Sample records for aerial insectivorous bats

  1. Ensemble composition and activity levels of insectivorous bats in response to management intensification in coffee agroforestry systems.

    PubMed

    Williams-Guillén, Kimberly; Perfecto, Ivette

    2011-01-26

    Shade coffee plantations have received attention for their role in biodiversity conservation. Bats are among the most diverse mammalian taxa in these systems; however, previous studies of bats in coffee plantations have focused on the largely herbivorous leaf-nosed bats (Phyllostomidae). In contrast, we have virtually no information on how ensembles of aerial insectivorous bats--nearly half the Neotropical bat species--change in response to habitat modification. To evaluate the effects of agroecosystem management on insectivorous bats, we studied their diversity and activity in southern Chiapas, Mexico, a landscape dominated by coffee agroforestry. We used acoustic monitoring and live captures to characterize the insectivorous bat ensemble in forest fragments and coffee plantations differing in the structural and taxonomic complexity of shade trees. We captured bats of 12 non-phyllostomid species; acoustic monitoring revealed the presence of at least 12 more species of aerial insectivores. Richness of forest bats was the same across all land-use types; in contrast, species richness of open-space bats increased in low shade, intensively managed coffee plantations. Conversely, only forest bats demonstrated significant differences in ensemble structure (as measured by similarity indices) across land-use types. Both overall activity and feeding activity of forest bats declined significantly with increasing management intensity, while the overall activity, but not feeding activity, of open-space bats increased. We conclude that diverse shade coffee plantations in our study area serve as valuable foraging and commuting habitat for aerial insectivorous bats, and several species also commute through or forage in low shade coffee monocultures.

  2. Ecological Energetics of an Abundant Aerial Insectivore, the Purple Martin

    PubMed Central

    Kelly, Jeffrey F.; Bridge, Eli S.; Frick, Winifred F.; Chilson, Phillip B.

    2013-01-01

    The atmospheric boundary layer and lower free atmosphere, or aerosphere, is increasingly important for human transportation, communication, environmental monitoring, and energy production. The impacts of anthropogenic encroachment into aerial habitats are not well understood. Insectivorous birds and bats are inherently valuable components of biodiversity and play an integral role in aerial trophic dynamics. Many of these insectivores are experiencing range-wide population declines. As a first step toward gaging the potential impacts of these declines on the aerosphere’s trophic system, estimates of the biomass and energy consumed by aerial insectivores are needed. We developed a suite of energetics models for one of the largest and most common avian aerial insectivores in North America, the Purple Martin ( Progne subis ). The base model estimated that Purple Martins consumed 412 (± 104) billion insects*y-1 with a biomass of 115,860 (± 29,192) metric tonnes*y-1. During the breeding season Purple Martins consume 10.3 (+ 3.0) kg of prey biomass per km3 of aerial habitat, equal to about 36,000 individual insects*km-3. Based on these calculations, the cumulative seasonal consumption of insects*km-3 is greater in North America during the breeding season than during other phases of the annual cycle, however the maximum daily insect consumption*km-3 occurs during fall migration. This analysis provides the first range-wide quantitative estimate of the magnitude of the trophic impact of this large and common aerial insectivore. Future studies could use a similar modeling approach to estimate impacts of the entire guild of aerial insectivores at a variety of temporal and spatial scales. These analyses would inform our understanding of the impact of population declines among aerial insectivores on the aerosphere’s trophic dynamics. PMID:24086755

  3. Tight coordination of aerial flight maneuvers and sonar call production in insectivorous bats

    PubMed Central

    Falk, Benjamin; Kasnadi, Joseph; Moss, Cynthia F.

    2015-01-01

    ABSTRACT Echolocating bats face the challenge of coordinating flight kinematics with the production of echolocation signals used to guide navigation. Previous studies of bat flight have focused on kinematics of fruit and nectar-feeding bats, often in wind tunnels with limited maneuvering, and without analysis of echolocation behavior. In this study, we engaged insectivorous big brown bats in a task requiring simultaneous turning and climbing flight, and used synchronized high-speed motion-tracking cameras and audio recordings to quantify the animals' coordination of wing kinematics and echolocation. Bats varied flight speed, turn rate, climb rate and wingbeat rate as they navigated around obstacles, and they adapted their sonar signals in patterning, duration and frequency in relation to the timing of flight maneuvers. We found that bats timed the emission of sonar calls with the upstroke phase of the wingbeat cycle in straight flight, and that this relationship changed when bats turned to navigate obstacles. We also characterized the unsteadiness of climbing and turning flight, as well as the relationship between speed and kinematic parameters. Adaptations in the bats' echolocation call frequency suggest changes in beam width and sonar field of view in relation to obstacles and flight behavior. By characterizing flight and sonar behaviors in an insectivorous bat species, we find evidence of exquisitely tight coordination of sensory and motor systems for obstacle navigation and insect capture. PMID:26582935

  4. Tight coordination of aerial flight maneuvers and sonar call production in insectivorous bats.

    PubMed

    Falk, Benjamin; Kasnadi, Joseph; Moss, Cynthia F

    2015-11-01

    Echolocating bats face the challenge of coordinating flight kinematics with the production of echolocation signals used to guide navigation. Previous studies of bat flight have focused on kinematics of fruit and nectar-feeding bats, often in wind tunnels with limited maneuvering, and without analysis of echolocation behavior. In this study, we engaged insectivorous big brown bats in a task requiring simultaneous turning and climbing flight, and used synchronized high-speed motion-tracking cameras and audio recordings to quantify the animals' coordination of wing kinematics and echolocation. Bats varied flight speed, turn rate, climb rate and wingbeat rate as they navigated around obstacles, and they adapted their sonar signals in patterning, duration and frequency in relation to the timing of flight maneuvers. We found that bats timed the emission of sonar calls with the upstroke phase of the wingbeat cycle in straight flight, and that this relationship changed when bats turned to navigate obstacles. We also characterized the unsteadiness of climbing and turning flight, as well as the relationship between speed and kinematic parameters. Adaptations in the bats' echolocation call frequency suggest changes in beam width and sonar field of view in relation to obstacles and flight behavior. By characterizing flight and sonar behaviors in an insectivorous bat species, we find evidence of exquisitely tight coordination of sensory and motor systems for obstacle navigation and insect capture. © 2015. Published by The Company of Biologists Ltd.

  5. High Diversity of Rabies Viruses Associated with Insectivorous Bats in Argentina: Presence of Several Independent Enzootics

    PubMed Central

    Piñero, Carolina; Gury Dohmen, Federico; Beltran, Fernando; Martinez, Leila; Novaro, Laura; Russo, Susana; Palacios, Gustavo; Cisterna, Daniel M.

    2012-01-01

    Background Rabies is a fatal infection of the central nervous system primarily transmitted by rabid animal bites. Rabies virus (RABV) circulates through two different epidemiological cycles: terrestrial and aerial, where dogs, foxes or skunks and bats, respectively, act as the most relevant reservoirs and/or vectors. It is widely accepted that insectivorous bats are not important vectors of RABV in Argentina despite the great diversity of bat species and the extensive Argentinean territory. Methods We studied the positivity rate of RABV detection in different areas of the country, and the antigenic and genetic diversity of 99 rabies virus (RABV) strains obtained from 14 species of insectivorous bats collected in Argentina between 1991 and 2008. Results Based on the analysis of bats received for RABV analysis by the National Rabies system of surveillance, the positivity rate of RABV in insectivorous bats ranged from 3.1 to 5.4%, depending on the geographic location. The findings were distributed among an extensive area of the Argentinean territory. The 99 strains of insectivorous bat-related sequences were divided into six distinct lineages associated with Tadarida brasiliensis, Myotis spp, Eptesicus spp, Histiotus montanus, Lasiurus blosseviilli and Lasiurus cinereus. Comparison with RABV sequences obtained from insectivorous bats of the Americas revealed co-circulation of similar genetic variants in several countries. Finally, inter-species transmission, mostly related with Lasiurus species, was demonstrated in 11.8% of the samples. Conclusions This study demonstrates the presence of several independent enzootics of rabies in insectivorous bats of Argentina. This information is relevant to identify potential areas at risk for human and animal infection. PMID:22590657

  6. Seasonal reliance on nectar by an insectivorous bat revealed by stable isotopes.

    PubMed

    Frick, Winifred F; Shipley, J Ryan; Kelly, Jeffrey F; Heady, Paul A; Kay, Kathleen M

    2014-01-01

    Many animals have seasonally plastic diets to take advantage of seasonally abundant plant resources, such as fruit or nectar. Switches from insectivorous diets that are protein rich to fruits or nectar that are carbohydrate rich present physiological challenges, but are routinely done by insectivorous songbirds during migration. In contrast, insectivorous bat species are not known to switch diets to consume fruit or nectar. Here, we use carbon stable isotope ratios to establish the first known case of a temperate bat species consuming substantial quantities of nectar during spring. We show that pallid bats (Antrozous pallidus) switch from a diet indistinguishable from that of sympatric insectivorous bat species in winter (when no cactus nectar is present) to a diet intermediate between those of insectivorous bats and nectarivorous bats during the spring bloom of a bat-adapted cactus species. Combined with previous results that established that pallid bats are effective pollinators of the cardon cactus (Pachycereus pringlei), our results suggest that the interaction between pallid bats and cardon cacti represents the first-known plant-pollinator mutualism between a plant and a temperate bat. Diet plasticity in pallid bats raises questions about the degree of physiological adaptations of insectivorous bats for incorporation of carbohydrate-rich foods, such as nectar or fruit, into the diet.

  7. Insectivorous bats respond to vegetation complexity in urban green spaces.

    PubMed

    Suarez-Rubio, Marcela; Ille, Christina; Bruckner, Alexander

    2018-03-01

    Structural complexity is known to determine habitat quality for insectivorous bats, but how bats respond to habitat complexity in highly modified areas such as urban green spaces has been little explored. Furthermore, it is uncertain whether a recently developed measure of structural complexity is as effective as field-based surveys when applied to urban environments. We assessed whether image-derived structural complexity (MIG) was as/more effective than field-based descriptors in this environment and evaluated the response of insectivorous bats to structural complexity in urban green spaces. Bat activity and species richness were assessed with ultrasonic devices at 180 locations within green spaces in Vienna, Austria. Vegetation complexity was assessed using 17 field-based descriptors and by calculating the mean information gain (MIG) using digital images. Total bat activity and species richness decreased with increasing structural complexity of canopy cover, suggesting maneuverability and echolocation (sensorial) challenges for bat species using the canopy for flight and foraging. The negative response of functional groups to increased complexity was stronger for open-space foragers than for edge-space foragers. Nyctalus noctula , a species foraging in open space, showed a negative response to structural complexity, whereas Pipistrellus pygmaeus , an edge-space forager, was positively influenced by the number of trees. Our results show that MIG is a useful, time- and cost-effective tool to measure habitat complexity that complemented field-based descriptors. Response of insectivorous bats to structural complexity was group- and species-specific, which highlights the need for manifold management strategies (e.g., increasing or reinstating the extent of ground vegetation cover) to fulfill different species' requirements and to conserve insectivorous bats in urban green spaces.

  8. Pathogenic Leptospira Species in Insectivorous Bats, China, 2015.

    PubMed

    Han, Hui-Ju; Wen, Hong-Ling; Liu, Jian-Wei; Qin, Xiang-Rong; Zhao, Min; Wang, Li-Jun; Luo, Li-Mei; Zhou, Chuan-Min; Zhu, Ye-Lei; Qi, Rui; Li, Wen-Qian; Yu, Hao; Yu, Xue-Jie

    2018-06-01

    PCR amplification of the rrs2 gene indicated that 50% (62/124) of insectivorous bats from eastern China were infected with Leptospira borgpetersenii, L. kirschneri, and several potentially new Leptospira species. Multilocus sequence typing defined 3 novel sequence types in L. kirschneri, suggesting that bats are major carriers of Leptospira.

  9. Wild, insectivorous bats might be carriers of Campylobacter spp.

    PubMed

    Hazeleger, Wilma C; Jacobs-Reitsma, Wilma F; Lina, Peter H C; de Boer, Albert G; Bosch, Thijs; van Hoek, Angela H A M; Beumer, Rijkelt R

    2018-01-01

    The transmission cycles of the foodborne pathogens Campylobacter and Salmonella are not fully elucidated. Knowledge of these cycles may help reduce the transmission of these pathogens to humans. The presence of campylobacters and salmonellas was examined in 631 fresh fecal samples of wild insectivorous bats using a specially developed method for the simultaneous isolation of low numbers of these pathogens in small-sized fecal samples (≤ 0.1 g). Salmonella was not detected in the feces samples, but thermotolerant campylobacters were confirmed in 3% (n = 17) of the bats examined and these pathogens were found in six different bat species, at different sites, in different ecosystems during the whole flying season of bats. Molecular typing of the 17 isolated strains indicated C. jejuni (n = 9), C. coli (n = 7) and C. lari (n = 1), including genotypes also found in humans, wildlife, environmental samples and poultry. Six strains showed unique sequence types. This study shows that insectivorous bats are not only carriers of viral pathogens, but they can also be relevant for the transmission of bacterial pathogens. Bats should be considered as carriers and potential transmitters of Campylobacter and, where possible, contact between bats (bat feces) and food or feed should be avoided.

  10. Ecological risk assessment in a large river-reservoir. 5: Aerial insectivorous wildlife

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baron, L.A.; Sample, B.E.; Suter, G.W. II

    Risks to aerial insectivores (e.g., rough-winged swallows, little brown bats, and endangered gray bats) were assessed for the remedial investigation of the Clinch River/Poplar Creek (CR/PC) system. Adult mayflies and sediment were collected from three locations and analyzed for contaminants. Sediment-to-mayfly contaminant uptake factors were generated from these data and used to estimate contaminant concentrations in mayflies from 13 additional locations. Contaminants of potential ecological concern (COPECs) were identified by comparing exposure estimates generated using point estimates of parameter values to NOAELs. To incorporate the variation in exposure parameters and to provide a better estimate of the potential exposure, themore » exposure model was recalculated using Monte Carlo methods. The potential for adverse effects was estimated based on the comparison of exposure distribution and the LOAEL. The results of this assessment suggested that population-level effects to rough-winged swallows and little brown bats are considered unlikely. However, because gray bats are endangered, effects on individuals may be significant from foraging in limited subreaches of the CR/PC system. This assessment illustrates the advantage of an iterative approach to ecological risk assessments, using fewer conservative assumptions and more realistic modeling of exposure.« less

  11. First Case of Human Rabies in Chile Caused by an Insectivorous Bat Virus Variant

    PubMed Central

    Favi, Myriam; Yung, Verónica; Chala, Evelyn; López, Luis R.

    2002-01-01

    The first human rabies case in Chile since 1972 occurred in March 1996 in a patient without history of known exposure. Antigenic and genetic characterization of the rabies isolate indicated that its reservoir was the insectivorous bat Tadarida brasiliensis. This is the first human rabies case caused by an insectivorous bat rabies virus variant reported in Latin America. PMID:11749754

  12. Insectivorous bat reproduction and human cave visitation in Cambodia: A perfect conservation storm?

    PubMed

    Lim, Thona; Cappelle, Julien; Hoem, Thavry; Furey, Neil

    2018-01-01

    Cave roosting bats represent an important component of Southeast Asian bat diversity and are vulnerable to human disturbance during critical reproductive periods (pregnancy, lactation and weaning). Because dramatic growth of cave tourism in recent decades has raised concerns about impacts on cave bats in the region, we assessed the reproductive phenology of two insectivorous species (Hipposideros larvatus sensu lato and Taphozous melanopogon) at three caves in Cambodia for 23 months in 2014-2016 and evaluated human visitation to these sites between 2007 and 2014. Despite the differing foraging strategies employed by the two taxa, the temporal consistency observed in proportions of pregnant, lactating and juvenile bats indicates that their major birth peaks coincide with the time of greatest cave visitation annually, particularly for domestic visitors and namely during the Cambodian new year in April. They also reflect rainfall patterns and correspond with the reproductive phenology of insectivorous cave bats in Vietnam. These findings were predictable because 1) insect biomass and thus food availability for insectivorous bats are optimal for ensuring survival of young following this period, and 2) the Khmer new year is the most significant month for religious ceremonies and thus domestic cave visitation nationally, due to the abundance of Buddhist shrines and temples in Cambodian caves. While the impact of visitor disturbance on bat population recruitment cannot be empirically assessed due to lack of historical data, it is nonetheless likely to have been considerable and raises a conservation concern. Further, because growing evidence suggests that insectivorous cave bats exhibit reproductive synchrony across continental Southeast Asia where countless cave shrines are heavily frequented during April in Theravada Buddhist countries (e.g., Myanmar, Thailand, Cambodia and Laos), our results may have wider applicability in the region. We consequently advocate for

  13. Insectivorous bat reproduction and human cave visitation in Cambodia: A perfect conservation storm?

    PubMed Central

    Cappelle, Julien; Hoem, Thavry

    2018-01-01

    Cave roosting bats represent an important component of Southeast Asian bat diversity and are vulnerable to human disturbance during critical reproductive periods (pregnancy, lactation and weaning). Because dramatic growth of cave tourism in recent decades has raised concerns about impacts on cave bats in the region, we assessed the reproductive phenology of two insectivorous species (Hipposideros larvatus sensu lato and Taphozous melanopogon) at three caves in Cambodia for 23 months in 2014–2016 and evaluated human visitation to these sites between 2007 and 2014. Despite the differing foraging strategies employed by the two taxa, the temporal consistency observed in proportions of pregnant, lactating and juvenile bats indicates that their major birth peaks coincide with the time of greatest cave visitation annually, particularly for domestic visitors and namely during the Cambodian new year in April. They also reflect rainfall patterns and correspond with the reproductive phenology of insectivorous cave bats in Vietnam. These findings were predictable because 1) insect biomass and thus food availability for insectivorous bats are optimal for ensuring survival of young following this period, and 2) the Khmer new year is the most significant month for religious ceremonies and thus domestic cave visitation nationally, due to the abundance of Buddhist shrines and temples in Cambodian caves. While the impact of visitor disturbance on bat population recruitment cannot be empirically assessed due to lack of historical data, it is nonetheless likely to have been considerable and raises a conservation concern. Further, because growing evidence suggests that insectivorous cave bats exhibit reproductive synchrony across continental Southeast Asia where countless cave shrines are heavily frequented during April in Theravada Buddhist countries (e.g., Myanmar, Thailand, Cambodia and Laos), our results may have wider applicability in the region. We consequently advocate for

  14. Novel coronaviruses, astroviruses, adenoviruses and circoviruses in insectivorous bats from northern China.

    PubMed

    Han, H-J; Wen, H-L; Zhao, L; Liu, J-W; Luo, L-M; Zhou, C-M; Qin, X-R; Zhu, Y-L; Liu, M-M; Qi, R; Li, W-Q; Yu, H; Yu, X-J

    2017-12-01

    Bats are considered as the reservoirs of several emerging infectious disease, and novel viruses are continually found in bats all around the world. Studies conducted in southern China found that bats carried a variety of viruses. However, few studies have been conducted on bats in northern China, which harbours a diversity of endemic insectivorous bats. It is important to understand the prevalence and diversity of viruses circulating in bats in northern China. In this study, a total of 145 insectivorous bats representing six species were collected from northern China and screened with degenerate primers for viruses belonging to six families, including coronaviruses, astroviruses, hantaviruses, paramyxoviruses, adenoviruses and circoviruses. Our study found that four of the viruses screened for were positive and the overall detection rates for astroviruses, coronaviruses, adenoviruses and circoviruses in bats were 21.4%, 15.9%, 20% and 37.2%, respectively. In addition, we found that bats in northern China harboured a diversity of novel viruses. Common Serotine (Eptesicus serotinu), Fringed long-footed Myotis (Myotis fimriatus) and Peking Myotis (Myotis pequinius) were investigated in China for the first time. Our study provided new information on the ecology and phylogeny of bat-borne viruses. © 2017 The Authors. Zoonoses and Public Health Published by Blackwell Verlag GmbH.

  15. Ecological risk assessment of aerial insectivores of the Clinch River/Poplar Creek system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baron, L.A.; Sample, B.E.

    Risks to aerial insectivores (species that consume flying insects; rough-winged swallows, little brown bats, and endangered gray bats) were assessed for the CERCLA remedial investigation of the Clinch River/Poplar Creek system. Adult mayflies and sediment were collected from four locations and analyzed for contaminants. Sediment-to-mayfly contaminant transfer factors were generated from these data and used to estimate contaminant concentrations in mayflies from thirteen additional locations. Contaminants of potential concern (COPCs) were identified by comparing exposure estimates, generated using point estimates of parameter values, to NOAELS. COPCs included mercury, arsenic, and PCBs. Exposure to COPCs was re-estimated using Monte Carlo simulations.more » Adverse population effects were assumed likely if > 20% of the estimated exposure distribution was greater than the LOAEL. Exposure of swallows to mercury was a significant risk at two locations. Exposure of bats to mercury was a significant risk at only one location. While consideration of movement and foraging territory did not reduce estimated risks to swallows, when exposures for gray and little brown bats were re-estimated, population-level risks from mercury were no longer considered likely. As an endangered species however, protection is extended to individual gray bats. While less than 20% of the mercury exposure distribution for gray bats was > LOAEL, > 99% of the distribution was >NOAEL. Therefore, adverse effects may occur among maximally exposed individual gray bats. Available data indicate that contaminants in Poplar Creek are likely to present a risk to the swallow population, do not present a risk to the little brown bat population, and may present a risk to individual gray bats.« less

  16. Evidence of cryptic individual specialization in an opportunistic insectivorous bat

    USGS Publications Warehouse

    Cryan, Paul M.; Stricker, Craig A.; Wunder, Michael B.

    2012-01-01

    Habitat use and feeding behaviors of cryptic animals are often poorly understood. Analyses of stable isotope ratios in animal body tissues can help reveal an individual's location and resource use during tissue growth. We investigated variation in stable isotope ratios of 4 elements (H, C, N, and S) in the hair of a sedentary species of insectivorous bat (Eptesicus fuscus) inhabiting a chemically complex urban landscape. Our objective was to quantify population-level isotopic variation and test for evidence of resource specialization by individuals. Bats were sampled over 3 annual molt cycles at maternity roosts in buildings and variance components analysis was used to test whether intraindividual isotopic variation among molts differed from interindividual variation, after controlling for year and roost-group effects. Consistent with prior evidence that E. fuscus is opportunistic in its habitat use and foraging at the population level, we observed wide population-level variation for all isotopes. This variation likely reflects the chemical complexity of the urban landscape studied. However, isotopic variation among years within marked individuals was lower than variation among marked individuals within year for all isotopes, and carbon signatures indicated resource specialization by roost groups and individuals. This is the 1st study to examine variation in stable isotope ratios of individual wild bats over multiple years. Although our results suggest this population tends toward opportunistic habitat use or prey selection, or both, during molt periods, results also indicate that individuals and groups of bats composing the population might be habitat or dietary specialists—a novel finding for insectivorous bats.

  17. Bartonella Infection in Hematophagous, Insectivorous, and Phytophagous Bat Populations of Central Mexico and the Yucatan Peninsula.

    PubMed

    Stuckey, Matthew J; Chomel, Bruno B; Galvez-Romero, Guillermo; Olave-Leyva, José Ignacio; Obregón-Morales, Cirani; Moreno-Sandoval, Hayde; Aréchiga-Ceballos, Nidia; Salas-Rojas, Mónica; Aguilar-Setién, Alvaro

    2017-08-01

    Although emerging nonviral pathogens remain relatively understudied in bat populations, there is an increasing focus on identifying bat-associated bartonellae around the world. Many novel Bartonella strains have been described from both bats and their arthropod ectoparasites, including Bartonella mayotimonensis , a zoonotic agent of human endocarditis. This cross-sectional study was designed to describe novel Bartonella strains isolated from bats sampled in Mexico and evaluate factors potentially associated with infection. A total of 238 bats belonging to seven genera were captured in five states of Central Mexico and the Yucatan Peninsula. Animals were screened by bacterial culture from whole blood and/or polymerase chain reaction of DNA extracted from heart tissue or blood. Bartonella spp. were isolated or detected in 54 (22.7%) bats, consisting of 41 (38%) hematophagous, 10 (16.4%) insectivorous, and three (4.3%) phytophagous individuals. This study also identified Balantiopteryx plicata as another possible bat reservoir of Bartonella . Univariate and multivariate logistic regression models suggested that Bartonella infection was positively associated with blood-feeding diet and ectoparasite burden. Phylogenetic analysis identified a number of genetic variants across hematophagous, phytophagous, and insectivorous bats that are unique from described bat-borne Bartonella species. However, these strains were closely related to those bartonellae previously identified in bat species from Latin America.

  18. Mosquito Consumption by Insectivorous Bats: Does Size Matter?

    PubMed Central

    Gonsalves, Leroy; Bicknell, Brian; Law, Brad; Webb, Cameron; Monamy, Vaughan

    2013-01-01

    Insectivorous bats have often been touted as biological control for mosquito populations. However, mosquitoes generally represent only a small proportion of bat diet. Given the small size of mosquitoes, restrictions imposed on prey detectability by low frequency echolocation, and variable field metabolic rates (FMR), mosquitoes may not be available to or profitable for all bats. This study investigated whether consumption of mosquitoes was influenced by bat size, which is negatively correlated with echolocation frequency but positively correlated with bat FMR. To assess this, we investigated diets of five eastern Australian bat species (Vespadelus vulturnus Thomas, V. pumilus Gray, Miniopterus australis Tomes, Nyctophilus gouldi Tomes and Chalinolobus gouldii Gray) ranging in size from 4-14 g in coastal forest, using molecular analysis of fecal DNA. Abundances of potential mosquito and non-mosquito prey were concurrently measured to provide data on relative prey abundance. Aedes vigilax was locally the most abundant mosquito species, while Lepidoptera the most abundant insect order. A diverse range of prey was detected in bat feces, although members of Lepidoptera dominated, reflecting relative abundance at trap sites. Consumption of mosquitoes was restricted to V. vulturnus and V. pumilus, two smaller sized bats (4 and 4.5 g). Although mosquitoes were not commonly detected in feces of V. pumilus, they were present in feces of 55 % of V. vulturnus individuals. To meet nightly FMR requirements, Vespadelus spp. would need to consume ~600-660 mosquitoes on a mosquito-only diet, or ~160-180 similar sized moths on a moth-only diet. Lower relative profitability of mosquitoes may provide an explanation for the low level of mosquito consumption among these bats and the absence of mosquitoes in feces of larger bats. Smaller sized bats, especially V. vulturnus, are likely to be those most sensitive to reductions in mosquito abundance and should be monitored during mosquito

  19. Historical pesticide applications coincided with an altered diet of aerially foraging insectivorous chimney swifts

    PubMed Central

    Nocera, Joseph J.; Blais, Jules M.; Beresford, David V.; Finity, Leah K.; Grooms, Christopher; Kimpe, Lynda E.; Kyser, Kurt; Michelutti, Neal; Reudink, Matthew W.; Smol, John P.

    2012-01-01

    Numerous environmental pressures have precipitated long-term population reductions of many insect species. Population declines in aerially foraging insectivorous birds have also been detected, but the cause remains unknown partly because of a dearth of long-term monitoring data on avian diets. Chimney swifts (Chaetura pelagica) are a model aerial insectivore to fill such information gaps because their roosting behaviour makes them easy to sample in large numbers over long time periods. We report a 48-year-long (1944–1992) dietary record for the chimney swift, determined from a well-preserved deposit of guano and egested insect remains in Ontario (Canada). This unique archive of palaeo-environmental data reflecting past chimney swift diets revealed a steep rise in dichlorodiphenyltrichloroethane (DDT) and metabolites, which were correlated with a decrease in Coleoptera remains and an increase in Hemiptera remains, indicating a significant change in chimney swift prey. We argue that DDT applications decimated Coleoptera populations and dramatically altered insect community structure by the 1960s, triggering nutritional consequences for swifts and other aerial insectivores. PMID:22513860

  20. The Importance of Acacia Trees for Insectivorous Bats and Arthropods in the Arava Desert

    PubMed Central

    Hackett, Talya D.; Korine, Carmi; Holderied, Marc W.

    2013-01-01

    Anthropogenic habitat modification often has a profound negative impact on the flora and fauna of an ecosystem. In parts of the Middle East, ephemeral rivers (wadis) are characterised by stands of acacia trees. Green, flourishing assemblages of these trees are in decline in several countries, most likely due to human-induced water stress and habitat changes. We examined the importance of healthy acacia stands for bats and their arthropod prey in comparison to other natural and artificial habitats available in the Arava desert of Israel. We assessed bat activity and species richness through acoustic monitoring for entire nights and concurrently collected arthropods using light and pit traps. Dense green stands of acacia trees were the most important natural desert habitat for insectivorous bats. Irrigated gardens and parks in villages and fields of date palms had high arthropod levels but only village sites rivalled acacia trees in bat activity level. We confirmed up to 13 bat species around a single patch of acacia trees; one of the richest sites in any natural desert habitat in Israel. Some bat species utilised artificial sites; others were found almost exclusively in natural habitats. Two rare species (Barbastella leucomelas and Nycteris thebaica) were identified solely around acacia trees. We provide strong evidence that acacia trees are of unique importance to the community of insectivorous desert-dwelling bats, and that the health of the trees is crucial to their value as a foraging resource. Consequently, conservation efforts for acacia habitats, and in particular for the green more densely packed stands of trees, need to increase to protect this vital habitat for an entire community of protected bats. PMID:23441145

  1. The Perils of Picky Eating: Dietary Breadth Is Related to Extinction Risk in Insectivorous Bats

    PubMed Central

    Boyles, Justin G.; Storm, Jonathan J.

    2007-01-01

    Several recent papers evaluate the relationship between ecological characteristics and extinction risk in bats. These studies report that extinction risk is negatively related to geographic range size and positively related to habitat specialization. Here, we evaluate the hypothesis that extinction risk is also related to dietary specialization in insectivorous vespertilionid bats using both traditional and phylogenetically-controlled analysis of variance. We collected dietary data and The World Conservation Union (IUCN) rankings for 44 Australian, European, and North American bat species. Our results indicate that species of conservation concern (IUCN ranking near threatened or above) are more likely to have a specialized diet than are species of least concern. Additional analyses show that dietary breadth is not correlated to geographic range size or wing morphology, characteristics previously found to correlate with extinction risk. Therefore, there is likely a direct relationship between dietary specialization and extinction risk; however, the large variation in dietary breadth within species of least concern suggests that diet alone cannot explain extinction risk. Our results may have important implications for the development of predictive models of extinction risk and for the assignment of extinction risk to insectivorous bat species. Similar analyses should be conducted on additional bat families to assess the generality of this relationship between niche breadth and extinction risk. PMID:17653286

  2. A landscape perspective on bat foraging ecology along rivers: does channel confinement and insect availability influence the response of bats to aquatic resources in riverine landscapes?

    PubMed

    Hagen, Elizabeth M; Sabo, John L

    2011-07-01

    River and riparian areas provide an important foraging habitat for insectivorous bats owing to high insect availability along waterways. However, structural characteristics of the riverine landscape may also influence the location of foraging bats. We used bat detectors to compare bat activity longitudinally along river reaches with contrasting channel confinement, ratio of valley floor width to active channel width, and riparian vegetation, and laterally with distance from the river along three different reach types. We measured rates of insect emergence from the river and aerial insect availability above the river and laterally up to 50-m into the riparian habitat in order to assess the relationship between food resources and insectivorous bat activity. Longitudinally, bat activity was concentrated along confined reaches in comparison to unconfined reaches but was not related to insect availability. Laterally, bats tracked exponential declines in aquatic insects with distance from the river. These data suggest that along the lateral dimension bats track food resources, but that along the longitudinal dimension channel shape and landscape structure determine bat distributions more than food resources.

  3. Omega-3 long-chain polyunsaturated fatty acids support aerial insectivore performance more than food quantity.

    PubMed

    Twining, Cornelia W; Brenna, J Thomas; Lawrence, Peter; Shipley, J Ryan; Tollefson, Troy N; Winkler, David W

    2016-09-27

    Once-abundant aerial insectivores, such as the Tree Swallow (Tachycineta bicolor), have declined steadily in the past several decades, making it imperative to understand all aspects of their ecology. Aerial insectivores forage on a mixture of aquatic and terrestrial insects that differ in fatty acid composition, specifically long-chain omega-3 polyunsaturated fatty acid (LCPUFA) content. Aquatic insects contain high levels of both LCPUFA and their precursor omega-3 PUFA, alpha-linolenic acid (ALA), whereas terrestrial insects contain much lower levels of both. We manipulated both the quantity and quality of food for Tree Swallow chicks in a full factorial design. Diets were either high-LCPUFA or low in LCPUFA but high in ALA, allowing us to separate the effects of direct LCPUFA in diet from the ability of Tree Swallows to convert their precursor, ALA, into LCPUFA. We found that fatty acid composition was more important for Tree Swallow chick performance than food quantity. On high-LCPUFA diets, chicks grew faster, were in better condition, and had greater immunocompetence and lower basal metabolic rates compared with chicks on both low LCPUFA diets. Increasing the quantity of high-LCPUFA diets resulted in improvements to all metrics of performance while increasing the quantity of low-LCPUFA diets only resulted in greater immunocompetence and lower metabolic rates. Chicks preferentially retained LCPUFA in brain and muscle when both food quantity and LCPUFA were limited. Our work suggests that fatty acid composition is an important dimension of aerial insectivore nutritional ecology and reinforces the importance of high-quality aquatic habitat for these declining birds.

  4. An aerial-hawking bat uses stealth echolocation to counter moth hearing.

    PubMed

    Goerlitz, Holger R; ter Hofstede, Hannah M; Zeale, Matt R K; Jones, Gareth; Holderied, Marc W

    2010-09-14

    Ears evolved in many nocturnal insects, including some moths, to detect bat echolocation calls and evade capture [1, 2]. Although there is evidence that some bats emit echolocation calls that are inconspicuous to eared moths, it is difficult to determine whether this was an adaptation to moth hearing or originally evolved for a different purpose [2, 3]. Aerial-hawking bats generally emit high-amplitude echolocation calls to maximize detection range [4, 5]. Here we present the first example of an echolocation counterstrategy to overcome prey hearing at the cost of reduced detection distance. We combined comparative bat flight-path tracking and moth neurophysiology with fecal DNA analysis to show that the barbastelle, Barbastella barbastellus, emits calls that are 10 to 100 times lower in amplitude than those of other aerial-hawking bats, remains undetected by moths until close, and captures mainly eared moths. Model calculations demonstrate that only bats emitting such low-amplitude calls hear moth echoes before their calls are conspicuous to moths. This stealth echolocation allows the barbastelle to exploit food resources that are difficult to catch for other aerial-hawking bats emitting calls of greater amplitude. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Foraging Ecology Predicts Learning Performance in Insectivorous Bats

    PubMed Central

    Clarin, Theresa M. A.; Ruczyński, Ireneusz; Page, Rachel A.

    2013-01-01

    Bats are unusual among mammals in showing great ecological diversity even among closely related species and are thus well suited for studies of adaptation to the ecological background. Here we investigate whether behavioral flexibility and simple- and complex-rule learning performance can be predicted by foraging ecology. We predict faster learning and higher flexibility in animals hunting in more complex, variable environments than in animals hunting in more simple, stable environments. To test this hypothesis, we studied three closely related insectivorous European bat species of the genus Myotis that belong to three different functional groups based on foraging habitats: M. capaccinii, an open water forager, M. myotis, a passive listening gleaner, and M. emarginatus, a clutter specialist. We predicted that M. capaccinii would show the least flexibility and slowest learning reflecting its relatively unstructured foraging habitat and the stereotypy of its natural foraging behavior, while the other two species would show greater flexibility and more rapid learning reflecting the complexity of their natural foraging tasks. We used a purposefully unnatural and thus species-fair crawling maze to test simple- and complex-rule learning, flexibility and re-learning performance. We found that M. capaccinii learned a simple rule as fast as the other species, but was slower in complex rule learning and was less flexible in response to changes in reward location. We found no differences in re-learning ability among species. Our results corroborate the hypothesis that animals’ cognitive skills reflect the demands of their ecological niche. PMID:23755146

  6. Change Points in the Population Trends of Aerial-Insectivorous Birds in North America: Synchronized in Time across Species and Regions.

    PubMed

    Smith, Adam C; Hudson, Marie-Anne R; Downes, Constance M; Francis, Charles M

    2015-01-01

    North American populations of aerial insectivorous birds are in steep decline. Aerial insectivores (AI) are a group of bird species that feed almost exclusively on insects in flight, and include swallows, swifts, nightjars, and flycatchers. The causes of the declines are not well understood. Indeed, it is not clear when the declines began, or whether the declines are shared across all species in the group (e.g., caused by changes in flying insect populations) or specific to each species (e.g., caused by changes in species' breeding habitat). A recent study suggested that population trends of aerial insectivores changed for the worse in the 1980s. If there was such a change point in trends of the group, understanding its timing and geographic pattern could help identify potential causes of the decline. We used a hierarchical Bayesian, penalized regression spline, change point model to estimate group-level change points in the trends of 22 species of AI, across 153 geographic strata of North America. We found evidence for group-level change points in 85% of the strata. Change points for flycatchers (FC) were distinct from those for swallows, swifts and nightjars (SSN) across North America, except in the Northeast, where all AI shared the same group-level change points. During the 1980s, there was a negative change point across most of North America, in the trends of SSN. For FC, the group-level change points were more geographically variable, and in many regions there were two: a positive change point followed by a negative change point. This group-level synchrony in AI population trends is likely evidence of a response to a common environmental factor(s) with similar effects on many species across broad spatial extents. The timing and geographic patterns of the change points that we identify here should provide a spring-board for research into the causes behind aerial insectivore declines.

  7. Change Points in the Population Trends of Aerial-Insectivorous Birds in North America: Synchronized in Time across Species and Regions

    PubMed Central

    Smith, Adam C.; Hudson, Marie-Anne R.; Downes, Constance M.; Francis, Charles M.

    2015-01-01

    North American populations of aerial insectivorous birds are in steep decline. Aerial insectivores (AI) are a group of bird species that feed almost exclusively on insects in flight, and include swallows, swifts, nightjars, and flycatchers. The causes of the declines are not well understood. Indeed, it is not clear when the declines began, or whether the declines are shared across all species in the group (e.g., caused by changes in flying insect populations) or specific to each species (e.g., caused by changes in species’ breeding habitat). A recent study suggested that population trends of aerial insectivores changed for the worse in the 1980s. If there was such a change point in trends of the group, understanding its timing and geographic pattern could help identify potential causes of the decline. We used a hierarchical Bayesian, penalized regression spline, change point model to estimate group-level change points in the trends of 22 species of AI, across 153 geographic strata of North America. We found evidence for group-level change points in 85% of the strata. Change points for flycatchers (FC) were distinct from those for swallows, swifts and nightjars (SSN) across North America, except in the Northeast, where all AI shared the same group-level change points. During the 1980s, there was a negative change point across most of North America, in the trends of SSN. For FC, the group-level change points were more geographically variable, and in many regions there were two: a positive change point followed by a negative change point. This group-level synchrony in AI population trends is likely evidence of a response to a common environmental factor(s) with similar effects on many species across broad spatial extents. The timing and geographic patterns of the change points that we identify here should provide a spring-board for research into the causes behind aerial insectivore declines. PMID:26147572

  8. Role of urea in the postprandial urine concentration cycle of the insectivorous bat Antrozous pallidus.

    PubMed

    Bassett, John E

    2004-02-01

    Insectivorous bats, which feed once daily, produce maximally concentrated urine only after feeding. The role of urea as an osmolyte in this process was investigated in pallid bats (Antrozous pallidus) in the laboratory. Following a 24-h fast, plasma and urine were sampled before and 2 h after feeding in postprandial (PP) animals and before and 2 h after similar treatment without feeding in nonfed (NF) animals. Food consumption by PP animals and handling of NF animals had no effect on blood water content as measured by hematocrit and plasma oncotic pressure. Food consumption increased both plasma osmolality (P(osm)) and plasma urea (P(urea)) by as much as 15%. Food consumption also increased urine osmolality (U(osm)) and urine urea (U(urea)) by 50-100%. Feeding increased U(osm) regardless of changes in P(osm), and elevation of U(osm) resulted primarily from increased U(urea). In NF bats, P(osm) and P(urea) were unchanged, while U(osm) and U(urea) increased by as much as 25%. Again, increased U(osm) resulted primarily from increased U(urea). The PP urine concentration cycle of pallid bats resulted from increased urea excretion in response to apparent rapid urea synthesis. Bats rapidly metabolized protein and excreted urea following feeding when body water was most plentiful.

  9. The effect of water contamination and host-related factors on ectoparasite load in an insectivorous bat.

    PubMed

    Korine, Carmi; Pilosof, Shai; Gross, Amit; Morales-Malacara, Juan B; Krasnov, Boris R

    2017-09-01

    We examined the effects of sex, age, and reproductive state of the insectivorous bat Pipistrellus kuhlii on the abundance and prevalence of arthropod ectoparasites (Macronyssidae and Cimicidae) in habitats with either sewage-polluted or natural bodies of water, in the Negev Desert, Israel. We chose water pollution as an environmental factor because of the importance of water availability in desert environments, particularly for P. kuhlii, which needs to drink on a daily basis. We predicted that parasite infestation rates would be affected by both environment and demographic cohort of the host. We found that female bats in the polluted site harbored significantly more mites than female bats in the natural site and that juveniles in the polluted site harbored significantly more cimicid individuals than juveniles in the natural site. We further found that age and sex (host-related factors) affected ectoparasite prevalence and intensity (i.e., the abundance of parasites) in the polluted site. Our results may suggest that the interaction between host-related and environment-related factors affected parasite infestations, with females and young bats being more susceptible to ectoparasites when foraging over polluted water. This effect may be particularly important for bats that must drink or forage above water for other wildlife that depend on drinking water for survival.

  10. Functional invertebrate prey groups reflect dietary responses to phenology and farming activity and pest control services in three sympatric species of aerially foraging insectivorous birds.

    PubMed

    Orłowski, Grzegorz; Karg, Jerzy; Karg, Grzegorz

    2014-01-01

    Farming activity severely impacts the invertebrate food resources of farmland birds, with direct mortality to populations of above-ground arthropods thorough mechanical damage during crop harvests. In this study we assessed the effects of phenological periods, including the timing of harvest, on the composition and biomass of prey consumed by three species of aerial insectivorous birds. Common Swifts Apus apus, Barn Swallows Hirundo rustica and House Martins Delichon urbica breed sympatrically and most of their diet is obtained from agricultural sources of invertebrate prey, especially from oil-seed rape crops. We categorized invertebrate prey into six functional groups, including oil-seed rape pests; pests of other arable crops; other crop-provisioned taxa; coprophilous taxa; and taxa living in non-crop and mixed crop/non-crop habitats. Seasonality impacted functional groups differently, but the general direction of change (increase/decrease) of all groups was consistent as indexed by prey composition of the three aerial insectivores studied here. After the oil-seed rape crop harvest (mid July), all three species exhibited a dietary shift from oil-seed rape insect pests to other aerial invertebrate prey groups. However, Common Switfts also consumed a relative large quantity of oil-seed rape insect pests in the late summer (August), suggesting that they could reduce pest insect emigration beyond the host plant/crop. Since these aerially foraging insectivorous birds operate in specific conditions and feed on specific pest resources unavailable to foliage/ground foraging avian predators, our results suggest that in some crops like oil-seed rape cultivations, the potential integration of the insectivory of aerial foraging birds into pest management schemes might provide economic benefits. We advise further research into the origin of airborne insects and the role of aerial insectivores as agents of the biological control of crop insect pests, especially the

  11. Falling with Style: Bats Perform Complex Aerial Rotations by Adjusting Wing Inertia.

    PubMed

    Bergou, Attila J; Swartz, Sharon M; Vejdani, Hamid; Riskin, Daniel K; Reimnitz, Lauren; Taubin, Gabriel; Breuer, Kenneth S

    2015-01-01

    The remarkable maneuverability of flying animals results from precise movements of their highly specialized wings. Bats have evolved an impressive capacity to control their flight, in large part due to their ability to modulate wing shape, area, and angle of attack through many independently controlled joints. Bat wings, however, also contain many bones and relatively large muscles, and thus the ratio of bats' wing mass to their body mass is larger than it is for all other extant flyers. Although the inertia in bat wings would typically be associated with decreased aerial maneuverability, we show that bat maneuvers challenge this notion. We use a model-based tracking algorithm to measure the wing and body kinematics of bats performing complex aerial rotations. Using a minimal model of a bat with only six degrees of kinematic freedom, we show that bats can perform body rolls by selectively retracting one wing during the flapping cycle. We also show that this maneuver does not rely on aerodynamic forces, and furthermore that a fruit fly, with nearly massless wings, would not exhibit this effect. Similar results are shown for a pitching maneuver. Finally, we combine high-resolution kinematics of wing and body movements during landing and falling maneuvers with a 52-degree-of-freedom dynamical model of a bat to show that modulation of wing inertia plays the dominant role in reorienting the bat during landing and falling maneuvers, with minimal contribution from aerodynamic forces. Bats can, therefore, use their wings as multifunctional organs, capable of sophisticated aerodynamic and inertial dynamics not previously observed in other flying animals. This may also have implications for the control of aerial robotic vehicles.

  12. Falling with Style: Bats Perform Complex Aerial Rotations by Adjusting Wing Inertia

    PubMed Central

    Bergou, Attila J.; Swartz, Sharon M.; Vejdani, Hamid; Riskin, Daniel K.; Reimnitz, Lauren; Taubin, Gabriel; Breuer, Kenneth S.

    2015-01-01

    The remarkable maneuverability of flying animals results from precise movements of their highly specialized wings. Bats have evolved an impressive capacity to control their flight, in large part due to their ability to modulate wing shape, area, and angle of attack through many independently controlled joints. Bat wings, however, also contain many bones and relatively large muscles, and thus the ratio of bats’ wing mass to their body mass is larger than it is for all other extant flyers. Although the inertia in bat wings would typically be associated with decreased aerial maneuverability, we show that bat maneuvers challenge this notion. We use a model-based tracking algorithm to measure the wing and body kinematics of bats performing complex aerial rotations. Using a minimal model of a bat with only six degrees of kinematic freedom, we show that bats can perform body rolls by selectively retracting one wing during the flapping cycle. We also show that this maneuver does not rely on aerodynamic forces, and furthermore that a fruit fly, with nearly massless wings, would not exhibit this effect. Similar results are shown for a pitching maneuver. Finally, we combine high-resolution kinematics of wing and body movements during landing and falling maneuvers with a 52-degree-of-freedom dynamical model of a bat to show that modulation of wing inertia plays the dominant role in reorienting the bat during landing and falling maneuvers, with minimal contribution from aerodynamic forces. Bats can, therefore, use their wings as multifunctional organs, capable of sophisticated aerodynamic and inertial dynamics not previously observed in other flying animals. This may also have implications for the control of aerial robotic vehicles. PMID:26569116

  13. Economic importance of bats in agriculture

    USGS Publications Warehouse

    Boyles, Justin G.; Cryan, Paul M.; McCracken, Gary F.; Kunz, Thomas H.

    2011-01-01

    White-nose syndrome (WNS) and the increased development of wind-power facilities are threatening populations of insectivorous bats in North America. Bats are voracious predators of nocturnal insects, including many crop and forest pests. We present here analyses suggesting that loss of bats in North America could lead to agricultural losses estimated at more than $3.7 billion/year. Urgent efforts are needed to educate the public and policy-makers about the ecological and economic importance of insectivorous bats and to provide practical conservation solutions.

  14. Changes in kinematics and aerodynamics over a range of speeds in Tadarida brasiliensis, the Brazilian free-tailed bat.

    PubMed

    Hubel, Tatjana Y; Hristov, Nickolay I; Swartz, Sharon M; Breuer, Kenneth S

    2012-06-07

    To date, wake measurements using particle image velocimetry (PIV) of bats in flight have studied only three bat species, all fruit and nectar feeders. In this study, we present the first wake structure analysis for an insectivorous bat. Tadarida brasiliensis, the Brazilian free-tailed bat, is an aerial hunter that annually migrates long distances and also differs strikingly from the previously investigated species morphologically. We compare the aerodynamics of T. brasiliensis with those of other, frugivorous bats and with common swifts, Apus apus, a bird with wing morphology, kinematics and flight ecology similar to that of these bats. The comparison reveals that, for the range of speeds evaluated, the cyclical pattern of aerodynamic forces associated with a wingbeat shows more similarities between T. brasiliensis and A. apus than between T. brasiliensis and other frugivorous bats.

  15. Bat predation by spiders.

    PubMed

    Nyffeler, Martin; Knörnschild, Mirjam

    2013-01-01

    In this paper more than 50 incidences of bats being captured by spiders are reviewed. Bat-catching spiders have been reported from virtually every continent with the exception of Antarctica (≈ 90% of the incidences occurring in the warmer areas of the globe between latitude 30° N and 30° S). Most reports refer to the Neotropics (42% of observed incidences), Asia (28.8%), and Australia-Papua New Guinea (13.5%). Bat-catching spiders belong to the mygalomorph family Theraphosidae and the araneomorph families Nephilidae, Araneidae, and Sparassidae. In addition to this, an attack attempt by a large araneomorph hunting spider of the family Pisauridae on an immature bat was witnessed. Eighty-eight percent of the reported incidences of bat catches were attributable to web-building spiders and 12% to hunting spiders. Large tropical orb-weavers of the genera Nephila and Eriophora in particular have been observed catching bats in their huge, strong orb-webs (of up to 1.5 m diameter). The majority of identifiable captured bats were small aerial insectivorous bats, belonging to the families Vespertilionidae (64%) and Emballonuridae (22%) and usually being among the most common bat species in their respective geographic area. While in some instances bats entangled in spider webs may have died of exhaustion, starvation, dehydration, and/or hyperthermia (i.e., non-predation death), there were numerous other instances where spiders were seen actively attacking, killing, and eating the captured bats (i.e., predation). This evidence suggests that spider predation on flying vertebrates is more widespread than previously assumed.

  16. Bat Predation by Spiders

    PubMed Central

    Nyffeler, Martin; Knörnschild, Mirjam

    2013-01-01

    In this paper more than 50 incidences of bats being captured by spiders are reviewed. Bat-catching spiders have been reported from virtually every continent with the exception of Antarctica (∼90% of the incidences occurring in the warmer areas of the globe between latitude 30° N and 30° S). Most reports refer to the Neotropics (42% of observed incidences), Asia (28.8%), and Australia-Papua New Guinea (13.5%). Bat-catching spiders belong to the mygalomorph family Theraphosidae and the araneomorph families Nephilidae, Araneidae, and Sparassidae. In addition to this, an attack attempt by a large araneomorph hunting spider of the family Pisauridae on an immature bat was witnessed. Eighty-eight percent of the reported incidences of bat catches were attributable to web-building spiders and 12% to hunting spiders. Large tropical orb-weavers of the genera Nephila and Eriophora in particular have been observed catching bats in their huge, strong orb-webs (of up to 1.5 m diameter). The majority of identifiable captured bats were small aerial insectivorous bats, belonging to the families Vespertilionidae (64%) and Emballonuridae (22%) and usually being among the most common bat species in their respective geographic area. While in some instances bats entangled in spider webs may have died of exhaustion, starvation, dehydration, and/or hyperthermia (i.e., non-predation death), there were numerous other instances where spiders were seen actively attacking, killing, and eating the captured bats (i.e., predation). This evidence suggests that spider predation on flying vertebrates is more widespread than previously assumed. PMID:23516436

  17. Prevalence of neutralizing antibodies to rabies virus in serum of seven species of insectivorous bats from Colorado and New Mexico, United States

    USGS Publications Warehouse

    Bowen, Richard A.; O'Shea, Thomas J.; Shankar, Vidya; Neubaum, Melissa A.; Neubaum, Daniel J.; Rupprecht, Charles E.

    2013-01-01

    We determined the presence of rabies-virus-neutralizing antibodies (RVNA) in serum of 721 insectivorous bats of seven species captured, sampled, and released in Colorado and New Mexico, United States in 2003-2005. A subsample of 160 bats was tested for rabies-virus RNA in saliva. We sampled little brown bats (Myotis lucifugus) at two maternity roosts in Larimer County, Colorado; big brown bats (Eptesicus fuscus) at three maternity roosts in Morgan County, Colorado; and big brown bats at five maternity roosts in Larimer County. We also sampled hoary bats (Lasiurus cinereus) and silver-haired bats (Lasionycteris noctivagans) captured while drinking or foraging over water in Bernalillo County, New Mexico and at various locations in Larimer County. Big brown bats, little brown bats, long-legged myotis (Myotis volans), long-eared myotis (Myotis evotis), and fringed myotis (Myotis thysanodes) were also sampled over water in Larimer County. All species except long-eared myotis included individuals with RVNA, with prevalences ranging from 7% in adult female silver-haired bats to 32% in adult female hoary bats. None of the bats had detectable rabies-virus RNA in oropharyngeal swabs, including 51 bats of 5 species that had RVNA in serum. Antibody-positive bats were present in nine of the 10 maternity colonies sampled. These data suggest that wild bats are commonly exposed to rabies virus and develop a humoral immune response suggesting some degree of viral replication, but many infections fail to progress to clinical disease.

  18. Changes in kinematics and aerodynamics over a range of speeds in Tadarida brasiliensis, the Brazilian free-tailed bat

    PubMed Central

    Hubel, Tatjana Y.; Hristov, Nickolay I.; Swartz, Sharon M.; Breuer, Kenneth S.

    2012-01-01

    To date, wake measurements using particle image velocimetry (PIV) of bats in flight have studied only three bat species, all fruit and nectar feeders. In this study, we present the first wake structure analysis for an insectivorous bat. Tadarida brasiliensis, the Brazilian free-tailed bat, is an aerial hunter that annually migrates long distances and also differs strikingly from the previously investigated species morphologically. We compare the aerodynamics of T. brasiliensis with those of other, frugivorous bats and with common swifts, Apus apus, a bird with wing morphology, kinematics and flight ecology similar to that of these bats. The comparison reveals that, for the range of speeds evaluated, the cyclical pattern of aerodynamic forces associated with a wingbeat shows more similarities between T. brasiliensis and A. apus than between T. brasiliensis and other frugivorous bats. PMID:22258554

  19. Wake structure and kinematics in two insectivorous bats

    PubMed Central

    Hristov, Nickolay I.; Swartz, Sharon M.; Breuer, Kenneth S.

    2016-01-01

    We compare kinematics and wake structure over a range of flight speeds (4.0–8.2 m s−1) for two bats that pursue insect prey aerially, Tadarida brasiliensis and Myotis velifer. Body mass and wingspan are similar in these species, but M. velifer has broader wings and lower wing loading. By using high-speed videography and particle image velocimetry of steady flight in a wind tunnel, we show that three-dimensional kinematics and wake structure are similar in the two species at the higher speeds studied, but differ at lower speeds. At lower speeds, the two species show significant differences in mean angle of attack, body–wingtip distance and sweep angle. The distinct body vortex seen at low speed in T. brasiliensis and other bats studied to date is considerably weaker or absent in M. velifer. We suggest that this could be influenced by morphology: (i) the narrower thorax in this species probably reduces the body-induced discontinuity in circulation between the two wings and (ii) the wing loading is lower, hence the lift coefficient required for weight support is lower. As a result, in M. velifer, there may be a decreased disruption in the lift generation between the body and the wing, and the strength of the characteristic root vortex is greatly diminished, both suggesting increased flight efficiency. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’. PMID:27528775

  20. 'No cost of echolocation for flying bats' revisited.

    PubMed

    Voigt, Christian C; Lewanzik, Daniel

    2012-08-01

    Echolocation is energetically costly for resting bats, but previous experiments suggested echolocation to come at no costs for flying bats. Yet, previous studies did not investigate the relationship between echolocation, flight speed, aerial manoeuvres and metabolism. We re-evaluated the 'no-cost' hypothesis, by quantifying the echolocation pulse rate, the number of aerial manoeuvres (landings and U-turns), and the costs of transport in the 5-g insectivorous bat Rhogeessa io (Vespertilionidae). On average, bats (n = 15) travelled at 1.76 ± 0.36 m s⁻¹ and performed 11.2 ± 6.1 U-turns and 2.8 ± 2.9 ground landings when flying in an octagonal flight cage. Bats made more U-turns with decreasing wing loading (body weight divided by wing area). At flight, bats emitted 19.7 ± 2.7 echolocation pulses s⁻¹ (range 15.3-25.8 pulses s⁻¹), and metabolic rate averaged 2.84 ± 0.95 ml CO₂ min⁻¹, which was more than 16 times higher than at rest. Bats did not echolocate while not engaged in flight. Costs of transport were not related to the rate of echolocation pulse emission or the number of U-turns, but increased with increasing number of landings; probably as a consequence of slower travel speed when staying briefly on ground. Metabolic power of flight was lower than predicted for R. io under the assumption that energetic costs of echolocation call production is additive to the aerodynamic costs of flight. Results of our experiment are consistent with the notion that echolocation does not add large energetic costs to the aerodynamic power requirements of flight in bats.

  1. Divergence of dim-light vision among bats (order: Chiroptera) as estimated by molecular and electrophysiological methods.

    PubMed

    Liu, He-Qun; Wei, Jing-Kuan; Li, Bo; Wang, Ming-Shan; Wu, Rui-Qi; Rizak, Joshua D; Zhong, Li; Wang, Lu; Xu, Fu-Qiang; Shen, Yong-Yi; Hu, Xin-Tian; Zhang, Ya-Ping

    2015-06-23

    Dim-light vision is present in all bats, but is divergent among species. Old-World fruit bats (Pteropodidae) have fully developed eyes; the eyes of insectivorous bats are generally degraded, and these bats rely on well-developed echolocation. An exception is the Emballonuridae, which are capable of laryngeal echolocation but prefer to use vision for navigation and have normal eyes. In this study, integrated methods, comprising manganese-enhanced magnetic resonance imaging (MEMRI), f-VEP and RNA-seq, were utilized to verify the divergence. The results of MEMRI showed that Pteropodidae bats have a much larger superior colliculus (SC)/ inferior colliculus (IC) volume ratio (3:1) than insectivorous bats (1:7). Furthermore, the absolute visual thresholds (log cd/m(2)•s) of Pteropodidae (-6.30 and -6.37) and Emballonuridae (-3.71) bats were lower than those of other insectivorous bats (-1.90). Finally, genes related to the visual pathway showed signs of positive selection, convergent evolution, upregulation and similar gene expression patterns in Pteropodidae and Emballonuridae bats. Different results imply that Pteropodidae and Emballonuridae bats have more developed vision than the insectivorous bats and suggest that further research on bat behavior is warranted.

  2. Spike Neuromorphic VLSI-Based Bat Echolocation for Micro-Aerial Vehicle Guidance

    DTIC Science & Technology

    2007-03-31

    IFinal 03/01/04 - 02/28/07 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Neuromorphic VLSI-based Bat Echolocation for Micro-aerial 5b.GRANTNUMBER Vehicle...uncovered interesting new issues in our choice for representing the intensity of signals. We have just finished testing the first chip version of an echo...timing-based algorithm (’openspace’) for sonar-guided navigation amidst multiple obstacles. 15. SUBJECT TERMS Neuromorphic VLSI, bat echolocation

  3. Refueling while flying: foraging bats combust food rapidly and directly to power flight.

    PubMed

    Voigt, Christian C; Sörgel, Karin; Dechmann, Dina K N

    2010-10-01

    Flying vertebrates, such as bats, face exceptionally high energy costs during active flapping flight. Once airborne, energy turnover may exceed basal metabolic rate by a factor of up to 15. Here, we asked whether fuel that powers flight originates from exogenous (dietary nutrients), endogenous sources (mostly body lipids or glycogen), or a combination of both. Since most insectivorous bats fly continuously over relatively long time periods during foraging, we assumed that slowly mobilized glycogen, although suitable for supporting brief sallying flights, is inadequate to power aerial insect-hunting of bats. We hypothesized that the insect-feeding Noctilio albiventris rapidly mobilizes and combusts nutrients from insects it has just eaten instead of utilizing endogenous lipids. We used the stable carbon isotope ratio in the bats' exhaled breath (delta13C(brth)) to assess the origin of metabolized substrates of resting and flying N. albiventris in two nutritional conditions: fasted and recently fed. The breath of fasted resting bats was depleted in 13C in relation to their insect diet (delta13C(diet)), indicating the combustion of 13C depleted body lipids. In contrast to this, delta13C(brth) of bats that had recently fed closely matched delta13C(diet) in both resting and flying bats, suggesting a quick mobilization of ingested nutrients for metabolism. In contrast to most non-volant mammals, bats have evolved the ability to fuel their high energy expenditure rates through the rapid combustion of exogenous nutrients, enabling them to conquer the nocturnal niche of aerial insectivory.

  4. Divergence of dim-light vision among bats (order: Chiroptera) as estimated by molecular and electrophysiological methods

    PubMed Central

    Liu, He-Qun; Wei, Jing-Kuan; Li, Bo; Wang, Ming-Shan; Wu, Rui-Qi; Rizak, Joshua D.; Zhong, Li; Wang, Lu; Xu, Fu-Qiang; Shen, Yong-Yi; Hu, Xin-Tian; Zhang, Ya-Ping

    2015-01-01

    Dim-light vision is present in all bats, but is divergent among species. Old-World fruit bats (Pteropodidae) have fully developed eyes; the eyes of insectivorous bats are generally degraded, and these bats rely on well-developed echolocation. An exception is the Emballonuridae, which are capable of laryngeal echolocation but prefer to use vision for navigation and have normal eyes. In this study, integrated methods, comprising manganese-enhanced magnetic resonance imaging (MEMRI), f-VEP and RNA-seq, were utilized to verify the divergence. The results of MEMRI showed that Pteropodidae bats have a much larger superior colliculus (SC)/ inferior colliculus (IC) volume ratio (3:1) than insectivorous bats (1:7). Furthermore, the absolute visual thresholds (log cd/m2•s) of Pteropodidae (−6.30 and −6.37) and Emballonuridae (−3.71) bats were lower than those of other insectivorous bats (−1.90). Finally, genes related to the visual pathway showed signs of positive selection, convergent evolution, upregulation and similar gene expression patterns in Pteropodidae and Emballonuridae bats. Different results imply that Pteropodidae and Emballonuridae bats have more developed vision than the insectivorous bats and suggest that further research on bat behavior is warranted. PMID:26100095

  5. Hypersalinity reduces the risk of cyanide toxicosis to insectivorous bats interacting with wastewater impoundments at gold mines.

    PubMed

    Griffiths, Stephen R; Donato, David B; Lumsden, Linda F; Coulson, Graeme

    2014-01-01

    Wildlife and livestock that ingest bioavailable cyanide compounds in gold mining tailings dams are known to experience cyanide toxicosis. Elevated levels of salinity in open impoundments have been shown to prevent wildlife cyanide toxicosis by reducing drinking and foraging. This finding appears to be consistent for diurnal wildlife interacting with open impoundments, however the risks to nocturnal wildlife of cyanide exposure are unknown. We investigated the activity of insectivorous bats in the airspace above both fresh (potable to wildlife) and saline water bodies at two gold mines in the goldfields of Western Australian. During this study, cyanide-bearing solutions stored in open impoundments at both mine sites were hypersaline (range=57,000-295,000 mg/L total dissolved solids (TDS)), well above known physiological tolerance of any terrestrial vertebrate. Bats used the airspace above each water body monitored, but were more active at fresh than saline water bodies. In addition, considerably more terminal echolocation buzz calls were recorded in the airspace above fresh than saline water bodies at both mine sites. However, it was not possible to determine whether these buzz calls corresponded to foraging or drinking bouts. No drinking bouts were observed in 33 h of thermal video footage recorded at one hypersaline tailings dam, suggesting that this water is not used for drinking. There is no information on salinity tolerances of bats, but it could be assumed that bats would not tolerate salinity in drinking water at concentrations greater than those documented as toxic for saline-adapted terrestrial wildlife. Therefore, when managing wastewater impoundments at gold mines to avoid wildlife mortalities, adopting a precautionary principle, bats are unlikely to drink solutions at salinity levels ≥50,000 mg/L TDS. © 2013 Published by Elsevier Inc.

  6. Evidence of Lagos bat virus circulation among Nigerian fruit bats.

    PubMed

    Dzikwi, Asabe A; Kuzmin, Ivan I; Umoh, Jarlath U; Kwaga, Jacob K P; Ahmad, Aliyu A; Rupprecht, Charles E

    2010-01-01

    During lyssavirus surveillance, 350 brains from four species of fruit bats and one species of insectivorous bat were collected from seven locations in Northern Nigeria during May to October, 2006. Lyssavirus antigen was not detected in the brains, and isolation attempts in mice were unsuccessful. However, serologic tests demonstrated the presence of lyssavirus-neutralizing antibodies in bat sera. Of 140 sera tested, 27 (19%) neutralized Lagos bat virus, and two of these additionally neutralized Mokola virus. The positive samples originated from the straw-colored fruit bat (Eidolon helvum) and the Gambian epaulet bat (Epomophorus gambianus). No neutralizing activity was detected against other lyssaviruses including rabies, Duvenhage, and West Caucasian bat viruses.

  7. Potential citric acid exposure and toxicity to Hawaiian hoary bats (Lasiurus cinereus semotus) associated with Eleutherodactylus frog control.

    PubMed

    Pitt, William C; Witmer, Gary W; Jojola, Susan M; Sin, Hans

    2014-04-01

    We examined potential exposure of Hawaiian hoary bats (Lasiurus cinereus semotus) to citric acid, a minimum risk pesticide registered for control of invasive Eleutherodactylus frog populations. Hoary bats are nocturnal insectivores that roost solitarily in foliage, federally listed as endangered, and are endemic to Hawaii. Oral ingestion during grooming of contaminated fur appears to be the principal route by which these bats might be exposed to citric acid. We made assessments of oral toxicity, citric acid consumption, retention of material on fur, and grooming using big brown bats (Eptesicus fuscus) as a surrogate species. We evaluated both ground application and aerial application of 16 % solutions of citric acid during frog control operations. Absorbent bat effigies exposed to ground and aerial operational spray applications retained means of 1.54 and 0.02 g, respectively, of dry citric acid, although retention by the effigies was much higher than bat carcasses drenched in citric acid solutions. A high dose delivered orally (2,811 mg/kg) was toxic to the big brown bats and emesis occurred in 1 bat dosed as low as the 759 mg/kg level. No effect was observed with the lower doses examined (≤ 542 mg/kg). Bats sprayed with 5 ml of 16 % (w/w) citric acid solution showed no evidence of intoxication. In field situations, it is unlikely that bats would be sprayed directly or ingest much citric acid retained by fur. Based on our observations, we believe Hawaiian hoary bats to be at very low risk from harmful exposure to a toxic dose of citric acid during frog control operations.

  8. Ultraviolet vision may be widespread in bats

    USGS Publications Warehouse

    Gorresen, P. Marcos; Cryan, Paul; Dalton, David C.; Wolf, Sandy; Bonaccorso, Frank

    2015-01-01

    Insectivorous bats are well known for their abilities to find and pursue flying insect prey at close range using echolocation, but they also rely heavily on vision. For example, at night bats use vision to orient across landscapes, avoid large obstacles, and locate roosts. Although lacking sharp visual acuity, the eyes of bats evolved to function at very low levels of illumination. Recent evidence based on genetics, immunohistochemistry, and laboratory behavioral trials indicated that many bats can see ultraviolet light (UV), at least at illumination levels similar to or brighter than those before twilight. Despite this growing evidence for potentially widespread UV vision in bats, the prevalence of UV vision among bats remains unknown and has not been studied outside of the laboratory. We used a Y-maze to test whether wild-caught bats could see reflected UV light and whether such UV vision functions at the dim lighting conditions typically experienced by night-flying bats. Seven insectivorous species of bats, representing five genera and three families, showed a statistically significant ‘escape-toward-the-light’ behavior when placed in the Y-maze. Our results provide compelling evidence of widespread dim-light UV vision in bats.

  9. New record of the rare emballonurid bat Centronycteris centralis Thomas, 1912 in Costa Rica, with notes on feeding habits

    USGS Publications Warehouse

    Woodman, N.

    2003-01-01

    The shaggy sac-winged bat, Centronycteris centralis, occurs mainly in lowland forests from Veracruz, Mexico, to Peru, although it has been reported from elevations as high at 1450 m in Panama. Most captures of the species are of single individuals, and throughout its distribution, this bat is rare and poorly-known. Centronycteris centralis generally has been assumed to be an aerial insectivore, capturing flying insects on the wing. However, direct evidence supporting this trophic role has been lacking. Herein, I report on a specimen of C. centralis from seasonally-inundated swamp forest in the Caribbean lowlands of northeastern Costa Rica that provides valuable information on distribution, morphological variation, reproduction, and feeding habits of this species.

  10. Insect prey eaten by Hoary Bats (Lasiurus cinereus) prior to fatal collisions with wind turbines

    USGS Publications Warehouse

    Valdez, Ernest W.; Cryan, Paul M.

    2013-01-01

    Wind turbines are being deployed all across the world to meet the growing demand for energy, and in many areas, these turbines are causing the deaths of insectivorous migratory bats. One of the hypothesized causes of bat susceptibility is that bats are attracted to insects on or near the turbines. We examined insect remains in the stomachs and intestines of hoary bats (Lasiurus cinereus) found dead beneath wind turbines in New York and Texas to evaluate the hypothesis that bats die while feeding at turbines. Most of the bats we examined had full stomachs, indicating that they fed in the minutes to hours leading up to their deaths. However, we did not find prey in the mouths or throats of any bats that would indicate the bats died while capturing prey. Hoary bats fed mostly on moths, but we also detected the regular presence of beetles, true bugs, and crickets. Presence of terrestrial insects in stomachs indicates that bats may have gleaned them from the ground or the turbine surfaces, yet aerial capture of winged insect stages cannot be ruled out. Our findings confirm earlier studies that indicate hoary bats feed during migration and eat mostly moths. Future studies on bat behaviors and insect presence at wind turbines could help determine whether feeding at turbines is a major fatality risk for bats.

  11. Bacterial diversity indicates dietary overlap among bats of different feeding habits.

    PubMed

    Banskar, Sunil; Mourya, Devendra T; Shouche, Yogesh S

    2016-01-01

    Bats are among the most conspicuous mammals with extraordinary adaptations. They play a key role in the ecosystem. Frugivorous bats are important seed dispersing agents that help in maintaining forest tree diversity, while insectivorous bats are natural insect pest control agents. Several previous reports suggest that bats are reservoir of viruses; nonetheless their bacterial counterparts are relatively less explored. The present study describes the microbial diversity associated with the intestine of bats from different regions of India. Our observations stipulate that there is substantial sharing of bacterial communities between the insectivorous and frugivorous bats, which signifies fairly large dietary overlap. We also observed the presence of higher abundance of Mycoplasma in Cynopterus species of bats, indicating possible Mycoplasma infection. Considering the scarcity of literature related to microbial communities of bat intestinal tract, this study can direct future microbial diversity studies in bats with reference to their dietary habits, host-bacteria interaction and zoonosis. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. Interaction of vestibular, echolocation, and visual modalities guiding flight by the big brown bat, Eptesicus fuscus.

    PubMed

    Horowitz, Seth S; Cheney, Cheryl A; Simmons, James A

    2004-01-01

    The big brown bat (Eptesicus fuscus) is an aerial-feeding insectivorous species that relies on echolocation to avoid obstacles and to detect flying insects. Spatial perception in the dark using echolocation challenges the vestibular system to function without substantial visual input for orientation. IR thermal video recordings show the complexity of bat flights in the field and suggest a highly dynamic role for the vestibular system in orientation and flight control. To examine this role, we carried out laboratory studies of flight behavior under illuminated and dark conditions in both static and rotating obstacle tests while administering heavy water (D2O) to impair vestibular inputs. Eptesicus carried out complex maneuvers through both fixed arrays of wires and a rotating obstacle array using both vision and echolocation, or when guided by echolocation alone. When treated with D2O in combination with lack of visual cues, bats showed considerable decrements in performance. These data indicate that big brown bats use both vision and echolocation to provide spatial registration for head position information generated by the vestibular system.

  13. Urban bat communities are affected by wetland size, quality, and pollution levels.

    PubMed

    Straka, Tanja Maria; Lentini, Pia Eloise; Lumsden, Linda Faye; Wintle, Brendan Anthony; van der Ree, Rodney

    2016-07-01

    Wetlands support unique biota and provide important ecosystem services. These services are highly threatened due to the rate of loss and relative rarity of wetlands in most landscapes, an issue that is exacerbated in highly modified urban environments. Despite this, critical ecological knowledge is currently lacking for many wetland-dependent taxa, such as insectivorous bats, which can persist in urban areas if their habitats are managed appropriately. Here, we use a novel paired landscape approach to investigate the role of wetlands in urban bat conservation and examine local and landscape factors driving bat species richness and activity. We acoustically monitored bat activity at 58 urban wetlands and 35 nonwetland sites (ecologically similar sites without free-standing water) in the greater Melbourne area, southeastern Australia. We analyzed bat species richness and activity patterns using generalized linear mixed-effects models. We found that the presence of water in urban Melbourne was an important driver of bat species richness and activity at a landscape scale. Increasing distance to bushland and increasing levels of heavy metal pollution within the waterbody also negatively influenced bat richness and individual species activity. Areas with high levels of artificial night light had reduced bat species richness, and reduced activity for all species except those adapted to urban areas, such as the White-striped free-tailed bat (Austronomus australis). Increased surrounding tree cover and wetland size had a positive effect on bat species richness. Our findings indicate that wetlands form critical habitats for insectivorous bats in urban environments. Large, unlit, and unpolluted wetlands flanked by high tree cover in close proximity to bushland contribute most to the richness of the bat community. Our findings clarify the role of wetlands for insectivorous bats in urban areas and will also allow for the preservation, construction, and management of wetlands

  14. Go big or go fish: morphological specializations in carnivorous bats.

    PubMed

    Santana, Sharlene E; Cheung, Elena

    2016-05-11

    Specialized carnivory is relatively uncommon across mammals, and bats constitute one of the few groups in which this diet has evolved multiple times. While size and morphological adaptations for carnivory have been identified in other taxa, it is unclear what phenotypic traits characterize the relatively recent evolution of carnivory in bats. To address this gap, we apply geometric morphometric and phylogenetic comparative analyses to elucidate which characters are associated with ecological divergence of carnivorous bats from insectivorous ancestors, and if there is morphological convergence among independent origins of carnivory within bats, and with other carnivorous mammals. We find that carnivorous bats are larger and converged to occupy a subset of the insectivorous morphospace, characterized by skull shapes that enhance bite force at relatively wide gapes. Piscivorous bats are morphologically distinct, with cranial shapes that enable high bite force at narrow gapes, which is necessary for processing fish prey. All animal-eating species exhibit positive allometry in rostrum elongation with respect to skull size, which could allow larger bats to take relatively larger prey. The skull shapes of carnivorous bats share similarities with generalized carnivorans, but tend to be more suited for increased bite force production at the expense of gape, when compared with specialized carnivorans. © 2016 The Author(s).

  15. Go big or go fish: morphological specializations in carnivorous bats

    PubMed Central

    Santana, Sharlene E.; Cheung, Elena

    2016-01-01

    Specialized carnivory is relatively uncommon across mammals, and bats constitute one of the few groups in which this diet has evolved multiple times. While size and morphological adaptations for carnivory have been identified in other taxa, it is unclear what phenotypic traits characterize the relatively recent evolution of carnivory in bats. To address this gap, we apply geometric morphometric and phylogenetic comparative analyses to elucidate which characters are associated with ecological divergence of carnivorous bats from insectivorous ancestors, and if there is morphological convergence among independent origins of carnivory within bats, and with other carnivorous mammals. We find that carnivorous bats are larger and converged to occupy a subset of the insectivorous morphospace, characterized by skull shapes that enhance bite force at relatively wide gapes. Piscivorous bats are morphologically distinct, with cranial shapes that enable high bite force at narrow gapes, which is necessary for processing fish prey. All animal-eating species exhibit positive allometry in rostrum elongation with respect to skull size, which could allow larger bats to take relatively larger prey. The skull shapes of carnivorous bats share similarities with generalized carnivorans, but tend to be more suited for increased bite force production at the expense of gape, when compared with specialized carnivorans. PMID:27170718

  16. FoxP2 and olfaction: divergence of FoxP2 expression in olfactory tubercle between different feeding habit bats.

    PubMed

    Chen, Qi; Wang, Lina; Jones, G; Metzner, W; Xuan, F J; Yin, Jiangxia; Sun, Y

    2013-12-01

    FoxP2 is a member of the winged helix/forkhead class of transcription factors. Despite FoxP2 is found to have particular relevance to speech and language, the role of this gene is broader and not yet fully elucidated. In this study, we investigated the expression of FoxP2 in the brains of bats with different feeding habits (two frugivorous species and three insectivorous species). We found FoxP2 expression in the olfactory tubercle of frugivorous species is significantly higher than that in insectivorous species. Difference of FoxP2 expression was not observed within each of the frugivorous or insectivorous group. The diverse expression patterns in olfactory tubercle between two kinds of bats indicate FoxP2 has a close relation with olfactory tubercle associated functions, suggesting its important role in sensory integration within the olfactory tubercle and such a discrepancy of FoxP2 expression in olfactory tubercle may take responsibility for the different feeding behaviors of frugivorous and insectivorous bats.

  17. Eco-epidemiology of Novel Bartonella Genotypes from Parasitic Flies of Insectivorous Bats.

    PubMed

    Sándor, Attila D; Földvári, Mihály; Krawczyk, Aleksandra I; Sprong, Hein; Corduneanu, Alexandra; Barti, Levente; Görföl, Tamás; Estók, Péter; Kováts, Dávid; Szekeres, Sándor; László, Zoltán; Hornok, Sándor; Földvári, Gábor

    2018-04-29

    Bats are important zoonotic reservoirs for many pathogens worldwide. Although their highly specialized ectoparasites, bat flies (Diptera: Hippoboscoidea), can transmit Bartonella bacteria including human pathogens, their eco-epidemiology is unexplored. Here, we analyzed the prevalence and diversity of Bartonella strains sampled from 10 bat fly species from 14 European bat species. We found high prevalence of Bartonella spp. in most bat fly species with wide geographical distribution. Bat species explained most of the variance in Bartonella distribution with the highest prevalence of infected flies recorded in species living in dense groups exclusively in caves. Bat gender but not bat fly gender was also an important factor with the more mobile male bats giving more opportunity for the ectoparasites to access several host individuals. We detected high diversity of Bartonella strains (18 sequences, 7 genotypes, in 9 bat fly species) comparable with tropical assemblages of bat-bat fly association. Most genotypes are novel (15 out of 18 recorded strains have a similarity of 92-99%, with three sequences having 100% similarity to Bartonella spp. sequences deposited in GenBank) with currently unknown pathogenicity; however, 4 of these sequences are similar (up to 92% sequence similarity) to Bartonella spp. with known zoonotic potential. The high prevalence and diversity of Bartonella spp. suggests a long shared evolution of these bacteria with bat flies and bats providing excellent study targets for the eco-epidemiology of host-vector-pathogen cycles.

  18. Dynamics of the echolocation beam during prey pursuit in aerial hawking bats.

    PubMed

    Jakobsen, Lasse; Olsen, Mads Nedergaard; Surlykke, Annemarie

    2015-06-30

    In the evolutionary arms race between prey and predator, measures and countermeasures continuously evolve to increase survival on both sides. Bats and moths are prime examples. When exposed to intense ultrasound, eared moths perform dramatic escape behaviors. Vespertilionid and rhinolophid bats broaden their echolocation beam in the final stage of pursuit, presumably as a countermeasure to keep evading moths within their "acoustic field of view." In this study, we investigated if dynamic beam broadening is a general property of echolocation when catching moving prey. We recorded three species of emballonurid bats, Saccopteryx bilineata, Saccopteryx leptura, and Rhynchonycteris naso, catching airborne insects in the field. The study shows that S. bilineata and S. leptura maintain a constant beam shape during the entire prey pursuit, whereas R. naso broadens the beam by lowering the peak call frequency from 100 kHz during search and approach to 67 kHz in the buzz. Surprisingly, both Saccopteryx bats emit calls with very high energy throughout the pursuit, up to 60 times more than R. naso and Myotis daubentonii (a similar sized vespertilionid), providing them with as much, or more, peripheral "vision" than the vespertilionids, but ensonifying objects far ahead suggesting more clutter. Thus, beam broadening is not a fundamental property of the echolocation system. However, based on the results, we hypothesize that increased peripheral detection is crucial to all aerial hawking bats in the final stages of prey pursuit and speculate that beam broadening is a feature characterizing more advanced echolocation.

  19. Assessing costs of carrying geolocators using feather corticosterone in two species of aerial insectivore

    PubMed Central

    Fairhurst, Graham D.; Berzins, Lisha L.; Bradley, David W.; Laughlin, Andrew J.; Romano, Andrea; Romano, Maria; Scandolara, Chiara; Ambrosini, Roberto; Dawson, Russell D.; Dunn, Peter O.; Hobson, Keith A.; Liechti, Felix; Marchant, Tracy A.; Norris, D. Ryan; Rubolini, Diego; Saino, Nicola; Taylor, Caz M.; Whittingham, Linda A.; Clark, Robert G.

    2015-01-01

    Despite benefits of using light-sensitive geolocators to track animal movements and describe patterns of migratory connectivity, concerns have been raised about negative effects of these devices, particularly in small species of aerial insectivore. Geolocators may act as handicaps that increase energetic expenditure, which could explain reported effects of geolocators on survival. We tested this ‘Energetic Expenditure Hypothesis’ in 12 populations of tree swallows (Tachycineta bicolor) and barn swallows (Hirundo rustica) from North America and Europe, using measurements of corticosterone from feathers (CORTf) grown after deployment of geolocators as a measure of physiology relevant to energetics. Contrary to predictions, neither among- (both species) nor within-individual (tree swallows only) levels of CORTf differed with respect to instrumentation. Thus, to the extent that CORTf reflects energetic expenditure, geolocators apparently were not a strong handicap for birds that returned post-deployment. While this physiological evidence suggests that information about migration obtained from returning geolocator-equipped swallows is unbiased with regard to levels of stress, we cannot discount the possibility that corticosterone played a role in reported effects of geolocators on survival in birds, and suggest that future studies relate corticosterone to antecedent factors, such as reproductive history, and to downstream fitness costs. PMID:26064659

  20. Influence of feeding habits in the endocrine pancreas of insectivore bat Pteronotus personatus and nectarivore bat Anoura geoffroyi: A comparative stereological and immunohistochemical study.

    PubMed

    Machado-Santos, Clarice; Aquino, Júlio Cesar Fraulob; da Rocha, Patrício Adriano; Abidu-Figueiredo, Marcelo; de Brito-Gitirana, Lycia; Sales, Armando

    2017-02-01

    Pteronotus personatus as an insectivore bat and has a diet that consists of a high protein diet, whereas the diet of Anoura geoffroyi, a predominantly nectarivore bat, is rich in simple sugars like sucrose, glucose and fructose. Considering that diet influences the activation of different pathways, which may influence morphological adaptations in the gastrointestinal system, the aim of this study was to compare the morphology of the endocrine pancreas in P. personatus and A. geoffroyi. For this, histological, stereological and immunohistochemical methods were used. In P. personatus, the average diameter of the pancreatic islet was 40.47μm±13.94, while in A. geoffroyi was 88.16μm±36.40. The total number of pancreatic islets in P. personatus was 26150±2346 and in A. geoffroyi was 15970±1666. In P. personatus, the volume density of the pancreatic islets was 3.4%± 2.6, whereas in A. geoffroyi the volume density was 6.1%±3.7. In addition, the immunodensity of the α, β and δ cells, in P. personatus was 25.8%±11.9, 35.5%±13.5, 3.9%±0.7, respectively, and in A. geoffroyi was 33.10%±12.7, 55.08%±7.4, 6.2%±4.6, respectively. In conclusion, the results of this study indicate differences in the pancreatic weight/body, weight ratio, diameter and volume density of pancreatic islets and in immunodensity of the β and α cells between both species, which have different dietary habits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Dengue virus in Mexican bats.

    PubMed

    Aguilar-Setién, A; Romero-Almaraz, M L; Sánchez-Hernández, C; Figueroa, R; Juárez-Palma, L P; García-Flores, M M; Vázquez-Salinas, C; Salas-Rojas, M; Hidalgo-Martínez, A C; Pierlé, S Aguilar; García-Estrada, C; Ramos, C

    2008-12-01

    Individuals belonging to five families, 12 genera, and 19 different species of bats from dengue endemic areas in the Gulf and Pacific coasts of Mexico were examined by ELISA, RT-PCR, and for the presence of dengue virus (DV) NS1 protein. Nine individuals from four species were seropositive by ELISA: three insectivorous, Myotis nigricans (four positives/12 examined), Pteronotus parnellii (3/19), and Natalus stramineus (1/4), and one frugivorous Artibeus jamaicensis (1/35) (12.86% seroprevalence in positive species). DV serotype 2 was detected by RT-PCR in four samples from three species (all from the Gulf coast - rainy season): two frugivorous, A. jamaicensis (2/9), and Carollia brevicauda (1/2), and one insectivorous, M. nigricans (1/11). The latter was simultaneously positive for NS1 protein. DV RT-PCR positive animals were all antibody seronegative. M. nigricans showed positive individuals for all three tests. This is the first evidence suggesting the presence of DV in bats from Mexico.

  2. Dynamics of the echolocation beam during prey pursuit in aerial hawking bats

    PubMed Central

    Jakobsen, Lasse; Olsen, Mads Nedergaard; Surlykke, Annemarie

    2015-01-01

    In the evolutionary arms race between prey and predator, measures and countermeasures continuously evolve to increase survival on both sides. Bats and moths are prime examples. When exposed to intense ultrasound, eared moths perform dramatic escape behaviors. Vespertilionid and rhinolophid bats broaden their echolocation beam in the final stage of pursuit, presumably as a countermeasure to keep evading moths within their “acoustic field of view.” In this study, we investigated if dynamic beam broadening is a general property of echolocation when catching moving prey. We recorded three species of emballonurid bats, Saccopteryx bilineata, Saccopteryx leptura, and Rhynchonycteris naso, catching airborne insects in the field. The study shows that S. bilineata and S. leptura maintain a constant beam shape during the entire prey pursuit, whereas R. naso broadens the beam by lowering the peak call frequency from 100 kHz during search and approach to 67 kHz in the buzz. Surprisingly, both Saccopteryx bats emit calls with very high energy throughout the pursuit, up to 60 times more than R. naso and Myotis daubentonii (a similar sized vespertilionid), providing them with as much, or more, peripheral “vision” than the vespertilionids, but ensonifying objects far ahead suggesting more clutter. Thus, beam broadening is not a fundamental property of the echolocation system. However, based on the results, we hypothesize that increased peripheral detection is crucial to all aerial hawking bats in the final stages of prey pursuit and speculate that beam broadening is a feature characterizing more advanced echolocation. PMID:26080398

  3. Growing hickories (Carya spp.) for roost trees: A method to support conservation of declining bat populations

    Treesearch

    Tara Luna; Daniel L. Lindner; R. Kasten Dumroese

    2014-01-01

    Bats (Vespertilionidae and Phyllostomidae) are a critically important component of North American ecosystems. These insectivorous mammals provide largely unrecognized ecosystem services to agriculture and forest health and sustain bat-dependent native plant populations. The decline of North American bat populations reflects the recent emergence of the fungal disease...

  4. Bat-borne rabies in Latin America.

    PubMed

    Escobar, Luis E; Peterson, A Townsend; Favi, Myriam; Yung, Verónica; Medina-Vogel, Gonzalo

    2015-01-01

    The situation of rabies in America is complex: rabies in dogs has decreased dramatically, but bats are increasingly recognized as natural reservoirs of other rabies variants. Here, bat species known to be rabies-positive with different antigenic variants, are summarized in relation to bat conservation status across Latin America. Rabies virus is widespread in Latin American bat species, 22.5%75 of bat species have been confirmed as rabies-positive. Most bat species found rabies positive are classified by the International Union for Conservation of Nature as "Least Concern". According to diet type, insectivorous bats had the most species known as rabies reservoirs, while in proportion hematophagous bats were the most important. Research at coarse spatial scales must strive to understand rabies ecology; basic information on distribution and population dynamics of many Latin American and Caribbean bat species is needed; and detailed information on effects of landscape change in driving bat-borne rabies outbreaks remains unassessed. Finally, integrated approaches including public health, ecology, and conservation biology are needed to understand and prevent emergent diseases in bats.

  5. BAT-BORNE RABIES IN LATIN AMERICA

    PubMed Central

    Escobar, Luis E.; Peterson, A. Townsend; Favi, Myriam; Yung, Verónica; Medina-Vogel, Gonzalo

    2015-01-01

    The situation of rabies in America is complex: rabies in dogs has decreased dramatically, but bats are increasingly recognized as natural reservoirs of other rabies variants. Here, bat species known to be rabies-positive with different antigenic variants, are summarized in relation to bat conservation status across Latin America. Rabies virus is widespread in Latin American bat species, 22.5%75 of bat species have been confirmed as rabies-positive. Most bat species found rabies positive are classified by the International Union for Conservation of Nature as “Least Concern”. According to diet type, insectivorous bats had the most species known as rabies reservoirs, while in proportion hematophagous bats were the most important. Research at coarse spatial scales must strive to understand rabies ecology; basic information on distribution and population dynamics of many Latin American and Caribbean bat species is needed; and detailed information on effects of landscape change in driving bat-borne rabies outbreaks remains unassessed. Finally, integrated approaches including public health, ecology, and conservation biology are needed to understand and prevent emergent diseases in bats. PMID:25651328

  6. Rabies Virus in Bats, State of Pará, Brazil, 2005-2011.

    PubMed

    Pereira, Armando de Souza; Casseb, Livia Medeiros Neves; Barbosa, Taciana Fernandes Souza; Begot, Alberto Lopes; Brito, Roberto Messias Oliveira; Vasconcelos, Pedro Fernando da Costa; Travassos da Rosa, Elizabeth Salbé

    2017-08-01

    Rabies is an acute, progressive zoonotic viral infection that in general produces a fatal outcome. This disease is responsible for deaths in humans and animals worldwide and, because it can affect all mammals, is considered one of the most important viral infections for public health. This study aimed to determine the prevalence of rabies in bats of different species found in municipalities of the state of Pará from 2005 to 2011. The rabies virus was detected in 12 (0.39%) bats in a total of 3100 analyzed, including hematophagous, frugivorous, and insectivorous bats. Of these, eleven were characterized as AgV3, which is characteristic of the hematophagous bat Desmodus rotundus (E. Geoffroy 1810); one insectivorous animal showed a different profile compatible with the Eptesicus pattern and may therefore be a new antigenic variant. This study identified the need for greater intensification of epidemiological surveillance in municipalities lacking rabies surveillance (silent areas); studies of rabies virus in bats with different alimentary habits, studies investigating the prevalence of AgV3, and prophylactic measures in areas where humans may be infected are also needed.

  7. Fishing Technique of Long-Fingered Bats Was Developed from a Primary Reaction to Disappearing Target Stimuli.

    PubMed

    Aizpurua, Ostaizka; Alberdi, Antton; Aihartza, Joxerra; Garin, Inazio

    2016-01-01

    Behavioral plasticity is a key feature allowing animals to broaden their dietary niche when novel food resources become available, and long-fingered bats provide an appropriate model system to study the underpinnings of behavioral plasticity, since although generally being an insectivorous species, some individuals have been reported to catch fish. Aiming to get insight into the origin of fishing behavior in long-fingered bats, we studied in the field the differences in sensorial and mechanical reactions to insect-like (stationary) and fish-like (temporary) prey stimuli between well-known piscivorous and strictly insectivorous individuals. Both piscivorous and insectivorous individuals exhibited a qualitatively similar reaction to temporary target stimuli (longer and deeper dips and terminal echolocation phase skewed towards buzz I compared to stationary stimuli). Nevertheless, the quantitative differences observed in the sensorial and mechanical features (the intensity of the shift was significantly greater in piscivorous than in insectivorous individuals) show that piscivorous individuals have honed their capture technique likely enhancing the fishing success. Thus, our results suggest that the fishing technique was developed from a primary reaction shared by all long-fingered bats. All individuals seem to be mechanically and sensorially adapted to detect and capture fish, although under appropriate environmental conditions, they would further improve their technique by experience and/or social learning.

  8. Ongoing changes in migration phenology and winter residency at Bracken Bat Cave.

    PubMed

    Stepanian, Phillip M; Wainwright, Charlotte E

    2018-02-14

    Bats play an important role in agroecology and are effective bioindicators of environmental conditions, but little is known about their fundamental migration ecology, much less how these systems are responding to global change. Some of the world's largest bat populations occur during the summer in the south-central United States, when millions of pregnant females migrate from lower latitudes to give birth in communal maternity colonies. Despite a relatively large volume of research into these colonies, many fundamental questions regarding their abundance-including their intra- and interseasonal variability-remain unanswered, and even estimating the size of individual populations has been a long-running challenge. Overall, monitoring these bat populations at high temporal resolution (e.g., nightly) and across long time spans (e.g., decades) has been impossible. Here, we show 22 continuous years of nightly population counts at Bracken Cave, a large bat colony in south-central Texas, enabling the first climate-scale phenological analysis. Using quantitative radar monitoring, we found that spring migration and the summer reproductive cycle have advanced by approximately 2 weeks over the study period. Furthermore, we quantify the ongoing growth of a newly-established overwintering population that indicates a system-wide response to changing environmental conditions. Our observations reveal behavioral plasticity in bats' ability to adapt to changing resource availability, and provide the first long-term quantification of their response to a changing climate. As aerial insectivores, these changes in bat phenology and propensity for overwintering indicate probable shifts in prey availability, with clear implications for pest management across wider regional agrisystems. © 2018 John Wiley & Sons Ltd.

  9. Bird and bat predation services in tropical forests and agroforestry landscapes.

    PubMed

    Maas, Bea; Karp, Daniel S; Bumrungsri, Sara; Darras, Kevin; Gonthier, David; Huang, Joe C-C; Lindell, Catherine A; Maine, Josiah J; Mestre, Laia; Michel, Nicole L; Morrison, Emily B; Perfecto, Ivette; Philpott, Stacy M; Şekercioğlu, Çagan H; Silva, Roberta M; Taylor, Peter J; Tscharntke, Teja; Van Bael, Sunshine A; Whelan, Christopher J; Williams-Guillén, Kimberly

    2016-11-01

    Understanding distribution patterns and multitrophic interactions is critical for managing bat- and bird-mediated ecosystem services such as the suppression of pest and non-pest arthropods. Despite the ecological and economic importance of bats and birds in tropical forests, agroforestry systems, and agricultural systems mixed with natural forest, a systematic review of their impact is still missing. A growing number of bird and bat exclosure experiments has improved our knowledge allowing new conclusions regarding their roles in food webs and associated ecosystem services. Here, we review the distribution patterns of insectivorous birds and bats, their local and landscape drivers, and their effects on trophic cascades in tropical ecosystems. We report that for birds but not bats community composition and relative importance of functional groups changes conspicuously from forests to habitats including both agricultural areas and forests, here termed 'forest-agri' habitats, with reduced representation of insectivores in the latter. In contrast to previous theory regarding trophic cascade strength, we find that birds and bats reduce the density and biomass of arthropods in the tropics with effect sizes similar to those in temperate and boreal communities. The relative importance of birds versus bats in regulating pest abundances varies with season, geography and management. Birds and bats may even suppress tropical arthropod outbreaks, although positive effects on plant growth are not always reported. As both bats and birds are major agents of pest suppression, a better understanding of the local and landscape factors driving the variability of their impact is needed. © 2015 Cambridge Philosophical Society.

  10. Distribution, conservation and current status of the little brown bat (Myotis lucifugus) in Arkansas

    Treesearch

    D. B. Sasse; D. A. Saugey; R. W. Perry

    2011-01-01

    The little brown bat (Myotis lucifugus) is a common insectivorous bat found across much of North America with the exception of parts of Kansas, Nebraska, and the southern tier of states from Louisiana to southern California. Arkansas represents the southwestern edge of its range in the eastern United States.

  11. On estimating the economic value of insectivorous bats: Prospects and priorities for biologists

    USGS Publications Warehouse

    Boyles, Justin G.; Sole, Catherine L.; Cryan, Paul M.; McCracken, Gary F.

    2013-01-01

    Bats are among the most economically important nondomesticated mammals in the world. They are well-known pollinators and seed dispersers, but crop pest suppression is probably the most valuable ecosystem service provided by bats. Scientific literature and popular media often include reports of crop pests in the diet of bats and anecdotal or extrapolated estimates of how many insects are eaten by bats. However, quantitative estimates of the ecosystem services provided by bats in agricultural systems are rare, and the few estimates that are available are limited to a single cotton-dominated system in Texas. Despite the tremendous value for conservation and economic security of such information, surprisingly few scientific efforts have been dedicated to quantifying the economic value of bats. Here, we outline the types of information needed to better quantify the value of bats in agricultural ecosystems. Because of the complexity of the ecosystems involved, creative experimental design and innovative new methods will help advance our knowledge in this area. Experiments involving bats in agricultural systems may be needed sooner than later, before population declines associated with white-nose syndrome and wind turbines potentially render them impossible.

  12. Hidden diversity of Nycteribiidae (Diptera) bat flies from the Malagasy region and insights on host-parasite interactions.

    PubMed

    Ramasindrazana, Beza; Goodman, Steven M; Gomard, Yann; Dick, Carl W; Tortosa, Pablo

    2017-12-29

    We present information on Nycteribiidae flies parasitizing the bat families Pteropodidae, Miniopteridae and Vespertilionidae from the Malagasy Region, contributing insight into their diversity and host preference. Our phylogenetic analysis identified nine clusters of nycteribiid bat flies on Madagascar and the neighbouring Comoros Archipelago. Bat flies sampled from frugivorous bats of the family Pteropodidae are monoxenous: Eucampsipoda madagascariensis, E. theodori and Cyclopodia dubia appear wholly restricted to Rousettus madagascariensis, R. obliviosus and Eidolon dupreanum, respectively. Two different host preference patterns occurred in nycteribiids infecting insectivorous bats. Flies parasitizing bats of the genera Miniopterus (Miniopteridae) and Myotis (Vespertilionidae), namely Penicillidia leptothrinax, Penicillidia sp. and Nycteribia stylidiopsis, are polyxenous and showed little host preference, while those parasitizing the genera Pipistrellus and Scotophilus (both Vespertilionidae) and referable to Basilia spp., are monoxenous. Lastly, the inferred Bayesian phylogeny revealed that the genus Basilia, as currently configured, is paraphyletic. This study provides new information on the differentiation of nycteribiid taxa, including undescribed species. Host preference is either strict as exemplified by flies parasitizing fruit bats, or more relaxed as found on some insectivorous bat species, possibly because of roost site sharing. Detailed taxonomic work is needed to address three undescribed nycteribiid taxa found on Pipistrellus and Scotophilus, tentatively allocated to the genus Basilia, but possibly warranting different generic allocation.

  13. Energy metabolism and evaporative water loss in the European free-tailed bat and Hemprich's long-eared bat (Microchiroptera): species sympatric in the Negev Desert.

    PubMed

    Marom, Sagi; Korine, Carmi; Wojciechowski, Michał S; Tracy, Christopher R; Pinshow, Berry

    2006-01-01

    We compared the thermoregulatory abilities of two insectivorous bat species, Tadarida teniotis (mean body mass 32 g) and Otonycteris hemprichii (mean body mass 25 g), that are of different phylogenetic origins and zoogeographic distributions but are sympatric in the Negev Desert. At night, both were normothermic. By day, both were torpid when exposed to ambient temperatures (T(a)) below 25 degrees Celsius, with concomitant adjustments in metabolic rate (MR). Otonycteris hemprichii entered torpor at higher T(a) than T. teniotis, and, when torpid, their body temperatures (T(b)) were 1 degrees -2 degrees Celsius and 5 degrees -8 degrees Celsius above T(a), respectively; MR was correspondingly reduced. At night, the lower critical temperature of T. teniotis was 31.5 degrees Celsius, and that of O. hemprichii was 33 degrees Celsius. Mean nocturnal thermoneutral MR of T. teniotis was 37% greater than that of O. hemprichii. At high T(a), evaporative water loss (EWL) increased markedly in both species, but it was significantly higher in T. teniotis above 38 degrees Celsius. In both species, the dry heat transfer coefficient (thermal conductance) followed the expected pattern for small mammals, by day and by night. Total EWL was notably low in normothermic and torpid animals of both species, much lower than values reported for other bats, indicating efficient water conservation mechanisms in the study species. Comparing thermoregulatory abilities suggests that O. hemprichii is better adapted to hot, arid environments than T. teniotis, which may explain its wider desert distribution. By both standard and phylogenetically informed ANCOVA, we found no differences in basal metabolic rate (BMR) between desert and nondesert species of insectivorous bats, substantiating previous studies suggesting that low BMR is a characteristic common to insectivorous bats in general.

  14. Helminth Fauna Associated with Three Neotropical Bat Species (Chiroptera: Mormoopidae) in Veracruz, México.

    PubMed

    Clarke-Crespo, Emilio; de León, Gerardo Pérez-Ponce; Montiel-Ortega, Salvador; Rubio-Godoy, Miguel

    2017-08-01

    Bats are recognized as potential hosts of pathogens exploiting the food chain to reach them as definitive hosts. However, very little is known about their endoparasites, especially for Neotropical bats. In this study, we assessed the helminth fauna associated with 3 insectivorous bat species roosting in the same single hot cave in central Veracruz, México: Mormoops megalophylla, Pteronotus davyi, and Pteronotus personatus. During a period of 1 yr (April 2007-2008), 135 mormoopid bats in total were collected and examined for helminths. Six parasite species representing 3 types of intestinal helminths were found: 1 cestode Vampirolepis elongatus; 2 trematodes Maxbraunium tubiporum and Ochoterenatrema labda; and 3 nematodes Linustrongylus pteronoti, Molineidae gen. sp., and Capillaria sp. Overall, trematodes were the most abundant parasite group (72.4%), followed by nematodes (20.7%) and cestodes (6.9%). Species-accumulation curves suggest that the worms collected (n = 1,331) from these 6 parasite species comprise the helminth fauna associated with the 3 bat populations studied. The only species shared by the 3 bat species was Capillaria sp. Most (5/6) of the helminth species recorded use Lepidoptera and Diptera as intermediate hosts; therefore, diet is likely the main source of infection. Although insectivorous bats are considered dietary generalist species, the differences found in helminth diversity in these sympatric populations of closely related bat species, suggest that diet partitioning occurs in mormoopid bat communities. Helminths tend to exploit the food chain to reach their final hosts; therefore, studying these parasites can provide useful information to further understand the biology of bats.

  15. Experimental study of European bat lyssavirus type-2 infection in Daubenton's bats (Myotis daubentonii).

    PubMed

    Johnson, Nicholas; Vos, Ad; Neubert, Larissa; Freuling, Conrad; Mansfield, Karen L; Kaipf, Ingrid; Denzinger, Annette; Hicks, Dan; Núñez, Alex; Franka, Richard; Rupprecht, Charles E; Müller, Thomas; Fooks, Anthony R

    2008-11-01

    European bat lyssavirus type 2 (EBLV-2) can be transmitted from Daubenton's bats to humans and cause rabies. EBLV-2 has been repeatedly isolated from Daubenton's bats in the UK but appears to be present at a low level within the native bat population. This has prompted us to investigate the disease in its natural host under experimental conditions, to assess its virulence, dissemination and likely means of transmission between insectivorous bats. With the exception of direct intracranial inoculation, only one of seven Daubenton's bats inoculated by subdermal inoculation became infected with EBLV-2. Both intramuscular and intranasal inoculation failed to infect the bats. No animal inoculated with EBLV-2 seroconverted during the study period. During infection, virus excretion in saliva (both viral RNA and live virus) was confirmed up to 3 days before the development of rabies. Disease was manifested as a gradual loss of weight prior to the development of paralysis and then death. The highest levels of virus were measured in the brain, with much lower levels of viral genomic RNA detected in the tongue, salivary glands, kidney, lung and heart. These observations are similar to those made in naturally infected Daubenton's bats and this is the first documented report of isolation of EBLV-2 in bat saliva. We conclude that EBLV-2 is most likely transmitted in saliva by a shallow bite.

  16. Enhanced Passive Bat Rabies Surveillance in Indigenous Bat Species from Germany - A Retrospective Study

    PubMed Central

    Auer, Ernst; Goharriz, Hooman; Harbusch, Christine; Johnson, Nicholas; Kaipf, Ingrid; Mettenleiter, Thomas Christoph; Mühldorfer, Kristin; Mühle, Ralf-Udo; Ohlendorf, Bernd; Pott-Dörfer, Bärbel; Prüger, Julia; Ali, Hanan Sheikh; Stiefel, Dagmar; Teubner, Jens; Ulrich, Rainer Günter; Wibbelt, Gudrun; Müller, Thomas

    2014-01-01

    In Germany, rabies in bats is a notifiable zoonotic disease, which is caused by European bat lyssaviruses type 1 and 2 (EBLV-1 and 2), and the recently discovered new lyssavirus species Bokeloh bat lyssavirus (BBLV). As the understanding of bat rabies in insectivorous bat species is limited, in addition to routine bat rabies diagnosis, an enhanced passive surveillance study, i.e. the retrospective investigation of dead bats that had not been tested for rabies, was initiated in 1998 to study the distribution, abundance and epidemiology of lyssavirus infections in bats from Germany. A total number of 5478 individuals representing 21 bat species within two families were included in this study. The Noctule bat (Nyctalus noctula) and the Common pipistrelle (Pipistrellus pipistrellus) represented the most specimens submitted. Of all investigated bats, 1.17% tested positive for lyssaviruses using the fluorescent antibody test (FAT). The vast majority of positive cases was identified as EBLV-1, predominately associated with the Serotine bat (Eptesicus serotinus). However, rabies cases in other species, i.e. Nathusius' pipistrelle bat (Pipistrellus nathusii), P. pipistrellus and Brown long-eared bat (Plecotus auritus) were also characterized as EBLV-1. In contrast, EBLV-2 was isolated from three Daubenton's bats (Myotis daubentonii). These three cases contribute significantly to the understanding of EBLV-2 infections in Germany as only one case had been reported prior to this study. This enhanced passive surveillance indicated that besides known reservoir species, further bat species are affected by lyssavirus infections. Given the increasing diversity of lyssaviruses and bats as reservoir host species worldwide, lyssavirus positive specimens, i.e. both bat and virus need to be confirmed by molecular techniques. PMID:24784117

  17. Phylogenetic evaluation of Geomyces and allies reveals no close relatives of Pseudogymnoascus destructans, comb nov, in bat hibernacula of eastern North America

    Treesearch

    Andrew M. Minnis; Daniel L. Lindner

    2013-01-01

    White-nose syndrome (WNS) of bats, caused by the fungus previously known as Geomyces destructans, has decimated populations of insectivorous bats in eastern North America. Recent work on fungi associated with bat hibernacula uncovered a large number of species of Geomyces and allies, far exceeding the number of described species....

  18. The adaptive function of tiger moth clicks against echolocating bats: an experimental and synthetic approach.

    PubMed

    Ratcliffe, John M; Fullard, James H

    2005-12-01

    We studied the efficiency and effects of the multiple sensory cues of tiger moths on echolocating bats. We used the northern long-eared bat, Myotis septentrionalis, a purported moth specialist that takes surface-bound prey (gleaning) and airborne prey (aerial hawking), and the dogbane tiger moth, Cycnia tenera, an eared species unpalatable to bats that possesses conspicuous colouration and sound-producing organs (tymbals). This is the first study to investigate the interaction of tiger moths and wild-caught bats under conditions mimicking those found in nature and to demand the use of both aerial hawking and gleaning strategies by bats. Further, it is the first to report spectrograms of the sounds produced by tiger moths while under aerial attack by echolocating bats. During both aerial hawking and gleaning trials, all muted C. tenera and perched intact C. tenera were attacked by M. septentrionalis, indicating that M. septentrionalis did not discriminate C. tenera from palatable moths based on potential echoic and/or non-auditory cues. Intact C. tenera were attacked significantly less often than muted C. tenera during aerial hawking attacks: tymbal clicks were therefore an effective deterrent in an aerial hawking context. During gleaning attacks, intact and muted C. tenera were always attacked and suffered similar mortality rates, suggesting that while handling prey this bat uses primarily chemical signals. Our results also show that C. tenera temporally matches the onset of click production to the ;approach phase' echolocation calls produced by aerial hawking attacking bats and that clicks themselves influence the echolocation behaviour of attacking bats. In the context of past research, these findings support the hypotheses that the clicks of arctiid moths are both an active defence (through echolocation disruption) and a reliable indicator of chemical defence against aerial-hawking bats. We suggest these signals are specialized for an aerial context.

  19. New records and notes on the ecology of the northern long-eared bat (Myotis septentrionalis) in Arkansas

    Treesearch

    D.B. Sasse; M.L. Caviness; M.J. Harvey; J.L. Jackson; P.N. Jordan; T.L. Klotz; P.R. Moore; R.W. Perry; R.K. Redman; T.S. Risch; D.A. Saugey; J.D. Wilhide

    2014-01-01

    The northern long-eared bat (Myotis septentrionalis) has been a common insectivorous bat in much of eastern North America, including Arkansas, which is located near the southwestern edge of its range. While this species is expected to occur throughout the Ozarks and Ouachita Mountains, it has only been previously documented in 19 of 75 Arkansas...

  20. Baseline capture rates and roosting habits of Myotis septentrionalis (Northern Long-Eared Bat) prior to white-nose syndrome  detection in the southern Appalachians

    Treesearch

    Vanessa G. Rojas; Joy M. O' Keefe; Susan C. Loeb

    2017-01-01

    Myotis septentrionalis (Northern Long-eared Bat) is a federally threatened insectivorous bat facing devastating population declines due to white-nose syndrome (WNS). Our study provides pre-WNS (2009) capture rates and roosting-behavior data for Northern Long-eared Bats in the southern Appalachians. We conducted mist-net surveys at 37 sites and...

  1. Comparative analysis of bat genomes provides insight into the evolution of flight and immunity.

    PubMed

    Zhang, Guojie; Cowled, Christopher; Shi, Zhengli; Huang, Zhiyong; Bishop-Lilly, Kimberly A; Fang, Xiaodong; Wynne, James W; Xiong, Zhiqiang; Baker, Michelle L; Zhao, Wei; Tachedjian, Mary; Zhu, Yabing; Zhou, Peng; Jiang, Xuanting; Ng, Justin; Yang, Lan; Wu, Lijun; Xiao, Jin; Feng, Yue; Chen, Yuanxin; Sun, Xiaoqing; Zhang, Yong; Marsh, Glenn A; Crameri, Gary; Broder, Christopher C; Frey, Kenneth G; Wang, Lin-Fa; Wang, Jun

    2013-01-25

    Bats are the only mammals capable of sustained flight and are notorious reservoir hosts for some of the world's most highly pathogenic viruses, including Nipah, Hendra, Ebola, and severe acute respiratory syndrome (SARS). To identify genetic changes associated with the development of bat-specific traits, we performed whole-genome sequencing and comparative analyses of two distantly related species, fruit bat Pteropus alecto and insectivorous bat Myotis davidii. We discovered an unexpected concentration of positively selected genes in the DNA damage checkpoint and nuclear factor κB pathways that may be related to the origin of flight, as well as expansion and contraction of important gene families. Comparison of bat genomes with other mammalian species has provided new insights into bat biology and evolution.

  2. Serological evidence of arenavirus circulation among fruit bats in Trinidad.

    PubMed

    Malmlov, Ashley; Seetahal, Janine; Carrington, Christine; Ramkisson, Vernie; Foster, Jerome; Miazgowicz, Kerri L; Quackenbush, Sandra; Rovnak, Joel; Negrete, Oscar; Munster, Vincent; Schountz, Tony

    2017-01-01

    Tacaribe virus (TCRV) was isolated in the 1950s from artibeus bats captured on the island of Trinidad. The initial characterization of TCRV suggested that artibeus bats were natural reservoir hosts. However, nearly 60 years later experimental infections of Jamaican fruit bats (Artibeus jamaicensis) resulted in fatal disease or clearance, suggesting artibeus bats may not be a reservoir host. To further evaluate the TCRV reservoir host status of artibeus bats, we captured bats of six species in Trinidad for evidence of infection. Bats of all four fruigivorous species captured had antibodies to TCRV nucleocapsid, whereas none of the insectivore or nectarivore species did. Many flat-faced fruit-eating bats (A. planirostris) and great fruit-eating bats (A. literatus) were seropositive by ELISA and western blot to TCRV nucleocapsid antigen, as were two of four Seba's fruit bats (Carollia perspicillata) and two of three yellow-shouldered fruit bats (Sturnira lilium). Serum neutralization tests failed to detect neutralizing antibodies to TCRV from these bats. TCRV RNA was not detected in lung tissues or lung homogenates inoculated onto Vero cells. These data indicate that TCRV or a similar arenavirus continues to circulate among fruit bats of Trinidad but there was no evidence of persistent infection, suggesting artibeus bats are not reservoir hosts.

  3. Assessment of the Hindlimb Membrane Musculature of Bats: Implications for Active Control of the Calcar.

    PubMed

    Stanchak, Kathryn E; Santana, Sharlene E

    2018-03-01

    The striking postcranial anatomy of bats reflects their specialized ecology; they are the only mammals capable of powered flight. Bat postcranial adaptations include a series of membranes that connect highly-modified, or even novel, skeletal elements. While most studies of bat postcranial anatomy have focused on their wings, bat hindlimbs also contain many derived and functionally important, yet less studied, features. In this study, we investigate variation in the membrane and limb musculature associated with the calcar, a neomorphic skeletal structure found in the hindlimbs of most bats. We use diffusible iodine-based contrast-enhanced computed tomography and standard histological techniques to examine the calcars and hindlimb membranes of three bat species that vary ecologically (Myotis californicus, a slow-flying insectivore; Molossus molossus, a fast-flying insectivore; and Artibeus jamaicensis, a slow-flying frugivore). We also assess the level of mineralization of the calcar at muscle attachment sites to better understand how muscle contraction may enable calcar function. We found that the arrangement of the calcar musculature varies among the three bat species, as does the pattern of mineral content within the calcar. M. molossus and M. californicus exhibit more complex calcar and calcar musculature morphologies than A. jamaicensis, and the degree of calcar mineralization decreases toward the tip of the calcar in all species. These results are consistent with the idea that the calcar may have a functional role in flight maneuverability. Anat Rec, 301:441-448, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  4. Fossils reject climate change as the cause of extinction of Caribbean bats.

    PubMed

    Soto-Centeno, J Angel; Steadman, David W

    2015-01-22

    We combined novel radiocarbon dates of bat fossils with time-scaled ecological niche models (ENM) to study bat extinctions in the Caribbean. Radiocarbon-dated fossils show that late Quaternary losses of bat populations took place during the late Holocene (<4 ka) rather than late Pleistocene (>10 ka). All bat radiocarbon dates from Abaco (Bahamas) that represent extirpated populations are younger than 4 ka. We include data on six bat species, three of which are Caribbean endemics, and include nectarivores as well as insectivores. Climate-based ENMs from the Last Glacial Maximum to the present reflect overall stability in distributions, with suitable climatic habitat being present over time. In the absence of radiocarbon dates, bat extinctions had been presumed to take place during the last glacial-interglacial transition (ca. 10 ka). Now we see that extirpation of bats on these tropical islands is more complex than previously thought and primarily postdates the major climate changes that took place during the late Pleistocene-Holocene transition.

  5. Understanding human - bat interactions in NSW, Australia: improving risk communication for prevention of Australian bat lyssavirus.

    PubMed

    Quinn, Emma K; Massey, Peter D; Cox-Witton, Keren; Paterson, Beverley J; Eastwood, Keith; Durrheim, David N

    2014-07-02

    Australian bat lyssavirus (ABLV) infects a number of flying fox and insectivorous bats species in Australia. Human infection with ABLV is inevitably fatal unless prior vaccination and/or post-exposure treatment (PET) is given. Despite ongoing public health messaging about the risks associated with bat contact, surveillance data have revealed a four-fold increase in the number of people receiving PET for bat exposure in NSW between 2007 and 2011. Our study aimed to better understand these human - bat interactions in order to identify additional risk communication messages that could lower the risk of potential ABLV exposure. All people aged 18 years or over whom received PET for non-occupation related potential ABLV exposure in the Hunter New England Local Health District of Australia between July 2011 and July 2013 were considered eligible for the study. Eligible participants were invited to a telephone interview to explore the circumstances of their bat contact. Interviews were then transcribed and thematically analysed by two independent investigators. Of 21 eligible participants that were able to be contacted, 16 consented and participated in a telephone interview. Participants reported bats as being widespread in their environment but reported a general lack of awareness about ABLV, particularly the risk of disease from bat scratches. Participants who attempted to 'rescue' bats did so because of a deep concern for the bat's welfare. Participants reported a change in risk perception after the exposure event and provided suggestions for public health messages that could be used to raise awareness about ABLV. Reframing the current risk messages to account for the genuine concern of people for bat welfare may enhance the communication. The potential risk to the person and possible harm to the bat from an attempted 'rescue' should be promoted, along with contact details for animal rescue groups. The potential risk of ABLV from bat scratches merits greater emphasis.

  6. Phylogeny and origins of hantaviruses harbored by bats, insectivores, and rodents.

    PubMed

    Guo, Wen-Ping; Lin, Xian-Dan; Wang, Wen; Tian, Jun-Hua; Cong, Mei-Li; Zhang, Hai-Lin; Wang, Miao-Ruo; Zhou, Run-Hong; Wang, Jian-Bo; Li, Ming-Hui; Xu, Jianguo; Holmes, Edward C; Zhang, Yong-Zhen

    2013-02-01

    Hantaviruses are among the most important zoonotic pathogens of humans and the subject of heightened global attention. Despite the importance of hantaviruses for public health, there is no consensus on their evolutionary history and especially the frequency of virus-host co-divergence versus cross-species virus transmission. Documenting the extent of hantavirus biodiversity, and particularly their range of mammalian hosts, is critical to resolving this issue. Here, we describe four novel hantaviruses (Huangpi virus, Lianghe virus, Longquan virus, and Yakeshi virus) sampled from bats and shrews in China, and which are distinct from other known hantaviruses. Huangpi virus was found in Pipistrellus abramus, Lianghe virus in Anourosorex squamipes, Longquan virus in Rhinolophus affinis, Rhinolophus sinicus, and Rhinolophus monoceros, and Yakeshi virus in Sorex isodon, respectively. A phylogenetic analysis of the available diversity of hantaviruses reveals the existence of four phylogroups that infect a range of mammalian hosts, as well as the occurrence of ancient reassortment events between the phylogroups. Notably, the phylogenetic histories of the viruses are not always congruent with those of their hosts, suggesting that cross-species transmission has played a major role during hantavirus evolution and at all taxonomic levels, although we also noted some evidence for virus-host co-divergence. Our phylogenetic analysis also suggests that hantaviruses might have first appeared in Chiroptera (bats) or Soricomorpha (moles and shrews), before emerging in rodent species. Overall, these data indicate that bats are likely to be important natural reservoir hosts of hantaviruses.

  7. Bats are rare reservoirs of Staphylococcus aureus complex in Gabon.

    PubMed

    Held, Jana; Gmeiner, Markus; Mordmüller, Benjamin; Matsiégui, Pierre-Blaise; Schaer, Juliane; Eckerle, Isabella; Weber, Natalie; Matuschewski, Kai; Bletz, Stefan; Schaumburg, Frieder

    2017-01-01

    The colonization of afro-tropical wildlife with Staphylococcus aureus and the derived clade Staphylococcus schweitzeri remains largely unknown. A reservoir in bats could be of importance since bats and humans share overlapping habitats. In addition, bats are food sources in some African regions and can be the cause of zoonotic diseases. Here, we present a cross-sectional survey employing pharyngeal swabs of captured and released bats (n=133) in a forest area of Gabon. We detected low colonization rates of S. aureus (4-6%) and S. schweitzeri (4%) in two out of four species of fruit bats, namely Rousettus aegyptiacus and Micropteropus pusillus, but not in insectivorous bats. Multilocus sequence typing showed that S. aureus from Gabonese bats (ST2984, ST3259, ST3301, ST3302) were distinct from major African human associated clones (ST15, ST121, ST152). S. schweitzeri from bats (ST1697, ST1700) clustered with S. schweitzeri from other species (bats, monkeys) from Nigeria and Côte d'Ivoire. In conclusion, colonization rates of bats with S. aureus and S. schweitzeri were low in our study. Phylogenetic analysis supports an intense geographical dispersal of S. schweitzeri among different mammalian wildlife hosts. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Recent Transmission of a Novel Alphacoronavirus, Bat Coronavirus HKU10, from Leschenault's Rousettes to Pomona Leaf-Nosed Bats: First Evidence of Interspecies Transmission of Coronavirus between Bats of Different Suborders

    PubMed Central

    Lau, Susanna K. P.; Li, Kenneth S. M.; Tsang, Alan K. L.; Shek, Chung-Tong; Wang, Ming; Choi, Garnet K. Y.; Guo, Rongtong; Wong, Beatrice H. L.; Poon, Rosana W. S.; Lam, Carol S. F.; Wang, Sylvia Y. H.; Fan, Rachel Y. Y.; Chan, Kwok-Hung; Zheng, Bo-Jian

    2012-01-01

    Although coronaviruses are known to infect various animals by adapting to new hosts, interspecies transmission events are still poorly understood. During a surveillance study from 2005 to 2010, a novel alphacoronavirus, BatCoV HKU10, was detected in two very different bat species, Ro-BatCoV HKU10 in Leschenault's rousettes (Rousettus leschenaulti) (fruit bats in the suborder Megachiroptera) in Guangdong and Hi-BatCoV HKU10 in Pomona leaf-nosed bats (Hipposideros pomona) (insectivorous bats in the suborder Microchiroptera) in Hong Kong. Although infected bats appeared to be healthy, Pomona leaf-nosed bats carrying Hi-BatCoV HKU10 had lower body weights than uninfected bats. To investigate possible interspecies transmission between the two bat species, the complete genomes of two Ro-BatCoV HKU10 and six Hi-BatCoV HKU10 strains were sequenced. Genome and phylogenetic analyses showed that Ro-BatCoV HKU10 and Hi-BatCoV HKU10 represented a novel alphacoronavirus species, sharing highly similar genomes except in the genes encoding spike proteins, which had only 60.5% amino acid identities. Evolution of the spike protein was also rapid in Hi-BatCoV HKU10 strains from 2005 to 2006 but stabilized thereafter. Molecular-clock analysis dated the most recent common ancestor of all BatCoV HKU10 strains to 1959 (highest posterior density regions at 95% [HPDs], 1886 to 2002) and that of Hi-BatCoV HKU10 to 1986 (HPDs, 1956 to 2004). The data suggested recent interspecies transmission from Leschenault's rousettes to Pomona leaf-nosed bats in southern China. Notably, the rapid adaptive genetic change in BatCoV HKU10 spike protein by ∼40% amino acid divergence after recent interspecies transmission was even greater than the ∼20% amino acid divergence between spike proteins of severe acute respiratory syndrome-related Rhinolophus bat coronavirus (SARSr-CoV) in bats and civets. This study provided the first evidence for interspecies transmission of coronavirus between bats of

  9. Isolation of a novel Rhabdovirus from an insectivorous bat (Pipistrellus kuhlii) in Italy.

    PubMed

    Lelli, Davide; Prosperi, Alice; Moreno, Ana; Chiapponi, Chiara; Gibellini, Anna Maria; De Benedictis, Paola; Leopardi, Stefania; Sozzi, Enrica; Lavazza, Antonio

    2018-02-17

    Rhabdoviridae is one of the most ecologically diverse families of RNA viruses which can infect a wide range of vertebrates and invertebrates. Bats, among mammals, are pointed to harbor a significantly higher proportion of unknown or emerging viruses with zoonotic potential. Herein, we report the isolation of a novel rhabdovirus, detected in the framework of a virological survey on bats implemented in North Italy. Virus isolation and identification were performed on samples of 635 bats by using cell cultures, negative staining electron microscopy and PCRs for different viruses. NGS was commonly performed on cell culture supernatants showing cytopathic effect or in case of samples resulted positive by at least one of the PCRs included in the diagnostic protocol. A rhabdovirus was isolated from different organs of a Pipistrellus kuhlii. Virus identification was obtained by electron microscopy and NGS sequencing. The complete genome size was 11,774 nt comprised 5 genes, encoding the canonical rhabdovirus structural proteins, and an additional transcriptional unit (U1) encoding a hypothetical small protein (157aa) (3'-N-P-M-G-U1-L-5'). The genome organization and phylogenetic analysis suggest that the new virus, named Vaprio virus (VAPV), belongs to the recently established genus Ledantevirus (subgroup B) and it is highly divergent to its closest known relative, Le Dantec virus (LDV) (human, 1965 Senegal). A specific RT-PCR amplifying a 350 bp fragment of the ORF 6 gene, encoding for L protein, was developed and used to test retrospectively a subset of 76 bats coming from the same area and period, revealing two more VAPV positive bats. VAPV is a novel isolate of chiropteran rhabdovirus. Genome organization and phylogenetic analyses demonstrated that VAPV should be considered a novel species within the genus Ledantevirus for which viral ecology and disease associations should be investigated.

  10. Novel dicistrovirus from bat guano.

    PubMed

    Reuter, Gábor; Pankovics, Péter; Gyöngyi, Zoltán; Delwart, Eric; Boros, Akos

    2014-12-01

    A novel dicistrovirus (strain NB-1/2011/HUN, KJ802403) genome was detected from guano collected from an insectivorous bat (species Pipistrellus pipistrellus) in Hungary, using viral metagenomics. The complete genome of NB-1 is 9136 nt in length, excluding the poly(A) tail. NB-1 has a genome organization typical of a dicistrovirus with multiple 3B(VPg) and a cripavirus-like intergenic region (IGR)-IRES. NB-1 shares only 41 % average amino acid sequence identity with capsid proteins of Himetobi P virus, indicating a potential novel species in the genus Cripavirus, family Dicistroviridae.

  11. Temporal dynamics of European bat Lyssavirus type 1 and survival of Myotis myotis bats in natural colonies.

    PubMed

    Amengual, Blanca; Bourhy, Hervé; López-Roig, Marc; Serra-Cobo, Jordi

    2007-06-27

    Many emerging RNA viruses of public health concern have recently been detected in bats. However, the dynamics of these viruses in natural bat colonies is presently unknown. Consequently, prediction of the spread of these viruses and the establishment of appropriate control measures are hindered by a lack of information. To this aim, we collected epidemiological, virological and ecological data during a twelve-year longitudinal study in two colonies of insectivorous bats (Myotis myotis) located in Spain and infected by the most common bat lyssavirus found in Europe, the European bat lyssavirus subtype 1 (EBLV-1). This active survey demonstrates that cyclic lyssavirus infections occurred with periodic oscillations in the number of susceptible, immune and infected bats. Persistence of immunity for more than one year was detected in some individuals. These data were further used to feed models to analyze the temporal dynamics of EBLV-1 and the survival rate of bats. According to these models, the infection is characterized by a predicted low basic reproductive rate (R(0) = 1.706) and a short infectious period (D = 5.1 days). In contrast to observations in most non-flying animals infected with rabies, the survival model shows no variation in mortality after EBLV-1 infection of M. myotis. These findings have considerable public health implications in terms of management of colonies where lyssavirus-positive bats have been recorded and confirm the potential risk of rabies transmission to humans. A greater understanding of the dynamics of lyssavirus in bat colonies also provides a model to study how bats contribute to the maintenance and transmission of other viruses of public health concern.

  12. Temporal Dynamics of European Bat Lyssavirus Type 1 and Survival of Myotis myotis Bats in Natural Colonies

    PubMed Central

    Amengual, Blanca; Bourhy, Hervé; López-Roig, Marc; Serra-Cobo, Jordi

    2007-01-01

    Many emerging RNA viruses of public health concern have recently been detected in bats. However, the dynamics of these viruses in natural bat colonies is presently unknown. Consequently, prediction of the spread of these viruses and the establishment of appropriate control measures are hindered by a lack of information. To this aim, we collected epidemiological, virological and ecological data during a twelve-year longitudinal study in two colonies of insectivorous bats (Myotis myotis) located in Spain and infected by the most common bat lyssavirus found in Europe, the European bat lyssavirus subtype 1 (EBLV-1). This active survey demonstrates that cyclic lyssavirus infections occurred with periodic oscillations in the number of susceptible, immune and infected bats. Persistence of immunity for more than one year was detected in some individuals. These data were further used to feed models to analyze the temporal dynamics of EBLV-1 and the survival rate of bats. According to these models, the infection is characterized by a predicted low basic reproductive rate (R0 = 1.706) and a short infectious period (D = 5.1 days). In contrast to observations in most non-flying animals infected with rabies, the survival model shows no variation in mortality after EBLV-1 infection of M. myotis. These findings have considerable public health implications in terms of management of colonies where lyssavirus-positive bats have been recorded and confirm the potential risk of rabies transmission to humans. A greater understanding of the dynamics of lyssavirus in bat colonies also provides a model to study how bats contribute to the maintenance and transmission of other viruses of public health concern. PMID:17593965

  13. Fossils reject climate change as the cause of extinction of Caribbean bats

    PubMed Central

    Soto-Centeno, J. Angel; Steadman, David W.

    2015-01-01

    We combined novel radiocarbon dates of bat fossils with time-scaled ecological niche models (ENM) to study bat extinctions in the Caribbean. Radiocarbon-dated fossils show that late Quaternary losses of bat populations took place during the late Holocene (<4 ka) rather than late Pleistocene (>10 ka). All bat radiocarbon dates from Abaco (Bahamas) that represent extirpated populations are younger than 4 ka. We include data on six bat species, three of which are Caribbean endemics, and include nectarivores as well as insectivores. Climate-based ENMs from the Last Glacial Maximum to the present reflect overall stability in distributions, with suitable climatic habitat being present over time. In the absence of radiocarbon dates, bat extinctions had been presumed to take place during the last glacial-interglacial transition (ca. 10 ka). Now we see that extirpation of bats on these tropical islands is more complex than previously thought and primarily postdates the major climate changes that took place during the late Pleistocene-Holocene transition. PMID:25610991

  14. Australian bat lyssavirus: a recently discovered new rhabdovirus.

    PubMed

    Warrilow, D

    2005-01-01

    Australian bat lyssavirus (ABLV), first identified in 1996, has been associated with two human fatalities. ABLV is genetically and serologically distinct from, but is closely related to, classical rabies. It has a bullet-shaped morphology by electron microscopy. There are two strains of ABLV known: one circulates in frugivorous bats, sub-order Megachiroptera, and the other circulates in the smaller, mainly insectivorous bats, sub-order Microchiroptera. Each strain has been associated with one human fatality. Surveillance indicates infected bats are widespread at a low frequency on the Australian mainland. It is unclear how long ABLV has been present in Australia, although molecular clock studies suggest the two strains separated 950 or 1,700 years ago based on synonymous or non-synonymous nucleotide changes, respectively. Recent serological surveys suggest a closely related virus may exist in the Philippines. Due to demonstrated cross-protection in mice, rabies vaccine is used to prevent infection. Rabies post-exposure prophylaxis (PEP) protocols have been adopted for when a human is scratched or bitten by a suspect bat. A long-term commitment to public health programs that test bats that have been involved in scratch or bite incidents, followed by PEP if appropriate, will be necessary to minimise further human infection.

  15. Host cell tropism mediated by Australian bat lyssavirus envelope glycoproteins.

    PubMed

    Weir, Dawn L; Smith, Ina L; Bossart, Katharine N; Wang, Lin-Fa; Broder, Christopher C

    2013-09-01

    Australian bat lyssavirus (ABLV) is a rhabdovirus of the lyssavirus genus capable of causing fatal rabies-like encephalitis in humans. There are two variants of ABLV, one circulating in pteropid fruit bats and another in insectivorous bats. Three fatal human cases of ABLV infection have been reported with the third case in 2013. Importantly, two equine cases also arose in 2013; the first occurrence of ABLV in a species other than bats or humans. We examined the host cell entry of ABLV, characterizing its tropism and exploring its cross-species transmission potential using maxGFP-encoding recombinant vesicular stomatitis viruses that express ABLV G glycoproteins. Results indicate that the ABLV receptor(s) is conserved but not ubiquitous among mammalian cell lines and that the two ABLV variants can utilize alternate receptors for entry. Proposed rabies virus receptors were not sufficient to permit ABLV entry into resistant cells, suggesting that ABLV utilizes an unknown alternative receptor(s). Published by Elsevier Inc.

  16. Bats and birds increase crop yield in tropical agroforestry landscapes.

    PubMed

    Maas, Bea; Clough, Yann; Tscharntke, Teja

    2013-12-01

    Human welfare is significantly linked to ecosystem services such as the suppression of pest insects by birds and bats. However, effects of biocontrol services on tropical cash crop yield are still largely unknown. For the first time, we manipulated the access of birds and bats in an exclosure experiment (day, night and full exclosures compared to open controls in Indonesian cacao agroforestry) and quantified the arthropod communities, the fruit development and the final yield over a long time period (15 months). We found that bat and bird exclusion increased insect herbivore abundance, despite the concurrent release of mesopredators such as ants and spiders, and negatively affected fruit development, with final crop yield decreasing by 31% across local (shade cover) and landscape (distance to primary forest) gradients. Our results highlight the tremendous economic impact of common insectivorous birds and bats, which need to become an essential part of sustainable landscape management. © 2013 John Wiley & Sons Ltd/CNRS.

  17. Molecular Phylogeny of Hantaviruses Harbored by Insectivorous Bats in Côte d’Ivoire and Vietnam

    PubMed Central

    Gu, Se Hun; Lim, Burton K.; Kadjo, Blaise; Arai, Satoru; Kim, Jeong-Ah; Nicolas, Violaine; Lalis, Aude; Denys, Christiane; Cook, Joseph A.; Dominguez, Samuel R.; Holmes, Kathryn V.; Urushadze, Lela; Sidamonidze, Ketevan; Putkaradze, Davit; Kuzmin, Ivan V.; Kosoy, Michael Y.; Song, Jin-Won; Yanagihara, Richard

    2014-01-01

    The recent discovery of genetically distinct hantaviruses in multiple species of shrews and moles prompted a further exploration of their host diversification by analyzing frozen, ethanol-fixed and RNAlater®-preserved archival tissues and fecal samples from 533 bats (representing seven families, 28 genera and 53 species in the order Chiroptera), captured in Asia, Africa and the Americas in 1981–2012, using RT-PCR. Hantavirus RNA was detected in Pomona roundleaf bats (Hipposideros pomona) (family Hipposideridae), captured in Vietnam in 1997 and 1999, and in banana pipistrelles (Neoromicia nanus) (family Vespertilionidae), captured in Côte d’Ivoire in 2011. Phylogenetic analysis, based on the full-length S- and partial M- and L-segment sequences using maximum likelihood and Bayesian methods, demonstrated that the newfound hantaviruses formed highly divergent lineages, comprising other recently recognized bat-borne hantaviruses in Sierra Leone and China. The detection of bat-associated hantaviruses opens a new era in hantavirology and provides insights into their evolutionary origins. PMID:24784569

  18. Ecosystem services provided by bats.

    PubMed

    Kunz, Thomas H; Braun de Torrez, Elizabeth; Bauer, Dana; Lobova, Tatyana; Fleming, Theodore H

    2011-03-01

    Ecosystem services are the benefits obtained from the environment that increase human well-being. Economic valuation is conducted by measuring the human welfare gains or losses that result from changes in the provision of ecosystem services. Bats have long been postulated to play important roles in arthropod suppression, seed dispersal, and pollination; however, only recently have these ecosystem services begun to be thoroughly evaluated. Here, we review the available literature on the ecological and economic impact of ecosystem services provided by bats. We describe dietary preferences, foraging behaviors, adaptations, and phylogenetic histories of insectivorous, frugivorous, and nectarivorous bats worldwide in the context of their respective ecosystem services. For each trophic ensemble, we discuss the consequences of these ecological interactions on both natural and agricultural systems. Throughout this review, we highlight the research needed to fully determine the ecosystem services in question. Finally, we provide a comprehensive overview of economic valuation of ecosystem services. Unfortunately, few studies estimating the economic value of ecosystem services provided by bats have been conducted to date; however, we outline a framework that could be used in future studies to more fully address this question. Consumptive goods provided by bats, such as food and guano, are often exchanged in markets where the market price indicates an economic value. Nonmarket valuation methods can be used to estimate the economic value of nonconsumptive services, including inputs to agricultural production and recreational activities. Information on the ecological and economic value of ecosystem services provided by bats can be used to inform decisions regarding where and when to protect or restore bat populations and associated habitats, as well as to improve public perception of bats. © 2011 New York Academy of Sciences.

  19. Neutralizing antibodies against flaviviruses, Babanki virus, and Rift Valley fever virus in Ugandan bats.

    PubMed

    Kading, Rebekah C; Kityo, Robert M; Mossel, Eric C; Borland, Erin M; Nakayiki, Teddie; Nalikka, Betty; Nyakarahuka, Luke; Ledermann, Jeremy P; Panella, Nicholas A; Gilbert, Amy T; Crabtree, Mary B; Peterhans, Julian Kerbis; Towner, Jonathan S; Amman, Brian R; Sealy, Tara K; Nichol, Stuart T; Powers, Ann M; Lutwama, Julius J; Miller, Barry R

    2018-01-01

    Introduction: A number of arboviruses have previously been isolated from naturally-infected East African bats, however the role of bats in arbovirus maintenance is poorly understood. The aim of this study was to investigate the exposure history of Ugandan bats to a panel of arboviruses. Materials and methods: Insectivorous and fruit bats were captured from multiple locations throughout Uganda during 2009 and 2011-2013. All serum samples were tested for neutralizing antibodies against West Nile virus (WNV), yellow fever virus (YFV), dengue 2 virus (DENV-2), Zika virus (ZIKV), Babanki virus (BBKV), and Rift Valley fever virus (RVFV) by plaque reduction neutralization test (PRNT). Sera from up to 626 bats were screened for antibodies against each virus. Results and Discussion:  Key findings include the presence of neutralizing antibodies against RVFV in 5/52 (9.6%) of little epauletted fruit bats ( Epomophorus labiatus ) captured from Kawuku and 3/54 (5.6%) Egyptian rousette bats from Kasokero cave. Antibodies reactive to flaviviruses were widespread across bat taxa and sampling locations. Conclusion: The data presented demonstrate the widespread exposure of bats in Uganda to arboviruses, and highlight particular virus-bat associations that warrant further investigation.

  20. Isolation and Characterization of Three Mammalian Orthoreoviruses from European Bats

    PubMed Central

    Kohl, Claudia; Lesnik, René; Brinkmann, Annika; Ebinger, Arnt; Radonić, Aleksandar; Nitsche, Andreas; Mühldorfer, Kristin; Wibbelt, Gudrun; Kurth, Andreas

    2012-01-01

    In recent years novel human respiratory disease agents have been described in South East Asia and Australia. The causative pathogens were classified as pteropine orthoreoviruses with strong phylogenetic relationship to orthoreoviruses of flying foxes inhabiting these regions. Subsequently, a zoonotic bat-to-human transmission has been assumed. We report the isolation of three novel mammalian orthoreoviruses (MRVs) from European bats, comprising bat-borne orthoreovirus outside of South East Asia and Australia and moreover detected in insectivorous bats (Microchiroptera). MRVs are well known to infect a broad range of mammals including man. Although they are associated with rather mild and clinically unapparent infections in their hosts, there is growing evidence of their ability to also induce more severe illness in dogs and man. In this study, eight out of 120 vespertilionid bats proved to be infected with one out of three novel MRV isolates, with a distinct organ tropism for the intestine. One isolate was analyzed by 454 genome sequencing. The obtained strain T3/Bat/Germany/342/08 had closest phylogenetic relationship to MRV strain T3D/04, isolated from a dog. These novel reoviruses provide a rare chance of gaining insight into possible transmission events and of tracing the evolution of bat viruses. PMID:22905211

  1. Perception of silent and motionless prey on vegetation by echolocation in the gleaning bat Micronycteris microtis.

    PubMed

    Geipel, Inga; Jung, Kirsten; Kalko, Elisabeth K V

    2013-03-07

    Gleaning insectivorous bats that forage by using echolocation within dense forest vegetation face the sensorial challenge of acoustic masking effects. Active perception of silent and motionless prey in acoustically cluttered environments by echolocation alone has thus been regarded impossible. The gleaning insectivorous bat Micronycteris microtis however, forages in dense understory vegetation and preys on insects, including dragonflies, which rest silent and motionless on vegetation. From behavioural experiments, we show that M. microtis uses echolocation as the sole sensorial modality for successful prey perception within a complex acoustic environment. All individuals performed a stereotypical three-dimensional hovering flight in front of prey items, while continuously emitting short, multi-harmonic, broadband echolocation calls. We observed a high precision in target localization which suggests that M. microtis perceives a detailed acoustic image of the prey based on shape, surface structure and material. Our experiments provide, to our knowledge, the first evidence that a gleaning bat uses echolocation alone for successful detection, classification and precise localization of silent and motionless prey in acoustic clutter. Overall, we conclude that the three-dimensional hovering flight of M. microtis in combination with a frequent emission of short, high-frequency echolocation calls is the key for active prey perception in acoustically highly cluttered environments.

  2. Perception of silent and motionless prey on vegetation by echolocation in the gleaning bat Micronycteris microtis

    PubMed Central

    Geipel, Inga; Jung, Kirsten; Kalko, Elisabeth K. V.

    2013-01-01

    Gleaning insectivorous bats that forage by using echolocation within dense forest vegetation face the sensorial challenge of acoustic masking effects. Active perception of silent and motionless prey in acoustically cluttered environments by echolocation alone has thus been regarded impossible. The gleaning insectivorous bat Micronycteris microtis however, forages in dense understory vegetation and preys on insects, including dragonflies, which rest silent and motionless on vegetation. From behavioural experiments, we show that M. microtis uses echolocation as the sole sensorial modality for successful prey perception within a complex acoustic environment. All individuals performed a stereotypical three-dimensional hovering flight in front of prey items, while continuously emitting short, multi-harmonic, broadband echolocation calls. We observed a high precision in target localization which suggests that M. microtis perceives a detailed acoustic image of the prey based on shape, surface structure and material. Our experiments provide, to our knowledge, the first evidence that a gleaning bat uses echolocation alone for successful detection, classification and precise localization of silent and motionless prey in acoustic clutter. Overall, we conclude that the three-dimensional hovering flight of M. microtis in combination with a frequent emission of short, high-frequency echolocation calls is the key for active prey perception in acoustically highly cluttered environments. PMID:23325775

  3. Behavioral responses of big brown bats to dives by praying mantises.

    PubMed

    Ghose, Kaushik; Triblehorn, Jeffrey D; Bohn, Kari; Yager, David D; Moss, Cynthia F

    2009-03-01

    Insectivorous echolocating bats face a formidable array of defenses employed by their airborne prey. One such insect defense is the ultrasound-triggered dive, which is a sudden, rapid drop in altitude, sometimes all the way to the ground. Although many previous studies have investigated the dynamics of such dives and their effect on insect survival rate, there has been little work on how bats may adapt to such an insect defense employed in the middle of pursuit. In this study we investigated how big brown bats (Eptesicus fuscus) adjust their pursuit strategy when flying praying mantises (Parasphendale agrionina) execute evasive, ultrasound-triggered dives. Although the mantis dive occasionally forced the bat to completely abort its chase (25% trials), in a number of cases (75% trials) the bat followed the mantis into the dive. In such cases the bat kept its sonar beam locked onto the target and maneuvered to maintain the same time efficient strategy it adopted during level flight pursuit, though it was ultimately defeated by the dive. This study suggests that although the mantis dive can be effective in evading the bat, it does not always deter the bat from continuing pursuit and, given enough altitude, the bat can potentially capture diving prey using the same flight strategy it employs to intercept prey in level flight.

  4. Behavioral responses of big brown bats to dives by praying mantises

    PubMed Central

    Ghose, Kaushik; Triblehorn, Jeffrey D.; Bohn, Kari; Yager, David D.; Moss, Cynthia F.

    2009-01-01

    Summary Insectivorous echolocating bats face a formidable array of defenses employed by their airborne prey. One such insect defense is the ultrasound-triggered dive, which is a sudden, rapid drop in altitude, sometimes all the way to the ground. Although many previous studies have investigated the dynamics of such dives and their effect on insect survival rate, there has been little work on how bats may adapt to such an insect defense employed in the middle of pursuit. In this study we investigated how big brown bats (Eptesicus fuscus) adjust their pursuit strategy when flying praying mantises (Parasphendale agrionina) execute evasive, ultrasound-triggered dives. Although the mantis dive occasionally forced the bat to completely abort its chase (25% trials), in a number of cases (75% trials) the bat followed the mantis into the dive. In such cases the bat kept its sonar beam locked onto the target and maneuvered to maintain the same time efficient strategy it adopted during level flight pursuit, though it was ultimately defeated by the dive. This study suggests that although the mantis dive can be effective in evading the bat, it does not always deter the bat from continuing pursuit and, given enough altitude, the bat can potentially capture diving prey using the same flight strategy it employs to intercept prey in level flight. PMID:19218521

  5. Group A Rotaviruses in Chinese Bats: Genetic Composition, Serology, and Evidence for Bat-to-Human Transmission and Reassortment.

    PubMed

    He, Biao; Huang, Xiaohong; Zhang, Fuqiang; Tan, Weilong; Matthijnssens, Jelle; Qin, Shaomin; Xu, Lin; Zhao, Zihan; Yang, Ling'en; Wang, Quanxi; Hu, Tingsong; Bao, Xiaolei; Wu, Jianmin; Tu, Changchun

    2017-06-15

    Bats are natural reservoirs for many pathogenic viruses, and increasing evidence supports the notion that bats can also harbor group A rotaviruses (RVAs), important causative agents of diarrhea in children and young animals. Currently, 8 RVA strains possessing completely novel genotype constellations or genotypes possibly originating from other mammals have been identified from African and Chinese bats. However, all the data were mainly based on detection of RVA RNA, present only during acute infections, which does not permit assessment of the true exposure of a bat population to RVA. To systematically investigate the genetic diversity of RVAs, 547 bat anal swabs or gut samples along with 448 bat sera were collected from five South Chinese provinces. Specific reverse transcription-PCR (RT-PCR) screening found four RVA strains. Strain GLRL1 possessed a completely novel genotype constellation, whereas the other three possessed a constellation consistent with the MSLH14-like genotype, a newly characterized group of viruses widely prevalent in Chinese insectivorous bats. Among the latter, strain LZHP2 provided strong evidence of cross-species transmission of RVAs from bats to humans, whereas strains YSSK5 and BSTM70 were likely reassortants between typical MSLH14-like RVAs and human RVAs. RVA-specific antibodies were detected in 10.7% (48/448) of bat sera by an indirect immunofluorescence assay (IIFA). Bats in Guangxi and Yunnan had a higher RVA-specific antibody prevalence than those from Fujian and Zhejiang provinces. These observations provide evidence for cross-species transmission of MSLH14-like bat RVAs to humans, highlighting the impact of bats as reservoirs of RVAs on public health. IMPORTANCE Bat viruses, such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), Ebola, Hendra, and Nipah viruses, are important pathogens causing outbreaks of severe emerging infectious diseases. However, little is known about bat viruses capable

  6. Presence of artisanal gold mining predicts mercury bioaccumulation in five genera of bats (Chiroptera).

    PubMed

    Kumar, Anjali; Divoll, Timothy J; Ganguli, Priya M; Trama, Florencia A; Lamborg, Carl H

    2018-05-01

    Mercury, a toxic trace metal, has been used extensively as an inexpensive and readily available method of extracting gold from fine-grained sediment. Worldwide, artisanal mining is responsible for one third of all mercury released into the environment. By testing bat hair from museum specimens and field collected samples from areas both impacted and unimpacted by artisanal gold mining in Perú, we show monomethylmercury (MMHg) has increased in the last 100 years. MMHg concentrations were also greatest in the highest bat trophic level (insectivores), and in areas experiencing extractive artisanal mining. Reproductive female bats had higher MMHg concentrations, and both juvenile and adult bats from mercury contaminated sites had more MMHg than those from uncontaminated sites. Bats have important ecological functions, providing vital ecosystem services such as pollination, seed dispersal, and insect control. Natural populations can act as environmental sentinels and offer the chance to expand our understanding of, and responses to, environmental and human health concerns. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Susceptibility of North American big brown bats (Eptesicus fuscus) to infection with European bat lyssavirus type 1.

    PubMed

    Franka, R; Johnson, N; Müller, T; Vos, A; Neubert, L; Freuling, C; Rupprecht, C E; Fooks, A R

    2008-08-01

    The aim of this study was to determine the susceptibility of insectivorous bats (using the big brown bat as a model) to infection with European bat lyssavirus type 1a (EBLV-1a), to assess the dynamics of host immune responses and to evaluate the opportunity for horizontal viral transmission within colonies. Two isolates of EBLV-1a, originating from Slovakia (EBLV-1aSK) and Germany (EBLV-1aGE), were tested. Four different routes of inoculation were used with isolate EBLV-1aSK [10(4.8) mouse intracerebral median lethal dose (MICLD(50)) in 50 mul]: intramuscular (i.m.) in the deltoid area or masseter region, per os (p.o.) and intradermal (i.d.) scratches. Isolate EBLV-1aGE (10(3.2) and 10(2.2) MICLD(50) in 20 mul) was inoculated via the intranasal (i.n.), i.m. (low- and high-dose groups, into pectoral muscles); p.o. and intracerebral (i.c.) routes. None of the bats infected by the i.n., p.o. or i.d. route with either virus isolate developed disease during the experiments (91 or 120 days, respectively). Incubation periods were 9-12 days for i.c.-inoculated bats (66 % mortality), 12-33 days for bats inoculated i.m. with the higher dose (23-50 % mortality) and 21-58 days in bats inoculated i.m. with the lower dose of virus (57 % mortality). Virus or viral RNA in bat saliva was detected occasionally, as early as 37 days before death. All i.d.-inoculated and the majority of i.m.-inoculated bats seroconverted within 7-10 days of inoculation. These observations suggest that exposure of bats to varying doses of EBLV-1 from rabid conspecifics via natural (i.d.) routes could lead to an abortive infection and serve as a natural mode of immunization resulting in the presence of virus-neutralizing antibodies in free-ranging bats.

  8. Natural exposure of bats in Grenada to rabies virus

    PubMed Central

    Zieger, Ulrike; Cheetham, Sonia; Santana, Sharlene E.; Leiser-Miller, Leith; Matthew-Belmar, Vanessa; Goharriz, Hooman; Fooks, Anthony R.

    2017-01-01

    ABSTRACT Introduction: Grenada is a rabies endemic country, where terrestrial rabies is maintained in the small Indian mongoose (Herpestes auropunctatus). The role of bats in the epidemiology of rabies in Grenada is unknown. A 1974 report described one rabies virus positive Jamaican fruit bat (Artibeus jamaicensis), and a high seroprevalence in this species. In the current study, the natural exposure to rabies virus in Grenadian bats was re-evaluated. It is postulated that bats serve as a natural rabies reservoir, probably circulating a bat-specific rabies virus variant. Material and methods: Bats were trapped in 2015 in all six parishes of Grenada using mist- and hand nets. For the detection of rabies virus in brain tissue, the direct fluorescent antibody test (dFAT) and the reverse transcription polymerase chain reaction (RT-PCR) were used. Serum neutralizing antibodies were determined using the fluorescent antibody virus neutralization test (FAVN). Results and discussion: Brain tissue and sera from 111 insectivorous and frugivorous bats belonging to four species were tested (52 Artibeus jamaicensis, two Artibeus lituratus, 33 Glossophaga longirostris, 24 Molossus molossus). Rabies virus antigen and genomic RNA were not detected in brain tissues. Rabies virus neutralizing antibodies were detected in the sera of eight A. jamaicensis in four of the six parishes. Bats in Grenada continue to show natural exposure to rabies virus. As rabies virus was not isolated in this study, serology alone is not sufficient to determine the strain of rabies virus circulating in A. jamaicensis bats in Grenada. Conclusion: Artibeus jamaicensis appears to play a role as a reservoir bat species, which is of public health concern in Grenada. Dispersion of bats to neighboring islands is possible and serological bat surveys should be initiated in these neighboring states, especially in those areas that are free of rabies in terrestrial mammals. PMID:28804595

  9. The carbon isotope biogeochemistry of the individual hydrocarbons in bat guano and the ecology of insectivorous bats in the region of Carlsbad, New Mexico

    NASA Technical Reports Server (NTRS)

    Desmarais, D. J.; Mitchell, J. M.; Meinschein, W. G.; Hayes, J. M.

    1980-01-01

    The structures and C-13 contents of individual alkanes extracted from bat guano found in the Carlsbad region of New Mexico can be related to both the photosynthetic pathways of the local plants and the feeding habits of the insects that support the bats. Carbon isotopic analyses of the 62 most important plant species in the Pecos River Valley, the most significant feeding area for the Carlsbad bats, reveal the presence of 29 species with C3 photosynthesis and 33 species, mostly grasses, with C4 photosynthesis. Although the abundances of nonagricultural C3 and C4 plants are similar, alfalfa and cotton, both C3 plants, constitute over 95 per cent of the crop biomass. The molecular composition of the bat guano hydrocarbons is fully consistent with an insect origin. Two isotopically distinct groups of insect branched alkanes were discerned. These two groups of alkanes derived from two chemotaxonomically distinct populations of insects possessing distinctly different feeding habits. It is likely that one population grazes predominantly on crops whereas the other population prefers native vegetation. This and other isotopic evidence supports the notion that crop pests constitute a major percentage of the bats' diet.

  10. Are Regional Habitat Models Useful at a Local-Scale? A Case Study of Threatened and Common Insectivorous Bats in South-Eastern Australia

    PubMed Central

    McConville, Anna; Law, Bradley S.; Mahony, Michael J.

    2013-01-01

    Habitat modelling and predictive mapping are important tools for conservation planning, particularly for lesser known species such as many insectivorous bats. However, the scale at which modelling is undertaken can affect the predictive accuracy and restrict the use of the model at different scales. We assessed the validity of existing regional-scale habitat models at a local-scale and contrasted the habitat use of two morphologically similar species with differing conservation status (Mormopterus norfolkensis and Mormopterus species 2). We used negative binomial generalised linear models created from indices of activity and environmental variables collected from systematic acoustic surveys. We found that habitat type (based on vegetation community) best explained activity of both species, which were more active in floodplain areas, with most foraging activity recorded in the freshwater wetland habitat type. The threatened M. norfolkensis avoided urban areas, which contrasts with M. species 2 which occurred frequently in urban bushland. We found that the broad habitat types predicted from local-scale models were generally consistent with those from regional-scale models. However, threshold-dependent accuracy measures indicated a poor fit and we advise caution be applied when using the regional models at a fine scale, particularly when the consequences of false negatives or positives are severe. Additionally, our study illustrates that habitat type classifications can be important predictors and we suggest they are more practical for conservation than complex combinations of raw variables, as they are easily communicated to land managers. PMID:23977296

  11. Molecular detection of Histoplasma capsulatum in insectivorous and frugivorous bats in Southeastern Brazil.

    PubMed

    Dos Santos, Bruna; Langoni, Helio; da Silva, Rodrigo Costa; Menozzi, Benedito Donizete; Bosco, Sandra de Moraes Gimenes; Paiz, Laís Moraes; Augusto, Livia Carla Ramos; Richini-Pereira, Virgínia Bodelão

    2017-12-27

    Bats are considered to play a significant role in the epidemiology of histoplasmosis, worldwide. We investigated the occurrence of H. capsulatum in lung samples from 89 bats, from urban areas in Southeastern Brazil, using nested PCR based on ribosomal DNA. Fungal DNA was detected in 31/89 samples (34.8%), of which 13/31 were Molossids (41.9%), 4/31 Eumops spp. (12.9%), 2/31 Artibeus lituratus (6.5%), and 12/31 others (38.7%). This is the first report of natural infection by H. capsulatum in A. lituratus in Southeastern Brazil, which reinforces the importance of these synanthropic animals in the epidemiology of histoplasmosis in urban areas. © The Author(s) 2017. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Detection of high levels of European bat lyssavirus type-1 viral RNA in the thyroid gland of experimentally-infected Eptesicus fuscus bats.

    PubMed

    Fooks, A R; Johnson, N; Müller, T; Vos, A; Mansfield, K; Hicks, D; Nunez, A; Freuling, C; Neubert, L; Kaipf, I; Denzinger, A; Franka, R; Rupprecht, C E

    2009-08-01

    Two common bat lyssavirus species have been identified in many European countries: European bat lyssavirus type-1 and -2 (EBLV-1 and EBLV-2). Only limited knowledge on the susceptibility of the natural EBLV-hosts, insectivorous bats, to lyssavirus infection is available. Our study was undertaken to evaluate the susceptibility and pathology associated with an EBLV-1 infection in Eptesicus fuscus following different routes of virus inoculation including intracranial (n = 6), intramuscular (n = 14), oral (n = 7) and intranasal (n = 7). Blood and saliva samples were collected from all bats on a monthly basis. Four bats inoculated intracranially developed rabies with a mean of 11 days to death, whilst seven bats inoculated intramuscularly developed rabies, with an extended incubation period prior to death. We did not observe any mortality in the oral (p.o.) or intranasal (i.n.) groups and both groups had detectable levels of virus neutralizing antibodies (data not shown). Virus shedding was demonstrated in the saliva by virus isolation and the detection of viral RNA in ill bats, particularly immediately prior to the development of disease. In addition, the presence of virus and viral RNA was detected in the thyroid gland in bats challenged experimentally with EBLV-1, which exceeded that detected in all other extra-neural tissue. The significance of detecting EBLV-1 in the thyroid gland of rabid bats is not well understood. We speculate that the infection of the thyroid gland may cause subacute thyroiditis, a transient form of thyroiditis causing hyperthyroidism, resulting in changes in adrenocortical activity that could lead to hormonal dysfunction, thereby distinguishing the clinical presentation of rabies in the rabid host.

  13. Chirosurveillance: The use of native bats to detect invasive agricultural pests.

    PubMed

    Maslo, Brooke; Valentin, Rafael; Leu, Karen; Kerwin, Kathleen; Hamilton, George C; Bevan, Amanda; Fefferman, Nina H; Fonseca, Dina M

    2017-01-01

    Invasive insect pests cost the agricultural industry billions of dollars annually in crop losses. Timely detection of pests is critical for management efficiency. Innovative pest detection strategies, such as environmental DNA (eDNA) techniques, combined with efficient predators, maximize sampling resolution across space and time and may improve surveillance. We tested the hypothesis that temperate insectivorous bats can be important sentinels of agricultural insect pest surveillance. Specifically, we used a new high-sensitivity molecular assay for invasive brown marmorated stink bugs (Halyomorpha halys) to examine the extent to which big brown bats (Eptesicus fuscus) detect agricultural pests in the landscape. We documented consistent seasonal predation of stink bugs by big brown bats. Importantly, bats detected brown marmorated stink bugs 3-4 weeks earlier than the current standard monitoring tool, blacklight traps, across all sites. We highlight here the previously unrecognized potential ecosystem service of bats as agents of pest surveillance (or chirosurveillance). Additional studies examining interactions between other bat and insect pest species, coupled with comparisons of detectability among various conventional monitoring methods, are needed to verify the patterns extracted from this study. Ultimately, robust economic analyses will be needed to assess the cost-effectiveness of chirosurveillance as a standard strategy for integrated pest management.

  14. Seasonal bat activity related to insect emergence at three temperate lakes.

    PubMed

    Salvarina, Ioanna; Gravier, Dorian; Rothhaupt, Karl-Otto

    2018-04-01

    Knowledge of aquatic food resources entering terrestrial systems is important for food web studies and conservation planning. Bats, among other terrestrial consumers, often profit from aquatic insect emergence and their activity might be closely related to such events. However, there is a lack of studies which monitor bat activity simultaneously with aquatic insect emergence, especially from lakes. Thus, our aim was to understand the relationship between insect emergence and bat activity, and investigate whether there is a general spatial or seasonal pattern at lakeshores. We assessed whole-night bat activity using acoustic monitoring and caught emerging and aerial flying insects at three different lakes through three seasons. We predicted that insect availability and seasonality explain the variation in bat activity, independent of the lake size and characteristics. Spatial (between lakes) differences of bat activity were stronger than temporal (seasonal) differences. Bat activity did not always correlate to insect emergence, probably because other factors, such as habitat characteristics, or bats' energy requirements, play an important role as well. Aerial flying insects explained bat activity better than the emerged aquatic insects in the lake with lowest insect emergence. Bats were active throughout the night with some activity peaks, and the pattern of their activity also differed among lakes and seasons. Lakes are important habitats for bats, as they support diverse bat communities and activity throughout the night and the year when bats are active. Our study highlights that there are spatial and temporal differences in bat activity and its hourly nocturnal pattern, that should be considered when investigating aquatic-terrestrial interactions or designing conservation and monitoring plans.

  15. Phyllostomid bat microbiome composition is associated to host phylogeny and feeding strategies

    PubMed Central

    Carrillo-Araujo, Mario; Taş, Neslihan; Alcántara-Hernández, Rocio J.; Gaona, Osiris; Schondube, Jorge E.; Medellín, Rodrigo A.; Jansson, Janet K.; Falcón, Luisa I.

    2015-01-01

    The members of the Phyllostomidae, the New-World leaf-nosed family of bats, show a remarkable evolutionary diversification of dietary strategies including insectivory, as the ancestral trait, followed by appearance of carnivory and plant-based diets such as nectarivory and frugivory. Here we explore the microbiome composition of different feeding specialists: insectivore Macrotus waterhousii, sanguivore Desmodus rotundus, nectarivores Leptonycteris yerbabuenae and Glossophaga soricina, and frugivores Carollia perspicillata and Artibeus jamaicensis. The V4 region of the 16S rRNA gene from three intestinal regions of three individuals per species was amplified and community composition and structure was analyzed with α and β diversity metrics. Bats with plant-based diets had low diversity microbiomes, whereas the sanguivore D. rotundus and insectivore M. waterhousii had the most diverse microbiomes. There were no significant differences in microbiome composition between different intestine regions within each individual. Plant-based feeders showed less specificity in their microbiome compositions, whereas animal-based specialists, although more diverse overall, showed a more clustered arrangement of their intestinal bacterial components. The main characteristics defining microbiome composition in phyllostomids were species and feeding strategy. This study shows how differences in feeding strategies contributed to the development of different intestinal microbiomes in Phyllostomidae. PMID:26042099

  16. Scaling of echolocation call parameters in bats.

    PubMed

    Jones, G

    1999-12-01

    I investigated the scaling of echolocation call parameters (frequency, duration and repetition rate) in bats in a functional context. Low-duty-cycle bats operate with search phase cycles of usually less than 20 %. They process echoes in the time domain and are therefore intolerant of pulse-echo overlap. High-duty-cycle (>30 %) species use Doppler shift compensation, and they separate pulse and echo in the frequency domain. Call frequency scales negatively with body mass in at least five bat families. Pulse duration scales positively with mass in low-duty-cycle quasi-constant-frequency (QCF) species because the large aerial-hawking species that emit these signals fly fast in open habitats. They therefore detect distant targets and experience pulse-echo overlap later than do smaller bats. Pulse duration also scales positively with mass in the Hipposideridae, which show at least partial Doppler shift compensation. Pulse repetition rate corresponds closely with wingbeat frequency in QCF bat species that fly relatively slowly. Larger, fast-flying species often skip pulses when detecting distant targets. There is probably a trade-off between call intensity and repetition rate because 'whispering' bats (and hipposiderids) produce several calls per predicted wingbeat and because batches of calls are emitted per wingbeat during terminal buzzes. Severe atmospheric attenuation at high frequencies limits the range of high-frequency calls. Low-duty-cycle bats that call at high frequencies must therefore use short pulses to avoid pulse-echo overlap. Rhinolophids escape this constraint by Doppler shift compensation and, importantly, can exploit advantages associated with the emission of both high-frequency and long-duration calls. Low frequencies are unsuited for the detection of small prey, and low repetition rates may limit prey detection rates. Echolocation parameters may therefore constrain maximum body size in aerial-hawking bats.

  17. Who's for dinner? High-throughput sequencing reveals bat dietary differentiation in a biodiversity hotspot where prey taxonomy is largely undescribed.

    PubMed

    Burgar, Joanna M; Murray, Daithi C; Craig, Michael D; Haile, James; Houston, Jayne; Stokes, Vicki; Bunce, Michael

    2014-08-01

    Effective management and conservation of biodiversity requires understanding of predator-prey relationships to ensure the continued existence of both predator and prey populations. Gathering dietary data from predatory species, such as insectivorous bats, often presents logistical challenges, further exacerbated in biodiversity hot spots because prey items are highly speciose, yet their taxonomy is largely undescribed. We used high-throughput sequencing (HTS) and bioinformatic analyses to phylogenetically group DNA sequences into molecular operational taxonomic units (MOTUs) to examine predator-prey dynamics of three sympatric insectivorous bat species in the biodiversity hotspot of south-western Australia. We could only assign between 4% and 20% of MOTUs to known genera or species, depending on the method used, underscoring the importance of examining dietary diversity irrespective of taxonomic knowledge in areas lacking a comprehensive genetic reference database. MOTU analysis confirmed that resource partitioning occurred, with dietary divergence positively related to the ecomorphological divergence of the three bat species. We predicted that bat species' diets would converge during times of high energetic requirements, that is, the maternity season for females and the mating season for males. There was an interactive effect of season on female, but not male, bat species' diets, although small sample sizes may have limited our findings. Contrary to our predictions, females of two ecomorphologically similar species showed dietary convergence during the mating season rather than the maternity season. HTS-based approaches can help elucidate complex predator-prey relationships in highly speciose regions, which should facilitate the conservation of biodiversity in genetically uncharacterized areas, such as biodiversity hotspots. © 2013 John Wiley & Sons Ltd.

  18. First isolation and genotyping of Toxoplasma gondii from bats (Mammalia: Chiroptera).

    PubMed

    Cabral, A D; Gama, A R; Sodré, M M; Savani, E S M M; Galvão-Dias, M A; Jordão, L R; Maeda, M M; Yai, L E O; Gennari, S M; Pena, H F J

    2013-03-31

    There are currently no reports on the isolation and molecular examination of Toxoplasma gondii from bats. Here, we report the isolation and genotypic characterisation of two T. gondii isolates from bats. A total of 369 bats from different municipalities in São Paulo state, southeastern Brazil, were captured and euthanised, and collected tissues (heart and pectoral muscle) were processed for each bat or in pools of two or three bats and bioassayed in mice (a total of 283 bioassays). Eleven PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) markers were used to genotype positive samples: SAG1, SAG2 (5'-3'SAG2 and alt. SAG2), SAG3, BTUB, GRA6, L358, c22-8, c29-2, PK1, CS3 and Apico. The parasite was isolated from two bats from São Paulo city: an insectivorous bat, the velvety free-tailed bat Molossus molossus, and a hematophagous bat, the common vampire bat Desmodus rotundus. Isolates were designated TgBatBr1 and TgBatBr2, respectively. The genotype of the isolate from M. molossus (TgBatBr1) has been previously described in an isolate from a capybara from São Paulo state, and the genotype from the D. rotundus isolate (TgBatBr2) has already been identified in isolates from cats, chickens, capybaras, sheep, a rodent and a common rabbit from different Brazilian states, suggesting that this may be a common T. gondii lineage circulating in some Brazilian regions. Isolation of T. gondii from a hematophagous species is striking. This study reveals that bats can share the same isolates that are found in domesticated and wild terrestrial animals. This is the first report of the isolation and genotyping of T. gondii in chiropterans. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Clinical review of two fatal equine cases of infection with the insectivorous bat strain of Australian bat lyssavirus.

    PubMed

    Annand, E J; Reid, P A

    2014-09-01

    The first two confirmed cases of Australian bat lyssavirus (ABLV) infection in horses are presented. Both cases occurred in the same week in May 2013 in paddock mates in south-east Queensland. Australia has been one of only a few countries considered free from rabies-like viruses in domestic animal species. ABLV infection had previously only been confirmed in bats and humans. All three confirmed human cases were fatal, the latest in February 2013. An additional human case of possible abortive infection in 1996 has also been reported. Both equine cases reported here resulted in euthanasia. The risks of infection across other mammalian species are still to be determined. These two equine cases highlight that ABLV should be considered as a differential diagnosis in animals with similar clinical presentations in Australia. There is a need for greater awareness regarding the zoonotic risk, use of personal protective equipment, pre- and post-exposure prophylactic measures and laboratory diagnostic options. The authors recommend ABLV testing for all Australian cases of progressive equine neurological disease. © 2014 Australian Veterinary Association.

  20. Geographic origins and population genetics of bats killed at wind-energy facilities.

    PubMed

    Pylant, Cortney L; Nelson, David M; Fitzpatrick, Matthew C; Gates, J Edward; Keller, Stephen R

    2016-07-01

    An unanticipated impact of wind-energy development has been large-scale mortality of insectivorous bats. In eastern North America, where mortality rates are among the highest in the world, the hoary bat (Lasiurus cinereus) and the eastern red bat (L. borealis) comprise the majority of turbine-associated bat mortality. Both species are migratory tree bats with widespread distributions; however, little is known regarding the geographic origins of bats killed at wind-energy facilities or the diversity and population structure of affected species. We addressed these unknowns by measuring stable hydrogen isotope ratios (δ 2 H) and conducting population genetic analyses of bats killed at wind-energy facilities in the central Appalachian Mountains (USA) to determine the summering origins, effective size, structure, and temporal stability of populations. Our results indicate that ~1% of hoary bat mortalities and ~57% of red bat mortalities derive from non-local sources, with no relationship between the proportion of non-local bats and sex, location of mortality, or month of mortality. Additionally, our data indicate that hoary bats in our sample consist of an unstructured population with a small effective size (N e ) and either a stable or declining history. Red bats also showed no evidence of population genetic structure, but in contrast to hoary bats, the diversity contained in our red bat samples is consistent with a much larger N e that reflects a demographic expansion after a bottleneck. These results suggest that the impacts of mortality associated with intensive wind-energy development may affect bat species dissimilarly, with red bats potentially better able to absorb sustained mortality than hoary bats because of their larger N e . Our results provide important baseline data and also illustrate the utility of stable isotopes and population genetics for monitoring bat populations affected by wind-energy development. © 2016 by the Ecological Society of America.

  1. Leishmania (L.) mexicana Infected Bats in Mexico: Novel Potential Reservoirs

    PubMed Central

    Berzunza-Cruz, Miriam; Rodríguez-Moreno, Ángel; Gutiérrez-Granados, Gabriel; González-Salazar, Constantino; Stephens, Christopher R.; Hidalgo-Mihart, Mircea; Marina, Carlos F.; Rebollar-Téllez, Eduardo A.; Bailón-Martínez, Dulce; Balcells, Cristina Domingo; Ibarra-Cerdeña, Carlos N.; Sánchez-Cordero, Víctor; Becker, Ingeborg

    2015-01-01

    Leishmania (Leishmania) mexicana causes cutaneous leishmaniasis, an endemic zoonosis affecting a growing number of patients in the southeastern states of Mexico. Some foci are found in shade-grown cocoa and coffee plantations, or near perennial forests that provide rich breeding grounds for the sand fly vectors, but also harbor a variety of bat species that live off the abundant fruits provided by these shade-giving trees. The close proximity between sand flies and bats makes their interaction feasible, yet bats infected with Leishmania (L.) mexicana have not been reported. Here we analyzed 420 bats from six states of Mexico that had reported patients with leishmaniasis. Tissues of bats, including skin, heart, liver and/or spleen were screened by PCR for Leishmania (L.) mexicana DNA. We found that 41 bats (9.77%), belonging to 13 species, showed positive PCR results in various tissues. The infected tissues showed no evidence of macroscopic lesions. Of the infected bats, 12 species were frugivorous, insectivorous or nectarivorous, and only one species was sanguivorous (Desmodus rotundus), and most of them belonged to the family Phyllostomidae. The eco-region where most of the infected bats were caught is the Gulf Coastal Plain of Chiapas and Tabasco. Through experimental infections of two Tadarida brasiliensis bats in captivity, we show that this species can harbor viable, infective Leishmania (L.) mexicana parasites that are capable of infecting BALB/c mice. We conclude that various species of bats belonging to the family Phyllostomidae are possible reservoir hosts for Leishmania (L.) mexicana, if it can be shown that such bats are infective for the sand fly vector. Further studies are needed to determine how these bats become infected, how long the parasite remains viable inside these potential hosts and whether they are infective to sand flies to fully evaluate their impact on disease epidemiology. PMID:25629729

  2. Leishmania (L.) mexicana infected bats in Mexico: novel potential reservoirs.

    PubMed

    Berzunza-Cruz, Miriam; Rodríguez-Moreno, Ángel; Gutiérrez-Granados, Gabriel; González-Salazar, Constantino; Stephens, Christopher R; Hidalgo-Mihart, Mircea; Marina, Carlos F; Rebollar-Téllez, Eduardo A; Bailón-Martínez, Dulce; Balcells, Cristina Domingo; Ibarra-Cerdeña, Carlos N; Sánchez-Cordero, Víctor; Becker, Ingeborg

    2015-01-01

    Leishmania (Leishmania) mexicana causes cutaneous leishmaniasis, an endemic zoonosis affecting a growing number of patients in the southeastern states of Mexico. Some foci are found in shade-grown cocoa and coffee plantations, or near perennial forests that provide rich breeding grounds for the sand fly vectors, but also harbor a variety of bat species that live off the abundant fruits provided by these shade-giving trees. The close proximity between sand flies and bats makes their interaction feasible, yet bats infected with Leishmania (L.) mexicana have not been reported. Here we analyzed 420 bats from six states of Mexico that had reported patients with leishmaniasis. Tissues of bats, including skin, heart, liver and/or spleen were screened by PCR for Leishmania (L.) mexicana DNA. We found that 41 bats (9.77%), belonging to 13 species, showed positive PCR results in various tissues. The infected tissues showed no evidence of macroscopic lesions. Of the infected bats, 12 species were frugivorous, insectivorous or nectarivorous, and only one species was sanguivorous (Desmodus rotundus), and most of them belonged to the family Phyllostomidae. The eco-region where most of the infected bats were caught is the Gulf Coastal Plain of Chiapas and Tabasco. Through experimental infections of two Tadarida brasiliensis bats in captivity, we show that this species can harbor viable, infective Leishmania (L.) mexicana parasites that are capable of infecting BALB/c mice. We conclude that various species of bats belonging to the family Phyllostomidae are possible reservoir hosts for Leishmania (L.) mexicana, if it can be shown that such bats are infective for the sand fly vector. Further studies are needed to determine how these bats become infected, how long the parasite remains viable inside these potential hosts and whether they are infective to sand flies to fully evaluate their impact on disease epidemiology.

  3. Evidence for retrovirus and paramyxovirus infection of multiple bat species in china.

    PubMed

    Yuan, Lihong; Li, Min; Li, Linmiao; Monagin, Corina; Chmura, Aleksei A; Schneider, Bradley S; Epstein, Jonathan H; Mei, Xiaolin; Shi, Zhengli; Daszak, Peter; Chen, Jinping

    2014-05-16

    Bats are recognized reservoirs for many emerging zoonotic viruses of public health importance. Identifying and cataloguing the viruses of bats is a logical approach to evaluate the range of potential zoonoses of bat origin. We characterized the fecal pathogen microbiome of both insectivorous and frugivorous bats, incorporating 281 individual bats comprising 20 common species, which were sampled in three locations of Yunnan province, by combining reverse transcription polymerase chain reaction (RT-PCR) assays and next-generation sequencing. Seven individual bats were paramyxovirus-positive by RT-PCR using degenerate primers, and these paramyxoviruses were mainly classified into three genera (Rubulavirus, Henipavirus and Jeilongvirus). Various additional novel pathogens were detected in the paramyxovirus-positive bats using Illumina sequencing. A total of 7066 assembled contigs (≥200 bp) were constructed, and 105 contigs matched eukaryotic viruses (of them 103 belong to 2 vertebrate virus families, 1 insect virus, and 1 mycovirus), 17 were parasites, and 4913 were homologous to prokaryotic microorganisms. Among the 103 vertebrate viral contigs, 79 displayed low identity (<70%) to known viruses including human viruses at the amino acid level, suggesting that these belong to novel and genetically divergent viruses. Overall, the most frequently identified viruses, particularly in bats from the family Hipposideridae, were retroviruses. The present study expands our understanding of the bat virome in species commonly found in Yunnan, China, and provides insight into the overall diversity of viruses that may be capable of directly or indirectly crossing over into humans.

  4. Evidence for Retrovirus and Paramyxovirus Infection of Multiple Bat Species in China

    PubMed Central

    Yuan, Lihong; Li, Min; Li, Linmiao; Monagin, Corina; Chmura, Aleksei A.; Schneider, Bradley S.; Epstein, Jonathan H.; Mei, Xiaolin; Shi, Zhengli; Daszak, Peter; Chen, Jinping

    2014-01-01

    Bats are recognized reservoirs for many emerging zoonotic viruses of public health importance. Identifying and cataloguing the viruses of bats is a logical approach to evaluate the range of potential zoonoses of bat origin. We characterized the fecal pathogen microbiome of both insectivorous and frugivorous bats, incorporating 281 individual bats comprising 20 common species, which were sampled in three locations of Yunnan province, by combining reverse transcription polymerase chain reaction (RT-PCR) assays and next-generation sequencing. Seven individual bats were paramyxovirus-positive by RT-PCR using degenerate primers, and these paramyxoviruses were mainly classified into three genera (Rubulavirus, Henipavirus and Jeilongvirus). Various additional novel pathogens were detected in the paramyxovirus-positive bats using Illumina sequencing. A total of 7066 assembled contigs (≥200 bp) were constructed, and 105 contigs matched eukaryotic viruses (of them 103 belong to 2 vertebrate virus families, 1 insect virus, and 1 mycovirus), 17 were parasites, and 4913 were homologous to prokaryotic microorganisms. Among the 103 vertebrate viral contigs, 79 displayed low identity (<70%) to known viruses including human viruses at the amino acid level, suggesting that these belong to novel and genetically divergent viruses. Overall, the most frequently identified viruses, particularly in bats from the family Hipposideridae, were retroviruses. The present study expands our understanding of the bat virome in species commonly found in Yunnan, China, and provides insight into the overall diversity of viruses that may be capable of directly or indirectly crossing over into humans. PMID:24841387

  5. Recent Observations on Australian Bat Lyssavirus Tropism and Viral Entry

    PubMed Central

    Weir, Dawn L.; Annand, Edward J.; Reid, Peter A.; Broder, Christopher C.

    2014-01-01

    Australian bat lyssavirus (ABLV) is a recently emerged rhabdovirus of the genus lyssavirus considered endemic in Australian bat populations that causes a neurological disease in people indistinguishable from clinical rabies. There are two distinct variants of ABLV, one that circulates in frugivorous bats (genus Pteropus) and the other in insectivorous microbats (genus Saccolaimus). Three fatal human cases of ABLV infection have been reported, the most recent in 2013, and each manifested as acute encephalitis but with variable incubation periods. Importantly, two equine cases also arose recently in 2013, the first occurrence of ABLV in a species other than bats or humans. Similar to other rhabdoviruses, ABLV infects host cells through receptor-mediated endocytosis and subsequent pH-dependent fusion facilitated by its single fusogenic envelope glycoprotein (G). Recent studies have revealed that proposed rabies virus (RABV) receptors are not sufficient to permit ABLV entry into host cells and that the unknown receptor is broadly conserved among mammalian species. However, despite clear tropism differences between ABLV and RABV, the two viruses appear to utilize similar endocytic entry pathways. The recent human and horse infections highlight the importance of continued Australian public health awareness of this emerging pathogen. PMID:24556791

  6. Recent observations on Australian bat lyssavirus tropism and viral entry.

    PubMed

    Weir, Dawn L; Annand, Edward J; Reid, Peter A; Broder, Christopher C

    2014-02-19

    Australian bat lyssavirus (ABLV) is a recently emerged rhabdovirus of the genus lyssavirus considered endemic in Australian bat populations that causes a neurological disease in people indistinguishable from clinical rabies. There are two distinct variants of ABLV, one that circulates in frugivorous bats (genus Pteropus) and the other in insectivorous microbats (genus Saccolaimus). Three fatal human cases of ABLV infection have been reported, the most recent in 2013, and each manifested as acute encephalitis but with variable incubation periods. Importantly, two equine cases also arose recently in 2013, the first occurrence of ABLV in a species other than bats or humans. Similar to other rhabdoviruses, ABLV infects host cells through receptor-mediated endocytosis and subsequent pH-dependent fusion facilitated by its single fusogenic envelope glycoprotein (G). Recent studies have revealed that proposed rabies virus (RABV) receptors are not sufficient to permit ABLV entry into host cells and that the unknown receptor is broadly conserved among mammalian species. However, despite clear tropism differences between ABLV and RABV, the two viruses appear to utilize similar endocytic entry pathways. The recent human and horse infections highlight the importance of continued Australian public health awareness of this emerging pathogen.

  7. Activity levels of bats and katydids in relation to the lunar cycle.

    PubMed

    Lang, Alexander B; Kalko, Elisabeth K V; Römer, Heinrich; Bockholdt, Cecile; Dechmann, Dina K N

    2006-01-01

    Animals are exposed to many conflicting ecological pressures, and the effect of one may often obscure that of another. A likely example of this is the so-called "lunar phobia" or reduced activity of bats during full moon. The main reason for lunar phobia was thought to be that bats adjust their activity to avoid predators. However, bats can be prey, but many are carnivorous and therefore predators themselves. Thus, they are likely to be influenced by prey availability as well as predation risk. We investigated the activity patterns of the perch-hunting Lophostoma silvicolum and one of its main types of prey, katydids, to assess the influence of the former during different phases of the lunar cycle on a gleaning insectivorous bat. To avoid sampling bias, we used sound recordings and two different capture methods for the katydids, as well as video monitoring and radio-telemetry for the bats. Both, bats and katydids were significantly more active during the dark periods associated with new moon compared to bright periods around the full moon. We conclude that foraging activity of L. silvicolum is probably influenced by prey availability to a large extent and argue that generally the causes of lunar phobia are species-specific.

  8. Effects of selective logging on bat communities in the southeastern Amazon.

    PubMed

    Peters, Sandra L; Malcolm, Jay R; Zimmerman, Barbara L

    2006-10-01

    Although extensive areas of tropical forest are selectively logged each year, the responses of bat communities to this form of disturbance have rarely been examined. Our objectives were to (1) compare bat abundance, species composition, and feeding guild structure between unlogged and low-intensity selectively logged (1-4 logged stems/ha) sampling grids in the southeastern Amazon and (2) examine correlations between logging-induced changes in bat communities and forest structure. We captured bats in understory and canopy mist nets set in five 1-ha study grids in both logged and unlogged forest. We captured 996 individuals, representing 5 families, 32 genera, and 49 species. Abundances of nectarivorous and frugivorous taxa (Glossophaginae, Lonchophyllinae, Stenodermatinae, and Carolliinae) were higher at logged sites, where canopy openness and understory foliage density were greatest. In contrast, insectivorous and omnivorous species (Emballonuridae, Mormoopidae, Phyllostominae, and Vespertilionidae) were more abundant in unlogged sites, where canopy foliage density and variability in the understory stratum were greatest. Multivariate analyses indicated that understory bat species composition differed strongly between logged and unlogged sites but provided little evidence of logging effects for the canopy fauna. Different responses among feeding guilds and taxonomic groups appeared to be related to foraging and echolocation strategies and to changes in canopy cover and understory foliage densities. Our results suggest that even low-intensity logging modifies habitat structure, leading to changes in bat species composition.

  9. Trypanosome species, including Trypanosoma cruzi, in sylvatic and peridomestic bats of Texas, USA.

    PubMed

    Hodo, Carolyn L; Goodwin, Chloe C; Mayes, Bonny C; Mariscal, Jacqueline A; Waldrup, Kenneth A; Hamer, Sarah A

    2016-12-01

    In contrast to other mammalian reservoirs, many bat species migrate long-distances and have the potential to introduce exotic pathogens to new areas. Bats have long been associated with blood-borne protozoal trypanosomes of the Schizotrypanum subgenus, which includes the zoonotic parasite Trypanosoma cruzi, agent of Chagas disease. Another member of the subgenus, Trypanosoma dionisii, infects bats of Europe and South America, and genetic similarities between strains from the two continents suggest transcontinental movement of this parasite via bats. Despite the known presence of diverse trypanosomes in bats of Central and South America, and the presence of T. cruzi-infected vectors and wildlife in the US, the role of bats in maintaining and dispersing trypanosomes in the US has not yet been reported. We collected hearts and blood from 8 species of insectivorous bats from 30 counties across Texas. Using PCR and DNA sequencing, we tested 593 bats for trypanosomes and found 1 bat positive for T. cruzi (0.17%), 9 for T. dionisii (1.5%), and 5 for Blastocrithidia spp. (0.8%), a group of insect trypanosomes. The T. cruzi-infected bat was carrying TcI, the strain type associated with human disease in the US. In the T. dionisii-infected bats, we detected three unique variants associated with the three infected bat species. These findings represent the first report of T. cruzi in a bat in the US, of T. dionisii in North America, and of Blastocrithidia spp. in mammals, and underscore the importance of bats in the maintenance of trypanosomes, including agents of human and animal disease, across broad geographic locales. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Bats: Body mass index, forearm mass index, blood glucose levels and SLC2A2 genes for diabetes

    PubMed Central

    Meng, Fanxing; Zhu, Lei; Huang, Wenjie; Irwin, David M.; Zhang, Shuyi

    2016-01-01

    Bats have an unusually large volume of endocrine tissue, with a large population of beta cells, and an elevated sensitivity to glucose and insulin. This makes them excellent animal models for studying diabetes mellitus. We evaluated bats as models for diabetes in terms of lifestyle and genetic factors. For lifestyle factors, we generated data sets of 149 body mass index (BMI) and 860 forearm mass index (FMI) measurements for different species of bats. Both showed negative inter-species correlations with blood glucose levels in sixteen bats examined. The negative inter-species correlations may reflect adaptation of a small insectivorous ancestor to a larger frugivore. We identified an 11 bp deletion in the proximal promoter of SLC2A2 that we predicted would disrupt binding sites for the transcription repressor ZNF354C. In frugivorous bats this could explain the relatively high expression of this gene, resulting in a better capacity to absorb glucose and decrease blood glucose levels. PMID:27439361

  11. Ecology and geography of transmission of two bat-borne rabies lineages in Chile.

    PubMed

    Escobar, Luis E; Peterson, A Townsend; Favi, Myriam; Yung, Verónica; Pons, Daniel J; Medina-Vogel, Gonzalo

    2013-01-01

    Rabies was known to humans as a disease thousands of years ago. In America, insectivorous bats are natural reservoirs of rabies virus. The bat species Tadarida brasiliensis and Lasiurus cinereus, with their respective, host-specific rabies virus variants AgV4 and AgV6, are the principal rabies reservoirs in Chile. However, little is known about the roles of bat species in the ecology and geographic distribution of the virus. This contribution aims to address a series of questions regarding the ecology of rabies transmission in Chile. Analyzing records from 1985-2011 at the Instituto de Salud Pública de Chile (ISP) and using ecological niche modeling, we address these questions to help in understanding rabies-bat ecological dynamics in South America. We found ecological niche identity between both hosts and both viral variants, indicating that niches of all actors in the system are undifferentiated, although the viruses do not necessarily occupy the full geographic distributions of their hosts. Bat species and rabies viruses share similar niches, and our models had significant predictive power even across unsampled regions; results thus suggest that outbreaks may occur under consistent, stable, and predictable circumstances.

  12. Ecology and Geography of Transmission of Two Bat-Borne Rabies Lineages in Chile

    PubMed Central

    Escobar, Luis E.; Peterson, A. Townsend; Favi, Myriam; Yung, Verónica; Pons, Daniel J.; Medina-Vogel, Gonzalo

    2013-01-01

    Rabies was known to humans as a disease thousands of years ago. In America, insectivorous bats are natural reservoirs of rabies virus. The bat species Tadarida brasiliensis and Lasiurus cinereus, with their respective, host-specific rabies virus variants AgV4 and AgV6, are the principal rabies reservoirs in Chile. However, little is known about the roles of bat species in the ecology and geographic distribution of the virus. This contribution aims to address a series of questions regarding the ecology of rabies transmission in Chile. Analyzing records from 1985–2011 at the Instituto de Salud Pública de Chile (ISP) and using ecological niche modeling, we address these questions to help in understanding rabies-bat ecological dynamics in South America. We found ecological niche identity between both hosts and both viral variants, indicating that niches of all actors in the system are undifferentiated, although the viruses do not necessarily occupy the full geographic distributions of their hosts. Bat species and rabies viruses share similar niches, and our models had significant predictive power even across unsampled regions; results thus suggest that outbreaks may occur under consistent, stable, and predictable circumstances. PMID:24349592

  13. Hawkmoths produce anti-bat ultrasound

    PubMed Central

    Barber, Jesse R.; Kawahara, Akito Y.

    2013-01-01

    Bats and moths have been engaged in aerial warfare for nearly 65 Myr. This arms race has produced a suite of counter-adaptations in moths, including bat-detecting ears. One set of defensive strategies involves the active production of sound; tiger moths' ultrasonic replies to bat attack have been shown to startle bats, warn the predators of bad taste and jam their biosonar. Here, we report that hawkmoths in the Choerocampina produce entirely ultrasonic sounds in response to tactile stimulation and the playback of biosonar attack sequences. Males do so by grating modified scraper scales on the outer surface of the genital valves against the inner margin of the last abdominal tergum. Preliminary data indicate that females also produce ultrasound to touch and playback of echolocation attack, but they do so with an entirely different mechanism. The anti-bat function of these sounds is unknown but might include startling, cross-family acoustic mimicry, warning of unprofitability or physical defence and/or jamming of echolocation. Hawkmoths present a novel and tractable system to study both the function and evolution of anti-bat defences. PMID:23825084

  14. Authentication of the R06E Fruit Bat Cell Line

    PubMed Central

    Jordan, Ingo; Munster, Vincent J.; Sandig, Volker

    2012-01-01

    Fruit bats and insectivorous bats are believed to provide a natural reservoir for a wide variety of infectious diseases. Several lines of evidence, including the successful isolation of infectious viruses, indicate that Marburg virus and Ravn virus have found a major reservoir in colonies of the Egyptian rousette (Rousettus aegyptiacus). To facilitate molecular studies on virus-reservoir host interactions and isolation of viruses from environmental samples, we established cell lines from primary cells of this animal. The cell lines were given to several laboratories until we realized that a contamination with Vero cells in one of the cultures had occurred. Here we describe a general diagnostic procedure for identification of cross-species contamination with the focus on Vero and Rousettus cell lines, and summarize newly discovered properties of the cell lines that may pertain to pathogen discovery. PMID:22754654

  15. Authentication of the R06E fruit bat cell line.

    PubMed

    Jordan, Ingo; Munster, Vincent J; Sandig, Volker

    2012-05-01

    Fruit bats and insectivorous bats are believed to provide a natural reservoir for a wide variety of infectious diseases. Several lines of evidence, including the successful isolation of infectious viruses, indicate that Marburg virus and Ravn virus have found a major reservoir in colonies of the Egyptian rousette (Rousettus aegyptiacus). To facilitate molecular studies on virus-reservoir host interactions and isolation of viruses from environmental samples, we established cell lines from primary cells of this animal. The cell lines were given to several laboratories until we realized that a contamination with Vero cells in one of the cultures had occurred. Here we describe a general diagnostic procedure for identification of cross-species contamination with the focus on Vero and Rousettus cell lines, and summarize newly discovered properties of the cell lines that may pertain to pathogen discovery.

  16. Encephalization and quantitative brain composition in bats in relation to their life-habits.

    PubMed

    Pirlot, P; Pottier, J

    1977-12-01

    A quantitative analysis of the brains of 43 bat species is presented. Eleven brain components were studied. The species were arranged according to seven distinct dietary groups and it was found that the relative development of the principal components is related to those groups. The importance of neocorticalization as a reflection of evolution of all the bats in contrast to specialization in some species is stressed. This work gives a clearer view of Chiropteran progressiveness or primitiveness: the insectivorous forms occupy the least advanced, although most specialized, level; the vampires, the carnivorous species and the flying foxes are at the top of the scale. The importance of behaviour and the relative development of the central nervous system in the hierarchial classification of mammals is stressed.

  17. Relaxed evolution in the tyrosine aminotransferase gene tat in old world fruit bats (Chiroptera: Pteropodidae).

    PubMed

    Shen, Bin; Fang, Tao; Yang, Tianxiao; Jones, Gareth; Irwin, David M; Zhang, Shuyi

    2014-01-01

    Frugivorous and nectarivorous bats fuel their metabolism mostly by using carbohydrates and allocate the restricted amounts of ingested proteins mainly for anabolic protein syntheses rather than for catabolic energy production. Thus, it is possible that genes involved in protein (amino acid) catabolism may have undergone relaxed evolution in these fruit- and nectar-eating bats. The tyrosine aminotransferase (TAT, encoded by the Tat gene) is the rate-limiting enzyme in the tyrosine catabolic pathway. To test whether the Tat gene has undergone relaxed evolution in the fruit- and nectar-eating bats, we obtained the Tat coding region from 20 bat species including four Old World fruit bats (Pteropodidae) and two New World fruit bats (Phyllostomidae). Phylogenetic reconstructions revealed a gene tree in which all echolocating bats (including the New World fruit bats) formed a monophyletic group. The phylogenetic conflict appears to stem from accelerated TAT protein sequence evolution in the Old World fruit bats. Our molecular evolutionary analyses confirmed a change in the selection pressure acting on Tat, which was likely caused by a relaxation of the evolutionary constraints on the Tat gene in the Old World fruit bats. Hepatic TAT activity assays showed that TAT activities in species of the Old World fruit bats are significantly lower than those of insectivorous bats and omnivorous mice, which was not caused by a change in TAT protein levels in the liver. Our study provides unambiguous evidence that the Tat gene has undergone relaxed evolution in the Old World fruit bats in response to changes in their metabolism due to the evolution of their special diet.

  18. Genetic divergence of rabies viruses from bat species of Colorado, USA

    USGS Publications Warehouse

    Shanker, V.; Orciari, L.A.; De Mattos, C.; Kuzmin, I.V.; Pape, W.J.; O'Shea, T.J.; Rupprecht, C.E.

    2005-01-01

    Molecular epidemiological studies have linked many cryptic human rabies cases in the United States with exposure to rabies virus (RV) variants associated with insectivorous bats. In Colorado, bats accounted for 98% of all reported animal rabies cases between 1977 and 1996. The genetic divergence of RV was investigated in bat and terrestrial animal specimens that were submitted for rabies diagnosis to the Colorado Department of Public Health and Environment (CDPHE), Colorado, USA. RV isolates from animal specimens across the United States were also included in the analysis. Phylogenetic analyses were performed on partial nucleoprotein (N) gene sequences, which revealed seven principal clades. RV associated with the colonial big brown bat, Eptesicus fuscus, an bats of the genus Myotis were found to segregate into two distinct clades (I and IV). Clade I was harbored by E. fuscus and Myotis species, but was also identified in terrestrial animals such as domestic cats and striped skunks (Mephitis mephitis). Clade IV was divided into subclades IVA, IVB, and IVC; IVA was identified in E. fuscus, and Myotis species bats, and also in a fox; subclades IVB and IVC circulated predominantly in E. fuscus. Clade II was formed by big free-tailed bat (Nyctinomops macrotis) and striped skunk (Mephitis mephitis) samples. Clade III included RVs that are maintained by generally solitary, migratory bats such as the silver-haired bat (Lasionycteris noctivagans) and bats of the genus Lasiurus. Big brown bats were found to harbor this RV variant. None of the Colorado specimens segregated with clades V and VII that harbor RVs associated with terrestrial animals. Different species of bats had the same RV variant, indicating active inter-species rabies transmission. In Colorado, animal rabies occurs principally in bats, and the identification of bat RVs in cat, gray fox Urocyon cinereoargenteus), and striped skunks demonstrated the importance of rabies spillover from bats to domestic and

  19. Forest structure affects trophic linkages: How silvicultural disturbance impacts bats and their insect prey

    USGS Publications Warehouse

    Dodd, L.E.; Lacki, M.J.; Britzke, E.R.; Buehler, D.A.; Keyser, P.D.; Larkin, J.L.; Rodewald, A.D.; Wigley, T.B.; Wood, P.B.; Rieske, L.K.

    2012-01-01

    Vertebrate insectivores such as bats are a pervasive top-down force on prey populations in forest ecosystems. Conservation focusing on forest-dwelling bats requires understanding of community-level interactions between these predators and their insect prey. Our study assessed bat activity and insect occurrence (abundance and diversity) across a gradient of forest disturbance and structure (silvicultural treatments) in the Central Appalachian region of North America. We conducted acoustic surveys of bat echolocation concurrent with insect surveys using blacklight and malaise traps over 2 years. Predator activity, prey occurrence and prey biomass varied seasonally and across the region. The number of bat echolocation pulses was positively related with forest disturbance, whereas prey demonstrated varied trends. Lepidopteran abundance was negatively related with disturbance, while dipteran abundance and diversity was positively related with disturbance. Coleoptera were unaffected. Neither bat nor insect response variables differed between plot interiors and edges. Correlations between bat activity and vegetative structure reflected differences in foraging behavior among ensembles. Activity of myotine bats was correlated with variables describing sub-canopy vegetation, whereas activity of lasiurine bats was more closely correlated with canopy-level vegetation. Lepidopteran abundance was correlated with variables describing canopy and sub-canopy vegetation, whereas coleopteran and dipteran occurrence were more closely correlated with canopy-level vegetative structure. Our study demonstrates regional variation in bat activity and prey occurrence across a forested disturbance gradient. Land management and conservation efforts should consider the importance of vegetation structure and plant species richness to sustain forest-dwelling bats and their insect prey.

  20. Jaw-Dropping: Functional Variation in the Digastric Muscle in Bats.

    PubMed

    Curtis, Abigail A; Santana, Sharlene E

    2018-02-01

    Diet and feeding behavior in mammals is strongly linked to the morphology of their feeding apparatus. Cranio-muscular morphology determines how wide, forcefully, and quickly the jaw can be opened or closed, which limits the size and material properties of the foods that a mammal can eat. Most studies of feeding performance in mammals have focused on skull form and jaw muscles involved in generating bite force, but few explore how jaw abduction is related to feeding performance. In this study, we explored how the morphology of the digastric muscle, the primary jaw abducting muscle in mammals, and its jaw lever mechanics are related to diet in morphologically diverse noctilionoid bats. Results showed that insectivorous bats have strong digastric muscles associated with proportionally long jaws, which suggests these species can open their jaws quickly and powerfully during prey capture and chewing. Short snouted frugivorous bats exhibit traits that would enable them to open their jaws proportionally wider to accommodate the large fruits that they commonly feed on. Our results support the hypothesis that digastric muscle and jaw morphology are correlated with diet in bats, and that our results may also apply to other groups of mammals. Anat Rec, 301:279-290, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  1. Insight on how fishing bats discern prey and adjust their mechanic and sensorial features during the attack sequence

    PubMed Central

    Aizpurua, Ostaizka; Alberdi, Antton; Aihartza, Joxerra; Garin, Inazio

    2015-01-01

    Several insectivorous bats have included fish in their diet, yet little is known about the processes underlying this trophic shift. We performed three field experiments with wild fishing bats to address how they manage to discern fish from insects and adapt their hunting technique to capture fish. We show that bats react only to targets protruding above the water and discern fish from insects based on prey disappearance patterns. Stationary fish trigger short and shallow dips and a terminal echolocation pattern with an important component of the narrowband and low frequency calls. When the fish disappears during the attack process, bats regulate their attack increasing the number of broadband and high frequency calls in the last phase of the echolocation as well as by lengthening and deepening their dips. These adjustments may allow bats to obtain more valuable sensorial information and to perform dips adjusted to the level of uncertainty on the location of the submerged prey. The observed ultrafast regulation may be essential for enabling fishing to become cost-effective in bats, and demonstrates the ability of bats to rapidly modify and synchronise their sensorial and motor features as a response to last minute stimulus variations. PMID:26196094

  2. The distribution and contaminant exposure of Rafinesque's Big-Eared Bats in South Carolina with an emphasis on bridge surveys.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F.M. Bennett; S.C. Loeb; W.W. Bowerman

    Rafinesque's big-eared bat (Corynorhinus rafinesquii), an insectivorous mammal indigenous to the southern United States, has long been referred to as one of the least known bats in North America. Although there has been a moderate increase in the number of peer-reviewed articles published on this species in the past 6 years, the basic ecology and status of Rafinesque's big-eared bat remains largely obscure. Prior to 1996, when the United States Fish and Wildlife Service (USFWS) discontinued the list of Candidate Species, Rafinesque's big-eared bat was listed as a Federal Category 2 Candidate species. Currently, Rafinesque's big-eared bat is recognized asmore » a ''species of special concern'' across most of its range but receives no legal protection. Nonetheless, the USFWS and numerous state agencies remain concerned about this species. Further biological research and field study are needed to resolve the conservation status of this taxona. In response to the paucity of information regarding the status and distribution of Rafinesque's big-eared bat, statewide survey of highway bridges used as roost sites was conducted.« less

  3. The carbon isotope biogeochemistry of the individual hydrocarbons in bat guano and the ecology of the insectivorous bats in the region of Carlsbad, New Mexico

    NASA Technical Reports Server (NTRS)

    Des Marais, D. J.; Mitchell, J. M.; Meinschein, W. G.; Hayes, J. M.

    1980-01-01

    The structures and C-13 contents of individual hydrocarbons extracted from bat guano found in the Carlsbad region of New Mexico are analyzed in order to elucidate details of the carbon flow in the plant-insect-bat ecosystem. Carbon isotopic analyses indicate that equivalent numbers of plants with C3 and C4 photosynthetic pathways occupy the feeding area of the bats, which supports alfalfa and cotton as well as native plants. The molecular composition of the guano is consistent with an origin in two distinct populations of insects with different feeding habits, one of which may graze predominantly on crops. It is also pointed out that isotopic analyses of more ancient guano deposits may be useful in characterizing prevalent vegetation and climate of earlier periods.

  4. Aerial hawking and landing: approach behaviour in Natterer's bats, Myotis nattereri (Kuhl 1818).

    PubMed

    Melcón, Mariana L; Denzinger, Annette; Schnitzler, Hans-Ulrich

    2007-12-01

    We compared the flight and echolocation behaviour of a vespertilionid bat (Myotis nattereri) approaching a large stationary or a small moving target. Bats were trained to either land on a landing grid or to catch a moving tethered mealworm. When closing in on these two targets, the bats emitted groups of sounds with increasing number of signals and decreasing pulse interval and duration. When pursuing the mealworm, the approach phase always ended with a terminal group consisting of buzz I and buzz II. When landing, the bats emitted either a terminal group consisting of buzz I alone, with one or two extra pulses, or a group consisting of buzz I and buzz II. In all situations, buzz I ended on average between 47-63 ms prior to contact with the target of interest, which is approximately the reaction time of bats. Therefore, the information collected in buzz II does not guide the bats to the target. The relevant part of the approach phase to reach the target ends with buzz I. The basic sound pattern of this part is rather similar and independent of whether the bats approach the large stationary or the small moving target.

  5. A novel resource-service mutualism between bats and pitcher plants.

    PubMed

    Grafe, T Ulmar; Schöner, Caroline R; Kerth, Gerald; Junaidi, Anissa; Schöner, Michael G

    2011-06-23

    Mutualistic relationships between vertebrates and plants apart from the pollen and seed-dispersal syndromes are rare. At first view, carnivorous pitcher plants of the genus Nepenthes seem to be highly unlikely candidates for mutualistic interactions with animals, as they form dimorphic terrestrial and aerial pitchers that trap arthropods and small vertebrates. Surprisingly, however, the aerial pitchers of Nepenthes rafflesiana variety elongata are poor insect traps, with low amounts of insect-attractive volatile compounds and low amounts of digestive fluid. Here, we show that N. rafflesiana elongata gains an estimated 33.8 per cent of the total foliar nitrogen from the faeces of Hardwicke's woolly bats (Kerivoula hardwickii hardwickii) that exclusively roost in its aerial pitchers. This is the first case in which the faeces-trapping syndrome has been documented in a pitcher plant that attracts bats and only the second case of a mutualistic association between a carnivorous plant and a mammal to date.

  6. Detection of a new bat gammaherpesvirus in the Philippines.

    PubMed

    Watanabe, Shumpei; Ueda, Naoya; Iha, Koichiro; Masangkay, Joseph S; Fujii, Hikaru; Alviola, Phillip; Mizutani, Tetsuya; Maeda, Ken; Yamane, Daisuke; Walid, Azab; Kato, Kentaro; Kyuwa, Shigeru; Tohya, Yukinobu; Yoshikawa, Yasuhiro; Akashi, Hiroomi

    2009-08-01

    A new bat herpesvirus was detected in the spleen of an insectivorous bat (Hipposideros diadema, family Hipposideridae) collected on Panay Island, the Philippines. PCR analyses were performed using COnsensus-DEgenerate Hybrid Oligonucleotide Primers (CODEHOPs) targeting the herpesvirus DNA polymerase (DPOL) gene. Although we obtained PCR products with CODEHOPs, direct sequencing using the primers was not possible because of high degree of degeneracy. Direct sequencing technology developed in our rapid determination system of viral RNA sequences (RDV) was applied in this study, and a partial DPOL nucleotide sequence was determined. In addition, a partial gB gene nucleotide sequence was also determined using the same strategy. We connected the partial gB and DPOL sequences with long-distance PCR, and a 3741-bp nucleotide fragment, including the 3' part of the gB gene and the 5' part of the DPOL gene, was finally determined. Phylogenetic analysis showed that the sequence was novel and most similar to those of the subfamily Gammaherpesvirinae.

  7. Relaxed Evolution in the Tyrosine Aminotransferase Gene Tat in Old World Fruit Bats (Chiroptera: Pteropodidae)

    PubMed Central

    Shen, Bin; Fang, Tao; Yang, Tianxiao; Jones, Gareth; Irwin, David M.; Zhang, Shuyi

    2014-01-01

    Frugivorous and nectarivorous bats fuel their metabolism mostly by using carbohydrates and allocate the restricted amounts of ingested proteins mainly for anabolic protein syntheses rather than for catabolic energy production. Thus, it is possible that genes involved in protein (amino acid) catabolism may have undergone relaxed evolution in these fruit- and nectar-eating bats. The tyrosine aminotransferase (TAT, encoded by the Tat gene) is the rate-limiting enzyme in the tyrosine catabolic pathway. To test whether the Tat gene has undergone relaxed evolution in the fruit- and nectar-eating bats, we obtained the Tat coding region from 20 bat species including four Old World fruit bats (Pteropodidae) and two New World fruit bats (Phyllostomidae). Phylogenetic reconstructions revealed a gene tree in which all echolocating bats (including the New World fruit bats) formed a monophyletic group. The phylogenetic conflict appears to stem from accelerated TAT protein sequence evolution in the Old World fruit bats. Our molecular evolutionary analyses confirmed a change in the selection pressure acting on Tat, which was likely caused by a relaxation of the evolutionary constraints on the Tat gene in the Old World fruit bats. Hepatic TAT activity assays showed that TAT activities in species of the Old World fruit bats are significantly lower than those of insectivorous bats and omnivorous mice, which was not caused by a change in TAT protein levels in the liver. Our study provides unambiguous evidence that the Tat gene has undergone relaxed evolution in the Old World fruit bats in response to changes in their metabolism due to the evolution of their special diet. PMID:24824435

  8. [Bats and Viruses: complex relationships].

    PubMed

    Rodhain, F

    2015-10-01

    With more than 1 200 species, bats and flying foxes (Order Chiroptera) constitute the most important and diverse order of Mammals after Rodents. Many species of bats are insectivorous while others are frugivorous and few of them are hematophagous. Some of these animals fly during the night, others are crepuscular or diurnal. Some fly long distances during seasonal migrations. Many species are colonial cave-dwelling, living in a rather small home range while others are relatively solitary. However, in spite of the importance of bats for terrestrial biotic communities and ecosystem ecology, the diversity in their biology and lifestyles remain poorly known and underappreciated. More than sixty viruses have been detected or isolated in bats; these animals are therefore involved in the natural cycles of many of them. This is the case, for instance, of rabies virus and other Lyssavirus (Family Rhabdoviridae), Nipah and Hendra viruses (Paramyxoviridae), Ebola and Marburg viruses (Filoviridae), SARS-CoV and MERS-CoV (Coronaviridae). For these zoonotic viruses, a number of bat species are considered as important reservoir hosts, efficient disseminators or even directly responsible of the transmission. Some of these bat-borne viruses cause highly pathogenic diseases while others are of potential significance for humans and domestic or wild animals; so, bats are an important risk in human and animal public health. Moreover, some groups of viruses developed through different phylogenetic mechanisms of coevolution between viruses and bats. The fact that most of these viral infections are asymptomatic in bats has been observed since a long time but the mechanisms of the viral persistence are not clearly understood. The various bioecology of the different bat populations allows exchange of virus between migrating and non-migrating conspecific species. For a better understanding of the role of bats in the circulation of these viral zoonoses, epidemiologists must pay attention to

  9. Genetic diversity of coronaviruses in bats in Lao PDR and Cambodia.

    PubMed

    Lacroix, Audrey; Duong, Veasna; Hul, Vibol; San, Sorn; Davun, Hull; Omaliss, Keo; Chea, Sokha; Hassanin, Alexandre; Theppangna, Watthana; Silithammavong, Soubanh; Khammavong, Kongsy; Singhalath, Sinpakone; Greatorex, Zoe; Fine, Amanda E; Goldstein, Tracey; Olson, Sarah; Joly, Damien O; Keatts, Lucy; Dussart, Philippe; Afelt, Aneta; Frutos, Roger; Buchy, Philippe

    2017-03-01

    South-East Asia is a hot spot for emerging zoonotic diseases, and bats have been recognized as hosts for a large number of zoonotic viruses such as Severe Acute Respiratory Syndrome (SARS), responsible for acute respiratory syndrome outbreaks. Thus, it is important to expand our knowledge of the presence of viruses in bats which could represent a risk to humans. Coronaviruses (CoVs) have been reported in bat species from Thailand, China, Indonesia, Taiwan and the Philippines. However no such work was conducted in Cambodia or Lao PDR. Between 2010 and 2013, 1965 bats were therefore sampled at interfaces with human populations in these two countries. They were tested for the presence of coronavirus by consensus reverse transcription-PCR assay. A total of 93 samples (4.7%) from 17 genera of bats tested positive. Sequence analysis revealed the presence of potentially 37 and 56 coronavirus belonging to alpha-coronavirus (αCoV) and beta-CoV (βCoV), respectively. The βCoVs group is known to include some coronaviruses highly pathogenic to human, such as SARS-CoV and MERS-CoV. All coronavirus sequences generated from frugivorous bats (family Pteropodidae) (n=55) clustered with other bat βCoVs of lineage D, whereas one coronavirus from Pipistrellus coromandra fell in the lineage C of βCoVs which also includes the MERS-CoV. αCoVs were all detected in various genera of insectivorous bats and clustered with diverse bat αCoV sequences previously published. A closely related strain of PEDV, responsible for severe diarrhea in pigs (PEDV-CoV), was detected in 2 Myotis bats. We highlighted the presence and the high diversity of coronaviruses circulating in bats from Cambodia and Lao PDR. Three new bat genera and species were newly identified as host of coronaviruses, namely Macroglossus sp., Megaerops niphanae and Myotis horsfieldii. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Disproportionate Declines in Ground-Foraging Insectivorous Birds after Mistletoe Removal

    PubMed Central

    Watson, David M.

    2015-01-01

    Insectivorous birds have been recognized as disproportionately sensitive to land-use intensification and habitat loss, with those species feeding primarily on the ground exhibiting some of the most dramatic declines. Altered litter inputs and availability of epigeic arthropods have been suggested to underlie reduced abundances and shrinking distributions but direct evidence is lacking. I used a patch-scale removal experiment in southern Australia to evaluate whether ground-feeding insectivores are especially vulnerable to altered litter-fall. Building on work demonstrating the importance of mistletoe litter to nutrient dynamics, litter was reduced by removing mistletoe (Loranthaceae) from one set of eucalypt woodlands, responses of birds three years after mistletoe removal compared with otherwise similar control woodlands containing mistletoe. Despite not feeding on mistletoes directly, insectivores exhibited the greatest response to mistletoe removal. Among woodland residents, ground-foraging insectivores showed the most dramatic response; treatment woodlands losing an average of 37.4% of their pre-treatment species richness. Once these 19 species of ground-foraging insectivores were excluded, remaining woodland species showed no significant effect of mistletoe removal. This response reflects greater initial losses in treatment woodlands during the study (which coincided with a severe drought) and double the number of species returning to control woodlands (where mistletoe numbers and litter were not manipulated) post-drought. These findings support the productivity-based explanation of declining insectivores, suggesting diminished litter-fall reduced habitat quality for these birds via decreased availability of their preferred prey. In addition to altered prey availability, interactions between litter-fall and epigeic arthropods exemplify the importance of below-ground / above-ground linkages driving ecosystem function. PMID:26640895

  11. Learning where to feed: the use of social information in flower-visiting Pallas' long-tongued bats (Glossophaga soricina).

    PubMed

    Rose, Andreas; Kolar, Miriam; Tschapka, Marco; Knörnschild, Mirjam

    2016-03-01

    Social learning is a widespread phenomenon among vertebrates that influences various patterns of behaviour and is often reported with respect to foraging behaviour. The use of social information by foraging bats was documented in insectivorous, carnivorous and frugivorous species, but there are little data whether flower-visiting nectarivorous bats (Phyllostomidae: Glossophaginae) can acquire information about food from other individuals. In this study, we conducted an experiment with a demonstrator-observer paradigm to investigate whether flower-visiting Pallas' long-tongued bats (Glossophaga soricina) are able to socially learn novel flower positions via observation of, or interaction with, knowledgeable conspecifics. The results demonstrate that flower-visiting G. soricina are able to use social information for the location of novel flower positions and can thereby reduce energy-costly search efforts. This social transmission is explainable as a result of local enhancement; learning bats might rely on both visual and echo-acoustical perception and are likely to eavesdrop on auditory cues that are emitted by feeding conspecifics. We additionally tested the spatial memory capacity of former demonstrator bats when retrieving a learned flower position, and the results indicate that flower-visiting bats remember a learned flower position after several weeks.

  12. Numerical and functional responses of forest bats to a major insect pest in pine plantations.

    PubMed

    Charbonnier, Yohan; Barbaro, Luc; Theillout, Amandine; Jactel, Hervé

    2014-01-01

    Global change is expected to modify the frequency and magnitude of defoliating insect outbreaks in forest ecosystems. Bats are increasingly acknowledged as effective biocontrol agents for pest insect populations. However, a better understanding is required of whether and how bat communities contribute to the resilience of forests to man- and climate-driven biotic disturbances.We studied the responses of forest insectivorous bats to a major pine defoliator, the pine processionary moth Thaumetopoea pityocampa, which is currently expanding its range in response to global warming [corrected]. We used pheromone traps and ultrasound bat recorders to estimate the abundance and activity of moths and predatory bats along the edge of infested pine stands. We used synthetic pheromone to evaluate the effects of experimentally increased moth availability on bat foraging activity. We also evaluated the top-down regulation of moth population by estimating T. pityocampa larval colonies abundance on the same edges the following winter. We observed a close spatio-temporal matching between emergent moths and foraging bats, with bat activity significantly increasing with moth abundance. The foraging activity of some bat species was significantly higher near pheromone lures, i.e. in areas of expected increased prey availability. Furthermore moth reproductive success significantly decreased with increasing bat activity during the flight period of adult moths. These findings suggest that bats, at least in condition of low prey density, exhibit numerical and functional responses to a specific and abundant prey, which may ultimately result in an effective top-down regulation of the population of the prey. These observations are consistent with bats being useful agents for the biocontrol of insect pest populations in plantation forests.

  13. Concealed by darkness: interactions between predatory bats and nocturnally migrating songbirds illuminated by DNA sequencing.

    PubMed

    Ibáñez, Carlos; Popa-Lisseanu, Ana G; Pastor-Beviá, David; García-Mudarra, Juan L; Juste, Javier

    2016-10-01

    Recently, several species of aerial-hawking bats have been found to prey on migrating songbirds, but details on this behaviour and its relevance for bird migration are still unclear. We sequenced avian DNA in feather-containing scats of the bird-feeding bat Nyctalus lasiopterus from Spain collected during bird migration seasons. We found very high prey diversity, with 31 bird species from eight families of Passeriformes, almost all of which were nocturnally flying sub-Saharan migrants. Moreover, species using tree hollows or nest boxes in the study area during migration periods were not present in the bats' diet, indicating that birds are solely captured on the wing during night-time passage. Additional to a generalist feeding strategy, we found that bats selected medium-sized bird species, thereby assumingly optimizing their energetic cost-benefit balance and injury risk. Surprisingly, bats preyed upon birds half their own body mass. This shows that the 5% prey to predator body mass ratio traditionally assumed for aerial hunting bats does not apply to this hunting strategy or even underestimates these animals' behavioural and mechanical abilities. Considering the bats' generalist feeding strategy and their large prey size range, we suggest that nocturnal bat predation may have influenced the evolution of bird migration strategies and behaviour. © 2016 John Wiley & Sons Ltd.

  14. Generation and Characterization of Eptesicus fuscus (Big brown bat) kidney cell lines immortalized using the Myotis polyomavirus large T-antigen.

    PubMed

    Banerjee, Arinjay; Rapin, Noreen; Miller, Megan; Griebel, Philip; Zhou, Yan; Munster, Vincent; Misra, Vikram

    2016-11-01

    It is speculated that bats are important reservoir hosts for numerous viruses, with 27 viral families reportedly detected in bats. Majority of these viruses have not been isolated and there is little information regarding their biology in bats. Establishing a well-characterized bat cell line supporting the replication of bat-borne viruses would facilitate the analysis of virus-host interactions in an in vitro model. Currently, few bat cell lines have been developed and only Tb1-Lu, derived from Tadarida brasiliensis is commercially available. Here we describe a method to establish and immortalize big brown bat (Eptesicus fuscus) kidney (Efk3) cells using the Myotis polyomavirus T-antigen. Subclones of this cell line expressed both epithelial and fibroblast markers to varying extents. Cell clones expressed interferon beta in response to poly(I:C) stimulation and supported the replication of four different viruses, namely, vesicular stomatitis virus (VSV), porcine epidemic diarrhea coronavirus (PED-CoV), Middle-East respiratory syndrome coronavirus (MERS-CoV) and herpes simplex virus (HSV). To our knowledge, this is the first bat cell line from a northern latitude insectivorous bat developed using a novel technology. The cell line has the potential to be used for isolation of bat viruses and for studying virus-bat interactions in culture. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Alphacoronaviruses in new World bats: Prevalence, persistence, phylogeny, and potential for interaction with humans

    USGS Publications Warehouse

    Osborne, C.; Cryan, P.M.; O'Shea, T.J.; Oko, L.M.; Ndaluka, C.; Calisher, C.H.; Berglund, A.D.; Klavetter, M.L.; Bowen, R.A.; Holmes, K.V.; Dominguez, S.R.

    2011-01-01

    Bats are reservoirs for many different coronaviruses (CoVs) as well as many other important zoonotic viruses. We sampled feces and/or anal swabs of 1,044 insectivorous bats of 2 families and 17 species from 21 different locations within Colorado from 2007 to 2009. We detected alphacoronavirus RNA in bats of 4 species: big brown bats (Eptesicus fuscus), 10% prevalence; long-legged bats (Myotis volans), 8% prevalence; little brown bats (Myotis lucifugus), 3% prevalence; and western long-eared bats (Myotis evotis), 2% prevalence. Overall, juvenile bats were twice as likely to be positive for CoV RNA as adult bats. At two of the rural sampling sites, CoV RNAs were detected in big brown and long-legged bats during the three sequential summers of this study. CoV RNA was detected in big brown bats in all five of the urban maternity roosts sampled throughout each of the periods tested. Individually tagged big brown bats that were positive for CoV RNA and later sampled again all became CoV RNA negative. Nucleotide sequences in the RdRp gene fell into 3 main clusters, all distinct from those of Old World bats. Similar nucleotide sequences were found in amplicons from gene 1b and the spike gene in both a big-brown and a long-legged bat, indicating that a CoV may be capable of infecting bats of different genera. These data suggest that ongoing evolution of CoVs in bats creates the possibility of a continued threat for emergence into hosts of other species. Alphacoronavirus RNA was detected at a high prevalence in big brown bats in roosts in close proximity to human habitations (10%) and known to have direct contact with people (19%), suggesting that significant potential opportunities exist for cross-species transmission of these viruses. Further CoV surveillance studies in bats throughout the Americas are warranted.

  16. Alphacoronaviruses in New World Bats: Prevalence, Persistence, Phylogeny, and Potential for Interaction with Humans

    USGS Publications Warehouse

    Osborne, Christina; Cryan, Paul M.; O'Shea, Thomas J.; Oko, Lauren M.; Ndaluka, Christina; Calisher, Charles H.; Berglund, Andrew D.; Klavetter, Mead L.; Holmes, Kathryn V.; Dominguez, Samuel R.; Montgomery, Joel Mark

    2011-01-01

    Bats are reservoirs for many different coronaviruses (CoVs) as well as many other important zoonotic viruses. We sampled feces and/or anal swabs of 1,044 insectivorous bats of 2 families and 17 species from 21 different locations within Colorado from 2007 to 2009. We detected alphacoronavirus RNA in bats of 4 species: big brown bats (Eptesicus fuscus), 10% prevalence; long-legged bats (Myotis volans), 8% prevalence; little brown bats (Myotis lucifugus), 3% prevalence; and western long-eared bats (Myotis evotis), 2% prevalence. Overall, juvenile bats were twice as likely to be positive for CoV RNA as adult bats. At two of the rural sampling sites, CoV RNAs were detected in big brown and long-legged bats during the three sequential summers of this study. CoV RNA was detected in big brown bats in all five of the urban maternity roosts sampled throughout each of the periods tested. Individually tagged big brown bats that were positive for CoV RNA and later sampled again all became CoV RNA negative. Nucleotide sequences in the RdRp gene fell into 3 main clusters, all distinct from those of Old World bats. Similar nucleotide sequences were found in amplicons from gene 1b and the spike gene in both a big-brown and a long-legged bat, indicating that a CoV may be capable of infecting bats of different genera. These data suggest that ongoing evolution of CoVs in bats creates the possibility of a continued threat for emergence into hosts of other species. Alphacoronavirus RNA was detected at a high prevalence in big brown bats in roosts in close proximity to human habitations (10%) and known to have direct contact with people (19%), suggesting that significant potential opportunities exist for cross-species transmission of these viruses. Further CoV surveillance studies in bats throughout the Americas are warranted.

  17. Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviors of microchiropteran bats

    PubMed Central

    Denzinger, Annette; Schnitzler, Hans-Ulrich

    2013-01-01

    Throughout evolution the foraging and echolocation behaviors as well as the motor systems of bats have been adapted to the tasks they have to perform while searching and acquiring food. When bats exploit the same class of environmental resources in a similar way, they perform comparable tasks and thus share similar adaptations independent of their phylogeny. Species with similar adaptations are assigned to guilds or functional groups. Habitat type and foraging mode mainly determine the foraging tasks and thus the adaptations of bats. Therefore, we use habitat type and foraging mode to define seven guilds. The habitat types open, edge and narrow space are defined according to the bats' echolocation behavior in relation to the distance between bat and background or food item and background. Bats foraging in the aerial, trawling, flutter detecting, or active gleaning mode use only echolocation to acquire their food. When foraging in the passive gleaning mode bats do not use echolocation but rely on sensory cues from the food item to find it. Bat communities often comprise large numbers of species with a high diversity in foraging areas, foraging modes, and diets. The assignment of species living under similar constraints into guilds identifies patterns of community structure and helps to understand the factors that underlie the organization of highly diverse bat communities. Bat species from different guilds do not compete for food as they differ in their foraging behavior and in the environmental resources they use. However, sympatric living species belonging to the same guild often exploit the same class of resources. To avoid competition they should differ in their niche dimensions. The fine grain structure of bat communities below the rather coarse classification into guilds is determined by mechanisms that result in niche partitioning. PMID:23840190

  18. Virome analysis for identification of novel mammalian viruses in bat species from Chinese provinces.

    PubMed

    Wu, Zhiqiang; Ren, Xianwen; Yang, Li; Hu, Yongfeng; Yang, Jian; He, Guimei; Zhang, Junpeng; Dong, Jie; Sun, Lilian; Du, Jiang; Liu, Liguo; Xue, Ying; Wang, Jianmin; Yang, Fan; Zhang, Shuyi; Jin, Qi

    2012-10-01

    Bats are natural hosts for a large variety of zoonotic viruses. This study aimed to describe the range of bat viromes, including viruses from mammals, insects, fungi, plants, and phages, in 11 insectivorous bat species (216 bats in total) common in six provinces of China. To analyze viromes, we used sequence-independent PCR amplification and next-generation sequencing technology (Solexa Genome Analyzer II; Illumina). The viromes were identified by sequence similarity comparisons to known viruses. The mammalian viruses included those of the Adenoviridae, Herpesviridae, Papillomaviridae, Retroviridae, Circoviridae, Rhabdoviridae, Astroviridae, Flaviridae, Coronaviridae, Picornaviridae, and Parvovirinae; insect viruses included those of the Baculoviridae, Iflaviridae, Dicistroviridae, Tetraviridae, and Densovirinae; fungal viruses included those of the Chrysoviridae, Hypoviridae, Partitiviridae, and Totiviridae; and phages included those of the Caudovirales, Inoviridae, and Microviridae and unclassified phages. In addition to the viruses and phages associated with the insects, plants, and bacterial flora related to the diet and habitation of bats, we identified the complete or partial genome sequences of 13 novel mammalian viruses. These included herpesviruses, papillomaviruses, a circovirus, a bocavirus, picornaviruses, a pestivirus, and a foamy virus. Pairwise alignments and phylogenetic analyses indicated that these novel viruses showed little genetic similarity with previously reported viruses. This study also revealed a high prevalence and diversity of bat astroviruses and coronaviruses in some provinces. These findings have expanded our understanding of the viromes of bats in China and hinted at the presence of a large variety of unknown mammalian viruses in many common bat species of mainland China.

  19. Virome Analysis for Identification of Novel Mammalian Viruses in Bat Species from Chinese Provinces

    PubMed Central

    Wu, Zhiqiang; Ren, Xianwen; Yang, Li; Hu, Yongfeng; Yang, Jian; He, Guimei; Zhang, Junpeng; Dong, Jie; Sun, Lilian; Du, Jiang; Liu, Liguo; Xue, Ying; Wang, Jianmin; Yang, Fan

    2012-01-01

    Bats are natural hosts for a large variety of zoonotic viruses. This study aimed to describe the range of bat viromes, including viruses from mammals, insects, fungi, plants, and phages, in 11 insectivorous bat species (216 bats in total) common in six provinces of China. To analyze viromes, we used sequence-independent PCR amplification and next-generation sequencing technology (Solexa Genome Analyzer II; Illumina). The viromes were identified by sequence similarity comparisons to known viruses. The mammalian viruses included those of the Adenoviridae, Herpesviridae, Papillomaviridae, Retroviridae, Circoviridae, Rhabdoviridae, Astroviridae, Flaviridae, Coronaviridae, Picornaviridae, and Parvovirinae; insect viruses included those of the Baculoviridae, Iflaviridae, Dicistroviridae, Tetraviridae, and Densovirinae; fungal viruses included those of the Chrysoviridae, Hypoviridae, Partitiviridae, and Totiviridae; and phages included those of the Caudovirales, Inoviridae, and Microviridae and unclassified phages. In addition to the viruses and phages associated with the insects, plants, and bacterial flora related to the diet and habitation of bats, we identified the complete or partial genome sequences of 13 novel mammalian viruses. These included herpesviruses, papillomaviruses, a circovirus, a bocavirus, picornaviruses, a pestivirus, and a foamy virus. Pairwise alignments and phylogenetic analyses indicated that these novel viruses showed little genetic similarity with previously reported viruses. This study also revealed a high prevalence and diversity of bat astroviruses and coronaviruses in some provinces. These findings have expanded our understanding of the viromes of bats in China and hinted at the presence of a large variety of unknown mammalian viruses in many common bat species of mainland China. PMID:22855479

  20. Offshore Observations of Eastern Red Bats (Lasiurus borealis) in the Mid-Atlantic United States Using Multiple Survey Methods

    PubMed Central

    Hatch, Shaylyn K.; Connelly, Emily E.; Divoll, Timothy J.; Stenhouse, Iain J.; Williams, Kathryn A.

    2013-01-01

    Little is known about the migration and movements of migratory tree-roosting bat species in North America, though anecdotal observations of migrating bats over the Atlantic Ocean have been reported since at least the 1890s. Aerial surveys and boat-based surveys of wildlife off the Atlantic Seaboard detected a possible diurnal migration event of eastern red bats (Lasiurus borealis) in September 2012. One bat was sighted approximately 44 km east of Rehoboth Beach, Delaware during a boat-based survey. Eleven additional bats were observed between 16.9 and 41.8 km east of New Jersey, Delaware, and Virginia in high definition video footage collected during digital aerial surveys. Observations were collected incidentally as part of a large baseline study of seabird, marine mammal, and sea turtle distributions and movements in the offshore environment. Digital survey methods also allowed for altitude estimation for several of these bats at >100 m above sea level. These observations provide new evidence of bat movements offshore, and offer insight into their flight heights above sea level and the times of day at which such migrations may occur. PMID:24367614

  1. A Systematic Review of Human Bat Rabies Virus Variant Cases: Evaluating Unprotected Physical Contact with Claws and Teeth in Support of Accurate Risk Assessments.

    PubMed

    Dato, Virginia M; Campagnolo, Enzo R; Long, Jonah; Rupprecht, Charles E

    2016-01-01

    In the United States and Canada, the most recent documented cases of rabies have been attributed to bat rabies viruses (RABV). We undertook this systematic review in an effort to summarize and enhance understanding of the risk of infection for individuals who have been potentially exposed to a suspect or confirmed rabid bat. United States rabies surveillance summaries documented a total of 41 human bat-rabies virus variant verified non-transplant cases between 1990 and 2015. All cases were fatal. Seven (17.1%) of 41 cases reported a bite from a bat. Ten (24.3%) cases had unprotected physical contact (UPC); these included seven cases that had a bat land or crawl on them (contact with claws) and one case that touched a bat's teeth. Seven (17.1%) cases had probable UPC. Insectivorous bat teeth are extremely sharp and highly efficient for predation upon arthropod prey. Bats also have sharp claws on the end of their thumbs and feet. One of the most common bat RABV variants has an ability to replicate in non-neural cells. Questioning individuals about unprotected contact with bat teeth and claws (including a bat landing or crawling on a person) may help identify additional exposures.

  2. Bat reproduction declines when conditions mimic climate change projections for western North America.

    PubMed

    Adams, Rick A

    2010-08-01

    Climate change models predict that much of western North America is becoming significantly warmer and drier, resulting in overall reductions in availability of water for ecosystems. Herein, I demonstrate that significant declines in the reproductive success of female insectivorous bats occur in years when annual environmental conditions mimic the long-term predictions of regional climate change models. Using a data set gathered on bat populations from 1996 through 2008 along the Front Range of Colorado, I compare trends in population numbers and reproductive outcomes of six species of vespertilionid bats with data on mean annual high temperature, precipitation, snow pack, and stream discharge rates. I show that levels of precipitation and flow rates of small streams near maternity colonies is fundamentally tied to successful reproduction in female bats, particularly during the lactation phase. Across years that experienced greater than average mean temperatures with less than average precipitation and stream flow, bat populations responded by slight to profound reductions in reproductive output depending on the severity of drought conditions. In particular, reproductive outputs showed profound declines (32-51%) when discharge rates of the largest stream in the field area dropped below 7 m3/s, indicating a threshold response. Such sensitivity to environmental change portends severe impacts to regional bat populations if current scenarios for climate change in western North America are accurate. In addition, bats act as early-warning indicators of large-scale ecological effects resulting from further regional warming and drying trends currently at play in western North America.

  3. Skin Lesions in European Hibernating Bats Associated with Geomyces destructans, the Etiologic Agent of White-Nose Syndrome

    PubMed Central

    Wibbelt, Gudrun; Puechmaille, Sébastien J.; Ohlendorf, Bernd; Mühldorfer, Kristin; Bosch, Thijs; Görföl, Tamás; Passior, Karsten; Kurth, Andreas; Lacremans, Daniel; Forget, Frédéric

    2013-01-01

    White-nose syndrome (WNS) has claimed the lives of millions of hibernating insectivorous bats in North America. Its etiologic agent, the psychrophilic fungus Geomyces destructans, causes skin lesions that are the hallmark of the disease. The fungal infection is characterized by a white powdery growth on muzzle, ears and wing membranes. While WNS may threaten some species of North American bats with regional extinction, infection in hibernating bats in Europe seems not to be associated with significant mortality. We performed histopathological investigations on biopsy samples of 11 hibernating European bats, originating from 4 different countries, colonized by G. destructans. One additional bat was euthanized to allow thorough examination of multiple strips of its wing membranes. Molecular analyses of touch imprints, swabs and skin samples confirmed that fungal structures were G. destructans. Additionally, archived field notes on hibernacula monitoring data in the Harz Mountains, Germany, over an 11-year period (2000–2011) revealed multiple capture-recapture events of 8 banded bats repeatedly displaying characteristic fungal colonization. Skin lesions of G. destructans-affected hibernating European bats are intriguingly similar to the epidermal lesions described in North American bats. Nevertheless, deep invasion of fungal hyphae into the dermal connective tissue with resulting ulceration like in North American bats was not observed in the biopsy samples of European bats; all lesions found were restricted to the layers of the epidermis and its adnexae. Two bats had mild epidermal cupping erosions as described for North American bats. The possible mechanisms for any difference in outcomes of G. destructans infection in European and North American bats still need to be elucidated. PMID:24023927

  4. Airplane tracking documents the fastest flight speeds recorded for bats.

    PubMed

    McCracken, Gary F; Safi, Kamran; Kunz, Thomas H; Dechmann, Dina K N; Swartz, Sharon M; Wikelski, Martin

    2016-11-01

    The performance capabilities of flying animals reflect the interplay of biomechanical and physiological constraints and evolutionary innovation. Of the two extant groups of vertebrates that are capable of powered flight, birds are thought to fly more efficiently and faster than bats. However, fast-flying bat species that are adapted for flight in open airspace are similar in wing shape and appear to be similar in flight dynamics to fast-flying birds that exploit the same aerial niche. Here, we investigate flight behaviour in seven free-flying Brazilian free-tailed bats ( Tadarida brasiliensis ) and report that the maximum ground speeds achieved exceed speeds previously documented for any bat. Regional wind modelling indicates that bats adjusted flight speeds in response to winds by flying more slowly as wind support increased and flying faster when confronted with crosswinds, as demonstrated for insects, birds and other bats. Increased frequency of pauses in wing beats at faster speeds suggests that flap-gliding assists the bats' rapid flight. Our results suggest that flight performance in bats has been underappreciated and that functional differences in the flight abilities of birds and bats require re-evaluation.

  5. Evolution of nectarivory in phyllostomid bats (Phyllostomidae Gray, 1825, Chiroptera: Mammalia).

    PubMed

    Datzmann, Thomas; von Helversen, Otto; Mayer, Frieder

    2010-06-04

    Bats of the family Phyllostomidae show a unique diversity in feeding specializations. This taxon includes species that are highly specialized on insects, blood, small vertebrates, fruits or nectar, and pollen. Feeding specialization is accompanied by morphological, physiological and behavioural adaptations. Several attempts were made to resolve the phylogenetic relationships within this family in order to reconstruct the evolutionary transitions accompanied by nutritional specialization. Nevertheless, the evolution of nectarivory remained equivocal. Phylogenetic reconstructions, based on a concatenated nuclear-and mitochondrial data set, revealed a paraphyletic relationship of nectarivorous phyllostomid bats. Our phylogenetic reconstructions indicate that the nectarivorous genera Lonchophylla and Lionycteris are closer related to mainly frugivorous phyllostomids of the subfamilies Rhinophyllinae, Stenodermatinae, Carolliinae, and the insectivorous Glyphonycterinae rather than to nectarivorous bats of the Glossophaginae. This suggests an independent origin of morphological adaptations to a nectarivorous lifestyle within Lonchophyllinae and Glossophaginae. Molecular clock analysis revealed a relatively short time frame of about ten million years for the divergence of subfamilies. Our study provides strong support for diphyly of nectarivorous phyllostomids. This is remarkable, since their morphological adaptations to nutrition, like elongated rostrums and tongues, reduced teeth and the ability to use hovering flight while ingestion, closely resemble each other. However, more precise examinations of their tongues (e.g. type and structure of papillae and muscular innervation) revealed levels of difference in line with an independent evolution of nectarivory in these bats.

  6. A Systematic Review of Human Bat Rabies Virus Variant Cases: Evaluating Unprotected Physical Contact with Claws and Teeth in Support of Accurate Risk Assessments

    PubMed Central

    Campagnolo, Enzo R.; Long, Jonah; Rupprecht, Charles E.

    2016-01-01

    In the United States and Canada, the most recent documented cases of rabies have been attributed to bat rabies viruses (RABV). We undertook this systematic review in an effort to summarize and enhance understanding of the risk of infection for individuals who have been potentially exposed to a suspect or confirmed rabid bat. United States rabies surveillance summaries documented a total of 41 human bat-rabies virus variant verified non-transplant cases between 1990 and 2015. All cases were fatal. Seven (17.1%) of 41 cases reported a bite from a bat. Ten (24.3%) cases had unprotected physical contact (UPC); these included seven cases that had a bat land or crawl on them (contact with claws) and one case that touched a bat’s teeth. Seven (17.1%) cases had probable UPC. Insectivorous bat teeth are extremely sharp and highly efficient for predation upon arthropod prey. Bats also have sharp claws on the end of their thumbs and feet. One of the most common bat RABV variants has an ability to replicate in non-neural cells. Questioning individuals about unprotected contact with bat teeth and claws (including a bat landing or crawling on a person) may help identify additional exposures. PMID:27459720

  7. Discovery of hantaviruses in bats and insectivores and the evolution of the genus Hantavirus.

    PubMed

    Zhang, Yong-Zhen

    2014-07-17

    Hantaviruses are among the most important zoonotic pathogens of humans, causing either hemorrhagic fever with renal syndrome (HFRS) or hantavirus pulmonary syndrome (HPS). From the period 1964-2006 almost all hantaviruses had been identified in rodents, with the exception of Thottapalayam virus (TPMV) isolated from shrews sampled in India. As a consequence, rodents were considered as the natural reservoir hosts. However, over the past seven years, most of the newly found hantavirus genotypes have been from either shrews or moles. Remarkably, in recent years divergent hantaviruses have also been identified in bats sampled from both Africa and Asia. All these data indicate that hantaviruses have a broad range of natural reservoir hosts. Phylogenetic analyses of the available sequences of hantaviruses suggest that hantaviruses might have first appeared in Chiroptera (bats) or Soricomorpha (moles and shrews), before emerging in rodent species. Although rodent hantaviruses cluster according to whether their hosts are members of the Murinae and Cricetidae, the phylogenetic histories of the viruses are not always congruent with those of their hosts, indicating that cross-species transmission events have occurred at all taxonomic levels. In sum, both cross-species transmission and co-divergence have produced the high genetic diversity of hantaviruses described to date. Copyright © 2014. Published by Elsevier B.V.

  8. Bat guano virome: predominance of dietary viruses from insects and plants plus novel mammalian viruses

    USGS Publications Warehouse

    Li, Linlin; Joseph, G. Victoria; Wang, Chunlin; Jones, Morris; Fellers, Gary M.; Kunz, Thomas H.; Delwart, Eric

    2010-01-01

    Bats are hosts to a variety of viruses capable of zoonotic transmissions. Because of increased contact between bats, humans, and other animal species, the possibility exists for further cross-species transmissions and ensuing disease outbreaks. We describe here full and partial viral genomes identified using metagenomics in the guano of bats from California and Texas. A total of 34% and 58% of 390,000 sequence reads from bat guano in California and Texas, respectively, were related to eukaryotic viruses, and the largest proportion of those infect insects, reflecting the diet of these insectivorous bats, including members of the viral families Dicistroviridae, Iflaviridae, Tetraviridae, and Nodaviridae and the subfamily Densovirinae. The second largest proportion of virus-related sequences infects plants and fungi, likely reflecting the diet of ingested insects, including members of the viral families Luteoviridae, Secoviridae, Tymoviridae, and Partitiviridae and the genus Sobemovirus. Bat guano viruses related to those infecting mammals comprised the third largest group, including members of the viral families Parvoviridae, Circoviridae, Picornaviridae, Adenoviridae, Poxviridae, Astroviridae, and Coronaviridae. No close relative of known human viral pathogens was identified in these bat populations. Phylogenetic analysis was used to clarify the relationship to known viral taxa of novel sequences detected in bat guano samples, showing that some guano viral sequences fall outside existing taxonomic groups. This initial characterization of the bat guano virome, the first metagenomic analysis of viruses in wild mammals using second-generation sequencing, therefore showed the presence of previously unidentified viral species, genera, and possibly families. Viral metagenomics is a useful tool for genetically characterizing viruses present in animals with the known capability of direct or indirect viral zoonosis to humans.

  9. Bat Guano Virome: Predominance of Dietary Viruses from Insects and Plants plus Novel Mammalian Viruses▿

    PubMed Central

    Li, Linlin; Victoria, Joseph G.; Wang, Chunlin; Jones, Morris; Fellers, Gary M.; Kunz, Thomas H.; Delwart, Eric

    2010-01-01

    Bats are hosts to a variety of viruses capable of zoonotic transmissions. Because of increased contact between bats, humans, and other animal species, the possibility exists for further cross-species transmissions and ensuing disease outbreaks. We describe here full and partial viral genomes identified using metagenomics in the guano of bats from California and Texas. A total of 34% and 58% of 390,000 sequence reads from bat guano in California and Texas, respectively, were related to eukaryotic viruses, and the largest proportion of those infect insects, reflecting the diet of these insectivorous bats, including members of the viral families Dicistroviridae, Iflaviridae, Tetraviridae, and Nodaviridae and the subfamily Densovirinae. The second largest proportion of virus-related sequences infects plants and fungi, likely reflecting the diet of ingested insects, including members of the viral families Luteoviridae, Secoviridae, Tymoviridae, and Partitiviridae and the genus Sobemovirus. Bat guano viruses related to those infecting mammals comprised the third largest group, including members of the viral families Parvoviridae, Circoviridae, Picornaviridae, Adenoviridae, Poxviridae, Astroviridae, and Coronaviridae. No close relative of known human viral pathogens was identified in these bat populations. Phylogenetic analysis was used to clarify the relationship to known viral taxa of novel sequences detected in bat guano samples, showing that some guano viral sequences fall outside existing taxonomic groups. This initial characterization of the bat guano virome, the first metagenomic analysis of viruses in wild mammals using second-generation sequencing, therefore showed the presence of previously unidentified viral species, genera, and possibly families. Viral metagenomics is a useful tool for genetically characterizing viruses present in animals with the known capability of direct or indirect viral zoonosis to humans. PMID:20463061

  10. Bat guano virome: predominance of dietary viruses from insects and plants plus novel mammalian viruses.

    PubMed

    Li, Linlin; Victoria, Joseph G; Wang, Chunlin; Jones, Morris; Fellers, Gary M; Kunz, Thomas H; Delwart, Eric

    2010-07-01

    Bats are hosts to a variety of viruses capable of zoonotic transmissions. Because of increased contact between bats, humans, and other animal species, the possibility exists for further cross-species transmissions and ensuing disease outbreaks. We describe here full and partial viral genomes identified using metagenomics in the guano of bats from California and Texas. A total of 34% and 58% of 390,000 sequence reads from bat guano in California and Texas, respectively, were related to eukaryotic viruses, and the largest proportion of those infect insects, reflecting the diet of these insectivorous bats, including members of the viral families Dicistroviridae, Iflaviridae, Tetraviridae, and Nodaviridae and the subfamily Densovirinae. The second largest proportion of virus-related sequences infects plants and fungi, likely reflecting the diet of ingested insects, including members of the viral families Luteoviridae, Secoviridae, Tymoviridae, and Partitiviridae and the genus Sobemovirus. Bat guano viruses related to those infecting mammals comprised the third largest group, including members of the viral families Parvoviridae, Circoviridae, Picornaviridae, Adenoviridae, Poxviridae, Astroviridae, and Coronaviridae. No close relative of known human viral pathogens was identified in these bat populations. Phylogenetic analysis was used to clarify the relationship to known viral taxa of novel sequences detected in bat guano samples, showing that some guano viral sequences fall outside existing taxonomic groups. This initial characterization of the bat guano virome, the first metagenomic analysis of viruses in wild mammals using second-generation sequencing, therefore showed the presence of previously unidentified viral species, genera, and possibly families. Viral metagenomics is a useful tool for genetically characterizing viruses present in animals with the known capability of direct or indirect viral zoonosis to humans.

  11. Spatial variation of mercury bioaccumulation in bats of Canada linked to atmospheric mercury deposition.

    PubMed

    Chételat, John; Hickey, M Brian C; Poulain, Alexandre J; Dastoor, Ashu; Ryjkov, Andrei; McAlpine, Donald; Vanderwolf, Karen; Jung, Thomas S; Hale, Lesley; Cooke, Emma L L; Hobson, Dave; Jonasson, Kristin; Kaupas, Laura; McCarthy, Sara; McClelland, Christine; Morningstar, Derek; Norquay, Kaleigh J O; Novy, Richard; Player, Delanie; Redford, Tony; Simard, Anouk; Stamler, Samantha; Webber, Quinn M R; Yumvihoze, Emmanuel; Zanuttig, Michelle

    2018-06-01

    Wildlife are exposed to neurotoxic mercury at locations distant from anthropogenic emission sources because of long-range atmospheric transport of this metal. In this study, mercury bioaccumulation in insectivorous bat species (Mammalia: Chiroptera) was investigated on a broad geographic scale in Canada. Fur was analyzed (n=1178) for total mercury from 43 locations spanning 20° latitude and 77° longitude. Total mercury and methylmercury concentrations in fur were positively correlated with concentrations in internal tissues (brain, liver, kidney) for a small subset (n=21) of little brown bats (Myotis lucifugus) and big brown bats (Eptesicus fuscus), validating the use of fur to indicate internal mercury exposure. Brain methylmercury concentrations were approximately 10% of total mercury concentrations in fur. Three bat species were mainly collected (little brown bats, big brown bats, and northern long-eared bats [M. septentrionalis]), with little brown bats having lower total mercury concentrations in their fur than the other two species at sites where both species were sampled. On average, juvenile bats had lower total mercury concentrations than adults but no differences were found between males and females of a species. Combining our dataset with previously published data for eastern Canada, median total mercury concentrations in fur of little brown bats ranged from 0.88-12.78μg/g among 11 provinces and territories. Highest concentrations were found in eastern Canada where bats are most endangered from introduced disease. Model estimates of atmospheric mercury deposition indicated that eastern Canada was exposed to greater mercury deposition than central and western sites. Further, mean total mercury concentrations in fur of adult little brown bats were positively correlated with site-specific estimates of atmospheric mercury deposition. This study provides the largest geographic coverage of mercury measurements in bats to date and indicates that atmospheric

  12. Energetic benefits of enhanced summer roosting habitat for little brown bats (Myotis lucifugus) recovering from white-nose syndrome.

    PubMed

    Wilcox, Alana; Willis, Craig K R

    2016-01-01

    Habitat modification can improve outcomes for imperilled wildlife. Insectivorous bats in North America face a range of conservation threats, including habitat loss and white-nose syndrome (WNS). Even healthy bats face energetic constraints during spring, but enhancement of roosting habitat could reduce energetic costs, increase survival and enhance recovery from WNS. We tested the potential of artificial heating of bat roosts as a management tool for threatened bat populations. We predicted that: (i) after hibernation, captive bats would be more likely to select a roost maintained at a temperature near their thermoneutral zone; (ii) bats recovering from WNS at the end of hibernation would show a stronger preference for heated roosts compared with healthy bats; and (iii) heated roosts would result in biologically significant energy savings. We housed two groups of bats (WNS-positive and control) in separate flight cages following hibernation. Over 7.5 weeks, we quantified the presence of individuals in heated vs. unheated bat houses within each cage. We then used a series of bioenergetic models to quantify thermoregulatory costs in each type of roost under a number of scenarios. Bats preferentially selected heated bat houses, but WNS-affected bats were much more likely to use the heated bat house compared with control animals. Our model predicted energy savings of up to 81.2% for bats in artificially heated roosts if roost temperature was allowed to cool at night to facilitate short bouts of torpor. Our results are consistent with research highlighting the importance of roost microclimate and suggest that protection and enhancement of high-quality, natural roosting environments should be a priority response to a range of threats, including WNS. Our findings also suggest the potential of artificially heated bat houses to help populations recover from WNS, but more work is needed before these might be implemented on a large scale.

  13. Torpor and activity in a free-ranging tropical bat: implications for the distribution and conservation of mammals?

    NASA Astrophysics Data System (ADS)

    Geiser, Fritz; Stawski, Clare; Bondarenco, Artiom; Pavey, Chris R.

    2011-05-01

    Bats are most diverse in the tropics, but there are no quantitative data on torpor use for energy conservation by any tropical bat in the wild. We examined the thermal biology, activity patterns and torpor use of two tree-roosting long-eared bats ( Nyctophilus geoffroyi, 7.8 g) in tropical northern Australia in winter using temperature telemetry. Bats commenced activity about 20 min after sunset, ended activity about 2.5 h before sunrise and entered torpor everyday in the early morning even when minimum ambient temperatures ( T a) were as high as 23°C. On average, bats remained torpid for almost 5 h, mean minimum skin temperature ( T skin) measured was 22.8 ± 0.1°C and daily T skin minima were correlated with T a. Our study shows that even in the tropics, torpor is frequently employed by bats, suggesting that worldwide most bat species are heterothermic and use torpor for energy conservation. We propose that the ability of employing torpor and the resulting highly plastic energy requirements may partially explain why these small insectivorous bats can inhabit almost the entire Australian continent despite vastly different climatic and likely trophic conditions. Reduced energy requirements also may permit survival in degraded or modified habitats, reduce the need for foraging and reduce exposure to predators. Thus, the ability to employ torpor may be one important reason for why most Australian bats and other heterothermic mammals have not gone extinct whereas many obligatory homeothermic mammals that cannot employ torpor and have high energy and foraging requirements have suffered high rates of extinctions.

  14. Insectivorous birds eavesdrop on the pheromones of their prey.

    PubMed

    Saavedra, Irene; Amo, Luisa

    2018-01-01

    Chemical cues play a fundamental role in mate attraction and mate choice. Lepidopteran females, such as the winter moth (Operophtera brumata), emit pheromones to attract males in the reproductive period. However, these chemical cues could also be eavesdropped by predators. To our knowledge, no studies have examined whether birds can detect pheromones of their prey. O. brumata adults are part of the winter diet of some insectivorous tit species, such as the great tit (Parus major) and blue tit (Cyanistes caeruleus). We performed a field experiment aimed to disentangle whether insectivorous birds can exploit the pheromones emitted by their prey for prey location. We placed artificial larvae and a dispenser on branches of Pyrenean oak trees (Quercus pyrenaica). In half of the trees we placed an O. brumata pheromone dispenser and in the other half we placed a control dispenser. We measured the predation rate of birds on artificial larvae. Our results show that more trees had larvae with signs of avian predation when they contained an O. brumata pheromone than when they contained a control dispenser. Furthermore, the proportion of artificial larvae with signs of avian predation was greater in trees that contained the pheromone than in control trees. Our results indicate that insectivorous birds can exploit the pheromones emitted by moth females to attract males, as a method of prey detection. These results highlight the potential use of insectivorous birds in the biological control of insect pests.

  15. Foraging range movements of the endangered Hawaiian hoary bat, Lasiurus cinereus semotus (Chiroptera: Vespertilionidae)

    USGS Publications Warehouse

    Bonaccorso, Frank J.; Todd, Christopher M.; Miles, Adam C.; Gorresen, P. Marcos

    2015-01-01

    We documented nightly movements of Hawaiian hoary bats (Lasiurus cinereus semotus) on the island of Hawai’i. Based on data from 28 radiotagged individuals mean foraging range (FR) was 230.7±72.3 ha, core-use area (CUA) was 25.5±6.9 ha (or 11.1% of mean FR), and the mean long axis (LAX) across the FR was 3,390.8±754.3 m. There was almost no overlap in CUAs among 4 adult males having overlapping foraging areas and tracked simultaneously or within a 90-day window of each other. CUAs of subadults partially overlapped with multiple adult males or with one other subadult. High variance in FRs, cores use areas, and LAX across the FR perhaps reflect localized stochastic variables such as weather, habitat, and food resources. Hawaiian hoary bats use moderately large FRs among insectivorous bats studied with comparable methodologies; however, foraging activity indicated by documentation of acoustic feeding buzzes is concentrated within one or a few disjunct areas cumulatively forming the 50% fixed kernel of CUA. The concentration of feeding activity, low values of individual overlap, and agonistic chasing behavior within CUAs all demonstrate a structured use of individual space by Hawaiian hoary bats.

  16. Fast sensory–motor reactions in echolocating bats to sudden changes during the final buzz and prey intercept

    PubMed Central

    Geberl, Cornelia; Brinkløv, Signe; Wiegrebe, Lutz; Surlykke, Annemarie

    2015-01-01

    Echolocation is an active sense enabling bats and toothed whales to orient in darkness through echo returns from their ultrasonic signals. Immediately before prey capture, both bats and whales emit a buzz with such high emission rates (≥180 Hz) and overall duration so short that its functional significance remains an enigma. To investigate sensory–motor control during the buzz of the insectivorous bat Myotis daubentonii, we removed prey, suspended in air or on water, before expected capture. The bats responded by shortening their echolocation buzz gradually; the earlier prey was removed down to approximately 100 ms (30 cm) before expected capture, after which the full buzz sequence was emitted both in air and over water. Bats trawling over water also performed the full capture behavior, but in-air capture motions were aborted, even at very late prey removals (<20 ms = 6 cm before expected contact). Thus, neither the buzz nor capture movements are stereotypical, but dynamically adapted based on sensory feedback. The results indicate that echolocation is controlled mainly by acoustic feedback, whereas capture movements are adjusted according to both acoustic and somatosensory feedback, suggesting separate (but coordinated) central motor control of the two behaviors based on multimodal input. Bat echolocation, especially the terminal buzz, provides a unique window to extremely fast decision processes in response to sensory feedback and modulation through attention in a naturally behaving animal. PMID:25775538

  17. Neorickettsia risticii, Rickettsia sp. and Bartonella sp. in Tadarida brasiliensis bats from Buenos Aires, Argentina.

    PubMed

    Cicuttin, Gabriel L; De Salvo, María N; La Rosa, Isabel; Dohmen, Federico E Gury

    2017-06-01

    Bats are potential reservoirs of many vector-borne bacterial pathogens. The aim of the present study was to detect species of Anaplasma, Ehrlichia, Neorickettsia, Rickettsia, Borrelia and Bartonella in Brazilian free-tailed bats (Tadarida brasiliensis, Molossidae) from Buenos Aires city, Argentina. Between 2012 and 2013, 61 T. brasiliensis from urban areas of Buenos Aires city were studied. The samples were molecularly screened by PCR and sequencing. Five bats (8.2%) were positive to Neorickettsia risticii, one (1.6%) was positive to Rickettsia sp. and three bats (4.9%) to Bartonella sp. For molecular characterization, the positive samples were subjected to amplification and sequencing of a fragment of p51 gene for N. risticii, a fragment of citrate synthase gene (gltA) for Rickettsia genus and a fragment of gltA for Bartonella genus. Phylogenetic tree was constructed using the maximum-likelihood method. Phylogenetic analysis of N. risticii detect in our study revealed that it relates to findings in the USA West Coast; Rickettsia sp. detected is phylogenetically within R. bellii group, which also includes many other Rickettsia endosymbionts of insects; and Bartonella sp. found is related to various Bartonella spp. described in Vespertilionidae bats, which are phylogenetically related to Molossidae. Our results are in accordance to previous findings, which demonstrate that insectivorous bats could be infected with vector-borne bacteria representing a potential risk to public health. Future research is necessary to clarify the circulation of these pathogens in bats from Buenos Aires. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A metagenomic viral discovery approach identifies potential zoonotic and novel mammalian viruses in Neoromicia bats within South Africa.

    PubMed

    Geldenhuys, Marike; Mortlock, Marinda; Weyer, Jacqueline; Bezuidt, Oliver; Seamark, Ernest C J; Kearney, Teresa; Gleasner, Cheryl; Erkkila, Tracy H; Cui, Helen; Markotter, Wanda

    2018-01-01

    Species within the Neoromicia bat genus are abundant and widely distributed in Africa. It is common for these insectivorous bats to roost in anthropogenic structures in urban regions. Additionally, Neoromicia capensis have previously been identified as potential hosts for Middle East respiratory syndrome (MERS)-related coronaviruses. This study aimed to ascertain the gastrointestinal virome of these bats, as viruses excreted in fecal material or which may be replicating in rectal or intestinal tissues have the greatest opportunities of coming into contact with other hosts. Samples were collected in five regions of South Africa over eight years. Initial virome composition was determined by viral metagenomic sequencing by pooling samples and enriching for viral particles. Libraries were sequenced on the Illumina MiSeq and NextSeq500 platforms, producing a combined 37 million reads. Bioinformatics analysis of the high throughput sequencing data detected the full genome of a novel species of the Circoviridae family, and also identified sequence data from the Adenoviridae, Coronaviridae, Herpesviridae, Parvoviridae, Papillomaviridae, Phenuiviridae, and Picornaviridae families. Metagenomic sequencing data was insufficient to determine the viral diversity of certain families due to the fragmented coverage of genomes and lack of suitable sequencing depth, as some viruses were detected from the analysis of reads-data only. Follow up conventional PCR assays targeting conserved gene regions for the Adenoviridae, Coronaviridae, and Herpesviridae families were used to confirm metagenomic data and generate additional sequences to determine genetic diversity. The complete coding genome of a MERS-related coronavirus was recovered with additional amplicon sequencing on the MiSeq platform. The new genome shared 97.2% overall nucleotide identity to a previous Neoromicia-associated MERS-related virus, also from South Africa. Conventional PCR analysis detected diverse adenovirus and

  19. Pliocene bats (Chiroptera) from Kanapoi, Turkana Basin, Kenya.

    PubMed

    Gunnell, Gregg F; Manthi, Fredrick K

    2018-04-05

    Fossil bats from the Pliocene of Africa are extremely rare, especially in East Africa where meager records have been reported only from two localities in the Omo River Basin Shungura Formation and from a scattering of localities in the Afar Depression, both in Ethiopia. Here we report on a diverse assemblage of bats from Kanapoi in the Turkana Basin that date to approximately 4.19 million years ago. The Kanapoi bat community consists of four different species of fruit bats including a new genus and two new species as well as five species of echolocating bats, the most common of which are two new species of the molossid genus Mops. Additionally, among the echolocating bats, a new species of the emballonurid Saccolaimus is documented at Kanapoi along with an additional Saccolaimus species and a potentially new species of the nycterid Nycteris. Compared to other East African Pliocene bat assemblages, the Kanapoi bat community is unique in preserving molossids and curiously lacks any evidence of cave dwelling bats like rhinolophids or hipposiderids, which are both common at other East African sites. The bats making up the Kanapoi community all typically roost in trees, with some preferring deeper forests and larger trees (molossids), while the others (pteropodids, nycterids and emballonurids) roost in trees near open areas. Living fruit bats that are related to Kanapoi species typically forage for fruits along the margins of forests and in open savannah. The echolocating forms from Kanapoi consist of groups that aerially hawk for insects in open areas between patches of forest and along water courses. The habitats preferred by living relatives of the Kanapoi bats are in agreement with those constructed for Kanapoi based on other lines of evidence. Copyright © 2018. Published by Elsevier Ltd.

  20. Effect of emergent aquatic insects on bat foraging in a riparian forest.

    PubMed

    Fukui, Dai; Murakami, Masashi; Nakano, Shigeru; Aoi, Toshiki

    2006-11-01

    1. Riparian zones serve several ecological functions for bats. They provide a source of prey and likely provide favourable structural habitats and shelter from predators. Many studies have shown that bats use the space above streams, ponds or riparian vegetation as feeding habitat. These studies, however, have never distinguished between the effects of habitat structure and prey availability on the foraging activities of bats. Such effects can only be distinguished by an experimental approach. We predicted that bat activity along a stream is influenced by the number of emerged aquatic insects. 2. We evaluated the response of terrestrial consumers, insectivorous bats, to changes in the abundance of emergent aquatic insects by conducting a manipulative field experiment. In a deciduous riparian forest in Japan, aquatic insect flux from the stream to the riparian zone was controlled with an insect-proof cover over a 1.2 km stream reach. 3. We estimated the abundance of emergent aquatic and flying terrestrial arthropods near the treatment and control reaches using Malaise traps. The foraging activity of bats was evaluated in both treatment and control reaches using ultrasonic detectors. 4. The insect-proof cover effectively reduced the flux of emergent aquatic insects to the riparian zone adjacent to the treatment reach. Adjacent to the control reach, adult aquatic insect biomass was highest in spring, and then decreased gradually. Terrestrial insect biomass increased gradually during the summer at both treatment and control reaches. 5. Foraging activity of bats was correlated with insect abundance. In spring, foraging activity of bats at the control reach was significantly greater than at the treatment reach, and increased at both sites with increasing terrestrial insect abundance. 6. Our result suggests that the flux of aquatic insects emerging from streams is one of the most important factors affecting the distribution of riparian-foraging bats. As is the case with

  1. Sonar sound groups and increased terminal buzz duration reflect task complexity in hunting bats.

    PubMed

    Hulgard, Katrine; Ratcliffe, John M

    2016-02-09

    More difficult tasks are generally regarded as such because they demand greater attention. Echolocators provide rare insight into this relationship because biosonar signals can be monitored. Here we show that bats produce longer terminal buzzes and more sonar sound groups during their approach to prey under presumably more difficult conditions. Specifically, we found Daubenton's bats, Myotis daubentonii, produced longer buzzes when aerial-hawking versus water-trawling prey, but that bats taking revolving air- and water-borne prey produced more sonar sound groups than did the bats when taking stationary prey. Buzz duration and sonar sound groups have been suggested to be independent means by which bats attend to would-be targets and other objects of interest. We suggest that for attacking bats both should be considered as indicators of task difficulty and that the buzz is, essentially, an extended sonar sound group.

  2. The simple ears of noctuoid moths are tuned to the calls of their sympatric bat community.

    PubMed

    ter Hofstede, Hannah M; Goerlitz, Holger R; Ratcliffe, John M; Holderied, Marc W; Surlykke, Annemarie

    2013-11-01

    Insects with bat-detecting ears are ideal animals for investigating sensory system adaptations to predator cues. Noctuid moths have two auditory receptors (A1 and A2) sensitive to the ultrasonic echolocation calls of insectivorous bats. Larger moths are detected at greater distances by bats than smaller moths. Larger moths also have lower A1 best thresholds, allowing them to detect bats at greater distances and possibly compensating for their increased conspicuousness. Interestingly, the sound frequency at the lowest threshold is lower in larger than in smaller moths, suggesting that the relationship between threshold and size might vary across frequencies used by different bat species. Here, we demonstrate that the relationships between threshold and size in moths were only significant at some frequencies, and these frequencies differed between three locations (UK, Canada and Denmark). The relationships were more likely to be significant at call frequencies used by proportionately more bat species in the moths' specific bat community, suggesting an association between the tuning of moth ears and the cues provided by sympatric predators. Additionally, we found that the best threshold and best frequency of the less sensitive A2 receptor are also related to size, and that these relationships hold when controlling for evolutionary relationships. The slopes of best threshold versus size differ, however, such that the difference in threshold between A1 and A2 is greater for larger than for smaller moths. The shorter time from A1 to A2 excitation in smaller than in larger moths could potentially compensate for shorter absolute detection distances in smaller moths.

  3. Intestinal Water Absorption Varies with Expected Dietary Water Load among Bats but Does Not Drive Paracellular Nutrient Absorption.

    PubMed

    Price, Edwin R; Brun, Antonio; Gontero-Fourcade, Manuel; Fernández-Marinone, Guido; Cruz-Neto, Ariovaldo P; Karasov, William H; Caviedes-Vidal, Enrique

    2015-01-01

    Rapid absorption and elimination of dietary water should be particularly important to flying species and were predicted to vary with the water content of the natural diet. Additionally, high water absorption capacity was predicted to be associated with high paracellular nutrient absorption due to solvent drag. We compared the water absorption rates of sanguivorous, nectarivorous, frugivorous, and insectivorous bats in intestinal luminal perfusions. High water absorption rates were associated with high expected dietary water load but were not highly correlated with previously measured rates of (paracellular) arabinose clearance. In conjunction with these tests, we measured water absorption and the paracellular absorption of nutrients in the intestine and stomach of vampire bats using luminal perfusions to test the hypothesis that the unique elongated vampire stomach is a critical site of water absorption. Vampire bats' gastric water absorption was high compared to mice but not compared to their intestines. We therefore conclude that (1) dietary water content has influenced the evolution of intestinal water absorption capacity in bats, (2) solvent drag is not the only driver of paracellular nutrient absorption, and (3) the vampire stomach is a capable but not critical location for water absorption.

  4. Discovery of African bat polyomaviruses and infrequent recombination in the large T antigen in the Polyomaviridae.

    PubMed

    Carr, Michael; Gonzalez, Gabriel; Sasaki, Michihito; Ito, Kimihito; Ishii, Akihiro; Hang'ombe, Bernard M; Mweene, Aaron S; Orba, Yasuko; Sawa, Hirofumi

    2017-04-01

    Bat species represent natural reservoirs for a number of high-consequence human pathogens. The present study investigated the diversity of polyomaviruses (PyVs) in Zambian insectivorous and fruit bat species. We describe the complete genomes from four newly proposed African bat PyV species employing the recently recommended criteria provided by the Polyomaviridae Study Group of the International Committee on Taxonomy of Viruses. A comprehensive phylogenetic and recombination analysis was performed to determine genetic relationships and the distribution of recombination events in PyV from mammalian and avian species. The novel species of PyV from Zambian bats segregated with members of the genera Alphapolyomavirus and Betapolyomavirus, forming monophyletic clades with bat and non-human primate PyVs. Miniopterus schreibersii polyomavirus 1 and 2 segregated in a clade with South American bat PyV species, Old World monkey and chimpanzee PyVs and Human polyomavirus 13 (New Jersey PyV). Interestingly, the newly described Egyptian fruit bat PyV, tentatively named Rousettus aegyptiacus polyomavirus 1, had the highest nucleotide sequence identity to species of PyV from Indonesian fruit bats, and Rhinolophus hildebrandtii polyomavirus 1 was most closely related to New World monkey PyVs. The distribution of recombination events in PyV genomes was non-random: recombination boundaries existed in the intergene region between VP1 and LTAg and also at the 3' end of VP2/3 in the structural genes, whereas infrequent recombination was present within the LTAg gene. These findings indicate that recombination within the LTAg gene has been negatively selected against during polyomaviral evolution and support the recent proposal for taxonomic classification based on LTAg to define novel PyV species.

  5. Emerging tropical diseases in Australia. Part 3. Australian bat lyssavirus.

    PubMed

    Moore, P R; Jansen, C C; Graham, G C; Smith, I L; Craig, S B

    2010-12-01

    Since its discovery in a juvenile black flying fox (Pteropus alecto) in 1996, Australian bat lyssavirus (ABLV) has become the cause of a potentially important emerging disease for health authorities in Australia, with two human deaths (one in 1996 and one in 1998) attributed to the virus in the north-eastern state of Queensland. In Australia, the virus has been isolated from all four species of flying fox found on the mainland (i.e. P. alecto, P. scapulatus, P. poliocephalus and P. conspicillatus) as well as a single species of insectivorous bat (Saccolaimus flaviventris). Australian bat lyssavirus belongs to the Lyssavirus genus and is closely related, genetically, to the type strain of Rabies virus (RABV). Clinically, patients infected with ABLV have displayed the 'classical' symptoms of rabies and a similar disease course. This similarity has led to the belief that the infection and dissemination of ABLV in the body follows the same pathways as those followed by RABV. Following the two ABLV-related deaths in Queensland, protocols based on the World Health Organization's guidelines for RABV prophylaxis were implemented and, presumably in consequence, no human infection with ABLV has been recorded since 1998. ABLV will, however, probably always have an important part to play in the health of Australians as the density of the human population in Australia and, consequently, the level of interaction between humans and flying foxes increase.

  6. Characterizing Pneumocystis in the Lungs of Bats: Understanding Pneumocystis Evolution and the Spread of Pneumocystis Organisms in Mammal Populations

    PubMed Central

    Akbar, Haroon; Pinçon, Claire; Aliouat-Denis, Cecile-Marie; Derouiche, Sandra; Taylor, Maria-Lucia; Pottier, Muriel; Carreto-Binaghi, Laura-Helena; González-González, Antonio E.; Courpon, Aurore; Barriel, Véronique; Guillot, Jacques; Chabé, Magali; Suarez-Alvarez, Roberto O.; Aliouat, El Moukhtar; Dei-Cas, Eduardo

    2012-01-01

    Bats belong to a wide variety of species and occupy diversified habitats, from cities to the countryside. Their different diets (i.e., nectarivore, frugivore, insectivore, hematophage) lead Chiroptera to colonize a range of ecological niches. These flying mammals exert an undisputable impact on both ecosystems and circulation of pathogens that they harbor. Pneumocystis species are recognized as major opportunistic fungal pathogens which cause life-threatening pneumonia in severely immunocompromised or weakened mammals. Pneumocystis consists of a heterogeneous group of highly adapted host-specific fungal parasites that colonize a wide range of mammalian hosts. In the present study, 216 lungs of 19 bat species, sampled from diverse biotopes in the New and Old Worlds, were examined. Each bat species may be harboring a specific Pneumocystis species. We report 32.9% of Pneumocystis carriage in wild bats (41.9% in Microchiroptera). Ecological and behavioral factors (elevation, crowding, migration) seemed to influence the Pneumocystis carriage. This study suggests that Pneumocystis-host association may yield much information on Pneumocystis transmission, phylogeny, and biology in mammals. Moreover, the link between genetic variability of Pneumocystis isolated from populations of the same bat species and their geographic area could be exploited in terms of phylogeography. PMID:23001662

  7. Parallel and convergent evolution of the dim-light vision gene RH1 in bats (Order: Chiroptera).

    PubMed

    Shen, Yong-Yi; Liu, Jie; Irwin, David M; Zhang, Ya-Ping

    2010-01-21

    Rhodopsin, encoded by the gene Rhodopsin (RH1), is extremely sensitive to light, and is responsible for dim-light vision. Bats are nocturnal mammals that inhabit poor light environments. Megabats (Old-World fruit bats) generally have well-developed eyes, while microbats (insectivorous bats) have developed echolocation and in general their eyes were degraded, however, dramatic differences in the eyes, and their reliance on vision, exist in this group. In this study, we examined the rod opsin gene (RH1), and compared its evolution to that of two cone opsin genes (SWS1 and M/LWS). While phylogenetic reconstruction with the cone opsin genes SWS1 and M/LWS generated a species tree in accord with expectations, the RH1 gene tree united Pteropodidae (Old-World fruit bats) and Yangochiroptera, with very high bootstrap values, suggesting the possibility of convergent evolution. The hypothesis of convergent evolution was further supported when nonsynonymous sites or amino acid sequences were used to construct phylogenies. Reconstructed RH1 sequences at internal nodes of the bat species phylogeny showed that: (1) Old-World fruit bats share an amino acid change (S270G) with the tomb bat; (2) Miniopterus share two amino acid changes (V104I, M183L) with Rhinolophoidea; (3) the amino acid replacement I123V occurred independently on four branches, and the replacements L99M, L266V and I286V occurred each on two branches. The multiple parallel amino acid replacements that occurred in the evolution of bat RH1 suggest the possibility of multiple convergences of their ecological specialization (i.e., various photic environments) during adaptation for the nocturnal lifestyle, and suggest that further attention is needed on the study of the ecology and behavior of bats.

  8. Parallel and Convergent Evolution of the Dim-Light Vision Gene RH1 in Bats (Order: Chiroptera)

    PubMed Central

    Shen, Yong-Yi; Liu, Jie; Irwin, David M.; Zhang, Ya-Ping

    2010-01-01

    Rhodopsin, encoded by the gene Rhodopsin (RH1), is extremely sensitive to light, and is responsible for dim-light vision. Bats are nocturnal mammals that inhabit poor light environments. Megabats (Old-World fruit bats) generally have well-developed eyes, while microbats (insectivorous bats) have developed echolocation and in general their eyes were degraded, however, dramatic differences in the eyes, and their reliance on vision, exist in this group. In this study, we examined the rod opsin gene (RH1), and compared its evolution to that of two cone opsin genes (SWS1 and M/LWS). While phylogenetic reconstruction with the cone opsin genes SWS1 and M/LWS generated a species tree in accord with expectations, the RH1 gene tree united Pteropodidae (Old-World fruit bats) and Yangochiroptera, with very high bootstrap values, suggesting the possibility of convergent evolution. The hypothesis of convergent evolution was further supported when nonsynonymous sites or amino acid sequences were used to construct phylogenies. Reconstructed RH1 sequences at internal nodes of the bat species phylogeny showed that: (1) Old-World fruit bats share an amino acid change (S270G) with the tomb bat; (2) Miniopterus share two amino acid changes (V104I, M183L) with Rhinolophoidea; (3) the amino acid replacement I123V occurred independently on four branches, and the replacements L99M, L266V and I286V occurred each on two branches. The multiple parallel amino acid replacements that occurred in the evolution of bat RH1 suggest the possibility of multiple convergences of their ecological specialization (i.e., various photic environments) during adaptation for the nocturnal lifestyle, and suggest that further attention is needed on the study of the ecology and behavior of bats. PMID:20098620

  9. Echolocating bats use a nearly time-optimal strategy to intercept prey.

    PubMed

    Ghose, Kaushik; Horiuchi, Timothy K; Krishnaprasad, P S; Moss, Cynthia F

    2006-05-01

    Acquisition of food in many animal species depends on the pursuit and capture of moving prey. Among modern humans, the pursuit and interception of moving targets plays a central role in a variety of sports, such as tennis, football, Frisbee, and baseball. Studies of target pursuit in animals, ranging from dragonflies to fish and dogs to humans, have suggested that they all use a constant bearing (CB) strategy to pursue prey or other moving targets. CB is best known as the interception strategy employed by baseball outfielders to catch ballistic fly balls. CB is a time-optimal solution to catch targets moving along a straight line, or in a predictable fashion--such as a ballistic baseball, or a piece of food sinking in water. Many animals, however, have to capture prey that may make evasive and unpredictable maneuvers. Is CB an optimum solution to pursuing erratically moving targets? Do animals faced with such erratic prey also use CB? In this paper, we address these questions by studying prey capture in an insectivorous echolocating bat. Echolocating bats rely on sonar to pursue and capture flying insects. The bat's prey may emerge from foliage for a brief time, fly in erratic three-dimensional paths before returning to cover. Bats typically take less than one second to detect, localize and capture such insects. We used high speed stereo infra-red videography to study the three dimensional flight paths of the big brown bat, Eptesicus fuscus, as it chased erratically moving insects in a dark laboratory flight room. We quantified the bat's complex pursuit trajectories using a simple delay differential equation. Our analysis of the pursuit trajectories suggests that bats use a constant absolute target direction strategy during pursuit. We show mathematically that, unlike CB, this approach minimizes the time it takes for a pursuer to intercept an unpredictably moving target. Interestingly, the bat's behavior is similar to the interception strategy implemented in some

  10. Relating streamflow characteristics to specialized insectivores in the Tennessee River Valley: a regional approach

    USGS Publications Warehouse

    Knight, Rodney R.; Gregory, M. Brian; Wales, Amy K.

    2008-01-01

    Analysis of hydrologic time series and fish community data across the Tennessee River Valley identified three hydrologic metrics essential to habitat suitability and food availability for insectivorous fish communities in streams of the Tennessee River Valley: constancy (flow stability or temporal invariance), frequency of moderate flooding (frequency of habitat disturbance), and rate of streamflow recession. Initial datasets included 1100 fish community sites and 300 streamgages. Reduction of these datasets to sites with coexisting data yielded 33 sites with streamflow and fish community data for analysis. Identification of critical hydrologic metrics was completed using a multivariate correlation procedure that maximizes the rank correlation between the hydrologic metrics and fish community resemblance matrices. Quantile regression was used to define thresholds of potential ranges of insectivore scores for given values of the hydrologic metrics. Increased values of constancy and insectivore scores were positively correlated. Constancy of streamflow maintains wetted perimeter, which is important for providing habitat for fish spawning and increased surface area for invertebrate colonization and reproduction. Site scores for insectivorous fish increased as the frequency of moderate flooding (3 times the median annual streamflow) decreased, suggesting that insectivorous fish communities respond positively to less frequent disturbance and a more stable habitat. Increased streamflow recession rates were associated with decreased insectivore scores. Increased streamflow recession can strand fish in pools and other areas that are disconnected from flowing water and remove invertebrates as food sources that were suspended during high-streamflow events.

  11. A Preliminary Study of Viral Metagenomics of French Bat Species in Contact with Humans: Identification of New Mammalian Viruses

    PubMed Central

    Dacheux, Laurent; Cervantes-Gonzalez, Minerva; Guigon, Ghislaine; Thiberge, Jean-Michel; Vandenbogaert, Mathias; Maufrais, Corinne

    2014-01-01

    The prediction of viral zoonosis epidemics has become a major public health issue. A profound understanding of the viral population in key animal species acting as reservoirs represents an important step towards this goal. Bats harbor diverse viruses, some of which are of particular interest because they cause severe human diseases. However, little is known about the diversity of the global population of viruses found in bats (virome). We determined the viral diversity of five different French insectivorous bat species (nine specimens in total) in close contact with humans. Sequence-independent amplification, high-throughput sequencing with Illumina technology and a dedicated bioinformatics analysis pipeline were used on pooled tissues (brain, liver and lungs). Comparisons of the sequences of contigs and unassembled reads provided a global taxonomic distribution of virus-related sequences for each sample, highlighting differences both within and between bat species. Many viral families were present in these viromes, including viruses known to infect bacteria, plants/fungi, insects or vertebrates, the most relevant being those infecting mammals (Retroviridae, Herpesviridae, Bunyaviridae, Poxviridae, Flaviviridae, Reoviridae, Bornaviridae, Picobirnaviridae). In particular, we detected several new mammalian viruses, including rotaviruses, gammaretroviruses, bornaviruses and bunyaviruses with the identification of the first bat nairovirus. These observations demonstrate that bats naturally harbor viruses from many different families, most of which infect mammals. They may therefore constitute a major reservoir of viral diversity that should be analyzed carefully, to determine the role played by bats in the spread of zoonotic viral infections. PMID:24489870

  12. Light-emitting diode street lights reduce last-ditch evasive manoeuvres by moths to bat echolocation calls

    PubMed Central

    Wakefield, Andrew; Stone, Emma L.; Jones, Gareth; Harris, Stephen

    2015-01-01

    The light-emitting diode (LED) street light market is expanding globally, and it is important to understand how LED lights affect wildlife populations. We compared evasive flight responses of moths to bat echolocation calls experimentally under LED-lit and -unlit conditions. Significantly, fewer moths performed ‘powerdive’ flight manoeuvres in response to bat calls (feeding buzz sequences from Nyctalus spp.) under an LED street light than in the dark. LED street lights reduce the anti-predator behaviour of moths, shifting the balance in favour of their predators, aerial hawking bats. PMID:26361558

  13. Historical and Present Day Mercury Contamination From Gold Mining in Three Feeding Guilds of Bats From the Peruvian Amazon

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Divoll, T.

    2014-12-01

    Miners in many countries use mercury as an amalgam to separate gold from river sediments. In the last twenty years the price of gold has risen and the number of small-scale, artisanal gold mining operations in the Amazon basin have also increased. The influx of mercury into natural river systems has detrimental consequences for the surrounding ecosystem and for organisms, particularly those at higher trophic levels. Toxic mercury levels have been shown to impair reproductive, neurological and behavioral functioning of organisms. I used bats (Chiroptera) as a mammalian model system to study mercury contamination and accumulation due to gold mining from field caught and museum collection specimens in Amazonian Perú and showed that: (1) Total mercury concentrations in Amazonian bat species have increased over time since the 1920's; (2) Bat species from sites with current active mining have higher concentrations of mercury than non-mining sites, with some species having levels exceeding those considered toxic for mammals; (3) Higher trophic levels of bats (piscivores and insectivores) bioaccumulate more mercury than bats of lower trophic levels (frugivores); (4) Bats located in present day uncontaminated sites have the same mercury levels as bats collected in the 1920's from the Amazon basin. The variety of bat feeding guilds allowed for a comparison of how mercury accumulation is affected by diet within one taxonomic order. The novel use of museum specimens allowed for a look back into the historical timeline of mercury contamination in the Amazon basin. Bats represent a new and exciting study system since, like humans, they are mammals and should therefore show similar neurochemical and behavioral responses to this toxic element.

  14. Studies of Reservoir Hosts for Marburg Virus

    PubMed Central

    Smit, Sheilagh B.; Rollin, Pierre E.; Formenty, Pierre; Leman, Patricia A.; Kemp, Alan; Burt, Felicity J.; Grobbelaar, Antoinette A.; Croft, Janice; Bausch, Daniel G.; Zeller, Hervé; Leirs, Herwig; Braack, L.E.O.; Libande, Modeste L.; Zaki, Sherif; Nichol, Stuart T.; Ksiazek, Thomas G.; Paweska, Janusz T.

    2007-01-01

    To determine reservoir hosts for Marburg virus (MARV), we examined the fauna of a mine in northeastern Democratic Republic of the Congo. The mine was associated with a protracted outbreak of Marburg hemorrhagic fever during 1998–2000. We found MARV nucleic acid in 12 bats, comprising 3.0%–3.6% of 2 species of insectivorous bat and 1 species of fruit bat. We found antibody to the virus in the serum of 9.7% of 1 of the insectivorous species and in 20.5% of the fruit bat species, but attempts to isolate virus were unsuccessful. PMID:18258034

  15. Influence of landscape structure and human modifications on insect biomass and bat foraging activity in an urban landscape.

    PubMed

    Threlfall, Caragh G; Law, Bradley; Banks, Peter B

    2012-01-01

    Urban landscapes are often located in biologically diverse, productive regions. As such, urbanization may have dramatic consequences for this diversity, largely due to changes in the structure and function of urban communities. We examined the influence of landscape productivity (indexed by geology), housing density and vegetation clearing on the spatial distribution of nocturnal insect biomass and the foraging activity of insectivorous bats in the urban landscape of Sydney, Australia. Nocturnal insect biomass (g) and bat foraging activity were sampled from 113 sites representing backyard, open space, bushland and riparian landscape elements, across urban, suburban and vegetated landscapes within 60 km of Sydney's Central Business District. We found that insect biomass was at least an order of magnitude greater within suburban landscapes in bushland and backyard elements located on the most fertile shale influenced geologies (both p<0.001) compared to nutrient poor sandstone landscapes. Similarly, the feeding activity of bats was greatest in bushland, and riparian elements within suburbs on fertile geologies (p = 0.039). Regression tree analysis indicated that the same three variables explained the major proportion of the variation in insect biomass and bat foraging activity. These were ambient temperature (positive), housing density (negative) and the percent of fertile shale geologies (positive) in the landscape; however variation in insect biomass did not directly explain bat foraging activity. We suggest that prey may be unavailable to bats in highly urbanized areas if these areas are avoided by many species, suggesting that reduced feeding activity may reflect under-use of urban habitats by bats. Restoration activities to improve ecological function and maintain the activity of a diversity of bat species should focus on maintaining and restoring bushland and riparian habitat, particularly in areas with fertile geology as these were key bat foraging

  16. Influence of Landscape Structure and Human Modifications on Insect Biomass and Bat Foraging Activity in an Urban Landscape

    PubMed Central

    Threlfall, Caragh G.; Law, Bradley; Banks, Peter B.

    2012-01-01

    Urban landscapes are often located in biologically diverse, productive regions. As such, urbanization may have dramatic consequences for this diversity, largely due to changes in the structure and function of urban communities. We examined the influence of landscape productivity (indexed by geology), housing density and vegetation clearing on the spatial distribution of nocturnal insect biomass and the foraging activity of insectivorous bats in the urban landscape of Sydney, Australia. Nocturnal insect biomass (g) and bat foraging activity were sampled from 113 sites representing backyard, open space, bushland and riparian landscape elements, across urban, suburban and vegetated landscapes within 60 km of Sydney's Central Business District. We found that insect biomass was at least an order of magnitude greater within suburban landscapes in bushland and backyard elements located on the most fertile shale influenced geologies (both p<0.001) compared to nutrient poor sandstone landscapes. Similarly, the feeding activity of bats was greatest in bushland, and riparian elements within suburbs on fertile geologies (p = 0.039). Regression tree analysis indicated that the same three variables explained the major proportion of the variation in insect biomass and bat foraging activity. These were ambient temperature (positive), housing density (negative) and the percent of fertile shale geologies (positive) in the landscape; however variation in insect biomass did not directly explain bat foraging activity. We suggest that prey may be unavailable to bats in highly urbanized areas if these areas are avoided by many species, suggesting that reduced feeding activity may reflect under-use of urban habitats by bats. Restoration activities to improve ecological function and maintain the activity of a diversity of bat species should focus on maintaining and restoring bushland and riparian habitat, particularly in areas with fertile geology as these were key bat foraging

  17. Divergent trophic levels in two cryptic sibling bat species.

    PubMed

    Siemers, Björn M; Greif, Stefan; Borissov, Ivailo; Voigt-Heucke, Silke L; Voigt, Christian C

    2011-05-01

    Changes in dietary preferences in animal species play a pivotal role in niche specialization. Here, we investigate how divergence of foraging behaviour affects the trophic position of animals and thereby their role for ecosystem processes. As a model, we used two closely related bat species, Myotis myotis and M. blythii oxygnathus, that are morphologically very similar and share the same roosts, but show clear behavioural divergence in habitat selection and foraging. Based on previous dietary studies on synanthropic populations in Central Europe, we hypothesised that M. myotis would mainly prey on predatory arthropods (i.e., secondary consumers) while M. blythii oxygnathus would eat herbivorous insects (i.e., primary consumers). We thus expected that the sibling bats would be at different trophic levels. We first conducted a validation experiment with captive bats in the laboratory and measured isotopic discrimination, i.e., the stepwise enrichment of heavy in relation to light isotopes between consumer and diet, in insectivorous bats for the first time. We then tested our trophic level hypothesis in the field at an ancient site of natural coexistence for the two species (Bulgaria, south-eastern Europe) using stable isotope analyses. As predicted, secondary consumer arthropods (carabid beetles; Coleoptera) were more enriched in (15)N than primary consumer arthropods (tettigoniids; Orthoptera), and accordingly wing tissue of M. myotis was more enriched in (15)N than tissue of M. blythii oxygnathus. According to a Bayesian mixing model, M. blythii oxygnathus indeed fed almost exclusively on primary consumers (98%), while M. myotis ate a mix of secondary (50%), but also, and to a considerable extent, primary consumers (50%). Our study highlights that morphologically almost identical, sympatric sibling species may forage at divergent trophic levels, and, thus may have different effects on ecosystem processes.

  18. Auditory opportunity and visual constraint enabled the evolution of echolocation in bats.

    PubMed

    Thiagavel, Jeneni; Cechetto, Clément; Santana, Sharlene E; Jakobsen, Lasse; Warrant, Eric J; Ratcliffe, John M

    2018-01-08

    Substantial evidence now supports the hypothesis that the common ancestor of bats was nocturnal and capable of both powered flight and laryngeal echolocation. This scenario entails a parallel sensory and biomechanical transition from a nonvolant, vision-reliant mammal to one capable of sonar and flight. Here we consider anatomical constraints and opportunities that led to a sonar rather than vision-based solution. We show that bats' common ancestor had eyes too small to allow for successful aerial hawking of flying insects at night, but an auditory brain design sufficient to afford echolocation. Further, we find that among extant predatory bats (all of which use laryngeal echolocation), those with putatively less sophisticated biosonar have relatively larger eyes than do more sophisticated echolocators. We contend that signs of ancient trade-offs between vision and echolocation persist today, and that non-echolocating, phytophagous pteropodid bats may retain some of the necessary foundations for biosonar.

  19. Potential of pest regulation by insectivorous birds in Mediterranean woody crops.

    PubMed

    Rey Benayas, José M; Meltzer, Jorge; de Las Heras-Bravo, Daniel; Cayuela, Luis

    2017-01-01

    Regulation of agricultural pests managing their natural enemies represents an alternative to chemical pesticides. We assessed the potential of insectivorous birds as pest regulators in woody crops located in central Spain. A total of 417 nest boxes installed in five field study sites (one vineyard, two fruit orchards, and two olive groves) were monitored for use and breeding of insectivorous birds and other species for four consecutive years (2013-2016). At all field sites except the two olive groves, where birds never occupied the nest boxes, predation experiments were conducted with Greater wax moth (Galleria mellonella) sentinel caterpillars, and food consumption by birds was estimated. Nesting of insectivorous birds, chiefly Great tit (Parus major), and sparrows (Passer domesticus and P. montanus) increased over time, averaging 60% per field site in the vineyard and fruit orchards by the fourth year. Use of nest boxes by sparrows and by Garden dormouse (Eliomys quercinus) was high at the fruit orchards (70%) and the vineyard (30%), respectively. Micro-habitat characteristics (nest box level) and meso-habitat characteristics (patch level) strongly affected use of nest boxes and bird breeding (i.e. number of laid eggs and produced chicks) in different years. Distance to natural or semi-natural vegetation did not consistently affect bird breeding, nor did we see consistent evidence of competition between adjacent breeding birds. Predation rates of sentinel caterpillars were approximately one-third higher near boxes with nesting birds (31.51 ± 43.13%) than at paired distant areas without nest boxes (22.45% ± 38.58%). Food consumption by insectivorous birds per ha and breeding season were conservatively estimated to range from 0.02 kg in one fruit orchard to 0.15 kg in the vineyard. We conclude that installation of nest boxes in Mediterranean woody crops enhances populations of insectivorous birds that regulate pests, but that the effects are moderate and highly

  20. Potential of pest regulation by insectivorous birds in Mediterranean woody crops

    PubMed Central

    Meltzer, Jorge; de las Heras-Bravo, Daniel; Cayuela, Luis

    2017-01-01

    Regulation of agricultural pests managing their natural enemies represents an alternative to chemical pesticides. We assessed the potential of insectivorous birds as pest regulators in woody crops located in central Spain. A total of 417 nest boxes installed in five field study sites (one vineyard, two fruit orchards, and two olive groves) were monitored for use and breeding of insectivorous birds and other species for four consecutive years (2013–2016). At all field sites except the two olive groves, where birds never occupied the nest boxes, predation experiments were conducted with Greater wax moth (Galleria mellonella) sentinel caterpillars, and food consumption by birds was estimated. Nesting of insectivorous birds, chiefly Great tit (Parus major), and sparrows (Passer domesticus and P. montanus) increased over time, averaging 60% per field site in the vineyard and fruit orchards by the fourth year. Use of nest boxes by sparrows and by Garden dormouse (Eliomys quercinus) was high at the fruit orchards (70%) and the vineyard (30%), respectively. Micro-habitat characteristics (nest box level) and meso-habitat characteristics (patch level) strongly affected use of nest boxes and bird breeding (i.e. number of laid eggs and produced chicks) in different years. Distance to natural or semi-natural vegetation did not consistently affect bird breeding, nor did we see consistent evidence of competition between adjacent breeding birds. Predation rates of sentinel caterpillars were approximately one-third higher near boxes with nesting birds (31.51 ± 43.13%) than at paired distant areas without nest boxes (22.45% ± 38.58%). Food consumption by insectivorous birds per ha and breeding season were conservatively estimated to range from 0.02 kg in one fruit orchard to 0.15 kg in the vineyard. We conclude that installation of nest boxes in Mediterranean woody crops enhances populations of insectivorous birds that regulate pests, but that the effects are moderate and highly

  1. A metagenomic viral discovery approach identifies potential zoonotic and novel mammalian viruses in Neoromicia bats within South Africa

    PubMed Central

    Geldenhuys, Marike; Mortlock, Marinda; Weyer, Jacqueline; Bezuidt, Oliver; Seamark, Ernest C. J.; Kearney, Teresa; Gleasner, Cheryl; Erkkila, Tracy H.; Cui, Helen; Markotter, Wanda

    2018-01-01

    Species within the Neoromicia bat genus are abundant and widely distributed in Africa. It is common for these insectivorous bats to roost in anthropogenic structures in urban regions. Additionally, Neoromicia capensis have previously been identified as potential hosts for Middle East respiratory syndrome (MERS)-related coronaviruses. This study aimed to ascertain the gastrointestinal virome of these bats, as viruses excreted in fecal material or which may be replicating in rectal or intestinal tissues have the greatest opportunities of coming into contact with other hosts. Samples were collected in five regions of South Africa over eight years. Initial virome composition was determined by viral metagenomic sequencing by pooling samples and enriching for viral particles. Libraries were sequenced on the Illumina MiSeq and NextSeq500 platforms, producing a combined 37 million reads. Bioinformatics analysis of the high throughput sequencing data detected the full genome of a novel species of the Circoviridae family, and also identified sequence data from the Adenoviridae, Coronaviridae, Herpesviridae, Parvoviridae, Papillomaviridae, Phenuiviridae, and Picornaviridae families. Metagenomic sequencing data was insufficient to determine the viral diversity of certain families due to the fragmented coverage of genomes and lack of suitable sequencing depth, as some viruses were detected from the analysis of reads-data only. Follow up conventional PCR assays targeting conserved gene regions for the Adenoviridae, Coronaviridae, and Herpesviridae families were used to confirm metagenomic data and generate additional sequences to determine genetic diversity. The complete coding genome of a MERS-related coronavirus was recovered with additional amplicon sequencing on the MiSeq platform. The new genome shared 97.2% overall nucleotide identity to a previous Neoromicia-associated MERS-related virus, also from South Africa. Conventional PCR analysis detected diverse adenovirus and

  2. Phyllostomid bat microbiome composition is associated to host phylogeny and feeding strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrillo-Araujo, Mario; Taş, Neslihan; Alcántara-Hernández, Rocio J.

    The members of the Phyllostomidae, the New-World leaf-nosed family of bats, show a remarkable evolutionary diversification of dietary strategies including insectivory, as the ancestral trait, followed by appearance of carnivory and plant-based diets such as nectarivory and frugivory. Here we explore the microbiome composition of different feeding specialists: insectivore Macrotus waterhousii, sanguivore Desmodus rotundus, nectarivores Leptonycteris yerbabuenae and Glossophaga soricina, and frugivores Carollia perspicillata and Artibeus jamaicensis. The V4 region of the 16S rRNA gene from three intestinal regions of three individuals per species was amplified and community composition and structure was analyzed with α and β diversity metrics. Batsmore » with plant-based diets had low diversity microbiomes, whereas the sanguivore D. rotundus and insectivore M. waterhousii had the most diverse microbiomes. There were no significant differences in microbiome composition between different intestine regions within each individual. Plant-based feeders showed less specificity in their microbiome compositions, whereas animal-based specialists, although more diverse overall, showed a more clustered arrangement of their intestinal bacterial components. The main characteristics defining microbiome composition in phyllostomids were species and feeding strategy. This study shows how differences in feeding strategies contributed to the development of different intestinal microbiomes in Phyllostomidae.« less

  3. Phyllostomid bat microbiome composition is associated to host phylogeny and feeding strategies

    DOE PAGES

    Carrillo-Araujo, Mario; Taş, Neslihan; Alcántara-Hernández, Rocio J.; ...

    2015-05-19

    The members of the Phyllostomidae, the New-World leaf-nosed family of bats, show a remarkable evolutionary diversification of dietary strategies including insectivory, as the ancestral trait, followed by appearance of carnivory and plant-based diets such as nectarivory and frugivory. Here we explore the microbiome composition of different feeding specialists: insectivore Macrotus waterhousii, sanguivore Desmodus rotundus, nectarivores Leptonycteris yerbabuenae and Glossophaga soricina, and frugivores Carollia perspicillata and Artibeus jamaicensis. The V4 region of the 16S rRNA gene from three intestinal regions of three individuals per species was amplified and community composition and structure was analyzed with α and β diversity metrics. Batsmore » with plant-based diets had low diversity microbiomes, whereas the sanguivore D. rotundus and insectivore M. waterhousii had the most diverse microbiomes. There were no significant differences in microbiome composition between different intestine regions within each individual. Plant-based feeders showed less specificity in their microbiome compositions, whereas animal-based specialists, although more diverse overall, showed a more clustered arrangement of their intestinal bacterial components. The main characteristics defining microbiome composition in phyllostomids were species and feeding strategy. This study shows how differences in feeding strategies contributed to the development of different intestinal microbiomes in Phyllostomidae.« less

  4. Multidisciplinary approach to epizootiology and pathogenesis of bat rabies viruses in the United States.

    PubMed

    Ellison, J A; Johnson, S R; Kuzmina, N; Gilbert, A; Carson, W C; VerCauteren, K C; Rupprecht, C E

    2013-02-01

    Zoonotic disease surveillance is typically initiated after an animal pathogen has caused disease in humans. Early detection of potentially high-risk pathogens within animal hosts may facilitate medical interventions to cope with an emerging disease. To effectively spillover to a novel host, a pathogen may undergo genetic changes resulting in varying transmission potential in the new host and potentially to humans. Rabies virus (RABV) is one model pathogen to consider for studying the dynamics of emerging infectious diseases under both laboratory and field conditions. The evolutionary history of RABV is characterized by regularly documented spillover infections and a series of notable host shifts. Within this context, enhanced field surveillance to improve detection of spillover infections will require validated techniques to non-invasively differentiate infected from non-infected individuals. In this study, we evaluate the use of infrared thermography to detect thermal changes associated with experimental RABV infection in big brown bats (Eptesicus fuscus) in a captive colony. Our results indicated that 62% of rabid bats had detectable facial temperature decreases (-4.6°C, SD ± 2.5) compared with pre-inoculation baseline values. These data suggest potential utility for discriminating rabid bats in natural field settings. In addition, focusing upon RABV circulating in the United States between 2008 and 2011, we confirmed spillover events of bat RABV among carnivores and identified cross-species transmission events caused by four lineages of RABV associated with insectivorous bats. Additionally, our analysis of RABV glycoprotein sequences identified substitutions in antigenic sites that may affect neutralizing activity associated with monoclonal antibodies proposed for use in human post-exposure prophylaxis. This study provides a glimpse into RABV pathobiology and spillover dynamics among and between bats and a variety of mesocarnivores. Published 2012. This

  5. Molecular phylogeny of a genetically divergent hantavirus harbored by the Geoffroy's rousette (Rousettus amplexicaudatus), a frugivorous bat species in the Philippines.

    PubMed

    Arai, Satoru; Taniguchi, Satoshi; Aoki, Keita; Yoshikawa, Yasuhiro; Kyuwa, Shigeru; Tanaka-Taya, Keiko; Masangkay, Joseph S; Omatsu, Tsutomu; Puentespina, Roberto; Watanabe, Shumpei; Alviola, Phillip; Alvarez, James; Eres, Eduardo; Cosico, Edison; Quibod, Ma Niña Regina M; Morikawa, Shigeru; Yanagihara, Richard; Oishi, Kazunori

    2016-11-01

    The recent discovery of genetically distinct hantaviruses in multiple species of shrews and moles (order Eulipotyphla, families Soricidae and Talpidae) prompted a further exploration of their host diversification and geographic distribution by analyzing lung tissues from 376 fruit bats representing six genera (order Chiroptera, suborder Yinpterochiroptera, family Pteropodidae), collected in the Republic of the Philippines during 2008 to 2013. Hantavirus RNA was detected by RT-PCR in one of 15 Geoffroy's rousettes (Rousettus amplexicaudatus), captured in Quezon Memorial National Park on Luzon Island in 2009. Phylogenetic analyses of the S, M and L segments, using maximum-likelihood and Bayesian methods, showed that the newfound hantavirus, designated Quezon virus (QZNV), shared a common ancestry with hantaviruses hosted by insectivorous bats, in keeping with their evolutionary relationships and suggests that ancestral bats may have served as the early or original mammalian hosts of primordial hantaviruses. As the first hantavirus detected in a megabat or flying fox species, QZNV extends our knowledge about the reservoir host range. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Recording animal vocalizations from a UAV: bat echolocation during roost re-entry.

    PubMed

    Kloepper, Laura N; Kinniry, Morgan

    2018-05-17

    Unmanned aerial vehicles (UAVs) are rising in popularity for wildlife monitoring, but direct recordings of animal vocalizations have not yet been accomplished, likely due to the noise generated by the UAV. Echolocating bats, especially Tadarida brasiliensis, are good candidates for UAV recording due to their high-speed, high-altitude flight. Here, we use a UAV to record the signals of bats during morning roost re-entry. We designed a UAV to block the noise of the propellers from the receiving microphone, and report on the characteristics of bioacoustic recordings from a UAV. We report the first published characteristics of echolocation signals from bats during group flight and cave re-entry. We found changes in inter-individual time-frequency shape, suggesting that bats may use differences in call design when sensing in complex groups. Furthermore, our first documented successful recordings of animals in their natural habitat demonstrate that UAVs can be important tools for bioacoustic monitoring, and we discuss the ethical considerations for such monitoring.

  7. Molecular Evolution of the Nuclear Factor (Erythroid-Derived 2)-Like 2 Gene Nrf2 in Old World Fruit Bats (Chiroptera: Pteropodidae).

    PubMed

    Yin, Qiuyuan; Zhu, Lei; Liu, Di; Irwin, David M; Zhang, Shuyi; Pan, Yi-Hsuan

    2016-01-01

    Mammals developed antioxidant systems to defend against oxidative damage in their daily life. Enzymatic antioxidants and low molecular weight antioxidants (LMWAs) constitute major parts of the antioxidant systems. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2, encoded by the Nrf2 gene) is a central transcriptional regulator, regulating transcription, of many antioxidant enzymes. Frugivorous bats eat large amounts of fruits that contain high levels of LMWAs such as vitamin C, thus, a reliance on LMWAs might greatly reduce the need for antioxidant enzymes in comparison to insectivorous bats. Therefore, it is possible that frugivorous bats have a reduced need for Nrf2 function due to their substantial intake of diet-antioxidants. To test whether the Nrf2 gene has undergone relaxed evolution in fruit-eating bats, we obtained Nrf2 sequences from 16 species of bats, including four Old World fruit bats (Pteropodidae) and one New World fruit bat (Phyllostomidae). Our molecular evolutionary analyses revealed changes in the selection pressure acting on Nrf2 gene and identified seven specific amino acid substitutions that occurred on the ancestral lineage leading to Old World fruit bats. Biochemical experiments were conducted to examine Nrf2 in Old World fruit bats and showed that the amount of catalase, which is regulated by Nrf2, was significantly lower in the brain, heart and liver of Old World fruit bats despite higher levels of Nrf2 protein in Old World fruit bats. Computational predictions suggest that three of these seven amino acid replacements might be deleterious to Nrf2 function. Therefore, the results suggest that Nrf2 gene might have experienced relaxed constraint in Old World fruit bats, however, we cannot rule out the possibility of positive selection. Our study provides the first data on the molecular adaptation of Nrf2 gene in frugivorous bats in compensation to the increased levels of LWMAs from their fruit-diet.

  8. Molecular Evolution of the Nuclear Factor (Erythroid-Derived 2)-Like 2 Gene Nrf2 in Old World Fruit Bats (Chiroptera: Pteropodidae)

    PubMed Central

    Liu, Di; Irwin, David M.; Zhang, Shuyi; Pan, Yi-Hsuan

    2016-01-01

    Mammals developed antioxidant systems to defend against oxidative damage in their daily life. Enzymatic antioxidants and low molecular weight antioxidants (LMWAs) constitute major parts of the antioxidant systems. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2, encoded by the Nrf2 gene) is a central transcriptional regulator, regulating transcription, of many antioxidant enzymes. Frugivorous bats eat large amounts of fruits that contain high levels of LMWAs such as vitamin C, thus, a reliance on LMWAs might greatly reduce the need for antioxidant enzymes in comparison to insectivorous bats. Therefore, it is possible that frugivorous bats have a reduced need for Nrf2 function due to their substantial intake of diet-antioxidants. To test whether the Nrf2 gene has undergone relaxed evolution in fruit-eating bats, we obtained Nrf2 sequences from 16 species of bats, including four Old World fruit bats (Pteropodidae) and one New World fruit bat (Phyllostomidae). Our molecular evolutionary analyses revealed changes in the selection pressure acting on Nrf2 gene and identified seven specific amino acid substitutions that occurred on the ancestral lineage leading to Old World fruit bats. Biochemical experiments were conducted to examine Nrf2 in Old World fruit bats and showed that the amount of catalase, which is regulated by Nrf2, was significantly lower in the brain, heart and liver of Old World fruit bats despite higher levels of Nrf2 protein in Old World fruit bats. Computational predictions suggest that three of these seven amino acid replacements might be deleterious to Nrf2 function. Therefore, the results suggest that Nrf2 gene might have experienced relaxed constraint in Old World fruit bats, however, we cannot rule out the possibility of positive selection. Our study provides the first data on the molecular adaptation of Nrf2 gene in frugivorous bats in compensation to the increased levels of LWMAs from their fruit-diet. PMID:26735303

  9. Vespertilionid bats control the width of their biosonar sound beam dynamically during prey pursuit.

    PubMed

    Jakobsen, Lasse; Surlykke, Annemarie

    2010-08-03

    Animals using sound for communication emit directional signals, focusing most acoustic energy in one direction. Echolocating bats are listening for soft echoes from insects. Therefore, a directional biosonar sound beam greatly increases detection probability in the forward direction and decreases off-axis echoes. However, high directionality has context-specific disadvantages: at close range the detection space will be vastly reduced, making a broad beam favorable. Hence, a flexible system would be very advantageous. We investigated whether bats can dynamically change directionality of their biosonar during aerial pursuit of insects. We trained five Myotis daubentonii and one Eptesicus serotinus to capture tethered mealworms and recorded their echolocation signals with a multimicrophone array. The results show that the bats broaden the echolocation beam drastically in the terminal phase of prey pursuit. M. daubentonii increased the half-amplitude angle from approximately 40 degrees to approximately 90 degrees horizontally and from approximately 45 degrees to more than 90 degrees vertically. The increase in beam width is achieved by lowering the frequency by roughly one octave from approximately 55 kHz to approximately 27.5 kHz. The E. serotinus showed beam broadening remarkably similar to that of M. daubentonii. Our results demonstrate dynamic control of beam width in both species. Hence, we propose directionality as an explanation for the frequency decrease observed in the buzz of aerial hawking vespertilionid bats. We predict that future studies will reveal dynamic control of beam width in a broad range of acoustically communicating animals.

  10. Assessing the rabies control and surveillance systems in Brazil: an experience of measures toward bats after the halt of massive vaccination of dogs and cats in Campinas, Sao Paulo.

    PubMed

    De Lucca, Tosca; Rodrigues, Ricardo Conde Alves; Castagna, Claudio; Presotto, Douglas; De Nadai, Diego Vinicius; Fagre, Anna; Braga, Guilherme Basseto; Guilloux, Aline Gil Alves; e Alves, Ana Júlia Silva; Martins, Camila Marinelli; Amaku, Marcos; Ferreira, Fernando; Dias, Ricardo Augusto

    2013-08-01

    Bats are less vulnerable to forest fragmentation than any other mammal, and for that reason, some species can disperse to peri-urban or urban areas. Insectivorous bats are abundant in urban areas due to the density of artificial roosts and insects attracted by city lights. Inter-species transmission of the rabies virus between bats can occur, and this is the most probable mechanism of virus circulation in bat populations. Bats can also transmit the rabies virus to other mammal species, like dogs and cats. With the halt of dog and cat vaccination campaigns in 2010, the importance of rabies surveillance in bats has increased in Brazil. A cross-sectional study performed in Campinas, Sao Paulo State, using data from the passive surveillance system for bats showed that rabies-positive bats from the families Molossidae, Phyllostomidae and Vespertilionidae were found in a peri-urban area. In these areas, dog and cat emergency vaccination (vaccination blockage) was recommended after the halt of the massive vaccination campaign in 2010. This control strategy was able to increase the proportion of vaccinated animals around a critical value of 50% and even with a higher probability of infectious contact between bats and dogs or cats in the vaccination blockage areas, no dog or cat rabies case was observed, evidencing the importance of the implementation of strategic rabies control measures in this new epidemiological scenario. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. A Comparison of mucosal surface area and villous histology in small intestines of the Brazilian free-tailed bat (Tadarida brasiliensis) and the mouse (Mus musculus).

    PubMed

    Zhang, Zhi-Qiang; Brun, Antonio; Price, Edwin R; Cruz-Neto, Ariovaldo P; Karasov, William H; Caviedes-Vidal, Enrique

    2015-01-01

    Studies on birds have led to the hypothesis that increased intestinal absorption between enterocytes (paracellular) evolved as a compensation for smaller intestinal size in fliers, which was perhaps selected to minimize the mass of digesta carried. This hypothesis predicts that bats will also exhibit relatively reduced intestinal size and high paracellular absorption, compared with nonflying mammals. Published studies on three bat species indicate relatively high paracellular absorption. One mechanism for increasing paracellular absorption per cm2 small intestine (SI) is increased number of tight junctions (TJs) across which paracellular absorption occurs. To our knowledge, we provide the first comparative analysis of enterocyte size and number in flying and nonflying mammals. Intestines of insectivorous bats Tadarida brasiliensis were compared with Mus musculus using hematoxylin and eosin staining method. Bats had shorter and narrower SIs than mice, and after correction for body size difference by normalizing to mass3/4, the bats had 40% less nominal surface area than the mouse, as predicted. Villous enhancement of surface area was 90% greater in the bat than in the mouse, mainly because of longer villi and a greater density of villi in bat intestines. Bat and mouse were similar in enterocyte diameter. Bats exceeded mice by 54.4% in villous area per cm length SI and by 95% in number of enterocytes per cm2 of the nominal surface area of the SI. Therefore, an increased density of TJs per cm2 SI may be a mechanistic explanation that helps to understand the high paracellular absorption observed in bats compared to nonflying mammals. © 2014 Wiley Periodicals, Inc.

  12. Echolocation calls of Poey's flower bat (Phyllonycteris poeyi) unlike those of other phyllostomids.

    PubMed

    Mora, Emanuel C; Macías, Silvio

    2007-05-01

    Unlike any other foraging phyllostomid bat studied to date, Poey's flower bats (Phyllonycteris poeyi-Phyllostomidae) emit relatively long (up to 7.2 ms), intense, single-harmonic echolocation calls. These calls are readily detectable at distances of at least 15 m. Furthermore, the echolocation calls contain only the first harmonic, which is usually filtered out in the vocal tract of phyllostomids. The foraging echolocation calls of P. poeyi are more like search-phase echolocation calls of sympatric aerial-feeding bats (Molossidae, Vespertilionidae, Mormoopidae). Intense, long, narrowband, single-harmonic echolocation calls focus acoustic energy maximizing range and favoring detection, which may be particularly important for cruising bats, like P. poeyi, when flying in the open. Flying in enclosed spaces, P. poeyi emit short, low-intensity, frequency-modulated, multiharmonic echolocation calls typical of other phyllostomids. This is the first report of a phyllostomid species emitting long, intense, single-harmonic echolocation calls with most energy in the first harmonic.

  13. Characterization of the myoepithelial cells in the major salivary glands of the fruit bat Artibeus jamaicensis.

    PubMed

    Guerrero-Hernández, Julio; Moreno-Mendoza, Norma

    2016-08-01

    Bats constitute one of the most numerous mammalian species. Bats have a wide range of dietary habits and include carnivorous, haematophagous, insectivorous, frugivorous and nectivorous species. The salivary glands of these species have been of particular research interest due to their structural variability among chiropterans with different types of diets. Myoepithelial cells (MECs), which support and facilitate the expulsion of saliva from the secretory portions of salivary glands, are very important for their function; however, this cell type has not been extensively studied in the salivary glands of bats. In this study, we characterized the MECs in the major salivary glands of the fruit bat Artibeus jamaicensis. Herein, we describe the morphology of the parotid, submandibular and sublingual glands of A. jamaicensis at the light- and electro-microscopic level and the distribution of MECs in these glands, as defined by their expression of smooth-muscle markers such as α-smooth muscle actin (SMAα) and desmin, and of epithelial cell markers, such as KRT14. We found that the anatomical locations of the major salivary glands in this bat species are similar to those of humans, except that the bat sublingual gland appears to be unique, extending to join the contralateral homologous gland. Morphologically, the parotid gland has the characteristics of a mixed-secretory gland, whereas the submandibular and sublingual glands were identified as mucous-secretory glands. MECs positive for SMAα, KRT14 and desmin were found in all of the structural components of the three glands, except in their excretory ducts. Desmin is expressed at a lower level in the parotid gland than in the other glands. Our results suggest that the major salivary glands of A. jamaicensis, although anatomically and structurally similar to those of humans, play different physiological roles that can be attributed to the dietary habits of this species. © 2016 Anatomical Society.

  14. Narrow sound pressure level tuning in the auditory cortex of the bats Molossus molossus and Macrotus waterhousii.

    PubMed

    Macías, Silvio; Hechavarría, Julio C; Cobo, Ariadna; Mora, Emanuel C

    2014-03-01

    In the auditory system, tuning to sound level appears in the form of non-monotonic response-level functions that depict the response of a neuron to changing sound levels. Neurons with non-monotonic response-level functions respond best to a particular sound pressure level (defined as "best level" or level evoking the maximum response). We performed a comparative study on the location and basic functional organization of the auditory cortex in the gleaning bat, Macrotus waterhousii, and the aerial-hawking bat, Molossus molossus. Here, we describe the response-level function of cortical units in these two species. In the auditory cortices of M. waterhousii and M. molossus, the characteristic frequency of the units increased from caudal to rostral. In M. waterhousii, there was an even distribution of characteristic frequencies while in M. molossus there was an overrepresentation of frequencies present within echolocation pulses. In both species, most of the units showed best levels in a narrow range, without an evident topography in the amplitopic organization, as described in other species. During flight, bats decrease the intensity of their emitted pulses when they approach a prey item or an obstacle resulting in maintenance of perceived echo intensity. Narrow level tuning likely contributes to the extraction of echo amplitudes facilitating echo-intensity compensation. For aerial-hawking bats, like M. molossus, receiving echoes within the optimal sensitivity range can help the bats to sustain consistent analysis of successive echoes without distortions of perception caused by changes in amplitude. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Bats.

    ERIC Educational Resources Information Center

    Naturescope, 1986

    1986-01-01

    Presents information about bats, including definitions and descriptions of the characteristics of bats. Provides teaching activities such as "Bat and Math,""A Bat Like That,""Bat Party,""Ears in the Dark," and "The Big Bat Mystery." Contains reproducible handouts and quizzes. (TW)

  16. Antigenic and genotypic characterization of rabies virus isolated from bats (Mammalia: Chiroptera) from municipalities in São Paulo State, Southeastern Brazil.

    PubMed

    Menozzi, Benedito Donizete; de Novaes Oliveira, Rafael; Paiz, Laís Moraes; Richini-Pereira, Virgínia Bodelão; Langoni, Helio

    2017-05-01

    Bats have aroused growing attention in the public health sphere because they are considered the main reservoir of rabies virus (RABV) in the Americas, in places where canine rabies is under control. Antigenic and genetic studies of RABV isolates have been used to describe the epidemiological profile of rabies and to identify possible hosts/reservoirs for different epidemiological cycles. This study describes the antigenic and genotypic characterization of 19 RABV isolates from central nervous system samples of non-hematophagous bats (Mammalia: Chiroptera). These bats were diagnosed as RABV positive by direct fluorescent antibody and mouse inoculation tests. Antigenic characterization using a panel of eight monoclonal antibodies revealed that 7 of 19 RABV isolates from these bats belonged to variant 3, for which the hematophagous bat species Desmodus rotundus is the main reservoir, and 1 of 19 RABV isolates from an insectivorous bat belonged to variant 4, which is characteristic of these bats. The remaining 11 RABV samples were divided into six non-compatible profiles. The isolates were subjected to reverse transcription polymerase chain reaction for the N gene and partially sequenced. Genetic characterization of these isolates was performed by grouping the sequences obtained with known RABV lineages. The sequences were grouped in clusters by the phylogenetic inference neighbor-joining method, together with another 89 homologous sequences obtained from GenBank. This analysis grouped the isolates into four known lineages: Nyctinomops Brazil, Myotis Brazil, Eptesicus Brazil and D. rotundus Brazil, as well as another cluster that may define a RABV lineage not yet characterized, here named Myotis Brazil II, for which bats of the genus Myotis apparently act as reservoirs. This assumption of a new lineage is also based on the observation of amino acid substitutions, with an average intraspecific identity of 99.8%, varying from 99.6 to 100.0% for nucleotides and 100

  17. Vespertilionid bats control the width of their biosonar sound beam dynamically during prey pursuit

    PubMed Central

    Jakobsen, Lasse; Surlykke, Annemarie

    2010-01-01

    Animals using sound for communication emit directional signals, focusing most acoustic energy in one direction. Echolocating bats are listening for soft echoes from insects. Therefore, a directional biosonar sound beam greatly increases detection probability in the forward direction and decreases off-axis echoes. However, high directionality has context-specific disadvantages: at close range the detection space will be vastly reduced, making a broad beam favorable. Hence, a flexible system would be very advantageous. We investigated whether bats can dynamically change directionality of their biosonar during aerial pursuit of insects. We trained five Myotis daubentonii and one Eptesicus serotinus to capture tethered mealworms and recorded their echolocation signals with a multimicrophone array. The results show that the bats broaden the echolocation beam drastically in the terminal phase of prey pursuit. M. daubentonii increased the half-amplitude angle from approximately 40° to approximately 90° horizontally and from approximately 45° to more than 90° vertically. The increase in beam width is achieved by lowering the frequency by roughly one octave from approximately 55 kHz to approximately 27.5 kHz. The E. serotinus showed beam broadening remarkably similar to that of M. daubentonii. Our results demonstrate dynamic control of beam width in both species. Hence, we propose directionality as an explanation for the frequency decrease observed in the buzz of aerial hawking vespertilionid bats. We predict that future studies will reveal dynamic control of beam width in a broad range of acoustically communicating animals. PMID:20643943

  18. Typing of the rabies virus in Chile, 2002-2008.

    PubMed

    Yung, V; Favi, M; Fernandez, J

    2012-12-01

    In Chile, dog rabies has been controlled and insectivorous bats have been identified as the main rabies reservoir. This study aimed to determine the rabies virus (RABV) variants circulating in the country between 2002 and 2008. A total of 612 RABV isolates were tested using a panel with eight monoclonal antibodies against the viral nucleoprotein (N-mAbs) for antigenic typing, and a product of 320-bp of the nucleoprotein gene was sequenced from 99 isolates. Typing of the isolates revealed six different antigenic variants but phylogenetic analysis identified four clusters associated with four different bat species. Tadarida brasiliensis bats were confirmed as the main reservoir. This methodology identified several independent rabies enzootics maintained by different species of insectivorous bats in Chile.

  19. Autumn migration and selection of rock crevices as hibernacula by big brown bats in Colorado

    USGS Publications Warehouse

    Neubaum, D.J.; O'Shea, T.J.; Wilson, K.R.

    2006-01-01

    Movements, distribution, and roosting requirements of most species of temperate-zone bats in autumn are poorly understood. We conducted the 1st radiotelemetry study of autumn migrations and prehibernation roost selection of bats in western North America. Big brown bats (Eptesicus fuscus, n = 55) in the Poudre River watershed, Colorado, moved from low-elevation summer ranges to high-elevation locations in autumn, where they roosted in rock crevices during the period leading up to winter hibernation. We characterized rock crevices used as roosts in autumn at these higher elevations at microhabitat and landscape scales. We used logistic regression combined with an information theoretic approach to determine which variables were most important in roost selection. At the microhabitat scale, autumn roosts were higher to the ground above and below the exit point and were in deeper crevices that had more constant temperatures than randomly selected crevices. At the landscape scale, aspect of the hillside was important, with autumn roosts typically facing north-northwest. Autumn roosts fell into 2 categories: those used for a few days (transient roosts) and those used for ≥7 days and presumed to be hibernacula. Temperature regimes in the presumed hibernacula appear to provide optimal conditions for use of winter torpor, whereas transient roosts may offer passive rewarming and energy savings for bats still active in early autumn. Elevational segregation of sexes also was documented in our region, with a preponderance of females found at lower elevations and males at higher elevations in summer. Sex ratios at higher elevations became even in autumn. Use of short elevational migrations and selection of hibernation sites in rock crevices may be a common overwintering strategy of insectivorous bats of western North America.

  20. Habitat occupancy and detection of the pacific sheath-tailed bat (emballonura semicaudata) on aguiguan, commonwealth of the northern Mariana Islands

    USGS Publications Warehouse

    Gorresen, P.M.; Bonaccorso, F.J.; Pinzari, C.A.

    2009-01-01

    Occupancy analysis was used to quantify Pacific sheath-tailed bat (Emballonura semicaudata) foraging activity and its relationship to forest structure and proximity to cave roosts on Aguiguan Island in the Commonwealth of the Northern Mariana Islands. Bat occurrence was most closely associated with canopy cover, vegetation stature and distance to known roosts. The metrics generated by this study can serve as a quantitative baseline for future assessments of the status of this endangered species following changes in habitat due to management activities (e.g., feral goat control) or other factors (e.g., typhoon impacts). Additionally, we provide quantitative descriptions of the echolocation calls of E. semicaudata. Search-phase calls were characterized by a relatively narrow bandwidth and short pulse duration typical of insectivores that forage within vegetative clutter. Two distinctly characteristic frequencies were recorded: 30.97 ?? 1.08 kHz and 63.15 ?? 2.20 kHz ?? Museum and Institute of Zoology PAS.

  1. Infectivity of attenuated poxvirus vaccine vectors and immunogenicity of a raccoonpox vectored rabies vaccine in the Brazilian Free-tailed bat (Tadarida brasiliensis)

    USGS Publications Warehouse

    Stading, Benjamin; Osorio, Jorge E.; Velasco-Villa, Andres; Smotherman, Michael; Kingstad-Bakke, Brock; Rocke, Tonie E.

    2016-01-01

    Bats (Order Chiroptera) are an abundant group of mammals with tremendous ecological value as insectivores and plant dispersers, but their role as reservoirs of zoonotic diseases has received more attention in the last decade. With the goal of managing disease in free-ranging bats, we tested modified vaccinia Ankara (MVA) and raccoon poxvirus (RCN) as potential vaccine vectors in the Brazilian Free-tailed bat (Tadarida brasiliensis), using biophotonic in vivo imaging and immunogenicity studies. Animals were administered recombinant poxviral vectors expressing the luciferase gene (MVA-luc, RCN-luc) through oronasal (ON) or intramuscular (IM) routes and subsequently monitored for bioluminescent signal indicative of viral infection. No clinical illness was noted after exposure to any of the vectors, and limited luciferase expression was observed. Higher and longer levels of expression were observed with the RCN-luc construct. When given IM, luciferase expression was limited to the site of injection, while ON exposure led to initial expression in the oral cavity, often followed by secondary replication at another location, likely the gastric mucosa or gastric associated lymphatic tissue. Viral DNA was detected in oral swabs up to 7 and 9 days post infection (dpi) for MVA and RCN, respectively. While no live virus was detected in oral swabs from MVA-infected bats, titers up to 3.88 x 104 PFU/ml were recovered from oral swabs of RCN-infected bats. Viral DNA was also detected in fecal samples from two bats inoculated IM with RCN, but no live virus was recovered. Finally, we examined the immunogenicity of a RCN based rabies vaccine (RCN-G) following ON administration. Significant rabies neutralizing antibody titers were detected in the serum of immunized bats using the rapid fluorescence focus inhibition test (RFFIT). These studies highlight the safety and immunogenicity of attenuated poxviruses and their potential use as vaccine vectors in bats.

  2. Infectivity of attenuated poxvirus vaccine vectors and immunogenicity of a raccoonpox vectored rabies vaccine in the Brazilian Free-tailed bat (Tadarida brasiliensis)

    PubMed Central

    Stading, Ben R.; Osorio, Jorge E.; Velasco-Villa, Andres; Smotherman, Michael; Kingstad-Bakke, Brock

    2017-01-01

    Bats (Order Chiroptera) are an abundant group of mammals with tremendous ecological value as insectivores and plant dispersers, but their role as reservoirs of zoonotic diseases has received more attention in the last decade. With the goal of managing disease in free-ranging bats, we tested modified vaccinia Ankara (MVA) and raccoon poxvirus (RCN) as potential vaccine vectors in the Brazilian Free-tailed bat (Tadarida brasiliensis), using biophotonic in vivo imaging and immunogenicity studies. Animals were administered recombinant poxviral vectors expressing the luciferase gene (MVA-luc, RCN-luc) through oronasal (ON) or intramuscular (IM) routes and subsequently monitored for bioluminescent signal indicative of viral infection. No clinical illness was noted after exposure to any of the vectors, and limited luciferase expression was observed. Higher and longer levels of expression were observed with the RCN-luc construct. When given IM, luciferase expression was limited to the site of injection, while ON exposure led to initial expression in the oral cavity, often followed by secondary replication at another location, likely the gastric mucosa or gastric associated lymphatic tissue. Viral DNA was detected in oral swabs up to 7 and 9 days post infection (dpi) for MVA and RCN, respectively. While no live virus was detected in oral swabs from MVA-infected bats, titers up to 3.88 × 104 PFU/ml were recovered from oral swabs of RCN-infected bats. Viral DNA was also detected in fecal samples from two bats inoculated IM with RCN, but no live virus was recovered. Finally, we examined the immunogenicity of a RCN based rabies vaccine (RCN-G) following ON administration. Significant rabies neutralizing antibody titers were detected in the serum of immunized bats using the rapid fluorescence focus inhibition test (RFFIT). These studies highlight the safety and immunogenicity of attenuated poxviruses and their potential use as vaccine vectors in bats. PMID:27650872

  3. First detection of mycobacteria in African rodents and insectivores, using stratified pool screening.

    PubMed

    Durnez, Lies; Eddyani, Miriam; Mgode, Georgies F; Katakweba, Abdul; Katholi, Charles R; Machang'u, Robert R; Kazwala, Rudovik R; Portaels, Françoise; Leirs, Herwig

    2008-02-01

    With the rising number of patients with human immunodeficiency virus (HIV)/AIDS in developing countries, the control of mycobacteria is of growing importance. Previous studies have shown that rodents and insectivores are carriers of mycobacteria. However, it is not clear how widespread mycobacteria are in these animals and what their role is in spreading them. Therefore, the prevalence of mycobacteria in rodents and insectivores was studied in and around Morogoro, Tanzania. Live rodents were trapped, with three types of live traps, in three habitats. Pieces of organs were pooled per habitat, species, and organ type (stratified pooling); these sample pools were examined for the presence of mycobacteria by PCR, microscopy, and culture methods. The mycobacterial isolates were identified using phenotypic techniques and sequencing. In total, 708 small mammals were collected, 31 of which were shrews. By pool prevalence estimation, 2.65% of the animals were carriers of mycobacteria, with a higher prevalence in the urban areas and in Cricetomys gambianus and the insectivore Crocidura hirta. Nontuberculous mycobacteria (Mycobacterium chimaera, M. intracellulare, M. arupense, M. parascrofulaceum, and Mycobacterium spp.) were isolated from C. gambianus, Mastomys natalensis, and C. hirta. This study is the first to report findings of mycobacteria in African rodents and insectivores and the first in mycobacterial ecology to estimate the prevalence of mycobacteria after stratified pool screening. The fact that small mammals in urban areas carry more mycobacteria than those in the fields and that potentially pathogenic mycobacteria were isolated identifies a risk for other animals and humans, especially HIV/AIDS patients, that have a weakened immune system.

  4. Circulation of the rabies virus in non-hematophagous bats in the city of Rio de Janeiro, Brazil, during 2001-2010.

    PubMed

    Cabral, Claudius Couto; Morais, Ana Carolina Nunes de; Dias, Alba Valéria de Almeida Barcelos; Araújo, Marcela Garcia; Moreira, Wildeberg Cal; Mattos, Gláucio Luis Mata

    2012-01-01

    Rabies is one of the most known lethal zoonosis, responsible for 55,000 human deaths per year. It is transmitted to humans mainly by the bite of domestic or wild animals infected with the virus. This paper shows the circulation of this virus in non-hematophagous bats in the City of Rio de Janeiro, Brazil. A survey was performed on the number of bats that had been sent for diagnosis by the Seção de Virologia of the Instituto Municipal de Medicina Veterinária Jorge Vaitsman and were positive for rabies. The positive animals were identified, and the isolated viruses were sent for antigenic typification with indirect immunofluorescence. The results were compared with the antigenic panel of the Centers for Disease Control and Prevention. During 2001-2010, the laboratory received 555 non-hematophagous bats for rabies diagnosis, with 198 (35.7%) from Rio de Janeiro City. A total of 11 (5.5%) animals were positive for this disease. Antigenic typification revealed the predominance of variant 3 in 9 (81.8%) of the isolated viruses; 1 virus was classified as variant 4 and 1 variant was identified that segregated with the viruses in insectivorous bats. The data obtained in this study showed the presence of the rabies virus in synanthropic populations of non-hematophagous bats in the City of Rio de Janeiro. The circulation of this agent in these animals represents a serious risk to human and animal health and requires attention and control measures by the authorities.

  5. Tiger moths and the threat of bats: decision-making based on the activity of a single sensory neuron.

    PubMed

    Ratcliffe, John M; Fullard, James H; Arthur, Benjamin J; Hoy, Ronald R

    2009-06-23

    Echolocating bats and eared moths are a model system of predator-prey interaction within an almost exclusively auditory world. Through selective pressures from aerial-hawking bats, noctuoid moths have evolved simple ears that contain one to two auditory neurons and function to detect bat echolocation calls and initiate defensive flight behaviours. Among these moths, some chemically defended and mimetic tiger moths also produce ultrasonic clicks in response to bat echolocation calls; these defensive signals are effective warning signals and may interfere with bats' ability to process echoic information. Here, we demonstrate that the activity of a single auditory neuron (the A1 cell) provides sufficient information for the toxic dogbane tiger moth, Cycnia tenera, to decide when to initiate defensive sound production in the face of bats. Thus, despite previous suggestions to the contrary, these moths' only other auditory neuron, the less sensitive A2 cell, is not necessary for initiating sound production. However, we found a positive linear relationship between combined A1 and A2 activity and the number of clicks the dogbane tiger moth produces.

  6. No effect of season on the electrocardiogram of long-eared bats (Nyctophilus gouldi) during torpor.

    PubMed

    Currie, Shannon E

    2018-04-05

    Heterothermic animals regularly undergo profound alterations of cardiac function associated with torpor. These animals have specialised tissues capable of withstanding fluctuations in body temperature > 30 °C without adverse effects. In particular, the hearts of heterotherms are able to resist fibrillation and discontinuity of the cardiac conduction system common in homeotherms during hypothermia. To investigate the patterns of cardiac conduction in small insectivorous bats which enter torpor year round, I simultaneously measured ECG and subcutaneous temperature (T sub ) of 21 Nyctophilus gouldi (11 g) during torpor at a range of ambient temperatures (T a 1-28 °C). During torpor cardiac conduction slowed in a temperature dependent manner, primarily via prolongation along the atrioventricular pathway (PR interval). A close coupling of depolarisation and repolarisation was retained in torpid bats, with no isoelectric ST segment visible until animals reached T sub <6 °C. There was little change in ventricular repolarisation (JT interval) with decreasing T sub , or between rest and torpor at mild T a . Bats retained a more rapid rate of ventricular conduction and repolarisation during torpor relative to other hibernators. Throughout all recordings across seasons (> 2500 h), there was no difference in ECG morphology or heart rate during torpor, and no manifestations of significant conduction blocks or ventricular tachyarrhythmias were observed. My results demonstrate the capacity of bat hearts to withstand extreme fluctuations in rate and temperature throughout the year without detrimental arrhythmogenesis. I suggest that this conduction reserve may be related to flight and the daily extremes in metabolism experienced by these animals, and warrants further investigation of cardiac electrophysiology in other flying hibernators.

  7. The Switch from Low-Pressure Sodium to Light Emitting Diodes Does Not Affect Bat Activity at Street Lights

    PubMed Central

    Rowse, Elizabeth G.; Harris, Stephen; Jones, Gareth

    2016-01-01

    We used a before-after-control-impact paired design to examine the effects of a switch from low-pressure sodium (LPS) to light emitting diode (LED) street lights on bat activity at twelve sites across southern England. LED lights produce broad spectrum ‘white’ light compared to LPS street lights that emit narrow spectrum, orange light. These spectral differences could influence the abundance of insects at street lights and thereby the activity of the bats that prey on them. Most of the bats flying around the LPS lights were aerial-hawking species, and the species composition of bats remained the same after the switch-over to LED. We found that the switch-over from LPS to LED street lights did not affect the activity (number of bat passes), or the proportion of passes containing feeding buzzes, of those bat species typically found in close proximity to street lights in suburban environments in Britain. This is encouraging from a conservation perspective as many existing street lights are being, or have been, switched to LED before the ecological consequences have been assessed. However, lighting of all spectra studied to date generally has a negative impact on several slow-flying bat species, and LED lights are rarely frequented by these ‘light-intolerant’ bat species. PMID:27008274

  8. Organization of the main olfactory bulbs of some mammals: musk shrews, moles, hedgehogs, tree shrews, bats, mice, and rats.

    PubMed

    Kosaka, Katsuko; Kosaka, Toshio

    2004-04-19

    We immunohistochemically examined the organization of the main olfactory bulbs (MOBs) in seven mammalian species, including moles, hedgehogs, tree shrews, bats, and mice as well as laboratory musk shrews and rats. We focused our investigation on two points: 1) whether nidi, particular spheroidal synaptic regions subjacent to glomeruli, which we previously reported for the laboratory musk shrew MOBs, are also present in other animals and 2) whether the compartmental organization of glomeruli and two types of periglomerular cells we proposed for the rat MOBs are general in other animals. The general laminar pattern was similar among these seven species, but discrete nidi and the nidal layer were recognized only in two insectivores, namely, the mole and laboratory musk shrew. Olfactory marker protein-immunoreactive (OMP-IR) axons extended beyond the limits of the glomerular layer (GL) into the superficial region of the external plexiform layer (EPL) or the nidal layer in the laboratory musk shrew, mole, hedgehog, and tree shrew but not in bat, mouse, and rat. We observed, in nidi and the nidal layer in the mole and laboratory musk shrew MOBs, only a few OMP-IR axons. In the hedgehog, another insectivore, OMP-IR processes extending from the glomeruli were scattered and intermingled with calbindin D28k-IR cells at the border between the GL and the EPL. In the superficial region of the EPL of the tree shrew MOBs, there were a small number of tiny glomerulus-like spheroidal structures where OMP-IR axons protruding from glomeruli were intermingled with dendritic branches of surrounding calbindin D28k-IR cells. Furthermore, we recognized the compartmental organization of glomeruli and two types of periglomerular cells in the MOBs of all of the mammals we examined. These structural features are therefore considered to be common and important organizational principles of the MOBs. Copyright 2004 Wiley-Liss, Inc.

  9. European Bat Lyssavirus in Scottish Bats

    PubMed Central

    Brookes, Sharon M.; Aegerter, James N.; Smith, Graham C.; Healy, Derek M.; Jolliffe, Tracey A.; Swift, Susan M.; Mackie, Iain J.; Pritchard, J. Stewart; Racey, Paul A.; Moore, Niall P.

    2005-01-01

    We report the first seroprevalence study of the occurrence of specific antibodies to European bat lyssavirus type 2 (EBLV-2) in Daubenton's bats. Bats were captured from 19 sites across eastern and southern Scotland. Samples from 198 Daubenton's bats, 20 Natterer's bats, and 6 Pipistrelle's bats were tested for EBLV-2. Blood samples (N = 94) were subjected to a modified fluorescent antibody virus neutralization test to determine antibody titer. From 0.05% to 3.8% (95% confidence interval) of Daubenton's bats were seropositive. Antibodies to EBLV-2 were not detected in the 2 other species tested. Mouth swabs (N = 218) were obtained, and RNA was extracted for a reverse transcription–polymerase chain reaction (RT-PCR). The RT-PCR included pan lyssavirus-primers (N gene) and internal PCR control primers for ribosomal RNA. EBLV-2 RNA was not detected in any of the saliva samples tested, and live virus was not detected in virus isolation tests. PMID:15829196

  10. Effects of drainage-basin geomorphology on insectivorous bird abundance in temperate forests.

    PubMed

    Iwata, Tomoya; Urabe, Jotaro; Mitsuhashi, Hiromune

    2010-10-01

    Interfaces between terrestrial and stream ecosystems often enhance species diversity and population abundance of ecological communities beyond levels that would be expected separately from both the ecosystems. Nevertheless, no study has examined how stream configuration within a watershed influences the population of terrestrial predators at the drainage-basin scale. We examined the habitat and abundance relationships of forest insectivorous birds in eight drainage basins in a cool temperate forest of Japan during spring and summer. Each basin has different drainage-basin geomorphology, such as the density and frequency of stream channels. In spring, when terrestrial arthropod prey biomass is limited, insectivorous birds aggregated in habitats closer to streams, where emerging aquatic prey was abundant. Nevertheless, birds ceased to aggregate around streams in summer because terrestrial prey became plentiful. Watershed-scale analyses showed that drainage basins with longer stream channels per unit area sustained higher densities of insectivorous birds. Moreover, such effects of streams on birds continued from spring through summer, even though birds dispersed out of riparian areas in the summer. Although our data are from only a single year, our findings imply that physical modifications of stream channels may reduce populations of forest birds; thus, they emphasize the importance of landscape-based management approaches that consider both stream and forest ecosystems for watershed biodiversity conservation. © 2010 Society for Conservation Biology.

  11. The effect of land-use on the diversity and mass-abundance relationships of understory avian insectivores in Sri Lanka and southern India.

    PubMed

    Sreekar, Rachakonda; Srinivasan, Umesh; Mammides, Christos; Chen, Jin; Manage Goodale, Uromi; Kotagama, Sarath Wimalabandara; Sidhu, Swati; Goodale, Eben

    2015-06-25

    Understory avian insectivores are especially sensitive to deforestation, although regional differences in how these species respond to human disturbance may be linked to varying land-use histories. South Asia experienced widespread conversion of forest to agriculture in the nineteenth century, providing a comparison to tropical areas deforested more recently. In Sri Lanka and the Western Ghats of India, we compared understory insectivores to other guilds, and to insectivores with different vertical strata preferences, both inside mixed-species flocks and for the whole bird community. Overall species richness did not change across the land-use gradient, although there was substantial turnover in species composition between land-use types. We found that the proportion of species represented by insectivores was ~1.14 times higher in forest compared to agriculture, and the proportion of insectivores represented by understory species was ~1.32 times higher in forests. Mass-abundance relationships were very different when analyzed on mixed-species flocks compared to the total community, perhaps indicating reduced competition in these mutualisms. We show that South Asia fits the worldwide pattern of understory insectivores declining with increased land-use intensity, and conclude that these species can be used globally as indicator and/or umbrella species for conservation across different disturbance time scales.

  12. The effect of land-use on the diversity and mass-abundance relationships of understory avian insectivores in Sri Lanka and southern India

    PubMed Central

    Sreekar, Rachakonda; Srinivasan, Umesh; Mammides, Christos; Chen, Jin; Manage Goodale, Uromi; Wimalabandara Kotagama, Sarath; Sidhu, Swati; Goodale, Eben

    2015-01-01

    Understory avian insectivores are especially sensitive to deforestation, although regional differences in how these species respond to human disturbance may be linked to varying land-use histories. South Asia experienced widespread conversion of forest to agriculture in the nineteenth century, providing a comparison to tropical areas deforested more recently. In Sri Lanka and the Western Ghats of India, we compared understory insectivores to other guilds, and to insectivores with different vertical strata preferences, both inside mixed-species flocks and for the whole bird community. Overall species richness did not change across the land-use gradient, although there was substantial turnover in species composition between land-use types. We found that the proportion of species represented by insectivores was ~1.14 times higher in forest compared to agriculture, and the proportion of insectivores represented by understory species was ~1.32 times higher in forests. Mass-abundance relationships were very different when analyzed on mixed-species flocks compared to the total community, perhaps indicating reduced competition in these mutualisms. We show that South Asia fits the worldwide pattern of understory insectivores declining with increased land-use intensity, and conclude that these species can be used globally as indicator and/or umbrella species for conservation across different disturbance time scales. PMID:26108368

  13. Distress Calls of a Fast-Flying Bat (Molossus molossus) Provoke Inspection Flights but Not Cooperative Mobbing

    PubMed Central

    Carter, Gerald; Schoeppler, Diana; Manthey, Marie; Knörnschild, Mirjam; Denzinger, Annette

    2015-01-01

    Many birds and mammals produce distress calls when captured. Bats often approach speakers playing conspecific distress calls, which has led to the hypothesis that bat distress calls promote cooperative mobbing. An alternative explanation is that approaching bats are selfishly assessing predation risk. Previous playback studies on bat distress calls involved species with highly maneuverable flight, capable of making close passes and tight circles around speakers, which can look like mobbing. We broadcast distress calls recorded from the velvety free-tailed bat, Molossus molossus, a fast-flying aerial-hawker with relatively poor maneuverability. Based on their flight behavior, we predicted that, in response to distress call playbacks, M. molossus would make individual passing inspection flights but would not approach in groups or approach within a meter of the distress call source. By recording responses via ultrasonic recording and infrared video, we found that M. molossus, and to a lesser extent Saccopteryx bilineata, made more flight passes during distress call playbacks compared to noise. However, only the more maneuverable S. bilineata made close approaches to the speaker, and we found no evidence of mobbing in groups. Instead, our findings are consistent with the hypothesis that single bats approached distress calls simply to investigate the situation. These results suggest that approaches by bats to distress calls should not suffice as clear evidence for mobbing. PMID:26353118

  14. Distress Calls of a Fast-Flying Bat (Molossus molossus) Provoke Inspection Flights but Not Cooperative Mobbing.

    PubMed

    Carter, Gerald; Schoeppler, Diana; Manthey, Marie; Knörnschild, Mirjam; Denzinger, Annette

    2015-01-01

    Many birds and mammals produce distress calls when captured. Bats often approach speakers playing conspecific distress calls, which has led to the hypothesis that bat distress calls promote cooperative mobbing. An alternative explanation is that approaching bats are selfishly assessing predation risk. Previous playback studies on bat distress calls involved species with highly maneuverable flight, capable of making close passes and tight circles around speakers, which can look like mobbing. We broadcast distress calls recorded from the velvety free-tailed bat, Molossus molossus, a fast-flying aerial-hawker with relatively poor maneuverability. Based on their flight behavior, we predicted that, in response to distress call playbacks, M. molossus would make individual passing inspection flights but would not approach in groups or approach within a meter of the distress call source. By recording responses via ultrasonic recording and infrared video, we found that M. molossus, and to a lesser extent Saccopteryx bilineata, made more flight passes during distress call playbacks compared to noise. However, only the more maneuverable S. bilineata made close approaches to the speaker, and we found no evidence of mobbing in groups. Instead, our findings are consistent with the hypothesis that single bats approached distress calls simply to investigate the situation. These results suggest that approaches by bats to distress calls should not suffice as clear evidence for mobbing.

  15. Histopathologic criteria to confirm white-nose syndrome in bats

    USGS Publications Warehouse

    Meteyer, Carol U.; Buckles, Elizabeth L.; Blehert, David S.; Hicks, Alan C.; Green, David E.; Shearn-Bochsler, Valerie I.; Thomas, Nancy J.; Gargas, Andrea; Behr, Melissa

    2009-01-01

    White-nose syndrome (WNS) is a cutaneous fungal disease of hibernating bats associated with a novel Geomyces sp. fungus. Currently, confirmation of WNS requires histopathologic examination. Invasion of living tissue distinguishes this fungal infection from those caused by conventional transmissible dermatophytes. Although fungal hyphae penetrate the connective tissue of glabrous skin and muzzle, there is typically no cellular inflammatory response in hibernating bats. Preferred tissue samples to diagnose this fungal infection are rostral muzzle with nose and wing membrane fixed in 10% neutral buffered formalin. To optimize detection, the muzzle is trimmed longitudinally, the wing membrane is rolled, and multiple cross-sections are embedded to increase the surface area examined. Periodic acid-Schiff stain is essential to discriminate the nonpigmented fungal hyphae and conidia. Fungal hyphae form cup-like epidermal erosions and ulcers in the wing membrane and pinna with involvement of underlying connective tissue. In addition, fungal hyphae are present in hair follicles and in sebaceous and apocrine glands of the muzzle with invasion of tissue surrounding adnexa. Fungal hyphae in tissues are branching and septate, but the diameter and shape of the hyphae may vary from parallel walls measuring 2 ??m in diameter to irregular walls measuring 3-5 ??m in diameter. When present on short aerial hyphae, curved conidia are approximately 2.5 ??m wide and 7.5 ??m in curved length. Conidia have a more deeply basophilic center, and one or both ends are usually blunt. Although WNS is a disease of hibernating bats, severe wing damage due to fungal hyphae may be seen in bats that have recently emerged from hibernation. These recently emerged bats also have a robust suppurative inflammatory response.

  16. Histopathologic criteria to confirm white-nose syndrome in bats.

    PubMed

    Meteyer, Carol Uphoff; Buckles, Elizabeth L; Blehert, David S; Hicks, Alan C; Green, D Earl; Shearn-Bochsler, Valerie; Thomas, Nancy J; Gargas, Andrea; Behr, Melissa J

    2009-07-01

    White-nose syndrome (WNS) is a cutaneous fungal disease of hibernating bats associated with a novel Geomyces sp. fungus. Currently, confirmation of WNS requires histopathologic examination. Invasion of living tissue distinguishes this fungal infection from those caused by conventional transmissible dermatophytes. Although fungal hyphae penetrate the connective tissue of glabrous skin and muzzle, there is typically no cellular inflammatory response in hibernating bats. Preferred tissue samples to diagnose this fungal infection are rostral muzzle with nose and wing membrane fixed in 10% neutral buffered formalin. To optimize detection, the muzzle is trimmed longitudinally, the wing membrane is rolled, and multiple cross-sections are embedded to increase the surface area examined. Periodic acid-Schiff stain is essential to discriminate the nonpigmented fungal hyphae and conidia. Fungal hyphae form cup-like epidermal erosions and ulcers in the wing membrane and pinna with involvement of underlying connective tissue. In addition, fungal hyphae are present in hair follicles and in sebaceous and apocrine glands of the muzzle with invasion of tissue surrounding adnexa. Fungal hyphae in tissues are branching and septate, but the diameter and shape of the hyphae may vary from parallel walls measuring 2 microm in diameter to irregular walls measuring 3-5 microm in diameter. When present on short aerial hyphae, curved conidia are approximately 2.5 microm wide and 7.5 microm in curved length. Conidia have a more deeply basophilic center, and one or both ends are usually blunt. Although WNS is a disease of hibernating bats, severe wing damage due to fungal hyphae may be seen in bats that have recently emerged from hibernation. These recently emerged bats also have a robust suppurative inflammatory response.

  17. Batting cage performance of wood and nonwood youth baseball bats.

    PubMed

    Crisco, Joseph J; Rainbow, Michael J; Schwartz, Joel B; Wilcox, Bethany J

    2014-04-01

    The purpose of this study was to examine the batting cage performance of wood and nonwood baseball bats used at the youth level. Three wood and ten nonwood bats were swung by 22 male players (13 to 18 years old) in a batting cage equipped with a 3-dimensional motion capture (300 Hz) system. Batted ball speeds were compared using a one-way ANOVA and bat swing speeds were analyzed as a function of bat moment of inertia by linear regression. Batted ball speeds were significantly faster for three nonwood bat models (P<.001), significantly slower for one nonwood model, and not different for six nonwood bats when compared with wood bats. Bat impact speed significantly (P<.05) decreased with increasing bat moment of inertia for the 13-, 14-, and 15-year-old groups, but not for the other age groups. Ball-bat coefficients of restitution (BBCOR) for all nonwood were greater than for wood, but this factor alone did not correlate with bat performance. Our findings indicate that increases in BBCOR and swing speed were not associated with faster batted ball speeds for the bats studied whose moment of inertia was substantially less than that of a wood bat of similar length.

  18. Are Bats Dangerous?

    ERIC Educational Resources Information Center

    Williams, Kim

    2004-01-01

    There are many reasons people are afraid of bats but most are myths. Many people are also afraid of bats because they believe all bats are vampire bats, or bats that feed on blood. There are a few species of bats called "vampire" bats;however, these bats are found in Central and South America--there are no vampire bats in the United…

  19. Bat Coronaviruses and Experimental Infection of Bats, the Philippines

    PubMed Central

    Watanabe, Shumpei; Masangkay, Joseph S.; Nagata, Noriyo; Morikawa, Shigeru; Mizutani, Tetsuya; Fukushi, Shuetsu; Alviola, Phillip; Omatsu, Tsutomu; Ueda, Naoya; Iha, Koichiro; Taniguchi, Satoshi; Fujii, Hikaru; Tsuda, Shumpei; Endoh, Maiko; Kato, Kentaro; Tohya, Yukinobu; Kyuwa, Shigeru; Yoshikawa, Yasuhiro

    2010-01-01

    Fifty-two bats captured during July 2008 in the Philippines were tested by reverse transcription–PCR to detect bat coronavirus (CoV) RNA. The overall prevalence of virus RNA was 55.8%. We found 2 groups of sequences that belonged to group 1 (genus Alphacoronavirus) and group 2 (genus Betacoronavirus) CoVs. Phylogenetic analysis of the RNA-dependent RNA polymerase gene showed that groups 1 and 2 CoVs were similar to Bat-CoV/China/A515/2005 (95% nt sequence identity) and Bat-CoV/HKU9–1/China/2007 (83% identity), respectively. To propagate group 2 CoVs obtained from a lesser dog-faced fruit bat (Cynopterus brachyotis), we administered intestine samples orally to Leschenault rousette bats (Rousettus leschenaulti) maintained in our laboratory. After virus replication in the bats was confirmed, an additional passage of the virus was made in Leschenault rousette bats, and bat pathogenesis was investigated. Fruit bats infected with virus did not show clinical signs of infection. PMID:20678314

  20. Bat coronaviruses and experimental infection of bats, the Philippines.

    PubMed

    Watanabe, Shumpei; Masangkay, Joseph S; Nagata, Noriyo; Morikawa, Shigeru; Mizutani, Tetsuya; Fukushi, Shuetsu; Alviola, Phillip; Omatsu, Tsutomu; Ueda, Naoya; Iha, Koichiro; Taniguchi, Satoshi; Fujii, Hikaru; Tsuda, Shumpei; Endoh, Maiko; Kato, Kentaro; Tohya, Yukinobu; Kyuwa, Shigeru; Yoshikawa, Yasuhiro; Akashi, Hiroomi

    2010-08-01

    Fifty-two bats captured during July 2008 in the Philippines were tested by reverse transcription-PCR to detect bat coronavirus (CoV) RNA. The overall prevalence of virus RNA was 55.8%. We found 2 groups of sequences that belonged to group 1 (genus Alphacoronavirus) and group 2 (genus Betacoronavirus) CoVs. Phylogenetic analysis of the RNA-dependent RNA polymerase gene showed that groups 1 and 2 CoVs were similar to Bat-CoV/China/A515/2005 (95% nt sequence identity) and Bat-CoV/HKU9-1/China/2007 (83% identity), respectively. To propagate group 2 CoVs obtained from a lesser dog-faced fruit bat (Cynopterus brachyotis), we administered intestine samples orally to Leschenault rousette bats (Rousettus leschenaulti) maintained in our laboratory. After virus replication in the bats was confirmed, an additional passage of the virus was made in Leschenault rousette bats, and bat pathogenesis was investigated. Fruit bats infected with virus did not show clinical signs of infection.

  1. Bat Hunting and Bat-Human Interactions in Bangladeshi Villages: Implications for Zoonotic Disease Transmission and Bat Conservation.

    PubMed

    Openshaw, J J; Hegde, S; Sazzad, H M S; Khan, S U; Hossain, M J; Epstein, J H; Daszak, P; Gurley, E S; Luby, S P

    2017-08-01

    Bats are an important reservoir for emerging zoonotic pathogens. Close human-bat interactions, including the sharing of living spaces and hunting and butchering of bats for food and medicines, may lead to spillover of zoonotic disease into human populations. We used bat exposure and environmental data gathered from 207 Bangladeshi villages to characterize bat exposures and hunting in Bangladesh. Eleven percent of households reported having a bat roost near their homes, 65% reported seeing bats flying over their households at dusk, and 31% reported seeing bats inside their compounds or courtyard areas. Twenty percent of households reported that members had at least daily exposure to bats. Bat hunting occurred in 49% of the villages surveyed and was more likely to occur in households that reported nearby bat roosts (adjusted prevalence ratio [aPR] 2.3, 95% CI 1.1-4.9) and villages located in north-west (aPR 7.5, 95% CI 2.5-23.0) and south-west (aPR 6.8, 95% CI 2.1-21.6) regions. Our results suggest high exposure to bats and widespread hunting throughout Bangladesh. This has implications for both zoonotic disease spillover and bat conservation. © 2016 Blackwell Verlag GmbH.

  2. Spatial and temporal expression of vegetation and atmospheric variability from stable carbon and nitrogen isotope analysis of bat guano in the southern United States

    NASA Astrophysics Data System (ADS)

    Wurster, Christopher M.; McFarlane, Donald A.; Bird, Michael I.

    2007-07-01

    Stable isotopes of faeces contain information related to the animals feeding ecology. The use of stable isotope values from subfossil faeces as a palaeoenvironmental indicator depends on how faithfully the animal records their local environment. Here we present insectivorous bat guano δ 13C and δ 15N values from a precipitation gradient across the southern United States and northern Mexico to compare with local vegetation and climate. We find δ 13C values to be an excellent predictor of expected C 4/CAM vegetation, indicating that the bats are non-selective in their diet. Moreover, we find bat guano δ 13C values to be strongly correlated with summer precipitation amount and winter precipitation ratio. We also find evidence for a significant relationship with mean annual temperature. In general, we do not find δ 15N values to be related to any parameters along the climatic gradient we examined. Additionally, we measured δ 13C and δ 15N values of bulk guano deposited annually from 1968 to 1987 in a varved guano deposit at Eagle Creek Cave, Arizona. Neither δ 13C nor δ 15N values were significantly related to various local meteorological variables; however, we found δ 13C values of guano to be significantly related to drought and to the North American Monsoon indicating bat guano δ 13C values preserve an interpretable record of large-scale atmospheric variability.

  3. Gleaning bat echolocation calls do not elicit antipredator behaviour in the Pacific field cricket, Teleogryllus oceanicus (Orthoptera: Gryllidae).

    PubMed

    ter Hofstede, Hannah M; Killow, Joanne; Fullard, James H

    2009-08-01

    Bats that glean prey (capture them from surfaces) produce relatively inconspicuous echolocation calls compared to aerially foraging bats and could therefore be difficult predators to detect, even for insects with ultrasound sensitive ears. In the cricket Teleogryllus oceanicus, an auditory interneuron (AN2) responsive to ultrasound is known to elicit turning behaviour, but only when the cricket is in flight. Turning would not save a cricket from a gleaning bat so we tested the hypothesis that AN2 elicits more appropriate antipredator behaviours when crickets are on the ground. The echolocation calls of Nyctophilus geoffroyi, a sympatric gleaning bat, were broadcast to singing male and walking female T. oceanicus. Males did not cease singing and females did not pause walking more than usual in response to the bat calls up to intensities of 82 dB peSPL. Extracellular recordings from the cervical connective revealed that the echolocation calls elicited AN2 action potentials at high firing rates, indicating that the crickets could hear these stimuli. AN2 appears to elicit antipredator behaviour only in flight, and we discuss possible reasons for this context-dependent function.

  4. Seasonal variation of energy reserves and reproduction in neotropical free-tailed bats Molossus molossus (Chiroptera: Molossidae).

    PubMed

    Barros, M S; Morais, D B; Araújo, M R; Carvalho, T F; Matta, S L P; Pinheiro, E C; Freitas, M B

    2013-08-01

    Seasonal variation is a key factor regulating energy metabolism and reproduction in several mammals, including bats. This study aimed to track seasonal changes in the energy reserves of the insectivorous bat Molossus molossus associated with its reproductive cycle. Adult males were collected during the four neotropical annual seasons in Viçosa - MG, Brazil. Blood and tissues were collected for metabolic analysis and testes were removed for histology and morphometry. Our results show that liver and breast muscle glycogen concentrations were significantly lower in winter. The adiposity index was significantly higher in the fall compared to winter and spring. Seminiferous tubules were greater in diameter in animals captured in fall and winter, indicating a higher investment in spermatic production during these seasons. The percentage of Leydig cells was higher in summer compared to fall and winter. We suggest that M. molossus presents a type of seasonal reproduction with two peaks of testicular activity: one in fall, with higher sperm production (spermatogenesis), and another in summer, with higher hormone production (steroidogenesis). The metabolic pattern may be associated with reproductive events, especially due to the highest fat storage observed in the fall, which coincides with the further development of the seminiferous tubules.

  5. Sex differences in the thermoregulation and evaporative water loss of a heterothermic bat, Lasiurus cinereus, during its spring migration

    USGS Publications Warehouse

    Cryan, P.M.; Wolf, B. O.

    2003-01-01

    This study quantifies sex differences in thermoregulation and water loss of a small (20-35 g) insectivorous heterothermic mammal, the hoary bat Lasiurus cinereus, during its spring migration. We measured body temperature, metabolic rate and evaporative water loss, and calculated wet thermal conductance, for bats exposed to air temperatures ranging from 0 to 40°C for periods of 2-5 h. Pregnant females maintained normothermic body temperatures (35.7±0.7°C; mean ± s.e.m.) independent of air temperature. In contrast, males became torpid during the majority (68%) of exposures to air temperatures <25°C. The thermal neutral zone (TNZ) ranged between approximately 30°C and 34°C in both sexes and, within the TNZ, females had lower mass-specific metabolic rates (6.1±0.2 mW g-1) than males (9.0±0.9 mW g-1). Wet thermal conductance values in torpid bats (0.7±0.5 mW g-1 deg.-1) were lower than those of normothermic individuals (1.1±0.3 mW g-1 deg.-1). Mass-specific rates of evaporative water loss in males were consistently higher than in females at most air temperatures and rates of water loss in torpid bats were 63±6% of normothermic values. These results suggest that male and pregnant female L. cinereus employ different thermoregulatory strategies during their spring migration. Females defend normothermic body temperatures, presumably to expedite embryonic growth, while males use torpor, presumably to minimize energy and water deficits. These variable thermoregulatory strategies may reflect continental differences in the summer distribution of the sexes.

  6. Effect of landscape tree cover, sex and season on the bioaccumulation of persistent organochlorine pesticides in fruit bats of riparian corridors in eastern Mexico.

    PubMed

    Valdespino, Carolina; Sosa, Vinicio J

    2017-05-01

    Riparian forests are recognized as important ecosystems for biodiversity conservation in transformed landscapes. Many animal species that use this type of vegetation facilitate its recovery through pollination and seed dispersal. In landscapes dominated by agrosystems and cattle ranching, persistent organochlorine pesticides (OCPs) in the riparian system may have an effect on the physiology and fitness of animals. In this study, we measured bioaccumulation of OCPs in the most abundant frugivorous bat, Sturnira hondurensis, from the upper part of La Antigua basin, Veracruz, Mexico and, from these data, estimated accumulation by the frugivorous bat community of riparian forests in contrasting, transformed (TL) and forested (FL) landscapes. Concentration of ΣDDT, Σdrines, Σclordano, ΣHCH, Σheptachlor and Σendosulfan was measured by gas-chromatography in 23 female and 33 male adult Sturnira captured during the dry and rainy seasons. Using censored data statistics, we found that the sex of the individual was significant for ΣHCH, and that interactions of landscape type (TL vs. FL) and season (dry vs. wet), and sex and season were significant for Σendosulfan and Σdrines, respectively. Mean ΣDDT (6.86 μg/g) and ΣHCH (28.22 μg/g) concentrations were lower than those reported for frugivorous bats in India but concentrations of Σdrines (13.86 μg/g) were higher than those reported in insectivorous bats. In our study sites, frugivorous bats are bioaccumulating higher amounts of OCPs in TL than in FL. We discuss the potential of this species as a bio-indicator of OCPs contamination in river basins. Copyright © 2017. Published by Elsevier Ltd.

  7. Social Grooming in Bats: Are Vampire Bats Exceptional?

    PubMed

    Carter, Gerald; Leffer, Lauren

    2015-01-01

    Evidence for long-term cooperative relationships comes from several social birds and mammals. Vampire bats demonstrate cooperative social bonds, and like primates, they maintain these bonds through social grooming. It is unclear, however, to what extent vampires are special among bats in this regard. We compared social grooming rates of common vampire bats Desmodus rotundus and four other group-living bats, Artibeus jamaicensis, Carollia perspicillata, Eidolon helvum and Rousettus aegyptiacus, under the same captive conditions of fixed association and no ectoparasites. We conducted 13 focal sampling sessions for each combination of sex and species, for a total of 1560 presence/absence observations per species. We observed evidence for social grooming in all species, but social grooming rates were on average 14 times higher in vampire bats than in other species. Self-grooming rates did not differ. Vampire bats spent 3.7% of their awake time social grooming (95% CI = 1.5-6.3%), whereas bats of the other species spent 0.1-0.5% of their awake time social grooming. Together with past data, this result supports the hypothesis that the elevated social grooming rate in the vampire bat is an adaptive trait, linked to their social bonding and unique regurgitated food sharing behavior.

  8. Social Grooming in Bats: Are Vampire Bats Exceptional?

    PubMed Central

    Carter, Gerald; Leffer, Lauren

    2015-01-01

    Evidence for long-term cooperative relationships comes from several social birds and mammals. Vampire bats demonstrate cooperative social bonds, and like primates, they maintain these bonds through social grooming. It is unclear, however, to what extent vampires are special among bats in this regard. We compared social grooming rates of common vampire bats Desmodus rotundus and four other group-living bats, Artibeus jamaicensis, Carollia perspicillata, Eidolon helvum and Rousettus aegyptiacus, under the same captive conditions of fixed association and no ectoparasites. We conducted 13 focal sampling sessions for each combination of sex and species, for a total of 1560 presence/absence observations per species. We observed evidence for social grooming in all species, but social grooming rates were on average 14 times higher in vampire bats than in other species. Self-grooming rates did not differ. Vampire bats spent 3.7% of their awake time social grooming (95% CI = 1.5–6.3%), whereas bats of the other species spent 0.1–0.5% of their awake time social grooming. Together with past data, this result supports the hypothesis that the elevated social grooming rate in the vampire bat is an adaptive trait, linked to their social bonding and unique regurgitated food sharing behavior. PMID:26445502

  9. Bartonellae are Prevalent and Diverse in Costa Rican Bats and Bat Flies.

    PubMed

    Judson, S D; Frank, H K; Hadly, E A

    2015-12-01

    Species in the bacterial genus, Bartonella, can cause disease in both humans and animals. Previous reports of Bartonella in bats and ectoparasitic bat flies suggest that bats could serve as mammalian hosts and bat flies as arthropod vectors. We compared the prevalence and genetic similarity of bartonellae in individual Costa Rican bats and their bat flies using molecular and sequencing methods targeting the citrate synthase gene (gltA). Bartonellae were more prevalent in bat flies than in bats, and genetic variants were sometimes, but not always, shared between bats and their bat flies. The detected bartonellae genetic variants were diverse, and some were similar to species known to cause disease in humans and other mammals. The high prevalence and sharing of bartonellae in bat flies and bats support a role for bat flies as a potential vector for Bartonella, while the genetic diversity and similarity to known species suggest that bartonellae could spill over into humans and animals sharing the landscape. © 2015 Blackwell Verlag GmbH.

  10. Bat consumption in Thailand.

    PubMed

    Suwannarong, Kanokwan; Schuler, Sidney

    2016-01-01

    Human consumption of bats poses an increasing public health threat globally. Communities in which bat guano is mined from caves have extensive exposure to bat excreta, often harvest bats for consumption, and are at risk for bat-borne diseases. This rapid ethnographic study was conducted in four provinces of Thailand (Ratchaburi, Sakaeo, Nakorn Sawan, and Phitsanulok), where bat guano was mined and sold during the period April-August 2014. The aim of this study was to understand behaviors and risk perceptions associated with bat conservation, exposure to bats and their excreta, and bat consumption. Sixty-seven respondents playing various roles in bat guano mining, packaging, sale, and use as fertilizer participated in the study. Data were collected through interviews and/or focus group discussions. In spite of a bat conservation program dating back to the 1980s, the benefits of conserving bats and the risks associated with bat consumption were not clear and infrequently articulated by study respondents. Since bat consumption continues, albeit covertly, the risk of bat-borne diseases remains high. There is an opportunity to reduce the risk of bat-borne diseases in guano-mining communities by strengthening bat conservation efforts and raising awareness of the health risks of bat consumption. Further research is suggested to test behavior change strategies for reducing bat consumption.

  11. Bat consumption in Thailand

    PubMed Central

    Suwannarong, Kanokwan; Schuler, Sidney

    2016-01-01

    Background Human consumption of bats poses an increasing public health threat globally. Communities in which bat guano is mined from caves have extensive exposure to bat excreta, often harvest bats for consumption, and are at risk for bat-borne diseases. Methods This rapid ethnographic study was conducted in four provinces of Thailand (Ratchaburi, Sakaeo, Nakorn Sawan, and Phitsanulok), where bat guano was mined and sold during the period April–August 2014. The aim of this study was to understand behaviors and risk perceptions associated with bat conservation, exposure to bats and their excreta, and bat consumption. Sixty-seven respondents playing various roles in bat guano mining, packaging, sale, and use as fertilizer participated in the study. Data were collected through interviews and/or focus group discussions. Results In spite of a bat conservation program dating back to the 1980s, the benefits of conserving bats and the risks associated with bat consumption were not clear and infrequently articulated by study respondents. Discussion Since bat consumption continues, albeit covertly, the risk of bat-borne diseases remains high. There is an opportunity to reduce the risk of bat-borne diseases in guano-mining communities by strengthening bat conservation efforts and raising awareness of the health risks of bat consumption. Further research is suggested to test behavior change strategies for reducing bat consumption. PMID:26806167

  12. Diets of the Sympatric Pacific Sheath-Tailed Bat (Emballonura semicaudata rotensis) and Mariana Swiftlet (Aerodramus bartschi) on Aguiguan, Mariana Islands

    USGS Publications Warehouse

    Valdez, Ernest W.; Wiles, Gary J.; O'Shea, Thomas J.

    2011-01-01

    The Pacific sheath-tailed bat (Emballonura semicaudata rotensis) and Mariana swiftlet (Aerodramus bartschi) are two rare insectivorous taxa restricted to the southern Mariana Islands in western Micronesia. It is believed that populations of both have dwindled because of impacts to their food resources. However, there is little information on the food habits of A. bartschi and none exists for E. s. rotensis. In an effort to better understand the feeding habits of both, we investigated their diets using guano analysis. Guano was collected from two roosts in caves during a 2-week period in June and July at the onset of the rainy season. Important orders of insects consumed (percentage volume) by bats roosting at one cave included hymenopterans (64%), coleopterans (10%), lepidopterans (8%), isopterans (8%), and psocopterans (5%), whereas those at a second cave included lepidopterans (45%), hymenopterans (41%), coleopterans (10%), and isopterans (5%). Swiftlets, which roosted in only one of the caves, fed mostly on hymenopterans (88%) and hemipterans (6%). Significant differences existed between the two taxa in several insect orders eaten, with E. s. rotensis consuming more lepidopterans and coleopterans and A. bartschi taking more hymenopterans and hemipterans. Within Hymenoptera, bats fed more on ichneumoideans, whereas swiftlets ate more formicid alates and chalicidoideans. This new information on the feeding habits of E. s. rotensis and A. bartschi provides insight on the complexity of their diets during June and July, and serves as baseline information for future studies and management of their habitat.

  13. Do Bat Gantries and Underpasses Help Bats Cross Roads Safely?

    PubMed Central

    Berthinussen, Anna; Altringham, John

    2012-01-01

    Major roads can reduce bat abundance and diversity over considerable distances. To mitigate against these effects and comply with environmental law, many European countries install bridges, gantries or underpasses to make roads permeable and safer to cross. However, through lack of appropriate monitoring, there is little evidence to support their effectiveness. Three underpasses and four bat gantries were investigated in northern England. Echolocation call recordings and observations were used to determine the number of bats using underpasses in preference to crossing the road above, and the height at which bats crossed. At gantries, proximity to the gantry and height of crossing bats were measured. Data were compared to those from adjacent, severed commuting routes that had no crossing structure. At one underpass 96% of bats flew through it in preference to crossing the road. This underpass was located on a pre-construction commuting route that allowed bats to pass without changing flight height or direction. At two underpasses attempts to divert bats from their original commuting routes were unsuccessful and bats crossed the road at the height of passing vehicles. Underpasses have the potential to allow bats to cross roads safely if built on pre-construction commuting routes. Bat gantries were ineffective and used by a very small proportion of bats, even up to nine years after construction. Most bats near gantries crossed roads along severed, pre-construction commuting routes at heights that put them in the path of vehicles. Crossing height was strongly correlated with verge height, suggesting that elevated verges may have some value in mitigation, but increased flight height may be at the cost of reduced permeability. Green bridges should be explored as an alternative form of mitigation. Robust monitoring is essential to assess objectively the case for mitigation and to ensure effective mitigation. PMID:22719941

  14. House bat management

    USGS Publications Warehouse

    Greenhall, Arthur M.

    1982-01-01

    The soundest long-term solution for the management of bats that enter buildings and cause a nuisance problem or present a public health hazard is by batproofing the structure. Chemical toxicants do not solve house bat problems and may create worse ones. This manual describes batproofing techniques that will provide effective and acceptable alternatives for dealing with house bat problems and hazards. Recent declines in bat populations and greater appreciation of the ecological importance of bats have identified the need for sound management strategies that will encourage bat conservation while protecting human health and solving nuisance problems. One of the best deterrents against house bats is to improve the energy efficiency of the structure since bats may enter holes through which heat is lost. Heat conservation methods used for batproofing will also be eligible for Federal residential energy tax credits. The manual should be useful to homeowners, public health officials, physicians, veterinarians, conservationists, and others interested or concerned about bat interactions with humans.

  15. Bat Influenza (Flu)

    MedlinePlus

    ... Influenza Types Seasonal Avian Swine Variant Pandemic Other Bat Influenza (Flu) Questions & Answers Language: English (US) Español ... How was bat flu discovered? References What is bat influenza (flu)? Bat flu refers to influenza A ...

  16. Surveillance for European bat lyssavirus in Swiss bats.

    PubMed

    Megali, A; Yannic, G; Zahno, M-L; Brügger, D; Bertoni, G; Christe, P; Zanoni, R

    2010-10-01

    Most countries in Western Europe are currently free of rabies in terrestrial mammals. Nevertheless, rabies remains a residual risk to public health due to the natural circulation of bat-specific viruses, such as European bat lyssaviruses (EBLVs). European bat lyssavirus types 1 and 2 (EBLV-1 and EBLV-2) are widely distributed throughout Europe, but little is known of their true prevalence and epidemiology. We report that only three out of 837 brains taken from bats submitted to the Swiss Rabies Centre between 1976 and 2009 were found by immunofluorescence (FAT) to be positive for EBLVs. All three positive cases were in Myotis daubentoni, from 1992, 1993 and 2002. In addition to this passive surveillance, we undertook a targeted survey in 2009, aimed at detecting lyssaviruses in live bats in Switzerland. A total of 237 bats of the species M. daubentoni, Myotis myotis, Eptesicus serotinus and Nyctalus noctula were captured at different sites in western Switzerland. Oropharyngeal swabs and blood from each individual were analysed by RT-PCR and rapid fluorescent focus inhibition test (RFFIT), respectively. RNA corresponding to EBLV-2 was detected from oropharyngeal swabs of a single M. daubentoni bat, but no infectious virus was found. Molecular phylogenetic analysis revealed that the corresponding sequence was closely related to the other EBLV-2 sequences identified in previous rabies isolates from Swiss bats (particularly to that found at Geneva in 2002). Three M. daubentoni bats were found to be seropositive by RFFIT. In conclusion, even though the prevalence is low in Switzerland, continuous management and surveillance are required to assess the potential risk to public health.

  17. Simulated bat populations erode when exposed to climate change projections for western North America

    PubMed Central

    Adams, Rick A.

    2017-01-01

    Recent research has demonstrated that temperature and precipitation conditions correlate with successful reproduction in some insectivorous bat species that live in arid and semiarid regions, and that hot and dry conditions correlate with reduced lactation and reproductive output by females of some species. However, the potential long-term impacts of climate-induced reproductive declines on bat populations in western North America are not well understood. We combined results from long-term field monitoring and experiments in our study area with information on vital rates to develop stochastic age-structured population dynamics models and analyzed how simulated fringed myotis (Myotis thysanodes) populations changed under projected future climate conditions in our study area near Boulder, Colorado (Boulder Models) and throughout western North America (General Models). Each simulation consisted of an initial population of 2,000 females and an approximately stable age distribution at the beginning of the simulation. We allowed each population to be influenced by the mean annual temperature and annual precipitation for our study area and a generalized range-wide model projected through year 2086, for each of four carbon emission scenarios (representative concentration pathways RCP2.6, RCP4.5, RCP6.0, RCP8.5). Each population simulation was repeated 10,000 times. Of the 8 Boulder Model simulations, 1 increased (+29.10%), 3 stayed approximately stable (+2.45%, +0.05%, -0.03%), and 4 simulations decreased substantially (-44.10%, -44.70%, -44.95%, -78.85%). All General Model simulations for western North America decreased by >90% (-93.75%, -96.70%, -96.70%, -98.75%). These results suggest that a changing climate in western North America has the potential to quickly erode some forest bat populations including species of conservation concern, such as fringed myotis. PMID:28686737

  18. Simulated bat populations erode when exposed to climate change projections for western North America.

    PubMed

    Hayes, Mark A; Adams, Rick A

    2017-01-01

    Recent research has demonstrated that temperature and precipitation conditions correlate with successful reproduction in some insectivorous bat species that live in arid and semiarid regions, and that hot and dry conditions correlate with reduced lactation and reproductive output by females of some species. However, the potential long-term impacts of climate-induced reproductive declines on bat populations in western North America are not well understood. We combined results from long-term field monitoring and experiments in our study area with information on vital rates to develop stochastic age-structured population dynamics models and analyzed how simulated fringed myotis (Myotis thysanodes) populations changed under projected future climate conditions in our study area near Boulder, Colorado (Boulder Models) and throughout western North America (General Models). Each simulation consisted of an initial population of 2,000 females and an approximately stable age distribution at the beginning of the simulation. We allowed each population to be influenced by the mean annual temperature and annual precipitation for our study area and a generalized range-wide model projected through year 2086, for each of four carbon emission scenarios (representative concentration pathways RCP2.6, RCP4.5, RCP6.0, RCP8.5). Each population simulation was repeated 10,000 times. Of the 8 Boulder Model simulations, 1 increased (+29.10%), 3 stayed approximately stable (+2.45%, +0.05%, -0.03%), and 4 simulations decreased substantially (-44.10%, -44.70%, -44.95%, -78.85%). All General Model simulations for western North America decreased by >90% (-93.75%, -96.70%, -96.70%, -98.75%). These results suggest that a changing climate in western North America has the potential to quickly erode some forest bat populations including species of conservation concern, such as fringed myotis.

  19. Convergent evolution: floral guides, stingless bee nest entrances, and insectivorous pitchers

    NASA Astrophysics Data System (ADS)

    Biesmeijer, Jacobus C.; Giurfa, Martin; Koedam, Dirk; Potts, Simon G.; Joel, Daniel M.; Dafni, Amots

    2005-09-01

    Several recent hypotheses, including sensory drive and sensory exploitation, suggest that receiver biases may drive selection of biological signals in the context of sexual selection. Here we suggest that a similar mechanism may have led to convergence of patterns in flowers, stingless bee nest entrances, and pitchers of insectivorous plants. A survey of these non-related visual stimuli shows that they share features such as stripes, dark centre, and peripheral dots. Next, we experimentally show that in stingless bees the close-up approach to a flower is guided by dark centre preference. Moreover, in the approach towards their nest entrance, they have a spontaneous preference for entrance patterns containing a dark centre and disrupted ornamentation. Together with existing empirical evidence on the honeybee's and other insects’ orientation to flowers, this suggests that the signal receivers of the natural patterns we examined, mainly Hymenoptera, have spontaneous preferences for radiating stripes, dark centres, and peripheral dots. These receiver biases may have evolved in other behavioural contexts in the ancestors of Hymenoptera, but our findings suggest that they have triggered the convergent evolution of visual stimuli in floral guides, stingless bee nest entrances, and insectivorous pitchers.

  20. Convergent evolution: floral guides, stingless bee nest entrances, and insectivorous pitchers.

    PubMed

    Biesmeijer, Jacobus C; Giurfa, Martin; Koedam, Dirk; Potts, Simon G; Joel, Daniel M; Dafni, Amots

    2005-09-01

    Several recent hypotheses, including sensory drive and sensory exploitation, suggest that receiver biases may drive selection of biological signals in the context of sexual selection. Here we suggest that a similar mechanism may have led to convergence of patterns in flowers, stingless bee nest entrances, and pitchers of insectivorous plants. A survey of these non-related visual stimuli shows that they share features such as stripes, dark centre, and peripheral dots. Next, we experimentally show that in stingless bees the close-up approach to a flower is guided by dark centre preference. Moreover, in the approach towards their nest entrance, they have a spontaneous preference for entrance patterns containing a dark centre and disrupted ornamentation. Together with existing empirical evidence on the honeybee's and other insects' orientation to flowers, this suggests that the signal receivers of the natural patterns we examined, mainly Hymenoptera, have spontaneous preferences for radiating stripes, dark centres, and peripheral dots. These receiver biases may have evolved in other behavioural contexts in the ancestors of Hymenoptera, but our findings suggest that they have triggered the convergent evolution of visual stimuli in floral guides, stingless bee nest entrances, and insectivorous pitchers.

  1. European Bat Lyssavirus Infection in Spanish Bat Populations

    PubMed Central

    Amengual, Blanca; Abellán, Carlos; Bourhy, Hervé

    2002-01-01

    From 1992 to 2000, 976 sera, 27 blood pellets, and 91 brains were obtained from 14 bat species in 37 localities in Spain. Specific anti-European bat lyssavirus 1 (EBL1)-neutralizing antibodies have been detected in Myotis myotis, Miniopterus schreibersii, Tadarida teniotis, and Rhinolophus ferrumequinum in the region of Aragon and the Balearic Islands. Positive results were also obtained by nested reverse transcription-polymerase chain reaction on brain, blood pellet, lung, heart, tongue, and esophagus-larynx-pharynx of M. myotis, Myotis nattereri, R. ferrumequinum, and M. schreibersii. Determination of nucleotide sequence confirmed the presence of EBL1 RNA in the different tissues. In one colony, the prevalence of seropositive bats over time corresponded to an asymmetrical curve, with a sudden initial increase peaking at 60% of the bats, followed by a gradual decline. Banded seropositive bats were recovered during several years, indicating that EBL1 infection in these bats was nonlethal. At least one of this species (M. schreibersii) is migratory and thus could be partially responsible for the dissemination of EBL1 on both shores of the Mediterranean Sea. PMID:11971777

  2. Acute effects of various weighted bat warm-up protocols on bat velocity.

    PubMed

    Reyes, G Francis; Dolny, Dennis

    2009-10-01

    Although research has provided evidence of increased muscular performance following a facilitation set of resistance exercise, this has not been established for use prior to measuring baseball bat velocity. The purpose of this study was to determine the effectiveness of selected weighted bat warm-up protocols to enhance bat velocity in collegiate baseball players. Nineteen collegiate baseball players (age = 20.15 +/- 1.46 years) were tested for upper-body strength by a 3-repetition maximum (RM) bench press (mean = 97.98 +/- 14.54 kg) and mean bat velocity. Nine weighted bat warm-up protocols, utilizing 3 weighted bats (light = 794 g; standard = 850 g; heavy = 1,531 g) were swung in 3 sets of 6 repetitions in different orders. A control trial involved the warm-up protocol utilizing only the standard bat. Pearson product correlation revealed a significant relationship between 3RM strength and pretest bat velocity (r = 0.51, p = 0.01). Repeated measures analysis of variance (ANOVA) revealed no significant treatment effects of warm-up protocol on bat velocity. However, the order of standard, light, heavy bat sequence resulted in the greatest increase in bat velocity (+6.03%). These results suggest that upper-body muscle strength influences bat velocity. It appears that the standard, light, heavy warm-up order may provide the greatest benefit to increase subsequent bat velocity and may warrant use in game situations.

  3. Metagenomic analysis of bat guano samples revealed the presence of viruses potentially carried by insects, among others by Apis mellifera in Hungary.

    PubMed

    Zana, Brigitta; Kemenesi, Gábor; Urbán, Péter; Földes, Fanni; Görföl, Tamás; Estók, Péter; Boldogh, Sándor; Kurucz, Kornélia; Jakab, Ferenc

    2018-03-01

    The predominance of dietary viruses in bat guano samples had been described recently, suggesting a new opportunity to survey the prevalence and to detect new viruses of arthropods or even plant-infecting viruses circulating locally in the ecosystem. Here we describe the diversity of viruses belonging to the order Picornavirales in Hungarian insectivorous bat guano samples. The metagenomic analysis conducted on our samples has revealed the significant predominance of aphid lethal paralysis virus (ALPV) and Big Sioux River virus (BSRV) in Hungary for the first time. Phylogenetic analysis was used to clarify the relationship to previously identified ALPV strains infecting honey bees, showing that our strain possesses a close genetic relationship with the strains that have already been described as pathogenic to honey bees. Furthermore, studies have previously confirmed the ability of these viruses to replicate in adult honey bees; however, no signs related to these viruses have been revealed yet. With the identification of two recently described possibly honey bee infecting viruses for the first time in Hungary, our results might have importance for the health conditions of Hungarian honey bee colonies in the future.

  4. Analyzing bat migration

    USGS Publications Warehouse

    Cryan, Paul M.; Diehl, Robert H.

    2009-01-01

    T HE MIGRATORY MOVEIvl.ENTS OF BATS have proven ex­ tremely difficult to determine. Despite extensive efforts during the past century to track the movements of bats across landscapes, efficient methods of following small- to medium-size volant animals <240 gl for extended periods (>8 weeks) over long distances (>100 km) have not been developed. Important questions about bat migration remain unanswered: Which bats migrate? Where do they go? How far do they move? How high and fast do they fly? What are their habitat needs during migration? How do bats orient and navigate during migration? Addressing these apparently simple questions will be a considerable challenge to anyone interested in advancing the study of bat migration. In this chapter, we present direct and indirect methods used to study bat migration as well as techniques that have worked for studying bird migration that could feasibly be adapted to the study of bats.

  5. A new genus and species of vespertilionid bat from the Indomalayan Region

    PubMed Central

    Ruedi, Manuel; Eger, Judith L; Lim, Burton K

    2018-01-01

    Abstract Bats belonging to the subfamily Vespertilioninae are diverse and cosmopolitan, but their systematic arrangement remains a challenge. Previous molecular surveys suggested new and unexpected relationships of some members compared to more traditional, morphology-based classifications, and revealed the existence of taxonomically undefined lineages. We describe here a new genus and species corresponding to an enigmatic lineage that was previously identified within the genus Eptesicus in the Indomalayan Region. Phylogenetic reconstructions based on mitochondrial and nuclear genes relate the new taxon to Tylonycteris and Philetor, and show that specimens associated with this new genus represent 2 genetically distinct species. Although little is known about their ecology, locations of capture and wing morphology suggest that members of this new genus are tree-dwelling, open-space aerial insect predators. The new species has only been documented from Yok Don National Park in Vietnam, so its conservation status is uncertain until more surveying methods target the bat fauna of the dipterocarp forest in Southeast Asia. PMID:29674788

  6. Seasonal diets of insectivorous birds using canopy gaps in a bottomland forest

    Treesearch

    Christopher E. Moorman; Liessa T. Bowen; John C. Kilgo; Clyde E. Sorenson; James L. Hanula; Scott Horn; Mike D. Ulyshen

    2007-01-01

    Little is known about how insectivorous bird diets are influenced by arthropod availability and about how these relationships vary seasonally. We captured birds in forest-canopy gaps and adjacent mature forest during 2001 and 2002 at the Savannah River Site in Barnwell County, South Carolina, and flushed their crops to gather information about arthropods eaten during...

  7. Recolonization of bat roost by bat bugs (Cimex pipistrelli): could parasite load be a cause of bat roost switching?

    PubMed

    Bartonička, Tomáš; Růžičková, Lucie

    2013-04-01

    Roost ectoparasites are believed to have a negative impact on fitness of their hosts as birds or mammals. Previous studies were mostly focussed on the synchronization between reproduction cycles of ectoparasites and hosts living in infested roosts. However, to date, it has not been examined how fast ectoparasites colonize new, non-infested roosts and thus increasing the impact on the local populations of hosts. The parasite-host model was studied, including bat bugs Cimex pipistrelli and soprano pipistrelles Pipistrellus pygmaeus, where bat behaviour was observed which tended to reduce the parasite load in bat roosts. We investigated (1) whether bats change their roosting behaviour when we discontinued synchronization of their reproduction and the life cycle of the bat bugs and (2) how fast and which stages of bat bugs reoccupy cleaned roosts. In a 3-year field experiment, we removed all bat bugs from six bat boxes in each spring. Pipistrelles bred young in all non-infested boxes during these 3 years. In addition, 8 years of regular observations before this experiment indicate that bats avoided breeding in the same bat boxes at all. Bat bugs were found again in clean boxes in mid-May. However, their densities did not maximise before the beginning of June, before parturition. A re-appearance of bugs was observed after 21-56 days after the first bat visit. Adult bugs, mainly females, colonised cleaned boxes first though at the same time there were a lot of younger and smaller instars in non-manipulated roosts in the vicinity.

  8. Differences in carotenoid accumulation among three feeder-cricket species: implications for carotenoid delivery to captive insectivores.

    PubMed

    Ogilvy, Victoria; Fidgett, Andrea L; Preziosi, Richard F

    2012-01-01

    There are a limited number of feeder-invertebrates available to feed captive insectivores, and many are deficient in certain nutrients. Gut-loading is used to increase the diversity of nutrients present in the captive insectivore diet; however, little is known about delivery of carotenoids via gut-loading. Carotenoids may influence health and reproduction due to their roles in immune and antioxidant systems. We assessed interspecific variation in carotenoid accumulation and retention in three feeder-cricket species (Gryllus bimaculatus, Gryllodes sigillatus and Acheta domesticus) fed one of three diets (wheat-bran, fish-food based formulated diet, and fresh fruit and vegetables). Out of the three species of feeder-cricket in the fish-food-based dietary treatment group, G. bimaculatus had the greatest total carotenoid concentration. All cricket species fed the wheat-bran diet had very low carotenoid concentrations. Species on the fish-food-based diet had intermediate carotenoid concentrations, and those on the fruit and vegetable diet had the highest concentrations. Carotenoid retention was poor across all species. Overall, this study shows that, by providing captive insectivores with G. bimaculatus crickets recently fed a carotenoid-rich diet, the quantity of carotenoids in the diet can be increased. © 2011 Wiley Periodicals, Inc.

  9. Timing and patterns of diversification in the Neotropical bat genus Pteronotus (Mormoopidae).

    PubMed

    Pavan, Ana C; Marroig, Gabriel

    2017-03-01

    We investigate the biogeographic processes related to the origin and current patterns of distribution of the extant species of the genus Pteronotus. This clade of insectivorous bats is widely distributed in the Neotropical Region and has recently gone through a taxonomic update which increased more than twice its diversity. Using six molecular markers of 15 Pteronotus lineages ranging from Mexico to Central Brazil, we reconstruct a time-calibrated tree and infer molecular evolutionary rates for this bat genus. In addition, estimates of range evolution across phylogeny were obtained through statistical model testing among six different biogeographic models. The origin of the genus Pteronotus occurred approximately 16million years ago (Ma), with initial cladogenesis events being evenly distributed across the phylogeny. Divergence between most closely related species is recent, falling in the Pleistocene period less than 2.6Ma. Mainland lineages present congruent patterns of north versus south continent splitting while insular clades differ in their time of arrival in the Caribbean Islands. Temporal and geographic range estimates for early nodes of Pteronotus phylogeny suggest a central role of Neogene tectonic reorganizations of Central America in the group diversification process. Also, South American colonization by Pteronotus occurred early in the genus history. Founder-event speciation was an important mode of lineage splitting in Pteronotus, with two independent dispersal jumps having occurred to the Greater Antilles. Finally, Pleistocenic sea-level variation and climatic oscillations are possibly associated with divergence between sister-species and recent ages of MRCA for Pteronotus species. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Molecular Diet Analysis of Two African Free-Tailed Bats (Molossidae) Using High Throughput Sequencing

    PubMed Central

    Bohmann, Kristine; Monadjem, Ara; Lehmkuhl Noer, Christina; Rasmussen, Morten; Zeale, Matt R. K.; Clare, Elizabeth; Jones, Gareth; Willerslev, Eske; Gilbert, M. Thomas P.

    2011-01-01

    Given the diversity of prey consumed by insectivorous bats, it is difficult to discern the composition of their diet using morphological or conventional PCR-based analyses of their faeces. We demonstrate the use of a powerful alternate tool, the use of the Roche FLX sequencing platform to deep-sequence uniquely 5′ tagged insect-generic barcode cytochrome c oxidase I (COI) fragments, that were PCR amplified from faecal pellets of two free-tailed bat species Chaerephon pumilus and Mops condylurus (family: Molossidae). Although the analyses were challenged by the paucity of southern African insect COI sequences in the GenBank and BOLD databases, similarity to existing collections allowed the preliminary identification of 25 prey families from six orders of insects within the diet of C. pumilus, and 24 families from seven orders within the diet of M. condylurus. Insects identified to families within the orders Lepidoptera and Diptera were widely present among the faecal samples analysed. The two families that were observed most frequently were Noctuidae and Nymphalidae (Lepidoptera). Species-level analysis of the data was accomplished using novel bioinformatics techniques for the identification of molecular operational taxonomic units (MOTU). Based on these analyses, our data provide little evidence of resource partitioning between sympatric M. condylurus and C. pumilus in the Simunye region of Swaziland at the time of year when the samples were collected, although as more complete databases against which to compare the sequences are generated this may have to be re-evaluated. PMID:21731749

  11. Ecological factors associated with European bat lyssavirus seroprevalence in spanish bats.

    PubMed

    Serra-Cobo, Jordi; López-Roig, Marc; Seguí, Magdalena; Sánchez, Luisa Pilar; Nadal, Jacint; Borrás, Miquel; Lavenir, Rachel; Bourhy, Hervé

    2013-01-01

    Bats have been proposed as major reservoirs for diverse emerging infectious viral diseases, with rabies being the best known in Europe. However, studies exploring the ecological interaction between lyssaviruses and their natural hosts are scarce. This study completes our active surveillance work on Spanish bat colonies that began in 1992. Herein, we analyzed ecological factors that might affect the infection dynamics observed in those colonies. Between 2001 and 2011, we collected and tested 2,393 blood samples and 45 dead bats from 25 localities and 20 bat species. The results for dead confirmed the presence of EBLV-1 RNA in six species analyzed (for the first time in Myotis capaccinii). Samples positive for European bat lyssavirus-1 (EBLV-1)-neutralizing antibodies were detected in 68% of the localities sampled and in 13 bat species, seven of which were found for the first time (even in Myotis daubentonii, a species to date always linked to EBLV-2). EBLV-1 seroprevalence (20.7%) ranged between 11.1 and 40.2% among bat species and seasonal variation was observed, with significantly higher antibody prevalence in summer (July). EBLV-1 seroprevalence was significantly associated with colony size and species richness. Higher seroprevalence percentages were found in large multispecific colonies, suggesting that intra- and interspecific contacts are major risk factors for EBLV-1 transmission in bat colonies. Although bat-roosting behavior strongly determines EBLV-1 variability, we also found some evidence that bat phylogeny might be involved in bat-species seroprevalence. The results of this study highlight the importance of life history and roost ecology in understanding EBLV-1-prevalence patterns in bat colonies and also provide useful information for public health officials.

  12. Evidence of Australian bat lyssavirus infection in diverse Australian bat taxa.

    PubMed

    Field, Hume Ernest

    2018-05-21

    Historically, Australia was considered free of rabies and rabieslike viruses. Thus, the identification of Australian bat lyssavirus (ABLV) in 1996 in a debilitated bat found by a member of the public precipitated both public health consternation and a revision of lyssavirus taxonomy. Subsequent observational studies sought to elaborate the occurrence and frequency of ABLV infection in Australian bats. This paper describes the taxonomic diversity of bat species showing evidence of ABLV infection to better inform public health considerations. Blood and/or brain samples were collected from two cohorts of bats (wild-caught and diagnostic submissions) from four Australian states or territories between April 1996 and October 2002. Fresh brain impression smears were tested for ABLV antigen using fluorescein-labelled anti-rabies monoclonal globulin (CENTOCOR) in a direct fluorescent antibody test; sera were tested for the presence of neutralising antibodies using a rapid fluorescent focus inhibition test. A total of 3,217 samples from 2,633 bats were collected and screened: brain samples from 1,461 wild-caught bats and 1,086 submitted bats from at least 16 genera and seven families, and blood samples from 656 wild-caught bats and 14 submitted bats from 14 genera and seven families. Evidence of ABLV infection was found in five of the six families of bats occurring in Australia, and in three of the four Australian states/territories surveyed, supporting the historic presence of the virus in Australia. While the infection prevalence in the wild-caught cohort is evidently low, the significantly higher infection prevalence in rescued bats in urban settings represents a clear and present public health significance because of the higher risk of human exposure. © 2018 Blackwell Verlag GmbH.

  13. Ecological Factors Associated with European Bat Lyssavirus Seroprevalence in Spanish Bats

    PubMed Central

    Serra-Cobo, Jordi; López-Roig, Marc; Seguí, Magdalena; Sánchez, Luisa Pilar; Nadal, Jacint; Borrás, Miquel; Lavenir, Rachel; Bourhy, Hervé

    2013-01-01

    Bats have been proposed as major reservoirs for diverse emerging infectious viral diseases, with rabies being the best known in Europe. However, studies exploring the ecological interaction between lyssaviruses and their natural hosts are scarce. This study completes our active surveillance work on Spanish bat colonies that began in 1992. Herein, we analyzed ecological factors that might affect the infection dynamics observed in those colonies. Between 2001 and 2011, we collected and tested 2,393 blood samples and 45 dead bats from 25 localities and 20 bat species. The results for dead confirmed the presence of EBLV-1 RNA in six species analyzed (for the first time in Myotis capaccinii). Samples positive for European bat lyssavirus-1 (EBLV-1)–neutralizing antibodies were detected in 68% of the localities sampled and in 13 bat species, seven of which were found for the first time (even in Myotis daubentonii, a species to date always linked to EBLV-2). EBLV-1 seroprevalence (20.7%) ranged between 11.1 and 40.2% among bat species and seasonal variation was observed, with significantly higher antibody prevalence in summer (July). EBLV-1 seroprevalence was significantly associated with colony size and species richness. Higher seroprevalence percentages were found in large multispecific colonies, suggesting that intra- and interspecific contacts are major risk factors for EBLV-1 transmission in bat colonies. Although bat-roosting behavior strongly determines EBLV-1 variability, we also found some evidence that bat phylogeny might be involved in bat-species seroprevalence. The results of this study highlight the importance of life history and roost ecology in understanding EBLV-1–prevalence patterns in bat colonies and also provide useful information for public health officials. PMID:23700480

  14. Bat Bonanza

    ERIC Educational Resources Information Center

    Phillips, Amanda J.; Scott, Catherine; Matthews, Catherine E.

    2013-01-01

    This article describes a lesson on bats developed for kindergartners, which uses models of bats to teach about their physiology, diet, and habitat. The lesson uses craft sticks, wax paper, and colored construction paper that kindergarten teachers can use to help their students compare the features of 4 different kinds of bats. The use of online…

  15. Nuclear organisation of some immunohistochemically identifiable neural systems in five species of insectivore-Crocidura cyanea, Crocidura olivieri, Sylvisorex ollula, Paraechinus aethiopicus and Atelerix frontalis.

    PubMed

    Calvey, Tanya; Patzke, Nina; Bennett, Nigel C; Consolate, Kaswera-Kyamakya; Gilissen, Emmanuel; Alagaili, Abdulaziz N; Mohammed, Osama B; Pettigrew, John D; Manger, Paul R

    2016-03-01

    The organization of the cholinergic, catecholaminergic, and serotonergic neurons in the brains of five species of insectivores and the orexinergic (hypocretinergic) system in four insectivore species is presented. We aimed to investigate the nuclear complement of these neural systems in comparison to those of other mammalian species. Brains of insectivores were coronally sectioned and immunohistochemically stained with antibodies against choline acetyltransferase, tyrosine hydroxylase, serotonin and orexin-A. The majority of nuclei were similar among the species investigated and to mammals in general, but certain differences in the nuclear complement highlighted potential phylogenetic interrelationships. In the cholinergic system, the three shrew species lacked parabigeminal and Edinger-Westphal nuclei. In addition, the appearance of the laterodorsal tegmental nucleus in all insectivores revealed a mediodorsal arch. All three of these features are the same as those present in microchiropterans. The catecholaminergic system of the three shrew species lacked the A4 and A15d nuclei, as well as having an incipient A9v nucleus, again features found in microchiropteran brains. The serotonergic and orexinergic systems of the insectivores are similar to those seen across most eutherian mammals. The analysis of similarities and differences across mammalian species indicates a potential phylogenetic relationship between the Soricidae (shrews) and the microchiropterans. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Bartonella Species in Bats (Chiroptera) and Bat Flies (Nycteribiidae) from Nigeria, West Africa

    PubMed Central

    Baneth, Gad; Mitchell, Mark; Mumcuoglu, Kosta Y.; Gutiérrez, Ricardo; Harrus, Shimon

    2014-01-01

    Abstract Previous and ongoing studies have incriminated bats as reservoirs of several emerging and re-emerging zoonoses. Most of these studies, however, have focused on viral agents and neglected important bacterial pathogens. To date, there has been no report investigating the prevalence of Bartonella spp. in bats and bat flies from Nigeria, despite the fact that bats are used as food and for cultural ritual purposes by some ethnic groups in Nigeria. To elucidate the role of bats as reservoirs of bartonellae, we screened by molecular methods 148 bats and 34 bat flies, Diptera:Hippoboscoidea:Nycteribiidae (Cyclopodia greeffi) from Nigeria for Bartonella spp. Overall, Bartonella spp. DNA was detected in 76 out of 148 (51.4%) bat blood samples tested and 10 out of 24 (41.7%) bat flies tested by qPCR targeting the 16S–23S internal transcribed spacer (ITS) locus. Bartonella was isolated from 23 of 148 (15.5%) bat blood samples, and the isolates were genetically characterized. Prevalence of Bartonella spp. culture-positive samples ranged from 0% to 45.5% among five bat species. Micropterus spp. bats had a significantly higher relative risk of 3.45 for being culture positive compared to Eidolon helvum, Epomophorus spp., Rhinolophus spp., and Chaerephon nigeriae. Bartonella spp. detected in this study fall into three distinct clusters along with other Bartonella spp. isolated from bats and bat flies from Kenya and Ghana, respectively. The isolation of Bartonella spp. in 10.0–45.5% of four out of five bat species screened in this study indicates a widespread infection in bat population in Nigeria. Further investigation is warranted to determine the role of these bacteria as a cause of human and animal diseases in Nigeria. PMID:25229701

  17. Bartonella species in bats (Chiroptera) and bat flies (Nycteribiidae) from Nigeria, West Africa.

    PubMed

    Kamani, Joshua; Baneth, Gad; Mitchell, Mark; Mumcuoglu, Kosta Y; Gutiérrez, Ricardo; Harrus, Shimon

    2014-09-01

    Previous and ongoing studies have incriminated bats as reservoirs of several emerging and re-emerging zoonoses. Most of these studies, however, have focused on viral agents and neglected important bacterial pathogens. To date, there has been no report investigating the prevalence of Bartonella spp. in bats and bat flies from Nigeria, despite the fact that bats are used as food and for cultural ritual purposes by some ethnic groups in Nigeria. To elucidate the role of bats as reservoirs of bartonellae, we screened by molecular methods 148 bats and 34 bat flies, Diptera:Hippoboscoidea:Nycteribiidae (Cyclopodia greeffi) from Nigeria for Bartonella spp. Overall, Bartonella spp. DNA was detected in 76 out of 148 (51.4%) bat blood samples tested and 10 out of 24 (41.7%) bat flies tested by qPCR targeting the 16S-23S internal transcribed spacer (ITS) locus. Bartonella was isolated from 23 of 148 (15.5%) bat blood samples, and the isolates were genetically characterized. Prevalence of Bartonella spp. culture-positive samples ranged from 0% to 45.5% among five bat species. Micropterus spp. bats had a significantly higher relative risk of 3.45 for being culture positive compared to Eidolon helvum, Epomophorus spp., Rhinolophus spp., and Chaerephon nigeriae. Bartonella spp. detected in this study fall into three distinct clusters along with other Bartonella spp. isolated from bats and bat flies from Kenya and Ghana, respectively. The isolation of Bartonella spp. in 10.0-45.5% of four out of five bat species screened in this study indicates a widespread infection in bat population in Nigeria. Further investigation is warranted to determine the role of these bacteria as a cause of human and animal diseases in Nigeria.

  18. Diets of the sympatric pacific sheath-tailed bat (Emballonura semicaudata rotensis) and Mariana Swiftlet (Aerodramus bartscht) on Aguiguan, Mariana Islands

    USGS Publications Warehouse

    Valdez, E.W.; Wiles, G.J.; O'Shea, T.J.

    2011-01-01

    The Pacific sheath-tailed bat (Emballonura semicaudata rotensis) and Mariana swiftlet (Aerodramus bartschi) are two rare insectivorous taxa restricted to the southern Mariana Islands in western Micronesia. It is believed that populations of both have dwindled because of impacts to their food resources. However, there is little information on the food habits of A. bartschi and none exists for E. s. rotensis. In an effort to better understand the feeding habits of both, we investigated their diets using guano analysis. Guano was collected from two roosts in caves during a 2-week period in June and July at the onset of the rainy season. Important orders of insects consumed (percentage volume) by bats roosting at one cave included hymenopterans (64%), coleopterans (10%), lepidopterans (8%), isopterans (8%), and psocopterans (5%), whereas those at a second cave included lepidopterans (45%), hymenopterans (41%), coleopterans (10%), and isopterans (5%). Swiftlets, which roosted in only one of the caves, fed mostly on hymenopterans (88%) and hemipterans (6%). Significant differences existed between the two taxa in several insect orders eaten, with E. s. rotensis consuming more lepidopterans and coleopterans and A. bartschi taking more hymenopterans and hemipterans. Within Hymenoptera, bats fed more on ichneumoideans, whereas swiftlets ate more formicid alates and chalicidoideans. This new information on the feeding habits of E. s. rotensis and A. bartschi provides insight on the complexity of their diets during June and July, and serves as baseline information for future studies and management of their habitat. ?? 2011 by University of Hawai'i Press All rights reserved.

  19. Bat Biology, Genomes, and the Bat1K Project: To Generate Chromosome-Level Genomes for All Living Bat Species.

    PubMed

    Teeling, Emma C; Vernes, Sonja C; Dávalos, Liliana M; Ray, David A; Gilbert, M Thomas P; Myers, Eugene

    2018-02-15

    Bats are unique among mammals, possessing some of the rarest mammalian adaptations, including true self-powered flight, laryngeal echolocation, exceptional longevity, unique immunity, contracted genomes, and vocal learning. They provide key ecosystem services, pollinating tropical plants, dispersing seeds, and controlling insect pest populations, thus driving healthy ecosystems. They account for more than 20% of all living mammalian diversity, and their crown-group evolutionary history dates back to the Eocene. Despite their great numbers and diversity, many species are threatened and endangered. Here we announce Bat1K, an initiative to sequence the genomes of all living bat species (n∼1,300) to chromosome-level assembly. The Bat1K genome consortium unites bat biologists (>148 members as of writing), computational scientists, conservation organizations, genome technologists, and any interested individuals committed to a better understanding of the genetic and evolutionary mechanisms that underlie the unique adaptations of bats. Our aim is to catalog the unique genetic diversity present in all living bats to better understand the molecular basis of their unique adaptations; uncover their evolutionary history; link genotype with phenotype; and ultimately better understand, promote, and conserve bats. Here we review the unique adaptations of bats and highlight how chromosome-level genome assemblies can uncover the molecular basis of these traits. We present a novel sequencing and assembly strategy and review the striking societal and scientific benefits that will result from the Bat1K initiative.

  20. Breaking Bat

    ERIC Educational Resources Information Center

    Aguilar, Isaac-Cesar; Kagan, David

    2013-01-01

    The sight of a broken bat in Major League Baseball can produce anything from a humorous dribbler in the infield to a frightening pointed projectile headed for the stands. Bats usually break at the weakest point, typically in the handle. Breaking happens because the wood gets bent beyond the breaking point due to the wave sent down the bat created…

  1. Bat Rabies in Guatemala

    PubMed Central

    Ellison, James A.; Gilbert, Amy T.; Recuenco, Sergio; Moran, David; Alvarez, Danilo A.; Kuzmina, Natalia; Garcia, Daniel L.; Peruski, Leonard F.; Mendonça, Mary T.; Lindblade, Kim A.; Rupprecht, Charles E.

    2014-01-01

    Rabies in bats is considered enzootic throughout the New World, but few comparative data are available for most countries in the region. As part of a larger pathogen detection program, enhanced bat rabies surveillance was conducted in Guatemala, between 2009 and 2011. A total of 672 bats of 31 species were sampled and tested for rabies. The prevalence of rabies virus (RABV) detection among all collected bats was low (0.3%). Viral antigens were detected and infectious virus was isolated from the brains of two common vampire bats (Desmodus rotundus). RABV was also isolated from oral swabs, lungs and kidneys of both bats, whereas viral RNA was detected in all of the tissues examined by hemi-nested RT-PCR except for the liver of one bat. Sequencing of the nucleoprotein gene showed that both viruses were 100% identical, whereas sequencing of the glycoprotein gene revealed one non-synonymous substitution (302T,S). The two vampire bat RABV isolates in this study were phylogenetically related to viruses associated with vampire bats in the eastern states of Mexico and El Salvador. Additionally, 7% of sera collected from 398 bats demonstrated RABV neutralizing antibody. The proportion of seropositive bats varied significantly across trophic guilds, suggestive of complex intraspecific compartmentalization of RABV perpetuation. PMID:25080103

  2. Retinoic acid-independent expression of Meis2 during autopod patterning in the developing bat and mouse limb.

    PubMed

    Mason, Mandy K; Hockman, Dorit; Curry, Lyle; Cunningham, Thomas J; Duester, Gregg; Logan, Malcolm; Jacobs, David S; Illing, Nicola

    2015-01-01

    The bat has strikingly divergent forelimbs (long digits supporting wing membranes) and hindlimbs (short, typically free digits) due to the distinct requirements of both aerial and terrestrial locomotion. During embryonic development, the morphology of the bat forelimb deviates dramatically from the mouse and chick, offering an alternative paradigm for identifying genes that play an important role in limb patterning. Using transcriptome analysis of developing Natal long-fingered bat (Miniopterus natalensis) fore- and hindlimbs, we demonstrate that the transcription factor Meis2 has a significantly higher expression in bat forelimb autopods compared to hindlimbs. Validation by reverse transcriptase and quantitative polymerase chain reaction (RT-qPCR) and whole mount in situ hybridisation shows that Meis2, conventionally known as a marker of the early proximal limb bud, is upregulated in the bat forelimb autopod from CS16. Meis2 expression is localised to the expanding interdigital webbing and the membranes linking the wing to the hindlimb and tail. In mice, Meis2 is also expressed in the interdigital region prior to tissue regression. This interdigital Meis2 expression is not activated by retinoic acid (RA) signalling as it is present in the retained interdigital tissue of Rdh10 (trex/trex) mice, which lack RA. Additionally, genes encoding RA-synthesising enzymes, Rdh10 and Aldh1a2, and the RA nuclear receptor Rarβ are robustly expressed in bat fore- and hindlimb interdigital tissues indicating that the mechanism that retains interdigital tissue in bats also occurs independently of RA signalling. Mammalian interdigital Meis2 expression, and upregulation in the interdigital webbing of bat wings, suggests an important role for Meis2 in autopod development. Interdigital Meis2 expression is RA-independent, and retention of interdigital webbing in bat wings is not due to the suppression of RA-induced cell death. Rather, RA signalling may play a role in the thinning

  3. Bat rabies surveillance in France: first report of unusual mortality among serotine bats.

    PubMed

    Picard-Meyer, Evelyne; Servat, Alexandre; Wasniewski, Marine; Gaillard, Matthieu; Borel, Christophe; Cliquet, Florence

    2017-12-13

    Rabies is a fatal viral encephalitic disease that is caused by lyssaviruses which can affect all mammals, including human and bats. In Europe, bat rabies cases are attributed to five different lyssavirus species, the majority of rabid bats being attributed to European bat 1 lyssavirus (EBLV-1), circulating mainly in serotine bats (Eptesicus serotinus). In France, rabies in bats is under surveillance since 1989, with 77 positive cases reported between 1989 and 2016. In the frame of the bat rabies surveillance, an unusual mortality of serotine bats was reported in 2009 in a village in North-East France. Six juvenile bats from an E. serotinus maternity colony counting ~200 individuals were found to be infected with EBLV-1. The active surveillance of the colony by capture sessions of bats from July to September 2009 showed a high detection rate of neutralising EBLV-1 antibodies (≈ 50%) in the colony. Moreover, one out of 111 animals tested was found to shed viable virus in saliva, while lyssavirus RNA was detected by RT-PCR for five individuals. This study demonstrated that the lyssavirus infection in the serotine maternity colony was followed by a high rate of bat rabies immunity after circulation of the virus in the colony. The ratio of seropositive bats is probably indicative of an efficient virus transmission coupled to a rapid circulation of EBLV-1 in the colony.

  4. Immunocytochemical localization of luteinizing hormone-releasing hormone (LHRH) in the nervus terminalis and brain of the big brown bat, Eptesicus fuscus.

    PubMed

    Oelschläger, H A; Northcutt, R G

    1992-01-15

    Little is known about the immunohistochemistry of the nervous system in bats. This is particularly true of the nervus terminalis, which exerts strong influence on the reproductive system during ontogeny and in the adult. Luteinizing hormone-releasing hormone (LHRH) was visualized immunocytochemically in the nervus terminalis and brain of juvenile and adult big brown bats (Eptesicus fuscus). The peripheral LHRH-immunoreactive (ir) cells and fibers (nervus terminalis) are dispersed along the basal surface of the forebrain from the olfactory bulbs to the prepiriform cortex and the interpeduncular fossa. A concentration of peripheral LHRH-ir perikarya and fibers was found at the caudalmost part of the olfactory bulbs, near the medioventral forebrain sulcus; obviously these cells mediate between the bulbs and the remaining forebrain. Within the central nervous system (CNS), LHRH-ir perikarya and fibers were distributed throughout the olfactory tubercle, diagonal band, preoptic area, suprachiasmatic and supraoptic nuclei, the bed nuclei of stria terminalis and stria medullaris, the anterior lateral and posterior hypothalamus, and the tuber cinereum. The highest concentration of cells was found within the arcuate nucleus. Fibers were most concentrated within the median eminence, infundibular stalk, and the medial habenula. The data obtained suggest that this distribution of LHRH immunoreactivity may be characteristic for microchiropteran (insectivorous) bats. The strong projections of LHRH-containing nuclei in the basal forebrain (including the arcuate nucleus) to the habenula, may indicate close functional contact between these brain areas via feedback loops, which could be important for the processing of thermal and other environmental stimuli correlated with hibernation.

  5. BATMAV - A Bio-Inspired Micro-Aerial Vehicle for Flapping Flight

    NASA Astrophysics Data System (ADS)

    Bunget, Gheorghe

    The main objective of the BATMAV project is the development of a biologically-inspired Micro Aerial Vehicle (MAV) with flexible and foldable wings for flapping flight. While flapping flight in MAV has been previously studied and a number of models were realized they usually had unfoldable wings actuated with DC motors and mechanical transmission to achieve flapping motion. This approach limits the system to a rather small number of degrees of freedom with little flexibility and introduces an additional disadvantage of a heavy flight platform. The BATMAV project aims at the development of a flight platform that features bat-inspired wings with smart materials-based flexible joints and artificial muscles, which has the potential to closely mimic the kinematics of the real mammalian flyer. The bat-like flight platform was selected after an extensive analysis of morphological and aerodynamic flight parameters of small birds, bats and large insects characterized by a superior maneuverability and wind gust rejection. Morphological and aerodynamic parameters were collected from existing literature and compared concluding that bat wing present a suitable platform that can be actuated efficiently using artificial muscles. Due to their wing camber variation, the bat species can operate effectively at a large range of speeds and exhibit a remarkably maneuverable and agile flight. Although numerous studies were recently investigated the flapping flight, flexible and foldable wings that reproduce the natural intricate and efficient flapping motion were not designed yet. A comprehensive analysis of flight styles in bats based on the data collected by Norberg (Norberg, 1976) and the engineering theory of robotic manipulators resulted in a 2 and 3-DOF models which managed to mimic the wingbeat cycle of the natural flyer. The flexible joints of the 2 and 2-DOF models were replicated using smart materials like superelastic Shape Memory Alloys (SMA). The results of these kinematic

  6. Cloud Model Bat Algorithm

    PubMed Central

    Zhou, Yongquan; Xie, Jian; Li, Liangliang; Ma, Mingzhi

    2014-01-01

    Bat algorithm (BA) is a novel stochastic global optimization algorithm. Cloud model is an effective tool in transforming between qualitative concepts and their quantitative representation. Based on the bat echolocation mechanism and excellent characteristics of cloud model on uncertainty knowledge representation, a new cloud model bat algorithm (CBA) is proposed. This paper focuses on remodeling echolocation model based on living and preying characteristics of bats, utilizing the transformation theory of cloud model to depict the qualitative concept: “bats approach their prey.” Furthermore, Lévy flight mode and population information communication mechanism of bats are introduced to balance the advantage between exploration and exploitation. The simulation results show that the cloud model bat algorithm has good performance on functions optimization. PMID:24967425

  7. The foraging ecology of the mountain long-eared bat Plecotus macrobullaris revealed with DNA mini-barcodes.

    PubMed

    Alberdi, Antton; Garin, Inazio; Aizpurua, Ostaizka; Aihartza, Joxerra

    2012-01-01

    Molecular analysis of diet overcomes the considerable limitations of traditional techniques for identifying prey remains in bat faeces. We collected faeces from individual Mountain Long-eared Bats Plecotus macrobullaris trapped using mist nets during the summers of 2009 and 2010 in the Pyrenees. We analysed their diet using DNA mini-barcodes to identify prey species. In addition, we inferred some basic features of the bat's foraging ecology that had not yet been addressed. P. macrobullaris fed almost exclusively on moths (97.8%). As prey we detected one dipteran genus (Tipulidae) and 29 moth taxa: 28 were identified at species level (23 Noctuidae, 1 Crambidae, 1 Geometridae, 1 Pyralidae, 1 Sphingidae, 1 Tortricidae), and one at genus level (Rhyacia sp., Noctuidae). Known ecological information about the prey species allowed us to determine that bats had foraged at elevations between 1,500 and 2,500 m amsl (above mean sea level), mostly in subalpine meadows, followed by other open habitats such as orophilous grasslands and alpine meadows. No forest prey species were identified in the diet. As 96.4% of identified prey species were tympanate moths and no evidence of gleaning behaviour was revealed, we suggest P. macrobullaris probably forages by aerial hawking using faint echolocation pulses to avoid detection by hearing moths. As we could identify 87.8% of the analysed sequences (64.1% of the MOTUs, Molecular Operational Taxonomic Units) at species level, we conclude that DNA mini-barcodes are a very useful tool to analyse the diet of moth-specialist bats.

  8. Bat Facts and Fun.

    ERIC Educational Resources Information Center

    McKee, Judith A.

    1992-01-01

    Describes a unit of study for elementary school science on bats. Students investigate the different types of bats; examine their behavior; find facts that other students are unlikely to know; write stories about bats; and examine the concept of echolocation, the means by which bats navigate. Suggests integrated activities for mathematics…

  9. [Bad bats?].

    PubMed

    Genné, Daniel

    2007-10-10

    For many centuries, man is fascinated by bats, the only flying mammals. Probably because of their particular immune system, bats can be considered an important reservoir for new emerging viral diseases like SARS-Coronavirus, Marburg fever, Ebola fever and Nipah virus encephalitis. During closer contact, they can transmit rabies and probably other nonviral infectious diseases. Bats get closer to man due to ecological modifications like deforestation, so that transmission of new infectious agents might provoke dramatic epidemics.

  10. Bat and Superbat.

    ERIC Educational Resources Information Center

    Bailey, Herbert R.

    1987-01-01

    The author considers the selection of a baseball bat from a mathematical perspective. The effectiveness of a bat-slider system is specifically analyzed. Results are presented graphically to show the effects of the mass of the slider on the swing time and on the batted ball velocity. (PK)

  11. Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases.

    PubMed

    Wu, Zhiqiang; Yang, Li; Ren, Xianwen; He, Guimei; Zhang, Junpeng; Yang, Jian; Qian, Zhaohui; Dong, Jie; Sun, Lilian; Zhu, Yafang; Du, Jiang; Yang, Fan; Zhang, Shuyi; Jin, Qi

    2016-03-01

    Studies have demonstrated that ~60%-80% of emerging infectious diseases (EIDs) in humans originated from wild life. Bats are natural reservoirs of a large variety of viruses, including many important zoonotic viruses that cause severe diseases in humans and domestic animals. However, the understanding of the viral population and the ecological diversity residing in bat populations is unclear, which complicates the determination of the origins of certain EIDs. Here, using bats as a typical wildlife reservoir model, virome analysis was conducted based on pharyngeal and anal swab samples of 4440 bat individuals of 40 major bat species throughout China. The purpose of this study was to survey the ecological and biological diversities of viruses residing in these bat species, to investigate the presence of potential bat-borne zoonotic viruses and to evaluate the impacts of these viruses on public health. The data obtained in this study revealed an overview of the viral community present in these bat samples. Many novel bat viruses were reported for the first time and some bat viruses closely related to known human or animal pathogens were identified. This genetic evidence provides new clues in the search for the origin or evolution pattern of certain viruses, such as coronaviruses and noroviruses. These data offer meaningful ecological information for predicting and tracing wildlife-originated EIDs.

  12. First encounter of European bat lyssavirus type 2 (EBLV-2) in a bat in Finland.

    PubMed

    Jakava-Viljanen, M; Lilley, T; Kyheröinen, E-M; Huovilainen, A

    2010-11-01

    In Finland, rabies in bats was suspected for the first time in 1985 when a bat researcher, who had multiple bat bites, died in Helsinki. The virus isolated from the researcher proved to be antigenically related to rabies viruses previously detected in German bats. Later, the virus was typed as EBLV-2b. Despite an epidemiological study in bats 1986 and subsequent rabies surveillance, rabies in bats was not detected in Finland until the first case in a Daubenton's bat (Myotis daubentonii) was confirmed in August 2009. The bat was paralysed, occasionally crying, and biting when approached; it subsequently tested positive for rabies. The virus was genetically typed as EBLV-2. This is the northernmost case of bat rabies ever detected in Europe. Phylogenetic analyses showed that the EBLV-2b isolate from the human case in 1985 and the isolate from the bat in 2009 were genetically closely related, demonstrating that EBLV-2 may have been circulating in Finland for many years.

  13. The bat-bird-bug battle: daily flight activity of insects and their predators over a rice field revealed by high-resolution Scheimpflug Lidar

    NASA Astrophysics Data System (ADS)

    Malmqvist, Elin; Jansson, Samuel; Zhu, Shiming; Li, Wansha; Svanberg, Katarina; Svanberg, Sune; Rydell, Jens; Song, Ziwei; Bood, Joakim; Brydegaard, Mikkel; Åkesson, Susanne

    2018-04-01

    We present the results of, to our knowledge, the first Lidar study applied to continuous and simultaneous monitoring of aerial insects, bats and birds. It illustrates how common patterns of flight activity, e.g. insect swarming around twilight, depend on predation risk and other constraints acting on the faunal components. Flight activity was monitored over a rice field in China during one week in July 2016, using a high-resolution Scheimpflug Lidar system. The monitored Lidar transect was about 520 m long and covered approximately 2.5 m3. The observed biomass spectrum was bimodal, and targets were separated into insects and vertebrates in a categorization supported by visual observations. Peak flight activity occurred at dusk and dawn, with a 37 min time difference between the bat and insect peaks. Hence, bats started to feed in declining insect activity after dusk and stopped before the rise in activity before dawn. A similar time difference between insects and birds may have occurred, but it was not obvious, perhaps because birds were relatively scarce. Our observations are consistent with the hypothesis that flight activity of bats is constrained by predation in bright light, and that crepuscular insects exploit this constraint by swarming near to sunset/sunrise to minimize predation from bats.

  14. Lagos bat virus transmission in an Eidolon helvum bat colony, Ghana.

    PubMed

    Freuling, Conrad M; Binger, Tabea; Beer, Martin; Adu-Sarkodie, Yaw; Schatz, Juliane; Fischer, Melina; Hanke, Dennis; Hoffmann, Bernd; Höper, Dirk; Mettenleiter, Thomas C; Oppong, Samual K; Drosten, Christian; Müller, Thomas

    2015-12-02

    A brain sample of a straw-coloured fruit bat (Eidolon helvum) from Ghana without evident signs of disease tested positive by generic Lyssavirus RT-PCR and direct antigen staining. Sequence analysis confirmed the presence of a Lagos bat virus belonging to phylogenetic lineage A. Virus neutralization tests using the isolate with sera from the same group of bats yielded neutralizing antibodies in 74% of 567 animals. No cross-neutralization was observed against a different Lagos bat virus (lineage B). Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Rabies Virus Infection in Eptesicus fuscus Bats Born in Captivity (Naïve Bats)

    PubMed Central

    Davis, April D.; Jarvis, Jodie A.; Pouliott, Craig; Rudd, Robert J.

    2013-01-01

    The study of rabies virus infection in bats can be challenging due to quarantine requirements, husbandry concerns, genetic differences among animals, and lack of medical history. To date, all rabies virus (RABV) studies in bats have been performed in wild caught animals. Determining the RABV exposure history of a wild caught bat based on the presence or absence of viral neutralizing antibodies (VNA) may be misleading. Previous studies have demonstrated that the presence of VNA following natural or experimental inoculation is often ephemeral. With this knowledge, it is difficult to determine if a seronegative, wild caught bat has been previously exposed to RABV. The influence of prior rabies exposure in healthy, wild caught bats is unknown. To investigate the pathogenesis of RABV infection in bats born in captivity (naïve bats), naïve bats were inoculated intramuscularly with one of two Eptesicus fuscus rabies virus variants, EfV1 or EfV2. To determine the host response to a heterologous RABV, a separate group of naïve bats were inoculated with a Lasionycteris noctivagans RABV (LnV1). Six months following the first inoculation, all bats were challenged with EfV2. Our results indicate that naïve bats may have some level of innate resistance to intramuscular RABV inoculation. Additionally, naïve bats inoculated with the LnV demonstrated the lowest clinical infection rate of all groups. However, primary inoculation with EfV1 or LnV did not appear to be protective against a challenge with the more pathogenic EfV2. PMID:23741396

  16. Rabies virus infection in Eptesicus fuscus bats born in captivity (naïve bats).

    PubMed

    Davis, April D; Jarvis, Jodie A; Pouliott, Craig; Rudd, Robert J

    2013-01-01

    The study of rabies virus infection in bats can be challenging due to quarantine requirements, husbandry concerns, genetic differences among animals, and lack of medical history. To date, all rabies virus (RABV) studies in bats have been performed in wild caught animals. Determining the RABV exposure history of a wild caught bat based on the presence or absence of viral neutralizing antibodies (VNA) may be misleading. Previous studies have demonstrated that the presence of VNA following natural or experimental inoculation is often ephemeral. With this knowledge, it is difficult to determine if a seronegative, wild caught bat has been previously exposed to RABV. The influence of prior rabies exposure in healthy, wild caught bats is unknown. To investigate the pathogenesis of RABV infection in bats born in captivity (naïve bats), naïve bats were inoculated intramuscularly with one of two Eptesicus fuscus rabies virus variants, EfV1 or EfV2. To determine the host response to a heterologous RABV, a separate group of naïve bats were inoculated with a Lasionycteris noctivagans RABV (LnV1). Six months following the first inoculation, all bats were challenged with EfV2. Our results indicate that naïve bats may have some level of innate resistance to intramuscular RABV inoculation. Additionally, naïve bats inoculated with the LnV demonstrated the lowest clinical infection rate of all groups. However, primary inoculation with EfV1 or LnV did not appear to be protective against a challenge with the more pathogenic EfV2.

  17. Discovery of an ebolavirus-like filovirus in europe.

    PubMed

    Negredo, Ana; Palacios, Gustavo; Vázquez-Morón, Sonia; González, Félix; Dopazo, Hernán; Molero, Francisca; Juste, Javier; Quetglas, Juan; Savji, Nazir; de la Cruz Martínez, Maria; Herrera, Jesus Enrique; Pizarro, Manuel; Hutchison, Stephen K; Echevarría, Juan E; Lipkin, W Ian; Tenorio, Antonio

    2011-10-01

    Filoviruses, amongst the most lethal of primate pathogens, have only been reported as natural infections in sub-Saharan Africa and the Philippines. Infections of bats with the ebolaviruses and marburgviruses do not appear to be associated with disease. Here we report identification in dead insectivorous bats of a genetically distinct filovirus, provisionally named Lloviu virus, after the site of detection, Cueva del Lloviu, in Spain.

  18. Discovery of an Ebolavirus-Like Filovirus in Europe

    PubMed Central

    Vázquez-Morón, Sonia; González, Félix; Dopazo, Hernán; Molero, Francisca; Juste, Javier; Quetglas, Juan; Savji, Nazir; de la Cruz Martínez, Maria; Herrera, Jesus Enrique; Pizarro, Manuel; Hutchison, Stephen K.; Echevarría, Juan E.; Lipkin, W. Ian; Tenorio, Antonio

    2011-01-01

    Filoviruses, amongst the most lethal of primate pathogens, have only been reported as natural infections in sub-Saharan Africa and the Philippines. Infections of bats with the ebolaviruses and marburgviruses do not appear to be associated with disease. Here we report identification in dead insectivorous bats of a genetically distinct filovirus, provisionally named Lloviu virus, after the site of detection, Cueva del Lloviu, in Spain. PMID:22039362

  19. Preventing Australian bat lyssavirus: community knowledge and risk perception of bats in South East Queensland.

    PubMed

    Young, Megan K; El Saadi, Debra; McCall, Bradley J

    2014-04-01

    Ongoing potential exposure of members of the public to Australian bat lyssavirus (ABLV) in South East Queensland, Australia, prompted investigation of community knowledge, risk perception, and intention to handle bats to inform future prevention efforts. After pilot testing, a computer-assisted telephone survey of a representative sample of 700 adults without previous potential exposure to ABLV was undertaken in the defined geographic region. Twenty-four percent of eligible contacted individuals participated. Basic knowledge of bats and ABLV was generally high, with 65% of participants answering nine or more of 12 knowledge questions correctly. The perceived risk that bats pose to human health was also high, with 93% indicating some degree of risk. Although 88% of participants indicated they would handle bats in one or more of the scripted situations, overall intention to handle bats was low, with 59% indicating they would handle a bat in four or less of the 12 scenarios. Younger males with lower risk perception of bats most frequently indicated intention to handle bats in varying situations. Knowledge score was not associated with intention to handle bats on multivariate modeling. Future public health prevention efforts, both in Australia and overseas, should focus further on conveying the risk to humans and to bats when nontrained, nonvaccinated people attempt to handle bats rather than attempting to purely convey knowledge about bats and ABLV or rabies. Suitable alternative measures to handling should be included. Younger adult males are a particular target group for prevention efforts.

  20. Inertial attitude control of a bat-like morphing-wing air vehicle.

    PubMed

    Colorado, J; Barrientos, A; Rossi, C; Parra, C

    2013-03-01

    This paper presents a novel bat-like unmanned aerial vehicle inspired by the morphing-wing mechanism of bats. The goal of this paper is twofold. Firstly, a modelling framework is introduced for analysing how the robot should manoeuvre by means of changing wing morphology. This allows the definition of requirements for achieving forward and turning flight according to the kinematics of the wing modulation. Secondly, an attitude controller named backstepping+DAF is proposed. Motivated by biological evidence about the influence of wing inertia on the production of body accelerations, the attitude control law incorporates wing inertia information to produce desired roll (ϕ) and pitch (θ) acceleration commands (desired angular acceleration function (DAF)). This novel control approach is aimed at incrementing net body forces (F(net)) that generate propulsion. Simulations and wind-tunnel experimental results have shown an increase of about 23% in net body force production during the wingbeat cycle when the wings are modulated using the DAF as a part of the backstepping control law. Results also confirm accurate attitude tracking in spite of high external disturbances generated by aerodynamic loads at airspeeds up to 5 ms⁻¹.

  1. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special?

    PubMed Central

    Luis, Angela D.; Hayman, David T. S.; O'Shea, Thomas J.; Cryan, Paul M.; Gilbert, Amy T.; Pulliam, Juliet R. C.; Mills, James N.; Timonin, Mary E.; Willis, Craig K. R.; Cunningham, Andrew A.; Fooks, Anthony R.; Rupprecht, Charles E.; Wood, James L. N.; Webb, Colleen T.

    2013-01-01

    Bats are the natural reservoirs of a number of high-impact viral zoonoses. We present a quantitative analysis to address the hypothesis that bats are unique in their propensity to host zoonotic viruses based on a comparison with rodents, another important host order. We found that bats indeed host more zoonotic viruses per species than rodents, and we identified life-history and ecological factors that promote zoonotic viral richness. More zoonotic viruses are hosted by species whose distributions overlap with a greater number of other species in the same taxonomic order (sympatry). Specifically in bats, there was evidence for increased zoonotic viral richness in species with smaller litters (one young), greater longevity and more litters per year. Furthermore, our results point to a new hypothesis to explain in part why bats host more zoonotic viruses per species: the stronger effect of sympatry in bats and more viruses shared between bat species suggests that interspecific transmission is more prevalent among bats than among rodents. Although bats host more zoonotic viruses per species, the total number of zoonotic viruses identified in bats (61) was lower than in rodents (68), a result of there being approximately twice the number of rodent species as bat species. Therefore, rodents should still be a serious concern as reservoirs of emerging viruses. These findings shed light on disease emergence and perpetuation mechanisms and may help lead to a predictive framework for identifying future emerging infectious virus reservoirs. PMID:23378666

  2. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special?

    USGS Publications Warehouse

    Luis, Angela D.; Hayman, David T.S.; O'Shea, Thomas J.; Cryan, Paul M.; Gilbert, Amy T.; Pulliam, Juliet R.C.; Mills, James N.; Timonin, Mary E.; Willis, Craig K.R.; Cunningham, Andrew A.; Fooks, Anthony R.; Rupprecht, Charles E.; Wood, James L.N.; Webb, Colleen T.

    2013-01-01

    Bats are the natural reservoirs of a number of high-impact viral zoonoses. We present a quantitative analysis to address the hypothesis that bats are unique in their propensity to host zoonotic viruses based on a comparison with rodents, another important host order. We found that bats indeed host more zoonotic viruses per species than rodents, and we identified life-history and ecological factors that promote zoonotic viral richness. More zoonotic viruses are hosted by species whose distributions overlap with a greater number of other species in the same taxonomic order (sympatry). Specifically in bats, there was evidence for increased zoonotic viral richness in species with smaller litters (one young), greater longevity and more litters per year. Furthermore, our results point to a new hypothesis to explain in part why bats host more zoonotic viruses per species: the stronger effect of sympatry in bats and more viruses shared between bat species suggests that interspecific transmission is more prevalent among bats than among rodents. Although bats host more zoonotic viruses per species, the total number of zoonotic viruses identified in bats (61) was lower than in rodents (68), a result of there being approximately twice the number of rodent species as bat species. Therefore, rodents should still be a serious concern as reservoirs of emerging viruses. These findings shed light on disease emergence and perpetuation mechanisms and may help lead to a predictive framework for identifying future emerging infectious virus reservoirs.

  3. Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators.

    PubMed

    Colorado, J; Barrientos, A; Rossi, C; Bahlman, J W; Breuer, K S

    2012-09-01

    This paper presents the design of a bat-like micro aerial vehicle with actuated morphing wings. NiTi shape memory alloys (SMAs) acting as artificial biceps and triceps muscles are used for mimicking the morphing wing mechanism of the bat flight apparatus. Our objective is twofold. Firstly, we have implemented a control architecture that allows an accurate and fast SMA actuation. This control makes use of the electrical resistance measurements of SMAs to adjust morphing wing motions. Secondly, the feasibility of using SMA actuation technology is evaluated for the application at hand. To this purpose, experiments are conducted to analyze the control performance in terms of nominal and overloaded operation modes of the SMAs. This analysis includes: (i) inertial forces regarding the stretchable wing membrane and aerodynamic loads, and (ii) uncertainties due to impact of airflow conditions over the resistance-motion relationship of SMAs. With the proposed control, morphing actuation speed can be increased up to 2.5 Hz, being sufficient to generate lift forces at a cruising speed of 5 m s(-1).

  4. Vampire bats exhibit evolutionary reduction of bitter taste receptor genes common to other bats

    PubMed Central

    Hong, Wei; Zhao, Huabin

    2014-01-01

    The bitter taste serves as an important natural defence against the ingestion of poisonous foods and is thus believed to be indispensable in animals. However, vampire bats are obligate blood feeders that show a reduced behavioural response towards bitter-tasting compounds. To test whether bitter taste receptor genes (T2Rs) have been relaxed from selective constraint in vampire bats, we sampled all three vampire bat species and 11 non-vampire bats, and sequenced nine one-to-one orthologous T2Rs that are assumed to be functionally conserved in all bats. We generated 85 T2R sequences and found that vampire bats have a significantly greater percentage of pseudogenes than other bats. These results strongly suggest a relaxation of selective constraint and a reduction of bitter taste function in vampire bats. We also found that vampire bats retain many intact T2Rs, and that the taste signalling pathway gene Calhm1 remains complete and intact with strong functional constraint. These results suggest the presence of some bitter taste function in vampire bats, although it is not likely to play a major role in food selection. Together, our study suggests that the evolutionary reduction of bitter taste function in animals is more pervasive than previously believed, and highlights the importance of extra-oral functions of taste receptor genes. PMID:24966321

  5. BGD: a database of bat genomes.

    PubMed

    Fang, Jianfei; Wang, Xuan; Mu, Shuo; Zhang, Shuyi; Dong, Dong

    2015-01-01

    Bats account for ~20% of mammalian species, and are the only mammals with true powered flight. For the sake of their specialized phenotypic traits, many researches have been devoted to examine the evolution of bats. Until now, some whole genome sequences of bats have been assembled and annotated, however, a uniform resource for the annotated bat genomes is still unavailable. To make the extensive data associated with the bat genomes accessible to the general biological communities, we established a Bat Genome Database (BGD). BGD is an open-access, web-available portal that integrates available data of bat genomes and genes. It hosts data from six bat species, including two megabats and four microbats. Users can query the gene annotations using efficient searching engine, and it offers browsable tracks of bat genomes. Furthermore, an easy-to-use phylogenetic analysis tool was also provided to facilitate online phylogeny study of genes. To the best of our knowledge, BGD is the first database of bat genomes. It will extend our understanding of the bat evolution and be advantageous to the bat sequences analysis. BGD is freely available at: http://donglab.ecnu.edu.cn/databases/BatGenome/.

  6. Respiratory allergy to inhaled bat guano.

    PubMed

    el-Ansary, E H; Tee, R D; Gordon, D J; Taylor, A J

    1987-02-07

    In the Sudan many asthmatic patients attribute their symptoms to inhalation of bat droppings. Design of the roofs of many Sudanese buildings allows black bats to roost; guano drops through cracks in the ceiling into the rooms below where it can be inhaled and cause allergic respiratory disorders. Seven atopic patients seen at Sennar Hospital with bat-related case-histories were investigated. Six had bronchial asthma and allergic rhinitis and one had asthma alone. Extracts of yellow hairy bat, black bat, and bat droppings were made. All seven patients had a positive skin prick test and specific IgE antibodies (RAST) to bat droppings. Three patients also had a positive RAST to both yellow and black bats and one patient to yellow bat. Droppings are probably the major allergen source in bat-related respiratory allergy.

  7. A guide to processing bat acoustic data for the North American Bat Monitoring Program (NABat)

    USGS Publications Warehouse

    Reichert, Brian; Lausen, Cori; Loeb, Susan; Weller, Ted; Allen, Ryan; Britzke, Eric; Hohoff, Tara; Siemers, Jeremy; Burkholder, Braden; Herzog, Carl; Verant, Michelle

    2018-06-14

    The North American Bat Monitoring Program (NABat) aims to improve the state of conservation science for all species of bats shared by the United States, Canada, and Mexico. To accomplish this goal, NABat offers guidance and standardized protocols for acoustic monitoring of bats. In this document, “A Guide to Processing Bat Acoustic Data for the North American Bat Monitoring Program (NABat),” we provide general recommendations and specific workflows for the process of identifying bat species from acoustic files recorded using the NABat stationary point and mobile transect acoustic monitoring protocols.

  8. Bats and zoonotic viruses: can we confidently link bats with emerging deadly viruses?

    PubMed Central

    Moratelli, Ricardo; Calisher, Charles H

    2015-01-01

    An increasingly asked question is 'can we confidently link bats with emerging viruses?'. No, or not yet, is the qualified answer based on the evidence available. Although more than 200 viruses - some of them deadly zoonotic viruses - have been isolated from or otherwise detected in bats, the supposed connections between bats, bat viruses and human diseases have been raised more on speculation than on evidence supporting their direct or indirect roles in the epidemiology of diseases (except for rabies). However, we are convinced that the evidence points in that direction and that at some point it will be proved that bats are competent hosts for at least a few zoonotic viruses. In this review, we cover aspects of bat biology, ecology and evolution that might be relevant in medical investigations and we provide a historical synthesis of some disease outbreaks causally linked to bats. We provide evolutionary-based hypotheses to tentatively explain the viral transmission route through mammalian intermediate hosts and to explain the geographic concentration of most outbreaks, but both are no more than speculations that still require formal assessment. PMID:25742261

  9. Bat detective-Deep learning tools for bat acoustic signal detection.

    PubMed

    Mac Aodha, Oisin; Gibb, Rory; Barlow, Kate E; Browning, Ella; Firman, Michael; Freeman, Robin; Harder, Briana; Kinsey, Libby; Mead, Gary R; Newson, Stuart E; Pandourski, Ivan; Parsons, Stuart; Russ, Jon; Szodoray-Paradi, Abigel; Szodoray-Paradi, Farkas; Tilova, Elena; Girolami, Mark; Brostow, Gabriel; Jones, Kate E

    2018-03-01

    Passive acoustic sensing has emerged as a powerful tool for quantifying anthropogenic impacts on biodiversity, especially for echolocating bat species. To better assess bat population trends there is a critical need for accurate, reliable, and open source tools that allow the detection and classification of bat calls in large collections of audio recordings. The majority of existing tools are commercial or have focused on the species classification task, neglecting the important problem of first localizing echolocation calls in audio which is particularly problematic in noisy recordings. We developed a convolutional neural network based open-source pipeline for detecting ultrasonic, full-spectrum, search-phase calls produced by echolocating bats. Our deep learning algorithms were trained on full-spectrum ultrasonic audio collected along road-transects across Europe and labelled by citizen scientists from www.batdetective.org. When compared to other existing algorithms and commercial systems, we show significantly higher detection performance of search-phase echolocation calls with our test sets. As an example application, we ran our detection pipeline on bat monitoring data collected over five years from Jersey (UK), and compared results to a widely-used commercial system. Our detection pipeline can be used for the automatic detection and monitoring of bat populations, and further facilitates their use as indicator species on a large scale. Our proposed pipeline makes only a small number of bat specific design decisions, and with appropriate training data it could be applied to detecting other species in audio. A crucial novelty of our work is showing that with careful, non-trivial, design and implementation considerations, state-of-the-art deep learning methods can be used for accurate and efficient monitoring in audio.

  10. Bat detective—Deep learning tools for bat acoustic signal detection

    PubMed Central

    Barlow, Kate E.; Firman, Michael; Freeman, Robin; Harder, Briana; Kinsey, Libby; Mead, Gary R.; Newson, Stuart E.; Pandourski, Ivan; Russ, Jon; Szodoray-Paradi, Abigel; Tilova, Elena; Girolami, Mark; Jones, Kate E.

    2018-01-01

    Passive acoustic sensing has emerged as a powerful tool for quantifying anthropogenic impacts on biodiversity, especially for echolocating bat species. To better assess bat population trends there is a critical need for accurate, reliable, and open source tools that allow the detection and classification of bat calls in large collections of audio recordings. The majority of existing tools are commercial or have focused on the species classification task, neglecting the important problem of first localizing echolocation calls in audio which is particularly problematic in noisy recordings. We developed a convolutional neural network based open-source pipeline for detecting ultrasonic, full-spectrum, search-phase calls produced by echolocating bats. Our deep learning algorithms were trained on full-spectrum ultrasonic audio collected along road-transects across Europe and labelled by citizen scientists from www.batdetective.org. When compared to other existing algorithms and commercial systems, we show significantly higher detection performance of search-phase echolocation calls with our test sets. As an example application, we ran our detection pipeline on bat monitoring data collected over five years from Jersey (UK), and compared results to a widely-used commercial system. Our detection pipeline can be used for the automatic detection and monitoring of bat populations, and further facilitates their use as indicator species on a large scale. Our proposed pipeline makes only a small number of bat specific design decisions, and with appropriate training data it could be applied to detecting other species in audio. A crucial novelty of our work is showing that with careful, non-trivial, design and implementation considerations, state-of-the-art deep learning methods can be used for accurate and efficient monitoring in audio. PMID:29518076

  11. Endemic circulation of European bat lyssavirus type 1 in serotine bats, Spain.

    PubMed

    Vázquez-Morón, Sonia; Juste, Javier; Ibáñez, Carlos; Ruiz-Villamor, Eduardo; Avellón, Ana; Vera, Manuel; Echevarría, Juan E

    2008-08-01

    To determine the presence of European bat lyssavirus type 1 in southern Spain, we studied 19 colonies of serotine bats (Eptesicus isabellinus), its main reservoir, during 1998-2003. Viral genome and antibodies were detected in healthy bats, which suggests subclinical infection. The different temporal patterns of circulation found in each colony indicate independent endemic circulation.

  12. Adaptations for Substrate Gleaning in Bats: The Pallid Bat as a Case Study.

    PubMed

    Razak, Khaleel A

    2018-06-06

    Substrate gleaning is a foraging strategy in which bats use a mixture of echolocation, prey-generated sounds, and vision to localize and hunt surface-dwelling prey. Many substrate-gleaning species depend primarily on prey-generated noise to hunt. Use of echolocation is limited to general orientation and obstacle avoidance. This foraging strategy involves a different set of selective pressures on morphology, behavior, and auditory system organization of bats compared to the use of echolocation for both hunting and navigation. Gleaning likely evolved to hunt in cluttered environments and/or as a counterstrategy to reduce detection by eared prey. Gleaning bats simultaneously receive streams of echoes from obstacles and prey-generated noise, and have to segregate these acoustic streams to attend to one or both. Not only do these bats have to be exquisitely sensitive to the soft, low frequency sounds produced by walking/rustling prey, they also have to precisely localize these sounds. Gleaners typically use low intensity echolocation calls. Such stealth echolocation requires a nervous system that is attuned to low intensity sound processing. In addition, landing on the ground to hunt may bring gleaners in close proximity to venomous prey. In fact, at least 2 gleaning bat species are known to hunt highly venomous scorpions. While a number of studies have addressed adaptations for echolocation in bats that hunt in the air, very little is known about the morphological, behavioral, and neural specializations for gleaning in bats. This review highlights the novel insights gleaning bats provide into bat evolution, particularly auditory pathway organization and ion channel structure/function relationships. Gleaning bats are found in multiple families, suggesting convergent evolution of specializations for gleaning as a foraging strategy. However, most of this review is based on recent work on a single species - the pallid bat (Antrozous palli dus) - symptomatic of the fact

  13. Leg structure explains host site preference in bat flies (Diptera: Streblidae) parasitizing neotropical bats (Chiroptera: Phyllostomidae).

    PubMed

    Hiller, Thomas; Honner, Benjamin; Page, Rachel A; Tschapka, Marco

    2018-03-22

    Bat flies (Streblidae) are diverse, obligate blood-feeding insects and probably the most conspicuous ectoparasites of bats. They show preferences for specific body regions on their host bat, which are reflected in behavioural characteristics. In this study, we corroborate the categorization of bat flies into three ecomorphological groups, focusing only on differences in hind leg morphology. As no detailed phylogeny of bat flies is available, it remains uncertain whether these morphological differences reflect the evolutionary history of bat flies or show convergent adaptations for the host habitat type. We show that the division of the host bat into three distinct habitats contributes to the avoidance of interspecific competition of bat fly species. Finally, we found evidence for density-dependent competition between species belonging to the same ecomorphological group.

  14. First isolation of a rabid bat infected with European bat lyssavirus in Luxembourg.

    PubMed

    Servat, A; Herr, J; Picard-Meyer, E; Schley, L; Harbusch, C; Michaux, C; Pir, J; Robardet, E; Engel, E; Cliquet, F

    2015-02-01

    Rabid bats are regularly reported in Europe, especially in countries that have implemented a bat surveillance network. In May 2013, bat rabies was evidenced for the first time in Luxembourg (southern city of Differdange). The rabies virus, an EBLV-1b strain, was diagnosed in a serotine bat that bit a 29-year-old male person while he was asleep. The man received rapidly a post-exposure RABV treatment and was put under strict medical supervision. © 2013 Blackwell Verlag GmbH.

  15. Phylogenetic evaluation of Geomyces and allies reveals no close relatives of Pseudogymnoascus destructans, comb. nov., in bat hibernacula of eastern North America.

    PubMed

    Minnis, Andrew M; Lindner, Daniel L

    2013-09-01

    White-nose syndrome (WNS) of bats, caused by the fungus previously known as Geomyces destructans, has decimated populations of insectivorous bats in eastern North America. Recent work on fungi associated with bat hibernacula uncovered a large number of species of Geomyces and allies, far exceeding the number of described species. Communication about these species has been hindered by the lack of a modern taxonomic evaluation, and a phylogenetic framework of the group is needed to understand the origin of G. destructans and to target closely related species and their genomes for the purposes of understanding mechanisms of pathogenicity. We addressed these issues by generating DNA sequence data for the internal transcribed spacer (ITS) region, nuclear large subunit (LSU) rDNA, MCM7, RPB2, and TEF1 from a diverse array of Geomyces and allies that included isolates recovered from bat hibernacula as well as those that represent important type species. Phylogenetic analyses indicate Geomyces and allies should be classified in the family Pseudeurotiaceae, and the genera Geomyces, Gymnostellatospora, and Pseudogymnoascus should be recognized as distinct. True Geomyces are restricted to a basal lineage based on phylogenetic placement of the type species, Geomyces auratus. Thus, G. destructans is placed in genus Pseudogymnoascus. The closest relatives of Pseudogymnoascus destructans are members of the Pseudogymnoascus roseus species complex, however, the isolated and long branch of P. destructans indicates that none of the species included in this study are closely related, thus providing further support to the hypothesis that this pathogen is non-native and invasive in eastern North America. Several conidia-producing isolates from bat hibernacula previously identified as members of Pseudeurotium are determined to belong to the genus Leuconeurospora, which is widespread, especially in colder regions. Teberdinia hygrophila is transferred to Pseudeurotium as Pseudeurotium

  16. Bat Rabies and Other Lyssavirus Infections

    USGS Publications Warehouse

    Constantine, Denny G.; Blehert, David S.

    2009-01-01

    Bat Rabies and Other Lyssavirus Infections offers readers an overview of the virus variants that cause bat rabies, and geographical patterns in occurrence of this disease. The section Species Susceptibility describes infection rates and trends among bats, humans, and other animals. Disease Ecology considers the biological and environmental dynamics of the disease in various species of bats. Points to Ponder: Interspecies Interactions in Potential Bat Rabies Transmission Settings discusses the narrowing interface of bat colonies and human society and how humans and domestic animals play a role in transmission of bat rabies. Disease Prevention and Control outlines how to limit exposure to rabid bats and other animals. Appendixes include extensive tables of reported infections in bat species and in humans, and a glossary of technical terms is included. The author, Denny G. Constantine, helped define rabies infection in insect-eating bats and has investigated bat rabies ecology for more than half a century. He has authored more than 90 papers during the course of his career and is widely considered to be the world's foremost authority on the disease. Currently, Dr. Constantine is a public health officer emeritus and veterinary epidemiologist for the California Department of Health Services Viral and Rickettsial Disease Laboratory. Milt Friend, first director of the USGS National Wildlife Health Center, wrote the foreword. David Blehert, a USGS microbiologist who is investigating the emergence and causes of bat white-nose syndrome, edited the volume. Bat Rabies is intended for scholars and the general public. Dr. Constantine presents the material in a simple, straightforward manner that serves both audiences. The goal of the author is to increase people's understanding of both bat and disease ecology and also provide a balanced perspective on human risks pertaining to bat rabies.

  17. Parasites of parasites of bats: Laboulbeniales (Fungi: Ascomycota) on bat flies (Diptera: Nycteribiidae) in central Europe.

    PubMed

    Haelewaters, Danny; Pfliegler, Walter P; Szentiványi, Tamara; Földvári, Mihály; Sándor, Attila D; Barti, Levente; Camacho, Jasmin J; Gort, Gerrit; Estók, Péter; Hiller, Thomas; Dick, Carl W; Pfister, Donald H

    2017-02-21

    Bat flies (Streblidae and Nycteribiidae) are among the most specialized families of the order Diptera. Members of these two related families have an obligate ectoparasitic lifestyle on bats, and they are known disease vectors for their hosts. However, bat flies have their own ectoparasites: fungi of the order Laboulbeniales. In Europe, members of the Nycteribiidae are parasitized by four species belonging to the genus Arthrorhynchus. We carried out a systematic survey of the distribution and fungus-bat fly associations of the genus in central Europe (Hungary, Romania). We encountered the bat fly Nycteribia pedicularia and the fungus Arthrorhynchus eucampsipodae as new country records for Hungary. The following bat-bat fly associations are for the first time reported: Nycteribia kolenatii on Miniopterus schreibersii, Myotis blythii, Myotis capaccinii and Rhinolophus ferrumequinum; Penicillidia conspicua on Myotis daubentonii; and Phthiridium biarticulatum on Myotis capaccinii. Laboulbeniales infections were found on 45 of 1,494 screened bat flies (3.0%). We report two fungal species: Arthrorhynchus eucampsipodae on Nycteribia schmidlii, and A. nycteribiae on N. schmidlii, Penicillidia conspicua, and P. dufourii. Penicillidia conspicua was infected with Laboulbeniales most frequently (25%, n = 152), followed by N. schmidlii (3.1%, n = 159) and P. dufourii (2.0%, n = 102). Laboulbeniales seem to prefer female bat fly hosts to males. We think this might be due to a combination of factors: female bat flies have a longer life span, while during pregnancy female bat flies are significantly larger than males and accumulate an excess of fat reserves. Finally, ribosomal DNA sequences for A. nycteribiae are presented. We screened ectoparasitic bat flies from Hungary and Romania for the presence of ectoparasitic Laboulbeniales fungi. Arthrorhynchus eucampsipodae and A. nycteribiae were found on three species of bat flies. This study extends geographical and host

  18. Pathogenesis of bat rabies in a natural reservoir: Comparative susceptibility of the straw-colored fruit bat (Eidolon helvum) to three strains of Lagos bat virus.

    PubMed

    Suu-Ire, Richard; Begeman, Lineke; Banyard, Ashley C; Breed, Andrew C; Drosten, Christian; Eggerbauer, Elisa; Freuling, Conrad M; Gibson, Louise; Goharriz, Hooman; Horton, Daniel L; Jennings, Daisy; Kuzmin, Ivan V; Marston, Denise; Ntiamoa-Baidu, Yaa; Riesle Sbarbaro, Silke; Selden, David; Wise, Emma L; Kuiken, Thijs; Fooks, Anthony R; Müller, Thomas; Wood, James L N; Cunningham, Andrew A

    2018-03-01

    Rabies is a fatal neurologic disease caused by lyssavirus infection. People are infected through contact with infected animals. The relative increase of human rabies acquired from bats calls for a better understanding of lyssavirus infections in their natural hosts. So far, there is no experimental model that mimics natural lyssavirus infection in the reservoir bat species. Lagos bat virus is a lyssavirus that is endemic in straw-colored fruit bats (Eidolon helvum) in Africa. Here we compared the susceptibility of these bats to three strains of Lagos bat virus (from Senegal, Nigeria, and Ghana) by intracranial inoculation. To allow comparison between strains, we ensured the same titer of virus was inoculated in the same location of the brain of each bat. All bats (n = 3 per strain) were infected, and developed neurological signs, and fatal meningoencephalitis with lyssavirus antigen expression in neurons. There were three main differences among the groups. First, time to death was substantially shorter in the Senegal and Ghana groups (4 to 6 days) than in the Nigeria group (8 days). Second, each virus strain produced a distinct clinical syndrome. Third, the spread of virus to peripheral tissues, tested by hemi-nested reverse transcriptase PCR, was frequent (3 of 3 bats) and widespread (8 to 10 tissues positive of 11 tissues examined) in the Ghana group, was frequent and less widespread in the Senegal group (3/3 bats, 3 to 6 tissues positive), and was rare and restricted in the Nigeria group (1/3 bats, 2 tissues positive). Centrifugal spread of virus from brain to tissue of excretion in the oral cavity is required to enable lyssavirus transmission. Therefore, the Senegal and Ghana strains seem most suitable for further pathogenesis, and for transmission, studies in the straw-colored fruit bat.

  19. Pathogenesis of bat rabies in a natural reservoir: Comparative susceptibility of the straw-colored fruit bat (Eidolon helvum) to three strains of Lagos bat virus

    PubMed Central

    Suu-Ire, Richard; Banyard, Ashley C.; Breed, Andrew C.; Drosten, Christian; Eggerbauer, Elisa; Freuling, Conrad M.; Gibson, Louise; Goharriz, Hooman; Horton, Daniel L.; Jennings, Daisy; Kuzmin, Ivan V.; Marston, Denise; Ntiamoa-Baidu, Yaa; Riesle Sbarbaro, Silke; Selden, David; Wise, Emma L.; Kuiken, Thijs; Fooks, Anthony R.; Müller, Thomas; Wood, James L. N.; Cunningham, Andrew A.

    2018-01-01

    Rabies is a fatal neurologic disease caused by lyssavirus infection. People are infected through contact with infected animals. The relative increase of human rabies acquired from bats calls for a better understanding of lyssavirus infections in their natural hosts. So far, there is no experimental model that mimics natural lyssavirus infection in the reservoir bat species. Lagos bat virus is a lyssavirus that is endemic in straw-colored fruit bats (Eidolon helvum) in Africa. Here we compared the susceptibility of these bats to three strains of Lagos bat virus (from Senegal, Nigeria, and Ghana) by intracranial inoculation. To allow comparison between strains, we ensured the same titer of virus was inoculated in the same location of the brain of each bat. All bats (n = 3 per strain) were infected, and developed neurological signs, and fatal meningoencephalitis with lyssavirus antigen expression in neurons. There were three main differences among the groups. First, time to death was substantially shorter in the Senegal and Ghana groups (4 to 6 days) than in the Nigeria group (8 days). Second, each virus strain produced a distinct clinical syndrome. Third, the spread of virus to peripheral tissues, tested by hemi-nested reverse transcriptase PCR, was frequent (3 of 3 bats) and widespread (8 to 10 tissues positive of 11 tissues examined) in the Ghana group, was frequent and less widespread in the Senegal group (3/3 bats, 3 to 6 tissues positive), and was rare and restricted in the Nigeria group (1/3 bats, 2 tissues positive). Centrifugal spread of virus from brain to tissue of excretion in the oral cavity is required to enable lyssavirus transmission. Therefore, the Senegal and Ghana strains seem most suitable for further pathogenesis, and for transmission, studies in the straw-colored fruit bat. PMID:29505617

  20. Calling louder and longer: how bats use biosonar under severe acoustic interference from other bats.

    PubMed

    Amichai, Eran; Blumrosen, Gaddi; Yovel, Yossi

    2015-12-22

    Active-sensing systems such as echolocation provide animals with distinct advantages in dark environments. For social animals, however, like many bat species, active sensing can present problems as well: when many individuals emit bio-sonar calls simultaneously, detecting and recognizing the faint echoes generated by one's own calls amid the general cacophony of the group becomes challenging. This problem is often termed 'jamming' and bats have been hypothesized to solve it by shifting the spectral content of their calls to decrease the overlap with the jamming signals. We tested bats' response in situations of extreme interference, mimicking a high density of bats. We played-back bat echolocation calls from multiple speakers, to jam flying Pipistrellus kuhlii bats, simulating a naturally occurring situation of many bats flying in proximity. We examined behavioural and echolocation parameters during search phase and target approach. Under severe interference, bats emitted calls of higher intensity and longer duration, and called more often. Slight spectral shifts were observed but they did not decrease the spectral overlap with jamming signals. We also found that pre-existing inter-individual spectral differences could allow self-call recognition. Results suggest that the bats' response aimed to increase the signal-to-noise ratio and not to avoid spectral overlap. © 2015 The Author(s).

  1. Bat-mouse bone marrow chimera: a novel animal model for dissecting the uniqueness of the bat immune system.

    PubMed

    Yong, Kylie Su Mei; Ng, Justin Han Jia; Her, Zhisheng; Hey, Ying Ying; Tan, Sue Yee; Tan, Wilson Wei Sheng; Irac, Sergio Erdal; Liu, Min; Chan, Xue Ying; Gunawan, Merry; Foo, Randy Jee Hiang; Low, Dolyce Hong Wen; Mendenhall, Ian Hewitt; Chionh, Yok Teng; Dutertre, Charles-Antoine; Chen, Qingfeng; Wang, Lin-Fa

    2018-03-16

    Bats are an important animal model with long lifespans, low incidences of tumorigenesis and an ability to asymptomatically harbour pathogens. Currently, in vivo studies of bats are hampered due to their low reproduction rates. To overcome this, we transplanted bat cells from bone marrow (BM) and spleen into an immunodeficient mouse strain NOD-scid IL-2R -/- (NSG), and have successfully established stable, long-term reconstitution of bat immune cells in mice (bat-mice). Immune functionality of our bat-mouse model was demonstrated through generation of antigen-specific antibody response by bat cells following immunization. Post-engraftment of total bat BM cells and splenocytes, bat immune cells survived, expanded and repopulated the mouse without any observable clinical abnormalities. Utilizing bat's remarkable immunological functions, this novel model has a potential to be transformed into a powerful platform for basic and translational research.

  2. The Kinetics of Swinging a Baseball Bat.

    PubMed

    Crisco, Joseph J; Osvalds, Nikolas J; Rainbow, Michael J

    2018-04-13

    The purpose of this study was to compute the three-dimensional kinetics required to swing three youth baseball bats of varying moments of inertia (MOI). 306 swings by 22 male players (13-18 yrs.) were analyzed. Inverse dynamics with respect to the batter's hands were computed given the known kinematics and physical properties of the bats. We found that peak force increased with larger bat MOI and was strongly correlated with bat tip speed. In contrast, peak moments were weakly correlated with bat MOI and bat tip speed. Throughout the swing, the force applied to the bat was dominated by a component aligned with the long axis of the bat and directed away from the bat knob, while the moment applied to the bat was minimal until just prior to ball impact. These results indicate that players act to mostly "pull" the bat during their swing until just prior to ball impact, at which point they rapidly increase the moment on the bat. This kinetic analysis provides novel insight into the forces and moments used to swing baseball bats.

  3. BAT Exosomes: Metabolic Crosstalk with Other Organs and Biomarkers for BAT Activity.

    PubMed

    Goody, Deborah; Pfeifer, Alexander

    2018-04-10

    In the last decade, exosomes have gained interest as a new type of intercellular communication between cells and tissues. Exosomes are circulating, cell-derived lipid vesicles smaller than 200 nm that contain proteins and nucleic acids, including microRNAs (miRNAs), and are able to modify cellular targets. Exosomal miRNAs function as signalling molecules that regulate the transcription of their target genes and can cause phenotypic transformation of recipient cells. Recent studies have shown that brown fat secretes exosomes as a form of communication with other metabolic organs such as the liver. Moreover, it has been shown that levels of miRNAs in BAT-derived exosomes change after BAT activation in vitro and in vivo. Thus, BAT-derived exosomes can be used as potential biomarkers of BAT activity. Here, we review the present knowledge about BAT-derived exosomes and their role in metabolism.

  4. Ultrasonic Bat Deterrent Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinzie, Kevin; Rominger, Kathryn M.

    The project objective was to advance the development and testing of an Near commercial bat-deterrent system with a goal to increase the current GE deterrent system effectiveness to over 50% with broad species applicability. Additionally, the research supported by this program has provided insights into bat behavior and ultrasonic deterrent design that had not previously been explored. Prior research and development had demonstrated the effectiveness of a commercial-grade, air-powered, ultrasonic bat deterrent to be between 30-50% depending upon the species of bat. However, the previous research provided limited insight into the behavioral responses of bats in the presence of ultrasonicmore » deterrent sound fields that could be utilized to improve effectiveness. A unique bat flight room was utilized to observe the behavioral characteristics of bats in the presence of ultrasonic sound fields. Behavioral testing in the bat flight facility demonstrated that ultrasonic sounds similar to those produced by the GE deterrent influenced the activities and behaviors, primarily those associated with foraging, of the species exposed. The study also indicated that continuous and pulsing ultrasonic signals had a similar effect on the bats, and confirmed that as ultrasonic sounds attenuate, their influence on the bats’ activities and behavior decreases. Ground testing at Wolf Ridge Wind, LLC and Shawnee National Forest assessed both continuous and pulsing deterrent signals emitted from the GE deterrent system and further enhanced the behavioral understanding of bats in the presence of the deterrent. With these data and observations, the existing 4-nozzle continuous, or steady, emission ultrasonic system was redesigned to a 6-nozzle system that could emit a pulsing signal covering a larger air space around a turbine. Twelve GE 1.6-100 turbines were outfitted with the deterrent system and a formal three-month field study was performed using daily carcass searches beneath the 12

  5. North American Bats and Mines Project: A cooperative approach for integrating bat conservation and mine-land reclamation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ducummon, S.L.

    Inactive underground mines now provide essential habitat for more than half of North America`s 44 bat species, including some of the largest remaining populations. Thousands of abandoned mines have already been closed or are slated for safety closures, and many are destroyed during renewed mining in historic districts. The available evidence suggests that millions of bats have already been lost due to these closures. Bats are primary predators of night-flying insects that cost American farmers and foresters billions of dollars annually, therefore, threats to bat survival are cause for serious concern. Fortunately, mine closure methods exist that protect both batsmore » and humans. Bat Conservation International (BCI) and the USDI-Bureau of Land Management founded the North American Bats and Mines Project to provide national leadership and coordination to minimize the loss of mine-roosting bats. This partnership has involved federal and state mine-land and wildlife managers and the mining industry. BCI has trained hundreds of mine-land and wildlife managers nationwide in mine assessment techniques for bats and bat-compatible closure methods, published technical information on bats and mine-land management, presented papers on bats and mines at national mining and wildlife conferences, and collaborated with numerous federal, state, and private partners to protect some of the most important mine-roosting bat populations. Our new mining industry initiative, Mining for Habitat, is designed to develop bat habitat conservation and enhancement plans for active mining operations. It includes the creation of cost-effective artificial underground bat roosts using surplus mining materials such as old mine-truck tires and culverts buried beneath waste rock.« less

  6. [Hemoparasites of bats in Madagascar].

    PubMed

    Raharimanga, V; Ariey, F; Cardiff, S G; Goodman, S M; Tall, A; Rousset, D; Robert, V

    2003-01-01

    This study aims to evaluate the prevalence and density of haemoparasites in wild malagasy bats. Among the 440 bats, belonging to 14 species sampled in 5 localities in different bio-climatic zones of the island, 93 (21%) showed at least 1 haemoparasite with, by order of frequency, Haemoproteidae (15.7% of 440 bats), microfilariae (7.0%) and Trypanosoma (0.7%). Among these 93 bats, 92 (99%) belonged to the family Vespertilionidae. Four bat species, all endemic to the Madagascar region (Madagascar and Comoros), were found to harbour parasites: Miniopterus manavi with Haemoproteidae (38% of 129 individuals), microfilariae (23%) and Trypanosoma (2%); Myotis goudoti with Haemoproteidae (24% of 68 individuals) and microfilariae (1%); Miniopterus gleni with Haemoproteidae (23% of 13 individuals); and Triaenops furculus with Haemoproteidae (4% of 28 individuals). The sex of bats was not linked to parasite prevalence. Within Miniopterus manavi, those individuals with greater weight also had a higher prevalence of microfilariae; and within the individuals harbouring microfilariae the greatest weights corresponded to the highest density of microfilariae. Ten bat species (with 202 individuals examined) were negative for any haemoparasite. This study is the first to provide evidence of haemoparasites in Malagasy bats; it provides interesting insights, especially concerning the parasite distribution per bat species and families, the pathogenicity of this type of parasitism and the parasite transmission by arthropod vectors.

  7. Sampling methods for bats.

    Treesearch

    D.W. Thomas; S.D. West

    1989-01-01

    Bats represent the second most diverse group of mammals inhabiting the western slopes of the Cascade Range in southern Washington and the Oregon Coast Range. Bat populations may well be sensitive to changes in forest age, structure, or distribution, but their nocturnal habits and high mobility render the study of the habitat requirements of bats problematical. Unlike...

  8. Variable Variation: Annual and Seasonal Changes in Offspring Sex Ratio in a Bat

    PubMed Central

    Barclay, Robert M. R.

    2012-01-01

    Many organisms produce offspring with sex-ratios that deviate from equal numbers of males and females, and numerous adaptive explanations have been proposed. In some species, offspring sex-ratio varies across the reproductive season, again with several explanations as to why this might be adaptive. However, patterns for birds and mammals are inconsistent, and multiple factors are likely involved. Long-term studies on a variety of species may help untangle the complexity. I analyzed a long-term data set on the variation in offspring sex-ratio of the big brown bat, Eptesicus fuscus, a temperate-zone, insectivorous species. Sex ratio varied seasonally, but only in some years. Births early in the season were significantly female biased in years in which parturition occurred relatively early, but not in years with late parturition. Survival of female pups increased with earlier median birth date for the colony, and early-born females were more likely to survive and reproduce as one-year olds, compared to later-born pups. I argue that, due to the unusual timing of reproductive activities in male and female bats that hibernate, producing female offspring early in the year increases their probability of reproducing as one year olds, but this is not the case for male offspring. Thus, mothers that can give birth early in the year, benefit most by producing a female pup. The relative benefit of producing female or male offspring varies depending on the length of the growing season and thus the time available for female pups to reach sexual maturity. This suggests that not only does sex-ratio vary seasonally and among years, depending on the condition of the mother and the environment, but also likely varies geographically due to differences in season length. PMID:22570704

  9. Experimental infection of serotine bats (Eptesicus serotinus) with European bat lyssavirus type 1a.

    PubMed

    Freuling, C; Vos, A; Johnson, N; Kaipf, I; Denzinger, A; Neubert, L; Mansfield, K; Hicks, D; Nuñez, A; Tordo, N; Rupprecht, C E; Fooks, A R; Müller, T

    2009-10-01

    The serotine bat (Eptesicus serotinus) accounts for the vast majority of bat rabies cases in Europe and is considered the main reservoir for European bat lyssavirus type 1 (EBLV-1, genotype 5). However, so far the disease has not been investigated in its native host under experimental conditions. To assess viral virulence, dissemination and probable means of transmission, captive bats were infected experimentally with an EBLV-1a virus isolated from a naturally infected conspecific from Germany. Twenty-nine wild caught bats were divided into five groups and inoculated by intracranial (i.c.), intramuscular (i.m.) or subcutaneous (s.c.) injection or by intranasal (i.n.) inoculation to mimic the various potential routes of infection. One group of bats was maintained as uninfected controls. Mortality was highest in the i.c.-infected animals, followed by the s.c. and i.m. groups. Incubation periods varied from 7 to 26 days depending on the route of infection. Rabies did not develop in the i.n. group or in the negative-control group. None of the infected bats seroconverted. Viral antigen was detected in more than 50% of the taste buds of an i.c.-infected animal. Shedding of viable virus was measured by virus isolation in cell culture for one bat from the s.c. group at 13 and 14 days post-inoculation, i.e. 7 days before death. In conclusion, it is postulated that s.c. inoculation, in nature caused by bites, may be an efficient way of transmitting EBLV-1 among free-living serotine bats.

  10. Genomic and serological detection of bat coronavirus from bats in the Philippines.

    PubMed

    Tsuda, Shumpei; Watanabe, Shumpei; Masangkay, Joseph S; Mizutani, Tetsuya; Alviola, Phillip; Ueda, Naoya; Iha, Koichiro; Taniguchi, Satoshi; Fujii, Hikaru; Kato, Kentaro; Horimoto, Taisuke; Kyuwa, Shigeru; Yoshikawa, Yasuhiro; Akashi, Hiroomi

    2012-12-01

    Bat coronavirus (BtCoV) is assumed to be a progenitor of severe acute respiratory syndrome (SARS)-related coronaviruses. To explore the distribution of BtCoVs in the Philippines, we collected 179 bats and detected viral RNA from intestinal or fecal samples by RT-PCR. The overall prevalence of BtCoVs among bats was 29.6 %. Phylogenetic analysis of the partial RNA-dependent RNA polymerase gene suggested that one of the detected BtCoVs was a novel alphacoronavirus, while the others belonged to the genus Betacoronavirus. Western blotting revealed that 66.5 % of bat sera had antibodies to BtCoV. These surveys suggested the endemic presence of BtCoVs in the Philippines.

  11. Bat habitat research. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, B.L.; Bosworth, W.R.; Doering, R.W.

    This progress report describes activities over the current reporting period to characterize the habitats of bats on the INEL. Research tasks are entitled Monitoring bat habitation of caves on the INEL to determine species present, numbers, and seasons of use; Monitor bat use of man-made ponds at the INEL to determine species present and rates of use of these waters; If the Big Lost River is flowing on the INEL and/or if the Big Lost River sinks contain water, determine species present, numbers and seasons of use; Determine the habitat requirement of Townsend`s big-eared bats, including the microclimate of cavesmore » containing Townsend`s big-eared bats as compared to other caves that do not contain bats; Determine and describe an economical and efficient bat census technique to be used periodically by INEL scientists to determine the status of bats on the INEL; and Provide a suggestive management and protective plan for bat species on the INEL that might, in the future, be added to the endangered and sensitive list;« less

  12. Second case of European bat lyssavirus type 2 detected in a Daubenton's bat in Finland.

    PubMed

    Nokireki, Tiina; Sironen, Tarja; Smura, Teemu; Karkamo, Veera; Sihvonen, Liisa; Gadd, Tuija

    2017-09-25

    European bat lyssavirus type 2 (EBLV-2) was detected in Finland in a Daubenton's bat (Myotis daubentonii) found in the municipality of Inkoo (60°02'45″N, 024°00'20″E). The bat showed neurological signs and was later found dead. The laboratory analysis revealed the presence of lyssavirus, and the virus was characterized as EBLV-2. This isolation of EBLV-2 was the second time that the virus has been detected in a Daubenton's bat in Finland. This provides additional proof that EBLV-2 is endemic in the Finnish Daubenton's bat population.

  13. Detection of European bat lyssavirus 2 (EBLV-2) in a Daubenton's bat (Myotis daubentonii) from Magdeburg, Germany.

    PubMed

    Freuling, Conrad M; Kliemt, Jeannette; Schares, Susann; Heidecke, Dietrich; Driechciarz, René; Schatz, Juliane; Müller, Thomas

    2012-01-01

    In Europe bat rabies in Daubenton's bats (Myotisdaubentonii) and in Pond bats (Myotis dasycneme) caused by the European bat lyssavirus 2 (EBLV-2) has been confirmed in less than 20 cases to date. Here we report the second encounter of this virus species in Germany. A Daubenton's bat found grounded in the zoological garden in Magdeburg died shortly after. In the frame of a retrospective study the bat carcass was eventually transferred to the national reference laboratory for rabies at the Friedrich-Loeffler-Institute for rabies diagnosis. Lyssavirus was isolated and characterized as EBLV-2.

  14. Kanyawara Virus: A Novel Rhabdovirus Infecting Newly Discovered Nycteribiid Bat Flies Infesting Previously Unknown Pteropodid Bats in Uganda.

    PubMed

    Goldberg, Tony L; Bennett, Andrew J; Kityo, Robert; Kuhn, Jens H; Chapman, Colin A

    2017-07-13

    Bats are natural reservoir hosts of highly virulent pathogens such as Marburg virus, Nipah virus, and SARS coronavirus. However, little is known about the role of bat ectoparasites in transmitting and maintaining such viruses. The intricate relationship between bats and their ectoparasites suggests that ectoparasites might serve as viral vectors, but evidence to date is scant. Bat flies, in particular, are highly specialized obligate hematophagous ectoparasites that incidentally bite humans. Using next-generation sequencing, we discovered a novel ledantevirus (mononegaviral family Rhabdoviridae, genus Ledantevirus) in nycteribiid bat flies infesting pteropodid bats in western Uganda. Mitochondrial DNA analyses revealed that both the bat flies and their bat hosts belong to putative new species. The coding-complete genome of the new virus, named Kanyawara virus (KYAV), is only distantly related to that of its closest known relative, Mount Elgon bat virus, and was found at high titers in bat flies but not in blood or on mucosal surfaces of host bats. Viral genome analysis indicates unusually low CpG dinucleotide depletion in KYAV compared to other ledanteviruses and rhabdovirus groups, with KYAV displaying values similar to rhabdoviruses of arthropods. Our findings highlight the possibility of a yet-to-be-discovered diversity of potentially pathogenic viruses in bat ectoparasites.

  15. Behavior of bats at wind turbines

    PubMed Central

    Cryan, Paul. M.; Gorresen, P. Marcos; Hein, Cris D.; Schirmacher, Michael R.; Diehl, Robert H.; Huso, Manuela M.; Hayman, David T. S.; Fricker, Paul D.; Bonaccorso, Frank J.; Johnson, Douglas H.; Heist, Kevin; Dalton, David C.

    2014-01-01

    Wind turbines are causing unprecedented numbers of bat fatalities. Many fatalities involve tree-roosting bats, but reasons for this higher susceptibility remain unknown. To better understand behaviors associated with risk, we monitored bats at three experimentally manipulated wind turbines in Indiana, United States, from July 29 to October 1, 2012, using thermal cameras and other methods. We observed bats on 993 occasions and saw many behaviors, including close approaches, flight loops and dives, hovering, and chases. Most bats altered course toward turbines during observation. Based on these new observations, we tested the hypotheses that wind speed and blade rotation speed influenced the way that bats interacted with turbines. We found that bats were detected more frequently at lower wind speeds and typically approached turbines on the leeward (downwind) side. The proportion of leeward approaches increased with wind speed when blades were prevented from turning, yet decreased when blades could turn. Bats were observed more frequently at turbines on moonlit nights. Taken together, these observations suggest that bats may orient toward turbines by sensing air currents and using vision, and that air turbulence caused by fast-moving blades creates conditions that are less attractive to bats passing in close proximity. Tree bats may respond to streams of air flowing downwind from trees at night while searching for roosts, conspecifics, and nocturnal insect prey that could accumulate in such flows. Fatalities of tree bats at turbines may be the consequence of behaviors that evolved to provide selective advantages when elicited by tall trees, but are now maladaptive when elicited by wind turbines. PMID:25267628

  16. Behavior of bats at wind turbines.

    PubMed

    Cryan, Paul M; Gorresen, P Marcos; Hein, Cris D; Schirmacher, Michael R; Diehl, Robert H; Huso, Manuela M; Hayman, David T S; Fricker, Paul D; Bonaccorso, Frank J; Johnson, Douglas H; Heist, Kevin; Dalton, David C

    2014-10-21

    Wind turbines are causing unprecedented numbers of bat fatalities. Many fatalities involve tree-roosting bats, but reasons for this higher susceptibility remain unknown. To better understand behaviors associated with risk, we monitored bats at three experimentally manipulated wind turbines in Indiana, United States, from July 29 to October 1, 2012, using thermal cameras and other methods. We observed bats on 993 occasions and saw many behaviors, including close approaches, flight loops and dives, hovering, and chases. Most bats altered course toward turbines during observation. Based on these new observations, we tested the hypotheses that wind speed and blade rotation speed influenced the way that bats interacted with turbines. We found that bats were detected more frequently at lower wind speeds and typically approached turbines on the leeward (downwind) side. The proportion of leeward approaches increased with wind speed when blades were prevented from turning, yet decreased when blades could turn. Bats were observed more frequently at turbines on moonlit nights. Taken together, these observations suggest that bats may orient toward turbines by sensing air currents and using vision, and that air turbulence caused by fast-moving blades creates conditions that are less attractive to bats passing in close proximity. Tree bats may respond to streams of air flowing downwind from trees at night while searching for roosts, conspecifics, and nocturnal insect prey that could accumulate in such flows. Fatalities of tree bats at turbines may be the consequence of behaviors that evolved to provide selective advantages when elicited by tall trees, but are now maladaptive when elicited by wind turbines.

  17. Behavior of bats at wind turbines

    USGS Publications Warehouse

    Cryan, Paul M.; Gorresen, P. Marcos; Hine, Cris D.; Schirmacher, Michael; Diehl, Robert H.; Huso, Manuela M.; Hayman, David T.S.; Fricker, Paul D.; Bonaccorso, Frank J.; Johnson, Douglas H.; Heist, Kevin W.; Dalton, David C.

    2014-01-01

    Wind turbines are causing unprecedented numbers of bat fatalities. Many fatalities involve tree-roosting bats, but reasons for this higher susceptibility remain unknown. To better understand behaviors associated with risk, we monitored bats at three experimentally manipulated wind turbines in Indiana, United States, from July 29 to October 1, 2012, using thermal cameras and other methods. We observed bats on 993 occasions and saw many behaviors, including close approaches, flight loops and dives, hovering, and chases. Most bats altered course toward turbines during observation. Based on these new observations, we tested the hypotheses that wind speed and blade rotation speed influenced the way that bats interacted with turbines. We found that bats were detected more frequently at lower wind speeds and typically approached turbines on the leeward (downwind) side. The proportion of leeward approaches increased with wind speed when blades were prevented from turning, yet decreased when blades could turn. Bats were observed more frequently at turbines on moonlit nights. Taken together, these observations suggest that bats may orient toward turbines by sensing air currents and using vision, and that air turbulence caused by fast-moving blades creates conditions that are less attractive to bats passing in close proximity. Tree bats may respond to streams of air flowing downwind from trees at night while searching for roosts, conspecifics, and nocturnal insect prey that could accumulate in such flows. Fatalities of tree bats at turbines may be the consequence of behaviors that evolved to provide selective advantages when elicited by tall trees, but are now maladaptive when elicited by wind turbines.

  18. Bat flight and zoonotic viruses

    USGS Publications Warehouse

    O'Shea, Thomas J.; Cryan, Paul M.; Cunningham, Andrew A.; Fooks, Anthony R.; Hayman, David T.S.; Luis, Angela D.; Peel, Alison J.; Plowright, Raina K.; Wood, James L.N.

    2014-01-01

    Bats are sources of high viral diversity and high-profile zoonotic viruses worldwide. Although apparently not pathogenic in their reservoir hosts, some viruses from bats severely affect other mammals, including humans. Examples include severe acute respiratory syndrome coronaviruses, Ebola and Marburg viruses, and Nipah and Hendra viruses. Factors underlying high viral diversity in bats are the subject of speculation. We hypothesize that flight, a factor common to all bats but to no other mammals, provides an intensive selective force for coexistence with viral parasites through a daily cycle that elevates metabolism and body temperature analogous to the febrile response in other mammals. On an evolutionary scale, this host–virus interaction might have resulted in the large diversity of zoonotic viruses in bats, possibly through bat viruses adapting to be more tolerant of the fever response and less virulent to their natural hosts.

  19. Aerial Explorers

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg; Ippolito, Corey

    2005-01-01

    This paper presents recent results from a mission architecture study of planetary aerial explorers. In this study, several mission scenarios were developed in simulation and evaluated on success in meeting mission goals. This aerial explorer mission architecture study is unique in comparison with previous Mars airplane research activities. The study examines how aerial vehicles can find and gain access to otherwise inaccessible terrain features of interest. The aerial explorer also engages in a high-level of (indirect) surface interaction, despite not typically being able to takeoff and land or to engage in multiple flights/sorties. To achieve this goal, a new mission paradigm is proposed: aerial explorers should be considered as an additional element in the overall Entry, Descent, Landing System (EDLS) process. Further, aerial vehicles should be considered primarily as carrier/utility platforms whose purpose is to deliver air-deployed sensors and robotic devices, or symbiotes, to those high-value terrain features of interest.

  20. Bat Flight and Zoonotic Viruses

    PubMed Central

    Cryan, Paul M.; Cunningham, Andrew A.; Fooks, Anthony R.; Hayman, David T.S.; Luis, Angela D.; Peel, Alison J.; Plowright, Raina K.; Wood, James L.N.

    2014-01-01

    Bats are sources of high viral diversity and high-profile zoonotic viruses worldwide. Although apparently not pathogenic in their reservoir hosts, some viruses from bats severely affect other mammals, including humans. Examples include severe acute respiratory syndrome coronaviruses, Ebola and Marburg viruses, and Nipah and Hendra viruses. Factors underlying high viral diversity in bats are the subject of speculation. We hypothesize that flight, a factor common to all bats but to no other mammals, provides an intensive selective force for coexistence with viral parasites through a daily cycle that elevates metabolism and body temperature analogous to the febrile response in other mammals. On an evolutionary scale, this host–virus interaction might have resulted in the large diversity of zoonotic viruses in bats, possibly through bat viruses adapting to be more tolerant of the fever response and less virulent to their natural hosts. PMID:24750692

  1. Non-kin cooperation in bats

    PubMed Central

    Carter, Gerald G.; Bohn, Kirsten M.; Adams, Danielle M.

    2016-01-01

    Many bats are extremely social. In some cases, individuals remain together for years or even decades and engage in mutually beneficial behaviours among non-related individuals. Here, we summarize ways in which unrelated bats cooperate while roosting, foraging, feeding or caring for offspring. For each situation, we ask if cooperation involves an investment, and if so, what mechanisms might ensure a return. While some cooperative outcomes are likely a by-product of selfish behaviour as they are in many other vertebrates, we explain how cooperative investments can occur in several situations and are particularly evident in food sharing among common vampire bats (Desmodus rotundus) and alloparental care by greater spear-nosed bats (Phyllostomus hastatus). Fieldwork and experiments on vampire bats indicate that sharing blood with non-kin expands the number of possible donors beyond kin and promotes reciprocal help by strengthening long-term social bonds. Similarly, more than 25 years of recapture data and field observations of greater spear-nosed bats reveal multiple cooperative investments occurring within stable groups of non-kin. These studies illustrate how bats can serve as models for understanding how cooperation is regulated in social vertebrates. PMID:26729934

  2. Host cell virus entry mediated by Australian bat lyssavirus G envelope glycoprotein occurs through a clathrin-mediated endocytic pathway that requires actin and Rab5.

    PubMed

    Weir, Dawn L; Laing, Eric D; Smith, Ina L; Wang, Lin-Fa; Broder, Christopher C

    2014-02-27

    Australian bat lyssavirus (ABLV), a rhabdovirus of the genus Lyssavirus which circulates in both pteropid fruit bats and insectivorous bats in mainland Australia, has caused three fatal human infections, the most recent in February 2013, manifested as acute neurological disease indistinguishable from clinical rabies. Rhabdoviruses infect host cells through receptor-mediated endocytosis and subsequent pH-dependent fusion mediated by their single envelope glycoprotein (G), but the specific host factors and pathways involved in ABLV entry have not been determined. ABLV internalization into HEK293T cells was examined using maxGFP-encoding recombinant vesicular stomatitis viruses (rVSV) that express ABLV G glycoproteins. A combination of chemical and molecular approaches was used to investigate the contribution of different endocytic pathways to ABLV entry. Dominant negative Rab GTPases were used to identify the endosomal compartment utilized by ABLV to gain entry into the host cell cytosol. Here we show that ABLV G-mediated entry into HEK293T cells was significantly inhibited by the dynamin-specific inhibitor dynasore, chlorpromazine, a drug that blocks clathrin-mediated endocytosis, and the actin depolymerizing drug latrunculin B. Over expression of dominant negative mutants of Eps15 and Rab5 also significantly reduced ABLV G-mediated entry into HEK293T cells. Chemical inhibitors of caveolae-dependent endocytosis and macropinocytosis and dominant negative mutants of Rab7 and Rab11 had no effect on ABLV entry. The predominant pathway utilized by ABLV for internalization into HEK293T cells is clathrin-and actin-dependent. The requirement of Rab5 for productive infection indicates that ABLV G-mediated fusion occurs within the early endosome compartment.

  3. The bats of Wyoming

    USGS Publications Warehouse

    Bogan, Michael A.; Cryan, Paul M.; Choate, Jerry R.

    2000-01-01

    We examined 1280 bats of 12 species submitted to the Wyoming State Veterinary Laboratory (WSVL) for ra­bies testing between 1981 and 1992. The most abundant species in the sample was Myotis lucifugus, followed by Epte­sicus fuscus, Lasionycteris noetivagans, M. ciliolabrum, and M. volans. Using the WSVL sample and additional museum specimens, we summarized available records and knowledge for 17 species of bats in Wyoming, Records of the WSVL show that, between 1981 and 1992, 113 bats actually tested positive for rabies. We examined 45 of those rabies­ positive bats; E. fuscus had the highest incidence (60%) in the sample, followed by L. noctivagans (11 %) and L. cinereus (9%).

  4. Novel lyssavirus in bat, Spain.

    PubMed

    Aréchiga Ceballos, Nidia; Vázquez Morón, Sonia; Berciano, José M; Nicolás, Olga; Aznar López, Carolina; Juste, Javier; Rodríguez Nevado, Cristina; Aguilar Setién, Alvaro; Echevarría, Juan E

    2013-05-01

    A new tentative lyssavirus, Lleida bat lyssavirus, was found in a bent-winged bat (Miniopterus schreibersii) in Spain. It does not belong to phylogroups I or II, and it seems to be more closely related to the West Causasian bat virus, and especially to the Ikoma lyssavirus.

  5. Bat wing biometrics: using collagen-elastin bundles in bat wings as a unique individual identifier.

    PubMed

    Amelon, Sybill K; Hooper, Sarah E; Womack, Kathryn M

    2017-05-29

    The ability to recognize individuals within an animal population is fundamental to conservation and management. Identification of individual bats has relied on artificial marking techniques that may negatively affect the survival and alter the behavior of individuals. Biometric systems use biological characteristics to identify individuals. The field of animal biometrics has expanded to include recognition of individuals based upon various morphologies and phenotypic variations including pelage patterns, tail flukes, and whisker arrangement. Biometric systems use 4 biologic measurement criteria: universality, distinctiveness, permanence, and collectability. Additionally, the system should not violate assumptions of capture-recapture methods that include no increased mortality or alterations of behavior. We evaluated whether individual bats could be uniquely identified based upon the collagen-elastin bundles that are visible with gross examination of their wings. We examined little brown bats ( Myotis lucifugus ), northern long-eared bats ( M. septentrionalis ), big brown bats ( Eptesicus fuscus ), and tricolored bats ( Perimyotis subflavus ) to determine whether the "wing prints" from the bundle network would satisfy the biologic measurement criteria. We evaluated 1,212 photographs from 230 individual bats comparing week 0 photos with those taken at weeks 3 or 6 and were able to confirm identity of individuals over time. Two blinded evaluators were able to successfully match 170 individuals in hand to photographs taken at weeks 0, 3, and 6. This study suggests that bats can be successfully re-identified using photographs taken at previous times. We suggest further evaluation of this methodology for use in a standardized system that can be shared among bat conservationists.

  6. Bat wing biometrics: using collagen–elastin bundles in bat wings as a unique individual identifier

    PubMed Central

    Hooper, Sarah E.; Womack, Kathryn M.

    2017-01-01

    Abstract The ability to recognize individuals within an animal population is fundamental to conservation and management. Identification of individual bats has relied on artificial marking techniques that may negatively affect the survival and alter the behavior of individuals. Biometric systems use biological characteristics to identify individuals. The field of animal biometrics has expanded to include recognition of individuals based upon various morphologies and phenotypic variations including pelage patterns, tail flukes, and whisker arrangement. Biometric systems use 4 biologic measurement criteria: universality, distinctiveness, permanence, and collectability. Additionally, the system should not violate assumptions of capture–recapture methods that include no increased mortality or alterations of behavior. We evaluated whether individual bats could be uniquely identified based upon the collagen–elastin bundles that are visible with gross examination of their wings. We examined little brown bats (Myotis lucifugus), northern long-eared bats (M. septentrionalis), big brown bats (Eptesicus fuscus), and tricolored bats (Perimyotis subflavus) to determine whether the “wing prints” from the bundle network would satisfy the biologic measurement criteria. We evaluated 1,212 photographs from 230 individual bats comparing week 0 photos with those taken at weeks 3 or 6 and were able to confirm identity of individuals over time. Two blinded evaluators were able to successfully match 170 individuals in hand to photographs taken at weeks 0, 3, and 6. This study suggests that bats can be successfully re-identified using photographs taken at previous times. We suggest further evaluation of this methodology for use in a standardized system that can be shared among bat conservationists. PMID:29674784

  7. Inferring echolocation in ancient bats.

    PubMed

    Simmons, Nancy B; Seymour, Kevin L; Habersetzer, Jörg; Gunnell, Gregg F

    2010-08-19

    Laryngeal echolocation, used by most living bats to form images of their surroundings and to detect and capture flying prey, is considered to be a key innovation for the evolutionary success of bats, and palaeontologists have long sought osteological correlates of echolocation that can be used to infer the behaviour of fossil bats. Veselka et al. argued that the most reliable trait indicating echolocation capabilities in bats is an articulation between the stylohyal bone (part of the hyoid apparatus that supports the throat and larynx) and the tympanic bone, which forms the floor of the middle ear. They examined the oldest and most primitive known bat, Onychonycteris finneyi (early Eocene, USA), and argued that it showed evidence of this stylohyal-tympanic articulation, from which they concluded that O. finneyi may have been capable of echolocation. We disagree with their interpretation of key fossil data and instead argue that O. finneyi was probably not an echolocating bat.

  8. Novel Lyssavirus in Bat, Spain

    PubMed Central

    Morón, Sonia Vázquez; Berciano, José M.; Nicolás, Olga; López, Carolina Aznar; Juste, Javier; Nevado, Cristina Rodríguez; Setién, Álvaro Aguilar; Echevarría, Juan E.

    2013-01-01

    A new tentative lyssavirus, Lleida bat lyssavirus, was found in a bent-winged bat (Miniopterus schreibersii) in Spain. It does not belong to phylogroups I or II, and it seems to be more closely related to the West Causasian bat virus, and especially to the Ikoma lyssavirus. PMID:23648051

  9. Favourable outcome in a patient bitten by a rabid bat infected with the European bat lyssavirus-1.

    PubMed

    Van Gucht, S; Verlinde, R; Colyn, J; Vanderpas, J; Vanhoof, R; Roels, S; Francart, A; Brochier, B; Suin, V

    2013-01-01

    The classic rabies virus (genotype 1) has been eliminated in Western Europe, but related lyssaviruses still circulate in local bats. In August 2010, a Belgian photographer was bitten upon provocation of a disoriented Eptesicus serotinus bat in Spain. The bat was infected with European bat lyssavirus-1 (genotype 5). The isolate proved highly neurovirulent in mice. The patient had received preventive rabies immunisations years before the incident and received two boosters with the HDCV rabies vaccine afterwards. Available vaccines are based on the classic rabies virus, which is significantly divergent from the European bat lyssavirus-1. Fortunately, the patient's serological immune response demonstrated satisfactory neutralisation of the 2010 EBLV-1 isolate, using an intracerebral challenge model in mice. Most likely, the patient's life was saved thanks to vaccination with the classic rabies vaccine, which proved sufficiently protective against European bat lyssavirus-1. This case highlights the need for preventive rabies vaccination in people, who come in contact with bats and to seek medical council after a scratch or bite from a bat.

  10. Coronaviruses in bats from Mexico

    PubMed Central

    Ojeda-Flores, R.; Rico-Chávez, O.; Navarrete-Macias, I.; Zambrana-Torrelio, C. M.; Rostal, M. K.; Epstein, J. H.; Tipps, T.; Liang, E.; Sanchez-Leon, M.; Sotomayor-Bonilla, J.; Aguirre, A. A.; Ávila-Flores, R.; Medellín, R. A.; Goldstein, T.; Suzán, G.; Daszak, P.

    2013-01-01

    Bats are reservoirs for a wide range of human pathogens including Nipah, Hendra, rabies, Ebola, Marburg and severe acute respiratory syndrome coronavirus (CoV). The recent implication of a novel beta (β)-CoV as the cause of fatal respiratory disease in the Middle East emphasizes the importance of surveillance for CoVs that have potential to move from bats into the human population. In a screen of 606 bats from 42 different species in Campeche, Chiapas and Mexico City we identified 13 distinct CoVs. Nine were alpha (α)-CoVs; four were β-CoVs. Twelve were novel. Analyses of these viruses in the context of their hosts and ecological habitat indicated that host species is a strong selective driver in CoV evolution, even in allopatric populations separated by significant geographical distance; and that a single species/genus of bat can contain multiple CoVs. A β-CoV with 96.5 % amino acid identity to the β-CoV associated with human disease in the Middle East was found in a Nyctinomops laticaudatus bat, suggesting that efforts to identify the viral reservoir should include surveillance of the bat families Molossidae/Vespertilionidae, or the closely related Nycteridae/Emballonuridae. While it is important to investigate unknown viral diversity in bats, it is also important to remember that the majority of viruses they carry will not pose any clinical risk, and bats should not be stigmatized ubiquitously as significant threats to public health. PMID:23364191

  11. Inconspicuous echolocation in hoary bats (Lasiurus cinereus).

    PubMed

    Corcoran, Aaron J; Weller, Theodore J

    2018-05-16

    Echolocation allows bats to occupy diverse nocturnal niches. Bats almost always use echolocation, even when other sensory stimuli are available to guide navigation. Here, using arrays of calibrated infrared cameras and ultrasonic microphones, we demonstrate that hoary bats ( Lasiurus cinereus ) use previously unknown echolocation behaviours that challenge our current understanding of echolocation. We describe a novel call type ('micro' calls) that has three orders of magnitude less sound energy than other bat calls used in open habitats. We also document bats flying close to microphones (less than 3 m) without producing detectable echolocation calls. Acoustic modelling indicates that bats are not producing calls that exceed 70-75 dB at 0.1 m, a level that would have little or no known use for a bat flying in the open at speeds exceeding 7 m s -1 This indicates that hoary bats sometimes fly without echolocation. We speculate that bats reduce echolocation output to avoid eavesdropping by conspecifics during the mating season. These findings might partly explain why tens of thousands of hoary bats are killed by wind turbines each year. They also challenge the long-standing assumption that bats-model organisms for sensory specialization-are reliant on sonar for nocturnal navigation. © 2018 The Author(s).

  12. Bats in Agroecosytems around California's Central Coast

    NASA Astrophysics Data System (ADS)

    Wayne, A.

    2014-12-01

    Bats in agroecosystems around California's Central Coast: A full quarter of California's land area is farmland. Crops account for 32.5 billion of California's GDP. Insect control is a big problem for farmers, and California bats eat only insects, saving farmers an estimated 3 to $53 billion a year. As farmers maximize crop yield, they use more pesticides, herbicides, and fertilizers, which contaminate runoff streams that bats drink from. Also, pesticide use kills bats' sole food source: insects. My research objective was to find out how farm management practices and landscape complexity affect bat diversity and activity, and to see which one affects bat activity more. We monitored 18 sites, including conventional, organic, and low and high-complexity landscapes. We noted more bat activity at sites with high complexity landscapes and organic practices than at sites with either low-complexity landscapes or conventional farming practices. I captured and processed bats and recorded data. I also classified insects collected from light traps. I learned how to handle bats and measure forearm length and weight, as well as how to indentify their gender. I took hair clippings and fecal samples, which yield data about the bats' diet. Their diet, in turn, gives us data about which pests they eat and therefore help control. I also learned about bats' echolocation: they have a special muscle over their ears that closes when they echolocate so that they don't burst their own eardrum. Also, some insects have evolved a special call that will disrupt bats echolocation so bats can't track it.

  13. Bats of the Savannah River Site and vicinity.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M.A. Menzel; J.M. Menzel; J.C. Kilgo

    The U.S. Department of Energy's Savannah River Site supports a diverse bat community. Nine species occur there regularly, including the eastern pipistrelle (Pipistrellus subflavus), southeastern myotis (Myotis austroriparius), evening bat (Nycticeius humeralis), Rafinesque's big-eared bat (Corynorhinus rafinesquii), silver-haired bat (Lasionycteris noctivagans), eastern red bat (Lasiurus borealis), Seminole bat (L. seminolus), hoary bat (L. cinereus), and big brown bat (Eptesicus fuscus). There are extralimital capture records for two additional species: little brown bat (M. lucifigus) and northern yellow bat (Lasiurus intermedius). Acoustical sampling has documented the presence of Brazilian free-tailed bats (Tadarida brasiliensis), but none has been captured. Among those speciesmore » common to the Site, the southeastern myotis and Rafinesque's big-eared bat are listed in South Carolina as threatened and endangered, respectively. The presence of those two species, and a growing concern for the conservation of forest-dwelling bats, led to extensive and focused research on the Savannah River Site between 1996 and 2002. Summarizing this and other bat research, we provide species accounts that discuss morphology and distribution, roosting and foraging behaviors, home range characteristics, habitat relations, and reproductive biology. We also present information on conservation needs and rabies issues; and, finally, identification keys that may be useful wherever the bat species we describe are found.« less

  14. Warm-up with weighted bat and adjustment of upper limb muscle activity in bat swinging under movement correction conditions.

    PubMed

    Ohta, Yoichi; Ishii, Yasumitsu; Ikudome, Sachi; Nakamoto, Hiroki

    2014-02-01

    The effects of weighted bat warm-up on adjustment of upper limb muscle activity were investigated during baseball bat swinging under dynamic conditions that require a spatial and temporal adjustment of the swinging to hit a moving target. Seven male college baseball players participated in this study. Using a batting simulator, the task was to swing the standard bat coincident with the arrival timing and position of a moving target after three warm-up swings using a standard or weighted bat. There was no significant effect of weighted bat warm-up on muscle activity before impact associated with temporal or spatial movement corrections. However, lower inhibition of the extensor carpi ulnaris muscle activity was observed in a velocity-changed condition in the weighted bat warm-up, as compared to a standard bat warm-up. It is suggested that weighted bat warm-up decreases the adjustment ability associated with inhibition of muscle activation under movement correction conditions.

  15. Prompt Emission Observations of Swift BAT Bursts

    NASA Technical Reports Server (NTRS)

    Barthelmy, Scott

    2009-01-01

    We review the prompt emission properties of Swift BAT gamma-ray bursts (GRBs). We present the global properties of BAT GRBs based on their spectral and temporal characteristics. The BAT T90 and T50 durations peak at 80 and 20 s, respectively. The peak energy (Epeak) of about 60% of BAT GRBs is very likely to be less than 1.00 keV. We also present the BAT characteristics of GRBs with soft spectra, so called Xray flashes (XRFs). We will compare the BAT GRBs and XRFs parameter distribution to the other missions.

  16. [Bat lyssavirus in Thailand].

    PubMed

    Lumlertdacha, Boonlert; Wacharapluesadee, Supaporn; Chanhome, Lawan; Hemachudha, Thiravat

    2005-07-01

    A study of bat lyssavirus survey was done in Thailand from 2001 to 2003. A total of 932 bats of 11 species were captured in 8 provinces for blood collection and testing for neutralizing antibodies against rabies virus (RABV), Australian bat lyssavirus (ABLV) and broader panel of other lyssaviruses (Irkut, Aravan and Khujand). All Thai bat samples were negative to RABV Sixteen samples of 394 with sufficient volume of serum had detectable neutralizing antibodies against Irkut, Aravan, Khujand and ABL viruses. Another 13 samples were also found to have antibody to ABLV. However, due to insufficient volume, further analysis to other lyssaviruses could not be performed. Nevertheless, this showed that the prevalence of lyssavirus infection in Thai bats could be as high as 7.3% (29/396). The present study showed that natural occurrence of lyssavirus antibodies found in Thai bats were related to newer putative lyssavirus genotype(s) other than those previously described. These data also suggest that several lyssaviruses are in circulation throughout Thailand as well as other Asian countries, such as in the Philippines, Central Asia, and in certain parts of Russia. The present study and preparation of this article was supported by grants from the Thailand Research Fund and the National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand.

  17. Long-Term Survival of an Urban Fruit Bat Seropositive for Ebola and Lagos Bat Viruses

    PubMed Central

    Hayman, David T. S.; Emmerich, Petra; Yu, Meng; Wang, Lin-Fa; Suu-Ire, Richard; Fooks, Anthony R.; Cunningham, Andrew A.; Wood, James L. N.

    2010-01-01

    Ebolaviruses (EBOV) (family Filoviridae) cause viral hemorrhagic fevers in humans and non-human primates when they spill over from their wildlife reservoir hosts with case fatality rates of up to 90%. Fruit bats may act as reservoirs of the Filoviridae. The migratory fruit bat, Eidolon helvum, is common across sub-Saharan Africa and lives in large colonies, often situated in cities. We screened sera from 262 E. helvum using indirect fluorescent tests for antibodies against EBOV subtype Zaire. We detected a seropositive bat from Accra, Ghana, and confirmed this using western blot analysis. The bat was also seropositive for Lagos bat virus, a Lyssavirus, by virus neutralization test. The bat was fitted with a radio transmitter and was last detected in Accra 13 months after release post-sampling, demonstrating long-term survival. Antibodies to filoviruses have not been previously demonstrated in E. helvum. Radio-telemetry data demonstrates long-term survival of an individual bat following exposure to viruses of families that can be highly pathogenic to other mammal species. Because E. helvum typically lives in large urban colonies and is a source of bushmeat in some regions, further studies should determine if this species forms a reservoir for EBOV from which spillover infections into the human population may occur. PMID:20694141

  18. Calling louder and longer: how bats use biosonar under severe acoustic interference from other bats

    PubMed Central

    Amichai, Eran; Blumrosen, Gaddi; Yovel, Yossi

    2015-01-01

    Active-sensing systems such as echolocation provide animals with distinct advantages in dark environments. For social animals, however, like many bat species, active sensing can present problems as well: when many individuals emit bio-sonar calls simultaneously, detecting and recognizing the faint echoes generated by one's own calls amid the general cacophony of the group becomes challenging. This problem is often termed ‘jamming’ and bats have been hypothesized to solve it by shifting the spectral content of their calls to decrease the overlap with the jamming signals. We tested bats’ response in situations of extreme interference, mimicking a high density of bats. We played-back bat echolocation calls from multiple speakers, to jam flying Pipistrellus kuhlii bats, simulating a naturally occurring situation of many bats flying in proximity. We examined behavioural and echolocation parameters during search phase and target approach. Under severe interference, bats emitted calls of higher intensity and longer duration, and called more often. Slight spectral shifts were observed but they did not decrease the spectral overlap with jamming signals. We also found that pre-existing inter-individual spectral differences could allow self-call recognition. Results suggest that the bats’ response aimed to increase the signal-to-noise ratio and not to avoid spectral overlap. PMID:26702045

  19. Long-term survival of an urban fruit bat seropositive for Ebola and Lagos bat viruses.

    PubMed

    Hayman, David T S; Emmerich, Petra; Yu, Meng; Wang, Lin-Fa; Suu-Ire, Richard; Fooks, Anthony R; Cunningham, Andrew A; Wood, James L N

    2010-08-04

    Ebolaviruses (EBOV) (family Filoviridae) cause viral hemorrhagic fevers in humans and non-human primates when they spill over from their wildlife reservoir hosts with case fatality rates of up to 90%. Fruit bats may act as reservoirs of the Filoviridae. The migratory fruit bat, Eidolon helvum, is common across sub-Saharan Africa and lives in large colonies, often situated in cities. We screened sera from 262 E. helvum using indirect fluorescent tests for antibodies against EBOV subtype Zaire. We detected a seropositive bat from Accra, Ghana, and confirmed this using western blot analysis. The bat was also seropositive for Lagos bat virus, a Lyssavirus, by virus neutralization test. The bat was fitted with a radio transmitter and was last detected in Accra 13 months after release post-sampling, demonstrating long-term survival. Antibodies to filoviruses have not been previously demonstrated in E. helvum. Radio-telemetry data demonstrates long-term survival of an individual bat following exposure to viruses of families that can be highly pathogenic to other mammal species. Because E. helvum typically lives in large urban colonies and is a source of bushmeat in some regions, further studies should determine if this species forms a reservoir for EBOV from which spillover infections into the human population may occur.

  20. Session: Bat ecology related to wind development and lessons learned about impacts on bats from wind development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Greg; Kunz, Thomas

    This session at the Wind Energy and Birds/Bats workshop consisted of two paper presentations followed by a discussion/question and answer period. It was the first of the sessions to shift the focus to the issue of wind energy development's impacts specifically to bats. The presentations discussed lessons that have been learned regarding direct and indirect impacts on bats and strategies planned to address such issues. Presenters addressed what the existing science demonstrates about land-based wind turbine impacts on bats, including: mortality, avoidance, direct habitat impacts, species and numbers killed, per turbine rates/per MW generated, and impacts on threatened and endangeredmore » species. They discussed whether there is sufficient data for wind turbines and bat impacts for projects in the eastern US, especially on ridge tops. Finally, the subject of offshore impacts on bats was briefly addressed, including what lessons have been learned in Europe and how these can be applied in the U S. Paper one, by Greg Johnson, was titled ''A Review of Bat Impacts at Wind Farms in the US''. Paper two, by Thomas Kunz, was titled ''Wind Power: Bats and Wind Turbines''.« less

  1. Lyssavirus Surveillance in Bats, Bangladesh

    PubMed Central

    Niezgoda, Michael; Carroll, Darin S.; Keeler, Natalie; Hossain, Mohammed Jahangir; Breiman, Robert F.; Ksiazek, Thomas G.; Rupprecht, Charles E.

    2006-01-01

    Lyssavirus surveillance in bats was performed in Bangladesh during 2003 and 2004. No virus isolates were obtained. Three serum samples (all from Pteropus giganteus, n = 127) of 288 total serum samples, obtained from bats in 9 different taxa, neutralized lyssaviruses Aravan and Khujand. The infection occurs in bats in Bangladesh, but virus prevalence appears low. PMID:16704789

  2. Bat flies (Diptera: Nycteribiidae and Streblidae) infesting cave-dwelling bats in Gabon: diversity, dynamics and potential role in Polychromophilus melanipherus transmission.

    PubMed

    Obame-Nkoghe, Judicaël; Rahola, Nil; Bourgarel, Mathieu; Yangari, Patrick; Prugnolle, Franck; Maganga, Gael Darren; Leroy, Eric-Maurice; Fontenille, Didier; Ayala, Diego; Paupy, Christophe

    2016-06-10

    Evidence of haemosporidian infections in bats and bat flies has motivated a growing interest in characterizing their transmission cycles. In Gabon (Central Africa), many caves house massive colonies of bats that are known hosts of Polychromophilus Dionisi parasites, presumably transmitted by blood-sucking bat flies. However, the role of bat flies in bat malaria transmission remains under-documented. An entomological survey was carried out in four caves in Gabon to investigate bat fly diversity, infestation rates and host preferences and to determine their role in Polychromophilus parasite transmission. Bat flies were sampled for 2-4 consecutive nights each month from February to April 2011 (Faucon and Zadie caves) and from May 2012 to April 2013 (Kessipoughou and Djibilong caves). Bat flies isolated from the fur of each captured bat were morphologically identified and screened for infection by haemosporidian parasites using primers targeting the mitochondrial cytochrome b gene. Among the 1,154 bats captured and identified as Miniopterus inflatus Thomas (n = 354), Hipposideros caffer Sundevall complex (n = 285), Hipposideros gigas Wagner (n = 317), Rousettus aegyptiacus Geoffroy (n = 157, and Coleura afra Peters (n = 41), 439 (38.0 %) were infested by bat flies. The 1,063 bat flies recovered from bats belonged to five taxa: Nycteribia schmidlii scotti Falcoz, Eucampsipoda africana Theodor, Penicillidia fulvida Bigot, Brachytarsina allaudi Falcoz and Raymondia huberi Frauenfeld group. The mean infestation rate varied significantly according to the bat species (ANOVA, F (4,75) = 13.15, P < 0.001) and a strong association effect between bat fly species and host bat species was observed. Polychromophilus melanipherus Dionisi was mainly detected in N. s. scotti and P. fulvida and less frequently in E. africana, R. huberi group and B. allaudi bat flies. These results suggest that N. s. scotti and P. fulvida could potentially be involved in P

  3. Bats host diverse parvoviruses as possible origin of mammalian dependoparvoviruses and source for bat-swine interspecies transmission.

    PubMed

    Lau, Susanna K P; Ahmed, Syed Shakeel; Tsoi, Hoi-Wah; Yeung, Hazel C; Li, Kenneth S M; Fan, Rachel Y Y; Zhao, Pyrear S H; Lau, Candy C C; Lam, Carol S F; Choi, Kelvin K F; Chan, Ben C H; Cai, Jian-Piao; Wong, Samson S Y; Chen, Honglin; Zhang, Hai-Lin; Zhang, Libiao; Wang, Ming; Woo, Patrick C Y; Yuen, Kwok-Yung

    2017-11-06

    Compared to the enormous species diversity of bats, relatively few parvoviruses have been reported. We detected diverse and potentially novel parvoviruses from bats in Hong Kong and mainland China. Parvoviruses belonging to Amdoparvovirus, Bocaparvovirus and Dependoparvovirus were detected in alimentary, liver and spleen samples from 16 different chiropteran species of five families by PCR. Phylogenetic analysis of partial helicase sequences showed that they potentially belonged to 25 bocaparvovirus, three dependoparvovirus and one amdoparvovirus species. Nearly complete genome sequencing confirmed the existence of at least four novel bat bocaparvovirus species (Rp-BtBoV1 and Rp-BtBoV2 from Rhinolophus pusillus, Rs-BtBoV2 from Rhinolophus sinicus and Rol-BtBoV1 from Rousettus leschenaultii) and two novel bat dependoparvovirus species (Rp-BtAAV1 from Rhinolophus pusillus and Rs-BtAAV1 from Rhinolophus sinicus). Rs-BtBoV2 was closely related to Ungulate bocaparvovirus 5 with 93, 72.1 and 78.7 % amino acid identities in the NS1, NP1 and VP1/VP2 genes, respectively. The detection of bat bocaparvoviruses, including Rs-BtBoV2, closely related to porcine bocaparvoviruses, suggests recent interspecies transmission of bocaparvoviruses between bats and swine. Moreover, Rp-BtAAV1 and Rs-BtAAV1 were most closely related to human AAV1 with 48.7 and 57.5 % amino acid identities in the rep gene. The phylogenetic relationship between BtAAVs and other mammalian AAVs suggests bats as the ancestral origin of mammalian AAVs. Furthermore, parvoviruses of the same species were detected from multiple bat species or families, supporting the ability of bat parvoviruses to cross species barriers. The results extend our knowledge on the diversity of bat parvoviruses and the role of bats in parvovirus evolution and emergence in humans and animals.

  4. Saccharomyces cerevisiae Bat1 and Bat2 Aminotransferases Have Functionally Diverged from the Ancestral-Like Kluyveromyces lactis Orthologous Enzyme

    PubMed Central

    Colón, Maritrini; Hernández, Fabiola; López, Karla; Quezada, Héctor; González, James; López, Geovani; Aranda, Cristina; González, Alicia

    2011-01-01

    Background Gene duplication is a key evolutionary mechanism providing material for the generation of genes with new or modified functions. The fate of duplicated gene copies has been amply discussed and several models have been put forward to account for duplicate conservation. The specialization model considers that duplication of a bifunctional ancestral gene could result in the preservation of both copies through subfunctionalization, resulting in the distribution of the two ancestral functions between the gene duplicates. Here we investigate whether the presumed bifunctional character displayed by the single branched chain amino acid aminotransferase present in K. lactis has been distributed in the two paralogous genes present in S. cerevisiae, and whether this conservation has impacted S. cerevisiae metabolism. Principal Findings Our results show that the KlBat1 orthologous BCAT is a bifunctional enzyme, which participates in the biosynthesis and catabolism of branched chain aminoacids (BCAAs). This dual role has been distributed in S. cerevisiae Bat1 and Bat2 paralogous proteins, supporting the specialization model posed to explain the evolution of gene duplications. BAT1 is highly expressed under biosynthetic conditions, while BAT2 expression is highest under catabolic conditions. Bat1 and Bat2 differential relocalization has favored their physiological function, since biosynthetic precursors are generated in the mitochondria (Bat1), while catabolic substrates are accumulated in the cytosol (Bat2). Under respiratory conditions, in the presence of ammonium and BCAAs the batbat2Δ double mutant shows impaired growth, indicating that Bat1 and Bat2 could play redundant roles. In K. lactis wild type growth is independent of BCAA degradation, since a Klbat1Δ mutant grows under this condition. Conclusions Our study shows that BAT1 and BAT2 differential expression and subcellular relocalization has resulted in the distribution of the biosynthetic and catabolic

  5. Swing Weights of Baseball and Softball Bats

    NASA Astrophysics Data System (ADS)

    Russell, Dan

    2010-10-01

    Baseball and softball bats are sold according to length in inches and weight in ounces. Much to the consternation of players buying new bats, however, not all bats that weigh the same swing the same. The reason for this has to do with moment of inertia of the bat about a pivot point on the handle, or what the sporting goods industry refers to as swing weight.2-3 A number of recent field studies4-7 have confirmed that the speed with which a player can swing a baseball or softball bat depends more on the bat's moment of inertia than on its mass. In this paper we investigate the moment of inertia (swing weight) of a variety of baseball and softball bats.

  6. A review of fire effects on bats and bat habitat in the eastern oaks region

    Treesearch

    Roger W. Perry

    2012-01-01

    Fire is increasingly being used in oak forests to promote oak regeneration, improve wildlife habitat, and reduce hazardous fuel loads. Although recent research has begun to shed light on the relationships among fire, bats, and bat habitat, these interactions are not yet fully understood. Fire may affect bats directly through heat and smoke during the burning process or...

  7. A review of fire effects on bats and bat habitat in the eastern oak region

    Treesearch

    Roger W. Perry

    2012-01-01

    Fire is increasingly being used in oak forests to promote oak regeneration, improve wildlife habitat, and reduce hazardous fuel loads. Although recent research has begun to shed light on the relationships among fire, bats, and bat habitat, these interactions are not yet fully understood. Fire may affect bats directly through heat and smoke during the burning process or...

  8. Bats Avoid Radar Installations: Could Electromagnetic Fields Deter Bats from Colliding with Wind Turbines?

    PubMed Central

    Nicholls, Barry; Racey, Paul A.

    2007-01-01

    Large numbers of bats are killed by collisions with wind turbines, and there is at present no direct method of reducing or preventing this mortality. We therefore determine whether the electromagnetic radiation associated with radar installations can elicit an aversive behavioural response in foraging bats. Four civil air traffic control (ATC) radar stations, three military ATC radars and three weather radars were selected, each surrounded by heterogeneous habitat. Three sampling points matched for habitat type and structure, dominant vegetation species, altitude and surrounding land class were located at increasing distances from each station. A portable electromagnetic field meter measured the field strength of the radar at three distances from the source: in close proximity (<200 m) with a high electromagnetic field (EMF) strength >2 volts/metre, an intermediate point within line of sight of the radar (200–400 m) and with an EMF strength <2 v/m, and a control site out of sight of the radar (>400 m) and registering an EMF of zero v/m. At each radar station bat activity was recorded three times with three independent sampling points monitored on each occasion, resulting in a total of 90 samples, 30 of which were obtained within each field strength category. At these sampling points, bat activity was recorded using an automatic bat recording station, operated from sunset to sunrise. Bat activity was significantly reduced in habitats exposed to an EMF strength of greater than 2 v/m when compared to matched sites registering EMF levels of zero. The reduction in bat activity was not significantly different at lower levels of EMF strength within 400 m of the radar. We predict that the reduction in bat activity within habitats exposed to electromagnetic radiation may be a result of thermal induction and an increased risk of hyperthermia. PMID:17372629

  9. Education to Action: Improving Public Perception of Bats

    PubMed Central

    Hoffmaster, Eric; Vonk, Jennifer; Mies, Rob

    2016-01-01

    Public perception of bats has historically been largely negative with bats often portrayed as carriers of disease. Bats are commonly associated with vampire lore and thus elicit largely fearful reactions despite the fact that they are a vital and valuable part of the ecosystem. Bats provide a variety of essential services from pest control to plant pollination. Despite the benefits of bats to the environment and the economy, bats are suffering at the hands of humans. They are victims of turbines, human encroachment, pesticides, and, most recently, white nose syndrome. Because of their critical importance to the environment, humans should do what they can to help protect bats. We propose that humans will be more likely to do so if their perceptions and attitudes toward bats can be significantly improved. In a preliminary study we found some support for the idea that people can be educated about bats through bat oriented events and exhibits, and that this greater knowledge can inspire humans to act to save bats. PMID:26784239

  10. Dengue Virus in Bats from Southeastern Mexico

    PubMed Central

    Sotomayor-Bonilla, Jesús; Chaves, Andrea; Rico-Chávez, Oscar; Rostal, Melinda K.; Ojeda-Flores, Rafael; Salas-Rojas, Mónica; Aguilar-Setien, Álvaro; Ibáñez-Bernal, Sergio; Barbachano-Guerrero, Arturo; Gutiérrez-Espeleta, Gustavo; Aguilar-Faisal, J. Leopoldo; Aguirre, A. Alonso; Daszak, Peter; Suzán, Gerardo

    2014-01-01

    To identify the relationship between landscape use and dengue virus (DENV) occurrence in bats, we investigated the presence of DENV from anthropogenically changed and unaltered landscapes in two Biosphere Reserves: Calakmul (Campeche) and Montes Azules (Chiapas) in southern Mexico. Spleen samples of 146 bats, belonging to 16 species, were tested for four DENV serotypes with standard reverse transcriptase polymerase chain reaction (RT-PCR) protocols. Six bats (4.1%) tested positive for DENV-2: four bats in Calakmul (two Glossophaga soricina, one Artibeus jamaicensis, and one A. lituratus) and two bats in Montes Azules (both A. lituratus). No effect of anthropogenic disturbance on the occurrence of DENV was detected; however, all three RT-PCR–positive bat species are considered abundant species in the Neotropics and well-adapted to disturbed habitats. To our knowledge, this study is the first study conducted in southeastern Mexico to identify DENV-2 in bats by a widely accepted RT-PCR protocol. The role that bats play on DENV's ecology remains undetermined. PMID:24752688

  11. Tools to study pathogen-host interactions in bats.

    PubMed

    Banerjee, Arinjay; Misra, Vikram; Schountz, Tony; Baker, Michelle L

    2018-03-15

    Bats are natural reservoirs for a variety of emerging viruses that cause significant disease in humans and domestic animals yet rarely cause clinical disease in bats. The co-evolutionary history of bats with viruses has been hypothesized to have shaped the bat-virus relationship, allowing both to exist in equilibrium. Progress in understanding bat-virus interactions and the isolation of bat-borne viruses has been accelerated in recent years by the development of susceptible bat cell lines. Viral sequences similar to severe acute respiratory syndrome corona virus (SARS-CoV) have been detected in bats, and filoviruses such as Marburg virus have been isolated from bats, providing definitive evidence for the role of bats as the natural host reservoir. Although viruses can be readily detected in bats using molecular approaches, virus isolation is far more challenging. One of the limitations in using traditional culture systems from non-reservoir species is that cell types and culture conditions may not be compatible for isolation of bat-borne viruses. There is, therefore, a need to develop additional bat cell lines that correspond to different cell types, including less represented cell types such as immune cells, and culture them under more physiologically relevant conditions to study virus host interactions and for virus isolation. In this review, we highlight the current progress in understanding bat-virus interactions in bat cell line systems and some of the challenges and limitations associated with cell lines. Future directions to address some of these challenges to better understand host-pathogen interactions in these intriguing mammals are also discussed, not only in relation to viruses but also other pathogens carried by bats including bacteria and fungi. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. BAT2 and BAT3 polymorphisms as novel genetic risk factors for rejection after HLA-related SCT.

    PubMed

    Piras, Ignazio Stefano; Angius, Andrea; Andreani, Marco; Testi, Manuela; Lucarelli, Guido; Floris, Matteo; Marktel, Sarah; Ciceri, Fabio; La Nasa, Giorgio; Fleischhauer, Katharina; Roncarolo, Maria Grazia; Bulfone, Alessandro; Gregori, Silvia; Bacchetta, Rosa

    2014-11-01

    The genetic background of donor and recipient is an important factor determining the outcome of allogeneic hematopoietic SCT (allo-HSCT). We applied whole-genome analysis to investigate genetic variants-other than HLA class I and II-associated with negative outcome after HLA-identical sibling allo-HSCT in a cohort of 110 β-Thalassemic patients. We identified two single-nucleotide polymorphisms (SNPs) in BAT2 (A/G) and BAT3 (T/C) genes, SNP rs11538264 and SNP rs10484558, both located in the HLA class III region, in strong linkage disequilibrium between each other (R(2)=0.92). When considered as single SNP, none of them reached a significant association with graft rejection (nominal P<0.00001 for BAT2 SNP rs11538264, and P<0.0001 for BAT3 SNP rs10484558), whereas the BAT2/BAT3 A/C haplotype was present at significantly higher frequency in patients who rejected as compared to those with functional graft (30.0% vs 2.6%, nominal P=1.15 × 10(-8); and adjusted P=0.0071). The BAT2/BAT3 polymorphisms and specifically the A/C haplotype may represent a novel immunogenetic factor associated with graft rejection in patients undergoing allo-HSCT.

  13. The physics of bat biosonar

    NASA Astrophysics Data System (ADS)

    Müller, Rolf

    2011-10-01

    Bats have evolved one of the most capable and at the same time parsimonious sensory systems found in nature. Using active and passive biosonar as a major - and often sufficient - far sense, different bat species are able to master a wide variety of sensory tasks under very dissimilar sets of constraints. Given the limited computational resources of the bat's brain, this performance is unlikely to be explained as the result of brute-force, black-box-style computations. Instead, the animals must rely heavily on in-built physics knowledge in order to ensure that all required information is encoded reliably into the acoustic signals received at the ear drum. To this end, bats can manipulate the emitted and received signals in the physical domain: By diffracting the outgoing and incoming ultrasonic waves with intricate baffle shapes (i.e., noseleaves and outer ears), the animals can generate selectivity filters that are joint functions of space and frequency. To achieve this, bats employ structural features such as resonance cavities and diffracting ridges. In addition, some bat species can dynamically adjust the shape of their selectivity filters through muscular actuation.

  14. Large roads reduce bat activity across multiple species.

    PubMed

    Kitzes, Justin; Merenlender, Adina

    2014-01-01

    Although the negative impacts of roads on many terrestrial vertebrate and bird populations are well documented, there have been few studies of the road ecology of bats. To examine the effects of large roads on bat populations, we used acoustic recorders to survey bat activity along ten 300 m transects bordering three large highways in northern California, applying a newly developed statistical classifier to identify recorded calls to the species level. Nightly counts of bat passes were analyzed with generalized linear mixed models to determine the relationship between bat activity and distance from a road. Total bat activity recorded at points adjacent to roads was found to be approximately one-half the level observed at 300 m. Statistically significant road effects were also found for the Brazilian free-tailed bat (Tadarida brasiliensis), big brown bat (Eptesicus fuscus), hoary bat (Lasiurus cinereus), and silver-haired bat (Lasionycteris noctivagans). The road effect was found to be temperature dependent, with hot days both increasing total activity at night and reducing the difference between activity levels near and far from roads. These results suggest that the environmental impacts of road construction may include degradation of bat habitat and that mitigation activities for this habitat loss may be necessary to protect bat populations.

  15. Skin and fur bacterial diversity and community structure on American southwestern bats: effects of habitat, geography and bat traits

    PubMed Central

    Hathaway, Jennifer J.M.; Kimble, Jason C.; Buecher, Debbie C.; Valdez, Ernest W.; Young, Jesse M.; Read, Kaitlyn J.H.; Northup, Diana E.

    2017-01-01

    Microorganisms that reside on and in mammals, such as bats, have the potential to influence their host’s health and to provide defenses against invading pathogens. However, we have little understanding of the skin and fur bacterial microbiota on bats, or factors that influence the structure of these communities. The southwestern United States offers excellent sites for the study of external bat bacterial microbiota due to the diversity of bat species, the variety of abiotic and biotic factors that may govern bat bacterial microbiota communities, and the lack of the newly emergent fungal disease in bats, white-nose syndrome (WNS), in the southwest. To test these variables, we used 16S rRNA gene 454 pyrosequencing from swabs of external skin and fur surfaces from 163 bats from 13 species sampled from southeastern New Mexico to northwestern Arizona. Community similarity patterns, random forest models, and generalized linear mixed-effects models show that factors such as location (e.g., cave-caught versus surface-netted) and ecoregion are major contributors to the structure of bacterial communities on bats. Bats caught in caves had a distinct microbial community compared to those that were netted on the surface. Our results provide a first insight into the distribution of skin and fur bat bacteria in the WNS-free environment of New Mexico and Arizona. More importantly, it provides a baseline of bat external microbiota that can be explored for potential natural defenses against pathogens. PMID:29093998

  16. Skin and fur bacterial diversity and community structure on American southwestern bats: effects of habitat, geography and bat traits.

    PubMed

    Winter, Ara S; Hathaway, Jennifer J M; Kimble, Jason C; Buecher, Debbie C; Valdez, Ernest W; Porras-Alfaro, Andrea; Young, Jesse M; Read, Kaitlyn J H; Northup, Diana E

    2017-01-01

    Microorganisms that reside on and in mammals, such as bats, have the potential to influence their host's health and to provide defenses against invading pathogens. However, we have little understanding of the skin and fur bacterial microbiota on bats, or factors that influence the structure of these communities. The southwestern United States offers excellent sites for the study of external bat bacterial microbiota due to the diversity of bat species, the variety of abiotic and biotic factors that may govern bat bacterial microbiota communities, and the lack of the newly emergent fungal disease in bats, white-nose syndrome (WNS), in the southwest. To test these variables, we used 16S rRNA gene 454 pyrosequencing from swabs of external skin and fur surfaces from 163 bats from 13 species sampled from southeastern New Mexico to northwestern Arizona. Community similarity patterns, random forest models, and generalized linear mixed-effects models show that factors such as location (e.g., cave-caught versus surface-netted) and ecoregion are major contributors to the structure of bacterial communities on bats. Bats caught in caves had a distinct microbial community compared to those that were netted on the surface. Our results provide a first insight into the distribution of skin and fur bat bacteria in the WNS-free environment of New Mexico and Arizona. More importantly, it provides a baseline of bat external microbiota that can be explored for potential natural defenses against pathogens.

  17. Skin and fur bacterial diversity and community structure on American southwestern bats: effects of habitat, geography and bat traits

    USGS Publications Warehouse

    Winter, Ara S.; Hathaway, Jennifer J. M.; Kimble, Jason C.; Buecher, Debbie C.; Valdez, Ernest W.; Porras-Alfaro, Andrea; Young, Jesse M.; Read, Kaitlyn J. H.; Northup, Diana E.

    2017-01-01

    Microorganisms that reside on and in mammals, such as bats, have the potential to influence their host’s health and to provide defenses against invading pathogens. However, we have little understanding of the skin and fur bacterial microbiota on bats, or factors that influence the structure of these communities. The southwestern United States offers excellent sites for the study of external bat bacterial microbiota due to the diversity of bat species, the variety of abiotic and biotic factors that may govern bat bacterial microbiota communities, and the lack of the newly emergent fungal disease in bats, white-nose syndrome (WNS), in the southwest. To test these variables, we used 16S rRNA gene 454 pyrosequencing from swabs of external skin and fur surfaces from 163 bats from 13 species sampled from southeastern New Mexico to northwestern Arizona. Community similarity patterns, random forest models, and generalized linear mixed-effects models show that factors such as location (e.g., cave-caught versus surface-netted) and ecoregion are major contributors to the structure of bacterial communities on bats. Bats caught in caves had a distinct microbial community compared to those that were netted on the surface. Our results provide a first insight into the distribution of skin and fur bat bacteria in the WNS-free environment of New Mexico and Arizona. More importantly, it provides a baseline of bat external microbiota that can be explored for potential natural defenses against pathogens.

  18. Iron storage disease (hemochromatosis) and hepcidin response to iron load in two species of pteropodid fruit bats relative to the common vampire bat.

    PubMed

    Stasiak, Iga M; Smith, Dale A; Ganz, Tomas; Crawshaw, Graham J; Hammermueller, Jutta D; Bienzle, Dorothee; Lillie, Brandon N

    2018-07-01

    Hepcidin is the key regulator of iron homeostasis in the body. Iron storage disease (hemochromatosis) is a frequent cause of liver disease and mortality in captive Egyptian fruit bats (Rousettus aegyptiacus), but reasons underlying this condition are unknown. Hereditary hemochromatosis in humans is due to deficiency of hepcidin or resistance to the action of hepcidin. Here, we investigated the role of hepcidin in iron metabolism in one species of pteropodid bat that is prone to iron storage disease [Egyptian fruit bat (with and without hemochromatosis)], one species of pteropodid bat where iron storage disease is rare [straw-colored fruit bat (Eidolon helvum)], and one species of bat with a natural diet very high in iron, in which iron storage disease is not reported [common vampire bat (Desmodus rotundus)]. Iron challenge via intramuscular injection of iron dextran resulted in significantly increased liver iron content and histologic iron scores in all three species, and increased plasma iron in Egyptian fruit bats and straw-colored fruit bats. Hepcidin mRNA expression increased in response to iron administration in healthy Egyptian fruit bats and common vampire bats, but not in straw-colored fruit bats or Egyptian fruit bats with hemochromatosis. Hepcidin gene expression significantly correlated with liver iron content in Egyptian fruit bats and common vampire bats, and with transferrin saturation and plasma ferritin concentration in Egyptian fruit bats. Induction of hepcidin gene expression in response to iron challenge is absent in straw-colored fruit bats and in Egyptian fruit bats with hemochromatosis and, relative to common vampire bats and healthy humans, is low in Egyptain fruit bats without hemochromatosis. Limited hepcidin response to iron challenge may contribute to the increased susceptibility of Egyptian fruit bats to iron storage disease.

  19. Phylogeny of European bat Lyssavirus 1 in Eptesicus isabellinus bats, Spain.

    PubMed

    Vázquez-Moron, Sonia; Juste, Javier; Ibáñez, Carlos; Berciano, José M; Echevarria, Juan E

    2011-03-01

    To better understand the epidemiology of European bat lyssavirus 1 (EBLV-1) in Europe, we phylogenetically characterized Lyssavirus from Eptesicus isabellinus bats in Spain. An independent cluster of EBLV-1 possibly resulted from geographic isolation and association with a different reservoir from other European strains. EBLV-1 phylogeny is complex and probably associated with host evolutionary history.

  20. Bats Increase the Number of Cultivable Airborne Fungi in the "Nietoperek" Bat Reserve in Western Poland.

    PubMed

    Kokurewicz, Tomasz; Ogórek, Rafał; Pusz, Wojciech; Matkowski, Krzysztof

    2016-07-01

    The "Nietoperek" bat reserve located in Western Poland is one of the largest bat hibernation sites in the European Union with nearly 38,000 bats from 12 species. Nietoperek is part of a built underground fortification system from WWII. The aims of the study were (1) to determine the fungal species composition and changes during hibernation season in relation to bat number and microclimatic conditions and (2) evaluate the potential threat of fungi for bat assemblages and humans visiting the complex. Airborne fungi were collected in the beginning, middle and end of hibernation period (9 November 2013 and 17 January and 15 March 2014) in 12 study sites, one outside and 11 inside the complex. Ambient temperature (T a) and relative humidity (RH) were measured by the use of data loggers, and species composition of bats was recorded from the study sites. The collision method (Air Ideal 3P) sampler was used to detect 34 species of airborne fungi including Pseudogymnoascus destructans (Pd). The density of airborne fungi isolated from the outdoor air samples varied from 102 to 242 CFU/1 m(3) of air and from 12 to 1198 CFU in the underground air samples. There was a positive relationship between number of bats and the concentration of fungi. The concentration of airborne fungi increased with the increase of bats number. Analysis of other possible ways of spore transport to the underground indicated that the number of bats was the primary factor determining the number of fungal spores in that hibernation site. Microclimatic conditions where Pd was found (median 8.7 °C, min-max 6.1-9.9 °C and 100 %, min-max 77.5-100.0 %) were preferred by hibernating Myotis myotis and Myotis daubentonii; therefore, these species are most probably especially prone to infection by this fungi species. The spores of fungi found in the underground can be pathogenic for humans and animals, especially for immunocompromised persons, even though their concentrations did not exceed limits and

  1. Bartonella, bats and bugs: A review.

    PubMed

    Stuckey, Matthew J; Chomel, Bruno B; de Fleurieu, Eloi Claret; Aguilar-Setién, Alvaro; Boulouis, Henri-Jean; Chang, Chao-Chin

    2017-12-01

    Ecological, immunological, and epidemiological factors enable bats to transmit an increasingly recognized spectrum of zoonotic agents, and bartonellae are among those emerging pathogens identified in bats and their arthropod ectoparasites. Current data reveal a multifaceted disease ecology where diverse host species distributed around the world interact with a number of Bartonella spp. and several potential vectors. This review summarizes the methods and findings of studies conducted since 2005 to illustrate that Bartonella bacteremia varies by bat species, location, and other potential variables, such as diet with a very high prevalence in hematophagous bats. Among bat families, Bartonella prevalence ranged from 7.3% among Nycteridae to 54.4% in Miniopteridae. Further research can build on these current data to better determine risk factors associated with Bartonella infection in bat populations and the role of their ectoparasites in transmission. Copyright © 2017. Published by Elsevier Ltd.

  2. Potential exposure to Australian bat lyssavirus is unlikely to prevent future bat handling among adults in South East Queensland.

    PubMed

    Young, M K; Banu, S; McCall, B J; Vlack, S; Carroll, H; Bennett, S; Davison, R; Francis, D

    2018-02-01

    Despite ongoing public health messages about the risks associated with bat contact, the number of potential exposures to Australian bat lyssavirus (ABLV) due to intentional handling by members of the general public in Queensland has remained high. We sought to better understand the reasons for intentional handling among these members of the public who reported their potential exposure to inform future public health messages. We interviewed adults who resided in a defined geographic area in South East Queensland and notified potential exposure to ABLV due to intentional handling of bats by telephone between 1 January 2012 and 31 December 2013. The participation rate was 54%. Adults who reported they had intentionally handled bats in South East Queensland indicated high levels of knowledge and perception of a moderately high risk associated with bats with overall low intentions to handle bats in the future. However, substantial proportions of people would attempt to handle bats again in some circumstances, particularly to protect their children or pets. Fifty-two percent indicated that they would handle a bat if a child was about to pick up or touch a live bat, and 49% would intervene if a pet was interacting with a bat. Future public health communications should recognize the situations in which even people with highrisk perceptions of bats will attempt to handle them. Public health messages currently focus on avoidance of bats in all circumstances and recommend calling in a trained vaccinated handler, but messaging directed at adults for circumstances where children or pets may be potentially exposed should provide safe immediate management options. © 2017 Blackwell Verlag GmbH.

  3. Seroprevalence Dynamics of European Bat Lyssavirus Type 1 in a Multispecies Bat Colony

    PubMed Central

    López-Roig, Marc; Bourhy, Hervé; Lavenir, Rachel; Serra-Cobo, Jordi

    2014-01-01

    We report an active surveillance study of the occurrence of specific antibodies to European Bat Lyssavirus Type 1 (EBLV-1) in bat species, scarcely studied hitherto, that share the same refuge. From 2004 to 2012, 406 sera were obtained from nine bat species. Blood samples were subjected to a modified fluorescent antibody virus neutralization test to determine the antibody titer. EBLV-1-neutralizing antibodies were detected in six of the nine species analyzed (Pipistrellus pipistrellus, P. kuhlii, Hypsugo savii, Plecotus austriacus, Eptesicus serotinus and Tadarida teniotis). Among all bats sampled, female seroprevalence (20.21%, 95% CI: 14.78%–26.57%) was not significantly higher than the seroprevalence in males (15.02%, 95% CI: 10.51%–20.54%). The results showed that the inter-annual variation in the number of seropositive bats in T. teniotis and P. austriacus showed a peak in 2007 (>70% of EBLV-1 prevalence). However, significant differences were observed in the temporal patterns of the seroprevalence modeling of T. teniotis and P. austriacus. The behavioral ecology of these species involved could explain the different annual fluctuations in EBLV-1 seroprevalence. PMID:25192547

  4. Seroprevalence dynamics of European bat lyssavirus type 1 in a multispecies bat colony.

    PubMed

    López-Roig, Marc; Bourhy, Hervé; Lavenir, Rachel; Serra-Cobo, Jordi

    2014-09-04

    We report an active surveillance study of the occurrence of specific antibodies to European Bat Lyssavirus Type 1 (EBLV-1) in bat species, scarcely studied hitherto, that share the same refuge. From 2004 to 2012, 406 sera were obtained from nine bat species. Blood samples were subjected to a modified fluorescent antibody virus neutralization test to determine the antibody titer. EBLV-1-neutralizing antibodies were detected in six of the nine species analyzed (Pipistrellus pipistrellus, P. kuhlii, Hypsugo savii, Plecotus austriacus, Eptesicus serotinus and Tadarida teniotis). Among all bats sampled, female seroprevalence (20.21%, 95% CI: 14.78%-26.57%) was not significantly higher than the seroprevalence in males (15.02%, 95% CI: 10.51%-20.54%). The results showed that the inter-annual variation in the number of seropositive bats in T. teniotis and P. austriacus showed a peak in 2007 (>70% of EBLV-1 prevalence). However, significant differences were observed in the temporal patterns of the seroprevalence modeling of T. teniotis and P. austriacus. The behavioral ecology of these species involved could explain the different annual fluctuations in EBLV-1 seroprevalence.

  5. Bat predation on nocturnally migrating birds

    PubMed Central

    Ibáñez, Carlos; Juste, Javier; García-Mudarra, Juan L.; Agirre-Mendi, Pablo T.

    2001-01-01

    Bat predation on birds is a very rare phenomenon in nature. Most documented reports of bird-eating bats refer to tropical bats that occasionally capture resting birds. Millions of small birds concentrate and cross over the world's temperate regions during migration, mainly at night, but no nocturnal predators are known to benefit from this enormous food resource. An analysis of 14,000 fecal pellets of the greater noctule bat (Nyctalus lasiopterus) reveals that this species captures and eats large numbers of migrating passerines, making it the only bat species so far known that regularly preys on birds. The echolocation characteristics and wing morphology of this species strongly suggest that it captures birds in flight. PMID:11493689

  6. Social communication in bats.

    PubMed

    Chaverri, Gloriana; Ancillotto, Leonardo; Russo, Danilo

    2018-05-15

    Bats represent one of the most diverse mammalian orders, not only in terms of species numbers, but also in their ecology and life histories. Many species are known to use ephemeral and/or unpredictable resources that require substantial investment to find and defend, and also engage in social interactions, thus requiring significant levels of social coordination. To accomplish these tasks, bats must be able to communicate; there is now substantial evidence that demonstrates the complexity of bat communication and the varied ways in which bats solve some of the problems associated with their unique life histories. However, while the study of communication in bats is rapidly growing, it still lags behind other taxa. Here we provide a comprehensive overview of communication in bats, from the reasons why they communicate to the diversity and application of different signal modalities. The most widespread form of communication is the transmission of a signaller's characteristics, such as species identity, sex, individual identity, group membership, social status and body condition, and because many species of bats can rely little on vision due to their nocturnal lifestyles, it is assumed that sound and olfaction are particularly important signalling modes. For example, research suggests that secretions from specialized glands, often in combination with urine and saliva, are responsible for species recognition in several species. These olfactory signals may also convey information about sex and colony membership. Olfaction may be used in combination with sound, particularly in species that emit constant frequency (CF) echolocation calls, to recognize conspecifics from heterospecifics, yet their simple structure and high frequency do not allow much information of individual identity to be conveyed over long distances. By contrast, social calls may encode a larger number of cues of individual identity, and their lower frequencies increase their range of detection. Social

  7. RABIES SURVEILLANCE AMONG BATS IN TENNESSEE, USA, 1996-2010.

    PubMed

    Gilbert, Amy T; McCracken, Gary F; Sheeler, Lorinda L; Muller, Lisa I; O'Rourke, Dorcas; Kelch, William J; New, John C

    2015-10-01

    Rabies virus (RABV) infects multiple bat species in the Americas, and enzootic foci perpetuate in bats principally via intraspecific transmission. In recent years, bats have been implicated in over 90% of human rabies cases in the US. In Tennessee, two human cases of rabies have occurred since 1960: one case in 1994 associated with a tricolored bat (Perimyotis subflavus) RABV variant and another in 2002 associated with the tricolored/silver-haired bat (P. subflavus/Lasionycteris noctivagans) RABV variant. From 1996 to 2010, 2,039 bats were submitted for rabies testing in Tennessee. Among 1,943 bats in satisfactory condition for testing and with a reported diagnostic result, 96% (1,870 of 1,943) were identified to species and 10% (196 of 1,943) were rabid. Big brown (Eptesicus fuscus), tricolored, and eastern red (Lasiurus borealis) bats comprised 77% of testable bat submissions and 84% of rabid bats. For species with five or more submissions during 1996-2010, the highest proportion of rabid bats occurred in hoary (Lasiurus cinereus; 46%), unspecified Myotis spp. (22%), and eastern red (17%) bats. The best model to predict rabid bats included month of submission, exposure history of submission, species, and sex of bat.

  8. Guide to the BATS Resource Trunk.

    ERIC Educational Resources Information Center

    Arizona Game and Fish Dept., Phoenix.

    This guide provides detailed information, resources, and activities to teach students about the bats of Arizona. Chapters include: (1) "What is a Bat?"; (2) "Megabat or Microbat?"; (3) "Bat Anatomy"; (4) Diet and Feeding"; (5) Echolocation"; (6) Reproduction and Lifespan"; (7) "Flight"; (8)…

  9. Western crevice and cavity-roosting bats

    USGS Publications Warehouse

    Bogan, Michael A.; Cryan, Paul M.; Valdez, Ernest W.; Ellison, Laura E.; O'Shea, Thomas J.

    2003-01-01

    Among the 45 species of bats that occur in the United States (U.S.), 34 species regularly occur in western regions of the country. Many of these “western” species choose roost sites in crevices or cavities. Herein we provide an introduction to the biology of bats that roost in cavities and crevices and assess the challenges and opportunities associated with monitoring their populations. We reviewed recent studies and examined the U.S. Geological Survey Bat Population Database (BPD) for records of western bats using crevice and cavity roosts. We found records of 25 species of western bats that use crevice or cavity roosts for at least part of their annual cycle. There were relatively few (n = 92) observations or counts for these species in the BPD, representing only 6% of the observations in the database. This paucity of records likely reflects the difficulty of observing bats in such situations rather than actual use. We found no long-term data adequate for population trend analysis among this group of bats. Since the development of miniaturized radio transmitters, our knowledge about bats that roost in cavities and crevices has increased. Future challenges associated with monitoring these species will include understanding variability in the types of roosts used as well as the roost-switching behavior exhibited by many species.

  10. Floating aerial LED signage based on aerial imaging by retro-reflection (AIRR).

    PubMed

    Yamamoto, Hirotsugu; Tomiyama, Yuka; Suyama, Shiro

    2014-11-03

    We propose a floating aerial LED signage technique by utilizing retro-reflection. The proposed display is composed of LEDs, a half mirror, and retro-reflective sheeting. Directivity of the aerial image formation and size of the aerial image have been investigated. Furthermore, a floating aerial LED sign has been successfully formed in free space.

  11. Bats as reservoirs of severe emerging infectious diseases.

    PubMed

    Han, Hui-Ju; Wen, Hong-ling; Zhou, Chuan-Min; Chen, Fang-Fang; Luo, Li-Mei; Liu, Jian-wei; Yu, Xue-Jie

    2015-07-02

    In recent years severe infectious diseases have been constantly emerging, causing panic in the world. Now we know that many of these terrible diseases are caused by viruses originated from bats (Table 1), such as Ebola virus, Marburg, SARS coronavirus (SARS-CoV), MERS coronavirus (MERS-CoV), Nipah virus (NiV) and Hendra virus (HeV). These viruses have co-evolved with bats due to bats' special social, biological and immunological features. Although bats are not in close contact with humans, spillover of viruses from bats to intermediate animal hosts, such as horses, pigs, civets, or non-human primates, is thought to be the most likely mode to cause human infection. Humans may also become infected with viruses through aerosol by intruding into bat roosting caves or via direct contact with bats, such as catching bats or been bitten by bats. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Dengue virus in bats from southeastern Mexico.

    PubMed

    Sotomayor-Bonilla, Jesús; Chaves, Andrea; Rico-Chávez, Oscar; Rostal, Melinda K; Ojeda-Flores, Rafael; Salas-Rojas, Mónica; Aguilar-Setien, Álvaro; Ibáñez-Bernal, Sergio; Barbachano-Guerrero, Arturo; Gutiérrez-Espeleta, Gustavo; Aguilar-Faisal, J Leopoldo; Aguirre, A Alonso; Daszak, Peter; Suzán, Gerardo

    2014-07-01

    To identify the relationship between landscape use and dengue virus (DENV) occurrence in bats, we investigated the presence of DENV from anthropogenically changed and unaltered landscapes in two Biosphere Reserves: Calakmul (Campeche) and Montes Azules (Chiapas) in southern Mexico. Spleen samples of 146 bats, belonging to 16 species, were tested for four DENV serotypes with standard reverse transcriptase polymerase chain reaction (RT-PCR) protocols. Six bats (4.1%) tested positive for DENV-2: four bats in Calakmul (two Glossophaga soricina, one Artibeus jamaicensis, and one A. lituratus) and two bats in Montes Azules (both A. lituratus). No effect of anthropogenic disturbance on the occurrence of DENV was detected; however, all three RT-PCR-positive bat species are considered abundant species in the Neotropics and well-adapted to disturbed habitats. To our knowledge, this study is the first study conducted in southeastern Mexico to identify DENV-2 in bats by a widely accepted RT-PCR protocol. The role that bats play on DENV's ecology remains undetermined. © The American Society of Tropical Medicine and Hygiene.

  13. Migration of bats past a remote island offers clues toward the problem of bat fatalities at wind turbines

    USGS Publications Warehouse

    Cryan, P.M.; Brown, A.C.

    2007-01-01

    Wind energy is rapidly becoming a viable source of alternative energy, but wind turbines are killing bats in many areas of North America. Most of the bats killed by turbines thus far have been migratory species that roost in trees throughout the year, and the highest fatality events appear to coincide with autumn migration. Hoary bats (Lasiurus cinereus) are highly migratory and one of the most frequently killed species at wind turbines. We analyzed a long-term data set to investigate how weather and moonlight influenced the occurrence of hoary bats at an island stopover point along their migration route. We then related our results to the problem of bat fatalities at wind turbines. We found that relatively low wind speeds, low moon illumination, and relatively high degrees of cloud cover were important predictors of bat arrivals and departures, and that low barometric pressure was an additional variable that helped predict arrivals. Slight differences in the conditions under which bats arrived and departed from the island suggest that hoary bats may be more likely to arrive on the island with passing storm fronts in autumn. These results also indicate that fatalities of hoary bats at wind turbines may be predictable events, that the species may be drawn to prominent landmarks that they see during migration, and that they regularly migrate over the ocean. Additional observations from this and other studies suggest that the problem of bat fatalities at wind turbines may be associated with flocking and autumn mating behaviors.

  14. Survey for bats in the Los Alamos National Environmental Research Park, with special emphasis on the spotted bat, Euderma maculatum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyrell, K.; Brack, V. Jr.

    To increase knowledge about the presence of endangered species and their habitat at the LANL, 3D/Environmental Services, Inc. conducted a mist net survey for bats on Laboratory lands. In addition to documenting the presence of threatened and endangered species, this survey was conducted to gain more knowledge about the diversity and distribution of the bat fauna existing on the Laboratory. There are 25 species of bats found in New Mexico, about 16 of which are likely to occur in the region of the Laboratory. Of particular interest was documentation of the presence of the spotted bat, Euderma maculatum. The spottedmore » bat is listed as Endangered, Group 2 by the State of New Mexico, and is a Federal Candidate for listing as endangered. As such, conservation of this species and its habitat should be a management priority on the Laboratory. A total of 94 bats were captured in 16 net nights, between 30 June and 05 July 1992. Thirteen species of bats were caught during the study: Antrozous pallidus (pallid bat), 10.6 percent; Eptesicus fuscus (big brown bat), 10.6 percent; Lasionycteris noctivigans (silver-haired bat), 16 percent; Lasiurus cinereus (hoary bat), 11.7 percent; Myotis californicus (California myotis), 4.3 percent; M. evotis (long-eared myotis), 7.4 percent; M. leibii (small-footed myotis), 5.3 percent; M. thysanodes (fringed myotis), 13.8 percent; M. volans (long-legged myotis), 7.4 percent of the catch; M. yumanensis,(Yuma myotis), 5.3 percent; Pipistrellus hesperus (western pipistrelle), 1.1 percent; Plecotus townsendii (Townsend`s big-eared bat), 1.1 percent, and Tadarida brasiliensis (Brazilian free-tailed bat), 5.3 percent.« less

  15. Survey for bats in the Los Alamos National Environmental Research Park, with special emphasis on the spotted bat, Euderma maculatum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyrell, K.; Brack, V. Jr.

    To increase knowledge about the presence of endangered species and their habitat at the LANL, 3D/Environmental Services, Inc. conducted a mist net survey for bats on Laboratory lands. In addition to documenting the presence of threatened and endangered species, this survey was conducted to gain more knowledge about the diversity and distribution of the bat fauna existing on the Laboratory. There are 25 species of bats found in New Mexico, about 16 of which are likely to occur in the region of the Laboratory. Of particular interest was documentation of the presence of the spotted bat, Euderma maculatum. The spottedmore » bat is listed as Endangered, Group 2 by the State of New Mexico, and is a Federal Candidate for listing as endangered. As such, conservation of this species and its habitat should be a management priority on the Laboratory. A total of 94 bats were captured in 16 net nights, between 30 June and 05 July 1992. Thirteen species of bats were caught during the study: Antrozous pallidus (pallid bat), 10.6 percent; Eptesicus fuscus (big brown bat), 10.6 percent; Lasionycteris noctivigans (silver-haired bat), 16 percent; Lasiurus cinereus (hoary bat), 11.7 percent; Myotis californicus (California myotis), 4.3 percent; M. evotis (long-eared myotis), 7.4 percent; M. leibii (small-footed myotis), 5.3 percent; M. thysanodes (fringed myotis), 13.8 percent; M. volans (long-legged myotis), 7.4 percent of the catch; M. yumanensis,(Yuma myotis), 5.3 percent; Pipistrellus hesperus (western pipistrelle), 1.1 percent; Plecotus townsendii (Townsend's big-eared bat), 1.1 percent, and Tadarida brasiliensis (Brazilian free-tailed bat), 5.3 percent.« less

  16. Swift Burst Alert Telescope (BAT) Instrument Response

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Hullinger, D.; Markwardt, C.; Barthelmy, S.; Cummings, J.; Gehrels, N.; Krimm, H.; Tueller, J.; Fenimore, E.; Palmer, D.

    2004-01-01

    The Burst Alert Telescope (BAT), a large coded aperture instrument with a wide field-of-view (FOV), provides the gamma-ray burst triggers and locations for the Swift Gamma-Ray Burst Explorer. In addition to providing this imaging information, BAT will perform a 15 keV - 150 keV all-sky hard x-ray survey based on the serendipitous pointings resulting from the study of gamma-ray bursts and will also monitor the sky for transient hard x-ray sources. For BAT to provide spectral and photometric information for the gamma-ray bursts, the transient sources and the all-sky survey, the BAT instrument response must be determined to an increasingly greater accuracy. In this talk, we describe the BAT instrument response as determined to an accuracy suitable for gamma-ray burst studies. We will also discuss the public data analysis tools developed to calculate the BAT response to sources at different energies and locations in the FOV. The level of accuracy required for the BAT instrument response used for the hard x-ray survey is significantly higher because this response must be used in the iterative clean algorithm for finding fainter sources. Because the bright sources add a lot of coding noise to the BAT sky image, fainter sources can be seen only after the counts due to the bright sources are removed. The better we know the BAT response, the lower the noise in the cleaned spectrum and thus the more sensitive the survey. Since the BAT detector plane consists of 32768 individual, 4 mm square CZT gamma-ray detectors, the most accurate BAT response would include 32768 individual detector response functions to separate mask modulation effects from differences in detector efficiencies! We describe OUT continuing work to improve the accuracy of the BAT instrument response and will present the current results of Monte Carlo simulations as well as BAT ground calibration data.

  17. Electrolyte depletion in white-nose syndrome bats

    USGS Publications Warehouse

    Cryan, Paul M.; Meteyer, Carol Uphoff; Blehert, David S.; Lorch, Jeffrey M.; Reeder, DeeAnn M.; Turner, Gregory G.; Webb, Julie; Behr, Melissa; Verant, Michelle L.; Russell, Robin E.; Castle, Kevin T.

    2013-01-01

    The emerging wildlife disease white-nose syndrome is causing widespread mortality in hibernating North American bats. White-nose syndrome occurs when the fungus Geomyces destructans infects the living skin of bats during hibernation, but links between infection and mortality are underexplored. We analyzed blood from hibernating bats and compared blood electrolyte levels to wing damage caused by the fungus. Sodium and chloride tended to decrease as wing damage increased in severity. Depletion of these electrolytes suggests that infected bats may become hypotonically dehydrated during winter. Although bats regularly arouse from hibernation to drink during winter, water available in hibernacula may not contain sufficient electrolytes to offset winter losses caused by disease. Damage to bat wings from G. destructans may cause life-threatening electrolyte imbalances.

  18. Increasing evidence that bats actively forage at wind turbines

    PubMed Central

    Foo, Cecily F.; Bennett, Victoria J.; Korstian, Jennifer M.; Schildt, Alison J.; Williams, Dean A.

    2017-01-01

    Although the ultimate causes of high bat fatalities at wind farms are not well understood, several lines of evidence suggest that bats are attracted to wind turbines. One hypothesis is that bats would be attracted to turbines as a foraging resource if the insects that bats prey upon are commonly present on and around the turbine towers. To investigate the role that foraging activity may play in bat fatalities, we conducted a series of surveys at a wind farm in the southern Great Plains of the US from 2011–2016. From acoustic monitoring we recorded foraging activity, including feeding buzzes indicative of prey capture, in the immediate vicinity of turbine towers from all six bat species known to be present at this site. From insect surveys we found Lepidoptera, Coleoptera, and Orthoptera in consistently high proportions over several years suggesting that food resources for bats were consistently available at wind turbines. We used DNA barcoding techniques to assess bat diet composition of (1) stomach contents from 47 eastern red bat (Lasiurus borealis) and 24 hoary bat (Lasiurus cinereus) carcasses collected in fatality searches, and (2) fecal pellets from 23 eastern red bats that were found on turbine towers, transformers, and tower doors. We found that the majority of the eastern red bat and hoary bat stomachs, the two bat species most commonly found in fatality searches at this site, were full or partially full, indicating that the bats were likely killed while foraging. Although Lepidoptera and Orthoptera dominated the diets of these two bat species, both consumed a range of prey items with individual bats having from one to six insect species in their stomachs at the time of death. The prey items identified from eastern red bat fecal pellets showed similar results. A comparison of the turbine insect community to the diet analysis results revealed that the most abundant insects at wind turbines, including terrestrial insects such as crickets and several

  19. Increasing evidence that bats actively forage at wind turbines.

    PubMed

    Foo, Cecily F; Bennett, Victoria J; Hale, Amanda M; Korstian, Jennifer M; Schildt, Alison J; Williams, Dean A

    2017-01-01

    Although the ultimate causes of high bat fatalities at wind farms are not well understood, several lines of evidence suggest that bats are attracted to wind turbines. One hypothesis is that bats would be attracted to turbines as a foraging resource if the insects that bats prey upon are commonly present on and around the turbine towers. To investigate the role that foraging activity may play in bat fatalities, we conducted a series of surveys at a wind farm in the southern Great Plains of the US from 2011-2016. From acoustic monitoring we recorded foraging activity, including feeding buzzes indicative of prey capture, in the immediate vicinity of turbine towers from all six bat species known to be present at this site. From insect surveys we found Lepidoptera, Coleoptera, and Orthoptera in consistently high proportions over several years suggesting that food resources for bats were consistently available at wind turbines. We used DNA barcoding techniques to assess bat diet composition of (1) stomach contents from 47 eastern red bat ( Lasiurus borealis ) and 24 hoary bat ( Lasiurus cinereus ) carcasses collected in fatality searches, and (2) fecal pellets from 23 eastern red bats that were found on turbine towers, transformers, and tower doors. We found that the majority of the eastern red bat and hoary bat stomachs, the two bat species most commonly found in fatality searches at this site, were full or partially full, indicating that the bats were likely killed while foraging. Although Lepidoptera and Orthoptera dominated the diets of these two bat species, both consumed a range of prey items with individual bats having from one to six insect species in their stomachs at the time of death. The prey items identified from eastern red bat fecal pellets showed similar results. A comparison of the turbine insect community to the diet analysis results revealed that the most abundant insects at wind turbines, including terrestrial insects such as crickets and several

  20. Wind turbines and bat mortality: Doppler shift profiles and ultrasonic bat-like pulse reflection from moving turbine blades.

    PubMed

    Long, Chloe V; Flint, James A; Lepper, Paul A

    2010-10-01

    Bat mortality resulting from actual or near-collision with operational wind turbine rotors is a phenomenon that is widespread but not well understood. Because bats rely on information contained in high-frequency echoes to determine the nature and movement of a target, it is important to consider how ultrasonic pulses similar to those used by bats for echolocation may be interacting with operational turbine rotor blades. By assessing the characteristics of reflected ultrasonic echoes, moving turbine blades operating under low wind speed conditions (<6 m s(-1)) were found to produce distinct Doppler shift profiles at different angles to the rotor. Frequency shifts of up to ±700-800 Hz were produced, which may not be perceptible by some bat species. Monte Carlo simulation of bat-like sampling by echolocation revealed that over 50 rotor echoes could be required by species such as Pipistrellus pipistrellus for accurate interpretation of blade movement, which may not be achieved in the bat's approach time-window. In summary, it was found that echoes returned from moving blades had features which could render them attractive to bats or which might make it difficult for the bat to accurately detect and locate blades in sufficient time to avoid a collision.

  1. Vampire Bat Rabies: Ecology, Epidemiology and Control

    PubMed Central

    Johnson, Nicholas; Aréchiga-Ceballos, Nidia; Aguilar-Setien, Alvaro

    2014-01-01

    Extensive surveillance in bat populations in response to recent emerging diseases has revealed that this group of mammals acts as a reservoir for a large range of viruses. However, the oldest known association between a zoonotic virus and a bat is that between rabies virus and the vampire bat. Vampire bats are only found in Latin America and their unique method of obtaining nutrition, blood-feeding or haematophagy, has only evolved in the New World. The adaptations that enable blood-feeding also make the vampire bat highly effective at transmitting rabies virus. Whether the virus was present in pre-Columbian America or was introduced is much disputed, however, the introduction of Old World livestock and associated landscape modification, which continues to the present day, has enabled vampire bat populations to increase. This in turn has provided the conditions for rabies re-emergence to threaten both livestock and human populations as vampire bats target large mammals. This review considers the ecology of the vampire bat that make it such an efficient vector for rabies, the current status of vampire-transmitted rabies and the future prospects for spread by this virus and its control. PMID:24784570

  2. Bat flight: aerodynamics, kinematics and flight morphology.

    PubMed

    Hedenström, Anders; Johansson, L Christoffer

    2015-03-01

    Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace. © 2015. Published by The Company of Biologists Ltd.

  3. Swing Weights of Baseball and Softball Bats

    ERIC Educational Resources Information Center

    Russell, Dan

    2010-01-01

    Baseball and softball bats are sold according to length in inches and weight in ounces. Much to the consternation of players buying new bats, however, not all bats that weigh the same swing the same. The reason for this has to do with moment of inertia of the bat about a pivot point on the handle, or what the sporting goods industry refers to as…

  4. The status of BAT detector

    NASA Astrophysics Data System (ADS)

    Lien, Amy; Markwardt, Craig B.; Krimm, Hans Albert; Barthelmy, Scott D.; Cenko, Bradley

    2018-01-01

    We will present the current status of the Swift/BAT detector. In particular, we will report the updated detector gain calibration, the number of enable detectors, and the global bad time intervals with potential calibration issues. We will also summarize the results of the yearly BAT calibration using the Crab nebula. Finally, we will discuss the effects on the BAT survey, such as the sensitivity, localization, and spectral analysis, due to the changes in detector status.

  5. Space-time models for a panzootic in bats, with a focus on the endangered Indiana bat

    USGS Publications Warehouse

    Thogmartin, Wayne E.; King, R. Andrew; Szymanski, Jennifer A.; Pruitt, Lori

    2012-01-01

    Knowledge of current trends of quickly spreading infectious wildlife diseases is vital to efficient and effective management. We developed space-time mixed-effects logistic regressions to characterize a disease, white-nose syndrome (WNS), quickly spreading among endangered Indiana bats (Myotis sodalis) in eastern North America. Our goal was to calculate and map the risk probability faced by uninfected colonies of hibernating Indiana bats. Model covariates included annual distance from and direction to nearest sources of infection, geolocational information, size of the Indiana bat populations within each wintering population, and total annual size of populations known or suspected to be affected by WNS. We considered temporal, spatial, and spatiotemporal formulae through the use of random effects for year, complex (a collection of interacting hibernacula), and yearxcomplex. Since first documented in 2006, WNS has spread across much of the range of the Indiana bat. No sizeable wintering population now occurs outside of the migrational distance of an infected source. Annual rates of newly affected wintering Indiana bat populations between winter 2007 to 2008 and 2010 to 2011 were 4, 6, 8, and 12%; this rate increased each year at a rate of 3%. If this increasing rate of newly affected populations continues, all wintering populations may be affected by 2016. Our models indicated the probability of a wintering population exhibiting infection was a linear function of proximity to affected Indiana bat populations and size of the at-risk population. Geographic location was also important, suggesting broad-scale influences. For every 50-km increase in distance from a WNS-affected population, risk of disease declined by 6% (95% CI=5.2-5.7%); for every increase of 1,000 Indiana bats, there was an 8% (95% CI = 1-21%) increase in disease risk. The increasing rate of infection seems to be associated with the movement of this disease into the core of the Indiana bat range. Our

  6. Canine tooth wear in captive little brown bats

    USGS Publications Warehouse

    Clark, Donald R.

    1980-01-01

    Upper canine teeth of little brown bats Myotis lucifugus lucifugus held in stainless steel wire mesh cages underwent severe wear which exceeded that observed previously in caged big brown bats, Eptesicus fuscus fuscus. This suggests a relationship between amount of wear and size of the caged bats with damage increasing as size decreases. Rapid wear of canine teeth by little brown bats resembled that observed in big brown bats in that it was limited to the first 2 weeks of captivity. This result indicates a universal interval for acclimation to cage conditions among vespertilionid bats. Dietary toxicants DDE and PCB did not affect the extent of wear. If bats are to be released to the wild, confinement in wire mesh cages should be avoided.

  7. Bat Accelerated Regions Identify a Bat Forelimb Specific Enhancer in the HoxD Locus

    PubMed Central

    Mason, Mandy K.; VanderMeer, Julia E.; Zhao, Jingjing; Eckalbar, Walter L.; Logan, Malcolm; Illing, Nicola; Pollard, Katherine S.; Ahituv, Nadav

    2016-01-01

    The molecular events leading to the development of the bat wing remain largely unknown, and are thought to be caused, in part, by changes in gene expression during limb development. These expression changes could be instigated by variations in gene regulatory enhancers. Here, we used a comparative genomics approach to identify regions that evolved rapidly in the bat ancestor, but are highly conserved in other vertebrates. We discovered 166 bat accelerated regions (BARs) that overlap H3K27ac and p300 ChIP-seq peaks in developing mouse limbs. Using a mouse enhancer assay, we show that five Myotis lucifugus BARs drive gene expression in the developing mouse limb, with the majority showing differential enhancer activity compared to the mouse orthologous BAR sequences. These include BAR116, which is located telomeric to the HoxD cluster and had robust forelimb expression for the M. lucifugus sequence and no activity for the mouse sequence at embryonic day 12.5. Developing limb expression analysis of Hoxd10-Hoxd13 in Miniopterus natalensis bats showed a high-forelimb weak-hindlimb expression for Hoxd10-Hoxd11, similar to the expression trend observed for M. lucifugus BAR116 in mice, suggesting that it could be involved in the regulation of the bat HoxD complex. Combined, our results highlight novel regulatory regions that could be instrumental for the morphological differences leading to the development of the bat wing. PMID:27019019

  8. Coming Up to BAT

    ERIC Educational Resources Information Center

    Murphy, Hugh C.

    1977-01-01

    The Administrator of the Bureau of Apprenticeship and Training (BAT), U.S. Department of Labor, presents an overview of the Federal government's role in apprentice training, Federal apprenticeship legislation and programs, labor standards and their administration, and the 40 years of BAT, established in 1937 by the National Apprenticeship Act. (MF)

  9. Comparative inner ear transcriptome analysis between the Rickett's big-footed bats (Myotis ricketti) and the greater short-nosed fruit bats (Cynopterus sphinx).

    PubMed

    Dong, Dong; Lei, Ming; Liu, Yang; Zhang, Shuyi

    2013-12-23

    Bats have aroused great interests of researchers for the sake of their advanced echolocation system. However, this highly specialized trait is not characteristic of Old World fruit bats. To comprehensively explore the underlying molecular basis between echolocating and non-echolocating bats, we employed a sequence-based approach to compare the inner ear expression difference between the Rickett's big-footed bat (Myotis ricketti, echolocating bat) and the Greater short-nosed fruit bat (Cynopterus sphinx, non-echolocating bat). De novo sequence assemblies were developed for both species. The results showed that the biological implications of up-regulated genes in M. ricketti were significantly over-represented in biological process categories such as 'cochlea morphogenesis', 'inner ear morphogenesis' and 'sensory perception of sound', which are consistent with the inner ear morphological and physiological differentiation between the two bat species. Moreover, the expression of TMC1 gene confirmed its important function in echolocating bats. Our work presents the first transcriptome comparison between echolocating and non-echolocating bats, and provides information about the genetic basis of their distinct hearing traits.

  10. Bats, cyanide, and gold mining

    USGS Publications Warehouse

    Clark, Donald R.

    1991-01-01

    Although the boom days of prospectors and gold nuggets are long gone, modern technology enables gold to continue to be extracted from ore. Unfortunately, the extraction method has often been disastrous for bats and other wildlife, an issue I first became aware of in early 1989. Phone calls from Drs. Merlin Tuttle and Elizabeth Pierson, a BCI member and bat researcher from Berkeley, California, alerted me that bats were dying from apparent cyanide poisoning at gold mines in the western United States.

  11. A bony connection signals laryngeal echolocation in bats.

    PubMed

    Veselka, Nina; McErlain, David D; Holdsworth, David W; Eger, Judith L; Chhem, Rethy K; Mason, Matthew J; Brain, Kirsty L; Faure, Paul A; Fenton, M Brock

    2010-02-18

    Echolocation is an active form of orientation in which animals emit sounds and then listen to reflected echoes of those sounds to form images of their surroundings in their brains. Although echolocation is usually associated with bats, it is not characteristic of all bats. Most echolocating bats produce signals in the larynx, but within one family of mainly non-echolocating species (Pteropodidae), a few species use echolocation sounds produced by tongue clicks. Here we demonstrate, using data obtained from micro-computed tomography scans of 26 species (n = 35 fluid-preserved bats), that proximal articulation of the stylohyal bone (part of the mammalian hyoid apparatus) with the tympanic bone always distinguishes laryngeally echolocating bats from all other bats (that is, non-echolocating pteropodids and those that echolocate with tongue clicks). In laryngeally echolocating bats, the proximal end of the stylohyal bone directly articulates with the tympanic bone and is often fused with it. Previous research on the morphology of the stylohyal bone in the oldest known fossil bat (Onychonycteris finneyi) suggested that it did not echolocate, but our findings suggest that O. finneyi may have used laryngeal echolocation because its stylohyal bones may have articulated with its tympanic bones. The present findings reopen basic questions about the timing and the origin of flight and echolocation in the early evolution of bats. Our data also provide an independent anatomical character by which to distinguish laryngeally echolocating bats from other bats.

  12. Roosting ecology of the pallid bat, Antrozous pallidus

    USGS Publications Warehouse

    Vaughan, Terry A.; O'Shea, Thomas J.

    1976-01-01

    Daytime roosting behavior of pallid bats (Antrozous pallidus) was studied in central Arizona. Bats were present in the area from March or April until November and roosted in cliffs in colonies generally including 20 or more individuals. Pallid bats were highly selective in their choice of roost sites and minimized diurnal energy output by adaptive hypothermia and behavioral thermo-regulation. In spring and autumn the bats roosted in vertical crevices responsive to changes in ambient temperatures. Here temperatures remained low and the bats were torpid for much of the day, but when the crevices became heated in the late afternoon the bats were passively warmed prior to emergence. Deep, horizontal crevices were preferred in summer; cliffs function as massive heat sinks, and in summer crevice temperatures remained moderate and relatively stable. Throughout most of the day both the deep parts of the crevices and the body temperatures of the bats remained close to 30ºC; at this body temperature pallid bats have unexpectedly low metabolic rates (Trune, 1974). By adjusting their positions and closeness to other bats in the thermal gradient within the crevice, bats dissipate heat early in the day, maintain a low metabolic rate through most of the fat and elevate the body temperature prior to emergence in the evening. Of vital important to pallid bats in the summer are social behaviors that promote communal roosting at "traditional" crevices.

  13. Learning about Bats and Rabies

    MedlinePlus

    ... Rabies Day Rabies and Kids! Rabies Learning about bats and rabies Recommend on Facebook Tweet Share Compartir ... areas where they might contact people and pets. Bats and human rabies in the United States Rabies ...

  14. The First Swift BAT Gamma-Ray Burst Catalog

    NASA Technical Reports Server (NTRS)

    Sakamoto, T.; Barthelmy, S. D.; Barbier, L.; Cummings, J. R.; Fenimore, E. E.; Gehrels, N.; Hullinger, D.; Krimm, H. A.; Markwardt, C. B.; Palmer, D. M.; hide

    2007-01-01

    We present the first Swift Burst Alert Telescope (BAT) catalog of gamma ray bursts (GRBs), which contains bursts detected by the BAT between 2004 December 19 and 2007 June 16. This catalog (hereafter BAT1 catalog) contains burst trigger time, location, 90% error radius, duration, fluence, peak flux, and time averaged spectral parameters for each of 237 GRBs, as measured by the BAT. The BAT-determined position reported here is within 1.75' of the Swift X-ray Telescope (XRT)-determined position for 90% of these GRBs. The BAT T(sub 90) and T(sub 50) durations peak at 80 and 20 seconds, respectively. From the fluence-fluence correlation, we conclude that about 60% of the observed peak energies, E(sup obs)(sub peak) of BAT GRBs could be less than 100 keV. We confirm that GRB fluence to hardness and GRB peak flux to hardness are correlated for BAT bursts in analogous ways to previous missions' results. The correlation between the photon index in a simple power-law model and E(sup obs)(sub peak) is also confirmed. We also report the current status for the on-orbit BAT calibrations based on observations of the Crab Nebula.

  15. Bat use of a high-plains urban wildlife refuge

    USGS Publications Warehouse

    Everette, A.L.; O'Shea, T.J.; Ellison, L.E.; Stone, L.A.; McCance, J.L.

    2001-01-01

    Bats are significant components of mammalian diversity and in many areas are of management concern. However, little attention has been given to bats in urban or prairie landscapes. In 1997 and 1998, we determined species richness, relative abundance, roosting habits, and echolocation activity of bats at Rocky Mountain Arsenal National Wildlife Refuge (RMA), the largest urban unit in the United States refuge system, located on the high plains near Denver, Colorado. An inventory using mist nets revealed 3 species foraging at this site: big brown bats (Eptesicus fuscus), hoary bats (Lasiurus cinereus), and silver-haired bats (Lasionycteris noctivagans). Big brown bats comprised 86% of captures (n=176). This pattern was consistent with continental-scale predictions of bat species richness and evenness based on availability of potential roosts. Relative abundance based on captures was similar to that revealed by echolocation detector surveys, except that the latter revealed the likely presence of at least 2 additional species (Myotis spp. and red bats [Lasiurus borealis]). Echolocation activity was significantly greater (P=0.009) in areas with tree or water habitat edges than in open prairie, suggesting that maintaining such features is important for bats. Big brown bats commuted greater distances (9.2-18.8 km) from roosts in urban core areas to foraging sites on the refuge than typically reported for this species elsewhere, emphasizing the value of the site to these bats. Urban refuges can provide habitat of importance to bat populations, but may be characterized by abundant bats that roost in buildings if a variety of other kinds of roosting habitats are unavailable.

  16. Nonecholocating fruit bats produce biosonar clicks with their wings.

    PubMed

    Boonman, Arjan; Bumrungsri, Sara; Yovel, Yossi

    2014-12-15

    Because evolution mostly acts over millions of years, the intermediate steps leading to a functional sensory system remain enigmatic. Accordingly, there is an ongoing debate regarding the evolution of bat echolocation. In search of the origin of bat echolocation, we studied how Old World fruit bats, which have always been classified as nonecholocating, orient in complete darkness. We found that two of these nonecholocating species used click-like sounds to detect and discriminate objects in complete darkness. However, we discovered that this click-based echo sensing is rudimentary and does not allow these bats to estimate distance accurately as all other echolocating bats can. Moreover, unlike all other echolocating bats, which generate pulses using the larynx or the tongue, these bats generated clicks with their wings. We provide evidence suggesting that all Old World fruit bats can click with their wings. Although this click-based echo sensing used by Old World fruit bats may not represent the ancestral form of current (laryngeal) bat echolocation, we argue that clicking fruit bats could be considered behavioral fossils, opening a window to study the evolution of echolocation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. BAT2 and BAT3 polymorphisms as novel genetic risk factors for rejection after HLA-related stem cell transplantation

    PubMed Central

    Piras, Ignazio Stefano; Angius, Andrea; Andreani, Marco; Testi, Manuela; Lucarelli, Guido; Floris, Matteo; Marktel, Sarah; Ciceri, Fabio; La Nasa, Giorgio; Fleischhauer, Katharina; Roncarolo, Maria Grazia; Bulfone, Alessandro

    2014-01-01

    The genetic background of donor and recipient is an important factor determining the outcome of allogeneic hematopoietic stem cell transplantation (allo-HSCT). We applied a whole genome analysis to investigate genetic variants - other than HLA class I and II - associated with negative outcome after HLA-identical sibling allo-HSCT in a cohort of 110 β-Thalassemic patients. We identified two single nucleotide polymorphisms in BAT2 (A/G) and BAT3 (T/C) genes, SNP rs11538264 and SNP rs10484558, both located in the HLA class III region, in strong Linkage Disequilibrium between each other (R2=0.92). When considered as single SNP, none of them reached a significant association with graft rejection (nominal P < 0.00001 for BAT2 SNP rs11538264, and P < 0.0001 for BAT3 SNP rs10484558). Whereas, the BAT2/BAT3 A/C haplotype was present at significantly higher frequency in patients who rejected as compared to those with functional graft (30.0% vs. 2.6%, nominal P = 1.15×10−8; and adjusted P = 0.0071). The BAT2/BAT3 polymorphisms and specifically the A/C haplotype may represent novel immunogenetic factor associated with graft rejection in patients undergoing allo-HSCT. PMID:25111513

  18. Listening for bats: the hearing range of the bushcricket Phaneroptera falcata for bat echolocation calls measured in the field.

    PubMed Central

    Schul, J; Matt, F; von Helversen, O

    2000-01-01

    The hearing range of the tettigoniid Phaneropterafalcata for the echolocation calls of freely flying mouseeared bats (Myotis myotis) was determined in the field. The hearing of the insect was monitored using hook electrode recordings from an auditory interneuron, which is as sensitive as the hearing organ for frequencies above 16 kHz. The flight path of the bat relative to the insect's position was tracked by recording the echolocation calls with two microphone arrays, and calculating the bat's position from the arrival time differences of the calls at each microphone. The hearing distances ranged from 13 to 30 m. The large variability appeared both between different insects and between different bat approaches to an individual insect. The escape time of the bushcricket, calculated from the detection distance of the insect and the instantaneous flight speed of the bat, ranged from 1.5 to more than 4s. The hearing ranges of bushcrickets suggest that the insect hears the approaching bat long before the bat can detect an echo from the flying insect. PMID:12233766

  19. The Second Swift BAT Gamma-Ray Burst Catalog

    NASA Technical Reports Server (NTRS)

    Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.; Fenimore, E. E.; Gehrels, N.; Krimm, H. A.; Markwardt, C. B.; Palmer, D. M.; Parsons, A. M.; Sato, G.; hide

    2010-01-01

    We present the second Swift Burst Alert Telescope (BAT) catalog of gamma-ray bursts (GRBs), which contains 476 bursts detected by the BAT between 2004 December 19 and 2009 December 21. This catalog (hereafter the BAT2 catalog) presents burst trigger time, location, 90% error radius, duration, fluence, peak flux, time-averaged spectral parameters and time-resolved spectral parametert:; measured by the BAT. In the correlation study of various observed parameters extracted from the BAT prompt emission data, we distinguish among long-duration GRBs (L-GRBs), short-duration GRBs (S-GRBs), and short-duration GRBs with extended emission (S-GRBs with E.E.) to investigate differences in the prompt emission properties. The fraction of L-GRBs, S-GRBs and S-GRBs with E.E. in the catalog are 89%, 8% and 2% respectively. We compare the BAT prompt emission properties with the BATSE, BeppoSAX and HETE-2 GRB samples. We also correlate the observed prompt emission properties with the redshifts for the GRBs with known redshift. The BAT T90 and T50 durations peak at 70 s and 30 s, respectively. We confirm that the spectra of the BAT S-GRBs are generally harder than those of the L-GRBs. The time-averaged spectra of the BAT S GRBs with E.E. are similar to those of the L-GRBs. Whereas, the spectra of the initial short spikes of the S-GRBs with E.E. are similar to those of the S-GRBs. We show that the BAT GRB samples are significantly softer than the BATSE bright GRBs, and that the time-averaged E obs/peak of the BAT GRBs peaks at 80 keV which is significantly lower energy than those of the BATSE sample which peak at 320 keV. The time-averaged spectral properties of the BAT GRB sample are similar to those of the HETE-2 GRB samples. By time-resolved spectral analysis, we find that 10% of the BAT observed photon indices are outside the allowed region of the synchrotron shock model. The observed durations of the BAT high redshift GRBs are not systematically longer than those of the moderate

  20. Heterogeneous movement of insectivorous Amazonian birds through primary and secondary forest: A case study using multistate models with radiotelemetry data

    USGS Publications Warehouse

    Hines, James; Powell, Luke L.; Wolfe, Jared D.; Johnson, Erik l.; Nichols, James D.; Stouffer, Phillip C.

    2015-01-01

    Given rates of deforestation, disturbance, and secondary forest accumulation in tropical rainforests, there is a great need to quantify habitat use and movement among different habitats. This need is particularly pronounced for animals most sensitive to disturbance, such as insectivorous understory birds. Here we use multistate capture–recapture models with radiotelemetry data to determine the successional stage at which within-day movement probabilities of Amazonian birds in secondary forest are similar to those in primary forest. We radio-tracked three common understory insectivore species in primary and secondary forest at the Biological Dynamics of Forest Fragments project near Manaus, Brazil: two woodcreepers, Glyphorynchus spirurus (n = 19) andXiphorhynchus pardalotus (n = 18), and the terrestrial antthrush Formicarius colma(n = 19). Forest age was a strong predictor of fidelity to a given habitat. All three species showed greater fidelity to primary forest than to 8–14-year-old secondary forest, indicating the latter’s relatively poor quality. The two woodcreeper species used 12–18-year-old secondary forest in a manner comparable to continuous forest, but F. colmaavoided moving even to 27–31-year-old secondary forest—the oldest at our site. Our results suggest that managers concerned with less sensitive species can assume that forest reserves connected by 12–18-year-old secondary forest corridors are effectively connected. On the other hand, >30 years are required after land abandonment before secondary forest serves as a primary forest-like conduit for movement by F. colma; more sensitive terrestrial insectivores may take longer still.

  1. Can bats sense smoke during deep torpor?

    PubMed

    Doty, Anna C; Currie, Shannon E; Stawski, Clare; Geiser, Fritz

    2018-03-01

    While torpor is a beneficial energy-saving strategy, it may incur costs if an animal is unable to respond appropriately to external stimuli, which is particularly true when it is necessary to escape from threats such as fire. We aimed to determine whether torpid bats, which are potentially threatened because they must fly to escape, can sense smoke and whether respiration rate (RR), heart rate (HR) and reaction time of torpid bats prior to and following smoke introduction is temperature-dependent. To test this we quantified RR and HR of captive Australian tree-roosting bats, Nyctophilus gouldi (n=5, ~10g), in steady-state torpor in response to short-term exposure to smoke from Eucalyptus spp. leaves between ambient temperatures (T a ) of 11 and 23°C. Bats at lower T a took significantly longer (28-fold) to respond to smoke, indicated by a cessation of episodic breathing and a rapid increase in RR. Bats at lower T a returned to torpor more swiftly following smoke exposure than bats at higher T a . Interestingly, bats at T a <15°C never returned to thermoconforming steady-state torpor prior to the end of the experimental day, whereas all bats at T a ≥15°C did, as indicated by apnoeic HR. This shows that although bats at lower T a took longer to respond, they appear to maintain vigilance and prevent deep torpor after the first smoke exposure, likely to enable fast escape. Our study reveals that bats can respond to smoke stimuli while in deep torpor. These results are particularly vital within the framework of fire management conducted at T a <15°C, as most management burns are undertaken during winter when bats will likely respond more slowly to fire cues such as smoke, delaying the time to escape from the fire. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The distribution of the bats of South Carolina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menzel, Jennifer M.; Menzel, Michael A.; Ford, W. Mark

    Menzel. J.M., M.A. Menzel, W.M. Ford, J.W. Edwards, S.R. Sheffield, J.C. Kilgo, and M.S. Bunch. 2003. The distribution of the bats of South Carolina. Southeastern Nat. 2(1): 121-152. There is a paucity of information available about the distribution of bats in the southeastern United States. We synthesized records from museums, bat captures, and bats submitted for rabies testing to provide a more accurate and useful distribution for natural resource managers and those planning to research bats in South Carolina. Distributional information, including maps, collection localities within counties, and literature references, for all 14 species of bats that occur in Southmore » Carolina, has never been synthesized. To provide better information on the state's bat fauna, we have updated distributions for all species that occur in South Carolina.« less

  3. How the bat got its buzz

    PubMed Central

    Ratcliffe, John M.; Elemans, Coen P. H.; Jakobsen, Lasse; Surlykke, Annemarie

    2013-01-01

    Since the discovery of echolocation in bats, the final phase of an attack on a flying insect, the ‘terminal buzz’, has proved enigmatic. During the buzz, bats increase information update rates by producing vocalizations up to 220 times s−1. The buzz's ubiquity in hawking and trawling bats implies its importance for hunting success. Superfast muscles, previously unknown in mammals, are responsible for the extreme vocalization rate. Some bats produce a second phase—buzz II—defined by a large drop in the fundamental frequency (F0) of their calls. By doing so, bats broaden their acoustic field of view and should thereby reduce the likelihood of insect escape. We make the case that the buzz was a critical adaptation for capturing night-flying insects, and suggest that the drop in F0 during buzz II requires novel, unidentified laryngeal mechanisms in order to counteract increasing muscle tension. Furthermore, we propose that buzz II represents a countermeasure against the evasive flight of eared prey in the evolutionary arms-race that saw the independent evolution of bat-detecting ears in various groups of night-flying insects. PMID:23302868

  4. [Viruses and bats: rabies and Lyssavirus].

    PubMed

    Tordo, N; Marianneau, M Ph

    2009-01-01

    Recent emerging zoonoses (hemorrhagic fevers due to Ebola or Marburg virus, encephalitis due to Nipah virus, severe acute respiratory syndrome due to SRAS virus...) outline the potential of bats as vectors for transmission of infectious disease to humans. Such a potential is already known for rabies encephalitis since seven out of the eight genotypes of Lyssavirus are transmitted by bats. In addition, phylogenetic reconstructions indicate that Lyssavirus have evolved in chiropters before their emergence in carnivores. Nevertheless, carnivores remain the most critical vectors for public health, in particular dogs that are originating 55.000 rabies deaths per year, essentially in developing countries. Rabies control in carnivores by parenteral (dog) or oral (wild carnivores) vaccination is efficacious and campaigns start to be more widely applied. On the other hand, rabies control in bat still remains non realistic, particularly as the pathogenicity of bat Lyssavirus for bats is still under debate, suggesting that a "diplomatic relationship" between partners would have arisen from a long term cohabitation. While comparing the interactions that humans and bats establish with Lyssavirus, scientists try to understand the molecular basis ofpathogenicity in man, a indispensable prerequisite to identify antiviral targets in a perspective of therapy.

  5. Models of Eucalypt phenology predict bat population flux.

    PubMed

    Giles, John R; Plowright, Raina K; Eby, Peggy; Peel, Alison J; McCallum, Hamish

    2016-10-01

    Fruit bats (Pteropodidae) have received increased attention after the recent emergence of notable viral pathogens of bat origin. Their vagility hinders data collection on abundance and distribution, which constrains modeling efforts and our understanding of bat ecology, viral dynamics, and spillover. We addressed this knowledge gap with models and data on the occurrence and abundance of nectarivorous fruit bat populations at 3 day roosts in southeast Queensland. We used environmental drivers of nectar production as predictors and explored relationships between bat abundance and virus spillover. Specifically, we developed several novel modeling tools motivated by complexities of fruit bat foraging ecology, including: (1) a dataset of spatial variables comprising Eucalypt-focused vegetation indices, cumulative precipitation, and temperature anomaly; (2) an algorithm that associated bat population response with spatial covariates in a spatially and temporally relevant way given our current understanding of bat foraging behavior; and (3) a thorough statistical learning approach to finding optimal covariate combinations. We identified covariates that classify fruit bat occupancy at each of our three study roosts with 86-93% accuracy. Negative binomial models explained 43-53% of the variation in observed abundance across roosts. Our models suggest that spatiotemporal heterogeneity in Eucalypt-based food resources could drive at least 50% of bat population behavior at the landscape scale. We found that 13 spillover events were observed within the foraging range of our study roosts, and they occurred during times when models predicted low population abundance. Our results suggest that, in southeast Queensland, spillover may not be driven by large aggregations of fruit bats attracted by nectar-based resources, but rather by behavior of smaller resident subpopulations. Our models and data integrated remote sensing and statistical learning to make inferences on bat ecology

  6. Hepatozoon parasites (Apicomplexa: Adeleorina) in bats.

    PubMed

    Pinto, C Miguel; Helgen, Kristofer M; Fleischer, Robert C; Perkins, Susan L

    2013-08-01

    We provide the first evidence of Hepatozoon parasites infecting bats. We sequenced a short fragment of the 18S rRNA gene (~600 base pairs) of Hepatozoon parasites from 3 Hipposideros cervinus bats from Borneo. Phylogenies inferred by model-based methods place these Hepatozoon within a clade formed by parasites of reptiles, rodents, and marsupials. We discuss the scenario that bats might be common hosts of Hepatozoon.

  7. Ecological dynamics of emerging bat virus spillover

    PubMed Central

    Plowright, Raina K.; Eby, Peggy; Hudson, Peter J.; Smith, Ina L.; Westcott, David; Bryden, Wayne L.; Middleton, Deborah; Reid, Peter A.; McFarlane, Rosemary A.; Martin, Gerardo; Tabor, Gary M.; Skerratt, Lee F.; Anderson, Dale L.; Crameri, Gary; Quammen, David; Jordan, David; Freeman, Paul; Wang, Lin-Fa; Epstein, Jonathan H.; Marsh, Glenn A.; Kung, Nina Y.; McCallum, Hamish

    2015-01-01

    Viruses that originate in bats may be the most notorious emerging zoonoses that spill over from wildlife into domestic animals and humans. Understanding how these infections filter through ecological systems to cause disease in humans is of profound importance to public health. Transmission of viruses from bats to humans requires a hierarchy of enabling conditions that connect the distribution of reservoir hosts, viral infection within these hosts, and exposure and susceptibility of recipient hosts. For many emerging bat viruses, spillover also requires viral shedding from bats, and survival of the virus in the environment. Focusing on Hendra virus, but also addressing Nipah virus, Ebola virus, Marburg virus and coronaviruses, we delineate this cross-species spillover dynamic from the within-host processes that drive virus excretion to land-use changes that increase interaction among species. We describe how land-use changes may affect co-occurrence and contact between bats and recipient hosts. Two hypotheses may explain temporal and spatial pulses of virus shedding in bat populations: episodic shedding from persistently infected bats or transient epidemics that occur as virus is transmitted among bat populations. Management of livestock also may affect the probability of exposure and disease. Interventions to decrease the probability of virus spillover can be implemented at multiple levels from targeting the reservoir host to managing recipient host exposure and susceptibility. PMID:25392474

  8. The BatR/BatS Two-Component Regulatory System Controls the Adaptive Response of Bartonella henselae during Human Endothelial Cell Infection ▿ † ‡

    PubMed Central

    Quebatte, Maxime; Dehio, Michaela; Tropel, David; Basler, Andrea; Toller, Isabella; Raddatz, Guenter; Engel, Philipp; Huser, Sonja; Schein, Hermine; Lindroos, Hillevi L.; Andersson, Siv G. E.; Dehio, Christoph

    2010-01-01

    Here, we report the first comprehensive study of Bartonella henselae gene expression during infection of human endothelial cells. Expression of the main cluster of upregulated genes, comprising the VirB type IV secretion system and its secreted protein substrates, is shown to be under the positive control of the transcriptional regulator BatR. We demonstrate binding of BatR to the promoters of the virB operon and a substrate-encoding gene and provide biochemical evidence that BatR and BatS constitute a functional two-component regulatory system. Moreover, in contrast to the acid-inducible (pH 5.5) homologs ChvG/ChvI of Agrobacterium tumefaciens, BatR/BatS are optimally activated at the physiological pH of blood (pH 7.4). By conservation analysis of the BatR regulon, we show that BatR/BatS are uniquely adapted to upregulate a genus-specific virulence regulon during hemotropic infection in mammals. Thus, we propose that BatR/BatS two-component system homologs represent vertically inherited pH sensors that control the expression of horizontally transmitted gene sets critical for the diverse host-associated life styles of the alphaproteobacteria. PMID:20418395

  9. Prevalence and Diversity of Bartonella spp. in Bats in Peru

    PubMed Central

    Bai, Ying; Recuenco, Sergio; Gilbert, Amy Turmelle; Osikowicz, Lynn M.; Gómez, Jorge; Rupprecht, Charles; Kosoy, Michael Y.

    2012-01-01

    Bartonella infections were investigated in bats in the Amazon part of Peru. A total of 112 bats belonging to 19 species were surveyed. Bartonella bacteria were cultured from 24.1% of the bats (27/112). Infection rates ranged from 0% to 100% per bat species. Phylogenetic analyses of gltA of the Bartonella isolates revealed 21 genetic variants clustering into 13 divergent phylogroups. Some Bartonella strains were shared by bats of multiple species, and bats of some species were infected with multiple Bartonella strains, showing no evident specific Bartonella sp.–bat relationships. Rarely found in other bat species, the Bartonella strains of phylogroups I and III discovered from the common vampire bats (Desmodus rotundus) were more specific to the host bat species, suggesting some level of host specificity. PMID:22826480

  10. Optimal design of a smart post-buckled beam actuator using bat algorithm: simulations and experiments

    NASA Astrophysics Data System (ADS)

    Mallick, Rajnish; Ganguli, Ranjan; Kumar, Ravi

    2017-05-01

    The optimized design of a smart post-buckled beam actuator (PBA) is performed in this study. A smart material based piezoceramic stack actuator is used as a prime-mover to drive the buckled beam actuator. Piezoceramic actuators are high force, small displacement devices; they possess high energy density and have high bandwidth. In this study, bench top experiments are conducted to investigate the angular tip deflections due to the PBA. A new design of a linear-to-linear motion amplification device (LX-4) is developed to circumvent the small displacement handicap of piezoceramic stack actuators. LX-4 enhances the piezoceramic actuator mechanical leverage by a factor of four. The PBA model is based on dynamic elastic stability and is analyzed using the Mathieu-Hill equation. A formal optimization is carried out using a newly developed meta-heuristic nature inspired algorithm, named as the bat algorithm (BA). The BA utilizes the echolocation capability of bats. An optimized PBA in conjunction with LX-4 generates end rotations of the order of 15° at the output end. The optimized PBA design incurs less weight and induces large end rotations, which will be useful in development of various mechanical and aerospace devices, such as helicopter trailing edge flaps, micro and nano aerial vehicles and other robotic systems.

  11. Neotropical Bats from Costa Rica harbour Diverse Coronaviruses.

    PubMed

    Moreira-Soto, A; Taylor-Castillo, L; Vargas-Vargas, N; Rodríguez-Herrera, B; Jiménez, C; Corrales-Aguilar, E

    2015-11-01

    Bats are hosts of diverse coronaviruses (CoVs) known to potentially cross the host-species barrier. For analysing coronavirus diversity in a bat species-rich country, a total of 421 anal swabs/faecal samples from Costa Rican bats were screened for CoV RNA-dependent RNA polymerase (RdRp) gene sequences by a pancoronavirus PCR. Six families, 24 genera and 41 species of bats were analysed. The detection rate for CoV was 1%. Individuals (n = 4) from four different species of frugivorous (Artibeus jamaicensis, Carollia perspicillata and Carollia castanea) and nectivorous (Glossophaga soricina) bats were positive for coronavirus-derived nucleic acids. Analysis of 440 nt. RdRp sequences allocated all Costa Rican bat CoVs to the α-CoV group. Several CoVs sequences clustered near previously described CoVs from the same species of bat, but were phylogenetically distant from the human CoV sequences identified to date, suggesting no recent spillover events. The Glossophaga soricina CoV sequence is sufficiently dissimilar (26% homology to the closest known bat CoVs) to represent a unique coronavirus not clustering near other CoVs found in the same bat species so far, implying an even higher CoV diversity than previously suspected. © 2015 Blackwell Verlag GmbH.

  12. Deconstructing the Essential Elements of Bat Flight

    NASA Astrophysics Data System (ADS)

    Tafti, Danesh; Viswanath, Kamal; Krishnamurthy, Nagendra

    2013-11-01

    There are over 1000 bat species worldwide with a wide range of wing morphologies. Bat wing motion is characterized by an active adaptive three-dimensional highly deformable wing surface which is distinctive in its complex kinematics facilitated by the skeletal and skin membrane manipulation, large deviations from the stroke plane, and large wing cambers. In this study we use measured wing kinematics of a fruit bat in a straight line climbing path to study the fluid dynamics and the forces generated by the wing using an Immersed Boundary Method. This is followed by a proper orthogonal decomposition to investigate the dimensional complexity as well as the key kinematic modes used by the bat during a representative flapping cycle. It is shown that the complex wing motion of the fruit bat can mostly be broken down into canonical descriptors of wing motion such as translation, rotation, out of stroke deviation, and cambering, which the bat uses with great efficacy to generate lift and thrust. Research supported through a grant from the Army Research Office (ARO). Bat wing kinemtaics was provided by Dr. Kenny Breuer, Brown University.

  13. Context-dependent flight speed: evidence for energetically optimal flight speed in the bat Pipistrellus kuhlii?

    PubMed

    Grodzinski, Uri; Spiegel, Orr; Korine, Carmi; Holderied, Marc W

    2009-05-01

    1. Understanding the causes and consequences of animal flight speed has long been a challenge in biology. Aerodynamic theory is used to predict the most economical flight speeds, minimizing energy expenditure either per distance (maximal range speed, Vmr) or per time (minimal power speed, Vmp). When foraging in flight, flight speed also affects prey encounter and energy intake rates. According to optimal flight speed theory, such effects may shift the energetically optimal foraging speed to above Vmp. 2. Therefore, we predicted that if energetic considerations indeed have a substantial effect on flight speed of aerial-hawking bats, they will use high speed (close to Vmr) to commute from their daily roost to the foraging sites, while a slower speed (but still above Vmp) will be preferred during foraging. To test these predictions, echolocation calls of commuting and foraging Pipistrellus kuhlii were recorded and their flight tracks were reconstructed using an acoustic flight path tracking system. 3. Confirming our qualitative prediction, commuting flight was found to be significantly faster than foraging flight (9.3 vs. 6.7 m s(-1)), even when controlling for its lower tortuosity. 4. In order to examine our quantitative prediction, we compared observed flight speeds with Vmp and Vmr values generated for the study population using two alternative aerodynamic models, based on mass and wing morphology variables measured from bats we captured while commuting. The Vmp and Vmr values generated by one of the models were much lower than our measured flight speed. According to the other model used, however, measured foraging flight was faster than Vmp and commuting flight slightly slower than Vmr, which is in agreement with the predictions of optimal flight speed theory. 5. Thus, the second aerodynamic model we used seems to be a reasonable predictor of the different flight speeds used by the bats while foraging and while commuting. This supports the hypothesis that bats fly

  14. Monitoring Sensitive Bat Species at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenberg, Kari M.

    Bats play a critical role in ecosystems and are vulnerable to disturbance and disruption by human activities. In recent decades, bat populations in the United States and elsewhere have decreased tremendously. There are 47 different species of bat in the United States and 28 of these occur in New Mexico with 15 different species documented at the Los Alamos National Laboratory (LANL) and surrounding areas. Euderma maculatum(the spotted bat) is listed as “threatened” by the state of New Mexico and is known to occur at LANL. Four other species of bats are listed as “sensitive” and also occur here. Inmore » 1995, a four year study was initiated at LANL to assess the status of bat species of concern, elucidate distribution and relative abundance, and obtain information on roosting sites. There have been no definitive studies since then. Biologists in the Environmental Protection Division at LANL initiated a multi-year monitoring program for bats in May 2013 to implement the Biological Resources Management Plan. The objective of this ongoing study is to monitor bat species diversity and seasonal activity over time at LANL. Bat species diversity and seasonal activity were measured using an acoustic bat detector, the Pettersson D500X. This ultrasound recording unit is intended for long-term, unattended recording of bat and other high frequency animal calls. During 2013, the detector was deployed at two locations around LANL. Study sites were selected based on proximity to water where bats may be foraging. Recorded bat calls were analyzed using Sonobat, software that can help determine specific species of bat through their calls. A list of bat species at the two sites was developed and compared to lists from previous studies. Species diversity and seasonal activity, measured as the number of call sequences recorded each month, were compared between sites and among months. A total of 17,923 bat calls were recorded representing 15 species. Results indicate that

  15. Inconspicuous echolocation in hoary bats (Lasiurus cinereus)

    Treesearch

    Aaron J. Corcoran; Theodore J. Weller

    2018-01-01

    Echolocation allows bats to occupy diverse nocturnal niches. Bats almost always use echolocation, even when other sensory stimuli are available to guide navigation. Here, using arrays of calibrated infrared cameras and ultrasonic microphones, we demonstrate that hoary bats (Lasiurus cinereus) use previously unknown echolocation behaviours that...

  16. Win(d)-Win(d) Solutions for wind developers and bats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hein, Cris; Schirmacher, Michael; Arnett, Ed

    Bat Conservation International initiated a multi-year, pre-construction study in mid-summer 2009 to investigate patterns of bat activity and evaluate the use of acoustic monitoring to predict mortality of bats at the proposed Resolute Wind Energy Project (RWEP) in east-central Wyoming. The primary objectives of this study were to: (1) determine levels and patterns of activity for three phonic groups of bats (high-frequency emitting bats, low-frequency emitting bats, and hoary bats) using the proposed wind facility prior to construction of turbines; (2) determine if bat activity can be predicted based on weather patterns; correlate bat activity with weather variables; and (3)more » combine results from this study with those from similar efforts to determine if indices of pre-construction bat activity can be used to predict post-construction bat fatalities at proposed wind facilities. We report results from two years of pre-construction data collection.« less

  17. Social place-cells in the bat hippocampus.

    PubMed

    Omer, David B; Maimon, Shir R; Las, Liora; Ulanovsky, Nachum

    2018-01-12

    Social animals have to know the spatial positions of conspecifics. However, it is unknown how the position of others is represented in the brain. We designed a spatial observational-learning task, in which an observer bat mimicked a demonstrator bat while we recorded hippocampal dorsal-CA1 neurons from the observer bat. A neuronal subpopulation represented the position of the other bat, in allocentric coordinates. About half of these "social place-cells" represented also the observer's own position-that is, were place cells. The representation of the demonstrator bat did not reflect self-movement or trajectory planning by the observer. Some neurons represented also the position of inanimate moving objects; however, their representation differed from the representation of the demonstrator bat. This suggests a role for hippocampal CA1 neurons in social-spatial cognition. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  18. Digestion of cellulose and xylan by symbiotic bacteria in the intestine of the Indian flying fox (Pteropus giganteus).

    PubMed

    Prem Anand, A Alwin; Sripathi, K

    2004-09-01

    Bats (Order Chiroptera) are a widely distributed group of mammals. Pteropus giganteus belongs to the Suborder Megachiroptera. This bat consumes fruits and leaves as their major food. Cellulose and xylan are the major composition of leaves. As they consume leaves in their diet, their digestive tract must contain cellulolytic and xylanolytic bacteria which help in the digestion of cellulose and xylan. The cellulolytic and xylanolytic bacteria were isolated and screened on Berg's agar containing cellulose and xylan. The bacteria isolated were characterized biochemically and found to be Proteus vulgaris, Proteus mirabilis, Citrobacter freundii, Serratia liquefaciens and Klebsiella oxytoca. These bacteria help in digestion of cellulose and xylan in the diet of the bat, P. giganteus. Here we show that leaves are also used as a carbohydrate source by these bats. An insectivorous bat, Hipposideros fulvus, was used as a control and does not possess cellulolytic and xylanolytic bacteria.

  19. A decade of U.S. Air Force bat strikes

    USGS Publications Warehouse

    Peurach, Suzanne C.; Dove, Carla J.; Stepko, Laura

    2009-01-01

    From 1997 through 2007, 821 bat strikes were reported to the U.S. Air Force (USAF) Safety Center by aircraft personnel or ground crew and sent to the National Museum of Natural History, Smithsonian Institution, for identification. Many samples were identified by macroscopic and or microscopic comparisons with bat specimens housed in the museum and augmented during the last 2 years by DNA analysis. Bat remains from USAF strikes during this period were received at the museum from 40 states in the United States and from 20 countries. We confirmed that 46% of the strikes were caused by bats, but we did not identify them further; we identified 5% only to the family or genus level, and 49% to the species level. Fifty-five of the 101 bat-strike samples submitted for DNA analysis have been identified to the species level. Twenty-five bat species have been recorded striking USAF planes worldwide. The Brazilian free-tailed bat (Tadarida brasiliensis; n = 173) is the species most commonly identified in USAF strike impacts, followed by the red bat (Lasiurus borealis; n = 83). Bat strikes peak during the spring and fall, with >57% occurring from August through October; 82% of the reports that included time of strike were recorded between 2100 and 0900 hours. More than 12% of the bat strikes were reported at >300 m above ground level (AGL). Although <1% of the bat-strike reports indicated damage to USAF aircraft, cumulative damage for 1997 through 2007 totaled >$825,000 and >50% of this sum was attributable to 5 bat-strike incidents. Only 5 bats from the 10 most damaging bat strikes were identified to the species level, either because we did not receive remains with the reports or the sample was insufficient for identification.

  20. A Real-Time PCR Assay for Bat SARS-Like Coronavirus Detection and Its Application to Italian Greater Horseshoe Bat Faecal Sample Surveys

    PubMed Central

    Balboni, Andrea; Gallina, Laura; Palladini, Alessandra; Prosperi, Santino; Battilani, Mara

    2012-01-01

    Bats are source of coronaviruses closely related to the severe acute respiratory syndrome (SARS) virus. Numerous studies have been carried out to identify new bat viruses related to SARS-coronavirus (bat-SARS-like CoVs) using a reverse-transcribed-polymerase chain reaction assay. However, a qualitative PCR could underestimate the prevalence of infection, affecting the epidemiological evaluation of bats in viral ecology. In this work an SYBR Green-real time PCR assay was developed for diagnosing infection with SARS-related coronaviruses from bat guano and was applied as screening tool in a survey carried out on 45 greater horseshoe bats (Rhinolophus ferrumequinum) sampled in Italy in 2009. The assay showed high sensitivity and reproducibility. Its application on bats screening resulted in a prevalence of 42%. This method could be suitable as screening tool in epidemiological surveys about the presence of bat-SARS-like CoVs, consequently to obtain a more realistic scenario of the viral prevalence in the population. PMID:22654650

  1. Aerial Photography Summary Record System

    USGS Publications Warehouse

    ,

    1998-01-01

    The Aerial Photography Summary Record System (APSRS) describes aerial photography projects that meet specified criteria over a given geographic area of the United States and its territories. Aerial photographs are an important tool in cartography and a number of other professions. Land use planners, real estate developers, lawyers, environmental specialists, and many other professionals rely on detailed and timely aerial photographs. Until 1975, there was no systematic approach to locate an aerial photograph, or series of photographs, quickly and easily. In that year, the U.S. Geological Survey (USGS) inaugurated the APSRS, which has become a standard reference for users of aerial photographs.

  2. Heterogeneous movement of insectivorous Amazonian birds through primary and secondary forest: A case study using multistate models with radiotelemetry data

    Treesearch

    Luke L. Powell; Jared D. Wolfe; Erik I. Johnson; James E. Hines; James D. Nichols; Philip C Stouffer

    2015-01-01

    Given rates of deforestation, disturbance, and secondary forest accumulation in tropical rainforests, there is a great need to quantify habitat use and movement among different habitats. This need is particularly pronounced for animals most sensitive to disturbance, such as insectivorous understory birds. Here we use multistate capture–recapture models with...

  3. Bats and bell holes: The microclimatic impact of bat roosting, using a case study from Runaway Bay Caves, Jamaica

    NASA Astrophysics Data System (ADS)

    Lundberg, Joyce; McFarlane, Donald A.

    2009-05-01

    The microclimatic effect of bats roosting in bell holes (blind vertical cylindrical cavities in cave roofs) in Runaway Bay Caves, Jamaica, was measured and the potential impact of their metabolism on dissolution modelled. Rock temperature measurements showed that bell holes with bats get significantly hotter than those without bats during bat roosting periods (by an average of 1.1 °C). The relationship is clearest for bell holes with more than about 300 g aggregate bat body mass and for bell holes that are moderately wide and deep, of W:D ratio between 0.8 and 1.6. Measurement of temperature decay after abandonment showed that rock temperature returns to normal each day during bat foraging periods. Metabolic activity from a typical population of 400 g bat (10 individuals) yields 41 g of CO 2, 417.6 kJ of heat, and 35.6 g of H 2O in each 18 hour roost period, and could produce a water film of ~ 0.44 mm, that is saturated with CO 2 at ~ 5%. The resultant rock dissolution is estimated at ~ 0.005 cm 3 CaCO 3 per day. The metabolic heat ensures that the focus of dissolution remains vertical regardless of geological controls. A typical bell hole 1 m deep may be formed in some 50,000 years by this mechanism alone. Addition of other erosional mechanisms, such as direct bacterial bio-erosion, or the formation of exfoliative organo-rock complexes, would accelerate the rate of formation. The hypothesis is developed that bell holes are initiated and formed by bat-mediated condensation corrosion and are governed by geographic distribution of clustering bats and their roosting behaviour.

  4. Detection of bat hepatitis E virus RNA in microbats in Japan.

    PubMed

    Kobayashi, Tomoya; Murakami, Shin; Yamamoto, Terumasa; Mineshita, Ko; Sakuyama, Muneki; Sasaki, Reiko; Maeda, Ken; Horimoto, Taisuke

    2018-05-29

    Several recent studies have reported that various bat species harbor bat hepatitis E viruses (BatHEV) belonging to the family Hepeviridae, which also contains human hepatitis E virus (HEV). The distribution and ecology of BatHEV are not well known. Here, we collected and screened 81 bat fecal samples from nine bat species in Japan to detect BatHEV RNA by RT-PCR using HEV-specific primers, and detected three positive samples. Sequence and phylogenetic analyses indicated that these three viruses were BatHEVs belonging to genus Orthohepevirus D like other BatHEV strains reported earlier in various countries. These data support the first detection of BatHEVs in Japanese microbats, indicating their wide geographical distribution among multiple bat species.

  5. Tentative novel lyssavirus in a bat in Finland.

    PubMed

    Nokireki, T; Tammiranta, N; Kokkonen, U-M; Kantala, T; Gadd, T

    2018-06-01

    A tentative novel member of the genus Lyssavirus, designated as Kotalahti bat lyssavirus, was detected in a Brandt's bat (Myotis brandtii) in Finland. Based on phylogenetic analysis, the virus differs from other known lyssaviruses, being closely related to Khujand virus, Aravan virus, Bokeloh bat lyssavirus and European bat lyssavirus 2. © 2018 The Authors. Transboundary and Emerging Diseases Published by Blackwell Verlag GmbH.

  6. Multiple mortality events in bats: a global review

    PubMed Central

    O’SHEA, Thomas J.; CRYAN, Paul M.; HAYMAN, David T.S.; PLOWRIGHT, Raina K.; STREICKER, Daniel G.

    2018-01-01

    Despite conservation concerns for many species of bats, factors causing mortality in bats have not been reviewed since 1970. Here we review and qualitatively describe trends in the occurrence and apparent causes of multiple mortality events (MMEs) in bats around the world.We compiled a database of MMEs, defined as cases in which ≥ 10 dead bats were counted or estimated at a specific location within a maximum timescale of a year, and more typically within a few days or a season. We tabulated 1180 MMEs within nine categories.Prior to the year 2000, intentional killing by humans caused the greatest proportion of MMEs in bats. In North America and Europe, people typically killed bats because they were perceived as nuisances. Intentional killing occurred in South America for vampire bat control, in Asia and Australia for fruit depredation control, and in Africa and Asia for human food. Biotic factors, accidents, and natural abiotic factors were also important historically. Chemical contaminants were confirmed causes of MMEs in North America, Europe, and on islands. Viral and bacterial diseases ranked low as causes of MMEs in bats.Two factors led to a major shift in causes of MMEs in bats at around the year 2000: the global increase of industrial wind-power facilities and the outbreak of white-nose syndrome in North America. Collisions with wind turbines and white-nose syndrome are now the leading causes of reported MMEs in bats.Collectively, over half of all reported MMEs were of anthropogenic origin. The documented occurrence of MMEs in bats due to abiotic factors such as intense storms, flooding, heat waves, and drought is likely to increase in the future with climate change. Coupled with the chronic threats of roosting and foraging habitat loss, increasing mortality through MMEs is unlikely to be compensated for, given the need for high survival in the dynamics of bat populations. PMID:29755179

  7. Genetic Characteristics of Coronaviruses from Korean Bats in 2016.

    PubMed

    Lee, Saemi; Jo, Seong-Deok; Son, Kidong; An, Injung; Jeong, Jipseol; Wang, Seung-Jun; Kim, Yongkwan; Jheong, Weonhwa; Oem, Jae-Ku

    2018-01-01

    Bats have increasingly been recognized as the natural reservoir of severe acute respiratory syndrome (SARS), coronavirus, and other coronaviruses found in mammals. However, little research has been conducted on bat coronaviruses in South Korea. In this study, bat samples (332 oral swabs, 245 fecal samples, 38 urine samples, and 57 bat carcasses) were collected at 33 natural bat habitat sites in South Korea. RT-PCR and sequencing were performed for specific coronavirus genes to identify the bat coronaviruses in different bat samples. Coronaviruses were detected in 2.7% (18/672) of the samples: 13 oral swabs from one species of the family Rhinolophidae, and four fecal samples and one carcass (intestine) from three species of the family Vespertiliodae. To determine the genetic relationships of the 18 sequences obtained in this study and previously known coronaviruses, the nucleotide sequences of a 392-nt region of the RNA-dependent RNA polymerase (RdRp) gene were analyzed phylogenetically. Thirteen sequences belonging to SARS-like betacoronaviruses showed the highest nucleotide identity (97.1-99.7%) with Bat-CoV-JTMC15 reported in China. The other five sequences were most similar to MERS-like betacoronaviruses. Four nucleotide sequences displayed the highest identity (94.1-95.1%) with Bat-CoV-HKU5 from Hong Kong. The one sequence from a carcass showed the highest nucleotide identity (99%) with Bat-CoV-SC2013 from China. These results suggest that careful surveillance of coronaviruses from bats should be continued, because animal and human infections may result from the genetic variants present in bat coronavirus reservoirs.

  8. Characterization of a Novel Bat Adenovirus Isolated from Straw-Colored Fruit Bat (Eidolon helvum).

    PubMed

    Ogawa, Hirohito; Kajihara, Masahiro; Nao, Naganori; Shigeno, Asako; Fujikura, Daisuke; Hang'ombe, Bernard M; Mweene, Aaron S; Mutemwa, Alisheke; Squarre, David; Yamada, Masao; Higashi, Hideaki; Sawa, Hirofumi; Takada, Ayato

    2017-12-04

    Bats are important reservoirs for emerging zoonotic viruses. For extensive surveys of potential pathogens in straw-colored fruit bats ( Eidolon helvum ) in Zambia, a total of 107 spleen samples of E. helvum in 2006 were inoculated onto Vero E6 cells. The cell culture inoculated with one of the samples (ZFB06-106) exhibited remarkable cytopathic changes. Based on the ultrastructural property in negative staining and cross-reactivity in immunofluorescence assays, the virus was suspected to be an adenovirus, and tentatively named E. helvum adenovirus 06-106 (EhAdV 06-106). Analysis of the full-length genome of 30,134 bp, determined by next-generation sequencing, showed the presence of 28 open reading frames. Phylogenetic analyses confirmed that EhAdV 06-106 represented a novel bat adenovirus species in the genus Mastadenovirus . The virus shared similar characteristics of low G + C contents with recently isolated members of species Bat mastadenoviruses E , F and G , from which EhAdV 06-106 diverged by more than 15% based on the distance matrix analysis of DNA polymerase amino acid sequences. According to the taxonomic criteria, we propose the tentative new species name " Bat mastadenovirus H ". Because EhAdV 06-106 exhibited a wide in vitro cell tropism, the virus might have a potential risk as an emerging virus through cross-species transmission.

  9. Characterization of a Novel Bat Adenovirus Isolated from Straw-Colored Fruit Bat (Eidolon helvum)

    PubMed Central

    Kajihara, Masahiro; Nao, Naganori; Shigeno, Asako; Fujikura, Daisuke; Hang’ombe, Bernard M.; Mweene, Aaron S.; Mutemwa, Alisheke; Yamada, Masao; Higashi, Hideaki; Sawa, Hirofumi; Takada, Ayato

    2017-01-01

    Bats are important reservoirs for emerging zoonotic viruses. For extensive surveys of potential pathogens in straw-colored fruit bats (Eidolon helvum) in Zambia, a total of 107 spleen samples of E. helvum in 2006 were inoculated onto Vero E6 cells. The cell culture inoculated with one of the samples (ZFB06-106) exhibited remarkable cytopathic changes. Based on the ultrastructural property in negative staining and cross-reactivity in immunofluorescence assays, the virus was suspected to be an adenovirus, and tentatively named E. helvum adenovirus 06-106 (EhAdV 06-106). Analysis of the full-length genome of 30,134 bp, determined by next-generation sequencing, showed the presence of 28 open reading frames. Phylogenetic analyses confirmed that EhAdV 06-106 represented a novel bat adenovirus species in the genus Mastadenovirus. The virus shared similar characteristics of low G + C contents with recently isolated members of species Bat mastadenoviruses E, F and G, from which EhAdV 06-106 diverged by more than 15% based on the distance matrix analysis of DNA polymerase amino acid sequences. According to the taxonomic criteria, we propose the tentative new species name “Bat mastadenovirus H”. Because EhAdV 06-106 exhibited a wide in vitro cell tropism, the virus might have a potential risk as an emerging virus through cross-species transmission. PMID:29207524

  10. Coronavirus and paramyxovirus in bats from Northwest Italy.

    PubMed

    Rizzo, Francesca; Edenborough, Kathryn M; Toffoli, Roberto; Culasso, Paola; Zoppi, Simona; Dondo, Alessandro; Robetto, Serena; Rosati, Sergio; Lander, Angelika; Kurth, Andreas; Orusa, Riccardo; Bertolotti, Luigi; Mandola, Maria Lucia

    2017-12-22

    Bat-borne virus surveillance is necessary for determining inter-species transmission risks and is important due to the wide-range of bat species which may harbour potential pathogens. This study aimed to monitor coronaviruses (CoVs) and paramyxoviruses (PMVs) in bats roosting in northwest Italian regions. Our investigation was focused on CoVs and PMVs due to their proven ability to switch host and their zoonotic potential. Here we provide the phylogenetic characterization of the highly conserved polymerase gene fragments. Family-wide PCR screenings were used to test 302 bats belonging to 19 different bat species. Thirty-eight animals from 12 locations were confirmed as PCR positive, with an overall detection rate of 12.6% [95% CI: 9.3-16.8]. CoV RNA was found in 36 bats belonging to eight species, while PMV RNA in three Pipistrellus spp. Phylogenetic characterization have been obtained for 15 alpha- CoVs, 5 beta-CoVs and three PMVs; moreover one P. pipistrellus resulted co-infected with both CoV and PMV. A divergent alpha-CoV clade from Myotis nattereri SpA is also described. The compact cluster of beta-CoVs from R. ferrumequinum roosts expands the current viral sequence database, specifically for this species in Europe. To our knowledge this is the first report of CoVs in Plecotus auritus and M. oxygnathus, and of PMVs in P. kuhlii. This study identified alpha and beta-CoVs in new bat species and in previously unsurveyed Italian regions. To our knowledge this represents the first and unique report of PMVs in Italy. The 23 new bat genetic sequences presented will expand the current molecular bat-borne virus databases. Considering the amount of novel bat-borne PMVs associated with the emergence of zoonotic infections in animals and humans in the last years, the definition of viral diversity within European bat species is needed. Performing surveillance studies within a specific geographic area can provide awareness of viral burden where bats roost in close proximity

  11. Serologic evidence of Lyssavirus infections among bats, the Philippines.

    PubMed

    Arguin, Paul M; Murray-Lillibridge, Kristy; Miranda, Mary E G; Smith, Jean S; Calaor, Alan B; Rupprecht, Charles E

    2002-03-01

    Active surveillance for lyssaviruses was conducted among populations of bats in the Philippines. The presence of past or current Lyssavirus infection was determined by use of direct fluorescent antibody assays on bat brains and virus neutralization assays on bat sera. Although no bats were found to have active infection with a Lyssavirus, 22 had evidence of neutralizing antibody against the Australian bat lyssavirus (ABLV). Seropositivity was statistically associated with one species of bat, Miniopterus schreibersi. Results from the virus neutralization assays are consistent with the presence in the Philippines of a naturally occurring Lyssavirus related to ABLV.

  12. Serologic Evidence of Lyssavirus Infections among Bats, the Philippines

    PubMed Central

    Murray-Lillibridge, Kristy; Miranda, Mary E.G.; Smith, Jean S.; Calaor, Alan B.; Rupprecht, Charles E.

    2002-01-01

    Active surveillance for lyssaviruses was conducted among populations of bats in the Philippines. The presence of past or current Lyssavirus infection was determined by use of direct fluorescent antibody assays on bat brains and virus neutralization assays on bat sera. Although no bats were found to have active infection with a Lyssavirus, 22 had evidence of neutralizing antibody against the Australian bat lyssavirus (ABLV). Seropositivity was statistically associated with one species of bat, Miniopterus schreibersi. Results from the virus neutralization assays are consistent with the presence in the Philippines of a naturally occurring Lyssavirus related to ABLV. PMID:11927022

  13. European bats as carriers of viruses with zoonotic potential.

    PubMed

    Kohl, Claudia; Kurth, Andreas

    2014-08-13

    Bats are being increasingly recognized as reservoir hosts of highly pathogenic and zoonotic emerging viruses (Marburg virus, Nipah virus, Hendra virus, Rabies virus, and coronaviruses). While numerous studies have focused on the mentioned highly human-pathogenic bat viruses in tropical regions, little is known on similar human-pathogenic viruses that may be present in European bats. Although novel viruses are being detected, their zoonotic potential remains unclear unless further studies are conducted. At present, it is assumed that the risk posed by bats to the general public is rather low. In this review, selected viruses detected and isolated in Europe are discussed from our point of view in regard to their human-pathogenic potential. All European bat species and their roosts are legally protected and some European species are even endangered. Nevertheless, the increasing public fear of bats and their viruses is an obstacle to their protection. Educating the public regarding bat lyssaviruses might result in reduced threats to both the public and the bats.

  14. The Development and Flight Testing of an Aerially Deployed Unmanned Aerial System

    NASA Astrophysics Data System (ADS)

    Smith, Andrew

    An investigation into the feasibility of aerial deployed unmanned aerial vehicles was completed. The investigation included the development and flight testing of multiple unmanned aerial systems to investigate the different components of potential aerial deployment missions. The project consisted of two main objectives; the first objective dealt with the development of an airframe capable of surviving aerial deployment from a rocket and then self assembling from its stowed configuration into its flight configuration. The second objective focused on the development of an autopilot capable of performing basic guidance, navigation, and control following aerial deployment. To accomplish these two objectives multiple airframes were developed to verify their completion experimentally. The first portion of the project, investigating the feasibility of surviving an aerial deployment, was completed using a fixed wing glider that following a successful deployment had 52 seconds of controlled flight. Before developing the autopilot in the second phase of the project, the glider was significantly upgraded to fix faults discovered in the glider flight testing and to enhance the system capabilities. Unfortunately to conform to outdoor flight restrictions imposed by the university and the Federal Aviation Administration it was required to switch airframes before flight testing of the new fixed wing platform could begin. As a result, an autopilot was developed for a quadrotor and verified experimentally completely indoors to remain within the limits of governing policies.

  15. Molecular detection of the causative agent of white-nose syndrome on Rafinesque's big-eared bats (Corynorhinus rafinesquii) and two species of migratory bats in the southeastern USA.

    PubMed

    Bernard, Riley F; Foster, Jeffrey T; Willcox, Emma V; Parise, Katy L; McCracken, Gary F

    2015-04-01

    Pseudogymnoascus destructans, the causal agent of white-nose syndrome (WNS), is responsible for widespread mortality of hibernating bats across eastern North America. To document P. destructans exposure and infections on bats active during winter in the southeastern US, we collected epidermal swabs from bats captured during winters 2012-13 and 2013-14 in mist nets set outside of hibernacula in Tennessee. Epidermal swab samples were collected from eight Rafinesque's big-eared bats (Corynorhinus rafinesquii), six eastern red bats (Lasiurus borealis), and three silver-hair bats (Lasionycteris noctivagans). Using real-time PCR methods, we identified DNA sequences of P. destructans from skin swabs of two Rafinesque's big-eared bats, two eastern red bats, and one silver-haired bat. This is the first detection of the WNS fungus on Rafinesque's big-eared bats and eastern red bats and the second record of the presence of the fungus on silver-haired bats.

  16. Ebola Virus Antibodies in Fruit Bats, Bangladesh

    PubMed Central

    Islam, Ariful; Yu, Meng; Anthony, Simon J.; Epstein, Jonathan H.; Khan, Shahneaz Ali; Khan, Salah Uddin; Crameri, Gary; Wang, Lin-Fa; Lipkin, W. Ian; Luby, Stephen P.; Daszak, Peter

    2013-01-01

    To determine geographic range for Ebola virus, we tested 276 bats in Bangladesh. Five (3.5%) bats were positive for antibodies against Ebola Zaire and Reston viruses; no virus was detected by PCR. These bats might be a reservoir for Ebola or Ebola-like viruses, and extend the range of filoviruses to mainland Asia. PMID:23343532

  17. Bats of Ouray National Wildlife Refuge

    USGS Publications Warehouse

    Ellison, Laura E.

    2011-01-01

    Ouray National Wildlife Refuge (NWR) is located in the northeast corner of Utah along the Green River and is part of the Upper Colorado River System and the Colorado Plateau. The Colorado Plateau is home to 19 species of bats, some of which are quite rare. Of those 19 species, a few have a more southern range and would not be expected to be found at Ouray NWR, but it is unknown what species occur at Ouray NWR or their relative abundance. The assumption is that Ouray NWR provides excellent habitat for bats, since the riparian habitat consists of a healthy population of cottonwoods with plenty of older, large trees and snags that would provide foraging and roosting habitat for bats. The more than 4,000 acres of wetland habitat, along with the associated insect population resulting from the wetland habitat, would provide ideal foraging habitat for bats. The overall objective of this project is to conduct a baseline inventory of bat species occurring on the refuge using mist nets and passive acoustic monitoring.

  18. The evolution of bat pollination: a phylogenetic perspective

    PubMed Central

    Fleming, Theodore H.; Geiselman, Cullen; Kress, W. John

    2009-01-01

    Background Most tropical and subtropical plants are biotically pollinated, and insects are the major pollinators. A small but ecologically and economically important group of plants classified in 28 orders, 67 families and about 528 species of angiosperms are pollinated by nectar-feeding bats. From a phylogenetic perspective this is a derived pollination mode involving a relatively large and energetically expensive pollinator. Here its ecological and evolutionary consequences are explored. Scope and Conclusions This review summarizes adaptations in bats and plants that facilitate this interaction and discusses the evolution of bat pollination from a plant phylogenetic perspective. Two families of bats contain specialized flower visitors, one in the Old World and one in the New World. Adaptation to pollination by bats has evolved independently many times from a variety of ancestral conditions, including insect-, bird- and non-volant mammal-pollination. Bat pollination predominates in very few families but is relatively common in certain angiosperm subfamilies and tribes. We propose that flower-visiting bats provide two important benefits to plants: they deposit large amounts of pollen and a variety of pollen genotypes on plant stigmas and, compared with many other pollinators, they are long-distance pollen dispersers. Bat pollination tends to occur in plants that occur in low densities and in lineages producing large flowers. In highly fragmented tropical habitats, nectar bats play an important role in maintaining the genetic continuity of plant populations and thus have considerable conservation value. PMID:19789175

  19. Sensorimotor Model of Obstacle Avoidance in Echolocating Bats

    PubMed Central

    Vanderelst, Dieter; Holderied, Marc W.; Peremans, Herbert

    2015-01-01

    Bat echolocation is an ability consisting of many subtasks such as navigation, prey detection and object recognition. Understanding the echolocation capabilities of bats comes down to isolating the minimal set of acoustic cues needed to complete each task. For some tasks, the minimal cues have already been identified. However, while a number of possible cues have been suggested, little is known about the minimal cues supporting obstacle avoidance in echolocating bats. In this paper, we propose that the Interaural Intensity Difference (IID) and travel time of the first millisecond of the echo train are sufficient cues for obstacle avoidance. We describe a simple control algorithm based on the use of these cues in combination with alternating ear positions modeled after the constant frequency bat Rhinolophus rouxii. Using spatial simulations (2D and 3D), we show that simple phonotaxis can steer a bat clear from obstacles without performing a reconstruction of the 3D layout of the scene. As such, this paper presents the first computationally explicit explanation for obstacle avoidance validated in complex simulated environments. Based on additional simulations modelling the FM bat Phyllostomus discolor, we conjecture that the proposed cues can be exploited by constant frequency (CF) bats and frequency modulated (FM) bats alike. We hypothesize that using a low level yet robust cue for obstacle avoidance allows bats to comply with the hard real-time constraints of this basic behaviour. PMID:26502063

  20. Isolation of Salmonella Virchow from a fruit bat (Pteropus giganteus).

    PubMed

    Islam, Ausraful; Mikolon, Andrea; Mikoleit, Matthew; Ahmed, Dilruba; Khan, Salah Udddin; Sharker, M A Yushuf; Hossain, M Jahangir; Islam, Ariful; Epstein, Jonathan H; Zeidner, Nord; Luby, Stephen P

    2013-12-01

    Detection of zoonotic pathogens carried by bats is important both for understanding disease ecology and for developing preventive measures. Pteropus fruit bats have been identified as potential carriers of Salmonella enterica serotype Typhi. A cross-sectional study was conducted to determine the prevalence of Salmonella Typhi and other Salmonella serotypes in Pteropus giganteus fruit bats in Bangladesh. Rectal swabs were collected from 302 bats and cultured for Salmonella species. The bats were trapped in three districts (Faridpur, Rajbari, and Cox's Bazar). Salmonella Typhi was not found but one juvenile female bat from Faridpur district was positive for Salmonella Virchow. Close associations between frugivorous bats, humans, and livestock in rural Bangladesh make it likely that the bat was infected by consuming contaminated water.

  1. Swift/BAT Calibration and Spectral Response

    NASA Technical Reports Server (NTRS)

    Parsons, A.

    2004-01-01

    The Burst Alert Telescope (BAT) aboard NASA#s Swift Gamma-Ray Burst Explorer is a large coded aperture gamma-ray telescope consisting of a 2.4 m (8#) x 1.2 m (4#) coded aperture mask supported 1 meter above a 5200 square cm area detector plane containing 32,768 individual 4 mm x 4 mm x 2 mm CZT detectors. The BAT is now completely assembled and integrated with the Swift spacecraft in anticipation of an October 2004 launch. Extensive ground calibration measurements using a variety of radioactive sources have resulted in a moderately high fidelity model for the BAT spectral and photometric response. This paper describes these ground calibration measurements as well as related computer simulations used to study the efficiency and individual detector properties of the BAT detector array. The creation of a single spectral response model representative of the fully integrated BAT posed an interesting challenge and is at the heart of the public analysis tool #batdrmgen# which computes a response matrix for any given sky position within the BAT FOV. This paper will describe the batdrmgen response generator tool and conclude with a description of the on-orbit calibration plans as well as plans for the future improvements needed to produce the more detailed spectral response model that is required for the construction of an all-sky hard x-ray survey.

  2. The Swift/BAT Hard X-Ray Survey

    NASA Technical Reports Server (NTRS)

    Tueller, Jack; Markwardt, C. B.; Mushotzky, R. F.; Barthelmy, S. D.; Gehrels, N.; Krimm, H. A.; Skinner, G. K.; Falcone, A.; Kennea, J. A.

    2006-01-01

    The BAT instrument on Swift is a wide field (70 deg. '100 deg.) coded aperture instrument with a CdZnTe detector array sensitive to energies of 14-200 keV. Each day, the BAT survey typically covers 60% of the sky to a detection limit of 30 millicrab. BAT makes hard X-ray light curves of similar sensitivity and coverage to the X-ray light curves from XTE/ASM, but in an energy range where sources show remarkably different behavior. Integrating the BAT data produces an all sky map with a source detection limit at 15 months of a few 10(exp -11) ergs per square centimeter per second, depending on the exposure. This is the first uniform all-sky survey at energies high enough to be unaffected by absorption since HEAO 1 in 1977-8. BAT has detected greater than 200 AGN and greater than 180 galactic sources. At high galactic latitudes, the BAT sources are usually easy to identify, but many are heavily absorbed and there are a few quite surprising identifications. The BAT selected galaxies can be used to calculate LogN/LogS and the luminosity function for AGN which are complete and free from common systematics. Several crucial parameters for understanding the cosmic hard x-ray background are now determined.

  3. The Hemagglutinin of Bat-Associated Influenza Viruses Is Activated by TMPRSS2 for pH-Dependent Entry into Bat but Not Human Cells

    PubMed Central

    Hoffmann, Markus; Krüger, Nadine; Zmora, Pawel; Wrensch, Florian; Herrler, Georg; Pöhlmann, Stefan

    2016-01-01

    New World bats have recently been discovered to harbor influenza A virus (FLUAV)-related viruses, termed bat-associated influenza A-like viruses (batFLUAV). The internal proteins of batFLUAV are functional in mammalian cells. In contrast, no biological functionality could be demonstrated for the surface proteins, hemagglutinin (HA)-like (HAL) and neuraminidase (NA)-like (NAL), and these proteins need to be replaced by their human counterparts to allow spread of batFLUAV in human cells. Here, we employed rhabdoviral vectors to study the role of HAL and NAL in viral entry. Vectors pseudotyped with batFLUAV-HAL and -NAL were able to enter bat cells but not cells from other mammalian species. Host cell entry was mediated by HAL and was dependent on prior proteolytic activation of HAL and endosomal low pH. In contrast, sialic acids were dispensable for HAL-driven entry. Finally, the type II transmembrane serine protease TMPRSS2 was able to activate HAL for cell entry indicating that batFLUAV can utilize human proteases for HAL activation. Collectively, these results identify viral and cellular factors governing host cell entry driven by batFLUAV surface proteins. They suggest that the absence of a functional receptor precludes entry of batFLUAV into human cells while other prerequisites for entry, HAL activation and protonation, are met in target cells of human origin. PMID:27028521

  4. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats.

    PubMed

    Towner, Jonathan S; Amman, Brian R; Sealy, Tara K; Carroll, Serena A Reeder; Comer, James A; Kemp, Alan; Swanepoel, Robert; Paddock, Christopher D; Balinandi, Stephen; Khristova, Marina L; Formenty, Pierre B H; Albarino, Cesar G; Miller, David M; Reed, Zachary D; Kayiwa, John T; Mills, James N; Cannon, Deborah L; Greer, Patricia W; Byaruhanga, Emmanuel; Farnon, Eileen C; Atimnedi, Patrick; Okware, Samuel; Katongole-Mbidde, Edward; Downing, Robert; Tappero, Jordan W; Zaki, Sherif R; Ksiazek, Thomas G; Nichol, Stuart T; Rollin, Pierre E

    2009-07-01

    In July and September 2007, miners working in Kitaka Cave, Uganda, were diagnosed with Marburg hemorrhagic fever. The likely source of infection in the cave was Egyptian fruit bats (Rousettus aegyptiacus) based on detection of Marburg virus RNA in 31/611 (5.1%) bats, virus-specific antibody in bat sera, and isolation of genetically diverse virus from bat tissues. The virus isolates were collected nine months apart, demonstrating long-term virus circulation. The bat colony was estimated to be over 100,000 animals using mark and re-capture methods, predicting the presence of over 5,000 virus-infected bats. The genetically diverse virus genome sequences from bats and miners closely matched. These data indicate common Egyptian fruit bats can represent a major natural reservoir and source of Marburg virus with potential for spillover into humans.

  5. Some like it hot: evolution and ecology of novel endosymbionts in bat flies of cave-roosting bats (hippoboscoidea, nycterophiliinae).

    PubMed

    Morse, Solon F; Dick, Carl W; Patterson, Bruce D; Dittmar, Katharina

    2012-12-01

    We investigated previously unknown associations between bacterial endosymbionts and bat flies of the subfamily Nycterophiliinae (Diptera, Streblidae). Molecular analyses revealed a novel clade of Gammaproteobacteria in Nycterophilia bat flies. This clade was not closely related to Arsenophonus-like microbes found in its sister genus Phalconomus and other bat flies. High population infection rates in Nycterophilia across a wide geographic area, the presence of the symbionts in pupae, the general codivergence between hosts and symbionts, and high AT composition bias in symbiont genes together suggest that this host-symbiont association is obligate in nature and ancient in origin. Some Nycterophilia samples (14.8%) also contained Wolbachia supergroup F (Alphaproteobacteria), suggesting a facultative symbiosis. Likelihood-based ancestral character mapping revealed that, initially, obligate symbionts exhibited association with host-specific Nycterophilia bat flies that use a broad temperature range of cave environments for pupal development. As this mutualism evolved, the temperature range of bat flies narrowed to an exclusive use of hot caves, which was followed by a secondary broadening of the bat flies' host associations. These results suggest that the symbiosis has influenced the environmental tolerance of parasite life history stages. Furthermore, the contingent change to an expanded host range of Nycterophilia bat flies upon narrowing the ecological niche of their developmental stages suggests that altered environmental tolerance across life history stages may be a crucial factor in shaping parasite-host relationships.

  6. Bartonella spp. in Bats, Guatemala

    PubMed Central

    Kosoy, Michael; Recuenco, Sergio; Alvarez, Danilo; Moran, David; Turmelle, Amy; Ellison, James; Garcia, Daniel L.; Estevez, Alejandra; Lindblade, Kim; Rupprecht, Charles

    2011-01-01

    To better understand the role of bats as reservoirs of Bartonella spp., we estimated Bartonella spp. prevalence and genetic diversity in bats in Guatemala during 2009. We found prevalence of 33% and identified 21 genetic variants of 13 phylogroups. Vampire bat–associated Bartonella spp. may cause undiagnosed illnesses in humans. PMID:21762584

  7. BAT3 Analyzer: Real-Time Data Display and Interpretation Software for the Multifunction Bedrock-Aquifer Transportable Testing Tool (BAT3)

    USGS Publications Warehouse

    Winston, Richard B.; Shapiro, Allen M.

    2007-01-01

    The BAT3 Analyzer provides real-time display and interpretation of fluid pressure responses and flow rates measured during geochemical sampling, hydraulic testing, or tracer testing conducted with the Multifunction Bedrock-Aquifer Transportable Testing Tool (BAT3) (Shapiro, 2007). Real-time display of the data collected with the Multifunction BAT3 allows the user to ensure that the downhole apparatus is operating properly, and that test procedures can be modified to correct for unanticipated hydraulic responses during testing. The BAT3 Analyzer can apply calibrations to the pressure transducer and flow meter data to display physically meaningful values. Plots of the time-varying data can be formatted for a specified time interval, and either saved to files, or printed. Libraries of calibrations for the pressure transducers and flow meters can be created, updated and reloaded to facilitate the rapid set up of the software to display data collected during testing with the Multifunction BAT3. The BAT3 Analyzer also has the functionality to estimate calibrations for pressure transducers and flow meters using data collected with the Multifunction BAT3 in conjunction with corroborating check measurements. During testing with the Multifunction BAT3, and also after testing has been completed, hydraulic properties of the test interval can be estimated by comparing fluid pressure responses with model results; a variety of hydrogeologic conceptual models of the formation are available for interpreting fluid-withdrawal, fluid-injection, and slug tests.

  8. 2. AERIAL VIEW OF MINUTEMAN SILOS. Low oblique aerial view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. AERIAL VIEW OF MINUTEMAN SILOS. Low oblique aerial view (original in color) of the two launch silos, covered. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Missile Silo Type, Test Area 1-100, northeast end of Test Area 1-100 Road, Boron, Kern County, CA

  9. The communicative potential of bat echolocation pulses.

    PubMed

    Jones, Gareth; Siemers, Björn M

    2011-05-01

    Ecological constraints often shape the echolocation pulses emitted by bat species. Consequently some (but not all) bats emit species-specific echolocation pulses. Because echolocation pulses are often intense and emitted at high rates, they are potential targets for eavesdropping by other bats. Echolocation pulses can also vary within species according to sex, body size, age, social group and geographic location. Whether these features can be recognised by other bats can only be determined reliably by playback experiments, which have shown that echolocation pulses do provide sufficient information for the identification of sex and individual in one species. Playbacks also show that bats can locate conspecifics and heterospecifics at foraging and roost sites by eavesdropping on echolocation pulses. Guilds of echolocating bat species often partition their use of pulse frequencies. Ecology, allometric scaling and phylogeny play roles here, but are not sufficient to explain this partitioning. Evidence is accumulating to support the hypothesis that frequency partitioning evolved to facilitate intraspecific communication. Acoustic character displacement occurs in at least one instance. Future research can relate genetic population structure to regional variation in echolocation pulse features and elucidate those acoustic features that most contribute to discrimination of individuals.

  10. Quantitative comparison of tree roosts used by red bats (Lasiurus borealis) and Semindle bats (L. seminolus)

    Treesearch

    Michael A. Menzel; Timothy C. Carter; Brian R. Chapman; Joshua Laerm

    1998-01-01

    We radio-tracked 11 red bats and 5 Seminole bats (L. seminolus) to 64 and 34 day roosts, respectively. Individuals of both species were found roosting within the canopy of the roost trees, clinging to leaf petioles or the tips of small branches (

  11. The relationships between impact location and post-impact ball speed, bat torsion, and ball direction in cricket batting.

    PubMed

    Peploe, C; McErlain-Naylor, S A; Harland, A R; King, M A

    2018-06-01

    Three-dimensional kinematic data of bat and ball were recorded for 239 individual shots performed by twenty batsmen ranging from club to international standard. The impact location of the ball on the bat face was determined and assessed against the resultant instantaneous post-impact ball speed and measures of post-impact bat torsion and ball direction. Significant negative linear relationships were found between post-impact ball speed and the absolute distance of impact from the midline medio-laterally and sweetspot longitudinally. Significant cubic relationships were found between the distance of impact from the midline of the bat medio-laterally and both a measure of bat torsion and the post-impact ball direction. A "sweet region" on the bat face was identified whereby impacts within 2 cm of the sweetspot in the medio-lateral direction, and 4.5 cm in the longitudinal direction, caused reductions in ball speed of less than 6% from the optimal value, and deviations in ball direction of less than 10° from the intended target. This study provides a greater understanding of the margin for error afforded to batsmen, allowing researchers to assess shot success in more detail, and highlights the importance of players generating consistently central impact locations when hitting for optimal performance.

  12. Morphology-Induced Information Transfer in Bat Sonar

    NASA Astrophysics Data System (ADS)

    Reijniers, Jonas; Vanderelst, Dieter; Peremans, Herbert

    2010-10-01

    It has been argued that an important part of understanding bat echolocation comes down to understanding the morphology of the bat sound processing apparatus. In this Letter we present a method based on information theory that allows us to assess target localization performance of bat sonar, without a priori knowledge on the position, size, or shape of the reflecting target. We demonstrate this method using simulated directivity patterns of the frequency-modulated bat Micronycteris microtis. The results of this analysis indicate that the morphology of this bat’s sound processing apparatus has evolved to be a compromise between sensitivity and accuracy with the pinnae and the noseleaf playing different roles.

  13. Invasive Fire Ants Reduce Reproductive Success and Alter the Reproductive Strategies of a Native Vertebrate Insectivore

    PubMed Central

    Ligon, Russell A.; Siefferman, Lynn; Hill, Geoffrey E.

    2011-01-01

    Background Introduced organisms can alter ecosystems by disrupting natural ecological relationships. For example, red imported fire ants (Solenopsis invicta) have disrupted native arthropod communities throughout much of their introduced range. By competing for many of the same food resources as insectivorous vertebrates, fire ants also have the potential to disrupt vertebrate communities. Methodology/Principal Findings To explore the effects of fire ants on a native insectivorous vertebrate, we compared the reproductive success and strategies of eastern bluebirds (Sialia sialis) inhabiting territories with different abundances of fire ants. We also created experimental dyads of adjacent territories comprised of one territory with artificially reduced fire ant abundance (treated) and one territory that was unmanipulated (control). We found that more bluebird young fledged from treated territories than from adjacent control territories. Fire ant abundance also explained significant variation in two measures of reproductive success across the study population: number of fledglings and hatching success of second clutches. Furthermore, the likelihood of bluebird parents re-nesting in the same territory was negatively influenced by the abundance of foraging fire ants, and parents nesting in territories with experimentally reduced abundances of fire ants produced male-biased broods relative to pairs in adjacent control territories. Conclusions/Significance Introduced fire ants altered both the reproductive success (number of fledglings, hatching success) and strategies (decision to renest, offspring sex-ratio) of eastern bluebirds. These results illustrate the negative effects that invasive species can have on native biota, including species from taxonomically distant groups. PMID:21799904

  14. Proceedings of the Wind Energy and Birds/Bats Workshop: Understanding and Resolving Bird and Bat Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Susan Savitt

    Most conservation groups support the development of wind energy in the US as an alternative to fossil and nuclear-fueled power plants to meet growing demand for electrical energy. However, concerns have surfaced over the potential threat to birds, bats, and other wildlife from the construction and operation of wind turbine facilities. Co-sponsored by the American Bird Conservancy (ABC) and the American Wind Energy Association (AWEA), the Wind Energy and Birds/Bats Workshop was convened to examine current research on the impacts of wind energy development on avian and bat species and to discuss the most effective ways to mitigate such impacts.more » On 18-19 May 2004, 82 representatives from government, non-government organizations, private business, and academia met to (1) review the status of the wind industry and current project development practices, including pre-development risk assessment and post-construction monitoring; (2) learn what is known about direct, indirect (habitat), and cumulative impacts on birds and bats from existing wind projects; about relevant aspects of bat and bird migration ecology; about offshore wind development experience in Europe; and about preventing, minimizing, and mitigating avian and bat impacts; (3) review wind development guidelines developed by the USFWS and the Washington State Department of Fish and Wildlife; and (4) identify topics needing further research and to discuss what can be done to ensure that research is both credible and accessible. These Workshop Proceedings include detailed summaries of the presentations made and the discussions that followed.« less

  15. Isolation of Genetically Diverse Marburg Viruses from Egyptian Fruit Bats

    PubMed Central

    Towner, Jonathan S.; Amman, Brian R.; Sealy, Tara K.; Carroll, Serena A. Reeder; Comer, James A.; Kemp, Alan; Swanepoel, Robert; Paddock, Christopher D.; Balinandi, Stephen; Khristova, Marina L.; Formenty, Pierre B. H.; Albarino, Cesar G.; Miller, David M.; Reed, Zachary D.; Kayiwa, John T.; Mills, James N.; Cannon, Deborah L.; Greer, Patricia W.; Byaruhanga, Emmanuel; Farnon, Eileen C.; Atimnedi, Patrick; Okware, Samuel; Katongole-Mbidde, Edward; Downing, Robert; Tappero, Jordan W.; Zaki, Sherif R.; Ksiazek, Thomas G.; Nichol, Stuart T.; Rollin, Pierre E.

    2009-01-01

    In July and September 2007, miners working in Kitaka Cave, Uganda, were diagnosed with Marburg hemorrhagic fever. The likely source of infection in the cave was Egyptian fruit bats (Rousettus aegyptiacus) based on detection of Marburg virus RNA in 31/611 (5.1%) bats, virus-specific antibody in bat sera, and isolation of genetically diverse virus from bat tissues. The virus isolates were collected nine months apart, demonstrating long-term virus circulation. The bat colony was estimated to be over 100,000 animals using mark and re-capture methods, predicting the presence of over 5,000 virus-infected bats. The genetically diverse virus genome sequences from bats and miners closely matched. These data indicate common Egyptian fruit bats can represent a major natural reservoir and source of Marburg virus with potential for spillover into humans. PMID:19649327

  16. Bats of the Savannah River Site and vicinity

    Treesearch

    Michael A. Menzel; Jennifer M. Menzel; John C. Kilgo; W. Mark Ford; Timothy C. Carter; John W. Edwards

    2003-01-01

    The U.S. Department of Energy’s Savannah River Site supports a diverse bat community. Nine species occur there regularly, including the eastern pipistrelle (Pipistrellus subflavus), southeastern myotis (Myotis austroriparius), evening bat (Nycticeius humeralis), Rafinesque’s big-eared bat (Corynorhinus...

  17. Innate recognition of water bodies in echolocating bats.

    PubMed

    Greif, Stefan; Siemers, Björn M

    2010-11-02

    In the course of their lives, most animals must find different specific habitat and microhabitat types for survival and reproduction. Yet, in vertebrates, little is known about the sensory cues that mediate habitat recognition. In free flying bats the echolocation of insect-sized point targets is well understood, whereas how they recognize and classify spatially extended echo targets is currently unknown. In this study, we show how echolocating bats recognize ponds or other water bodies that are crucial for foraging, drinking and orientation. With wild bats of 15 different species (seven genera from three phylogenetically distant, large bat families), we found that bats perceived any extended, echo-acoustically smooth surface to be water, even in the presence of conflicting information from other sensory modalities. In addition, naive juvenile bats that had never before encountered a water body showed spontaneous drinking responses from smooth plates. This provides the first evidence for innate recognition of a habitat cue in a mammal.

  18. [Hematophagous bats as reservoirs of rabies].

    PubMed

    Scheffer, Karin Corrêa; Iamamoto, Keila; Asano, Karen Miyuki; Mori, Enio; Estevez Garcia, Andrea Isabel; Achkar, Samira M; Fahl, Williande Oliveira

    2014-04-01

    Rabies continues to be a challenge for public health authorities and a constraint to the livestock industry in Latin America. Wild and domestic canines and vampire bats are the main transmitter species and reservoirs of the disease. Currently, variations observed in the epidemiological profile of rabies, where the species of hematophagous bat Desmodus rotundus constitutes the main transmitting species. Over the years, knowledge has accumulated about the ecology, biology and behavior of this species and the natural history of rabies, which should lead to continuous development of methods of population control of d. Rotundus as well as prevention and diagnostic tools for rabies. Ecological relationships of this species with other hematophagous and non-hematophagous bats is unknown, and there is much room for improvement in reporting systems and surveillance, as well as creating greater awareness among the farming community. Understanding the impact of human-induced environmental changes on the rabies virus in bats should be cause for further investigation. This will require a combination of field studies with mathematical models and new diagnostic tools. This review aims to present the most relevant issues on the role of hematophagous bats as reservoirs and transmitters of the rabies virus.

  19. Investigating white-nose syndrome in bats

    USGS Publications Warehouse

    Blehert, David S.

    2009-01-01

    A devastating, emergent disease afflicting hibernating bats has pread from the northeast to the mid-Atlantic region of the United States at an alarming rate. Since the winter of 2006-2007, hundreds of thousands of insect-eating bats from at least nine states have died from this new disease, named White-Nose Syndrome (WNS). The disease is named for the white fungus often seen on the muzzles, ears, and wings of bats. This disease poses a threat to cave hibernating bats of the United States and potentially all temperate regions of the world. USGS scientists from the National Wildlife Health Center (NWHC) and the Fort Collins Science Center (FORT), in collaboration with the New York State Department of Environmental Conservation, the U.S. Fish and Wildlife Service, and others have linked a newly described, cold-loving fungus to WNS.

  20. [Trematodes (Trematoda) of bats (Chiroptera) from the Middle Volga Region].

    PubMed

    Kirillov, A A; Kirillova, N Iu; Vekhnik, V P

    2012-01-01

    The data on species diversity of trematodes from bats collected in the Middle Volga Region are summarized. According to original and literary data, 20 trematode species were recorded in bats of the region examined. Plagiorchis elegans, Lecithodendrium skrjabini, L. rysavyi, Prosthodendrium hurkovaae, and Pycnoporus megacotyle are specified for the bat fauna of Russia for the first time. For 11 species of parasites, new hosts are recorded. The analysis of bat helminthes demonstrated that the fauna of trematodes of the northern bat (12 species of trematodes), of the pond, and of the Brandt's bats is the most diverse, constituting more than 10 parasite species per bat species. The largest number of final hosts in the Middle Volga Region is characteristic of Plagiorchis koreanus and Prosthodendrium chilostomum; the latter species were revealed in 8 and 7 bat species, respectively. Trematodes of bats possess a high degree of host specificity. 17 species parasitize exclusively in bats out of 20 parasite species registered for the order Chiroptera. Only 3 species (Plagiorchis elegans, P. vespertilionis, and Prosthodendrium chilostomum) show wide degree of specificity, being found in other animals. Taxonomic position, the circle of hosts, collecting sites, and brief data in biology and geographical distribution for each helminth species are specified. Morphological descriptions and original figures for all the trematode species revealed in bats of the Middle Volga Region are given.

  1. Aerial Explorers and Robotic Ecosystems

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg

    2004-01-01

    A unique bio-inspired approach to autonomous aerial vehicle, a.k.a. aerial explorer technology is discussed. The work is focused on defining and studying aerial explorer mission concepts, both as an individual robotic system and as a member of a small robotic "ecosystem." Members of this robotic ecosystem include the aerial explorer, air-deployed sensors and robotic symbiotes, and other assets such as rovers, landers, and orbiters.

  2. New alphacoronavirus in Mystacina tuberculata bats, New Zealand.

    PubMed

    Hall, Richard J; Wang, Jing; Peacey, Matthew; Moore, Nicole E; McInnes, Kate; Tompkins, Daniel M

    2014-04-01

    Because of recent interest in bats as reservoirs of emerging diseases, we investigated the presence of viruses in Mystacina tuberculata bats in New Zealand. A novel alphacoronavirus sequence was detected in guano from roosts of M. tuberculata bats in pristine indigenous forest on a remote offshore island (Codfish Island).

  3. Improving diet and activity of insectivorous primates in captivity: Naturalizing the diet of Northern Ceylon gray slender loris, Loris lydekkerianus nordicus.

    PubMed

    Williams, Emma; Cabana, Francis; Nekaris, K A I

    2015-01-01

    Data on in-situ diet and nutritional requirements should inform the provision of food to captive insectivorous primates. Despite the growing availability of such information an over-reliance on commercially available primate foods and fruit continues in many captive establishments. Wild slender lorises are almost exclusively insectivorous, yet captive conspecifics are fed a primarily frugivorous diet that is likely to contribute to behavioral and health problems. We investigated the effect of naturalizing diet in the Northern Ceylon grey slender loris (Loris lydekkerianus nordicus) by providing live insect prey to a captive group of five individuals. We calculated activity budgets in accordance with six established categories and recorded positional behaviors. We collected data over 30 hours for each of three conditions: pre-enrichment, enrichment, post-enrichment. We hypothesized that increased opportunity for the display of natural behaviors would be stimulated by the dietary enrichment of live insects and made the following predictions; 1) Percentage time spent foraging would increase and time spent inactive would decrease; 2) behavioral repertoires would increase; 3) foraging patterns would be more constant over time with reduced feeding-time peaks. We analyzed time budget and behavioral changes using Friedman tests. We found significant changes in activity budgets with inactivity reduced and foraging levels increased to levels seen in wild slender lorises. We found a significant increase in postures used in foraging and a wider behavioral repertoire. We discuss the benefits of providing free-ranging live food in relation to enhancing the temporal-spatial distribution of food acquisition, satisfying nutritional requirements, balancing energy intake, and expenditure, expanding sensory stimulation, and promoting behavioral competence. We discuss our findings in relation to other insectivorous primates. © 2015 Wiley Periodicals, Inc.

  4. Negative regulators of brown adipose tissue (BAT)-mediated thermogenesis.

    PubMed

    Sharma, Bal Krishan; Patil, Mallikarjun; Satyanarayana, Ande

    2014-12-01

    Brown adipose tissue (BAT) is specialized for energy expenditure, a process called adaptive thermogenesis. PET-CT scans recently demonstrated the existence of metabolically active BAT in adult humans, which revitalized our interest in BAT. Increasing the amount and/or activity of BAT holds tremendous promise for the treatment of obesity and its associated diseases. PGC1α is the master regulator of UCP1-mediated thermogenesis in BAT. A number of proteins have been identified to influence thermogenesis either positively or negatively through regulating the expression or transcriptional activity of PGC1α. Therefore, BAT activation can be achieved by either inducing the expression of positive regulators of PGC1α or by inhibiting the repressors of the PGC1α/UCP1 pathway. Here, we review the most important negative regulators of PGC1α/UCP1 signaling and their mechanism of action in BAT-mediated thermogenesis. © 2014 Wiley Periodicals, Inc.

  5. White-nose syndrome fungus (Geomyces destructans) in bats, Europe

    USGS Publications Warehouse

    Wibbelt, G.; Kurth, A.; Hellmann, D.; Weishaar, M.; Barlow, A.; Veith, M.; Pruger, J.; Gorfol, T.; Grosche, T.; Bontadina, F.; Zophel, U.; Seidl, Hans-Peter; Cryan, P.M.; Blehert, D.S.

    2010-01-01

    White-nose syndrome is an emerging disease in North America that has caused substantial declines in hibernating bats. A recently identified fungus (Geomyces destructans) causes skin lesions that are characteristic of this disease. Typical signs of this infection were not observed in bats in North America before white-nose syndrome was detected. However, unconfirmed reports from Europe indicated white fungal growth on hibernating bats without associated deaths. To investigate these differences, hibernating bats were sampled in Germany, Switzerland, and Hungary to determine whether G. destructans is present in Europe. Microscopic observations, fungal culture, and genetic analyses of 43 samples from 23 bats indicated that 21 bats of 5 species in 3 countries were colonized by G. destructans. We hypothesize that G. destructans is present throughout Europe and that bats in Europe may be more immunologically or behaviorally resistant to G. destructans than their congeners in North America because they potentially coevolved with the fungus.

  6. Dampened STING-Dependent Interferon Activation in Bats.

    PubMed

    Xie, Jiazheng; Li, Yang; Shen, Xurui; Goh, Geraldine; Zhu, Yan; Cui, Jie; Wang, Lin-Fa; Shi, Zheng-Li; Zhou, Peng

    2018-03-14

    Compared with terrestrial mammals, bats have a longer lifespan and greater capacity to co-exist with a variety of viruses. In addition to cytosolic DNA generated by these viral infections, the metabolic demands of flight cause DNA damage and the release of self-DNA into the cytoplasm. However, whether bats have an altered DNA sensing/defense system to balance high cytosolic DNA levels remains an open question. We demonstrate that bats have a dampened interferon response due to the replacement of the highly conserved serine residue (S358) in STING, an essential adaptor protein in multiple DNA sensing pathways. Reversing this mutation by introducing S358 restored STING functionality, resulting in interferon activation and virus inhibition. Combined with previous reports on bat-specific changes of other DNA sensors such as TLR9, IFI16, and AIM2, our findings shed light on bat adaptation to flight, their long lifespan, and their unique capacity to serve as a virus reservoir. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Some Like It Hot: Evolution and Ecology of Novel Endosymbionts in Bat Flies of Cave-Roosting Bats (Hippoboscoidea, Nycterophiliinae)

    PubMed Central

    Morse, Solon F.; Dick, Carl W.; Patterson, Bruce D.

    2012-01-01

    We investigated previously unknown associations between bacterial endosymbionts and bat flies of the subfamily Nycterophiliinae (Diptera, Streblidae). Molecular analyses revealed a novel clade of Gammaproteobacteria in Nycterophilia bat flies. This clade was not closely related to Arsenophonus-like microbes found in its sister genus Phalconomus and other bat flies. High population infection rates in Nycterophilia across a wide geographic area, the presence of the symbionts in pupae, the general codivergence between hosts and symbionts, and high AT composition bias in symbiont genes together suggest that this host-symbiont association is obligate in nature and ancient in origin. Some Nycterophilia samples (14.8%) also contained Wolbachia supergroup F (Alphaproteobacteria), suggesting a facultative symbiosis. Likelihood-based ancestral character mapping revealed that, initially, obligate symbionts exhibited association with host-specific Nycterophilia bat flies that use a broad temperature range of cave environments for pupal development. As this mutualism evolved, the temperature range of bat flies narrowed to an exclusive use of hot caves, which was followed by a secondary broadening of the bat flies' host associations. These results suggest that the symbiosis has influenced the environmental tolerance of parasite life history stages. Furthermore, the contingent change to an expanded host range of Nycterophilia bat flies upon narrowing the ecological niche of their developmental stages suggests that altered environmental tolerance across life history stages may be a crucial factor in shaping parasite-host relationships. PMID:23042170

  8. Assessing bat droppings and predatory bird pellets for vector-borne bacteria: molecular evidence of bat-associated Neorickettsia sp. in Europe.

    PubMed

    Hornok, Sándor; Szőke, Krisztina; Estók, Péter; Krawczyk, Aleksandra; Haarsma, Anne-Jifke; Kováts, Dávid; Boldogh, Sándor A; Morandini, Pál; Szekeres, Sándor; Takács, Nóra; Kontschán, Jenő; Meli, Marina L; Fernández de Mera, Isabel G; de la Fuente, José; Gyuranecz, Miklós; Sulyok, Kinga M; Weibel, Beatrice; Gönczi, Enikő; de Bruin, Arnout; Sprong, Hein; Hofmann-Lehmann, Regina

    2018-02-28

    In Europe, several species of bats, owls and kestrels exemplify highly urbanised, flying vertebrates, which may get close to humans or domestic animals. Bat droppings and bird pellets may have epidemiological, as well as diagnostic significance from the point of view of pathogens. In this work 221 bat faecal and 118 bird pellet samples were screened for a broad range of vector-borne bacteria using PCR-based methods. Rickettsia DNA was detected in 13 bat faecal DNA extracts, including the sequence of a rickettsial insect endosymbiont, a novel Rickettsia genotype and Rickettsia helvetica. Faecal samples of the pond bat (Myotis dasycneme) were positive for a Neorickettsia sp. and for haemoplasmas of the haemofelis group. In addition, two bird pellets (collected from a Long-eared Owl, Asio otus, and from a Common Kestrel, Falco tinnunculus) contained the DNA of a Rickettsia sp. and Anaplasma phagocytophilum, respectively. In both of these bird pellets the bones of Microtus arvalis were identified. All samples were negative for Borrelia burgdorferi s.l., Francisella tularensis, Coxiella burnetii and Chlamydiales. In conclusion, bats were shown to pass rickettsia and haemoplasma DNA in their faeces. Molecular evidence is provided for the presence of Neorickettsia sp. in bat faeces in Europe. In the evaluated regions bat faeces and owl/kestrel pellets do not appear to pose epidemiological risk from the point of view of F. tularensis, C. burnetii and Chlamydiales. Testing of bird pellets may provide an alternative approach to trapping for assessing the local occurrence of vector-borne bacteria in small mammals.

  9. Monitoring seasonal bat activity on a coastal barrier island in Maryland, USA.

    PubMed

    Johnson, Joshua B; Gates, J Edward; Zegre, Nicolas P

    2011-02-01

    Research on effects of wind turbines on bats has increased dramatically in recent years because of significant numbers of bats killed by rotating wind turbine blades. Whereas most research has focused on the Midwest and inland portions of eastern North America, bat activity and migration on the Atlantic Coast has largely been unexamined. We used three long-term acoustic monitoring stations to determine seasonal bat activity patterns on the Assateague Island National Seashore, a barrier island off the coast of Maryland, from 2005 to 2006. We recorded five species, including eastern red bats (Lasiurus borealis), big brown bats (Eptesicus fuscus), hoary bats (Lasiurus cinereus), tri-colored bats (Perimyotis subflavus), and silver-haired bats (Lasionycteris noctivagans). Seasonal bat activity (number of bat passes recorded) followed a cosine function and gradually increased beginning in April, peaked in August, and declined gradually until cessation in December. Based on autoregressive models, inter-night bat activity was autocorrelated for lags of seven nights or fewer but varied among acoustic monitoring stations. Higher nightly temperatures and lower wind speeds positively affected bat activity. When autoregressive model predictions were fitted to the observed nightly bat pass totals, model residuals>2 standard deviations from the mean existed only during migration periods, indicating that periodic increases in bat activity could not be accounted for by seasonal trends and weather variables alone. Rather, the additional bat passes were attributable to migrating bats. We conclude that bats, specifically eastern red, hoary, and silver-haired bats, use this barrier island during migration and that this phenomenon may have implications for the development of near and offshore wind energy.

  10. The role of frugivorous bats in tropical forest succession.

    PubMed

    Muscarella, Robert; Fleming, Theodore H

    2007-11-01

    Discussion of successional change has traditionally focused on plants. The role of animals in producing and responding to successional change has received far less attention. Dispersal of plant propagules by animals is a fundamental part of successional change in the tropics. Here we review the role played by frugivorous bats in successional change in tropical forests. We explore the similarities and differences of this ecological service provided by New and Old World seed-dispersing bats and conclude with a discussion of their current economic and conservation implications. Our review suggests that frugivorous New World phyllostomid bats play a more important role in early plant succession than their Old World pteropodid counterparts. We propose that phyllostomid bats have shared a long evolutionary history with small-seeded early successional shrubs and treelets while pteropodid bats are principally dispersers of the seeds of later successional canopy fruits. When species of figs (Ficus) are involved in the early stages of primary succession (e.g. in the river meander system in Amazonia and on Krakatau, Indonesia), both groups of bats are important contributors of propagules. Because they disperse and sometimes pollinate canopy trees, pteropodid bats have a considerable impact on the economic value of Old World tropical forests; phyllostomid bats appear to make a more modest direct contribution to the economic value of New World tropical forests. Nonetheless, because they critically influence forest regeneration, phyllostomid bats make an important indirect contribution to the economic value of these forests. Overall, fruit-eating bats play important roles in forest regeneration throughout the tropics, making their conservation highly desirable.

  11. Repeated detection of European bat lyssavirus type 2 in dead bats found at a single roost site in the UK.

    PubMed

    Banyard, Ashley C; Johnson, N; Voller, K; Hicks, D; Nunez, A; Hartley, M; Fooks, A R

    2009-01-01

    In August 2007, European bat lyssavirus type 2 (EBLV-2) was isolated from a Daubenton's bat found at Stokesay Castle. In September 2008, another bat from the same vicinity of Stokesay Castle also tested positive for EBLV-2. This is the first occurrence of repeated detection of EBLV-2 from a single site. Here, we report the detection of low levels of viral RNA in various bat organs by qRT-PCR and detection of viral antigen by immunohistochemistry. We also report sequence data from both cases and compare data with those derived from other EBLV-2 isolations in the UK.

  12. Transcriptomic Signatures of Tacaribe Virus-Infected Jamaican Fruit Bats

    PubMed Central

    Gerrard, Diana L.; Hawkinson, Ann; Sherman, Tyler; Modahl, Cassandra M.; Hume, Gretchen; Campbell, Corey L.; Schountz, Tony

    2017-01-01

    ABSTRACT Tacaribe virus (TCRV) is a mammalian arenavirus that was first isolated from artibeus bats in the 1950s. Subsequent experimental infection of Jamaican fruit bats (Artibeus jamaicensis) caused a disease similar to that of naturally infected bats. Although substantial attention has focused on bats as reservoir hosts of viruses that cause human disease, little is known about the interactions between bats and their pathogens. We performed a transcriptome-wide study to illuminate the response of Jamaican fruit bats experimentally infected with TCRV. Differential gene expression analysis of multiple tissues revealed global and organ-specific responses associated with innate antiviral responses, including interferon alpha/beta and Toll-like receptor signaling, activation of complement cascades, and cytokine signaling, among others. Genes encoding proteins involved in adaptive immune responses, such as gamma interferon signaling and costimulation of T cells by the CD28 family, were also altered in response to TCRV infection. Immunoglobulin gene expression was also elevated in the spleens of infected bats, including IgG, IgA, and IgE isotypes. These results indicate an active innate and adaptive immune response to TCRV infection occurred but did not prevent fatal disease. This de novo assembly provides a high-throughput data set of the Jamaican fruit bat and its host response to TCRV infection, which remains a valuable tool to understand the molecular signatures involved in antiviral responses in bats. IMPORTANCE As reservoir hosts of viruses associated with human disease, little is known about the interactions between bats and viruses. Using Jamaican fruit bats infected with Tacaribe virus (TCRV) as a model, we characterized the gene expression responses to infection in different tissues and identified pathways involved with the response to infection. This report is the most detailed gene discovery work in the species to date and the first to describe immune gene

  13. Renewed mining and reclamation: Imapacts on bats and potential mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, P.E.; Berry, R.D.

    Historic mining created new roosting habitat for many bat species. Now the same industry has the potential to adversely impact bats. Contemporary mining operations usually occur in historic districts; consequently the old workings are destroyed by open pit operations. Occasionally, underground techniques are employed, resulting in the enlargement or destruction of the original workings. Even during exploratory operations, historic mine openings can be covered as drill roads are bulldozed, or drills can penetrate and collapse underground workings. Nearby blasting associated with mine construction and operation can disrupt roosting bats. Bats can also be disturbed by the entry of mine personnelmore » to collect ore samples or by recreational mine explorers, since the creation of roads often results in easier access. In addition to roost disturbance, other aspects of renewed mining can have adverse impacts on bat populations, and affect even those bats that do not live in mines. Open cyanide ponds, or other water in which toxic chemicals accumulate, can poison bats and other wildlife. The creation of the pits, roads and processing areas often destroys critical foraging habitat, or change drainage patterns. Finally, at the completion of mining, any historic mines still open may be sealed as part of closure and reclamation activities. The net result can be a loss of bats and bat habitat. Conversely, in some contemporary underground operations, future roosting habitat for bats can be fabricated. An experimental approach to the creation of new roosting habitat is to bury culverts or old tires beneath waste rock. Mining companies can mitigate for impacts to bats by surveying to identify bat-roosting habitat, removing bats prior to renewed mining or closure, protecting non-impacted roost sites with gates and fences, researching to identify habitat requirements and creating new artificial roosts.« less

  14. Indiana bats, northern long-eared bats, and prescribed fire in the Appalachians: challenges and considerations.

    Treesearch

    Susan Loeb; Joy O' Keefe

    2014-01-01

    The Indiana bat (Myotis sodalist) is an endangered species and the northern long-eared bat (M. septentrionalis) has been proposed for listing as endangered. Both species are found throughout the Appalachians, and they commonly inhabit fire-dependent ecosystems such as pine and pine-oak forests. Due to their legal status, prescribed burns in areas where these species...

  15. Acoustic behavior of echolocating bats in complex environments

    NASA Astrophysics Data System (ADS)

    Moss, Cynthia; Ghose, Kaushik; Jensen, Marianne; Surlykke, Annemarie

    2004-05-01

    The echolocating bat controls the direction of its sonar beam, just as visually dominant animals control the movement of their eyes to foveate targets of interest. The sonar beam aim of the echolocating bat can therefore serve as an index of the animal's attention to objects in the environment. Until recently, spatial attention has not been studied in the context of echolocation, perhaps due to the difficulty in obtaining an objective measure. Here, we describe measurements of the bat's sonar beam aim, serving as an index of acoustic gaze and attention to objects, in tasks that require localization of obstacles and insect prey. Measurements of the bat's sonar beam aim are taken from microphone array recordings of vocal signals produced by a free-flying bat under experimentally controlled conditions. In some situations, the animal relies on spatial memory over reflected sounds, perhaps because its perceptual system cannot easily organize cascades of echoes from obstacles and prey. This highlights the complexity of the bat's orientation behavior, which can alternate between active sensing and spatial memory systems. The bat's use of spatial memory for orientation also will be addressed in this talk. [Work supported by NSF-IBN-0111973 and the Danish Research Council.

  16. Detection of group 1 coronaviruses in bats in North America

    USGS Publications Warehouse

    Dominguez, S.R.; O'Shea, T.J.; Oko, L.M.; Holmes, K.V.

    2007-01-01

    The epidemic of severe acute respiratory syndrome (SARS) was caused by a newly emerged coronavirus (SARS-CoV). Bats of several species in southern People's Republic of China harbor SARS-like CoVs and may be reservoir hosts for them. To determine whether bats in North America also harbor coronaviruses, we used reverse transcription-PCR to detect coronavirus RNA in bats. We found coronavirus RNA in 6 of 28 fecal specimens from bats of 2 of 7 species tested. The prevalence of viral RNA shedding was high: 17% in Eptesicus fuscus and 50% in Myotis occultus. Sequence analysis of a 440-bp amplicon in gene 1b showed that these Rocky Mountain bat coronaviruses formed 3 clusters in phylogenetic group 1 that were distinct from group 1 coronaviruses of Asian bats. Because of the potential for bat coronaviruses to cause disease in humans and animals, further surveillance and characterization of bat coronaviruses in North America are needed.

  17. Causes of bat fatalities at wind turbines: Hypotheses and predictions

    USGS Publications Warehouse

    Cryan, P.M.; Barclay, R.M.R.

    2009-01-01

    Thousands of industrial-scale wind turbines are being built across the world each year to meet the growing demand for sustainable energy. Bats of certain species are dying at wind turbines in unprecedented numbers. Species of bats consistently affected by turbines tend to be those that rely on trees as roosts and most migrate long distances. Although considerable progress has been made in recent years toward better understanding the problem, the causes of bat fatalities at turbines remain unclear. In this synthesis, we review hypothesized causes of bat fatalities at turbines. Hypotheses of cause fall into 2 general categoriesproximate and ultimate. Proximate causes explain the direct means by which bats die at turbines and include collision with towers and rotating blades, and barotrauma. Ultimate causes explain why bats come close to turbines and include 3 general types: random collisions, coincidental collisions, and collisions that result from attraction of bats to turbines. The random collision hypothesis posits that interactions between bats and turbines are random events and that fatalities are representative of the bats present at a site. Coincidental hypotheses posit that certain aspects of bat distribution or behavior put them at risk of collision and include aggregation during migration and seasonal increases in flight activity associated with feeding or mating. A surprising number of attraction hypotheses suggest that bats might be attracted to turbines out of curiosity, misperception, or as potential feeding, roosting, flocking, and mating opportunities. Identifying, prioritizing, and testing hypothesized causes of bat collisions with wind turbines are vital steps toward developing practical solutions to the problem. ?? 2009 American Society of Mammalogists.

  18. Continental-scale, seasonal movements of a heterothermic migratory tree bat

    USGS Publications Warehouse

    Cryan, Paul M.; Stricker, Craig A.; Wunder, Michael B.

    2014-01-01

    Long-distance migration evolved independently in bats and unique migration behaviors are likely, but because of their cryptic lifestyles, many details remain unknown. North American hoary bats (Lasiurus cinereus cinereus) roost in trees year-round and probably migrate farther than any other bats, yet we still lack basic information about their migration patterns and wintering locations or strategies. This information is needed to better understand unprecedented fatality of hoary bats at wind turbines during autumn migration and to determine whether the species could be susceptible to an emerging disease affecting hibernating bats. Our aim was to infer probable seasonal movements of individual hoary bats to better understand their migration and seasonal distribution in North America. We analyzed the stable isotope values of non-exchangeable hydrogen in the keratin of bat hair and combined isotopic results with prior distributional information to derive relative probability density surfaces for the geographic origins of individuals. We then mapped probable directions and distances of seasonal movement. Results indicate that hoary bats summer across broad areas. In addition to assumed latitudinal migration, we uncovered evidence of longitudinal movement by hoary bats from inland summering grounds to coastal regions during autumn and winter. Coastal regions with nonfreezing temperatures may be important wintering areas for hoary bats. Hoary bats migrating through any particular area, such as a wind turbine facility in autumn, are likely to have originated from a broad expanse of summering grounds from which they have traveled in no recognizable order. Better characterizing migration patterns and wintering behaviors of hoary bats sheds light on the evolution of migration and provides context for conserving these migrants.

  19. Grassland bats and land management in the Southwest

    Treesearch

    Alice L. Chung-MacCoubrey

    1996-01-01

    Of the bat research that has been conducted in the Southwestern states, few studies have addressed species inhabiting grasslands and the potential effects of management activities on these populations. Up to 17 bat species may be found regularly or occasionally in Southwestern grasslands or short-grass prairie. Main habitat requirements of grassland-dwelling bats are...

  20. Active Listening in a Bat Cocktail Party: Adaptive Echolocation and Flight Behaviors of Big Brown Bats, Eptesicus fuscus, Foraging in a Cluttered Acoustic Environment.

    PubMed

    Warnecke, Michaela; Chiu, Chen; Engelberg, Jonathan; Moss, Cynthia F

    2015-09-01

    In their natural environment, big brown bats forage for small insects in open spaces, as well as in vegetation and in the presence of acoustic clutter. While searching and hunting for prey, bats experience sonar interference, not only from densely cluttered environments, but also from calls of conspecifics foraging in close proximity. Previous work has shown that when two bats compete for a single prey item in a relatively open environment, one of the bats may go silent for extended periods of time, which can serve to minimize sonar interference between conspecifics. Additionally, pairs of big brown bats have been shown to adjust frequency characteristics of their vocalizations to avoid acoustic interference in echo processing. In this study, we extended previous work by examining how the presence of conspecifics and environmental clutter influence the bat's echolocation behavior. By recording multichannel audio and video data of bats engaged in insect capture in open and cluttered spaces, we quantified the bats' vocal and flight behaviors. Big brown bats flew individually and in pairs in an open and cluttered room, and the results of this study shed light on the different strategies that this species employs to negotiate a complex and dynamic environment. © 2015 S. Karger AG, Basel.