a new building change detection method combining Lidar point cloud with aerial image, using multi-level rules classification algorithm, to solve building change detection problem between these two kinds of heterogeneous data. Then, a morphological post-processing method combined with area threshold is proposed. Thus, a complete building change detection processing flow that can be applied to actual production is proposed. Finally, the effectiveness of the building change detection method is evaluated, processing the 2010 airborne LiDAR point cloud data and 2009 high resolution aerial image of Changchun City, Jilin province, China; in addition, compared with the object-oriented building change detection method based on support vector machine (SVM) classification, more analysis and evaluation of the suggested method is given. Experiment results show that the performance of the proposed building change detection method is ideal. Its Kappa index is 0. 90, and correctness is 0. 87, which is higher than the object-oriented building change detection method based on SVM classification. PMID:26415454

  8. Using GPS/INS data to enhance image matching for real-time aerial triangulation

    NASA Astrophysics Data System (ADS)

    Tanathong, Supannee; Lee, Impyeong

    2014-11-01

    Direct georeferencing is a promising technique for determining the exterior orientation parameters (EO) of a camera in real-time through the integration of GPS/INS sensors. Instead of using expensive devices, we improve the accuracy of the directly measured EOs through aerial triangulation (AT) and rely on tie-points. In this work, using GPS/INS data, we enhance the KLT tracker to achieve accuracy and speed that is compatible with real-time aerial triangulation. Given GPS/INS data from medium-grade sensors, the proposed system is 48% faster than the original work and tie-points extracted by our system are 6.33% more accurate and more evenly distributed than tie-points extracted by the original work. The AT processing results show that tie-points from the proposed work can reduce the RMSE of the directly measured EOs by 17.87% for position and 23.37% for attitude. Thus, we conclude that our proposed system can be integrated with real-time aerial triangulation.

  9. GPS-aided inertial technology and navigation-based photogrammetry for aerial mapping the San Andreas fault system

    USGS Publications Warehouse

    Sanchez, Richard D.; Hudnut, Kenneth W.

    2004-01-01

    Aerial mapping of the San Andreas Fault System can be realized more efficiently and rapidly without ground control and conventional aerotriangulation. This is achieved by the direct geopositioning of the exterior orientation of a digital imaging sensor by use of an integrated Global Positioning System (GPS) receiver and an Inertial Navigation System (INS). A crucial issue to this particular type of aerial mapping is the accuracy, scale, consistency, and speed achievable by such a system. To address these questions, an Applanix Digital Sensor System (DSS) was used to examine its potential for near real-time mapping. Large segments of vegetation along the San Andreas and Cucamonga faults near the foothills of the San Bernardino and San Gabriel Mountains were burned to the ground in the California wildfires of October-November 2003. A 175 km corridor through what once was a thickly vegetated and hidden fault surface was chosen for this study. Both faults pose a major hazard to the greater Los Angeles metropolitan area and a near real-time mapping system could provide information vital to a post-disaster response.

  10. A methodology for near real-time change detection between Unmanned Aerial Vehicle and wide area satellite images

    NASA Astrophysics Data System (ADS)

    Fytsilis, Anastasios L.; Prokos, Anthony; Koutroumbas, Konstantinos D.; Michail, Dimitrios; Kontoes, Charalambos C.

    2016-09-01

    In this paper a novel integrated hybrid methodology for unsupervised change detection between Unmanned Aerial Vehicle (UAV) and satellite images, which can be utilized in various fields like security applications (e.g. border surveillance) and damage assessment, is proposed. This is a challenging problem mainly due to the difference in geographic coverage and the spatial resolution of the two images, as well as to the acquisition modes which lead to misregistration errors. The methodology consists of the following steps: (a) pre-processing, where the part of the satellite image that corresponds to the UAV image is determined and the UAV image is ortho-rectified using information provided by a Digital Terrain Model, (b) the detection of potential changes, which is based exclusively on intensity and image gradient information, (c) the generation of the region map, where homogeneous regions are produced by the previous potential changes via a seeded region growing algorithm and placed on the region map, and (d) the evaluation of the above regions, in order to characterize them as true changes or not. The methodology has been applied on demanding real datasets with very encouraging results. Finally, its robustness to the misregistration errors is assessed via extensive experimentation.

  11. Detection of Tree Crowns Based on Reclassification Using Aerial Images and LIDAR Data

    NASA Astrophysics Data System (ADS)

    Talebi, S.; Zarea, A.; Sadeghian, S.; Arefi, H.

    2013-09-01

    Tree detection using aerial sensors in early decades was focused by many researchers in different fields including Remote Sensing and Photogrammetry. This paper is intended to detect trees in complex city areas using aerial imagery and laser scanning data. Our methodology is a hierarchal unsupervised method consists of some primitive operations. This method could be divided into three sections, in which, first section uses aerial imagery and both second and third sections use laser scanners data. In the first section a vegetation cover mask is created in both sunny and shadowed areas. In the second section Rate of Slope Change (RSC) is used to eliminate grasses. In the third section a Digital Terrain Model (DTM) is obtained from LiDAR data. By using DTM and Digital Surface Model (DSM) we would get to Normalized Digital Surface Model (nDSM). Then objects which are lower than a specific height are eliminated. Now there are three result layers from three sections. At the end multiplication operation is used to get final result layer. This layer will be smoothed by morphological operations. The result layer is sent to WG III/4 to evaluate. The evaluation result shows that our method has a good rank in comparing to other participants' methods in ISPRS WG III/4, when assessed in terms of 5 indices including area base completeness, area base correctness, object base completeness, object base correctness and boundary RMS. With regarding of being unsupervised and automatic, this method is improvable and could be integrate with other methods to get best results.

  12. Modern Imaging Technology: Recent Advances

    SciTech Connect

    Welch, Michael J.; Eckelman, William C.

    2004-06-18

    This 2-day conference is designed to bring scientist working in nuclear medicine, as well as nuclear medicine practitioners together to discuss the advances in four selected areas of imaging: Biochemical Parameters using Small Animal Imaging, Developments in Small Animal PET Imaging, Cell Labeling, and Imaging Angiogenesis Using Multiple Modality. The presentations will be on molecular imaging applications at the forefront of research, up to date on the status of molecular imaging in nuclear medicine as well as in related imaging areas. Experts will discuss the basic science of imaging techniques, and scheduled participants will engage in an exciting program that emphasizes the current status of molecular imaging as well as the role of DOE funded research in this area.

  13. Quantitative analysis of drainage obtained from aerial photographs and RBV/LANDSAT images

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Formaggio, A. R.; Epiphanio, J. C. N.; Filho, M. V.

    1981-01-01

    Data obtained from aerial photographs (1:60,000) and LANDSAT return beam vidicon imagery (1:100,000) concerning drainage density, drainage texture, hydrography density, and the average length of channels were compared. Statistical analysis shows that significant differences exist in data from the two sources. The highly drained area lost more information than the less drained area. In addition, it was observed that the loss of information about the number of rivers was higher than that about the length of the channels.

  14. Thermal Imaging of Subsurface Coal Fires by means of an Unmanned Aerial Vehicle (UAV) in the Autonomous Province Xinjiang, PRC

    NASA Astrophysics Data System (ADS)

    Vasterling, Margarete; Schloemer, Stefan; Fischer, Christian; Ehrler, Christoph

    2010-05-01

    Spontaneous combustion of coal and resulting coal fires lead to very high temperatures in the subsurface. To a large amount the heat is transferred to the surface by convective and conductive transport inducing a more or less pronounced thermal anomaly. During the past decade satellite-based infrared-imaging (ASTER, MODIS) was the method of choice for coal fire detection on a local and regional scale. However, the resolution is by far too low for a detailed analysis of single coal fires which is essential prerequisite for corrective measures (i.e. fire fighting) and calculation of carbon dioxide emission based on a complex correlation between energy release and CO2 generation. Consequently, within the framework of the Sino-German research project "Innovative Technologies for Exploration, Extinction and Monitoring of Coal Fires in Northern China", a new concept was developed and successfully tested. An unmanned aerial vehicle (UAV) was equipped with a lightweight camera for thermografic (resolution 160 by 120 pixel, dynamic range -20 to 250°C) and for visual imaging. The UAV designed as an octocopter is able to hover at GPS controlled waypoints during predefined flight missions. The application of a UAV has several advantages. Compared to point measurements on the ground the thermal imagery quickly provides the spatial distribution of the temperature anomaly with a much better resolution. Areas otherwise not accessible (due to topography, fire induced cracks, etc.) can easily be investigated. The results of areal surveys on two coal fires in Xinjiang are presented. Georeferenced thermal and visual images were mosaicked together and analyzed. UAV-born data do well compared to temperatures measured directly on the ground and cover large areas in detail. However, measuring surface temperature alone is not sufficient. Simultaneous measurements made at the surface and in roughly 15cm depth proved substantial temperature gradients in the upper soil. Thus the temperature

  15. Semi-automted analysis of high-resolution aerial images to quantify docks in Upper Midwest glacial lakes

    USGS Publications Warehouse

    Beck, Marcus W.; Vondracek, Bruce C.; Hatch, Lorin K.; Vinje, Jason

    2013-01-01

    Lake resources can be negatively affected by environmental stressors originating from multiple sources and different spatial scales. Shoreline development, in particular, can negatively affect lake resources through decline in habitat quality, physical disturbance, and impacts on fisheries. The development of remote sensing techniques that efficiently characterize shoreline development in a regional context could greatly improve management approaches for protecting and restoring lake resources. The goal of this study was to develop an approach using high-resolution aerial photographs to quantify and assess docks as indicators of shoreline development. First, we describe a dock analysis workflow that can be used to quantify the spatial extent of docks using aerial images. Our approach incorporates pixel-based classifiers with object-based techniques to effectively analyze high-resolution digital imagery. Second, we apply the analysis workflow to quantify docks for 4261 lakes managed by the Minnesota Department of Natural Resources. Overall accuracy of the analysis results was 98.4% (87.7% based on ) after manual post-processing. The analysis workflow was also 74% more efficient than the time required for manual digitization of docks. These analyses have immediate relevance for resource planning in Minnesota, whereas the dock analysis workflow could be used to quantify shoreline development in other regions with comparable imagery. These data can also be used to better understand the effects of shoreline development on aquatic resources and to evaluate the effects of shoreline development relative to other stressors.

  16. Fusion of aerial images with mean shift-based upsampled elevation data for improved building block classification

    NASA Astrophysics Data System (ADS)

    Gyftakis, S.; Tsenoglou, T.; Bratsolis, E.; Charou, Eleni; Vassilas, N.

    2014-10-01

    Nowadays there is an increasing demand for detailed 3D modeling of buildings using elevation data such as those acquired from LiDAR airborne scanners. The various techniques that have been developed for this purpose typically perform segmentation into homogeneous regions followed by boundary extraction and are based on some combination of LiDAR data, digital maps, satellite images and aerial orthophotographs. In the present work, our dataset includes an aerial RGB orthophoto, a DSM and a DTM with spatial resolutions of 20cm, 1m and 2m respectively. Next, a normalized DSM (nDSM) is generated and fused with the optical data in order to increase its resolution to 20cm. The proposed methodology can be described as a two-step approach. First, a nearest neighbor interpolation is applied on the low resolution nDSM to obtain a low quality, ragged, elevation image. Next, we performed a mean shift-based discontinuity preserving smoothing on the fused data. The outcome is on the one hand a more homogeneous RGB image, with smoothed terrace coloring while at the same time preserving the optical edges and on the other hand an upsampled elevation data with considerable improvement regarding region filling and "straightness" of elevation discontinuities. Besides the apparent visual assessment of the increased accuracy of building boundaries, the effectiveness of the proposed method is demonstrated using the processed dataset as input to five supervised classification methods. The performance of each method is evaluated using a subset of the test area as ground truth. Comparisons with classification results obtained with the original data demonstrate that preprocessing the input dataset using the mean shift algorithm improves significantly the performance of all tested classifiers for building block extraction.

  17. Object Based Agricultural Land Cover Classification Map of Shadowed Areas from Aerial Image and LIDAR Data Using Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Alberto, R. T.; Serrano, S. C.; Damian, G. B.; Camaso, E. E.; Celestino, A. B.; Hernando, P. J. C.; Isip, M. F.; Orge, K. M.; Quinto, M. J. C.; Tagaca, R. C.

    2016-06-01

    Aerial image and LiDAR data offers a great possibility for agricultural land cover mapping. Unfortunately, these images leads to shadowy pixels. Management of shadowed areas for classification without image enhancement were investigated. Image segmentation approach using three different segmentation scales were used and tested to segment the image for ground features since only the ground features are affected by shadow caused by tall features. The RGB band and intensity were the layers used for the segmentation having an equal weights. A segmentation scale of 25 was found to be the optimal scale that will best fit for the shadowed and non-shadowed area classification. The SVM using Radial Basis Function kernel was then applied to extract classes based on properties extracted from the Lidar data and orthophoto. Training points for different classes including shadowed areas were selected homogeneously from the orthophoto. Separate training points for shadowed areas were made to create additional classes to reduced misclassification. Texture classification and object-oriented classifiers have been examined to reduced heterogeneity problem. The accuracy of the land cover classification using 25 scale segmentation after accounting for the shadow detection and classification was significantly higher compared to higher scale of segmentation.

  18. Aerial Explorers

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg; Ippolito, Corey

    2005-01-01

    This paper presents recent results from a mission architecture study of planetary aerial explorers. In this study, several mission scenarios were developed in simulation and evaluated on success in meeting mission goals. This aerial explorer mission architecture study is unique in comparison with previous Mars airplane research activities. The study examines how aerial vehicles can find and gain access to otherwise inaccessible terrain features of interest. The aerial explorer also engages in a high-level of (indirect) surface interaction, despite not typically being able to takeoff and land or to engage in multiple flights/sorties. To achieve this goal, a new mission paradigm is proposed: aerial explorers should be considered as an additional element in the overall Entry, Descent, Landing System (EDLS) process. Further, aerial vehicles should be considered primarily as carrier/utility platforms whose purpose is to deliver air-deployed sensors and robotic devices, or symbiotes, to those high-value terrain features of interest.

  19. Evaluating glaucoma damage: emerging imaging technologies

    PubMed Central

    Kostanyan, Tigran; Wollstein, Gadi; Schuman, Joel S

    2015-01-01

    The use of ocular imaging tools to estimate structural and functional damage in glaucoma has become a common clinical practice and a substantial focus of vision research. The evolution of the imaging technologies through increased scanning speed, penetration depth, image registration and development of multimodal devices has the potential to detect the pathology more reliably and in earlier stages. This review is focused on new ocular imaging modalities used for glaucoma diagnosis. PMID:27087829

  20. Aerial spraying for gypsy moth control: A handbook of technology. Updated version, January 1991

    SciTech Connect

    Reardon, R.; Mierzejewski, K.; Bryant, J.; Twardus, D.; Yendol, W.

    1991-01-01

    The gypsy moth, Lymantria dispar, is a native pest of the forests of Europe and Asia that was introduced into the United States in Eastern Massachusetts in 1869 and in New Jersey in the 1920's. It is now established in all or parts of the 13 Northeastern States from western Pennsylvania, eastern West Virginia, and northern Virginia to central Maine, and extends into eastern Ohio and central Michigan. In Canada, this pest is established in southern Nova Scotia, Quebec, and Ontario. In addition to existing populations in the generally infested area, 68 isolated infestations have been eradicated since 1982. The effectiveness of these Federal/State cooperative suppression projects using the biological insecticide Bacillus thuringiensis (Bt) and, to a lesser extent, the chemical insecticide Dimilin, are monitored using a computer-based system (Treatment Monitoring Data Base) developed by Twardus. The effectiveness of these projects has been highly variable. It is thought that a large portion of the treatment failures has been due to ineffective aerial application techniques.

  1. Building Roof Segmentation from Aerial Images Using a Line-and Region-Based Watershed Segmentation Technique

    PubMed Central

    Merabet, Youssef El; Meurie, Cyril; Ruichek, Yassine; Sbihi, Abderrahmane; Touahni, Raja

    2015-01-01

    In this paper, we present a novel strategy for roof segmentation from aerial images (orthophotoplans) based on the cooperation of edge- and region-based segmentation methods. The proposed strategy is composed of three major steps. The first one, called the pre-processing step, consists of simplifying the acquired image with an appropriate couple of invariant and gradient, optimized for the application, in order to limit illumination changes (shadows, brightness, etc.) affecting the images. The second step is composed of two main parallel treatments: on the one hand, the simplified image is segmented by watershed regions. Even if the first segmentation of this step provides good results in general, the image is often over-segmented. To alleviate this problem, an efficient region merging strategy adapted to the orthophotoplan particularities, with a 2D modeling of roof ridges technique, is applied. On the other hand, the simplified image is segmented by watershed lines. The third step consists of integrating both watershed segmentation strategies into a single cooperative segmentation scheme in order to achieve satisfactory segmentation results. Tests have been performed on orthophotoplans containing 100 roofs with varying complexity, and the results are evaluated with the VINETcriterion using ground-truth image segmentation. A comparison with five popular segmentation techniques of the literature demonstrates the effectiveness and the reliability of the proposed approach. Indeed, we obtain a good segmentation rate of 96% with the proposed method compared to 87.5% with statistical region merging (SRM), 84% with mean shift, 82% with color structure code (CSC), 80% with efficient graph-based segmentation algorithm (EGBIS) and 71% with JSEG. PMID:25648706

  2. Unsupervised and stable LBG algorithm for data classification: application to aerial multicomponent images

    NASA Astrophysics Data System (ADS)

    Taher, A.; Chehdi, K.; Cariou, C.

    2015-10-01

    In this paper a stable and unsupervised Linde-Buzo-Gray (LBG) algorithm named LBGO is presented. The originality of the proposed algorithm relies: i) on the utilization of an adaptive incremental technique to initialize the class centres that calls into question the intermediate initializations; this technique makes the algorithm stable and deterministic, and the classification results do not vary from a run to another, and ii) on the unsupervised evaluation criteria of the intermediate classification result to estimate the optimal number of classes; this makes the algorithm unsupervised. The efficiency of this optimized version of LBG is shown through some experimental results on synthetic and real aerial hyperspectral data. More precisely we have tested our proposed classification approach regarding three aspects: firstly for its stability, secondly for its correct classification rate, and thirdly for the correct estimation of number of classes.

  3. Region-Based 3d Surface Reconstruction Using Images Acquired by Low-Cost Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Lari, Z.; Al-Rawabdeh, A.; He, F.; Habib, A.; El-Sheimy, N.

    2015-08-01

    Accurate 3D surface reconstruction of our environment has become essential for an unlimited number of emerging applications. In the past few years, Unmanned Aerial Systems (UAS) are evolving as low-cost and flexible platforms for geospatial data collection that could meet the needs of aforementioned application and overcome limitations of traditional airborne and terrestrial mobile mapping systems. Due to their payload restrictions, these systems usually include consumer-grade imaging and positioning sensor which will negatively impact the quality of the collected geospatial data and reconstructed surfaces. Therefore, new surface reconstruction surfaces are needed to mitigate the impact of using low-cost sensors on the final products. To date, different approaches have been proposed to for 3D surface construction using overlapping images collected by imaging sensor mounted on moving platforms. In these approaches, 3D surfaces are mainly reconstructed based on dense matching techniques. However, generated 3D point clouds might not accurately represent the scanned surfaces due to point density variations and edge preservation problems. In order to resolve these problems, a new region-based 3D surface renostruction trchnique is introduced in this paper. This approach aims to generate a 3D photo-realistic model of individually scanned surfaces within the captured images. This approach is initiated by a Semi-Global dense Matching procedure is carried out to generate a 3D point cloud from the scanned area within the collected images. The generated point cloud is then segmented to extract individual planar surfaces. Finally, a novel region-based texturing technique is implemented for photorealistic reconstruction of the extracted planar surfaces. Experimental results using images collected by a camera mounted on a low-cost UAS demonstrate the feasibility of the proposed approach for photorealistic 3D surface reconstruction.

  4. Building Information Modelling (BIM) and Unmanned Aerial Vehicle (UAV) technologies in infrastructure construction project management and delay and disruption analysis

    NASA Astrophysics Data System (ADS)

    Vacanas, Yiannis; Themistocleous, Kyriacos; Agapiou, Athos; Hadjimitsis, Diofantos

    2015-06-01

    Time in infrastructure construction projects has always been a fundamental issue as early as from the inception of a project, during the construction process and often after the completion and delivery. In a typical construction contract time related matters such as the completion date and possible delays are among the most important issues that are dealt with by the contract provisions. In the event of delay there are usually provisions for extension of time award to the contractor with possible reimbursement for the extra cost and expenses caused by this extension of time to the contract duration. In the case the contractor is not entitled to extension of time, the owner will be possibly entitled to amounts as compensation for the time prohibited from using his development. Even in the event of completion within the time agreed, under certain circumstances a contractor may have claims for reimbursement for extra costs incurred due to induced acceleration measures he had to take in order to mitigate disruption effects caused to the progress of the works by the owner or his representatives. Depending on the size of the project and the agreement amount, these reimbursement sums may be extremely high. Therefore innovative methods with the exploitation of new technologies for effective project management for the avoidance of delays, delay analysis and mitigation measures are essential; moreover, methods for collecting efficiently information during the construction process so that disputes regarding time are avoided or resolved in a quick and fair manner are required. This paper explores the state of art for existing use of Building Information Modelling (BIM) and Unmanned Aerial Vehicles (UAV) technologies in the construction industry in general. Moreover the paper considers the prospect of using BIM technology in conjunction with the use of UAV technology for efficient and accurate as-built data collection and illustration of the works progress during an

  5. Raman chemical imaging using flexible fiberscope technology

    NASA Astrophysics Data System (ADS)

    Smith, Ryan D.; Nelson, Matthew P.; Treado, Patrick J.

    2000-03-01

    Raman chemical imaging microscopy has been proven to be a powerful methodology for analyzing a wide range of solid state materials. For biomedical applications, Raman chemical imaging has been shown to be effective in assessing clinical samples including breast tissue lesions and arterial plaques. With Raman chemical imaging systems based on microscopes, materials can be analyzed with molecular specificity, without labor intensive sample preparation or the use of dyes and stains at diffraction limited spatial resolution (< 250 nm). However, microscopes cannot readily be used to perform in vivo measurements. With the recent development of flexible fiberscope technology, Raman chemical imaging can be applied within remote and confined environments and the potential exists for in vivo use. This manuscript provides the first description of novel Raman chemical imaging fiberscope technology, including data analysis strategies for extracting information from Raman chemical imaging data sets.

  6. Research and Technology 1980

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Topics are divided into three major areas: Earth resources, advanced development, and technology transfer. Topics include: aerial color infrared photography, fiber optics, lightning research, soil mechanics, corrosion prevention, image processing, and communication systems development.

  7. Photogrammetric mapping using unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Graça, N.; Mitishita, E.; Gonçalves, J.

    2014-11-01

    Nowadays Unmanned Aerial Vehicle (UAV) technology has attracted attention for aerial photogrammetric mapping. The low cost and the feasibility to automatic flight along commanded waypoints can be considered as the main advantages of this technology in photogrammetric applications. Using GNSS/INS technologies the images are taken at the planned position of the exposure station and the exterior orientation parameters (position Xo, Yo, Zo and attitude ω, φ, χ) of images can be direct determined. However, common UAVs (off-the-shelf) do not replace the traditional aircraft platform. Overall, the main shortcomings are related to: difficulties to obtain the authorization to perform the flight in urban and rural areas, platform stability, safety flight, stability of the image block configuration, high number of the images and inaccuracies of the direct determination of the exterior orientation parameters of the images. In this paper are shown the obtained results from the project photogrammetric mapping using aerial images from the SIMEPAR UAV system. The PIPER J3 UAV Hydro aircraft was used. It has a micro pilot MP2128g. The system is fully integrated with 3-axis gyros/accelerometers, GPS, pressure altimeter, pressure airspeed sensors. A Sony Cyber-shot DSC-W300 was calibrated and used to get the image block. The flight height was close to 400 m, resulting GSD near to 0.10 m. The state of the art of the used technology, methodologies and the obtained results are shown and discussed. Finally advantages/shortcomings found in the study and main conclusions are presented

  8. Validation of Vehicle Candidate Areas in Aerial Images Using Color Co-Occurrence Histograms

    NASA Astrophysics Data System (ADS)

    Leister, W.; Tuermer, S.; Reinartz, P.; Hoffmann, K. H.; Stilla, U.

    2013-10-01

    Traffic monitoring plays an important role in transportation management. In addition, airborne acquisition enables a flexible and realtime mapping for special traffic situations e.g. mass events and disasters. Also the automatic extraction of vehicles from aerial imagery is a common application. However, many approaches focus on the target object only. As an extension to previously developed car detection techniques, a validation scheme is presented. The focus is on exploiting the background of the vehicle candidates as well as their color properties in the HSV color space. Therefore, texture of the vehicle background is described by color co-occurrence histograms. From all resulting histograms a likelihood function is calculated giving a quantity value to indicate whether the vehicle candidate is correctly classified. Only a few robust parameters have to be determined. Finally, the strategy is tested with a dataset of dense urban areas from the inner city of Munich, Germany. First results show that certain regions which are often responsible for false positive detections, such as vegetation or road markings, can be excluded successfully.

  9. Mapping potential of digitized aerial photographs and space images for site-specific crop management

    NASA Astrophysics Data System (ADS)

    Nielsen, Gerald A.; Long, Daniel S.; Queen, Lloyd P.

    1996-11-01

    In site-specific crop management, treatments (e.g., fertilizer and herbicides) are applied precisely where they are needed. Global positioning system receivers allow accurate navigation of field implements and creation of crop yield maps. Remote sensing products help producers explain the wide range of yields shown on these maps and become the basis for digitized field management maps. Previous sources of remote sensing products for agriculture did not provide services that generated a sustained demand by crop producers, often because data were not delivered quickly enough. Public Access Resource Centers could provide a nearly uninterrupted electronic flow of data from NASA's MODIS and other sensors that could help producers and their advisors monitor crop conditions. This early warning/opportunity system would provide a low-cost way to discover conditions that merit examination on the ground. High-spatial-resolution digital aerial photographs or data from new commercial satellite companies would provide the basis for site-specific treatments. These detailed data are too expensive to acquire often and must be timed so as to represent differences in water supply characteristics and crop yield potentials. Remote sensing products must be linked to specific prescriptions that crop produces use to control operations and improve outcomes.

  10. EROS Main Image File: A Picture Perfect Database for Landsat Imagery and Aerial Photography.

    ERIC Educational Resources Information Center

    Jack, Robert F.

    1984-01-01

    Describes Earth Resources Observation System online database, which provides access to computerized images of Earth obtained via satellite. Highlights include retrieval system and commands, types of images, search strategies, other online functions, and interpretation of accessions. Satellite information, sources and samples of accessions, and…

  11. A Method for Georeferencing Very-Large-Scale-Aerial (VLSA) Images in Sagebrush Steppe Communities.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    VLSA imagery is captured with a digital camera, mounted on a light, piloted aircraft. VLSA images are high quality and have been used to measure cover of plant functional groups and some species, bare ground, litter, and rock, but the actual image location is known imprecisely (± 30 m). This impreci...

  12. Matching Aerial Images to 3d Building Models Based on Context-Based Geometric Hashing

    NASA Astrophysics Data System (ADS)

    Jung, J.; Bang, K.; Sohn, G.; Armenakis, C.

    2016-06-01

    In this paper, a new model-to-image framework to automatically align a single airborne image with existing 3D building models using geometric hashing is proposed. As a prerequisite process for various applications such as data fusion, object tracking, change detection and texture mapping, the proposed registration method is used for determining accurate exterior orientation parameters (EOPs) of a single image. This model-to-image matching process consists of three steps: 1) feature extraction, 2) similarity measure and matching, and 3) adjustment of EOPs of a single image. For feature extraction, we proposed two types of matching cues, edged corner points representing the saliency of building corner points with associated edges and contextual relations among the edged corner points within an individual roof. These matching features are extracted from both 3D building and a single airborne image. A set of matched corners are found with given proximity measure through geometric hashing and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on co-linearity equations. The result shows that acceptable accuracy of single image's EOP can be achievable by the proposed registration approach as an alternative to labour-intensive manual registration process.

  13. Weed Mapping in Early-Season Maize Fields Using Object-Based Analysis of Unmanned Aerial Vehicle (UAV) Images

    PubMed Central

    Peña, José Manuel; Torres-Sánchez, Jorge; de Castro, Ana Isabel; Kelly, Maggi; López-Granados, Francisca

    2013-01-01

    The use of remote imagery captured by unmanned aerial vehicles (UAV) has tremendous potential for designing detailed site-specific weed control treatments in early post-emergence, which have not possible previously with conventional airborne or satellite images. A robust and entirely automatic object-based image analysis (OBIA) procedure was developed on a series of UAV images using a six-band multispectral camera (visible and near-infrared range) with the ultimate objective of generating a weed map in an experimental maize field in Spain. The OBIA procedure combines several contextual, hierarchical and object-based features and consists of three consecutive phases: 1) classification of crop rows by application of a dynamic and auto-adaptive classification approach, 2) discrimination of crops and weeds on the basis of their relative positions with reference to the crop rows, and 3) generation of a weed infestation map in a grid structure. The estimation of weed coverage from the image analysis yielded satisfactory results. The relationship of estimated versus observed weed densities had a coefficient of determination of r2=0.89 and a root mean square error of 0.02. A map of three categories of weed coverage was produced with 86% of overall accuracy. In the experimental field, the area free of weeds was 23%, and the area with low weed coverage (<5% weeds) was 47%, which indicated a high potential for reducing herbicide application or other weed operations. The OBIA procedure computes multiple data and statistics derived from the classification outputs, which permits calculation of herbicide requirements and estimation of the overall cost of weed management operations in advance. PMID:24146963

  14. Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images.

    PubMed

    Peña, José Manuel; Torres-Sánchez, Jorge; de Castro, Ana Isabel; Kelly, Maggi; López-Granados, Francisca

    2013-01-01

    The use of remote imagery captured by unmanned aerial vehicles (UAV) has tremendous potential for designing detailed site-specific weed control treatments in early post-emergence, which have not possible previously with conventional airborne or satellite images. A robust and entirely automatic object-based image analysis (OBIA) procedure was developed on a series of UAV images using a six-band multispectral camera (visible and near-infrared range) with the ultimate objective of generating a weed map in an experimental maize field in Spain. The OBIA procedure combines several contextual, hierarchical and object-based features and consists of three consecutive phases: 1) classification of crop rows by application of a dynamic and auto-adaptive classification approach, 2) discrimination of crops and weeds on the basis of their relative positions with reference to the crop rows, and 3) generation of a weed infestation map in a grid structure. The estimation of weed coverage from the image analysis yielded satisfactory results. The relationship of estimated versus observed weed densities had a coefficient of determination of r(2)=0.89 and a root mean square error of 0.02. A map of three categories of weed coverage was produced with 86% of overall accuracy. In the experimental field, the area free of weeds was 23%, and the area with low weed coverage (<5% weeds) was 47%, which indicated a high potential for reducing herbicide application or other weed operations. The OBIA procedure computes multiple data and statistics derived from the classification outputs, which permits calculation of herbicide requirements and estimation of the overall cost of weed management operations in advance. PMID:24146963

  15. Use of Aerial Images for Regular Updates of Buildings in the Fundamental Base of Geographic Data of the Czech Republic

    NASA Astrophysics Data System (ADS)

    Hron, V.; Halounova, L.

    2015-03-01

    Digital aerial images (DAI) include position, elevation and also spectral information (visible bands and near-infrared band) about the captured area. The aim of this paper is to present the possibilities of automatic analysis of DAI for updating of the Fundamental Base of Geographic Data of the Czech Republic with a focus on buildings. Regular updates of buildings (automatic detection of new and demolished buildings) are based on the analysis of coloured point clouds created by an automatic image matching technique from each time period. The created approach compares point clouds from different time periods to each other. The advantage of this solution is that it is independent of the manner of keeping the buildings in the database. It does not matter whether the buildings in the database have correct positions and their footprints correspond to the roof shapes or external walls. The involved method is robust because a digital surface model generated by image matching techniques can contain numerous errors. Shaded areas and objects with blurred textures are problematic for automatic image correlation algorithms and lead to false results. For this reason, derived layers containing additional information are used. Shadow masks (layers with modelled shadows) are used for the verification of indications and to filter out errors in the shaded areas using a contextual evaluation. Furthermore, additional information about the road and railway networks and morphological operations of opening and closing were used to achieve more accurate results. All these information sources are then evaluated using decision logic, which uses the generally applicable rules that are available for different datasets without the need for modification. The method was tested on different datasets with various types of buildings (villages, suburbs and city centres) which cover more than 20 square kilometres. The developed solution leads to very promising results without the need of acquiring

  16. Detection of building changes from aerial images and light detection and ranging (LIDAR) data

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Chien; Lin, Li-Jer

    2010-11-01

    Building models are built to provide three-dimensional (3-D) spatial information, which is needed in a variety of applications including city planning, construction management, location-based services of urban infrastructures, and the like. However, 3-D building models have to be updated on a timely manner to meet the changing demand. Rather than reconstructing building models for the entire area, it would be more convenient and effective to only update parts of the areas where there were changes. This paper aims at developing a new method, namely double-threshold strategy, to find such changes within 3-D building models in the region of interest with the aid of light detection and ranging (LIDAR) data. The proposed modeling scheme comprises three steps, namely, data pre-processing, change detection in building areas, and validation. In the first step for data pre-processing, data registration was carried out based on multi-source data. The second step for data pre-processing requires using the triangulation of an irregular network of data points collected by Light Detection And Ranging (LIDAR), focusing on those locations containing walls or other above-ground objects that were ever removed. Then, change detection in the building models can be made possible for finding differences in height by comparing the LIDAR point measurements and the estimates of the building models. The results may be further refined using spectral and feature information collected from aerial imagery. A double-threshold strategy was applied to cope with the highly sensitive thresholding often encountered when using the rule-based approach. Finally, ground truth data were used for model validation. Research findings clearly indicate that the double-threshold strategy improves the overall accuracy from 93.1% to 95.9%.

  17. Recent advances in imaging technologies in dentistry

    PubMed Central

    Shah, Naseem; Bansal, Nikhil; Logani, Ajay

    2014-01-01

    Dentistry has witnessed tremendous advances in all its branches over the past three decades. With these advances, the need for more precise diagnostic tools, specially imaging methods, have become mandatory. From the simple intra-oral periapical X-rays, advanced imaging techniques like computed tomography, cone beam computed tomography, magnetic resonance imaging and ultrasound have also found place in modern dentistry. Changing from analogue to digital radiography has not only made the process simpler and faster but also made image storage, manipulation (brightness/contrast, image cropping, etc.) and retrieval easier. The three-dimensional imaging has made the complex cranio-facial structures more accessible for examination and early and accurate diagnosis of deep seated lesions. This paper is to review current advances in imaging technology and their uses in different disciplines of dentistry. PMID:25349663

  18. Array Technology for Terahertz Imaging

    NASA Technical Reports Server (NTRS)

    Reck, Theodore; Siles, Jose; Jung, Cecile; Gill, John; Lee, Choonsup; Chattopadhyay, Goutam; Mehdi, Imran; Cooper, Ken

    2012-01-01

    Heterodyne terahertz (0.3 - 3THz) imaging systems are currently limited to single or a low number of pixels. Drastic improvements in imaging sensitivity and speed can be achieved by replacing single pixel systems with an array of detectors. This paper presents an array topology that is being developed at the Jet Propulsion Laboratory based on the micromachining of silicon. This technique fabricates the array's package and waveguide components by plasma etching of silicon, resulting in devices with precision surpassing that of current metal machining techniques. Using silicon increases the versatility of the packaging, enabling a variety of orientations of circuitry within the device which increases circuit density and design options. The design of a two-pixel transceiver utilizing a stacked architecture is presented that achieves a pixel spacing of 10mm. By only allowing coupling from the top and bottom of the package the design can readily be arrayed in two dimensions with a spacing of 10mm x 18mm.

  19. Array technology for terahertz imaging

    NASA Astrophysics Data System (ADS)

    Reck, Theodore; Siles, Jose; Jung, Cecile; Gill, John; Lee, Choonsup; Chattopadhyay, Goutam; Mehdi, Imran; Cooper, Ken

    2012-06-01

    Heterodyne terahertz (0.3 - 3THz) imaging systems are currently limited to single or a low number of pixels. Drastic improvements in imaging sensitivity and speed can be achieved by replacing single pixel systems with an array of detectors. This paper presents an array topology that is being developed at the Jet Propulsion Laboratory based on the micromachining of silicon. This technique fabricates the array's package and waveguide components by plasma etching of silicon, resulting in devices with precision surpassing that of current metal machining techniques. Using silicon increases the versatility of the packaging, enabling a variety of orientations of circuitry within the device which increases circuit density and design options. The design of a two-pixel transceiver utilizing a stacked architecture is presented that achieves a pixel spacing of 10mm. By only allowing coupling from the top and bottom of the package the design can readily be arrayed in two dimensions with a spacing of 10mm x 18mm.

  20. Radiation imaging technology for nuclear materials safeguards

    SciTech Connect

    Prettyman, T.H.; Russo, P.A.; Cheung, C.C.; Christianson, A.D.; Feldman, W.C.; Gavron, A.

    1997-12-01

    Gamma-ray and neutron imaging technology is emerging as a useful tool for nuclear materials safeguards. Principal applications include improvement in accuracy for nondestructive assay of heterogeneous material (e.g., residues) and wide-area imaging of nuclear material in facilities (e.g., holdup). Portable gamma cameras with gamma-ray spectroscopy are available commercially and are being applied to holdup measurements. The technology has the potential to significantly reduce effort and exposure in holdup campaigns; and, with imaging, some of the limiting assumptions required for conventional holdup analysis can be relaxed, resulting in a more general analysis. Methods to analyze spectroscopic-imaging data to assay plutonium and uranium in processing equipment are being development. Results of holdup measurements using a commercial, portable gamma-cameras are presented. The authors are also developing fast neutron imaging techniques for NDA, search, and holdup. Fast neutron imaging provides a direct measurement of the source of neutrons and is relatively insensitive to surroundings when compared to thermal or epithermal neutron imaging. The technology is well-suited for in-process inventory measurements and verification of materials in interim storage, for which gamma-ray measurements may be inadequate due to self-shielding. Results of numerical simulations to predict the performance of fast-neutron telescopes for safeguards applications are presented.

  1. A survey of medical diagnostic imaging technologies

    SciTech Connect

    Heese, V.; Gmuer, N.; Thomlinson, W.

    1991-10-01

    The fields of medical imaging and medical imaging instrumentation are increasingly important. The state-of-the-art continues to advance at a very rapid pace. In fact, various medical imaging modalities are under development at the National Synchrotron Light Source (such as MECT and Transvenous Angiography.) It is important to understand how these techniques compare with today's more conventional imaging modalities. The purpose of this report is to provide some basic information about the various medical imaging technologies currently in use and their potential developments as a basis for this comparison. This report is by no means an in-depth study of the physics and instrumentation of the various imaging modalities; instead, it is an attempt to provide an explanation of the physical bases of these techniques and their principal clinical and research capabilities.

  2. A survey of medical diagnostic imaging technologies

    SciTech Connect

    Heese, V.; Gmuer, N.; Thomlinson, W.

    1991-10-01

    The fields of medical imaging and medical imaging instrumentation are increasingly important. The state-of-the-art continues to advance at a very rapid pace. In fact, various medical imaging modalities are under development at the National Synchrotron Light Source (such as MECT and Transvenous Angiography.) It is important to understand how these techniques compare with today`s more conventional imaging modalities. The purpose of this report is to provide some basic information about the various medical imaging technologies currently in use and their potential developments as a basis for this comparison. This report is by no means an in-depth study of the physics and instrumentation of the various imaging modalities; instead, it is an attempt to provide an explanation of the physical bases of these techniques and their principal clinical and research capabilities.

  3. Matching Aerial Images to 3D Building Models Using Context-Based Geometric Hashing

    PubMed Central

    Jung, Jaewook; Sohn, Gunho; Bang, Kiin; Wichmann, Andreas; Armenakis, Costas; Kada, Martin

    2016-01-01

    A city is a dynamic entity, which environment is continuously changing over time. Accordingly, its virtual city models also need to be regularly updated to support accurate model-based decisions for various applications, including urban planning, emergency response and autonomous navigation. A concept of continuous city modeling is to progressively reconstruct city models by accommodating their changes recognized in spatio-temporal domain, while preserving unchanged structures. A first critical step for continuous city modeling is to coherently register remotely sensed data taken at different epochs with existing building models. This paper presents a new model-to-image registration method using a context-based geometric hashing (CGH) method to align a single image with existing 3D building models. This model-to-image registration process consists of three steps: (1) feature extraction; (2) similarity measure; and matching, and (3) estimating exterior orientation parameters (EOPs) of a single image. For feature extraction, we propose two types of matching cues: edged corner features representing the saliency of building corner points with associated edges, and contextual relations among the edged corner features within an individual roof. A set of matched corners are found with given proximity measure through geometric hashing, and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on collinearity equations. The result shows that acceptable accuracy of EOPs of a single image can be achievable using the proposed registration approach as an alternative to a labor-intensive manual registration process. PMID:27338410

  4. Matching Aerial Images to 3D Building Models Using Context-Based Geometric Hashing.

    PubMed

    Jung, Jaewook; Sohn, Gunho; Bang, Kiin; Wichmann, Andreas; Armenakis, Costas; Kada, Martin

    2016-01-01

    A city is a dynamic entity, which environment is continuously changing over time. Accordingly, its virtual city models also need to be regularly updated to support accurate model-based decisions for various applications, including urban planning, emergency response and autonomous navigation. A concept of continuous city modeling is to progressively reconstruct city models by accommodating their changes recognized in spatio-temporal domain, while preserving unchanged structures. A first critical step for continuous city modeling is to coherently register remotely sensed data taken at different epochs with existing building models. This paper presents a new model-to-image registration method using a context-based geometric hashing (CGH) method to align a single image with existing 3D building models. This model-to-image registration process consists of three steps: (1) feature extraction; (2) similarity measure; and matching, and (3) estimating exterior orientation parameters (EOPs) of a single image. For feature extraction, we propose two types of matching cues: edged corner features representing the saliency of building corner points with associated edges, and contextual relations among the edged corner features within an individual roof. A set of matched corners are found with given proximity measure through geometric hashing, and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on collinearity equations. The result shows that acceptable accuracy of EOPs of a single image can be achievable using the proposed registration approach as an alternative to a labor-intensive manual registration process. PMID:27338410

  5. An Integrated Photogrammetric and Spatial Database Management System for Producing Fully Structured Data Using Aerial and Remote Sensing Images

    PubMed Central

    Ahmadi, Farshid Farnood; Ebadi, Hamid

    2009-01-01

    3D spatial data acquired from aerial and remote sensing images by photogrammetric techniques is one of the most accurate and economic data sources for GIS, map production, and spatial data updating. However, there are still many problems concerning storage, structuring and appropriate management of spatial data obtained using these techniques. According to the capabilities of spatial database management systems (SDBMSs); direct integration of photogrammetric and spatial database management systems can save time and cost of producing and updating digital maps. This integration is accomplished by replacing digital maps with a single spatial database. Applying spatial databases overcomes the problem of managing spatial and attributes data in a coupled approach. This management approach is one of the main problems in GISs for using map products of photogrammetric workstations. Also by the means of these integrated systems, providing structured spatial data, based on OGC (Open GIS Consortium) standards and topological relations between different feature classes, is possible at the time of feature digitizing process. In this paper, the integration of photogrammetric systems and SDBMSs is evaluated. Then, different levels of integration are described. Finally design, implementation and test of a software package called Integrated Photogrammetric and Oracle Spatial Systems (IPOSS) is presented. PMID:22574014

  6. An integrated photogrammetric and spatial database management system for producing fully structured data using aerial and remote sensing images.

    PubMed

    Ahmadi, Farshid Farnood; Ebadi, Hamid

    2009-01-01

    3D spatial data acquired from aerial and remote sensing images by photogrammetric techniques is one of the most accurate and economic data sources for GIS, map production, and spatial data updating. However, there are still many problems concerning storage, structuring and appropriate management of spatial data obtained using these techniques. According to the capabilities of spatial database management systems (SDBMSs); direct integration of photogrammetric and spatial database management systems can save time and cost of producing and updating digital maps. This integration is accomplished by replacing digital maps with a single spatial database. Applying spatial databases overcomes the problem of managing spatial and attributes data in a coupled approach. This management approach is one of the main problems in GISs for using map products of photogrammetric workstations. Also by the means of these integrated systems, providing structured spatial data, based on OGC (Open GIS Consortium) standards and topological relations between different feature classes, is possible at the time of feature digitizing process. In this paper, the integration of photogrammetric systems and SDBMSs is evaluated. Then, different levels of integration are described. Finally design, implementation and test of a software package called Integrated Photogrammetric and Oracle Spatial Systems (IPOSS) is presented. PMID:22574014

  7. Infrared Surveys of Hawaiian Volcanoes: Aerial surveys with infrared imaging radiometer depict volcanic thermal patterns and structural features.

    PubMed

    Fisher, W A; Moxham, R M; Polcyn, F; Landis, G H

    1964-11-01

    Aerial infrared-sensor surveys of Kilauea volcano have depicted the areal extent and the relative intensity of abnormal thermal features in the caldera area of the volcano and along its associated rift zones. Many of these anomalies show correlation with visible steaming and reflect convective transfer of heat to the surface from subterranean sources. Structural details of the volcano, some not evident from surface observation, are also delineated by their thermal abnormalities. Several changes were observed in the patterns of infrared emission during the period of study; two such changes show correlation in location with subsequent eruptions, but the cause-and-effect relationship is uncertain. Thermal anomalies were also observed on the southwest flank of Mauna Loa; images of other volcanoes on the island of Hawaii, and of Haleakala on the island of Maui, revealed no thermal abnormalities. Approximately 25 large springs issuing into the ocean around the periphery of Hawaii have been detected. Infrared emission varies widely with surface texture and composition, suggesting that similar observations may have value for estimating surface conditions on the moon or planets. PMID:17729994

  8. Aerial multispectral imaging for cotton yield estimation under different irrigation and nitrogen treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton yield varied spatially within a field. The variability can be caused by various production inputs such as soil property, water management, and fertilizer application. Airborne multispectral imaging is capable of providing data and information to study effects of the inputs on the yield qualit...

  9. Assessing the Accuracy of Ortho-image using Photogrammetric Unmanned Aerial System

    NASA Astrophysics Data System (ADS)

    Jeong, H. H.; Park, J. W.; Kim, J. S.; Choi, C. U.

    2016-06-01

    Smart-camera can not only be operated under network environment anytime and any place but also cost less than the existing photogrammetric UAV since it provides high-resolution image, 3D location and attitude data on a real-time basis from a variety of built-in sensors. This study's proposed UAV photogrammetric method, low-cost UAV and smart camera were used. The elements of interior orientation were acquired through camera calibration. The image triangulation was conducted in accordance with presence or absence of consideration of the interior orientation (IO) parameters determined by camera calibration, The Digital Elevation Model (DEM) was constructed using the image data photographed at the target area and the results of the ground control point survey. This study also analyzes the proposed method's application possibility by comparing a Ortho-image the results of the ground control point survey. Considering these study findings, it is suggested that smartphone is very feasible as a payload for UAV system. It is also expected that smartphone may be loaded onto existing UAV playing direct or indirect roles significantly.

  10. Aerospace technology transfer to breast cancer imaging.

    PubMed

    Winfield, D L

    1997-01-01

    In the United States in 1996, an estimated 44,560 women died of breast cancer, and 184,300 new cases were diagnosed. Advances in space technology are now making significant improvements in the imaging technologies used in managing this important foe. The first of these spinoffs, a digital spot mammography system used to perform stereotactic fine-needle breast biopsy, uses a backside-thinned CCD developed originally for the Space Telescope Imaging Spectrometer. This paper describes several successful biomedical applications which have resulted from collaborative technology transfer programs between the National Aeronautics and Space Administration (NASA), the National Cancer Institute (NCI), and the U.S. Dept. of Health and Human Services Office on Women's Health (OWH). These programs have accelerated the introduction of direct digital mammography by two years. In follow-on work, RTI is now assisting the HHS Office on Women's Health to identify additional opportunities for transfer of aerospace, defense, and intelligence technologies to image-guided detection, diagnosis, and treatment of breast cancer. The technology identification and evaluation effort culminated in a May 1997 workshop, and the formative technology development partnerships are discussed. PMID:11541150

  11. Comparison of DSMs acquired by terrestrial laser scanning, UAV-based aerial images and ground-based optical images at the Super-Sauze landslide

    NASA Astrophysics Data System (ADS)

    Rothmund, Sabrina; Niethammer, Uwe; Walter, Marco; Joswig, Manfred

    2013-04-01

    In recent years, the high-resolution and multi-temporal 3D mapping of the Earth's surface using terrestrial laser scanning (TLS), ground-based optical images and especially low-cost UAV-based aerial images (Unmanned Aerial Vehicle) has grown in importance. This development resulted from the progressive technical improvement of the imaging systems and the freely available multi-view stereo (MVS) software packages. These different methods of data acquisition for the generation of accurate, high-resolution digital surface models (DSMs) were applied as part of an eight-week field campaign at the Super-Sauze landslide (South French Alps). An area of approximately 10,000 m² with long-term average displacement rates greater than 0.01 m/day has been investigated. The TLS-based point clouds were acquired at different viewpoints with an average point spacing between 10 to 40 mm and at different dates. On these days, more than 50 optical images were taken on points along a predefined line on the side part of the landslide by a low-cost digital compact camera. Additionally, aerial images were taken by a radio-controlled mini quad-rotor UAV equipped with another low-cost digital compact camera. The flight altitude ranged between 20 m and 250 m and produced a corresponding ground resolution between 0.6 cm and 7 cm. DGPS measurements were carried out as well in order to geo-reference and validate the point cloud data. To generate unscaled photogrammetric 3D point clouds from a disordered and tilted image set, we use the widespread open-source software package Bundler and PMVS2 (University of Washington). These multi-temporal DSMs are required on the one hand to determine the three-dimensional surface deformations and on the other hand it will be required for differential correction for orthophoto production. Drawing on the example of the acquired data at the Super-Sauze landslide, we demonstrate the potential but also the limitations of the photogrammetric point clouds. To

  12. Urban 3D GIS From LiDAR and digital aerial images

    NASA Astrophysics Data System (ADS)

    Zhou, Guoqing; Song, C.; Simmers, J.; Cheng, P.

    2004-05-01

    This paper presents a method, which integrates image knowledge and Light Detection And Ranging (LiDAR) point cloud data for urban digital terrain model (DTM) and digital building model (DBM) generation. The DBM is an Object-Oriented data structure, in which each building is considered as a building object, i.e., an entity of the building class. The attributes of each building include roof types, polygons of the roof surfaces, height, parameters describing the roof surfaces, and the LiDAR point array within the roof surfaces. Each polygon represents a roof surface of building. This type of data structure is flexible for adding other building attributes in future, such as texture information and wall information. Using image knowledge extracted, we developed a new method of interpolating LiDAR raw data into grid digital surface model (DSM) with considering the steep discontinuities of buildings. In this interpolation method, the LiDAR data points, which are located in the polygon of roof surfaces, first are determined, and then interpolation via planar equation is employed for grid DSM generation. The basic steps of our research are: (1) edge detection by digital image processing algorithms; (2) complete extraction of the building roof edges by digital image processing and human-computer interactive operation; (3) establishment of DBM; (4) generation of DTM by removing surface objects. Finally, we implement the above functions by MS VC++ programming. The outcome of urban 3D DSM, DTM and DBM is exported into urban database for urban 3D GIS.

  13. Evaluation of DSMs generated from multi-temporal aerial photographs using emerging structure from motion-multi-view stereo technology

    NASA Astrophysics Data System (ADS)

    Ishiguro, Satoshi; Yamano, Hiroya; Oguma, Hiroyuki

    2016-09-01

    An accuracy assessment of digital surface models (DSMs) generated from archived aerial photographs using the structure from motion-multi-view stereo (SfM-MVS) technique was carried out. A four-step accuracy-assessment procedure was adopted using aerial photography from eight periods, as follows. Step 1: generate a DSM and orthophoto from digital aerial photographs taken in 2013 and ground control points (GCPs) measured by GNSS. Step 2: assess the accuracy of the DSM by comparison with altitude measured by leveling survey. Step 3: generate other historical DSMs and orthophotos from historical aerial photographs using GCPs extracted from the DSM of 2013. Step 4: assess the accuracy of all historical DSMs by comparing with the leveling survey. Then re-calculate the accuracy of historical DSMs by reducing the inherent error in the 2013 DSM. The DSM based on the aerial photographs taken in 2013 was generated with a resolution of 48.2 cm. The residual height error of the GCPs was 15.4 cm. Validation against the altitudes of 171 points revealed that this DSM has a height root-mean-square-error (RMSE) of 24.1 cm and is 9.2 cm lower than the leveling data on average. Even using US military photos with unconfirmed detailed specifications, the model can measure the altitude with an RMSE value of 121.5 cm. It appears therefore that analysis by SfM-MVS can give comparable measurement accuracy to traditional aerial photogrammetry. The low cost and high accuracy obtained with archived aerial photographs are worthy of special mention.

  14. Imaging Transgene Expression with Radionuclide Imaging Technologies1

    PubMed Central

    Gambhir, SS; Herschman, HR; Cherry, SR; Barrio, JR; Satyamurthy, N; Toyokuni, T; Phelps, ME; Larson, SM; Balaton, J; Finn, R; Sadelain, M; Tjuvajev, J

    2000-01-01

    Abstract A variety of imaging technologies are being investigated as tools for studying gene expression in living subjects. Noninvasive, repetitive and quantitative imaging of gene expression will help both to facilitate human gene therapy trials and to allow for the study of animal models of molecular and cellular therapy. Radionuclide approaches using single photon emission computed tomography (SPECT) and positron emission tomography (PET) are the most mature of the current imaging technologies and offer many advantages for imaging gene expression compared to optical and magnetic resonance imaging (MRI)-based approaches. These advantages include relatively high sensitivity, full quantitative capability (for PET), and the ability to extend small animal assays directly into clinical human applications. We describe a PET scanner (micro PET) designed specifically for studies of small animals. We review “marker/reporter gene” imaging approaches using the herpes simplex type 1 virus thymidine kinase (HSV1-tk) and the dopamine type 2 receptor (D2R) genes. We describe and contrast several radiolabeled probes that can be used with the HSV1-tk reporter gene both for SPECT and for PET imaging. We also describe the advantages/disadvantages of each of the assays developed and discuss future animal and human applications. PMID:10933072

  15. Computer vision research with new imaging technology

    NASA Astrophysics Data System (ADS)

    Hou, Guangqi; Liu, Fei; Sun, Zhenan

    2015-12-01

    Light field imaging is capable of capturing dense multi-view 2D images in one snapshot, which record both intensity values and directions of rays simultaneously. As an emerging 3D device, the light field camera has been widely used in digital refocusing, depth estimation, stereoscopic display, etc. Traditional multi-view stereo (MVS) methods only perform well on strongly texture surfaces, but the depth map contains numerous holes and large ambiguities on textureless or low-textured regions. In this paper, we exploit the light field imaging technology on 3D face modeling in computer vision. Based on a 3D morphable model, we estimate the pose parameters from facial feature points. Then the depth map is estimated through the epipolar plane images (EPIs) method. At last, the high quality 3D face model is exactly recovered via the fusing strategy. We evaluate the effectiveness and robustness on face images captured by a light field camera with different poses.

  16. Theoretical study for aerial image intensity in resist in high numerical aperture projection optics and experimental verification with one-dimensional patterns

    NASA Astrophysics Data System (ADS)

    Shibuya, Masato; Takada, Akira; Nakashima, Toshiharu

    2016-04-01

    In optical lithography, high-performance exposure tools are indispensable to obtain not only fine patterns but also preciseness in pattern width. Since an accurate theoretical method is necessary to predict these values, some pioneer and valuable studies have been proposed. However, there might be some ambiguity or lack of consensus regarding the treatment of diffraction by object, incoming inclination factor onto image plane in scalar imaging theory, and paradoxical phenomenon of the inclined entrance plane wave onto image in vector imaging theory. We have reconsidered imaging theory in detail and also phenomenologically resolved the paradox. By comparing theoretical aerial image intensity with experimental pattern width for one-dimensional pattern, we have validated our theoretical consideration.

  17. Aerial Terrain Mapping Using Unmanned Aerial Vehicle Approach

    NASA Astrophysics Data System (ADS)

    Tahar, K. N.

    2012-08-01

    This paper looks into the latest achievement in the low-cost Unmanned Aerial Vehicle (UAV) technology in their capacity to map the semi-development areas. The objectives of this study are to establish a new methodology or a new algorithm in image registration during interior orientation process and to determine the accuracy of the photogrammetric products by using UAV images. Recently, UAV technology has been used in several applications such as mapping, agriculture and surveillance. The aim of this study is to scrutinize the usage of UAV to map the semi-development areas. The performance of the low cost UAV mapping study was established on a study area with two image processing methods so that the results could be comparable. A non-metric camera was attached at the bottom of UAV and it was used to capture images at both sites after it went through several calibration steps. Calibration processes were carried out to determine focal length, principal distance, radial lens distortion, tangential lens distortion and affinity. A new method in image registration for a non-metric camera is discussed in this paper as a part of new methodology of this study. This method used the UAV Global Positioning System (GPS) onboard to register the UAV image for interior orientation process. Check points were established randomly at both sites using rapid static Global Positioning System. Ground control points are used for exterior orientation process, and check point is used for accuracy assessment of photogrammetric product. All acquired images were processed in a photogrammetric software. Two methods of image registration were applied in this study, namely, GPS onboard registration and ground control point registration. Both registrations were processed by using photogrammetric software and the result is discussed. Two results were produced in this study, which are the digital orthophoto and the digital terrain model. These results were analyzed by using the root mean square

  18. Integration of historical aerial and satellite photos, recent satellite images and geophysical surveys for the knowledge of the ancient Dyrrachium (Durres, Albania)

    NASA Astrophysics Data System (ADS)

    Malfitana, Daniele; Shehi, Eduard; Masini, Nicola; Scardozzi, Giuseppe

    2010-05-01

    The paper presents the preliminary results of an integrated multidiscipliary research project concerning the urban area of the modern Durres (ancient Dyrrachium). Here a joint Italian and Albanian researcher are starting preliminary investigations on the place of an ancient roman villa placed in the urban centre of the modern town. In a initial phase are offering interesting results the use of a rich multitemporal remote sensing data-set, historical aerial photos of 1920s and 1930s, photos of USA spy satellites of 1960s and 1970s (Corona KH-4A and KH-4B), and very high resolution satellite imagery. The historical aerial documentation is very rich and includes aerial photogrammetrich flights of two Italian Institutions: the private company SARA - Società Anonima Rilevamenti Aerofotogrammetrici in Rome (1928) and the IGM - Istituto Geografico Militare (1936, 1937 e 1941), which flew on Durres for purposes of cartographic production and military. These photos offer an image of the city before the urban expansion after the Second World War and in recent decades, progressively documented by satellite images of the 1960s-1970s and recent years. They enable a reconstruction of the ancient topography of the urban area, even with the possibility of detailed analysis, as in the case of the the Roman villa, nowadays buried under a modern garden, but also investigated with a GPR survey, in order to rebuild its plan and contextualize the villa in relation to the urban area of the ancient Dyrrachium.

  19. Geomatics techniques applied to time series of aerial images for multitemporal geomorphological analysis of the Miage Glacier (Mont Blanc).

    NASA Astrophysics Data System (ADS)

    Perotti, Luigi; Carletti, Roberto; Giardino, Marco; Mortara, Giovanni

    2010-05-01

    The Miage glacier is the major one in the Italian side of the Mont Blanc Massif, the third by area and the first by longitudinal extent among Italian glaciers. It is a typical debris covered glacier, since the end of the L.I.A. The debris coverage reduces ablation, allowing a relative stability of the glacier terminus, which is characterized by a wide and articulated moraine apparatus. For its conservative landforms, the Miage Glacier has a great importance for the analysis of the geomorphological response to recent climatic changes. Thanks to an organized existing archive of multitemporal aerial images (1935 to present) a photogrammetric approach has been applied to detect recent geomorphological changes in the Miage glacial basin. The research team provided: a) to digitize all the available images (still in analogic form) through photogrammetric scanners (very low image distortions devices) taking care of correctly defining the resolution of the acquisition compared to the scale mapping images are suitable for; b) to import digitized images into an appropriate digital photogrammetry software environment; c) to manage images in order, where possible, to carried out the stereo models orientation necessary for 3D navigation and plotting of critical geometric features of the glacier. Recognized geometric feature, referring to different periods, can be transferred to vector layers and imported in a GIS for further comparisons and investigations; d) to produce multi-temporal Digital Elevation Models for glacier volume changes; e) to perform orthoprojection of such images to obtain multitemporal orthoimages useful for areal an planar terrain evaluation and thematic analysis; f) to evaluate both planimetric positioning and height determination accuracies reachable through the photogrammetric process. Users have to known reliability of the measures they can do over such products. This can drive them to define the applicable field of this approach and this can help them to

  20. An Improved Snake Model for Refinement of Lidar-Derived Building Roof Contours Using Aerial Images

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Wang, Shugen; Liu, Xiuguo

    2016-06-01

    Building roof contours are considered as very important geometric data, which have been widely applied in many fields, including but not limited to urban planning, land investigation, change detection and military reconnaissance. Currently, the demand on building contours at a finer scale (especially in urban areas) has been raised in a growing number of studies such as urban environment quality assessment, urban sprawl monitoring and urban air pollution modelling. LiDAR is known as an effective means of acquiring 3D roof points with high elevation accuracy. However, the precision of the building contour obtained from LiDAR data is restricted by its relatively low scanning resolution. With the use of the texture information from high-resolution imagery, the precision can be improved. In this study, an improved snake model is proposed to refine the initial building contours extracted from LiDAR. First, an improved snake model is constructed with the constraints of the deviation angle, image gradient, and area. Then, the nodes of the contour are moved in a certain range to find the best optimized result using greedy algorithm. Considering both precision and efficiency, the candidate shift positions of the contour nodes are constrained, and the searching strategy for the candidate nodes is explicitly designed. The experiments on three datasets indicate that the proposed method for building contour refinement is effective and feasible. The average quality index is improved from 91.66% to 93.34%. The statistics of the evaluation results for every single building demonstrated that 77.0% of the total number of contours is updated with higher quality index.

  1. Research on autofocusing method with automatic calibration for aerial camera based on imaging resolution

    NASA Astrophysics Data System (ADS)

    Zhao, Yu-liang; Zhao, Hong-qiang; Li, Shu-jun; Zhang, Yu-ye

    2014-09-01

    Air materiel depot is a warehouse which store consumed all the parts and equipment vault of the plane. In order to ensure the various aviation equipment integrity of the backup piece rate, the inside temperature of depot must be controlled within a certain range. Therefore, the depot must be equipped a self-contained temperature real-time monitoring system. This paper presents a distributed temperature sensing alarm system to apply to real-time measure spatial distribution of temperature field. In order to eliminate influence to the scattering strength from the light source instability and the fiber bending splice loss and to improve temperature measurement accuracy, the system design used dual-channel dual-wavelength comparison method which make Anti-Stokes as signal channel and Stokes as a reference channel to collect signals of two channel respectively and detect the ratio of the two channels' signals. The light of LD directional coupling to the sensing optical fiber in the temperature field to test, domain reflect light from the sensing optical fiber directional coupling to receive channel again, Rayleigh domain reflect light is filtered after optical filter, the Anti-Stokes and Stokes are both taken out, converted and magnified, the two signals is digitalized by A/D Converter, and written to the storage machine , which linear cumulative to the content of the storage unit, The distributed measurement of the temperature field to test is finished. The collected 2900 measuring points real-time on 2km of optical fiber. The spatial resolution of the system was 0.7m, measurement range was -20-370 °C, and measurement error was +/- 2 °C. All index of the system achieved the desired objective. To get an accurate temperature field spatial distribution and the information of temporal variation, the system enabled real-time temperature of aviation depot monitoring and early warning. As a new sensing technology, the distributed fiber optic sensor has the functions of self

  2. Roughness Estimation from Point Clouds - A Comparison of Terrestrial Laser Scanning and Image Matching by Unmanned Aerial Vehicle Acquisitions

    NASA Astrophysics Data System (ADS)

    Rutzinger, Martin; Bremer, Magnus; Ragg, Hansjörg

    2013-04-01

    Recently, terrestrial laser scanning (TLS) and matching of images acquired by unmanned arial vehicles (UAV) are operationally used for 3D geodata acquisition in Geoscience applications. However, the two systems cover different application domains in terms of acquisition conditions and data properties i.e. accuracy and line of sight. In this study we investigate the major differences between the two platforms for terrain roughness estimation. Terrain roughness is an important input for various applications such as morphometry studies, geomorphologic mapping, and natural process modeling (e.g. rockfall, avalanche, and hydraulic modeling). Data has been collected simultaneously by TLS using an Optech ILRIS3D and a rotary UAV using an octocopter from twins.nrn for a 900 m² test site located in a riverbed in Tyrol, Austria (Judenbach, Mieming). The TLS point cloud has been acquired from three scan positions. These have been registered using iterative closest point algorithm and a target-based referencing approach. For registration geometric targets (spheres) with a diameter of 20 cm were used. These targets were measured with dGPS for absolute georeferencing. The TLS point cloud has an average point density of 19,000 pts/m², which represents a point spacing of about 5 mm. 15 images where acquired by UAV in a height of 20 m using a calibrated camera with focal length of 18.3 mm. A 3D point cloud containing RGB attributes was derived using APERO/MICMAC software, by a direct georeferencing approach based on the aircraft IMU data. The point cloud is finally co-registered with the TLS data to guarantee an optimal preparation in order to perform the analysis. The UAV point cloud has an average point density of 17,500 pts/m², which represents a point spacing of 7.5 mm. After registration and georeferencing the level of detail of roughness representation in both point clouds have been compared considering elevation differences, roughness and representation of different grain

  3. Advanced Microwave/Millimeter-Wave Imaging Technology

    NASA Astrophysics Data System (ADS)

    Shen, Zuowei; Yang, Lu; Luhmann, N. C., Jr.; Domier, C. W.; Ito, N.; Kogi, Y.; Liang, Y.; Mase, A.; Park, H.; Sakata, E.; Tsai, W.; Xia, Z. G.; Zhang, P.

    Millimeter wave technology advances have made possible active and passive millimeter wave imaging for a variety of applications including advanced plasma diagnostics, radio astronomy, atmospheric radiometry, concealed weapon detection, all-weather aircraft landing, contraband goods detection, harbor navigation/surveillance in fog, highway traffic monitoring in fog, helicopter and automotive collision avoidance in fog, and environmental remote sensing data associated with weather, pollution, soil moisture, oil spill detection, and monitoring of forest fires, to name but a few. The primary focus of this paper is on technology advances which have made possible advanced imaging and visualization of magnetohydrodynamic (MHD) fluctuations and microturbulence in fusion plasmas. Topics of particular emphasis include frequency selective surfaces, planar Schottky diode mixer arrays, electronically controlled beam shaping/steering arrays, and high power millimeter wave local oscillator and probe sources.

  4. A fast and mobile system for registration of low-altitude visual and thermal aerial images using multiple small-scale UAVs

    NASA Astrophysics Data System (ADS)

    Yahyanejad, Saeed; Rinner, Bernhard

    2015-06-01

    The use of multiple small-scale UAVs to support first responders in disaster management has become popular because of their speed and low deployment costs. We exploit such UAVs to perform real-time monitoring of target areas by fusing individual images captured from heterogeneous aerial sensors. Many approaches have already been presented to register images from homogeneous sensors. These methods have demonstrated robustness against scale, rotation and illumination variations and can also cope with limited overlap among individual images. In this paper we focus on thermal and visual image registration and propose different methods to improve the quality of interspectral registration for the purpose of real-time monitoring and mobile mapping. Images captured by low-altitude UAVs represent a very challenging scenario for interspectral registration due to the strong variations in overlap, scale, rotation, point of view and structure of such scenes. Furthermore, these small-scale UAVs have limited processing and communication power. The contributions of this paper include (i) the introduction of a feature descriptor for robustly identifying corresponding regions of images in different spectrums, (ii) the registration of image mosaics, and (iii) the registration of depth maps. We evaluated the first method using a test data set consisting of 84 image pairs. In all instances our approach combined with SIFT or SURF feature-based registration was superior to the standard versions. Although we focus mainly on aerial imagery, our evaluation shows that the presented approach would also be beneficial in other scenarios such as surveillance and human detection. Furthermore, we demonstrated the advantages of the other two methods in case of multiple image pairs.

  5. Neural network technologies for image classification

    NASA Astrophysics Data System (ADS)

    Korikov, A. M.; Tungusova, A. V.

    2015-11-01

    We analyze the classes of problems with an objective necessity to use neural network technologies, i.e. representation and resolution problems in the neural network logical basis. Among these problems, image recognition takes an important place, in particular the classification of multi-dimensional data based on information about textural characteristics. These problems occur in aerospace and seismic monitoring, materials science, medicine and other. We reviewed different approaches for the texture description: statistical, structural, and spectral. We developed a neural network technology for resolving a practical problem of cloud image classification for satellite snapshots from the spectroradiometer MODIS. The cloud texture is described by the statistical characteristics of the GLCM (Gray Level Co- Occurrence Matrix) method. From the range of neural network models that might be applied for image classification, we chose the probabilistic neural network model (PNN) and developed an implementation which performs the classification of the main types and subtypes of clouds. Also, we chose experimentally the optimal architecture and parameters for the PNN model which is used for image classification.

  6. Tidal Flooding and Vegetation Patterns in a Salt Marsh Tidal Creek Imaged by Low-altitude Balloon Aerial Photography

    NASA Astrophysics Data System (ADS)

    White, S. M.; Madsen, E.

    2013-12-01

    soil water content. These other factors are all directly affected by the hydroperiod, creating a complex system of feedbacks. Inundation frequencies show a pronounced relationship to zonation. Creek bank height and the hydroperiod have a curvilinear relationship at low bank heights such that small decreases in creek bank height can result in large increases in inundation frequency. Biological zonation is not simply a result of bank height and inundation frequency, other contributing factors include species competition, adaptability, and groundwater flow. Vegetation patterns delineated by a ground-based GPS survey and image classification from the aerial photos show that not all changes in eco-zonation are a direct function of elevation. Some asymmetry across the creek is observed in plant habitat, and eliminating topography (and thereby tidal inundation) as a factor, we attribute the remaining variability to groundwater flow.

  7. Unmanned aerial survey of elephants.

    PubMed

    Vermeulen, Cédric; Lejeune, Philippe; Lisein, Jonathan; Sawadogo, Prosper; Bouché, Philippe

    2013-01-01

    The use of a UAS (Unmanned Aircraft System) was tested to survey large mammals in the Nazinga Game Ranch in the south of Burkina Faso. The Gatewing ×100™ equipped with a Ricoh GR III camera was used to test animal reaction as the UAS passed, and visibility on the images. No reaction was recorded as the UAS passed at a height of 100 m. Observations, made on a set of more than 7000 images, revealed that only elephants (Loxodonta africana) were easily visible while medium and small sized mammals were not. The easy observation of elephants allows experts to enumerate them on images acquired at a height of 100 m. We, therefore, implemented an aerial strip sample count along transects used for the annual wildlife foot count. A total of 34 elephants were recorded on 4 transects, each overflown twice. The elephant density was estimated at 2.47 elephants/km(2) with a coefficient of variation (CV%) of 36.10%. The main drawback of our UAS was its low autonomy (45 min). Increased endurance of small UAS is required to replace manned aircraft survey of large areas (about 1000 km of transect per day vs 40 km for our UAS). The monitoring strategy should be adapted according to the sampling plan. Also, the UAS is as expensive as a second-hand light aircraft. However the logistic and flight implementation are easier, the running costs are lower and its use is safer. Technological evolution will make civil UAS more efficient, allowing them to compete with light aircraft for aerial wildlife surveys. PMID:23405088

  8. Unmanned Aerial Survey of Elephants

    PubMed Central

    Vermeulen, Cédric; Lejeune, Philippe; Lisein, Jonathan; Sawadogo, Prosper; Bouché, Philippe

    2013-01-01

    The use of a UAS (Unmanned Aircraft System) was tested to survey large mammals in the Nazinga Game Ranch in the south of Burkina Faso. The Gatewing ×100™ equipped with a Ricoh GR III camera was used to test animal reaction as the UAS passed, and visibility on the images. No reaction was recorded as the UAS passed at a height of 100 m. Observations, made on a set of more than 7000 images, revealed that only elephants (Loxodonta africana) were easily visible while medium and small sized mammals were not. The easy observation of elephants allows experts to enumerate them on images acquired at a height of 100 m. We, therefore, implemented an aerial strip sample count along transects used for the annual wildlife foot count. A total of 34 elephants were recorded on 4 transects, each overflown twice. The elephant density was estimated at 2.47 elephants/km2 with a coefficient of variation (CV%) of 36.10%. The main drawback of our UAS was its low autonomy (45 min). Increased endurance of small UAS is required to replace manned aircraft survey of large areas (about 1000 km of transect per day vs 40 km for our UAS). The monitoring strategy should be adapted according to the sampling plan. Also, the UAS is as expensive as a second-hand light aircraft. However the logistic and flight implementation are easier, the running costs are lower and its use is safer. Technological evolution will make civil UAS more efficient, allowing them to compete with light aircraft for aerial wildlife surveys. PMID:23405088

  9. Thermal Imaging Using Small-Aerial Platforms for Assessment of Crop Water Stress in Humid Subtropical Climates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf- or canopy-to-air temperature difference (hereafter called CATD) can provide information on crop energy status. Thermal imagery from agricultural aircraft or Unmanned Aerial Vehicles (UAVs) have the potential of providing thermal data for calculation of CATD and visual snapshots that can guide ...

  10. Engineering and information technology: Using imaging to reengineer business

    SciTech Connect

    Norton, F.J.

    1996-06-10

    Image processing can be a great asset to business process reengineering. This paper examines image processing`s impact on workflow and attempts to list the questions that should be addressed before imaging technology is introduced.

  11. Advanced technologies for remote sensing imaging applications

    SciTech Connect

    Wood, L.L.

    1993-06-07

    Generating and returning imagery from great distances has been generally associated with national security activities, with emphasis on reliability of system operation. (While the introduction of such capabilities was usually characterized by high levels of innovation, the evolution of such systems has followed the classical track of proliferation of ``standardized items`` expressing ever more incremental technological advances.) Recent focusing of interest on the use of remote imaging systems for commercial and scientific purposes can be expected to induce comparatively rapid advances along the axes of efficiency and technological sophistication, respectively. This paper reviews the most basic reasons for expecting the next decade of advances to dwarf the impressive accomplishments of the past ten years. The impact of these advances clearly will be felt in all major areas of large-scale human endeavor, commercial, military and scientific.

  12. Radiation protection in newer imaging technologies.

    PubMed

    Rehani, Madan M

    2010-01-01

    Not even a week passes without a paper getting published in peer reviewed journals on radiation protection in newer imaging technologies that either did not exist 10 y ago or were not established for routine use. Computed tomography (CT) happens to be a common element in most of these technologies. Radiation protection is high on the agenda of manufacturers and researchers and that is becoming a driving force for users and international organisations. The media and thus the public have their own share in increasing the momentum. The slice war seems to be shifting to dose war. Manufacturers are now chasing the target of sub-mSv CT. The era of two digit mSv effective dose for a CT procedure is far from losing ground, although cardiac CT within 5 mSv seems possible. A few years ago the change in technology was faster than adoption of dose management but currently even the development of dose reduction techniques is faster than its adoption. There is dearth of large-scale surveys of practice and lack of surveys with change in technology. PMID:20142278

  13. Counterfeit deterrence and digital imaging technology

    NASA Astrophysics Data System (ADS)

    Church, Sara E.; Fuller, Reese H.; Jaffe, Annette B.; Pagano, Lorelei W.

    2000-04-01

    The US government recognizes the growing problem of counterfeiting currency using digital imaging technology, as desktop systems become more sophisticated, less expensive and more prevalent. As the rate of counterfeiting with this type of equipment has grown, the need for specific prevention methods has become apparent to the banknote authorities. As a result, the Treasury Department and Federal Reserve have begun to address issues related specifically to this type of counterfeiting. The technical representatives of these agencies are taking a comprehensive approach to minimize counterfeiting using digital technology. This approach includes identification of current technology solutions for banknote recognition, data stream intervention and output marking, outreach to the hardware and software industries and enhancement of public education efforts. Other aspects include strong support and cooperation with existing international efforts to prevent counterfeiting, review and amendment of existing anti- counterfeiting legislation and investigation of currency design techniques to make faithful reproduction more difficult. Implementation of these steps and others are to lead to establishment of a formal, permanent policy to address and prevent the use of emerging technologies to counterfeit currency.

  14. Segmentation and Reconstruction of Buildings with Aerial Oblique Photography Point Clouds

    NASA Astrophysics Data System (ADS)

    Liu, P.; Li, Y. C.; Hu, W.; Ding, X. B.

    2015-06-01

    Oblique photography technology as an excellent method for 3-D city model construction has brought itself to large-scale recognition and undeniable high social status. Tilt and vertical images with the high overlaps and different visual angles can produce a large number of dense matching point clouds data with spectral information. This paper presents a method of buildings reconstruction with stereo matching dense point clouds from aerial oblique images, which includes segmentation of buildings and reconstruction of building roofs. We summarize the characteristics of stereo matching point clouds from aerial oblique images and outline the problems with existing methods. Then we present the method for segmentation of building roofs, which based on colors and geometrical derivatives such as normal and curvature. Finally, a building reconstruction approach is developed based on the geometrical relationship. The experiment and analysis show that the methods are effective on building reconstruction with stereo matching point clouds from aerial oblique images.

  15. AERIAL RADIOLOGICAL SURVEYS

    SciTech Connect

    Proctor, A.E.

    1997-06-09

    Measuring terrestrial gamma radiation from airborne platforms has proved to be a useful method for characterizing radiation levels over large areas. Over 300 aerial radiological surveys have been carried out over the past 25 years including U.S. Department of Energy (DOE) sites, commercial nuclear power plants, Formerly Utilized Sites Remedial Action Program/Uranium Mine Tailing Remedial Action Program (FUSRAP/UMTRAP) sites, nuclear weapons test sites, contaminated industrial areas, and nuclear accident sites. This paper describes the aerial measurement technology currently in use by the Remote Sensing Laboratory (RSL) for routine environmental surveys and emergency response activities. Equipment, data-collection and -analysis methods, and examples of survey results are described.

  16. Advance of Molecular Imaging Technology and Targeted Imaging Agent in Imaging and Therapy

    PubMed Central

    Chen, Zhi-Yi; Wang, Yi-Xiang; Lin, Yan; Zhang, Jin-Shan; Yang, Feng; Zhou, Qiu-Lan; Liao, Yang-Ying

    2014-01-01

    Molecular imaging is an emerging field that integrates advanced imaging technology with cellular and molecular biology. It can realize noninvasive and real time visualization, measurement of physiological or pathological process in the living organism at the cellular and molecular level, providing an effective method of information acquiring for diagnosis, therapy, and drug development and evaluating treatment of efficacy. Molecular imaging requires high resolution and high sensitive instruments and specific imaging agents that link the imaging signal with molecular event. Recently, the application of new emerging chemical technology and nanotechnology has stimulated the development of imaging agents. Nanoparticles modified with small molecule, peptide, antibody, and aptamer have been extensively applied for preclinical studies. Therapeutic drug or gene is incorporated into nanoparticles to construct multifunctional imaging agents which allow for theranostic applications. In this review, we will discuss the characteristics of molecular imaging, the novel imaging agent including targeted imaging agent and multifunctional imaging agent, as well as cite some examples of their application in molecular imaging and therapy. PMID:24689058

  17. On digital image processing technology and application in geometric measure

    NASA Astrophysics Data System (ADS)

    Yuan, Jiugen; Xing, Ruonan; Liao, Na

    2014-04-01

    Digital image processing technique is an emerging science that emerging with the development of semiconductor integrated circuit technology and computer science technology since the 1960s.The article introduces the digital image processing technique and principle during measuring compared with the traditional optical measurement method. It takes geometric measure as an example and introduced the development tendency of digital image processing technology from the perspective of technology application.

  18. Geophysical Technologies to Image Old Mine Works

    SciTech Connect

    Kanaan Hanna; Jim Pfeiffer

    2007-01-15

    ZapataEngineering, Blackhawk Division performed geophysical void detection demonstrations for the US Department of Labor Mine Safety and Health Administration (MSHA). The objective was to advance current state-of-practices of geophysical technologies for detecting underground mine voids. The presence of old mine works above, adjacent, or below an active mine presents major health and safety hazards to miners who have inadvertently cut into locations with such features. In addition, the presence of abandoned mines or voids beneath roadways and highway structures may greatly impact the performance of the transportation infrastructure in terms of cost and public safety. Roads constructed over abandoned mines are subject to potential differential settlement, subsidence, sinkholes, and/or catastrophic collapse. Thus, there is a need to utilize geophysical imaging technologies to accurately locate old mine works. Several surface and borehole geophysical imaging methods and mapping techniques were employed at a known abandoned coal mine in eastern Illinois to investigate which method best map the location and extent of old works. These methods included: 1) high-resolution seismic (HRS) using compressional P-wave (HRPW) and S-wave (HRSW) reflection collected with 3-D techniques; 2) crosshole seismic tomography (XHT); 3) guided waves; 4) reverse vertical seismic profiling (RVSP); and 5) borehole sonar mapping. In addition, several exploration borings were drilled to confirm the presence of the imaged mine voids. The results indicated that the RVSP is the most viable method to accurately detect the subsurface voids with horizontal accuracy of two to five feet. This method was then applied at several other locations in Colorado with various topographic, geologic, and cultural settings for the same purpose. This paper presents the significant results obtained from the geophysical investigations in Illinois.

  19. Technology transfer: Imaging tracker to robotic controller

    NASA Technical Reports Server (NTRS)

    Otaguro, M. S.; Kesler, L. O.; Land, Ken; Erwin, Harry; Rhoades, Don

    1988-01-01

    The transformation of an imaging tracker to a robotic controller is described. A multimode tracker was developed for fire and forget missile systems. The tracker locks on to target images within an acquisition window using multiple image tracking algorithms to provide guidance commands to missile control systems. This basic tracker technology is used with the addition of a ranging algorithm based on sizing a cooperative target to perform autonomous guidance and control of a platform for an Advanced Development Project on automation and robotics. A ranging tracker is required to provide the positioning necessary for robotic control. A simple functional demonstration of the feasibility of this approach was performed and described. More realistic demonstrations are under way at NASA-JSC. In particular, this modified tracker, or robotic controller, will be used to autonomously guide the Man Maneuvering Unit (MMU) to targets such as disabled astronauts or tools as part of the EVA Retriever efforts. It will also be used to control the orbiter's Remote Manipulator Systems (RMS) in autonomous approach and positioning demonstrations. These efforts will also be discussed.

  20. The construction of landslides achieves by using 1969 CORONA (KH-4B) image and aerial photos- A case study of the catchment of Te-chi reservoir

    NASA Astrophysics Data System (ADS)

    Jen, Chia-Hung; Dirk, Wenske; Lin, Jiun-Chuan; Böse, Margot

    2010-05-01

    Taiwan before the construction of the Central Cross-Island Highway. The ortho-rectified CORONA image and aerial photos can be used to identify landslides and provide more information about the causes of landslides and the consequences of road construction, landform evolution and agriculture practice. The long term landslide archive can be used in the study of landscape evolution and hazard assessment. There are more than 800 landslides identified in CORONA image and 900 landslides in 1980 aerial photos, which were caused by road construction, farming practice and channel erosion.

  1. Aerial thermography in archaeological prospection: Applications & processing

    NASA Astrophysics Data System (ADS)

    Cool, Autumn Chrysantha

    Aerial thermography is one of the least utilized archaeological prospection methods, yet it has great potential for detecting anthropogenic anomalies. Thermal infrared radiation is absorbed and reemitted at varying rates by all objects on and within the ground depending upon their density, composition, and moisture content. If an area containing archaeological features is recorded at the moment when their thermal signatures most strongly contrast with that of the surrounding matrix, they can be visually identified in thermal images. Research conducted in the 1960s and 1970s established a few basic rules for conducting thermal survey, but the expense associated with the method deterred most archaeologists from using this technology. Subsequent research was infrequent and almost exclusively appeared in the form of case studies. However, as the current proliferation of unmanned aerial vehicles (UAVs) and compact thermal cameras draws renewed attention to aerial thermography as an attractive and exciting form of survey, it is appropriate and necessary to reevaluate our approach. In this thesis I have taken a two-pronged approach. First, I built upon the groundwork of earlier researchers and created an experiment to explore the impact that different environmental and climatic conditions have on the success or failure of thermal imaging. I constructed a test site designed to mimic a range of archaeological features and imaged it under a variety of conditions to compare and contrast the results. Second, I explored a new method for processing thermal data that I hope will lead to a means of reducing noise and increasing the clarity of thermal images. This step was done as part of a case study so that the effectiveness of the processing method could be evaluated by comparison with the results of other geophysical surveys.

  2. Assessment of Photogrammetric Mapping Accuracy Based on Variation Flying Altitude Using Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Udin, W. S.; Ahmad, A.

    2014-02-01

    Photogrammetry is the earliest technique used to collect data for topographic mapping. The recent development in aerial photogrammetry is the used of large format digital aerial camera for producing topographic map. The aerial photograph can be in the form of metric or non-metric imagery. The cost of mapping using aerial photogrammetry is very expensive. In certain application, there is a need to map small area with limited budget. Due to the development of technology, small format aerial photogrammetry technology has been introduced and offers many advantages. Currently, digital map can be extracted from digital aerial imagery of small format camera mounted on light weight platform such as unmanned aerial vehicle (UAV). This study utilizes UAV system for large scale stream mapping. The first objective of this study is to investigate the use of light weight rotary-wing UAV for stream mapping based on different flying height. Aerial photograph were acquired at 60% forward lap and 30% sidelap specifications. Ground control points and check points were established using Total Station technique. The digital camera attached to the UAV was calibrated and the recovered camera calibration parameters were then used in the digital images processing. The second objective is to determine the accuracy of the photogrammetric output. In this study, the photogrammetric output such as stereomodel in three dimensional (3D), contour lines, digital elevation model (DEM) and orthophoto were produced from a small stream of 200m long and 10m width. The research output is evaluated for planimetry and vertical accuracy using root mean square error (RMSE). Based on the finding, sub-meter accuracy is achieved and the RMSE value decreases as the flying height increases. The difference is relatively small. Finally, this study shows that UAV is very useful platform for obtaining aerial photograph and subsequently used for photogrammetric mapping and other applications.

  3. Application of imaging radar technology to uranium exploration

    NASA Astrophysics Data System (ADS)

    Ding, Wu; Jie-lin, Zhang; Yanju, Huang; Chuan, Zhang; Donghui, Zhang

    2014-03-01

    The history of imaging radar technology development, technical advantages, current technology research status of lithologic identification with remote sensing have been comprehensively evaluated on this thesis. Radar technology applied in structure recognition, rock identification, and uranium exploration research are discussed in this paper. Examples of microwave-optical fusion technology have been given in part 3, and the results demonstrate that imaging radar technology, as one of the most frontier observation techniques, has extensive application prospect in uranium exploration.

  4. Imaging Technology in Libraries: Photo CD Offers New Possibilities.

    ERIC Educational Resources Information Center

    Beiser, Karl

    1993-01-01

    Describes Kodak's Photo CD technology, a format for the storage and retrieval of photographic images in electronic form. Highlights include current and future Photo CD formats; computer imaging technology; ownership issues; hardware for using Photo CD; software; library and information center applications, including image collections and…

  5. Terahertz technology for imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Crowe, T. W.; Porterfield, D. W.; Hesler, J. L.; Bishop, W. L.; Kurtz, D. S.; Hui, K.

    2006-05-01

    The terahertz region of the electromagnetic spectrum has unique properties that make it especially useful for imaging and spectroscopic detection of concealed weapons, explosives and chemical and biological materials. However, terahertz energy is difficult to generate and detect, and this has led to a technology gap in this frequency band. Nonlinear diodes can be used to bridge this gap by translating the functionality achieved at microwave frequencies to the terahertz band. Basic building blocks include low-noise mixers, frequency multipliers, sideband generators and direct detectors. These terahertz components rely on planar Schottky diodes and recently developed integrated diode circuits make them easier to assemble and more robust. The new generation of terahertz sources and receivers requires no mechanical tuning, yet achieves high efficiency and broad bandwidth. This paper reviews the basic design of terahertz transmitters and receivers, with special emphasis on the recent development of systems that are compact, easy to use and have excellent performance.

  6. Aerial camera auto focusing system

    NASA Astrophysics Data System (ADS)

    Wang, Xuan; Lan, Gongpu; Gao, Xiaodong; Liang, Wei

    2012-10-01

    Before the aerial photographic task, the cameras focusing work should be performed at first to compensate the defocus caused by the changes of the temperature, pressure etc. A new method of aerial camera auto focusing is proposed through traditional photoelectric self-collimation combined with image processing method. Firstly, the basic principles of optical self-collimation and image processing are introduced. Secondly, the limitations of the two are illustrated and the benefits of the new method are detailed. Then the basic principle, the system composition and the implementation of this new method are presented. Finally, the data collection platform is set up reasonably and the focus evaluation function curve is draw. The results showed that: the method can be used in the Aerial camera focusing field, adapt to the aviation equipment trends of miniaturization and lightweight .This paper is helpful to the further work of accurate and automatic focusing.

  7. Guiding the Search for Surface Rupture and Paleoseismic Sites using Low-Level Aerial Surveys, Geodetic Imaging, Remote Sensing and Field Mapping (Invited)

    NASA Astrophysics Data System (ADS)

    Hudnut, K. W.; Fletcher, J. M.; Teran, O.; Gonzalez-Garcia, J. J.; Hinojosa, A.; Rockwell, T. K.; Akciz, S. O.; Leprince, S.; Fielding, E. J.; Briggs, R. W.; Crone, A. J.; Gold, R. D.; Prentice, C. S.; Stock, J.; Avouac, J.; Simons, M.; Galetzka, J. E.; Lynch, D. K.; Cowgill, E.; Oskin, M. E.; Morelan, A.; Aslaksen, M.; Sellars, J.; Woolard, J.

    2010-12-01

    The significant earthquakes of 2010 produced surficial expressions ranging from blind faulting and coastal uplift in Leogane, Haiti and Maule, Chile to surface faulting in Baja California, Mexico and Yushu, China. In Haiti and Baja California geodetic imaging methods strongly guided field reconnaissance and surface rupture mapping efforts, yet in quite different ways. In these challenging examples, InSAR, UAVSAR and optical image differencing, as well as SAR pixel tracking methods, were used to locate and quantify ground deformation and ruptures. In Baja California prominent rupture occurred in parts of the Cucapah mountains, yet along an 11 km-long stepover section, the zone of faulting was discontinuous and obscured by rockfalls. Optical image differencing helped identify surface rupture, especially through this stepover. SAR pixel tracking confirmed that rupture occurred along the newly identified Indiviso fault in Baja California, though masked by ground failure in the Colorado River Delta. Also in Baja California (and extending north of the US-MX border), a complex set of NE-SW cross-faults and N-S breaks were imaged with UAVSAR, InSAR, and aerial photography allowing the intricate pattern of faulting to be scrutinized. In Haiti, surface rupture along the inferred source fault was not observed during initial reconnaissance. This led to extensive imagery- and field-based searches for surface deformation, aided by InSAR, which revealed that surface deformation was caused primarily by off-fault blind thrusting. In Baja California, high resolution (up to 3-5 cm GSD) aerial imaging by low-altitude aerial stereo photography was then used to identify promising locations for measuring slip vectors on the fault, and to aid in mapping the surface rupture in detail (at 1:500 scale). Digital aerial photography with 0.1 m GSD by NOAA using their DSS 439 camera was rapidly reduced to orthomosaics (at 0.25 m GSD) and then used as uniform base imagery for rupture mapping. In

  8. Document image representation using XML technologies

    NASA Astrophysics Data System (ADS)

    El-Kwae, Essam A.; Atmakuri, Kusuma H.

    2001-12-01

    Electronic documents have gained wide acceptance due to the ease of editing and sharing of information. However, paper documents are still widely used in many environments. Moving into a paperless and distributed office has become a major goal for document image research. A new approach for form document representation is presented. This approach allows for electronic document sharing over the World Wide Web (WWW) using Extensible Markup Language (XML) technologies. Each document is mapped into three different views, an XML view to represent the preprinted and filled-in data, an XSL (Extensible style Sheets) view to represent the structure of the document, and a DTD (Document Type Definition) view to represent the document grammar and field constraints. The XML and XSL views are generated from a document template, either automatically using image processing techniques, or semi-automatically with minimal user interaction. The DTD representation may be fixed for general documents or may be generated semi-automatically by mining a number of filled-in document examples. Document templates need to be entered once to create the proposed representation. Afterwards, documents may be displayed, updated, or shared over the web. The merits of this approach are demonstrated using a number of examples of widely used forms.

  9. Identification of disrupted surfaces due to military activity at the Ft. Irwin National Training Center: An aerial photograph and satellite image analysis

    SciTech Connect

    McCarthy, L.E.; Marsh, S.E.; Lee, C.

    1996-07-01

    Concern for environmental management of our natural resources is most often focused on the anthropogenic impacts placed upon these resources. Desert landscapes, in particular, are fragile environments, and minimal stresses on surficial materials can greatly increase the rate and character of erosional responses. The National Training Center, Ft. Irwin, located in the middle of the Mojave Desert, California, provides an isolated study area of intense ORV activity occurring over a 50-year period. Geomorphic surfaces, and surficial disruption from two study sites within the Ft. Irwin area were mapped from 1947, 1:28,400, and 1993 1:12,000 black and white aerial photographs. Several field checks were conducted to verify this mapping. However, mapping from black and white aerial photography relies heavily on tonal differences, patterns, and morphological criteria. Satellite imagery, sensitive to changes in mineralogy, can help improve the ability to distinguish geomorphic units in desert regions. In order to assess both the extent of disrupted surfaces and the surficial geomorphology discemable from satellite imagery, analysis was done on SPOT panchromatic and Landsat Thematic Mapper (TM) multispectral imagery acquired during the spring of 1987 and 1993. The resulting classified images provide a clear indication of the capabilities of the satellite data to aid in the delineation of disrupted geomorphic surfaces.

  10. Preliminary applications of Landsat images and aerial photography for determining land-use, geologic, and hydrologic characteristics, Yampa River basin, Colorado and Wyoming

    USGS Publications Warehouse

    Heimes, F.J.; Moore, G.K.; Steele, T.D.

    1978-01-01

    Expanded energy- and recreation-related activities in the Yampa River basin, Colorado and Wyoming, have caused a rapid increase in economic development which will result in increased demand and competition for natural resources. In planning for efficient allocation of the basin 's natural resources, Landsat images and small-scale color and color-infrared photographs were used for selected geologic, hydrologic and land-use applications within the Yampa River basin. Applications of Landsat data included: (1) regional land-use classification and mapping, (2) lineament mapping, and (3) areal snow-cover mapping. Results from the Landsat investigations indicated that: (1) Landsat land-use classification maps, at a regional level, compared favorably with areal land-use patterns that were defined from available ground information, (2) lineaments were mapped in sufficient detail using recently developed techniques for interpreting aerial photographs, (3) snow cover generally could be mapped for large areas with the exception of some densely forested areas of the basin and areas having a large percentage of winter-season cloud cover. Aerial photographs were used for estimation of turbidity for eight stream locations in the basin. Spectral reflectance values obtained by digitizing photographs were compared with measured turbidity values. Results showed strong correlations (variances explained of greater than 90 percent) between spectral reflectance obtained from color photographs and measured turbidity values. (Woodard-USGS)

  11. Cadastral Audit and Assessments Using Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Cunningham, K.; Walker, G.; Stahlke, E.; Wilson, R.

    2011-09-01

    Ground surveys and remote sensing are integral to establishing fair and equitable property valuations necessary for real property taxation. The International Association of Assessing Officers (IAAO) has embraced aerial and street-view imaging as part of its standards related to property tax assessments and audits. New technologies, including unmanned aerial systems (UAS) paired with imaging sensors, will become more common as local governments work to ensure their cadastre and tax rolls are both accurate and complete. Trends in mapping technology have seen an evolution in platforms from large, expensive manned aircraft to very small, inexpensive UAS. Traditional methods of photogrammetry have also given way to new equipment and sensors: digital cameras, infrared imagers, light detection and ranging (LiDAR) laser scanners, and now synthetic aperture radar (SAR). At the University of Alaska Fairbanks (UAF), we work extensively with unmanned aerial systems equipped with each of these newer sensors. UAF has significant experience flying unmanned systems in the US National Airspace, having begun in 1969 with scientific rockets and expanded to unmanned aircraft in 2003. Ongoing field experience allows UAF to partner effectively with outside organizations to test and develop leading-edge research in UAS and remote sensing. This presentation will discuss our research related to various sensors and payloads for mapping. We will also share our experience with UAS and optical systems for creating some of the first cadastral surveys in rural Alaska.

  12. Scintimammography as an Adjunctive Breast Imaging Technology

    PubMed Central

    2007-01-01

    Executive Summary Objective X-ray mammography (XMM) represents the most useful screening tool in breast cancer detection, especially for patients over 50. Unfortunately, XMM is not reliable in the assessment of dense breast tissue found in approximately 25% of women younger than 50 years of age, or in differentiating scar tissue from a tumor. Currently, ultrasound (US) is being used as an adjunct to XMM, with the purpose of improving sensitivity and specificity of XMM in breast cancer detection. In an attempt to reduce the biopsy rate resulting from false positive tests, other adjunctive technologies are being explored, including scintimammography (SMM). A number of papers in the current literature suggest the high value of SMM in breast cancer detection. This evaluation addresses the clinical indications for and effectiveness of SMM in the diagnosis of breast cancer. The Technology SMM is a nuclear medicine imaging technique that uses radionuclides and has the ability to image malignant breast tumors. SMM requires the administration of a gamma-ray emitting radiopharmaceutical to the patient, and a camera for imaging the lesion. The most commonly used radiopharmaceutical for SMM is TC-99m-methoxy isobutyl isonitrile MIBI. Review Strategy In the 2003 Medical Advisory Secretariat assessment of SMM in the diagnosis of breast cancer, a structured search was used to identify English-language studies published between 1992 and October 2002. A meta-analysis was then conducted of the literature which compared the diagnostic value of SMM with US as the second line imaging technique. An updated search strategy was developed in order to identify all studies published from October 2002 to January 2007. Summary of Findings The results of the meta-analysis showed that SMM is as effective as US in differentiating benign and malignant breast lesions. However, there may be a role for SMM as a third line adjunctive technique in the evaluation of breast abnormalities, in particular

  13. Multi-temporal analysis of aerial images for the investigation of spatial-temporal dynamics of shallow erosion - a case study from the Tyrolean Alps

    NASA Astrophysics Data System (ADS)

    Wiegand, C.; Geitner, C.; Heinrich, K.; Rutzinger, M.

    2012-04-01

    Small and shallow eroded areas characterize the landscape of many pastures and meadows in the Alps. The extent of such erosion phenomena varies between 2 m2 and 200 m2. These patches tend to be only a few decimetres thick, with a maximum depth of 2 m. The processes involved are shallow landslides, superficial erosion by snow and livestock trampling. Key parameters that influence the emergence of shallow erosion are the geological, topographical and climatic circumstances in an area as well as its soils, vegetation and land use. The negative impact of this phenomenon includes not only the loss of soil but also the reduced attractiveness of the landscape, especially in tourist regions. One approach identifying and mapping geomorphological elements is remote sensing. The analysis of aerial images is a suitable method for identifying the multi-temporal dynamics of shallow eroded areas because of the good spatial and temporal resolution. For this purpose, we used a pixel-based approach to detect these areas semi-automatically in an orthophoto. In a first step, each aerial image was classified using dynamic thresholds derived from the histogram of the orthophoto. In a second step, the identified areas of erosion were filtered and visually in-terpreted. Based on this procedure, eroded areas with a minimum size of 5 m2 were detected in a test site located in the Inner Schmirn Valley (Tyrol, Austria). The altitude of the test site ranges between 1,980 m and 2,370 m, with a mean inclination of 36°, facing E to SE. Geologically, the slope is part of the "Hohe Tauern Window", characterized by "Bündner schists" deficient in lime and regolith. Until the 1960s, the slope was used as a hay meadow. Orthophotos from 2000, 2003, 2007 and 2010 were used for this investigation. Older aerial images were not suitable because of their lower resolution and poor ortho-rectification. However, they are useful for relating the results of the ten-year time-span to a larger temporal context

  14. The Kilauea 1974 Flow: Quantitative Morphometry of Lava Flows using Low Altitude Aerial Image Data using a Kite-based Platform in the Field

    NASA Astrophysics Data System (ADS)

    Scheidt, S. P.; Whelley, P.; Hamilton, C.; Bleacher, J. E.; Garry, W. B.

    2015-12-01

    The December 31, 1974 lava flow from Kilauea Caldera, Hawaii within the Hawaii Volcanoes National Park was selected for field campaigns as a terrestrial analog for Mars in support of NASA Planetary Geology and Geophysics (PGG) research and the Remote, In Situ and Synchrotron Studies for Science and Exploration (RIS4E) node of the Solar System Exploration Research Virtual Institute (SSERVI) program). The lava flow was a rapidly emplaced unit that was strongly influenced by existing topography, which favored the formation of a tributary lava flow system. The unit includes a diverse range of surface textures (e.g., pāhoehoe, ´áā, and transitional lavas), and structural features (e.g., streamlined islands, pits, and interactions with older tumuli). However, these features are generally below the threshold of visibility within previously acquired airborne and spacecraft data. In this study, we have generated unique, high-resolution digital images using low-altitude Kite Aerial Photography (KAP) system during field campaigns in 2014 and 2015 (National Park Service permit #HAVO-2012-SCI-0025). The kite-based mapping platform (nadir-viewing) and a radio-controlled gimbal (allowing pointing) provided similar data as from an unmanned aerial vehicle (UAV), but with longer flight time, larger total data volumes per sortie, and fewer regulatory challenges and cost. Images acquired from KAP and UAVs are used to create orthomosaics and DEMs using Multi-View Stereo-Photogrammetry (MVSP) software. The 3-Dimensional point clouds are extremely dense, resulting in a grid resolution of < 2 cm. Airborne Light Detection and Ranging (LiDAR) / Terrestrial Laser Scanning (TLS) data have been collected for these areas and provide a basis of comparison or "ground truth" for the photogrammetric data. Our results show a good comparison with LiDAR/TLS data, each offering their own unique advantages and potential for data fusion.

  15. An Automated Approach to Agricultural Tile Drain Detection and Extraction Utilizing High Resolution Aerial Imagery and Object-Based Image Analysis

    NASA Astrophysics Data System (ADS)

    Johansen, Richard A.

    Subsurface drainage from agricultural fields in the Maumee River watershed is suspected to adversely impact the water quality and contribute to the formation of harmful algal blooms (HABs) in Lake Erie. In early August of 2014, a HAB developed in the western Lake Erie Basin that resulted in over 400,000 people being unable to drink their tap water due to the presence of a toxin from the bloom. HAB development in Lake Erie is aided by excess nutrients from agricultural fields, which are transported through subsurface tile and enter the watershed. Compounding the issue within the Maumee watershed, the trend within the watershed has been to increase the installation of tile drains in both total extent and density. Due to the immense area of drained fields, there is a need to establish an accurate and effective technique to monitor subsurface farmland tile installations and their associated impacts. This thesis aimed at developing an automated method in order to identify subsurface tile locations from high resolution aerial imagery by applying an object-based image analysis (OBIA) approach utilizing eCognition. This process was accomplished through a set of algorithms and image filters, which segment and classify image objects by their spectral and geometric characteristics. The algorithms utilized were based on the relative location of image objects and pixels, in order to maximize the robustness and transferability of the final rule-set. These algorithms were coupled with convolution and histogram image filters to generate results for a 10km2 study area located within Clay Township in Ottawa County, Ohio. The eCognition results were compared to previously collected tile locations from an associated project that applied heads-up digitizing of aerial photography to map field tile. The heads-up digitized locations were used as a baseline for the accuracy assessment. The accuracy assessment generated a range of agreement values from 67.20% - 71.20%, and an average

  16. Digital imaging technology assessment: Digital document storage project

    NASA Technical Reports Server (NTRS)

    1989-01-01

    An ongoing technical assessment and requirements definition project is examining the potential role of digital imaging technology at NASA's STI facility. The focus is on the basic components of imaging technology in today's marketplace as well as the components anticipated in the near future. Presented is a requirement specification for a prototype project, an initial examination of current image processing at the STI facility, and an initial summary of image processing projects at other sites. Operational imaging systems incorporate scanners, optical storage, high resolution monitors, processing nodes, magnetic storage, jukeboxes, specialized boards, optical character recognition gear, pixel addressable printers, communications, and complex software processes.

  17. U. S. Department of Energy Aerial Measuring Systems

    SciTech Connect

    J. J. Lease

    1998-10-01

    The Aerial Measuring Systems (AMS) is an aerial surveillance system. This system consists of remote sensing equipment to include radiation detectors; multispectral, thermal, radar, and laser scanners; precision cameras; and electronic imaging and still video systems. This equipment, in varying combinations, is mounted in an airplane or helicopter and flown at different heights in specific patterns to gather various types of data. This system is a key element in the US Department of Energy's (DOE) national emergency response assets. The mission of the AMS program is twofold--first, to respond to emergencies involving radioactive materials by conducting aerial surveys to rapidly track and map the contamination that may exist over a large ground area and second, to conduct routinely scheduled, aerial surveys for environmental monitoring and compliance purposes through the use of credible science and technology. The AMS program evolved from an early program, begun by a predecessor to the DOE--the Atomic Energy Commission--to map the radiation that may have existed within and around the terrestrial environments of DOE facilities, which produced, used, or stored radioactive materials.

  18. Oblique Aerial Photography Tool for Building Inspection and Damage Assessment

    NASA Astrophysics Data System (ADS)

    Murtiyoso, A.; Remondino, F.; Rupnik, E.; Nex, F.; Grussenmeyer, P.

    2014-11-01

    Aerial photography has a long history of being employed for mapping purposes due to some of its main advantages, including large area imaging from above and minimization of field work. Since few years multi-camera aerial systems are becoming a practical sensor technology across a growing geospatial market, as complementary to the traditional vertical views. Multi-camera aerial systems capture not only the conventional nadir views, but also tilted images at the same time. In this paper, a particular use of such imagery in the field of building inspection as well as disaster assessment is addressed. The main idea is to inspect a building from four cardinal directions by using monoplotting functionalities. The developed application allows to measure building height and distances and to digitize man-made structures, creating 3D surfaces and building models. The realized GUI is capable of identifying a building from several oblique points of views, as well as calculates the approximate height of buildings, ground distances and basic vectorization. The geometric accuracy of the results remains a function of several parameters, namely image resolution, quality of available parameters (DEM, calibration and orientation values), user expertise and measuring capability.

  19. UV/VIS/NIR imaging technologies: challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Kuroda, Rihito; Sugawa, Shigetoshi

    2015-05-01

    Challenges and opportunities of ultraviolet (UV), visible (VIS) and near-infrared (NIR) light imaging technologies are overviewed in this paper. For light detectors and image sensors for UV/VIS/NIR imaging, it is required that they have high sensitivity for wide spectral light waveband or targeted narrow waveband as well as the high stability of light sensitivity toward UV light based on cost effective technology. Wide spectral response, high sensitivity and high stability advanced Si photodiode (PD) pn junction formation technology based on the flattened Si surface and high transmittance on-chip optical filter formation technology were developed. A linear photodiode array (PDA), wide dynamic range and ultrahigh speed CMOS image sensors employing the developed technology were fabricated and their advanced performances are described in this paper.

  20. Clinical applications of choroidal imaging technologies.

    PubMed

    Chhablani, Jay; Barteselli, Giulio

    2015-05-01

    Choroid supplies the major blood supply to the eye, especially the outer retinal structures. Its understanding has significantly improved with the advent of advanced imaging modalities such as enhanced depth imaging technique and the newer swept source optical coherence tomography. Recent literature reports the findings of choroidal changes, quantitative as well as qualitative, in various chorioretinal disorders. This review article describes applications of choroidal imaging in the management of common diseases such as age-related macular degeneration, high myopia, central serous chorioretinopathy, chorioretinal inflammatory diseases, and tumors. This article briefly discusses future directions in choroidal imaging including angiography. PMID:26139797

  1. Critical Review of Noninvasive Optical Technologies for Wound Imaging

    PubMed Central

    Jayachandran, Maanasa; Rodriguez, Suset; Solis, Elizabeth; Lei, Jiali; Godavarty, Anuradha

    2016-01-01

    Significance: Noninvasive imaging approaches can provide greater information about a wound than visual inspection during the wound healing and treatment process. This review article focuses on various optical imaging techniques developed to image different wound types (more specifically ulcers). Recent Advances: The noninvasive optical imaging approaches in this review include hyperspectral imaging, multispectral imaging, near-infrared spectroscopy (NIRS), diffuse reflectance spectroscopy, optical coherence tomography, laser Doppler imaging, laser speckle imaging, spatial frequency domain imaging, and fluorescence imaging. The various wounds imaged using these techniques include open wounds, chronic wounds, diabetic foot ulcers, decubitus ulcers, venous leg ulcers, and burns. Preliminary work in the development and implementation of a near-infrared optical scanner for wound imaging as a noncontact hand-held device is briefly described. The technology is based on NIRS and has demonstrated its potential to differentiate a healing from nonhealing wound region. Critical Issues: While most of the optical imaging techniques can penetrate few hundred microns to a 1–2 mm from the wound surface, NIRS has the potential to penetrate deeper, demonstrating the potential to image internal wounds. Future Directions: All the technologies are currently at various stages of translational efforts to the clinic, with NIRS holding a greater promise for physiological assessment of the wounds internal, beyond the gold-standard visual assessment. PMID:27602254

  2. Training set size, scale, and features in Geographic Object-Based Image Analysis of very high resolution unmanned aerial vehicle imagery

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Cheng, Liang; Li, Manchun; Liu, Yongxue; Ma, Xiaoxue

    2015-04-01

    Unmanned Aerial Vehicle (UAV) has been used increasingly for natural resource applications in recent years due to their greater availability and the miniaturization of sensors. In addition, Geographic Object-Based Image Analysis (GEOBIA) has received more attention as a novel paradigm for remote sensing earth observation data. However, GEOBIA generates some new problems compared with pixel-based methods. In this study, we developed a strategy for the semi-automatic optimization of object-based classification, which involves an area-based accuracy assessment that analyzes the relationship between scale and the training set size. We found that the Overall Accuracy (OA) increased as the training set ratio (proportion of the segmented objects used for training) increased when the Segmentation Scale Parameter (SSP) was fixed. The OA increased more slowly as the training set ratio became larger and a similar rule was obtained according to the pixel-based image analysis. The OA decreased as the SSP increased when the training set ratio was fixed. Consequently, the SSP should not be too large during classification using a small training set ratio. By contrast, a large training set ratio is required if classification is performed using a high SSP. In addition, we suggest that the optimal SSP for each class has a high positive correlation with the mean area obtained by manual interpretation, which can be summarized by a linear correlation equation. We expect that these results will be applicable to UAV imagery classification to determine the optimal SSP for each class.

  3. Image-Guided Tumor Ablation: Emerging Technologies and Future Directions

    PubMed Central

    McWilliams, Justin P.; Lee, Edward W.; Yamamoto, Shota; Loh, Christopher T.; Kee, Stephen T.

    2010-01-01

    As the trend continues toward the decreased invasiveness of medical procedures, image-guided percutaneous ablation has begun to supplant surgery for the local control of small tumors in the liver, kidney, and lung. New ablation technologies, and refinements of existing technologies, will enable treatment of larger and more complex tumors in these and other organs. At the same time, improvements in intraprocedural imaging promise to improve treatment accuracy and reduce complications. In this review, the latest advancements in clinical and experimental ablation technologies will be summarized, and new applications of image-guided tumor ablation will be discussed. PMID:22550370

  4. Using enlarged stereo aerial images acquired by small-format nonmetric camera for large-scale ocean floor mapping at low tide

    NASA Astrophysics Data System (ADS)

    Adamos, Christos; Faig, Wolfgang

    1993-10-01

    HY-GRO '92 is a project currently carried out by the Ocean Mapping Group at the University of New Brunswick. One of the purposes of this project is the investigation of the relationship between acoustic mapping data and the actual ocean seabed bathymetry. In order to facilitate the comparison, ground truthing information (Digital Elevation Model) has been collected using stereo aerial photography of tidal areas at low tide. The required DEM accuracy is in the magnitude of a few centimeters. A reasonable photoscale for providing the required DEM accuracy would be 1:3750. With a focal length of 80 mm the flying height has to be 300 m. In that case the ground coverage of the 57 X 57 mm2 image format is 214 X 214 m2. It is clear that for large areas of interest (in our case: 2.5 X 2.5 km2) while maintaining the necessary overlap (60%) and sidelap (30%), the number of photographs and control points becomes unreasonably high, thus making the use of the small format camera not attractive anymore. The above encountered problem was solved with the acquisition of the original images in a four times smaller scale (1:15,000, flying height 1200 m, ground coverage 857 X 857 m2). Using a quality enlarger, the original images are enlarged by the same factor, so that the final image product is at the desired scale. The enlargement introduces effects of lens distortions and film deformations but they are again taken care of by the self calibrating bundle adjustment.

  5. Mass and heat flux balance of La Soufrière volcano (Guadeloupe) from aerial infrared thermal imaging

    NASA Astrophysics Data System (ADS)

    Gaudin, Damien; Beauducel, François; Coutant, Olivier; Delacourt, Christophe; Richon, Patrick; de Chabalier, Jean-Bernard; Hammouya, Gilbert

    2016-06-01

    La Soufrière of Guadeloupe is an active volcano of Lesser Antilles that is closely monitored due to a high eruptive hazard potential. Since 1992 it exhibits a medium-level but sustained background hydrothermal activity with low-energy and shallow seismicity, hot springs temperature increase and high flux acidic gas fumaroles at the summit. The problem of estimating the heat balance and quantifying the evolution of hydrothermal activity has become a key challenge for surveillance. This work is the first attempt of a global mapping and quantification of La Soufrière thermal activity performed in February 2010 using aerial thermal infrared imagery. After instrument calibration and data processing, we present a global map of thermal anomalies allowing to spot the main active sites: the summit area (including the fumaroles of Tarissan Pit and South Crater), the Ty Fault fumarolic zone, and the hot springs located at the vicinity of the dome. In a second step, we deduce the mass and the energy fluxes released by the volcano. In particular, we propose a simple model of energy balance to estimate the mass flux of the summit fumaroles from their brightness temperature and size. In February 2010, Tarissan Pit had a 22.8 ± 8.1 kg s -1 flux (1970 ± 704 tons day -1), while South Crater vents had a total of 19.5 ± 4.0 kg s -1 (1687 ± 348 tons day -1). Once converted into energy flux, summit fumaroles represent 98% of the 106 ± 30 MW released by the volcano, the 2% remaining being split between the hot springs and the thermal anomalies at the summit and at the Ty Fault fumarolic zone. These values are in the high range of the previous estimations, highlighting the short-term variability of the expelled fluxes. Such a heat flux requires the cooling of 1500 m 3 of magma per day, in good agreement with previous geochemical studies.

  6. Aerial radiation surveys

    SciTech Connect

    Jobst, J.

    1980-01-01

    A recent aerial radiation survey of the surroundings of the Vitro mill in Salt Lake City shows that uranium mill tailings have been removed to many locations outside their original boundary. To date, 52 remote sites have been discovered within a 100 square kilometer aerial survey perimeter surrounding the mill; 9 of these were discovered with the recent aerial survey map. Five additional sites, also discovered by aerial survey, contained uranium ore, milling equipment, or radioactive slag. Because of the success of this survey, plans are being made to extend the aerial survey program to other parts of the Salt Lake valley where diversions of Vitro tailings are also known to exist.

  7. Passive imaging technology in aphasia therapy.

    PubMed

    Burke, Kiernan; Franklin, Sue; Gowan, Olive

    2011-10-01

    We describe a brief pilot study undertaken to investigate the potential benefit(s) of using a SenseCam in aphasia therapy. Five post-stroke persons with aphasia and their caregivers agreed to participate. Each person with aphasia wore the SenseCam for 1 day during the daytime. Slide shows and printed images were created from the images obtained and presented at a (videotaped) weekly group conversation session. Therapists' observations, reflections, and opinions were subsequently elicited in a group interview and online survey. Wearable, sensor-triggered automatic imaging devices offer potential advantages over both conventional cameras and generic pictures when used in aphasia therapy. We identified three advantages of a SenseCam over conventional imaging methods: Images can be acquired without the presence of the researcher, no action is required by the wearer for image acquisition and the continuous point of view is that of the wearer. Acquired images are of personal relevance to the wearer and may have greater efficacy for the person with aphasia in aiding conversation, and for the speech language therapist in setting functional language goals. PMID:21391108

  8. MITAS: multisensor imaging technology for airborne surveillance

    NASA Astrophysics Data System (ADS)

    Thomas, John D.

    1991-08-01

    MITAS, a unique and low-cost solution to the problem of collecting and processing multisensor imaging data for airborne surveillance operations has been developed, MITAS results from integrating the established and proven real-time video processing, target tracking, and sensor management software of TAU with commercially available image exploitation and map processing software. The MITAS image analysis station (IAS) supports airborne day/night reconnaissance and surveillance missions involving low-altitude collection platforms employing a suite of sensors to perform reconnaissance functions against a variety of ground and sea targets. The system will detect, locate, and recognize threats likely to be encountered in support of counternarcotic operations and in low-intensity conflict areas. The IAS is capable of autonomous, near real-time target exploitation and has the appropriate communication links to remotely located IAS systems for more extended analysis of sensor data. The IAS supports the collection, fusion, and processing of three main imaging sensors: daylight imagery (DIS), forward looking infrared (FLIR), and infrared line scan (IRLS). The MITAS IAS provides support to all aspects of the airborne surveillance mission, including sensor control, real-time image enhancement, automatic target tracking, sensor fusion, freeze-frame capture, image exploitation, target data-base management, map processing, remote image transmission, and report generation.

  9. NASA Technology Finds Uses in Medical Imaging

    NASA Video Gallery

    NASA software has been incorporated into a new medical imaging device that could one day aid in the interpretation of mammograms, ultrasounds, and other medical imagery. The new MED-SEG system, dev...

  10. Spectroscopic imaging technologies for online food safety and sanitation inspection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Environmental Microbial and Food Safety Laboratory, ARS, USDA is one of the leading groups for the development of optoelectronic sensing technologies and methodologies for food quality, safety, and sanitation inspection. High throughput hyperspectral and multispectral imaging techniques use Ram...

  11. Classification of Urban Feature from Unmanned Aerial Vehicle Images Using Gasvm Integration and Multi-Scale Segmentation

    NASA Astrophysics Data System (ADS)

    Modiri, M.; Salehabadi, A.; Mohebbi, M.; Hashemi, A. M.; Masumi, M.

    2015-12-01

    The use of UAV in the application of photogrammetry to obtain cover images and achieve the main objectives of the photogrammetric mapping has been a boom in the region. The images taken from REGGIOLO region in the province of, Italy Reggio -Emilia by UAV with non-metric camera Canon Ixus and with an average height of 139.42 meters were used to classify urban feature. Using the software provided SURE and cover images of the study area, to produce dense point cloud, DSM and Artvqvtv spatial resolution of 10 cm was prepared. DTM area using Adaptive TIN filtering algorithm was developed. NDSM area was prepared with using the difference between DSM and DTM and a separate features in the image stack. In order to extract features, using simultaneous occurrence matrix features mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment, and correlation for each of the RGB band image was used Orthophoto area. Classes used to classify urban problems, including buildings, trees and tall vegetation, grass and vegetation short, paved road and is impervious surfaces. Class consists of impervious surfaces such as pavement conditions, the cement, the car, the roof is stored. In order to pixel-based classification and selection of optimal features of classification was GASVM pixel basis. In order to achieve the classification results with higher accuracy and spectral composition informations, texture, and shape conceptual image featureOrthophoto area was fencing. The segmentation of multi-scale segmentation method was used.it belonged class. Search results using the proposed classification of urban feature, suggests the suitability of this method of classification complications UAV is a city using images. The overall accuracy and kappa coefficient method proposed in this study, respectively, 47/93% and 84/91% was.

  12. Image Technologies for Preservation in Libraries and Archives

    NASA Astrophysics Data System (ADS)

    Yasue, Akio

    Since 1930's when microfilms first introduced in libraries and archives, image technologies have become indispensable measures for such institutions. Their importance is still growing in the present digital and internet environment. The report first traces back the history of image technologies in library and archives from the point of long term preservation of their collections. Then it points out the issues involved in order to manage library and archives preservation.

  13. Study on airborne multispectral imaging fusion detection technology

    NASA Astrophysics Data System (ADS)

    Ding, Na; Gao, Jiaobo; Wang, Jun; Cheng, Juan; Gao, Meng; Gao, Fei; Fan, Zhe; Sun, Kefeng; Wu, Jun; Li, Junna; Gao, Zedong; Cheng, Gang

    2014-11-01

    The airborne multispectral imaging fusion detection technology is proposed in this paper. In this design scheme, the airborne multispectral imaging system consists of the multispectral camera, the image processing unit, and the stabilized platform. The multispectral camera can operate in the spectral region from visible to near infrared waveband (0.4-1.0um), it has four same and independent imaging channels, and sixteen different typical wavelengths to be selected based on the different typical targets and background. The related experiments were tested by the airborne multispectral imaging system. In particularly, the camouflage targets were fused and detected in the different complex environment, such as the land vegetation background, the desert hot background and underwater. In the spectral region from 0.4 um to 1.0um, the three different characteristic wave from sixteen typical spectral are selected and combined according to different backgrounds and targets. The spectral image corresponding to the three characteristic wavelengths is resisted and fused by the image processing technology in real time, and the fusion video with typical target property is outputted. In these fusion images, the contrast of target and background is greatly increased. Experimental results confirm that the airborne multispectral imaging fusion detection technology can acquire multispectral fusion image with high contrast in real time, and has the ability of detecting and identification camouflage objects from complex background to targets underwater.

  14. SYMPOSIUM ON MULTIMODALITY CARDIOVASCULAR MOLECULAR IMAGING IMAGING TECHNOLOGY - PART 2

    PubMed Central

    de Kemp, Robert A.; Epstein, Frederick H.; Catana, Ciprian; Tsui, Benjamin M.W.; Ritman, Erik L.

    2013-01-01

    Rationale The ability to trace or identify specific molecules within a specific anatomic location provides insight into metabolic pathways, tissue components and tracing of solute transport mechanisms. With the increasing use of small animals for research such imaging must have sufficiently high spatial resolution to allow anatomic localization as well as sufficient specificity and sensitivity to provide an accurate description of the molecular distribution and concentration. Methods Imaging methods based on electromagnetic radiation, such as PET, SPECT, MRI and CT, are increasingly applicable due to recent advances in novel scanner hardware, image reconstruction software and availability of novel molecules which have enhanced sensitivity in these methodologies. Results Micro-PET has been advanced by development of detector arrays that provide higher resolution and positron emitting elements that allow new molecular tracers to be labeled. Micro-MRI has been improved in terms of spatial resolution and sensitivity by increased magnet field strength and development of special purpose coils and associated scan protocols. Of particular interest is the associated ability to image local mechanical function and solute transport processes which can be directly related to the molecular information. This is further strengthened by the synergistic integration of the PET with MRI. Micro-SPECT has been improved by use of coded aperture imaging approaches as well as image reconstruction algorithms which can better deal with the photon limited scan data. The limited spatial resolution can be partially overcome by integrating the SPECT with CT. Micro-CT by itself provides exquisite spatial resolution of anatomy, but recent developments of high spatial resolution photon counting and spectrally-sensitive imaging arrays, combined with x-ray optical devices, have promise for actual molecular identification by virtue of the chemical bond lengths of molecules, especially of bio

  15. Sensor technology for image-guided surgery

    NASA Astrophysics Data System (ADS)

    Zinreich, S. J.; Helm, Patrick

    1998-06-01

    The advances in radiographic imaging techniques that have occurred within the past decades have significantly enhanced our abilities to display anatomy as well as pathology. Although image acquisition commonly generates three-dimensional datasets, limitation in user interfaces generally requires that this information be presented clinically as a series of two dimensional images. Consequently, during preoperative planning, surgeons are required to mentally transform a wealth of two dimensional hard copy images qualitatively into three-dimensional concepts that are used as a road map to surgery. The sugeron's success is dependent on the accurate mental transfer of Computer Tomographic X-ray (CT) and Magnetic Resonance (MR) imaging information to the operative site to assist direct visual perception of the procedure. Thus, the surgical procedure is performed with the surgeon intuitively transferring radiographic information to the surgical site. Neurosurgeons, for example, are especially hampered because of limited ability to visually distinguish tumor tissue, peritumoral edema, and normal brain parenchyma. This limitation at least partially accounts for the relatively high incidence of subtotal tumor excision. Based on the need to assit the surgeon transform the preoperative scans to the operative site, stereotactic systems were developed and would evolve into frameless stereotaxy with the advance of various sensors.

  16. Integrated imaging sensor systems with CMOS active pixel sensor technology

    NASA Technical Reports Server (NTRS)

    Yang, G.; Cunningham, T.; Ortiz, M.; Heynssens, J.; Sun, C.; Hancock, B.; Seshadri, S.; Wrigley, C.; McCarty, K.; Pain, B.

    2002-01-01

    This paper discusses common approaches to CMOS APS technology, as well as specific results on the five-wire programmable digital camera-on-a-chip developed at JPL. The paper also reports recent research in the design, operation, and performance of APS imagers for several imager applications.

  17. Aerial robotic data acquisition system

    SciTech Connect

    Hofstetter, K.J.; Hayes, D.W.; Pendergast, M.M.; Corban, J.E.

    1993-12-31

    A small, unmanned aerial vehicle (UAV), equipped with sensors for physical and chemical measurements of remote environments, is described. A miniature helicopter airframe is used as a platform for sensor testing and development. The sensor output is integrated with the flight control system for real-time, interactive, data acquisition and analysis. Pre-programmed flight missions will be flown with several sensors to demonstrate the cost-effective surveillance capabilities of this new technology.

  18. The technology of forest fire detection based on infrared image

    NASA Astrophysics Data System (ADS)

    Wu, Zhi-guo; Liu, Guo-juan; Wang, Ming-jia; Wang, Suo-jian

    2013-09-01

    According to infrared imaging features of forest fire, we use image processing technology which is conducive to early detection and prevention of forest fires. We use image processing technology based on infrared imaging features of forest fire which is conducive to early detection and prevention of forest fires. In order to the timeliness and accuracy of fire detection, this paper proposes a forest fire detection method based on infrared image technology. We take gray histogram analysis to collected Cruising image. The image which will be detected is segmented by the adaptive dynamic threshold. Then the suspected ignitions are extracted in the image after segmentation. The ignition of forest fire which form image in the infrared image is almost circular. We use the circular degree of suspected ignition as the decision basis of the fire in the infrared image. Through the analysis of position correlation which is the same suspected ignition between adjacent frames, we judge whether there is a fire in the image. In order to verify the effectiveness of the method, we adopt image sequences of forest fire to do experiment. The experimental results show that the proposed algorithm under the conditions of different light conditions and complex backgrounds, which can effectively eliminate distractions and extract the fire target. The accuracy fire detection rate is above 95 percent. All fire can be detected. The method can quickly identify fire flame and high-risk points of early fire. The structure of method is clear and efficient which processing speed is less than 25 frames per second. So it meets the application requirement of real-time processing.

  19. Research on defogging technology of video image based on FPGA

    NASA Astrophysics Data System (ADS)

    Liu, Shuo; Piao, Yan

    2015-03-01

    As the effect of atmospheric particles scattering, the video image captured by outdoor surveillance system has low contrast and brightness, which directly affects the application value of the system. The traditional defogging technology is mostly studied by software for the defogging algorithms of the single frame image. Moreover, the algorithms have large computation and high time complexity. Then, the defogging technology of video image based on Digital Signal Processing (DSP) has the problem of complex peripheral circuit. It can't be realized in real-time processing, and it's hard to debug and upgrade. In this paper, with the improved dark channel prior algorithm, we propose a kind of defogging technology of video image based on Field Programmable Gate Array (FPGA). Compared to the traditional defogging methods, the video image with high resolution can be processed in real-time. Furthermore, the function modules of the system have been designed by hardware description language. At last, the results show that the defogging system based on FPGA can process the video image with minimum resolution of 640×480 in real-time. After defogging, the brightness and contrast of video image are improved effectively. Therefore, the defogging technology proposed in the paper has a great variety of applications including aviation, forest fire prevention, national security and other important surveillance.

  20. Super-resolved imaging system with oversampling technology

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Liu, Yanyan; Zhang, Jian-ping; Wang, Ling-jie

    2007-12-01

    It has been a significant issue in the imaging filed to provide the highest possible resolution of an electro-optical imaging system(E-O imaging system). CCD arrays are inherently undersampled and spatial frequency above Nyquist frequency is distorted so as to create ambiguity and Moire patterns for targets imaged by E-O system.. As to this drawback, a system-design project is introduced and discussed in the paper. It's well known that many image quality metrics are linked to MTF. However, CCDs don't satisfy MTF condition, namely, the shift-invariant property, so MTF synthesis can't appraise the whole system simply by the MTF product of the few sub-system ones in E-O imaging system. Then it is depicted how to solve this problem in the following. Finally the analyses and comparisons of the imaging performance parameters with and without super-resolved technologies are shown.

  1. Technology Insight: imaging of low back pain.

    PubMed

    Finch, Philip

    2006-10-01

    Chronic low back pain is a common condition that has significant economic consequences for affected patients and their communities. Despite the prevailing view that an anatomic diagnosis is often impossible, an origin for the pain can frequently be found if current diagnostic techniques are fully used. Such techniques include a mixture of noninvasive and invasive imaging. Prevalence data suggest that the intervertebral disc is one of the most common sources of back pain, accounting for around 40% of cases. The pathologic basis for discogenic low back pain might be full-thickness radial tears of the annulus fibrosus. Unfortunately, only MRI can image the internal morphology of the disc, and both CT and MRI lack the necessary specificity to validate this hypothesis. Many so-called radiographic abnormalities seen on CT and MRI are commonly encountered in asymptomatic individuals. Invasive techniques such as joint injections, nerve blocks and provocative discography can show the connection between an abnormal image and the source of low back pain, but do have notable related risks. The development of a noninvasive, low-risk technique that can show this connection is desirable. PMID:17016481

  2. Advanced technology development for image gathering, coding, and processing

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O.

    1990-01-01

    Three overlapping areas of research activities are presented: (1) Information theory and optimal filtering are extended to visual information acquisition and processing. The goal is to provide a comprehensive methodology for quantitatively assessing the end-to-end performance of image gathering, coding, and processing. (2) Focal-plane processing techniques and technology are developed to combine effectively image gathering with coding. The emphasis is on low-level vision processing akin to the retinal processing in human vision. (3) A breadboard adaptive image-coding system is being assembled. This system will be used to develop and evaluate a number of advanced image-coding technologies and techniques as well as research the concept of adaptive image coding.

  3. RIMSTAR: Rapid image scanning technology and archiving

    NASA Technical Reports Server (NTRS)

    Craine, E. R.; Scott, J. S.

    1984-01-01

    Conventional schemes for digitizing large volumes of photographic data are far too costly and time consuming to encourage the undertaking of the ambitious projects using traditional technology. There is a distinct need for fast digitizing systems such as could be derived from development of large format, optically multiplexed CCD systems designed to address these problems. The use of CCD chips for data handling and the capability of using polaroids in the optical path for reduced light scattering are discussed.

  4. Data analysis tools for imaging infrared technology within the ImageJ environment

    NASA Astrophysics Data System (ADS)

    Rogers, Ryan K.; Edwards, W. Derrik; Waddle, Caleb E.; Dobbins, Christopher L.; Wood, Sam B.

    2013-06-01

    For over 30 years, the U.S. Army Aviation and Missile Research, Development, and Engineering Center (AMRDEC) has specialized in characterizing the performance of infrared (IR) imaging systems in the laboratory and field. In the late 90's, AMRDEC developed the Automated IR Sensor Test Facility (AISTF) which allowed efficient deployment testing of Unmanned Aerial Systems (UAS) payloads. More recently, ImageJ has been used predominately as the image processing environment of choice for analysis of laboratory, field, and simulated data. The strengths of ImageJ are that it is maintained by the U.S. National Institute of Health, it exists in the public domain, and it functions on all major operating systems. Three new tools or "plugins" have been developed at AMRDEC to enhance the accuracy and efficiency of analysis. First, a Noise Equivalent Temperature Difference (NETD) plugin was written to process Signal Transfer Function (SiTF) and 3D noise data. Another plugin was produced that measures the Modulation Transfer Function (MTF) given either an edge or slit target. Lastly, a plugin was developed to measure Focal Plane Array (FPA) defects, classify and bin the customizable defects, and report statistics. This paper will document the capabilities and practical applications of these tools as well as profile their advantages over previous methods of analysis.

  5. Lincoln Laboratory high-speed solid-state imager technology

    NASA Astrophysics Data System (ADS)

    Reich, R. K.; Rathman, D. D.; O'Mara, D. M.; Young, D. J.; Loomis, A. H.; Osgood, R. M.; Murphy, R. A.; Rose, M.; Berger, R.; Tyrrell, B. M.; Watson, S. A.; Ulibarri, M. D.; Perry, T.; Weber, F.; Robey, H.

    2007-01-01

    Massachusetts Institute of Technology, Lincoln Laboratory (MIT LL) has been developing both continuous and burst solid-state focal-plane-array technology for a variety of high-speed imaging applications. For continuous imaging, a 128 × 128-pixel charge coupled device (CCD) has been fabricated with multiple output ports for operating rates greater than 10,000 frames per second with readout noise of less than 10 e- rms. An electronic shutter has been integrated into the pixels of the back-illuminated (BI) CCD imagers that give snapshot exposure times of less than 10 ns. For burst imaging, a 5 cm × 5 cm, 512 × 512-element, multi-frame CCD imager that collects four sequential image frames at megahertz rates has been developed for the Los Alamos National Laboratory Dual Axis Radiographic Hydrodynamic Test (DARHT) facility. To operate at fast frame rates with high sensitivity, the imager uses the same electronic shutter technology as the continuously framing 128 × 128 CCD imager. The design concept and test results are described for the burst-frame-rate imager. Also discussed is an evolving solid-state imager technology that has interesting characteristics for creating large-format x-ray detectors with ultra-short exposure times (100 to 300 ps). The detector will consist of CMOS readouts for high speed sampling (tens of picoseconds transistor switching times) that are bump bonded to deep-depletion silicon photodiodes. A 64 × 64-pixel CMOS test chip has been designed, fabricated and characterized to investigate the feasibility of making large-format detectors with short, simultaneous exposure times.

  6. An EW technology research of jamming IR imaging guided missiles

    NASA Astrophysics Data System (ADS)

    Wu, Xiu-qin; Rong, Hua; Liang, Jing-ping; Chen, Qi; Chen, Min-rong

    2009-07-01

    The IR-Imaging-Guided Weapons have been playing an important role in the modern warfare by means of select attacking the vital parts of targets with the features of highly secret attacking, high precision, and excellent anti-jamming capability ,therefore, they are viewed to be one of the promising precisely guided weapons ,receiving great concern through out the world. This paper discusses the characteristics of IR-Imaging guidance systems at the highlight of making a study of correlated technologies of jamming IR-Imaging-Guided Weapons on the basis of elaborating the operational principles of IR-Imaging-guided Weapons.

  7. The research on image processing technology of the star tracker

    NASA Astrophysics Data System (ADS)

    Li, Yu-ming; Li, Chun-jiang; Zheng, Ran; Li, Xiao; Yang, Jun

    2014-11-01

    As the core of visual sensitivity via imaging, image processing technology, especially for star tracker, is mainly characterized by such items as image exposure, optimal storage, background estimation, feature correction, target extraction, iteration compensation. This paper firstly summarizes the new research on those items at home and abroad, then, according to star tracker's practical engineering, environment in orbit and lifetime information, shows an architecture about rapid fusion between multiple frame images, which can be used to restrain oversaturation of the effective pixels, which means star tracker can be made more precise, more robust and more stable.

  8. Demountable readout technologies for optical image intensifiers

    NASA Astrophysics Data System (ADS)

    Lapington, J. S.; Howorth, J. R.; Milnes, J. S.

    2007-04-01

    We describe a generic microchannel plate intensifier design for use with a variety of demountable readout devices manufactured using standard multi-layer PCB techniques. We present results obtained using a 50 Ω multi-element design optimized for high speed operation and a four electrode multi-layer device developed from the wedge and strip anode with enhanced image resolution. The benefits of this intensifier design are discussed and a project to develop a detector system for bio-medical applications using a demountable readout device with integrated multi-channel ASIC-based electronics is announced.

  9. Reporter gene technologies for imaging cell fates in hematopoiesis.

    PubMed

    Kusy, Sophie; Contag, Christopher H

    2014-01-01

    Advances in noninvasive imaging technologies that allow for in vivo dynamic monitoring of cells and cellular function in living research subjects have revealed new insights into cell biology in the context of intact organs and their native environment. In the field of hematopoiesis and stem cell research, studies of cell trafficking involved in injury repair and hematopoietic engraftment have made great progress using these new tools. Stem cells present unique challenges for imaging since after transplantation, they proliferate dramatically and differentiate. Therefore, the imaging modality used needs to have a large dynamic range, and the genetic regulatory elements used need to be stably expressed during differentiation. Multiple imaging technologies using different modalities are available, and each varies in sensitivity, ease of data acquisition, signal to noise ratios (SNR), substrate availability, and other parameters that affect utility for monitoring cell fates and function. For a given application, there may be several different approaches that can be used. For mouse models, clinically validated technologies such as magnetic resonance imaging (MRI) and positron emission tomography (PET) have been joined by optical imaging techniques such as in vivo bioluminescence imaging (BLI) and fluorescence imaging (FLI), and all have been used to monitor bone marrow and stem cells after transplantation into mice. Photoacoustic imaging that utilizes the sound created by the thermal expansion of absorbed light to generate an image best represents hybrid technologies. Each modality requires that the cells of interest be marked with a genetic reporter that acts as a label making them uniquely visible using that technology. For each modality, there are several labels to choose from. Multiple methods for applying these different labels are available. This chapter provides an overview of the imaging technologies and commonly used labels for each, as well as detailed

  10. Novel instrumentation of multispectral imaging technology for detecting tissue abnormity

    NASA Astrophysics Data System (ADS)

    Yi, Dingrong; Kong, Linghua

    2012-10-01

    Multispectral imaging is becoming a powerful tool in a wide range of biological and clinical studies by adding spectral, spatial and temporal dimensions to visualize tissue abnormity and the underlying biological processes. A conventional spectral imaging system includes two physically separated major components: a band-passing selection device (such as liquid crystal tunable filter and diffraction grating) and a scientific-grade monochromatic camera, and is expensive and bulky. Recently micro-arrayed narrow-band optical mosaic filter was invented and successfully fabricated to reduce the size and cost of multispectral imaging devices in order to meet the clinical requirement for medical diagnostic imaging applications. However the challenging issue of how to integrate and place the micro filter mosaic chip to the targeting focal plane, i.e., the imaging sensor, of an off-shelf CMOS/CCD camera is not reported anywhere. This paper presents the methods and results of integrating such a miniaturized filter with off-shelf CMOS imaging sensors to produce handheld real-time multispectral imaging devices for the application of early stage pressure ulcer (ESPU) detection. Unlike conventional multispectral imaging devices which are bulky and expensive, the resulting handheld real-time multispectral ESPU detector can produce multiple images at different center wavelengths with a single shot, therefore eliminates the image registration procedure required by traditional multispectral imaging technologies.

  11. New Optical Imaging Technologies for Bladder Cancer: Considerations and Perspectives

    PubMed Central

    Liu, Jen-Jane; Droller, Michael J.; Liao, Joseph C.

    2014-01-01

    Purpose Bladder cancer presents as a spectrum of different diatheses. Accurate assessment for individualized treatment depends on initial diagnostic accuracy. Detection relies on white light cystoscopy accuracy and comprehensiveness. Aside from invasiveness and potential risks, white light cystoscopy shortcomings include difficult flat lesion detection, precise tumor delineation to enable complete resection, inflammation and malignancy differentiation, and grade and stage determination. Each shortcoming depends on surgeon ability and experience with the technology available for visualization and resection. Fluorescence cystoscopy/photodynamic diagnosis, narrow band imaging, confocal laser endomicroscopy and optical coherence tomography address the limitations and have in vivo feasibility. They detect suspicious lesions (photodynamic diagnosis and narrow band imaging) and further characterize lesions (optical coherence tomography and confocal laser endomicroscopy). We analyzed the added value of each technology beyond white light cystoscopy and evaluated their maturity to alter the cancer course. Materials and Methods Detailed PubMed® searches were done using the terms “fluorescence cystoscopy,” “photodynamic diagnosis,” “narrow band imaging,” “optical coherence tomography” and “confocal laser endomicroscopy” with “optical imaging,” “bladder cancer” and “urothelial carcinoma.” Diagnostic accuracy reports and all prospective studies were selected for analysis. We explored technological principles, preclinical and clinical evidence supporting nonmuscle invasive bladder cancer detection and characterization, and whether improved sensitivity vs specificity translates into improved correlation of diagnostic accuracy with recurrence and progression. Emerging preclinical technologies with potential application were reviewed. Results Photodynamic diagnosis and narrow band imaging improve nonmuscle invasive bladder cancer detection, including

  12. A contribution to laser range imaging technology

    NASA Astrophysics Data System (ADS)

    Defigueiredo, Rui J. P.; Denney, Bradley S.

    1991-02-01

    The goal of the project was to develop a methodology for fusion of a Laser Range Imaging Device (LRID) and camera data. Our initial work in the project led to the conclusion that none of the LRID's that were available were sufficiently adequate for this purpose. Thus we spent the time and effort on the development of the new LRID with several novel features which elicit the desired fusion objectives. In what follows, we describe the device developed and built under contract. The Laser Range Imaging Device (LRID) is an instrument which scans a scene using a laser and returns range and reflection intensity data. Such a system would be extremely useful in scene analysis in industry and space applications. The LRID will be eventually implemented on board a mobile robot. The current system has several advantages over some commercially available systems. One improvement is the use of X-Y galvonometer scanning mirrors instead of polygonal mirrors present in some systems. The advantage of the X-Y scanning mirrors is that the mirror system can be programmed to provide adjustable scanning regions. For each mirror there are two controls accessible by the computer. The first is the mirror position and the second is a zoom factor which modifies the amplitude of the position of the parameter. Another advantage of the LRID is the use of a visible low power laser. Some of the commercial systems use a higher intensity invisible laser which causes safety concerns. By using a low power visible laser, not only can one see the beam and avoid direct eye contact, but also the lower intensity reduces the risk of damage to the eye, and no protective eyeware is required.

  13. Adaptive Optics Technology for High-Resolution Retinal Imaging

    PubMed Central

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe

    2013-01-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging. PMID:23271600

  14. Thermal Transfer Compared To The Fourteen Other Imaging Technologies

    NASA Astrophysics Data System (ADS)

    O'Leary, John W.

    1989-07-01

    A quiet revolution in the world of imaging has been underway for the past few years. The older technologies of dot matrix, daisy wheel, thermal paper and pen plotters have been increasingly displaced by laser, ink jet and thermal transfer. The net result of this revolution is improved technologies that afford superior imaging, quiet operation, plain paper usage, instant operation, and solid state components. Thermal transfer is one of the processes that incorporates these benefits. Among the imaging application for thermal transfer are: 1. Bar code labeling and scanning. 2. New systems for airline ticketing, boarding passes, reservations, etc. 3. Color computer graphics and imaging. 4. Copying machines that copy in color. 5. Fast growing communications media such as facsimile. 6. Low cost word processors and computer printers. 7. New devices that print pictures from video cameras or television sets. 8. Cameras utilizing computer chips in place of film.

  15. 77 FR 36250 - Information Collection Request; Request for Aerial Photography

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... technological collection techniques or other forms of information technology. All comments received in response... disabilities who require alternative mean for communication (Braille, large print, audio tape, etc.) should...; ] DEPARTMENT OF AGRICULTURE Farm Service Agency Information Collection Request; Request for Aerial...

  16. Precision aerial application for site-specific rice crop management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision agriculture includes different technologies that allow agricultural professional to use information management tools to optimize agriculture production. The new technologies allow aerial application applicators to improve application accuracy and efficiency, which saves time and money for...

  17. Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) from an Unmanned Aerial Vehicle (UAV): Results from the 2014 AROMAT campaign

    NASA Astrophysics Data System (ADS)

    Merlaud, Alexis; Tack, Frederik; Constantin, Daniel; Fayt, Caroline; Maes, Jeroen; Mingireanu, Florin; Mocanu, Ionut; Georgescu, Lucian; Van Roozendael, Michel

    2015-04-01

    The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) is an instrument dedicated to atmospheric trace gas retrieval from an Unmanned Aerial Vehicle (UAV). The payload is based on a compact visible spectrometer and a scanning mirror to collect scattered sunlight. Its weight, size, and power consumption are respectively 920 g, 27x12x12 cm3, and 6 W. The custom-built 2.5 m flying wing UAV is electrically powered, has a typical airspeed of 100 km/h, and can operate at a maximum altitude of 3 km. Both the payload and the UAV were developed in the framework of a collaboration between the Belgian Institute for Space Aeronomy (BIRA-IASB) and the Dunarea de Jos University of Galati, Romania. We present here SWING-UAV test flights dedicated to NO2 measurements and performed in Romania on 10 and 11 September 2014, during the Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign. The UAV performed 5 flights in the vicinity of the large thermal power station of Turceni (44.67° N, 23.4° E). The UAV was operated in visual range during the campaign, up to 900 m AGL , downwind of the plant and crossing its exhaust plume. The spectra recorded on flight are analyzed with the Differential Optical Absorption Spectroscopy (DOAS) method. The retrieved NO2 Differential Slant Column Densities (DSCDs) are up to 1.5e17 molec/cm2 and reveal the horizontal gradients around the plant. The DSCDs are converted to vertical columns and compared with coincident car-based DOAS measurements. We also present the near-future perspective of the SWING-UAV observation system, which includes flights in 2015 above the Black Sea to quantify ship emissions, the addition of SO2 as a target species, and autopilot flights at higher altitudes to cover a typical satellite pixel extent (10x10 km2).

  18. Hyperspatial Thermal Imaging of Surface Hydrothermal Features at Pilgrim Hot Springs, Alaska using a small Unmanned Aerial System (sUAS)

    NASA Astrophysics Data System (ADS)

    Haselwimmer, C. E.; Wilson, R.; Upton, C.; Prakash, A.; Holdmann, G.; Walker, G.

    2013-12-01

    Thermal remote sensing provides a valuable tool for mapping and monitoring surface hydrothermal features associated with geothermal activity. The increasing availability of low-cost, small Unmanned Aerial Systems (sUAS) with integrated thermal imaging sensors offers a means to undertake very high spatial resolution (hyperspatial), quantitative thermal remote sensing of surface geothermal features in support of exploration and long-term monitoring efforts. Results from the deployment of a quadcopter sUAS equipped with a thermal camera over Pilgrim Hot Springs, Alaska for detailed mapping and heat flux estimation for hot springs, seeps, and thermal pools are presented. Hyperspatial thermal infrared imagery (4 cm pixels) was acquired over Pilgrim Hot Springs in July 2013 using a FLIR TAU 640 camera operating from an Aeryon Scout sUAS flying at an altitude of 40m. The registered and mosaicked thermal imagery is calibrated to surface temperature values using in-situ measurements of uniform blackbody tarps and the temperatures of geothermal and other surface pools acquired with a series of water temperature loggers. Interpretation of the pre-processed thermal imagery enables the delineation of hot springs, the extents of thermal pools, and the flow and mixing of individual geothermal outflow plumes with an unprecedented level of detail. Using the surface temperatures of thermal waters derived from the FLIR data and measured in-situ meteorological parameters the hot spring heat flux and outflow rate is calculated using a heat budget model for a subset of the thermal drainage. The heat flux/outflow rate estimates derived from the FLIR data are compared against in-situ measurements of the hot spring outflow rate recorded at the time of the thermal survey.

  19. Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) from an Unmanned Aerial Vehicle (UAV): status and perspectives

    NASA Astrophysics Data System (ADS)

    Merlaud, Alexis; Tack, Frederik; Constantin, Daniel-Eduard; Fayt, Caroline; Maes, Jeroen; Mingireanu, Florin; Mocanu, Ionut; Georgescu, Lucian; Van Roozendael, Michel

    2014-05-01

    The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) is a recently developed instrument dedicated to trace gas measurements from Unmanned Aerial Vehicles (UAVs). The payload is based on a compact ultra-violet visible spectrometer and a scanning mirror. Its weight, size, and power consumption are respectively 920 g, 27x12x12 cm3, and 6 W. The custom-built UAV is an electrically powered flying wing and can reach an altitude of 3 km at a mean airspeed of 100 km/h. The whole flight can be preprogrammed and controlled by an autopilot. The spectra are analyzed using Differential Optical Absorption Spectroscopy (DOAS). One major objective is the mapping of NO2 columns at high spatial resolution allowing to subsample satellite measurements within the extent of a typical ground pixel. We present the preliminary results of two test flights of the SWING-UAV observation system in the vicinity of Galati, Romania (45.45°N, 28.05°E), performed on 11 May 2013 and 20 September 2013. Several atmospheric species are identified in the spectral range covered by the spectrometer (300-600 nm): NO2, water vapor, O4, and O3. From the measurements, the detection limit for NO2 is estimated to lie around 2 ppb. We investigate: (1) the georeferencing issues and the effective spatial resolution achievable with SWING-UAV from the instantaneous field of view and the plane dynamics (2) the main parameters influencing the air mass factors, and (3) the reproducibility of NO2 measurements over the same area during the second flight which included repeated transects. We also present the near-future (2014-2015) campaigns planned for the SWING-UAV observation system.

  20. Aerial photographic reproductions

    USGS Publications Warehouse

    U.S. Geological Survey

    1975-01-01

    The National Cartographic Information Center of the U.S. Geological Survey maintains records of aerial photographic coverage of the United States and its Territories, based on reports from other Federal agencies as well as State governmental agencies and commercial companies. From these records, the Center furnishes data to prospective purchasers on available photography and the agency holding the aerial film.

  1. Review of research on sonar imaging technology in China

    NASA Astrophysics Data System (ADS)

    Guo, Haitao; Li, Renping; Xu, Feng; Liu, Liyuan

    2013-11-01

    Over the past 20 years, sonar imaging technology particularly for the high-technology sector has been a focus of research, in which many developed countries, especially those with coast lines, have been competing with each other. It has seen a rapid development with increasing widespread applications that has played an important and irreplaceable role in underwater exploration with great prospects for social, economic, scientific, and military benefits. The fundamental techniques underlying sonar imaging, including multi-beamforming, synthetic-aperture and inverse synthetic-aperture sonar, acoustic lensing, and acoustical holography, are described in this paper. This is followed by a comprehensive and systematic review on the advantages and disadvantages of these imaging techniques, applicability conditions, development trends, new ideas, new methods, and improvements in old methods over recent years with an emphasis on the situation in China, along with a bold and constructive prediction to some development characteristics of sonar imaging technology in the near future in China. The perspectives presented in this paper are offered with the idea of providing some degree of guidance and promotion of research on sonar imaging technology.

  2. The future of imaging spectroscopy - Prospective technologies and applications

    USGS Publications Warehouse

    Schaepman, M.E.; Green, R.O.; Ungar, S.G.; Curtiss, B.; Boardman, J.; Plaza, A.J.; Gao, B.-C.; Ustin, S.; Kokaly, R.; Miller, J.R.; Jacquemoud, S.; Ben-Dor, E.; Clark, R.; Davis, C.; Dozier, J.; Goodenough, D.G.; Roberts, D.; Swayze, G.; Milton, E.J.; Goetz, A.F.H.

    2006-01-01

    Spectroscopy has existed for more than three centuries now. Nonetheless, significant scientific advances have been achieved. We discuss the history of spectroscopy in relation to emerging technologies and applications. Advanced focal plane arrays, optical design, and intelligent on-board logic are prime prospective technologies. Scalable approaches in pre-processing of imaging spectrometer data will receive additional focus. Finally, we focus on new applications monitoring transitional ecological zones, where human impact and disturbance have highest impact as well as in monitoring changes in our natural resources and environment We conclude that imaging spectroscopy enables mapping of biophysical and biochemical variables of the Earth's surface and atmospheric composition with unprecedented accuracy.

  3. Ultramap v3 - a Revolution in Aerial Photogrammetry

    NASA Astrophysics Data System (ADS)

    Reitinger, B.; Sormann, M.; Zebedin, L.; Schachinger, B.; Hoefler, M.; Tomasi, R.; Lamperter, M.; Gruber, B.; Schiester, G.; Kobald, M.; Unger, M.; Klaus, A.; Bernoegger, S.; Karner, K.; Wiechert, A.; Ponticelli, M.; Gruber, M.

    2012-07-01

    In the last years, Microsoft has driven innovation in the aerial photogrammetry community. Besides the market leading camera technology, UltraMap has grown to an outstanding photogrammetric workflow system which enables users to effectively work with large digital aerial image blocks in a highly automated way. Best example is the project-based color balancing approach which automatically balances images to a homogeneous block. UltraMap V3 continues innovation, and offers a revolution in terms of ortho processing. A fully automated dense matching module strives for high precision digital surface models (DSMs) which are calculated either on CPUs or on GPUs using a distributed processing framework. By applying constrained filtering algorithms, a digital terrain model can be derived which in turn can be used for fully automated traditional ortho texturing. By having the knowledge about the underlying geometry, seamlines can be generated automatically by applying cost functions in order to minimize visual disturbing artifacts. By exploiting the generated DSM information, a DSMOrtho is created using the balanced input images. Again, seamlines are detected automatically resulting in an automatically balanced ortho mosaic. Interactive block-based radiometric adjustments lead to a high quality ortho product based on UltraCam imagery. UltraMap v3 is the first fully integrated and interactive solution for supporting UltraCam images at best in order to deliver DSM and ortho imagery.

  4. Quantitative extraction of bedrock exposed rate based on unmanned aerial vehicle data and TM image in Karst Environment

    NASA Astrophysics Data System (ADS)

    wang, hongyan; li, qiangzi; du, xin; zhao, longcai

    2016-04-01

    In the karst regions of Southwest China, rocky desertification is one of the most serious problems of land degradation. The bedrock exposed rate is one of the important indexes to assess the degree of rocky desertification in the karst regions. Because of the inherent merits of macro scale, frequency, efficiency and synthesis, remote sensing is the promising method to monitor and assess karst rocky desertification on large scale. However, the actual measurement of bedrock exposed rate is difficult and existing remote sensing methods cannot directly be exploited to extract the bedrock exposed rate owing to the high complexity and heterogeneity of karst environments. Therefore, based on the UAV and TM data, the paper selected Xingren County as the research area, and the quantitative extraction of the bedrock exposed rate based on the multi scale remote sensing data was developed. Firstly, we used the object oriented method to carry out the accurate classification of UAV image and based on the results of rock extraction, the bedrock exposed rate was calculated in the 30m grid scale. Parts of the calculated samples were as training data and another samples were as the model validation data. Secondly, in each grid the band reflectivity of TM data was extracted and we also calculated a variety of rock index and vegetation index (NDVI, SAVI etc.). Finally, the network model was established to extract the bedrock exposed rate, the correlation coefficient (R) of the network model was 0.855 and the correlation coefficient (R) of the validation model was 0.677, the root mean square error (RMSE) was 0.073. Based on the quantitative inversion model, the distribution map of the bedrock exposed rate in Xingren County was obtained. Keywords: Bedrock exposed rate, quantitative extraction, UAV and TM data, Karst rocky desertification.

  5. Novel imaging technologies for characterization of microbial extracellular polysaccharides

    PubMed Central

    Lilledahl, Magnus B.; Stokke, Bjørn T.

    2015-01-01

    Understanding of biology is underpinned by the ability to observe structures at various length scales. This is so in a historical context and is also valid today. Evolution of novel insight often emerges from technological advancement. Recent developments in imaging technologies that is relevant for characterization of extraceullar microbiological polysaccharides are summarized. Emphasis is on scanning probe and optical based techniques since these tools offers imaging capabilities under aqueous conditions more closely resembling the physiological state than other ultramicroscopy imaging techniques. Following the demonstration of the scanning probe microscopy principle, novel operation modes to increase data capture speed toward video rate, exploitation of several cantilever frequencies, and advancement of utilization of specimen mechanical properties as contrast, also including their mode of operation in liquid, have been developed on this platform. Combined with steps in advancing light microscopy with resolution beyond the far field diffraction limit, non-linear methods, and combinations of the various imaging modalities, the potential ultramicroscopy toolbox available for characterization of exopolysaccharides (EPS) are richer than ever. Examples of application of such ultramicroscopy strategies range from imaging of isolated microbial polysaccharides, structures being observed when they are involved in polyelectrolyte complexes, aspects of their enzymatic degradation, and cell surface localization of secreted polysaccharides. These, and other examples, illustrate that the advancement in imaging technologies relevant for EPS characterization supports characterization of structural aspects. PMID:26074906

  6. Hole inspection technology using Fourier imaging method

    NASA Astrophysics Data System (ADS)

    Yoshino, Kiminori; Tsuchiya, Kenji; Yamazaki, Yuuichiro; Oote, Makoto; Shibayama, Koichiro; Kawai, Akitoshi; Endo, Kazumasa

    2009-03-01

    There are two kinds of critical dimension (CD) management tools; CD-SEM and Optical CD (OCD). OCD is preferable to other existing measurement tools, because of its higher throughput and lower photoresist damage. We have developed an Automated Pattern profile Management (APM) systems based on the OCD concept. For the monitoring thin line, APM detects light intensity from an optical system consisting of a polarizer and an analyzer set in a cross- Nicol configuration as a polarization fluctuation. This paper reports our development of monitoring technology for hole. In the case of hole management, APM detects light intensity from diffraction intensity fluctuation. First of all, the best conditions for hole management were designed from simulations. The best conditions were off-axis aperture and S polarizer. In our evaluation of wafers without underlayer, we obtained a good correlation with CD-SEM value. From the simulation, we consider the APM system to be very effective for shrinking hole process management of the next generation from the simulation.

  7. Photoacoustic imaging system for peripheral small-vessel imaging based on clinical ultrasound technology

    NASA Astrophysics Data System (ADS)

    Irisawa, Kaku; Hirota, Kazuhiro; Hashimoto, Atsushi; Murakoshi, Dai; Ishii, Hiroyasu; Tada, Takuji; Wada, Takatsugu; Hayakawa, Toshiro; Azuma, Ryuichi; Otani, Naoki; Itoh, Kenji; Ishihara, Miya

    2016-03-01

    One of the features of photoacoustic (PA) imaging is small-vessel visualization realized without injection of a contrast agent or exposure to X-rays. For carrying out clinical studies in this field, a prototype PA imaging system has been developed. The PA imaging system utilizes a technological platform of FUJIFILM's clinical ultrasound (US) imaging system mounting many-core MPU for enhancing the image quality of US B-mode and US Doppler mode, which can be superposed onto PA images. By evaluating the PA and US Doppler images of the prototyped system, the applicability of the prototype system to small-vessel visualization has been discussed. The light source for PA imaging was on a compact cart of a US unit and emitted 750 nm wavelength laser pulses. The laser light was transferred to illumination optics in a handheld US transducer, which was connected to the US unit. Obtained PA rf data is reconstructed into PA images in the US unit. 3D images were obtained by scanning a mechanical stage, which the transducer is attached to. Several peripheral parts such as fingers, palms and wrists were observed by PA and US Doppler imaging. As for small arteries, US Doppler images were able to visualize the bow-shaped artery in the tip of the finger. Though PA images cannot distinguish arteries and veins, it could visualize smaller vessels and showed good resolution and vascular connectivity, resulting in a complementary image for the US Doppler images. Therefore, superposed images of the PA, US B-mode and US Doppler can visualize from large to small vessels without a contrast agent, which should be a differentiating feature of US/PA combined technology from other clinical vascular imaging modalities.

  8. Technologies for imaging neural activity in large volumes.

    PubMed

    Ji, Na; Freeman, Jeremy; Smith, Spencer L

    2016-08-26

    Neural circuitry has evolved to form distributed networks that act dynamically across large volumes. Conventional microscopy collects data from individual planes and cannot sample circuitry across large volumes at the temporal resolution relevant to neural circuit function and behaviors. Here we review emerging technologies for rapid volume imaging of neural circuitry. We focus on two critical challenges: the inertia of optical systems, which limits image speed, and aberrations, which restrict the image volume. Optical sampling time must be long enough to ensure high-fidelity measurements, but optimized sampling strategies and point-spread function engineering can facilitate rapid volume imaging of neural activity within this constraint. We also discuss new computational strategies for processing and analyzing volume imaging data of increasing size and complexity. Together, optical and computational advances are providing a broader view of neural circuit dynamics and helping elucidate how brain regions work in concert to support behavior. PMID:27571194

  9. Technology in radiology: advances in diagnostic imaging & therapeutics.

    PubMed

    Stern, S M

    1993-01-01

    Nearly 100 years from its birth, radiology continues to grow as though still in adolescence. Although some radiologic technologies have matured more than others, new applications and techniques appear regularly in the literature. Radiology has evolved from purely diagnostic devices to interventional technologies. New contrast agents in MRI, X ray and ultrasound enable physicians to make diagnoses and plan therapies with greater precision than ever before. Techniques are less and less invasive. Advances in computer technology have given supercomputer-like power to high-end nuclear medicine and MRI systems. Imaging systems in most modalities are now designed with upgrades in mind instead of "planned obsolescence." Companies routinely upgrade software and other facets of their products, sometimes at no additional charge to existing customers. Hospitals, radiology groups and imaging centers will face increasing demands to justify what they do according to patient outcomes and management criteria. Did images make the diagnosis or confirm it? Did the images determine optimal treatment strategies or confirm which strategies might be appropriate? Third-party payers, especially the government, will view radiology in those terms. The diagnostic imaging and therapy systems of today require increasingly sophisticated technical support for maintenance and repair. Hospitals, radiology groups and imaging centers will have to determine the most economic and effective ways to guarantee equipment up-time. Borrowing from the automotive industry, some radiology manufacturers have devised transtelephonic software systems to facilitate remote troubleshooting. To ensure their fiscal viability, hospitals continue to acquire new imaging and therapy technologies for competitive and access-to-services reasons.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:10129808

  10. Monitoring and Assuring the Quality of Digital Aerial Data

    NASA Technical Reports Server (NTRS)

    Christopherson, Jon

    2007-01-01

    This viewgraph presentation explains the USGS plan for monitoring and assuring the quality of digital aerial data. The contents include: 1) History of USGS Aerial Imaging Involvement; 2) USGS Research and Results; 3) Outline of USGS Quality Assurance Plan; 4) Other areas of Interest; and 5) Summary

  11. Kite Aerial Photography (KAP) as a Tool for Field Teaching

    ERIC Educational Resources Information Center

    Sander, Lasse

    2014-01-01

    Kite aerial photography (KAP) is proposed as a creative tool for geography field teaching and as a medium to approach the complexity of readily available geodata. The method can be integrated as field experiment, surveying technique or group activity. The acquired aerial images can instantaneously be integrated in geographic information systems…

  12. Digital Images: Capturing America's Past with the Technology of Today

    ERIC Educational Resources Information Center

    Berson, Michael J.

    2004-01-01

    The use of digital photography in the social studies classroom offers students an application of technology that can help them develop the skills necessary to access, analyze, and evaluate all forms of information and communication. Students learn to recognize how images represent diverse perspectives, connect disparate pieces of information, and…

  13. Implementation of Imaging Technology for Recordkeeping at the World Bank.

    ERIC Educational Resources Information Center

    Smith, Clive D.

    1997-01-01

    Describes the evolution of an electronic document management system for the World Bank, including record-keeping components, and how the Pittsburgh requirements for evidence in record keeping were used to evaluate it. Discusses imaging technology for scanning paper records, metadata for retrieval and record keeping, and extending the system to…

  14. Application of Imaging Technology to Chicken Carcasses and Hatching Eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Machine vision technology has been utilized by many sectors of the food and agriculture industry to facilitate sorting, inspection, and field mapping. A specific application, hyperspectral imaging, has been adapted to detect the fertility/early development of hatching eggs and fecal material on chi...

  15. High responsivity CMOS imager pixel implemented in SOI technology

    NASA Technical Reports Server (NTRS)

    Zheng, X.; Wrigley, C.; Yang, G.; Pain, B.

    2000-01-01

    Availability of mature sub-micron CMOS technology and the advent of the new low noise active pixel sensor (APS) concept have enabled the development of low power, miniature, single-chip, CMOS digital imagers in the decade of the 1990's.

  16. Nondestructive imaging technologies for agro-food safety inspection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scientists at the Environmental Microbial and Food Safety Laboratory, ARS, have developed hyperspectral and multispectral line-scan image-based opto-electronic sensing technologies and methodologies for online agro-food quality and safety inspection. Sensing techniques including fluorescence and vi...

  17. Ultrasound elastography: enabling technology for image guided laparoscopic prostatectomy

    NASA Astrophysics Data System (ADS)

    Fleming, Ioana N.; Rivaz, Hassan; Macura, Katarzyna; Su, Li-Ming; Hamper, Ulrike; Lagoda, Gwen A.; Burnett, Arthur L., II; Lotan, Tamara; Taylor, Russell H.; Hager, Gregory D.; Boctor, Emad M.

    2009-02-01

    Radical prostatectomy using the laparoscopic and robot-assisted approach lacks tactile feedback. Without palpation, the surgeon needs an affordable imaging technology which can be easily incorporated into the laparoscopic surgical procedure, allowing for precise real time intraoperative tumor localization that will guide the extent of surgical resection. Ultrasound elastography (USE) is a novel ultrasound imaging technology that can detect differences in tissue density or stiffness based on tissue deformation. USE was evaluated here as an enabling technology for image guided laparoscopic prostatectomy. USE using a 2D Dynamic Programming (DP) algorithm was applied on data from ex vivo human prostate specimens. It proved consistent in identification of lesions; hard and soft, malignant and benign, located in the prostate's central gland or in the peripheral zone. We noticed the 2D DP method was able to generate low-noise elastograms using two frames belonging to the same compression or relaxation part of the palpation excitation, even at compression rates up to 10%. Good preliminary results were validated by pathology findings, and also by in vivo and ex vivo MR imaging. We also evaluated the use of ultrasound elastography for imaging cavernous nerves; here we present data from animal model experiments.

  18. A study on information hiding technology in image encoding

    NASA Astrophysics Data System (ADS)

    Li, Li; Yao, Zhihai; Wu, Haitao; Dai, Qiang

    2005-02-01

    Information hiding is a new technology which integrates with theories and technologies of many academic and technical subjects. For information hiding, digital media are used as the carrier of the information to be hidden. The carrier conceals secret messages by covering the form of their existence. In this paper, we briefly introduce the definition, basic models and basic characters of information hiding. The application and research trends for information hiding system are concerned. The information hiding technology based on digital image processing is closely related to human vision system. When the messages are having been concealed, the human eyes are due to verify the existence of hiding messages. That is, the status of information coverage depends on the human vision system. It is obvious that the characteristics of human vision system is to be taken advantage. The added secrete information in the digital image should have no any effect onto human eyes. In our research work, an implementation of information hiding technology system which is based on digital image encoding is proposed. First by analyzing knowledge of digital image processing and the model of human vision system, we discussed the algorithm of time domain appending method and the algorithm of substitution of lease significant bit. Secondly, we analyzed theory and algorithms of 2-D discrete wavelet transform and frequency domain algorithm based on discrete wavelet transformation. Carefully design software for information hiding based on digital image using Microsoft Visual C++6.0 is implemented. The communication with hiding messages may use any format of images such as BMP. It is proved to be an effective application.

  19. Promise of new imaging technologies for assessing ovarian function

    PubMed Central

    Singh, Jaswant; Adams, Gregg P.; Pierson, Roger A.

    2010-01-01

    Advancements in imaging technologies over the last two decades have ushered a quiet revolution in research approaches to the study of ovarian structure and function. The most significant changes in our understanding of the ovary have resulted from the use of ultrasonography which has enabled sequential analyses in live animals. Computer-assisted image analysis and mathematical modeling of the dynamic changes within the ovary has permitted exciting new avenues of research with readily quantifiable endpoints. Spectral, color-flow and power Doppler imaging now facilitate physiologic interpretations of vascular dynamics over time. Similarly, magnetic resonance imaging (MRI) is emerging as a research tool in ovarian imaging. New technologies, such as three-dimensional ultrasonography and MRI, ultrasound-based biomicroscopy and synchrotron-based techniques each have the potential to enhance our real-time picture of ovarian function to the near-cellular level. Collectively, information available in ultrasonography, MRI, computer-assisted image analysis and mathematical modeling heralds a new era in our understanding of the basic processes of female and male reproduction. PMID:12818654

  20. Aerial application methods for increasing spray deposition on wheat heads

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB) is a major disease of wheat and barley in several small grain production areas in the United States and, as such, the development and evaluation of aerial application technologies that enhance the efficacy of fungicides with aerial spray applications is critical to its man...

  1. Novel medical imaging technologies for disease diagnosis and treatment

    NASA Astrophysics Data System (ADS)

    Olego, Diego

    2009-03-01

    New clinical approaches for disease diagnosis, treatment and monitoring will rely on the ability of simultaneously obtaining anatomical, functional and biological information. Medical imaging technologies in combination with targeted contrast agents play a key role in delivering with ever increasing temporal and spatial resolution structural and functional information about conditions and pathologies in cardiology, oncology and neurology fields among others. This presentation will review the clinical motivations and physics challenges in on-going developments of new medical imaging techniques and the associated contrast agents. Examples to be discussed are: *The enrichment of computer tomography with spectral sensitivity for the diagnosis of vulnerable sclerotic plaque. *Time of flight positron emission tomography for improved resolution in metabolic characterization of pathologies. *Magnetic particle imaging -a novel imaging modality based on in-vivo measurement of the local concentration of iron oxide nano-particles - for blood perfusion measurement with better sensitivity, spatial resolution and 3D real time acquisition. *Focused ultrasound for therapy delivery.

  2. MIST Final Report: Multi-sensor Imaging Science and Technology

    SciTech Connect

    Lind, Michael A.; Medvick, Patricia A.; Foley, Michael G.; Foote, Harlan P.; Heasler, Patrick G.; Thompson, Sandra E.; Nuffer, Lisa L.; Mackey, Patrick S.; Barr, Jonathan L.; Renholds, Andrea S.

    2008-03-15

    The Multi-sensor Imaging Science and Technology (MIST) program was undertaken to advance exploitation tools for Long Wavelength Infra Red (LWIR) hyper-spectral imaging (HSI) analysis as applied to the discovery and quantification of nuclear proliferation signatures. The program focused on mitigating LWIR image background clutter to ease the analyst burden and enable a) faster more accurate analysis of large volumes of high clutter data, b) greater detection sensitivity of nuclear proliferation signatures (primarily released gasses) , and c) quantify confidence estimates of the signature materials detected. To this end the program investigated fundamental limits and logical modifications of the more traditional statistical discovery and analysis tools applied to hyperspectral imaging and other disciplines, developed and tested new software incorporating advanced mathematical tools and physics based analysis, and demonstrated the strength and weaknesses of the new codes on relevant hyperspectral data sets from various campaigns. This final report describes the content of the program and the outlines the significant results.

  3. Use of unmanned aerial vehicles (UAV) for urban tree inventories

    NASA Astrophysics Data System (ADS)

    Ritter, Brian A.

    In contrast to standard aerial imagery, unmanned aerial systems (UAS) utilize recent technological advances to provide an affordable alternative for imagery acquisition. Increased value can be realized through clarity and detail providing higher resolution (2-5 cm) over traditional products. Many natural resource disciplines such as urban forestry will benefit from UAS. Tree inventories for risk assessment, biodiversity, planning, and design can be efficiently achieved with the UAS. Recent advances in photogrammetric processing have proved automated methods for three dimensional rendering of aerial imagery. Point clouds can be generated from images providing additional benefits. Association of spatial locational information within the point cloud can be used to produce elevation models i.e. digital elevation, digital terrain and digital surface. Taking advantage of this point cloud data, additional information such as tree heights can be obtained. Several software applications have been developed for LiDAR data which can be adapted to utilize UAS point clouds. This study examines solutions to provide tree inventory and heights from UAS imagery. Imagery taken with a micro-UAS was processed to produce a seamless orthorectified image. This image provided an accurate way to obtain a tree inventory within the study boundary. Utilizing several methods, tree height models were developed with variations in spatial accuracy. Model parameters were modified to offset spatial inconsistencies providing statistical equality of means. Statistical results (p = 0.756) with a level of significance (α = 0.01) between measured and modeled tree height means resulted with 82% of tree species obtaining accurate tree heights. Within this study, the UAS has proven to be an efficient tool for urban forestry providing a cost effective and reliable system to obtain remotely sensed data.

  4. DIAGNOcam--a Near Infrared Digital Imaging Transillumination (NIDIT) technology.

    PubMed

    Abdelaziz, Marwa; Krejci, Ivo

    2015-01-01

    In developed countries, clinical manifestation of carious lesions is changing: instead of dentists being confronted with wide-open cavities, more and more hidden caries are seen. For a long time, the focus of the research community was on finding a method for the detection of carious lesions without the need for radiographs. The research on Digital Imaging Fiber-Optic Transillumination (DIFOTI) has been an active domain. The scope of the present article is to describe a novel technology for caries diagnostics based on Near Infrared Digital Imaging Transillumination (NIDIT), and to give first examples of its clinical indications. In addition, the coupling of NIDIT with a head-mounted retinal image display (RID) to improve clinical workflow is presented. The novel NIDIT technology was shown to be useful as a diagnostic tool in several indications, including mainly the detection of proximal caries and, less importantly, for occlusal caries, fissures, and secondary decay around amalgam and composite restorations. The coupling of this technology with a head-mounted retinal image system allows for its very efficient implementation into daily practice. PMID:25625132

  5. Low-power highly miniaturized image sensor technology

    NASA Astrophysics Data System (ADS)

    Mansoorian, Karmak; Fossum, Eric R.

    1997-01-01

    A second generation image sensor technology has been developed at the NASA Jet Propulsion Laboratory with performance comparable to charge-coupled device (CCDs). This sensor is implemented using the industry-standard complementary metal-oxide semiconductor (CMOS) technology employed for nearly all microprocessors and memory chips and thus takes advantage of the rapid worldwide development of this technology. The CMOS active pixel sensor (APS) maintains the performance of CCDs regarding noise and quantum efficiency and offers unique advantages for ultra low power focal plane operation and integration of supporting electronics such as timing, control, clock, signal chains and analog-to-digital converters. This paper describes the technology for implementing a low power camera-on-a-chip.

  6. [Identification of green tea brand based on hyperspectra imaging technology].

    PubMed

    Zhang, Hai-Liang; Liu, Xiao-Li; Zhu, Feng-Le; He, Yong

    2014-05-01

    Hyperspectral imaging technology was developed to identify different brand famous green tea based on PCA information and image information fusion. First 512 spectral images of six brands of famous green tea in the 380 approximately 1 023 nm wavelength range were collected and principal component analysis (PCA) was performed with the goal of selecting two characteristic bands (545 and 611 nm) that could potentially be used for classification system. Then, 12 gray level co-occurrence matrix (GLCM) features (i. e., mean, covariance, homogeneity, energy, contrast, correlation, entropy, inverse gap, contrast, difference from the second-order and autocorrelation) based on the statistical moment were extracted from each characteristic band image. Finally, integration of the 12 texture features and three PCA spectral characteristics for each green tea sample were extracted as the input of LS-SVM. Experimental results showed that discriminating rate was 100% in the prediction set. The receiver operating characteristic curve (ROC) assessment methods were used to evaluate the LS-SVM classification algorithm. Overall results sufficiently demonstrate that hyperspectral imaging technology can be used to perform classification of green tea. PMID:25095441

  7. Emerging Endoscopic Imaging Technologies for Bladder Cancer Detection

    PubMed Central

    Lopez, Aristeo; Liao, Joseph C.

    2014-01-01

    Modern urologic endoscopy is the result of continuous innovations since early 19th century. White light cystoscopy is the primary strategy for identification, resection, and local staging of bladder cancer. While highly effective, white light cystoscopy has several well-recognized shortcomings. Recent advances in optical imaging technologies and device miniaturization hold the potential to improve bladder cancer diagnosis and resection. Photodynamic diagnosis and narrow band imaging are the first to enter the clinical arena. Confocal laser endomicroscopy, optical coherence tomography, Raman spectroscopy, UV autofluorescence, and others have shown promising clinical and pre-clinical feasibility. We review their mechanisms of action, highlight their respective advantages, and propose future directions. PMID:24658832

  8. ENVIRONMENTAL APPLICATION OF LOW ALTITUDE AERIAL PHOTOGRAPHY

    EPA Science Inventory

    The most practical avenue for development of these goals is to continue to use the LAAPS system at field sites that require aerial imaging. For the sake of convenience, I believe that the local field sites can provide a convenient location to develop new applications and test enh...

  9. Aerial Scene Recognition using Efficient Sparse Representation

    SciTech Connect

    Cheriyadat, Anil M

    2012-01-01

    Advanced scene recognition systems for processing large volumes of high-resolution aerial image data are in great demand today. However, automated scene recognition remains a challenging problem. Efficient encoding and representation of spatial and structural patterns in the imagery are key in developing automated scene recognition algorithms. We describe an image representation approach that uses simple and computationally efficient sparse code computation to generate accurate features capable of producing excellent classification performance using linear SVM kernels. Our method exploits unlabeled low-level image feature measurements to learn a set of basis vectors. We project the low-level features onto the basis vectors and use simple soft threshold activation function to derive the sparse features. The proposed technique generates sparse features at a significantly lower computational cost than other methods~\\cite{Yang10, newsam11}, yet it produces comparable or better classification accuracy. We apply our technique to high-resolution aerial image datasets to quantify the aerial scene classification performance. We demonstrate that the dense feature extraction and representation methods are highly effective for automatic large-facility detection on wide area high-resolution aerial imagery.

  10. Off-the-Wall Project Brings Aerial Mapping down to Earth

    ERIC Educational Resources Information Center

    Davidhazy, Andrew

    2008-01-01

    The technology of aerial photography, photogrametry, has widespread applications in mapping and aerial surveying. A multi-billion-dollar industry, aerial surveying and mapping is "big business" in both civilian and military sectors. While the industry has grown increasingly automated, employment opportunities still exist for people with a basic…

  11. Ground-based spectral reflectance measurements for evaluating the efficacy of aerially-applied glyphosate treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerial application of herbicides is a common tool in agricultural field management. The objective of this study was to evaluate the efficacy of glyphosate herbicide applied aerially with both conventional and emerging aerial nozzle technologies. A Texas A&M University Plantation weed field was set...

  12. Ground-based spectral reflectance measurements for efficacy evaluation of aerially applied glyphosate treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerial application of herbicides is a common tool in agricultural field management. The objective of this study was to evaluate the efficacy of glyphosate herbicide applied aerially with both conventional and emerging aerial nozzle technologies. A Texas A&M University Plantation weed field was set u...

  13. Unmanned Aerial Systems and Spectroscopy for Remote Sensing Applications in Archaeology

    NASA Astrophysics Data System (ADS)

    Themistocleous, K.; Agapiou, A.; Cuca, B.; Hadjimitsis, D. G.

    2015-04-01

    Remote sensing has open up new dimensions in archaeological research. Although there has been significant progress in increasing the resolution of space/aerial sensors and image processing, the detection of the crop (and soil marks) formations, which relate to buried archaeological remains, are difficult to detect since these marks may not be visible in the images if observed over different period or at different spatial/spectral resolution. In order to support the improvement of earth observation remote sensing technologies specifically targeting archaeological research, a better understanding of the crop/soil marks formation needs to be studied in detail. In this paper the contribution of both Unmanned Aerial Systems as well ground spectroradiometers is discussed in a variety of examples applied in the eastern Mediterranean region (Cyprus and Greece) as well in Central Europe (Hungary). In- situ spectroradiometric campaigns can be applied for the removal of atmospheric impact to simultaneous satellite overpass images. In addition, as shown in this paper, the systematic collection of ground truth data prior to the satellite/aerial acquisition can be used to detect the optimum temporal and spectral resolution for the detection of stress vegetation related to buried archaeological remains. Moreover, phenological studies of the crops from the area of interest can be simulated to the potential sensors based on their Relative Response Filters and therefore prepare better the satellite-aerial campaigns. Ground data and the use of Unmanned Aerial Systems (UAS) can provide an increased insight for studying the formation of crop and soil marks. New algorithms such as vegetation indices and linear orthogonal equations for the enhancement of crop marks can be developed based on the specific spectral characteristics of the area. As well, UAS can be used for remote sensing applications in order to document, survey and model cultural heritage and archaeological sites.

  14. Camouflage target reconnaissance based on hyperspectral imaging technology

    NASA Astrophysics Data System (ADS)

    Hua, Wenshen; Guo, Tong; Liu, Xun

    2015-08-01

    Efficient camouflaged target reconnaissance technology makes great influence on modern warfare. Hyperspectral images can provide large spectral range and high spectral resolution, which are invaluable in discriminating between camouflaged targets and backgrounds. Hyperspectral target detection and classification technology are utilized to achieve single class and multi-class camouflaged targets reconnaissance respectively. Constrained energy minimization (CEM), a widely used algorithm in hyperspectral target detection, is employed to achieve one class camouflage target reconnaissance. Then, support vector machine (SVM), a classification method, is proposed to achieve multi-class camouflage target reconnaissance. Experiments have been conducted to demonstrate the efficiency of the proposed method.

  15. Technical development for automatic aerial triangulation of high resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Xiong, Zhen

    Because they contain abundant spatial information, high resolution satellite images are widely used in a variety of applications. Aerial triangulation is one of the most important technologies to obtain accurate spatial information from those images. Thus aerial triangulation is always an important research topic in the photogrammetric community and automatic aerial triangulation is a common goal of such PhD research activities. To date, many techniques have been developed to improve the efficiency and accuracy of aerial triangulation. However, for processing high resolution satellite images, automatic aerial triangulation still faces many challenges, including tie point extraction and sensor model refinement. The main purpose of this research is to develop and test new tie point extraction, sensor model refinement and bundle block adjustment methods for improving the automation and accuracy of aerial triangulation. The accuracy of tie points directly determines the success of aerial triangulation. Generally both the corner point and the gravity center point of a rectangular or circular object can be used as tie points, but the resulting outcomes can vary greatly in aerial triangulation. However, this difference has not drawn much attention from researchers yet. Thus, most of the tie point extraction algorithms only extract various corners. In order to quantify the difference between corner and center tie points for image registration, this research analyzed the error introduced by using corner or center tie points in different cases. Through quantitative analysis and experiments, the author reached the conclusion that the 'center' points, when used as tie points, can improve the accuracy of image registration by at least 40 percent over that for the 'corner' points. Extracting a large number of tie points is the prerequisite of automatic aerial triangulation. Interest point matching can extract tie points automatically. To date numerous interest point matching

  16. Glaucoma Diagnosis and Monitoring Using Advanced Imaging Technologies

    PubMed Central

    Sehi, Mitra; Iverson, Shawn M

    2014-01-01

    Advanced ocular imaging technologies facilitate objective and reproducible quantification of change in glaucoma but at the same time, impose new challenges on scientists and clinicians for separating true structural change from imaging noise. This review examines time-domain and spectral-domain optical coherence tomography, confocal scanning laser ophthalmoscopy and scanning laser polarimetry technologies and discusses the diagnostic accuracy and the ability of each technique for evaluation of glaucomatous progression. A broad review of the current literature reveals that objective assessment of retinal nerve fiber layer, ganglion cell complex and optic nerve head topography may improve glaucoma monitoring when used as a complementary tool in conjunction with the clinical judgment of an expert. PMID:24470807

  17. Intraoperative Imaging-Guided Cancer Surgery: From Current Fluorescence Molecular Imaging Methods to Future Multi-Modality Imaging Technology

    PubMed Central

    Chi, Chongwei; Du, Yang; Ye, Jinzuo; Kou, Deqiang; Qiu, Jingdan; Wang, Jiandong; Tian, Jie; Chen, Xiaoyuan

    2014-01-01

    Cancer is a major threat to human health. Diagnosis and treatment using precision medicine is expected to be an effective method for preventing the initiation and progression of cancer. Although anatomical and functional imaging techniques such as radiography, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have played an important role for accurate preoperative diagnostics, for the most part these techniques cannot be applied intraoperatively. Optical molecular imaging is a promising technique that provides a high degree of sensitivity and specificity in tumor margin detection. Furthermore, existing clinical applications have proven that optical molecular imaging is a powerful intraoperative tool for guiding surgeons performing precision procedures, thus enabling radical resection and improved survival rates. However, detection depth limitation exists in optical molecular imaging methods and further breakthroughs from optical to multi-modality intraoperative imaging methods are needed to develop more extensive and comprehensive intraoperative applications. Here, we review the current intraoperative optical molecular imaging technologies, focusing on contrast agents and surgical navigation systems, and then discuss the future prospects of multi-modality imaging technology for intraoperative imaging-guided cancer surgery. PMID:25250092

  18. HD Photo: a new image coding technology for digital photography

    NASA Astrophysics Data System (ADS)

    Srinivasan, Sridhar; Tu, Chengjie; Regunathan, Shankar L.; Sullivan, Gary J.

    2007-09-01

    This paper introduces the HD Photo coding technology developed by Microsoft Corporation. The storage format for this technology is now under consideration in the ITU-T/ISO/IEC JPEG committee as a candidate for standardization under the name JPEG XR. The technology was developed to address end-to-end digital imaging application requirements, particularly including the needs of digital photography. HD Photo includes features such as good compression capability, high dynamic range support, high image quality capability, lossless coding support, full-format 4:4:4 color sampling, simple thumbnail extraction, embedded bitstream scalability of resolution and fidelity, and degradation-free compressed domain support of key manipulations such as cropping, flipping and rotation. HD Photo has been designed to optimize image quality and compression efficiency while also enabling low-complexity encoding and decoding implementations. To ensure low complexity for implementations, the design features have been incorporated in a way that not only minimizes the computational requirements of the individual components (including consideration of such aspects as memory footprint, cache effects, and parallelization opportunities) but results in a self-consistent design that maximizes the commonality of functional processing components.

  19. Turning on and tuning out: new technology, image, analysis.

    PubMed

    Hauke, Christopher

    2009-02-01

    There was a time when the answer-phone was thought too alienating for patients; now there is the question of whether therapists feel OK being paid by electronic bank transfer. Since the start of modern psychotherapy, new communications technology-the telephone, radio, TV, and now electronic messaging-have become universally accessible. The question arises: do email, texts and the mobile (cell-phone) enhance and enable communication or do they merely offer the fantasy of doing so? Equally, can computer simulations and software diagnostic and treatment programmes offer anything to mental health practice? Furthermore, since the mid-nineteenth century, the technology of visual communication, in particular, paralleled the development of psychodynamic theory and practice. Nowadays, photographic images have become so prevalent and available that clients can bring pictures in many forms. They also bring movies, movie-scenes and characters, either in description or to show, and these may constitute the images and material of analysis in some cases just as dreams always have done. How are we to respond to these unconventional communications of our clients' emotional lives? Are they legitimate expressions of their inner worlds? This paper discusses the influence of the new technologies of communication with a special focus on the place of film themes and images in psychotherapy and analytic sessions. PMID:19161515

  20. 1. NORTHWEST OBLIQUE AERIAL VIEW OF FORT DELAWARE AND PEA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. NORTHWEST OBLIQUE AERIAL VIEW OF FORT DELAWARE AND PEA PATCH ISLAND. REMAINS OF SEA WALL VISIBLE IN FOREGROUND AND RIGHT OF IMAGE. - Fort Delaware, Sea Wall, Pea Patch Island, Delaware City, New Castle County, DE

  1. NORTHWEST OBLIQUE AERIAL VIEW OF FORT DELAWARE AND PEA PATCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTHWEST OBLIQUE AERIAL VIEW OF FORT DELAWARE AND PEA PATCH ISLAND. REMAINS OF SEA WALL VISIBLE IN FOREGROUND AND RIGHT OF IMAGE - Fort Delaware, Pea Patch Island, Delaware City, New Castle County, DE

  2. Feature detection in satellite images using neural network technology

    NASA Technical Reports Server (NTRS)

    Augusteijn, Marijke F.; Dimalanta, Arturo S.

    1992-01-01

    A feasibility study of automated classification of satellite images is described. Satellite images were characterized by the textures they contain. In particular, the detection of cloud textures was investigated. The method of second-order gray level statistics, using co-occurrence matrices, was applied to extract feature vectors from image segments. Neural network technology was employed to classify these feature vectors. The cascade-correlation architecture was successfully used as a classifier. The use of a Kohonen network was also investigated but this architecture could not reliably classify the feature vectors due to the complicated structure of the classification problem. The best results were obtained when data from different spectral bands were fused.

  3. Study on the Methods of Detecting Cucumber Downy Mildew Using Hyperspectral Imaging Technology

    NASA Astrophysics Data System (ADS)

    Tian, Youwen; Zhang, Lin

    Hyperspectral imaging technology, which can integrate the advantages of spectral detection and image detection, meets the need of detecting the cucumber diseases fast and nondestructively. In this paper, hyperspectral imaging technology is adopted to detect the cucumber downy mildew fast and nondestructively. Firstly, hyperspectral images of cucumber leaves infected downy mildew are acquired by the hyperspectral image acquisition system. And optimum wavelengths are collected by the principal component analysis to get the featured images. Then the image fusion technology is adopted to combine collected images with the featured images to form new images by pixel-level image fusion. Finally, the methods of the image enhancement, binarization, corrosion and dilatation treatments are carried out, so the cucumber downy mildew is detected. The result shows that the accuracy rate of the algorithm for detecting cucumber disease can reach nearly 90%. Studies have shown that hyperspectral imaging technology can be used to detect cucumber downy mildew.

  4. Use of Digital Image Technology to 'Clearly' Depict Global Change

    NASA Astrophysics Data System (ADS)

    Molnia, B. F.; Carbo, C. L.

    2014-12-01

    Earth is dynamic and beautiful. Understanding why, when, how, and how fast its surface changes yields information and serves as a source of inspiration. The artistic use of geoscience information can inform the public about what is happening to their planet in a non-confrontational and apolitical way. While individual images may clearly depict a landscape, photographic comparisons are necessary to clearly capture and display annual, decadal, or century-scale impacts of climate and environmental change on Earth's landscapes. After years of effort to artistically communicate geoscience concepts with unenhanced individual photographs or pairs of images, the authors have partnered to maximize this process by using digital image enhancement technology. This is done, not to manipulate the inherent artistic content or information content of the photographs, but to insure that the comparative photo pairs produced are geometrically correct and unambiguous. For comparative photography, information-rich historical photographs are selected from archives, websites, and other sources. After determining the geographic location from which the historical photograph was made, the original site is identified and eventually revisited. There, the historical photos field of view is again photographed, ideally from the original location. From nearly 250 locations revisited, about 175 pairs have been produced. Every effort is made to reoccupy the original historical site. However, vegetation growth, visibility reduction, and co-seismic level change may make this impossible. Also, inherent differences in lens optics, camera construction, and image format may result in differences in the geometry of the new photograph when compared to the old. Upon selection, historical photos are cleaned, contrast stretched, brightness adjusted, and sharpened to maximize site identification and information extraction. To facilitate matching historical and new images, digital files of each are overlain in

  5. Aerial Photography Summary Record System

    USGS Publications Warehouse

    U.S. Geological Survey

    1998-01-01

    The Aerial Photography Summary Record System (APSRS) describes aerial photography projects that meet specified criteria over a given geographic area of the United States and its territories. Aerial photographs are an important tool in cartography and a number of other professions. Land use planners, real estate developers, lawyers, environmental specialists, and many other professionals rely on detailed and timely aerial photographs. Until 1975, there was no systematic approach to locate an aerial photograph, or series of photographs, quickly and easily. In that year, the U.S. Geological Survey (USGS) inaugurated the APSRS, which has become a standard reference for users of aerial photographs.

  6. Technology and human errors in image-guided surgeries

    NASA Astrophysics Data System (ADS)

    Jiang, Zhaowei; Miao, Song; Zamorano, Lucia J.; Li, Qinghang; Gong, JianXing; Diaz, Fernando

    1998-06-01

    Using image guidance for stereotactic surgery has been widely adopted in neurosurgery, orthopedic surgery and other surgery operations. Careful, precise and robust implementation of image-guidance can offer surgeon accurate intra-operative information that traditional techniques can not reach. Weak design, careless utilization, and dilemma in quality assurance protocol may result in severe scenarios. It is because that introducing image guidance into the operating room involves high precise technologies, delicate instruments and sophisticated processes. These can offer precision as well as space for human errors. A method based on the 'failure modes and effects analysis' is introduced to systematically study human errors in the image-guided surgery field. The paper presented the fundamental steps and architectures of the method. For better understanding of the method, a simple example is also provided. Analyzing human errors with the 'failure mode and effects analysis' benefits the development life cycle of the image-guided surgery system. It also helps for designing the clinical quality assurance process and the training courses for surgeons.

  7. Overall design technology of hyperspectral imaging system based on AOTF

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Ding, Na; Zheng, Yawei; Zhao, Yujie; Gao, Fei; Li, Junna; Wang, Jilong; Gao, Meng; Wu, Jun

    2014-11-01

    An acousto-optic tunable filter (AOTF) is an acousto-optic modulator. In this paper, the characteristics and overall design method of AOTF hyperspectral imaging system are proposed, which operates in visible or near infrared waveband (0.4-1.0um) and middle wave or long wave (3-5um and 8-12um). Compared with conventional dispersion element, the AOTF hyperspectral imaging system has a larger clear aperture because of the special characteristic of beam separation mode. In particularly, if the non-collinear design mode is used, the AOTF will have a larger diffraction aperture angle and is more suitable for the application in spectral imaging domain. The AOTF hyperspectral imaging spectrometer that operates in visible/near infrared waveband was developed by the non-collinear TeO2 crystal (8mm×8mm). All lights that are through TeO2 crystal in whole field of view (FOV angle is 5 degree) forms an imagines onto the staring focal plane array by Bragg diffraction. The diffraction wavelength of AOTF can be adjusted by the radio frequency signal. The three-dimensional data cube is composed of two-dimension of object space and wavelength in this way, and the graph and spectral are synthesized and implemented. The AOTF hyperspectral imaging spectrometer operating in visible/near infrared waveband is analyzed, and the detailed analysis data is also presented. The AOTF hyperspectral imaging test is studied and developed, and the analysis of data and the next developing advice is given. We also analyze the method about selection of material and technological design in middle wave/long wave infrared waveband of AOTF hyperspectral imaging system.

  8. Analysis of vegetation indices derived from aerial multispectral and ground hyperspectral data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerial multispectral images are a good source of crop, soil, and ground coverage information. Spectral reflectance indices provide a useful tool for monitoring crop growing status. A series of aerial images were acquired by an airborne MS4100 multispectral imaging system on the cotton and soybean f...

  9. [Whole slide imaging technology: from digitization to online applications].

    PubMed

    Ameisen, David; Le Naour, Gilles; Daniel, Christel

    2012-11-01

    As e-health becomes essential to modern care, whole slide images (virtual slides) are now an important clinical, teaching and research tool in pathology. Virtual microscopy consists of digitizing a glass slide by acquiring hundreds of tiles of regions of interest at different zoom levels and assembling them into a structured file. This gigapixel image can then be remotely viewed over a terminal, exactly the way pathologists use a microscope. In this article, we will first describe the key elements of this technology, from the acquisition, using a scanner or a motorized microscope, to the broadcasting of virtual slides through a local or distant viewer over an intranet or Internet connection. As virtual slides are now commonly used in virtual classrooms, clinical data and research databases, we will highlight the main issues regarding its uses in modern pathology. Emphasis will be made on quality assurance policies, standardization and scaling. PMID:23171902

  10. Autonomous vision networking: miniature wireless sensor networks with imaging technology

    NASA Astrophysics Data System (ADS)

    Messinger, Gioia; Goldberg, Giora

    2006-09-01

    The recent emergence of integrated PicoRadio technology, the rise of low power, low cost, System-On-Chip (SOC) CMOS imagers, coupled with the fast evolution of networking protocols and digital signal processing (DSP), created a unique opportunity to achieve the goal of deploying large-scale, low cost, intelligent, ultra-low power distributed wireless sensor networks for the visualization of the environment. Of all sensors, vision is the most desired, but its applications in distributed sensor networks have been elusive so far. Not any more. The practicality and viability of ultra-low power vision networking has been proven and its applications are countless, from security, and chemical analysis to industrial monitoring, asset tracking and visual recognition, vision networking represents a truly disruptive technology applicable to many industries. The presentation discusses some of the critical components and technologies necessary to make these networks and products affordable and ubiquitous - specifically PicoRadios, CMOS imagers, imaging DSP, networking and overall wireless sensor network (WSN) system concepts. The paradigm shift, from large, centralized and expensive sensor platforms, to small, low cost, distributed, sensor networks, is possible due to the emergence and convergence of a few innovative technologies. Avaak has developed a vision network that is aided by other sensors such as motion, acoustic and magnetic, and plans to deploy it for use in military and commercial applications. In comparison to other sensors, imagers produce large data files that require pre-processing and a certain level of compression before these are transmitted to a network server, in order to minimize the load on the network. Some of the most innovative chemical detectors currently in development are based on sensors that change color or pattern in the presence of the desired analytes. These changes are easily recorded and analyzed by a CMOS imager and an on-board DSP processor

  11. Small molecule MALDI MS imaging: Current technologies and future challenges.

    PubMed

    Trim, Paul J; Snel, Marten F

    2016-07-15

    Imaging of specific small molecules is particularly challenging using conventional optical microscopy techniques. This has led to the development of alternative imaging modalities, including mass spectrometry (MS)-based methods. This review aims to provide an overview of the technologies, methods and future directions of laser-based mass spectrometry imaging (MSI) of small molecules. In particular it will focus on matrix-assisted laser desorption/ionization (MALDI) as the ion source, although other laser mass spectrometry methods will also be discussed to provide context, both historical and current. Small molecule MALDI MSI has been performed on a wide variety of instrument platforms: these are reviewed, as are the laser systems that are commonly used in this technique. Instrumentation and methodology cross over in the areas of achieving optimal spatial resolution, a key parameter in obtaining meaningful data. Also discussed is sample preparation, which is pivotal in maintaining sample integrity, providing a true reflection of the distribution of analytes, spatial resolution and sensitivity. Like all developing analytical techniques there are challenges to be overcome. Two of these are dealing with sample complexity and obtaining quantitative information from an imaging experiment. Both of these topics are addressed. Finally, novel experiments including non-MALDI laser ionization techniques are highlighted and a future perspective on the role of MALDI MSI in the small molecule arena is provided. PMID:26804564

  12. Adaptive optics scanning laser ophthalmoscope imaging: technology update

    PubMed Central

    Merino, David; Loza-Alvarez, Pablo

    2016-01-01

    Adaptive optics (AO) retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it. PMID:27175057

  13. Adaptive optics scanning laser ophthalmoscope imaging: technology update.

    PubMed

    Merino, David; Loza-Alvarez, Pablo

    2016-01-01

    Adaptive optics (AO) retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it. PMID:27175057

  14. Imaging Multimodalities for Dissecting Alzheimer's Disease: Advanced Technologies of Positron Emission Tomography and Fluorescence Imaging

    PubMed Central

    Shimojo, Masafumi; Higuchi, Makoto; Suhara, Tetsuya; Sahara, Naruhiko

    2015-01-01

    The rapid progress in advanced imaging technologies has expanded our toolbox for monitoring a variety of biological aspects in living subjects including human. In vivo radiological imaging using small chemical tracers, such as with positron emission tomography, represents an especially vital breakthrough in the efforts to improve our understanding of the complicated cascade of neurodegenerative disorders including Alzheimer's disease (AD), and it has provided the most reliable visible biomarkers for enabling clinical diagnosis. At the same time, in combination with genetically modified animal model systems, the most recent innovation of fluorescence imaging is helping establish diverse applications in basic neuroscience research, from single-molecule analysis to animal behavior manipulation, suggesting the potential utility of fluorescence technology for dissecting the detailed molecular-based consequence of AD pathophysiology. In this review, our primary focus is on a current update of PET radiotracers and fluorescence indicators beneficial for understanding the AD cascade, and discussion of the utility and pitfalls of those imaging modalities for future translational research applications. We will also highlight current cutting-edge genetic approaches and discuss how to integrate individual technologies for further potential innovations. PMID:26733795

  15. Application of novel hyperspectral imaging technologies in combat casualty care

    NASA Astrophysics Data System (ADS)

    Cancio, Leopoldo C.

    2010-02-01

    Novel hyperspectral imaging (HSI) methods may play several important roles in Combat Casualty Care: (1) HSI of the skin may provide spatial data on hemoglobin saturation of oxygen, as a "window" into perfusion during shock. (2) HSI or similar technology could be incorporated into closed-loop, feedback-controlled resuscitation systems. (3) HSI may provide information about tissue viability and/or wound infection. (4) HSI in the near-infrared range may provide information on the tissue water content--greatly affected, e.g., by fluid resuscitation. Thus, further refinements in the speed and size of HSI systems are sought to make these capabilities available on the battlefield.

  16. Predicting the Incidence of Human Cataract through Retinal Imaging Technology

    PubMed Central

    Horng, Chi-Ting; Sun, Han-Ying; Liu, Hsiang-Jui; Lue, Jiann-Hwa; Yeh, Shang-Min

    2015-01-01

    With the progress of science, technology and medicine, the proportion of elderly people in society has gradually increased over the years. Thus, the medical care and health issues of this population have drawn increasing attention. In particular, among the common medical problems of the elderly, the occurrence of cataracts has been widely observed. In this study, we developed retinal imaging technology by establishing a human eye module with ray tracing. Periodic hole arrays with different degrees were constructed on the anterior surface of the lens to emulate the eyesight decline caused by cataracts. Then, we successfully predicted the incidence of cataracts among people with myopia ranging from −3.0 D to −9.0 D. Results show that periodic hole arrays cause severe eyesight decline when they are centralized in the visual center. However, the wide distribution of these arrays on the anterior surface of the lens would not significantly affect one’s eyesight. PMID:26610533

  17. Predicting the Incidence of Human Cataract through Retinal Imaging Technology.

    PubMed

    Horng, Chi-Ting; Sun, Han-Ying; Liu, Hsiang-Jui; Lue, Jiann-Hwa; Yeh, Shang-Min

    2015-11-01

    With the progress of science, technology and medicine, the proportion of elderly people in society has gradually increased over the years. Thus, the medical care and health issues of this population have drawn increasing attention. In particular, among the common medical problems of the elderly, the occurrence of cataracts has been widely observed. In this study, we developed retinal imaging technology by establishing a human eye module with ray tracing. Periodic hole arrays with different degrees were constructed on the anterior surface of the lens to emulate the eyesight decline caused by cataracts. Then, we successfully predicted the incidence of cataracts among people with myopia ranging from -3.0 D to -9.0 D. Results show that periodic hole arrays cause severe eyesight decline when they are centralized in the visual center. However, the wide distribution of these arrays on the anterior surface of the lens would not significantly affect one's eyesight. PMID:26610533

  18. Unmanned Aerial Vehicle Systems for Disaster Relief: Tornado Alley

    NASA Technical Reports Server (NTRS)

    DeBusk, Wesley M.

    2009-01-01

    Unmanned aerial vehicle systems are currently in limited use for public service missions worldwide. Development of civil unmanned technology in the United States currently lags behind military unmanned technology development in part because of unresolved regulatory and technological issues. Civil unmanned aerial vehicle systems have potential to augment disaster relief and emergency response efforts. Optimal design of aerial systems for such applications will lead to unmanned vehicles which provide maximum potentiality for relief and emergency response while accounting for public safety concerns and regulatory requirements. A case study is presented that demonstrates application of a civil unmanned system to a disaster relief mission with the intent on saving lives. The concept utilizes unmanned aircraft to obtain advanced warning and damage assessments for tornados and severe thunderstorms. Overview of a tornado watch mission architecture as well as commentary on risk, cost, need for, and design tradeoffs for unmanned aerial systems are provided.

  19. Aerial photographic reproductions

    USGS Publications Warehouse

    U.S. Geological Survey

    1971-01-01

    Geological Survey vertical aerial photography is obtained primarily for topographic and geologic mapping. Reproductions from this photography are usually satisfactory for general use. Because reproductions are not stocked, but are custom processed for each order, they cannot be returned for credit or refund.

  20. Aerial of the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Even in this aerial view at KSC, the Vehicle Assembly Building is imposing. In front of it is the Launch Control Center. In the background is the Rotation/Processing Facility, next to the Banana Creek. In the foreground is the Saturn Causeway that leads to Launch Pads 39A and 39B.

  1. Aerial Perspective Artistry

    ERIC Educational Resources Information Center

    Wolfe, Linda

    2010-01-01

    This article presents a lesson centering on aerial perspective artistry of students and offers suggestions on how art teachers should carry this project out. This project serves to develop students' visual perception by studying reproductions by famous artists. This lesson allows one to imagine being lured into a landscape capable of captivating…

  2. Millimeter-Wave Imaging Technology Advancements for Plasma Diagnostics Applications

    NASA Astrophysics Data System (ADS)

    Kong, Xiangyu

    To realize fusion plant, the very first step is to understand the fundamental physics of materials under fusion conditions, i.e. to understand fusion plasmas. Our research group, Plasma Diagnostics Group, focuses on developing advanced tools for physicists to extract as much information as possible from fusion plasmas at millions degrees. The Electron Cyclotron Emission Imaging (ECEI) diagnostics is a very useful tool invented in this group to study fusion plasma electron temperature and it fluctuations. This dissertation presents millimeter wave imaging technology advances recently developed in this group to improve the ECEI system. New technologies made it more powerful to image and visualize magneto-hydrodynamics (MHD) activities and micro-turbulence in fusion plasmas. Topics of particular emphasis start from development of miniaturized elliptical substrate lens array. This novel substrate lens array replaces the previous generation substrate lens, hyper-hemispherical substrate lens, in terms of geometry. From the optical performance perspective, this substitution not only significantly simplifies the optical system with improved optical coupling, but also enhances the RF/LO coupling efficiency. By the benefit of the mini lens focusing properties, a wideband dual-dipole antenna array is carefully designed and developed. The new antenna array is optimized simultaneously for receiving both RF and LO, with sharp radiation patterns, low side-lobe levels, and less crosstalk between adjacent antennas. In addition, a high frequency antenna is also developed, which extends the frequency limit from 145 GHz to 220 GHz. This type of antenna will be used on high field operation tokamaks with toroidal fields in excess of 3 Tesla. Another important technology advance is so-called extended bandwidth double down-conversion electronics. This new electronics extends the instantaneous IF coverage from 2 to 9.2 GHz to 2 to 16.4 GHz. From the plasma point of view, it means that the

  3. Image-Based Vehicle Identification Technology for Homeland Security Applications

    SciTech Connect

    Clark, G A

    2002-10-08

    The threat of terrorist attacks against US civilian populations is a very real, near-term problem that must be addressed, especially in response to possible use of Weapons of Mass Destruction. Several programs are now being funded by the US Government to put into place means by which the effects of a terrorist attack could be averted or limited through the use of sensors and monitoring technology. Specialized systems that detect certain threat materials, while effective within certain performance limits, cannot generally be used efficiently to track a mobile threat such as a vehicle over a large urban area. The key elements of an effective system are an image feature-based vehicle identification technique and a networked sensor system. We have briefly examined current uses of image and feature recognition techniques to the urban tracking problem and set forth the outlines of a proposal for application of LLNL technologies to this critical problem. The primary contributions of the proposed work lie in filling important needs not addressed by the current program: (1) The ability to create vehicle ''fingerprints,'' or feature information from images to allow automatic identification of vehicles. Currently, the analysis task is done entirely by humans. The goal is to aid the analyst by reducing the amount of data he/she must analyze and reduce errors caused by inattention or lack of training. This capability has broad application to problems associated with extraction of useful features from large data sets. (2) Improvements in the effectiveness of LLNL's WATS (Wide Area Tracking System) by providing it accurate threat vehicle location and velocity. Model predictability is likely to be enhanced by use of more information related to different data sets. We believe that the LLNL can accomplish the proposed tasks and enhance the effectiveness of the system now under development.

  4. PETglove: a new technology for portable molecular imaging

    NASA Astrophysics Data System (ADS)

    Wong, Kenneth H.; Gruionu, Lucian G.; Cheng, Patrick; Abshire, Pamela; Saveliev, Valeri; Mun, Seong K.; Cleary, Kevin; Weinberg, Irving N.

    2007-03-01

    PET (Positron Emission Tomography) scanning has become a dominant force in oncology care because of its ability to identify regions of abnormal function. The current generation of PET scanners is focused on whole-body imaging, and does not address aspects that might be required by surgeons or other practitioners interested in the function of particular body parts. We are therefore developing and testing a new class of hand-operated molecular imaging scanners designed for use with physical examinations and intraoperative visualization. These devices integrate several technological advances, including (1) nanotechnology-based quantum photodetectors for high performance at low light levels, (2) continuous position tracking of the detectors so that they form a larger 'virtual detector', and (3) novel reconstruction algorithms that do not depend on a circular or ring geometry. The first incarnations of this device will be in the form of a glove with finger-mounted detectors or in a "sash" of detectors that can be draped over the patient. Potential applications include image-guided biopsy, surgical resection of tumors, assessment of inflammatory conditions, and early cancer detection. Our first prototype is in development now along with a clinical protocol for pilot testing.

  5. COCOA: tracking in aerial imagery

    NASA Astrophysics Data System (ADS)

    Ali, Saad; Shah, Mubarak

    2006-05-01

    Unmanned Aerial Vehicles (UAVs) are becoming a core intelligence asset for reconnaissance, surveillance and target tracking in urban and battlefield settings. In order to achieve the goal of automated tracking of objects in UAV videos we have developed a system called COCOA. It processes the video stream through number of stages. At first stage platform motion compensation is performed. Moving object detection is performed to detect the regions of interest from which object contours are extracted by performing a level set based segmentation. Finally blob based tracking is performed for each detected object. Global tracks are generated which are used for higher level processing. COCOA is customizable to different sensor resolutions and is capable of tracking targets as small as 100 pixels. It works seamlessly for both visible and thermal imaging modes. The system is implemented in Matlab and works in a batch mode.

  6. A Vision of Quantitative Imaging Technology for Validation of Advanced Flight Technologies

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Kerns, Robert V.; Jones, Kenneth M.; Grinstead, Jay H.; Schwartz, Richard J.; Gibson, David M.; Taylor, Jeff C.; Tack, Steve; Dantowitz, Ronald F.

    2011-01-01

    Flight-testing is traditionally an expensive but critical element in the development and ultimate validation and certification of technologies destined for future operational capabilities. Measurements obtained in relevant flight environments also provide unique opportunities to observe flow phenomenon that are often beyond the capabilities of ground testing facilities and computational tools to simulate or duplicate. However, the challenges of minimizing vehicle weight and internal complexity as well as instrumentation bandwidth limitations often restrict the ability to make high-density, in-situ measurements with discrete sensors. Remote imaging offers a potential opportunity to noninvasively obtain such flight data in a complementary fashion. The NASA Hypersonic Thermodynamic Infrared Measurements Project has demonstrated such a capability to obtain calibrated thermal imagery on a hypersonic vehicle in flight. Through the application of existing and accessible technologies, the acreage surface temperature of the Shuttle lower surface was measured during reentry. Future hypersonic cruise vehicles, launcher configurations and reentry vehicles will, however, challenge current remote imaging capability. As NASA embarks on the design and deployment of a new Space Launch System architecture for access beyond earth orbit (and the commercial sector focused on low earth orbit), an opportunity exists to implement an imagery system and its supporting infrastructure that provides sufficient flexibility to incorporate changing technology to address the future needs of the flight test community. A long term vision is offered that supports the application of advanced multi-waveband sensing technology to aid in the development of future aerospace systems and critical technologies to enable highly responsive vehicle operations across the aerospace continuum, spanning launch, reusable space access and global reach. Motivations for development of an Agency level imagery

  7. Real-Depth imaging: a new (no glasses) 3D imaging technology with video/data projection applications

    NASA Astrophysics Data System (ADS)

    Dolgoff, Eugene

    1997-05-01

    Floating Images, Inc. has developed the software and hardware for anew, patent pending, 'floating 3D, off-the- screen-experience' display technology. This technology has the potential to become the next standard for home and arcade video games, computers, corporate presentations, Internet/Intranet viewing, and television. Current '3D Graphics' technologies are actually flat on screen. Floating Images technology actually produce images at different depths from any display, such as CRT and LCD, for television, computer, projection, and other formats. In addition, unlike stereoscopic 3D imaging, no glasses, headgear, or other viewing aids are used. And, unlike current autostereoscopic imaging technologies, there is virtually no restriction on where viewers can sit to view the images, with no 'bad' or 'dead' zones, flipping, or pseudoscopy. In addition to providing traditional depth cues such as perspective and background image occlusion, the new technology also provides both horizontal and vertical binocular parallax and accommodation which coincides with convergence. Since accommodation coincides with convergence, viewing these images doesn't produce headaches, fatigue, or eye-strain, regardless of how long they are viewed. The imagery must either be formatted for the Floating Images platform when written, or existing software can be reformatted without much difficult. The optical hardware system can be made to accommodate virtually any projection system to produce Floating Images for the Boardroom, video arcade, stage shows, or the classroom.

  8. Advances in imaging technologies for planning breast reconstruction

    PubMed Central

    Mohan, Anita T.

    2016-01-01

    The role and choice of preoperative imaging for planning in breast reconstruction is still a disputed topic in the reconstructive community, with varying opinion on the necessity, the ideal imaging modality, costs and impact on patient outcomes. Since the advent of perforator flaps their use in microsurgical breast reconstruction has grown. Perforator based flaps afford lower donor morbidity by sparing the underlying muscle provide durable results, superior cosmesis to create a natural looking new breast, and are preferred in the context of radiation therapy. However these surgeries are complex; more technically challenging that implant based reconstruction, and leaves little room for error. The role of imaging in breast reconstruction can assist the surgeon in exploring or confirming flap choices based on donor site characteristics and presence of suitable perforators. Vascular anatomical studies in the lab have provided the surgeon a foundation of knowledge on location and vascular territories of individual perforators to improve our understanding for flap design and safe flap harvest. The creation of a presurgical map in patients can highlight any abnormal or individual anatomical variance to optimize flap design, intraoperative decision-making and execution of flap harvest with greater predictability and efficiency. This article highlights the role and techniques for preoperative planning using the newer technologies that have been adopted in reconstructive clinical practice: computed tomographic angiography (CTA), magnetic resonance angiography (MRA), laser-assisted indocyanine green fluorescence angiography (LA-ICGFA) and dynamic infrared thermography (DIRT). The primary focus of this paper is on the application of CTA and MRA imaging modalities. PMID:27047790

  9. Advances in imaging technologies for planning breast reconstruction.

    PubMed

    Mohan, Anita T; Saint-Cyr, Michel

    2016-04-01

    The role and choice of preoperative imaging for planning in breast reconstruction is still a disputed topic in the reconstructive community, with varying opinion on the necessity, the ideal imaging modality, costs and impact on patient outcomes. Since the advent of perforator flaps their use in microsurgical breast reconstruction has grown. Perforator based flaps afford lower donor morbidity by sparing the underlying muscle provide durable results, superior cosmesis to create a natural looking new breast, and are preferred in the context of radiation therapy. However these surgeries are complex; more technically challenging that implant based reconstruction, and leaves little room for error. The role of imaging in breast reconstruction can assist the surgeon in exploring or confirming flap choices based on donor site characteristics and presence of suitable perforators. Vascular anatomical studies in the lab have provided the surgeon a foundation of knowledge on location and vascular territories of individual perforators to improve our understanding for flap design and safe flap harvest. The creation of a presurgical map in patients can highlight any abnormal or individual anatomical variance to optimize flap design, intraoperative decision-making and execution of flap harvest with greater predictability and efficiency. This article highlights the role and techniques for preoperative planning using the newer technologies that have been adopted in reconstructive clinical practice: computed tomographic angiography (CTA), magnetic resonance angiography (MRA), laser-assisted indocyanine green fluorescence angiography (LA-ICGFA) and dynamic infrared thermography (DIRT). The primary focus of this paper is on the application of CTA and MRA imaging modalities. PMID:27047790

  10. Sea Ice Mapping using Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Solbø, S.; Storvold, R.

    2011-12-01

    Mapping of sea ice extent and sea ice features is an important task in climate research. Since the arctic coastal and oceanic areas have a high probability of cloud coverage, aerial platforms are superior to satellite measurements for high-resolution optical measurements. However, routine observations of sea ice conditions present a variety of problems using conventional piloted aircrafts. Specially, the availability of suitable aircrafts for lease does not cover the demand in major parts of the arctic. With the recent advances in unmanned aerial systems (UAS), there is a high possibility of establishing routine, cost effective aerial observations of sea ice conditions in the near future. Unmanned aerial systems can carry a wide variety of sensors useful for characterizing sea-ice features. For instance, the CryoWing UAS, a system initially designed for measurements of the cryosphere, can be equipped with digital cameras, surface thermometers and laser altimeters for measuring freeboard of ice flows. In this work we will present results from recent CryoWing sea ice flights on Svalbard, Norway. The emphasis will be on data processing for stitching together images acquired with the non-stabilized camera payload, to form high-resolution mosaics covering large spatial areas. These data are being employed to map ice conditions; including ice and lead features and melt ponds. These high-resolution mosaics are also well suited for sea-ice mechanics, classification studies and for validation of satellite sea-ice products.

  11. A study to analyze six band multispectral images and fabricate a Fourier transform detector. [optical data processing - aerial photography/forests

    NASA Technical Reports Server (NTRS)

    Shackelford, R. G.; Walsh, J. R., Jr.

    1975-01-01

    An automatic Fourier transform diffraction pattern sampling system, used to investigate techniques for forestry classification of six band multispectral aerial photography is presented. Photographs and diagrams of the design, development and fabrication of a hybrid optical-digital Fourier transform detector are shown. The detector was designed around a concentric ring fiber optic array. This array was formed from many optical fibers which were sorted into concentric rings about a single fiber. All the fibers in each ring were collected into a bundle and terminated into a single photodetector. An optical/digital interface unit consisting of a high level multiplexer, and an analog-to-digital amplifier was also constructed and is described.

  12. Area and Elevation Changes of a Debris-Covered Glacier and a Clean-Ice Glacier Between 1952-2013 Using Aerial Images and Structure-from-Motion

    NASA Astrophysics Data System (ADS)

    Lardeux, P.; Glasser, N. F.; Holt, T.; Irvine-Fynn, T. D.; Hubbard, B. P.

    2015-12-01

    Since 1952, the clean-ice Glacier Blanc has retreated twice as fast as the adjacent debris-covered Glacier Noir. Located in the French Alps and separated by only 1 km, both glaciers experience the same climatic conditions, making them ideal to evaluate the impact of debris cover on glacier evolution. We used aerial photographs from 16 acquisitions from 1952 to 2013 to reconstruct and analyze glacier elevation changes using Structure-from-Motion (SfM) techniques. Here, we present the process of developing sub-metric resolution digital elevation models (DEMs) from these aerial photographs. By combining 16 DEMs, we produced a dataset of elevation changes of Glacier Noir and Glacier Blanc, including time-series analysis of lateral and longitudinal profiles, glacier hypsometry and mass balance variation. Our preliminary results indicate that Glacier Noir and Glacier Blanc have both thinned to a similar magnitude, ≤ 20 m, despite a 1 km retreat for Glacier Blanc and only 500 m for Glacier Noir. However, these elevation change reconstructions are hampered by large uncertainties, principally due to the lack of independent camera calibration on the historical imagery. Initial attempts using posteriori correction grids have proven to significantly increase the accuracy of these data. We will present some of the uncertainties and solutions linked to the use of SfM on such a large scale and on such an old dataset. This study demonstrates how SfM can be used to investigate long-term trends in environmental change, allowing glacier monitoring to be up-scaled. It also highlights the need for on-going validation of methods to increase the accuracy and precision of SfM in glaciology. This work is not only advancing our understanding of the role of the debris layer, but will also aid glacial geology more generally with, for example, detailed geomorphological analysis of proglacial terrain and Quaternary sciences with quick and accurate reconstruction of a glacial paleo-environment.

  13. UCXp camera imaging principle and key technologies of data post-processing

    NASA Astrophysics Data System (ADS)

    Yuan, Fangyan; Li, Guoqing; Zuo, Zhengli; Liu, Jianmin; Wu, Liang; Yu, Xiaoping; Zhao, Haitao

    2014-03-01

    The large format digital aerial camera product UCXp was introduced into the Chinese market in 2008, the image consists of 17310 columns and 11310 rows with a pixel size of 6 mm. The UCXp camera has many advantages compared with the same generation camera, with multiple lenses exposed almost at the same time and no oblique lens. The camera has a complex imaging process whose principle will be detailed in this paper. On the other hand, the UCXp image post-processing method, including data pre-processing and orthophoto production, will be emphasized in this article. Based on the data of new Beichuan County, this paper will describe the data processing and effects.

  14. Repeat scanning technology for laser ultrasonic propagation imaging

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Ryul; Yenn Chong, See; Sunuwar, Nitam; Park, Chan Yik

    2013-08-01

    Laser ultrasonic scanning in combination with contact or non-contact sensors provides new paradigms in structural health management (SHM) and non-destructive in-process quality control (IPQC) for large composite structures. Wave propagation imaging technology based on laser ultrasonic scanning and fixed-point sensing shows remarkable advantages, such as minimal need for embedded sensors in SHM, minimum invasive defect visualization in IPQC and general capabilities of curved and complex target inspection, and temporal reference-free inspection. However, as with other SHM methods and non-destructive evaluation based on ultrasound, the signal-to-noise ratio (SNR) is a prevalent issue in real structural applications, especially with non-contact thin-composite sensing or with thick and heterogeneous composites. This study proposes a high-speed repeat scanning technique for laser ultrasonic propagation imaging (UPI) technology, which is realized with the scanning speed of 1 kHz of a Q-switched continuous wave laser, and precise control of the laser beam pulses for identical point scanning. As a result, the technique enables the achievement of significant improvement in the SNR to inspect real-world composite structures. The proposed technique provides enhanced results for impact damage detection in a 2 mm thick wing box made of carbon-fiber-reinforced plastic, despite the low sensitivity of non-contact laser ultrasonic sensing. A field-applicable pure laser UPI system has been developed using a laser Doppler vibrometer as the non-contact ultrasonic sensor. The proposed technique enables the visualization of the disbond defect in a 15 mm thick wind blade specimen made of glass-fiber-reinforced plastic, despite the high dissipation of ultrasound in the thick composite.

  15. EOS imaging versus current radiography: A health technology assessment study

    PubMed Central

    Mahboub-Ahari, Alireza; Hajebrahimi, Sakineh; Yusefi, Mahmoud; Velayati, Ashraf

    2016-01-01

    Background: EOS is a 2D/3D muscle skeletal diagnostic imaging system. The device has been developed to produce a high quality 2D, full body radiographs in standing, sitting and squatting positions. Three dimensional images can be reconstructed via sterEOS software. This Health Technology Assessment study aimed to investigate efficacy, effectiveness and cost-effectiveness of new emerged EOS imaging system in comparison with conventional x-ray radiographic techniques. Methods: All cost and outcome data were assessed from Iran's Ministry of Health Perspective. Data for clinical effectiveness was extracted using a rigorous systematic review. As clinical outcomes the rate of x-ray emission and related quality of life were compared with Computed Radiography (CR) and Digital Radiography (DR). Standard costing method was conducted to find related direct medical costs. In order to examine robustness of the calculated Incremental Cost Effectiveness Ratios (ICERs) we used two-way sensitivity analysis. GDP Per capita of Islamic Republic of Iran (2012) adopted as cost-effectiveness threshold. Results: Review of related literature highlighted the lack of rigorous evidence for clinical outcomes. Ultra low dose EOS imaging device is known as a safe intervention because of FDA, CE and CSA certificates. The rate of emitted X-ray was 2 to 18 fold lower for EOS compared to the conventional techniques (p<0.001). The Incremental Cost Effectiveness Ratio for EOS relative to CR calculated $50706 in baseline analysis (the first scenario) and $50714, $9446 respectively for the second and third scenarios. Considering the value of neither $42146 as upper limit, nor the first neither the second scenario could pass the cost-effectiveness threshold for Iran. Conclusion: EOS imaging technique might not be considered as a cost-effective intervention in routine practice of health system, especially within in-patient wards. Scenario analysis shows that, only in an optimum condition such as lower

  16. Biometric iris image acquisition system with wavefront coding technology

    NASA Astrophysics Data System (ADS)

    Hsieh, Sheng-Hsun; Yang, Hsi-Wen; Huang, Shao-Hung; Li, Yung-Hui; Tien, Chung-Hao

    2013-09-01

    Biometric signatures for identity recognition have been practiced for centuries. Basically, the personal attributes used for a biometric identification system can be classified into two areas: one is based on physiological attributes, such as DNA, facial features, retinal vasculature, fingerprint, hand geometry, iris texture and so on; the other scenario is dependent on the individual behavioral attributes, such as signature, keystroke, voice and gait style. Among these features, iris recognition is one of the most attractive approaches due to its nature of randomness, texture stability over a life time, high entropy density and non-invasive acquisition. While the performance of iris recognition on high quality image is well investigated, not too many studies addressed that how iris recognition performs subject to non-ideal image data, especially when the data is acquired in challenging conditions, such as long working distance, dynamical movement of subjects, uncontrolled illumination conditions and so on. There are three main contributions in this paper. Firstly, the optical system parameters, such as magnification and field of view, was optimally designed through the first-order optics. Secondly, the irradiance constraints was derived by optical conservation theorem. Through the relationship between the subject and the detector, we could estimate the limitation of working distance when the camera lens and CCD sensor were known. The working distance is set to 3m in our system with pupil diameter 86mm and CCD irradiance 0.3mW/cm2. Finally, We employed a hybrid scheme combining eye tracking with pan and tilt system, wavefront coding technology, filter optimization and post signal recognition to implement a robust iris recognition system in dynamic operation. The blurred image was restored to ensure recognition accuracy over 3m working distance with 400mm focal length and aperture F/6.3 optics. The simulation result as well as experiment validates the proposed code

  17. Ultralight photovoltaic modules for unmanned aerial vehicles

    SciTech Connect

    Nowlan, M.J.; Maglitta, J.C.; Darkazalli, G.; Lamp, T.

    1997-12-31

    New lightweight photovoltaic modules are being developed for powering high altitude unmanned aerial vehicles (UAVs). Modified low-cost terrestrial solar cell and module technologies are being applied to minimize vehicle cost. New processes were developed for assembling thin solar cells, encapsulant films, and cover films. An innovative by-pass diode mounting approach that uses a solar cell as a heat spreader was devised and tested. Materials and processes will be evaluated through accelerated environmental testing.

  18. Applications of image processing technologies to fine arts

    NASA Astrophysics Data System (ADS)

    Bartolini, Franco; Cappellini, Vito; Del Mastio, Andrea; Piva, Alessandro

    2003-10-01

    Over the past years the progresses of electronic imaging have encouraged researchers to develop applications for the fine arts sector. In particular the aspects that have been mostly investigated have regarded, the high quality acquisition of paintings (both from the point of view of spatial resolution and of color calibration), the actual restoration of the works (for giving to restorers an aid to forecast the results of the tasks they choose), the virtual restoration (to try to build a digital copy of the painting as it was at the origin), and the diagnosis (to automatically highlights, evaluate and monitor the possible damages that a work has suffered). Partially related to image processing are also the technologies for 3D acquisition and modeling of statues. Finally particular care has been given recently also to the distribution of the digital copies of cultural heritage objects over the Internet, thus posing novel problems regarding the effective browsing of digital multimedia archives, and the protection of the Intellectual Property connected to art-works reproductions. The goal of this paper is to review the research results that have been obtained in the past in this field, and to present some problems that are still open and can represent a challenging research field for the future.

  19. Technological advances in hybrid imaging and impact on dose.

    PubMed

    Mattsson, Sören; Andersson, Martin; Söderberg, Marcus

    2015-07-01

    New imaging technologies utilising X-rays and radiopharmaceuticals have developed rapidly. Clinical application of computed tomography (CT) has revolutionised medical imaging and plays an enormous role in medical care. Due to technical improvements, spatial, contrast and temporal resolutions have continuously improved. In spite of significant reduction of CT doses during recent years, CT is still a dominating source of radiation exposure to the population. Combinations with single photon emission computed tomography (SPECT) and positron emission tomography (PET) and especially the use of SPECT/CT and PET/CT, provide important additional information about physiology as well as cellular and molecular events. However, significant dose contributions from SPECT and PET occur, making PET/CT and SPECT/CT truly high dose procedures. More research should be done to find optimal activities of radiopharmaceuticals for various patient groups and investigations. The implementation of simple protocol adjustments, including individually based administration, encouraged hydration, forced diuresis and use of optimised voiding intervals, laxatives, etc., can reduce the radiation exposure to the patients. New data about staff doses to fingers, hands and eye lenses indicate that finger doses could be a problem, but not doses to the eye lenses and to the whole body. PMID:25802466

  20. Gamma-ray imaging system. Innovative technology summary report

    SciTech Connect

    1998-11-01

    The RadScan 600 gamma-ray imaging system is designed to survey large surface areas for radiological contamination with accuracy and efficiency. The resulting survey data are clear, concise, and precise in describing how much contamination is present at exact locations. Data can be permanently stored electronically and on video tape, making storage and retrieval economical and efficient. This technology can perform accurate measurements in high radiation contamination areas while minimizing worker exposure. The RadScan 600 system is a safe and effective alternative to hand-held radiation detection devices. Performance data of the demonstrated survey area of the RadScan 600 system versus the baseline, which is the hand-held radiation detection devices (RO-2 and RO-7) for a given survey, production rate is 72% of the baseline. It should be noted that the innovative technology provides 100% coverage at a unit cost of $8.64/m{sup 2} versus a static measurement of a unit cost of $1.61/m{sup 2} for the baseline.

  1. Geometric optical investigation of the underwater visual field of aerial animals.

    PubMed

    Horváth, G; Varjú, D

    1990-11-01

    The underwater visual field distorted by refraction for aerial animals living near the water surface is investigated by means of geometric optics. The imaging of underwater objects by one and two aerial eyes is studied. The underwater binocular image field is determined for pairs of aerial eyes placed in horizontal and vertical planes. Some possible biooptical consequences of the visual detection of underwater prey and predator by aerial animals are discussed on the basis of the structure of their distorted visual field. PMID:2134486

  2. Research of the wavelet based ECW remote sensing image compression technology

    NASA Astrophysics Data System (ADS)

    Zhang, Lan; Gu, Xingfa; Yu, Tao; Dong, Yang; Hu, Xinli; Xu, Hua

    2007-11-01

    This paper mainly study the wavelet based ECW remote sensing image compression technology. Comparing with the tradition compression technology JPEG and new compression technology JPEG2000 witch based on wavelet we can find that when compress quite large remote sensing image the ER Mapper Compressed Wavelet (ECW) can has significant advantages. The way how to use the ECW SDK was also discussed and prove that it's also the best and faster way to compress China-Brazil Earth Resource Satellite (CBERS) image.

  3. [Identification of Pummelo Cultivars Based on Hyperspectral Imaging Technology].

    PubMed

    Li, Xun-lan; Yi, Shi-lai; He, Shao-lan; Lü, Qiang; Xie, Rang-jin; Zheng, Yong-qiang; Deng, Lie

    2015-09-01

    Existing methods for the identification of pummelo cultivars are usually time-consuming and costly, and are therefore inconvenient to be used in cases that a rapid identification is needed. This research was aimed at identifying different pummelo cultivars by hyperspectral imaging technology which can achieve a rapid and highly sensitive measurement. A total of 240 leaf samples, 60 for each of the four cultivars were investigated. Samples were divided into two groups such as calibration set (48 samples of each cultivar) and validation set (12 samples of each cultivar) by a Kennard-Stone-based algorithm. Hyperspectral images of both adaxial and abaxial surfaces of each leaf were obtained, and were segmented into a region of interest (ROI) using a simple threshold. Spectra of leaf samples were extracted from ROI. To remove the absolute noises of the spectra, only the date of spectral range 400~1000 nm was used for analysis. Multiplicative scatter correction (MSC) and standard normal variable (SNV) were utilized for data preprocessing. Principal component analysis (PCA) was used to extract the best principal components, and successive projections algorithm (SPA) was used to extract the effective wavelengths. Least squares support vector machine (LS-SVM) was used to obtain the discrimination model of the four different pummelo cultivars. To find out the optimal values of σ2 and γ which were important parameters in LS-SVM modeling, Grid-search technique and Cross-Validation were applied. The first 10 and 11 principal components were extracted by PCA for the hyperspectral data of adaxial surface and abaxial surface, respectively. There were 31 and 21 effective wavelengths selected by SPA based on the hyperspectral data of adaxial surface and abaxial surface, respectively. The best principal components and the effective wavelengths were used as inputs of LS-SVM models, and then the PCA-LS-SVM model and the SPA-LS-SVM model were built. The results showed that 99.46% and

  4. Three-Dimensional Imaging and Image Displays: Surgical Application of Advanced Technologies.

    PubMed

    Satava

    1996-09-01

    One of the cornerstones of modern technology that was ushered in by laparoscopic surgery is the use of the video image. The importance of this "virtual representation" of the patient goes well beyond the application to laparoscopic surgery, and lies at the very heart of the revolution of surgery into the Information Age. Real objects, organs and patients can be represented as 2 and 3-dimensional computer generated images and viewed upon displays beyond the simple video monitor which permit a level of clinical practice not possible on the actual patients. These fundamental concepts that form the foundation of the revolution in surgery are placed in a framework for the future of surgery, and illustrate how their implementation can dramatically improve patient care. PMID:10401122

  5. Fuzzy C-Means Algorithm for Segmentation of Aerial Photography Data Obtained Using Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Akinin, M. V.; Akinina, N. V.; Klochkov, A. Y.; Nikiforov, M. B.; Sokolova, A. V.

    2015-05-01

    The report reviewed the algorithm fuzzy c-means, performs image segmentation, give an estimate of the quality of his work on the criterion of Xie-Beni, contain the results of experimental studies of the algorithm in the context of solving the problem of drawing up detailed two-dimensional maps with the use of unmanned aerial vehicles. According to the results of the experiment concluded that the possibility of applying the algorithm in problems of decoding images obtained as a result of aerial photography. The considered algorithm can significantly break the original image into a plurality of segments (clusters) in a relatively short period of time, which is achieved by modification of the original k-means algorithm to work in a fuzzy task.

  6. Development of an aerial counting system in oil palm plantations

    NASA Astrophysics Data System (ADS)

    Zulyma Miserque Castillo, Jhany; Laverde Diaz, Rubbermaid; Rueda Guzmán, Claudia Leonor

    2016-07-01

    This paper proposes the development of a counting aerial system capable of capturing, process and analyzing images of an oil palm plantation to register the number of cultivated palms. It begins with a study of the available UAV technologies to define the most appropriate model according to the project needs. As result, a DJI Phantom 2 Vision+ is used to capture pictures that are processed by a photogrammetry software to create orthomosaics from the areas of interest, which are handled by the developed software to calculate the number of palms contained in them. The implemented algorithm uses a sliding window technique in image pyramids to generate candidate windows, an LBP descriptor to model the texture of the picture, a logistic regression model to classify the windows and a non-maximum suppression algorithm to refine the decision. The system was tested in different images than the ones used for training and for establishing the set point. As result, the system showed a 95.34% detection rate with a 97.83% precision in mature palms and a 79.26% detection rate with a 97.53% precision in young palms giving an FI score of 0.97 for mature palms and 0.87 for the small ones. The results are satisfactory getting the census and high-quality images from which is possible to get more information from the area of interest. All this, achieved through a low-cost system capable of work even in cloudy conditions.

  7. Locating buildings in aerial photos

    NASA Technical Reports Server (NTRS)

    Green, James S.

    1994-01-01

    Algorithms and techniques for use in the identification and location of large buildings in digitized copies of aerial photographs are developed and tested. The building data would be used in the simulation of objects located in the vicinity of an airport that may be detected by aircraft radar. Two distinct approaches are considered. Most building footprints are rectangular in form. The first approach studied is to search for right-angled corners that characterize rectangular objects and then to connect these corners to complete the building. This problem is difficult because many nonbuilding objects, such as street corners, parking lots, and ballparks often have well defined corners which are often difficult to distinguish from rooftops. Furthermore, rooftops come in a number of shapes, sizes, shadings, and textures which also limit the discrimination task. The strategy used linear sequences of different samples to detect straight edge segments at multiple angles and to determine when these segments meet at approximately right-angles with respect to each other. This technique is effective in locating corners. The test image used has a fairly rectangular block pattern oriented about thirty degrees clockwise from a vertical alignment, and the overall measurement data reflect this. However, this technique does not discriminate between buildings and other objects at an operationally suitable rate. In addition, since multiple paths are tested for each image pixel, this is a time consuming task. The process can be speeded up by preprocessing the image to locate the more optimal sampling paths. The second approach is to rely on a human operator to identify and select the building objects and then to have the computer determine the outline and location of the selected structures. When presented with a copy of a digitized aerial photograph, the operator uses a mouse and cursor to select a target building. After a button on the mouse is pressed, with the cursor fully within

  8. High Resolution Urban Land Cover Mapping Using NAIP Aerial Photography and Image Processing for the USEPA National Atlas of Sustainability and Ecosystem Services

    NASA Astrophysics Data System (ADS)

    Pilant, A. N.; Baynes, J.; Dannenberg, M.

    2012-12-01

    The US EPA National Atlas for Sustainability is a web-based, easy-to-use, mapping application that allows users to view and analyze multiple ecosystem services in a specific region. The Atlas provides users with a visual method for interpreting ecosystem services and understanding how they can be conserved and enhanced for a sustainable future. The Urban Atlas component of the National Atlas will provide fine-scale information linking human health and well-being to environmental conditions such as urban heat islands, near-road pollution, resource use, access to recreation, drinking water quality and other quality of life indicators. The National Land Cover Data (NLCD) derived from 30 m scale 2006 Landsat imagery provides the land cover base for the Atlas. However, urban features and phenomena occur at finer spatial scales, so higher spatial resolution and more current LC maps are required. We used 4 band USDA NAIP imagery (1 m pixel size) and various classification approaches to produce urban land cover maps with these classes: impervious surface, grass and herbaceous, trees and forest, soil and barren, and water. Here we present the remote sensing methods used and results from four pilot cities in this effort, highlighting the pros and cons of the approach, and the benefits to sustainability and ecosystem services analysis. Example of high resolution land cover map derived from USDA NAIP aerial photo. Compare 30 m and 1 m resolution land cover maps of downtown Durham, NC.

  9. Unmanned Aerial Vehicle (UAV) associated DTM quality evaluation and hazard assessment

    NASA Astrophysics Data System (ADS)

    Huang, Mei-Jen; Chen, Shao-Der; Chao, Yu-Jui; Chiang, Yi-Lin; Chang, Kuo-Jen

    2014-05-01

    Taiwan, due to the high seismicity and high annual rainfall, numerous landslides triggered every year and severe impacts affect the island. Concerning to the catastrophic landslides, the key information of landslide, including range of landslide, volume estimation and the subsequent evolution are important when analyzing the triggering mechanism, hazard assessment and mitigation. Thus, the morphological analysis gives a general overview for the landslides and been considered as one of the most fundamental information. We try to integrate several technologies, especially by Unmanned Aerial Vehicle (UAV) and multi-spectral camera, to decipher the consequence and the potential hazard, and the social impact. In recent years, the remote sensing technology improves rapidly, providing a wide range of image, essential and precious information. Benefited of the advancing of informatics, remote-sensing and electric technologies, the Unmanned Aerial Vehicle (UAV) photogrammetry mas been improve significantly. The study tries to integrate several methods, including, 1) Remote-sensing images gathered by Unmanned Aerial Vehicle (UAV) and by aerial photos taken in different periods; 2) field in-situ geologic investigation; 3) Differential GPS, RTK GPS and Ground LiDAR field in-site geoinfomatics measurements; 4) Construct the DTMs before and after landslide, as well as the subsequent periods using UAV and aerial photos; 5) Discrete element method should be applied to understand the geomaterial composing the slope failure, for predicting earthquake-induced and rainfall-induced landslides displacement. First at all, we evaluate the Microdrones MD4-1000 UAV airphotos derived Digital Terrain Model (DTM). The ground resolution of the DSM point cloud of could be as high as 10 cm. By integrated 4 ground control point within an area of 56 hectares, compared with LiDAR DSM and filed RTK-GPS surveying, the mean error is as low as 6cm with a standard deviation of 17cm. The quality of the

  10. Aerial views of the San Andreas Fault

    USGS Publications Warehouse

    Moore, M.

    1988-01-01

    These aerial photographs of the San Andreas fault were taken in 1965 by Robert E. Wallace of the U.S Geological Survey. The pictures were taken with a Rolliflex camera on 20 format black and white flim; Wallace was aboard a light, fixed-wing aircraft, flying mostly at low altitudes. He photographed the fault from San Francisco near its north end where it enters by the Salton Sea. These images represent only a sampling of the more than 300 images prodcued during this project. All the photographs reside in the U.S Geological Survey Library in Menlo Park, California. 

  11. Robust crack detection strategies for aerial inspection

    NASA Astrophysics Data System (ADS)

    Aldea, Emanuel; Le Hégarat, Sylvie

    2015-04-01

    In this work, we evaluate the relevance of current state of the art algorithms widely employed in the detection of cracks, for the specific context of aerial inspection, which is characterized by image quality degradation. In this study we focus on minimal cost path and on Marked Point Process algorithms, and we test their resilience to motion blur. The results show that the current strategies for defect detection are sensitive to the quality of input images; alternatively, we suggest some improvements based on a-contrario methods that are able to cope with significant motion blur.

  12. A new high speed thermal imaging concept based on a logarithmic CMOS imager technology

    NASA Astrophysics Data System (ADS)

    Hutter, Franz X.; Brosch, Daniel; Burghartz, Joachim N.; Graf, Heinz-Gerd; Strobel, Markus

    2008-04-01

    HDRC (high dynamic range CMOS) allows for more than 120 dB signal range in image processing. Scene details with both very high and extremely low radiant flux may thus appear within the same image. Color constancy over the entire signal range and good high speed performance are further aspects of this logarithmic imager technology. These features qualify HDRC cameras for thermography, since the signal range of Planck's temperature radiation in a two dimensional array is comparable to HDRC's intensity range. Especially in material welding and laser cutting processes, in high power light sources and in high temperature material processing, fast monitoring of the spacial and dynamic temperature distributions present a challenge to conventional thermal imaging and thus call for innovative concepts. A particular challenge is in the compensation of the emissivity of the radiating surface. Here, we present a new concept based on a modified HDRC VGA color camera, allowing for visualization and measurement of temperatures from about 800 °C up to 2300 °C. The modifications include an optical filter for minimizing UV and IR straylight and a notch filter for clipping off the green optical range in order to separate the blue and red RGB regions. An enhanced and adapted software provides a division of the neighboured red and blue pixel signals by means of simply subtracting the HDRC signals. As a result the local temperature information of the visualized scene spot is independent of emissivity. This is, to our knowledge, the first demonstration of a high speed thermal imager to date.

  13. High-speed, electronically shuttered solid-state imager technology (invited)

    NASA Astrophysics Data System (ADS)

    Reich, R. K.; Rathman, D. D.; O'Mara, D. M.; Young, D. J.; Loomis, A. H.; Kohler, E. J.; Osgood, R. M.; Murphy, R. A.; Rose, M.; Berger, R.; Watson, S. A.; Ulibarri, M. D.; Perry, T.; Kosicki, B. B.

    2003-03-01

    Electronically shuttered solid-state imagers are being developed for high-speed imaging applications. A 5 cm×5 cm, 512×512-element, multiframe charge-coupled device (CCD) imager has been fabricated for the Los Alamos National Laboratory DARHT facility that collects four sequential image frames at megahertz rates. To operate at fast frame rates with high sensitivity, the imager uses an electronic shutter technology designed for back-illuminated CCDs. The design concept and test results are described for the burst-frame-rate imager. Also discussed is an evolving solid-state imager technology that has interesting characteristics for creating large-format x-ray detectors with short integration times (100 ps to 1 ns). Proposed device architectures use CMOS technology for high speed sampling (tens of picoseconds transistor switching times). Techniques for parallel clock distribution, that triggers the sampling of x-ray photoelectrons, will be described that exploit features of CMOS technology.

  14. a Method for Simultaneous Aerial and Terrestrial Geodata Acquisition for Corridor Mapping

    NASA Astrophysics Data System (ADS)

    Molina, P.; Blázquez, M.; Sastre, J.; Colomina, I.

    2015-08-01

    In this paper, we present mapKITE, a new mobile, simultaneous terrestrial and aerial, geodata collection and post-processing method. On one side, the method combines a terrestrial mobile mapping system (TMMS) with an unmanned aerial mapping one, both equipped with remote sensing payloads (at least, a nadir-looking visible-band camera in the UA) by means of which aerial and terrestrial geodata are acquired simultaneously. This tandem geodata acquisition system is based on a terrestrial vehicle (TV) and on an unmanned aircraft (UA) linked by a 'virtual tether', that is, a mechanism based on the real-time supply of UA waypoints by the TV. By means of the TV-to-UA tether, the UA follows the TV keeping a specific relative TV-to-UA spatial configuration enabling the simultaneous operation of both systems to obtain highly redundant and complementary geodata. On the other side, mapKITE presents a novel concept for geodata post-processing favoured by the rich geometrical aspects derived from the mapKITE tandem simultaneous operation. The approach followed for sensor orientation and calibration of the aerial images captured by the UA inherits the principles of Integrated Sensor Orientation (ISO) and adds the pointing-and-scaling photogrammetric measurement of a distinctive element observed in every UA image, which is a coded target mounted on the roof of the TV. By means of the TV navigation system, the orientation of the TV coded target is performed and used in the post-processing UA image orientation approach as a Kinematic Ground Control Point (KGCP). The geometric strength of a mapKITE ISO network is therefore high as it counts with the traditional tie point image measurements, static ground control points, kinematic aerial control and the new point-and-scale measurements of the KGCPs. With such a geometry, reliable system and sensor orientation and calibration and eventual further reduction of the number of traditional ground control points is feasible. The different

  15. Aerial photography for sensing plant anomalies

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Cardenas, R.; Hart, W. G.

    1970-01-01

    Changes in the red tonal response of Kodak Ektrachrome Infrared Aero 8443 film (EIR) are often incorrectly attributed solely to variations in infrared light reflectance of plant leaves, when the primary influence is a difference in visible light reflectance induced by varying chlorophyll contents. Comparisons are made among aerial photographic images of high- and low-chlorophyll foliage. New growth, foot rot, and boron and chloride nutrient toxicites produce low-chlorophyll foliage, and EIR transparency images of light red or white compared with dark-red images of high-chlorophyll foliage. Deposits of the sooty mold fungus that subsists on the honeydew produced by brown soft scale insects, obscure the citrus leaves' green color. Infected trees appear as black images on EIR film transparencies compared with red images of healthy trees.

  16. D Surface Generation from Aerial Thermal Imagery

    NASA Astrophysics Data System (ADS)

    Khodaei, B.; Samadzadegan, F.; Dadras Javan, F.; Hasani, H.

    2015-12-01

    Aerial thermal imagery has been recently applied to quantitative analysis of several scenes. For the mapping purpose based on aerial thermal imagery, high accuracy photogrammetric process is necessary. However, due to low geometric resolution and low contrast of thermal imaging sensors, there are some challenges in precise 3D measurement of objects. In this paper the potential of thermal video in 3D surface generation is evaluated. In the pre-processing step, thermal camera is geometrically calibrated using a calibration grid based on emissivity differences between the background and the targets. Then, Digital Surface Model (DSM) generation from thermal video imagery is performed in four steps. Initially, frames are extracted from video, then tie points are generated by Scale-Invariant Feature Transform (SIFT) algorithm. Bundle adjustment is then applied and the camera position and orientation parameters are determined. Finally, multi-resolution dense image matching algorithm is used to create 3D point cloud of the scene. Potential of the proposed method is evaluated based on thermal imaging cover an industrial area. The thermal camera has 640×480 Uncooled Focal Plane Array (UFPA) sensor, equipped with a 25 mm lens which mounted in the Unmanned Aerial Vehicle (UAV). The obtained results show the comparable accuracy of 3D model generated based on thermal images with respect to DSM generated from visible images, however thermal based DSM is somehow smoother with lower level of texture. Comparing the generated DSM with the 9 measured GCPs in the area shows the Root Mean Square Error (RMSE) value is smaller than 5 decimetres in both X and Y directions and 1.6 meters for the Z direction.

  17. The sky is the limit? 20 years of small-format aerial photography taken from UAS for monitoring geomorphological processes

    NASA Astrophysics Data System (ADS)

    Marzolff, Irene

    2014-05-01

    One hundred years after the first publication on aerial photography taken from unmanned aerial platforms (Arthur Batut 1890), small-format aerial photography (SFAP) became a distinct niche within remote sensing during the 1990s. Geographers, plant biologists, archaeologists and other researchers with geospatial interests re-discovered the usefulness of unmanned platforms for taking high-resolution, low-altitude photographs that could then be digitized and analysed with geographical information systems, (softcopy) photogrammetry and image processing techniques originally developed for digital satellite imagery. Even before the ubiquity of digital consumer-grade cameras and 3D analysis software accessible to the photogrammetric layperson, do-it-yourself remote sensing using kites, blimps, drones and micro air vehicles literally enabled the questing researcher to get their own pictures of the world. As a flexible, cost-effective method, SFAP offered images with high spatial and temporal resolutions that could be ideally adapted to the scales of landscapes, forms and distribution patterns to be monitored. During the last five years, this development has been significantly accelerated by the rapid technological advancements of GPS navigation, autopiloting and revolutionary softcopy-photogrammetry techniques. State-of-the-art unmanned aerial systems (UAS) now allow automatic flight planning, autopilot-controlled aerial surveys, ground control-free direct georeferencing and DEM plus orthophoto generation with centimeter accuracy, all within the space of one day. The ease of use of current UAS and processing software for the generation of high-resolution topographic datasets and spectacular visualizations is tempting and has spurred the number of publications on these issues - but which advancements in our knowledge and understanding of geomorphological processes have we seen and can we expect in the future? This presentation traces the development of the last two decades

  18. Image processing using Gallium Arsenide (GaAs) technology

    NASA Technical Reports Server (NTRS)

    Miller, Warner H.

    1989-01-01

    The need to increase the information return from space-borne imaging systems has increased in the past decade. The use of multi-spectral data has resulted in the need for finer spatial resolution and greater spectral coverage. Onboard signal processing will be necessary in order to utilize the available Tracking and Data Relay Satellite System (TDRSS) communication channel at high efficiency. A generally recognized approach to the increased efficiency of channel usage is through data compression techniques. The compression technique implemented is a differential pulse code modulation (DPCM) scheme with a non-uniform quantizer. The need to advance the state-of-the-art of onboard processing was recognized and a GaAs integrated circuit technology was chosen. An Adaptive Programmable Processor (APP) chip set was developed which is based on an 8-bit slice general processor. The reason for choosing the compression technique for the Multi-spectral Linear Array (MLA) instrument is described. Also a description is given of the GaAs integrated circuit chip set which will demonstrate that data compression can be performed onboard in real time at data rate in the order of 500 Mb/s.

  19. Design of image stabilization system for space remote sensor based on DaVinci technology

    NASA Astrophysics Data System (ADS)

    Li, Haoyang; Liu, Zhaojun; Xu, Pengmei

    2011-08-01

    Many factors affect space remote sensor imaging, causing image degradation of contrast and resolution decreasing, which cannot be solved neither by improving resolution of imaging components nor processing of images. In order to meet the imaging requirement of space remote sensor, image stabilization system should be included. In this paper, with a combining method of micro-mechanical and digital image stabilization, an image stabilization system based on DaVinci technology is designed, including imaging and sensing unit, operating and controlling unit and fast steering mirror unit, using TI TMS320DM6446 as the main processor of the image stabilization system, which performs the function of focal plane controlling, image acquisition, motion vector estimating, digital image stabilization operating, fast steering mirror controlling and image outputting. The workflow is as followings: first, through optical system, ground scene is imaged by imaging focal planes. Short exposure images acquired by imaging focal plane are transferred as series to the unit of computing and controlling. Then, inter-frame motion vector is computed from images according to gray projection algorithm, and employed as inputs with image series to do iterative back projection. In this way the final picture is obtained. Meanwhile, the control value obtained from the inter-frame motion vector is sent to the fast steering mirror unit, making compensation to damp vibrations. The results of experiments demonstrate that the image stabilization system improves the imaging performance of space remote sensor.

  20. Infrared film for aerial photography

    USGS Publications Warehouse

    Anderson, William H.

    1979-01-01

    Considerable interest has developed recently in the use of aerial photographs for agricultural management. Even the simplest hand-held aerial photographs, especially those taken with color infrared film, often provide information not ordinarily available through routine ground observation. When fields are viewed from above, patterns and variations become more apparent, often allowing problems to be spotted which otherwise may go undetected.

  1. AERIAL PHOTOGRAPHY AND LEGAL APPLICATIONS

    EPA Science Inventory

    Aerial photographic interpretation is the process of examining objects on aerial photographs and determining their significance. t is often defined as both art and science because the process, and the quality of the derived information, is often a qualitative nature and much depe...

  2. A Multimode Optical Imaging System for Preclinical Applications In Vivo: Technology Development, Multiscale Imaging, and Chemotherapy Assessment

    PubMed Central

    Hwang, Jae Youn; Wachsmann-Hogiu, Sebastian; Ramanujan, V. Krishnan; Ljubimova, Julia; Gross, Zeev; Gray, Harry B.; Medina-Kauwe, Lali K.; Farkas, Daniel L.

    2012-01-01

    Purpose Several established optical imaging approaches have been applied, usually in isolation, to preclinical studies; however, truly useful in vivo imaging may require a simultaneous combination of imaging modalities to examine dynamic characteristics of cells and tissues. We developed a new multimode optical imaging system designed to be application-versatile, yielding high sensitivity, and specificity molecular imaging. Procedures We integrated several optical imaging technologies, including fluorescence intensity, spectral, lifetime, intravital confocal, two-photon excitation, and bioluminescence, into a single system that enables functional multiscale imaging in animal models. Results The approach offers a comprehensive imaging platform for kinetic, quantitative, and environmental analysis of highly relevant information, with micro-to-macroscopic resolution. Applied to small animals in vivo, this provides superior monitoring of processes of interest, represented here by chemo-/nanoconstruct therapy assessment. Conclusions This new system is versatile and can be optimized for various applications, of which cancer detection and targeted treatment are emphasized here. PMID:21874388

  3. New imaging technology: measurement of myocardial perfusion by contrast echocardiography

    NASA Technical Reports Server (NTRS)

    Rubin, D. N.; Thomas, J. D.

    2000-01-01

    Myocardial perfusion imaging has long been a goal for the non-invasive echocardiographic assessment of the heart. However, many factors at play in perfusion imaging have made this goal elusive. Harmonic imaging and triggered imaging with newer contrast agents have made myocardial perfusion imaging potentially practical in the very near future. The application of indicator dilution theory to the coronary circulation and bubble contrast agents is fraught with complexities and sources of error. Therefore, quantification of myocardial perfusion by non-invasive echocardiographic imaging requires further investigation in order to make this technique clinically viable.

  4. Catheter-based ultrasound technology for image-guided thermal therapy: Current technology and applications

    PubMed Central

    Salgaonkar, Vasant A.; Diederich, Chris J.

    2015-01-01

    Catheter-based ultrasound (CBUS) is being applied to deliver minimally invasive thermal therapy to solid cancer tumors, benign tissue growth, vascular disease, and tissue remodeling. Compared to other energy modalities used in catheter-based surgical interventions, unique features of ultrasound result in conformable and precise energy delivery with high selectivity, fast treatment times, and larger treatment volumes. Here, a concise review of CBUS technology being currently utilized in animal and clinical studies or being developed for future applications is presented. CBUS devices have been categorized into interstitial, endoluminal and endovascular/cardiac applications. Basic applicator designs, site specific evaluations and possible treatment applications have been discussed in brief. Particular emphasis has been given on ablation studies that incorporate image-guidance for applicator placement, therapy monitoring, feedback control, and post-procedure assessment. Examples of devices included here span the entire spectrum of development cycle from preliminary simulation based design studies to implementation in clinical investigations. The use of CBUS under image guidance has the potential for significantly improving precision and applicability of thermal therapy delivery. PMID:25799287

  5. Evaluation of the short-term sea cliff retreat along the Tróia-Sines Embayed Coast (Costa da Galé sector), using stereo digital aerial images and Bayesian inference

    NASA Astrophysics Data System (ADS)

    Gama, C.; Jalobeanu, A.

    2011-12-01

    Monitoring the sediment budget of coastal systems is essential to understand the costal equilibrium, and is an important aspect to be considered in coastal management. Thus, the identification and the quantitative evaluation of sedimentary sources and sinks are the first steps towards a better understanding of the dynamics of coastal morphology. The Tróia-Sines Embayed Coast (TSEC) in the southwest Portuguese coast corresponds to a continuous sandy beach that extends for approximately 65 km. It is limited at north by the Sado river estuary and at south by the Sines cape. Beaches are discontinuously limited landward by dunes (≈42 km) and by sea cliffs (≈18 km) made of poorly consolidated Plio-Plistocene detrital deposits. Cliff erosion by subaerial processes or gullying is a continuous phenomenon that contributes a significant amount of sediment to the TSEC coastal system, which is what we want to measure. Mainly due to winter rainfall, sea cliffs develop debris fans at the backshore inner limit, therefore we chose to make morphological measurements at one year interval. Thus, two series digital aerial images at 20 cm resolution were acquired in Oct 2008 and July 2009, supported by a collection of ground control points (GCP) to constrain the sensor orientation. Digital aerial stereo image pairs are used as main data source to reconstruct digital surface models (DSM). A new stereo photogrammetric method is used, based on dense disparity maps and Bayesian inference (Jalobeanu et al, 2010 and Jalobeanu, 2011). The originality of this method is in the computation of the spatial distribution of elevation errors in the DSM using stochastic modelling and probabilistic inference, which helps to detect the statistically significant changes in the estimated topography. The difference between the two generated DSMs is used to characterize the variability of the main subaerial beach morphodynamics parameters, such as: i) the alongshore beach configuration; ii) the beach

  6. Review of development of laser active imaging technology in China and foreign countries

    NASA Astrophysics Data System (ADS)

    Fan, Youchen; Zhao, Hongli; Li, Yingcun

    2014-11-01

    Range-gated laser active imaging technology is an effective way to image detection and precise tracking of remote, dark, and small targets that overcomes the shortcomings of passive visible or infrared imaging technology, thus has important practical value and broad application prospects in the military. The paper based on the analysis of its principle, technical advantages and key technologies focus on the typical systems under atmospheric conditions at home and abroad and the latest research results, and discusses the development trends of this technology.

  7. Automatic Sea Bird Detection from High Resolution Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Mader, S.; Grenzdörffer, G. J.

    2016-06-01

    Great efforts are presently taken in the scientific community to develop computerized and (fully) automated image processing methods allowing for an efficient and automatic monitoring of sea birds and marine mammals in ever-growing amounts of aerial imagery. Currently the major part of the processing, however, is still conducted by especially trained professionals, visually examining the images and detecting and classifying the requested subjects. This is a very tedious task, particularly when the rate of void images regularly exceeds the mark of 90%. In the content of this contribution we will present our work aiming to support the processing of aerial images by modern methods from the field of image processing. We will especially focus on the combination of local, region-based feature detection and piecewise global image segmentation for automatic detection of different sea bird species. Large image dimensions resulting from the use of medium and large-format digital cameras in aerial surveys inhibit the applicability of image processing methods based on global operations. In order to efficiently handle those image sizes and to nevertheless take advantage of globally operating segmentation algorithms, we will describe the combined usage of a simple performant feature detector based on local operations on the original image with a complex global segmentation algorithm operating on extracted sub-images. The resulting exact segmentation of possible candidates then serves as a basis for the determination of feature vectors for subsequent elimination of false candidates and for classification tasks.

  8. Photo CD and Other Digital Imaging Technologies: What's out There and What's It For?

    ERIC Educational Resources Information Center

    Chen, Ching-Chih

    1993-01-01

    Describes Kodak's Photo CD technology and its impact on digital imaging. Color desktop publishing, image processing and preservation, image archival storage, and interactive multimedia development, as well as the equipment, software, and services that make these applications possible, are described. Contact information for developers and…

  9. Elastic-Wavefield Seismic Stratigraphy: A New Seismic Imaging Technology

    SciTech Connect

    Bob A. Hardage; Milo M. Backus; Michael V. DeAngelo; Sergey Fomel; Khaled Fouad; Robert J. Graebner; Paul E. Murray; Randy Remington; Diana Sava

    2006-07-31

    The purpose of our research has been to develop and demonstrate a seismic technology that will provide the oil and gas industry a better methodology for understanding reservoir and seal architectures and for improving interpretations of hydrocarbon systems. Our research goal was to expand the valuable science of seismic stratigraphy beyond the constraints of compressional (P-P) seismic data by using all modes (P-P, P-SV, SH-SH, SV-SV, SV-P) of a seismic elastic wavefield to define depositional sequences and facies. Our objective was to demonstrate that one or more modes of an elastic wavefield may image stratal surfaces across some stratigraphic intervals that are not seen by companion wave modes and thus provide different, but equally valid, information regarding depositional sequences and sedimentary facies within that interval. We use the term elastic wavefield stratigraphy to describe the methodology we use to integrate seismic sequences and seismic facies from all modes of an elastic wavefield into a seismic interpretation. We interpreted both onshore and marine multicomponent seismic surveys to select the data examples that we use to document the principles of elastic wavefield stratigraphy. We have also used examples from published papers that illustrate some concepts better than did the multicomponent seismic data that were available for our analysis. In each interpretation study, we used rock physics modeling to explain how and why certain geological conditions caused differences in P and S reflectivities that resulted in P-wave seismic sequences and facies being different from depth-equivalent S-wave sequences and facies across the targets we studied.

  10. 1:500 Scale Aerial Triangulation Test with Unmanned Airship in Hubei Province

    NASA Astrophysics Data System (ADS)

    Feifei, Xie; Zongjian, Lin; Dezhu, Gui

    2014-03-01

    A new UAVS (Unmanned Aerial Vehicle System) for low altitude aerial photogrammetry is introduced for fine surveying and mapping, including the platform airship, sensor system four-combined wide-angle camera and photogrammetry software MAP-AT. It is demonstrated that this low-altitude aerial photogrammetric system meets the precision requirements of 1:500 scale aerial triangulation based on the test of this system in Hubei province, including the working condition of the airship, the quality of image data and the data processing report. This work provides a possibility for fine surveying and mapping.

  11. Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping.

    PubMed

    Borra-Serrano, Irene; Peña, José Manuel; Torres-Sánchez, Jorge; Mesas-Carrascosa, Francisco Javier; López-Granados, Francisca

    2015-01-01

    Unmanned aerial vehicles (UAVs) combined with different spectral range sensors are an emerging technology for providing early weed maps for optimizing herbicide applications. Considering that weeds, at very early phenological stages, are similar spectrally and in appearance, three major components are relevant: spatial resolution, type of sensor and classification algorithm. Resampling is a technique to create a new version of an image with a different width and/or height in pixels, and it has been used in satellite imagery with different spatial and temporal resolutions. In this paper, the efficiency of resampled-images (RS-images) created from real UAV-images (UAV-images; the UAVs were equipped with two types of sensors, i.e., visible and visible plus near-infrared spectra) captured at different altitudes is examined to test the quality of the RS-image output. The performance of the object-based-image-analysis (OBIA) implemented for the early weed mapping using different weed thresholds was also evaluated. Our results showed that resampling accurately extracted the spectral values from high spatial resolution UAV-images at an altitude of 30 m and the RS-image data at altitudes of 60 and 100 m, was able to provide accurate weed cover and herbicide application maps compared with UAV-images from real flights. PMID:26274960

  12. Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping

    PubMed Central

    Borra-Serrano, Irene; Peña, José Manuel; Torres-Sánchez, Jorge; Mesas-Carrascosa, Francisco Javier; López-Granados, Francisca

    2015-01-01

    Unmanned aerial vehicles (UAVs) combined with different spectral range sensors are an emerging technology for providing early weed maps for optimizing herbicide applications. Considering that weeds, at very early phenological stages, are similar spectrally and in appearance, three major components are relevant: spatial resolution, type of sensor and classification algorithm. Resampling is a technique to create a new version of an image with a different width and/or height in pixels, and it has been used in satellite imagery with different spatial and temporal resolutions. In this paper, the efficiency of resampled-images (RS-images) created from real UAV-images (UAV-images; the UAVs were equipped with two types of sensors, i.e., visible and visible plus near-infrared spectra) captured at different altitudes is examined to test the quality of the RS-image output. The performance of the object-based-image-analysis (OBIA) implemented for the early weed mapping using different weed thresholds was also evaluated. Our results showed that resampling accurately extracted the spectral values from high spatial resolution UAV-images at an altitude of 30 m and the RS-image data at altitudes of 60 and 100 m, was able to provide accurate weed cover and herbicide application maps compared with UAV-images from real flights. PMID:26274960

  13. Non-invasive imaging of microcirculation: a technology review

    PubMed Central

    Eriksson, Sam; Nilsson, Jan; Sturesson, Christian

    2014-01-01

    Microcirculation plays a crucial role in physiological processes of tissue oxygenation and nutritional exchange. Measurement of microcirculation can be applied on many organs in various pathologies. In this paper we aim to review the technique of non-invasive methods for imaging of the microcirculation. Methods covered are: videomicroscopy techniques, laser Doppler perfusion imaging, and laser speckle contrast imaging. Videomicroscopy techniques, such as orthogonal polarization spectral imaging and sidestream dark-field imaging, provide a plentitude of information and offer direct visualization of the microcirculation but have the major drawback that they may give pressure artifacts. Both laser Doppler perfusion imaging and laser speckle contrast imaging allow non-contact measurements but have the disadvantage of their sensitivity to motion artifacts and that they are confined to relative measurement comparisons. Ideal would be a non-contact videomicroscopy method with fully automatic analysis software. PMID:25525397

  14. An aerial 3D printing test mission

    NASA Astrophysics Data System (ADS)

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy

    2016-05-01

    This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.

  15. AERIAL MEASURING SYSTEM IN JAPAN

    SciTech Connect

    Lyons, Craig; Colton, David

    2012-01-01

    The U.S. Department of Energy National Nuclear Security Agency’s Aerial Measuring System deployed personnel and equipment to partner with the U.S. Air Force in Japan to conduct multiple aerial radiological surveys. These were the first and most comprehensive sources of actionable information for U.S. interests in Japan and provided early confirmation to the government of Japan as to the extent of the release from the Fukushima Daiichi Nuclear Power Generation Station. Many challenges were overcome quickly during the first 48 hours; including installation and operation of Aerial Measuring System equipment on multiple U.S. Air Force Japan aircraft, flying over difficult terrain, and flying with talented pilots who were unfamiliar with the Aerial Measuring System flight patterns. These all combined to make for a dynamic and non-textbook situation. In addition, the data challenges of the multiple and on-going releases, and integration with the Japanese government to provide valid aerial radiological survey products that both military and civilian customers could use to make informed decisions, was extremely complicated. The Aerial Measuring System Fukushima response provided insight in addressing these challenges and gave way to an opportunity for the expansion of the Aerial Measuring System’s mission beyond the borders of the US.

  16. Real-time Accurate Surface Reconstruction Pipeline for Vision Guided Planetary Exploration Using Unmanned Ground and Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Almeida, Eduardo DeBrito

    2012-01-01

    This report discusses work completed over the summer at the Jet Propulsion Laboratory (JPL), California Institute of Technology. A system is presented to guide ground or aerial unmanned robots using computer vision. The system performs accurate camera calibration, camera pose refinement and surface extraction from images collected by a camera mounted on the vehicle. The application motivating the research is planetary exploration and the vehicles are typically rovers or unmanned aerial vehicles. The information extracted from imagery is used primarily for navigation, as robot location is the same as the camera location and the surfaces represent the terrain that rovers traverse. The processed information must be very accurate and acquired very fast in order to be useful in practice. The main challenge being addressed by this project is to achieve high estimation accuracy and high computation speed simultaneously, a difficult task due to many technical reasons.

  17. Mask degradation monitoring with aerial mask inspector

    NASA Astrophysics Data System (ADS)

    Tseng, Wen-Jui; Fu, Yung-Ying; Lu, Shih-Ping; Jiang, Ming-Sian; Lin, Jeffrey; Wu, Clare; Lifschitz, Sivan; Tam, Aviram

    2013-06-01

    As design rule continues to shrink, microlithography is becoming more challenging and the photomasks need to comply with high scanner laser energy, low CDU, and ever more aggressive RETs. This give rise to numerous challenges in the semiconductor wafer fabrication plants. Some of these challenges being contamination (mainly haze and particles), mask pattern degradation (MoSi oxidation, chrome migration, etc.) and pellicle degradation. Fabs are constantly working to establish an efficient methodology to manage these challenges mainly using mask inspection, wafer inspection, SEM review and CD SEMs. Aerial technology offers a unique opportunity to address the above mask related challenges using one tool. The Applied Materials Aera3TM system has the inherent ability to inspect for defects (haze, particles, etc.), and track mask degradation (e.g. CDU). This paper focuses on haze monitoring, which is still a significant challenge in semiconductor manufacturing, and mask degradation effects that are starting to emerge as the next challenge for high volume semiconductor manufacturers. The paper describes Aerial inspector (Aera3) early haze methodology and mask degradation tracking related to high volume manufacturing. These will be demonstrated on memory products. At the end of the paper we take a brief look on subsequent work currently conducted on the more general issue of photo mask degradation monitoring by means of an Aerial inspector.

  18. Aeronautics Education, Research, and Industry Alliance (AERIAL) Year 2 Report and Year 3 Proposal

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Box, Richard C.; Fink, Mary M.; Gogos, Geroge; Lehrer, Henry R.; Narayanan, Ram M.; Nickerson, Jocelyn S.; Tarry, Scott E.; Vlasek, Karisa D.

    2003-01-01

    The Aeronautics Education, Research, and Industry Alliance (AERIAL): a comprehensive, multi-faceted NASA EPSCoR 2000 initiative, contributes to the strategic research and technology priorities of NASA while intensifying Nebraska s rapidly growing aeronautics research and development endeavors. AERIAL enables Nebraska researchers to: (a) continue strengthening their collaborative relationships with NASA Field Centers, Codes, and Enterprises; (b) increase the capacity of higher education throughout Nebraska to invigorate and expand aeronautics research; and (c) expedite the development of aeronautics-related research infrastructure and industry in the state. This report contains a summary of AERIAL's activities and accomplishments during the second year of implementation. The AERIAL Year 3 proposal is also included.

  19. Application possibilities of aerial and terrain data evaluation in particulate pollution effects

    NASA Astrophysics Data System (ADS)

    Kozma-Bognar, V.; Berke, J.; Martin, G.

    2012-04-01

    Recently, remote sensing has become a widely used technology in order to acquire information about our environment. Data collected using remote sensing technology indispensible criteria to recognise and monitor environmental problems caused by contamination from various human activities. According to great technological change and development in the previous decade high spectral and geometric resolution sensors are more often used. The higher resolution technology allows getting more accurate and reliable results in the research processes of the environmental pollution impacts. At University of Pannonia, Georgikon Faculty (Hungary) plant-soil-atmosphere system analyses are carried out for detecting the potential harmful effects of heavy metal pollution originated from vehicle industry. Related to this research at the Department of Meteorology and Water Management, black carbon and cadmium pollution effects are being analysed on maize crops. Testing area is situated at Agro-meteorological Research Station in Keszthely, where the first time in 2011 aerial imaging technology was used in parallel with field analyses. The experiment aims to analyses correlation of the field data with aerial data. During aerial photography were taken in different spectral bands (Visible, Near Infrared, Far Infrared). High intensity, spectral and spatial resolution data was an important part of the multitemporal imagine sensing and evaluating technology, therefore original technical solutions were applied. These resolutions served accurate plot-level evaluation. Fractal structure and intensity measurement evaluation methods were applied to examine black carbon and cadmium polluted and control maize canopy after data pre-processing. Research also focused on the examination of potential negative or positive effects of irrigation so that differences between irrigated and non-irrigated maize was investigated. For the period of growing season of 2011 time-series analyses were carried out in

  20. Endurance bounds of aerial systems

    NASA Astrophysics Data System (ADS)

    Harrington, Aaron M.; Kroninger, Christopher M.

    2014-06-01

    Within the past few years micro aerial vehicles (MAVs) have received much more attention and are starting to proliferate into military as well as civilian roles. However, one of the major drawbacks for this technology currently, has been their poor endurance, usually below 10 minutes. This is a direct result of the inefficiencies inherent in their design. Often times, designers do not consider the various components in the vehicle design and match their performance to the desired mission for the vehicle. These vehicles lack a prescribed set of design guidelines or empirically derived design equations which often limits their design to selection of commercial off-the-shelf components without proper consideration of their affect on vehicle performance. In the current study, the design space for different vehicle configurations has been examined including insect flapping, avian flapping, rotary wing, and fixed wing, and their performance bounds are established. The propulsion system typical of a rotary wing vehicle is analyzed to establish current baselines for efficiency of vehicles at this scale. The power draw from communications is analyzed to determine its impact on vehicle performance. Finally, a representative fixed wing MAV is examined and the effects of adaptive structures as a means for increasing vehicle endurance and range are examined. This paper seeks to establish the performance bounds for micro air vehicles and establish a path forward for future designs so that efficiency may be maximized.

  1. Aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.

    1978-01-01

    Thermal infrared scanning from an aircraft is a convenient and commercially available means for determining relative rates of energy loss from building roofs. The need to conserve energy as fuel costs makes the mass survey capability of aerial thermography an attractive adjunct to community energy awareness programs. Background information on principles of aerial thermography is presented. Thermal infrared scanning systems, flight and environmental requirements for data acquisition, preparation of thermographs for display, major users and suppliers of thermography, and suggested specifications for obtaining aerial scanning services were reviewed.

  2. Observation of a Large Landslide on La Reunion Island Using Differential Sar Interferometry (JERS and Radarsat) and Correlation of Optical (Spot5 and Aerial) Images.

    PubMed

    Delacourt, Christophe; Raucoules, Daniel; Le Mouélic, Stéphane; Carnec, Claudie; Feurer, Denis; Allemand, Pascal; Cruchet, Marc

    2009-01-01

    Slope instabilities are one of the most important geo-hazards in terms of socio-economic costs. The island of La Réunion (Indian Ocean) is affected by constant slope movements and huge landslides due to a combination of rough topography, wet tropical climate and its specific geological context. We show that remote sensing techniques (Differential SAR Interferometry and correlation of optical images) provide complementary means to characterize landslides on a regional scale. The vegetation cover generally hampers the analysis of C-band interferograms. We used JERS-1 images to show that the L-band can be used to overcome the loss of coherence observed in Radarsat C-band interferograms. Image correlation was applied to optical airborne and SPOT 5 sensors images. The two techniques were applied to a landslide near the town of Hellbourg in order to assess their performance for detecting and quantifying the ground motion associated to this landslide. They allowed the mapping of the unstable areas. Ground displacement of about 0.5 m yr(-1) was measured. PMID:22389620

  3. Observation of a Large Landslide on La Reunion Island Using Differential Sar Interferometry (JERS and Radarsat) and Correlation of Optical (Spot5 and Aerial) Images

    PubMed Central

    Delacourt, Christophe; Raucoules, Daniel; Le Mouélic, Stéphane; Carnec, Claudie; Feurer, Denis; Allemand, Pascal; Cruchet, Marc

    2009-01-01

    Slope instabilities are one of the most important geo-hazards in terms of socio-economic costs. The island of La Réunion (Indian Ocean) is affected by constant slope movements and huge landslides due to a combination of rough topography, wet tropical climate and its specific geological context. We show that remote sensing techniques (Differential SAR Interferometry and correlation of optical images) provide complementary means to characterize landslides on a regional scale. The vegetation cover generally hampers the analysis of C–band interferograms. We used JERS-1 images to show that the L-band can be used to overcome the loss of coherence observed in Radarsat C-band interferograms. Image correlation was applied to optical airborne and SPOT 5 sensors images. The two techniques were applied to a landslide near the town of Hellbourg in order to assess their performance for detecting and quantifying the ground motion associated to this landslide. They allowed the mapping of the unstable areas. Ground displacement of about 0.5 m yr-1 was measured. PMID:22389620

  4. Research on Virtual Simulation of the Aerial Passenger Device Based on Three-Dimensional Visualization and Virtual Simulation

    NASA Astrophysics Data System (ADS)

    Wang, Jingchong; Wang, Dahu; Liu, Haiyang

    Analyzing the key design for Aerial Passenger Device, 3DMAX is applied for creating models which is the key technology and corresponding safety protection device. Combined with Quest3D engine for setting, such as roadway and safety devices are displayed in virtual. Finally Aerial Passenger Device is in the virtual scene. Then simulation results examine the Aerial Passenger Device's rationality and safety reducing the cycle of system optimization and technology improvement.

  5. The Aeronautics Education, Research, and Industry Alliance (AERIAL) 2002 Report

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Box, Richard C.; Fink, Mary; Gogos, George; Lehrer, Henry R.; Narayanan, Ram M.; Nickerson, Jocelyn S.; Tarry, Scott E.; Vlasek, Karisa D.; O'Neil, Patrick D.

    2002-01-01

    The NASA Nebraska Space Grant Consortium (NSGC) & EPSCoR programs at the University of Nebraska at Omaha are involved in a variety of innovative research activities. Such research is supported through the Aeronautics Education, Research, and Industry Alliance (AERIAL) and collaborative seed funds. AERIAL is a comprehensive, multi-faceted, five year NASA EPSCoR initiative that contributes substantially to the strategic research and technology priorities of NASA while intensifying Nebraska s rapidly growing aeronautics research and development endeavors. AERIAL includes three major collaborative research teams (CRTs) whose nexus is a common focus in aeronautics research. Each CRT - Small Aircraft Transportation System (SATS), Airborne Remote Sensing for Agricultural Research and Commercialization Applications (ARS), and Numerical Simulation of the Combustion of Fuel Droplets: Finite Rate Kinetics and Flame Zone Grid Adaptation (CEFD) -has a distinct research agenda. This program provides the template for funding of new and innovative research that emphasizes aerospace technology.

  6. Unmanned Aerial Vehicles Produce High-Resolution Seasonally-Relevant Imagery for Classifying Wetland Vegetation

    NASA Astrophysics Data System (ADS)

    Marcaccio, J. V.; Markle, C. E.; Chow-Fraser, P.

    2015-08-01

    With recent advances in technology, personal aerial imagery acquired with unmanned aerial vehicles (UAVs) has transformed the way ecologists can map seasonal changes in wetland habitat. Here, we use a multi-rotor (consumer quad-copter, the DJI Phantom 2 Vision+) UAV to acquire a high-resolution (< 8 cm) composite photo of a coastal wetland in summer 2014. Using validation data collected in the field, we determine if a UAV image and SWOOP (Southwestern Ontario Orthoimagery Project) image (collected in spring 2010) differ in their classification of type of dominant vegetation type and percent cover of three plant classes: submerged aquatic vegetation, floating aquatic vegetation, and emergent vegetation. The UAV imagery was more accurate than available SWOOP imagery for mapping percent cover of submergent and floating vegetation categories, but both were able to accurately determine the dominant vegetation type and percent cover of emergent vegetation. Our results underscore the value and potential for affordable UAVs (complete quad-copter system < 3,000 CAD) to revolutionize the way ecologists obtain imagery and conduct field research. In Canada, new UAV regulations make this an easy and affordable way to obtain multiple high-resolution images of small (< 1.0 km2) wetlands, or portions of larger wetlands throughout a year.

  7. The application of camera calibration in range-gated 3D imaging technology

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-quan; Wang, Xian-wei; Zhou, Yan

    2013-09-01

    Range-gated laser imaging technology was proposed in 1966 by LF Gillespiethe in U.S. Army Night Vision Laboratory(NVL). Using pulse laser and intensified charge-coupled device(ICCD) as light source and detector respectively, range-gated laser imaging technology can realize space-slice imaging while restraining the atmospheric backs-catter, and in turn detect the target effectively, by controlling the delay between the laser pulse and strobe. Owing to the constraints of the development of key components such as narrow pulse laser and gated imaging devices, the research has been progressed slowly in the next few decades. Until the beginning of this century, as the hardware technology continues to mature, this technology has developed rapidly in fields such as night vision, underwater imaging, biomedical imaging, three-dimensional imaging, especially range-gated three-dimensional(3-D) laser imaging field purposing of access to target spatial information. 3-D reconstruction is the processing of restoration of 3-D objects visible surface geometric structure from three-dimensional(2-D) image. Range-gated laser imaging technology can achieve gated imaging of slice space to form a slice image, and in turn provide the distance information corresponding to the slice image. But to inverse the information of 3-D space, we need to obtain the imaging visual field of system, that is, the focal length of the system. Then based on the distance information of the space slice, the spatial information of each unit space corresponding to each pixel can be inversed. Camera calibration is an indispensable step in 3-D reconstruction, including analysis of the internal structure of camera parameters and the external parameters . In order to meet the technical requirements of the range-gated 3-D imaging, this paper intends to study the calibration of the zoom lens system. After summarizing the camera calibration technique comprehensively, a classic calibration method based on line is

  8. Raman chemical imaging technology for food safety and quality evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Raman chemical imaging combines Raman spectroscopy and digital imaging to visualize composition and morphology of a target. This technique offers great potential for food safety and quality research. Most commercial Raman instruments perform measurement at microscopic level, and the spatial range ca...

  9. Mass Spectrometry Imaging, an Emerging Technology in Neuropsychopharmacology

    PubMed Central

    Shariatgorji, Mohammadreza; Svenningsson, Per; Andrén, Per E

    2014-01-01

    Mass spectrometry imaging is a powerful tool for directly determining the distribution of proteins, peptides, lipids, neurotransmitters, metabolites and drugs in neural tissue sections in situ. Molecule-specific imaging can be achieved using various ionization techniques that are suited to different applications but which all yield data with high mass accuracies and spatial resolutions. The ability to simultaneously obtain images showing the distributions of chemical species ranging from metal ions to macromolecules makes it possible to explore the chemical organization of a sample and to correlate the results obtained with specific anatomical features. The imaging of biomolecules has provided new insights into multiple neurological diseases, including Parkinson's and Alzheimer's disease. Mass spectrometry imaging can also be used in conjunction with other imaging techniques in order to identify correlations between changes in the distribution of important chemical species and other changes in the properties of the tissue. Here we review the applications of mass spectrometry imaging in neuroscience research and discuss its potential. The results presented demonstrate that mass spectrometry imaging is a useful experimental method with diverse applications in neuroscience. PMID:23966069

  10. A Selective Bibliography on Library Imaging Technology and Applications.

    ERIC Educational Resources Information Center

    Billick, David, Comp.

    1995-01-01

    Presents a list of 388 references on imaging and image management in a library environment from the public and academic domains intended for a nontechnical audience. Covers recent materials (mostly 1990-94) on scanners, storage media, display units, and compression; and publications for library professionals. (JKP)

  11. Multispectral imaging utilizing LCTF technology for plant disease detection

    NASA Astrophysics Data System (ADS)

    Tian, Lixun; Liao, Ningfang; Chai, Ali; Tan, Boneng; Cui, Deqi; Wang, Jiajia

    2011-08-01

    The aim of this paper is to pave the way for the establishment of analysis of the lights reflected from the leaf's surface as an analytical method of plant disease. An imaging LCTF spectrometer that covers a visible light with 400-720 nm wavelength bands has been developed. This paper first outlines the structure of imaging LCTF spectrometer, including their operational principles and construction. Next, various spectral images acquired using the LCTF spectrometer in laboratory environment experiments to measure spectral characteristics of rays reflected from cucumber leaves surfaces that are infected by different germs are analyzed. Then, the results of the experiments conducted using the imaging spectrometer are shown, including the analyzed relative radiance of rays reflected from the plants, and spectral images acquired at various wavelengths. These experimental results demonstrate clearly that rays reflected from plant contaminated by different disease germs have different spectral properties.

  12. Applications of terahertz (THz) technology to medical imaging

    NASA Astrophysics Data System (ADS)

    Arnone, Donald D.; Ciesla, Craig M.; Corchia, Alessandra; Egusa, S.; Pepper, Michael; Chamberlain, J. Martyn; Bezant, C.; Linfield, Edmund H.; Clothier, R.; Khammo, N.

    1999-09-01

    An imaging system has been developed based on pulses of Terahertz (THz) radiation generated and detected using all- optical effects accessed by irradiating semiconductors with ultrafast pulses of visible laser light. This technique, commonly referred to as T-Ray Imaging or THz Pulse Imaging (TPI), holds enormous promise for certain aspects of medical imaging. We have conducted an initial survey of possible medical applications of TPI and demonstrated that TPI images show good contrast between different animal tissue types. Moreover, the diagnostic power of TPI has been elicidated by the spectra available at each pixel in the image, which are markedly different for the different tissue types. This suggests that the spectral information inherent in TPI might be used to identify the type of soft and hard tissue at each pixel in an image and provide other diagnostic information not afforded by conventional imagin techniques. Preliminary TPI studies of pork skin show that 3D tomographic imaging of the skin surface and thickness is possible, and data from experiments on models of the human dermis are presented which demonstrate that different constituents of skin have different refractive indices. Lastly, we present the first THz image of human tissue, namely an extracted tooth. The time of flight of THz pulses through the tooth allows the thickness of the enamel to be determined, and is used to create an image showing the enamel and dentine regions. Absorption of THz pulses in the tooth allows the pulp cavity region to be identified. Initial evidence strongly suggests that TPI my be used to provide valuable diagnostic information pertaining to the enamel, dentine, and the pump cavity.

  13. The influence of the in situ camera calibration for direct georeferencing of aerial imagery

    NASA Astrophysics Data System (ADS)

    Mitishita, E.; Barrios, R.; Centeno, J.

    2014-11-01

    The direct determination of exterior orientation parameters (EOPs) of aerial images via GNSS/INS technologies is an essential prerequisite in photogrammetric mapping nowadays. Although direct sensor orientation technologies provide a high degree of automation in the process due to the GNSS/INS technologies, the accuracies of the obtained results depend on the quality of a group of parameters that models accurately the conditions of the system at the moment the job is performed. One sub-group of parameters (lever arm offsets and boresight misalignments) models the position and orientation of the sensors with respect to the IMU body frame due to the impossibility of having all sensors on the same position and orientation in the airborne platform. Another sub-group of parameters models the internal characteristics of the sensor (IOP). A system calibration procedure has been recommended by worldwide studies to obtain accurate parameters (mounting and sensor characteristics) for applications of the direct sensor orientation. Commonly, mounting and sensor characteristics are not stable; they can vary in different flight conditions. The system calibration requires a geometric arrangement of the flight and/or control points to decouple correlated parameters, which are not available in the conventional photogrammetric flight. Considering this difficulty, this study investigates the feasibility of the in situ camera calibration to improve the accuracy of the direct georeferencing of aerial images. The camera calibration uses a minimum image block, extracted from the conventional photogrammetric flight, and control point arrangement. A digital Vexcel UltraCam XP camera connected to POS AV TM system was used to get two photogrammetric image blocks. The blocks have different flight directions and opposite flight line. In situ calibration procedures to compute different sets of IOPs are performed and their results are analyzed and used in photogrammetric experiments. The IOPs

  14. Modeling aerial refueling operations

    NASA Astrophysics Data System (ADS)

    McCoy, Allen B., III

    Aerial Refueling (AR) is the act of offloading fuel from one aircraft (the tanker) to another aircraft (the receiver) in mid flight. Meetings between tanker and receiver aircraft are referred to as AR events and are scheduled to: escort one or more receivers across a large body of water; refuel one or more receivers; or train receiver pilots, tanker pilots, and boom operators. In order to efficiently execute the Aerial Refueling Mission, the Air Mobility Command (AMC) of the United States Air Force (USAF) depends on computer models to help it make tanker basing decisions, plan tanker sorties, schedule aircraft, develop new organizational doctrines, and influence policy. We have worked on three projects that have helped AMC improve its modeling and decision making capabilities. Optimal Flight Planning. Currently Air Mobility simulation and optimization software packages depend on algorithms which iterate over three dimensional fuel flow tables to compute aircraft fuel consumption under changing flight conditions. When a high degree of fidelity is required, these algorithms use a large amount of memory and CPU time. We have modeled the rate of aircraft fuel consumption with respect to AC GrossWeight, Altitude and Airspeed. When implemented, this formula will decrease the amount of memory and CPU time needed to compute sortie fuel costs and cargo capacity values. We have also shown how this formula can be used in optimal control problems to find minimum costs flight plans. Tanker Basing Demand Mismatch Index. Since 1992, AMC has relied on a Tanker Basing/AR Demand Mismatch Index which aggregates tanker capacity and AR demand data into six regions. This index was criticized because there were large gradients along regional boundaries. Meanwhile tankers frequently cross regional boundaries to satisfy the demand for AR support. In response we developed continuous functions to score locations with respect to their proximity to demand for AR support as well as their

  15. Investigation of crop nitrogen content based on image processing technologies

    NASA Astrophysics Data System (ADS)

    Zhang, Yane; Li, Minzan; Xu, Zenghui; Zhang, Xijie; Wang, Maohua

    2005-08-01

    A special image sampler was developed to non-destructively take leaf images of cucumber plants in greenhouse, which were grown in different nutrient conditions in order to obtain nitrogen stress to the crop. Then the correlation between nitrogen content of cucumber leaf and image property of the leaf was analyzed. The sampler is composed of eight lamps, a half sphere shell, a platform, and a window used for fixing camera. The lamps were arranged around the platform on what leafs would be placed for image-taking. The half sphere shell was over the platform to reflect the light of lamps. Since the reflected light from the shell was diffuse and symmetrical, the reflection noise of the leaf could be reduced and the high quality image could be obtained. The correlation analysis between leaf images and nitrogen contents of leaves was conducted based on RGB mode and HSI mode. In RGB mode the G weight of the image showed the highest linear correlation with the nitrogen content of the cucumber leaf than R weight and B weight, while in HSI mode the hue showed the same high linear correlation as the G weight. A new index from the G weight of RGB mode and the hue of HSI mode was suggested to estimate nitrogen content of cucumber leaf. The result shows the new index is practical.

  16. Imaging technologies for preclinical models of bone and joint disorders

    PubMed Central

    2011-01-01

    Preclinical models for musculoskeletal disorders are critical for understanding the pathogenesis of bone and joint disorders in humans and the development of effective therapies. The assessment of these models primarily relies on morphological analysis which remains time consuming and costly, requiring large numbers of animals to be tested through different stages of the disease. The implementation of preclinical imaging represents a keystone in the refinement of animal models allowing longitudinal studies and enabling a powerful, non-invasive and clinically translatable way for monitoring disease progression in real time. Our aim is to highlight examples that demonstrate the advantages and limitations of different imaging modalities including magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), single-photon emission computed tomography (SPECT) and optical imaging. All of which are in current use in preclinical skeletal research. MRI can provide high resolution of soft tissue structures, but imaging requires comparatively long acquisition times; hence, animals require long-term anaesthesia. CT is extensively used in bone and joint disorders providing excellent spatial resolution and good contrast for bone imaging. Despite its excellent structural assessment of mineralized structures, CT does not provide in vivo functional information of ongoing biological processes. Nuclear medicine is a very promising tool for investigating functional and molecular processes in vivo with new tracers becoming available as biomarkers. The combined use of imaging modalities also holds significant potential for the assessment of disease pathogenesis in animal models of musculoskeletal disorders, minimising the use of conventional invasive methods and animal redundancy. PMID:22214535

  17. Wildlife Multispecies Remote Sensing Using Visible and Thermal Infrared Imagery Acquired from AN Unmanned Aerial Vehicle (uav)

    NASA Astrophysics Data System (ADS)

    Chrétien, L.-P.; Théau, J.; Ménard, P.

    2015-08-01

    Wildlife aerial surveys require time and significant resources. Multispecies detection could reduce costs to a single census for species that coexist spatially. Traditional methods are demanding for observers in terms of concentration and are not adapted to multispecies censuses. The processing of multispectral aerial imagery acquired from an unmanned aerial vehicle (UAV) represents a potential solution for multispecies detection. The method used in this study is based on a multicriteria object-based image analysis applied on visible and thermal infrared imagery acquired from a UAV. This project aimed to detect American bison, fallow deer, gray wolves, and elks located in separate enclosures with a known number of individuals. Results showed that all bison and elks were detected without errors, while for deer and wolves, 0-2 individuals per flight line were mistaken with ground elements or undetected. This approach also detected simultaneously and separately the four targeted species even in the presence of other untargeted ones. These results confirm the potential of multispectral imagery acquired from UAV for wildlife census. Its operational application remains limited to small areas related to the current regulations and available technology. Standardization of the workflow will help to reduce time and expertise requirements for such technology.

  18. Use of archive aerial photography for monitoring black mangrove populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted on the south Texas Gulf Coast to evaluate archive aerial color-infrared (CIR) photography combined with supervised image analysis techniques to quantify changes in black mangrove [Avicennia germinans (L.) L.] populations over a 26-year period. Archive CIR film from two study si...

  19. High throughput phenotyping using an unmanned aerial vehicle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field trials are expensive and labor-intensive to carry out. Strategies to maximize data collection from these trials will improve research efficiencies. We have purchased a small unmanned aerial vehicle (AEV) to collect digital images from field plots. The AEV is remote-controlled and can be guided...

  20. Development of an airborne remote sensing system for aerial applicators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An airborne remote sensing system was developed and tested for recording aerial images of field crops, which were analyzed for variations of crop health or pest infestation. The multicomponent system consists of a multi-spectral camera system, a camera control system, and a radiometer for normalizi...

  1. Imaging spectrometer technologies for advanced Earth remote sensing

    NASA Technical Reports Server (NTRS)

    Wellman, J. B.; Breckinridge, J. B.; Kuperfman, P.; Salazar, R. P.; Sigurdson, K. B.

    1982-01-01

    A major requirement of multispectral imaging systems for advanced Earth remote sensing is the provision for greater spectral resolution and more versatile spectral band selection. The imaging spectrometer instrument concept provides this versatility by the combination of pushbroom imaging and spectrally dispersing optics using area array detectors in the focal plane. The shuttle imaging spectrometer concept achieves 10- and 20-meter ground instantaneous fields of view with 20-nanometer spectral resolution from Earth Orbit. Onboard processing allows the selection of spectral bands during flight; this, in turn, permits the sensor parameters to be tailored to the experiment objectives. Advances in optical design, infrared detector arrays, and focal plane cooling indicate the feasibility of the instrument concept and support the practicability of a validation flight experiment for the shuttle in the late 1980s.

  2. Imaging spectrometer technologies for advanced earth remote sensing

    NASA Technical Reports Server (NTRS)

    Wellman, J. B.; Breckinridge, J. B.; Kupferman, P.; Salazar, R. P.; Sigurdson, K. B.

    1982-01-01

    A major requirement of multispectral imaging systems for advanced earth remote sensing is the provision for greater spectral resolution and more versatile spectral band selection. The imaging spectrometer instrument concept provides this versatility by the combination of pushbroom imaging and spectrally dispersing optics using area array detectors in the focal plane. The shuttle imaging spectrometer concept achieves 10- and 20-meter ground instantaneous fields of view with 20-nanometer spectral resolution from earth orbit. Onboard processing allows the selection of spectral bands during flight; this, in turn, permits the sensor parameters to be tailored to the experiment objectives. Advances in optical design, infrared detector arrays, and focal plane cooling indicate the feasibility of the instrument concept and support the practicability of a validation flight experiment for the shuttle in the late 1980s. Previously announced in STAR as N83-28542

  3. Towards real-time medical diagnostics using hyperspectral imaging technology

    NASA Astrophysics Data System (ADS)

    Bjorgan, Asgeir; Randeberg, Lise L.

    2015-07-01

    Hyperspectral imaging provides non-contact, high resolution spectral images which has a substantial diagnostic potential. This can be used for e.g. diagnosis and early detection of arthritis in finger joints. Processing speed is currently a limitation for clinical use of the technique. A real-time system for analysis and visualization using GPU processing and threaded CPU processing is presented. Images showing blood oxygenation, blood volume fraction and vessel enhanced images are among the data calculated in real-time. This study shows the potential of real-time processing in this context. A combination of the processing modules will be used in detection of arthritic finger joints from hyperspectral reflectance and transmittance data.

  4. Teaching High School Science Using Image Processing: A Case Study of Implementation of Computer Technology.

    ERIC Educational Resources Information Center

    Greenberg, Richard; Raphael, Jacqueline; Keller, Jill L.; Tobias, Sheila

    1998-01-01

    Outlines an in-depth case study of teachers' use of image processing in biology, earth science, and physics classes in one high school science department. Explores issues surrounding technology implementation. Contains 21 references. (DDR)

  5. OHIO INTERNATIONAL TELEVISION AND VIDEO FESTIVAL AWARD WINNERS FROM THE IMAGING TECHNOLOGY CENTER IT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    OHIO INTERNATIONAL TELEVISION AND VIDEO FESTIVAL AWARD WINNERS FROM THE IMAGING TECHNOLOGY CENTER ITC KEVIN BURKE - BILL FLETCHER - GARY NOLAN - EMERY ADANICH FOR THE VIDEO ENTITLED ICING FOR REGIONAL AND CORPORATE PILOTS

  6. A coming of age: advanced imaging technologies for characterising the developing mouse.

    PubMed

    Norris, Francesca C; Wong, Michael D; Greene, Nicholas D E; Scambler, Peter J; Weaver, Tom; Weninger, Wolfgang J; Mohun, Timothy J; Henkelman, R Mark; Lythgoe, Mark F

    2013-12-01

    The immense challenge of annotating the entire mouse genome has stimulated the development of cutting-edge imaging technologies in a drive for novel information. These techniques promise to improve understanding of the genes involved in embryo development, at least one third of which have been shown to be essential. Aligning advanced imaging technologies with biological needs will be fundamental to maximising the number of phenotypes discovered in the coming years. International efforts are underway to meet this challenge through an integrated and sophisticated approach to embryo phenotyping. We review rapid advances made in the imaging field over the past decade and provide a comprehensive examination of the relative merits of current and emerging techniques. The aim of this review is to provide a guide to state-of-the-art embryo imaging that will enable informed decisions as to which technology to use and fuel conversations between expert imaging laboratories, researchers, and core mouse production facilities. PMID:24035368

  7. Target detection technology based on polarization imaging in the complex environment

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Jiang, Hui-lin; Duan, Jin; Mo, Chun-he; Zhuang, Shu-ming; Yang, Yong-he

    2013-09-01

    The polarization imaging detection technology has some advantages in revealling targets in complex background, identify stealthy, camouflage, dim, false target, and "penetrating smoke". This article summarizes foreign polarization imaging detection technology development process, the status and development trends, and discusses the foreign technical level, further research on key technology of polarization imaging detection, put forward a scheme of the detection system based on polarization imaging in complex environment, through increasing the polarization dimension information based on intensity imaging , on which intensity and spectrum cannot reflect, and can significantly enhance the difference between target and background, increase influencing distance in the haze, smoke and dust environment , through the analysis, we elucidated the feasibility and availability of the system, in order to enhance the future of the target detection and recognition ability of photoelectric equipment.

  8. Velocity measurements and changes in position of Thwaites Glacier/iceberg tongue from aerial photography, Landsat images and NOAA AVHRR data

    USGS Publications Warehouse

    Ferrigno, Jane G.; Lucchitta, Baerbel K.; Mullinsallison, A. L.; Allen, Robert J.; Gould, W. G.

    1993-01-01

    The Thwaites Glacier/iceberg tongue complex has been a significant feature of the Antarctic coastline for at least 50 years. In 1986, major changes began to occur in this area. Fast ice melted and several icebergs calved from the base of the iceberg tongue and the terminus of Thwaites Glacier. The iceberg tongue rotated to an east-west orientation and drifted westward. Between 1986 and 1992, a total of 140 km of drift has occurred. Remote digital velocity measurements were made on Thwaites Glacier using sequential Landsat images to try to determine if changes in velocity had occurred in conjunction with the changes in ice position. Examination of the morphology of the glacier/iceberg tongue showed no evidence of surge activity.

  9. Dead Slow: Unmanned Aerial Vehicles Loitering in Battlespace

    ERIC Educational Resources Information Center

    Blackmore, Tim

    2005-01-01

    Unmanned (or Uninhabited) Aerial Vehicles are a key part of the American military's so-called revolution in military affairs (RMA) as practiced over Iraq. They are also part of the drive to shift agency away from humans and toward machines. This article considers the ways in which humans have, in calling on high technologies to distance them from…

  10. Applicability Evaluation of Object Detection Method to Satellite and Aerial Imageries

    NASA Astrophysics Data System (ADS)

    Kamiya, K.; Fuse, T.; Takahashi, M.

    2016-06-01

    Since satellite and aerial imageries are recently widely spread and frequently observed, combination of them are expected to complement spatial and temporal resolution each other. One of the prospective applications is traffic monitoring, where objects of interest, or vehicles, need to be recognized automatically. Techniques that employ object detection before object recognition can save a computational time and cost, and thus take a significant role. However, there is not enough knowledge whether object detection method can perform well on satellite and aerial imageries. In addition, it also has to be studied how characteristics of satellite and aerial imageries affect the object detection performance. This study employ binarized normed gradients (BING) method that runs significantly fast and is robust to rotation and noise. For our experiments, 11-bits BGR-IR satellite imageries from WorldView-3, and BGR-color aerial imageries are used respectively, and we create thousands of ground truth samples. We conducted several experiments to compare the performances with different images, to verify whether combination of different resolution images improved the performance, and to analyze the applicability of mixing satellite and aerial imageries. The results showed that infrared band had little effect on the detection rate, that 11-bit images performed less than 8-bit images and that the better spatial resolution brought the better performance. Another result might imply that mixing higher and lower resolution images for training dataset could help detection performance. Furthermore, we found that aerial images improved the detection performance on satellite images.

  11. Advances in hyperspectral imaging technologies for multichannel fiber sensing

    NASA Astrophysics Data System (ADS)

    Zakrzewski, Jay; Didona, Kevin

    2009-05-01

    A spectrograph's design, e.g. the opto-mechanical system beginning at the entrance slit, and ending at the back focal plane position, directly impacts system level performance parameters including the height of the useable aperture, spatial and spectral resolving power, optical throughput efficiency, and dynamic range. The efficiency and integrity of both spatial and spectral input image reproduction within the entire back focal plane area is an often overlooked parameter leading to unnecessary acceptance of sacrificed system level performance. Examples of input images include the slit apertured area of a scene captured by a camera lens, a single optical fiber core located within the entrance aperture area, or a linear array of optical fiber cores stacked along the spatial height of the entrance aperture area. This study evaluates the spectral and spatial imaging performance of several aberration corrected high reciprocal dispersion retro-reflective concentric, as well as aberration corrected Offner imaging spectrographs which produce minimal degradation over a large focal plane. Ray trace images and pixilated area maps demonstrating spatial and spectral reproduction accuracy over the entire back focal plane are presented.

  12. Moving Obstacle Avoidance for Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Lin, Yucong

    There has been a vast increase in applications of Unmanned Aerial Vehicles (UAVs) in civilian domains. To operate in the civilian airspace, a UAV must be able to sense and avoid both static and moving obstacles for flight safety. While indoor and low-altitude environments are mainly occupied by static obstacles, risks in space of higher altitude primarily come from moving obstacles such as other aircraft or flying vehicles in the airspace. Therefore, the ability to avoid moving obstacles becomes a necessity for Unmanned Aerial Vehicles. Towards enabling a UAV to autonomously sense and avoid moving obstacles, this thesis makes the following contributions. Initially, an image-based reactive motion planner is developed for a quadrotor to avoid a fast approaching obstacle. Furthermore, A Dubin's curve based geometry method is developed as a global path planner for a fixed-wing UAV to avoid collisions with aircraft. The image-based method is unable to produce an optimal path and the geometry method uses a simplified UAV model. To compensate these two disadvantages, a series of algorithms built upon the Closed-Loop Rapid Exploratory Random Tree are developed as global path planners to generate collision avoidance paths in real time. The algorithms are validated in Software-In-the-Loop (SITL) and Hardware-In-the-Loop (HIL) simulations using a fixed-wing UAV model and in real flight experiments using quadrotors. It is observed that the algorithm enables a UAV to avoid moving obstacles approaching to it with different directions and speeds.

  13. Technology through a Retrospective Eye: Imaging Practices between the World Wars and Beyond.

    ERIC Educational Resources Information Center

    Zelizer, Barbie

    1995-01-01

    Introduces a symposium in this journal issue: "Technology through a Retrospective Eye: Imaging Practices between the World Wars and Beyond." Notes that each article of the symposium keys into a central moment of expansion of imaging practice and focuses on the debates that accompanied that expansion. (SR)

  14. Test methods and technology for uncooled imaging systems

    NASA Astrophysics Data System (ADS)

    Miller, Scott J.; Backer, Brian S.; Kohin, Margaret; Alonso, Pascual; Whitwam, Jason T.

    2004-08-01

    BAE SYSTEMS produces hundreds of low cost, high performance, uncooled IR imagers each month for use in commercial and military applications. The production process of each imager includes several steps that begin at the wafer level and end at an in-camera test. Each step is critical to end yield improvement by detecting failure at various stages in the production flow. Both automated test equipment and an integrated database system are essential at each phase to efficiently build and automatically configure cameras for each customer. This paper discusses the process and tools used to reliably test and ship uncooled thermal imagers in addition to specific methods and calculation techniques for characterizing key performance parameters such as Responsivity, Noise Equivalent Temperature Difference, and Operability.

  15. Study on multispectral imaging detection and recognition

    NASA Astrophysics Data System (ADS)

    Jun, Wang; Na, Ding; Gao, Jiaobo; Yu, Hu; Jun, Wu; Li, Junna; Zheng, Yawei; Fei, Gao; Sun, Kefeng

    2009-07-01

    Multispectral imaging detecting technology use target radiation character in spectral spatial distribution and relation between spectral and image to detect target and remote sensing measure. Its speciality is multi channel, narrow bandwidth, large amount of information, high accuracy. The ability of detecting target in environment of clutter, camouflage, concealment and beguilement is improved. At present, spectral imaging technology in the range of multispectral and hyperspectral develop greatly. The multispectral imaging equipment of unmanned aerial vehicle can be used in mine detection, information, surveillance and reconnaissance. Spectral imaging spectrometer operating in MWIR and LWIR has already been applied in the field of remote sensing and military in the advanced country. The paper presents the technology of multispectral imaging. It can enhance the reflectance, scatter and radiation character of the artificial targets among nature background. The targets among complex background and camouflage/stealth targets can be effectively identified. The experiment results and the data of spectral imaging is obtained.

  16. Driving into the future: how imaging technology is shaping the future of cars

    NASA Astrophysics Data System (ADS)

    Zhang, Buyue

    2015-03-01

    Fueled by the development of advanced driver assistance system (ADAS), autonomous vehicles, and the proliferation of cameras and sensors, automotive is becoming a rich new domain for innovations in imaging technology. This paper presents an overview of ADAS, the important imaging and computer vision problems to solve for automotive, and examples of how some of these problems are solved, through which we highlight the challenges and opportunities in the automotive imaging space.

  17. SU-E-P-10: Imaging in the Cardiac Catheterization Lab - Technologies and Clinical Applications

    SciTech Connect

    Fetterly, K

    2014-06-01

    Purpose: Diagnosis and treatment of cardiovascular disease in the cardiac catheterization laboratory is often aided by a multitude of imaging technologies. The purpose of this work is to highlight the contributions to patient care offered by the various imaging systems used during cardiovascular interventional procedures. Methods: Imaging technologies used in the cardiac catheterization lab were characterized by their fundamental technology and by the clinical applications for which they are used. Whether the modality is external to the patient, intravascular, or intracavity was specified. Specific clinical procedures for which multiple modalities are routinely used will be highlighted. Results: X-ray imaging modalities include fluoroscopy/angiography and angiography CT. Ultrasound imaging is performed with external, trans-esophageal echocardiography (TEE), and intravascular (IVUS) transducers. Intravascular infrared optical coherence tomography (IVOCT) is used to assess vessel endothelium. Relatively large (>0.5 mm) anatomical structures are imaged with x-ray and ultrasound. IVUS and IVOCT provide high resolution images of vessel walls. Cardiac CT and MRI images are used to plan complex cardiovascular interventions. Advanced applications are used to spatially and temporally merge images from different technologies. Diagnosis and treatment of coronary artery disease frequently utilizes angiography and intra-vascular imaging, and treatment of complex structural heart conditions routinely includes use of multiple imaging modalities. Conclusion: There are several imaging modalities which are routinely used in the cardiac catheterization laboratory to diagnose and treat both coronary artery and structural heart disease. Multiple modalities are frequently used to enhance the quality and safety of procedures. The cardiac catheterization laboratory includes many opportunities for medical physicists to contribute substantially toward advancing patient care.

  18. [Interventional MR imaging: state of the art and technological advances].

    PubMed

    Viard, R; Rousseau, J

    2008-01-01

    Due to its excellent soft tissue contrast and lack of ionizing radiation, MR imaging is well suited for interventional procedures. MRI is being increasingly used for guidance during percutaneous procedures or surgery. Technical advances in interventional MR imaging are reviewed in this paper. Ergonomical factors with improved access to patients as well as advances in informatics, electronics and robotics largely explain this increasing role. Different elements are discussed from improved access to patients in the scanners to improved acquisition pulse sequences. Selected clinical applications and recent publications will be presented to illustrate the current status of this technique. PMID:18288022

  19. Airborne laser induced fluorescence imaging. Innovative technology summary report

    SciTech Connect

    1999-06-01

    Laser-Induced Fluorescence (LIF) was demonstration as part of the Fernald Environmental Management Project (FEMP) Plant 1 Large Scale Demonstration and Deployment Project (LSDDP) sponsored by the US Department of Energy (DOE) Office of Science and Technology, Deactivation and Decommissioning Focus Area located at the Federal Energy Technology Center (FETC) in Morgantown, West Virginia. The demonstration took place on November 19, 1996. In order to allow the contaminated buildings undergoing deactivation and decommissioning (D and D) to be opened to the atmosphere, radiological surveys of floors, walls and ceilings must take place. After successful completion of the radiological clearance survey, demolition of the building can continue. Currently, this process is performed by collecting and analyzing swipe samples for radiological analysis. Two methods are used to analyze the swipe samples: hand-held frisker and laboratory analysis. For the purpose of this demonstration, the least expensive method, swipe samples analyzed by hand-held frisker, is the baseline technology. The objective of the technology demonstration was to determine if the baseline technology could be replaced using LIF.

  20. Flexible vision-based navigation system for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Blasch, Erik P.

    1995-01-01

    A critical component of unmanned aerial vehicles in the navigation system which provides position and velocity feedback for autonomous control. The Georgia Tech Aerial Robotics navigational system (NavSys) consists of four DVTStinger70C Integrated Vision Units (IVUs) with CCD-based panning platforms, software, and a fiducial onboard the vehicle. The IVUs independently scan for the retro-reflective bar-code fiducial while the NavSys image processing software performs a gradient threshold followed by a image search localization of three vertical bar-code lines. Using the (x,y) image coordinate and CCD angle, the NavSys triangulates the fiducial's (x,y) position, differentiates for velocity, and relays the information to the helicopter controller, which independently determines the z direction with an onboard altimeter. System flexibility is demonstrated by recognition of different fiducial shapes, night and day time operation, and is being extended to on-board and off-board navigation of aerial and ground vehicles. The navigation design provides a real-time, inexpensive, and effective system for determining the (x,y) position of the aerial vehicle with updates generated every 51 ms (19.6 Hz) at an accuracy of approximately +/- 2.8 in.

  1. Locating chimpanzee nests and identifying fruiting trees with an unmanned aerial vehicle.

    PubMed

    van Andel, Alexander C; Wich, Serge A; Boesch, Christophe; Koh, Lian Pin; Robbins, Martha M; Kelly, Joseph; Kuehl, Hjalmar S

    2015-10-01

    Monitoring of animal populations is essential for conservation management. Various techniques are available to assess spatiotemporal patterns of species distribution and abundance. Nest surveys are often used for monitoring great apes. Quickly developing technologies, including unmanned aerial vehicles (UAVs) can be used to complement these ground-based surveys, especially for covering large areas rapidly. Aerial surveys have been used successfully to detect the nests of orang-utans. It is unknown if such an approach is practical for African apes, which usually build their nests at lower heights, where they might be obscured by forest canopy. In this 2-month study, UAV-derived aerial imagery was used for two distinct purposes: testing the detectability of chimpanzee nests and identifying fruiting trees used by chimpanzees in Loango National Park (Gabon). Chimpanzee nest data were collected through two approaches: we located nests on the ground and then tried to detect them in UAV photos and vice versa. Ground surveys were conducted using line transects, reconnaissance trails, and opportunistic sampling during which we detected 116 individual nests in 28 nest groups. In complementary UAV images we detected 48% of the individual nests (68% of nest groups) in open coastal forests and 8% of individual nests (33% of nest groups) in closed canopy inland forests. The key factor for nest detectability in UAV imagery was canopy openness. Data on fruiting trees were collected from five line transects. In 122 UAV images 14 species of trees (N = 433) were identified, alongside 37 tree species (N = 205) in complementary ground surveys. Relative abundance of common tree species correlated between ground and UAV surveys. We conclude that UAVs have great potential as a rapid assessment tool for detecting chimpanzee presence in forest with open canopy and assessing fruit tree availability. UAVs may have limited applicability for nest detection in closed canopy forest. PMID

  2. Distributed source x-ray tube technology for tomosynthesis imaging

    PubMed Central

    Sprenger, F.; Calderon-Colon, X.; Cheng, Y.; Englestad, K.; Lu, J.; Maltz, J.; Paidi, A.; Qian, X.; Spronk, D.; Sultana, S.; Yang, G.; Zhou, O.

    2011-01-01

    Tomosynthesis imaging requires projection images from different viewing angles. Conventional systems use a moving xray source to acquire the individual projections. Using a stationary distributed x-ray source with a number of sources that equals the number of required projections, this can be achieved without any mechanical motion. Advantages are a potentially faster image acquisition speed, higher spatial and temporal resolution and simple system design. We present distributed x-ray sources based on carbon nanotube (CNT) field emission cathodes. The field emission cathodes deliver the electrons required for x-ray production. CNT emitters feature a stable emission at high current density, a cold emission, excellent temporal control of the emitted electrons and good configurability. We discuss the use of stationary sources for two applications: (i) a linear tube for stationary digital breast tomosynthesis (sDBT), and (ii) a square tube for on-board tomosynthesis image-guided radiation therapy (IGRT). Results from high energy distributed sources up to 160kVp are also presented. PMID:21785671

  3. Imaging retinal ganglion cells: enabling experimental technology for clinical application.

    PubMed

    Smith, Corey A; Chauhan, Balwantray C

    2015-01-01

    Recent advances in clinical ophthalmic imaging have enhanced patient care. However, the ability to differentiate retinal neurons, such as retinal ganglion cells (RGCs), would advance many areas within ophthalmology, including the screening and monitoring of glaucoma and other optic neuropathies. Imaging at the single cell level would take diagnostics to the next level. Experimental methods have provided techniques and insight into imaging RGCs, however no method has yet to be translated to clinical application. This review provides an overview of the importance of non-invasive imaging of RGCs and the clinically relevant capabilities. In addition, we report on experimental data from wild-type mice that received an in vivo intravitreal injection of a neuronal tracer that labelled RGCs, which in turn were monitored for up to 100 days post-injection with confocal scanning laser ophthalmoscopy. We were able to demonstrate efficient and consistent RGC labelling with this delivery method and discuss the issue of cell specificity. This type of experimental work is important in progressing towards clinically applicable methods for monitoring loss of RGCs in glaucoma and other optic neuropathies. We discuss the challenges to translating these findings to clinical application and how this method of tracking RGCs in vivo could provide valuable structural and functional information to clinicians. PMID:25448921

  4. Adaptive filtering image preprocessing for smart FPA technology

    NASA Astrophysics Data System (ADS)

    Brooks, Geoffrey W.

    1995-05-01

    This paper discusses two applications of adaptive filters for image processing on parallel architectures. The first, based on the results of previously accomplished work, summarizes the analyses of various adaptive filters implemented for pixel-level image prediction. FIR filters, fixed and adaptive IIR filters, and various variable step size algorithms were compared with a focus on algorithm complexity against the ability to predict future pixel values. A gaussian smoothing operation with varying spatial and temporal constants were also applied for comparisons of random noise reductions. The second application is a suggestion to use memory-adaptive IIR filters for detecting and tracking motion within an image. Objects within an image are made of edges, or segments, with varying degrees of motion. An application has been previously published that describes FIR filters connecting pixels and using correlations to determine motion and direction. This implementation seems limited to detecting motion coinciding with FIR filter operation rate and the associated harmonics. Upgrading the FIR structures with adaptive IIR structures can eliminate these limitations. These and any other pixel-level adaptive filtering application require data memory for filter parameters and some basic computational capability. Tradeoffs have to be made between chip real estate and these desired features. System tradeoffs will also have to be made as to where it makes the most sense to do which level of processing. Although smart pixels may not be ready to implement adaptive filters, applications such as these should give the smart pixel designer some long range goals.

  5. Hyperspectral Imaging Technologies for Nondestructive Agro-Food Evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the past decade, researchers at the Agricultural Research Service (ARS), United States Department of Agriculture (USDA), have developed several versions of line-scan-based hyperspectral imaging systems capable of both visible to near-infrared reflectance and fluorescence methods. These line-s...

  6. A 3-D fluorescence imaging system incorporating structured illumination technology

    NASA Astrophysics Data System (ADS)

    Antos, L.; Emord, P.; Luquette, B.; McGee, B.; Nguyen, D.; Phipps, A.; Phillips, D.; Helguera, M.

    2010-02-01

    A currently available 2-D high-resolution, optical molecular imaging system was modified by the addition of a structured illumination source, OptigridTM, to investigate the feasibility of providing depth resolution along the optical axis. The modification involved the insertion of the OptigridTM and a lens in the path between the light source and the image plane, as well as control and signal processing software. Projection of the OptigridTM onto the imaging surface at an angle, was resolved applying the Scheimpflug principle. The illumination system implements modulation of the light source and provides a framework for capturing depth resolved mages. The system is capable of in-focus projection of the OptigridTM at different spatial frequencies, and supports the use of different lenses. A calibration process was developed for the system to achieve consistent phase shifts of the OptigridTM. Post-processing extracted depth information using depth modulation analysis using a phantom block with fluorescent sheets at different depths. An important aspect of this effort was that it was carried out by a multidisciplinary team of engineering and science students as part of a capstone senior design program. The disciplines represented are mechanical engineering, electrical engineering and imaging science. The project was sponsored by a financial grant from New York State with equipment support from two industrial concerns. The students were provided with a basic imaging concept and charged with developing, implementing, testing and validating a feasible proof-of-concept prototype system that was returned to the originator of the concept for further evaluation and characterization.

  7. OPTICAL correlation identification technology applied in underwater laser imaging target identification

    NASA Astrophysics Data System (ADS)

    Yao, Guang-Tao; Zhang, Xiao-Hui; Ge, Wei-Long

    2011-11-01

    The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve

  8. OPTICAL correlation identification technology applied in underwater laser imaging target identification

    NASA Astrophysics Data System (ADS)

    Yao, Guang-tao; Zhang, Xiao-hui; Ge, Wei-long

    2012-01-01

    The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve

  9. Images in Action. Learning Tomorrow: Linking Technology and Restructuring.

    ERIC Educational Resources Information Center

    National Foundation for the Improvement of Education, Washington, DC.

    Focusing on the use of advanced technologies in classrooms to reshape the educational environment in which students learn, this report on Phase II of the Learning Tomorrow program contains brief descriptions of the most promising educational practices submitted by teachers in response to two nation-wide calls for Innovation in Practice. The report…

  10. Application of image processing technology to problems in manuscript encapsulation

    NASA Astrophysics Data System (ADS)

    Glackin, D. L.; Korsmo, E. P.

    1983-09-01

    The long term effects of encapsulation individual sheets of the Codex Hammer were investigated. The manuscript was simulated with similar sheets of paper which were photographed under repeatable raking light conditions to enhance their surface texture, encapsulated in plexiglas, cycled in an environmental test chamber, and rephotographed at selected intervals. The film images were digitized, contrast enhanced, geometrically registered, and apodized. An FFT analysis of a control sheet and two experimental sheets indicates no micro-burnishing, but reveals that the ""mesoscale'' deformations with sizes 8mm are degrading monotonically, which is of no concern. Difference image analysis indicates that the sheets were increasingly stressed with time and that the plexiglas did not provide a sufficient environmental barrier under the simulation conditions. The relationship of these results to the Codex itself is to be determined.

  11. Fundamental performance improvement to dispersive spectrograph based imaging technologies

    NASA Astrophysics Data System (ADS)

    Meade, Jeff T.; Behr, Bradford B.; Cenko, Andrew T.; Christensen, Peter; Hajian, Arsen R.; Hendrikse, Jan; Sweeney, Frederic D.

    2011-03-01

    Dispersive-based spectrometers may be qualified by their spectral resolving power and their throughput efficiency. A device known as a virtual slit is able to improve the resolving power by factors of several with a minimal loss in throughput, thereby fundamentally improving the quality of the spectrometer. A virtual slit was built and incorporated into a low performing spectrometer (R ~ 300) and was shown to increase the performance without a significant loss in signal. The operation and description of virtual slits is also given. High-performance, lowlight, and high-speed imaging instruments based on a dispersive-type spectrometer see the greatest impact from a virtual slit. The impact of a virtual slit on spectral domain optical coherence tomography (SD-OCT) is shown to improve the imaging quality substantially.

  12. BOREAS Level-0 C-130 Aerial Photography

    NASA Technical Reports Server (NTRS)

    Newcomer, Jeffrey A.; Dominguez, Roseanne; Hall, Forrest G. (Editor)

    2000-01-01

    For BOReal Ecosystem-Atmosphere Study (BOREAS), C-130 and other aerial photography was collected to provide finely detailed and spatially extensive documentation of the condition of the primary study sites. The NASA C-130 Earth Resources aircraft can accommodate two mapping cameras during flight, each of which can be fitted with 6- or 12-inch focal-length lenses and black-and-white, natural-color, or color-IR film, depending upon requirements. Both cameras were often in operation simultaneously, although sometimes only the lower resolution camera was deployed. When both cameras were in operation, the higher resolution camera was often used in a more limited fashion. The acquired photography covers the period of April to September 1994. The aerial photography was delivered as rolls of large format (9 x 9 inch) color transparency prints, with imagery from multiple missions (hundreds of prints) often contained within a single roll. A total of 1533 frames were collected from the C-130 platform for BOREAS in 1994. Note that the level-0 C-130 transparencies are not contained on the BOREAS CD-ROM set. An inventory file is supplied on the CD-ROM to inform users of all the data that were collected. Some photographic prints were made from the transparencies. In addition, BORIS staff digitized a subset of the tranparencies and stored the images in JPEG format. The CD-ROM set contains a small subset of the collected aerial photography that were the digitally scanned and stored as JPEG files for most tower and auxiliary sites in the NSA and SSA. See Section 15 for information about how to acquire additional imagery.

  13. New solutions and technologies for uncooled infrared imaging

    NASA Astrophysics Data System (ADS)

    Rollin, Joël.; Diaz, Frédéric; Fontaine, Christophe; Loiseaux, Brigitte; Lee, Mane-Si Laure; Clienti, Christophe; Lemonnier, Fabrice; Zhang, Xianghua; Calvez, Laurent

    2013-06-01

    The military uncooled infrared market is driven by the continued cost reduction of the focal plane arrays whilst maintaining high standards of sensitivity and steering towards smaller pixel sizes. As a consequence, new optical solutions are called for. Two approaches can come into play: the bottom up option consists in allocating improvements to each contributor and the top down process rather relies on an overall optimization of the complete image channel. The University of Rennes I with Thales Angénieux alongside has been working over the past decade through French MOD funding's, on low cost alternatives of infrared materials based upon chalcogenide glasses. A special care has been laid on the enhancement of their mechanical properties and their ability to be moulded according to complex shapes. New manufacturing means developments capable of better yields for the raw materials will be addressed, too. Beyond the mere lenses budget cuts, a wave front coding process can ease a global optimization. This technic gives a way of relaxing optical constraints or upgrading thermal device performances through an increase of the focus depths and desensitization against temperature drifts: it combines image processing and the use of smart optical components. Thales achievements in such topics will be enlightened and the trade-off between image quality correction levels and low consumption/ real time processing, as might be required in hand-free night vision devices, will be emphasized. It is worth mentioning that both approaches are deeply leaning on each other.

  14. Matrix phased array (MPA) imaging technology for resistance spot welds

    SciTech Connect

    Na, Jeong K.; Gleeson, Sean T.

    2014-02-18

    A three-dimensional MPA probe has been incorporated with a high speed phased array electronic board to visualize nugget images of resistance spot welds. The primary application area of this battery operated portable MPA ultrasonic imaging system is in the automotive industry which a conventional destructive testing process is commonly adopted to check the quality of resistance spot welds in auto bodies. Considering an average of five-thousand spot welds in a medium size passenger vehicle, the amount of time and effort given to popping the welds and measuring nugget size are immeasurable in addition to the millions of dollars' worth of scrap metals recycled per plant per year. This wasteful labor intensive destructive testing process has become less reliable as auto body sheet metal has transitioned from thick and heavy mild steels to thin and light high strength steels. Consequently, the necessity of developing a non-destructive inspection methodology has become inevitable. In this paper, the fundamental aspects of the current 3-D probe design, data acquisition algorithms, and weld nugget imaging process are discussed.

  15. Matrix phased array (MPA) imaging technology for resistance spot welds

    NASA Astrophysics Data System (ADS)

    Na, Jeong K.; Gleeson, Sean T.

    2014-02-01

    A three-dimensional MPA probe has been incorporated with a high speed phased array electronic board to visualize nugget images of resistance spot welds. The primary application area of this battery operated portable MPA ultrasonic imaging system is in the automotive industry which a conventional destructive testing process is commonly adopted to check the quality of resistance spot welds in auto bodies. Considering an average of five-thousand spot welds in a medium size passenger vehicle, the amount of time and effort given to popping the welds and measuring nugget size are immeasurable in addition to the millions of dollars' worth of scrap metals recycled per plant per year. This wasteful labor intensive destructive testing process has become less reliable as auto body sheet metal has transitioned from thick and heavy mild steels to thin and light high strength steels. Consequently, the necessity of developing a non-destructive inspection methodology has become inevitable. In this paper, the fundamental aspects of the current 3-D probe design, data acquisition algorithms, and weld nugget imaging process are discussed.

  16. Image processing in a science classroom: The role of students' understanding of the technology

    NASA Astrophysics Data System (ADS)

    Friedman, Jeffrey S.

    1999-11-01

    This dissertation is an exploratory cognitive study of high school science students when they use computer image processing as a tool for visual data analysis. The core findings are that students readily generate a large variety of interpretive methods and that the quality of their interpretations often depends upon the ways they understand the image processing technology itself The dissertation study seeks to identify the ways students understand and misunderstand the technology and how their understandings support or hinder accurate interpretations of image displays in terms of the underlying data. The data corpus consists of videotapes of pairs of high school students analyzing digital images of astronomical objects. The study identifies the many visual attributes of image displays that students notice and the various understandings of the technology that they apply when interpreting these visual attributes. The study also identifies the ways students apply generalizations from their perceptual experiences and conventions that they may have learned from interpreting maps and other representational displays of spatially distributed data. The study analyzes the ways these generalizations support or hinder accurate interpretations. The study also identifies characteristics of the image-processing activities themselves that may support hinder, or challenge students' capabilities for interpreting image displays. Major results include a specification of knowledge of the technology that students would find most helpful when using image processing as a toot for visual data analysis. The results also include a set of heuristics for designing image-processing-based data analytic activities that will support and challenge students. Although the study uses only astronomical data, the results should apply to any remotely sensed data or, more generally, spatially distributed data. Also, the results should apply to other technology-based representational devices, including

  17. Ultrasonic phased array inspection imaging technology for NDT of offshore platform structures

    NASA Astrophysics Data System (ADS)

    Shan, Baohua; Wang, Hua; Liang, Yongning; Duan, Zhongdong; Ou, Jinping

    2008-03-01

    In order to improve inspection result repetition and flaw ration veracity of manual ultrasonic inspection of offshore platform structure, an ultrasonic phased array inspection imaging technology for NDT of offshore platform structures is proposed in this paper. Aimed at the practical requirement of tubular joint welds inspection of offshore platform structures, the ultrasonic phased array inspection imaging system for offshore platform structures is developed, which is composed of computer, ultrasonic circuit system, scanning device, phased array transducer and inspection imaging software system. The experiment of Y shape tubular joint model of 60 degree is performed with the ultrasonic phased array inspection imaging system for offshore platform structures, the flaws characteristic could be exactly estimated and the flaws size could be measured through ultrasonic phased array inspection imaging software system for offshore platform structures. Experiment results show that the ultrasonic phased array inspection imaging technology for offshore platform structures is feasible, the ultrasonic phased array inspection imaging system could detect flaws in tubular joint model, the whole development trend of flaws is factually imaging by the ultrasonic phased array inspection technology of offshore platform structures.

  18. Precision wildlife monitoring using unmanned aerial vehicles

    PubMed Central

    Hodgson, Jarrod C.; Baylis, Shane M.; Mott, Rowan; Herrod, Ashley; Clarke, Rohan H.

    2016-01-01

    Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology. Careful consideration will be required to ensure the coherence of historic data sets with new UAV-derived data and we propose a method for determining the number of duplicated (concurrent UAV and ground counts) sampling points needed to achieve data compatibility. PMID:26986721

  19. Precision wildlife monitoring using unmanned aerial vehicles.

    PubMed

    Hodgson, Jarrod C; Baylis, Shane M; Mott, Rowan; Herrod, Ashley; Clarke, Rohan H

    2016-01-01

    Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology. Careful consideration will be required to ensure the coherence of historic data sets with new UAV-derived data and we propose a method for determining the number of duplicated (concurrent UAV and ground counts) sampling points needed to achieve data compatibility. PMID:26986721

  20. Dynamics of aerial target pursuit

    NASA Astrophysics Data System (ADS)

    Pal, S.

    2015-12-01

    During pursuit and predation, aerial species engage in multitasking behavior that involve simultaneous target detection, tracking, decision-making, approach and capture. The mobility of the pursuer and the target in a three dimensional environment during predation makes the capture task highly complex. Many researchers have studied and analyzed prey capture dynamics in different aerial species such as insects and bats. This article focuses on reviewing the capture strategies adopted by these species while relying on different sensory variables (vision and acoustics) for navigation. In conclusion, the neural basis of these capture strategies and some applications of these strategies in bio-inspired navigation and control of engineered systems are discussed.