Science.gov

Sample records for aerial photogrammetric surveys

  1. A generic approach for photogrammetric survey using a six-rotor unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Tahar, K. N.; Ahmad, A.; Akib, W. A. A. W. M.; Mohd, W. M. N. W.

    2014-02-01

    This paper discusses a rapid production of slope mapping using multi-rotor unmanned aerial vehicle (UAV). The objective of this study is to determine the accuracy of the photogrammetric results based on novel method of multi-rotor UAV images as well as to analyze the slope error distribution that are obtained from the UAV images. This study only concentrates on multi-rotor UAV which also known as Hexacopter. An operator can control the speed of multi-rotor UAV during flight mission. Several ground control points and checkpoints were established using Real Time Kinematic Global Positioning System (RTK- GPS) at the slope area. Ground control points were used in exterior orientation during image processing in sequence to transform image coordinates into local coordinate system. Checkpoints were established at the slope area for accuracy assessment. A digital camera, Sony NEX-5N was used for image acquisition of slope area from UAV platforms. The digital camera was mounted vertically at the bottom of UAV and captured the images at an altitude. All acquired images went through photogrammetric processing including interior orientation, exterior orientation and bundle adjustment using photogrammetric software. Photogrammetric results such as digital elevation model, and digital orthophoto including slope map were assessed. UAV is able to acquire data within short period of time with low budget compared to the previous methods such as satellite images and airborne laser scanner. Analysis on slope analysis and error distribution analysis are discussed in this paper to determine the quality of slope map in the area of interest. In summary, multi-rotor UAV is suited in slope mapping studies.

  2. Photogrammetric Archaeological Survey with UAV

    NASA Astrophysics Data System (ADS)

    Mouget, A.; Lucet, G.

    2014-05-01

    This document describes a way to obtain various photogrammetric products from aerial photograph using a drone. The aim of the project was to develop a methodology to obtain information for the study of the architecture of pre-Columbian archaeological sites in Mexico combining the manoeuvrability and low cost of a drone with the accuracy of the results of the open source photogrammetric MicMac software. It presents the UAV and the camera used, explains how to manipulate it to carry out stereoscopic photographs, the flight and camera parameters chosen, the treatments performed to obtain orthophotos and 3D models with a centimetric resolution, and finally outlines the quality of the results.

  3. Photogrammetric mapping using unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Graça, N.; Mitishita, E.; Gonçalves, J.

    2014-11-01

    Nowadays Unmanned Aerial Vehicle (UAV) technology has attracted attention for aerial photogrammetric mapping. The low cost and the feasibility to automatic flight along commanded waypoints can be considered as the main advantages of this technology in photogrammetric applications. Using GNSS/INS technologies the images are taken at the planned position of the exposure station and the exterior orientation parameters (position Xo, Yo, Zo and attitude ω, φ, χ) of images can be direct determined. However, common UAVs (off-the-shelf) do not replace the traditional aircraft platform. Overall, the main shortcomings are related to: difficulties to obtain the authorization to perform the flight in urban and rural areas, platform stability, safety flight, stability of the image block configuration, high number of the images and inaccuracies of the direct determination of the exterior orientation parameters of the images. In this paper are shown the obtained results from the project photogrammetric mapping using aerial images from the SIMEPAR UAV system. The PIPER J3 UAV Hydro aircraft was used. It has a micro pilot MP2128g. The system is fully integrated with 3-axis gyros/accelerometers, GPS, pressure altimeter, pressure airspeed sensors. A Sony Cyber-shot DSC-W300 was calibrated and used to get the image block. The flight height was close to 400 m, resulting GSD near to 0.10 m. The state of the art of the used technology, methodologies and the obtained results are shown and discussed. Finally advantages/shortcomings found in the study and main conclusions are presented

  4. Aerial Photogrammetric Analysis of a Scree Slope and Cliff

    NASA Astrophysics Data System (ADS)

    Saunders, Greg; Galland, Olivier; Mair, Karen

    2014-05-01

    Mapping the physical features of landslide tracks provides information about factors controlling landslide movement. The increasing availability of unmanned aerial vehicles (UAV) provides the opportunity to efficiently and cost effectively map terrain. The main goal of this field study is to create a streamlined work-flow from acquisition to interpretation for the photogrammetric analysis of landslide tracks. Here an open source software package MicMac is used for ortho-image and point-cloud creation. A series of two flights were conducted over a scree (rockfall) slope in Kolsas, Norway. The slope runs roughly 500 m north-south with a maximum width of 60 m. A cliff to the west is the source area for the scree. The cliff consists of conglomerate, basalt, and porphyry from bottom to top respectively. The grain size of boulders in the scree slope apparently varies due to lateral differences in the cliff composition. The flights were completed under cloud cover and consisted of multiple lengthwise passes over the scree field. There was a minimum of 75% overlap between images. During the first flight the altitude was roughly 100 m, the camera was positioned normal to the scree (60 degrees from horizontal), and the resolution was 2.7 cm per pixel. The second flight had an altitude of 200 m, the camera orientation was 30 degrees from horizontal, and the resolution was 4.0 cm per pixel. Using the Micmac engine, Ortho-photos and Digital Elevation Models (DEM) were created for both the scree and the cliff. This data will allow for analysis of grain-size, surface roughness, grain-shape, fracture plane orientation, as well as geological mapping. Further work will focus the quantitative assessment of the significance different camera altitudes and angles have on the results. The work-flow used in this study provides a repeatable method for aerial photogrammetric surveys of scree slopes.

  5. Panorama Image Sets for Terrestrial Photogrammetric Surveys

    NASA Astrophysics Data System (ADS)

    Piermattei, L.; Karel, W.; Vettore, A.; Pfeifer, N.

    2016-06-01

    High resolution 3D models produced from photographs acquired with consumer-grade cameras are becoming increasingly common in the fields of geosciences. However, the quality of an image-based 3D model depends on the planning of the photogrammetric surveys. This means that the geometric configuration of the multi-view camera network and the control data have to be designed in accordance with the required accuracy, resolution and completeness. From a practical application point of view, a proper planning (of both photos and control data) of the photogrammetric survey especially for terrestrial acquisition, is not always ensured due to limited accessibility of the target object and the presence of occlusions. To solve these problems, we propose a different image acquisition strategy and we test different geo-referencing scenarios to deal with the practical issues of a terrestrial photogrammetric survey. The proposed photogrammetric survey procedure is based on the acquisition of a sequence of images in panorama mode by rotating the camera on a standard tripod. The offset of the pivot point from the projection center prevents the stitching of these images into a panorama. We demonstrate how to still take advantage of this capturing mode. The geo-referencing investigation consists of testing the use of directly observed coordinates of the camera positions, different ground control point (GCP) configurations, and GCPs with different accuracies, i.e. artificial targets vs. natural features. Images of the test field in a low-slope hill were acquired from the ground using an SLR camera. To validate the photogrammetric results a terrestrial laser scanner survey is used as benchmark.

  6. Acquisition strategies for terrestrial photogrammetric surveys

    NASA Astrophysics Data System (ADS)

    Piermattei, Livia; Karel, Wilfried; Vettore, Antonio; Pfeifer, Norbert

    2016-04-01

    Close-range photogrammetry based on Structure from Motion (SfM) and dense image matching algorithms is being rapidly adopted in the fields of geosciences thanks to its characteristics of low costs, portability of the instrumentation, high level of automation, and high levels of detail. However, special care should be taken while planning photogrammetric surveys to optimize the 3D model quality and spatial coverage. This means that the geometric configurations of the multi-view camera network and the control data have to be designed in accordance with the required accuracy, resolution and completeness. From a practical application point of view, a proper planning (of both photos and control data) of the photogrammetric survey especially for ground-based acquisition, is not always ensured due to limited accessibility of the target object and the presence of occlusions. In this work, we investigate how to solve these practical problems of a ground-based photogrammetric survey. We propose a different image acquisition strategy based on image sequences acquired in panorama mode. This means that at each established position a series of pictures with overlapping fields of view are taken on a conventional tripod, turning the camera about a common point of rotation, to cover the object of interest. While due to the offset of the pivot point from the projection center, these images cannot be stitched into a panorama, we demonstrate how to still take advantage of this capturing mode. Additionally, we test different geo-referencing procedures using i) different ground control points (GCP) configurations i.e. number and distribution of artificial targets measured with topographic instrumentation, ii) natural features employed as GCPs whose coordinates are extracted from a modern terrestrial laser scanner (TLS) point cloud, and iii) directly observed coordinates of the camera positions. Images of the test field in a low-slope artificial hill were acquired from the ground using

  7. Aerial radiation surveys

    SciTech Connect

    Jobst, J.

    1980-01-01

    A recent aerial radiation survey of the surroundings of the Vitro mill in Salt Lake City shows that uranium mill tailings have been removed to many locations outside their original boundary. To date, 52 remote sites have been discovered within a 100 square kilometer aerial survey perimeter surrounding the mill; 9 of these were discovered with the recent aerial survey map. Five additional sites, also discovered by aerial survey, contained uranium ore, milling equipment, or radioactive slag. Because of the success of this survey, plans are being made to extend the aerial survey program to other parts of the Salt Lake valley where diversions of Vitro tailings are also known to exist.

  8. Accuracy Assessment of Direct Georeferencing for Photogrammetric Applications on Small Unmanned Aerial Platforms

    NASA Astrophysics Data System (ADS)

    Mian, O.; Lutes, J.; Lipa, G.; Hutton, J. J.; Gavelle, E.; Borghini, S.

    2016-03-01

    Efficient mapping from unmanned aerial platforms cannot rely on aerial triangulation using known ground control points. The cost and time of setting ground control, added to the need for increased overlap between flight lines, severely limits the ability of small VTOL platforms, in particular, to handle mapping-grade missions of all but the very smallest survey areas. Applanix has brought its experience in manned photogrammetry applications to this challenge, setting out the requirements for increasing the efficiency of mapping operations from small UAVs, using survey-grade GNSS-Inertial technology to accomplish direct georeferencing of the platform and/or the imaging payload. The Direct Mapping Solution for Unmanned Aerial Vehicles (DMS-UAV) is a complete and ready-to-integrate OEM solution for Direct Georeferencing (DG) on unmanned aerial platforms. Designed as a solution for systems integrators to create mapping payloads for UAVs of all types and sizes, the DMS produces directly georeferenced products for any imaging payload (visual, LiDAR, infrared, multispectral imaging, even video). Additionally, DMS addresses the airframe's requirements for high-accuracy position and orientation for such tasks as precision RTK landing and Precision Orientation for Air Data Systems (ADS), Guidance and Control. This paper presents results using a DMS comprised of an Applanix APX-15 UAV with a Sony a7R camera to produce highly accurate orthorectified imagery without Ground Control Points on a Microdrones md4-1000 platform conducted by Applanix and Avyon. APX-15 UAV is a single-board, small-form-factor GNSS-Inertial system designed for use on small, lightweight platforms. The Sony a7R is a prosumer digital RGB camera sensor, with a 36MP, 4.9-micron CCD producing images at 7360 columns by 4912 rows. It was configured with a 50mm AF-S Nikkor f/1.8 lens and subsequently with a 35mm Zeiss Sonnar T* FE F2.8 lens. Both the camera/lens combinations and the APX-15 were mounted to a

  9. Photogrammetric techniques for aerospace applications

    NASA Astrophysics Data System (ADS)

    Liu, Tianshu; Burner, Alpheus W.; Jones, Thomas W.; Barrows, Danny A.

    2012-10-01

    Photogrammetric techniques have been used for measuring the important physical quantities in both ground and flight testing including aeroelastic deformation, attitude, position, shape and dynamics of objects such as wind tunnel models, flight vehicles, rotating blades and large space structures. The distinct advantage of photogrammetric measurement is that it is a non-contact, global measurement technique. Although the general principles of photogrammetry are well known particularly in topographic and aerial survey, photogrammetric techniques require special adaptation for aerospace applications. This review provides a comprehensive and systematic summary of photogrammetric techniques for aerospace applications based on diverse sources. It is useful mainly for aerospace engineers who want to use photogrammetric techniques, but it also gives a general introduction for photogrammetrists and computer vision scientists to new applications.

  10. Assessing the Accuracy of Ortho-image using Photogrammetric Unmanned Aerial System

    NASA Astrophysics Data System (ADS)

    Jeong, H. H.; Park, J. W.; Kim, J. S.; Choi, C. U.

    2016-06-01

    Smart-camera can not only be operated under network environment anytime and any place but also cost less than the existing photogrammetric UAV since it provides high-resolution image, 3D location and attitude data on a real-time basis from a variety of built-in sensors. This study's proposed UAV photogrammetric method, low-cost UAV and smart camera were used. The elements of interior orientation were acquired through camera calibration. The image triangulation was conducted in accordance with presence or absence of consideration of the interior orientation (IO) parameters determined by camera calibration, The Digital Elevation Model (DEM) was constructed using the image data photographed at the target area and the results of the ground control point survey. This study also analyzes the proposed method's application possibility by comparing a Ortho-image the results of the ground control point survey. Considering these study findings, it is suggested that smartphone is very feasible as a payload for UAV system. It is also expected that smartphone may be loaded onto existing UAV playing direct or indirect roles significantly.

  11. Low Cost Surveying Using AN Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Pérez, M.; Agüera, F.; Carvajal, F.

    2013-08-01

    Traditional manned airborne surveys are usually expensive and the resolution of the acquired images is often limited. The main advantage of Unmanned Aerial Vehicle (UAV) system acting as a photogrammetric sensor platform over more traditional manned airborne system is the high flexibility that allows image acquisition from unconventional viewpoints, the low cost in comparison with classical aerial photogrammetry and the high resolution images obtained. Nowadays there is a necessity for surveying small areas and in these cases, it is not economical the use of normal large format aerial or metric cameras to acquire aerial photos, therefore, the use of UAV platforms can be very suitable. Also the large availability of digital cameras has strongly enhanced the capabilities of UAVs. The use of digital non metric cameras together with the UAV could be used for multiple applications such as aerial surveys, GIS, wildfire mapping, stability of landslides, crop monitoring, etc. The aim of this work was to develop a low cost and accurate methodology in the production of orthophotos and Digital Elevation Models (DEM). The study was conducted in the province of Almeria, south of Spain. The photogrammetric flight had an altitude of 50 m over ground, covering an area of 5.000 m2 approximately. The UAV used in this work was the md4-200, which is an electronic battery powered quadrocopter UAV developed by Microdrones GmbH, Germany. It had on-board a Pextax Optio A40 digital non metric camera with 12 Megapixels. It features a 3x optical zoom lens with a focal range covering angles of view equivalent to those of 37-111 mm lens in 35 mm format. The quadrocopter can be programmed to follow a route defined by several waypoints and actions and it has the ability for vertical take off and landing. Proper flight geometry during image acquisition is essential in order to minimize the number of photographs, avoid areas without a good coverage and make the overlaps homogeneous. The flight

  12. Possibilities for Using LIDAR and Photogrammetric Data Obtained with AN Unmanned Aerial Vehicle for Levee Monitoring

    NASA Astrophysics Data System (ADS)

    Bakuła, K.; Ostrowski, W.; Szender, M.; Plutecki, W.; Salach, A.; Górski, K.

    2016-06-01

    This paper presents the possibilities for using an unmanned aerial system for evaluation of the condition of levees. The unmanned aerial system is equipped with two types of sensor. One is an ultra-light laser scanner, integrated with a GNSS receiver and an INS system; the other sensor is a digital camera that acquires data with stereoscopic coverage. Sensors have been mounted on the multirotor, unmanned platform the Hawk Moth, constructed by MSP company. LiDAR data and images of levees the length of several hundred metres were acquired during testing of the platform. Flights were performed in several variants. Control points measured with the use of the GNSS technique were considered as reference data. The obtained results are presented in this paper; the methodology of processing the acquired LiDAR data, which increase in accuracy when low accuracy of the navigation systems occurs as a result of systematic errors, is also discussed. The Iterative Closest Point (ICP) algorithm, as well as measurements of control points, were used to georeference the LiDAR data. Final accuracy in the order of centimetres was obtained for generation of the digital terrain model. The final products of the proposed UAV data processing are digital elevation models, an orthophotomap and colour point clouds. The authors conclude that such a platform offers wide possibilities for low-budget flights to deliver the data, which may compete with typical direct surveying measurements performed during monitoring of such objects. However, the biggest advantage is the density and continuity of data, which allows for detection of changes in objects being monitored.

  13. Unmanned aerial survey of elephants.

    PubMed

    Vermeulen, Cédric; Lejeune, Philippe; Lisein, Jonathan; Sawadogo, Prosper; Bouché, Philippe

    2013-01-01

    The use of a UAS (Unmanned Aircraft System) was tested to survey large mammals in the Nazinga Game Ranch in the south of Burkina Faso. The Gatewing ×100™ equipped with a Ricoh GR III camera was used to test animal reaction as the UAS passed, and visibility on the images. No reaction was recorded as the UAS passed at a height of 100 m. Observations, made on a set of more than 7000 images, revealed that only elephants (Loxodonta africana) were easily visible while medium and small sized mammals were not. The easy observation of elephants allows experts to enumerate them on images acquired at a height of 100 m. We, therefore, implemented an aerial strip sample count along transects used for the annual wildlife foot count. A total of 34 elephants were recorded on 4 transects, each overflown twice. The elephant density was estimated at 2.47 elephants/km(2) with a coefficient of variation (CV%) of 36.10%. The main drawback of our UAS was its low autonomy (45 min). Increased endurance of small UAS is required to replace manned aircraft survey of large areas (about 1000 km of transect per day vs 40 km for our UAS). The monitoring strategy should be adapted according to the sampling plan. Also, the UAS is as expensive as a second-hand light aircraft. However the logistic and flight implementation are easier, the running costs are lower and its use is safer. Technological evolution will make civil UAS more efficient, allowing them to compete with light aircraft for aerial wildlife surveys.

  14. Unmanned Aerial Survey of Elephants

    PubMed Central

    Vermeulen, Cédric; Lejeune, Philippe; Lisein, Jonathan; Sawadogo, Prosper; Bouché, Philippe

    2013-01-01

    The use of a UAS (Unmanned Aircraft System) was tested to survey large mammals in the Nazinga Game Ranch in the south of Burkina Faso. The Gatewing ×100™ equipped with a Ricoh GR III camera was used to test animal reaction as the UAS passed, and visibility on the images. No reaction was recorded as the UAS passed at a height of 100 m. Observations, made on a set of more than 7000 images, revealed that only elephants (Loxodonta africana) were easily visible while medium and small sized mammals were not. The easy observation of elephants allows experts to enumerate them on images acquired at a height of 100 m. We, therefore, implemented an aerial strip sample count along transects used for the annual wildlife foot count. A total of 34 elephants were recorded on 4 transects, each overflown twice. The elephant density was estimated at 2.47 elephants/km2 with a coefficient of variation (CV%) of 36.10%. The main drawback of our UAS was its low autonomy (45 min). Increased endurance of small UAS is required to replace manned aircraft survey of large areas (about 1000 km of transect per day vs 40 km for our UAS). The monitoring strategy should be adapted according to the sampling plan. Also, the UAS is as expensive as a second-hand light aircraft. However the logistic and flight implementation are easier, the running costs are lower and its use is safer. Technological evolution will make civil UAS more efficient, allowing them to compete with light aircraft for aerial wildlife surveys. PMID:23405088

  15. The sanctuary of Punta Stilo at Kaulonia-Monasterace (Rc, Italy): preliminary results of the close range photogrammetric surveys 2012-2013

    NASA Astrophysics Data System (ADS)

    Taccola, E.; Parra, M. C.; Ampolo, C.

    2014-06-01

    During the 2012-2013 excavations at the Sanctuary of Punta Stilo at Kaulonia, carried out by the University of Pisa and the Scuola Normale Superiore of Pisa, close range aerial and terrestrial photogrammetric surveys were tested for the first time. The aim of the test was to verify the accuracy of the site planimetry currently used, dating back also to a century ago. The 3D data obtained have allowed new data to be acquired for correcting and updating the mapping of the site.

  16. Implementation of softcopy photogrammetric workstations at the US Geological Survey

    USGS Publications Warehouse

    Skalet, C.D.; Lee, G.Y.G.; Ladner, L. J.

    1992-01-01

    The US Geological Survey has provided the Nation with primary quadrangle maps and map products for the last 50 years. The Survey recently completed initial coverage of the conterminous United States and Hawaii at 1:24 000 scale. In Alaska, complete coverage exists at 1:63 360 scale. Effort is underway to build a National Digital Cartographic Data Base (NDCDB) composed of the digital representation of these and other map series. In addition the Survey plans to meet the demand for more current and complete data through the development and promotion of spatial data standards in cooperation with other Federal, State, local and private organizations. -from Authors

  17. High-Resolution Debris Flow Volume Mapping with Unmanned Aerial Systems (uas) and Photogrammetric Techniques

    NASA Astrophysics Data System (ADS)

    Adams, M. S.; Fromm, R.; Lechner, V.

    2016-06-01

    Debris flows cause an average € 30 million damages and 1-2 fatalities every year in Austria. Detailed documentation of their extent and magnitude is essential for understanding, preventing and mitigating these natural hazard events. The recent development of unmanned aerial systems (UAS) has provided a new possibility for on-demand high-resolution monitoring and mapping. Here, we present a study, where the spatial extent and volume of a large debris flow event were mapped with different UAS, fitted with commercial off-the-shelf sensors. Orthophotos and digital terrain models (DTM) were calculated using structure-from-motion photogrammetry software. Terrain height differences caused by the debris flow in the catchment and valley floor were derived by subtracting the pre-event airborne laser scanning (ALS) DTM from a post-event UAS-DTM. The analysis of the volumetric sediment budget showed, that approximately 265,000 m³ material was mobilised in the catchment, of which 45,000 m³ settled there; of the material, which reached the valley floor, 120,000 m³ was deposited, while another 10,000 m³ was eroded from there. The UAS-results were validated against ALS data and imagery from a traditional manned-aircraft photogrammetry campaign. In conclusion, the UAS-data can reach an accuracy and precision comparable to manned aircraft data, but with the added benefits of higher flexibility, easier repeatability, less operational constraints and higher spatial resolution.

  18. Locating waterfowl observations on aerial surveys

    USGS Publications Warehouse

    Butler, W.I.; Hodges, J.I.; Stehn, R.A.

    1995-01-01

    We modified standard aerial survey data collection to obtain the geographic location for each waterfowl observation on surveys in Alaska during 1987-1993. Using transect navigation with CPS (global positioning system), data recording on continuously running tapes, and a computer data input program, we located observations with an average deviation along transects of 214 m. The method provided flexibility in survey design and data analysis. Although developed for geese nesting near the coast of the Yukon-Kuskokwim Delta, the methods are widely applicable and were used on other waterfowl surveys in Alaska to map distribution and relative abundance of waterfowl. Accurate location data with GIS analysis and display may improve precision and usefulness of data from any aerial transect survey.

  19. Calibration of Low Cost Digital Camera Using Data from Simultaneous LIDAR and Photogrammetric Surveys

    NASA Astrophysics Data System (ADS)

    Mitishita, E.; Debiasi, P.; Hainosz, F.; Centeno, J.

    2012-07-01

    Digital photogrammetric products from the integration of imagery and lidar datasets are a reality nowadays. When the imagery and lidar surveys are performed together and the camera is connected to the lidar system, a direct georeferencing can be applied to compute the exterior orientation parameters of the images. Direct georeferencing of the images requires accurate interior orientation parameters to perform photogrammetric application. Camera calibration is a procedure applied to compute the interior orientation parameters (IOPs). Calibration researches have established that to obtain accurate IOPs, the calibration must be performed with same or equal condition that the photogrammetric survey is done. This paper shows the methodology and experiments results from in situ self-calibration using a simultaneous images block and lidar dataset. The calibration results are analyzed and discussed. To perform this research a test field was fixed in an urban area. A set of signalized points was implanted on the test field to use as the check points or control points. The photogrammetric images and lidar dataset of the test field were taken simultaneously. Four strips of flight were used to obtain a cross layout. The strips were taken with opposite directions of flight (W-E, E-W, N-S and S-N). The Kodak DSC Pro SLR/c digital camera was connected to the lidar system. The coordinates of the exposition station were computed from the lidar trajectory. Different layouts of vertical control points were used in the calibration experiments. The experiments use vertical coordinates from precise differential GPS survey or computed by an interpolation procedure using the lidar dataset. The positions of the exposition stations are used as control points in the calibration procedure to eliminate the linear dependency of the group of interior and exterior orientation parameters. This linear dependency happens, in the calibration procedure, when the vertical images and flat test field are

  20. Inertial instrument system for aerial surveying

    USGS Publications Warehouse

    Brown, R.H.; Chapman, W.H.; Hanna, W.F.; Mongan, C.E.; Hursh, J.W.

    1985-01-01

    An inertial guidance system for aerial surveying has been developed under contract to the U.S. Geological Survey. This prototype system, known as the aerial profiling of terrain (APT) system, is designed to determine continuously the positions of points along an aircraft flight path, or the underlying terrain profile, to an accuracy of + or - 0.5 ft (15 cm) vertically and + or - 2 ft (61 cm) horizontally. The system 's objective thus is to accomplish, from a fixed-wing aircraft, what would traditionally be accomplished from ground-based topographic surveys combined with aerial photography and photogrammetry. The two-part strategy for measuring the terrain profile entails: (1) use of an inertial navigator for continuous determination of the three-coordinate position of the aircraft, and (2) use of an eye-safe pulsed laser profiler for continuous measurement of the vertical distance from aircraft to land surface, so that the desired terrain profile can then be directly computed. The APT system, installed in a DeHavilland Twin Otter aircraft, is typically flown at a speed of 115 mph (105 knots) at an altitude of 2,000 ft (610 m) above the terrain. Performance-evaluation flights have shown that the vertical and horizontal accuracy specifications are met. (USGS)

  1. Assessing the accuracy and repeatability of automated photogrammetrically generated digital surface models from unmanned aerial system imagery

    NASA Astrophysics Data System (ADS)

    Chavis, Christopher

    Using commercial digital cameras in conjunction with Unmanned Aerial Systems (UAS) to generate 3-D Digital Surface Models (DSMs) and orthomosaics is emerging as a cost-effective alternative to Light Detection and Ranging (LiDAR). Powerful software applications such as Pix4D and APS can automate the generation of DSM and orthomosaic products from a handful of inputs. However, the accuracy of these models is relatively untested. The objectives of this study were to generate multiple DSM and orthomosaic pairs of the same area using Pix4D and APS from flights of imagery collected with a lightweight UAS. The accuracy of each individual DSM was assessed in addition to the consistency of the method to model one location over a period of time. Finally, this study determined if the DSMs automatically generated using lightweight UAS and commercial digital cameras could be used for detecting changes in elevation and at what scale. Accuracy was determined by comparing DSMs to a series of reference points collected with survey grade GPS. Other GPS points were also used as control points to georeference the products within Pix4D and APS. The effectiveness of the products for change detection was assessed through image differencing and observance of artificially induced, known elevation changes. The vertical accuracy with the optimal data and model is ≈ 25 cm and the highest consistency over repeat flights is a standard deviation of ≈ 5 cm. Elevation change detection based on such UAS imagery and DSM models should be viable for detecting infrastructure change in urban or suburban environments with little dense canopy vegetation.

  2. Aerial radiological survey of Area 11, Nevada Test Site

    SciTech Connect

    1983-06-01

    An aerial radiological survey of Area 11's Plutonium Valley was conducted at the Nevada Test Site from 18 to 30 January 1982. Contour maps representing terrestrial exposure rates and soil concentrations of transuranics, /sup 235/U and /sup 137/Cs are presented on an aerial photograph. Inventories of the locale's transuranic and uranium activities are also included.

  3. A line transect model for aerial surveys

    USGS Publications Warehouse

    Quang, Pham Xuan; Lanctot, Richard B.

    1991-01-01

    We employ a line transect method to estimate the density of the common and Pacific loon in the Yukon Flats National Wildlife Refuge from aerial survey data. Line transect methods have the advantage of automatically taking into account “visibility bias” due to detectability difference of animals at different distances from the transect line. However, line transect methods must overcome two difficulties when applied to inaccurate recording of sighting distances due to high travel speeds, so that in fact only a few reliable distance class counts are available. We propose a unimodal detection function that provides an estimate of the effective area lost due to the blind strip, under the assumption that a line of perfect detection exists parallel to the transect line. The unimodal detection function can also be applied when a blind strip is absent, and in certain instances when the maximum probability of detection is less than 100%. A simple bootstrap procedure to estimate standard error is illustrated. Finally, we present results from a small set of Monte Carlo experiments.

  4. Georeferencing the Large-Scale Aerial Photographs of a Great Lakes Coastal Wetland: A Modified Photogrammetric Method

    USGS Publications Warehouse

    Murphy, Marilyn K.; Kowalski, Kurt P.; Grapentine, Joel L.

    2010-01-01

    The geocontrol template method was developed to georeference multiple, overlapping analog aerial photographs without reliance upon conventionally obtained horizontal ground control. The method was tested as part of a long-term wetland habitat restoration project at a Lake Erie coastal wetland complex in the U.S. Fish and Wildlife Service Ottawa National Wildlife Refuge. As in most coastal wetlands, annually identifiable ground-control features required to georeference photo-interpreted data are difficult to find. The geocontrol template method relies on the following four components: (a) an uncontrolled aerial photo mosaic of the study area, (b) global positioning system (GPS) derived horizontal coordinates of each photo’s principal point, (c) a geocontrol template created by the transfer of fiducial markings and calculated principal points to clear acetate from individual photographs arranged in a mosaic, and (d) the root-mean-square-error testing of the system to ensure an acceptable level of planimetric accuracy. Once created for a study area, the geocontrol template can be registered in geographic information system (GIS) software to facilitate interpretation of multiple images without individual image registration. The geocontrol template enables precise georeferencing of single images within larger blocks of photographs using a repeatable and consistent method.

  5. A study of methods for lowering aerial environmental survey cost

    NASA Technical Reports Server (NTRS)

    Stansberry, J. R.

    1973-01-01

    The results are presented of a study of methods for lowering the cost of environmental aerial surveys. A wide range of low cost techniques were investigated for possible application to current pressing urban and rural problems. The objective of the study is to establish a definition of the technical problems associated with conducting aerial surveys using various low cost techniques, to conduct a survey of equipment which may be used in low cost systems, and to establish preliminary estimates of cost. A set of candidate systems were selected and described for the environmental survey tasks.

  6. Imaging characteristics of photogrammetric camera systems

    USGS Publications Warehouse

    Welch, R.; Halliday, J.

    1973-01-01

    In view of the current interest in high-altitude and space photographic systems for photogrammetric mapping, the United States Geological Survey (U.S.G.S.) undertook a comprehensive research project designed to explore the practical aspects of applying the latest image quality evaluation techniques to the analysis of such systems. The project had two direct objectives: (1) to evaluate the imaging characteristics of current U.S.G.S. photogrammetric camera systems; and (2) to develop methodologies for predicting the imaging capabilities of photogrammetric camera systems, comparing conventional systems with new or different types of systems, and analyzing the image quality of photographs. Image quality was judged in terms of a number of evaluation factors including response functions, resolving power, and the detectability and measurability of small detail. The limiting capabilities of the U.S.G.S. 6-inch and 12-inch focal length camera systems were established by analyzing laboratory and aerial photographs in terms of these evaluation factors. In the process, the contributing effects of relevant parameters such as lens aberrations, lens aperture, shutter function, image motion, film type, and target contrast procedures for analyzing image quality and predicting and comparing performance capabilities. ?? 1973.

  7. FEASIBILITY EVALUATION OF AN AERIAL RADIAC SURVEY SYSTEM

    DTIC Science & Technology

    An aerial radiac monitor system was evaluated in manned and drone aircraft to determine the feasibility of automatically correcting gamma radiation...telemetry system relayed height-corrected information from drone aircraft to a ground station for recording. The equipment demonstrated the...feasibility of per forming aerial radiological survey, with automatic height correction, in manned and drone air craft of the surveillance types now in

  8. An aerial radiological survey of the Nevada Test Site

    SciTech Connect

    Hendricks, T J; Riedhauser, S R

    1999-12-01

    A team from the Remote Sensing Laboratory conducted an aerial radiological survey of the US Department of Energy's Nevada Test Site including three neighboring areas during August and September 1994. The survey team measured the terrestrial gamma radiation at the Nevada Test Site to determine the levels of natural and man-made radiation. This survey included the areas covered by previous surveys conducted from 1962 through 1993. The results of the aerial survey showed a terrestrial background exposure rate that varied from less than 6 microroentgens per hour (mR/h) to 50 mR/h plus a cosmic-ray contribution that varied from 4.5 mR/h at an elevation of 900 meters (3,000 feet) to 8.5 mR/h at 2,400 meters (8,000 feet). In addition to the principal gamma-emitting, naturally occurring isotopes (potassium-40, thallium-208, bismuth-214, and actinium-228), the man-made radioactive isotopes found in this survey were cobalt-60, cesium-137, europium-152, protactinium-234m an indicator of depleted uranium, and americium-241, which are due to human actions in the survey area. Individual, site-wide plots of gross terrestrial exposure rate, man-made exposure rate, and americium-241 activity (approximating the distribution of all transuranic material) are presented. In addition, expanded plots of individual areas exhibiting these man-made contaminations are given. A comparison is made between the data from this survey and previous aerial radiological surveys of the Nevada Test Site. Some previous ground-based measurements are discussed and related to the aerial data. In regions away from man-made activity, the exposure rates inferred from the gamma-ray measurements collected during this survey agreed very well with the exposure rates inferred from previous aerial surveys.

  9. An aerial radiological survey of Maralinga and EMU, South Australia

    SciTech Connect

    Tipton, W J; Berry, H A; Fritzsche, A E

    1988-10-01

    An aerial radiological survey was conducted over the former British nuclear test ranges at Maralinga and Emu in South Australia from May through July 1987. The survey covered an area of approximately 1,550 square kilometers which included the nine major trial sites, where a nuclear yield occurred, and all the minor trial sites, where physics experiments were conducted. Flight lines were flown at an altitude of 30 meters with line spacings of 50, 100, and 200 meters depending on the area and whether man-made contamination was present. Results of the aerial survey were processed for americium-241 (used to determine plutonium contamination), cesium-137, cobalt-60, and uranium-238. The aerial survey also detected the presence of europium-152, a soil activation product, in the immediate vicinity of the major trial ground zeros. Ground measurements were also made at approximately 120 locations using a high-resolution germanium detector to provide supplemental data for the aerial survey. This survey was conducted as part of a series of studies being conducted over a two to three-year timeframe to obtain information from which options and associated costs can be formulated about the decontamination and possible rehabilitation of the former nuclear test sites.

  10. A photogrammetric DEM of Greenland based on 1978-1987 aerial photos: validation and integration with laser altimetry and satellite-derived DEMs

    NASA Astrophysics Data System (ADS)

    Korsgaard, N. J.; Kjaer, K. H.; Nuth, C.; Khan, S. A.

    2014-12-01

    Here we present a DEM of Greenland covering all ice-free terrain and the margins of the GrIS and local glaciers and ice caps. The DEM is based on the 3534 photos used in the aero-triangulation which were recorded by the Danish Geodata Agency (then the Geodetic Institute) in survey campaigns spanning the period 1978-1987. The GrIS is covered tens of kilometers into the interior due to the large footprints of the photos (30 x 30 km) and control provided by the aero-triangulation. Thus, the data are ideal for providing information for analysis of ice marginal elevation change and also control for satellite-derived DEMs.The results of the validation, error assessments and predicted uncertainties are presented. We test the DEM using Airborne Topographic Mapper (IceBridge ATM) as reference data; evaluate the a posteriori covariance matrix from the aero-triangulation; and co-register DEM blocks of 50 x 50 km to ICESat laser altimetry in order to evaluate the coherency.We complement the aero-photogrammetric DEM with modern laser altimetry and DEMs derived from stereoscopic satellite imagery (AST14DMO) to examine the mass variability of the Northeast Greenland Ice Stream (NEGIS). Our analysis suggests that dynamically-induced mass loss started around 2003 and continued throughout 2014.

  11. GIS for mapping waterfowl density and distribution from aerial surveys

    USGS Publications Warehouse

    Butler, W.I.; Stehn, R.A.; Balogh, G.R.

    1995-01-01

    We modified standard aerial survey data collection to obtain the geographic location for each waterfowl observation on surveys in Alaska during 1987-1993. Using transect navigation with CPS (global positioning system), data recording on continuously running tapes, and a computer data input program, we located observations with an average deviation along transects of 214 m. The method provided flexibility in survey design and data analysis. Although developed for geese nesting near the coast of the Yukon-Kuskokwim Delta, the methods are widely applicable and were used on other waterfowl surveys in Alaska to map distribution and relative abundance of waterfowl. Accurate location data with GIS analysis and display may improve precision and usefulness of data from any aerial transect survey.

  12. Evaluation of aerial survey methods for Dall's sheep

    USGS Publications Warehouse

    Udevitz, Mark S.; Shults, Brad S.; Adams, Layne G.; Kleckner, Christopher

    2006-01-01

    Most Dall's sheep (Ovis dalli dalli) population-monitoring efforts use intensive aerial surveys with no attempt to estimate variance or adjust for potential sightability bias. We used radiocollared sheep to assess factors that could affect sightability of Dall's sheep in standard fixed-wing and helicopter surveys and to evaluate feasibility of methods that might account for sightability bias. Work was conducted in conjunction with annual aerial surveys of Dall's sheep in the western Baird Mountains, Alaska, USA, in 2000–2003. Overall sightability was relatively high compared with other aerial wildlife surveys, with 88% of the available, marked sheep detected in our fixed-wing surveys. Total counts from helicopter surveys were not consistently larger than counts from fixed-wing surveys of the same units, and detection probabilities did not differ for the 2 aircraft types. Our results suggest that total counts from helicopter surveys cannot be used to obtain reliable estimates of detection probabilities for fixed-wing surveys. Groups containing radiocollared sheep often changed in size and composition before they could be observed by a second crew in units that were double-surveyed. Double-observer methods that require determination of which groups were detected by each observer will be infeasible unless survey procedures can be modified so that groups remain more stable between observations. Mean group sizes increased during our study period, and our logistic regression sightability model indicated that detection probabilities increased with group size. Mark–resight estimates of annual population sizes were similar to sightability-model estimates, and confidence intervals overlapped broadly. We recommend the sightability-model approach as the most effective and feasible of the alternatives we considered for monitoring Dall's sheep populations.

  13. A hybrid double-observer sightability model for aerial surveys

    USGS Publications Warehouse

    Griffin, Paul C.; Lubow, Bruce C.; Jenkins, Kurt J.; Vales, David J.; Moeller, Barbara J.; Reid, Mason; Happe, Patricia J.; Mccorquodale, Scott M.; Tirhi, Michelle J.; Schaberi, Jim P.; Beirne, Katherine

    2013-01-01

    Raw counts from aerial surveys make no correction for undetected animals and provide no estimate of precision with which to judge the utility of the counts. Sightability modeling and double-observer (DO) modeling are 2 commonly used approaches to account for detection bias and to estimate precision in aerial surveys. We developed a hybrid DO sightability model (model MH) that uses the strength of each approach to overcome the weakness in the other, for aerial surveys of elk (Cervus elaphus). The hybrid approach uses detection patterns of 2 independent observer pairs in a helicopter and telemetry-based detections of collared elk groups. Candidate MH models reflected hypotheses about effects of recorded covariates and unmodeled heterogeneity on the separate front-seat observer pair and back-seat observer pair detection probabilities. Group size and concealing vegetation cover strongly influenced detection probabilities. The pilot's previous experience participating in aerial surveys influenced detection by the front pair of observers if the elk group was on the pilot's side of the helicopter flight path. In 9 surveys in Mount Rainier National Park, the raw number of elk counted was approximately 80–93% of the abundance estimated by model MH. Uncorrected ratios of bulls per 100 cows generally were low compared to estimates adjusted for detection bias, but ratios of calves per 100 cows were comparable whether based on raw survey counts or adjusted estimates. The hybrid method was an improvement over commonly used alternatives, with improved precision compared to sightability modeling and reduced bias compared to DO modeling.

  14. Sightability adjustment methods for aerial surveys of wildlife populations

    USGS Publications Warehouse

    Steinhorst, R.K.; Samuel, M.D.

    1989-01-01

    Aerial surveys are routinely conducted to estimate the abundance of wildlife species and the rate of population change. However, sightability of animal groups is acknowledged as a significant source of bias in these estimates. Recent research has focused on the development of sightability models to predict the probability of sighting groups under various conditions. Given such models, we show how sightability can be incorporated into the estimator of population size as a probability of response using standard results from sample surveys. We develop formulas for the cases where the sighting probability must be estimated. An example, using data from a helicopter survey of moose in Alberta (Jacobson, Alberta Oil Sands Research Project Report, 1976), is given to illustrate the technique.

  15. Aerial Measuring System (AMS) Baseline Surveys for Emergency Planning

    SciTech Connect

    Lyons, C

    2012-06-04

    Originally established in the 1960s to support the Nuclear Test Program, the AMS mission is to provide a rapid and comprehensive worldwide aerial measurement, analysis, and interpretation capability in response to a nuclear/radiological emergency. AMS provides a responsive team of individuals whose processes allow for a mission to be conducted and completed with results available within hours. This presentation slide-show reviews some of the history of the AMS, summarizes present capabilities and methods, and addresses the value of the surveys.

  16. Aerial infrared surveys in the investigation of geothermal and volcanic heat sources

    USGS Publications Warehouse

    ,

    1995-01-01

    This factsheet briefly summarizes and clarifies the application of aerial infrared surveys in geophysical exploration for geothermal energy sources and environmental monitoring for potential volcanic hazards.

  17. Ground point filtering of UAV-based photogrammetric point clouds

    NASA Astrophysics Data System (ADS)

    Anders, Niels; Seijmonsbergen, Arie; Masselink, Rens; Keesstra, Saskia

    2016-04-01

    Unmanned Aerial Vehicles (UAVs) have proved invaluable for generating high-resolution and multi-temporal imagery. Based on photographic surveys, 3D surface reconstructions can be derived photogrammetrically so producing point clouds, orthophotos and surface models. For geomorphological or ecological applications it may be necessary to separate ground points from vegetation points. Existing filtering methods are designed for point clouds derived using other methods, e.g. laser scanning. The purpose of this paper is to test three filtering algorithms for the extraction of ground points from point clouds derived from low-altitude aerial photography. Three subareas were selected from a single flight which represent different scenarios: 1) low relief, sparsely vegetated area, 2) low relief, moderately vegetated area, 3) medium relief and moderately vegetated area. The three filtering methods are used to classify ground points in different ways, based on 1) RGB color values from training samples, 2) TIN densification as implemented in LAStools, and 3) an iterative surface lowering algorithm. Ground points are then interpolated into a digital terrain model using inverse distance weighting. The results suggest that different landscapes require different filtering methods for optimal ground point extraction. While iterative surface lowering and TIN densification are fully automated, color-based classification require fine-tuning in order to optimize the filtering results. Finally, we conclude that filtering photogrammetric point clouds could provide a cheap alternative to laser scan surveys for creating digital terrain models in sparsely vegetated areas.

  18. AMS/NRCan Joint Survey Report: Aerial Campaign

    SciTech Connect

    Wasiolek, Piotr; Stampahar, Jez; Malchow, Rusty; Stampahar, Tom; Lukens, Mike; Seywerd, Henry; Fortin, Richard; Harvey, Brad; Sinclair, Laurel

    2014-12-31

    In January 2014 the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) Aerial Measuring System (AMS) and the Natural Resources Canada (NRCan) Nuclear Emergency Response project conducted a series of joint surveys at a number of locations in Nevada including the Nevada National Security Site (NNSS). The goal of this project was to compare the responses of the two agencies’ aerial radiation detection systems and data analysis techniques. This test included varied radioactive surface contamination levels and isotopic composition experienced at the NNSS and the differing data processing techniques utilized by the respective teams. Because both teams used the commercial aerial radiation detection systems from Radiation Solutions, Inc., the main focus of the campaign was to investigate the data acquisition techniques, data analysis, and ground-truth verification. The NRCan system consisted of four 4" × 4" × 16" NaI(Tl) scintillator crystals of which two were externally mounted in a modified commercial cargo basket certified for the Eurocopter AS350; the NNSA AMS system consisted of twelve 2" × 4" × 16" NaI(Tl) crystals in externally mounted dedicated pods. For NRCan, the joint survey provided an opportunity to characterize their system’s response to extended sources of various fission products at the NNSS. Since both systems play an important role in their respective countries’ national framework of radiological emergency response and are subject to multiple mutual cooperation agreements, it was important for each country to obtain more thorough knowledge of how they would employ these important assets and define the roles that they would each play in an actual response.

  19. Recent advances in aerial gamma-ray surveying.

    PubMed

    Dickson, Bruce L

    2004-01-01

    Aerial gamma-ray surveying uses NaI(Tl) detectors mounted in small aircraft to measure gamma radiation, emitted from the earth's surface. The data are collected as gamma-ray spectra, typically with 1 s counting times, from which are derived K, U and Th concentrations in the ground. Applications of aerial surveying include geological mapping for mineral exploration, soil mapping for agriculture, pollution studies and location of lost sources. Recent advances in applying statistical methods to the spectral data have resulted in large reductions in the noise levels in the surveys. Some of the methods available to do this include noise adjusted singular value decomposition (NASVD) [Proceedings of Exploration 97: Fourth Decennial International Conference on Mineral Exploration (1997) 753] and maximum noise fraction (MNF) and enhanced MNF (eMNF) [Explor. Geophys. 31 (2000) 73]. These methods, in general, apply normalization for variance to the spectra, use a principal component method to obtain the "significant" components of the data and reconstruct cleaned spectra, which are then processed in a standard manner to get radionuclide concentrations. However, they differ in the detail of the application and thus give slightly different results. In this paper, the application of noise reduction methods to various synthetic surveys is used to examine the strengths and weaknesses of the methods. In tests where there are high correlations between U and Th, the eMNF method performs best although the results are improved by prior clustering of the data by the Th/U ratio. If the data show no correlations, then the effectiveness of all the noise removal methods is reduced. If a data set is small (<1500 spectra), then MNF appears to be the better method. Consideration of the various tests suggests an optimum process whereby spectra are sorted into groups by the Th/U ratio of areas identified in a standard processing and then cleaned by eMNF or MNF, depending on the number of spectra

  20. 1:500 Scale Aerial Triangulation Test with Unmanned Airship in Hubei Province

    NASA Astrophysics Data System (ADS)

    Feifei, Xie; Zongjian, Lin; Dezhu, Gui

    2014-03-01

    A new UAVS (Unmanned Aerial Vehicle System) for low altitude aerial photogrammetry is introduced for fine surveying and mapping, including the platform airship, sensor system four-combined wide-angle camera and photogrammetry software MAP-AT. It is demonstrated that this low-altitude aerial photogrammetric system meets the precision requirements of 1:500 scale aerial triangulation based on the test of this system in Hubei province, including the working condition of the airship, the quality of image data and the data processing report. This work provides a possibility for fine surveying and mapping.

  1. An aerial survey method to estimate sea otter abundance

    USGS Publications Warehouse

    Bodkin, J.L.; Udevitz, M.S.; Garner, G.W.; Amstrup, Steven C.; Laake, J.L.; Manly, B. F. J.; McDonald, L.L.; Robertson, Donna G.

    1999-01-01

    Sea otters (Enhydra lutris) occur in shallow coastal habitats and can be highly visible on the sea surface. They generally rest in groups and their detection depends on factors that include sea conditions, viewing platform, observer technique and skill, distance, habitat and group size. While visible on the surface, they are difficult to see while diving and may dive in response to an approaching survey platform. We developed and tested an aerial survey method that uses intensive searches within portions of strip transects to adjust for availability and sightability biases. Correction factors are estimated independently for each survey and observer. In tests of our method using shore-based observers, we estimated detection probabilities of 0.52-0.72 in standard strip-transects and 0.96 in intensive searches. We used the survey method in Prince William Sound, Alaska to estimate a sea otter population size of 9,092 (SE = 1422). The new method represents an improvement over various aspects of previous methods, but additional development and testing will be required prior to its broad application.

  2. Detection probability in aerial surveys of feral horses

    USGS Publications Warehouse

    Ransom, Jason I.

    2011-01-01

    Observation bias pervades data collected during aerial surveys of large animals, and although some sources can be mitigated with informed planning, others must be addressed using valid sampling techniques that carefully model detection probability. Nonetheless, aerial surveys are frequently employed to count large mammals without applying such methods to account for heterogeneity in visibility of animal groups on the landscape. This often leaves managers and interest groups at odds over decisions that are not adequately informed. I analyzed detection of feral horse (Equus caballus) groups by dual independent observers from 24 fixed-wing and 16 helicopter flights using mixed-effect logistic regression models to investigate potential sources of observation bias. I accounted for observer skill, population location, and aircraft type in the model structure and analyzed the effects of group size, sun effect (position related to observer), vegetation type, topography, cloud cover, percent snow cover, and observer fatigue on detection of horse groups. The most important model-averaged effects for both fixed-wing and helicopter surveys included group size (fixed-wing: odds ratio = 0.891, 95% CI = 0.850–0.935; helicopter: odds ratio = 0.640, 95% CI = 0.587–0.698) and sun effect (fixed-wing: odds ratio = 0.632, 95% CI = 0.350–1.141; helicopter: odds ratio = 0.194, 95% CI = 0.080–0.470). Observer fatigue was also an important effect in the best model for helicopter surveys, with detection probability declining after 3 hr of survey time (odds ratio = 0.278, 95% CI = 0.144–0.537). Biases arising from sun effect and observer fatigue can be mitigated by pre-flight survey design. Other sources of bias, such as those arising from group size, topography, and vegetation can only be addressed by employing valid sampling techniques such as double sampling, mark–resight (batch-marked animals), mark–recapture (uniquely marked and

  3. Initial Efforts toward Mission-Representative Imaging Surveys from Aerial Explorers

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Plice, Laura; Ippolito, Corey; Young, Larry A.; Lau, Benton; Lee, Pascal

    2004-01-01

    Numerous researchers have proposed the use of robotic aerial explorers to perform scientific investigation of planetary bodies in our solar system. One of the essential tasks for any aerial explorer is to be able to perform scientifically valuable imaging surveys. The focus of this paper is to discuss the challenges implicit in, and recent observations related to, acquiring mission-representative imaging data from a small fixed-wing UAV, acting as a surrogate planetary aerial explorer. This question of successfully performing aerial explorer surveys is also tied to other topics of technical investigation, including the development of unique bio-inspired technologies.

  4. New aerial survey and hierarchical model to estimate manatee abundance

    USGS Publications Warehouse

    Langimm, Cahterine A.; Dorazio, Robert M.; Stith, Bradley M.; Doyle, Terry J.

    2011-01-01

    Monitoring the response of endangered and protected species to hydrological restoration is a major component of the adaptive management framework of the Comprehensive Everglades Restoration Plan. The endangered Florida manatee (Trichechus manatus latirostris) lives at the marine-freshwater interface in southwest Florida and is likely to be affected by hydrologic restoration. To provide managers with prerestoration information on distribution and abundance for postrestoration comparison, we developed and implemented a new aerial survey design and hierarchical statistical model to estimate and map abundance of manatees as a function of patch-specific habitat characteristics, indicative of manatee requirements for offshore forage (seagrass), inland fresh drinking water, and warm-water winter refuge. We estimated the number of groups of manatees from dual-observer counts and estimated the number of individuals within groups by removal sampling. Our model is unique in that we jointly analyzed group and individual counts using assumptions that allow probabilities of group detection to depend on group size. Ours is the first analysis of manatee aerial surveys to model spatial and temporal abundance of manatees in association with habitat type while accounting for imperfect detection. We conducted the study in the Ten Thousand Islands area of southwestern Florida, USA, which was expected to be affected by the Picayune Strand Restoration Project to restore hydrology altered for a failed real-estate development. We conducted 11 surveys in 2006, spanning the cold, dry season and warm, wet season. To examine short-term and seasonal changes in distribution we flew paired surveys 1–2 days apart within a given month during the year. Manatees were sparsely distributed across the landscape in small groups. Probability of detection of a group increased with group size; the magnitude of the relationship between group size and detection probability varied among surveys. Probability

  5. Aerial surveys adjusted by ground surveys to estimate area occupied by black-tailed prairie dog colonies

    USGS Publications Warehouse

    Sidle, John G.; Augustine, David J.; Johnson, Douglas H.; Miller, Sterling D.; Cully, Jack F.; Reading, Richard P.

    2012-01-01

    Aerial surveys using line-intercept methods are one approach to estimate the extent of prairie dog colonies in a large geographic area. Although black-tailed prairie dogs (Cynomys ludovicianus) construct conspicuous mounds at burrow openings, aerial observers have difficulty discriminating between areas with burrows occupied by prairie dogs (colonies) versus areas of uninhabited burrows (uninhabited colony sites). Consequently, aerial line-intercept surveys may overestimate prairie dog colony extent unless adjusted by an on-the-ground inspection of a sample of intercepts. We compared aerial line-intercept surveys conducted over 2 National Grasslands in Colorado, USA, with independent ground-mapping of known black-tailed prairie dog colonies. Aerial line-intercepts adjusted by ground surveys using a single activity category adjustment overestimated colonies by ≥94% on the Comanche National Grassland and ≥58% on the Pawnee National Grassland. We present a ground-survey technique that involves 1) visiting on the ground a subset of aerial intercepts classified as occupied colonies plus a subset of intercepts classified as uninhabited colony sites, and 2) based on these ground observations, recording the proportion of each aerial intercept that intersects a colony and the proportion that intersects an uninhabited colony site. Where line-intercept techniques are applied to aerial surveys or remotely sensed imagery, this method can provide more accurate estimates of black-tailed prairie dog abundance and trends

  6. Monitoring Whooping Crane Abundance Using Aerial Surveys: Influences on Detectability.

    PubMed

    Strobel, Bradley N; Butler, Matthew J

    2014-03-01

    The whooping crane (Grus americana), an endangered species, has been counted on its winter grounds in Texas, USA, since 1950 using fixed-wing aircraft. Many shortcomings of the traditional survey technique have been identified, calling into question its efficacy, defensibility, repeatability, and usefulness into the future. To improve and standardize monitoring effort, we began investigating new survey techniques. Here we focus on efficacy of line transect-based distance sampling during aerial surveys. We conducted a preliminary test of distance sampling during winter 2010-2011 while flying the traditional survey, which indicated that detectability within 500 m of transects was 0.558 (SE = 0.031). We then used an experimental decoy survey to evaluate impacts of observer experience, sun position, distance from transect, and group size on detectability. Our results indicated decoy detectability increased with group size and exhibited a quadratic relationship with distance likely due to pontoons on the aircraft. We found that detectability was 2.704 times greater when the sun was overhead and 3.912 times greater when the sun was at the observer's back than when it was in the observer's eyes. We found that an inexperienced observer misclassified non-target objects more often than an experienced observer. During the decoy experiment we used marks on the struts to categorize distances into intervals, but we found that observers misclassified distances 46.7% of the time (95% CI = 37.0-56.6%). Also, we found that detectability of individuals within detected groups was affected by group size and distance from transect. We discuss how these results inform design and implementation of future whooping crane monitoring efforts. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  7. Monitoring Whooping Crane Abundance Using Aerial Surveys: Influences on Detectability

    PubMed Central

    Strobel, Bradley N; Butler, Matthew J

    2014-01-01

    The whooping crane (Grus americana), an endangered species, has been counted on its winter grounds in Texas, USA, since 1950 using fixed-wing aircraft. Many shortcomings of the traditional survey technique have been identified, calling into question its efficacy, defensibility, repeatability, and usefulness into the future. To improve and standardize monitoring effort, we began investigating new survey techniques. Here we focus on efficacy of line transect-based distance sampling during aerial surveys. We conducted a preliminary test of distance sampling during winter 2010–2011 while flying the traditional survey, which indicated that detectability within 500 m of transects was 0.558 (SE = 0.031). We then used an experimental decoy survey to evaluate impacts of observer experience, sun position, distance from transect, and group size on detectability. Our results indicated decoy detectability increased with group size and exhibited a quadratic relationship with distance likely due to pontoons on the aircraft. We found that detectability was 2.704 times greater when the sun was overhead and 3.912 times greater when the sun was at the observer's back than when it was in the observer's eyes. We found that an inexperienced observer misclassified non-target objects more often than an experienced observer. During the decoy experiment we used marks on the struts to categorize distances into intervals, but we found that observers misclassified distances 46.7% of the time (95% CI = 37.0–56.6%). Also, we found that detectability of individuals within detected groups was affected by group size and distance from transect. We discuss how these results inform design and implementation of future whooping crane monitoring efforts. Published 2013. This article is a U.S. Government work and is in the public domain in the USA. PMID:26388657

  8. Introduction of a Photogrammetric Camera System for Rpas with Highly Accurate Gnss/imu Information for Standardized Workflows

    NASA Astrophysics Data System (ADS)

    Kraft, T.; Geßner, M.; Meißner, H.; Przybilla, H. J.; Gerke, M.

    2016-03-01

    In this paper we present the evaluation of DLR's modular airborne camera system MACS-Micro for remotely piloted aircraft system (RPAS) with a maximum takeoff weight (MTOW) less than 5kg. The main focus is on standardized calibration and test procedures as well as on standardized photogrammetric workflows as a proof of feasibility for this aerial camera concept. The prototype consists of an industrial grade frame imaging camera and a compact GNSS/IMU solution which are operated by an embedded PC. The camera has been calibrated pre- and post- flight using a three dimensional test field. The validation of the latest prototype is done by a traditional photogrammetric evaluation of an aerial survey using 39 ground control points. The results, concerning geometric and radiometric features of the present system concept as well as the quality of the aero triangulation, fulfill many of the aimed keyspecifications.

  9. Aerial Surveys Give New Estimates for Orangutans in Sabah, Malaysia

    PubMed Central

    Gimenez, Olivier; Ambu, Laurentius; Ancrenaz, Karine; Andau, Patrick; Goossens, Benoît; Payne, John; Sawang, Azri; Tuuga, Augustine; Lackman-Ancrenaz, Isabelle

    2005-01-01

    Great apes are threatened with extinction, but precise information about the distribution and size of most populations is currently lacking. We conducted orangutan nest counts in the Malaysian state of Sabah (North Borneo), using a combination of ground and helicopter surveys, and provided a way to estimate the current distribution and size of the populations living throughout the entire state. We show that the number of nests detected during aerial surveys is directly related to the estimated true animal density and that a helicopter is an efficient tool to provide robust estimates of orangutan numbers. Our results reveal that with a total estimated population size of about 11,000 individuals, Sabah is one of the main strongholds for orangutans in North Borneo. More than 60% of orangutans living in the state occur outside protected areas, in production forests that have been through several rounds of logging extraction and are still exploited for timber. The role of exploited forests clearly merits further investigation for orangutan conservation in Sabah. PMID:15630475

  10. Aerial surveys give new estimates for orangutans in Sabah, Malaysia.

    PubMed

    Ancrenaz, Marc; Gimenez, Olivier; Ambu, Laurentius; Ancrenaz, Karine; Andau, Patrick; Goossens, Benoît; Payne, John; Sawang, Azri; Tuuga, Augustine; Lackman-Ancrenaz, Isabelle

    2005-01-01

    Great apes are threatened with extinction, but precise information about the distribution and size of most populations is currently lacking. We conducted orangutan nest counts in the Malaysian state of Sabah (North Borneo), using a combination of ground and helicopter surveys, and provided a way to estimate the current distribution and size of the populations living throughout the entire state. We show that the number of nests detected during aerial surveys is directly related to the estimated true animal density and that a helicopter is an efficient tool to provide robust estimates of orangutan numbers. Our results reveal that with a total estimated population size of about 11,000 individuals, Sabah is one of the main strongholds for orangutans in North Borneo. More than 60% of orangutans living in the state occur outside protected areas, in production forests that have been through several rounds of logging extraction and are still exploited for timber. The role of exploited forests clearly merits further investigation for orangutan conservation in Sabah.

  11. Evaluation of an aerial survey of Pacific walruses

    USGS Publications Warehouse

    Estes, J.A.; Gilbert, James R.

    1978-01-01

    An aerial survey of Pacific walruses (Odobenus rosmarus divergens) was evaluated to determine the reliability of estimates of population abundance. The probability of detecting groups of walruses on the pack ice remained uniform to at least 0.93 km from the flight line, whereas the probability of detection decreased significantly beyond 0.23 km for walruses in the water. Walruses were more abundant along the ice-edge zone between 162 and 165°W than in other areas of the Chukchi Sea during September 1975. Few walruses were observed in consolidated pack ice north of the ice-edge zone or in ice-free water to the south. More walrus groups and larger mean group size were observed on September 8 than on other days. We estimated abundance for each day and all days combined using methods based on sample area and numbers of strip samples. Estimates varied among days by over an order of magnitude; this variation is attributed to the combined effect of chance sampling of an aggregated population and variation in the fraction of walruses hauled out. The coefficient of variation of the estimates ranged between 0.25 and 0.99. This imprecision was due to the aggregated distribution of walruses and the large variation in group size. Using the survey data as a basis for stratification, we calculated that, due to the high variability within strata, a sample size of 40% of the total area or 56% of the total available strips would be required to obtain 95% confidence limits within 10% of the estimate of total abundance. Variation contributed by observer error in estimating group size also is relatively unimportant to the precision of abundance estimates. Studies of natural history, particularly those oriented toward activity and habitat selection, would help investigators estimate bias due to the variable fraction hauled out and design surveys based on meaningful strata. Estimates of total abundance based on limited survey efforts will provide information of little reliability.

  12. An aerial radiological survey of the Sandia National Laboratories and surrounding area

    SciTech Connect

    Riedhauser, S.R.

    1994-06-01

    A team from the Remote Sensing Laboratory conducted an aerial radiological survey of the area surrounding the Sandia National Laboratories and Kirtland Air Force Base in Albuquerque, New Mexico, during March and April 1993. The survey team measured the terrestrial gamma radiation at the site to determine the levels of natural and man-made radiation. This survey includes the areas covered by a previous survey in 1981. The results of the aerial survey show a background exposure rate which varies between 5 and 18 {mu}R/h plus an approximate 6 {mu}R/h contribution from cosmic rays. The major radioactive isotopes found in this survey were: potassium-40, thallium-208, bismuth-214, and actinium-228, which are all naturally-occurring isotopes, and cobalt-60, cesium-137, and excess amounts of thallium-208 and actinium-228, which are due to human actions in the survey area. In regions away from man-made activity, the exposure rates inferred from this survey`s gamma ray measurements agree almost exactly with the exposure rates inferred from the 1981 survey. In addition to the aerial measurements, another survey team conducted in situ and soil sample radiation measurements at three sites within the survey perimeter. These ground-based measurements agree with the aerial measurements within {+-} 5%.

  13. Photogrammetric Reconstruction with Bayesian Information

    NASA Astrophysics Data System (ADS)

    Masiero, A.; Fissore, F.; Guarnieri, A.; Pirotti, F.; Vettore, A.

    2016-06-01

    Nowadays photogrammetry and laser scanning methods are the most wide spread surveying techniques. Laser scanning methods usually allow to obtain more accurate results with respect to photogrammetry, but their use have some issues, e.g. related to the high cost of the instrumentation and the typical need of high qualified personnel to acquire experimental data on the field. Differently, photogrammetric reconstruction can be achieved by means of low cost devices and by persons without specific training. Furthermore, the recent diffusion of smart devices (e.g. smartphones) embedded with imaging and positioning sensors (i.e. standard camera, GNSS receiver, inertial measurement unit) is opening the possibility of integrating more information in the photogrammetric reconstruction procedure, in order to increase its computational efficiency, its robustness and accuracy. In accordance with the above observations, this paper examines and validates new possibilities for the integration of information provided by the inertial measurement unit (IMU) into the photogrammetric reconstruction procedure, and, to be more specific, into the procedure for solving the feature matching and the bundle adjustment problems.

  14. An aerial radiological survey of the Paducah Gaseous Diffusion Plant and surrounding area, Paducah, Kentucky

    SciTech Connect

    Not Available

    1992-11-01

    An aerial radiological survey of the Paducah Gaseous Diffusion Plant (PGDP) and surrounding area in Paducah, Kentucky, was conducted during May 15--25, 1990. The purpose of the survey was to measure and document the terrestrial radiological environment at the PGDP and surrounding area for use in effective environmental management and emergency response planning. The aerial survey was flown at an altitude of 61 meters (200 feet) along a series of parallel lines 107 meters (350 feet) apart. The survey encompassed an area of 62 square kilometers (24 square miles), bordered on the north by the Ohio River. The results of the aerial survey are reported as inferred exposure rates at 1 meter above ground level in the form of a gamma radiation contour map. Typical background exposure rates were found to vary from 5 to 12 microroentgens per hour ([mu]R/h). Protactinium-234m, a radioisotope indicative of uranium-238, was detected at several facilities at the PGDR. In support of the aerial survey, ground-based exposure rate and soil sample measurements were obtained at several sites within the survey perimeter. The results of the aerial and ground-based measurements were found to agree within [plus minus]15%.

  15. Aerial radiological surveys of Steed Pond, Savannah River Site: Dates of surveys, 1984--1989

    SciTech Connect

    Fritzsche, A.E.; Jobst, J.E.

    1993-09-01

    From June 1984 to August 1985, three aerial radiological surveys were conducted over Steed Pond at the Savannah River Site in South Carolina. In addition, Steed Pond was included in larger-area surveys of the Savannah River Site in subsequent years. The surveys were conducted by the Remote Sensing Laboratory of EG&G Energy Measurements, Inc., Las Vegas, Nevada, for the US Department of Energy. Airborne measurements were obtained for both natural and man-made gamma radiation over Steed Pond and surrounding areas. The first survey was conducted when the pond was filled to normal capacity for the time of the year. On September 1, 1984, the Steed Pond dam spillway failed causing the pond to drain. The four subsequent surveys were conducted with the pond drained. The second survey and the third were conducted to study silt deposits exposed by the drop in water level after the spillway`s opening. Steed Pond data from the February 1987 and April 1989 Savannah River Site surveys have been included to bring this study up to date.

  16. Aerial remote sensing surveys progress report: Helicopter geophysical survey of the Oak Ridge Reservation

    SciTech Connect

    Doll, W.E.; Nyquist, J.E.; King, A.D.; Bell, D.T.; Holladay, J.S.; Labson, V.F.; Pellerin, L.

    1993-03-01

    The 35,252 acre Department of Energy Oak Ridge Reservation (ORR) in the western portion of the Appalachian Valley and Ridge Province in Tennessee, has been a nuclear production and development facility for50 years. Contaminants in the many waste sites on the ORR include a wide variety of radioactive isotopes as well as many organic and inorganic compounds. The locations, geometry, and contents of many of these waste sites are reasonably well known, while others are poorly known or unknown. To better characterize the reasonably well known sites and search for additional potentially environmentally hazardous sites, a two-phase aerial survey of the ORR was developed. Phase I began in March 1992 and consisted of aerial radiation, multispectral scanner, and photographic (natural color and color infrared) surveys. Phase II began in November 1992 and is described in this report. Phase II consisted of helicopter electromagnetic (HEM), magnetic, and gamma radiation surveys. Targets of the survey included both man-made (drums, trench boundaries, burn pits, well heads) and geologic (fractures, faults, karst features, geologic contacts) features. The Phase II survey has three components: testing, reconnaissance, and high-resolution data acquisition. To date, the testing and reconnaissance data acquisition have been completed, and some of the data have been processed. They indicate that: (1) magnetic and HEM data are complementary and do not always highlight the same anomaly; (2) under favorable circumstances, helicopter magnetometer systems are capable of detecting groups of four or more 55-gal drums at detector altitudes of 15 m or less; (3) HEM data provide data that compare favorably with surface data collected over burial trenches, (4) well casings may be related to magnetic monopole anomalies, as would be expected; and (5) changes in HEM and magnetic anomaly character are related to lithologic changes and may be used to track contacts between known outcrops.

  17. Estimating soil organic carbon using aerial imagery and soil surveys

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Widespread implementation of precision agriculture practices requires low-cost, high-quality, georeferenced soil organic carbon (SOC) maps, but currently these maps require expensive sample collection and analysis. Widely available aerial imagery is a low-cost source of georeferenced data. After til...

  18. Standardized Technical Data Survey (STDS) for Aerial Refueling

    DTIC Science & Technology

    2016-09-06

    capabilities, formation aids (lighting/marking, director lights and status lights, rendezvous equipment (radios, radar, etc.), emergency procedures/engine out...structural load, fuel line pressure capabilities, pressure regulation capabilities, formation aids (lighting/marking, director lights and status lights...tanker boom envelope, lighting, formation aids , markings, fuel property requirements, fuel transfer charts, tanker/receiver aerial refueling altitude

  19. An aerial radiological survey of the project Rio Blanco and surrounding area

    SciTech Connect

    Singman, L.V.

    1994-11-01

    A team from the Remote Sensing Laboratory in Las Vegas, Nevada, conducted an aerial radiation survey of the area surrounding ground zero of Project Rio Blanco in the northwestern section of Colorado in June 1993. The object of the survey was to determine if there were man-made radioisotopes on or near the surface resulting from a nuclear explosion in 1972. No indications of surface contamination were found. A search for the cesium-137 radioisotope was negative. The Minimum Detectable Activity for cesium-137 is presented for several detection probabilities. The natural terrestrial exposure rates in units of Roentgens per hour were mapped and are presented in the form of a contour map over-laid on an aerial photograph. A second team made independent ground-based measurements in four places within the survey area. The average agreement of the ground-based with aerial measurements was six percent.

  20. Polar bear aerial survey in the eastern Chukchi Sea: A pilot study

    USGS Publications Warehouse

    Evans, Thomas J.; Fischbach, Anthony S.; Schliebe, Scott; Manly, Bryan; Kalxdorff, Susanne; York, Geoff S.

    2003-01-01

    Alaska has two polar bear populations: the Southern Beaufort Sea population, shared with Canada, and the Chukchi/Bering Seas population, shared with Russia. Currently a reliable population estimate for the Chukchi/Bering Seas population does not exist. Land-based aerial and mark-recapture population surveys may not be possible in the Chukchi Sea because variable ice conditions, the limited range of helicopters, extremely large polar bear home ranges, and severe weather conditions may limit access to remote areas. Thus line-transect aerial surveys from icebreakers may be the best available tool to monitor this polar bear stock. In August 2000, a line-transect survey was conducted in the eastern Chukchi Sea and western Beaufort Sea from helicopters based on a U.S. Coast Guard icebreaker under the "Ship of Opportunity" program. The objectives of this pilot study were to estimate polar bear density in the eastern Chukchi and western Beaufort Seas and to assess the logistical feasibility of using ship-based aerial surveys to develop polar bear population estimates. Twenty-nine polar bears in 25 groups were sighted on 94 transects (8257 km). The density of bears was estimated as 1 bear per 147 km² (CV = 38%). Additional aerial surveys in late fall, using dedicated icebreakers, would be required to achieve the number of sightings, survey effort, coverage, and precision needed for more effective monitoring of population trends in the Chukchi Sea.

  1. Aerial surveys and tagging of free-drifting icebergs using an unmanned aerial vehicle (UAV)

    NASA Astrophysics Data System (ADS)

    McGill, P. R.; Reisenbichler, K. R.; Etchemendy, S. A.; Dawe, T. C.; Hobson, B. W.

    2011-06-01

    Ship-based observations of free-drifting icebergs are hindered by the dangers of calving ice. To improve the efficacy and safety of these studies, new unmanned aerial vehicles (UAVs) were developed and then deployed in the Southern Ocean. These inexpensive UAVs were launched and recovered from a ship by scientific personal with a few weeks of flight training. The UAVs sent real-time video back to the ship, allowing researchers to observe conditions in regions of the icebergs not visible from the ship. In addition, the UAVs dropped newly developed global positioning system (GPS) tracking tags, permitting researchers to record the precise position of the icebergs over time. The position reports received from the tags show that the motion of free-drifting icebergs changes rapidly and is a complex combination of both translation and rotation.

  2. An Aerial Radiological Survey of the Yucca Mountain Project Proposed Land Withdrawal and Adjacent Areas

    SciTech Connect

    Craig Lyons, Thane Hendricks

    2006-07-01

    An aerial radiological survey of the Yucca Mountain Project (YMP) proposed land withdrawal was conducted from January to April 2006, and encompassed a total area of approximately 284 square miles (73,556 hectares). The aerial radiological survey was conducted to provide a sound technical basis and rigorous statistical approach for determining the potential presence of radiological contaminants in the Yucca Mountain proposed Land withdrawal area. The survey site included land areas currently managed by the Bureau of Land Management, the U.S. Air Force as part of the Nevada Test and Training Range or the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as part of the Nevada Test Site (NTS). The survey was flown at an approximate ground speed of 70 knots (36 meters per second), at a nominal altitude of 150 ft (46 m) above ground level, along a set of parallel flight lines spaced 250 ft (76 m) apart. The flight lines were oriented in a north-south trajectory. The survey was conducted by the DOE NNSA/NSO Remote Sensing Laboratory-Nellis, which is located in Las Vegas, Nevada. The aerial survey was conducted at the request of the DOE Office of Civilian Radioactive Waste Management. The primary contaminant of concern was identified by YMP personnel as cesium-137 ({sup 137}Cs). Due to the proposed land withdrawal area's proximity to the historical Nuclear Rocket Development Station (NRDS) facilities located on the NTS, the aerial survey system required sufficient sensitivity to discriminate between dispersed but elevated {sup 137}Cs levels from those normally encountered from worldwide fallout. As part of that process, the survey also measured and mapped the exposure-rate levels that currently existed within the survey area. The inferred aerial exposure rates of the natural terrestrial background radiation varied from less than 3 to 22 microroentgens per hour. This range of exposure rates was primarily due to the

  3. Sources of variation in detection of wading birds from aerial surveys in the florida Everglades

    USGS Publications Warehouse

    Conroy, M.J.; Peterson, J.T.; Bass, O.L.; Fonnesbeck, C.J.; Howell, J.E.; Moore, C.T.; Runge, J.P.

    2008-01-01

    We conducted dual-observer trials to estimate detection probabilities (probability that a group that is present and available is detected) for fixed-wing aerial surveys of wading birds in the Everglades system, Florida. Detection probability ranged from <0.2 to similar to 0.75 and varied according to species, group size, observer, and the observer's position in the aircraft (front or rear seat). Aerial-survey simulations indicated that incomplete detection can have a substantial effect oil assessment of population trends, particularly river relatively short intervals (<= 3 years) and small annual changes in population size (<= 3%). We conclude that detection bias is an important consideration for interpreting observations from aerial surveys of wading birds, potentially limiting the use of these data for comparative purposes and trend analyses. We recommend that workers conducting aerial surveys for wading birds endeavor to reduce observer and other controllable sources of detection bias and account for uncontrollable sources through incorporation of dual-observer or other calibratior methods as part of survey design (e.g., using double sampling).

  4. Photogrammetric camera calibration

    USGS Publications Warehouse

    Tayman, W.P.; Ziemann, H.

    1984-01-01

    Section 2 (Calibration) of the document "Recommended Procedures for Calibrating Photogrammetric Cameras and Related Optical Tests" from the International Archives of Photogrammetry, Vol. XIII, Part 4, is reviewed in the light of recent practical work, and suggestions for changes are made. These suggestions are intended as a basis for a further discussion. ?? 1984.

  5. A review of aerial radiological surveys of Nevada Test Site fallout fields 1951 through 1970

    SciTech Connect

    1987-12-01

    Aerial surveys of offsite fallout radiation fields from the Nevada Test Site began in the early 1950s and continued throughout the above-ground testing period. The results of the aerial surveys were used to support ground data in determining the extent of the fallout patterns. For the series of tests conducted in 1953 and 1955, the primary uncertainty of the results was knowing the location of the aircraft. Navigation was made from aeronautical charts of a scale 1:1,000,000, and errors in location of several miles were experienced. Another problem was that exposure rate readings made in the aircraft of 1 milliroentgen per hour or lower were not reliable. Exposure rate measurements above 1 milliroentgen per hour were more accurate, however, and are considered reliable to within a factor of two or three in predicting 3-foot exposure rate levels. For the 1957 series, the aircraft position data were quite accurate. Ground-level exposure rates predicted from aerial data obtained by the United States Geological Survey aircraft for the five-detector array were considered reliable to within +-40% or better for most of the surveys. When the single detector was used, the accuracy decreased to about a factor of two. Relative count rates obtained by the aircraft operated by the Atomic Energy Commission, Raw Materials Division, are probably valid, but quantitative determination of 3-foot exposure rates are not. The Aerial Radiological Monitoring System performed all the aerial surveys in the 1960s. However, the air-to-ground conversion factors used were too low. Using a corrected conversion factor, the predicted 3-foot exposure rates should be valid to +-40% in most fallout fields if all other parameters are considered. 40 refs., 30 figs., 6 tabs.

  6. Surveying World Heritage Islamic Monuments in North Africa: Experiences with Simple Photogrammetric Tools and no Previous Planning

    NASA Astrophysics Data System (ADS)

    Almagro, A.

    2013-07-01

    Different experiences of surveys of Islamic monuments from different sites of Tunisia, Algeria and Morocco are presented. They have been made with simple tools: one photographic camera and a laser meter, without a previous planning or prevision for the survey, profiting from visits organized during scientific meetings to which the author was invited. Some of these monuments belong to sites included in the World Heritage List, but no metric documents or only low quality information is available. Monumental Almohad gates from Rabat and Marrakech, the al-Badi palace of Marrakech, the minarets of Mansura and the Qala of Beni Hammad, the dome in front of the mihrab of the mosque of Tlemcen are some of the examples to be presented. The methodology applied is based on ideas and tools acquired in CIPA meetings proving the usefulness of these encounters but supporting the idea that "providers" should provide tools and methods and "users" should be responsible for documentation, never missing the opportunity of acquiring knowledge from the heritage during the survey process.

  7. An aerial radiological survey of the Pilgrim Station Nuclear Power Plant and surrounding area, Plymouth, Massachusetts

    SciTech Connect

    Proctor, A.E.

    1997-06-01

    Terrestrial radioactivity surrounding the Pilgrim Station Nuclear Power Plant was measured using aerial radiolog- ical survey techniques. The purpose of this survey was to document exposure rates near the plant and to identify unexpected, man-made radiation sources within the survey area. The surveyed area included land areas within a three-mile radius of the plant site. Data were acquired using an airborne detection system that employs sodium iodide, thallium-activated detectors. Exposure rate and photopeak counts were computed from these data and plotted on aerial photographs of the survey area. Several ground-based exposure measurements were made for comparison with the,aerial survey results. Exposure rates in areas surrounding the plant site varied from 6 to 10 microroentgens per hour, with exposure rates below 6 microroentgens per hour occurring over bogs and marshy areas. Man-made radiation was found to be higher than background levels at the plant site. Radation due to nitrogen-1 6, which is produced in the steam cycle of a boiling-water reactor, was the primaty source of activity found at the plant site. Cesium-137 activity at levels slightly above those expected from natural fallout was found at isolated locations inland from the plant site. No other detectable sources of man-made radioactivity were found.

  8. An Aerial Radiological Survey of the Portsmouth Gaseous Diffusion Plant and Surrounding Area, Portsmouth, Ohio

    SciTech Connect

    Namdoo Moon

    2007-12-01

    An aerial radiological survey was conducted over the 16 square-mile (~41 square-kilometer) area surrounding the Portsmouth Gaseous Diffusion Plant. The survey was performed in August 2007 utilizing a large array of helicopter mounted sodium iodide detectors. The purpose of the survey was to update the previous radiological survey levels of the environment and surrounding areas of the plant. A search for a missing radium-226 source was also performed. Implied exposure rates, man-made activity, and excess bismuth-214 activity, as calculated from the aerial data are presented in the form of isopleth maps superimposed on imagery of the surveyed area. Ground level and implied aerial exposure rates for nine specific locations are compared. Detected radioisotopes and their associated gamma ray exposure rates were consistent with those expected from normal background emitters. At specific plant locations described in the report, man-made activity was consistent with the operational histories of the location. There was no spectral activity that would indicate the presence of the lost source.

  9. Unmanned aerial vehicles (UAVs) for surveying marine fauna: a dugong case study.

    PubMed

    Hodgson, Amanda; Kelly, Natalie; Peel, David

    2013-01-01

    Aerial surveys of marine mammals are routinely conducted to assess and monitor species' habitat use and population status. In Australia, dugongs (Dugong dugon) are regularly surveyed and long-term datasets have formed the basis for defining habitat of high conservation value and risk assessments of human impacts. Unmanned aerial vehicles (UAVs) may facilitate more accurate, human-risk free, and cheaper aerial surveys. We undertook the first Australian UAV survey trial in Shark Bay, western Australia. We conducted seven flights of the ScanEagle UAV, mounted with a digital SLR camera payload. During each flight, ten transects covering a 1.3 km(2) area frequently used by dugongs, were flown at 500, 750 and 1000 ft. Image (photograph) capture was controlled via the Ground Control Station and the capture rate was scheduled to achieve a prescribed 10% overlap between images along transect lines. Images were manually reviewed post hoc for animals and scored according to sun glitter, Beaufort Sea state and turbidity. We captured 6243 images, 627 containing dugongs. We also identified whales, dolphins, turtles and a range of other fauna. Of all possible dugong sightings, 95% (CI = 90%, 98%) were subjectively classed as 'certain' (unmistakably dugongs). Neither our dugong sighting rate, nor our ability to identify dugongs with certainty, were affected by UAV altitude. Turbidity was the only environmental variable significantly affecting the dugong sighting rate. Our results suggest that UAV systems may not be limited by sea state conditions in the same manner as sightings from manned surveys. The overlap between images proved valuable for detecting animals that were masked by sun glitter in the corners of images, and identifying animals initially captured at awkward body angles. This initial trial of a basic camera system has successfully demonstrated that the ScanEagle UAV has great potential as a tool for marine mammal aerial surveys.

  10. Unmanned Aerial Vehicles (UAVs) for Surveying Marine Fauna: A Dugong Case Study

    PubMed Central

    Hodgson, Amanda; Kelly, Natalie; Peel, David

    2013-01-01

    Aerial surveys of marine mammals are routinely conducted to assess and monitor species’ habitat use and population status. In Australia, dugongs (Dugong dugon) are regularly surveyed and long-term datasets have formed the basis for defining habitat of high conservation value and risk assessments of human impacts. Unmanned aerial vehicles (UAVs) may facilitate more accurate, human-risk free, and cheaper aerial surveys. We undertook the first Australian UAV survey trial in Shark Bay, western Australia. We conducted seven flights of the ScanEagle UAV, mounted with a digital SLR camera payload. During each flight, ten transects covering a 1.3 km2 area frequently used by dugongs, were flown at 500, 750 and 1000 ft. Image (photograph) capture was controlled via the Ground Control Station and the capture rate was scheduled to achieve a prescribed 10% overlap between images along transect lines. Images were manually reviewed post hoc for animals and scored according to sun glitter, Beaufort Sea state and turbidity. We captured 6243 images, 627 containing dugongs. We also identified whales, dolphins, turtles and a range of other fauna. Of all possible dugong sightings, 95% (CI = 90%, 98%) were subjectively classed as ‘certain’ (unmistakably dugongs). Neither our dugong sighting rate, nor our ability to identify dugongs with certainty, were affected by UAV altitude. Turbidity was the only environmental variable significantly affecting the dugong sighting rate. Our results suggest that UAV systems may not be limited by sea state conditions in the same manner as sightings from manned surveys. The overlap between images proved valuable for detecting animals that were masked by sun glitter in the corners of images, and identifying animals initially captured at awkward body angles. This initial trial of a basic camera system has successfully demonstrated that the ScanEagle UAV has great potential as a tool for marine mammal aerial surveys. PMID:24223967

  11. An aerial radiological survey of the Central Savannah River Site, Aiken, South Carolina

    SciTech Connect

    Feimster, E.L.

    1991-09-01

    An aerial radiological survey was conducted over a 194-square- kilometer (75-square-mile) area encompassing the central portion of the Savannah River Site (SRS). The survey was flown during February 10--27, 1987. These radiological measurements were used as baseline data for the central area and for determining the extent of man-made radionuclide distribution. Previous SRS surveys included small portions of the area; the 1987 survey was covered during the site- wide survey conducted in 1979. Man-made radionuclides (including cobalt-60, cesium-137, protactinium-234m, and elevated levels of uranium-238 progeny) that were detected during the survey were typical of those produced by the reactor operations and material processing activities being conducted in the area. The natural terrestrial radiation levels were consistent with those measured during prior surveys of other SRS areas. 1 refs., 4 figs.

  12. Small unmanned aerial vehicles for aeromagnetic surveys and their flights in the South Shetland Islands, Antarctica

    NASA Astrophysics Data System (ADS)

    Funaki, Minoru; Higashino, Shin-Ichiro; Sakanaka, Shinya; Iwata, Naoyoshi; Nakamura, Norihiro; Hirasawa, Naohiko; Obara, Noriaki; Kuwabara, Mikio

    2014-12-01

    We developed small computer-controlled unmanned aerial vehicles (UAVs, Ant-Plane) using parts and technology designed for model airplanes. These UAVs have a maximum flight range of 300-500 km. We planned aeromagnetic and aerial photographic surveys using the UAVs around Bransfield Basin, Antarctica, beginning from King George Island. However, we were unable to complete these flights due to unsuitable weather conditions and flight restrictions. Successful flights were subsequently conducted from Livingston Island to Deception Island in December 2011. This flight covered 302.4 km in 3:07:08, providing aeromagnetic and aerial photographic data from an altitude of 780 m over an area of 9 × 18 km around the northern region of Deception Island. The resulting magnetic anomaly map of Deception Island displayed higher resolution than the marine anomaly maps published already. The flight to South Bay in Livingston Island successfully captured aerial photographs that could be used for assessment of glacial and sea-ice conditions. It is unclear whether the cost-effectiveness of the airborne survey by UAV is superior to that of manned flight. Nonetheless, Ant-Plane 6-3 proved to be highly cost-effective for the Deception Island flight, considering the long downtime of the airplane in the Antarctic storm zone.

  13. Unmanned aerial survey of fallen trees in a deciduous broadleaved forest in eastern Japan.

    PubMed

    Inoue, Tomoharu; Nagai, Shin; Yamashita, Satoshi; Fadaei, Hadi; Ishii, Reiichiro; Okabe, Kimiko; Taki, Hisatomo; Honda, Yoshiaki; Kajiwara, Koji; Suzuki, Rikie

    2014-01-01

    Since fallen trees are a key factor in biodiversity and biogeochemical cycling, information about their spatial distribution is of use in determining species distribution and nutrient and carbon cycling in forest ecosystems. Ground-based surveys are both time consuming and labour intensive. Remote-sensing technology can reduce these costs. Here, we used high-spatial-resolution aerial photographs (0.5-1.0 cm per pixel) taken from an unmanned aerial vehicle (UAV) to survey fallen trees in a deciduous broadleaved forest in eastern Japan. In nine sub-plots we found a total of 44 fallen trees by ground survey. From the aerial photographs, we identified 80% to 90% of fallen trees that were >30 cm in diameter or >10 m in length, but missed many that were narrower or shorter. This failure may be due to the similarity of fallen trees to trunks and branches of standing trees or masking by standing trees. Views of the same point from different angles may improve the detection rate because they would provide more opportunity to detect fallen trees hidden by standing trees. Our results suggest that UAV surveys will make it possible to monitor the spatial and temporal variations in forest structure and function at lower cost.

  14. Summary of 1987 and 1988 manatee aerial surveys at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Provancha, Jane A.; Provancha, Mark J.

    1989-01-01

    Aerial surveys of manatees conducted since 1977 at Kennedy Space Center (KSC) have provided a very useful and cost effective monitoring tool in the assessment of abundance and distribution of manatees in the northern Banana River. Data collected in the mid 1980's as part of the KSC Environmental Monitoring Program indicated that the numbers of manatees utilizing the northern Banana River had increased dramatically from earlier years and that the animals appeared to have changed their distribution patterns within the area as well (Provancha and Provancha 1988). United States Fish and Wildlife Service (USFWS) and Florida Department of Natural Resources (FLDNR) conducted bimonthly aerial surveys in 1986 for the entire Florida east coast. Their data clearly show that the Banana River has the highest concentration of manatees during the non-winter months when compared to all other segments of the east coast surveys (B. Wiegle/FLDNR, unpublished data). They further show that, in spring, an average of 71 percent of the manatees in Brevard county were located in the Banana River. During that period 85 percent of the animals were north of the NASA Causeway (State Road (SR) 402) in the KSC security zone. These data indicate the importance of the KSC waters to the Florida east coast manatee population. We reinitiated KSC surveys in 1987 to document distributions and numbers of manatees during the spring influx. Aerial censuses were continued throughout the year in 1988 and this report provides a summary of our findings for the two years.

  15. Unmanned Aerial Survey of Fallen Trees in a Deciduous Broadleaved Forest in Eastern Japan

    PubMed Central

    Inoue, Tomoharu; Nagai, Shin; Yamashita, Satoshi; Fadaei, Hadi; Ishii, Reiichiro; Okabe, Kimiko; Taki, Hisatomo; Honda, Yoshiaki; Kajiwara, Koji; Suzuki, Rikie

    2014-01-01

    Since fallen trees are a key factor in biodiversity and biogeochemical cycling, information about their spatial distribution is of use in determining species distribution and nutrient and carbon cycling in forest ecosystems. Ground-based surveys are both time consuming and labour intensive. Remote-sensing technology can reduce these costs. Here, we used high-spatial-resolution aerial photographs (0.5–1.0 cm per pixel) taken from an unmanned aerial vehicle (UAV) to survey fallen trees in a deciduous broadleaved forest in eastern Japan. In nine sub-plots we found a total of 44 fallen trees by ground survey. From the aerial photographs, we identified 80% to 90% of fallen trees that were >30 cm in diameter or >10 m in length, but missed many that were narrower or shorter. This failure may be due to the similarity of fallen trees to trunks and branches of standing trees or masking by standing trees. Views of the same point from different angles may improve the detection rate because they would provide more opportunity to detect fallen trees hidden by standing trees. Our results suggest that UAV surveys will make it possible to monitor the spatial and temporal variations in forest structure and function at lower cost. PMID:25279817

  16. Estimation and correction of visibility bias in aerial surveys of wintering ducks

    USGS Publications Warehouse

    Pearse, A.T.; Gerard, P.D.; Dinsmore, S.J.; Kaminski, R.M.; Reinecke, K.J.

    2008-01-01

    Incomplete detection of all individuals leading to negative bias in abundance estimates is a pervasive source of error in aerial surveys of wildlife, and correcting that bias is a critical step in improving surveys. We conducted experiments using duck decoys as surrogates for live ducks to estimate bias associated with surveys of wintering ducks in Mississippi, USA. We found detection of decoy groups was related to wetland cover type (open vs. forested), group size (1?100 decoys), and interaction of these variables. Observers who detected decoy groups reported counts that averaged 78% of the decoys actually present, and this counting bias was not influenced by either covariate cited above. We integrated this sightability model into estimation procedures for our sample surveys with weight adjustments derived from probabilities of group detection (estimated by logistic regression) and count bias. To estimate variances of abundance estimates, we used bootstrap resampling of transects included in aerial surveys and data from the bias-correction experiment. When we implemented bias correction procedures on data from a field survey conducted in January 2004, we found bias-corrected estimates of abundance increased 36?42%, and associated standard errors increased 38?55%, depending on species or group estimated. We deemed our method successful for integrating correction of visibility bias in an existing sample survey design for wintering ducks in Mississippi, and we believe this procedure could be implemented in a variety of sampling problems for other locations and species.

  17. Uav Aerial Survey: Accuracy Estimation for Automatically Generated Dense Digital Surface Model and Orthothoto Plan

    NASA Astrophysics Data System (ADS)

    Altyntsev, M. A.; Arbuzov, S. A.; Popov, R. A.; Tsoi, G. V.; Gromov, M. O.

    2016-06-01

    A dense digital surface model is one of the products generated by using UAV aerial survey data. Today more and more specialized software are supplied with modules for generating such kind of models. The procedure for dense digital model generation can be completely or partly automated. Due to the lack of reliable criterion of accuracy estimation it is rather complicated to judge the generation validity of such models. One of such criterion can be mobile laser scanning data as a source for the detailed accuracy estimation of the dense digital surface model generation. These data may be also used to estimate the accuracy of digital orthophoto plans created by using UAV aerial survey data. The results of accuracy estimation for both kinds of products are presented in the paper.

  18. Profiles of gamma-ray and magnetic data from aerial surveys over the conterminous United States

    USGS Publications Warehouse

    Duval, Joseph S.; Riggle, Frederic E.

    1999-01-01

    This publication contains images for the conterminous U.S. generated from geophysical data, software for displaying and analyzing the images, and software for displaying and examining the profile data from the aerial surveys flown as part of the National Uranium Resource Evaluation (NURE) Program of the U.S. Department of Energy. The images included are of gamma-ray data (uranium, thorium, and potassium channels), Bouguer gravity data, isostatic residual gravity data, aeromagnetic anomalies, topography, and topography with bathymetry.

  19. Use of a Light Uav and Photogrammetric Techniques to Study the Evolution of a Landslide in JAÉN (southern Spain)

    NASA Astrophysics Data System (ADS)

    Fernández, T.; Pérez, J. L.; Cardenal, F. J.; López, A.; Gómez, J. M.; Colomo, C.; Delgado, J.; Sánchez, M.

    2015-08-01

    This paper presents a methodology for slope instability monitoring using photogrammetric techniques with very high resolution images from an unmanned aerial vehicle (UAV). An unstable area located in La Guardia (Jaen, Southern Spain), where an active mud flow has been identified, was surveyed between 2012 and 2014 by means of four UAV flights. These surveys were also compared with those data from a previous conventional aerial photogrammetric and LiDAR survey. The UAV was an octocopter equipped with GPS, inertial units and a mirrorless interchangeable-lens camera. The flight height was 90 m, which allowed covering an area of about 250 x 100 m with a ground pixel size of 2.5 cm. The orientation of the UAV flights were carried out by means of ground control points measured with GPS, but the previous aerial photogrammetric/LiDAR flight was oriented by means of direct georeferencing with in flight positioning and inertial data, although some common ground control points were used to adjust all flights in the same reference system. The DSMs of all surveys were obtained by automatic image correlation and then the differential models were calculated, allowing estimate changes in the surface. At the same time, orthophotos were obtained so horizontal and vertical displacements between relevant points were registered. Significant displacements were observed between some campaigns (some centimeters on the vertical and meters on the horizontal). Finally, we have analyzed the relation of displacements to rainfalls in recent years in the area, finding a significant temporal correlation between the two variables.

  20. Aerial remote sensing surveys, geophysical characterization. Final report

    SciTech Connect

    Labson, V.F.; Pellerin, L.; Anderson, W.L.

    1998-06-01

    The application of helicopter electromagnetic (HEM) and magnetic methods to the requirements of the environmental restoration of the Oak Ridge Reservation (ORR) demand the use of advanced, nontraditional methods of data acquisition, processing and interpretation. The cooperative study by the U.S. Geological Survey (USGS), Oak Ridge National Laboratory (ORNL), and University of California (UCB) has resulted in the planning and supervision of data acquisition, the development of tools for data processing and interpretation, and an intensive application of the methods developed. This final report consists of a series of publications which the USGS collaborated with the ORNL technical staff. These reports represent the full scope of the USGS assistance. Copies of the reports and papers are included in the Appendix. The primary goals of this effort were to quantify the effectiveness of the geophysical methods applied in the survey of the ORR for the identification of buried waste, hydrogeologic pathways by which contamination could migrate through or off the site, and for the more accurate geologic mapping of the ORR. The objectives in buried waste identification are the accurate description of the source of the geophysical anomaly and the determination of the limits of resolution of the geophysical methods to acknowledge what we might have missed. The study of hydrogeologic pathways concentrated on the identification of karst features in the limestone underlying much of the ORR. Work in this study has indicated to the ORNL staff that these karst features can be located from the airborne geophysics. The defining characteristic of this helicopter geophysical study is the collaborative nature of the effort. Each task in which the USGS was involved has included a designated staff member from the Oak Ridge National Laboratory.

  1. Evaluation of an aerial survey to estimate abundance of wintering ducks in Mississippi

    USGS Publications Warehouse

    Pearse, A.T.; Dinsmore, S.J.; Kaminski, R.M.; Reinecke, K.J.

    2008-01-01

    Researchers have successfully designed aerial surveys that provided precise estimates of wintering populations of ducks over large physiographic regions, yet few conservation agencies have adopted these probability-based sampling designs for their surveys. We designed and evaluated an aerial survey to estimate abundance of wintering mallards {Anas platyrhynchos), dabbling ducks (tribe Anatini) other than mallards, diving ducks (tribes Aythini, Mergini, and Oxyurini), and total ducks in western Mississippi, USA. We used design-based sampling of fixed width transects to estimate population indices (I??), and we used model-based methods to correct population indices for visibility bias and estimate population abundance (N??) for 14 surveys during winters 2002-2004. Correcting for bias increased estimates of mallards, other dabbling ducks, and diving ducks by an average of 40-48% among all surveys and contributed 48-61% of the estimated variance of N??. However, mean-squared errors were consistently less for N?? than I??. Estimates of N?? met our goals for precision (CV ??? 15%) in 7 of 14 surveys for mallards, 5 surveys for other dabbling ducks, no surveys for diving ducks, and 10 surveys for total ducks. Generally, we estimated more mallards and other dabbling ducks in mid- and late winter (Jan-Feb) than early winter (Nov-Dec) and determined that population indices from the late 1980s were nearly 3 times greater than those from our study. We developed a method to display relative densities of ducks spatially as an additional application of survey data. Our study advanced methods of estimating abundance of wintering waterfowl, and we recommend this design for continued monitoring of wintering ducks in western Mississippi and similar physiographic regions.

  2. Evaluation of an aerial survey to estimate abundance of wintering ducks in Mississippi

    USGS Publications Warehouse

    Pearse, A.T.; Dinsmore, S.J.; Kaminski, R.M.; Reinecke, K.J.

    2008-01-01

    Researchers have successfully designed aerial surveys that provided precise estimates of wintering populations of ducks over large physiographic regions, yet few conservation agencies have adopted these probability-based sampling designs for their surveys. We designed and evaluated an aerial survey to estimate abundance of wintering mallards {Anas platyrhynchos), dabbling ducks (tribe Anatini) other than mallards, diving ducks (tribes Aythini, Mergini, and Oxyurini), and total ducks in western Mississippi, USA. We used design-based sampling of fixed width transects to estimate population indices (I?), and we used model-based methods to correct population indices for visibility bias and estimate population abundance (N?) for 14 surveys during winters 2002-2004. Correcting for bias increased estimates of mallards, other dabbling ducks, and diving ducks by an average of 40-48% among all surveys and contributed 48-61% of the estimated variance of N?. However, mean-squared errors were consistently less for N? than I?. Estimates of N? met our goals for precision (CV < 15%) in 7 of 14 surveys for mallards, 5 surveys for other dabbling ducks, no surveys for diving ducks, and 10 surveys for total ducks. Generally, we estimated more mallards and other dabbling ducks in mid- and late winter (Jan-Feb) than early winter (Nov-Dec) and determined that population indices from the late 1980s were nearly 3 times greater than those from our study. We developed a method to display relative densities of ducks spatially as an additional application of survey data. Our study advanced methods of estimating abundance of wintering waterfowl, and we recommend this design for continued monitoring of wintering ducks in western Mississippi and similar physiographic regions.

  3. Low-altitude aerial color digital photographic survey of the San Andreas Fault

    USGS Publications Warehouse

    Lynch, David K.; Hudnut, Kenneth W.; Dearborn, David S.P.

    2010-01-01

    Ever since 1858, when Gaspard-Félix Tournachon (pen name Félix Nadar) took the first aerial photograph (Professional Aerial Photographers Association 2009), the scientific value and popular appeal of such pictures have been widely recognized. Indeed, Nadar patented the idea of using aerial photographs in mapmaking and surveying. Since then, aerial imagery has flourished, eventually making the leap to space and to wavelengths outside the visible range. Yet until recently, the availability of such surveys has been limited to technical organizations with significant resources. Geolocation required extensive time and equipment, and distribution was costly and slow. While these situations still plague older surveys, modern digital photography and lidar systems acquire well-calibrated and easily shared imagery, although expensive, platform-specific software is sometimes still needed to manage and analyze the data. With current consumer-level electronics (cameras and computers) and broadband internet access, acquisition and distribution of large imaging data sets are now possible for virtually anyone. In this paper we demonstrate a simple, low-cost means of obtaining useful aerial imagery by reporting two new, high-resolution, low-cost, color digital photographic surveys of selected portions of the San Andreas fault in California. All pictures are in standard jpeg format. The first set of imagery covers a 92-km-long section of the fault in Kern and San Luis Obispo counties and includes the entire Carrizo Plain. The second covers the region from Lake of the Woods to Cajon Pass in Kern, Los Angeles, and San Bernardino counties (151 km) and includes Lone Pine Canyon soon after the ground was largely denuded by the Sheep Fire of October 2009. The first survey produced a total of 1,454 oblique digital photographs (4,288 x 2,848 pixels, average 6 Mb each) and the second produced 3,762 nadir images from an elevation of approximately 150 m above ground level (AGL) on the

  4. Assessment of the Accuracy of Close Distance Photogrammetric JRC Data

    NASA Astrophysics Data System (ADS)

    Kim, Dong Hyun; Poropat, George; Gratchev, Ivan; Balasubramaniam, Arumugam

    2016-11-01

    By using close range photogrammetry, this article investigates the accuracy of the photogrammetric estimation of rock joint roughness coefficients (JRC), a measure of the degree of roughness of rock joint surfaces. This methodology has proven to be convenient both in laboratory and in site conditions. However, the accuracy and precision of roughness profiles obtained from photogrammetric 3D images have not been properly established due to the variances caused by factors such as measurement errors and systematic errors in photogrammetry. In this study, the influences of camera-to-object distance, focal length and profile orientation on the accuracy of JRC values are investigated using several photogrammetry field surveys. Directional photogrammetric JRC data are compared with data derived from the measured profiles, so as to determine their accuracy. The extent of the accuracy of JRC values was examined based on the error models which were previously developed from laboratory tests and revised for better estimation in this study. The results show that high-resolution 3D images (point interval ≤1 mm) can reduce the JRC errors obtained from field photogrammetric surveys. Using the high-resolution images, the photogrammetric JRC values in the range of high oblique camera angles are highly consistent with the revised error models. Therefore, the analysis indicates that the revised error models facilitate the verification of the accuracy of photogrammetric JRC values.

  5. Aerial Surveying Uav Based on Open-Source Hardware and Software

    NASA Astrophysics Data System (ADS)

    Mészáros, J.

    2011-09-01

    In the last years the functionality and type of UAV-systems increased fast, but unfortunately these systems are hardly available for researchers in some cases. A simple and low-cost solution was developed to build an autonomous aerial surveying airplane, which can fulfil the necessities (aerial photographs with very-high resolution) of other departments at the university and very useful and practical for teaching photogrammetry.. The base was a commercial, remote controlled model airplane and an open-source GPS/IMU system (MatrixPilot) was adapted to achieve the semi-automatic or automatic stabilization and navigation of the model airplane along predefined trajectory. The firmware is completely open-source and easily available on the website of the project. The first used camera system was a low-budget, low-quality video camera, which could provide only 1.2 megapixel photographs or low resolution video depending on the light conditions and the desired spatial resolution. A field measurement test was carried out with the described system: the aerial surveying of an undiscovered archaeological site, signed by a crop-mark in mountain Pilis (Hungary).

  6. An aerial radiological survey of the Oak Ridge Reservation, Oak Ridge, Tennessee. Date of survey: April 1992

    SciTech Connect

    Maurer, R.J.

    1993-04-01

    An aerial radiological survey of the Oak Ridge Reservation (ORR) and surrounding area in Oak Ridge, Tennessee, was conducted during the period March 30 to April 14,1992. The purpose of the survey was to measure and document the terrestrial radiological environment of the Oak Ridge Reservation for use in environmental management programs and emergency response planning. The aerial survey was flown at an altitude of 150 feet (46 meters) along a series of parallel lines 250 feet (76 meters) apart and included X-10 (Oak Ridge National Laboratory), K-25 (former Gaseous Diffusion Plant), Y-12 (Weapons Production Plant), the Freels Bend Area and Oak Ridge Institute for Science and Education, the East Fork Poplar Creek (100-year floodplain extending from K-25 to Y-12), Elza Gate (former uranium ore storage site located in the city of Oak Ridge), Parcel A, the Clinch River (river banks extending from Melton Hill Dam to the city of Kingston), and the CSX Railroad Tracks (extending from Y-12 to the city of Oak Ridge). The survey encompassed approximately 55 square miles (1 41 square kilometers) of the Oak Ridge Reservation and surrounding area.

  7. An Aerial Radiological Survey of the Las Vegas Strip and Adjacent Areas

    SciTech Connect

    Wasiolek, Piotr

    2009-02-01

    As proficiency training for the Radiological Mapping mission of the Aerial Measuring System (AMS), a survey team from the Remote Sensing Laboratory–Nellis (RSL-Nellis) conducted an aerial radiological survey of the Las Vegas Strip and adjacent areas on December 29, 2008. This survey was one of the bi-annual surveys carried in support of the city of Las Vegas Police Department (LVPD) before significant events on the Las Vegas Strip: e.g., the annual New Year’s Eve and July Fourth celebrations. The AMS operation and appropriate law enforcement agencies selected this area as an appropriate urban location to exercise AMS capability for mapping environmental radiation and searching for man-made radioactive sources. The surveys covered approximately 11 square miles. Each survey required a 2.5-hour-long flight, performed at an altitude of 300 ft above ground level (AGL) at a line spacing of 600 ft. Water line and test line flights are conducted over the Lake Mead and Government Wash areas to determine the non-terrestrial background contributed by aircraft, radon, and cosmic activity, and to determine the altitude-dependent air mass correction. The data were collected by the AMS data acquisition system (REDAR V) using an array of twelve 2" x 4" x 16" sodium iodide (NaI) detectors flown on-board a twin-engine Bell 412 helicopter. Gamma energy spectral data were collected second-by-second over the survey area. This spectral data allows the system to distinguish between natural terrestrial background contributions and man-made radioisotope contributions. Spectral data can also be used to identify specific man-made radioactive isotopes. Data geo-locations were determined with a Real-Time Differential Global Positioning System (RDGPS).

  8. Photogrammetric Techniques for Road Surface Analysis

    NASA Astrophysics Data System (ADS)

    Knyaz, V. A.; Chibunichev, A. G.

    2016-06-01

    The quality and condition of a road surface is of great importance for convenience and safety of driving. So the investigations of the behaviour of road materials in laboratory conditions and monitoring of existing roads are widely fulfilled for controlling a geometric parameters and detecting defects in the road surface. Photogrammetry as accurate non-contact measuring method provides powerful means for solving different tasks in road surface reconstruction and analysis. The range of dimensions concerned in road surface analysis can have great variation from tenths of millimetre to hundreds meters and more. So a set of techniques is needed to meet all requirements of road parameters estimation. Two photogrammetric techniques for road surface analysis are presented: for accurate measuring of road pavement and for road surface reconstruction based on imagery obtained from unmanned aerial vehicle. The first technique uses photogrammetric system based on structured light for fast and accurate surface 3D reconstruction and it allows analysing the characteristics of road texture and monitoring the pavement behaviour. The second technique provides dense 3D model road suitable for road macro parameters estimation.

  9. Aerial Vehicle Surveys of other Planetary Atmospheres and Surfaces: Imaging, Remote-sensing, and Autonomy Technology Requirements

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Gregory; Ippolito, Corey; Alena, Rick

    2005-01-01

    The objective of this paper is to review the anticipated imaging and remote-sensing technology requirements for aerial vehicle survey missions to other planetary bodies in our Solar system that can support in-atmosphere flight. In the not too distant future such planetary aerial vehicle (a.k.a. aerial explorers) exploration missions will become feasible. Imaging and remote-sensing observations will be a key objective for these missions. Accordingly, it is imperative that optimal solutions in terms of imaging acquisition and real-time autonomous analysis of image data sets be developed for such vehicles.

  10. Aerial Magnetic, Electromagnetic, and Gamma-ray Survey, Berrien County, Michigan

    USGS Publications Warehouse

    Duval, Joseph S.; Pierce, Herbert A.; Daniels, David L.; Mars, John L.; Webring, Michael W.; Hildenbrand, Thomas G.

    2002-01-01

    This publication includes maps, grids, and flightline databases of a detailed aerial survey and maps and grids of satellite data in Berrien County, Michigan. The purpose of the survey was to map aquifers in glacial terrains. This was accomplished by using a DIGHEMVRES mufti-coil, mufti-frequency electromagnetic system supplemented by a high sensitivity cesium magnetometer and 256-channel spectrometer. The information from these sensors was processed to produce maps, which display the conductive, magnetic and radioactive properties of the survey area. A GPS electronic navigation system ensured accurate positioning of the geophysical data. This report also includes data from the advanced spaceborne thermal emission and reflection (ASTER) radiometer. ASTER measures thermal emission and reflection data for 14 bands of the spectrum.

  11. Quality control system preparation for photogrammetric and laser scanning missions of Spanish national plan of aerial orthophotogpaphy (PNOA). (Polish Title: Opracowanie systemu kontroli jakości realizacji nalotów fotogrametrycznych i skaningowych dla hiszpańskiego narodowego planu ortofotomapy lotniczej (PNOA))

    NASA Astrophysics Data System (ADS)

    Rzonca, A.

    2013-12-01

    The paper presents the state of the art of quality control of photogrammetric and laser scanning data captured by airborne sensors. The described subject is very important for photogrammetric and LiDAR project execution, because the data quality a prior decides about the final product quality. On the other hand, precise and effective quality control process allows to execute the missions without wide margin of safety, especially in case of the mountain areas projects. For introduction, the author presents theoretical background of the quality control, basing on his own experience, instructions and technical documentation. He describes several variants of organization solutions. Basically, there are two main approaches: quality control of the captured data and the control of discrepancies of the flight plan and its results of its execution. Both of them are able to use test of control and analysis of the data. The test is an automatic algorithm controlling the data and generating the control report. Analysis is a less complicated process, that is based on documentation, data and metadata manual check. The example of quality control system for large area project was presented. The project is being realized periodically for the territory of all Spain and named National Plan of Aerial Orthophotography (Plan Nacional de Ortofotografía Aérea, PNOA). The system of the internal control guarantees its results soon after the flight and informs the flight team of the company. It allows to correct all the errors shortly after the flight and it might stop transferring the data to another team or company, for further data processing. The described system of data quality control contains geometrical and radiometrical control of photogrammetric data and geometrical control of LiDAR data. According to all specified parameters, it checks all of them and generates the reports. They are very helpful in case of some errors or low quality data. The paper includes the author experience

  12. An Aerial Radiological Survey of Selected Areas of Area 18 - Nevada Test Site

    SciTech Connect

    Craig Lyons

    2009-07-31

    As part of the proficiency training for the Radiological Mapping mission of the Aerial Measuring System (AMS), a survey team from the Remote Sensing Laboratory-Nellis (RSL-Nellis) conducted an aerial radiological survey of selected areas of Area 18 of the Nevada Test Site (NTS) for the purpose of mapping man-made radiation deposited as a result of the Johnnie Boy and Little Feller I tests. The survey area centered over the Johnnie Boy ground zero but also included the ground zero and deposition area of the Little Feller I test, approximately 7,000 feet (2133 meters) southeast of the Johnnie Boy site. The survey was conducted in one flight. The completed survey covered a total of 4.0 square miles. The flight lines (with the turns) over the surveyed areas are presented in Figure 1. One 2.5-hour-long flight was performed at an altitude of 100 ft above ground level (AGL) with 200 foot flight-line spacing. A test-line flight was conducted near the Desert Rock Airstrip to ensure quality control of the data. The test line is not shown in Figure 1. However, Figure 1 does include the flight lines for a ''perimeter'' flight. The path traced by the helicopter flying over distinct roads within the survey area can be used to overlay the survey data on a base map or image. The flight survey lines were flown in an east-west orientation perpendicular to the deposition patterns for both sites. This technique provides better spatial resolution when contouring the data. The data were collected by the AMS data acquisition system (REDAR V) using an array of twelve 2-inch x 4-inch x 16-inch sodium iodide (NaI) detectors flown on-board a twin-engine Bell 412 helicopter. Data, in the form of gamma energy spectra, were collected every second over the course of the survey and were geo-referenced using a differential Global Positioning System. Spectral data allows the system to distinguish between ordinary fluctuations in natural background radiation levels and the signature produced by man

  13. An aerial radiological survey of Pocatello and Soda Springs, Idaho and surrounding area, June--July 1986

    SciTech Connect

    Berry, H.A.

    1987-02-01

    Three aerial radiological surveys were conducted during the period 16 June through 15 July 1986 over the towns of Pocatello, Soda Springs, and Fort Hall, Idaho and the surrounding areas. The surveys were performed for the United States Environmental Protection Agency (EPA) by the United States Department of Energy's (DOE) Remote Sensing Laboratory (RSL), utilizing the Aerial Measuring System (AMS). This work was completed in cooperation with a study by the EPA to conduct a dose assessment of human radiation exposure for industrial sources in Pocatello and Soda Springs, Idaho. The aerial surveys were performed to document the natural terrestrial radiological environment of the three localities and to map the spatial extent and degree of contamination due to phosphate milling operations. The results of these surveys will be used for planning ground-based measurements in addition to being incorporated into the dose assessment document. 4 refs., 14 figs., 6 tabs.

  14. A double-observer method to estimate detection rate during aerial waterfowl surveys

    USGS Publications Warehouse

    Koneff, M.D.; Royle, J. Andrew; Otto, M.C.; Wortham, J.S.; Bidwell, J.K.

    2008-01-01

    We evaluated double-observer methods for aerial surveys as a means to adjust counts of waterfowl for incomplete detection. We conducted our study in eastern Canada and the northeast United States utilizing 3 aerial-survey crews flying 3 different types of fixed-wing aircraft. We reconciled counts of front- and rear-seat observers immediately following an observation by the rear-seat observer (i.e., on-the-fly reconciliation). We evaluated 6 a priori models containing a combination of several factors thought to influence detection probability including observer, seat position, aircraft type, and group size. We analyzed data for American black ducks (Anas rubripes) and mallards (A. platyrhynchos), which are among the most abundant duck species in this region. The best-supported model for both black ducks and mallards included observer effects. Sample sizes of black ducks were sufficient to estimate observer-specific detection rates for each crew. Estimated detection rates for black ducks were 0.62 (SE = 0.10), 0.63 (SE = 0.06), and 0.74 (SE = 0.07) for pilot-observers, 0.61 (SE = 0.08), 0.62 (SE = 0.06), and 0.81 (SE = 0.07) for other front-seat observers, and 0.43 (SE = 0.05), 0.58 (SE = 0.06), and 0.73 (SE = 0.04) for rear-seat observers. For mallards, sample sizes were adequate to generate stable maximum-likelihood estimates of observer-specific detection rates for only one aerial crew. Estimated observer-specific detection rates for that crew were 0.84 (SE = 0.04) for the pilot-observer, 0.74 (SE = 0.05) for the other front-seat observer, and 0.47 (SE = 0.03) for the rear-seat observer. Estimated observer detection rates were confounded by the position of the seat occupied by an observer, because observers did not switch seats, and by land-cover because vegetation and landform varied among crew areas. Double-observer methods with on-the-fly reconciliation, although not without challenges, offer one viable option to account for detection bias in aerial waterfowl

  15. Sea otter abundance in Kenai Fjords national Park: results from the 2010 aerial survey

    USGS Publications Warehouse

    Coletti, Heather A.; Bodkin, James L.; Esslinger, George

    2011-01-01

    Fjord, Nuka Bay and Nuka Island. All observed otters were in the high density stratum, defined as the 0 m to 40 m depth contour and minimum distances from shore, while no sea otters were observed in the low density stratum, which is defined as the area within the 40m to 100 m depth contour. We recommend that prior to the next aerial sea otter survey in KEFJ (scheduled for 2013), a power simulation be conducted to evaluate methods to improve precision of estimates and the ability to detect change.

  16. Unmanned Aerial Vehicles (UAVs) for surveying marine fauna: assessing detection probability.

    PubMed

    Hodgson, Amanda; Peel, David; Kelly, Natalie

    2017-02-08

    Aerial surveys are conducted for various fauna to assess abundance, distribution, and habitat use over large spatial scales. They are traditionally conducted using light-aircraft with observers recording sightings in real time. Unmanned Aerial Vehicles (UAVs) offer an alternative with many potential advantages, including eliminating human-risk. To be effective, this emerging platform needs to provide detection rates of animals comparable to traditional methods. UAVs can also acquire new types of information, and this new data requires a re-evaluation of traditional analyses used in aerial surveys; including estimating the probability of detecting animals. We conducted 17 replicate UAV surveys of humpback whales (Megaptera novaeangliae) while simultaneously obtaining a 'census' of the population from land-based observations, to assess UAV detection probability. The ScanEagle UAV, carrying a digital SLR camera, continuously captured images (with 75% overlap) along transects covering the visual range of land-based observers. We also used ScanEagle to conduct focal follows of whale pods (n = 12, mean duration = 40 min), to assess a new method of estimating availability. A comparison of the whale detections from the UAV to the land-based census provided an estimated UAV detection probability of 0.33 (CV = 0.25) (incorporating both availability and perception biases), which was not affected by environmental covariates (Beaufort sea state, glare and cloud cover). According to our focal follows, the mean availability was 0.63 (CV = 0.37), with pods including mother/calf pairs having a higher availability (0.86, CV = 0.20) than those without (0.59, CV = 0.38). The follows also revealed (and provided a potential correction for) a downward bias in group size estimates from the UAV surveys, which resulted from asynchronous diving within whale pods, and a relatively short observation window of 9 s. We have shown that UAVs are an effective alternative to traditional methods

  17. The Potential of Unmanned Aerial Vehicle for Large Scale Mapping of Coastal Area

    NASA Astrophysics Data System (ADS)

    Darwin, N.; Ahmad, A.; Zainon, O.

    2014-02-01

    Many countries in the tropical region are covered with cloud for most of the time, hence, it is difficult to get clear images especially from high resolution satellite imagery. Aerial photogrammetry can be used but most of the time the cloud problem still exists. Today, this problem could be solved using a system known as unmanned aerial vehicle (UAV) where the aerial images can be acquired at low altitude and the system can fly under the cloud. The UAV system could be used in various applications including mapping coastal area. The UAV system is equipped with an autopilot system and automatic method known as autonomous flying that can be utilized for data acquisition. To achieve high resolution imagery, a compact digital camera of high resolution was used to acquire the aerial images at an altitude. In this study, the UAV system was employed to acquire aerial images of a coastal simulation model at low altitude. From the aerial images, photogrammetric image processing was executed to produce photogrammetric outputs such a digital elevation model (DEM), contour line and orthophoto. In this study, ground control point (GCP) and check point (CP) were established using conventional ground surveying method (i.e total station). The GCP is used for exterior orientation in photogrammetric processes and CP for accuracy assessment based on Root Mean Square Error (RMSE). From this study, it was found that the UAV system can be used for large scale mapping of coastal simulation model with accuracy at millimeter level. It is anticipated that the same system could be used for large scale mapping of real coastal area and produces good accuracy. Finally, the UAV system has great potential to be used for various applications that require accurate results or products at limited time and less man power.

  18. An Aerial Radiological Survey of the City of North Las Vegas (Downtown) and the Motor Speedway

    SciTech Connect

    Piotr Wasiolek

    2007-12-01

    As part of the proficiency training for the Radiological Mapping mission of the Aerial Measuring System (AMS), a survey team from the Remote Sensing Laboratory-Nellis (RSL-Nellis) conducted an aerial radiological survey on December 11-12, 2007, with the purpose of mapping natural radiation background and locating any man-made radioactive sources. The survey covered 19.4 square miles (9.2 square miles over the downtown area of the City of North Las Vegas and 10.2 square miles over the Las Vegas Motor Speedway [LVMS]). The flight lines over the surveyed areas are presented in Figures 1 and 2. A total of four 2.5-hour-long flights were performed at an altitude of 150 ft above ground level (AGL) with 300 ft of flight line spacing. Water line and test line flights were conducted over the Lake Mead and Government Wash areas to ensure quality control of the data. The data were collected by the AMS data acquisition system-REDAR V using an array of twelve 2-inch x 4-inch x 16-inch sodium iodide (NaI) detectors flown on-board a twin-engine Bell 412 helicopter. Data in the form of gamma energy spectra were collected continually (every second) over the course of the survey and were geo-referenced using a differential Global Positioning System. Collection of spectral data allows the system to distinguish between ordinary fluctuations in natural background radiation levels and the signature produced by man-made radioisotopes sources. Spectral data can also be used to identify specific radioactive isotopes. As a courtesy service with the approval of the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office, RSL-Nellis is providing this summary to the office of the Mayor of City of North Las Vegas and LVMS security along with the gross counts-based exposure rate and man-made counts maps.

  19. Aerial survey methodology for bison population estimation in Yellowstone National Park

    USGS Publications Warehouse

    Hess, Steven C.

    2002-01-01

    I developed aerial survey methods for statistically rigorous bison population estimation in Yellowstone National Park to support sound resource management decisions and to understand bison ecology. Survey protocols, data recording procedures, a geographic framework, and seasonal stratifications were based on field observations from February 1998-September 2000. The reliability of this framework and strata were tested with long-term data from 1970-1997. I simulated different sample survey designs and compared them to high-effort censuses of well-defined large areas to evaluate effort, precision, and bias. Sample survey designs require much effort and extensive information on the current spatial distribution of bison and therefore do not offer any substantial reduction in time and effort over censuses. I conducted concurrent ground surveys, or 'double sampling' to estimate detection probability during aerial surveys. Group size distribution and habitat strongly affected detection probability. In winter, 75% of the groups and 92% of individual bison were detected on average from aircraft, while in summer, 79% of groups and 97% of individual bison were detected. I also used photography to quantify the bias due to counting large groups of bison accurately and found that undercounting increased with group size and could reach 15%. I compared survey conditions between seasons and identified optimal time windows for conducting surveys in both winter and summer. These windows account for the habitats and total area bison occupy, and group size distribution. Bison became increasingly scattered over the Yellowstone region in smaller groups and more occupied unfavorable habitats as winter progressed. Therefore, the best conditions for winter surveys occur early in the season (Dec-Jan). In summer, bison were most spatially aggregated and occurred in the largest groups by early August. Low variability between surveys and high detection probability provide population estimates

  20. Discontinuity characterisation in metamorphic rock based on scanline and photogrammetric methods

    NASA Astrophysics Data System (ADS)

    Koppensteiner, Matthias; Zangerl, Christian

    2016-04-01

    The Ötztal-Stubai crystalline basement (Tyrol, Austria) is characterised by several ductile and brittle deformation phases. Concerning slope stability, landslide formation as well as engineering projects e.g. dam and tunnel construction brittle deformation phases forming brittle fault zones and fractures are highly relevant. These are the structures, which control failure processes, deformation behaviour and groundwater flow in fractured rock masses. A high alpine area of about two square kilometres in size, and located mostly in fractured granodioritic rock was selected to study the discontinuity pattern of faults and joints. Within this area, brittle fault zones are mapped by field survey and analyses of remote sensing data i.e. aerial views and high resolution digital elevation models based on airborne laser scanning. Concerning the joint pattern, sampling points for investigating the geometrical properties are distributed evenly over the area covered with granodioritic gneiss. Whereas most of the collected data is gathered through conventional scanline mapping, at some selected outcrops photogrammetric mapping methods (window mapping) are applied. Among the recorded and analysed parameters of the discontinuities are: orientation, number of joint sets, spacing, frequency, trace length, size, termination, roughness and waviness, block size and GSI. A systematic pattern of recurring discontinuity sets can be observed in the outcrops throughout the whole investigation area. Thus, spatial uniformity is assumed for the whole granodioritic gneiss lithology. Based on this the orientation of the discontinuities and their respective estimated sets are compared between scanline and photogrammetric measurements. For certain representative joint sets, calculated spacing data (mean and probability distribution) as well as joint trace lengths are compared between the scanline surveys and computed parameters from the photogrammetric models. This will help to understand the

  1. Aerial multispectral surveys - from the analysis of architectural monuments to the identification of archaeological sites

    NASA Astrophysics Data System (ADS)

    Mario, Bottoni; Fabretti, Giuseppe; Fabretti, Maurizio

    2010-05-01

    Combined non destructive and extensive multispectral analysis (thermography, photographic infrared and air photogrammetry) can be used, as aerial surveys, to verify and integrate hypotheses based upon investigations conducted on the spot and in the archives, about the location of archaeological sites in a certain area. These techniques using specified sensors (photographic emulsions, semi conductors) enable one to record and visualize different optical phenomena, related to the wavelength of the radiations and to the thermal exchange between structures lying underground and the soil. The information obtained has an extensive characteristic that can be transferred on maps. The results are in practice continuous in the spatial dimension in a non destructive way, leaving the site perfectly undisturbed. Relating to this first survey, it may be possible to locate the most significant areas and to proceed with more punctual multispectral surveys and local excavations. The next step is to compare these results and to extend them to wider areas, establishing the significance of irregularities found with the aerial surveys and creating conclusive thematic maps. These maps will give useful indications to define the archaeological excavation or the course of highways, water mains and other structures on the terrain. This work presents the application of the method to the archaeological site of Fondo Marco Terenzio Varrone Cassino (Frosinone) under the control of the Archaeological Soprintendency of Lazio. The survey made it possible to determine the course of the water main of the town of Cassino through the archaeological area in a few months and with great reliability. Actually use of aerial thermovision demonstrated itself very useful since nineties in the analysis of the microclimatic behaviour of architectonic structures of significant dimensions, such as the dome of Santa Maria del Fiore in Florence. In this situation a mathematical model had been developed aimed to

  2. An Aerial Radiological Survey of Selected Areas of the City of North Las Vegas

    SciTech Connect

    Piotr Wasiolek

    2008-06-01

    As part of the proficiency training for the Radiological Mapping mission of the Aerial Measuring System (AMS), a survey team from the Remote Sensing Laboratory-Nellis (RSL-Nellis) conducted an aerial radiological survey of selected areas of the city of North Las Vegas for the purpose of mapping natural radiation background and locating any man-made radioactive sources. Survey areas were selected in collaboration with the City Manager's office and included four separate areas: (1) Las Vegas Motor Speedway (10.6 square miles); (2) North Las Vegas Downtown Area (9.2 square miles); (3) I-15 Industrial Corridor (7.4 square miles); and (4) Future site of University of Nevada Las Vegas campus (17.4 square miles). The survey was conducted in three phases: Phase 1 on December 11-12, 2007 (Areas 1 and 2), Phase 2 on February 28, 2008 (Area 3), and Phase 3 on March 19, 2008 (Area 4). The total completed survey covered a total of 44.6 square miles. The flight lines (without the turns) over the surveyed areas are presented in Figures 1, 2, 3, and 4. A total of eight 2.5-hour-long flights were performed at an altitude of 150 ft above ground level (AGL) with 300 feet of flight-line spacing. Water line and test line flights were conducted over the Lake Mead and Government Wash areas to ensure quality control of the data. The data were collected by the AMS data acquisition system (REDAR V) using an array of twelve 2-inch x 4-inch x 16-inch sodium iodide (NaI) detectors flown on-board a twin-engine Bell 412 helicopter. Data, in the form of gamma energy spectra, were collected continually (every second) over the course of the survey and were geo-referenced using a differential Global Positioning System. Collection of spectral data allows the system to distinguish between ordinary fluctuations in natural background radiation levels and the signature produced by man-made radioisotopes. Spectral data can also be used to identify specific radioactive isotopes. As a courtesy service, with

  3. Detection probability of gyrfalcons and other cliff-nesting raptors during aerial surveys in Alaska

    USGS Publications Warehouse

    Booms, Travis L.; Fuller, Mark R.; Schempf, Philip F.; McCaffery, Brian J.; Lindberg, Mark S.; Watson, Richard T.; Cade, Tom J.; Fuller, Mark; Hunt, Grainger; Potapov, Eugene

    2011-01-01

    Assessing the status of Gyrfalcons (Falco rusticolus) and other cliffnesting raptors as the Arctic climate changes often requires aerial surveys of their breeding habitats. Because traditional, count-based surveys that do not adjust for differing detection probabilities can provide faulty inference about population status (Link and Sauer 1998, Thompson 2002), it will be important to incorporate measures of detection probability into survey methods whenever possible. To evaluate the feasibility of this, we conducted repeated aerial surveys for breeding cliff-nesting raptors on the Yukon Delta National Wildlife Refuge (YDNWR) in western Alaska to estimate detection probabilities of Gyrfalcons, Golden Eagles (Aquila chrysaetos), Rough-legged Hawks (Buteo lagopus), and also Common Ravens (Corvus corax). Using the program PRESENCE, we modeled detection histories of each species based on single species occupancy modeling following MacKenzie et al. (2002, 2006). We used different observers during four helicopter replicate surveys in the Kilbuck Mountains and five fixed-wing replicate surveys in the Ingakslugwat Hills (hereafter called Volcanoes) near Bethel, Alaska. We used the following terms and definitions throughout: Survey Site: site of a nest used previously by a raptor and marked with a GPS-obtained latitude and longitude accurate to within 20 m. All GPS locations were obtained in prior years from a helicopter hovering approximately 10?20 m from a nest. The site was considered occupied if a bird or an egg was detected within approximately 500 m of the nest and this area served as our sampling unit. When multiple historical nests were located on a single cliff, we used only one GPS location to locate the survey site. Detection probability (p): the probability of a species being detected at a site given the site is occupied. Occupancy (?): the probability that the species of interest is present at a site during the survey period. A site was considered occupied if the

  4. Aerial surveys of landslide bodies through light UAVs: peculiarities and advantages

    NASA Astrophysics Data System (ADS)

    Spilotro, Giuseppe; Pellicani, Roberta; Leandro, Gianfranco; Marzo, Cosimo; Manzari, Paola; Belmonte, Antonella

    2015-04-01

    The use of UAV in civil applications and particularly for aerial surveillance or surveying is rapidly expanding for several reasons. The first reason is undoubtedly the lowering of the costs of the machines, accompanied by high technology for their positioning and control. The results are high performances and ease of driving. Authors have surveyed some big landslides by drones, with excellent results, which can retail for this technique a specific role, not in conflict with classical airborne aerial surveys, such as LIDAR and others. Obviously the first difference is in the amount of payload, over 100 Kg for classical airborne apparatus, but 1000 times lower in the case of the drones. Nevertheless the advantages of the use of drones and of their products can be synthesized as follows: -Start from the site, without the need of transfers, flight plans and long time weather forecasts; -Imagery product georeferenced and immediately exportable to GIS -Inspection of areas not easily accessible (impervious areas, high layers of mud, crossing of rivers, etc) or unreachable in safety conditions; -Inspection of specific points, relevant for the interpretation of the type and intensity of movement. -The pilot and the landslide specialist define route and compare images in real time -Possibility of flying at very low altitude and hovering. For the geomorphological interpretation of the big landslide of Montescaglioso (Mt, Italy) has been used a 1.5 m EPP (Expanded polipropilene) fixed wing, driven by 3DR Open Source Autopilot, equipped with a 16 Mp compact camera CANON A2300. Very useful revealed the image of the toe of the landslide, critical point for the interpretation of the mechanics of the whole landslide. Results have been of excellent quality and allowed authors to an early correct analysis Other landslides have been explored with a commercial drone (Phantom Vision 2 Dji), the use of which has proved likewise invaluable for returning images of areas not otherwise

  5. Photogrammetric Method and Software for Stream Planform Identification

    NASA Astrophysics Data System (ADS)

    Stonedahl, S. H.; Stonedahl, F.; Lohberg, M. M.; Lusk, K.; Miller, D.

    2013-12-01

    Accurately characterizing the planform of a stream is important for many purposes, including recording measurement and sampling locations, monitoring change due to erosion or volumetric discharge, and spatial modeling of stream processes. While expensive surveying equipment or high resolution aerial photography can be used to obtain planform data, our research focused on developing a close-range photogrammetric method (and accompanying free/open-source software) to serve as a cost-effective alternative. This method involves securing and floating a wooden square frame on the stream surface at several locations, taking photographs from numerous angles at each location, and then post-processing and merging data from these photos using the corners of the square for reference points, unit scale, and perspective correction. For our test field site we chose a ~35m reach along Black Hawk Creek in Sunderbruch Park (Davenport, IA), a small, slow-moving stream with overhanging trees. To quantify error we measured 88 distances between 30 marked control points along the reach. We calculated error by comparing these 'ground truth' distances to the corresponding distances extracted from our photogrammetric method. We placed the square at three locations along our reach and photographed it from multiple angles. The square corners, visible control points, and visible stream outline were hand-marked in these photos using the GIMP (open-source image editor). We wrote an open-source GUI in Java (hosted on GitHub), which allows the user to load marked-up photos, designate square corners and label control points. The GUI also extracts the marked pixel coordinates from the images. We also wrote several scripts (currently in MATLAB) that correct the pixel coordinates for radial distortion using Brown's lens distortion model, correct for perspective by forcing the four square corner pixels to form a parallelogram in 3-space, and rotate the points in order to correctly orient all photos of

  6. Aerial radiological survey of Areas 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 15 and 17, Yucca Flat, Nevada Test Site, 8 August-2 September 1978

    SciTech Connect

    Fritzsche, A E

    1982-06-01

    An aerial gamma survey was conducted over Yucca Flat during August 1978. A limited quantity of soil samples was obtained and evaluated in support of the aerial survey. Results are presented in the form of exposure rate isopleths from man-made isotopes and estimates of concentrations and inventories of /sup 152/Eu, /sup 137/Cs and /sup 60/Co.

  7. An aerial radiological survey of the Oyster Creek Nuclear Power Plant and surrounding area, Forked River, New Jersey. Date of survey: September 18--25, 1992

    SciTech Connect

    Hopkins, H.A.; McCall, K.A.

    1994-05-01

    An aerial radiological survey was conducted over the Oyster Creek Nuclear Power Plant in Forked River, New Jersey, during the period September 18 through September 24, 1992. The survey was conducted at an altitude of 150 feet (46 meters) over a 26-square-mile (67-square-kilometer) area centered on the power station. The purpose of the survey was to document the terrestrial gamma radiation environment of the Oyster Creek Nuclear Power plant and surrounding area. The results of the aerial survey are reported as inferred gamma radiation exposure rates at 1 meter above ground level in the form of a contour map. Outside the plant boundary, exposure rates were found to vary between 4 and 10 microroentgens per hour and were attributed to naturally-occurring uranium, thorium, and radioactive potassium gamma emitters. The aerial data were compared to ground-based benchmark exposure rate measurements and radionuclide assays of soil samples obtained within the survey boundary. The ground-based measurements were found to be in good agreement with those inferred from the aerial measuring system. A previous survey of the power plant was conducted in August 1969 during its initial startup phase. Exposure rates and radioactive isotopes revealed in both surveys were consistent and within normal terrestrial background levels.

  8. An aerial radiological survey of the Evans Area, US Army Communications-Electronics Command, Fort Monmouth, New Jersey

    SciTech Connect

    Maurer, R.J.

    1989-12-01

    An aerial radiological survey was conducted over the Evans Area, US Army Communications-Electronics Command, Fort Monmouth, New Jersey, during the period November 14--18, 1988. The purposes of the survey were to document the terrestrial gamma environment of the Evans site and surrounding area and to determine if there had been any radiological impact on the area due to past laboratory operations. The results of the aerial survey are reported as inferred radiation exposure rates at 1 meter above ground level in the form of a contour map. The aerial data were compared to ground-based benchmark'' exposure rate measurements and radionuclide assay of soil samples obtained at sites outside the survey perimeter. Similar ground-based measurements were also made at several locations on the Evans site and at the bank of the Shark River bordering the Evans Area. No evidence for contamination was identified by either radionuclide assay of soil samples or the aerial survey. 6 refs., 5 figs., 2 tabs.

  9. Photogrammetric Measurements in Fixed Wing Uav Imagery

    NASA Astrophysics Data System (ADS)

    Gülch, E.

    2012-07-01

    Several flights have been undertaken with PAMS (Photogrammetric Aerial Mapping System) by Germap, Germany, which is briefly introduced. This system is based on the SmartPlane fixed-wing UAV and a CANON IXUS camera system. The plane is equipped with GPS and has an infrared sensor system to estimate attitude values. A software has been developed to link the PAMS output to a standard photogrammetric processing chain built on Trimble INPHO. The linking of the image files and image IDs and the handling of different cases with partly corrupted output have to be solved to generate an INPHO project file. Based on this project file the software packages MATCH-AT, MATCH-T DSM, OrthoMaster and OrthoVista for digital aerial triangulation, DTM/DSM generation and finally digital orthomosaik generation are applied. The focus has been on investigations on how to adapt the "usual" parameters for the digital aerial triangulation and other software to the UAV flight conditions, which are showing high overlaps, large kappa angles and a certain image blur in case of turbulences. It was found, that the selected parameter setup shows a quite stable behaviour and can be applied to other flights. A comparison is made to results from other open source multi-ray matching software to handle the issue of the described flight conditions. Flights over the same area at different times have been compared to each other. The major objective was here to see, on how far differences occur relative to each other, without having access to ground control data, which would have a potential for applications with low requirements on the absolute accuracy. The results show, that there are influences of weather and illumination visible. The "unusual" flight pattern, which shows big time differences for neighbouring strips has an influence on the AT and DTM/DSM generation. The results obtained so far do indicate problems in the stability of the camera calibration. This clearly requests a usage of GCPs for all

  10. Aerial surveys of endangered whales in the Beaufort Sea, Fall 1989. Final report

    SciTech Connect

    Treacy, S.D.

    1990-11-01

    The OCSLA Amendments of 1978 (43 U.S.C. 1802) established a policy for the management of oil and natural gas in the OCS and for protection of the marine and coastal environments. The amended OCSLA authorizes the Secretary of the Interior to conduct studies in areas or regions of sales to ascertain the environmental impacts on the marine and coastal environments of the outer Continental Shelf and the coastal areas which may be affected by oil and gas development (43 U.S.C. 1346). The report describes field activities and data analyses for aerial surveys of bowhead whales conducted between 1 September 1989 and 20 October 1989 in the Beaufort Sea, primarily between 140 W. and 154 W. longitudes south of 72 N. latitude. Ice cover during September and October 1989 was exceptionally light. A total of 215 bowhead whales, 104 belukha whales, 9 bearded seals, 84 ringed seals, and 32 unidentified pinnipeds were observed in 1989 during 98.70 hours of survey effort that included 38.10 hours on randomized transects. The last sighting of a bowhead whale made during the survey occurred in open water on 19 October 1989. No whales were sighted during a subsequent flight on 20 October 1989. Estimated median and mean water depths were shallower than for previous surveys (1982-1989). This is consistent with a trend for whales to be located in shallower water during years of generally light ice cover.

  11. An aerial radiological survey of the Robert Emmett Ginna Nuclear Power Plant and surrounding area, Ontario, New York

    SciTech Connect

    Proctor, A.E.

    1997-06-01

    Terrestrial radioactivity surrounding the Robert Emmett Ginna Nuclear Power Plant was measured using aerial radiological surveying techniques. The purpose of this survey was to document exposure rates near the plant and to identify unexpected, man-made radiation sources within the survey area. The surveyed area included land areas within a three-mile radius of the plant site. Data were acquired using an airborne detection system that employed sodium iodide, thallium-activated detectors. Exposure-rate and photopeak counts were computed from these data and plotted on aerial photographs of the survey area. Several ground-based exposure measurements were made for comparison with the aerial survey results. Exposure rates in the area surrounding the plant site varied from 6 to 10 microroentgens per hour. Man-made radiation (cobalt-60 within the plant site and cesium-1 37 directly over the reactor) was found at the plant site. In addition, small areas of suspected cesium-137 activity were found within the survey areas. Other than these small sites, the survey area was free of man-made radioac- tivity.

  12. Mars Aerial Regional-Scale Environmental Survey (ARES) Coordinate Systems Definitions and Transformations

    NASA Technical Reports Server (NTRS)

    Kuhl, Christoper A.

    2009-01-01

    The Aerial Regional-Scale Environmental Survey (ARES) is a Mars exploration mission concept with the goal of taking scientific measurements of the atmosphere, surface, and subsurface of Mars by using an airplane as the payload platform. ARES team first conducted a Phase-A study for a 2007 launch opportunity, which was completed in May 2003. Following this study, significant efforts were undertaken to reduce the risk of the atmospheric flight system, under the NASA Langley Planetary Airplane Risk Reduction Project. The concept was then proposed to the Mars Scout program in 2006 for a 2011 launch opportunity. This paper summarizes the design and development of the ARES airplane propulsion subsystem beginning with the inception of the ARES project in 2002 through the submittal of the Mars Scout proposal in July 2006.

  13. Digital photogrammetry at the U.S. Geological Survey

    USGS Publications Warehouse

    Greve, Clifford W.

    1995-01-01

    The U.S. Geological Survey is converting its primary map production and revision operations to use digital photogrammetric techniques. The primary source of data for these operations is the digital orthophoto quadrangle derived from National Aerial Photography Program images. These digital orthophotos are used on workstations that permit comparison of existing vector and raster data with the orthophoto and interactive collection and revision of the vector data.

  14. Survey on the novel hybrid aquatic-aerial amphibious aircraft: Aquatic unmanned aerial vehicle (AquaUAV)

    NASA Astrophysics Data System (ADS)

    Yang, Xingbang; Wang, Tianmiao; Liang, Jianhong; Yao, Guocai; Liu, Miao

    2015-04-01

    The aquatic unmanned aerial vehicle (AquaUAV), a kind of vehicle that can operate both in the air and the water, has been regarded as a new breakthrough to broaden the application scenario of UAV. Wide application prospects in military and civil field are more than bright, therefore many institutions have focused on the development of such a vehicle. However, due to the significant difference of the physical properties between the air and the water, it is rather difficult to design a fully-featured AquaUAV. Until now, majority of partially-featured AquaUAVs have been developed and used to verify the feasibility of an aquatic-aerial vehicle. In the present work, we classify the current partially-featured AquaUAV into three categories from the scope of the whole UAV field, i.e., the seaplane UAV, the submarine-launched UAV, and the submersible UAV. Then the recent advancements and common characteristics of the three kinds of AquaUAVs are reviewed in detail respectively. Then the applications of bionics in the design of AquaUAV, the transition mode between the air and the water, the morphing wing structure for air-water adaptation, and the power source and the propulsion type are summarized and discussed. The tradeoff analyses for different transition methods between the air and the water are presented. Furthermore, it indicates that applying the bionics into the design and development of the AquaUAV will be essential and significant. Finally, the significant technical challenges for the AquaUAV to change from a conception to a practical prototype are indicated.

  15. An aerial radiological survey of the West Valley Demonstration Project and surrounding area, West Valley, New York

    SciTech Connect

    Berry, H.A.

    1991-09-01

    An aerial radiological survey of the West Valley Demonstration Project and the surrounding area was conducted from mid-August through early September 1984 by EG G Energy Measurements, Inc. for the United States Department of Energy. The radiological survey was part of the United States Department of Energy Comprehensive Integrated Remote Sensing (CIRS) program, which provides state-of-the-art remote sensing to support the needs of the various DOE facilities. The survey consisted of airborne measurements of both natural and man-made gamma radiation emanating from the terrestrial surface. These measurements allowed an estimate of the distribution of isotopic concentrations in the area surrounding the project site. Results are reported as isopleths superimposed on aerial photographs of the area. Gamma ray energy spectra are also presented for the net man-made radionuclides. 8 refs., 16 figs., 9 tabs.

  16. Factors affecting visibility rate of aerial waterfowl surveys in the Mississippi alluvial valley

    USGS Publications Warehouse

    Smith, D.R.; Reinecke, K.J.; Conroy, M.J.; Brown, M.W.; Nassar, J.R.

    1995-01-01

    Because visibility bias can confound attempts to detect changes in abundance, we evaluated factors that affect visibility rate in aerial surveys of wintering waterfowl. We placed waterfowl decoys in 32 2- x 0.25-kin strip transects in the Mississippi Alluvial Valley (MAV) during February 1990 and 1991 and observed the decoys under different experimental conditions. Visibility rate was influenced (P 0.10) by habitat, transect width, and decoy group size. We simulated variation in use of habitat and found that changes in use between open and wooded wetlands would cause changes in visibility rate and affect the power to detect a change in abundance. The effect of changes in visibility rate on likelihood of detecting population change depended on the magnitude and direction of population change and precision of the population index. For transect surveys of wintering ducks in the MAV we recommend reducing transect width from 250 to 150 m on each side of the aircraft and restricting comparisons between years when 70% of the population is likely to be distributed in open wetlands. Improved techniques for estimating abundance of wintering waterfowl are also needed so use of questionable population indices can be avoided.

  17. Comparison of 3D point clouds obtained by photogrammetric UAVs and TLS to determine the attitude of dolerite outcrops discontinuities.

    NASA Astrophysics Data System (ADS)

    Duarte, João; Gonçalves, Gil; Duarte, Diogo; Figueiredo, Fernando; Mira, Maria

    2015-04-01

    Photogrammetric Unmanned Aerial Vehicles (UAVs) and Terrestrial Laser Scanners (TLS) are two emerging technologies that allows the production of dense 3D point clouds of the sensed topographic surfaces. Although image-based stereo-photogrammetric point clouds could not, in general, compete on geometric quality over TLS point clouds, fully automated mapping solutions based on ultra-light UAVs (or drones) have recently become commercially available at very reasonable accuracy and cost for engineering and geological applications. The purpose of this paper is to compare the two point clouds generated by these two technologies, in order to automatize the manual process tasks commonly used to detect and represent the attitude of discontinuities (Stereographic projection: Schmidt net - Equal area). To avoid the difficulties of access and guarantee the data survey security conditions, this fundamental step in all geological/geotechnical studies, applied to the extractive industry and engineering works, has to be replaced by a more expeditious and reliable methodology. This methodology will allow, in a more actuated clear way, give answers to the needs of evaluation of rock masses, by mapping the structures present, which will reduce considerably the associated risks (investment, structures dimensioning, security, etc.). A case study of a dolerite outcrop locate in the center of Portugal (the dolerite outcrop is situated in the volcanic complex of Serra de Todo-o-Mundo, Casais Gaiola, intruded in Jurassic sandstones) will be used to assess this methodology. The results obtained show that the 3D point cloud produced by the Photogrammetric UAV platform has the appropriate geometric quality for extracting the parameters that define the discontinuities of the dolerite outcrops. Although, they are comparable to the manual extracted parameters, their quality is inferior to parameters extracted from the TLS point cloud.

  18. An aerial radiological survey of Project Gasbuggy and surrounding area, Rio Arriba County, New Mexico. Date of survey: October 27, 1994

    SciTech Connect

    1995-08-01

    An aerial radiological survey was conducted over the Project Gasbuggy site, 55 miles (89 kilometers) east of Farmington, New Mexico, on October 27, 1994. Parallel lines were flown at intervals of 300 feet (91 meters) over a 16-square-mile (41-square-kilometer) area at a 150-foot (46-meter) altitude centered on the Gasbuggy site. The gamma energy spectra obtained were reduced to an exposure rate contour map overlaid on a high altitude aerial photograph of the area. The terrestrial exposure rate varied from 14 to 20 {micro}R/h at 1 meter above ground level. No anomalous or man-made isotopes were found.

  19. Estimating the abundance of the Southern Hudson Bay polar bear subpopulation with aerial surveys

    USGS Publications Warehouse

    Obbard, Martyn E.; Stapleton, Seth P.; Middel, Kevin R.; Thibault, Isabelle; Brodeur, Vincent; Jutras, Charles

    2015-01-01

    The Southern Hudson Bay (SH) polar bear subpopulation occurs at the southern extent of the species’ range. Although capture–recapture studies indicate abundance was likely unchanged between 1986 and 2005, declines in body condition and survival occurred during the period, possibly foreshadowing a future decrease in abundance. To obtain a current estimate of abundance, we conducted a comprehensive line transect aerial survey of SH during 2011–2012. We stratified the study site by anticipated densities and flew coastal contour transects and systematically spaced inland transects in Ontario and on Akimiski Island and large offshore islands in 2011. Data were collected with double-observer and distance sampling protocols. We surveyed small islands in James Bay and eastern Hudson Bay and flew a comprehensive transect along the Québec coastline in 2012. We observed 667 bears in Ontario and on Akimiski Island and nearby islands in 2011, and we sighted 80 bears on offshore islands during 2012. Mark–recapture distance sampling and sight–resight models yielded an estimate of 860 (SE = 174) for the 2011 study area. Our estimate of abundance for the entire SH subpopulation (943; SE = 174) suggests that abundance is unlikely to have changed significantly since 1986. However, this result should be interpreted cautiously because of the methodological differences between historical studies (physical capture–recapture) and this survey. A conservative management approach is warranted given previous increases in duration of the ice-free season, which are predicted to continue in the future, and previously documented declines in body condition and vital rates.

  20. Estimating abundance of the Southern Hudson Bay polar bear subpopulation using aerial surveys, 2011 and 2012

    USGS Publications Warehouse

    Obbard, Martyn E.; Middel, Kevin R.; Stapleton, Seth P.; Thibault, Isabelle; Brodeur, Vincent; Jutras, Charles

    2013-01-01

    The Southern Hudson Bay (SH) polar bear subpopulation occurs at the southern extent of the species’ range. Although capture-recapture studies indicate that abundance remained stable between 1986 and 2005, declines in body condition and survival were documented during the period, possibly foreshadowing a future decrease in abundance. To obtain a current estimate of abundance, we conducted a comprehensive line transect aerial survey of SH during 2011–2012. We stratified the study site by anticipated densities and flew coastal contour transects and systematically spaced inland transects in Ontario and on Akimiski Island and large offshore islands in 2011. Data were collected with double observer and distance sampling protocols. We also surveyed small islands in Hudson Bay and James Bay and flew a comprehensive transect along the Québec coastline in 2012. We observed 667 bears in Ontario and on Akimiski Island and nearby islands in 2011, and we sighted 80 bears on offshore islands during 2012. Mark-recapture distance sampling and sightresight models yielded a model-averaged estimate of 868 (SE: 177) for the 2011 study area. Our estimate of abundance for the entire SH subpopulation (951; SE: 177) suggests that abundance has remained unchanged. However, this result should be interpreted cautiously because of the methodological differences between historical studies (physical capture) and this survey. A conservative management approach is warranted given the previous increases in the duration of the ice-free season, which are predicted to continue in the future, and previously documented declines in body condition and vital rates.

  1. A Planetary Protection Strategy for the Mars Aerial Regional-Scale Environmental Survey (ARES) Mission Concept

    NASA Technical Reports Server (NTRS)

    Kuhl, Christopher A.

    2008-01-01

    The Aerial Regional-scale Environmental Survey (ARES) is a Mars exploration mission concept designed to send an airplane to fly through the lower atmosphere of Mars, with the goal of taking scientific measurements of the atmosphere, surface, and subsurface phenomenon. ARES was first proposed to the Mars Scout program in December 2002 for a 2007 launch opportunity and was selected to proceed with a Phase A study, step-2 proposal which was submitted in May 2003. ARES was not selected for the Scout mission, but efforts continued on risk reduction of the atmospheric flight system in preparation for the next Mars Scout opportunity in 2006. The ARES concept was again proposed in July 2006 to the Mars Scout program but was not selected to proceed into Phase A. This document describes the Planetary Protection strategy that was developed in ARES Pre Phase-A activities to help identify, early in the design process, certain hardware, assemblies, and/or subsystems that will require unique design considerations based on constraints imposed by Planetary Protection requirements. Had ARES been selected as an exploration project, information in this document would make up the ARES Project Planetary Protection Plan.

  2. Infrared Surveys of Hawaiian Volcanoes: Aerial surveys with infrared imaging radiometer depict volcanic thermal patterns and structural features.

    PubMed

    Fisher, W A; Moxham, R M; Polcyn, F; Landis, G H

    1964-11-06

    Aerial infrared-sensor surveys of Kilauea volcano have depicted the areal extent and the relative intensity of abnormal thermal features in the caldera area of the volcano and along its associated rift zones. Many of these anomalies show correlation with visible steaming and reflect convective transfer of heat to the surface from subterranean sources. Structural details of the volcano, some not evident from surface observation, are also delineated by their thermal abnormalities. Several changes were observed in the patterns of infrared emission during the period of study; two such changes show correlation in location with subsequent eruptions, but the cause-and-effect relationship is uncertain. Thermal anomalies were also observed on the southwest flank of Mauna Loa; images of other volcanoes on the island of Hawaii, and of Haleakala on the island of Maui, revealed no thermal abnormalities. Approximately 25 large springs issuing into the ocean around the periphery of Hawaii have been detected. Infrared emission varies widely with surface texture and composition, suggesting that similar observations may have value for estimating surface conditions on the moon or planets.

  3. Testing the Accuracy of Aerial Surveys for Large Mammals: An Experiment with African Savanna Elephants (Loxodonta africana)

    PubMed Central

    Schlossberg, Scott; Chase, Michael J.; Griffin, Curtice R.

    2016-01-01

    Accurate counts of animals are critical for prioritizing conservation efforts. Past research, however, suggests that observers on aerial surveys may fail to detect all individuals of the target species present in the survey area. Such errors could bias population estimates low and confound trend estimation. We used two approaches to assess the accuracy of aerial surveys for African savanna elephants (Loxodonta africana) in northern Botswana. First, we used double-observer sampling, in which two observers make observations on the same herds, to estimate detectability of elephants and determine what variables affect it. Second, we compared total counts, a complete survey of the entire study area, against sample counts, in which only a portion of the study area is sampled. Total counts are often considered a complete census, so comparing total counts against sample counts can help to determine if sample counts are underestimating elephant numbers. We estimated that observers detected only 76% ± SE of 2% of elephant herds and 87 ± 1% of individual elephants present in survey strips. Detectability increased strongly with elephant herd size. Out of the four observers used in total, one observer had a lower detection probability than the other three, and detectability was higher in the rear row of seats than the front. The habitat immediately adjacent to animals also affected detectability, with detection more likely in more open habitats. Total counts were not statistically distinguishable from sample counts. Because, however, the double-observer samples revealed that observers missed 13% of elephants, we conclude that total counts may be undercounting elephants as well. These results suggest that elephant population estimates from both sample and total counts are biased low. Because factors such as observer and habitat affected detectability of elephants, comparisons of elephant populations across time or space may be confounded. We encourage survey teams to

  4. Payette National Forest aerial survey project using the Kodak digital color infrared camera

    NASA Astrophysics Data System (ADS)

    Greer, Jerry D.

    1997-11-01

    Staff of the Payette National Forest located in central Idaho used the Kodak Digital Infrared Camera to collect digital photographic images over a wide variety of selected areas. The objective of this aerial survey project is to collect airborne digital camera imagery and to evaluate it for potential use in forest assessment and management. The data collected from this remote sensing system is being compared with existing resource information and with personal knowledge of the areas surveyed. Resource specialists are evaluating the imagery to determine if it may be useful for; identifying cultural sites (pre-European settlement tribal villages and camps); recognizing ecosystem landscape pattern; mapping recreation areas; evaluating the South Fork Salmon River road reconstruction project; designing the Elk Summit Road; assessing the impact of sediment on anadramous fish in the South Fork Salmon River; assessing any contribution of sediment to the South Fork from the reconstructed road; determining post-wildfire stress development in conifer timber; in assessing the development of insect populations in areas initially determined to be within low intensity wildfire burn polygons; and to search for Idaho Ground Squirrel habitat. Project sites include approximately 60 linear miles of the South Fork of the Salmon River; a parallel road over about half that distance; 3 archaeological sites; two transects of about 6 miles each for landscape patterns; 3 recreation areas; 5 miles of the Payette River; 4 miles of the Elk Summit Road; a pair of transects 4.5 miles long for stress assessment in timber; a triplet of transects about 3 miles long for the assessment of the identification of species; and an area of about 640 acres to evaluate habitat for the endangered Idaho Ground Squirrel. Preliminary results indicate that the imagery is an economically viable way to collect site specific resource information that is of value in the management of a national forest.

  5. High resolution multispectral photogrammetric imagery: enhancement, interpretation and evaluations

    NASA Astrophysics Data System (ADS)

    Roberts, Arthur; Haefele, Martin; Bostater, Charles; Becker, Thomas

    2007-10-01

    A variety of aerial mapping cameras were adapted and developed into simulated multiband digital photogrammetric mapping systems. Direct digital multispectral, two multiband cameras (IIS 4 band and Itek 9 band) and paired mapping and reconnaissance cameras were evaluated for digital spectral performance and photogrammetric mapping accuracy in an aquatic environment. Aerial films (24cm X 24cm format) tested were: Agfa color negative and extended red (visible and near infrared) panchromatic, and; Kodak color infrared and B&W (visible and near infrared) infrared. All films were negative processed to published standards and digitally converted at either 16 (color) or 10 (B&W) microns. Excellent precision in the digital conversions was obtained with scanning errors of less than one micron. Radiometric data conversion was undertaken using linear density conversion and centered 8 bit histogram exposure. This resulted in multiple 8 bit spectral image bands that were unaltered (not radiometrically enhanced) "optical count" conversions of film density. This provided the best film density conversion to a digital product while retaining the original film density characteristics. Data covering water depth, water quality, surface roughness, and bottom substrate were acquired using different measurement techniques as well as different techniques to locate sampling points on the imagery. Despite extensive efforts to obtain accurate ground truth data location errors, measurement errors, and variations in the correlation between water depth and remotely sensed signal persisted. These errors must be considered endemic and may not be removed through even the most elaborate sampling set up. Results indicate that multispectral photogrammetric systems offer improved feature mapping capability.

  6. A digital photogrammetric method for measuring horizontal surficial movements on the slumgullion earthflow, Hinsdale county, Colorado

    USGS Publications Warehouse

    Powers, P.S.; Chiarle, M.; Savage, W.Z.

    1996-01-01

    The traditional approach to making aerial photographic measurements uses analog or analytic photogrammetric equipment. We have developed a digital method for making measurements from aerial photographs which uses geographic information system (GIS) software, and primarily DOS-based personal computers. This method, which is based on the concept that a direct visual comparison can be made between images derived from two sets of aerial photographs taken at different times, was applied to the surface of the active portion of the Slumgullion earthflow in Colorado to determine horizontal displacement vectors from the movements of visually identifiable objects, such as trees and large rocks. Using this method, more of the slide surface can be mapped in a shorter period of time than using the standard photogrammetric approach. More than 800 horizontal displacement vectors were determined on the active earthflow surface using images produced by our digital photogrammetric technique and 1985 (1:12,000-scale) and 1990 (1:6,000-scale) aerial photographs. The resulting displacement field shows, with a 2-m measurement error (??? 10%), that the fastest moving portion of the landslide underwent 15-29 m of horizontal displacement between 1985 and 1990. Copyright ?? 1996 Elsevier Science Ltd.

  7. An aerial radiological survey of the Kennedy Space Center and Cape Canaveral Air Force Station and surrounding area, Titusville, Florida: Date of survey: October 1985

    SciTech Connect

    Not Available

    1988-01-01

    An aerial radiological survey of the entire Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) was performed during the period 9 through 23 October 1985. This survey was conducted in three parts. First, a low resolution, low sensitivity background survey was performed that encompassed the entire KSC and CCAFS area. Next, two smaller, high resolution, high sensitivity surveys were conducted: the first focused on Launch Complexes 39A and 39B, and the second on the Shuttle Landing Facility. The areas encompassed by the surveys were 200, 5.5, and 8.5 square miles (500, 14, and 22 sq km), respectively. The purpose of these surveys was to provide information useful for an emergency response to a radiological accident. Results of the background survey are presented as isoradiation contour maps of both total exposure rate and man-made gross count superimposed on a mosaic of recent aerial photographs. Results of the two small, detailed surveys are also presented as an isoradiation contour map of exposure rate on the aerial photograph base. These data were evaluated to establish sensitivity limits for mapping the presence of plutonium-238. Natural background exposure rates at the Kennedy Space Center and Cape Canaveral Air Force Station are very low, generally ranging from 4 to 6.5 microroentgens per hour (..mu..R/h) and less than 4 ..mu..R/h in wet areas. However, exposure rates in developed areas were observed to be higher due to the importation of construction materials not characteristic of the area. 8 refs., 3 figs., 4 tabs.

  8. Monitoring Winter and Summer Abundance of Cetaceans in the Pelagos Sanctuary (Northwestern Mediterranean Sea) Through Aerial Surveys

    PubMed Central

    Panigada, Simone; Lauriano, Giancarlo; Burt, Louise; Pierantonio, Nino; Donovan, Greg

    2011-01-01

    Systematic long-term monitoring of abundance is essential to inform conservation measures and evaluate their effectiveness. To instigate such work in the Pelagos Sanctuary in the Mediterranean, two aerial surveys were conducted in winter and summer 2009. A total of 467 (131 in winter, 336 in summer) sightings of 7 species was made. Sample sizes were sufficient to estimate abundance of fin whales in summer (148; 95% CI = 87–254) and striped dolphins in winter (19,462; 95% CI = 12 939–29 273) and in summer (38 488; 95% CI = 27 447–53 968). Numbers of animals within the Sanctuary are significantly higher in summer, when human activities and thus potential population level impacts are highest. Comparisons with data from past shipboard surveys suggest an appreciable decrease in fin whales within the Sanctuary area and an appreciable increase in striped dolphins. Aerial surveys proved to be more efficient than ship surveys, allowing more robust estimates, with smaller CIs and CVs. These results provide essential baseline data for this marine protected area and continued regular surveys will allow the effectiveness of the MPA in terms of cetacean conservation to be evaluated and inform future management measures. The collected data may also be crucial in assessing whether ship strikes, one of the main causes of death for fin whales in the Mediterranean, are affecting the Mediterranean population. PMID:21829544

  9. Seasonal distribution and aerial surveys of mountain goats in Mount Rainier, North Cascades, and Olympic National Parks, Washington

    USGS Publications Warehouse

    Jenkins, Kurt; Beirne, Katherine; Happe, Patricia; Hoffman, Roger; Rice, Cliff; Schaberl, Jim

    2011-01-01

    We described the seasonal distribution of Geographic Positioning System (GPS)-collared mountain goats (Oreamnos americanus) in Mount Rainier, North Cascades, and Olympic National Parks to evaluate aerial survey sampling designs and provide general information for park managers. This work complemented a companion study published elsewhere of aerial detection biases of mountain goat surveys in western Washington. Specific objectives reported here were to determine seasonal and altitudinal movements, home range distributions, and temporal dynamics of mountain goat movements in and out of aerial survey sampling frames established within each park. We captured 25 mountain goats in Mount Rainier (9), North Cascades (5), and Olympic (11) National Parks, and fitted them with GPS-collars programmed to obtain 6-8 locations daily. We obtained location data on 23 mountain goats for a range of 39-751 days from 2003 to 2008. Altitudinal distributions of GPS-collared mountain goats varied individually and seasonally, but median altitudes used by individual goats during winter ranged from 817 to 1,541 meters in Olympic and North Cascades National Parks, and 1,215 to 1,787 meters in Mount Rainier National Park. Median altitudes used by GPS-collared goats during summer ranged from 1,312 to 1,819 meters in Olympic and North Cascades National Parks, and 1,780 to 2,061 meters in Mount Rainier National Park. GPS-collared mountain goats generally moved from low-altitude winter ranges to high-altitude summer ranges between June 11 and June 19 (range April 24-July 3) and from summer to winter ranges between October 26 and November 9 (range September 11-December 23). Seasonal home ranges (95 percent of adaptive kernel utilization distribution) of males and female mountain goats were highly variable, ranging from 1.6 to 37.0 kilometers during summers and 0.7 to 9.5 kilometers during winters. Locations of GPS-collared mountain goats were almost 100 percent within the sampling frame used for

  10. Computing the Deflection of the Vertical for Improving Aerial Surveys: A Comparison between EGM2008 and ITALGEO05 Estimates

    PubMed Central

    Barzaghi, Riccardo; Carrion, Daniela; Pepe, Massimiliano; Prezioso, Giuseppina

    2016-01-01

    Recent studies on the influence of the anomalous gravity field in GNSS/INS applications have shown that neglecting the impact of the deflection of vertical in aerial surveys induces horizontal and vertical errors in the measurement of an object that is part of the observed scene; these errors can vary from a few tens of centimetres to over one meter. The works reported in the literature refer to vertical deflection values based on global geopotential model estimates. In this paper we compared this approach with the one based on local gravity data and collocation methods. In particular, denoted by ξ and η, the two mutually-perpendicular components of the deflection of the vertical vector (in the north and east directions, respectively), their values were computed by collocation in the framework of the Remove-Compute-Restore technique, applied to the gravity database used for estimating the ITALGEO05 geoid. Following this approach, these values have been computed at different altitudes that are relevant in aerial surveys. The (ξ, η) values were then also estimated using the high degree EGM2008 global geopotential model and compared with those obtained in the previous computation. The analysis of the differences between the two estimates has shown that the (ξ, η) global geopotential model estimate can be reliably used in aerial navigation applications that require the use of sensors connected to a GNSS/INS system only above a given height (e.g., 3000 m in this paper) that must be defined by simulations. PMID:27472333

  11. Comparison of aerial survey procedures for estimating polar bear density: Results of pilot studies in northern Alaska

    USGS Publications Warehouse

    McDonald, Lyman L.; Garner, Gerald W.; Garner, Gerald W.; Amstrup, Steven C.; Laake, Jeffrey L.; Manly, Bryan F.J.; McDonald, Lyman L.; Robertson, Donna G.

    1999-01-01

    The U.S. Marine Mammal Protection Act (MMPA) and International Agreement on the Conservation of Polar Bears mandate that boundaries and sizes of polar bear (Ursus maritimus) populations be known so they can be managed at optimum sustainable levels. However, data to estimate polar bear numbers for the Chukchi/Bering Sea and Beaufort Sea populations in Alaska are limited. We evaluated aerial line transect methodology for assessing the size of these Alaskan polar bear populations during pilot studies in spring 1987 and summer 1994. In April and May 1987 we flew 12.239 km of transect lines in the northern Bering, Chukchi, and western Beaufort seas. In June 1994 we flew 6.244 km of transect lines in a primary survey unit using a helicopter, and 5,701 km of transect lines in a secondary survey unit using a fixed-wing aircraft in the Beaufort Sea. We examined visibility bias in aerial transect surveys, double counts by independent observers, single-season mark-resight methods, the suitability of using polar bear sign to stratify the study area, and adaptive sampling methods. Fifteen polar bear groups were observed during the 1987 study. Probability of detecting bears decreased with increasing perpendicular distance from the transect line, and probability of detecting polar bear groups likely increased with increasing group size. We estimated population density in high density areas to be 446 km2/bear. In 1994, 15 polar bear groups were observed by independent front and rear seat observers on transect lines in the primary survey unit. Density estimates ranged from 284 km2/bear to 197 km2/bear depending on the model selected. Low polar bear numbers scattered over large areas of polar ice in 1987 indicated that spring is a poor time to conduct aerial surveys. Based on the 1994 survey we determined that ship-based helicopter or land-based fixed-wing aerial surveys conducted at the ice-edge in late summer-early fall may produce robust density estimates for polar bear

  12. The availability of local aerial photography in southern California. [for solution of urban planning problems

    NASA Technical Reports Server (NTRS)

    Allen, W., III; Sledge, B.; Paul, C. K.; Landini, A. J.

    1974-01-01

    Some of the major photography and photogrammetric suppliers and users located in Southern California are listed. Recent trends in aerial photographic coverage of the Los Angeles basin area are also noted, as well as the uses of that imagery.

  13. Development of photogrammetry in the U.S. Geological Survey

    USGS Publications Warehouse

    Thompson, Morris M.

    1958-01-01

    Photogrammetry, the science or art of obtaining reliable measurements by means of photography, is now used extensively in topographic mapping. Precise photogrammetric plotting instruments now enable the map maker to extract from aerial photographs much.of the detailed information required for drawing the map that formerly was acquired by laborious ground surveys. Photography and photogrammetry have thus become essential components of all large mapping operations. The Geological Survey has played a leading role in the development of photogrammetric methods of mapping over a period of half a century. This role has been well documented in numerous articles appearing in technical publications during this time. It is the purpose of this circular to present, in brief form, the highlights of Geological Survey activities and developments in the field of photogrammetry, from pioneer efforts to present-day practice.

  14. Terrestrial Mobile Mapping: photogrammetric simulator

    NASA Astrophysics Data System (ADS)

    Taglioretti, C.; Manzino, A. M.

    2014-08-01

    Nowadays many types of sensors are used for terrestrial mobile mapping (TMM): IMU, odometers, GNSS, cameras, etc., and it is essential to understand how these sensors can improve the solution in terms of precision, accuracy and reliability. TMM issues are characterized by many variables: vehicle trajectory, the height of the buildings and the distance between them, traffic conditions, the presence or absence of trees, the level of illumination, etc. The aim of this study is to determine how photogrammetric measurements can improve the quality of TMM solution at least concerning magnitude and error propagation when there is no GNSS signal (for example in an urban canyon). Another purpose of the study was to determine the most suitable design project for a specific relief in order to obtain the best possible photogrammetric results. By analyzing the error propagation in the various components of relative orientation along the trajectory and considering a sequence of images characterized by an overlap varying between 60 to 90% and the same number of tie points, results were obtained which confirmed the reliability of the data produced by the simulator. These results are shown in this paper.

  15. Early aerial photography and contributions to Digital Earth - The case of the 1921 Halifax air survey mission in Canada

    NASA Astrophysics Data System (ADS)

    Werle, D.

    2016-04-01

    This paper presents research into the military and civilian history, technological development, and practical outcomes of aerial photography in Canada immediately after the First World War. The collections of early aerial photography in Canada and elsewhere, as well as the institutional and practical circumstances and arrangements of their creation, represent an important part of remote sensing heritage. It is argued that the digital rendition of the air photos and their representation in mosaic form can make valuable contributions to Digital Earth historic inquiries and mapping exercises today. An episode of one of the first urban surveys, carried out over Halifax, Nova Scotia, in 1921, is highlighted and an air photo mosaic and interpretation key is presented. Using the almost one hundred year old air photos and a digitally re-assembled mosaic of a substantial portion of that collection as a guide, a variety of features unique to the post-war urban landscape of the Halifax peninsula are analysed, illustrated, and compared with records of past and current land use. The pan-chromatic air photo ensemble at a nominal scale of 1:5,000 is placed into the historical context with contemporary thematic maps, recent air photos, and modern satellite imagery. Further research opportunities and applications concerning early Canadian aerial photography are outlined.

  16. Aerial Survey Results for 131I Deposition on the Ground after the Fukushima Daiichi Nuclear Power Plant Accident

    SciTech Connect

    Torii, Tatsuo; Sugita, Takeshi; Okada, Colin E.; Reed, Michael S.; Blumenthal, Daniel J.

    2013-08-01

    In March 2011 the second largest accidental release of radioactivity in history occurred at the Fukushima Daiichi nuclear power plant following a magnitude 9.0 earthquake and subsequent tsunami. Teams from the U.S. Department of Energy, National Nuclear Security Administration Office of Emergency Response performed aerial surveys to provide initial maps of the dispersal of radioactive material in Japan. The initial results from the surveys did not report the concentration of 131I. This work reports on analyses performed on the initial survey data by a joint Japan-US collaboration to determine 131I ground concentration. This information is potentially useful in reconstruction of the inhalation and external exposure doses from this short-lived radionuclide. The deposited concentration of 134Cs is also reported.

  17. An aerial radiological survey of the Tonopah Test Range including Clean Slate 1,2,3, Roller Coaster, decontamination area, Cactus Springs Ranch target areas. Central Nevada

    SciTech Connect

    Proctor, A.E.; Hendricks, T.J.

    1995-08-01

    An aerial radiological survey was conducted of major sections of the Tonopah Test Range (TTR) in central Nevada from August through October 1993. The survey consisted of aerial measurements of both natural and man-made gamma radiation emanating from the terrestrial surface. The initial purpose of the survey was to locate depleted uranium (detecting {sup 238}U) from projectiles which had impacted on the TTR. The examination of areas near Cactus Springs Ranch (located near the western boundary of the TTR) and an animal burial area near the Double Track site were secondary objectives. When more widespread than expected {sup 241}Am contamination was found around the Clean Slates sites, the survey was expanded to cover the area surrounding the Clean Slates and also the Double Track site. Results are reported as radiation isopleths superimposed on aerial photographs of the area.

  18. Interpretation of detailed aerial gamma-ray survey, Jabal Ashirah area, southeastern Arabian Shield, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Duval, J.S.

    1987-01-01

    A detailed aerial gamma-ray spectrometric survey of the Jabal Ashirah area in the southeastern Arabian Shield has been analyzed using computer-classification algorithms. The analysis resulted in maps that show radiometric map units and gamma-ray anomalies indicating the presence of possible concentrations of potassium and uranium. The radiometric-unit map was interpreted to 'produce a simplified radiolithic map that was correlated with the mapped geology. The gamma-ray data show uranium anomalies that coincide with a tin-bearing granite, but known gold and nickel mineralization do not have any associated gamma-ray signatures.

  19. Aerial infrared surveys of Reykjanes and Torfajökull thermal areas, Oceland, with a section on cost of exploration surveys

    USGS Publications Warehouse

    Pálmason, G.; Friedman, J.D.; Williams, R. S.; Jónsson, J.; Saemundsson, K.

    1970-01-01

    In 1966 and 1968 aerial infrared surveys were conducted over 10 of 13 high-temperature thermal areas in Iceland. The surveys were made with an airborne scanner system, utilizing radiation in the 4.5–5.5 μm wavelength band.Supplementary ground geological studies were made in the Reykjanes and Torfajökull thermal areas to interpret features depicted on the infrared imagery and to relate zones of high heat flux to tectonic structure. In the Reykjanes area in southwestern Iceland a shallow ground temperature map was prepared for temperatures at a depth of 0.5 meters; comparison of this map with the infrared imagery reveals some striking similarities.It appears that aerial infrared surveys outline the surface thermal patterns of high-temperature areas and aid in relating these patterns to possible geological structures controlling the upflow of hot water. Amplitude-slicing techniques applied to the magnetically taped airborne scanner data permit an estimate to be made of the natural heat output on the basis of size of area and specific radiance.In addition to their value in preliminary studies of high-temperature areas, infrared surveys conducted at regular intervals over thermal area under exploitation can provide valuable data on changes that occur in surface manifestations with time.

  20. Aerial infrared surveys of Reykjanes and Torfajökull thermal areas, Iceland, with a section on cost of exploration surveys

    USGS Publications Warehouse

    Pálmason, G.; Friedman, J.D.; Williams, R.S.; Jónsson, J.; Saemundsson, K.

    1970-01-01

    In 1966 and 1968 aerial infrared surveys were conducted over 10 of 13 high-temperature thermal areas in Iceland. The surveys were made with an airborne scanner system, utilizing radiation in the 4.5–5.5 μm wavelength band. Supplementary ground geological studies were made in the Reykjanes and Torfajökull thermal areas to interpret features depicted on the infrared imagery and to relate zones of high heat flux to tectonic structure. In the Reykjanes area in southwestern Iceland a shallow ground temperature map was prepared for temperatures at a depth of 0.5 meters; comparison of this map with the infrared imagery reveals some striking similarities. It appears that aerial infrared surveys outline the surface thermal patterns of high-temperature areas and aid in relating these patterns to possible geological structures controlling the upflow of hot water. Amplitude-slicing techniques applied to the magnetically taped airborne scanner data permit an estimate to be made of the natural heat output on the basis of size of area and specific radiance. In addition to their value in preliminary studies of high-temperature areas, infrared surveys conducted at regular intervals over thermal area under exploitation can provide valuable data on changes that occur in surface manifestations with time.

  1. Performance Analysis of the SIFT Operator for Automatic Feature Extraction and Matching in Photogrammetric Applications.

    PubMed

    Lingua, Andrea; Marenchino, Davide; Nex, Francesco

    2009-01-01

    In the photogrammetry field, interest in region detectors, which are widely used in Computer Vision, is quickly increasing due to the availability of new techniques. Images acquired by Mobile Mapping Technology, Oblique Photogrammetric Cameras or Unmanned Aerial Vehicles do not observe normal acquisition conditions. Feature extraction and matching techniques, which are traditionally used in photogrammetry, are usually inefficient for these applications as they are unable to provide reliable results under extreme geometrical conditions (convergent taking geometry, strong affine transformations, etc.) and for bad-textured images. A performance analysis of the SIFT technique in aerial and close-range photogrammetric applications is presented in this paper. The goal is to establish the suitability of the SIFT technique for automatic tie point extraction and approximate DSM (Digital Surface Model) generation. First, the performances of the SIFT operator have been compared with those provided by feature extraction and matching techniques used in photogrammetry. All these techniques have been implemented by the authors and validated on aerial and terrestrial images. Moreover, an auto-adaptive version of the SIFT operator has been developed, in order to improve the performances of the SIFT detector in relation to the texture of the images. The Auto-Adaptive SIFT operator (A(2) SIFT) has been validated on several aerial images, with particular attention to large scale aerial images acquired using mini-UAV systems.

  2. Performance Analysis of the SIFT Operator for Automatic Feature Extraction and Matching in Photogrammetric Applications

    PubMed Central

    Lingua, Andrea; Marenchino, Davide; Nex, Francesco

    2009-01-01

    In the photogrammetry field, interest in region detectors, which are widely used in Computer Vision, is quickly increasing due to the availability of new techniques. Images acquired by Mobile Mapping Technology, Oblique Photogrammetric Cameras or Unmanned Aerial Vehicles do not observe normal acquisition conditions. Feature extraction and matching techniques, which are traditionally used in photogrammetry, are usually inefficient for these applications as they are unable to provide reliable results under extreme geometrical conditions (convergent taking geometry, strong affine transformations, etc.) and for bad-textured images. A performance analysis of the SIFT technique in aerial and close-range photogrammetric applications is presented in this paper. The goal is to establish the suitability of the SIFT technique for automatic tie point extraction and approximate DSM (Digital Surface Model) generation. First, the performances of the SIFT operator have been compared with those provided by feature extraction and matching techniques used in photogrammetry. All these techniques have been implemented by the authors and validated on aerial and terrestrial images. Moreover, an auto-adaptive version of the SIFT operator has been developed, in order to improve the performances of the SIFT detector in relation to the texture of the images. The Auto-Adaptive SIFT operator (A2 SIFT) has been validated on several aerial images, with particular attention to large scale aerial images acquired using mini-UAV systems. PMID:22412336

  3. Digital structural interpretation of mountain-scale photogrammetric 3D models (Kamnik Alps, Slovenia)

    NASA Astrophysics Data System (ADS)

    Dolžan, Erazem; Vrabec, Marko

    2015-04-01

    From the earliest days of geological science, mountainous terrains with their extreme topographic relief and sparse to non-existent vegetation were utilized to a great advantage for gaining 3D insight into geological structure. But whereas Alpine vistas may offer perfect panoramic views of geology, the steep mountain slopes and vertical cliffs make it very time-consuming and difficult (if not impossible) to acquire quantitative mapping data such as precisely georeferenced traces of geological boundaries and attitudes of structural planes. We faced this problem in mapping the central Kamnik Alps of northern Slovenia, which are built up from Mid to Late Triassic succession of carbonate rocks. Polyphase brittle tectonic evolution, monotonous lithology and the presence of temporally and spatially irregular facies boundary between bedded platform carbonates and massive reef limestones considerably complicate the structural interpretation of otherwise perfectly exposed, but hardly accessible massif. We used Agisoft Photoscan Structure-from-Motion photogrammetric software to process a series of overlapping high-resolution (~0.25 m ground resolution) vertical aerial photographs originally acquired by the Geodetic Authority of the Republic of Slovenia for surveying purposes, to derive very detailed 3D triangular mesh models of terrain and associated photographic textures. Phototextures are crucial for geological interpretation of the models as they provide additional levels of detail and lithological information which is not resolvable from geometrical mesh models alone. We then exported the models to Paradigm Gocad software to refine and optimize the meshing. Structural interpretation of the models, including mapping of traces and surfaces of faults and stratigraphic boundaries and determining dips of structural planes, was performed in MVE Move suite which offers a range of useful tools for digital mapping and interpretation. Photogrammetric model was complemented by

  4. A decade of harbour porpoise occurrence in German waters—Analyses of aerial surveys, incidental sightings and strandings

    NASA Astrophysics Data System (ADS)

    Siebert, Ursula; Gilles, Anita; Lucke, Klaus; Ludwig, Martje; Benke, Harald; Kock, Karl-Hermann; Scheidat, Meike

    2006-07-01

    Data on the occurrence of harbour porpoises ( Phocoena phocoena) in German waters from 1988 to 2002 were collected from dedicated aerial surveys, incidental sightings and strandings. Aerial surveys conducted in 1995 and 1996 revealed a mean abundance of 4288 (in 1995) and 7356 harbour porpoises (in 1996) in the German North Sea study area. Mean abundances of harbour porpoises in the German Baltic Sea, divided into two subunits (blocks B and C), were estimated at 980 and 1830 (in 1995 and 1996 resp.) and at 601 (in 1995; there were no sightings in block C during the 1996 survey). From 1988 to 2002, 791 incidental sightings of harbour porpoise pods were reported in German and partly Danish coastal waters of the North and Baltic Seas. In the period 1990 to 2001, 996 harbour porpoises were found stranded along the German North Sea coast and 17 animals were identified as by-catch. In the same period 229 harbour porpoises were found stranded along the German Baltic Sea coast and 105 animals were incidentally taken in fisheries. The proportion of by-caught harbour porpoises was significantly larger in the Baltic Sea. Different monitoring methods are helpful for different aims and management issues: aerial surveys cover large areas in a short time and provide information on density, abundance, distributional patterns and seasonality. Incidental sighting and stranding networks provide indications of general distribution, seasonal variation in abundance, age distribution, by-catch and of areas which are important in the harbour porpoise's life cycle. Comparison of data from the North and Baltic Seas revealed a higher abundance of harbour porpoises in the North Sea than in the Baltic Sea. Altogether the data sets demonstrated a strong seasonality of harbour porpoise occurrence off the German coast with highest numbers during the summer months. Important habitats for harbour porpoises were detected west of the islands of Sylt and Amrum in the North Sea and around the Schlei

  5. Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: disturbance effects and species recognition

    PubMed Central

    Hall, Graham P.; McDonald, Paul G.

    2016-01-01

    The use of unmanned aerial vehicles (UAVs) for ecological research has grown rapidly in recent years, but few studies have assessed the disturbance impacts of these tools on focal subjects, particularly when observing easily disturbed species such as waterfowl. In this study we assessed the level of disturbance that a range of UAV shapes and sizes had on free-living, non-breeding waterfowl surveyed in two sites in eastern Australia between March and May 2015, as well as the capability of airborne digital imaging systems to provide adequate resolution for unambiguous species identification of these taxa. We found little or no obvious disturbance effects on wild, mixed-species flocks of waterfowl when UAVs were flown at least 60m above the water level (fixed wing models) or 40m above individuals (multirotor models). Disturbance in the form of swimming away from the UAV through to leaving the water surface and flying away from the UAV was visible at lower altitudes and when fixed-wing UAVs either approached subjects directly or rapidly changed altitude and/or direction near animals. Using tangential approach flight paths that did not cause disturbance, commercially available onboard optical equipment was able to capture images of sufficient quality to identify waterfowl and even much smaller taxa such as swallows. Our results show that with proper planning of take-off and landing sites, flight paths and careful UAV model selection, UAVs can provide an excellent tool for accurately surveying wild waterfowl populations and provide archival data with fewer logistical issues than traditional methods such as manned aerial surveys. PMID:27020132

  6. Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: disturbance effects and species recognition.

    PubMed

    McEvoy, John F; Hall, Graham P; McDonald, Paul G

    2016-01-01

    The use of unmanned aerial vehicles (UAVs) for ecological research has grown rapidly in recent years, but few studies have assessed the disturbance impacts of these tools on focal subjects, particularly when observing easily disturbed species such as waterfowl. In this study we assessed the level of disturbance that a range of UAV shapes and sizes had on free-living, non-breeding waterfowl surveyed in two sites in eastern Australia between March and May 2015, as well as the capability of airborne digital imaging systems to provide adequate resolution for unambiguous species identification of these taxa. We found little or no obvious disturbance effects on wild, mixed-species flocks of waterfowl when UAVs were flown at least 60m above the water level (fixed wing models) or 40m above individuals (multirotor models). Disturbance in the form of swimming away from the UAV through to leaving the water surface and flying away from the UAV was visible at lower altitudes and when fixed-wing UAVs either approached subjects directly or rapidly changed altitude and/or direction near animals. Using tangential approach flight paths that did not cause disturbance, commercially available onboard optical equipment was able to capture images of sufficient quality to identify waterfowl and even much smaller taxa such as swallows. Our results show that with proper planning of take-off and landing sites, flight paths and careful UAV model selection, UAVs can provide an excellent tool for accurately surveying wild waterfowl populations and provide archival data with fewer logistical issues than traditional methods such as manned aerial surveys.

  7. Photogrammetric portrayal of Mars topography.

    USGS Publications Warehouse

    Wu, S.S.C.

    1979-01-01

    Special photogrammetric techniques have been developed to portray Mars topography, using Mariner and Viking imaging and nonimaging topographic information and earth-based radar data. Topography is represented by the compilation of maps at three scales: global, intermediate, and very large scale. The global map is a synthesis of topographic information obtained from Mariner 9 and earth-based radar, compiled at a scale of 1:25,000,000 with a contour interval of 1 km; it gives a broad quantitative view of the planet. At intermediate scales, Viking Orbiter photographs of various resolutions are used to compile detailed contour maps of a broad spectrum of prominent geologic features; a contour interval as small as 20 m has been obtained from very high resolution orbital photography. Imagery from the Viking lander facsimile cameras permits construction of detailed, very large scale (1:10) topographic maps of the terrain surrounding the two landers; these maps have a contour interval of 1 cm. This paper presents several new detailed topographic maps of Mars.-Author

  8. In-flight photogrammetric measurement of wing ice accretions

    NASA Technical Reports Server (NTRS)

    Mcknight, R. C.; Palko, R. L.; Humes, R. L.

    1986-01-01

    A photographic instrumentation system was developed for the Lewis icing research aircraft to measure wind ice accretions during flight. The system generates stereo photographs of the accretions which are then photogrammetrically measured by the Air Force Arnold Engineering and Development Center. The measurements yield a survey of spatial coordinates of an accretion's surface to an accuracy of at least + or - 0.08 cm. The accretions can then be matched to corresponding icing cloud and aerodynamic measurements. The system is being used to measure rime, mixed, and clear natural ice accretions.

  9. Design of a Mars Airplane Propulsion System for the Aerial Regional-Scale Environmental Survey (ARES) Mission Concept

    NASA Technical Reports Server (NTRS)

    Kuhl. Christopher A.

    2009-01-01

    The Aerial Regional-Scale Environmental Survey (ARES) is a Mars exploration mission concept with the goal of taking scientific measurements of the atmosphere, surface, and subsurface of Mars by using an airplane as the payload platform. ARES team first conducted a Phase-A study for a 2007 launch opportunity, which was completed in May 2003. Following this study, significant efforts were undertaken to reduce the risk of the atmospheric flight system, under the NASA Langley Planetary Airplane Risk Reduction Project. The concept was then proposed to the Mars Scout program in 2006 for a 2011 launch opportunity. This paper summarizes the design and development of the ARES airplane propulsion subsystem beginning with the inception of the ARES project in 2002 through the submittal of the Mars Scout proposal in July 2006.

  10. Design of a Mars Airplane Propulsion System for the Aerial Regional-Scale Environmental Survey (ARES) Mission Concept

    NASA Technical Reports Server (NTRS)

    Kuhl, Christopher A.

    2008-01-01

    The Aerial Regional-Scale Environmental Survey (ARES) is a Mars exploration mission concept that utilizes a rocket propelled airplane to take scientific measurements of atmospheric, surface, and subsurface phenomena. The liquid rocket propulsion system design has matured through several design cycles and trade studies since the inception of the ARES concept in 2002. This paper describes the process of selecting a bipropellant system over other propulsion system options, and provides details on the rocket system design, thrusters, propellant tank and PMD design, propellant isolation, and flow control hardware. The paper also summarizes computer model results of thruster plume interactions and simulated flight performance. The airplane has a 6.25 m wingspan with a total wet mass of 185 kg and has to ability to fly over 600 km through the atmosphere of Mars with 45 kg of MMH / MON3 propellant.

  11. Aerial Photography Summary Record System

    USGS Publications Warehouse

    ,

    1998-01-01

    The Aerial Photography Summary Record System (APSRS) describes aerial photography projects that meet specified criteria over a given geographic area of the United States and its territories. Aerial photographs are an important tool in cartography and a number of other professions. Land use planners, real estate developers, lawyers, environmental specialists, and many other professionals rely on detailed and timely aerial photographs. Until 1975, there was no systematic approach to locate an aerial photograph, or series of photographs, quickly and easily. In that year, the U.S. Geological Survey (USGS) inaugurated the APSRS, which has become a standard reference for users of aerial photographs.

  12. Photogrammetric Evaluation of Multi-Temporal Fixed Wing Uav Imagery

    NASA Astrophysics Data System (ADS)

    Gülch, E.

    2011-09-01

    Several flights have been undertaken with PAMS (Photogrammetric Aerial Mapping System) by Germatics, Germany, which is briefly introduced. This system is based on the SmartPlane fixed-wing UAV and a CANON IXUS camera system. The plane is equipped with GPS and has an infrared sensor system to estimate attitude values. A software has been developed to link the PAMS output to a standard photogrammetric processing chain built on Trimble INPHO. The linking of the image files and image IDs and the handling of different cases with partly corrupted output have to be solved to generate an INPHO project file. Based on this project file the software packages MATCH-AT, MATCH-T DSM, OrthoMaster and OrthoVista for digital aerial triangulation, DTM/DSM generation and finally digital orthomosaik generation are applied. The focus has been on investigations on how to adapt the "usual" parameters for the digital aerial triangulation and other software to the UAV flight conditions, which are showing high overlaps, large kappa angles and a certain image blur in case of turbulences. It was found, that the selected parameter setup shows a quite stable behaviour and can be applied to other flights. Investigations have been performed to improve the image quality estimates by the PAMS software and extend it to whole images. This gives the user a reliable basis when deciding on rejecting images with low quality for the follow-up process. Flights over the same area at different times have been compared to each other. The major objective was first to see, on how far differences occur relative to each other, without having access to ground control data, which would have a potential for applications with low requirements on the absolute accuracy. In a second stage the results are compared to GPS measurements on the ground. The results show, that there are influences of weather and illumination visible. The "unusual" flight pattern, which shows big time differences for neighbouring strips has an

  13. Aerial radiological and photographic survey of eleven atolls and two islands within the Northern Marshall Islands. Dates of surveys, July-November 1978

    SciTech Connect

    Not Available

    1981-06-01

    An aerial radiological survey was conducted over eleven atolls and two islands within the northern Marshall Islands between September and November 1978. This survey was part of a comprehensive radiological survey, which included extensive terrestrial and marine sampling, to determine possible residual contamination which might remain as a result of the United States nuclear testing program conducted at Bikini Enewetak Atolls between 1946 and 1958. A similar survey was conducted at Enewetak Atoll in 1972. The present survey covered those atolls known to have received direct fallout from the Bravo event, conducted in March 1954 at Bikini Atoll. These included Bikini, Rongelap, Rongerik, Ailinginae, Bikar, Taka, and Utirik Atolls. In addition, several atolls and islands which might have been at the fringes of the Bravo fallout were also surveyed, including Likiep and Ailuk Atolls, Jemo and Mejit Islands, and Wotho Atoll. Ujelang Atoll, which lies approximately 200 km southwest of Enewetak, was also surveyed. Island-averaged terrestrial exposure rates in the range of 30 to 50 ..mu..R/h were observed over parts of Bikini Atoll, including Bikini Island, and over the northern part of Rongelap Atoll. Levels over southern Rongelap and over Rongerik Atoll ranged from 4 to 7 ..mu..R/h. Levels were somewhat lower at Ailinginae Atoll (approximately 2 ..mu..R/h) and at Utirik Atoll (approximately 0.7 ..mu..R/h). The variations observed were consistent with what might be expected from the fallout pattern of the Bravo event. Levels at Ailuk, Likiep, Wotho and Ujelang Atolls and at Mejit and Jemo Islands were consistent with /sup 137/Cs activity, due to worldwide fallout, observed within the United States and at other locations in the central Pacific. These four atolls and the two islands, therefore, do not appear to have recieved any significant direct contamination from the Bravo event or the other tests conducted at Bikini and Enewetak Atolls.

  14. Medical photogrammetric measurement: overview and prospects

    NASA Astrophysics Data System (ADS)

    Mitchell, H. L.; Newton, I.

    Since the earliest days of photogrammetry, there have been photogrammetrists who have directed research effort towards medical measurement. Although the specific motivation for these studies has not always been disclosed, it is probably because of the various benefits that photogrammetry can offer to humanity as a painless and non-invasive means of providing medical practitioners with spatial measurement relating to the human body. The intention of this paper is to reflect on the place of the many medical developments within the photogrammetric world. The various photogrammetric applications in medicine are summarised to identify the characteristics of medical photogrammetry, and it becomes evident that medical photogrammetrists have developed a range of body measurements using widely varying photogrammetric techniques, in response to the demands for specialised spatial measurement tools for a wide variety of medical ends. This volume of research activity has made medical measurement a substantial and varied sector of non-mapping photogrammetry. It is also clear that there are numerous challenges to the design of medical photogrammetric systems. They must give paramount consideration to the human patients and their comfort; they must yield not simply spatial data about the body but rather specific medical information. At the same time, it is of concern that non-photogrammetric scientists and engineers have developed medical measurement systems based on both photogrammetric and other optical techniques. Fortunately, photogrammetrists can also contribute to medical problems through their spatial data experiences. It is concluded that the many distinctive challenges mean that medical photogrammetry has not yet been as successful at changing the world as the extensive efforts applied to it suggest, but nevertheless, medical photogrammetry deserves to be recognised as a category of close range photogrammetry which remains a valuable pursuit which should not be abandoned

  15. Stream Morphologic Measurements from Airborne Laser Swath Mapping: Comparisons with Field Surveys, Traditional DEMs, and Aerial Photographs

    NASA Astrophysics Data System (ADS)

    Snyder, N. P.; Schultz, L. L.

    2005-12-01

    Precise measurement of stream morphology over entire watersheds is one of the great research opportunities provided by airborne laser swath mapping (ALSM). ALSM surveys allow for rapid quantification of factors, such as channel width and gradient, that control stream hydraulic and ecologic properties. We compare measurements from digital elevation models (DEMs) derived from ALSM data collected by the National Center for Airborne Laser Mapping (NCALM) to field surveys, traditional DEMs (rasterized from topographic maps), and aerial photographs. The field site is in the northern Black Mountains in arid Death Valley National Park (California). The area is unvegetated, and therefore is excellent for testing DEM analysis methods because the ALSM data required minimal filtering, and the resulting DEM contains relatively few unphysical sinks. Algorithms contained in geographic information systems (GIS) software used to extract stream networks from DEMs yield best results where streams are steep enough for resolvable pixel-to-pixel elevation change, and channel width is on the order of pixel resolution. This presents a new challenge with ALSM-derived DEMs because the pixel size (1 m) is often an order of magnitude or more smaller than channel width. We find the longitudinal profile of Gower Gulch in the northern Black Mountains (~4 km total length) extracted using the ALSM DEM and a flow accumulation algorithm is 14% longer than a traditional 10-m DEM, and 13% longer than a field survey. These differences in length (and therefore gradient) are due to the computed channel path following small-scale topographic variations within the channel bottom that are not relevant during high flows. However, visual analysis of shaded-relief images created from high-resolution ALSM data is an excellent method for digitizing channel banks and thalweg paths. We used these lines to measure distance, elevation, and width. In Gower Gulch, the algorithm-derived profile is 10% longer than that

  16. The possibility of using photogrammetric and remote sensing techniques to model lavaka (gully erosion) development in Madagascar

    NASA Astrophysics Data System (ADS)

    Raveloson, Andrea; Székely, Balázs; Molnár, Gábor; Rasztovits, Sascha

    2013-04-01

    Gully erosion is a worldwide problem for it has a number of undesirable effects and their development is hard to follow. Madagascar is one of the most affected countries for its highlands are densely covered with gullies named lavakas. Lavaka formation and development seems to be triggered by many regional and local causes but the actual reasons are still poorly understood. Furthermore lavakas differ from normal gullies due to their enormous size and special shape. Field surveys are time consuming and data from two-dimensional measurements and pictures (even aerial) might lack major information for morphologic studies. Therefore close range surveying technologies should be used to get three-dimensional information about these unusual and complex features. This contribution discusses which remote sensing and photogrammetric techniques are adequate to survey the development of lavakas, their volume change and sediment budget. Depending on the types and properties (such as volume, depth, shape, vegetation) of the lavaka different methods will be proposed showing pros and cons of each one of them. Our goal is to review techniques to model, survey and analyze lavakas development to better understand the cause of their formation, special size and shape. Different methods are evaluated and compared from field survey through data processing, analyzing cost-effectiveness, potential errors and accuracy for each one of them. For this purpose we will also consider time- and cost-effectiveness of the softwares able to render the images into 3D model as well as the resolution and accuracy of the outputs. Further studies will concentrate on using the three dimensional models of lavakas which will be later on used for geomorphological studies in order to understand their special shape and size. This is ILARG-contribution #07.

  17. Practical Bias Correction in Aerial Surveys of Large Mammals: Validation of Hybrid Double-Observer with Sightability Method against Known Abundance of Feral Horse (Equus caballus) Populations

    PubMed Central

    2016-01-01

    Reliably estimating wildlife abundance is fundamental to effective management. Aerial surveys are one of the only spatially robust tools for estimating large mammal populations, but statistical sampling methods are required to address detection biases that affect accuracy and precision of the estimates. Although various methods for correcting aerial survey bias are employed on large mammal species around the world, these have rarely been rigorously validated. Several populations of feral horses (Equus caballus) in the western United States have been intensively studied, resulting in identification of all unique individuals. This provided a rare opportunity to test aerial survey bias correction on populations of known abundance. We hypothesized that a hybrid method combining simultaneous double-observer and sightability bias correction techniques would accurately estimate abundance. We validated this integrated technique on populations of known size and also on a pair of surveys before and after a known number was removed. Our analysis identified several covariates across the surveys that explained and corrected biases in the estimates. All six tests on known populations produced estimates with deviations from the known value ranging from -8.5% to +13.7% and <0.7 standard errors. Precision varied widely, from 6.1% CV to 25.0% CV. In contrast, the pair of surveys conducted around a known management removal produced an estimated change in population between the surveys that was significantly larger than the known reduction. Although the deviation between was only 9.1%, the precision estimate (CV = 1.6%) may have been artificially low. It was apparent that use of a helicopter in those surveys perturbed the horses, introducing detection error and heterogeneity in a manner that could not be corrected by our statistical models. Our results validate the hybrid method, highlight its potentially broad applicability, identify some limitations, and provide insight and guidance

  18. Planialtimetric Accuracy Evaluation of Digital Surface Model (dsm) and Digital Terrain Model (dtm) Obtained from Aerial Survey with LIDAR

    NASA Astrophysics Data System (ADS)

    Cruz, C. B. M.; Barros, R. S.; Rabaco, L. M. L.

    2012-07-01

    It's noticed a significant increase in the development of orbital and airborne sensors that enable the extraction of three-dimensional data. Consequently, it's important the increment of studies about the quality of altimetric values derived from these sensors to verify if the improvements implemented in the acquisition of data may influence the results. In this context, as part of a larger project that aims to evaluate the accuracy of various sensors, this work aims to analysis the planialtimetric accuracy of DSM and DTM generated from an aerial survey with LIDAR, using as reference for the planimetric analysis of the orthophotos obtained. The project was developed for an area of São Sebastião city, located in the basin of the North Coast of São Paulo state. The area's relief is very steep, with a predominance of dense forest vegetation, typical of the Atlantic Forest. All points have been established in the field, with the use of GNSS of one frequency (L1) through static relative positioning, acquiring a minimum of 1,500 epochs, for a distance less than 20 km to the base. In this work it's considered the Brazilian standard specifications for classification of cartographic bases (PEC). The Brazilian company responsible for the aerial survey (LACTEC) gave the following products for analysis: point clouds in raw format (x, y, z) using orthometric heights; point clouds (first and last pulse) for each range of flight to verify systematic errors; DTM uniformly spaced, filtering small natural obstacles, buildings and vegetation, in Geotiff format; DSM also uniformly spaced, in Geotiff format; and the mosaic of georeferenced digital images. The analysis realized on products from the LIDAR indicated their adoption to the scales 1:2,000 (Class A for the orthophotos and Class B for the DTM) and 1:5,000 (class C for the DSM). There were no indications of trends in the results. The average error was 0.01 m. It's important that new areas with different topographic

  19. The Photogrammetric Appendage Structural Dynamics Experiment

    NASA Astrophysics Data System (ADS)

    Gilbert, Michael G.; Welch, Sharon S.; Moore, Christopher L.

    1995-09-01

    The Photogrammetric Appendage Structural Dynamics Experiment (PASDE) is a Hitchhiker payload scheduled to fly as part of the International Space Station (ISS) Phase-1 flight program to the Russian Space Station Mir. The objective of the first flight of PASDE on STS-74 is to obtain video images of the Mir Kvant-2 solar array response to various structural dynamic excitation events. This experiment will demonstrate the use of photogrammetric techniques for on-orbit structural dynamics measurements. Photogrammetric measurements will provide a low cost alternative to appendage mounted accelerometers to the ISS program. The PASDE experiment hardware consists of three instruments each containing two video cameras, two video tape recorders, a modified video signal time inserter, and associated avionics boxes. The instruments were designed and built at the NASA Langley Research Center, and are integrated into standard Hitchhiker canisters at the NASA Goddard Space Flight Center. The Hitchhiker canisters are then installed into the Space Shuttle cargo bay in locations selected to achieve good video coverage and photogrammetric geometry. The measurement resolution of the instruments is expected to be on the order of 0.25 cm (0.1 in.).

  20. The Photogrammetric Appendage Structural Dynamics Experiment

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.; Welch, Sharon S.; Moore, Christopher L.

    1995-01-01

    The Photogrammetric Appendage Structural Dynamics Experiment (PASDE) is a Hitchhiker payload scheduled to fly as part of the International Space Station (ISS) Phase-1 flight program to the Russian Space Station Mir. The objective of the first flight of PASDE on STS-74 is to obtain video images of the Mir Kvant-2 solar array response to various structural dynamic excitation events. This experiment will demonstrate the use of photogrammetric techniques for on-orbit structural dynamics measurements. Photogrammetric measurements will provide a low cost alternative to appendage mounted accelerometers to the ISS program. The PASDE experiment hardware consists of three instruments each containing two video cameras, two video tape recorders, a modified video signal time inserter, and associated avionics boxes. The instruments were designed and built at the NASA Langley Research Center, and are integrated into standard Hitchhiker canisters at the NASA Goddard Space Flight Center. The Hitchhiker canisters are then installed into the Space Shuttle cargo bay in locations selected to achieve good video coverage and photogrammetric geometry. The measurement resolution of the instruments is expected to be on the order of 0.25 cm (0.1 in.).

  1. NOAA's National Geodetic Survey Utilization of Aerial Sensors for Emergency Response Efforts

    NASA Technical Reports Server (NTRS)

    White, Stephen

    2007-01-01

    Remote Sensing Division has a Coastal Mapping program and a Airport Survey program and research and development that support both programs. NOAA/NGS/RSD plans to acquire remotely sensed data to support the agency's homeland security and emergency response requirements.

  2. U.S. Geological Survey Aids Federal Agencies in ObtainingCommercial Satellite and Aerial Imagery

    USGS Publications Warehouse

    ,

    2005-01-01

    The U.S. Geological Survey (USGS) is a leading U.S. Federal civil agency in the implementation of the civil aspects of the Commercial Remote Sensing Space Policy (CRSSP). The USGS is responsible for collecting inter-agency near-term requirements, establishing an operational infrastructure, and supporting the policy and other Federal agencies.

  3. Aerial Images from AN Uav System: 3d Modeling and Tree Species Classification in a Park Area

    NASA Astrophysics Data System (ADS)

    Gini, R.; Passoni, D.; Pinto, L.; Sona, G.

    2012-07-01

    The use of aerial imagery acquired by Unmanned Aerial Vehicles (UAVs) is scheduled within the FoGLIE project (Fruition of Goods Landscape in Interactive Environment): it starts from the need to enhance the natural, artistic and cultural heritage, to produce a better usability of it by employing audiovisual movable systems of 3D reconstruction and to improve monitoring procedures, by using new media for integrating the fruition phase with the preservation ones. The pilot project focus on a test area, Parco Adda Nord, which encloses various goods' types (small buildings, agricultural fields and different tree species and bushes). Multispectral high resolution images were taken by two digital compact cameras: a Pentax Optio A40 for RGB photos and a Sigma DP1 modified to acquire the NIR band. Then, some tests were performed in order to analyze the UAV images' quality with both photogrammetric and photo-interpretation purposes, to validate the vector-sensor system, the image block geometry and to study the feasibility of tree species classification. Many pre-signalized Control Points were surveyed through GPS to allow accuracy analysis. Aerial Triangulations (ATs) were carried out with photogrammetric commercial software, Leica Photogrammetry Suite (LPS) and PhotoModeler, with manual or automatic selection of Tie Points, to pick out pros and cons of each package in managing non conventional aerial imagery as well as the differences in the modeling approach. Further analysis were done on the differences between the EO parameters and the corresponding data coming from the on board UAV navigation system.

  4. Aerial Surveys of Waterfowl Production in North America, 1955-71

    USGS Publications Warehouse

    Henny, C.J.; Anderson, D.R.; Pospahala, R.S.

    1972-01-01

    Basic information obtained from the July Waterfowl Production Survey is presented in 32 Appendix tables for the period 1955-71. The discussion of the data is minimized because the report is designed primarily to make the data available to waterfowl biologists and other interested individuals. Data presented include: (1) the number of July ponds, (2) the brood index, (3) the average size forClass II and Cia s s !II broods, and (4) the late nesting index. These statistics are presented for each stratum surveyed. A few of the obvious correlations are discussed, although more refined analyses of the data will be presented in the Mallard Study reports. Furthermore, additional supporting information will be available for the mallard reports.

  5. Aerial Surveys of Endangered Whales in the Beaufort, Eastern Chukchi, and Northern Bearing Seas, 1982.

    DTIC Science & Technology

    1983-06-01

    3000 ft). Th~ese images of the meter stick were measured and used in an attempt to calibrate the measurement of wales from photographs. 101 I I S1. Time...APRIL, MAY) survey Effort and Rationale I In the spring, flight effort was designed to find and follow bowhead wales migrating northward through the... beluga whale in Alaska. Alaska Department of Fish and Game. Federal Arctic Wildlife Restoration Project Report, Vol. 7. Krogman, BD, RM Sonntag, DJ Rugh, J

  6. Aerial Surveys of Endangered Whales in the Beaufort Sea, Chukchi Sea, and Northern Bering Sea.

    DTIC Science & Technology

    1981-06-01

    of Kivalina. The entire area from this point to the village of Wales was icebound. Figure 3 shows the typical ice conditions of the Bering Sea...area extending across the Bering Straits from Cape Prince of Wales to the north end of Little Diomede Island. Large concentrations of pan ice with a 7...ice conditions across the main area of sightings between Wales and Little Diomede Island throughout the survey effort. 8 !. I. I Beaufort Sea I.Brrow

  7. Aerial Mobile Radiation Survey Following Detonation of a Radiological Dispersal Device.

    PubMed

    Sinclair, Laurel E; Fortin, Richard; Buckle, John L; Coyle, Maurice J; Van Brabant, Reid A; Harvey, Bradley J A; Seywerd, Henry C J; McCurdy, Martin W

    2016-05-01

    A series of experiments was conducted in 2012 at the Defence Research and Development Canada's Suffield Research Centre in Alberta, Canada, during which three radiological dispersal devices were detonated. The detonations released radioactive (140)La into the air, which was then carried by winds and detectable over distances of up to 2 km. The Nuclear Emergency Response group of Natural Resources Canada conducted airborne radiometric surveys shortly following the explosions to map the pattern of radioactivity deposited on the ground. The survey instrument suite was based on large volume NaI(Tl) scintillation gamma radiation detectors, which were situated in a basket mounted exterior to the helicopter and oriented end-to-end to maximize the sensitivity. A standard geophysical data treatment was used to subtract backgrounds and to correct the data to produce counts due to (140)La at the nominal altitude. Sensitivity conversion factors obtained from Monte Carlo simulations were then applied to express the measurements in terms of surface activity concentration in kBq m(-2). Integrated over the survey area, the results indicate that only 20 to 25% of the bomb's original inventory of radioactive material is deposited within a 1.5-km radius of ground zero. These results can be accommodated with a simple model for the RDD behavior and atmospheric dispersion.

  8. Correction and Densification of Uas-Based Photogrammetric Thermal Point Cloud

    NASA Astrophysics Data System (ADS)

    Akcay, O.; Erenoglu, R. C.; Erenoglu, O.

    2016-06-01

    Photogrammetric processing algorithms can suffer problems due to either the initial image quality (noise, low radiometric quality, shadows and so on) or to certain surface materials (shiny or textureless objects). This can result in noisy point clouds and/or difficulties in feature extraction. Specifically, dense point clouds which are generated with photogrammetric method using a lightweight thermal camera, are more noisy and sparse than the point clouds of high-resolution digital camera images. In this paper, new method which produces more reliable and dense thermal point cloud using the sparse thermal point cloud and high resolution digital point cloud was considered. Both thermal and digital images were obtained with UAS (Unmanned Aerial System) based lightweight Optris PI 450 and Canon EOS 605D camera images. Thermal and digital point clouds, and orthophotos were produced using photogrammetric methods. Problematic thermal point cloud was transformed to a high density thermal point cloud using image processing methods such as rasterizing, registering, interpolation and filling. The results showed that the obtained thermal point cloud - up to chosen processing parameters - was 87% more densify than the original point cloud. The second improvement was gained at the height accuracy of the thermal point cloud. New densified point cloud has more consistent elevation model while the original thermal point cloud shows serious deviations from the expected surface model.

  9. NURE aerial gamma ray and magnetic detail survey of portions of northeast Washington. Final report

    SciTech Connect

    Not Available

    1981-11-01

    The Northeast Washington Survey was performed under the United States Department of Energy's National Uranium Resource Evaluation (NURE) Program, which is designed to provide radioelement distribution information to assist in assessing the uraniferous material potential of the United States. The radiometric and ancilliary data were digitally recorded and processed. The results are presented in the form of stacked profiles, contour maps, flight path maps, statistical tables and frequency distribution histograms. These graphical outputs are presented at a scale of 1:62,500 and are contained in the individual Volume 2 reports.

  10. Aerial radiometric and magnetic survey: Hobbs National Topographic Map, New Mexico/Texas. Final report

    SciTech Connect

    Not Available

    1980-05-01

    The results of analyses of the airborne gamma radiation and total magnetic field survey flown for the region identified as the Hobbs National Topographic Map NI13-12 are presented in this report. The airborne data gathered are reduced by ground computer facilities to yield profile plots of the basic uranium, thorium and potassium equivalent gamma radiation intensities, ratios of these intensities, aircraft altitude above the earth's surface, total gamma ray and earth's magnetic field intensity, correlated as a function of geologic units. The distribution of data within each geologic unit, for all surveyed map lines and tie lines, has been calculated and is included. Two sets of profiled data for each line are included, with one set displaying the above-cited data. The second set includes only flight line magnetic field, temperature, pressure, altitude data plus magnetic field data as measured at a base station. A general description of the area, including descriptions of the various geologic units and the corresponding airborne data, is included also.

  11. Aerial radiometric and magnetic survey: San Antonio National Topographic Map, Texas. Final report

    SciTech Connect

    Not Available

    1980-05-01

    The results of analyses of the airborne gamma radiation and total magnetic field survey flown for the region identified as the San Antonio National Topographic Map NH14-8 are presented. The airborne data gathered are reduced by ground computer facilities to yield profile plots of the basic uranium, thorium, and potassium equivalent gamma radiation intensities, ratios of these intensities, aircraft altitude above the earth's surface, total gamma ray and earth's magnetic field intensity, correlated as a function of geologic units. The distribution of data within each geologic unit, for all surveyed map lines and tie lines, has been calculated and is included. Two sets of profiled data for each line are included, with one set displaying the above-cited data. The second set includes only flight line magnetic field, temperature, pressure, altitude data plus magnetic field data as measured at a base station. A general description of the area, including descriptions of the various geologic units and the corresponding airborne data, is included also.

  12. Aerial radiometric and magnetic survey: Perryton National Topographic Map, Texas/Oklahoma/Kansas. Final report

    SciTech Connect

    Not Available

    1980-05-01

    The results of analyses of the airborne gamma radiation and total magnetic field survey flown for the region identified as the Perryton National Topographic Map NJ14-10 are presented. The airborne data gathered are reduced by ground computer facilities to yield profile plots of the basic uranium, thorium and potassium equivalent gamma radiation intensities, ratios of these intensities, aircraft altitude above the earth's surface, total gamma ray and earth's magnetic field intensity, correlated as a function of geologic units. The distribution of data within each geologic unit, for all surveyed map lines and tie lines, has been calculated and is included. Two sets of profiled data for each line are included, with one set displaying the above-cited data. The second set includes only flight line magnetic field, temperature, pressure, altitude data plus magnetic field data as measured at a base station. A general description of the area, including descriptions of the various geologic units and the corresponding airborne data, is included also.

  13. Aerial radiometric and magnetic survey, San Angelo National Topographic Map: Texas, West Texas Project. Final report

    SciTech Connect

    Not Available

    1980-05-01

    The results of analyses of the airborne gamma radiation and total magnetic field survey flown for the region identified as the San Angelo National Topographic Map NH14-1 are presented. The airborne data gathered are reduced by ground computer facilities to yield profile plots of the basic uranium, thorium, and potassium equivalent gamma radiation intensities, ratios of these intensities, aircraft altitude above the earth's surface, total gamma ray and earth's magnetic field intensity, correlated as a function of geologic units. The distribution of data within each geologic unit, for all surveyed map lines and tie lines, has been calculated and is included. Two sets of profiled data for each line are included, with one set displaying the above-cited data. The second set includes only flight line magnetic field, temperature, pressure, altitude data plus magnetic field data as measured at a base station. A general description of the area, including descriptions of the various geologic units and the corresponding airborne data, is included.

  14. Aerial radiometric and magnetic survey: Quincy National Topographic map, Illinois/Missouri. Final report

    SciTech Connect

    Not Available

    1981-01-01

    The results of analyses of the airborne gamma radiation and total magnetic field survey flown for the region identified as the Quincy National Topographic Map NJ15-3 is presented in this report. The airborne data gathered is reduced by ground computer facilities to yield profile plots of the basic uranium, thorium and potassium equivalent gamma radiation intensities, ratios of these intensities, aircraft altitude above the earth's surface, total gamma ray and earth's magnet field intensity, correlated as a function of geologic units. The distribution of data within each geologic unit, for all surveyed map lines and tie lines, has been calculated and is included. Two sets of profiled data for each line are included, with one set displaying the above-cited data. The second set includes only flight line magnetic field, temperature, pressure, altitude data plus magnetic field data as measured at a base station. A general description of the area, including descriptions of the various geologic units and the corresponding airborne data, is included also.

  15. Precision Analysis of Point-And Photogrammetric Measurements for Corridor Mapping: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Molina, P.; Blázquez, M.; Sastre, J.; Colomina, I.

    2016-03-01

    This paper addresses the key aspects of the sensor orientation and calibration approach within the mapKITE concept for corridor mapping, focusing on the contribution analysis of point-and-scale measurements of kinematic ground control points. MapKITE is a new mobile, simultaneous terrestrial and aerial, geodata acquisition and post-processing method. On one hand, the acquisition system is a tandem composed of a terrestrial mobile mapping system and an unmanned aerial system, the latter equipped with a remote sensing payload, and linked through a 'virtual tether', that is, a real-time waypoint supply from the terrestrial vehicle to the unmanned aircraft. On the other hand, mapKITE entails a method for geodata post-processing (specifically, sensor orientation and calibration) based on the described acquisition paradigm, focusing on few key aspects: the particular geometric relationship of a mapKITE network - the aerial vehicle always observes the terrestrial one as they both move -, precise air and ground trajectory determination - the terrestrial vehicle is regarded as a kinematic ground control point - and new photogrammetric measurements - pointing on and measuring the scale of an optical target on the roof of the terrestrial vehicle - are exploited. In this paper, we analyze the performance of aerial image orientation and calibration in mapKITE for corridor mapping, which is the natural application niche of mapKITE, based on the principles and procedures of integrated sensor orientation with the addition of point-and-scale photogrammetric measurements of the kinematic ground control points. To do so, traditional (static ground control points, photogrammetric tie points, aerial control) and new (pointing-and-scaling of kinematic ground control points) measurements have been simulated for mapKITE corridor mapping missions, consisting on takeoff and calibration pattern, single-pass corridor operation potentially performing calibration patterns, and landing and

  16. Conceptual model for the use of aerial color infrared photography by mosquito control districts as a survey technique for Psorophora columbiae oviposition habitats in Texas ricelands.

    PubMed

    Welch, J B; Olson, J K; Yates, M M; Benton, A R; Baker, R D

    1989-09-01

    Two photographic missions per year are recommended to provide information on land-use and mosquito oviposition habitats. A winter mission, following a rain, will-provide a view of low areas within fields which may be obscured by summer vegetation. A summer mission will provide current land-use and crop distribution information and may show plant stress conditions due to excessive soil moisture. An aerial color infrared photographic survey with directed ground verification should result in a substantial savings in cost and increased efficiency in surveillance of mosquito producing habitats over ground survey techniques currently employed by mosquito control districts.

  17. Quality assessment of digitized aerial photographs

    NASA Astrophysics Data System (ADS)

    Koelbl, O.

    1998-09-01

    Manufacturer of photogrammetric instruments have developed specific scanners for aerial photographs, in parallel to printing industry. Main objective of this specific scanners is to guarantee a high geometric precision of plus or minus 0.001 to 0.002 mm for a standard format of original film documents of 23 X 23 cm and to scope with the high image resolution of the original images. Within a study of OEEPE (European Organisation for Experimental Photogrammetric Research) the most important photogrammetric scanners used in practice have been tested. Standard procedures are in development to analyze the dynamic range of the scanners, the image noise, the image sharpness and the color fidelity. Practical all photogrammetric scanners are based on CCD technology. The article presents the techniques applied for the testing of the scanners concerning the determination of the MTF of the scanners, the image noise, the dynamic range and the color fidelity and gives typical results for various scanners. The scanners tested are manufactured by Intergraph, Zeiss, Agfa, Helava and Wehrli.

  18. Aerial Surveys of Elevated Hydrocarbon Emissions from Oil and Gas Production Sites.

    PubMed

    Lyon, David R; Alvarez, Ramón A; Zavala-Araiza, Daniel; Brandt, Adam R; Jackson, Robert B; Hamburg, Steven P

    2016-05-03

    Oil and gas (O&G) well pads with high hydrocarbon emission rates may disproportionally contribute to total methane and volatile organic compound (VOC) emissions from the production sector. In turn, these emissions may be missing from most bottom-up emission inventories. We performed helicopter-based infrared camera surveys of more than 8000 O&G well pads in seven U.S. basins to assess the prevalence and distribution of high-emitting hydrocarbon sources (detection threshold ∼ 1-3 g s(-1)). The proportion of sites with such high-emitting sources was 4% nationally but ranged from 1% in the Powder River (Wyoming) to 14% in the Bakken (North Dakota). Emissions were observed three times more frequently at sites in the oil-producing Bakken and oil-producing regions of mixed basins (p < 0.0001, χ(2) test). However, statistical models using basin and well pad characteristics explained 14% or less of the variance in observed emission patterns, indicating that stochastic processes dominate the occurrence of high emissions at individual sites. Over 90% of almost 500 detected sources were from tank vents and hatches. Although tank emissions may be partially attributable to flash gas, observed frequencies in most basins exceed those expected if emissions were effectively captured and controlled, demonstrating that tank emission control systems commonly underperform. Tanks represent a key mitigation opportunity for reducing methane and VOC emissions.

  19. An aerial radiological survey of Technical Areas 2, 21, and 53 and surroundings, Los Alamos National Laboratory, Los Alamos, New Mexico

    SciTech Connect

    Fritzsche, A.E.

    1990-09-01

    An aerial radiological survey of the entire Los Alamos National Laboratory was flown in September 1982. The data from a part of the survey, Technical Areas 2, 21, and 53, are presented here along with pertinent data from an October 1975 survey of limited areas of Los Alamos. The data from Technical Area 15, another part of the survey, will be published in another report. Contour maps of the gamma survey data show some Cs-137 activity in Los Alamos Canyon as well as in DP Canyon beside TA-21. Some Be-7, Sb-124, and Co-58 apparently exist in the canyon immediately below the Los Alamos Meson Physics Facility (LAMPF) ponds. Estimates on the Cs-137 inventory in the canyons range from 210 mCi to 1270 mCi. An exposure rate contour map at 1 meter above ground level (AGL) was constructed from the gamma data and overlaid on an aerial photograph and map of the area. The terrestrial exposure rates ranged from 6{mu}R/h to about 18{mu}R/h. 25 figs., 3 tabs.

  20. Thermal features at Volcanoes in the cascade range, as observed by aerial infrared surveys

    USGS Publications Warehouse

    Moxham, R.M.

    1970-01-01

    There have been no substantial changes in the thermal patterns at the summit of Mount Rainier in the period September 1964-September 1966, within the detection limits of the infrared instrumentation. Some differences in radiance are attributed to differences in snow cover. The highest apparent temperature is at a snow-free area on the west flank of the summit cone, several hundred feet below the west crater rim. An anomaly at this site was recorded on both infrared surveys, but no prior reports of thermal activity here have been made by ground parties. Other anomalous thermal zones at the summit are on the northern quadrants of both crater rims. A very small, low-temperature fumarole reported on Mount Adams was not detected, nor were any other thermal manifestations recorded. One anomaly consisting of a close-spaced cluster of thermal spots was detected at The Boot on Mount St. Helens and corresponds to a known fumarole area. The only thermal feature seen on Mount Shasta is near the summit at a thermal spring that has been observed by many climbers. Two anomalies were found on the north flank of Lassen Peak. Thermal activity had not been previously reported at either site, though one is in a known solfatarized area. No ground investigation has been made at the other location. Much of the other thermal activity in the Lassen Peak area is in the northeast quadrant of Brokeoff Caldera. Most of these features are well documented in the literature; others not previously described are in fairly accessible areas and doubtless result from springs and fumaroles related to Brokeoff Caldera. ?? 1970 Stabilimento Tipografico Francesco Giannini & Figli.

  1. Thermal features at some Cascade volcanoes as observed by aerial infrared surveys

    USGS Publications Warehouse

    Moxham, R.M.

    1970-01-01

    There have been no substantial changes in the thermal patterns at the summit of Mount Rainier in the period September 1964–September 1966, within the detection limits of the infrared instrumentation. Some differences in radiance are attributed to differences in snow cover. The highest apparent temperature is at a snow-free area on the west flank of the summit cone, several hundred feet below the west crater rim. An anomaly at this site was recorded on both infrared surveys, but no prior reports of thermal activity here have been made by ground parties. Other anomalous thermal zones at the summit are on the northern quadrants of both crater rims. A very small, low-temperature fumarole reported on Mount Adams was not detected, nor were any other thermal manifestations recorded. One anomaly consisting of a close-spaced cluster of thermal spots was detected at The Boot on Mount St. Helens and corresponds to a known fumarole area. The only thermal feature seen on Mount Shasta is near the summit at a thermal spring that has been observed by many climbers. Two anomalies were found on the north flank of Lassen Peak. Thermal activity had not been previously reported at either site, though one is in a known solfatarized area. No ground investigation has been made at the other location. Much of the other thermal activity in the Lassen Peak area is in the northeast quadrant of Brokeoff Caldera. Most of these features are well documented in the literature; others not previously described are in fairly accessible areas and doubtless result from springs and fumaroles related to Brokeoff Caldera.

  2. Combining 18 years of bathymetric surveys with terrestrial and aerial LiDAR surveys to monitor subtidal and intertidal morphology in Elkhorn Slough, California

    NASA Astrophysics Data System (ADS)

    Marks, C. I.; Kvitek, R.

    2012-12-01

    Estuaries are impacted and threatened by human activity, climate change and sea level rise. As a result, many highly altered estuarine systems are the focus of extensive habitat restoration and preservation projects. The success of management actions such as the addition or removal of sediment and tidal control structures hinges on the ability to accurately measure and predict rates of environmental change before and after implementation. In 2012 a subtidal sill was completed to reduce tidal scour and erosion in the second largest tidal salt marsh in California, the Elkhorn Slough. We analyzed the results of singlebeam and multibeam sonar surveys conducted in 1993, 2001, 2005, 2009, 2011, and 2012 to reveal changes in annual rates of erosion and accretion throughout the 12 km long main channel. We then combined bathymetic data with terrestrial and aerial LiDAR data to quantify volumetric changes in the tidal prism between 2005 and 2011. Our results show spatial and temporal patterns of erosion throughout the Slough prior to the construction of the sill as well as in the year after the sill was completed. This work is an example of how high-resolution sonar and LiDAR data can be combined to create comprehensive subtidal and intertidal estuarine digital elevation models and enable fine scale geomorphological monitoring.;

  3. Photogrammetric Processing of Apollo 15 Metric Camera Oblique Images

    NASA Astrophysics Data System (ADS)

    Edmundson, K. L.; Alexandrov, O.; Archinal, B. A.; Becker, K. J.; Becker, T. L.; Kirk, R. L.; Moratto, Z. M.; Nefian, A. V.; Richie, J. O.; Robinson, M. S.

    2016-06-01

    The integrated photogrammetric mapping system flown on the last three Apollo lunar missions (15, 16, and 17) in the early 1970s incorporated a Metric (mapping) Camera, a high-resolution Panoramic Camera, and a star camera and laser altimeter to provide support data. In an ongoing collaboration, the U.S. Geological Survey's Astrogeology Science Center, the Intelligent Robotics Group of the NASA Ames Research Center, and Arizona State University are working to achieve the most complete cartographic development of Apollo mapping system data into versatile digital map products. These will enable a variety of scientific/engineering uses of the data including mission planning, geologic mapping, geophysical process modelling, slope dependent correction of spectral data, and change detection. Here we describe efforts to control the oblique images acquired from the Apollo 15 Metric Camera.

  4. Aerial Surveys of the Beaufort Sea Seasonal Ice Zone in 2012-2014

    NASA Astrophysics Data System (ADS)

    Dewey, S.; Morison, J.; Andersen, R.; Zhang, J.

    2014-12-01

    Seasonal Ice Zone Reconnaissance Surveys (SIZRS) of the Beaufort Sea aboard U.S. Coast Guard Arctic Domain Awareness flights were made monthly from May 2012 to October 2012, June 2013 to August 2013, and June 2014 to October 2014. In 2012 sea ice extent reached a record minimum and the SIZRS sampling ranged from complete ice cover to open water; in addition to its large spatial coverage, the SIZRS program extends temporal coverage of the seasonal ice zone (SIZ) beyond the traditional season for ship-based observations, and is a good set of measurements for model validation and climatological comparison. The SIZ, where ice melts and reforms annually, encompasses the marginal ice zone (MIZ). Thus SIZRS tracks interannual MIZ conditions, providing a regional context for smaller-scale MIZ processes. Observations with Air eXpendable CTDs (AXCTDs) reveal two near-surface warm layers: a locally-formed surface seasonal mixed layer and a layer of Pacific origin at 50-60m. Temperatures in the latter differ from the freezing point by up to 2°C more than climatologies. To distinguish vertical processes of mixed layer formation from Pacific advection, vertical heat and salt fluxes are quantified using a 1-D Price-Weller-Pinkel (PWP) model adapted for ice-covered seas. This PWP simulates mixing processes in the top 100m of the ocean. Surface forcing fluxes are taken from the Marginal Ice Zone Modeling and Assimilation System MIZMAS. Comparison of SIZRS observations with PWP output shows that the ocean behaves one-dimensionally above the Pacific layer of the Beaufort Gyre. Despite agreement with the MIZMAS-forced PWP, SIZRS observations remain fresher to 100m than do outputs from MIZMAS and ECCO.2. The shapes of seasonal cycles in SIZRS salinity and temperature agree with MIZMAS and ECCO.2 model outputs despite differences in the values of each. However, the seasonal change of surface albedo is not high enough resolution to accurately drive the PWP. Use of ice albedo

  5. Aerial Explorers

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg; Ippolito, Corey

    2005-01-01

    This paper presents recent results from a mission architecture study of planetary aerial explorers. In this study, several mission scenarios were developed in simulation and evaluated on success in meeting mission goals. This aerial explorer mission architecture study is unique in comparison with previous Mars airplane research activities. The study examines how aerial vehicles can find and gain access to otherwise inaccessible terrain features of interest. The aerial explorer also engages in a high-level of (indirect) surface interaction, despite not typically being able to takeoff and land or to engage in multiple flights/sorties. To achieve this goal, a new mission paradigm is proposed: aerial explorers should be considered as an additional element in the overall Entry, Descent, Landing System (EDLS) process. Further, aerial vehicles should be considered primarily as carrier/utility platforms whose purpose is to deliver air-deployed sensors and robotic devices, or symbiotes, to those high-value terrain features of interest.

  6. Integration of historical aerial and satellite photos, recent satellite images and geophysical surveys for the knowledge of the ancient Dyrrachium (Durres, Albania)

    NASA Astrophysics Data System (ADS)

    Malfitana, Daniele; Shehi, Eduard; Masini, Nicola; Scardozzi, Giuseppe

    2010-05-01

    The paper presents the preliminary results of an integrated multidiscipliary research project concerning the urban area of the modern Durres (ancient Dyrrachium). Here a joint Italian and Albanian researcher are starting preliminary investigations on the place of an ancient roman villa placed in the urban centre of the modern town. In a initial phase are offering interesting results the use of a rich multitemporal remote sensing data-set, historical aerial photos of 1920s and 1930s, photos of USA spy satellites of 1960s and 1970s (Corona KH-4A and KH-4B), and very high resolution satellite imagery. The historical aerial documentation is very rich and includes aerial photogrammetrich flights of two Italian Institutions: the private company SARA - Società Anonima Rilevamenti Aerofotogrammetrici in Rome (1928) and the IGM - Istituto Geografico Militare (1936, 1937 e 1941), which flew on Durres for purposes of cartographic production and military. These photos offer an image of the city before the urban expansion after the Second World War and in recent decades, progressively documented by satellite images of the 1960s-1970s and recent years. They enable a reconstruction of the ancient topography of the urban area, even with the possibility of detailed analysis, as in the case of the the Roman villa, nowadays buried under a modern garden, but also investigated with a GPR survey, in order to rebuild its plan and contextualize the villa in relation to the urban area of the ancient Dyrrachium.

  7. Action cameras and low-cost aerial vehicles in archaeology

    NASA Astrophysics Data System (ADS)

    Ballarin, M.; Balletti, C.; Guerra, F.

    2015-05-01

    This research is focused on the analysis of the potential of a close range aerial photogrammetry system, which is accessible both in economic terms and in terms of simplicity of use. In particular the Go Pro Hero3 Black Edition and the Parrot Ar. Drone 2.0 were studied. There are essentially two limitations to the system and they were found for both the instruments used. Indeed, the frames captured by the Go Pro are subject to great distortion and consequently pose numerous calibration problems. On the other hand, the limitation of the system lies in the difficulty of maintaining a flight configuration suitable for photogrammetric purposes in unfavourable environmental conditions. The aim of this research is to analyse how far the limitations highlighted can influence the precision of the survey and consequent quality of the results obtained. To this end, the integrated GoPro and Parrot system was used during a survey campaign on the Altilia archaeological site, in Molise. The data obtained was compared with that gathered by more traditional methods, such as the laser scanner. The system was employed in the field of archaeology because here the question of cost often has a considerable importance and the metric aspect is frequently subordinate to the qualitative and interpretative aspects. Herein one of the products of these systems; the orthophoto will be analysed, which is particularly useful in archaeology, especially in situations such as this dig in which there aren't many structures in elevation present. The system proposed has proven to be an accessible solution for producing an aerial documentation, which adds the excellent quality of the result to metric data for which the precision is known.

  8. Aerial photographic reproductions

    USGS Publications Warehouse

    ,

    1971-01-01

    Geological Survey vertical aerial photography is obtained primarily for topographic and geologic mapping. Reproductions from this photography are usually satisfactory for general use. Because reproductions are not stocked, but are custom processed for each order, they cannot be returned for credit or refund.

  9. Calibration of action cameras for photogrammetric purposes.

    PubMed

    Balletti, Caterina; Guerra, Francesco; Tsioukas, Vassilios; Vernier, Paolo

    2014-09-18

    The use of action cameras for photogrammetry purposes is not widespread due to the fact that until recently the images provided by the sensors, using either still or video capture mode, were not big enough to perform and provide the appropriate analysis with the necessary photogrammetric accuracy. However, several manufacturers have recently produced and released new lightweight devices which are: (a) easy to handle, (b) capable of performing under extreme conditions and more importantly (c) able to provide both still images and video sequences of high resolution. In order to be able to use the sensor of action cameras we must apply a careful and reliable self-calibration prior to the use of any photogrammetric procedure, a relatively difficult scenario because of the short focal length of the camera and its wide angle lens that is used to obtain the maximum possible resolution of images. Special software, using functions of the OpenCV library, has been created to perform both the calibration and the production of undistorted scenes for each one of the still and video image capturing mode of a novel action camera, the GoPro Hero 3 camera that can provide still images up to 12 Mp and video up 8 Mp resolution.

  10. Robot pose correction using photogrammetric tracking

    NASA Astrophysics Data System (ADS)

    Hefele, Juergen; Brenner, Claus

    2001-02-01

    Traditionally, one of the driving forces behind the development of industry robots was the goal to replace tedious or hazardous manual work such as welding or varnishing. However, as robot prices are falling constantly, the use of robots becomes an economically sound solution in more and more applications - including areas which have nothing in common with the traditional "harsh environment" scenario. With the wider application scope, there also come more and tighter requirements, one of them certainly being accuracy. The accuracy of a robot can be asserted by measuring the position and orientation of its end effector. For this purpose there exist a number of techniques, one of them being photogrammetric measurement. Robot manufacturers have used photogrammetry since several years in order to carry out a factory calibration. However, there is a growing need for systems which are able to calibrate and constantly monitor a robot on the factory floor. This paper describes the possibilities which are offered by recent developments in sensors, image processing and close range photogrammetry. It then shows first results towards an on-line photogrammetric robot tracking system which have been obtained by a research group at the University of Stuttgart, Germany.

  11. Photogrammetric Analysis of CPAS Main Parachutes

    NASA Technical Reports Server (NTRS)

    Ray, Eric; Bretz, David

    2011-01-01

    The Crew Exploration Vehicle Parachute Assembly System (CPAS) is being designed to land the Orion Crew Module (CM) at a safe rate of descent at splashdown with a cluster of two to three Main parachutes. The instantaneous rate of descent varies based on parachute fly-out angles and geometric inlet area. Parachutes in a cluster oscillate between significant fly-out angles and colliding into each other. The former presents a sub-optimal inlet area and the latter lowers the effective drag area as the parachutes interfere with each other. The fly-out angles are also important in meeting a twist torque requirement. Understanding cluster behavior necessitates measuring the Mains with photogrammetric analysis. Imagery from upward looking cameras is analyzed to determine parachute geometry. Fly-out angles are measured from each parachute vent to an axis determined from geometry. Determining the scale of the objects requires knowledge of camera and lens calibration as well as features of known size. Several points along the skirt are tracked to compute an effective circumference, diameter, and inlet area as a function of time. The effects of this geometry are clearly seen in the system drag coefficient time history. Photogrammetric analysis is key in evaluating the effects of design features such as an Over-Inflation Control Line (OICL), Main Line Length Ratio (MLLR), and geometric porosity, which are varied in an attempt to minimize cluster oscillations. The effects of these designs are evaluated through statistical analysis.

  12. Calibration of Action Cameras for Photogrammetric Purposes

    PubMed Central

    Balletti, Caterina; Guerra, Francesco; Tsioukas, Vassilios; Vernier, Paolo

    2014-01-01

    The use of action cameras for photogrammetry purposes is not widespread due to the fact that until recently the images provided by the sensors, using either still or video capture mode, were not big enough to perform and provide the appropriate analysis with the necessary photogrammetric accuracy. However, several manufacturers have recently produced and released new lightweight devices which are: (a) easy to handle, (b) capable of performing under extreme conditions and more importantly (c) able to provide both still images and video sequences of high resolution. In order to be able to use the sensor of action cameras we must apply a careful and reliable self-calibration prior to the use of any photogrammetric procedure, a relatively difficult scenario because of the short focal length of the camera and its wide angle lens that is used to obtain the maximum possible resolution of images. Special software, using functions of the OpenCV library, has been created to perform both the calibration and the production of undistorted scenes for each one of the still and video image capturing mode of a novel action camera, the GoPro Hero 3 camera that can provide still images up to 12 Mp and video up 8 Mp resolution. PMID:25237898

  13. The application of GPS precise point positioning technology in aerial triangulation

    NASA Astrophysics Data System (ADS)

    Yuan, Xiuxiao; Fu, Jianhong; Sun, Hongxing; Toth, Charles

    In traditional GPS-supported aerotriangulation, differential GPS (DGPS) positioning technology is used to determine the 3-dimensional coordinates of the perspective centers at exposure time with an accuracy of centimeter to decimeter level. This method can significantly reduce the number of ground control points (GCPs). However, the establishment of GPS reference stations for DGPS positioning is not only labor-intensive and costly, but also increases the implementation difficulty of aerial photography. This paper proposes aerial triangulation supported with GPS precise point positioning (PPP) as a way to avoid the use of the GPS reference stations and simplify the work of aerial photography. Firstly, we present the algorithm for GPS PPP in aerial triangulation applications. Secondly, the error law of the coordinate of perspective centers determined using GPS PPP is analyzed. Thirdly, based on GPS PPP and aerial triangulation software self-developed by the authors, four sets of actual aerial images taken from surveying and mapping projects, different in both terrain and photographic scale, are given as experimental models. The four sets of actual data were taken over a flat region at a scale of 1:2500, a mountainous region at a scale of 1:3000, a high mountainous region at a scale of 1:32000 and an upland region at a scale of 1:60000 respectively. In these experiments, the GPS PPP results were compared with results obtained through DGPS positioning and traditional bundle block adjustment. In this way, the empirical positioning accuracy of GPS PPP in aerial triangulation can be estimated. Finally, the results of bundle block adjustment with airborne GPS controls from GPS PPP are analyzed in detail. The empirical results show that GPS PPP applied in aerial triangulation has a systematic error of half-meter level and a stochastic error within a few decimeters. However, if a suitable adjustment solution is adopted, the systematic error can be eliminated in GPS

  14. Comparing data of terrestrial LiDAR and UAV (photogrammetric) in the context of the project "SedAlp"

    NASA Astrophysics Data System (ADS)

    Abel, Judith; Wegner, Kerstin; Haas, Florian; Heckmann, Tobias; Becht, Michael

    2014-05-01

    The project "SedAlp" (Sediment management in Alpine basins: integrating sediment continuum, risk mitigation and hydropower) concentrates on problems and approaches related to sediment transfer in the alpine region and is embedded in the European transnational cooperation program "Alpine Space". The catholic University Eichstätt-Ingolstadt contributes the German part to this project on behalf of the Bavarian Environment Agency and in collaboration with the Authority of Water Resources Weilheim. The area of interest is the river Isar between the Sylvenstein reservoir and the city of Bad Tölz, Bavaria, Germany. The main aim of the activities is to quantify the transfer of sediments from the tributary catchments to the river Isar, specifically in light of the fact that the construction of the Sylvenstein reservoir in the mid 1950ies has created a barrier to longitudinal sediment transfer, thus heavily impacting the sediment budget and morphodynamics of the Isar reaches downstream. Moreover, the further development of artificially inserted gravel deposits and the effect of dismantling reinforcement structures at the river banks need investigation. Therefore, the dynamics of alluvial fans and gravel bars in the areas of confluence of tributary torrents are monitored using multitemporal surveys with terrestrial laserscanners and drone-based imagery. The latter is used both for the generation of high-resolution digital elevation models and for the mapping of changes in comparison to historical aerial photos. This study focuses on a comparison of TLS and UAV-based photogrammetric digital elevation models in order to highlight advantages and disadvantages of the two methods in relation to the SedAlp-specific research problems. It is shown that UAV-based elevation models are highly accurate alternatives to TLS-based models; due to their favourable acquisition geometry with respect to the topography in floodplain areas, and their large areal coverage, their use is seen as

  15. Assessment of benthic disturbance associated with stingray foraging for ghost shrimp by aerial survey over an intertidal sandflat

    NASA Astrophysics Data System (ADS)

    Takeuchi, Seiji; Tamaki, Akio

    2014-08-01

    One notable type of bioturbation in marine soft sediments involves the excavation of large pits and displacement of sediment associated with predator foraging for infaunal benthos. Batoids are among the most powerful excavators, yet their impact on sediment has been poorly studied. For expansive tidal flats, only relatively small proportions of the habitat can be sampled due to physical and logistical constraints. The knowledge of the dynamics of these habitats, including the spatial and temporal distribution of ray bioturbation, thus remains limited. We combined the use of aerial photogrammetry and in situ benthic sampling to quantify stingray feeding pits in Tomioka Bay, Amakusa, Japan. Specifically, we mapped newly-formed pits over an 11-ha section of an intertidal sandflat over two consecutive daytime low tides. Pit size and distribution patterns were assumed to scale with fish size and reflect size-specific feeding behaviors, respectively. In situ benthic surveys were conducted for sandflat-surface elevation and prey density (callianassid shrimp). The volume versus area relationship was established as a logistic function for pits of varying sizes by photographing and refilling them with sediment. This relationship was applied to the area of every pit detected by air to estimate volume, in which special attention was paid to ray ontogenetic change in space utilization patterns. In total, 18,103 new pits were formed per day, with a mean individual area of 1060 cm2. The pits were divided into six groups (G1 to G6 in increasing areas), with abundances of G1, G2+G3, and G4-G6 being medium, high, and low, respectively. Statistical analyses using generalized linear models revealed a marked preference for the higher prey-density areas in G1 and the restriction of feeding grounds of G4-G6 to the lower shore, with G2+G3 being generalists for prey density and sandflat elevation. The lower degrees of overall bioturbation by G1 and G4-G6 were spatially structured for the

  16. Exploring the Potential of Aerial Photogrammetry for 3d Modelling of High-Alpine Environments

    NASA Astrophysics Data System (ADS)

    Legat, K.; Moe, K.; Poli, D.; Bollmannb, E.

    2016-03-01

    High-alpine areas are subject to rapid topographic changes, mainly caused by natural processes like glacial retreat and other geomorphological processes, and also due to anthropogenic interventions like construction of slopes and infrastructure in skiing resorts. Consequently, the demand for highly accurate digital terrain models (DTMs) in alpine environments has arisen. Public administrations often have dedicated resources for the regular monitoring of glaciers and natural hazard processes. In case of glaciers, traditional monitoring encompasses in-situ measurements of area and length and the estimation of volume and mass changes. Next to field measurements, data for such monitoring programs can be derived from DTMs and digital ortho photos (DOPs). Skiing resorts, on the other hand, require DTMs as input for planning and - more recently - for RTK-GNSS supported ski-slope grooming. Although different in scope, the demand of both user groups is similar: high-quality and up-to-date terrain data for extended areas often characterised by difficult accessibility and large elevation ranges. Over the last two decades, airborne laser scanning (ALS) has replaced photogrammetric approaches as state-of-the-art technology for the acquisition of high-resolution DTMs also in alpine environments. Reasons include the higher productivity compared to (manual) stereo-photogrammetric measurements, canopy-penetration capability, and limitations of photo measurements on sparsely textured surfaces like snow or ice. Nevertheless, the last few years have shown strong technological advances in the field of aerial camera technology, image processing and photogrammetric software which led to new possibilities for image-based DTM generation even in alpine terrain. At Vermessung AVT, an Austrian-based surveying company, and its subsidiary Terra Messflug, very promising results have been achieved for various projects in high-alpine environments, using images acquired by large-format digital

  17. Photogrammetric 3D reconstruction using mobile imaging

    NASA Astrophysics Data System (ADS)

    Fritsch, Dieter; Syll, Miguel

    2015-03-01

    In our paper we demonstrate the development of an Android Application (AndroidSfM) for photogrammetric 3D reconstruction that works on smartphones and tablets likewise. The photos are taken with mobile devices, and can thereafter directly be calibrated using standard calibration algorithms of photogrammetry and computer vision, on that device. Due to still limited computing resources on mobile devices, a client-server handshake using Dropbox transfers the photos to the sever to run AndroidSfM for the pose estimation of all photos by Structure-from-Motion and, thereafter, uses the oriented bunch of photos for dense point cloud estimation by dense image matching algorithms. The result is transferred back to the mobile device for visualization and ad-hoc on-screen measurements.

  18. Photogrammetric Analysis of a Heritage Ceiling

    NASA Astrophysics Data System (ADS)

    MacDonald, L.; Hosseininaveh Ahmadabadian, A.; Robson, S.

    2014-06-01

    Conservation of the painted ceiling at the historic Hampton Court Palace requires the condition of the ceiling to be monitored for signs of formation of cracks and flakes in the surface. Miniature monochrome cameras and LED lights were mounted on a horizontal bar, and raised by a telescopic mast to 60 cm below the ceiling. Images from the cameras were captured simultaneously by purposedeveloped software in a laptop computer at floor level. A series of image pairs was acquired at each location, rotating the mast between each pair. Images were enhanced in local contrast by a modified Wallis filter. From the image set a dense and accurate point cloud was generated, using a photogrammetric bundle adjustment procedure, from which 3D surface details could be visualised.

  19. Comparing Multi-Source Photogrammetric Data during the Examination of Verticality in a Monumental Tower

    NASA Astrophysics Data System (ADS)

    Markiewicz, J.; Zawieska, D.; Podlasiak, P.

    2017-02-01

    This paper presents an analysis of source photogrammetric data in relation to the examination of verticality in a monumental tower. In the proposed data processing methodology, the geometric quality of the point clouds relating to the monumental tower of the castle in Iłżawas established by using terrestrial laser scanning (Z+F 5006h, Leica C10), terrestrial photographs and digital images sourced via unmanned aerial vehicles (UAV) (Leica Aibot X6 Hexacopter). Tests were performed using the original software, developed by the authors, which allows for the automation of 3D point cloud processing. The software also facilitates the verification of the verticality of the tower and the assessment of the quality of utilized data.

  20. The sky is the limit? 20 years of small-format aerial photography taken from UAS for monitoring geomorphological processes

    NASA Astrophysics Data System (ADS)

    Marzolff, Irene

    2014-05-01

    One hundred years after the first publication on aerial photography taken from unmanned aerial platforms (Arthur Batut 1890), small-format aerial photography (SFAP) became a distinct niche within remote sensing during the 1990s. Geographers, plant biologists, archaeologists and other researchers with geospatial interests re-discovered the usefulness of unmanned platforms for taking high-resolution, low-altitude photographs that could then be digitized and analysed with geographical information systems, (softcopy) photogrammetry and image processing techniques originally developed for digital satellite imagery. Even before the ubiquity of digital consumer-grade cameras and 3D analysis software accessible to the photogrammetric layperson, do-it-yourself remote sensing using kites, blimps, drones and micro air vehicles literally enabled the questing researcher to get their own pictures of the world. As a flexible, cost-effective method, SFAP offered images with high spatial and temporal resolutions that could be ideally adapted to the scales of landscapes, forms and distribution patterns to be monitored. During the last five years, this development has been significantly accelerated by the rapid technological advancements of GPS navigation, autopiloting and revolutionary softcopy-photogrammetry techniques. State-of-the-art unmanned aerial systems (UAS) now allow automatic flight planning, autopilot-controlled aerial surveys, ground control-free direct georeferencing and DEM plus orthophoto generation with centimeter accuracy, all within the space of one day. The ease of use of current UAS and processing software for the generation of high-resolution topographic datasets and spectacular visualizations is tempting and has spurred the number of publications on these issues - but which advancements in our knowledge and understanding of geomorphological processes have we seen and can we expect in the future? This presentation traces the development of the last two decades

  1. a Uav-Based Low-Cost Stereo Camera System for Archaeological Surveys - Experiences from Doliche (turkey)

    NASA Astrophysics Data System (ADS)

    Haubeck, K.; Prinz, T.

    2013-08-01

    The use of Unmanned Aerial Vehicles (UAVs) for surveying archaeological sites is becoming more and more common due to their advantages in rapidity of data acquisition, cost-efficiency and flexibility. One possible usage is the documentation and visualization of historic geo-structures and -objects using UAV-attached digital small frame cameras. These monoscopic cameras offer the possibility to obtain close-range aerial photographs, but - under the condition that an accurate nadir-waypoint flight is not possible due to choppy or windy weather conditions - at the same time implicate the problem that two single aerial images not always meet the required overlap to use them for 3D photogrammetric purposes. In this paper, we present an attempt to replace the monoscopic camera with a calibrated low-cost stereo camera that takes two pictures from a slightly different angle at the same time. Our results show that such a geometrically predefined stereo image pair can be used for photogrammetric purposes e.g. the creation of digital terrain models (DTMs) and orthophotos or the 3D extraction of single geo-objects. Because of the limited geometric photobase of the applied stereo camera and the resulting base-height ratio the accuracy of the DTM however directly depends on the UAV flight altitude.

  2. Trial aerial survey of sea otters in Prince William Sound, Alaska, 1993. Restoration project 93043-2. Exxon Valdez oil spill restoration project final report

    SciTech Connect

    Bodkin, J.L.; Udevitz, M.S.

    1996-05-01

    We developed an aerial survey method for sea otters, using a strip transect design where otters observed in a strip along one side of the aircraft are counted. Two strata are sampled, one lies close to shore and/or in shallow. The other strata lies offshore and over deeper water. We estimate the proportion of otters not seen by the observer by conducting intensive searches of units (ISU`s) within strips when otters are observed. The first study found no significant differences in sea otter detection probabilities between ISU`s initiated by the sighting of an otter group compared to systematically located ISU`s. The second study consisted of a trial survey of all of Prince William Sound, excluding Orca Inlet. The survey area consisted of 5,017 sq km of water between the shore line and an offshore boundary based on shoreline physiography, the 100 m depth contour or a distance of 2 km from the shore. From 5-13 August 1993, two observers surveyed 1,023 linear km of high density sea otter habitat and 355 linear km of low density habitat.

  3. 117. NORTH FACADE, WEST END Copy photograph of photogrammetric plate ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    117. NORTH FACADE, WEST END Copy photograph of photogrammetric plate LC-HABS-GS05-T-2626-205R. - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  4. NAWCAD photogrammetrics: Methods and applications for aviation test and evaluation

    NASA Astrophysics Data System (ADS)

    Shields, John J.; Forsman, Alec E.; Stancil, Robert F.

    Photogrammetrics, the science of extracting quantitative and qualitative data from multiple sequential recorded images, has been an integral part of flight test and evaluation at the Naval Air Warfare Center Aircraft Division (NAWCAD) at Patuxent River, MD for over 35 years. Photogrammetrics analysis is used for evaluation of stores separation, carrier suitability, range tracking, overhead impact scoring, and mishap reconstruction. The NAWCAD photogrammetrics team is pursuing strategies to reduce the time and increase the accuracies of solution processes that historically have been labor-intensive, prone to repetition of effort, and difficult to present This paper describes how NAWCAD scientists have applied a clearly defined process for photogrammetrics efforts, and have implemented state-of-the-art hardware and software methodologies that reduce the turnaround time, increase the accuracy, and facilitate the delivery of custom formatted products to the flight test engineer's desktop.

  5. Geomorphological mapping with a small unmanned aircraft system (sUAS): Feature detection and accuracy assessment of a photogrammetrically-derived digital terrain model

    NASA Astrophysics Data System (ADS)

    Hugenholtz, Chris H.; Whitehead, Ken; Brown, Owen W.; Barchyn, Thomas E.; Moorman, Brian J.; LeClair, Adam; Riddell, Kevin; Hamilton, Tayler

    2013-07-01

    Small unmanned aircraft systems (sUAS) are a relatively new type of aerial platform for acquiring high-resolution remote sensing measurements of Earth surface processes and landforms. However, despite growing application there has been little quantitative assessment of sUAS performance. Here we present results from a field experiment designed to evaluate the accuracy of a photogrammetrically-derived digital terrain model (DTM) developed from imagery acquired with a low-cost digital camera onboard an sUAS. We also show the utility of the high-resolution (0.1 m) sUAS imagery for resolving small-scale biogeomorphic features. The experiment was conducted in an area with active and stabilized aeolian landforms in the southern Canadian Prairies. Images were acquired with a Hawkeye RQ-84Z Areohawk fixed-wing sUAS. A total of 280 images were acquired along 14 flight lines, covering an area of 1.95 km2. The survey was completed in 4.5 h, including GPS surveying, sUAS setup and flight time. Standard image processing and photogrammetric techniques were used to produce a 1 m resolution DTM and a 0.1 m resolution orthorectified image mosaic. The latter revealed previously un-mapped bioturbation features. The vertical accuracy of the DTM was evaluated with 99 Real-Time Kinematic GPS points, while 20 of these points were used to quantify horizontal accuracy. The horizontal root mean squared error (RMSE) of the orthoimage was 0.18 m, while the vertical RMSE of the DTM was 0.29 m, which is equivalent to the RMSE of a bare earth LiDAR DTM for the same site. The combined error from both datasets was used to define a threshold of the minimum elevation difference that could be reliably attributed to erosion or deposition in the seven years separating the sUAS and LiDAR datasets. Overall, our results suggest that sUAS-acquired imagery may provide a low-cost, rapid, and flexible alternative to airborne LiDAR for geomorphological mapping.

  6. Aerial surveys of endangered cetaceans and other marine mammals in the northwestern Gulf of Alaska and southeastern Bering Sea. Final report

    SciTech Connect

    Brueggeman, J.J.; Green, G.A.; Grotefendt, R.A.; Chapman, D.G.

    1987-09-01

    Aerial surveys were conducted in the Northwestern Gulf of Alaska and southeastern Bering Sea to determine the abundance, distribution, and habitat use patterns of endangered cetaceans and other marine mammals. Four species of cetaceans listed by the Federal Government as endangered were observed: gray, humpback, finback, and sperm whales. Sightings were also made to seven nonendangered species of cetaceans: minke, Cuvier's beaked, Baird's beaked, belukha, and killer whales, and Dall and harbor porpoises. Results show that the project area is an important feeding ground for relatively large numbers of humpback and finback whales and lower numbers of gray whale migration route between seasonal ranges. The project area also supports a variety of other marine mammals both seasonally and annually.

  7. An aerial multispectral thermographic survey of the Oak Ridge Reservation for selected areas K-25, X-10, and Y-12, Oak Ridge, Tennessee

    SciTech Connect

    Ginsberg, I.W.

    1996-10-01

    During June 5-7, 1996, the Department of Energy`s Remote Sensing Laboratory performed day and night multispectral surveys of three areas at the Oak Ridge Reservation: K-25, X-10, and Y-12. Aerial imagery was collected with both a Daedalus DS1268 multispectral scanner and National Aeronautics and Space Administration`s Thermal Infrared Multispectral System, which has six bands in the thermal infrared region of the spectrum. Imagery from the Thermal Infrared Multispectral System was processed to yield images of absolute terrain temperature and of the terrain`s emissivities in the six spectral bands. The thermal infrared channels of the Daedalus DS1268 were radiometrically calibrated and converted to apparent temperature. A recently developed system for geometrically correcting and geographically registering scanner imagery was used with the Daedalus DS1268 multispectral scanner. The corrected and registered 12-channel imagery was orthorectified using a digital elevation model. 1 ref., 5 figs., 5 tabs.

  8. Development of AN All-Purpose Free Photogrammetric Tool

    NASA Astrophysics Data System (ADS)

    González-Aguilera, D.; López-Fernández, L.; Rodriguez-Gonzalvez, P.; Guerrero, D.; Hernandez-Lopez, D.; Remondino, F.; Menna, F.; Nocerino, E.; Toschi, I.; Ballabeni, A.; Gaiani, M.

    2016-06-01

    Photogrammetry is currently facing some challenges and changes mainly related to automation, ubiquitous processing and variety of applications. Within an ISPRS Scientific Initiative a team of researchers from USAL, UCLM, FBK and UNIBO have developed an open photogrammetric tool, called GRAPHOS (inteGRAted PHOtogrammetric Suite). GRAPHOS allows to obtain dense and metric 3D point clouds from terrestrial and UAV images. It encloses robust photogrammetric and computer vision algorithms with the following aims: (i) increase automation, allowing to get dense 3D point clouds through a friendly and easy-to-use interface; (ii) increase flexibility, working with any type of images, scenarios and cameras; (iii) improve quality, guaranteeing high accuracy and resolution; (iv) preserve photogrammetric reliability and repeatability. Last but not least, GRAPHOS has also an educational component reinforced with some didactical explanations about algorithms and their performance. The developments were carried out at different levels: GUI realization, image pre-processing, photogrammetric processing with weight parameters, dataset creation and system evaluation. The paper will present in detail the developments of GRAPHOS with all its photogrammetric components and the evaluation analyses based on various image datasets. GRAPHOS is distributed for free for research and educational needs.

  9. Aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.

    1978-01-01

    Thermal infrared scanning from an aircraft is a convenient and commercially available means for determining relative rates of energy loss from building roofs. The need to conserve energy as fuel costs makes the mass survey capability of aerial thermography an attractive adjunct to community energy awareness programs. Background information on principles of aerial thermography is presented. Thermal infrared scanning systems, flight and environmental requirements for data acquisition, preparation of thermographs for display, major users and suppliers of thermography, and suggested specifications for obtaining aerial scanning services were reviewed.

  10. A series of low-altitude aerial radiological surveys of selected regions within Areas 3, 5, 8, 9, 11, 18, and 25 at the Nevada Test Site

    SciTech Connect

    Colton, D.P.

    1999-12-01

    A series of low-altitude, aerial radiological surveys of selected regions within Areas 3, 5, 8, 9, 11, 18,and 25 of the Nevada Test Site was conducted from December 1996 through June 1999. The surveys were conducted for the US Department of Energy by the Remote Sensing Laboratory, located in Las Vegas, Nevada, and maintained and operated by Bechtel Nevada. The flights were conducted at a nominal altitude of 15 meters above ground level along a set of parallel flight lines spaced 23 meters apart. The purpose of these low-altitude surveys was to measure, map, and define the areas of americium-241 activity. The americium contamination will be used to determine the areas of plutonium contamination. Americium-241 activity was detected within 8 of the 11 regions. The three regions where americium-241 was not detected were in the inactive Nuclear Rocket Development Station complex in Area 25, which encompassed the Test Cell A and Test Cell C reactor test stands and the Reactor Maintenance Assembly and Disassembly facility.

  11. Interpretation of an aerial radiometric survey of the San Gorgonio Wilderness Area and vicinity, San Bernardino County, California

    USGS Publications Warehouse

    Pitkin, James A.; Duval, Joseph S.

    1981-01-01

    The aerial radiometric data for the San Gorgonio Wilderness Area show slight correlation with mapped geology and contain no information of economic significance. Precambrian and modified Precambrian crystalline rocks have more eTh compared to Mesozoic plutonic rocks and one rock unit mapped as a pluton has slightly more K. These rocks have essentially uniform ratios of eU/eTh and eU/K despite their different origins. The ratios and also show that part of the granodiorite of Manzanita Springs could be somewhat deficient in eTh and K. It is concluded that the mapped radioelement distributions are within reasonable limits for the rock types involved, and there is no immediate evidence on any anomalous concentrations of radioactive minerals within the Wilderness Area. 

  12. Turtles, birds, and mammals in the northern Gulf of Mexico and nearby Atlantic waters: an overview based on aerial surveys of OCS (Outer Continental Shelf) areas, with emphasis on oil and gas effects

    SciTech Connect

    Fritts, T.H.; Irvine, A.B.; Jennings, R.D.; Collum, L.A.; Hoffman, W.

    1983-07-01

    Aerial line transect surveys of marine turtles, birds, and mammals were conducted in four areas of the Gulf of Mexico and nearby Atlantic waters. Areas surveyed were 111 km by 222 km and located off Brownsville, Texas; Marsh Island, Louisiana; Naples, Florida; and Merritt Island, Florida. Data on distribution, abundance, seasonal occurrence, and habitat use are reported in accounts for each of the 88 species observed. Information on reproduction, behavior, and potential impacts of Outer Continental Shelf (OCS) development are also discussed.

  13. Combination of photogrammetric and geoelectric methods to assess 3d structures associated to natural hazards

    NASA Astrophysics Data System (ADS)

    Fargier, Yannick; Dore, Ludovic; Antoine, Raphael; Palma Lopes, Sérgio; Fauchard, Cyrille

    2016-04-01

    The extraction of subsurface materials is a key element for the economy of a nation. However, natural degradation of underground quarries is a major issue from an economic and public safety point of view. Consequently, the quarries stakeholders require relevant tools to define hazards associated to these structures. Safety assessment methods of underground quarries are recent and mainly based on rock physical properties. This kind of method leads to a certain homogeneity assumption of pillar internal properties that can cause an underestimation of the risk. Electrical Resistivity Imaging (ERI) is a widely used method that possesses two advantages to overcome this limitation. The first is to provide a qualitative understanding for the detection and monitoring of anomalies in the pillar body (e.g. faults). The second is to provide a quantitative description of the electrical resistivity distribution inside the pillar. This quantitative description can be interpreted with constitutive laws to help decision support (water content decreases the mechanical resistance of a chalk). However, conventional 2D and 3D Imaging techniques are usually applied to flat surface surveys or to surfaces with moderate topography. A 3D inversion of more complex media (case of the pillar) requires a full consideration of the geometry that was never taken into account before. The Photogrammetric technique presents a cost effective solution to obtain an accurate description of the external geometry of a complex media. However, this method has never been fully coupled with a geophysical method to enhance/improve the inversion process. Consequently we developed a complete procedure showing that photogrammetric and ERI tools can be efficiently combined to assess a complex 3D structure. This procedure includes in a first part a photogrammetric survey, a processing stage with an open source software and a post-processing stage finalizing a 3D surface model. The second part necessitates the

  14. Aerial Photography

    NASA Technical Reports Server (NTRS)

    1985-01-01

    John Hill, a pilot and commercial aerial photographer, needed an information base. He consulted NERAC and requested a search of the latest developments in camera optics. NERAC provided information; Hill contacted the manufacturers of camera equipment and reduced his photographic costs significantly.

  15. NAWCAD photogrammetrics: methods and applications for aviation test and evaluation

    NASA Astrophysics Data System (ADS)

    Stancil, Robert F.; Forsman, Alec E.; Williams, James W.

    1997-12-01

    Photogrammetry using multiple sequential recorded film and video images has been an integral part of flight test and evaluation at the Naval Air Warfare Center Aircraft Division (NAWCAD) at Patuxent River, Maryland for nearly 40 years. Photogrammetric analysis is used for evaluation of stores separation, carrier suitability, ballistic trajectory tracking, overhead impact scoring, and mishap reconstruction. NAWCAD, Patuxent River, Maryland recently began flight testing for the F/A-18 E/F development program. The initial phase of the weapons separation portion of the F/A-18 E/F development program is a 13 month project consisting of two aircraft flying 256 flights during which 2000 stores will be dropped. To meet the challenge of processing high volumes of photogrammetric data and delivering solutions within 72 hours of each flight, the NAWCAD Photogrammetric Team initiated strategies to reduce the time and to increase the volume of data analysis, and to increase the accuracies of solution processes that historically have been labor intensive and difficult to present. The NAWCAD Photogrammetric Team is developing an image enhancement and data analysis system, and the on-line database which will provide near real-time access and retrievability of test data. This paper describes how NAWCAD scientists have applied a clearly defined process for photogrammetric efforts, and implemented state-of-the-art hardware and software methodologies and architecture that reduce the turnaround time, reduce the cost, increase the accuracy, and facilitate the delivery of custom-formatted products to the flight test engineer.

  16. Photogrammetric Applications of Immersive Video Cameras

    NASA Astrophysics Data System (ADS)

    Kwiatek, K.; Tokarczyk, R.

    2014-05-01

    The paper investigates immersive videography and its application in close-range photogrammetry. Immersive video involves the capture of a live-action scene that presents a 360° field of view. It is recorded simultaneously by multiple cameras or microlenses, where the principal point of each camera is offset from the rotating axis of the device. This issue causes problems when stitching together individual frames of video separated from particular cameras, however there are ways to overcome it and applying immersive cameras in photogrammetry provides a new potential. The paper presents two applications of immersive video in photogrammetry. At first, the creation of a low-cost mobile mapping system based on Ladybug®3 and GPS device is discussed. The amount of panoramas is much too high for photogrammetric purposes as the base line between spherical panoramas is around 1 metre. More than 92 000 panoramas were recorded in one Polish region of Czarny Dunajec and the measurements from panoramas enable the user to measure the area of outdoors (adverting structures) and billboards. A new law is being created in order to limit the number of illegal advertising structures in the Polish landscape and immersive video recorded in a short period of time is a candidate for economical and flexible measurements off-site. The second approach is a generation of 3d video-based reconstructions of heritage sites based on immersive video (structure from immersive video). A mobile camera mounted on a tripod dolly was used to record the interior scene and immersive video, separated into thousands of still panoramas, was converted from video into 3d objects using Agisoft Photoscan Professional. The findings from these experiments demonstrated that immersive photogrammetry seems to be a flexible and prompt method of 3d modelling and provides promising features for mobile mapping systems.

  17. Photogrammetric Analysis of Attractiveness in Indian Faces

    PubMed Central

    Duggal, Shveta; Kapoor, DN; Verma, Santosh; Sagar, Mahesh; Lee, Yung-Seop; Moon, Hyoungjin

    2016-01-01

    Background The objective of this study was to assess the attractive facial features of the Indian population. We tried to evaluate subjective ratings of facial attractiveness and identify which facial aesthetic subunits were important for facial attractiveness. Methods A cross-sectional study was conducted of 150 samples (referred to as candidates). Frontal photographs were analyzed. An orthodontist, a prosthodontist, an oral surgeon, a dentist, an artist, a photographer and two laymen (estimators) subjectively evaluated candidates' faces using visual analog scale (VAS) scores. As an objective method for facial analysis, we used balanced angular proportional analysis (BAPA). Using SAS 10.1 (SAS Institute Inc.), the Turkey's studentized range test and Pearson correlation analysis were performed to detect between-group differences in VAS scores (Experiment 1), to identify correlations between VAS scores and BAPA scores (Experiment 2), and to analyze the characteristic features of facial attractiveness and gender differences (Experiment 3); the significance level was set at P=0.05. Results Experiment 1 revealed some differences in VAS scores according to professional characteristics. In Experiment 2, BAPA scores were found to behave similarly to subjective ratings of facial beauty, but showed a relatively weak correlation coefficient with the VAS scores. Experiment 3 found that the decisive factors for facial attractiveness were different for men and women. Composite images of attractive Indian male and female faces were constructed. Conclusions Our photogrammetric study, statistical analysis, and average composite faces of an Indian population provide valuable information about subjective perceptions of facial beauty and attractive facial structures in the Indian population. PMID:27019809

  18. Photogrammetric Measurements of CEV Airbag Landing Attenuation Systems

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.; Burner, Alpheus W.; Berry, Felecia C.; Dismond, Harriett R.; Cate, Kenneth H.

    2008-01-01

    High-speed photogrammetric measurements are being used to assess the impact dynamics of the Orion Crew Exploration Vehicle (CEV) for ground landing contingency upon return to earth. Test articles representative of the Orion capsule are dropped at the NASA Langley Landing and Impact Research (LandIR) Facility onto a sand/clay mixture representative of a dry lakebed from elevations as high as 62 feet (18.9 meters). Two different types of test articles have been evaluated: (1) half-scale metal shell models utilized to establish baseline impact dynamics and soil characterization, and (2) geometric full-scale drop models with shock-absorbing airbags which are being evaluated for their ability to cushion the impact of the Orion CEV with the earth s surface. This paper describes the application of the photogrammetric measurement technique and provides drop model trajectory and impact data that indicate the performance of the photogrammetric measurement system.

  19. Comparison of Photogrammetric Techniques for Rockfalls Monitoring

    NASA Astrophysics Data System (ADS)

    Buill, Felipe; Amparo Núñez-Andrés, María; Lantada, Nieves; Prades, Albert

    2016-10-01

    The use of Unmanned Aerial Vehicles, UAVs to image capture for monitoring natural hazards has had a major boost for its wide possibilities in the last decade. These are, for example, the studying and monitoring of unstable slopes, glaciers and rocky escarpments. Moreover, to evaluate the risk after a rockfall or debris flow event, for example measuring volume of displaced material, trajectories of blocks or building and/or infrastructure damaged. But the use of these devices requires a specific treatment regarding the studied case and geomatic techniques suitable to get the adequate precision of the movement, size of items or events to study. For each application it is necessary to determine what kind of capture is the most appropriate to obtain an optimal benefit-cost ratio. A comparison of the use of terrestrial photogrammetry, UAV photogrammetry and video from UAV has been done. The best result has been obtained combining techniques aerial and terrestrial since ground points with a best quality can be identified and measured and all the surface has a best image coverage.

  20. Monitoring Change on Hydrothermal Edifices by Photogrammetric Time Series: Case Studies from the Endeavour Segment (Juan de Fuca Ridge)

    NASA Astrophysics Data System (ADS)

    Heesemann, M.; Kwasnitschka, T.; Kelley, D. S.; Mihaly, S. F.

    2015-12-01

    High-resolution photogrammetric surveys derived from ROV or AUV imagery yield seafloor geometry at centimeter resolution with full color texture while modeling overhangs and crevasses, generating vastly more detailed terrain models compared to most acoustic methods. The models furthermore serve as geographic reference frames for localized studies. Repetitive surveys consequently facilitate the precise, quantitative study of edifice buildup and erosion as well as the development of the biological habitat. We compare data gathered by the Ocean Networks Canada maintenance cruises with earlier surveys at two sites (Mothra, Main Endeavour Field) along the Endeavour Segment of the Juan de Fuca Ridge.

  1. Cultural Heritage: An example of graphical documentation with automated photogrammetric systems

    NASA Astrophysics Data System (ADS)

    Giuliano, M. G.

    2014-06-01

    In the field of Cultural Heritage, the use of automated photogrammetric systems, based on Structure from Motion techniques (SfM), is widely used, in particular for the study and for the documentation of the ancient ruins. This work has been carried out during the PhD cycle that was produced the "Carta Archeologica del territorio intorno al monte Massico". The study suggests the archeological documentation of the mausoleum "Torre del Ballerino" placed in the south-west area of Falciano del Massico, along the Via Appia. The graphic documentation has been achieved by using photogrammetric system (Image Based Modeling) and by the classical survey with total station, Nikon Nivo C. The data acquisition was carried out through digital camera Canon EOS 5D Mark II with Canon EF 17-40 mm f/4L USM @ 20 mm with images snapped in RAW and corrected in Adobe Lightroom. During the data processing, the camera calibration and orientation was carried out by the software Agisoft Photoscans and the final result has allowed to achieve a scaled 3D model of the monument, imported in software MeshLab for the different view. Three orthophotos in jpg format were extracted by the model, and then were imported in AutoCAD obtaining façade's surveys.

  2. Feasibility of Close-Range Photogrammetric Models for Geographic Information System

    SciTech Connect

    Zhou, Luke; /Rice U.

    2011-06-22

    The objective of this project was to determine the feasibility of using close-range architectural photogrammetry as an alternative three dimensional modeling technique in order to place the digital models in a geographic information system (GIS) at SLAC. With the available equipment and Australis photogrammetry software, the creation of full and accurate models of an example building, Building 281 on SLAC campus, was attempted. After conducting several equipment tests to determine the precision achievable, a complete photogrammetric survey was attempted. The dimensions of the resulting models were then compared against the true dimensions of the building. A complete building model was not evidenced to be obtainable using the current equipment and software. This failure was likely attributable to the limits of the software rather than the precision of the physical equipment. However, partial models of the building were shown to be accurate and determined to still be usable in a GIS. With further development of the photogrammetric software and survey procedure, the desired generation of a complete three dimensional model is likely still feasible.

  3. Computer-assisted photogrammetric mapping systems for geologic studies-A progress report

    USGS Publications Warehouse

    Pillmore, C.L.; Dueholm, K.S.; Jepsen, H.S.; Schuch, C.H.

    1981-01-01

    Photogrammetry has played an important role in geologic mapping for many years; however, only recently have attempts been made to automate mapping functions for geology. Computer-assisted photogrammetric mapping systems for geologic studies have been developed and are currently in use in offices of the Geological Survey of Greenland at Copenhagen, Denmark, and the U.S. Geological Survey at Denver, Colorado. Though differing somewhat, the systems are similar in that they integrate Kern PG-2 photogrammetric plotting instruments and small desk-top computers that are programmed to perform special geologic functions and operate flat-bed plotters by means of specially designed hardware and software. A z-drive capability, in which stepping motors control the z-motions of the PG-2 plotters, is an integral part of both systems. This feature enables the computer to automatically position the floating mark on computer-calculated, previously defined geologic planes, such as contacts or the base of coal beds, throughout the stereoscopic model in order to improve the mapping capabilities of the instrument and to aid in correlation and tracing of geologic units. The common goal is to enhance the capabilities of the PG-2 plotter and provide a means by which geologists can make conventional geologic maps more efficiently and explore ways to apply computer technology to geologic studies. ?? 1981.

  4. Low-Altitude Coastal Aerial Photogrammetry for High-Resolution Seabed Imaging and Habitat Mapping of Shallow Areas

    NASA Astrophysics Data System (ADS)

    Alevizos, E.

    2012-04-01

    This paper explores the application of Kite Aerial Photography at the coastal environment along with digital photogrammetry for seabed geomorphological mapping. This method takes advantage of sea-water clearance that allows the transmission of sunlight through the water column and backscatter of seabed reflection under certain conditions of sunlight, weather and sea state. We analyze the procedure of acquisition, processing and interpretation of kite aerial imagery from the sub-littoral zone up to 5 meters depth. Using a calibrated non-metric digital compact camera we managed to acquire several vertical aerial images from two coastal sites in the Attica Peninsula (Greece) covering an area of approximately 200x100 meters. Both sites express significant geomorphological variability and they have a relatively smooth slope profile. For the photogrammetric processing we acquired topographic and bathymetric survey simultaneously with Kite Aerial Photography using a portable GPS of sub-meter accuracy. In order to deal with bottom control measurements we developed Bottom Control Points which were placed on the seabed. These act like the Ground Control Points and they can be easily deployed in the marine environment. The processing included interior and exterior orientation as well as ortho-rectification of images. This produced final orthomosaics for each site at scales 1:500 - 1:1500 with a resolution of a few centimeters. Interpretation of the seabed was based on color and texture features of certain areas with explicit seabed reflectivity and was supported by underwater photographs for ground truthing. At the final stage of image analysis, we recognized the boundaries (contrasting reflectivity) between different bottom types and digitized them as 2D objects using GIS. Concluding, this project emphasizes on the advantages and physical restrictions of Kite Aerial Photography in mapping small-scale geomorphological features in coastal, estuarine and lagoonal environments

  5. Aerial surveys of endangered whales in the Alaskan Chukchi and western Beaufort Seas, 1990. Final report, Oct-Nov 90

    SciTech Connect

    Moore, S.E.; Clarke, J.T.

    1991-06-01

    In keeping with the National Environmental Policy Act (1969), the Marine Mammal Protection Act (1972) and the Endangered Species Act (1973), the OCS Lands Act Amendments (1978) established a management policy that included studies in OCS lease sale areas to ascertain potential environmental impacts of oil and gas development on OCS marine coastal environments. The Minerals Management Service (MMS) is the agency responsible for these studies and for the leasing of submerged Federal lands. The report summarizes the 1990 investigations of the distribution, abundance, migration, behavior and habitat relationships of endangered whales in the Alaskan Chukchi and western Beaufort Seas (hereafter, study area); 1990 was the second of a three year (1989-91) study. The Bering Sea stock of bowhead whales (Balaena mysticetus) was the principal species studied, with incidental sightings of all other marine mammals routinely recorded. The 1990 season was compromised by circumstances that restricted the availability of the survey aircraft (Grumman Goose, model G21G) to the period 26 October - 7 November; opportunistic surveys were flown in the study area from 3-25 October. In 1990, there were 14 sightings of 19 bowheads from 9-29 October; 5 whales, including 2 calves, were seen north of the study area. One gray whale, 110 belukhas and 53 polar bears were also seen. Over nine survey seasons (1982-90), there were 240 sightings of 520 bowhead whales and 148 sightings of 398 gray whales.

  6. Aerial photographic surveys analyzed to deduce oil spill movement during the decay and breakup of fast ice, Prudhoe Bay, Alaska. Final report

    SciTech Connect

    Lissauer, I.M.; Baird, D.A.

    1982-09-01

    During the summers of 1979 and 1980 aerial photographs of the land fast ice north of Prudhoe Bay, Alaska, were taken. These photographs, covering two-week periods, highlight the decay and break-up of the land fast ice sheet. During the period of photography, wind speed, wind direction, barometric pressure, and tidal height measurements were recorded continuously. Several larger ice floes were 'tagged' with colored plywood markers during 1979. Both these marked flows and other distinctively shaped floes were tracked on the photographic surveys to determine the effect the wind had on their movement. Within the barrier islands, average ice floe velocities as a percentage of wind speed exceeded the 3.5% figure 'normally' found in the literature. North of these islands average ice floe velocities as a percentage of wind speed were less than the 3.5% value. In addition to the flow drift calculations the photographs provide information on melt pool formation and a comparison of the decay and breakup processes between the 1979 and 1980 seasons. The decay and breakup process appears to be triggered by strong wind events in early July.

  7. The mass balance record and surge behavior of Drangajökull Ice Cap (Iceland) from 1946 to 2011 deduced from aerial photographs and LiDAR DEM

    NASA Astrophysics Data System (ADS)

    Muñoz-Cobo Belart, Joaquín; Magnússon, Eyjólfur; Pálsson, Finnur

    2014-05-01

    High resolution and accuracy (e.g. based on LiDAR survey) Digital Elevation Models (DEMs) of glaciers and their close vicinity have significantly improved the methods for calculation of geodetic mass balance and study of changes in glacier dynamics. However additional data is needed to extend such studies back in time. Here we present a geodetically derived mass balance record for Drangajökull ice cap (NW-Iceland) since 1946 to present. The mass balance is calculated from a series of DEMs derived by photogrammetric processing of aerial photographs (years: 1946, 1975, 1985, 1994) and a LiDAR DEM (2011). All Ground Control Points (GCPs) used to constrain the orientation of the aerial photographs, used in the photogrammetric processing, are picked from the LiDAR derived DEM, thus eliminating the time consuming and expensive in situ survey of GCPs. The LiDAR DEM also helps to assess the accuracy of the photogrammetrically derived DEMs, by analyzing the residuals in elevation in ice-free areas. For the DEMs of 1975, 1985 and 1994 the Root Mean Square Error (RMSE) of the residuals is less than 2 m, whereas the accuracy of the DEM of 1946 is worse, with RMSE of 5.5 m, caused by the deteriorated images. The geodetic mass balance yields a negative specific mass balance of ~-0.5 m w.e.a-¹ for the period 1946-1975, followed by periods of positive mass balance: ~0.2 m w.e.a-¹ for the period 1975-1985 and ~0.3 m w.e.a-¹ for the period 1985-1994. Negative specific mass balance of ~-0.6 m w.e.a-¹ is derived for the period 1994-2011. High mass redistribution is observed during 1985-1994 and 1994-2011 on the three main outlets of the ice cap, related to surges. The derived orthophotographs allow tracking of stable features at individual locations on the northern part of Drangajökull, indicating an average velocity of 5-10 m a-¹ for the period 1946-1985 and speeding up in the last two periods due to a surge.

  8. The future of structural fieldwork - UAV assisted aerial photogrammetry

    NASA Astrophysics Data System (ADS)

    Vollgger, Stefan; Cruden, Alexander

    2015-04-01

    Unmanned aerial vehicles (UAVs), commonly referred to as drones, are opening new and low cost possibilities to acquire high-resolution aerial images and digital surface models (DSM) for applications in structural geology. UAVs can be programmed to fly autonomously along a user defined grid to systematically capture high-resolution photographs, even in difficult to access areas. The photographs are subsequently processed using software that employ SIFT (scale invariant feature transform) and SFM (structure from motion) algorithms. These photogrammetric routines allow the extraction of spatial information (3D point clouds, digital elevation models, 3D meshes, orthophotos) from 2D images. Depending on flight altitude and camera setup, sub-centimeter spatial resolutions can be achieved. By "digitally mapping" georeferenced 3D models and images, orientation data can be extracted directly and used to analyse the structural framework of the mapped object or area. We present UAV assisted aerial mapping results from a coastal platform near Cape Liptrap (Victoria, Australia), where deformed metasediments of the Palaeozoic Lachlan Fold Belt are exposed. We also show how orientation and spatial information of brittle and ductile structures extracted from the photogrammetric model can be linked to the progressive development of folds and faults in the region. Even though there are both technical and legislative limitations, which might prohibit the use of UAVs without prior commercial licensing and training, the benefits that arise from the resulting high-resolution, photorealistic models can substantially contribute to the collection of new data and insights for applications in structural geology.

  9. Preparation of magnetic anomaly profile and contour maps from DOE-NURE aerial survey data. Volume I. Processing procedures

    SciTech Connect

    Tinnel, E.P.; Hinze, W.J.

    1981-09-01

    Total intensity magnetic anomaly data acquired as a supplement to radiometric data in the DOE National Uranium Resource Evaluation (NURE) Program are useful in preparing regional profile and contour maps. Survey-contractor-supplied magnetic anomaly data are subjected to a multiprocess, computer-based procedure which prepares these data for presentation. This procedure is used to produce the following machine plotted maps of National Topographic Map Series quadrangle units at a 1:250,000 scale: (1) profile map of contractor-supplied magnetic anomaly data, (2) profile map of high-cut filtered data with contour levels of each profile marked and annotated on the associated flight track, (3) profile map of critical-point data with contour levels indicated, and (4) contour map of filtered and selected data. These quadrangle maps are supplemented with a range of statistical measures of the data which are useful in quality evaluation.

  10. Orientation Strategies for Aerial Oblique Images

    NASA Astrophysics Data System (ADS)

    Wiedemann, A.; Moré, J.

    2012-07-01

    Oblique aerial images become more and more distributed to fill the gap between vertical aerial images and mobile mapping systems. Different systems are on the market. For some applications, like texture mapping, precise orientation data are required. One point is the stable interior orientation, which can be achieved by stable camera systems, the other a precise exterior orientation. A sufficient exterior orientation can be achieved by a large effort in direct sensor orientation, whereas minor errors in the angles have a larger effect than in vertical imagery. The more appropriate approach is by determine the precise orientation parameters by photogrammetric methods using an adapted aerial triangulation. Due to the different points of view towards the object the traditional aerotriangulation matching tools fail, as they produce a bunch of blunders and require a lot of manual work to achieve a sufficient solution. In this paper some approaches are discussed and results are presented for the most promising approaches. We describe a single step approach with an aerotriangulation using all available images; a two step approach with an aerotriangulation only of the vertical images plus a mathematical transformation of the oblique images using the oblique cameras excentricity; and finally the extended functional model for a bundle block adjustment considering the mechanical connection between vertical and oblique images. Beside accuracy also other aspects like efficiency and required manual work have to be considered.

  11. Aerial radiometric and magnetic survey: Marysvale detail survey, Richfield National Topographic Map sheet, Utah. Volume III. Magnetic and ancillary stacked profile data. Final report

    SciTech Connect

    Not Available

    1982-01-01

    The results of the analyses of a systematic airborne gamma radiation and total magnetic survey for the area identified as Marysvale, located in southwestern Utah, is presented in Volumes I-IV of this report. The airborne data gathered is reduced by ground computer facilities to yield profile plots of the equivalent uranium, thorium and potassium gamma radiation intensities, the ratios of these intensities, the total gamma radiation counting rate and the earth's residual magnetic field intensity. Profile plots of the aircraft's altitude above the earth's surface, the ambient temperature and pressure, and the magnetic field data measured by a base station magnetometer is presented also. An evaluation of the distribution of the radiometric data in terms of its established geochemical map units, which were derived via geochemical analysis methods, for the entire survey area has been prepared and is included. The determination of the geochemical units presented has been established principally from the analysis of the radiometric and magnetic contour maps and, more importantly, the multi-variate analysis map. A general description of the area, including descriptions of the various geologic and geochemical units, is included within the text. This volume contains the 5-variable residual magnetic and ancillary stacked profile data for the entire survey area.

  12. Aerial radiometric and magnetic survey: Marysvale detail survey, Richfield National Topographic Map sheet, Utah. Volume II. Radiometric multi-variable stacked profile data. Final report

    SciTech Connect

    Not Available

    1982-01-01

    The results of the analyses of a systematic airborne gamma radiation and total magnetic survey for the area identified as Marysvale, located in southwestern Utah, is presented in Volumes I-IV of this report. The airborne data gathered is reduced by ground computer facilities to yield profile plots of the equivalent uranium, thorium and potassium gamma radiation intensities, the ratios of these intensities, the total gamma radiation counting rate and the earth's residual magnetic field intensity. Profile plots of the aircraft's altitude above the earth's surface, the ambient temperature and pressure, and the magnetic field data measured by a base station magnetometer is presented also. An evaluation of the distribution of the radiometric data in terms of its established geochemical map units, which were derived via geochemical analysis methods, for the entire survey area has been prepared and is included. The determination of the geochemical units presented has been established principally from the analysis of the radiometric and magnetic contour maps and, more importantly, the multi-variate analysis map. A general description of the area, including descriptions of the various geologic and geochemical units, is included within the text. Volume II contains the 10-variable radiometric stacked profile data for the entire survey area.

  13. Combining terrestrial laser scanning and UAV photogrammetry for fast and lightweight surveying

    NASA Astrophysics Data System (ADS)

    Conforti, Dario

    2015-04-01

    To create detailed and accurate 3D maps of small- to medium-sized areas surveyors often turn to a terrestrial laser scanner (TLS). A TLS can make thousands of lidar measurements per second with centimeter-level accuracy even at long ranges, using scanning mirrors to aim the laser up/down and left/right for full coverage of the target area. One limitation of using a TLS is that complex objects may require many more TLS survey positions than simpler ones. Since protrusions may block line of sight to certain areas that can only be seen from particular angles, surveyors must survey from several additional locations to make sure the entire area is covered. This is particularly true for setups where the scanner cannot be elevated to gain line of sight to all the areas that are required to be surveyed. To resolve this issue, surveyors often turn to aerial survey vehicles. An aerial vehicle's bird's-eye perspective resolves features easily and its mobility lets the surveyor quickly capture the whole survey region from multiple angles. To survey more efficiently, surveyors can combine the strengths of TLS and airborne systems, resulting in a cost-effective method of mapping small- to medium-sized sites with 3D data and imagery. This process uses a standard TLS to survey from a few points around the area of interest, particularly vertical faces that would be difficult to survey from the air. Simultaneously, the surveyor uses a lightweight UAV equipped with a camera, gimbal, and basic GPS receiver to collect photogrammetric imagery over the site. During post-processing, the aerial imagery is processed to create 3D data of its own using automated triangulation software. This aerial 3D data is then merged with the 3D data created by the TLS. The aerial 3D data is discarded where it conflicts with the more precise TLS data, but is used to fill in the gaps in the areas where the TLS could not collect any data at all. Finally, the resultant 3D data is merged with the original

  14. Aerial radiometric and magnetic survey: Marysvale detail survey, Richfield National Topographic Map sheet, Utah. Volume IV. Graphic data maps. Final report

    SciTech Connect

    Not Available

    1982-01-01

    The results of the analyses of a systematic airborne gamma radiation and total magnetic survey for the area identified as Marysvale, located in southwestern Utah, is presented in Volumes I-IV of this report. The airborne data gathered is reduced by ground computer facilities to yield profile plots of the equivalent uranium, thorium and potassium gamma radiation intensities, the ratios of these intensities, the total gamma radiation counting rate and the earth's residual magnetic field intensity. Profile plots of the aircraft's altitude above the earth's surface, the ambient temperature and pressure, and the magnetic field data measured by a base station magnetometer is presented also. An evaluation of the distribution of the radiometric data in terms of its established geochemical map units, which were derived via geochemical analysis methods, for the entire survey area has been prepared and is included. The determination of the geochemical units presented has been established principally from the analysis of the radiometric and magnetic contour maps and, more importantly, the multi-variate analysis map. A general description of the area, including descriptions of the various geologic and geochemical units, is included within the text. Volume IV contains the following maps at a scale of 1:62,500/sup 0/; flight line base maps; radiometric and magnetic contour maps; multi-variate analysis maps; geochemical analysis maps; geochemical composite maps.

  15. Aerial radiometric and magnetic survey: Marysvale detail survey, Richfield National Topographic Map sheet, Utah. Volume I. General narrative report. Final report

    SciTech Connect

    Not Available

    1982-01-01

    The results of the analyses of a systematic airborne gamma radiation and total magnetic survey for the area identified as Marysvale, located in southwestern Utah, is presented in Volumes I-IV of this report. The airborne data gathered is reduced by ground computer facilities to yield profile plots of the equivalent uranium, thorium and potassium gamma radiation intensities, the ratios of these intensities, the total gamma radiation counting rate and the earth's residual magnetic field intensity. Profile plots of the aircraft's altitude above the earth's surface, the ambient temperature and pressure, and the magnetic field data measured by a base station magnetometer is presented also. An evaluation of the distribution of the radiometric data in terms of its established geochemical map units, which were derived via geochemical analysis methods, for the entire survey area has been prepared and is included. The determination of the geochemical units presented has been established principally from the analysis of the radiometric and magnetic contour maps and, more importantly, the multi-variate analysis map. A general description of the area, including descriptions of the various geologic and geochemical units, is included within the text. Volume I contains the following: flight operations; data acquisition and processing; synopsis of surface geology; geochemical data interpretation; geologic-geochemical analogy; summary and recommendations for geochemical units.

  16. Forensic aerial photography: projected 3-D exhibits facilitating rapid environmental justice

    NASA Astrophysics Data System (ADS)

    Pope, Robert A.

    2009-02-01

    Forensic stereoscopic analysis of historical aerial photography is successfully identifying the causes of environmental degradation, including erosion and unlawful releases of hazardous wastes into the environment. The photogrammetric evidence can successfully pinpoint the specific locations of undocumented hazardous waste landfills and other types of unlawful releases of chemicals and wastes into the environment, providing location data for targeted investigation, characterization, and subsequent remediation. The findings of these studies are being effectively communicated in a simple, memorable, and compelling way by projecting the three-dimensional (3-D) sequences of historical aerial photography utilizing polarized 3-D presentation methods.

  17. New techniques to measure cliff change from historical oblique aerial photographs and structure-from-motion photogrammetry

    USGS Publications Warehouse

    Warrick, Jonathan; Ritchie, Andy; Adelman, Gabrielle; Adelman, Ken; Limber, Patrick W

    2017-01-01

    Oblique aerial photograph surveys are commonly used to document coastal landscapes. Here it is shown that adequate overlap may exist in these photographic records to develop topographic models with Structure-from-Motion (SfM) photogrammetric techniques. Using photographs of Fort Funston, California, from the California Coastal Records Project, imagery were combined with ground control points in a four-dimensional analysis that produced topographic point clouds of the study area’s cliffs for 5 years spanning 2002 to 2010. Uncertainty was assessed by comparing point clouds with airborne LIDAR data, and these uncertainties were related to the number and spatial distribution of ground control points used in the SfM analyses. With six or more ground control points, the root mean squared errors between the SfM and LIDAR data were less than 0.30 m (minimum 1⁄4 0.18 m), and the mean systematic error was less than 0.10 m. The SfM results had several benefits over traditional airborne LIDAR in that they included point coverage on vertical- to-overhanging sections of the cliff and resulted in 10–100 times greater point densities. Time series of the SfM results revealed topographic changes, including landslides, rock falls, and the erosion of landslide talus along the Fort Funston beach. Thus, it was concluded that SfM photogrammetric techniques with historical oblique photographs allow for the extraction of useful quantitative information for mapping coastal topography and measuring coastal change. The new techniques presented here are likely applicable to many photograph collections and problems in the earth sciences.

  18. Sea otter studies in Glacier Bay National Park and Preserve: Aerial surveys, foraging observations, and intertidal clam sampling

    USGS Publications Warehouse

    Bodkin, J.L.; Kloecker, K.A.; Esslinger, G.G.; Monson, D.H.; DeGroot, J.D.

    2001-01-01

    Following translocations to the outer coast of Southeast Alaska in 1965, sea otters have been expanding their range and increasing in abundance. We began conducting surveys for sea otters in Cross Sound, Icy Strait and Glacier Bay, Alaska in 1994, following initial reports of their presence in Glacier Bay in 1993. Since 1995, the number of sea otters in Glacier Bay proper has increased from about 5 to more than 500. Between 1993 and 1997 sea otters were apparently only occasional visitors to Glacier Bay, but in 1998 long-term residence was established as indicated by the presence of adult females and their dependent pups. Sea otter distribution is limited to the Lower Bay, south of Sandy Cove, and is not continuous within that area. Concentration occur in the vicinity of Sita Reef and Boulder Island and between Pt. Carolus and Rush Pt. on the west side of the Bay (Figure 1). We describe the diet of sea otters in Glacier Bay and south Icy Strait through visual observations of prey during >4,000 successful forage dives. In 2,399 successful foraging dives observed in Glacier Bay proper, diet consisted of 40% clam, 21% urchins, 18% mussel, 4% crab, 5% other and 12% unidentified. Most prey recovered by sea otters are commercially, socially, or ecological important species. Species of clam are primarily Saxidomus gigantea, Protothaca staminea, and Serripes groenlandicus. Urchins are primarily Strongylocentrotus droebachiensis while both mussles, Modiolus modiolus and Mytilus trossulus, are taken. Crabs include species of Cancer, Chinoecetes, Paralithodes, and Telmessus. Although we characterize diet at broad geographic scales, we found diet to vary between sites separated by as little as several hundred meters. Dietary variation among and within sites can reflect differences in prey availability and individual choice. We estimated species composition, density, biomass, and sizes of intertidal clams at 59 sites in Glacier Bay, 14 sites in Idaho Inlet, 12 sites in Port

  19. The development of an UAV borne direct georeferenced photogrammetric platform for Ground Control Point free applications.

    PubMed

    Chiang, Kai-Wei; Tsai, Meng-Lun; Chu, Chien-Hsun

    2012-01-01

    To facilitate applications such as environment detection or disaster monitoring, the development of rapid low cost systems for collecting near real time spatial information is very critical. Rapid spatial information collection has become an emerging trend for remote sensing and mapping applications. In this study, a fixed-wing Unmanned Aerial Vehicle (UAV)-based spatial information acquisition platform that can operate in Ground Control Point (GCP) free environments is developed and evaluated. The proposed UAV based photogrammetric platform has a Direct Georeferencing (DG) module that includes a low cost Micro Electro Mechanical Systems (MEMS) Inertial Navigation System (INS)/Global Positioning System (GPS) integrated system. The DG module is able to provide GPS single frequency carrier phase measurements for differential processing to obtain sufficient positioning accuracy. All necessary calibration procedures are implemented. Ultimately, a flight test is performed to verify the positioning accuracy in DG mode without using GCPs. The preliminary results of positioning accuracy in DG mode illustrate that horizontal positioning accuracies in the x and y axes are around 5 m at 300 m flight height above the ground. The positioning accuracy of the z axis is below 10 m. Therefore, the proposed platform is relatively safe and inexpensive for collecting critical spatial information for urgent response such as disaster relief and assessment applications where GCPs are not available.

  20. The Development of an UAV Borne Direct Georeferenced Photogrammetric Platform for Ground Control Point Free Applications

    PubMed Central

    Chiang, Kai-Wei; Tsai, Meng-Lun; Chu, Chien-Hsun

    2012-01-01

    To facilitate applications such as environment detection or disaster monitoring, the development of rapid low cost systems for collecting near real time spatial information is very critical. Rapid spatial information collection has become an emerging trend for remote sensing and mapping applications. In this study, a fixed-wing Unmanned Aerial Vehicle (UAV)-based spatial information acquisition platform that can operate in Ground Control Point (GCP) free environments is developed and evaluated. The proposed UAV based photogrammetric platform has a Direct Georeferencing (DG) module that includes a low cost Micro Electro Mechanical Systems (MEMS) Inertial Navigation System (INS)/Global Positioning System (GPS) integrated system. The DG module is able to provide GPS single frequency carrier phase measurements for differential processing to obtain sufficient positioning accuracy. All necessary calibration procedures are implemented. Ultimately, a flight test is performed to verify the positioning accuracy in DG mode without using GCPs. The preliminary results of positioning accuracy in DG mode illustrate that horizontal positioning accuracies in the x and y axes are around 5 m at 300 m flight height above the ground. The positioning accuracy of the z axis is below 10 m. Therefore, the proposed platform is relatively safe and inexpensive for collecting critical spatial information for urgent response such as disaster relief and assessment applications where GCPs are not available. PMID:23012538

  1. Automatic Single Tree Detection in Plantations using UAV-based Photogrammetric Point clouds

    NASA Astrophysics Data System (ADS)

    Kattenborn, T.; Sperlich, M.; Bataua, K.; Koch, B.

    2014-08-01

    For reasons of documentation, management and certification there is a high interest in efficient inventories of palm plantations on the single plant level. Recent developments in unmanned aerial vehicle (UAV) technology facilitate spatial and temporal flexible acquisition of high resolution 3D data. Common single tree detection approaches are based on Very High Resolution (VHR) satellite or Airborne Laser Scanning (ALS) data. However, VHR data is often limited to clouds and does commonly not allow for height measurements. VHR and in particualar ALS data are characterized by high relatively high acquisition costs. Sperlich et al. (2013) already demonstrated the high potential of UAV-based photogrammetric point clouds for single tree detection using pouring algorithms. This approach was adjusted and improved for an application on palm plantation. The 9.4ha test site on Tarawa, Kiribati, comprised densely scattered growing palms, as well as abundant undergrowth and trees. Using a standard consumer grade camera mounted on an octocopter two flight campaigns at 70m and 100m altitude were performed to evaluate the effect Ground Sampling Distance (GSD) and image overlap. To avoid comission errors and improve the terrain interpolation the point clouds were classified based on the geometric characteristics of the classes, i.e. (1) palm, (2) other vegetation (3) and ground. The mapping accuracy amounts for 86.1 % for the entire study area and 98.2 % for dense growing palm stands. We conclude that this flexible and automatic approach has high capabilities for operational use.

  2. Simulation of the photogrammetric appendage structural dynamics experiment

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Gilbert, Michael G.; Welch, Sharon S.

    1995-01-01

    The Photogrammetric Appendage Structural Dynamics Experiment (PASDE) uses six video cameras in the Space Shuttle cargo bay to measure vibration of the Russian Mir space station Kvant-ll solar array. It occurs on Shuttle/Mir docking mission STS-74 scheduled for launch in November 1995. The objective of PASDE is to demonstrate photogrammetric technology for measuring 'untargeted' spacecraft appendage structural dynamics. This paper discusses a pre-flight simulation test conducted in July 1995, focusing on the image processing aspects. The flight camera system recorded vibrations of a full-scale structural test article having grids of white lines on black background, similar in appearance to the Mir solar array. Using image correlation analysis, line intersections on the structure are tracked in the video recordings to resolutions of less than 0.1 pixel. Calibration and merging of multiple camera views generated 3-dimensional displacements from which structural modal parameters are then obtained.

  3. UAV-Based Photogrammetry and Integrated Technologies for Architectural Applications--Methodological Strategies for the After-Quake Survey of Vertical Structures in Mantua (Italy).

    PubMed

    Achille, Cristiana; Adami, Andrea; Chiarini, Silvia; Cremonesi, Stefano; Fassi, Francesco; Fregonese, Luigi; Taffurelli, Laura

    2015-06-30

    This paper examines the survey of tall buildings in an emergency context like in the case of post-seismic events. The after-earthquake survey has to guarantee time-savings, high precision and security during the operational stages. The main goal is to optimize the application of methodologies based on acquisition and automatic elaborations of photogrammetric data even with the use of Unmanned Aerial Vehicle (UAV) systems in order to provide fast and low cost operations. The suggested methods integrate new technologies with commonly used technologies like TLS and topographic acquisition. The value of the photogrammetric application is demonstrated by a test case, based on the comparison of acquisition, calibration and 3D modeling results in case of use of a laser scanner, metric camera and amateur reflex camera. The test would help us to demonstrate the efficiency of image based methods in the acquisition of complex architecture. The case study is Santa Barbara Bell tower in Mantua. The applied survey solution allows a complete 3D database of the complex architectural structure to be obtained for the extraction of all the information needed for significant intervention. This demonstrates the applicability of the photogrammetry using UAV for the survey of vertical structures, complex buildings and difficult accessible architectural parts, providing high precision results.

  4. UAV-Based Photogrammetry and Integrated Technologies for Architectural Applications—Methodological Strategies for the After-Quake Survey of Vertical Structures in Mantua (Italy)

    PubMed Central

    Achille, Cristiana; Adami, Andrea; Chiarini, Silvia; Cremonesi, Stefano; Fassi, Francesco; Fregonese, Luigi; Taffurelli, Laura

    2015-01-01

    This paper examines the survey of tall buildings in an emergency context like in the case of post-seismic events. The after-earthquake survey has to guarantee time-savings, high precision and security during the operational stages. The main goal is to optimize the application of methodologies based on acquisition and automatic elaborations of photogrammetric data even with the use of Unmanned Aerial Vehicle (UAV) systems in order to provide fast and low cost operations. The suggested methods integrate new technologies with commonly used technologies like TLS and topographic acquisition. The value of the photogrammetric application is demonstrated by a test case, based on the comparison of acquisition, calibration and 3D modeling results in case of use of a laser scanner, metric camera and amateur reflex camera. The test would help us to demonstrate the efficiency of image based methods in the acquisition of complex architecture. The case study is Santa Barbara Bell tower in Mantua. The applied survey solution allows a complete 3D database of the complex architectural structure to be obtained for the extraction of all the information needed for significant intervention. This demonstrates the applicability of the photogrammetry using UAV for the survey of vertical structures, complex buildings and difficult accessible architectural parts, providing high precision results. PMID:26134108

  5. The use of Unmanned Aerial Vehicles in monitoring applications and management of natural hazards

    NASA Astrophysics Data System (ADS)

    Piras, Marco; Aicardi, Irene; Lingua, Andrea; Noardo, Francesca; Chiabrando, Filiberto

    2015-04-01

    In the last years following the damages derived by the climate change (such as flooding and so on) it is growing the necessity to monitor the watercourses with effective and quickly method, where low cost solutions are particularly interested. In some cases, it is essential to have information about the riverbed, the river banks and to analyze the springs and the way in which the water moves. For the terrestrial point of view this knowledge can be acquired through GNSS and topographic methods, but they are still too manually so that they are time-consuming with respect the acquisition of information about the entire area. Another possibility is to perform a laser scanner survey, but the most common instruments (economically sustainable) have some problems to acquire information of sub-water-layer. Moreover, terrestrial surveys from cameras (such as visible, thermic or hyperspectral sensors) can't always offer a useful view of the case study due to the fact that they have a limited range of possible points of acquisition. For these reasons, it can be more effective to have an aerial point of view of the river, for example using UAVs (Unmanned Aerial Vehicles), which have been experimented in these last years for environmental investigations. The proposed studies include photogrammetric and thermographic applications in order to investigate a new post-flooding riverbed arrangement and to identify some sub-riverbed springs inside a stream in order to monitor the behavior of two studied watercourses. The tests have been carried out with a customized low-cost mini-UAV based on the Mikrokopter Hexakopter solution embedded with a navigation system for the autonomous flight (GNSS/IMU) and with the possibility to house different kind of sensors, such as a camera, a GNSS receiver, a LiDAR sensor, a thermographic camera and more other sensors, but with the limitation of a 1.2 Kg payload. The most significant innovation is the possibility to perform quickly and economical

  6. NASA High-Speed 2D Photogrammetric Measurement System

    NASA Technical Reports Server (NTRS)

    Dismond, Harriett R.

    2012-01-01

    The object of this report is to provide users of the NASA high-speed 2D photogrammetric measurement system with procedures required to obtain drop-model trajectory and impact data for full-scale and sub-scale models. This guide focuses on use of the system for vertical drop testing at the NASA Langley Landing and Impact Research (LandIR) Facility.

  7. Stability Analysis for a Multi-Camera Photogrammetric System

    PubMed Central

    Habib, Ayman; Detchev, Ivan; Kwak, Eunju

    2014-01-01

    Consumer-grade digital cameras suffer from geometrical instability that may cause problems when used in photogrammetric applications. This paper provides a comprehensive review of this issue of interior orientation parameter variation over time, it explains the common ways used for coping with the issue, and describes the existing methods for performing stability analysis for a single camera. The paper then points out the lack of coverage of stability analysis for multi-camera systems, suggests a modification of the collinearity model to be used for the calibration of an entire photogrammetric system, and proposes three methods for system stability analysis. The proposed methods explore the impact of the changes in interior orientation and relative orientation/mounting parameters on the reconstruction process. Rather than relying on ground truth in real datasets to check the system calibration stability, the proposed methods are simulation-based. Experiment results are shown, where a multi-camera photogrammetric system was calibrated three times, and stability analysis was performed on the system calibration parameters from the three sessions. The proposed simulation-based methods provided results that were compatible with a real-data based approach for evaluating the impact of changes in the system calibration parameters on the three-dimensional reconstruction. PMID:25196012

  8. Assessing the Photogrammetric Potential of Cameras in Portable Devices

    NASA Astrophysics Data System (ADS)

    Smith, M. J.; Kokkas, N.

    2012-07-01

    In recent years, there have been an increasing number of portable devices, tablets and Smartphone's employing high-resolution digital cameras to satisfy consumer demand. In most cases, these cameras are designed primarily for capturing visually pleasing images and the potential of using Smartphone and tablet cameras for metric applications remains uncertain. The compact nature of the host's devices leads to very small cameras and therefore smaller geometric characteristics. This also makes them extremely portable and with their integration into a multi-function device, which is part of the basic unit cost often makes them readily available. Many application specialists may find them an attractive proposition where some modest photogrammetric capability would be useful. This paper investigates the geometric potential of these cameras for close range photogrammetric applications by: • investigating their geometric characteristics using the self-calibration method of camera calibration and comparing results from a state-of-the-art Digital SLR camera. • investigating their capability for 3D building modelling. Again, these results will be compared with findings from results obtained from a Digital SLR camera. The early results presented show that the iPhone has greater potential for photogrammetric use than the iPad.

  9. The influence of the in situ camera calibration for direct georeferencing of aerial imagery

    NASA Astrophysics Data System (ADS)

    Mitishita, E.; Barrios, R.; Centeno, J.

    2014-11-01

    The direct determination of exterior orientation parameters (EOPs) of aerial images via GNSS/INS technologies is an essential prerequisite in photogrammetric mapping nowadays. Although direct sensor orientation technologies provide a high degree of automation in the process due to the GNSS/INS technologies, the accuracies of the obtained results depend on the quality of a group of parameters that models accurately the conditions of the system at the moment the job is performed. One sub-group of parameters (lever arm offsets and boresight misalignments) models the position and orientation of the sensors with respect to the IMU body frame due to the impossibility of having all sensors on the same position and orientation in the airborne platform. Another sub-group of parameters models the internal characteristics of the sensor (IOP). A system calibration procedure has been recommended by worldwide studies to obtain accurate parameters (mounting and sensor characteristics) for applications of the direct sensor orientation. Commonly, mounting and sensor characteristics are not stable; they can vary in different flight conditions. The system calibration requires a geometric arrangement of the flight and/or control points to decouple correlated parameters, which are not available in the conventional photogrammetric flight. Considering this difficulty, this study investigates the feasibility of the in situ camera calibration to improve the accuracy of the direct georeferencing of aerial images. The camera calibration uses a minimum image block, extracted from the conventional photogrammetric flight, and control point arrangement. A digital Vexcel UltraCam XP camera connected to POS AV TM system was used to get two photogrammetric image blocks. The blocks have different flight directions and opposite flight line. In situ calibration procedures to compute different sets of IOPs are performed and their results are analyzed and used in photogrammetric experiments. The IOPs

  10. Computer and photogrammetric general land use study of central north Alabama

    NASA Technical Reports Server (NTRS)

    Jayroe, R. R.; Larsen, P. A.; Campbell, C. W.

    1974-01-01

    The object of this report is to acquaint potential users with two computer programs, developed at NASA, Marshall Space Flight Center. They were used in producing a land use survey and maps of central north Alabama from Earth Resources Technology Satellite (ERTS) digital data. The report describes in detail the thought processes and analysis procedures used from the initiation of the land use study to its completion, as well as a photogrammetric study that was used in conjunction with the computer analysis to produce similar land use maps. The results of the land use demonstration indicate that, with respect to computer time and cost, such a study may be economically and realistically feasible on a statewide basis.

  11. NURE aerial gamma-ray and magnetic reconnaissance survey of portions of New Mexico, Arizona and Texas. Volume II. New Mexico-Las Cruces NI 13-10 Quadrangle. Final report

    SciTech Connect

    Not Available

    1981-09-01

    The results of a high-sensitivity, aerial gamma-ray spectrometer and magnetometer survey of the Las Cruces two degree quadrangle, New Mexico, are presented. Instrumentation and methods are described in Volume 1 of this final report. The work was done by Carson Helicopters, Inc., and International Exploration, Inc. The work was performed for the US Department of Energy - National Uranium Resource Evaluation (NURE) program. Analysis of this radiometric data yielded 192 statistically significant eU anomalies. Of this number, thirty-nine were considered to be of sufficient strength to warrant further investigation.

  12. Off-the-Wall Project Brings Aerial Mapping down to Earth

    ERIC Educational Resources Information Center

    Davidhazy, Andrew

    2008-01-01

    The technology of aerial photography, photogrametry, has widespread applications in mapping and aerial surveying. A multi-billion-dollar industry, aerial surveying and mapping is "big business" in both civilian and military sectors. While the industry has grown increasingly automated, employment opportunities still exist for people with a basic…

  13. Surface and thickness variations of Brenva Glacier tongue (Mont Blanc, Italian Alps) in the second half of the 20th century by historical maps and aerial photogrammetry comparisons

    NASA Astrophysics Data System (ADS)

    D Agata, C.; Zanutta, A.; Muzzu Martis, D.; Mancini, F.; Smiraglia, C.

    2003-04-01

    Aim of this contribution is the evaluation of volumetric and surface variations of Brenva Glacier (Mont Blanc, Italian Alps) during the second half of the 20th century, by GIS-based processing of maps and aerial photogrammetry technique. Brenva Glacier is a typical debris covered glacier, located in a valley on the S-E side of the Mont Blanc. The glacier covers a surface of 7 kmq and shows a length of 7,6 km at maximum. The glacier snout reaches 1415 m a.s.l., which is the lowest glacier terminus of the Italian Alps. To evaluate glacier variations different historical maps were used: 1) The 1959 Map, at the scale 1:5.000, by EIRA (Ente Italiano Rilievi Aerofotogrammetrici, Firenze), from terrestrial photogrammetric survey, published in the Bollettino del Comitato Glaciologico Italiano, 2, n. 19, 1971. 2) The 1971 Map, at the scale 1:5.000, from aerial photogrammetry (Alifoto, Torino) published in the Bollettino del Comitato Glaciologico Italiano, 2, n. 20, 1972. 3) The 1988 Map, at the scale 1:10.000, (Region Aosta Valley, Regional Technical Map) from 1983 aerial photogrammetric survey. 4) The 1999 Map, at the scale 1:10.000, (Region Aosta Valley, Regional Technical Map) from 1991 aerial photogrammetry survey. For the same purpose the following aereal photographs were used: 1) The 1975 image, CGR (Italian General Company aerial Surveys) flight RAVDA (Administrative Autonomous Region Aosta Valley), at the scale 1:17.000. 2) The 1991 image, CGR (Italian General Company aerial Surveys) flight RAVDA (Administrative Autonomous Region Aosta Valley), at the scale 1:17.000. Aerial imageries have been acquired over a long period from 1975 to 1991. The black and white images were scanned at suitable resolution if compared with the imagery scale and several models, representing the glacier tongue area, oriented using the inner and outer orientation parameters delivered with the images, were produced. The digital photogrammetric system, after orientation and matching, produces

  14. Reliable aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.; Bowman, R. L.

    1981-01-01

    A method for energy conservation, the aerial thermography survey, is discussed. It locates sources of energy losses and wasteful energy management practices. An operational map is presented for clear sky conditions. The map outlines the key environmental conditions conductive to obtaining reliable aerial thermography. The map is developed from defined visual and heat loss discrimination criteria which are quantized based on flat roof heat transfer calculations.

  15. Experiences of Uav Surveys Applied to Environmental Risk Management

    NASA Astrophysics Data System (ADS)

    Caprioli, M.; Trizzino, R.; Mazzone, F.; Scarano, M.

    2016-06-01

    In this paper the results of some surveys carried out in an area of Apulian territory affected by serious environmental hazard are presented. Unmanned Aerial Vehicles (UAV) are emerging as a key engineering tool for future environmental survey tasks. UAVs are increasingly seen as an attractive low-cost alternative or supplement to aerial and terrestrial photogrammetry due to their low cost, flexibility, availability and readiness for duty. In addition, UAVs can be operated in hazardous or temporarily inaccessible locations, that makes them very suitable for the assessment and management of environmental risk conditions. In order to verify the reliability of these technologies an UAV survey and A LIDAR survey have been carried outalong about 1 km of coast in the Salento peninsula, near the towns of San Foca, Torre dellOrso and SantAndrea( Lecce, Southern Italy). This area is affected by serious environmental risks due to the presence of dangerous rocky cliffs named falesie. The UAV platform was equipped with a photogrammetric measurement system that allowed us to obtain a mobile mapping of the fractured fronts of dangerous rocky cliffs. UAV-images data have been processed using dedicated software (AgisoftPhotoscan). The point clouds obtained from both the UAV and LIDAR surveys have been processed using Cloud Compare software, with the aim of testing the UAV results with respect to the LIDAR ones. The total error obtained was of centimeter-order that is a very satisfactory result. The environmental information has been arranged in an ArcGIS platform in order to assess the risk levels. The possibility to repeat the survey at time intervals more or less close together depending on the measured levels of risk and to compare the output allows following the trend of the dangerous phenomena. In conclusion, for inaccessible locations of dangerous rocky bodies the UAV survey coupled with GIS methodology proved to be a key engineering tool for the management of environmental

  16. Network design and quality checks in automatic orientation of close-range photogrammetric blocks.

    PubMed

    Dall'Asta, Elisa; Thoeni, Klaus; Santise, Marina; Forlani, Gianfranco; Giacomini, Anna; Roncella, Riccardo

    2015-04-03

    Due to the recent improvements of automatic measurement procedures in photogrammetry, multi-view 3D reconstruction technologies are becoming a favourite survey tool. Rapidly widening structure-from-motion (SfM) software packages offer significantly easier image processing workflows than traditional photogrammetry packages. However, while most orientation and surface reconstruction strategies will almost always succeed in any given task, estimating the quality of the result is, to some extent, still an open issue. An assessment of the precision and reliability of block orientation is necessary and should be included in every processing pipeline. Such a need was clearly felt from the results of close-range photogrammetric surveys of in situ full-scale and laboratory-scale experiments. In order to study the impact of the block control and the camera network design on the block orientation accuracy, a series of Monte Carlo simulations was performed. Two image block configurations were investigated: a single pseudo-normal strip and a circular highly-convergent block. The influence of surveying and data processing choices, such as the number and accuracy of the ground control points, autofocus and camera calibration was investigated. The research highlights the most significant aspects and processes to be taken into account for adequate in situ and laboratory surveys, when modern SfM software packages are used, and evaluates their effect on the quality of the results of the surface reconstruction.

  17. Network Design and Quality Checks in Automatic Orientation of Close-Range Photogrammetric Blocks

    PubMed Central

    Dall’Asta, Elisa; Thoeni, Klaus; Santise, Marina; Forlani, Gianfranco; Giacomini, Anna; Roncella, Riccardo

    2015-01-01

    Due to the recent improvements of automatic measurement procedures in photogrammetry, multi-view 3D reconstruction technologies are becoming a favourite survey tool. Rapidly widening structure-from-motion (SfM) software packages offer significantly easier image processing workflows than traditional photogrammetry packages. However, while most orientation and surface reconstruction strategies will almost always succeed in any given task, estimating the quality of the result is, to some extent, still an open issue. An assessment of the precision and reliability of block orientation is necessary and should be included in every processing pipeline. Such a need was clearly felt from the results of close-range photogrammetric surveys of in situ full-scale and laboratory-scale experiments. In order to study the impact of the block control and the camera network design on the block orientation accuracy, a series of Monte Carlo simulations was performed. Two image block configurations were investigated: a single pseudo-normal strip and a circular highly-convergent block. The influence of surveying and data processing choices, such as the number and accuracy of the ground control points, autofocus and camera calibration was investigated. The research highlights the most significant aspects and processes to be taken into account for adequate in situ and laboratory surveys, when modern SfM software packages are used, and evaluates their effect on the quality of the results of the surface reconstruction. PMID:25855036

  18. Automatic fusion of photogrammetric imagery and laser scanner point clouds

    NASA Astrophysics Data System (ADS)

    Forkuo, Eric Kwabena

    Close-range photogrammetry and the relatively new technology of terrestrial laser scanning can be considered as complementary rather than competitive technologies. For instance, terrestrial laser scanners (TLS) have the ability to rapidly collect high-resolution 3D surface information about an object. The same type of data can be generated using close-range photogrammetric (CRP) techniques, but image disparities common to close-range scenes makes this an operator intensive task. The imaging systems of some TLSs do not have very high radiometric resolution whereas high-resolution digital cameras used in modern CRP do. Finally, TLSs are essentially earth-bound whereas cameras can be moved at will around the object being imaged. This thesis, therefore, explores and attempts to provide a solution to the problems of developing a methodology to fuse terrestrial laser scanner generated 3D data and high-resolution digital images. Four phases of the methodology have been investigated: data pre-processing (fusion of data from the two sensors), automatic measurements (feature detection and correspondence matching), mapping (creation of point cloud visual index), and orientation (calculation of exterior orientation parameters). Individual phases were initially investigated in a manually controlled environment, typically using commercial photogrammetric software, and then combined in a completely automated system. Focusing on the amount of geometric primitives, three different scenes (data set A, data set B, and data set C) representing three levels of complexity (low, medium and high) were scanned with the laser scanner, and for each scan, a 2D photographic image was taken with a digital camera. To overcome the differences in datasets, a hybrid matching (both feature and area-based) algorithm was successfully developed and implemented. The fidelity of the concept of generating synthetic camera images has been tested by determining the exterior orientation of the synthetic

  19. Experimental Methods Using Photogrammetric Techniques for Parachute Canopy Shape Measurements

    NASA Technical Reports Server (NTRS)

    Jones, Thomas W.; Downey, James M.; Lunsford, Charles B.; Desabrais, Kenneth J.; Noetscher, Gregory

    2007-01-01

    NASA Langley Research Center in partnership with the U.S. Army Natick Soldier Center has collaborated on the development of a payload instrumentation package to record the physical parameters observed during parachute air drop tests. The instrumentation package records a variety of parameters including canopy shape, suspension line loads, payload 3-axis acceleration, and payload velocity. This report discusses the instrumentation design and development process, as well as the photogrammetric measurement technique used to provide shape measurements. The scaled model tests were conducted in the NASA Glenn Plum Brook Space Propulsion Facility, OH.

  20. Point cloud generation from aerial image data acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still camera.

    PubMed

    Rosnell, Tomi; Honkavaara, Eija

    2012-01-01

    The objective of this investigation was to develop and investigate methods for point cloud generation by image matching using aerial image data collected by quadrocopter type micro unmanned aerial vehicle (UAV) imaging systems. Automatic generation of high-quality, dense point clouds from digital images by image matching is a recent, cutting-edge step forward in digital photogrammetric technology. The major components of the system for point cloud generation are a UAV imaging system, an image data collection process using high image overlaps, and post-processing with image orientation and point cloud generation. Two post-processing approaches were developed: one of the methods is based on Bae Systems' SOCET SET classical commercial photogrammetric software and another is built using Microsoft(®)'s Photosynth™ service available in the Internet. Empirical testing was carried out in two test areas. Photosynth processing showed that it is possible to orient the images and generate point clouds fully automatically without any a priori orientation information or interactive work. The photogrammetric processing line provided dense and accurate point clouds that followed the theoretical principles of photogrammetry, but also some artifacts were detected. The point clouds from the Photosynth processing were sparser and noisier, which is to a large extent due to the fact that the method is not optimized for dense point cloud generation. Careful photogrammetric processing with self-calibration is required to achieve the highest accuracy. Our results demonstrate the high performance potential of the approach and that with rigorous processing it is possible to reach results that are consistent with theory. We also point out several further research topics. Based on theoretical and empirical results, we give recommendations for properties of imaging sensor, data collection and processing of UAV image data to ensure accurate point cloud generation.

  1. Point Cloud Generation from Aerial Image Data Acquired by a Quadrocopter Type Micro Unmanned Aerial Vehicle and a Digital Still Camera

    PubMed Central

    Rosnell, Tomi; Honkavaara, Eija

    2012-01-01

    The objective of this investigation was to develop and investigate methods for point cloud generation by image matching using aerial image data collected by quadrocopter type micro unmanned aerial vehicle (UAV) imaging systems. Automatic generation of high-quality, dense point clouds from digital images by image matching is a recent, cutting-edge step forward in digital photogrammetric technology. The major components of the system for point cloud generation are a UAV imaging system, an image data collection process using high image overlaps, and post-processing with image orientation and point cloud generation. Two post-processing approaches were developed: one of the methods is based on Bae Systems’ SOCET SET classical commercial photogrammetric software and another is built using Microsoft®’s Photosynth™ service available in the Internet. Empirical testing was carried out in two test areas. Photosynth processing showed that it is possible to orient the images and generate point clouds fully automatically without any a priori orientation information or interactive work. The photogrammetric processing line provided dense and accurate point clouds that followed the theoretical principles of photogrammetry, but also some artifacts were detected. The point clouds from the Photosynth processing were sparser and noisier, which is to a large extent due to the fact that the method is not optimized for dense point cloud generation. Careful photogrammetric processing with self-calibration is required to achieve the highest accuracy. Our results demonstrate the high performance potential of the approach and that with rigorous processing it is possible to reach results that are consistent with theory. We also point out several further research topics. Based on theoretical and empirical results, we give recommendations for properties of imaging sensor, data collection and processing of UAV image data to ensure accurate point cloud generation. PMID:22368479

  2. Turtles, birds, and mammals in the northern Gulf of Mexico and nearby Atlantic waters. An overview based on aerial surveys of OCS areas, with emphasis on oil and gas effects

    SciTech Connect

    Fritts, T.H.; Irvine, A.B.; Jennings, R.D.; Collum, L.A.; Hoffman, W.; McGehee, M.A.

    1983-07-01

    Aerial line transect surveys of marine turtles, birds, and mammals were conducted in four areas of the Gulf of Mexico and nearby Atlantic waters. Areas surveyed were 111 km by 222 km and located off Brownsville, Texas; Marsh Island, Louisiana; Naples, Florida; and Merritt Island, Florida. Data on distribution, abundance, seasonal occurrence, and habitat use are reported in accounts for each of the 88 species observed. Information on reproduction, behavior, and potential impacts of Outer Continental Shelf (OCS) development are also discussed. Later chapters summarize the fauna of each of the four areas; characterize the inshore, nearshore, and offshore fauna; and discuss the effects of OCS development on marine vertebrates. 460 references, 167 figures, 65 tables.

  3. Photogrammetric system and method used in the characterization of a structure

    NASA Technical Reports Server (NTRS)

    Dorrington, Adrian A. (Inventor); Jones, Thomas W. (Inventor); Danehy, Paul M. (Inventor); Watson, Kent A. (Inventor); Connell, John W. (Inventor); Pappa, Richard S. (Inventor); Belvin, W. Keith (Inventor)

    2010-01-01

    A photogrammetric system uses an array of spaced-apart targets coupled to a structure. Each target exhibits fluorescence when exposed to a broad beam of illumination. A photogrammetric imaging system located remotely with respect to the structure detects and processes the fluorescence (but not the illumination wavelength) to measure the shape of a structure.

  4. D Surface Generation from Aerial Thermal Imagery

    NASA Astrophysics Data System (ADS)

    Khodaei, B.; Samadzadegan, F.; Dadras Javan, F.; Hasani, H.

    2015-12-01

    Aerial thermal imagery has been recently applied to quantitative analysis of several scenes. For the mapping purpose based on aerial thermal imagery, high accuracy photogrammetric process is necessary. However, due to low geometric resolution and low contrast of thermal imaging sensors, there are some challenges in precise 3D measurement of objects. In this paper the potential of thermal video in 3D surface generation is evaluated. In the pre-processing step, thermal camera is geometrically calibrated using a calibration grid based on emissivity differences between the background and the targets. Then, Digital Surface Model (DSM) generation from thermal video imagery is performed in four steps. Initially, frames are extracted from video, then tie points are generated by Scale-Invariant Feature Transform (SIFT) algorithm. Bundle adjustment is then applied and the camera position and orientation parameters are determined. Finally, multi-resolution dense image matching algorithm is used to create 3D point cloud of the scene. Potential of the proposed method is evaluated based on thermal imaging cover an industrial area. The thermal camera has 640×480 Uncooled Focal Plane Array (UFPA) sensor, equipped with a 25 mm lens which mounted in the Unmanned Aerial Vehicle (UAV). The obtained results show the comparable accuracy of 3D model generated based on thermal images with respect to DSM generated from visible images, however thermal based DSM is somehow smoother with lower level of texture. Comparing the generated DSM with the 9 measured GCPs in the area shows the Root Mean Square Error (RMSE) value is smaller than 5 decimetres in both X and Y directions and 1.6 meters for the Z direction.

  5. Using Unmanned Aerial Vehicles for monitoring glacial moulins

    NASA Astrophysics Data System (ADS)

    Santagata, Tommaso

    2016-04-01

    The exploration of cavities on glaciers has always represented a fascinating activity that attracts scientists and researchers since many decades. Several explorations performed by speleologists and scientists since 1985 on the Gorner Gletscher (Mount Rosa group, SW Switzerland) have allowed to survey more than 40 endoglacial caves and some marginal tunnels of this glacier, which is the most interesting in the Alps for its supraglacial and englacial pseudo-karst forms. In recent years, the study of these caves has led to the distinction of two morphological and genetic types: marginal tunnels, that generally forms at the contact between ice and lateral moraine, and swallow holes (moulins) which are vertical shafts where a supraglacial stream sinks into the ice. During the first International glacier-caving camp organized in October 2014 as part of the project "Inside the glaciers" which had the main objective to explore the cavities of this glacier and to study the cryo-karstic processes that lead to the formation of deep shafts, an unmanned aerial vehicle (UAV) equipped with camera and GPS system was used for the first time to perform photogrammetric surveys on three different areas. This technique allowed to derive detailed 3D models with very high resolution and accuracy of the entrance of the main moulins and other interesting parts of this glacier. Thanks to the acquisition of geo-referenced images and post-processing the acquired data (i.e. motion corrections), with the realized 3D point clouds and mesh models it was possible to obtain geo-referenced ortophoto and digital surface models which have been used to calculate contour lines and calculate the difference of position of the same moulins detected during the last years expeditions. Moreover, the data acquired have allowed to perform other different type of surface analysis and obtain an excellent photographic database that will surely be useful for further comparisons in future, proving the importance of

  6. Pacific Continental Shelf Environmental Assessment (PaCSEA): aerial seabird and marine mammal surveys off northern California, Oregon, and Washington, 2011-2012

    USGS Publications Warehouse

    Adams, Josh; Felis, Jonathan J.; Mason, John W.; Takekawa, John Y.

    2014-01-01

    Marine birds and mammals comprise an important community of meso- and upper-trophic-level predators within the northern California Current System (NCCS). The NCCS is located within one of the world’s four major eastern boundary currents and is characterized by an abundant and diverse marine ecosystem fuelled seasonally by wind-driven upwelling which supplies nutrient-rich water to abundant phytoplankton inhabiting the surface euphotic zone. The oceanographic conditions throughout the NCCS fluctuate according to well-described seasonal, inter-annual, and decadal cycles. Such oceanographic variability can influence patterns in the distribution, abundance, and habitat use among marine birds and mammals. Although there are an increasing number of studies documenting distributions and abundances among birds and mammals in various portions of the NCCS, there have been no comprehensive, large-scale, multi-seasonal surveys completed throughout this region since the early 1980s (off northern California; Briggs et al. 1987) and early 1990s (off Oregon and Washington; Bonnell et al. 1992, Briggs et al. 1992, Green et al. 1992). During 2011 and 2012, we completed the Pacific Continental Shelf Environmental Assessment (PaCSEA) which included replicated surveys over the continental shelfslope from shore to the 2000-meter (m) isobath along 32 broad-scale transects from Fort Bragg, California (39° N) through Grays Harbor, Washington (47° N). Additionally, surveys at a finer scale were conducted over the continental shelf within six designated Focal Areas: Fort Bragg, CA; Eureka, CA; Siltcoos Bank, OR; Newport, OR; Nehalem Bank, OR; and Grays Harbor, WA. We completed a total of 26,752 km of standardized, low-elevation aerial survey effort across three bathymetric domains: inner-shelf waters ( Overall, we recorded 15,403 sightings of 59,466 individual marine birds (12 families, 54 species). During winter, seven species groupings comprised >90% of the total number of birds

  7. A Photogrammetric Approach to Measuring Temporal Change in Tree Kill Areas at Mammoth Mountain and Long Valley Caldera, California

    NASA Astrophysics Data System (ADS)

    Clor, L. E.; Barefoot, J. D.; Hurwitz, S.; Diefenbach, A. K.

    2015-12-01

    A zone of dead trees and bare ground near Horseshoe Lake on the southeast flank of Mammoth Mountain in California is attributed to high emissions of volcanic CO2 and has been characterized and studied since the 1990s. Measurements of diffuse CO2 emissions have been made since 1994, but tree kills occurred following a large earthquake swarm in 1989 and before these first measurements. In order to track vegetation changes over time, fifteen aerial images of the Horseshoe Lake tree kill from 1951 to 2014 were analyzed using photogrammetric techniques which allow us to quantify the extent of bare ground and provide an indirect analysis of tree mortality, possibly related to CO2 emissions. The aerial images were assigned a uniform spatial reference, then image pixels were classified into two main categories, trees or bare ground, and the aerial extent quantified using the GIS software ArcMap. Between 1951 and 1987, there was little change in area of bare ground or tree density near Horseshoe Lake. The tree kill area appeared in 1992 and expanded rapidly to about 0.20 km2 by 1998, which is similar to its present extent. In images from 2012 and onward, a large increase in bare ground was identified and correlated with a powerful windstorm that occurred in 2011. Overlaying CO2 flux maps on the GIS classified images shows that the area of diffuse emission generally correlates with the tree kill area. This method was applied to imagery of thermal tree kill areas within Long Valley Caldera as well. Tree kill near Shady Rest Park in Mammoth Lakes expanded incrementally to the east, southeast and west between 1993 and 2014 to its present extent of about 0.053 km2, but this area also includes significant tree thinning by the city. In Basalt Canyon, southeast of Shady Rest, tree kill area has slowly expanded since 1995 to its present extent of about 0.041 km2.

  8. Photogrammetric detection technique for rotor blades structural characterization

    NASA Astrophysics Data System (ADS)

    Enei, C.; Bernardini, G.; Serafini, J.; Mattioni, L.; Ficuciello, C.; Vezzari, V.

    2015-11-01

    This paper describes an innovative use of photogrammetric detection techniques to experimentally estimate structural/inertial properties of helicopter rotor blades. The identification algorithms for the evaluation of mass and flexural stiffness distributions are an extension of the ones proposed by Larsen, whereas the procedure for torsional properties determination (stiffness and shear center position) is based on the Euler-Prandtl beam theory. These algorithms rely on measurements performed through photogrammetric detection, which requires the collection of digital photos allowing the identification of 3D coordinates of labeled points (markers) on the structure through the correlation of 2D pictures. The displacements are evaluated by comparing the positions of markers in loaded and reference configuration. Being the applied loads known, the structural characteristics can be directly obtained from the measured displacements. The accuracy of the proposed identification algorithms has been firstly verified by comparison with numerical and experimental data, and then applied to the structural characterization of two main rotor blades, designed for ultra-light helicopter applications.

  9. Influence of Digital Camera Errors on the Photogrammetric Image Processing

    NASA Astrophysics Data System (ADS)

    Sužiedelytė-Visockienė, Jūratė; Bručas, Domantas

    2009-01-01

    The paper deals with the calibration of digital camera Canon EOS 350D, often used for the photogrammetric 3D digitalisation and measurements of industrial and construction site objects. During the calibration data on the optical and electronic parameters, influencing the distortion of images, such as correction of the principal point, focal length of the objective, radial symmetrical and non-symmetrical distortions were obtained. The calibration was performed by means of the Tcc software implementing the polynomial of Chebichev and using a special test-field with the marks, coordinates of which are precisely known. The main task of the research - to determine how parameters of the camera calibration influence the processing of images, i. e. the creation of geometric model, the results of triangulation calculations and stereo-digitalisation. Two photogrammetric projects were created for this task. In first project the non-corrected and in the second the corrected ones, considering the optical errors of the camera obtained during the calibration, images were used. The results of analysis of the images processing is shown in the images and tables. The conclusions are given.

  10. Photogrammetric recession measurements of ablative materials in arcjets

    NASA Astrophysics Data System (ADS)

    Schairer, Edward T.; Heineck, James T.

    2010-02-01

    This paper describes an optical method for measuring the recession time histories of ablative thermal protection system (TPS) materials as they are tested in an arcjet facility. The method is non-intrusive and requires no external light source or modifications to the test article. It does require, first, a test article that exhibits texture as it ablates, and, second, high-resolution video images of the ablating surface from at least two directions. Software automatically reads the sequences of images and, by successive image cross correlation, tracks the deformation of a surface grid that conforms to the shape of the test article. Standard photogrammetric transformations are used to convert image-plane displacements of the surface grid to object-space displacements. The method yields a time history of the displacement of each node of the grid for the full time that the test article is exposed to the arcjet flow. Measurements have been made during many tests in the 60 MW arcjet at NASA Ames Research Center, including tests of TPS materials for the Orion Crew Exploration Vehicle and Mars Science Laboratory. The photogrammetric recession measurements have been in good agreement with post-test measurements of the change in thickness of the test articles.

  11. Evaluating Photogrammetric Approach of Image-Based Positioning

    NASA Astrophysics Data System (ADS)

    Li, X.; Wang, J.

    2012-07-01

    In recent years, researches in the domain of location-based services have increasingly focused on developing and utilizing alternative positioning techniques for in GPS-denied environment. Image based positioning technique holds good promise for such applications. In this paper, a previously proposed image-based positioning system using photogrammetric methods has been put into rigorous evaluation. The precision and accuracy of such photogrammetric approach of image-based positioning is depending on the precision and accuracy of final space resection process, which is a function of PGCP distribution and measurement accuracy, and any factor that has certain impact on either of these two major components will to certain degree influence final positioning accuracy. Therefore in this article, the way that different factors influencing the positioning accuracy are analysed through both mathematical model and experiments, which includes simulations and tests based on real data. Through evaluation of such system, we aims at better understanding image-based positioning system alike so as to find its strength, weaknesses and ways to improve the overall performance for it to realize its full potential.

  12. Improved CPAS Photogrammetric Capabilities for Engineering Development Unit (EDU) Testing

    NASA Technical Reports Server (NTRS)

    Ray, Eric S.; Bretz, David R.

    2013-01-01

    This paper focuses on two key improvements to the photogrammetric analysis capabilities of the Capsule Parachute Assembly System (CPAS) for the Orion vehicle. The Engineering Development Unit (EDU) system deploys Drogue and Pilot parachutes via mortar, where an important metric is the muzzle velocity. This can be estimated using a high speed camera pointed along the mortar trajectory. The distance to the camera is computed from the apparent size of features of known dimension. This method was validated with a ground test and compares favorably with simulations. The second major photogrammetric product is measuring the geometry of the Main parachute cluster during steady-state descent using onboard cameras. This is challenging as the current test vehicles are suspended by a single-point attachment unlike earlier stable platforms suspended under a confluence fitting. The mathematical modeling of fly-out angles and projected areas has undergone significant revision. As the test program continues, several lessons were learned about optimizing the camera usage, installation, and settings to obtain the highest quality imagery possible.

  13. Aerial Photographs and Satellite Images

    USGS Publications Warehouse

    ,

    1997-01-01

    Photographs and other images of the Earth taken from the air and from space show a great deal about the planet's landforms, vegetation, and resources. Aerial and satellite images, known as remotely sensed images, permit accurate mapping of land cover and make landscape features understandable on regional, continental, and even global scales. Transient phenomena, such as seasonal vegetation vigor and contaminant discharges, can be studied by comparing images acquired at different times. The U.S. Geological Survey (USGS), which began using aerial photographs for mapping in the 1930's, archives photographs from its mapping projects and from those of some other Federal agencies. In addition, many images from such space programs as Landsat, begun in 1972, are held by the USGS. Most satellite scenes can be obtained only in digital form for use in computer-based image processing and geographic information systems, but in some cases are also available as photographic products.

  14. Combined aerial and ground technique for assessing structural heat loss

    NASA Astrophysics Data System (ADS)

    Snyder, William C.; Schott, John R.

    1994-03-01

    The results of a combined aerial and ground-based structural heat loss survey are presented. The aerial imagery was collected by a thermal IR line scanner. Enhanced quantitative analysis of the imagery gives the roof heat flow and insulation level. The ground images were collected by a video van and converted to still frames stored on a video disk. A computer based presentation system retrieves the images and other information indexed by street address for screening and dissemination to owners. We conclude that the combined aerial and ground survey effectively discriminates between well insulated and poorly insulated structures, and that such a survey is a cost-effective alternative to site audits.

  15. Aerial Image Systems

    NASA Astrophysics Data System (ADS)

    Clapp, Robert E.

    1987-09-01

    Aerial images produce the best stereoscopic images of the viewed world. Despite the fact that every optic in existence produces an aerial image, few persons are aware of their existence and possible uses. Constant reference to the eye and other optical systems have produced a psychosis of design that only considers "focal planes" in the design and analysis of optical systems. All objects in the field of view of the optical device are imaged by the device as an aerial image. Use of aerial images in vision and visual display systems can provide a true stereoscopic representation of the viewed world. This paper discusses aerial image systems - their applications and designs and presents designs and design concepts that utilize aerial images to obtain superior visual displays, particularly with application to visual simulation.

  16. Kite Aerial Photography (KAP) as a Tool for Field Teaching

    ERIC Educational Resources Information Center

    Sander, Lasse

    2014-01-01

    Kite aerial photography (KAP) is proposed as a creative tool for geography field teaching and as a medium to approach the complexity of readily available geodata. The method can be integrated as field experiment, surveying technique or group activity. The acquired aerial images can instantaneously be integrated in geographic information systems…

  17. D Hyperspectral Frame Imager Camera Data in Photogrammetric Mosaicking

    NASA Astrophysics Data System (ADS)

    Mäkeläinen, A.; Saari, H.; Hippi, I.; Sarkeala, J.; Soukkamäki, J.

    2013-08-01

    A new 2D hyperspectral frame camera system has been developed by VTT (Technical Research Center of Finland) and Rikola Ltd. It contains frame based and very light camera with RGB-NIR sensor and it is suitable for light weight and cost effective UAV planes. MosaicMill Ltd. has converted the camera data into proper format for photogrammetric processing, and camera's geometrical accuracy and stability are evaluated to guarantee required accuracies for end user applications. MosaicMill Ltd. has also applied its' EnsoMOSAIC technology to process hyperspectral data into orthomosaics. This article describes the main steps and results on applying hyperspectral sensor in orthomosaicking. The most promising results as well as challenges in agriculture and forestry are also described.

  18. NURE aerial gamma-ray and magnetic reconnaissance survey of portions of New Mexico, Arizona and Texas. Volume II. Texas-New Mexico-El Paso NH 13-1 Quadrangle. Final report

    SciTech Connect

    Not Available

    1981-09-01

    The results of a high-sensitivity, aerial gamma-ray spectrometer and magnetometer survey of the El Paso, two degree quadrangle, New Mexico, are presented. Instrumentation and methods are described in Volume I of this final report. The work was done by Carson Helicopters Inc., and Carson Helicopters was assisted in the interpretation by International Exploration, Inc. The work was performed for the US Department of Energy - National Uranium Resource Evaluation (NURE) program. A total of 72 statistically significant eU anomalies were identified in this quadrangle. Of this number 20 were considered to be of sufficient intensity to warrant field investigations, however, many of these anomalies appear to be wholly, or in part, associated with various unconsolidated Quaternary deposits. Only three of the 20 can, with certainty be identified with bedrock; one with a Quaternary flow, one with Cambrian sandstone and one with a Precambrian granite.

  19. Low-altitude aerial imagery and related field observations associated with unmanned aerial systems (UAS) flights over Coast Guard Beach, Nauset Spit, Nauset Inlet, and Nauset Marsh, Cape Cod National Seashore, Eastham, Massachusetts on 1 March 2016

    USGS Publications Warehouse

    Sherwood, Christopher R.

    2016-01-01

    Low-altitude (approximately 120 meters above ground level) digital images were obtained from cameras mounted in a fixed-wing unmanned aerial vehicle (UAV) flown from the lawn adjacent to the Coast Guard Beach parking lot on 1 March, 2016. The UAV was a Skywalker X8 operated by Raptor Maps, Inc., contractors to the U.S. Geological Survey (USGS). Two consecutive unmanned aerial systems (UAS) missions were flown, each with two cameras, autopilot computer, radios, and a global satellite navigation system as payload. The first flight (f1) was launched at approximately 1112 Eastern Standard Time (EST), and followed north-south flight lines, landing at about 1226 EST. Two Canon Powershot SX280 12-mexapixel digital cameras, designated rgb1 and rgb2, recorded images during this flight. The second flight (f2) was launched at 1320 EST and followed east-west flight lines, landing at 1450 EST. Prior to f2, rgb2 was replaced with a Canon SX280 modified with a Schott BG 3 filter to emphasize light at near-infrared wavelengths, designated nir1. Rgb1 and nir1 made images during this second flight. Thus four series of images were collected, designated f1_rgb1, f1_rgb2, f2_rgb1, and f2_nir1.Low tide on the ocean beaches was forecast for approximately 1130 EST, and estimated low tide on the marsh was at least an hour later. Weather conditions were clear and sunny during the first flight. During the second flight, there were periods with high clouds. Winds (estimated by experienced observers) during the first flight were from the north-northeast at ~15 mph, with gusts to ~20 mph. Winds decreased beginning in early afternoon, and at the end of the second flight, estimated winds were 5 – 10 mph with gusts to 15 mph.USGS field technicians mapped the location of 32 ground control points and 144 independent points along cross-shore transects. These points were measured with a global positioning system (GPS) using real-time differential corrections from a base station set up near the

  20. 'Unlocking the archive': Using photogrammetry of historic aerial photographs to extend the record of glacier change on the Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Clarke, Lucy; Fox, Adrian

    2014-05-01

    Changes to glacier fronts and ice shelves and glacier acceleration are well documented, but there is almost no data on mass changes for the more than 400 glaciers on the Antarctic Peninsula. Current research demonstrates that the Antarctic Peninsula is contributing to sea-level change at a similar rate to that of other fast-changing near-polar or large mountain-glacier environments such as Iceland, Patagonia and Alaska (Hock, 2009). Forecasting the future impacts of the Antarctic Peninsula ice sheet on sea level will require a much improved understanding of 20th Century and contemporary glacier mass changes. Satellite data has been used to calculate these changes over the last three decades, but methods to quantify this over a longer time scale have eluded researchers. However, there is an archive of aerial photography of the Antarctic Peninsula dating back to the 1940s, this has been largely ignored due to the range of technical problems associated with deriving quantitative data from historic aerial photographs. This presentation demonstrates how advances in photogrammetric processing and capture of modern aerial photography have allowed this archive to be 'unlocked'. Accurate photogrammetric reconstruction from aerial photographs traditionally requires known ground control points acquired in the field; in remote and inaccessible areas, such as the Antarctic Peninsula, this is often impossible and so has restricted the use of photogrammetric analysis of the available aerial photography. A method for providing control for historic photos without fieldwork on the ground, by linking them to a newly acquired, highly accurate photogrammetric model adjusted through direct kinematic GPS positioning of the camera was developed by Fox and Cziferszky (2008), and this is now being applied to a number of glaciers across the Antarctic Peninsular using Intergraph Photogrammetry Suite (Erdas LPS 2013) software. This presentation will outline the photogrammetric workflow and

  1. Geometric Calibration and Validation of Ultracam Aerial Sensors

    NASA Astrophysics Data System (ADS)

    Gruber, Michael; Schachinger, Bernhard; Muick, Marc; Neuner, Christian; Tschemmernegg, Helfried

    2016-03-01

    We present details of the calibration and validation procedure of UltraCam Aerial Camera systems. Results from the laboratory calibration and from validation flights are presented for both, the large format nadir cameras and the oblique cameras as well. Thus in this contribution we show results from the UltraCam Eagle and the UltraCam Falcon, both nadir mapping cameras, and the UltraCam Osprey, our oblique camera system. This sensor offers a mapping grade nadir component together with the four oblique camera heads. The geometric processing after the flight mission is being covered by the UltraMap software product. Thus we present details about the workflow as well. The first part consists of the initial post-processing which combines image information as well as camera parameters derived from the laboratory calibration. The second part, the traditional automated aerial triangulation (AAT) is the step from single images to blocks and enables an additional optimization process. We also present some special features of our software, which are designed to better support the operator to analyze large blocks of aerial images and to judge the quality of the photogrammetric set-up.

  2. Photogrammetric Network for Evaluation of Human Faces for Face Reconstruction Purpose

    NASA Astrophysics Data System (ADS)

    Schrott, P.; Detrekői, Á.; Fekete, K.

    2012-08-01

    Facial reconstruction is the process of reconstructing the geometry of faces of persons from skeletal remains. A research group (BME Cooperation Research Center for Biomechanics) was formed representing several organisations to combine knowledgebases of different disciplines like anthropology, medical, mechanical, archaeological sciences etc. to computerize the face reconstruction process based on a large dataset of 3D face and skull models gathered from living persons: cranial data from CT scans and face models from photogrammetric evaluations. The BUTE Dept. of Photogrammetry and Geoinformatics works on the method and technology of the 3D data acquisition for the face models. In this paper we will present the research and results of the photogrammetric network design, the modelling to deal with visibility constraints, and the investigation of the developed basic photogrammetric configuration to specify the result characteristics to be expected using the device built for the photogrammetric face measurements.

  3. An Accuracy Assessment of Automated Photogrammetric Techniques for 3d Modeling of Complex Interiors

    NASA Astrophysics Data System (ADS)

    Georgantas, A.; Brédif, M.; Pierrot-Desseilligny, M.

    2012-07-01

    This paper presents a comparison of automatic photogrammetric techniques to terrestrial laser scanning for 3D modelling of complex interior spaces. We try to evaluate the automated photogrammetric techniques not only in terms of their geometric quality compared to laser scanning but also in terms of cost in money, acquisition and computational time. To this purpose we chose as test site a modern building's stairway. APERO/MICMAC ( ©IGN )which is an Open Source photogrammetric software was used for the production of the 3D photogrammetric point cloud which was compared to the one acquired by a Leica Scanstation 2 laser scanner. After performing various qualitative and quantitative controls we present the advantages and disadvantages of each 3D modelling method applied in a complex interior of a modern building.

  4. Changing the Production Pipeline - Use of Oblique Aerial Cameras for Mapping Purposes

    NASA Astrophysics Data System (ADS)

    Moe, K.; Toschi, I.; Poli, D.; Lago, F.; Schreiner, C.; Legat, K.; Remondino, F.

    2016-06-01

    This paper discusses the potential of current photogrammetric multi-head oblique cameras, such as UltraCam Osprey, to improve the efficiency of standard photogrammetric methods for surveying applications like inventory surveys and topographic mapping for public administrations or private customers. In 2015, Terra Messflug (TM), a subsidiary of Vermessung AVT ZT GmbH (Imst, Austria), has flown a number of urban areas in Austria, Czech Republic and Hungary with an UltraCam Osprey Prime multi-head camera system from Vexcel Imaging. In collaboration with FBK Trento (Italy), the data acquired at Imst (a small town in Tyrol, Austria) were analysed and processed to extract precise 3D topographic information. The Imst block comprises 780 images and covers an area of approx. 4.5 km by 1.5 km. Ground truth data is provided in the form of 6 GCPs and several check points surveyed with RTK GNSS. Besides, 3D building data obtained by photogrammetric stereo plotting from a 5 cm nadir flight and a LiDAR point cloud with 10 to 20 measurements per m² are available as reference data or for comparison. The photogrammetric workflow, from flight planning to Dense Image Matching (DIM) and 3D building extraction, is described together with the achieved accuracy. For each step, the differences and innovation with respect to standard photogrammetric procedures based on nadir images are shown, including high overlaps, improved vertical accuracy, and visibility of areas masked in the standard vertical views. Finally the advantages of using oblique images for inventory surveys are demonstrated.

  5. Assessment of the Quality of Digital Terrain Model Produced from Unmanned Aerial System Imagery

    NASA Astrophysics Data System (ADS)

    Kosmatin Fras, M.; Kerin, A.; Mesarič, M.; Peterman, V.; Grigillo, D.

    2016-06-01

    Production of digital terrain model (DTM) is one of the most usual tasks when processing photogrammetric point cloud generated from Unmanned Aerial System (UAS) imagery. The quality of the DTM produced in this way depends on different factors: the quality of imagery, image orientation and camera calibration, point cloud filtering, interpolation methods etc. However, the assessment of the real quality of DTM is very important for its further use and applications. In this paper we first describe the main steps of UAS imagery acquisition and processing based on practical test field survey and data. The main focus of this paper is to present the approach to DTM quality assessment and to give a practical example on the test field data. For data processing and DTM quality assessment presented in this paper mainly the in-house developed computer programs have been used. The quality of DTM comprises its accuracy, density, and completeness. Different accuracy measures like RMSE, median, normalized median absolute deviation and their confidence interval, quantiles are computed. The completeness of the DTM is very often overlooked quality parameter, but when DTM is produced from the point cloud this should not be neglected as some areas might be very sparsely covered by points. The original density is presented with density plot or map. The completeness is presented by the map of point density and the map of distances between grid points and terrain points. The results in the test area show great potential of the DTM produced from UAS imagery, in the sense of detailed representation of the terrain as well as good height accuracy.

  6. High-Resolution 3D Bathymetric Mapping for Small Streams Using Low-Altitude Aerial Photography

    NASA Astrophysics Data System (ADS)

    Dietrich, J. T.; Duffin, J.

    2015-12-01

    Geomorphic monitoring of river restoration projects is a critical component of measuring their success. In smaller streams, with depths less than 2 meters, one of the more difficult variables to map at high-resolution is bathymetry. In larger rivers, bathymetry can be measured with instruments like multi-beam sonar, bathymetric airborne LiDAR, or acoustic doppler current profilers (ADCP). However, these systems are often limited by their minimum operating depths, which makes them ineffective in shallow water. Remote sensing offers several potential solutions for collecting bathymetry, spectral depth mapping and photogrammetric measurement (e.g. Structure-from-Motion (SfM) multi-view photogrammetry). In this case study, we use SfM to produce both high-resolution above water topography and below water bathymetry for two reaches of a stream restoration project on the Middle Fork of the John Day River in eastern Oregon and one reach on the White River in Vermont. We collected low-allitude multispectral (RGB+NIR) aerial photography at all of the sites at altitudes of 30 to 50 meters. The SfM survey was georeferenced with RTK-GPS ground control points and the bathymetry was refraction-corrected using additional RTK-GPS sample points. The resulting raster data products have horizontal resolutions of ~4-8 centimeters for the topography and ~8-15 cm for the bathymetry. This methodology, like many fluvial remote sensing methods, will only work under ideal conditions (e.g. clear water), but it provides an additional tool for collecting high-resolution bathymetric datasets for geomorphic monitoring efforts.

  7. Comparing Icesat/glas Based Elevation Heights with Photogrammetric Terrain Heights from Uav-Imagery on the East Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Enßle, F.; Fritz, A.; Koch, B.

    2015-08-01

    Digital elevation models (DEMs) and height measurements are broadly used in environmental studies. Two common elevation sources are the Ice Cloud and land elevation Satellite (ICESat), which acquired laser range measurements with the Geoscience Laser Altimeter System (GLAS) across the globe and elevation data from the Shuttle Radar Topography Mission (SRTM). Current developments of small unmanned aerial vehicles (UAV) provide the opportunity to collect aerial images of remote areas at a high spatial resolution. These can be further processed to digital surface models by stereophotogrammetry and provide a reliable data source to evaluate coarse scale Digital Elevation Models (DEMs). This study compares ICESat/GLAS and SRTM90 elevation data against photogrammetric terrain heights within GLAS footprints on high altitudes on the East Tibetan Plateau. Without vegetation-bias, we were able to examine height differences under different topographic conditions and of different acquisition dates. Several resampling techniques were applied to SRTM90 data and averaged height within each footprint was calculated. ICESat/GLAS heights (n = 148) are most similar to UAV data based elevations with an averaged difference of -0.8m ±3.1m. Results furthermore indicate the validity of ICESat/GLAS heights, which are usually removed from analyses by applying different quality flags. Smallest difference of SRTM90 to UAV based heights could be observed by a natural neighbour resampling technique (averaged 3.6m ±14m), whereat other techniques achieved quite similar results. It can be confirmed that within a range of 3,800-4,200m above mean sea level the ICESat/GLAS heights are a precise source to determine elevation at footprint geolocation.

  8. High Resolution Photogrammetric Digital Elevation Models Across Calving Fronts and Meltwater Channels in Greenland

    NASA Astrophysics Data System (ADS)

    Le Bel, D. A.; Brown, S.; Zappa, C. J.; Bell, R. E.; Frearson, N.; Tinto, K. J.

    2014-12-01

    Photogrammetric digital elevation models (DEMs) are a powerful approach for understanding elevation change and dynamics along the margins of the large ice sheets. The IcePod system, mounted on a New York Air National Guard LC-130, can measure high-resolution surface elevations with a Riegl VQ580 scanning laser altimeter and Imperx Bobcat IGV-B6620 color visible-wavelength camera (6600x4400 resolution); the surface temperature with a Sofradir IRE-640L infrared camera (spectral response 7.7-9.5 μm, 640x512 resolution); and the structure of snow and ice with two radar systems. We show the use of IcePod imagery to develop DEMs across calving fronts and meltwater channels in Greenland. Multiple over-flights of the Kangerlussaq Airport ramp have provided a test of the technique at a location with accurate, independently-determined elevation. Here the photogrammetric DEM of the airport, constrained by ground control measurements, is compared with the Lidar results. In July 2014 the IcePod ice-ocean imaging system surveyed the calving fronts of five outlet glaciers north of Jakobshavn Isbrae. We used Agisoft PhotoScan to develop a DEM of each calving front using imagery captured by the IcePod systems. Adjacent to the ice sheet, meltwater plumes foster mixing in the fjord, moving warm ocean water into contact with the front of the ice sheet where it can undercut the ice front and trigger calving. The five glaciers provide an opportunity to examine the calving front structure in relation to ocean temperature, fjord circulation, and spatial scale of the meltwater plumes. The combination of the accurate DEM of the calving front and the thermal imagery used to constrain the temperature and dynamics of the adjacent plume provides new insights into the ice-ocean interactions. Ice sheet margins provide insights into the connections between the surface meltwater and the fate of the water at the ice sheet base. Surface meltwater channels are visualized here for the first time using

  9. Metrically preserving the USGS aerial film archive

    USGS Publications Warehouse

    Moe, Donald; Longhenry, Ryan

    2013-01-01

    Since 1972, the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center in Sioux Falls, South Dakota, has provided fi lm-based products to the public. EROS is home to an archive of 12 million frames of analog photography ranging from 1937 to the present. The archive contains collections from both aerial and satellite platforms including programs such as the National High Altitude Program (NHAP), National Aerial Photography Program (NAPP), U.S. Antarctic Resource Center (USARC), Declass 1(CORONA, ARGON, and LANYARD), Declass 2 (KH-7 and KH-9), and Landsat (1972 – 1992, Landsat 1–5).

  10. Performance Evaluation of Thermographic Cameras for Photogrammetric Measurements

    NASA Astrophysics Data System (ADS)

    Yastikli, N.; Guler, E.

    2013-05-01

    The aim of this research is the performance evaluation of the termographic cameras for possible use for photogrammetric documentation and deformation analyses caused by moisture and isolation problem of the historical and cultural heritage. To perform geometric calibration of the termographic camera, the 3D test object was designed with 77 control points which were distributed in different depths. For performance evaluation, Flir A320 termographic camera with 320 × 240 pixels and lens with 18 mm focal length was used. The Nikon D3X SLR digital camera with 6048 × 4032 pixels and lens with 20 mm focal length was used as reference for comparison. The size of pixel was 25 μm for the Flir A320 termographic camera and 6 μm for the Nikon D3X SLR digital camera. The digital images of the 3D test object were recorded with the Flir A320 termographic camera and Nikon D3X SLR digital camera and the image coordinate of the control points in the images were measured. The geometric calibration parameters, including the focal length, position of principal points, radial and tangential distortions were determined with introduced additional parameters in bundle block adjustments. The measurement of image coordinates and bundle block adjustments with additional parameters were performed using the PHIDIAS digital photogrammetric system. The bundle block adjustment was repeated with determined calibration parameter for both Flir A320 termographic camera and Nikon D3X SLR digital camera. The obtained standard deviation of measured image coordinates was 9.6 μm and 10.5 μm for Flir A320 termographic camera and 8.3 μm and 7.7 μm for Nikon D3X SLR digital camera. The obtained standard deviation of measured image points in Flir A320 termographic camera images almost same accuracy level with digital camera in comparison with 4 times bigger pixel size. The obtained results from this research, the interior geometry of the termographic cameras and lens distortion was modelled efficiently

  11. Photogrammetric Retrieval of Etna's Plume Height from SEVIRI and MODIS

    NASA Astrophysics Data System (ADS)

    Zaksek, K.; Ganci, G.; Hort, M. K.

    2013-12-01

    Even remote volcanoes can impact the modern society due to volcanic ash dispersion in the atmosphere. A lot of research is currently dedicated to minimizing the impact of volcanic ash on air traffic. But the ash transport in the atmosphere and its deposition on land and in the oceans may also significantly influence the climate through modifications of atmospheric CO2. The emphasis of this contribution is the retrieval of volcanic ash plume height. This is important information for air traffic, to predict ash transport and to estimate the mass flux of the ejected material. The best way to monitor volcanic ash cloud top height (ACTH) on the global level is using satellite remote sensing. The most commonly used method for satellite ACTH compares brightness temperature of the cloud with the atmospheric temperature profile. Because of well-known uncertainties of this method we propose photogrammetric methods based on the parallax between data retrieved from geostationary (SEVIRI, HRV band; 1000 m spatial resolution) and polar orbiting satellites (MODIS, band 1; 250 m spatial resolution). The procedure works well if the data from both satellites are retrieved nearly simultaneously butMODIS does not retrieve the data at exactly the same time as SEVIRI. To compensate for advection in the atmosphere we use two sequential SEVIRI images (one before and one after the MODIS retrieval) and interpolate the cloud position from SEVIRI data to the time of MODIS retrieval. ACTH is then estimated by intersection of corresponding lines-of-view from MODIS and interpolated SEVIRI data. The proposed method has already been tested for the case of the Eyjafjallajökull eruption in April 2010. This case study had almost perfect conditions as the plume was vast and stretching over a homogeneous background - ocean. Here we show results of ACTH estimation during lava fountaining activity of Mount Etna in years 2011-2013. This activity resulted in volcanic ash plumes that are much smaller than

  12. An Analysis of the Influence of Flight Parameters in the Generation of Unmanned Aerial Vehicle (UAV) Orthomosaicks to Survey Archaeological Areas

    PubMed Central

    Mesas-Carrascosa, Francisco-Javier; Notario García, María Dolores; Meroño de Larriva, Jose Emilio; García-Ferrer, Alfonso

    2016-01-01

    This article describes the configuration and technical specifications of a multi-rotor unmanned aerial vehicle (UAV) using a red–green–blue (RGB) sensor for the acquisition of images needed for the production of orthomosaics to be used in archaeological applications. Several flight missions were programmed as follows: flight altitudes at 30, 40, 50, 60, 70 and 80 m above ground level; two forward and side overlap settings (80%–50% and 70%–40%); and the use, or lack thereof, of ground control points. These settings were chosen to analyze their influence on the spatial quality of orthomosaicked images processed by Inpho UASMaster (Trimble, CA, USA). Changes in illumination over the study area, its impact on flight duration, and how it relates to these settings is also considered. The combined effect of these parameters on spatial quality is presented as well, defining a ratio between ground sample distance of UAV images and expected root mean square of a UAV orthomosaick. The results indicate that a balance between all the proposed parameters is useful for optimizing mission planning and image processing, altitude above ground level (AGL) being main parameter because of its influence on root mean square error (RMSE). PMID:27809293

  13. An Analysis of the Influence of Flight Parameters in the Generation of Unmanned Aerial Vehicle (UAV) Orthomosaicks to Survey Archaeological Areas.

    PubMed

    Mesas-Carrascosa, Francisco-Javier; Notario García, María Dolores; Meroño de Larriva, Jose Emilio; García-Ferrer, Alfonso

    2016-11-01

    This article describes the configuration and technical specifications of a multi-rotor unmanned aerial vehicle (UAV) using a red-green-blue (RGB) sensor for the acquisition of images needed for the production of orthomosaics to be used in archaeological applications. Several flight missions were programmed as follows: flight altitudes at 30, 40, 50, 60, 70 and 80 m above ground level; two forward and side overlap settings (80%-50% and 70%-40%); and the use, or lack thereof, of ground control points. These settings were chosen to analyze their influence on the spatial quality of orthomosaicked images processed by Inpho UASMaster (Trimble, CA, USA). Changes in illumination over the study area, its impact on flight duration, and how it relates to these settings is also considered. The combined effect of these parameters on spatial quality is presented as well, defining a ratio between ground sample distance of UAV images and expected root mean square of a UAV orthomosaick. The results indicate that a balance between all the proposed parameters is useful for optimizing mission planning and image processing, altitude above ground level (AGL) being main parameter because of its influence on root mean square error (RMSE).

  14. USGS Releases New Digital Aerial Products

    USGS Publications Warehouse

    ,

    2005-01-01

    The U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) has initiated distribution of digital aerial photographic products produced by scanning or digitizing film from its historical aerial photography film archive. This archive, located in Sioux Falls, South Dakota, contains thousands of rolls of film that contain more than 8 million frames of historic aerial photographs. The largest portion of this archive consists of original film acquired by Federal agencies from the 1930s through the 1970s to produce 1:24,000-scale USGS topographic quadrangle maps. Most of this photography is reasonably large scale (USGS photography ranges from 1:8,000 to 1:80,000) to support the production of the maps. Two digital products are currently available for ordering: high-resolution scanned products and medium-resolution digitized products.

  15. Accuracy of Measurements in Oblique Aerial Images for Urban Environment

    NASA Astrophysics Data System (ADS)

    Ostrowski, W.

    2016-10-01

    Oblique aerial images have been a source of data for urban areas for several years. However, the accuracy of measurements in oblique images during this time has been limited to a single meter due to the use of direct -georeferencing technology and the underlying digital elevation model. Therefore, oblique images have been used mostly for visualization purposes. This situation changed in recent years as new methods, which allowed for a higher accuracy of exterior orientation, were developed. Current developments include the process of determining exterior orientation and the previous but still crucial process of tie point extraction. Progress in this area was shown in the ISPRS/EUROSDR Benchmark on Multi-Platform Photogrammetry and is also noticeable in the growing interest in the use of this kind of imagery. The higher level of accuracy in the orientation of oblique aerial images that has become possible in the last few years should result in a higher level of accuracy in the measurements of these types of images. The main goal of this research was to set and empirically verify the accuracy of measurements in oblique aerial images. The research focused on photogrammetric measurements composed of many images, which use a high overlap within an oblique dataset and different view angles. During the experiments, two series of images of urban areas were used. Both were captured using five DigiCam cameras in a Maltese cross configuration. The tilt angles of the oblique cameras were 45 degrees, and the position of the cameras during flight used a high grade GPS/INS navigation system. The orientation of the images was set using the Pix4D Mapper Pro software with both measurements of the in-flight camera position and the ground control points (measured with GPS RTK technology). To control the accuracy, check points were used (which were also measured with GPS RTK technology). As reference data for the whole study, an area of the city-based map was used. The archived results

  16. AERIAL METHODS OF EXPLORATION

    DTIC Science & Technology

    The development of photointerpretation techniques for identifying kimberlite pipes on aerial photographs is discussed. The geographic area considered is the Daldyn region, which lies in the zone of Northern Taiga of Yakutiya.

  17. Photogrammetric methods for measurements in fluid physics experiments in space

    NASA Astrophysics Data System (ADS)

    Maas, H.-G.; Virant, M.; Becker, J.; Bösemann, W.; Gatti, L.; Henrichs, A.

    2002-02-01

    Methods of digital close-range photogrammetry allow for manifold real 3-D measurements in dynamic processes. Based on the acquisition of multi-camera digital image sequences, image analysis with subpixel accuracy image measurement operators, photogrammetric multi-image matching and point determination techniques, strict geometric modeling of complex environments and thorough system calibration techniques, time-resolved accurate 3-D coordinates of a large number of objects in a scene can be determined fully automatically. The paper will first give a short review on basic principles of digital photogrammetry and discuss the application and accuracy potential. After that, practical examples will be given from several breadboard experiments conducted in the frame of the ESA Technological Research and Development Programme to show the applicability of the technique to typical experiments in the field of fluid physics. These experiments focus on the investigation of experiments on Marangoni convection; they include the determination of 3-D velocity fields near a hanging drop within a fluid matrix and the observation of the tangential tension on the boundary surface by measuring changes in shape and/or position of liquid bodies like drops, bubbles or liquid columns in a fluid matrix.

  18. Scalable Photogrammetric Motion Capture System "mosca": Development and Application

    NASA Astrophysics Data System (ADS)

    Knyaz, V. A.

    2015-05-01

    Wide variety of applications (from industrial to entertainment) has a need for reliable and accurate 3D information about motion of an object and its parts. Very often the process of movement is rather fast as in cases of vehicle movement, sport biomechanics, animation of cartoon characters. Motion capture systems based on different physical principles are used for these purposes. The great potential for obtaining high accuracy and high degree of automation has vision-based system due to progress in image processing and analysis. Scalable inexpensive motion capture system is developed as a convenient and flexible tool for solving various tasks requiring 3D motion analysis. It is based on photogrammetric techniques of 3D measurements and provides high speed image acquisition, high accuracy of 3D measurements and highly automated processing of captured data. Depending on the application the system can be easily modified for different working areas from 100 mm to 10 m. The developed motion capture system uses from 2 to 4 technical vision cameras for video sequences of object motion acquisition. All cameras work in synchronization mode at frame rate up to 100 frames per second under the control of personal computer providing the possibility for accurate calculation of 3D coordinates of interest points. The system was used for a set of different applications fields and demonstrated high accuracy and high level of automation.

  19. Photogrammetric Accuracy and Modeling of Rolling Shutter Cameras

    NASA Astrophysics Data System (ADS)

    Ye, W.; Qiao, G.; Kong, F.; Guo, S.; Ma, X.; Tong, X.; Li, R.

    2016-06-01

    Global climate change is one of the major challenges that all nations are commonly facing. Long-term observations of the Antarctic ice sheet have been playing a critical role in quantitatively estimating and predicting effects resulting from the global changes. The film-based ARGON reconnaissance imagery provides a remarkable data source for studying the Antarctic ice-sheet in 1960s, thus greatly extending the time period of Antarctica surface observations. To deal with the low-quality images and the unavailability of camera poses, a systematic photogrammetric approach is proposed to reconstruct the interior and exterior orientation information for further glacial mapping applications, including ice flow velocity mapping and mass balance estimation. Some noteworthy details while performing geometric modelling using the ARGON images were introduced, including methods and results for handling specific effects of film deformation, damaged or missing fiducial marks and calibration report, automatic fiducial mark detection, control point selection through Antarctic shadow and ice surface terrain analysis, and others. Several sites in East Antarctica were tested. As an example, four images in the Byrd glacier region were used to assess the accuracy of the geometric modelling. A digital elevation model (DEM) and an orthophoto map of Byrd glacier were generated. The accuracy of the ground positions estimated by using independent check points is within one nominal pixel of 140 m of ARGON imagery. Furthermore, a number of significant features, such as ice flow velocity and regional change patterns, will be extracted and analysed.

  20. Photogrammetric Measurements of an EH-60L Brownout Cloud

    NASA Technical Reports Server (NTRS)

    Wong, Oliver D.; Tanner, Philip E.

    2010-01-01

    There is a critical lack of quantitative data regarding the mechanism of brownout cloud formation. Recognizing this, tests were conducted during the Air Force Research Lab 3D-LZ Brownout Test at the US Army Yuma Proving Ground. Photogrammetry was utilized during two rounds of flight tests with an instrumented EH-60L Black Hawk to determine if this technique could quantitatively measure the formation and evolution of a brownout cloud. Specific areas of interest include the location, size, and average convective velocity of the cloud, along with the characteristics of any defined structures within it. Following the first flight test, photogrammetric data were validated through comparison with onboard vehicle data. Lessons learned from this test were applied to the development of an improved photogrammetry system. A second flight test, utilizing the improved system, demonstrated that obtaining quantitative measurements of the brownout cloud are possible. Results from these measurements are presented in the paper. Flow visualization with chalk dust seeding was also tested. It was observed that pickup forces of the brownout cloud appear to be very low. Overall, these tests demonstrate the viability of photogrammetry as a means for quantifying brownout cloud formation and evolution.

  1. Looking for an old aerial photograph

    USGS Publications Warehouse

    ,

    1997-01-01

    Attempts to photograph the surface of the Earth date from the 1800's, when photographers attached cameras to balloons, kites, and even pigeons. Today, aerial photographs and satellite images are commonplace. The rate of acquiring aerial photographs and satellite images has increased rapidly in recent years. Views of the Earth obtained from aircraft or satellites have become valuable tools to Government resource planners and managers, land-use experts, environmentalists, engineers, scientists, and a wide variety of other users. Many people want historical aerial photographs for business or personal reasons. They may want to locate the boundaries of an old farm or a piece of family property. Or they may want a photograph as a record of changes in their neighborhood, or as a gift. The U.S. Geological Survey (USGS) maintains the Earth Science Information Centers (ESIC?s) to sell aerial photographs, remotely sensed images from satellites, a wide array of digital geographic and cartographic data, as well as the Bureau?s wellknown maps. Declassified photographs from early spy satellites were recently added to the ESIC offerings of historical images. Using the Aerial Photography Summary Record System database, ESIC researchers can help customers find imagery in the collections of other Federal agencies and, in some cases, those of private companies that specialize in esoteric products.

  2. Using Unmanned Aerial Vehicle (UAV) for spatio-temporal monitoring of soil erosion and roughness in Chania, Crete, Greece

    NASA Astrophysics Data System (ADS)

    Alexakis, Dimitrios; Seiradakis, Kostas; Tsanis, Ioannis

    2016-04-01

    This article presents a remote sensing approach for spatio-temporal monitoring of both soil erosion and roughness using an Unmanned Aerial Vehicle (UAV). Soil erosion by water is commonly known as one of the main reasons for land degradation. Gully erosion causes considerable soil loss and soil degradation. Furthermore, quantification of soil roughness (irregularities of the soil surface due to soil texture) is important and affects surface storage and infiltration. Soil roughness is one of the most susceptible to variation in time and space characteristics and depends on different parameters such as cultivation practices and soil aggregation. A UAV equipped with a digital camera was employed to monitor soil in terms of erosion and roughness in two different study areas in Chania, Crete, Greece. The UAV followed predicted flight paths computed by the relevant flight planning software. The photogrammetric image processing enabled the development of sophisticated Digital Terrain Models (DTMs) and ortho-image mosaics with very high resolution on a sub-decimeter level. The DTMs were developed using photogrammetric processing of more than 500 images acquired with the UAV from different heights above the ground level. As the geomorphic formations can be observed from above using UAVs, shadowing effects do not generally occur and the generated point clouds have very homogeneous and high point densities. The DTMs generated from UAV were compared in terms of vertical absolute accuracies with a Global Navigation Satellite System (GNSS) survey. The developed data products were used for quantifying gully erosion and soil roughness in 3D as well as for the analysis of the surrounding areas. The significant elevation changes from multi-temporal UAV elevation data were used for estimating diachronically soil loss and sediment delivery without installing sediment traps. Concerning roughness, statistical indicators of surface elevation point measurements were estimated and various

  3. The potential of 3D gully monitoring with GIS using high-resolution aerial photography and a digital photogrammetry system

    NASA Astrophysics Data System (ADS)

    Marzolff, I.; Poesen, J.

    2009-10-01

    Although gully erosion is generally considered a major process of land degradation, its contribution to total soil loss by erosion has recently been a subject of much discussion. The lack of adequate methods for the documentation and monitoring of gullies resulted in the shortage of quantitative data. Therefore, a high-resolution remote sensing system for aerial surveys by blimp or kite has been developed which meets spatial and temporal image resolutions required for short-term gully monitoring. The objective of this paper is to examine the potential of a method using non-metric digital photogrammetry and GIS for gully surface modelling and monitoring. Two bank gullies representing different morphological types of gullies (V-shaped and U-shaped) were chosen from a dataset of gully systems in semi-arid Spain. The considerable relief energy and complex topography of the gullies in a natural, vegetated landscape were found to be a challenge to digital photogrammetric techniques, introducing errors which inhibit fully automated DEM generation. Using a hybrid method combining stereomatching for mass-point extraction with manual 3D editing and digitizing, high-resolution DEMs (5 and 7.5 cm pixel size) were created for the study sites. GIS analysis of the DEMs for different monitoring periods (2 to 4 years) allowed the computation of gully area and volume, as well as their changes with an accuracy and detail sufficient to represent the geomorphological forms and processes involved. Furthermore, the spatially continuous survey of the entire form offered the possibility of distinguishing different zones of activity both at the gully rim and within the gully interior, identifying patterns of erosion and deposition which indicate the limited use of headcut retreat rates for the assessment of sediment production on a short-term basis.

  4. A temporal and ecological analysis of the Huntington Beach Wetlands through an unmanned aerial system remote sensing perspective

    NASA Astrophysics Data System (ADS)

    Rafiq, Talha

    Wetland monitoring and preservation efforts have the potential to be enhanced with advanced remote sensing acquisition and digital image analysis approaches. Progress in the development and utilization of Unmanned Aerial Systems (UAS) and Unmanned Aerial Vehicles (UAV) as remote sensing platforms has offered significant spatial and temporal advantages over traditional aerial and orbital remote sensing platforms. Photogrammetric approaches to generate high spatial resolution orthophotos of UAV acquired imagery along with the UAV's low-cost and temporally flexible characteristics are explored. A comparative analysis of different spectral based land cover maps derived from imagery captured using UAV, satellite, and airplane platforms provide an assessment of the Huntington Beach Wetlands. This research presents a UAS remote sensing methodology encompassing data collection, image processing, and analysis in constructing spectral based land cover maps to augment the efforts of the Huntington Beach Wetlands Conservancy by assessing ecological and temporal changes at the Huntington Beach Wetlands.

  5. Retrospective farm scale spatial analysis of viticultural terroir fertility using a 70 y-aerial photograph time series, soil survey and very high resolution Pléiades and EM38 data

    NASA Astrophysics Data System (ADS)

    Vaudour, Emmanuelle; Leclercq, Léa; Gilliot, Jean-Marc; Chaignon, Benoît

    2016-04-01

    In order to elaborate adequate and sustainable practices while better controlling harvest composition at farm scale, the detailed spatial assessment of terroir units is needed. Although such assessment is made in the present time, it reflects vine behaviour and soil quality according to cumulated past choices in vineyard management. in addition to demarcate homogeneous within-vineyard zones, there is a need, in cases where the winegrower starts up its activities, to retrace the behaviour of these zones in the past, so as to consolidate the diagnosis of vine fertility, and determine further adoption of new soil and vineyard management practices that are likely to favour a long-term preservation of quality production together with soil ecosystem functions. In this study we aimed at performing such historical and spatial tracing using a long term time-series of aerial survey images, in combination with a set of very high resolution data: resistivity EM38 measurements and very high resolution Pléiades satellite images. This study was conducted over a 6 ha-farm mainly planted with rainfed black Grenache and Syrah varieties in the Southern Rhone Valley. In a previous study carried out at regional scale, soil landscape and potential terroir units had been characterized. A new field survey carried out in January 2015 considered a total of 98 topsoil sampling sites in addition to 14 soil pits, the horizons of which were described and sampled. Physico-chemical analyses were made for all soil samples, and for those horizons having the highest root development, additional analytical parameters such as copper, active lime and mineral nutrients contents were determined. Along with soil parameters, soil surface condition, vine biological parameters including vigour, presence of diseases, stock-unearthing were collected. A total of 25 aerial photographs in digitized format from the French National Institute of Geographic and Forest Information (IGN) were examined over the 1947

  6. Photogrammetric Analysis of Historical Image Repositories for Virtual Reconstruction in the Field of Digital Humanities

    NASA Astrophysics Data System (ADS)

    Maiwald, F.; Vietze, T.; Schneider, D.; Henze, F.; Münster, S.; Niebling, F.

    2017-02-01

    Historical photographs contain high density of information and are of great importance as sources in humanities research. In addition to the semantic indexing of historical images based on metadata, it is also possible to reconstruct geometric information about the depicted objects or the camera position at the time of the recording by employing photogrammetric methods. The approach presented here is intended to investigate (semi-) automated photogrammetric reconstruction methods for heterogeneous collections of historical (city) photographs and photographic documentation for the use in the humanities, urban research and history sciences. From a photogrammetric point of view, these images are mostly digitized photographs. For a photogrammetric evaluation, therefore, the characteristics of scanned analog images with mostly unknown camera geometry, missing or minimal object information and low radiometric and geometric resolution have to be considered. In addition, these photographs have not been created specifically for documentation purposes and so the focus of these images is often not on the object to be evaluated. The image repositories must therefore be subjected to a preprocessing analysis of their photogrammetric usability. Investigations are carried out on the basis of a repository containing historical images of the Kronentor ("crown gate") of the Dresden Zwinger. The initial step was to assess the quality and condition of available images determining their appropriateness for generating three-dimensional point clouds from historical photos using a structure-from-motion evaluation (SfM). Then, the generated point clouds were assessed by comparing them with current measurement data of the same object.

  7. Profiles of gamma-ray and magnetic data for aerial surveys over parts of the Western United States from longitude 108 to 126 degrees W. and from latitude 34 to 49 degrees N.

    USGS Publications Warehouse

    Duval, Joseph S.

    1995-01-01

    This CD-ROM contains images generated from geophysical data, software for displaying and analyzing the images and software for displaying and examining profile data from aerial surveys flown as part of the National Uranium Resource Evaluation (NURE) Program of the U.S. Department of Energy. The images included are of gamma-ray data (uranium, thorium, and potassium channels), Bouguer gravity data, isostatic residual gravity data, aeromagnetic anomalies, topography, and topography with bathymetry. This publication contains image data for the conterminous United States and profile data for the conterminous United States within the area longitude 108 to 126 degrees W. and latitude 34 to 49 degrees N. The profile data include apparent surface concentrations of potassium, uranium, and thorium, the residual magnetic field, and the height above the ground. The images on this CD-ROM include graytone and color images of each data set, color shaded-relief images of the potential-field and topographic data, and color composite images of the gamma-ray data. The image display and analysis software can register images with geographic and geologic overlays. The profile display software permits the user to view the profiles as well as obtain data listings and export ASCII versions of data for selected flight lines.

  8. 'Unlocking the archive': Using digital photogrammetry of modern and historic aerial photography to reconstruct 60 years of volumetric change on the Moider Glacier, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Clarke, Lucy; Miller, Pauline; Ireland, Louise; Fox, Adrian; Mills, Jon; Fieber, Karolina

    2016-04-01

    The Antarctic Peninsula is a mountain glacier system comprised of over 400 glaciers, and is an important contributor to historical and future sea level rise. Assessment and monitoring of AP glaciers is crucial for understanding sensitivity to climate change. Changes to glacier fronts and ice shelves and glacier acceleration are well documented, but there are almost no data on mass changes on the Antarctic Peninsula. Satellite data have been used to calculate change over the last 3 decades, but methods to quantify this over longer timescales have eluded researchers. However there is an archive of aerial photography dating back to the 1940s, this has been largely ignored due to the range of technical problems associated with deriving quantitative data from historic imagery and the lack of ground control data. This presentation demonstrates how advances in photogrammetric processing and capture of modern aerial photography has allowed this archive to be 'unlocked'. Accurate photogrammetric reconstruction from aerial photographs traditionally requires known ground control points acquired in the field; in remote and inaccessible areas, such as the Antarctic Peninsula, this is often impossible. A method for providing control for historic photos without fieldwork, by linking them to a newly acquired, highly accurate photogrammetric model adjusted through direct kinematic GPS positioning of the camera has been applied to a number of glaciers across the Antarctic Peninsula. This presentation will outline the photogrammetric workflow with focus on the Moider Glacier in the Marguerite Bay region of the western Antarctic Peninsula to investigate the quality of data that can be obtained. Volumetric changes on the glaciers from the 1950s to present day (2015) have been reconstructed and can be used to explore the spatial and temporal changes that have occurred on this glacier. In particular, there is near-annual data over the last 5 years recording a period when there has been

  9. STS-74/MIR Photogrammetric Appendage Structural Dynamics Experiment Preliminary Data Analysis

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.; Welch, Sharon S.; Pappa, Richard S.; Demeo, Martha E.

    1997-01-01

    The Photogrammetric Appendage Structural Dynamics Experiment was designed, developed, and flown to demonstrate and prove measurement of the structural vibration response of a Russian Space Station Mir solar array using photogrammetric methods. The experiment flew on the STS-74 Space Shuttle mission to Mir in November 1995 and obtained video imagery of solar array structural response to various excitation events. The video imagery has been digitized and triangulated to obtain response time history data at discrete points on the solar array. This data has been further processed using the Eigensystem Realization Algorithm modal identification technique to determine the natural vibration frequencies, damping, and mode shapes of the solar array. The results demonstrate that photogrammetric measurement of articulating, nonoptically targeted, flexible solar arrays and appendages is a viable, low-cost measurement option for the International Space Station.

  10. User guide for the USGS aerial camera Report of Calibration.

    USGS Publications Warehouse

    Tayman, W.P.

    1984-01-01

    Calibration and testing of aerial mapping cameras includes the measurement of optical constants and the check for proper functioning of a number of complicated mechanical and electrical parts. For this purpose the US Geological Survey performs an operational type photographic calibration. This paper is not strictly a scientific paper but rather a 'user guide' to the USGS Report of Calibration of an aerial mapping camera for compliance with both Federal and State mapping specifications. -Author

  11. Ultramap v3 - a Revolution in Aerial Photogrammetry

    NASA Astrophysics Data System (ADS)

    Reitinger, B.; Sormann, M.; Zebedin, L.; Schachinger, B.; Hoefler, M.; Tomasi, R.; Lamperter, M.; Gruber, B.; Schiester, G.; Kobald, M.; Unger, M.; Klaus, A.; Bernoegger, S.; Karner, K.; Wiechert, A.; Ponticelli, M.; Gruber, M.

    2012-07-01

    In the last years, Microsoft has driven innovation in the aerial photogrammetry community. Besides the market leading camera technology, UltraMap has grown to an outstanding photogrammetric workflow system which enables users to effectively work with large digital aerial image blocks in a highly automated way. Best example is the project-based color balancing approach which automatically balances images to a homogeneous block. UltraMap V3 continues innovation, and offers a revolution in terms of ortho processing. A fully automated dense matching module strives for high precision digital surface models (DSMs) which are calculated either on CPUs or on GPUs using a distributed processing framework. By applying constrained filtering algorithms, a digital terrain model can be derived which in turn can be used for fully automated traditional ortho texturing. By having the knowledge about the underlying geometry, seamlines can be generated automatically by applying cost functions in order to minimize visual disturbing artifacts. By exploiting the generated DSM information, a DSMOrtho is created using the balanced input images. Again, seamlines are detected automatically resulting in an automatically balanced ortho mosaic. Interactive block-based radiometric adjustments lead to a high quality ortho product based on UltraCam imagery. UltraMap v3 is the first fully integrated and interactive solution for supporting UltraCam images at best in order to deliver DSM and ortho imagery.

  12. Line matching based on planar homography for stereo aerial images

    NASA Astrophysics Data System (ADS)

    Sun, Yanbiao; Zhao, Liang; Huang, Shoudong; Yan, Lei; Dissanayake, Gamini

    2015-06-01

    We propose an efficient line matching algorithm for a pair of calibrated aerial photogrammetric images, which makes use of sparse 3D points triangulated from 2D point feature correspondences to guide line matching based on planar homography. Two different strategies are applied in the proposed line matching algorithm for two different cases. When three or more points can be found coplanar with the line segment to be matched, the points are used to fit a plane and obtain an accurate planar homography. When one or two points can be found, the approximate terrain plane parallel to the line segment is utilized to compute an approximate planar homography. Six pairs of rural or urban aerial images are used to demonstrate the efficiency and validity of the proposed algorithm. Compared with line matching based on 2D point feature correspondences, the proposed method can increase the number of correctly matched line segments. In addition, compared with most line matching methods that do not use 2D point feature correspondences, the proposed method has better efficiency, although it obtains fewer matches. The C/C++ source code for the proposed algorithm is available at

  13. Reproducibility of UAV-based photogrammetric surface models

    NASA Astrophysics Data System (ADS)

    Anders, Niels; Smith, Mike; Cammeraat, Erik; Keesstra, Saskia

    2016-04-01

    Soil erosion, rapid geomorphological change and vegetation degradation are major threats to the human and natural environment in many regions. Unmanned Aerial Vehicles (UAVs) and Structure-from-Motion (SfM) photogrammetry are invaluable tools for the collection of highly detailed aerial imagery and subsequent low cost production of 3D landscapes for an assessment of landscape change. Despite the widespread use of UAVs for image acquisition in monitoring applications, the reproducibility of UAV data products has not been explored in detail. This paper investigates this reproducibility by comparing the surface models and orthophotos derived from different UAV flights that vary in flight direction and altitude. The study area is located near Lorca, Murcia, SE Spain, which is a semi-arid medium-relief locale. The area is comprised of terraced agricultural fields that have been abandoned for about 40 years and have suffered subsequent damage through piping and gully erosion. In this work we focused upon variation in cell size, vertical and horizontal accuracy, and horizontal positioning of recognizable landscape features. The results suggest that flight altitude has a significant impact on reconstructed point density and related cell size, whilst flight direction affects the spatial distribution of vertical accuracy. The horizontal positioning of landscape features is relatively consistent between the different flights. We conclude that UAV data products are suitable for monitoring campaigns for land cover purposes or geomorphological mapping, but special care is required when used for monitoring changes in elevation.

  14. 3D modeling of a dolerite intrusion from the photogrammetric and geophysical data integration.

    NASA Astrophysics Data System (ADS)

    Duarte, João; Machadinho, Ana; Figueiredo, Fernando; Mira, Maria

    2015-04-01

    The aims of this study is create a methodology based on the integration of data obtained from various available technologies, which allow a credible and complete evaluation of rock masses. In this particular case of a dolerite intrusion, which deployed an exploration of aggregates and belongs to the Jobasaltos - Extracção e Britagem. S.A.. Dolerite intrusion is situated in the volcanic complex of Serra de Todo-o-Mundo, Casais Gaiola, intruded in Jurassic sandstones. The integration of the surface and subsurface mapping, obtained by technology UAVs (Drone) and geophysical surveys (Electromagnetic Method - TEM 48 FAST), allows the construction of 2D and 3D models of the study local. The combination of the 3D point clouds produced from two distinct processes, modeling of photogrammetric and geophysical data, will be the basis for the construction of a single model of set. The rock masses in an integral perspective being visible their development above the surface and subsurface. The presentation of 2D and 3D models will give a perspective of structures, fracturation, lithology and their spatial correlations contributing to a better local knowledge, as well as its potential for the intended purpose. From these local models it will be possible to characterize and quantify the geological structures. These models will have its importance as a tool to assist in the analysis and drafting of regional models. The qualitative improvement in geological/structural modeling, seeks to reduce the value of characterization/cost ratio, in phase of prospecting, improving the investment/benefit ratio. This methodology helps to assess more accurately the economic viability of the projects.

  15. How To Obtain Aerial Photographs

    USGS Publications Warehouse

    ,

    1999-01-01

    The U.S. Geological Survey (USGS) maintains an informational data base of aerial photographic coverage of the United States and its territories that dates back to the 1940?s. This information describes photographic projects from the USGS, other Federal, State, and local government agencies, and commercial firms. The pictures on this page show a part of a standard 9- by 9-inch photograph and the results obtained by enlarging the original photograph two and four times. Compare the size of the Qualcomm Stadium, Jack Murphy Field, in San Diego, Calif, and the adjacent parking lot and freeways shown at the different scales. USGS Earth Science Information Center (ESIC) representatives will assist you in locating and ordering photographs. Please submit the completed checklist and a marked map showing your area of interest to any ESIC.

  16. Lightweight Hyperspectral Mapping System and a Novel Photogrammetric Processing Chain for UAV-based Sensing

    NASA Astrophysics Data System (ADS)

    Suomalainen, Juha; Franke, Jappe; Anders, Niels; Iqbal, Shahzad; Wenting, Philip; Becker, Rolf; Kooistra, Lammert

    2014-05-01

    We have developed a lightweight Hyperspectral Mapping System (HYMSY) and a novel processing chain for UAV based mapping. The HYMSY consists of a custom pushbroom spectrometer (range 450-950nm, FWHM 9nm, ~20 lines/s, 328 pixels/line), a consumer camera (collecting 16MPix raw image every 2 seconds), a GPS-Inertia Navigation System (GPS-INS), and synchronization and data storage units. The weight of the system at take-off is 2.0kg allowing us to mount it on a relatively small octocopter. The novel processing chain exploits photogrammetry in the georectification process of the hyperspectral data. At first stage the photos are processed in a photogrammetric software producing a high-resolution RGB orthomosaic, a Digital Surface Model (DSM), and photogrammetric UAV/camera position and attitude at the moment of each photo. These photogrammetric camera positions are then used to enhance the internal accuracy of GPS-INS data. These enhanced GPS-INS data are then used to project the hyperspectral data over the photogrammetric DSM, producing a georectified end product. The presented photogrammetric processing chain allows fully automated georectification of hyperspectral data using a compact GPS-INS unit while still producingin UAV use higher georeferencing accuracy than would be possible using the traditional processing method. During 2013, we have operated HYMSY on 150+ octocopter flights at 60+ sites or days. On typical flight we have produced for a 2-10ha area: a RGB orthoimagemosaic at 1-5cm resolution, a DSM in 5-10cm resolution, and hyperspectral datacube at 10-50cm resolution. The targets have mostly consisted of vegetated targets including potatoes, wheat, sugar beets, onions, tulips, coral reefs, and heathlands,. In this poster we present the Hyperspectral Mapping System and the photogrammetric processing chain with some of our first mapping results.

  17. Methodology for Orientation and Fusion of Photogrammetric and Lidardatas for Multitemporal Studies

    NASA Astrophysics Data System (ADS)

    Colomo-Jiménez, C.; Pérez-García, J. L.; Fernández-del Castillo, T.; Gómez-López, J. M.; Mozas-Calvache, A. T.

    2016-06-01

    Nowadays, data fusion is one of the trends in geomatics sciences, due to the necessity of merging data from different kind of sensors and periods of time. Also, to extrract the maximum information from data and useful multitemporal analysis, an exact geoconnection of all datasets in a common and stable reference system is essential. The results of the application of a methodology for an integrated orientation into a common reference system using data obtained by LiDAR systems, digital and historical photogrammetric flights dataset, used for proper analysis in multitemporal studies, are presented in this paper. In order to analyse the results of the presented methodology, several photogrammetric datasets have been used. This data corresponds with digital and analogic data. The most current flight (2010) combines data obtained with digital photogrammetric camera and LiDAR sensor which will be used as reference model for all subsequent photogrammetry flights. The philosophy of the methodology consists of orientating all photogrammetric flights to the DEM obtained by LiDAR data. All the models obtained from every photogrammetric block are comparable in terms of the geometric resolution of each one. For that reason, altimetric stable points are extracted automatically from the LiDAR points cloud to use these points such as altimetric control point in the different flights that must be oriented. Using LiDAR control points, we demonstrate the improvement in the results between initial orientation and final results. Also it is possible to improve the planimetric correspondence between different photogrammetric blocks using only altimetric control points iteratively.

  18. U.S. Unmanned Aerial Systems

    DTIC Science & Technology

    2012-01-03

    decades for crop dusting and other agricultural purposes.84 Historically, UAS were predominately operated by DoD in support of combat operations in...advocates state that in order for UAS to take an active role in homeland security, law enforcement, aerial surveying, crop dusting, and other...isn’t ready for.93 The issue of when and how UAS will be allowed to operate in U.S. airspace continues to evolve, and continues to be of interest

  19. Aerial Explorers and Robotic Ecosystems

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg

    2004-01-01

    A unique bio-inspired approach to autonomous aerial vehicle, a.k.a. aerial explorer technology is discussed. The work is focused on defining and studying aerial explorer mission concepts, both as an individual robotic system and as a member of a small robotic "ecosystem." Members of this robotic ecosystem include the aerial explorer, air-deployed sensors and robotic symbiotes, and other assets such as rovers, landers, and orbiters.

  20. Geomatics techniques applied to time series of aerial images for multitemporal geomorphological analysis of the Miage Glacier (Mont Blanc).

    NASA Astrophysics Data System (ADS)

    Perotti, Luigi; Carletti, Roberto; Giardino, Marco; Mortara, Giovanni

    2010-05-01

    The Miage glacier is the major one in the Italian side of the Mont Blanc Massif, the third by area and the first by longitudinal extent among Italian glaciers. It is a typical debris covered glacier, since the end of the L.I.A. The debris coverage reduces ablation, allowing a relative stability of the glacier terminus, which is characterized by a wide and articulated moraine apparatus. For its conservative landforms, the Miage Glacier has a great importance for the analysis of the geomorphological response to recent climatic changes. Thanks to an organized existing archive of multitemporal aerial images (1935 to present) a photogrammetric approach has been applied to detect recent geomorphological changes in the Miage glacial basin. The research team provided: a) to digitize all the available images (still in analogic form) through photogrammetric scanners (very low image distortions devices) taking care of correctly defining the resolution of the acquisition compared to the scale mapping images are suitable for; b) to import digitized images into an appropriate digital photogrammetry software environment; c) to manage images in order, where possible, to carried out the stereo models orientation necessary for 3D navigation and plotting of critical geometric features of the glacier. Recognized geometric feature, referring to different periods, can be transferred to vector layers and imported in a GIS for further comparisons and investigations; d) to produce multi-temporal Digital Elevation Models for glacier volume changes; e) to perform orthoprojection of such images to obtain multitemporal orthoimages useful for areal an planar terrain evaluation and thematic analysis; f) to evaluate both planimetric positioning and height determination accuracies reachable through the photogrammetric process. Users have to known reliability of the measures they can do over such products. This can drive them to define the applicable field of this approach and this can help them to

  1. Aerial of the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Even in this aerial view at KSC, the Vehicle Assembly Building is imposing. In front of it is the Launch Control Center. In the background is the Rotation/Processing Facility, next to the Banana Creek. In the foreground is the Saturn Causeway that leads to Launch Pads 39A and 39B.

  2. Aerial views of the San Andreas Fault

    USGS Publications Warehouse

    Moore, M.

    1988-01-01

    These aerial photographs of the San Andreas fault were taken in 1965 by Robert E. Wallace of the U.S Geological Survey. The pictures were taken with a Rolliflex camera on 20 format black and white flim; Wallace was aboard a light, fixed-wing aircraft, flying mostly at low altitudes. He photographed the fault from San Francisco near its north end where it enters by the Salton Sea. These images represent only a sampling of the more than 300 images prodcued during this project. All the photographs reside in the U.S Geological Survey Library in Menlo Park, California. 

  3. Precision agriculture in dry land: spatial variability of crop yield and roles of soil surveys, aerial photos, and digital elevation models

    NASA Astrophysics Data System (ADS)

    Nachabe, Mahmood; Ahuja, Laj; Shaffer, Mary Lou; Ascough, J.; Flynn, Brian; Cipra, J.

    1998-12-01

    In dryland, yield of crop varies substantially in space, often changing by an order of magnitude within few meters. Precision agriculture aims at exploiting this variability by changing agriculture management practices in space according to site specific conditions. Thus instead of managing a field (typical area 50 to 100 hectares) as a single unit using average conditions, the field is partitioned into small pieces of land known as management units. The size of management units can be in the order of 100 to 1,000 m2 to capture the patterns of variation of yield in the field. Agricultural practices like seeding rate, type of crop, and tillage and fertilizers are applied at the scale of the management unit to suit local agronomic conditions in unit. If successfully practiced, precision agriculture has the potential of increasing income and minimizing environmental impacts by reducing over application of crop production inputs. In the 90s, the implementation of precision agriculture was facilitated tremendously due to the wide availability and use of three technologies: (1) the Global Positioning System (GPS), (2) the Geographic Information System (GIS), and (3) remote sensing. The introduction of the GPS allowed the farmer to determine his coordinate location as equipments are moved in the field. Thus, any piece of equipment can be easily programmed to vary agricultural practices according to coordinate location over the field. The GIS allowed the storage and manipulation of large sets of data and the production of yield maps. Yield maps can be correlated with soil attributes from soil survey, and/or topographical attributes from a Digital Elevation Model (DEM). This helps predicting variation of potential yield over the landscape based on the spatial distribution of soil and topographical attributes. Soil attributes may include soil PH, Organic Matter, porosity, and hydraulic conductivity, whereas topographical attributes involve the estimations of elevation, slope

  4. High Density Aerial Image Matching: State-Of and Future Prospects

    NASA Astrophysics Data System (ADS)

    Haala, N.; Cavegn, S.

    2016-06-01

    Ongoing innovations in matching algorithms are continuously improving the quality of geometric surface representations generated automatically from aerial images. This development motivated the launch of the joint ISPRS/EuroSDR project "Benchmark on High Density Aerial Image Matching", which aims on the evaluation of photogrammetric 3D data capture in view of the current developments in dense multi-view stereo-image matching. Originally, the test aimed on image based DSM computation from conventional aerial image flights for different landuse and image block configurations. The second phase then put an additional focus on high quality, high resolution 3D geometric data capture in complex urban areas. This includes both the extension of the test scenario to oblique aerial image flights as well as the generation of filtered point clouds as additional output of the respective multi-view reconstruction. The paper uses the preliminary outcomes of the benchmark to demonstrate the state-of-the-art in airborne image matching with a special focus of high quality geometric data capture in urban scenarios.

  5. D City Transformations by Time Series of Aerial Images

    NASA Astrophysics Data System (ADS)

    Adami, A.

    2015-02-01

    Recent photogrammetric applications, based on dense image matching algorithms, allow to use not only images acquired by digital cameras, amateur or not, but also to recover the vast heritage of analogue photographs. This possibility opens up many possibilities in the use and enhancement of existing photos heritage. The research of the original figuration of old buildings, the virtual reconstruction of disappeared architectures and the study of urban development are some of the application areas that exploit the great cultural heritage of photography. Nevertheless there are some restrictions in the use of historical images for automatic reconstruction of buildings such as image quality, availability of camera parameters and ineffective geometry of image acquisition. These constrains are very hard to solve and it is difficult to discover good dataset in the case of terrestrial close range photogrammetry for the above reasons. Even the photographic archives of museums and superintendence, while retaining a wealth of documentation, have no dataset for a dense image matching approach. Compared to the vast collection of historical photos, the class of aerial photos meets both criteria stated above. In this paper historical aerial photographs are used with dense image matching algorithms to realize 3d models of a city in different years. The models can be used to study the urban development of the city and its changes through time. The application relates to the city centre of Verona, for which some time series of aerial photographs have been retrieved. The models obtained in this way allowed, right away, to observe the urban development of the city, the places of expansion and new urban areas. But a more interesting aspect emerged from the analytical comparison between models. The difference, as the Euclidean distance, between two models gives information about new buildings or demolitions. As considering accuracy it is necessary point out that the quality of final

  6. Comparative Assessment of Very High Resolution Satellite and Aerial Orthoimagery

    NASA Astrophysics Data System (ADS)

    Agrafiotis, P.; Georgopoulos, A.

    2015-03-01

    This paper aims to assess the accuracy and radiometric quality of orthorectified high resolution satellite imagery from Pleiades-1B satellites through a comparative evaluation of their quantitative and qualitative properties. A Pleiades-B1 stereopair of high resolution images taken in 2013, two adjacent GeoEye-1 stereopairs from 2011 and aerial orthomosaic (LSO) provided by NCMA S.A (Hellenic Cadastre) from 2007 have been used for the comparison tests. As control dataset orthomosaic from aerial imagery provided also by NCMA S.A (0.25m GSD) from 2012 was selected. The process for DSM and orthoimage production was performed using commercial digital photogrammetric workstations. The two resulting orthoimages and the aerial orthomosaic (LSO) were relatively and absolutely evaluated for their quantitative and qualitative properties. Test measurements were performed using the same check points in order to establish their accuracy both as far as the single point coordinates as well as their distances are concerned. Check points were distributed according to JRC Guidelines for Best Practice and Quality Checking of Ortho Imagery and NSSDA standards while areas with different terrain relief and land cover were also included. The tests performed were based also on JRC and NSSDA accuracy standards. Finally, tests were carried out in order to assess the radiometric quality of the orthoimagery. The results are presented with a statistical analysis and they are evaluated in order to present the merits and demerits of the imaging sensors involved for orthoimage production. The results also serve for a critical approach for the usability and cost efficiency of satellite imagery for the production of Large Scale Orthophotos.

  7. Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment

    NASA Astrophysics Data System (ADS)

    James, M. R.; Robson, S.; d'Oleire-Oltmanns, S.; Niethammer, U.

    2017-03-01

    Structure-from-motion (SfM) algorithms greatly facilitate the production of detailed topographic models from photographs collected using unmanned aerial vehicles (UAVs). However, the survey quality achieved in published geomorphological studies is highly variable, and sufficient processing details are never provided to understand fully the causes of variability. To address this, we show how survey quality and consistency can be improved through a deeper consideration of the underlying photogrammetric methods. We demonstrate the sensitivity of digital elevation models (DEMs) to processing settings that have not been discussed in the geomorphological literature, yet are a critical part of survey georeferencing, and are responsible for balancing the contributions of tie and control points. We provide a Monte Carlo approach to enable geomorphologists to (1) carefully consider sources of survey error and hence increase the accuracy of SfM-based DEMs and (2) minimise the associated field effort by robust determination of suitable lower-density deployments of ground control. By identifying appropriate processing settings and highlighting photogrammetric issues such as over-parameterisation during camera self-calibration, processing artefacts are reduced and the spatial variability of error minimised. We demonstrate such DEM improvements with a commonly-used SfM-based software (PhotoScan), which we augment with semi-automated and automated identification of ground control points (GCPs) in images, and apply to two contrasting case studies - an erosion gully survey (Taroudant, Morocco) and an active landslide survey (Super-Sauze, France). In the gully survey, refined processing settings eliminated step-like artefacts of up to 50 mm in amplitude, and overall DEM variability with GCP selection improved from 37 to 16 mm. In the much more challenging landslide case study, our processing halved planimetric error to 0.1 m, effectively doubling the frequency at which changes in

  8. Photogrammetric Verification of Fiber Optic Shape Sensors on Flexible Aerospace Structures

    NASA Technical Reports Server (NTRS)

    Moore, Jason P.; Rogge, Matthew D.; Jones, Thomas W.

    2012-01-01

    Multi-core fiber (MCF) optic shape sensing offers the possibility of providing in-flight shape measurements of highly flexible aerospace structures and control surfaces for such purposes as gust load alleviation, flutter suppression, general flight control and structural health monitoring. Photogrammetric measurements of surface mounted MCF shape sensing cable can be used to quantify the MCF installation path and verify measurement methods.

  9. A Photogrammetrically Based Model for Predicting Total Body Mass Centroid Location.

    ERIC Educational Resources Information Center

    Hall, Susan J.; Depauw, Karen P.

    1982-01-01

    A theoretical 18-link model of the human body was designed as a sex-generalized predictor of segmental inertial parameters. Body measurements of 40 male and female subjects from 6 to 35 years of age were used. The results were similar to those reported in other studies and the photogrammetric procedure was found to be facilitative. (Authors/JN)

  10. Use of the photogrammetric data for vegetation inventory on urban areas. (Polish Title: Wykorzystanie danych fotogrametrycznych do inwentaryzacji zieleni na terenach zurbanizowanych)

    NASA Astrophysics Data System (ADS)

    Kubalska, J. L.; Preuss, R.

    2014-12-01

    This paper discusses the methodology of the implementation of an inventory of vegetation in an urban area using photogrammetric data in the form of color NIR "true - orthophotomap" (true - ortho) and the digital surface model (DSM) created with data from airborne laser scanning, or alternatively, with an automatic correlation of images. The vegetation inventory was conducted by classification on the basis of the characteristics contained in pixels of georeferenced true - ortho while taking into account the elevation data in the form of gridded DSM. To carry out the classification Erdas Imagine software was used. The correct classification process was preceded by the creation of the input data for this task. This data was obtained from the processing of digital aerial photos taken by a Vexcel UltraCam camera with the ground resolution GSD = 10cm and point clouds acquired from ALS. This processing included the generation of digital terrain model in the SCOP++ environment and the digital surface model in an Opals and Inpho environment. The Comparison of DSM created from two different sources of data showed the overall consistency and uniformity and the ability to use both models to generate a true - ortho product from digital aerial photographs. The work was performed on an INPHO photogrammetric workstation. "True - ortho" was generated from both the black and white NIR images and colour images. The classification carried out with the Erdas Imagine software proved that this software is suitable for classification based on the features extracted from the pixels with the simultaneous analysis of elevation data. Simultaneous use of data both from airborne laser scanning and colour infrared images made it possible to make an exact classification of vegetation on very difficult terrain, like built up urban areas. The results of the classification accuracy were evaluated by the visual verification in Google Street View application. At a time when airborne platforms are

  11. DOE/NNSA Aerial Measuring System (AMS): Flying the 'Real' Thing

    SciTech Connect

    Craig Lyons

    2011-06-24

    This slide show documents aerial radiation surveys over Japan. Map product is a compilation of daily aerial measuring system missions from the Fukushima Daiichi power plant to 80 km radius. In addition, other flights were conducted over US military bases and the US embassy.

  12. Defense Science Board Study on Unmanned Aerial Vehicles and Uninhabited Combat Aerial Vehicles

    DTIC Science & Technology

    2004-02-01

    Defense Science Board Study on Unmanned Aerial Vehicles and Uninhabited Combat Aerial Vehicles February 2004 Office...COVERED - 4. TITLE AND SUBTITLE Defense Science Board Study on Unmanned Aerial Vehicles and Uninhabited Combat Aerial Vehicles 5a. CONTRACT...the Defense Science Board Task Force on Unmanned Aerial Vehicles and Uninhabited Combat Aerial Vehicles I am pleased to forward the final report of

  13. Photogrammetric Accuracy and Modeling of Rolling Shutter Cameras

    NASA Astrophysics Data System (ADS)

    Vautherin, Jonas; Rutishauser, Simon; Schneider-Zapp, Klaus; Choi, Hon Fai; Chovancova, Venera; Glass, Alexis; Strecha, Christoph

    2016-06-01

    Unmanned aerial vehicles (UAVs) are becoming increasingly popular in professional mapping for stockpile analysis, construction site monitoring, and many other applications. Due to their robustness and competitive pricing, consumer UAVs are used more and more for these applications, but they are usually equipped with rolling shutter cameras. This is a significant obstacle when it comes to extracting high accuracy measurements using available photogrammetry software packages. In this paper, we evaluate the impact of the rolling shutter cameras of typical consumer UAVs on the accuracy of a 3D reconstruction. Hereto, we use a beta-version of the Pix4Dmapper 2.1 software to compare traditional (non rolling shutter) camera models against a newly implemented rolling shutter model with respect to both the accuracy of geo-referenced validation points and to the quality of the motion estimation. Multiple datasets have been acquired using popular quadrocopters (DJI Phantom 2 Vision+, DJI Inspire 1 and 3DR Solo) following a grid flight plan. For comparison, we acquired a dataset using a professional mapping drone (senseFly eBee) equipped with a global shutter camera. The bundle block adjustment of each dataset shows a significant accuracy improvement on validation ground control points when applying the new rolling shutter camera model for flights at higher speed (8m=s). Competitive accuracies can be obtained by using the rolling shutter model, although global shutter cameras are still superior. Furthermore, we are able to show that the speed of the drone (and its direction) can be solely estimated from the rolling shutter effect of the camera.

  14. Photogrammetric monitoring of lava dome growth during the 2009 eruption of Redoubt Volcano

    NASA Astrophysics Data System (ADS)

    Diefenbach, Angela K.; Bull, Katharine F.; Wessels, Rick L.; McGimsey, Robert G.

    2013-06-01

    The 2009 eruption of Redoubt Volcano, Alaska, began with a phreatic explosion on 15 March followed by a series of at least 19 explosive events and growth and destruction of at least two, and likely three, lava domes between 22 March and 4 April. On 4 April explosive activity gave way to continuous lava effusion within the summit crater. We present an analysis of post-4 April lava dome growth using an oblique photogrammetry approach that provides a safe, rapid, and accurate means of measuring dome growth. Photogrammetric analyses of oblique digital images acquired during helicopter observation flights and fixed-wing volcanic gas surveys produced a series of digital elevation models (DEMs) of the lava dome from 16 April to 23 September. The DEMs were used to calculate estimates of volume and time-averaged extrusion rates and to quantify morphological changes during dome growth. Effusion rates ranged from a maximum of 35 m3 s- 1 during the initial two weeks to a low of 2.2 m3 s- 1 in early summer 2009. The average effusion rate from April to July was 9.5 m3 s- 1. Early, rapid dome growth was characterized by extrusion of blocky lava that spread laterally within the summit crater. In mid-to-late April the volume of the dome had reached 36 × 106 m3, roughly half of the total volume, and dome growth within the summit crater began to be limited by confining crater walls to the south, east, and west. Once the dome reached the steep, north-sloping gorge that breaches the crater, growth decreased to the south, but the dome continued to inflate and extend northward down the gorge. Effusion slowed during 16 April-1 May, but in early May the rate increased again. This rate increase was accompanied by a transition to exogenous dome growth. From mid-May to July the effusion rate consistently declined. The decrease is consistent with observations of reduced seismicity, gas emission, and thermal anomalies, as well as declining rates of geodetic deflation or inflation. These trends

  15. INERTIAL INSTRUMENT SYSTEM FOR AERIAL SURVEYING.

    USGS Publications Warehouse

    Brown, Russell H.; Chapman, William H.; Hanna, William F.; Mongan, Charles E.; Hursh, John W.

    1987-01-01

    The purpose of this report is to describe an inertial guidance or navigation system that will enable use of relatively light aircraft for efficient data-gathering in geologgy, hydrology, terrain mapping, and gravity-field mapping. The instrument system capitalizes not only on virtual state-of-the-art inertial guidance technology but also on similarly advanced technology for measuring distance with electromagnetic radiating devices. The distance measurement can be made with a transceiver beamed at either a cooperative taget, with a specially designed reflecting surface, or a noncooperative target, such as the Earth's surface. The instrument system features components that use both techniques. Thus, a laser tracker device, which updates the inertial guidance unit or navigator in flight, makes distance measurements to a retroreflector target mounted at a ground-control point; a laser profiler device, beamed vertically downward, makes distance measurements to the Earth's surface along a path that roughly mirrors the aircraft flight path.

  16. A simplified close range photogrammetric technique for soil erosion assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface reconstruction using digital photogrammetry offers a great advantage for soil erosion research. The technology can be cumbersome for field application as it relies on the accurate measurement of control points often using a survey grade instruments. Also, even though digital photogrammetry h...

  17. A simplified close range photogrammetric technique for soil erosion assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface reconstruction using digital photogrammetry offers a great advantage for soil erosion research. The technology can be cumbersome for field application as it relies on the accurate measurement of control points often using a survey grade instrument. Also, even though digital photogrammetry ha...

  18. 2. AERIAL VIEW OF MINUTEMAN SILOS. Low oblique aerial view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. AERIAL VIEW OF MINUTEMAN SILOS. Low oblique aerial view (original in color) of the two launch silos, covered. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Missile Silo Type, Test Area 1-100, northeast end of Test Area 1-100 Road, Boron, Kern County, CA

  19. Aerial Video Imaging

    NASA Technical Reports Server (NTRS)

    1991-01-01

    When Michael Henry wanted to start an aerial video service, he turned to Johnson Space Center for assistance. Two NASA engineers - one had designed and developed TV systems in Apollo, Skylab, Apollo- Soyuz and Space Shuttle programs - designed a wing-mounted fiberglass camera pod. Camera head and angles are adjustable, and the pod is shaped to reduce vibration. The controls are located so a solo pilot can operate the system. A microprocessor displays latitude, longitude, and bearing, and a GPS receiver provides position data for possible legal references. The service has been successfully utilized by railroads, oil companies, real estate companies, etc.

  20. Bare-Earth Extraction and DTM Generation from Photogrammetric Point Clouds with a Partial Use of AN Existing Lower Resolution DTM

    NASA Astrophysics Data System (ADS)

    Debella-Gilo, M.

    2016-06-01

    A method of extracting bare-earth points from photogrammetric point clouds by partially using an existing lower resolution digital terrain model (DTM) is presented. The bare-earth points are extracted based on a threshold defined by local slope. The local slope is estimated from the lower resolution DTM. A gridded DTM is then interpolated from the extracted bare-earth points. Five different interpolation algorithms are implemented and evaluated to identify the most suitable interpolation method for such non-uniformly scattered data. The algorithm is tested on four test sites with varying topographic and ground cover characteristics. The results are evaluated against a reference DTM created using aerial laser scanning. The deviations of the extracted bare-earth points, and the interpolated DTM, from the reference DTM increases with increasing forest canopy density and terrain roughness. The DTM created by the method is significantly closer to the reference DTM than the lower resolution national DTM. The ANUDEM (Australian National University Digital Elevation Modelling) interpolation method is found to be the best performing interpolation method in terms of reducing the deviations and in terms of modelling the terrain realistically with minimum artefacts, although the differences among the interpolation methods are not considerably large.

  1. Photogrammetric Data Set, 1957-2000, and Bathymetric Measurements for Columbia Glacier, Alaska

    USGS Publications Warehouse

    Krimmel, Robert M.

    2001-01-01

    Major changes in the length, speed, surface altitude, and calving rate of Columbia Glacier, Alaska have been recorded with stereo vertical photography acquired on 119 dates from 1957 to 2000. Photogrammetric analysis of this photographic record has resulted in precise measurement of these changes. From 1982 to 2000 Columbia Glacier retreated 12 kilometers, reduced its thickness by as much as 400 meters, increased its speed from about 5 to 30 meters per day, and increased its calving rate from 3 to 18 million cubic meters per day. All photogrammetric data for Columbia Glacier from 1957 to 2000 are included in this report, as well as supplemental data of ice-dammed lake surface levels, stagnant ice ablation rate, forebay bathymetry, ground control, and camera calibrations. These data are contained in 481 files, all preserved on a CD-ROM included with this report.

  2. Close-Range Photogrammetric Measurement of Static Deflections for an Aeroelastic Supercritical Wing

    NASA Technical Reports Server (NTRS)

    Byrdsong, Thomas A.; Adams, Richard R.; Sandford, Maynard C.

    1990-01-01

    Close range photogrammetric measurements were made for the lower wing surface of a full span aspect ratio 10.3 aeroelastic supercritical research wing. The measurements were made during wind tunnel tests for quasi-steady pressure distributions on the wing. The tests were conducted in the NASA Langley Transonic Dynamics Tunnel at Mach numbers up to 0.90 and dynamic pressures up to 300 pounds per square foot. Deflection data were obtained for 57 locations on the wing lower surface using dual non-metric cameras. Representative data are presented as graphical overview to show variations and trends of spar deflection with test variables. Comparative data are presented for photogrammetric and cathetometric results of measurements for the wing tip deflections. A tabulation of the basic measurements is presented in a supplement to this report.

  3. Aerial thermography in archaeological prospection: Applications & processing

    NASA Astrophysics Data System (ADS)

    Cool, Autumn Chrysantha

    Aerial thermography is one of the least utilized archaeological prospection methods, yet it has great potential for detecting anthropogenic anomalies. Thermal infrared radiation is absorbed and reemitted at varying rates by all objects on and within the ground depending upon their density, composition, and moisture content. If an area containing archaeological features is recorded at the moment when their thermal signatures most strongly contrast with that of the surrounding matrix, they can be visually identified in thermal images. Research conducted in the 1960s and 1970s established a few basic rules for conducting thermal survey, but the expense associated with the method deterred most archaeologists from using this technology. Subsequent research was infrequent and almost exclusively appeared in the form of case studies. However, as the current proliferation of unmanned aerial vehicles (UAVs) and compact thermal cameras draws renewed attention to aerial thermography as an attractive and exciting form of survey, it is appropriate and necessary to reevaluate our approach. In this thesis I have taken a two-pronged approach. First, I built upon the groundwork of earlier researchers and created an experiment to explore the impact that different environmental and climatic conditions have on the success or failure of thermal imaging. I constructed a test site designed to mimic a range of archaeological features and imaged it under a variety of conditions to compare and contrast the results. Second, I explored a new method for processing thermal data that I hope will lead to a means of reducing noise and increasing the clarity of thermal images. This step was done as part of a case study so that the effectiveness of the processing method could be evaluated by comparison with the results of other geophysical surveys.

  4. Photogrammetric technique for in-flight ranging of trailing vortices using entrained balloons

    NASA Astrophysics Data System (ADS)

    Snow, Walter L.; Burner, Alpheus W.; Goad, William K.

    A method for experimentally determining the radial distance of a probe aircraft from a trailing vortex is described. The method relies on photogrammetric triangulation of targets entrained in the vortex core. The theory and preliminary testing were described using laboratory mock-ups. Solid state video cameras were to provide data at 300 Hz rates. Practical methods for seeding the vortex are under separate investigation and are not addressed.

  5. Photogrammetric technique for in-flight ranging of trailing vortices using entrained balloons

    NASA Technical Reports Server (NTRS)

    Snow, Walter L.; Burner, Alpheus W.; Goad, William K.

    1989-01-01

    A method for experimentally determining the radial distance of a probe aircraft from a trailing vortex is described. The method relies on photogrammetric triangulation of targets entrained in the vortex core. The theory and preliminary testing were described using laboratory mock-ups. Solid state video cameras were to provide data at 300 Hz rates. Practical methods for seeding the vortex are under separate investigation and are not addressed.

  6. A rapid method for obtaining frequency-response functions for multiple input photogrammetric data

    NASA Technical Reports Server (NTRS)

    Kroen, M. L.; Tripp, J. S.

    1984-01-01

    A two-digital-camera photogrammetric technique for measuring the motion of a vibrating spacecraft structure or wing surface and an applicable data-reduction algorithm are presented. The 3D frequency-response functions are obtained by coordinate transformation from averaged cross and autopower spectra derived from the 4D camera coordinates by Fourier transformation. Error sources are investigated analytically, and sample results are shown in graphs.

  7. A Photogrammetric System for Model Attitude Measurement in Hypersonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Jones, Thomas W.; Lunsford, Charles B.

    2007-01-01

    A series of wind tunnel tests have been conducted to evaluate a multi-camera videogrammetric system designed to measure model attitude in hypersonic facilities. The technique utilizes processed video data and photogrammetric principles for point tracking to compute model position including pitch, roll and yaw. A discussion of the constraints encountered during the design, and a review of the measurement results obtained from the NASA Langley Research Center (LaRC) 31-Inch Mach 10 tunnel are presented.

  8. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Availability of aerial photography. 611.21 Section 611.21 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS SOIL SURVEYS Cartographic...

  9. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Availability of aerial photography. 611.21 Section 611.21 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS SOIL SURVEYS Cartographic...

  10. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Availability of aerial photography. 611.21 Section 611.21 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS SOIL SURVEYS Cartographic...

  11. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Availability of aerial photography. 611.21 Section 611.21 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS SOIL SURVEYS Cartographic...

  12. Comparison of Computer Vision and Photogrammetric Approaches for Epipolar Resampling of Image Sequence

    PubMed Central

    Kim, Jae-In; Kim, Taejung

    2016-01-01

    Epipolar resampling is the procedure of eliminating vertical disparity between stereo images. Due to its importance, many methods have been developed in the computer vision and photogrammetry field. However, we argue that epipolar resampling of image sequences, instead of a single pair, has not been studied thoroughly. In this paper, we compare epipolar resampling methods developed in both fields for handling image sequences. Firstly we briefly review the uncalibrated and calibrated epipolar resampling methods developed in computer vision and photogrammetric epipolar resampling methods. While it is well known that epipolar resampling methods developed in computer vision and in photogrammetry are mathematically identical, we also point out differences in parameter estimation between them. Secondly, we tested representative resampling methods in both fields and performed an analysis. We showed that for epipolar resampling of a single image pair all uncalibrated and photogrammetric methods tested could be used. More importantly, we also showed that, for image sequences, all methods tested, except the photogrammetric Bayesian method, showed significant variations in epipolar resampling performance. Our results indicate that the Bayesian method is favorable for epipolar resampling of image sequences. PMID:27011186

  13. Validating Photogrammetric Orientation Steps by the Use of Relevant Theoretical Models. Implementation in the "ARPENTEUR" Framework

    NASA Astrophysics Data System (ADS)

    Mahiddine, A.; Seinturier, J.; Peloso, D.; Boulaassal, H.; Boï, J.-M.; Merad, D.; Drap, P.

    2013-07-01

    The new advance in photogrammetry using the automatic procedures such as the famous algorithm which was proposed by David Lowe (Lowe, 2004) features descriptors and matching (SIFT) and then the recent development of external orientation (Nister (Stewenius et alii, 2006) or Snavely (Snavely et alii, 2010)) have changed drastically the way of measuring space with photogrammetry. The complexity of the process and the huge quantity of processed data (thousands of photographs) makes difficult validating the different process steps. We propose in this paper several theoretical model generation methods in order to validate the complete photogrammetric orientation process. A theoretical photogrammetric model generation has been developed in order to produce photographs, photo orientation, 3D points and 2D observations according to some defined camera and a parametric photograph distribution in the scene. In addition the use of synthesis image software generation as POV-Ray allow us to generate set of photographs with pre-computed internal and external orientation in order to check the whole pipeline from feature extraction to Photographs External Orientation. We apply this model generation approach to several typical geometry of photogrammetric scene, stereo, parallel triplet, parallel strip and convergent models.

  14. Photogrammetric Deflection Measurements for the Tiltrotor Test Rig (TTR) Multi-Component Rotor Balance Calibration

    NASA Technical Reports Server (NTRS)

    Solis, Eduardo; Meyn, Larry

    2016-01-01

    Calibrating the internal, multi-component balance mounted in the Tiltrotor Test Rig (TTR) required photogrammetric measurements to determine the location and orientation of forces applied to the balance. The TTR, with the balance and calibration hardware attached, was mounted in a custom calibration stand. Calibration loads were applied using eleven hydraulic actuators, operating in tension only, that were attached to the forward frame of the calibration stand and the TTR calibration hardware via linkages with in-line load cells. Before the linkages were installed, photogrammetry was used to determine the location of the linkage attachment points on the forward frame and on the TTR calibration hardware. Photogrammetric measurements were used to determine the displacement of the linkage attachment points on the TTR due to deflection of the hardware under applied loads. These measurements represent the first photogrammetric deflection measurements to be made to support 6-component rotor balance calibration. This paper describes the design of the TTR and the calibration hardware, and presents the development, set-up and use of the photogrammetry system, along with some selected measurement results.

  15. Automatic Orientation and Mosaicking of Archived Aerial Photography Using Structure from Motion

    NASA Astrophysics Data System (ADS)

    Gonçalves, J. A.

    2016-03-01

    Aerial photography has been acquired regularly for topographic mapping since the decade of 1930. In Portugal there are several archives of aerial photos in national mapping institutes, as well as in local authorities, containing a total of nearly one hundred thousand photographs, mainly from the 1940s, 1950s and some from 1930s. These data sets provide important information about the evolution of the territory, for environment and agricultural studies, land planning, and many other examples. There is an interest in making these aerial coverages available in the form of orthorectified mosaics for integration in a GIS. The orthorectification of old photographs may pose several difficulties. Required data about the camera and lens system used, such as the focal distance, fiducial marks coordinates or distortion parameters may not be available, making it difficult to process these data in conventional photogrammetric software. This paper describes an essentially automatic methodology for orientation, orthorectification and mosaic composition of blocks of old aerial photographs, using Agisoft Photoscan structure from motion software. The operation sequence is similar to the processing of UAV imagery. The method was applied to photographs from 1947 and 1958, provided by the Portuguese Army Geographic Institute. The orientation was done with GCPs collected from recent orthophototos and topographic maps. This may be a difficult task, especially in urban areas that went through many changes. Residuals were in general below 1 meter. The agreement of the orthomosaics with recent orthophotos and GIS vector data was in general very good. The process is relatively fast and automatic, and can be considered in the processing of full coverages of old aerial photographs.

  16. The evaluation of unmanned aerial system-based photogrammetry and terrestrial laser scanning to generate DEMs of agricultural watersheds

    NASA Astrophysics Data System (ADS)

    Ouédraogo, Mohamar Moussa; Degré, Aurore; Debouche, Charles; Lisein, Jonathan

    2014-06-01

    Agricultural watersheds tend to be places of intensive farming activities that permanently modify their microtopography. The surface characteristics of the soil vary depending on the crops that are cultivated in these areas. Agricultural soil microtopography plays an important role in the quantification of runoff and sediment transport because the presence of crops, crop residues, furrows and ridges may impact the direction of water flow. To better assess such phenomena, 3-D reconstructions of high-resolution agricultural watershed topography are essential. Fine-resolution topographic data collection technologies can be used to discern highly detailed elevation variability in these areas. Knowledge of the strengths and weaknesses of existing technologies used for data collection on agricultural watersheds may be helpful in choosing an appropriate technology. This study assesses the suitability of terrestrial laser scanning (TLS) and unmanned aerial system (UAS) photogrammetry for collecting the fine-resolution topographic data required to generate accurate, high-resolution digital elevation models (DEMs) in a small watershed area (12 ha). Because of farming activity, 14 TLS scans (≈ 25 points m- 2) were collected without using high-definition surveying (HDS) targets, which are generally used to mesh adjacent scans. To evaluate the accuracy of the DEMs created from the TLS scan data, 1098 ground control points (GCPs) were surveyed using a real time kinematic global positioning system (RTK-GPS). Linear regressions were then applied to each DEM to remove vertical errors from the TLS point elevations, errors caused by the non-perpendicularity of the scanner's vertical axis to the local horizontal plane, and errors correlated with the distance to the scanner's position. The scans were then meshed to generate a DEMTLS with a 1 × 1 m spatial resolution. The Agisoft PhotoScan and MicMac software packages were used to process the aerial photographs and generate a DEMPSC

  17. Photogrammetric Processing of IceBridge DMS Imagery into High-Resolution Digital Surface Models (DEM and Visible Overlay)

    NASA Astrophysics Data System (ADS)

    Arvesen, J. C.; Dotson, R. C.

    2014-12-01

    The DMS (Digital Mapping System) has been a sensor component of all DC-8 and P-3 IceBridge flights since 2009 and has acquired over 3 million JPEG images over Arctic and Antarctic land and sea ice. The DMS imagery is primarily used for identifying and locating open leads for LiDAR sea-ice freeboard measurements and documenting snow and ice surface conditions. The DMS is a COTS Canon SLR camera utilizing a 28mm focal length lens, resulting in a 10cm GSD and swath of ~400 meters from a nominal flight altitude of 500 meters. Exterior orientation is provided by an Applanix IMU/GPS which records a TTL pulse coincident with image acquisition. Notable for virtually all IceBridge flights is that parallel grids are not flown and thus there is no ability to photogrammetrically tie any imagery to adjacent flight lines. Approximately 800,000 Level-3 DMS Surface Model data products have been delivered to NSIDC, each consisting of a Digital Elevation Model (GeoTIFF DEM) and a co-registered Visible Overlay (GeoJPEG). Absolute elevation accuracy for each individual Elevation Model is adjusted to concurrent Airborne Topographic Mapper (ATM) Lidar data, resulting in higher elevation accuracy than can be achieved by photogrammetry alone. The adjustment methodology forces a zero mean difference to the corresponding ATM point cloud integrated over each DMS frame. Statistics are calculated for each DMS Elevation Model frame and show RMS differences are within +/- 10 cm with respect to the ATM point cloud. The DMS Surface Model possesses similar elevation accuracy to the ATM point cloud, but with the following advantages: · Higher and uniform spatial resolution: 40 cm GSD · 45% wider swath: 435 meters vs. 300 meters at 500 meter flight altitude · Visible RGB co-registered overlay at 10 cm GSD · Enhanced visualization through 3-dimensional virtual reality (i.e. video fly-through) Examples will be presented of the utility of these advantages and a novel use of a cell phone camera for

  18. Digital photogrammetric analysis and electrical resistivity tomography for investigating a landslide located in Basilicata region (southern Italy).

    NASA Astrophysics Data System (ADS)

    de Bari, C.; Lapenna, V.; Perrone, A.; Puglisi, C.; Sdao, F.

    2009-04-01

    The combined application of the most modern methodologies and techniques in the field of the remote sensing, of the geomorphology and of the applied geophysics is fundamental to define correct and practicable strategies for the hazard evaluation and for the damages estimate produced by a mass movements. The purpose is to consolidate and/or mitigate the landslide affected areas. The aim of this job has been to reconstruct the volumetric history and the geomorphologic evolution of the main landslide parts of a complex roto-translational slide that, because of the hard weather, in March of 2006 occurred in an area located in the Picerno (PZ) territory. The landslide is 600 m length and 230 m wide with a range of altimetry varying between 1072 m s.l.m. in the main crown and 978 m s.l.m. in the toe of the landslide. For studying this landslide, a multitemporal analysis on aerial photo of the years 1997, 2004 and 2007, in an apparent scale of 1:18000, has been applied by using the digital photogrammetric technique via the software SOCETSET version 5.4.1. For each year, the morphological characterization of the landslide body through digital photo interpretation at a maximum scale of 1:5000 has been performed, with the aim to identify the different geomorphological features (scarps, terraces, trench) and their development, and mainly the morphological units (displaced material) characterizing the investigated landslide. Then DEMs have been produced choosing a 5 x 5 m pixel by means of a grid adaptive inside the same polygon containing the whole landslide area. DEMs allowed us to generate correspondent orthophotos related to the three years too. By using the difference of DEMs in a GIS environment it has been possible to recognize areas affected by uplift (accumulation zone) or lowering (depleted zone), then to estimate for every geomorphological unit the altimetry variation during the time considered. Moreover, the volume of the material involved in the movement can be

  19. A comparison of photogrammetrically determined astronomical refraction of sunlight at high zenith angles with a ray-tracing computer model employing rawinsonde profiles

    NASA Astrophysics Data System (ADS)

    Sampson, Russell Dean

    2001-11-01

    Many important areas of science such as geodesy, astrometry, satellite navigation, and remote sensing require accurate understanding of the amount of astronomical refraction. However, very little work has been done to actually compare the observed and modelled astronomical refraction at high zenith angles. In this study, a ray tracing model using atmospheric data from rawinsondes is for the first time compared with the measured astronomical refraction presented by the setting Sun. These measurements were obtained on December 8, 14 and 22, 1998 from the campus of the University of Alberta in Edmonton, and the Stony Plain Upper Air Station, about 25 km west of Edmonton, Alberta. Astronomical refraction values were measured through a theodolite survey (Edmonton) and photogrammetry (Stony Plain). Photogrammetric images were obtained using a Questar 3.5 inch telescopic lens and then scanned on an Agfa Studio Scan 11 si flat bed colour scanner. Before accurate measurements could be extracted from the negatives, the camera and scanner required calibration. The calibration of the scanner found systematic linear and non-linear distortions of less than 0.6%. The calibration of a consumer grade flatbed scanner has so far, not appeared in the literature. Photographs of star fields were used to determine the focal length (1445.3 +/- 3.6 mm) and the distortions of the Questar lens. A terrestrial calibration method helped verify these results. Both methods showed no measurable lens distortion. The photogrammetric calibration of a Questar 3.5 inch telescopic lens has not appeared in the literature. The theodolite measurements of astronomical refraction from Edmonton and photogrammetric measurements from Stony Plain showed good agreement with the refraction model for the December 14 and 22 sunsets. The poorest fit occurred during the December 8 sunset when a substantial horizontal temperature gradient was present. From conversations with Environment Canada employees it is also

  20. Radiological Disaster Simulators for Field and Aerial Measurements

    SciTech Connect

    H. W. Clark, Jr

    2002-11-01

    Simulators have been developed to dramatically improve the fidelity of play for field monitors and aircraft participating in radiological disaster drills and exercises. Simulated radiological measurements for the current Global Positioning System (GPS) location are derived from realistic models of radiological consequences for accidents and malicious acts. The aerial version outputs analog pulses corresponding to the signal that would be produced by various NaI (Tl) detectors at that location. The field monitor version reports the reading for any make/model of survey instrument selected. Position simulation modes are included in the aerial and field versions. The aerial version can generate a flight path based on input parameters or import an externally generated sequence of latitude and longitude coordinates. The field version utilizes a map-based point and click/drag interface to generate individual or a sequence of evenly spaced instrument measurements.

  1. Geodetic mass balance record with rigorous uncertainty estimates deduced from aerial photographs and lidar data - Case study from Drangajökull ice cap, NW Iceland

    NASA Astrophysics Data System (ADS)

    Magnússon, E.; Muñoz-Cobo Belart, J.; Pálsson, F.; Ágústsson, H.; Crochet, P.

    2016-01-01

    In this paper we describe how recent high-resolution digital elevation models (DEMs) can be used to extract glacier surface DEMs from old aerial photographs and to evaluate the uncertainty of the mass balance record derived from the DEMs. We present a case study for Drangajökull ice cap, NW Iceland. This ice cap covered an area of 144 km2 when it was surveyed with airborne lidar in 2011. Aerial photographs spanning all or most of the ice cap are available from survey flights in 1946, 1960, 1975, 1985, 1994 and 2005. All ground control points used to constrain the orientation of the aerial photographs were obtained from the high-resolution lidar DEM. The lidar DEM was also used to estimate errors of the extracted photogrammetric DEMs in ice- and snow-free areas, at nunataks and outside the glacier margin. The derived errors of each DEM were used to constrain a spherical semivariogram model, which along with the derived errors in ice- and snow-free areas were used as inputs into 1000 sequential Gaussian simulations (SGSims). The simulations were used to estimate the possible bias in the entire glaciated part of the DEM and the 95 % confidence level of this bias. This results in bias correction varying in magnitude between 0.03 m (in 1975) and 1.66 m (in 1946) and uncertainty values between ±0.21 m (in 2005) and ±1.58 m (in 1946). Error estimation methods based on more simple proxies would typically yield 2-4 times larger error estimates. The aerial photographs used were acquired between late June and early October. An additional seasonal bias correction was therefore estimated using a degree-day model to obtain the volume change between the start of 2 glaciological years (1 October). This correction was largest for the 1960 DEM, corresponding to an average elevation change of -3.5 m or approx. three-quarters of the volume change between the 1960 and the 1975 DEMs. The total uncertainty of the derived mass balance record is dominated by uncertainty in the volume

  2. Aerial Refueling Clearance Process Guide

    DTIC Science & Technology

    2014-08-21

    08-2014 2. REPORT TYPE Guidance Document 3. DATES COVERED 2008-2014 4. TITLE AND SUBTITLE Aerial Refueling Clearance Process Guide Attachment: Aerial...ATP-3.3.4.2 covers general operational procedures for AR and national/organizational SRDs cover data and procedures specific to their AR platforms...Receptacle, Probe/Drogue, and BDA Kit. 3.1.3 The items for assessment consideration cover several areas of interface for both the tanker and the

  3. An automatic high precision registration method between large area aerial images and aerial light detection and ranging data

    NASA Astrophysics Data System (ADS)

    Du, Q.; Xie, D.; Sun, Y.

    2015-06-01

    The integration of digital aerial photogrammetry and Light Detetion And Ranging (LiDAR) is an inevitable trend in Surveying and Mapping field. We calculate the external orientation elements of images which identical with LiDAR coordinate to realize automatic high precision registration between aerial images and LiDAR data. There are two ways to calculate orientation elements. One is single image spatial resection using image matching 3D points that registered to LiDAR. The other one is Position and Orientation System (POS) data supported aerotriangulation. The high precision registration points are selected as Ground Control Points (GCPs) instead of measuring GCPs manually during aerotriangulation. The registration experiments indicate that the method which registering aerial images and LiDAR points has a great advantage in higher automation and precision compare with manual registration.

  4. Photogrammetric Metrology for the James Webb Space Telescope Integrated Science Instrument Module

    NASA Technical Reports Server (NTRS)

    Nowak, Maria; Crane, Allen; Davila, Pam; Eichhorn, William; Gill, James; Herrera, Acey; Hill, Michael; Hylan, Jason; Jetten, Mark; Marsh, James; Ohl, Raymond; Quigley, Rob; Redman, Kevin; Sampler, Henry; Wright, Geraldine; Young, Philip

    2007-01-01

    The James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (approximately 40K). The JWST Observatory architecture includes the Optical Telescope Element and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. The ISM optical metering structure is a roughly 2.2x1.7x2.2m, asymmetric frame that is composed of carbon fiber and resin tubes bonded to invar end fittings and composite gussets and clips. The structure supports the SIs, isolates the SIs from the OTE, and supports thermal and electrical subsystems. The structure is attached to the OTE structure via strut-like kinematic mounts. The ISIM structure must meet its requirements at the approximately 40K cryogenic operating temperature. The SIs are aligned to the structure's coordinate system under ambient, clean room conditions using laser tracker and theodolite metrology. The ISIM structure is thermally cycled for stress relief and in order to measure temperature-induced mechanical, structural changes. These ambient-to-cryogenic changes in the alignment of SI and OTE-related interfaces are an important component in the JWST Observatory alignment plan and must be verified. We report on the planning for and preliminary testing of a cryogenic metrology system for ISIM based on photogrammetry. Photogrammetry is the measurement of the location of custom targets via triangulation using images obtained at a suite of digital camera locations and orientations. We describe metrology system requirements, plans, and ambient photogrammetric measurements of a mock-up of the ISIM structure to design targeting and obtain resolution estimates. We compare these measurements with those taken from a well known ambient metrology system, namely, the Leica laser tracker system. We also describe the data reduction algorithm planned to interpret cryogenic data from the Flight structure. Photogrammetry was

  5. A multi-range approach for Cultural Heritage survey: a case study in Mantua Unesco site

    NASA Astrophysics Data System (ADS)

    Chiarini, S.; Cremonesi, S.; Fregonese, L.; Fassi, F.; Taffurelli, L.

    2014-06-01

    In this paper, a Cultural Heritage survey, performed by employing and integrating different type of acquisition technologies (imagebased and active sensor based) is presented. The aim of the survey is to create a 3D multiscale database, therefore, different restitution scales, from the architectural-urban one to a detail one are taken in consideration. This research is part of a project financed by the Unesco for the study of historical gardens located in Mantua and Sabbioneta, and in particular for the Palazzo Te renaissance gardens in Mantua, which are reported in this paper. First of all, a general survey of the area has been realized by employing the classical aerial photogrammetry in order to provide the actual arboreal and urban furniture conditions of the gardens (1:500 scale). Next, a detailed photogrammetric survey of the Esedra courtyard in Palazzo Te has been performed by using a UAV system. At the end, laser scanning and traditional topography have been used for the terrestrial detailed acquisition of gardens and architectural façades (1:50-1:20 scale). The aim of this research is to create a suitable graphical documentation support for the study of the structure of the gardens, to analyze how they have been modified over the years and as an effective support for eventual future re-design. Moreover, the research has involved a certain number of botanic and archeological investigations, which have been duly acquired and modeled with image based systems. Starting from the acquired datasets with their acquisition scales, a series of comparative analysis have been performed, especially for those areas in which all the systems have been employed. The comparisons have been extracted by analyzing point cloud models obtained by using a topographical network. As a result, the multi-range approach efficiency, obtained by employing the actual available technologies have been illustrated in the present work.

  6. Multi-temporal monitoring of a regional riparian buffer network (>12,000 km) with LiDAR and photogrammetric point clouds.

    PubMed

    Michez, Adrien; Piégay, Hervé; Lejeune, Philippe; Claessens, Hugues

    2017-02-24

    Riparian buffers are of major concern for land and water resource managers despite their relatively low spatial coverage. In Europe, this concern has been acknowledged by different environmental directives which recommend multi-scale monitoring (from local to regional scales). Remote sensing methods could be a cost-effective alternative to field-based monitoring, to build replicable "wall-to-wall" monitoring strategies of large river networks and associated riparian buffers. The main goal of our study is to extract and analyze various parameters of the riparian buffers of up to 12,000 km of river in southern Belgium (Wallonia) from three-dimensional (3D) point clouds based on LiDAR and photogrammetric surveys to i) map riparian buffers parameters on different scales, ii) interpret the regional patterns of the riparian buffers and iii) propose new riparian buffer management indicators. We propose different strategies to synthesize and visualize relevant information at different spatial scales ranging from local (<10 km) to regional scale (>12,000 km). Our results showed that the selected parameters had a clear regional pattern. The reaches of Ardenne ecoregion have channels with the highest flow widths and shallowest depths. In contrast, the reaches of the Loam ecoregion have the narrowest and deepest flow channels. Regional variability in channel width and depth is used to locate management units potentially affected by human impact. Riparian forest of the Loam ecoregion is characterized by the lowest longitudinal continuity and mean tree height, underlining significant human disturbance. As the availability of 3D point clouds at the regional scale is constantly growing, our study proposes reproducible methods which can be integrated into regional monitoring by land managers. With LiDAR still being relatively expensive to acquire, the use of photogrammetric point clouds combined with LiDAR data is a cost-effective means to update the characterization of the

  7. Dot Projection Photogrammetric Technique for Shape Measurements of Aerospace Test Articles

    NASA Technical Reports Server (NTRS)

    Jones, Thomas W.; Pappa, Richard S.

    2002-01-01

    Results from initial laboratory investigations with the dot projection photogrammetric technique are presented for three wind-tunnel test articles with a range of surface scattering and reflection properties. These test articles are a semispan model and a micro air vehicle with a latex wing that are both diffusely reflecting, and a highly polished specularly reflecting model used for high Reynolds number testing. Results using both white light and laser illumination are presented. Some of the advantages and limitations of the dot projection technique are discussed. Although a desirable final outcome of this research effort is the characterization of dynamic behavior, only static laboratory results are presented in this preliminary effort.

  8. A refrigerated web camera for photogrammetric video measurement inside biomass boilers and combustion analysis.

    PubMed

    Porteiro, Jacobo; Riveiro, Belén; Granada, Enrique; Armesto, Julia; Eguía, Pablo; Collazo, Joaquín

    2011-01-01

    This paper describes a prototype instrumentation system for photogrammetric measuring of bed and ash layers, as well as for flying particle detection and pursuit using a single device (CCD) web camera. The system was designed to obtain images of the combustion process in the interior of a domestic boiler. It includes a cooling system, needed because of the high temperatures in the combustion chamber of the boiler. The cooling system was designed using CFD simulations to ensure effectiveness. This method allows more complete and real-time monitoring of the combustion process taking place inside a boiler. The information gained from this system may facilitate the optimisation of boiler processes.

  9. A close-range photogrammetric system for 3-D measurements and perspective diagramming in biomechanics.

    PubMed

    Ghosh, S K

    1983-01-01

    Criteria considered in developing a close-range photogrammetric three-dimensional mapping system and its overall performance are discussed. The system consists of a stereophotographic capability of two cameras with synchronized shutters, a stereoplotting instrument with three-dimensional digitizing capability and a Calcomp plotter. Mapping of human knee-bones (femur and tibia) and perspective diagramming for various attitudes of one bone head with regard to the other are illustrated. The system works off-line with respect to the three principal components. The system is fully operational and is considered very efficient with regard to the current needs. Various possibilities are discussed.

  10. Polarization and Color Filtering Applied to Enhance Photogrammetric Measurements of Reflective Surfaces

    NASA Technical Reports Server (NTRS)

    Wells, Jeffrey M.; Jones, Thomas W.; Danehy, Paul M.

    2005-01-01

    Techniques for enhancing photogrammetric measurement of reflective surfaces by reducing noise were developed utilizing principles of light polarization. Signal selectivity with polarized light was also compared to signal selectivity using chromatic filters. Combining principles of linear cross polarization and color selectivity enhanced signal-to-noise ratios by as much as 800 fold. More typical improvements with combining polarization and color selectivity were about 100 fold. We review polarization-based techniques and present experimental results comparing the performance of traditional retroreflective targeting materials, cornercube targets returning depolarized light, and color selectivity.

  11. Refined Satellite Image Orientation in the Free Open-Source Photogrammetric Tools Apero/micmac

    NASA Astrophysics Data System (ADS)

    Rupnik, E.; Pierrot Deseilligny, M.; Delorme, A.; Klinger, Y.

    2016-06-01

    This publication presents the RPC-based bundle adjustment implemented in the freeware open-source photogrammetric tool Apero/MicMac. The bundle adjustment model is based on some polynomial correction functions, enriched with a physical constraint that introduces the notion of a global sensor rotation into the model. The devised algorithms are evaluated against two datasets consisting of two stereo and a triplet pair of the Pleiades images. Two sets of correction functions and a number of GCPs configurations are examined. The obtained geo-referencing accuracy falls below the size of 1GSD.

  12. Accurate documentation in cultural heritage by merging TLS and high-resolution photogrammetric data

    NASA Astrophysics Data System (ADS)

    Grussenmeyer, Pierre; Alby, Emmanuel; Assali, Pierre; Poitevin, Valentin; Hullo, Jean-François; Smigiel, Eddie

    2011-07-01

    Several recording techniques are used together in Cultural Heritage Documentation projects. The main purpose of the documentation and conservation works is usually to generate geometric and photorealistic 3D models for both accurate reconstruction and visualization purposes. The recording approach discussed in this paper is based on the combination of photogrammetric dense matching and Terrestrial Laser Scanning (TLS) techniques. Both techniques have pros and cons, and criteria as geometry, texture, accuracy, resolution, recording and processing time are often compared. TLS techniques (time of flight or phase shift systems) are often used for the recording of large and complex objects or sites. Point cloud generation from images by dense stereo or multi-image matching can be used as an alternative or a complementary method to TLS. Compared to TLS, the photogrammetric solution is a low cost one as the acquisition system is limited to a digital camera and a few accessories only. Indeed, the stereo matching process offers a cheap, flexible and accurate solution to get 3D point clouds and textured models. The calibration of the camera allows the processing of distortion free images, accurate orientation of the images, and matching at the subpixel level. The main advantage of this photogrammetric methodology is to get at the same time a point cloud (the resolution depends on the size of the pixel on the object), and therefore an accurate meshed object with its texture. After the matching and processing steps, we can use the resulting data in much the same way as a TLS point cloud, but with really better raster information for textures. The paper will address the automation of recording and processing steps, the assessment of the results, and the deliverables (e.g. PDF-3D files). Visualization aspects of the final 3D models are presented. Two case studies with merged photogrammetric and TLS data are finally presented: - The Gallo-roman Theatre of Mandeure, France); - The

  13. Photogrammetric recognition of subglacial drainage channels during glacier lake outburst events

    NASA Astrophysics Data System (ADS)

    Schwalbe, Ellen; Koschitzki, Robert

    2016-04-01

    In recent years, many glaciers all over the world have been distinctly retreating and thinning. One of the consequences of this is the increase of so called glacier lake outburst flood events (GLOFs): Lakes that have been dammed by a glacier spontaneously start to drain through a subglacial channel underneath the glacier due to their outweighing hydrostatic pressure. In a short period of time, the lake water drains under the glacier and causes floods in downstream valleys. In many cases the latter become hazardous for people and their property. Due to glacier movement, the tunnel will soon collapse, and the glacier lake refills, thus starting a new GLOF cycle. The mechanisms ruling GLOF events are yet still not fully understood by glaciologists. Thus, there is a demand for data and measurement values that can help to understand and model the phenomena. In view of the above, we will show how photogrammetric image sequence analysis can be used to collect data which allows for drawing conclusions about the location and development of a subglacial channel. The work is a follow-up on earlier work on a photogrammetric GLOF early warning system (Mulsow et. al., 2013). For the purpose of detecting the subglacial tunnel, a camera has been installed in a pilot study to observe the area of the Colonia glacier (Northern Patagonian ice field) where it dams the lake Lago Cachet II. To verify the hypothesis, that the course of the subglacial tunnel is indicated by irregular surface motion patterns during its collapse, the camera acquired image sequences of the glacier surface during several GLOF events. Applying LSM-based tracking techniques to these image sequences, surface feature motion trajectories could be obtained for a dense raster of glacier points. Since only a single camera has been used for image sequence acquisition, depth information is required to scale the trajectories. Thus, for scaling and georeferencing of the measurements a GPS-supported photogrammetric network

  14. A Refrigerated Web Camera for Photogrammetric Video Measurement inside Biomass Boilers and Combustion Analysis

    PubMed Central

    Porteiro, Jacobo; Riveiro, Belén; Granada, Enrique; Armesto, Julia; Eguía, Pablo; Collazo, Joaquín

    2011-01-01

    This paper describes a prototype instrumentation system for photogrammetric measuring of bed and ash layers, as well as for flying particle detection and pursuit using a single device (CCD) web camera. The system was designed to obtain images of the combustion process in the interior of a domestic boiler. It includes a cooling system, needed because of the high temperatures in the combustion chamber of the boiler. The cooling system was designed using CFD simulations to ensure effectiveness. This method allows more complete and real-time monitoring of the combustion process taking place inside a boiler. The information gained from this system may facilitate the optimisation of boiler processes. PMID:22319349

  15. Spatially explicit rangeland erosion monitoring using high-resolution digital aerial imagery

    USGS Publications Warehouse

    Gillan, Jeffrey K.; Karl, Jason W.; Barger, Nichole N.; Elaksher, Ahmed; Duniway, Michael C.

    2016-01-01

    Nearly all of the ecosystem services supported by rangelands, including production of livestock forage, carbon sequestration, and provisioning of clean water, are negatively impacted by soil erosion. Accordingly, monitoring the severity, spatial extent, and rate of soil erosion is essential for long-term sustainable management. Traditional field-based methods of monitoring erosion (sediment traps, erosion pins, and bridges) can be labor intensive and therefore are generally limited in spatial intensity and/or extent. There is a growing effort to monitor natural resources at broad scales, which is driving the need for new soil erosion monitoring tools. One remote-sensing technique that can be used to monitor soil movement is a time series of digital elevation models (DEMs) created using aerial photogrammetry methods. By geographically coregistering the DEMs and subtracting one surface from the other, an estimate of soil elevation change can be created. Such analysis enables spatially explicit quantification and visualization of net soil movement including erosion, deposition, and redistribution. We constructed DEMs (12-cm ground sampling distance) on the basis of aerial photography immediately before and 1 year after a vegetation removal treatment on a 31-ha Piñon-Juniper woodland in southeastern Utah to evaluate the use of aerial photography in detecting soil surface change. On average, we were able to detect surface elevation change of ± 8−9cm and greater, which was sufficient for the large amount of soil movement exhibited on the study area. Detecting more subtle soil erosion could be achieved using the same technique with higher-resolution imagery from lower-flying aircraft such as unmanned aerial vehicles. DEM differencing and process-focused field methods provided complementary information and a more complete assessment of soil loss and movement than any single technique alone. Photogrammetric DEM differencing could be used as a technique to

  16. U. S. Department of Energy Aerial Measuring Systems

    SciTech Connect

    J. J. Lease

    1998-10-01

    The Aerial Measuring Systems (AMS) is an aerial surveillance system. This system consists of remote sensing equipment to include radiation detectors; multispectral, thermal, radar, and laser scanners; precision cameras; and electronic imaging and still video systems. This equipment, in varying combinations, is mounted in an airplane or helicopter and flown at different heights in specific patterns to gather various types of data. This system is a key element in the US Department of Energy's (DOE) national emergency response assets. The mission of the AMS program is twofold--first, to respond to emergencies involving radioactive materials by conducting aerial surveys to rapidly track and map the contamination that may exist over a large ground area and second, to conduct routinely scheduled, aerial surveys for environmental monitoring and compliance purposes through the use of credible science and technology. The AMS program evolved from an early program, begun by a predecessor to the DOE--the Atomic Energy Commission--to map the radiation that may have existed within and around the terrestrial environments of DOE facilities, which produced, used, or stored radioactive materials.

  17. Automatic Analysis and Classification of the Roof Surfaces for the Installation of Solar Panels Using a Multi-Data Source and Multi-Sensor Aerial Platform

    NASA Astrophysics Data System (ADS)

    López, L.; Lagüela, S.; Picon, I.; González-Aguilera, D.

    2015-02-01

    A low-cost multi-sensor aerial platform, aerial trike, equipped with visible and thermographic sensors is used for the acquisition of all the data needed for the automatic analysis and classification of roof surfaces regarding their suitability to harbour solar panels. The geometry of a georeferenced 3D point cloud generated from visible images using photogrammetric and computer vision algorithms, and the temperatures measured on thermographic images are decisive to evaluate the surfaces, slopes, orientations and the existence of obstacles. This way, large areas may be efficiently analysed obtaining as final result the optimal locations for the placement of solar panels as well as the required geometry of the supports for the installation of the panels in those roofs where geometry is not optimal.

  18. Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology1

    PubMed Central

    Cruzan, Mitchell B.; Weinstein, Ben G.; Grasty, Monica R.; Kohrn, Brendan F.; Hendrickson, Elizabeth C.; Arredondo, Tina M.; Thompson, Pamela G.

    2016-01-01

    Premise of the study: Low-elevation surveys with small aerial drones (micro–unmanned aerial vehicles [UAVs]) may be used for a wide variety of applications in plant ecology, including mapping vegetation over small- to medium-sized regions. We provide an overview of methods and procedures for conducting surveys and illustrate some of these applications. Methods: Aerial images were obtained by flying a small drone along transects over the area of interest. Images were used to create a composite image (orthomosaic) and a digital surface model (DSM). Vegetation classification was conducted manually and using an automated routine. Coverage of an individual species was estimated from aerial images. Results: We created a vegetation map for the entire region from the orthomosaic and DSM, and mapped the density of one species. Comparison of our manual and automated habitat classification confirmed that our mapping methods were accurate. A species with high contrast to the background matrix allowed adequate estimate of its coverage. Discussion: The example surveys demonstrate that small aerial drones are capable of gathering large amounts of information on the distribution of vegetation and individual species with minimal impact to sensitive habitats. Low-elevation aerial surveys have potential for a wide range of applications in plant ecology. PMID:27672518

  19. Archive of post-Hurricane Isabel coastal oblique aerial photographs collected during U.S. Geological Survey Field Activity 03CCH01 from Ocean City, Maryland, to Fort Caswell, North Carolina and Inland from Waynesboro to Redwood, Virginia, September 21 - 23, 2003

    USGS Publications Warehouse

    Subino, Janice A.; Morgan, Karen L.M.; Krohn, M. Dennis; Dadisman, Shawn V.

    2013-01-01

    On September 21 - 23, 2003, the United States Geological Survey (USGS) conducted an oblique aerial photographic survey along the Atlantic coast from Ocean City, Md., to Fort Caswell, N.C., and inland oblique aerial photographic survey from Waynesboro to Redwood, Va., aboard a Navajo Piper twin-engine airplane. The coastal survey was conducted at an altitude of 500 feet (ft) and approximately 1,000 ft offshore. For the inland photos, the aircraft tried to stay approximately 500 ft above the terrain. These coastal photos were used to document coastal changes like beach erosion and overwash caused by Hurricane Isabel, while the inland photos looked for potential landslides caused by heavy rains. The photos may also be used as baseline data for future coastal change analysis. The USGS and the National Aeronautics and Space Administration (NASA) surveyed the impact zone of Hurricane Isabel to better understand the changes in vulnerability of the Nation’s coasts to extreme storms (Morgan, 2009). This report serves as an archive of photographs collected during the September 21 - 23, 2003, post-Hurricane Isabel coastal and inland oblique aerial survey along with associated survey maps, KML files, navigation files, digital Field Activity Collection System (FACS) logs, and Federal Geographic Data Committee (FGDC) metadata. Refer to the Acronyms page for expansions of all acronyms and abbreviations used in this report. The USGS St. Petersburg Coastal and Marine Science Center (SPCMSC) assigns a unique identifier to each cruise or field activity. For example, 03CCH01 tells us the data were collected in 2003 for the Coastal Change Hazards (CCH) study and the data were collected during the first field activity for that project in that calendar year. Refer to http://walrus.wr.usgs.gov/infobank/programs/html/definition/activity.html for a detailed description of the method used to assign the ID number. The photographs provided here are Joint Photographic Experts Group (JPEG

  20. An aerial sightability model for estimating ferruginous hawk population size

    USGS Publications Warehouse

    Ayers, L.W.; Anderson, S.H.

    1999-01-01

    Most raptor aerial survey projects have focused on numeric description of visibility bias without identifying the contributing factors or developing predictive models to account for imperfect detection rates. Our goal was to develop a sightability model for nesting ferruginous hawks (Buteo regalis) that could account for nests missed during aerial surveys and provide more accurate population estimates. Eighteen observers, all unfamiliar with nest locations in a known population, searched for nests within 300 m of flight transects via a Maule fixed-wing aircraft. Flight variables tested for their influence on nest-detection rates included aircraft speed, height, direction of travel, time of day, light condition, distance to nest, and observer experience level. Nest variables included status (active vs. inactive), condition (i.e., excellent, good, fair, poor, bad), substrate type, topography, and tree density. A multiple logistic regression model identified nest substrate type, distance to nest, and observer experience level as significant predictors of detection rates (P < 0.05). The overall model was significant (??26 = 124.4, P < 0.001, n = 255 nest observations), and the correct classification rate was 78.4%. During 2 validation surveys, observers saw 23.7% (14/59) and 36.5% (23/63) of the actual population. Sightability model predictions, with 90% confidence intervals, captured the true population in both tests. Our results indicate standardized aerial surveys, when used in conjunction with the predictive sightability model, can provide unbiased population estimates for nesting ferruginous hawks.

  1. Error Due to Wing Bending in Single-Camera Photogrammetric Technique

    NASA Technical Reports Server (NTRS)

    Burner, Alpheus W., Jr.; Barrows, Danny A.

    2005-01-01

    The error due to wing bending introduced into single-camera photogrammetric computations used for the determination of wing twist or control surface angular deformation is described. It is shown that the error due to wing bending when determining main wing element-induced twist is typically less than 0.05deg at the wing tip and may not warrant additional correction. It is also shown that the angular error in control surface deformation due to bending can be as large as 1deg or more if the control surface is at a large deflection angle compared to the main wing element. A correction procedure suitable for control surface measurements is presented. Simulations of the error based on typical wind tunnel measurement geometry, and results from a controlled experimental test in the test section of the National Transonic Facility (NTF) are presented to confirm the validity of the method used for correction of control surface photogrammetric deformation data. An example of a leading edge (LE) slat measurement is presented to illustrate the error due to wing bending and its correction.

  2. A robust close-range photogrammetric target extraction algorithm for size and type variant targets

    NASA Astrophysics Data System (ADS)

    Nyarko, Kofi; Thomas, Clayton; Torres, Gilbert

    2016-05-01

    The Photo-G program conducted by Naval Air Systems Command at the Atlantic Test Range in Patuxent River, Maryland, uses photogrammetric analysis of large amounts of real-world imagery to characterize the motion of objects in a 3-D scene. Current approaches involve several independent processes including target acquisition, target identification, 2-D tracking of image features, and 3-D kinematic state estimation. Each process has its own inherent complications and corresponding degrees of both human intervention and computational complexity. One approach being explored for automated target acquisition relies on exploiting the pixel intensity distributions of photogrammetric targets, which tend to be patterns with bimodal intensity distributions. The bimodal distribution partitioning algorithm utilizes this distribution to automatically deconstruct a video frame into regions of interest (ROI) that are merged and expanded to target boundaries, from which ROI centroids are extracted to mark target acquisition points. This process has proved to be scale, position and orientation invariant, as well as fairly insensitive to global uniform intensity disparities.

  3. Experimental Photogrammetric Techniques Used on Five Full-Scale Aircraft Crash Tests

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.

    2016-01-01

    Between 2013 and 2015, full-scale crash tests were conducted on five aircraft at the Landing and Impact Research Facility (LandIR) at NASA Langley Research Center (LaRC). Two tests were conducted on CH-46E airframes as part of the Transport Rotorcraft Airframe Crash Testbed (TRACT) project, and three tests were conduced on Cessna 172 aircraft as part of the Emergency Locator Transmitter Survivability and Reliability (ELTSAR) project. Each test served to evaluate a variety of crashworthy systems including: seats, occupants, restraints, composite energy absorbing structures, and Emergency Locator Transmitters. As part of each test, the aircraft were outfitted with a variety of internal and external cameras that were focused on unique aspects of the crash event. A subset of three camera was solely used in the acquisition of photogrammetric test data. Examples of this data range from simple two-dimensional marker tracking for the determination of aircraft impact conditions to entire full-scale airframe deformation to markerless tracking of Anthropomorphic Test Devices (ATDs, a.k.a. crash test dummies) during the crash event. This report describes and discusses the techniques used and implications resulting from the photogrammetric data acquired from each of the five tests.

  4. Photogrammetric 3d Acquisition and Analysis of Medicamentous Induced Pilomotor Reflex ("goose Bumps")

    NASA Astrophysics Data System (ADS)

    Schneider, D.; Hecht, A.

    2016-06-01

    In a current study at the University Hospital Dresden, Department of Neurology, the autonomous function of nerve fibres of the human skin is investigated. For this purpose, a specific medicament is applied on a small area of the skin of a test person which results in a local reaction (goose bumps). Based on the extent of the area, where the stimulation of the nerve fibres is visible, it can be concluded how the nerve function of the skin works. The aim of the investigation described in the paper is to generate 3D data of these goose bumps. Therefore, the paper analyses and compares different photogrammetric surface measurement techniques in regard to their suitability for the 3D acquisition of silicone imprints of the human skin. Furthermore, an appropriate processing procedure for analysing the recorded point cloud data is developed and presented. It was experimentally proven that by using (low-cost) photogrammetric techniques medicamentous induced goose bumps can be acquired in three dimensions and can be analysed almost fully automatically from the perspective of medical research questions. The relative accuracy was determined with 1% (RMSE) of the area resp. the volume of an individual goose bump.

  5. Comparing Manned Aerial Surveys to Unmanned Aerial Surveys for Cetacean Monitoring in the Arctic: Field Report

    DTIC Science & Technology

    2015-01-01

    Observers in the manned aircraft;  Digital photographs from cameras mounted to the manned aircraft;  Digital photographs from cameras mounted ...features a high aspect ratio swept wing. It has a rear- mounted engine driving a pusher propeller. Two sets of elevons on the wings provide pitch...systems were mounted in the aircraft to expand the effective swath width, but the primary comparison between imagery will be between imagery collected

  6. High-resolution topography using SfM-photogrammetry from UAV for coastal mudflat geomorphic surveys

    NASA Astrophysics Data System (ADS)

    Fleury, Jules; Brunier, Guillaume; Michaud, Emma; Anthony, Edward; Morvan, Sylvain; Dussouillez, Philippe; Gardel, Antoine

    2016-04-01

    The coast between the Amazon and the Orinoco river mouths comprises mud banks formed from the large muddy discharge of the Amazon and migrating westward under the influence of waves and currents. These banks are highly dynamic and strongly affected by complex hydro-bio-geochemical interactions that are also important in mangrove colonization of bare mudflats in the upper intertidal zone of these banks. The surface topography of these mud banks is further affected by physical and biological processes such as tidal channel incision and bioturbation. Surveying the morphology of these mudflats over large areas and at a high-resolution without perturbing their surface is a real challenge that cannot be accomplished using classical survey methods such as RTK-GPS or Total Stations. To overcome this hurdle, we conducted a SfM(Surface from Motion)-photogrammetry experiment over 1 ha of a large intertidal mudflat colonized by pioneer mangroves at the mouth of the Sinnamary estuary in French Guiana. We developed a topographic data acquisition system based on sub-vertical aerial photography from a UAV flying at low altitude (15 m), in order to produce images at 3 mm resolution. A light DJI F550 drone was used, with an automatic flight programming using GPS navigation and a flight plan designed on photogrammetric criteria. The payload was a lightweight (250 grams) Ricoh GR camera with an APS-C sensor of 16.2 Megapixel and including an intervalometer triggering function. The drone had a flight autonomy of 12 minutes thus covering entirely the surrounding mudflat platform. The landing procedure was conducted manually in order for the drone to land safely on a very narrow artificial ground base set up for our experiment. 3D-models and derived products were generated using Agisoft Photoscan Professionnal software. We produced a gridded Digital Surface Model (DSM) and an orthophoto in visible bands at 1 cm and 5mm pixel resolution respectively. The vertical accuracy of the DSM based

  7. Dynamics of aerial target pursuit

    NASA Astrophysics Data System (ADS)

    Pal, S.

    2015-12-01

    During pursuit and predation, aerial species engage in multitasking behavior that involve simultaneous target detection, tracking, decision-making, approach and capture. The mobility of the pursuer and the target in a three dimensional environment during predation makes the capture task highly complex. Many researchers have studied and analyzed prey capture dynamics in different aerial species such as insects and bats. This article focuses on reviewing the capture strategies adopted by these species while relying on different sensory variables (vision and acoustics) for navigation. In conclusion, the neural basis of these capture strategies and some applications of these strategies in bio-inspired navigation and control of engineered systems are discussed.

  8. Precision wildlife monitoring using unmanned aerial vehicles.

    PubMed

    Hodgson, Jarrod C; Baylis, Shane M; Mott, Rowan; Herrod, Ashley; Clarke, Rohan H

    2016-03-17

    Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology. Careful consideration will be required to ensure the coherence of historic data sets with new UAV-derived data and we propose a method for determining the number of duplicated (concurrent UAV and ground counts) sampling points needed to achieve data compatibility.

  9. Precision wildlife monitoring using unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Hodgson, Jarrod C.; Baylis, Shane M.; Mott, Rowan; Herrod, Ashley; Clarke, Rohan H.

    2016-03-01

    Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology. Careful consideration will be required to ensure the coherence of historic data sets with new UAV-derived data and we propose a method for determining the number of duplicated (concurrent UAV and ground counts) sampling points needed to achieve data compatibility.

  10. Precision wildlife monitoring using unmanned aerial vehicles

    PubMed Central

    Hodgson, Jarrod C.; Baylis, Shane M.; Mott, Rowan; Herrod, Ashley; Clarke, Rohan H.

    2016-01-01

    Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology. Careful consideration will be required to ensure the coherence of historic data sets with new UAV-derived data and we propose a method for determining the number of duplicated (concurrent UAV and ground counts) sampling points needed to achieve data compatibility. PMID:26986721

  11. Uav Surveying for a Complete Mapping and Documentation of Archaeological Findings. The Early Neolithic Site of Portonovo

    NASA Astrophysics Data System (ADS)

    Malinverni, E. S.; Conati Barbaro, C.; Pierdicca, R.; Bozzi, C. A.; Tassetti, A. N.

    2016-06-01

    The huge potential of 3D digital acquisition techniques for the documentation of archaeological sites, as well as the related findings, is almost well established. In spite of the variety of available techniques, a sole documentation pipeline cannot be defined a priori because of the diversity of archaeological settings. Stratigraphic archaeological excavations, for example, require a systematic, quick and low cost 3D single-surface documentation because the nature of stratigraphic archaeology compels providing documentary evidence of any excavation phase. Only within a destructive process each single excavation cannot be identified, documented and interpreted and this implies the necessity of a re- examination of the work on field. In this context, this paper describes the methodology, carried out during the last years, to 3D document the Early Neolithic site of Portonovo (Ancona, Italy) and, in particular, its latest step consisting in a photogrammetric aerial survey by means of UAV platform. It completes the previous research delivered in the same site by means of terrestrial laser scanning and close range techniques and sets out different options for further reflection in terms of site coverage, resolution and campaign cost. With the support of a topographic network and a unique reference system, the full documentation of the site is managed in order to detail each excavation phase; besides, the final output proves how the 3D digital methodology can be completely integrated with reasonable costs during the excavation and used to interpret the archaeological context. Further contribution of this work is the comparison between several acquisition techniques (i.e. terrestrial and aerial), which could be useful as decision support system for different archaeological scenarios. The main objectives of the comparison are: i) the evaluation of 3D mapping accuracy from different data sources, ii) the definition of a standard pipeline for different archaeological needs

  12. Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment

    NASA Astrophysics Data System (ADS)

    James, Mike R.; Robson, Stuart; d'Oleire-Oltmanns, Sebastian; Niethammer, Uwe

    2016-04-01

    Structure-from-motion (SfM) algorithms are greatly facilitating the production of detailed topographic models based on images collected by unmanned aerial vehicles (UAVs). However, SfM-based software does not generally provide the rigorous photogrammetric analysis required to fully understand survey quality. Consequently, error related to problems in control point data or the distribution of control points can remain undiscovered. Even if these errors are not large in magnitude, they can be systematic, and thus have strong implications for the use of products such as digital elevation models (DEMs) and orthophotos. Here, we develop a Monte Carlo approach to (1) improve the accuracy of products when SfM-based processing is used and (2) reduce the associated field effort by identifying suitable lower density deployments of ground control points. The method highlights over-parameterisation during camera self-calibration and provides enhanced insight into control point performance when rigorous error metrics are not available. Processing was implemented using commonly-used SfM-based software (Agisoft PhotoScan), which we augment with semi-automated and automated GCPs image measurement. We apply the Monte Carlo method to two contrasting case studies - an erosion gully survey (Taurodont, Morocco) carried out with an fixed-wing UAV, and an active landslide survey (Super-Sauze, France), acquired using a manually controlled quadcopter. The results highlight the differences in the control requirements for the two sites, and we explore the implications for future surveys. We illustrate DEM sensitivity to critical processing parameters and show how the use of appropriate parameter values increases DEM repeatability and reduces the spatial variability of error due to processing artefacts.

  13. Can reliable sage-grouse lek counts be obtained using aerial infrared technology

    USGS Publications Warehouse

    Gillette, Gifford L.; Coates, Peter S.; Petersen, Steven; Romero, John P.

    2013-01-01

    More effective methods for counting greater sage-grouse (Centrocercus urophasianus) are needed to better assess population trends through enumeration or location of new leks. We describe an aerial infrared technique for conducting sage-grouse lek counts and compare this method with conventional ground-based lek count methods. During the breeding period in 2010 and 2011, we surveyed leks from fixed-winged aircraft using cryogenically cooled mid-wave infrared cameras and surveyed the same leks on the same day from the ground following a standard lek count protocol. We did not detect significant differences in lek counts between surveying techniques. These findings suggest that using a cryogenically cooled mid-wave infrared camera from an aerial platform to conduct lek surveys is an effective alternative technique to conventional ground-based methods, but further research is needed. We discuss multiple advantages to aerial infrared surveys, including counting in remote areas, representing greater spatial variation, and increasing the number of counted leks per season. Aerial infrared lek counts may be a valuable wildlife management tool that releases time and resources for other conservation efforts. Opportunities exist for wildlife professionals to refine and apply aerial infrared techniques to wildlife monitoring programs because of the increasing reliability and affordability of this technology.

  14. Three-Dimensional Integrated Survey for Building Investigations.

    PubMed

    Costantino, Domenica; Angelini, Maria Giuseppa

    2015-11-01

    The study shows the results of a survey aimed to represent a building collapse and the feasibility of the modellation as a support of structure analysis. An integrated survey using topographic, photogrammetric, and terrestrial laser techniques was carried out to obtain a three-dimensional (3D) model of the building, plans and prospects, and the particulars of the collapsed area. Authors acquired, by a photogrammetric survey, information about regular parties of the structure; while using laser scanner data they reconstructed a set of more interesting architectural details and areas with higher surface curvature. Specifically, the process of texture provided a detailed 3D structure of the areas under investigation. The analysis of the data acquired resulted to be very useful both in identifying the causes of the disaster and also in helping the reconstruction of the collapsed corner showing the contribution that the integrated surveys can give in preserving architectural and historic heritage.

  15. Aerial Refueling Clearance Initiation Request

    DTIC Science & Technology

    2016-07-14

    and receiver agencies. The AR Clearance Initiation Request document recognizes the requirement for definitive aerial refueling agreements between...include directions for the development or content of these contractual agreements. 15. –SUBJECT TERMS See Document Terms and Definitions , Page 8 16...7 Terms and Definitions

  16. Reconnaissance mapping from aerial photographs

    NASA Technical Reports Server (NTRS)

    Weeden, H. A.; Bolling, N. B. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Engineering soil and geology maps were successfully made from Pennsylvania aerial photographs taken at scales from 1:4,800 to 1:60,000. The procedure involved a detailed study of a stereoscopic model while evaluating landform, drainage, erosion, color or gray tones, tone and texture patterns, vegetation, and cultural or land use patterns.

  17. Sensor-agnostic photogrammetric image registration with applications to population modeling

    SciTech Connect

    White, Devin A; Moehl, Jessica J

    2016-01-01

    Photogrammetric registration of airborne and spaceborne imagery is a crucial prerequisite to many data fusion tasks. While embedded sensor models provide a rough geolocation estimate, these metadata may be incomplete or imprecise. Manual solutions are appropriate for small-scale projects, but for rapid streams of cross-modal, multi-sensor, multi-temporal imagery with varying metadata standards, an automated approach is required. We present a high-performance image registration workflow to address this need. This paper outlines the core development concepts and demonstrates its utility with respect to the 2016 data fusion contest imagery. In particular, Iris ultra-HD video is georeferenced to the Earth surface via registration to DEIMOS-2 imagery, which serves as a trusted control source. Geolocation provides opportunity to augment the video with spatial context, stereo-derived disparity, spectral sensitivity, change detection, and numerous ancillary geospatial layers. We conclude by leveraging these derivative data layers towards one such fusion application: population distribution modeling.

  18. External Verification of the Bundle Adjustment in Photogrammetric Software Using the Damped Bundle Adjustment Toolbox

    NASA Astrophysics Data System (ADS)

    Börlin, Niclas; Grussenmeyer, Pierre

    2016-06-01

    The aim of this paper is to investigate whether the Matlab-based Damped Bundle Adjustment Toolbox (DBAT) can be used to provide independent verification of the BA computation of two popular software—PhotoModeler (PM) and PhotoScan (PS). For frame camera data sets with lens distortion, DBAT is able to reprocess and replicate subsets of PM results with high accuracy. For lens-distortion-free data sets, DBAT can furthermore provide comparative results between PM and PS. Data sets for the discussed projects are available from the authors. The use of an external verification tool such as DBAT will enable users to get an independent verification of the computations of their software. In addition, DBAT can provide computation of quality parameters such as estimated standard deviations, correlation between parameters, etc., something that should be part of best practice for any photogrammetric software. Finally, as the code is free and open-source, users can add computations of their own.

  19. Validation of Laser-Induced Fluorescent Photogrammetric Targets on Membrane Structures

    NASA Technical Reports Server (NTRS)

    Jones, Thomas W.; Dorrington, Adrian A.; Shortis, Mark R.; Hendricks, Aron R.

    2004-01-01

    The need for static and dynamic characterization of a new generation of inflatable space structures requires the advancement of classical metrology techniques. A new photogrammetric-based method for non-contact ranging and surface profiling has been developed at NASA Langley Research Center (LaRC) to support modal analyses and structural validation of this class of space structures. This full field measurement method, known as Laser-Induced Fluorescence (LIF) photogrammetry, has previously yielded promising experimental results. However, data indicating the achievable measurement precision had not been published. This paper provides experimental results that indicate the LIF-photogrammetry measurement precision for three different target types used on a reflective membrane structure. The target types were: (1) non-contact targets generated using LIF, (2) surface attached retro-reflective targets, and (3) surface attached diffuse targets. Results from both static and dynamic investigations are included.

  20. Photogrammetric Trajectory Estimation of Foam Debris Ejected From an F-15 Aircraft

    NASA Technical Reports Server (NTRS)

    Smith, Mark S.

    2006-01-01

    Photogrammetric analysis of high-speed digital video data was performed to estimate trajectories of foam debris ejected from an F-15B aircraft. This work was part of a flight test effort to study the transport properties of insulating foam shed by the Space Shuttle external tank during ascent. The conical frustum-shaped pieces of debris, called "divots," were ejected from a flight test fixture mounted underneath the F-15B aircraft. Two onboard cameras gathered digital video data at two thousand frames per second. Time histories of divot positions were determined from the videos post flight using standard photogrammetry techniques. Divot velocities were estimated by differentiating these positions with respect to time. Time histories of divot rotations were estimated using four points on the divot face. Estimated divot position, rotation, and Mach number for selected cases are presented. Uncertainty in the results is discussed.

  1. In situ growth rates of deep-water octocorals determined from 3D photogrammetric reconstructions

    NASA Astrophysics Data System (ADS)

    Bennecke, Swaantje; Kwasnitschka, Tom; Metaxas, Anna; Dullo, Wolf-Christian

    2016-12-01

    Growth rates of deep-water corals provide important information on the recovery potential of these ecosystems, for example from fisheries-induced impacts. Here, we present in situ growth dynamics that are currently largely unknown for deep-water octocorals, calculated by applying a non-destructive method. Videos of a boulder harbouring multiple colonies of Paragorgia arborea and Primnoa resedaeformis in the Northeast Channel Coral Conservation Area at the entrance to the Gulf of Maine at 863 m depth were collected in 2006, 2010 and 2014. Photogrammetric reconstructions of the boulder and the fauna yielded georeferenced 3D models for all sampling years. Repeated measurements of total length and cross-sectional area of the same colonies allowed the observation of growth dynamics. Growth rates of total length of Paragorgia arborea decreased over time with higher rates between 2006 and 2010 than between 2010 and 2014, while growth rates of cross-sectional area remained comparatively constant. A general trend of decreasing growth rates of total length with size of the coral colony was documented. While no growth was observed for the largest colony (165 cm in length) between 2010 and 2014, a colony 50-65 cm in length grew 3.7 cm yr-1 between 2006 and 2010. Minimum growth rates of 1.6-2.7 cm yr-1 were estimated for two recruits (<23 cm in 2014) of Primnoa resedaeformis. We successfully extracted biologically meaningful data from photogrammetric models and present the first in situ growth rates for these coral species in the Northwest Atlantic.

  2. A methodology for luminance map retrieval using airborne hyperspectral and photogrammetric data

    NASA Astrophysics Data System (ADS)

    Pipia, Luca; Alamús, Ramon; Tardà, Anna; Pérez, Fernando; Palà, Vicenç; Corbera, Jordi

    2014-10-01

    This paper puts forward a methodology developed at the Institut Cartogràfic i Geològic de Catalunya (ICGC) to quantify upwelling light flux using hyperspectral and photogrammetric airborne data. The work was carried out in the frame of a demonstrative study requested by the municipality of Sant Cugat del Vallès, in the vicinity of Barcelona (Spain), and aimed to envisage a new approach to assess artificial lighting policies and actions as alternative to field campaigns. Hyperspectral and high resolution multispectral/panchromatic data were acquired simultaneously over urban areas. In order to avoid moon light contributions, data were acquired during the first days of new moon phase. Hyperspectral data were radiometrically calibrated. Then, National Center for Environmental Prediction (NCEP) atmospheric profiles were employed to estimate the actual Column Water Vapor (CWV) to be passed to ModTran5.0 for the atmospheric transmissivity τ calculation. At-the-ground radiance was finally integrated using the photopic sensitivity curve to generate a luminance map (cdm-2) of the flown area by mosaicking the different flight tracks. In an attempt to improve the spatial resolution and enhance the dynamic range of the luminance map, a sensor-fusion strategy was finally looked into. DMC Photogrammetric data acquired simultaneously to hyperspectral information were converted into at-the-ground radiance and upscaled to CASI spatial resolution. High-resolution (HR) luminance maps with enhanced dynamic range were finally generated by linearly fitting up-scaled DMC mosaics to the CASI-based luminance information. In the end, a preliminary assessment of the methodology is carried out using non-simultaneous in-situ measurements.

  3. Application of a photogrammetric kinematic model for prediction of lung volumes in adolescents: a pilot study

    PubMed Central

    2014-01-01

    Background There are several ways to measure the respiratory system, among them inductance plethysmography and three-dimensional kinematic analysis, methods of high cost and difficult transportability. The objective of this study was to correlate respiratory volumes obtained by spirometry standard equipment with a biomechanical model photogrammetric analysis of adolescents. Methods We evaluated 50 subjects of both genders, aged between 14 and 17 years old, excluding those with respiratory obstruction or restriction. Stickers with markers, there was a five-point mapping for anatomical modeling and photogrammetry, with each evaluated in supine position, was sought to test the Forced Vital Capacity (FVC). The test was filmed and repeated three times. Images of the films were extracted for the moment of maximum exhalation and inhalation of proof with better breathing. With the use of a commercial software, defined the respiratory volumes to the thorax and abdomen. Results The photogrammetric analysis has found values strongly correlated with the spirometric measurements of FVC (0.812), forced expiratory volume in one second (FEV1 – 0.708), Peak Expiratory Flow (PEF – 0.762) in addition to post test performed Inspiration (IP- 0.816). There was a higher ventilatory mobility for boys than girls for Lower Chest and Lower and Upper Abdomen. It was possible to reach a regression R2 = 0.866 for proof of FVC and R2 = 0.776 for IP with the use of photogrammetry, presenting a standard error of 0.353 and 0.451, respectively. Conclusions Photogrammetry can be used to study thoracoabdominal movements by applying analytical two-dimensional and three-dimensional images acquired using a video camera being, applicable and reproducible. PMID:24571595

  4. Towards digital terrain modeling with unmanned aerial vehicles and SfM point clouds

    NASA Astrophysics Data System (ADS)

    Anders, Niels; Masselink, Rens; Keesstra, Saskia

    2015-04-01

    Unmanned Aerial Vehicles (UAVs) are excellent tools for the acquisition of very high-resolution digital surface models using low altitude aerial photography and photogrammetric, 'Structure-from-Motion' (SfM), processing. Terrain reconstructions are produced by interpolating ground points after removal of non-ground points. While extremely detailed in non-vegetated areas, UAV point clouds are less suitable for terrain reconstructions of vegetated areas due to the inability of aerial photography to penetrate through vegetation for collecting ground points. This hinders for example detailed modeling of sediment transport on hillslopes towards vegetated lower areas and channels with riparian vegetation. We propose complementing UAV SfM point cloud data with alternative data sources to fill in the data gaps in vegetated areas. Firstly, SfM point clouds are classified into ground and non-ground points based on both color values and neighborhood statistics. Secondly, non-ground points are removed and data gaps are complemented with external data points. Thirdly, the combined point cloud is interpolated into a digital terrain model (DTM) using the natural neighbor interpolation technique. We demonstrate the methodology with three scenarios of terrain reconstructions in two study areas in North and Southeast Spain: i.e. a linear slope below sparsely distributed trees without the need of supplementary data points (1), and a gully with riparian vegetation combined with 5 m LiDAR data (2) or with manually measured dGPS data points (3). While the spatial resolution is significantly less below vegetated areas compared to non-vegetated areas, the results suggest significant improvements of the reconstructed topography, making the DTM more useful for soil erosion studies and sediment modeling.

  5. Small Unmanned Aerial Vehicles in coastal areas: lessons learned from applications in Liguria, NW Mediterranean.

    NASA Astrophysics Data System (ADS)

    Rovere, A.; Casella, E.; Pedroncini, A.; Mucerino, L.; Casella, M.; Cusati, L. A.; Vacchi, M.; Ferrari, M.; Firpo, M.

    2014-12-01

    In 2013 we started to apply small UAVs to the study of coastal areas in Liguria, NW Mediterranean Sea. In this region monitoring coastal evolution and the impact of sea storms is a primary administrative need, as a large part of the economic income derives from summer tourism. In two years, we accumulated almost 200 hours of flight with two different UAVs, a professional-grade Mikrokopter Okto and a consumer-grade Phantom DJI. We used photogrammetric and orthorectification techniques to obtain Digital Elevation Models (DEMs) and orthophotos of different beaches in the region. Data from UAVs allowed us to answer several questions. What is the accuracy of DEMs obtained from UAVs in low-relief areas such as beaches? What are the problems encountered in the photogrammetric procedure near the shoreline? Are the results obtained with consumer-grade UAVs comparable to those obtained with professional-grade ones? Aside from these technical questions, we used the data obtained from UAVs for different local studies aimed at giving management tools to the local administrations. We used the cloudpoint obtained from DEMs and the orthophotos to set up a runup modelling chain, to detect short-term changes in the coastal zone, and to give a first estimate of the debris deposited on the beach after a major storm. As stated by Watts et al., 2012 (Remote Sensing 4, 1671-1692) the application of Unmanned Aerial Vehicles and photogrammetry techniques in earth sciences is flourishing, and has the potential to revolutionize the study of geomorphology. Surely, UAVs opened new research perspectives for our group, which has been actively working on coastal changes in Liguria for almost 25 years.

  6. Identification and extraction of the seaward edge of terrestrial vegetation using digital aerial photography

    USGS Publications Warehouse

    Harris, Melanie; Brock, John C.; Nayegandhi, A.; Duffy, M.; Wright, C.W.

    2006-01-01

    This report is created as part of the Aerial Data Collection and Creation of Products for Park Vital Signs Monitoring within the Northeast Region Coastal and Barrier Network project, which is a joint project between the National Park Service Inventory and Monitoring Program (NPS-IM), the National Aeronautics and Space Administration (NASA) Observational Sciences Branch, and the U.S. Geological Survey (USGS) Center for Coastal and Watershed Studies (CCWS). This report is one of a series that discusses methods for extracting topographic features from aerial survey data. It details step-by-step methods used to extract a spatially referenced digital line from aerial photography that represents the seaward edge of terrestrial vegetation along the coast of Assateague Island National Seashore (ASIS). One component of the NPS-IM/USGS/NASA project includes the collection of NASA aerial surveys over various NPS barrier islands and coastal parks throughout the National Park Service's Northeast Region. These aerial surveys consist of collecting optical remote sensing data from a variety of sensors, including the NASA Airborne Topographic Mapper (ATM), the NASA Experimental Advanced Airborne Research Lidar (EAARL), and down-looking digital mapping cameras.

  7. Albedo and its relationship with seasonal surface roughness using repeat UAV survey across the Kangerlussuaq sector of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Hubbard, A., II; Ryan, J.; Box, J. E.; Snooke, N.

    2015-12-01

    Surface albedo is a primary control on absorbed radiation and hence ice surface darkening is a powerful amplifier of melt across the margin of the Greenland ice sheet. To investigate the relationship between ice surface roughness and variations in albedo in space and time at ~dm resolution, a suite of Unmanned Aerial Vehicles (UAVs) were deployed from the margin of Russell Glacier between June and August, 2014. The UAVs were equipped with digital and multispectral cameras, GoPros, fast response broadband pyranometers and temperature and humidity sensors. The primary mission was regular repeat longitudinal transects attaining data from the margin to the equilibrium line 80 km into the ice sheet interior and which were complimented by selected watershed and catchment surveys. The pyranometers reliably measure bare ice surface albedo between 0.34 and 0.58 that correlate well against concurrent MODIS data (where available). Repeat digital photogrammetric analysis enables investigation of relationship between changing meso- and micro-scale albedo and melt processes modulated by ice surface roughness that, in turn, are related to the seasonally evolving surface energy balance recorded at three AWS on the flight path.

  8. Automated recognition of forest patterns using aerial photographs

    NASA Astrophysics Data System (ADS)

    Barbezat, Vincent; Kreiss, Philippe; Sulzmann, Armin; Jacot, Jacques

    1996-12-01

    In Switzerland, aerial photos are indispensable tools for research into ecosystems and their management. Every six years since 1950, the whole of Switzerland has been systematically surveyed by aerial photos. In the forestry field, these documents not only provide invaluable information but also give support to field activities such as the drawing up of tree population maps, intervention planning, precise positioning of the upper forest limit, evaluation of forest damage and rates of tree growth. Up to now, the analysis of aerial photos has been carried out by specialists who painstakingly examine every photograph, which makes it a very long, exacting and expensive job. The IMT-DMT of the EPFL and Antenne romande of FNP, aware of the special interest involved and the necessity of automated classification of aerial photos, have pooled their resources to develop a software program capable of differentiating between single trees, copses and dense forests. The developed algorithms detect the crowns of the trees and the surface of the orthogonal projection. Form the shadow of each tree they calculate its height. They also determine the position of the tree in the Swiss national coordinate thanks to the implementation of a numeric altitude model. For the future, we have the prospect of many new and better uses of aerial photos being available to us, particularly where isolated stands are concerned and also when evolutions based on a diachronic series of photos have to be assessed: from timberline monitoring in the research on global change to the exploitation of wooded pastures on small surface areas.

  9. Geodetic mass balance record with rigorous uncertainty estimates deduced from aerial photographs and LiDAR data - case study from Drangajökull ice cap, NW-Iceland

    NASA Astrophysics Data System (ADS)

    Magnússon, E.; Belart, J. M. C.; Pálsson, F.; Ágústsson, H.; Crochet, P.

    2015-09-01

    In this paper we describe how recent high resolution Digital Elevation Models (DEMs) can be used as constraints for extracting glacier surface DEMs from old aerial photographs and to evaluate the uncertainty of the mass balance record derived from the DEMs. We present a case study for Drangajökull ice cap, NW-Iceland. This ice cap covered an area of 144 km2 when it was surveyed with airborne LiDAR in 2011. Aerial photographs spanning all or most of the ice cap are available from survey flights in 1946, 1960, 1975, 1985, 1994 and 2005. All ground control points used to constrain the orientation of the aerial photographs were obtained from the high resolution LiDAR DEM (2 m × 2 m cell size and vertical accuracy < 0.5 m). The LiDAR DEM was also used to estimate errors of the extracted photogrammetric DEMs in ice and snow free areas, at nunataks and outside the glacier margin. The derived errors of each DEM were used to constrain a spherical variogram model, which along with the derived errors in ice and snow free areas were used as inputs into 1000 Sequential Gaussian Simulations (SGSim). The simulations were used to estimate the possible bias in the entire glaciated part of the DEM. The derived bias correction, varying in magnitude between DEMs from 0.03 to 1.66 m (1946 DEM) was then applied. The simulation results were also used to calculate the 95 % confidence level of this bias, resulting in values between ±0.21 m (in 2005) and ±1.58 m (in 1946). Error estimation methods based on more simple proxies would typically yield 2-4 times larger error estimates. The aerial photographs used were acquired between late June and early October. An additional bias correction was therefore estimated using a degree day model to obtain the volume change between the start of two hydrological years (1 October). This correction corresponds to an average elevation change of ~ -3 m in the worst case for 1960, or about ~ 2/3 of volume change between the 1960 and the 1975 DEMs. The

  10. Cadastral Audit and Assessments Using Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Cunningham, K.; Walker, G.; Stahlke, E.; Wilson, R.

    2011-09-01

    Ground surveys and remote sensing are integral to establishing fair and equitable property valuations necessary for real property taxation. The International Association of Assessing Officers (IAAO) has embraced aerial and street-view imaging as part of its standards related to property tax assessments and audits. New technologies, including unmanned aerial systems (UAS) paired with imaging sensors, will become more common as local governments work to ensure their cadastre and tax rolls are both accurate and complete. Trends in mapping technology have seen an evolution in platforms from large, expensive manned aircraft to very small, inexpensive UAS. Traditional methods of photogrammetry have also given way to new equipment and sensors: digital cameras, infrared imagers, light detection and ranging (LiDAR) laser scanners, and now synthetic aperture radar (SAR). At the University of Alaska Fairbanks (UAF), we work extensively with unmanned aerial systems equipped with each of these newer sensors. UAF has significant experience flying unmanned systems in the US National Airspace, having begun in 1969 with scientific rockets and expanded to unmanned aircraft in 2003. Ongoing field experience allows UAF to partner effectively with outside organizations to test and develop leading-edge research in UAS and remote sensing. This presentation will discuss our research related to various sensors and payloads for mapping. We will also share our experience with UAS and optical systems for creating some of the first cadastral surveys in rural Alaska.

  11. a Method for Simultaneous Aerial and Terrestrial Geodata Acquisition for Corridor Mapping

    NASA Astrophysics Data System (ADS)

    Molina, P.; Blázquez, M.; Sastre, J.; Colomina, I.

    2015-08-01

    In this paper, we present mapKITE, a new mobile, simultaneous terrestrial and aerial, geodata collection and post-processing method. On one side, the method combines a terrestrial mobile mapping system (TMMS) with an unmanned aerial mapping one, both equipped with remote sensing payloads (at least, a nadir-looking visible-band camera in the UA) by means of which aerial and terrestrial geodata are acquired simultaneously. This tandem geodata acquisition system is based on a terrestrial vehicle (TV) and on an unmanned aircraft (UA) linked by a 'virtual tether', that is, a mechanism based on the real-time supply of UA waypoints by the TV. By means of the TV-to-UA tether, the UA follows the TV keeping a specific relative TV-to-UA spatial configuration enabling the simultaneous operation of both systems to obtain highly redundant and complementary geodata. On the other side, mapKITE presents a novel concept for geodata post-processing favoured by the rich geometrical aspects derived from the mapKITE tandem simultaneous operation. The approach followed for sensor orientation and calibration of the aerial images captured by the UA inherits the principles of Integrated Sensor Orientation (ISO) and adds the pointing-and-scaling photogrammetric measurement of a distinctive element observed in every UA image, which is a coded target mounted on the roof of the TV. By means of the TV navigation system, the orientation of the TV coded target is performed and used in the post-processing UA image orientation approach as a Kinematic Ground Control Point (KGCP). The geometric strength of a mapKITE ISO network is therefore high as it counts with the traditional tie point image measurements, static ground control points, kinematic aerial control and the new point-and-scale measurements of the KGCPs. With such a geometry, reliable system and sensor orientation and calibration and eventual further reduction of the number of traditional ground control points is feasible. The different

  12. Aerial robotic data acquisition system

    SciTech Connect

    Hofstetter, K.J.; Hayes, D.W.; Pendergast, M.M.; Corban, J.E.

    1993-12-31

    A small, unmanned aerial vehicle (UAV), equipped with sensors for physical and chemical measurements of remote environments, is described. A miniature helicopter airframe is used as a platform for sensor testing and development. The sensor output is integrated with the flight control system for real-time, interactive, data acquisition and analysis. Pre-programmed flight missions will be flown with several sensors to demonstrate the cost-effective surveillance capabilities of this new technology.

  13. Telemetry of Aerial Radiological Measurements

    SciTech Connect

    H. W. Clark, Jr.

    2002-10-01

    Telemetry has been added to National Nuclear Security Administration's (NNSA's) Aerial Measuring System (AMS) Incident Response aircraft to accelerate availability of aerial radiological mapping data. Rapid aerial radiological mapping is promptly performed by AMS Incident Response aircraft in the event of a major radiological dispersal. The AMS airplane flies the entire potentially affected area, plus a generous margin, to provide a quick look at the extent and severity of the event. The primary result of the AMS Incident Response over flight is a map of estimated exposure rate on the ground along the flight path. Formerly, it was necessary to wait for the airplane to land before the map could be seen. Now, while the flight is still in progress, data are relayed via satellite directly from the aircraft to an operations center, where they are displayed and disseminated. This permits more timely utilization of results by decision makers and redirection of the mission to optimize its value. The current telemetry capability can cover all of North America. Extension to a global capability is under consideration.

  14. Advances in applications and methodology for aerial infrared thermography

    NASA Astrophysics Data System (ADS)

    Stockton, Gregory R.

    2004-04-01

    Most aerial infrared (IR) is performed by the military, but there are commercial uses. Some of these non-military applications are the focus of this paper. Generally speaking, the farther away one can get from the object of an infrared survey, while maintaining the needed spatial resolution and thermal sensitivity, the more usable the data is. Wide areas and large objects can be effectively imaged from the air. In fact, the use of high-resolution aerial infrared imagery is often the only way that one can see slight nuances of temperature differences and trace the patterns of heat. In order to produce an easy to understand, high quality and useable report, the data must be acquired, recorded and processed in an efficient and effective way. This paper discusses the ongoing advances in methodology, platform and equipment required to produce high quality usable data for the end-user.

  15. Detection of rock failures in the Dolomieu crater on La Réunion using multitemporal LiDAR and photogrammetric data

    NASA Astrophysics Data System (ADS)

    Haas, Florian; Wegner, Kerstin; Mangeney, Anne; Durand, Virginie; Villeneuve, Nicolas; Kowalski, Philippe; Peltier, Aline; Protin, Antoine

    2016-04-01

    The Dolomieu crater on the Piton de la Fournaise is a very active area in terms of volcanic activity and seismicity. As a consequence of the seismicity, the topographic conditions and the high amounts of rainfall, a lot of geomorphic processes are involved in reworking the vol-canic rocks and sediments, showing high magnitudes and short frequencies. As the crater is not accessible at all, the detection and the quantification of those processes is very challenging and can only be done by using different remote sensing technologies. Thus within the project "slidequakes" the whole inner Dolomieu crater was surveyed in cooperation with the vulca-nologic observatory of the IPGP on La Réunion using Ground based LiDAR and terrestrial manual and automatic (fixed webcams) digital photogrammetry. LiDAR and manual terres-trial photogrammetry acquisition was done during two missions in autumn 2014 and spring 2015. During both, the LiDAR (2014) and the photogrammetric (2015) mission, the data were re-corded by hiking to the top of the Piton de la Fournaise and walking around the Dolomieur crater, which shows a diameter of 1.2 km. All in all, the crater was scanned in 2014 from 12 different scanposition, collecting 460 Mio points (unfiltered raw data). Every single scanposi-tion was registered by using the IPGP GNSS network around the Piton. This LiDAR data act as a base line data set for detecting surface changes by both, rainfall induced and seismic in-duced geomorphic processes. Beside this, the LiDAR data in combination with the fixed GNSS network were used to create an external orientation for the photogrammetric data. After the global registration of the various data, surface changes for the single epochs were detectable. The analysis of those data showed a high activity of gravitational processes, in-cluding several smaller and one big event. But it could also be detected, that parts of the crater showed movements (mainly subsidences) of the surface as a consequence of

  16. Photogrammetric discharge monitoring of small tropical mountain rivers - A case study at Rivière des Pluies, Réunion island

    NASA Astrophysics Data System (ADS)

    Stumpf, André; Augereau, Emmanuel; Delacourt, Christophe; Bonnier, Julien

    2016-04-01

    Reliable discharge measurements are indispensable for an effective management of natural water resources and floods. Limitations of classical current meter profiling and stage-discharge ratings have stimulated the development of more accurate and efficient gauging techniques. While new discharge measurements technologies such as acoustic doppler current profilers and large-scale image particle velocimetry (LSPIV) have been developed and tested in numerous studies, the continuous monitoring of small mountain rivers and discharge dynamics during strong meteorological events remains challenging. More specifically LSPIV studies are often focused on short-term measurements during flood events and there are still very few studies that address its use for long-term monitoring of small mountain rivers. To fill this gap this study targets the development and testing of largely autonomous photogrammetric discharge measurement system with a special focus on the application to small mountain river with high discharge variability and a mobile riverbed in the tropics. It proposes several enhancements among previous LSPIV methods regarding camera calibration, more efficient processing in image geometry, the automatic detection of the water level as well as the statistical calibration and estimation of the discharge from multiple profiles. To account for changes in the bed topography the riverbed is surveyed repeatedly during the dry seasons using multi-view photogrammetry or terrestrial laser scanners. The presented case study comprises the analysis of several thousand videos spanning over two and a half year (2013-2015) to test the robustness and accuracy of different processing steps. An analysis of the obtained results suggests that the quality of the camera calibration reaches a sub-pixel accuracy. The median accuracy of the watermask detections is F1=0.82, whereas the precision is systematically higher than the recall. The resulting underestimation of the water surface area

  17. Spatial Feature Evaluation for Aerial Scene Analysis

    SciTech Connect

    Swearingen, Thomas S; Cheriyadat, Anil M

    2013-01-01

    High-resolution aerial images are becoming more readily available, which drives the demand for robust, intelligent and efficient systems to process increasingly large amounts of image data. However, automated image interpretation still remains a challenging problem. Robust techniques to extract and represent features to uniquely characterize various aerial scene categories is key for automated image analysis. In this paper we examined the role of spatial features to uniquely characterize various aerial scene categories. We studied low-level features such as colors, edge orientations, and textures, and examined their local spatial arrangements. We computed correlograms representing the spatial correlation of features at various distances, then measured the distance between correlograms to identify similar scenes. We evaluated the proposed technique on several aerial image databases containing challenging aerial scene categories. We report detailed evaluation of various low-level features by quantitatively measuring accuracy and parameter sensitivity. To demonstrate the feature performance, we present a simple query-based aerial scene retrieval system.

  18. A comparison of two photogrammetric algorithms for the measurement of model deformation in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Monteith, J. H.

    1984-01-01

    A comparison was made of two photogrammetric measurement techniques which can be used for the determination of the spatial loctions of targets. One technique is known as the Direct Linear Transformation (DLT), and the other is referred to as the Bundle method. Each technique utilizes triangulation of image data from two or more cameras, but they differ in their method of determining camera parameters. While the study was performed with simulated data, the geometries, image data accuracies and other parameters were set to simulate conditions for a two-camera, photogrammetric system which will be used at the National Transonic Facility at the NASA's Langley Research Center. For the conditions studied the Bundle technique was found to have smaller errors. Both methods were sensitive to the spatial distribution of control-point targets, but this effected the accuracy of the Bundle algorithm less than that of the DLT algorithm.

  19. A 3D photogrammetric reconstruction attempt of specimens of Badenian echinoids

    NASA Astrophysics Data System (ADS)

    Polonkai, Bálint; Raveloson, Andrea; Görög, Ágnes; Bodor, Emese; Székely, Balázs

    2016-04-01

    photogrammetric technologies have been used as our initial experiments showed that it could be a good tool to get three dimensional information about the collected fossils. This contribution discusses which photogrammetric techniques are adequate to study and compare the studied echinoid specimens. Our goal is to review modern techniques and current software solutions to model the fossils and also to study the resulting 3D point cloud. Different methods are evaluated and compared from taking the pictures (with different camera types and different target tables) through data processing, analyzing potential errors, resolution and accuracy for each one of them. Time- and cost-effectiveness of the software packages were also taken into account in order to render the images into 3D model effectively. Preliminary results show that 3D analysis using photogrammetrical method is a good tool to study the collected echinoid specimens showing more information than the classical morphometry studies, especially in the convex part of the studied fossils. Furthermore, the resulting 3D point clouds of different fossils make it possible to compare and maybe even quantify the differences across the specimens. Balázs Székely contributed as an Alexander von Humboldt Research Fellow.

  20. Unmanned Aerial Vehicles Master Plan, 1993.

    DTIC Science & Technology

    2007-11-02

    PHOTOGRAPH THIS SHEET AND RETURN To DTIC-FDAC DTIC 70A DOCUMENT PROCESSMING I~ SlEW -, mmllamm LOAN DOCUMENT DEPARTMENT OF DEFENSE UNMANNED AERIAL VEHICLES (UAV...11 B. Program Executive Officer for Cruise Missiles 3 and Unmanned Aerial Vehicles (PEO[CU...69 I ! I I ivI -- UAV 1993 MASTER PLAN U I EXECUTIVE SUMMARY 3 A. OVERVIEW Unmanned Aerial Vehicles (UAVs)* can make significant

  1. Digital photogrammetric analysis of the IMP camera images: Mapping the Mars Pathfinder landing site in three dimensions

    USGS Publications Warehouse

    Kirk, R.L.; Howington-Kraus, E.; Hare, T.; Dorrer, E.; Cook, D.; Becker, K.; Thompson, K.; Redding, B.; Blue, J.; Galuszka, D.; Lee, E.M.; Gaddis, L.R.; Johnson, J. R.; Soderblom, L.A.; Ward, A.W.; Smith, P.H.; Britt, D.T.

    1999-01-01

    This paper describes our photogrammetric analysis of the Imager for Mars Pathfinder data, part of a broader program of mapping the Mars Pathfinder landing site in support of geoscience investigations. This analysis, carried out primarily with a commercial digital photogrammetric system, supported by our in-house Integrated Software for Imagers and Spectrometers (ISIS), consists of three steps: (1) geometric control: simultaneous solution for refined estimates of camera positions and pointing plus three-dimensional (3-D) coordinates of ???103 features sitewide, based on the measured image coordinates of those features; (2) topographic modeling: identification of ???3 ?? 105 closely spaced points in the images and calculation (based on camera parameters from step 1) of their 3-D coordinates, yielding digital terrain models (DTMs); and (3) geometric manipulation of the data: combination of the DTMs from different stereo pairs into a sitewide model, and reprojection of image data to remove parallax between the different spectral filters in the two cameras and to provide an undistorted planimetric view of the site. These processes are described in detail and example products are shown. Plans for combining the photogrammetrically derived topographic data with spectrophotometry are also described. These include photometric modeling using surface orientations from the DTM to study surface microtextures and improve the accuracy of spectral measurements, and photoclinometry to refine the DTM to single-pixel resolution where photometric properties are sufficiently uniform. Finally, the inclusion of rover images in a joint photogrammetric analysis with IMP images is described. This challenging task will provide coverage of areas hidden to the IMP, but accurate ranging of distant features can be achieved only if the lander is also visible in the rover image used. Copyright 1999 by the American Geophysical Union.

  2. Examination of the Compatibility of the Photogrammetric Method with the Phenomenon of Mora Projection in the Evaluation of Scoliosis

    PubMed Central

    Drzał-Grabiec, Justyna; Snela, Sławomir; Podgórska-Bednarz, Justyna; Rykała, Justyna; Banaś, Agnieszka

    2014-01-01

    Introduction. The aim of this study was to evaluate the compatibility of external measurements of parameters characterizing scoliosis using the photogrammetric method. Material. The study involved 120 children between the ages of 7 and 11 years in Podkarpackie (Poland). Method. Measurements of body posture characteristics were performed using the photogrammetric method with mora projection. Each person was examined twice, once by two different therapists, with a time lapse of 20 minutes in between examinations. Results. High accuracy and no statistical significance were found among different measurements of asymmetry parameters characterizing the shoulder blades and hips. Regularities were also found in the characteristic measurements of curves of scoliosis. The POSTI parameter showed a significant variation and lack of compatibility of results. Conclusions. (1) The photogrammetric method used to assess the pathological changes caused by scoliosis gives significant results in terms of parameters characterizing the position of the shoulder blades and shoulders, as well as pelvis rotation. (2) High compliance measurements are also characterized by the length of the right and left arcs of scoliosis. PMID:24949421

  3. Calibrating the New Ultracam Osprey Oblique Aerial Sensor

    NASA Astrophysics Data System (ADS)

    Gruber, M.; Walcher, W.

    2014-03-01

    We present methods and results to calibrate the new oblique sensor UltraCam Osprey which was presented for the first time at the ASPRS 2013 conference and exhibition in Baltimore, MD, March 2013. Even if this was not the first time when oblique sensors were introduced into the market, the UltraCam Osprey did show several new conceptual details which are illustrated in this presentation. The design of the camera is focusing on two important characteristics, a metric nadir component which has been derived from the UltraCam Lp sensor, and collection efficiency through very large swath width. The nadir sensor consists of the 90 megapixel panchromatic camera, true-color RGB, and a near-infrared camera. Adding six oblique camera heads, with two each in forward and backwards direction, results in unmatched oblique collection efficiency. We first explain the camera and cone configuration along with the geometric layout of the sensor system. Then we describe the laboratory setup for geometric calibration of the UltraCam Osprey and the calibration process along with the actual results of one such calibration showing sub-pixel accurate image geometry. This proves that the UltraCam Osprey is a fully calibrated metric camera system suitable for photogrammetric survey applications.

  4. Archive of post-Hurricane Charley coastal oblique aerial photographs collected during U.S. Geological Survey field activity 04CCH01 from Marco Island to Fort DeSoto, Florida, August 15, 2004

    USGS Publications Warehouse

    Subino, Janice A.; Morgan, Karen L.M.; Krohn, M. Dennis; Miller, Gregory K.; Dadisman, Shawn V.; Forde, Arnell S.

    2012-01-01

    To view the survey maps and navigation files, and for more information about these items, see the Navigation page. Figure 1 displays the acquisition geometry. The tables provide detailed information about the assigned location, name, data, and time the photograph was taken along with links to the photo and corresponding 5-min contact sheet. Refer to table 1 and table 2 for details of the northern and southern county photographs, respectively.

  5. A Spherical Aerial Terrestrial Robot

    NASA Astrophysics Data System (ADS)

    Dudley, Christopher J.

    This thesis focuses on the design of a novel, ultra-lightweight spherical aerial terrestrial robot (ATR). The ATR has the ability to fly through the air or roll on the ground, for applications that include search and rescue, mapping, surveillance, environmental sensing, and entertainment. The design centers around a micro-quadcopter encased in a lightweight spherical exoskeleton that can rotate about the quadcopter. The spherical exoskeleton offers agile ground locomotion while maintaining characteristics of a basic aerial robot in flying mode. A model of the system dynamics for both modes of locomotion is presented and utilized in simulations to generate potential trajectories for aerial and terrestrial locomotion. Details of the quadcopter and exoskeleton design and fabrication are discussed, including the robot's turning characteristic over ground and the spring-steel exoskeleton with carbon fiber axle. The capabilities of the ATR are experimentally tested and are in good agreement with model-simulated performance. An energy analysis is presented to validate the overall efficiency of the robot in both modes of locomotion. Experimentally-supported estimates show that the ATR can roll along the ground for over 12 minutes and cover the distance of 1.7 km, or it can fly for 4.82 minutes and travel 469 m, on a single 350 mAh battery. Compared to a traditional flying-only robot, the ATR traveling over the same distance in rolling mode is 2.63-times more efficient, and in flying mode the system is only 39 percent less efficient. Experimental results also demonstrate the ATR's transition from rolling to flying mode.

  6. Unmanned aerial vehicles in astronomy

    NASA Astrophysics Data System (ADS)

    Biondi, Federico; Magrin, Demetrio; Ragazzoni, Roberto; Farinato, Jacopo; Greggio, Davide; Dima, Marco; Gullieuszik, Marco; Bergomi, Maria; Carolo, Elena; Marafatto, Luca; Portaluri, Elisa

    2016-07-01

    In this work we discuss some options for using Unmanned Aerial Vehicles (UAVs) for daylight alignment activities and maintenance of optical telescopes, relating them to a small numbers of parameters, and tracing which could be the schemes, requirements and benefits for employing them both at the stage of erection and maintenance. UAVs can easily reach the auto-collimation points of optical components of the next class of Extremely Large Telescopes. They can be equipped with tools for the measurement of the co-phasing, scattering, and reflectivity of segmented mirrors or environmental parameters like C2n and C2T to characterize the seeing during both the day and the night.

  7. Photogrammetric determination of discrepancies between actual and planned position of dental implants

    NASA Astrophysics Data System (ADS)

    Forlani, G.; Rivara, F.

    2014-05-01

    The paper describes the design and testing of a photogrammetric measurement protocol set up to determine the discrepancies between the planned and actual position of computer-guided template-based dental implants. Two moulds with the implants positioned in pre- and post- intervention are produced and separately imaged with a highly redundant block of convergent images; the model with the implants is positioned on a steel frame with control points and with suitable targets attached. The theoretical accuracy of the system is better than 20 micrometers and 0.3-0.4° respectively for positions of implants and directions of implant axes. In order to compare positions and angles between the planned and actual position of an implant, coordinates and axes directions are brought to a common reference system with a Helmert transformation. A procedure for comparison of positions and directions to identify out-of-tolerance discrepancies is presented; a numerical simulation study shows the effectiveness of the procedure in identifying the implants with significant discrepancies between pre- and post- intervention.

  8. Accuracy Assessment of Underwater Photogrammetric Three Dimensional Modelling for Coral Reefs

    NASA Astrophysics Data System (ADS)

    Guo, T.; Capra, A.; Troyer, M.; Gruen, A.; Brooks, A. J.; Hench, J. L.; Schmitt, R. J.; Holbrook, S. J.; Dubbini, M.

    2016-06-01

    Recent advances in automation of photogrammetric 3D modelling software packages have stimulated interest in reconstructing highly accurate 3D object geometry in unconventional environments such as underwater utilizing simple and low-cost camera systems. The accuracy of underwater 3D modelling is affected by more parameters than in single media cases. This study is part of a larger project on 3D measurements of temporal change of coral cover in tropical waters. It compares the accuracies of 3D point clouds generated by using images acquired from a system camera mounted in an underwater housing and the popular GoPro cameras respectively. A precisely measured calibration frame was placed in the target scene in order to provide accurate control information and also quantify the errors of the modelling procedure. In addition, several objects (cinder blocks) with various shapes were arranged in the air and underwater and 3D point clouds were generated by automated image matching. These were further used to examine the relative accuracy of the point cloud generation by comparing the point clouds of the individual objects with the objects measured by the system camera in air (the best possible values). Given a working distance of about 1.5 m, the GoPro camera can achieve a relative accuracy of 1.3 mm in air and 2.0 mm in water. The system camera achieved an accuracy of 1.8 mm in water, which meets our requirements for coral measurement in this system.

  9. Photogrammetric and photometric investigation of a smoke plume viewed from space.

    NASA Technical Reports Server (NTRS)

    Randerson, D.; Garcia, J. G.; Whitehead, V. S.

    1971-01-01

    Use of detailed analyses of an Apollo 6 stereographic photograph of a smoke plume which originated in southern Arizona and crossed over into Mexico to illustrate how high-resolution photography can aid meteorologists in evaluating specific air pollution events. Photogrammetric analysis of the visible smoke plume revealed that the plume was 8.06 miles long and attained a maximum width of 4000 ft, 3.0 miles from the 570-ft chimney emitting the effluent. Stereometric analysis showed that the visible top of the plume rose nearly 2400 ft above stack top, attaining 90% of this total rise 1.75 miles downwind from the source. Photometric analysis of the plume revealed a field of plume optical density that portrayed leptokurtic and bimodal distributions rather than a true Gaussian distribution. A horizontal eddy diffusivity of about 650,000 sq cm/sec and a vertical eddy diffusivity of 230,000 sq cm/sec were determined from the plume dimensions. Neutron activation analysis of plume samples revealed the elemental composition of the smoke to be copper, arsenic, selenium, indium and antimony, with trace amounts of vanadium and scandium.

  10. The effect of spinal curvature on the photogrammetric assessment on static balance in elderly women

    PubMed Central

    2014-01-01

    Background Involutional changes to the body in elderly patients affect the shape of the spine and the activity of postural muscles. The purpose of this study was to assess the influence of age-related changes in spinal curvature on postural balance in elderly women. Methods The study population consisted of 90 women, with a mean age of 70 ± 8.01 years. Static balance assessments were conducted on a tensometric platform, and posturographic assessments of body posture were performed using a photogrammetric method based on the Projection Moiré method. Results The results obtained were analysed using the Spearman’s rank correlation coefficient test. We found a statistically significant correlation between body posture and the quality of the balance system response based on the corrective function of the visual system. The shape of the spinal curvature influenced postural stability, as measured by static posturography. Improvement in the quality of the balance system response depended on corrective information from the visual system and proprioceptive information from the paraspinal muscles. Conclusions The sensitivity of the balance system to the change of centre of pressure location was influenced by the direction of the change in rotation of the shoulder girdle and spine. Development of spinal curvature in the sagittal plane and maintenance of symmetry in the coronal and transverse planes are essential for correct balance control, which in turn is essential for the development of a properly proportioned locomotor system. PMID:24885433

  11. Implementation of a close range photogrammetric system for 3D reconstruction of a scoliotic torso

    NASA Astrophysics Data System (ADS)

    Detchev, Ivan Denislavov

    Scoliosis is a deformity of the human spine most commonly encountered with children. After being detected, periodic examinations via x-rays are traditionally used to measure its progression. However, due to the increased risk of cancer, a non-invasive and radiation-free scoliosis detection and progression monitoring methodology is needed. Quantifying the scoliotic deformity through the torso surface is a valid alternative, because of its high correlation with the internal spine curvature. This work proposes a low-cost multi-camera photogrammetric system for semi-automated 3D reconstruction of a torso surface with sub-millimetre level accuracy. The thesis describes the system design and calibration for optimal accuracy. It also covers the methodology behind the reconstruction and registration procedures. The experimental results include the complete reconstruction of a scoliotic torso mannequin. The final accuracy is evaluated through the goodness of fit between the reconstructed surface and a more accurate set of points measured by a coordinate measuring machine.

  12. Photogrammetric Assessment of the Hubble Space Telescope Solar Arrays During the Second Servicing Mission

    NASA Technical Reports Server (NTRS)

    Sapp, C. A.; Dragg, J. L.; Snyder, M. W.; Gaunce, M. T.; Decker, J. E.

    1998-01-01

    This report documents the photogrammetric assessment of the Hubble Space Telescope (HST) solar arrays conducted by the NASA c Center Image Science and Analysis Group during Second Servicing Mission 2 (SM-2) on STS-82 in February 1997. Two type solar array analyses were conducted during the mission using Space Shuttle payload bay video: (1) measurement of solar array motion due to induced loads, and (2) measurement of the solar array static or geometric twist caused by the cumulative array loading. The report describes pre-mission planning and analysis technique development activities conducted to acquire and analyze solar array imagery data during SM-2. This includes analysis of array motion obtained during SM-1 as a proof-of-concept of the SM-2 measurement techniques. The report documents the results of real-time analysis conducted during the mission and subsequent analysis conducted post-flight. This report also provides a summary of lessons learned on solar array imagery analysis from SM-2 and recommendations for future on-orbit measurements applicable to HST SM-3 and to the International Space Station. This work was performed under the direction of the Goddard Space Flight Center HST Flight Systems and Servicing Project.

  13. Photogrammetrically Derived Estimates of Glacier Mass Loss in the Upper Susitna Drainage Basin, Alaska Range, Alaska

    NASA Astrophysics Data System (ADS)

    Wolken, G. J.; Whorton, E.; Murphy, N.

    2014-12-01

    Glaciers in Alaska are currently experiencing some of the highest rates of mass loss on Earth, with mass wastage rates accelerating during the last several decades. Glaciers, and other components of the hydrologic cycle, are expected to continue to change in response to anticipated future atmospheric warming, thus, affecting the quantity and timing of river runoff. This study uses sequential digital elevation model (DEM) analysis to estimate the mass loss of glaciers in the upper Susitna drainage basin, Alaska Range, for the purpose of validating model simulations of past runoff changes. We use mainly stereo optical airborne and satellite data for several epochs between 1949 and 2014, and employ traditional stereo-photogrammetric and structure from motion processing techniques to derive DEMs of the upper Susitna basin glaciers. This work aims to improve the record of glacier change in the central Alaska Range, and serves as a critical validation dataset for a hydrological model that simulates the potential effects of future glacier mass loss on changes in river runoff over the lifespan of the proposed Susitna-Watana Hydroelectric Project.

  14. Measurements from an Aerial Vehicle: A New Tool for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Wright, Henry S.; Levine, Joel S.; Croom, Mark A.; Edwards, William C.; Qualls, Garry D.; Gasbarre, Joseph F.

    2004-01-01

    Aerial vehicles fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Aerial vehicles used in planetary exploration bridge the scale and resolution measurement gaps between orbiters (global perspective with limited spatial resolution) and landers (local perspective with high spatial resolution) thus complementing and extending orbital and landed measurements. Planetary aerial vehicles can also survey scientifically interesting terrain that is inaccessible or hazardous to landed missions. The use of aerial assets for performing observations on Mars, Titan, or Venus will enable direct measurements and direct follow-ons to recent discoveries. Aerial vehicles can be used for remote sensing of the interior, surface and atmosphere of Mars, Venus and Titan. Types of aerial vehicles considered are airplane "heavier than air" and airships and balloons "lighter than air". Interdependencies between the science measurements, science goals and objectives, and platform implementation illustrate how the proper balance of science, engineering, and cost, can be achieved to allow for a successful mission. Classification of measurement types along with how those measurements resolve science questions and how these instruments are accommodated within the mission context are discussed.

  15. Measurements from an aerial vehicle: a new tool for planetary exploration

    NASA Astrophysics Data System (ADS)

    Wright, Henry S.; Levine, Joel S.; Croom, Mark A.; Edwards, William C.; Qualls, Garry D.; Gasbarre, Joseph F.

    2004-12-01

    Aerial vehicles fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Aerial vehicles used in planetary exploration bridge the scale and resolution measurement gaps between orbiters (global perspective with limited spatial resolution) and landers (local perspective with high spatial resolution) thus complementing and extending orbital and landed measurements. Planetary aerial vehicles can also survey scientifically interesting terrain that is inaccessible or hazardous to landed missions. The use of aerial assets for performing observations on Mars, Titan, or Venus will enable direct measurements and direct follow-ons to recent discoveries. Aerial vehicles can be used for remote sensing of the interior, surface and atmosphere of Mars, Venus and Titan. Types of aerial vehicles considered are airplane "heavier than air" and airships and balloons "lighter than air." Interdependencies between the science measurements, science goals and objectives, and platform implementation illustrate how the proper balance of science, engineering, and cost, can be achieved to allow for a successful mission. Classification of measurement types along with how those measurements resolve science questions and how these instruments are accommodated within the mission context are discussed.

  16. Region Three Aerial Measurement System Flight Planning Tool - 12006

    SciTech Connect

    Messick, Chuck; Pham, Minh; Smith, Ron; Isiminger, Dave

    2012-07-01

    The Region 3 Aerial Measurement System Flight Planning Tool is used by the National Nuclear Security Agency (NNSA), United States Department of Energy, Radiological Assistance Program, Region 3, to respond to emergency radiological situations. The tool automates the flight planning package process while decreasing Aerial Measuring System response times and decreases the potential for human error. Deployment of the Region Three Aerial Measurement System Flight Planning Tool has resulted in an immediate improvement to the flight planning process in that time required for mission planning has been reduced from 1.5 hours to 15 minutes. Anecdotally, the RAP team reports that the rate of usable data acquired during surveys has improved from 40-60 percent to over 90 percent since they began using the tool. Though the primary product of the flight planning tool is a pdf format document for use by the aircraft flight crew, the RAP team has begun carrying their laptop computer on the aircraft during missions. By connecting a Global Positioning System (GPS) device to the laptop and using ESRI ArcMap's GPS tool bar to overlay the aircraft position directly on the flight plan in real time, the RAP team can evaluate and correct the aircraft position as the mission is executed. (authors)

  17. Aerial monitoring in active mud volcano by UAV technique

    NASA Astrophysics Data System (ADS)

    Pisciotta, Antonino; Capasso, Giorgio; Madonia, Paolo

    2016-04-01

    UAV photogrammetry opens various new applications in the close range domain, combining aerial and terrestrial photogrammetry, but also introduces low-cost alternatives to the classical manned aerial photogrammetry. Between 2014 and 2015 tree aerial surveys have been carried out. Using a quadrotor drone, equipped with a compact camera, it was possible to generate high resolution elevation models and orthoimages of The "Salinelle", an active mud volcanoes area, located in territory of Paternò (South Italy). The main risks are related to the damages produced by paroxysmal events. Mud volcanoes show different cyclic phases of activity, including catastrophic events and periods of relative quiescence characterized by moderate activity. Ejected materials often are a mud slurry of fine solids suspended in liquids which may include water and hydrocarbon fluids, the bulk of released gases are carbon dioxide, with some methane and nitrogen, usually pond-shaped of variable dimension (from centimeters to meters in diameter). The scope of the presented work is the performance evaluation of a UAV system that was built to rapidly and autonomously acquire mobile three-dimensional (3D) mapping data in a volcanic monitoring scenario.

  18. Automatic Sea Bird Detection from High Resolution Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Mader, S.; Grenzdörffer, G. J.

    2016-06-01

    Great efforts are presently taken in the scientific community to develop computerized and (fully) automated image processing methods allowing for an efficient and automatic monitoring of sea birds and marine mammals in ever-growing amounts of aerial imagery. Currently the major part of the processing, however, is still conducted by especially trained professionals, visually examining the images and detecting and classifying the requested subjects. This is a very tedious task, particularly when the rate of void images regularly exceeds the mark of 90%. In the content of this contribution we will present our work aiming to support the processing of aerial images by modern methods from the field of image processing. We will especially focus on the combination of local, region-based feature detection and piecewise global image segmentation for automatic detection of different sea bird species. Large image dimensions resulting from the use of medium and large-format digital cameras in aerial surveys inhibit the applicability of image processing methods based on global operations. In order to efficiently handle those image sizes and to nevertheless take advantage of globally operating segmentation algorithms, we will describe the combined usage of a simple performant feature detector based on local operations on the original image with a complex global segmentation algorithm operating on extracted sub-images. The resulting exact segmentation of possible candidates then serves as a basis for the determination of feature vectors for subsequent elimination of false candidates and for classification tasks.

  19. Modeling the Seasonal Ice Zone from the Air: use of repeat aerial hydrographic surveys to constrain a regional ice-ocean model in an area of rapidly evolving ice cover

    NASA Astrophysics Data System (ADS)

    Dewey, S.; Morison, J.; Zhang, J.

    2015-12-01

    The Seasonal Ice Zone of the Beaufort Sea is the area of ocean north of Alaska over which sea ice melts and reforms annually. It contains the more narrow, near-edge marginal ice zone (MIZ). Seasonal Ice Zone Reconnaissance Surveys (SIZRS) measure hydrography along two meridional sections using Air eXpendable CTDs (AXCTDs) and Air eXpendable Current Profilers (AXCPs). These surveys take place aboard U.S. Coast Guard Arctic Domain Awareness flights of opportunity during each melt season (June-October) starting in 2012. The Marginal Ice Zone Modeling and Assimilation System (MIZMAS) is a high-resolution regional ice-ocean model with daily, three-dimensional output encompassing the SIZRS survey area. Direct comparison of the SIZRS data with MIZMAS output as well as with several regional climatologies can constrain the ice-ocean model and help to explain recent changes in subsurface heat content and salinity. For example, observed freshening relative to climatology has been used as a reference to which MIZMAS surface salinity values can be relaxed. MIZMAS may in turn shed light on the physical mechanisms driving the observed freshening. In addition, use of MIZMAS surface fluxes to drive a one-dimensional mixed layer model gives results close to observations when the model is initialized with SIZRS profiles. Because SIZRS observations range in time from the onset of melt to the onset of Fall freeze-up, the comparison of the one-dimensional model with MIZMAS illustrates the relative roles of local and regional processes in forming near-surface temperature maxima and salinity minima. The SIZRS observations and one-dimensional model are used to constrain MIZMAS estimations of stored subsurface heat while establishing the physical drivers of these temperature and salinity changes.

  20. Approximate Dynamic Programming and Aerial Refueling

    DTIC Science & Technology

    2007-06-01

    were values derived from “AFPAM 10-1403, AIR MOBILITY PLANNING FACTORS” used by the US Air Force when making gross calculations of aerial refueling...Aerial Refueling. U.S. Centennial of Flight Commision. centennialofflight.gov/essay/EvolutionofT echnology /refueling?Tech22.htm. 20003. 5 [6] DOD Needs

  1. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Aerial wire. 32.2431 Section 32.2431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire. (a) This account shall include the original cost of bare line wire and other material used in...

  2. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Aerial wire. 32.2431 Section 32.2431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire. (a) This account shall include the original cost of bare line wire and other material used in...

  3. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Aerial wire. 32.2431 Section 32.2431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire. (a) This account shall include the original cost of bare line wire and other material used in...

  4. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Aerial wire. 32.2431 Section 32.2431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire. (a) This account shall include the original cost of bare line wire and other material used in...

  5. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Aerial wire. 32.2431 Section 32.2431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire. (a) This account shall include the original cost of bare line wire and other material used in...

  6. BOREAS Level-0 ER-2 Aerial Photography

    NASA Technical Reports Server (NTRS)

    Newcomer, Jeffrey A.; Dominquez, Roseanne; Hall, Forrest G. (Editor)

    2000-01-01

    For BOReal Ecosystem-Atmosphere Study (BOREAS), the ER-2 and other aerial photography was collected to provide finely detailed and spatially extensive documentation of the condition of the primary study sites. The ER-2 aerial photography consists of color-IR transparencies collected during flights in 1994 and 1996 over the study areas.

  7. Astronomical Methods in Aerial Navigation

    NASA Technical Reports Server (NTRS)

    Beij, K Hilding

    1925-01-01

    The astronomical method of determining position is universally used in marine navigation and may also be of service in aerial navigation. The practical application of the method, however, must be modified and adapted to conform to the requirements of aviation. Much of this work of adaptation has already been accomplished, but being scattered through various technical journals in a number of languages, is not readily available. This report is for the purpose of collecting under one cover such previous work as appears to be of value to the aerial navigator, comparing instruments and methods, indicating the best practice, and suggesting future developments. The various methods of determining position and their application and value are outlined, and a brief resume of the theory of the astronomical method is given. Observation instruments are described in detail. A complete discussion of the reduction of observations follows, including a rapid method of finding position from the altitudes of two stars. Maps and map cases are briefly considered. A bibliography of the subject is appended.

  8. Experimental evaluation of shark detection rates by aerial observers.

    PubMed

    Robbins, William D; Peddemors, Victor M; Kennelly, Steven J; Ives, Matthew C

    2014-01-01

    Aerial surveys are a recognised technique to identify the presence and abundance of marine animals. However, the capability of aerial observers to reliably sight coastal sharks has not been previously assessed, nor have differences in sighting rates between aircraft types been examined. In this study we investigated the ability of observers in fixed-wing and helicopter aircraft to sight 2.5 m artificial shark analogues placed at known depths and positions. Initial tests revealed that the shark analogues could only be detected at shallow depths, averaging only 2.5 m and 2.7 m below the water surface for observers in fixed-wing and helicopter aircraft, respectively. We then deployed analogues at shallower depths along a 5 km-long grid, and assessed their sightability to aircraft observers through a series of transects flown within 500 m. Analogues were seen infrequently from all distances, with overall sighting rates of only 12.5% and 17.1% for fixed-wing and helicopter observers, respectively. Although helicopter observers had consistently higher success rates of sighting analogues within 250 m of their flight path, neither aircraft observers sighted more than 9% of analogues deployed over 300 m from their flight paths. Modelling of sighting rates against environmental and experimental variables indicated that observations were affected by distance, aircraft type, sun glare and sea conditions, while the range of water turbidities observed had no effect. We conclude that aerial observers have limited ability to detect the presence of submerged animals such as sharks, particularly when the sharks are deeper than ∼ 2.6 m, or over 300 m distant from the aircraft's flight path, especially during sunny or windy days. The low rates of detections found in this study cast serious doubts on the use of aerial beach patrols as an effective early-warning system to prevent shark attacks.

  9. Experimental Evaluation of Shark Detection Rates by Aerial Observers

    PubMed Central

    Robbins, William D.; Peddemors, Victor M.; Kennelly, Steven J.; Ives, Matthew C.

    2014-01-01

    Aerial surveys are a recognised technique to identify the presence and abundance of marine animals. However, the capability of aerial observers to reliably sight coastal sharks has not been previously assessed, nor have differences in sighting rates between aircraft types been examined. In this study we investigated the ability of observers in fixed-wing and helicopter aircraft to sight 2.5 m artificial shark analogues placed at known depths and positions. Initial tests revealed that the shark analogues could only be detected at shallow depths, averaging only 2.5 m and 2.7 m below the water surface for observers in fixed-wing and helicopter aircraft, respectively. We then deployed analogues at shallower depths along a 5 km-long grid, and assessed their sightability to aircraft observers through a series of transects flown within 500 m. Analogues were seen infrequently from all distances, with overall sighting rates of only 12.5% and 17.1% for fixed-wing and helicopter observers, respectively. Although helicopter observers had consistently higher success rates of sighting analogues within 250 m of their flight path, neither aircraft observers sighted more than 9% of analogues deployed over 300 m from their flight paths. Modelling of sighting rates against environmental and experimental variables indicated that observations were affected by distance, aircraft type, sun glare and sea conditions, while the range of water turbidities observed had no effect. We conclude that aerial observers have limited ability to detect the presence of submerged animals such as sharks, particularly when the sharks are deeper than ∼2.6 m, or over 300 m distant from the aircraft's flight path, especially during sunny or windy days. The low rates of detections found in this study cast serious doubts on the use of aerial beach patrols as an effective early-warning system to prevent shark attacks. PMID:24498258

  10. mapKITE: a New Paradigm for Simultaneous Aerial and Terrestrial Geodata Acquisition and Mapping

    NASA Astrophysics Data System (ADS)

    Molina, P.; Blázquez, M.; Sastre, J.; Colomina, I.

    2016-06-01

    We introduce a new mobile, simultaneous terrestrial and aerial, geodata collection and post-processing method: mapKITE. By combining two mapping technologies such as terrestrial mobile mapping and unmanned aircraft aerial mapping, geodata are simultaneously acquired from air and ground. More in detail, a mapKITE geodata acquisition system consists on an unmanned aircraft and a terrestrial vehicle, which hosts the ground control station. By means of a real-time navigation system on the terrestrial vehicle, real-time waypoints are sent to the aircraft from the ground. By doing so, the aircraft is linked to the terrestrial vehicle through a "virtual tether," acting as a "mapping kite." In the article, we entail the concept of mapKITE as well as the various technologies and techniques involved, from aircraft guidance and navigation based on IMU and GNSS, optical cameras for mapping and tracking, sensor orientation and calibration, etc. Moreover, we report of a new measurement introduced in mapKITE, that is, point-and-scale photogrammetric measurements [of image coordinates and scale] for optical targets of known size installed on the ground vehicle roof. By means of accurate posteriori trajectory determination of the terrestrial vehicle, mapKITE benefits then from kinematic ground control points which are photogrametrically observed by point-and-scale measures. Initial results for simulated configurations show that these measurements added to the usual Integrated Sensor Orientation ones reduce or even eliminate the need of conventional ground control points -therefore, lowering mission costs- and enable selfcalibration of the unmanned aircraft interior orientation parameters in corridor configurations, in contrast to the situation of traditional corridor configurations. Finally, we report about current developments of the first mapKITE prototype, developed under the European Union Research and Innovation programme Horizon 2020. The first mapKITE mission will be held at

  11. Mobile Stereo-Mapper a Portable Kit for Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Li-Chee-Ming, J.; Armenakis, C.; Lee, R.

    2011-09-01

    A low-cost portable light-weight mobile stereo-mapping system (MSMS) is under development in the GeoICT Lab, Geomatics Engineering program at York University. The MSMS is designed for remote operation on board unmanned aerial vehicles (UAV) for navigation and rapid collection of 3D spatial data. Pose estimation of the camera sensors is based on single frequency RTK-GPS, loosely coupled in a Kalman filter with MEMS-based IMU. The attitude and heading reference system (AHRS) calculates orientation from the gyro data, aided by accelerometer and magnetometer data to compensate for gyro drift. Two low-cost consumer digital cameras are calibrated and time-synchronized with the GPS/IMU to provide direct georeferenced stereo vision, while a video camera is used for navigation. Object coordinates are determined using rigorous photogrammetric solutions supported by direct georefencing algorithms for accurate pose estimation of the camera sensors. Before the MSMS is considered operational its sensor components and the integrated system itself has to undergo a rigorous calibration process to determine systematic errors and biases and to determine the relative geometry of the sensors. In this paper, the methods and results for system calibration, including camera, boresight and leverarm calibrations are presented. An overall accuracy assessment of the calibrated system is given using a 3D test field.

  12. Assessment of Restoration Methods of X-Ray Images with Emphasis on Medical Photogrammetric Usage

    NASA Astrophysics Data System (ADS)

    Hosseinian, S.; Arefi, H.

    2016-06-01

    Nowadays, various medical X-ray imaging methods such as digital radiography, computed tomography and fluoroscopy are used as important tools in diagnostic and operative processes especially in the computer and robotic assisted surgeries. The procedures of extracting information from these images require appropriate deblurring and denoising processes on the pre- and intra-operative images in order to obtain more accurate information. This issue becomes more considerable when the X-ray images are planned to be employed in the photogrammetric processes for 3D reconstruction from multi-view X-ray images since, accurate data should be extracted from images for 3D modelling and the quality of X-ray images affects directly on the results of the algorithms. For restoration of X-ray images, it is essential to consider the nature and characteristics of these kinds of images. X-ray images exhibit severe quantum noise due to limited X-ray photons involved. The assumptions of Gaussian modelling are not appropriate for photon-limited images such as X-ray images, because of the nature of signal-dependant quantum noise. These images are generally modelled by Poisson distribution which is the most common model for low-intensity imaging. In this paper, existing methods are evaluated. For this purpose, after demonstrating the properties of medical X-ray images, the more efficient and recommended methods for restoration of X-ray images would be described and assessed. After explaining these approaches, they are implemented on samples from different kinds of X-ray images. By considering the results, it is concluded that using PURE-LET, provides more effective and efficient denoising than other examined methods in this research.

  13. Object-Based Coregistration of Terrestrial Photogrammetric and ALS Point Clouds in Forested Areas

    NASA Astrophysics Data System (ADS)

    Polewski, P.; Erickson, A.; Yao, W.; Coops, N.; Krzystek, P.; Stilla, U.

    2016-06-01

    Airborne Laser Scanning (ALS) and terrestrial photogrammetry are methods applicable for mapping forested environments. While ground-based techniques provide valuable information about the forest understory, the measured point clouds are normally expressed in a local coordinate system, whose transformation into a georeferenced system requires additional effort. In contrast, ALS point clouds are usually georeferenced, yet the point density near the ground may be poor under dense overstory conditions. In this work, we propose to combine the strengths of the two data sources by co-registering the respective point clouds, thus enriching the georeferenced ALS point cloud with detailed understory information in a fully automatic manner. Due to markedly different sensor characteristics, coregistration methods which expect a high geometric similarity between keypoints are not suitable in this setting. Instead, our method focuses on the object (tree stem) level. We first calculate approximate stem positions in the terrestrial and ALS point clouds and construct, for each stem, a descriptor which quantifies the 2D and vertical distances to other stem centers (at ground height). Then, the similarities between all descriptor pairs from the two point clouds are calculated, and standard graph maximum matching techniques are employed to compute corresponding stem pairs (tiepoints). Finally, the tiepoint subset yielding the optimal rigid transformation between the terrestrial and ALS coordinate systems is determined. We test our method on simulated tree positions and a plot situated in the northern interior of the Coast Range in western Oregon, USA, using ALS data (76 x 121 m2) and a photogrammetric point cloud (33 x 35 m2) derived from terrestrial photographs taken with a handheld camera. Results on both simulated and real data show that the proposed stem descriptors are discriminative enough to derive good correspondences. Specifically

  14. Spatial analysis of fractured rock around fault zones based on photogrammetric data

    NASA Astrophysics Data System (ADS)

    Deckert, H.; Gessner, K.; Drews, M.; Wellmann, J. F.

    2009-04-01

    The location of hydrocarbon, geothermal or hydrothermal fluids is often bound to fault zones. The fracture systems along these faults play an important role in providing pathways to fluids in the Earth's crust. Thus an evaluation of the change in permeability due to rock deformation is of particular interest in these zones. Recent advances in digital imaging using modern techniques like photogrammetry provide new opportunities to view, analyze and present high resolution geological data in three dimensions. Our method is an extension of the one-dimensional scan-line approach to quantify discontinuities in rock outcrops. It has the advantage to take into account a larger amount of spatial data than conventional manual measurement methods. It enables to recover the entity of spatial information of a 3D fracture pattern, i.e. position, orientation, extent and frequency of fractures. We present examples of outcrop scale datasets in granitic and sedimentary rocks and analyse changes in fracture patterns across fault zones from the host rock to the damage zone. We also present a method to generate discontinuity density maps from 3D surface models generated by digital photogrammetry methods. This methodology has potential for application in rock mass characterization, structural and tectonic studies, the formation of hydrothermal mineral deposits, oil and gas migration, and hydrogeology. Our analysis methods represent important steps towards developing a toolkit to automatically detect and interpret spatial rock characteristics, by taking advantage of the large amount of data that can be collected by photogrammetric methods. This acquisition of parameters defining a 3D fracture pattern allows the creation of synthetic fracture networks following these constraints. The mathematical description of such a synethtical network can be implemented into numerical simulation tools for modeling fluid flow in fracture media. We give an outline of current and future applications of

  15. Validation of Bim Components by Photogrammetric Point Clouds for Construction Site Monitoring

    NASA Astrophysics Data System (ADS)

    Tuttas, S.; Braun, A.; Borrmann, A.; Stilla, U.

    2015-03-01

    Construction progress monitoring is a primarily manual and time consuming process which is usually based on 2D plans and therefore has a need for an increased automation. In this paper an approach is introduced for comparing a planned state of a building (as-planned) derived from a Building Information Model (BIM) to a photogrammetric point cloud (as-built). In order to accomplish the comparison a triangle-based representation of the building model is used. The approach has two main processing steps. First, visibility checks are performed to determine whether or not elements of the building are potentially built. The remaining parts can be either categorized as free areas, which are definitely not built, or as unknown areas, which are not visible. In the second step it is determined if the potentially built parts can be confirmed by the surrounding points. This process begins by splitting each triangle into small raster cells. For each raster cell a measure is calculated using three criteria: the mean distance of the points, their standard deviation and the deviation from a local plane fit. A triangle is confirmed if a sufficient number of raster cells yield a high rating by the measure. The approach is tested based on a real case inner city scenario. Only triangles showing unambiguous results are labeled with their statuses, because it is intended to use these results to infer additional statements based on dependencies modeled in the BIM. It is shown that the label built is reliable and can be used for further analysis. As a drawback this comes with a high percentage of ambiguously classified elements, for which the acquired data is not sufficient (in terms of coverage and/or accuracy) for validation.

  16. Classification of Photogrammetric Point Clouds of Scaffolds for Construction Site Monitoring Using Subspace Clustering and PCA

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Tuttas, S.; Heogner, L.; Stilla, U.

    2016-06-01

    This paper presents an approach for the classification of photogrammetric point clouds of scaffolding components in a construction site, aiming at making a preparation for the automatic monitoring of construction site by reconstructing an as-built Building Information Model (as-built BIM). The points belonging to tubes and toeboards of scaffolds will be distinguished via subspace clustering process and principal components analysis (PCA) algorithm. The overall workflow includes four essential processing steps. Initially, the spherical support region of each point is selected. In the second step, the normalized cut algorithm based on spectral clustering theory is introduced for the subspace clustering, so as to select suitable subspace clusters of points and avoid outliers. Then, in the third step, the feature of each point is calculated by measuring distances between points and the plane of local reference frame defined by PCA in cluster. Finally, the types of points are distinguished and labelled through a supervised classification method, with random forest algorithm used. The effectiveness and applicability of the proposed steps are investigated in both simulated test data and real scenario. The results obtained by the two experiments reveal that the proposed approaches are qualified to the classification of points belonging to linear shape objects having different shapes of sections. For the tests using synthetic point cloud, the classification accuracy can reach 80%, with the condition contaminated by noise and outliers. For the application in real scenario, our method can also achieve a classification accuracy of better than 63%, without using any information about the normal vector of local surface.

  17. MEMS Based Micro Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Joshi, Niranjan; Köhler, Elof; Enoksson, Peter

    2016-10-01

    Designing a flapping wing insect robot requires understanding of insect flight mechanisms, wing kinematics and aerodynamic forces. These subsystems are interconnected and their dependence on one another affects the overall performance. Additionally it requires an artificial muscle like actuator and transmission to power the wings. Several kinds of actuators and mechanisms are candidates for this application with their own strengths and weaknesses. This article provides an overview of the insect scaled flight mechanism along with discussion of various methods to achieve the Micro Aerial Vehicle (MAV) flight. Ongoing projects in Chalmers is aimed at developing a low cost and low manufacturing time MAV. The MAV design considerations and design specifications are mentioned. The wings are manufactured using 3D printed carbon fiber and are under experimental study.

  18. COCOA: tracking in aerial imagery

    NASA Astrophysics Data System (ADS)

    Ali, Saad; Shah, Mubarak

    2006-05-01

    Unmanned Aerial Vehicles (UAVs) are becoming a core intelligence asset for reconnaissance, surveillance and target tracking in urban and battlefield settings. In order to achieve the goal of automated tracking of objects in UAV videos we have developed a system called COCOA. It processes the video stream through number of stages. At first stage platform motion compensation is performed. Moving object detection is performed to detect the regions of interest from which object contours are extracted by performing a level set based segmentation. Finally blob based tracking is performed for each detected object. Global tracks are generated which are used for higher level processing. COCOA is customizable to different sensor resolutions and is capable of tracking targets as small as 100 pixels. It works seamlessly for both visible and thermal imaging modes. The system is implemented in Matlab and works in a batch mode.

  19. The DOE ARM Aerial Facility

    SciTech Connect

    Schmid, Beat; Tomlinson, Jason M.; Hubbe, John M.; Comstock, Jennifer M.; Mei, Fan; Chand, Duli; Pekour, Mikhail S.; Kluzek, Celine D.; Andrews, Elisabeth; Biraud, S.; McFarquhar, Greg

    2014-05-01

    The Department of Energy Atmospheric Radiation Measurement (ARM) Program is a climate research user facility operating stationary ground sites that provide long-term measurements of climate relevant properties, mobile ground- and ship-based facilities to conduct shorter field campaigns (6-12 months), and the ARM Aerial Facility (AAF). The airborne observations acquired by the AAF enhance the surface-based ARM measurements by providing high-resolution in-situ measurements for process understanding, retrieval-algorithm development, and model evaluation that are not possible using ground- or satellite-based techniques. Several ARM aerial efforts were consolidated into the AAF in 2006. With the exception of a small aircraft used for routine measurements of aerosols and carbon cycle gases, AAF at the time had no dedicated aircraft and only a small number of instruments at its disposal. In this "virtual hangar" mode, AAF successfully carried out several missions contracting with organizations and investigators who provided their research aircraft and instrumentation. In 2009, AAF started managing operations of the Battelle-owned Gulfstream I (G-1) large twin-turboprop research aircraft. Furthermore, the American Recovery and Reinvestment Act of 2009 provided funding for the procurement of over twenty new instruments to be used aboard the G-1 and other AAF virtual-hangar aircraft. AAF now executes missions in the virtual- and real-hangar mode producing freely available datasets for studying aerosol, cloud, and radiative processes in the atmosphere. AAF is also engaged in the maturation and testing of newly developed airborne sensors to help foster the next generation of airborne instruments.

  20. Inter-Ethnic/Racial Facial Variations: A Systematic Review and Bayesian Meta-Analysis of Photogrammetric Studies

    PubMed Central

    Wen, Yi Feng; Wong, Hai Ming; Lin, Ruitao; Yin, Guosheng; McGrath, Colman

    2015-01-01

    Background Numerous facial photogrammetric studies have been published around the world. We aimed to critically review these studies so as to establish population norms for various angular and linear facial measurements; and to determine inter-ethnic/racial facial variations. Methods and Findings A comprehensive and systematic search of PubMed, ISI Web of Science, Embase, and Scopus was conducted to identify facial photogrammetric studies published before December, 2014. Subjects of eligible studies were either Africans, Asians or Caucasians. A Bayesian hierarchical random effects model was developed to estimate posterior means and 95% credible intervals (CrI) for each measurement by ethnicity/race. Linear contrasts were constructed to explore inter-ethnic/racial facial variations. We identified 38 eligible studies reporting 11 angular and 18 linear facial measurements. Risk of bias of the studies ranged from 0.06 to 0.66. At the significance level of 0.05, African males were found to have smaller nasofrontal angle (posterior mean difference: 8.1°, 95% CrI: 2.2°–13.5°) compared to Caucasian males and larger nasofacial angle (7.4°, 0.1°–13.2°) compared to Asian males. Nasolabial angle was more obtuse in Caucasian females than in African (17.4°, 0.2°–35.3°) and Asian (9.1°, 0.4°–17.3°) females. Additional inter-ethnic/racial variations were revealed when the level of statistical significance was set at 0.10. Conclusions A comprehensive database for angular and linear facial measurements was established from existing studies using the statistical model and inter-ethnic/racial variations of facial features were observed. The results have implications for clinical practice and highlight the need and value for high quality photogrammetric studies. PMID:26247212

  1. Towards a Low-Cost Real-Time Photogrammetric Landslide Monitoring System Utilising Mobile and Cloud Computing Technology

    NASA Astrophysics Data System (ADS)

    Chidburee, P.; Mills, J. P.; Miller, P. E.; Fieber, K. D.

    2016-06-01

    Close-range photogrammetric techniques offer a potentially low-cost approach in terms of implementation and operation for initial assessment and monitoring of landslide processes over small areas. In particular, the Structure-from-Motion (SfM) pipeline is now extensively used to help overcome many constraints of traditional digital photogrammetry, offering increased user-friendliness to nonexperts, as well as lower costs. However, a landslide monitoring approach based on the SfM technique also presents some potential drawbacks due to the difficulty in managing and processing a large volume of data in real-time. This research addresses the aforementioned issues by attempting to combine a mobile device with cloud computing technology to develop a photogrammetric measurement solution as part of a monitoring system for landslide hazard analysis. The research presented here focusses on (i) the development of an Android mobile application; (ii) the implementation of SfM-based open-source software in the Amazon cloud computing web service, and (iii) performance assessment through a simulated environment using data collected at a recognized landslide test site in North Yorkshire, UK. Whilst the landslide monitoring mobile application is under development, this paper describes experiments carried out to ensure effective performance of the system in the future. Investigations presented here describe the initial assessment of a cloud-implemented approach, which is developed around the well-known VisualSFM algorithm. Results are compared to point clouds obtained from alternative SfM 3D reconstruction approaches considering a commercial software solution (Agisoft PhotoScan) and a web-based system (Autodesk 123D Catch). Investigations demonstrate that the cloud-based photogrammetric measurement system is capable of providing results of centimeter-level accuracy, evidencing its potential to provide an effective approach for quantifying and analyzing landslide hazard at a local-scale.

  2. Overview of NASA aerial applications research

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.

    1978-01-01

    Aerial applications research conducted by NASA seeks improvements in environmental safety, fuel efficiency, and aircraft productivity and safety. From 1976 to 1978, NASA studied the technology needs of the aerial applications industry and developed in-house research capabilities for meeting those needs. This paper presents the research plans developed by NASA. High potential appears to exist for near term contributions to the industry from existing NASA research capabilities in drift reduction, stall departure safety, and dry materials dispersal system technology. A brief, annotated bibliography is included listing documents recently produced as a result of NASA aerial applications research efforts.

  3. Low-cost Tools for Aerial Video Geolocation and Air Traffic Analysis for Delay Reduction Using Google Earth

    NASA Astrophysics Data System (ADS)

    Zetterlind, V.; Pledgie, S.

    2009-12-01

    Low-cost, low-latency, robust geolocation and display of aerial video is a common need for a wide range of earth observing as well as emergency response and security applications. While hardware costs for aerial video collection systems, GPS, and inertial sensors have been decreasing, software costs for geolocation algorithms and reference imagery/DTED remain expensive and highly proprietary. As part of a Federal Small Business Innovative Research project, MosaicATM and EarthNC, Inc have developed a simple geolocation system based on the Google Earth API and Google's 'built-in' DTED and reference imagery libraries. This system geolocates aerial video based on platform and camera position, attitude, and field-of-view metadata using geometric photogrammetric principles of ray-intersection with DTED. Geolocated video can be directly rectified and viewed in the Google Earth API during processing. Work is underway to extend our geolocation code to NASA World Wind for additional flexibility and a fully open-source platform. In addition to our airborne remote sensing work, MosaicATM has developed the Surface Operations Data Analysis and Adaptation (SODAA) tool, funded by NASA Ames, which supports analysis of airport surface operations to optimize aircraft movements and reduce fuel burn and delays. As part of SODAA, MosaicATM and EarthNC, Inc have developed powerful tools to display national airspace data and time-animated 3D flight tracks in Google Earth for 4D analysis. The SODAA tool can convert raw format flight track data, FAA National Flight Data (NFD), and FAA 'Adaptation' airport surface data to a spatial database representation and then to Google Earth KML. The SODAA client provides users with a simple graphical interface through which to generate queries with a wide range of predefined and custom filters, plot results, and export for playback in Google Earth in conjunction with NFD and Adaptation overlays.

  4. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Availability of aerial photography. 611.21 Section 611... § 611.21 Availability of aerial photography. The National Cartography and Geospatial Center obtains necessary clearance for all aerial photography for NRCS. New aerial photography of designated areas in...

  5. Unmanned Aerial Vehicles: Replacing the Army’s Comanche Helicopter?

    DTIC Science & Technology

    2007-11-02

    This strategic research project explores the possibility of unmanned aerial vehicles replacing the Comanche Helicopter in its doctrinal missions...capabilities of unmanned aerial vehicles , and analyzes unmanned aerial vehicles capabilities against those aviation critical tasks. This research will...Army’s current helicopters, this analysis reveals that unmanned aerial vehicles can only perform 67% of the reconnaissance critical tasks, 50% of the

  6. Beach monitoring using Unmanned Aerial Vehicles: results of a multi-temporal study

    NASA Astrophysics Data System (ADS)

    Casella, Elisa; Rovere, Alessio; Casella, Marco; Pedroncini, Andrea; Ferrari, Marco; Vacchi, Matteo; Firpo, Marco

    2015-04-01

    The application of Unmanned Aerial Vehicles and photogrammetry techniques in earth sciences is flourishing. In this study, we show how we applied small Unmanned Aerial Vehicles to the study of topographic changes of a beach in Italy, NW Mediterranean Sea. We surveyed the same stretch of coastline three times in 5 months, obtaining ortophotos and digital elevation models of the beach using a structure from motion approach. We then calculated the difference in beach topography between each time step, and we related topography changes to both human and natural modifications of the beach morphology that can be inferred from aerial photos or wave data. We conclude that small drones have the potential to open new possibilities for beach monitoring studies, and can be successfully employed for multi-temporal monitoring studies at relatively low cost.

  7. Critical Assessment of Object Segmentation in Aerial Image Using Geo-Hausdorff Distance

    NASA Astrophysics Data System (ADS)

    Sun, H.; Ding, Y.; Huang, Y.; Wang, G.

    2016-06-01

    Aerial Image records the large-range earth objects with the ever-improving spatial and radiometric resolution. It becomes a powerful tool for earth observation, land-coverage survey, geographical census, etc., and helps delineating the boundary of different kinds of objects on the earth both manually and automatically. In light of the geo-spatial correspondence between the pixel locations of aerial image and the spatial coordinates of ground objects, there is an increasing need of super-pixel segmentation and high-accuracy positioning of objects in aerial image. Besides the commercial software package of eCognition and ENVI, many algorithms have also been developed in the literature to segment objects of aerial images. But how to evaluate the segmentation results remains a challenge, especially in the context of the geo-spatial correspondence. The Geo-Hausdorff Distance (GHD) is proposed to measure the geo-spatial distance between the results of various object segmentation that can be done with the manual ground truth or with the automatic algorithms.Based on the early-breaking and random-sampling design, the GHD calculates the geographical Hausdorff distance with nearly-linear complexity. Segmentation results of several state-of-the-art algorithms, including those of the commercial packages, are evaluated with a diverse set of aerial images. They have different signal-to-noise ratio around the object boundaries and are hard to trace correctly even for human operators. The GHD value is analyzed to comprehensively measure the suitability of different object segmentation methods for aerial images of different spatial resolution. By critically assessing the strengths and limitations of the existing algorithms, the paper provides valuable insight and guideline for extensive research in automating object detection and classification of aerial image in the nation-wide geographic census. It is also promising for the optimal design of operational specification of remote

  8. Future Role of Aerial Platforms at Venus

    NASA Astrophysics Data System (ADS)

    Cutts, J. A.; Pauken, M.; Hall, J. L.; Baines, K. H.; Grimm, R.

    2017-02-01

    This paper reviews the brief experience with deploying aerial platforms at Venus, the various mission concepts that have been proposed over the last three decades, and a vision for their application through 2050.

  9. Rangeland monitoring with unmanned aerial vehicles (UAVs)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned aerial vehicles (UAVs) have great potential for rangeland management applications, such as monitoring vegetation change, developing grazing strategies, determining rangeland health, and assessing remediation treatment effectiveness. UAVs have several advantages: they can be deployed quickly...

  10. Locating buildings in aerial photos

    NASA Technical Reports Server (NTRS)

    Green, James S.

    1994-01-01

    Algorithms and techniques for use in the identification and location of large buildings in digitized copies of aerial photographs are developed and tested. The building data would be used in the simulation of objects located in the vicinity of an airport that may be detected by aircraft radar. Two distinct approaches are considered. Most building footprints are rectangular in form. The first approach studied is to search for right-angled corners that characterize rectangular objects and then to connect these corners to complete the building. This problem is difficult because many nonbuilding objects, such as street corners, parking lots, and ballparks often have well defined corners which are often difficult to distinguish from rooftops. Furthermore, rooftops come in a number of shapes, sizes, shadings, and textures which also limit the discrimination task. The strategy used linear sequences of different samples to detect straight edge segments at multiple angles and to determine when these segments meet at approximately right-angles with respect to each other. This technique is effective in locating corners. The test image used has a fairly rectangular block pattern oriented about thirty degrees clockwise from a vertical alignment, and the overall measurement data reflect this. However, this technique does not discriminate between buildings and other objects at an operationally suitable rate. In addition, since multiple paths are tested for each image pixel, this is a time consuming task. The process can be speeded up by preprocessing the image to locate the more optimal sampling paths. The second approach is to rely on a human operator to identify and select the building objects and then to have the computer determine the outline and location of the selected structures. When presented with a copy of a digitized aerial photograph, the operator uses a mouse and cursor to select a target building. After a button on the mouse is pressed, with the cursor fully within

  11. Observation of coral reefs on Ishigaki Island, Japan, using Landsat TM images and aerial photographs

    SciTech Connect

    Matsunaga, Tsuneo; Kayanne, Hajime

    1997-06-01

    Ishigaki Island is located at the southwestern end of Japanese Islands and famous for its fringing coral reefs. More than twenty LANDSAT TM images in twelve years and aerial photographs taken on 1977 and 1994 were used to survey two shallow reefs on this island, Shiraho and Kabira. Intensive field surveys were also conducted in 1995. All satellite images of Shiraho were geometrically corrected and overlaid to construct a multi-date satellite data set. The effects of solar elevation and tide on satellite imagery were studied with this data set. The comparison of aerial and satellite images indicated that significant changes occurred between 1977 and 1984 in Kabira: rapid formation in the western part and decrease in the eastern part of dark patches. The field surveys revealed that newly formed dark patches in the west contain young corals. These results suggest that remote sensing is useful for not only mapping but also monitoring of shallow coral reefs.

  12. Statistical assessment of soil surface roughness for environmental applications using photogrammetric imaging techniques

    NASA Astrophysics Data System (ADS)

    Marzahn, Philip; Rieke-Zapp, Dirk; Ludwig, Ralf

    2010-05-01

    Micro scale soil surface roughness is a crucial parameter in many environmental applications. Recent soil erosion studies have shown the impact of micro topography on soil erosion rates as well as overland flow generation due to soil crusting effects. Besides the above mentioned, it is widely recognized that the backscattered signal in SAR remote sensing is strongly influenced by soil surface roughness and by regular higher order tillage patterns. However, there is an ambiguity in the appropriate measurement technique and scale for roughness studies and SAR backscatter model parametrization. While different roughness indices depend on their measurement length, no satisfying roughness parametrization and measurement technique has been found yet, introducing large uncertainty in the interpretation of the radar backscatter. In the presented study, we computed high resolution digital elevation models (DEM) using a consumer grade digital camera in the frame of photogrammetric imaging techniques to represent soil micro topography from different soil surfaces (ploughed, harrowed, seedbed and crusted) . The retrieved DEMs showed sufficient accuracy, with an RMSE of a 1.64 mm compared to high accurate reference points,. For roughness characterization, we calculated different roughness indices (RMS height (s), autocorrelation length (l), tortuosity index (TB)). In an extensive statistical investigation we show the behaviour of the roughness indices for different acquisition sizes. Compared to results from profile measurements taken from literature and profiles generated out of the dataset, results indicate,that by using a three dimensional measuring device, the calculated roughness indices are more robust against outliers and even saturate faster with increasing acquisition size. Dependent on the roughness condition, the calculated values for the RMS-height saturate for ploughed fields at 2.3 m, for harrowed fields at 2.0 m and for crusted fields at 1.2 m. Results also

  13. The observation of Martian dune migration using very high resolution image analysis and photogrammetric data processing

    NASA Astrophysics Data System (ADS)

    Kim, Jungrack; Yun, Hyewon; Kim, Younghwi; Baik, Hyunseob

    2016-04-01

    Although the origins and processes of Martian aeolian features, especially dunes, have not been fully identified yet, it has been better understood by the orbital observation method which has led to the identification of Martian dune migration such as a case in Nili Patera (Bridges, 2012), and the numerical model employing advanced computational fluid dynamics (Jackson et al., 2015). Specifically, the recent introduction of very high-resolution image products, such as 25 cm-resolution HiRISE imagery and its precise photogrammetric processor, allows us to trace the estimated, although tiny, dune migration over the Martian surface. In this study, we attempted to improve the accuracy of active dune migration measurements by 1) the introduction of very high resolution ortho images and stereo analysis based on the hierarchical geodetic control (Kim and Muller, 2009) for better initial point settings; 2) positioning error removal throughout polynomial image control; and 3) the improved sub-pixel co-registration algorithms using optical flow with a refinement stage conducted on a pyramidal grid processor and a blunder classifier. Consequently, this scheme not only measured Martian dune migration more precisely, but it will further achieve the extension of 3D observations combining stereo analysis and photoclinometry. The established algorithms have been tested using the HiRISE time series images over several dune fields, such as the Kaiser, Procter, and Wirtz craters, which were reported by the Mars Global Digital Dune Database (Hayward et al., 2013). The detected dune migrations were significantly larger than previously reported values and slightly correlated with the wind directions estimated by Martian Climate Database (Bingham et al., 2003). The outcomes in our study will be demonstrated with the quantified values in 2D and volumetric direction. In the future, the method will be further applied to the dune fields in the Mars Global dune database comprehensively and

  14. Validation of two independent photogrammetric techniques for determining body measurements of gorillas.

    PubMed

    Galbany, Jordi; Stoinski, Tara S; Abavandimwe, Disier; Breuer, Thomas; Rutkowski, William; Batista, Nicholas V; Ndagijimana, Felix; McFarlin, Shannon C

    2015-12-14

    The ability to accurately measure morphological characteristics of wild primates in the field is challenging, yet critical for understanding fundamental aspects of their biology and behavior. Recent studies have shown that digital photogrammetry can be used to non-invasively measure morphological traits of wild primates, as it allows for the determination of geometric properties of objects remotely from photographic images. We report here on a rare opportunity to test this methodology by comparing measurements obtained directly from living great apes to those obtained from photographs. We test the accuracy and precision of two independent photogrammetric techniques, employing the use of parallel lasers and a distance meter, respectively, for obtaining measurements of static objects and captive western lowland gorillas (Gorilla gorilla gorilla) (n = 4) at Zoo Atlanta. For static objects, the mean percent error between corresponding measurements collected by the same observer directly versus using photogrammetry was 0.49-0.74% for the parallel laser method and 0.62-0.76% for the distance meter method. For gorillas, mean percent error between corresponding direct and remote measurements was 2.72-5.20% for the parallel laser method and 2.20-7.51% for the distance meter method. Correlations between direct measurements and corresponding parallel laser and distance meter measurements of gorillas were highly significant with R(2) values and slopes approaching 1.0 (parallel lasers: R(2)  = 0.9989, P < 0.0001; distance-meter: R(2)  = 0.9990, P < 0.0001). Further, variation between measurements of the same targets collected repeatedly by the same observer, and between different observers, was uniformly low across methods (CV, range = 0.003-0.013). While errors are slightly higher for the distance meter technique, both methods show great promise for addressing a wide range of questions requiring the non-invasive collection of morphological data from

  15. The investigation of active Martian dune fields using very high resolution photogrammetric measurements

    NASA Astrophysics Data System (ADS)

    Kim, Jungrack; Kim, Younghwi; Park, Minseong

    2016-10-01

    At the present time, arguments continue regarding the migration speeds of Martian dune fields and their correlation with atmospheric circulation. However, precisely measuring the spatial translation of Martian dunes has succeeded only a very few times—for example, in the Nili Patera study (Bridges et al. 2012) using change-detection algorithms and orbital imagery. Therefore, in this study, we developed a generic procedure to precisely measure the migration of dune fields with recently introduced 25-cm resolution orbital imagery specifically using a high-accuracy photogrammetric processor. The processor was designed to trace estimated dune migration, albeit slight, over the Martian surface by 1) the introduction of very high resolution ortho images and stereo analysis based on hierarchical geodetic control for better initial point settings; 2) positioning error removal throughout the sensor model refinement with a non-rigorous bundle block adjustment, which makes possible the co-alignment of all images in a time series; and 3) improved sub-pixel co-registration algorithms using optical flow with a refinement stage conducted on a pyramidal grid processor and a blunder classifier. Moreover, volumetric changes of Martian dunes were additionally traced by means of stereo analysis and photoclinometry. The established algorithms have been tested using high-resolution HIRISE time-series images over several Martian dune fields. Dune migrations were iteratively processed both spatially and volumetrically, and the results were integrated to be compared to the Martian climate model. Migrations over well-known crater dune fields appeared to be almost static for the considerable temporal periods and were weakly correlated with wind directions estimated by the Mars Climate Database (Millour et al. 2015). As a result, a number of measurements over dune fields in the Mars Global Dune Database (Hayward et al. 2014) covering polar areas and mid-latitude will be demonstrated

  16. USE OF THE AERIAL MEASUREMENT SYSTEM HELICOPTER EMERGENCY RESPONSE ACQUISITION SYSTEMS WITH GEOGRAPHIC INFORMATION SYSTEM FOR RADIOACTIVE SOIL REMEDIATION - [11504

    SciTech Connect

    BROCK CT

    2011-02-15

    The Aerial Measurement System (AMS) Helicopter Emergency Response Acquisition System provides a thorough and economical means to identify and characterize the contaminants for large area radiological surveys. The helicopter system can provide a 100-percent survey of an area that qualifies as a scoping survey under the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) methodology. If the sensitivity is adequate when compared to the clean up values, it may also be used for the characterization survey. The data from the helicopter survey can be displayed and manipulated to provide invaluable data during remediation activities.

  17. CFD Simulation of Aerial Crop Spraying

    NASA Astrophysics Data System (ADS)

    Omar, Zamri; Qiang, Kua Yong; Mohd, Sofian; Rosly, Nurhayati

    2016-11-01

    Aerial crop spraying, also known as crop dusting, is made for aerial application of pesticides or fertilizer. An agricultural aircraft which is converted from an aircraft has been built to combine with the aerial crop spraying for the purpose. In recent years, many studies on the aerial crop spraying were conducted because aerial application is the most economical, large and rapid treatment for the crops. The main objective of this research is to study the airflow of aerial crop spraying system using Computational Fluid Dynamics. This paper is focus on the effect of aircraft speed and nozzle orientation on the distribution of spray droplet at a certain height. Successful and accurate of CFD simulation will improve the quality of spray during the real situation and reduce the spray drift. The spray characteristics and efficiency are determined from the calculated results of CFD. Turbulence Model (k-ɛ Model) is used for the airflow in the fluid domain to achieve a more accurate simulation. Furthermore, spray simulation is done by setting the Flat-fan Atomizer Model of Discrete Phase Model (DPM) at the nozzle exit. The interaction of spray from each flat-fan atomizer can also be observed from the simulation. The evaluation of this study is validation and grid dependency study using field data from industry.

  18. Model-based conifer crown surface reconstruction from multi-ocular high-resolution aerial imagery

    NASA Astrophysics Data System (ADS)

    Sheng, Yongwei

    2000-12-01

    Tree crown parameters such as width, height, shape and crown closure are desirable in forestry and ecological studies, but they are time-consuming and labor intensive to measure in the field. The stereoscopic capability of high-resolution aerial imagery provides a way to crown surface reconstruction. Existing photogrammetric algorithms designed to map terrain surfaces, however, cannot adequately extract crown surfaces, especially for steep conifer crowns. Considering crown surface reconstruction in a broader context of tree characterization from aerial images, we develop a rigorous perspective tree image formation model to bridge image-based tree extraction and crown surface reconstruction, and an integrated model-based approach to conifer crown surface reconstruction. Based on the fact that most conifer crowns are in a solid geometric form, conifer crowns are modeled as a generalized hemi-ellipsoid. Both the automatic and semi-automatic approaches are investigated to optimal tree model development from multi-ocular images. The semi-automatic 3D tree interpreter developed in this thesis is able to efficiently extract reliable tree parameters and tree models in complicated tree stands. This thesis starts with a sophisticated stereo matching algorithm, and incorporates tree models to guide stereo matching. The following critical problems are addressed in the model-based surface reconstruction process: (1) the problem of surface model composition from tree models, (2) the occlusion problem in disparity prediction from tree models, (3) the problem of integrating the predicted disparities into image matching, (4) the tree model edge effect reduction on the disparity map, (5) the occlusion problem in orthophoto production, and (6) the foreshortening problem in image matching, which is very serious for conifer crown surfaces. Solutions to the above problems are necessary for successful crown surface reconstruction. The model-based approach was applied to recover the

  19. Endurance bounds of aerial systems

    NASA Astrophysics Data System (ADS)

    Harrington, Aaron M.; Kroninger, Christopher M.

    2014-06-01

    Within the past few years micro aerial vehicles (MAVs) have received much more attention and are starting to proliferate into military as well as civilian roles. However, one of the major drawbacks for this technology currently, has been their poor endurance, usually below 10 minutes. This is a direct result of the inefficiencies inherent in their design. Often times, designers do not consider the various components in the vehicle design and match their performance to the desired mission for the vehicle. These vehicles lack a prescribed set of design guidelines or empirically derived design equations which often limits their design to selection of commercial off-the-shelf components without proper consideration of their affect on vehicle performance. In the current study, the design space for different vehicle configurations has been examined including insect flapping, avian flapping, rotary wing, and fixed wing, and their performance bounds are established. The propulsion system typical of a rotary wing vehicle is analyzed to establish current baselines for efficiency of vehicles at this scale. The power draw from communications is analyzed to determine its impact on vehicle performance. Finally, a representative fixed wing MAV is examined and the effects of adaptive structures as a means for increasing vehicle endurance and range are examined. This paper seeks to establish the performance bounds for micro air vehicles and establish a path forward for future designs so that efficiency may be maximized.

  20. Application of Technical Measures and Software in Constructing Photorealistic 3D Models of Historical Building Using Ground-Based and Aerial (UAV) Digital Images

    NASA Astrophysics Data System (ADS)

    Zarnowski, Aleksander; Banaszek, Anna; Banaszek, Sebastian

    2015-12-01

    Preparing digital documentation of historical buildings is a form of protecting cultural heritage. Recently there have been several intensive studies using non-metric digital images to construct realistic 3D models of historical buildings. Increasingly often, non-metric digital images are obtained with unmanned aerial vehicles (UAV). Technologies and methods of UAV flights are quite different from traditional photogrammetric approaches. The lack of technical guidelines for using drones inhibits the process of implementing new methods of data acquisition. This paper presents the results of experiments in the use of digital images in the construction of photo-realistic 3D model of a historical building (Raphaelsohns' Sawmill in Olsztyn). The aim of the study at the first stage was to determine the meteorological and technical conditions for the acquisition of aerial and ground-based photographs. At the next stage, the technology of 3D modelling was developed using only ground-based or only aerial non-metric digital images. At the last stage of the study, an experiment was conducted to assess the possibility of 3D modelling with the comprehensive use of aerial (UAV) and ground-based digital photographs in terms of their labour intensity and precision of development. Data integration and automatic photo-realistic 3D construction of the models was done with Pix4Dmapper and Agisoft PhotoScan software Analyses have shown that when certain parameters established in an experiment are kept, the process of developing the stock-taking documentation for a historical building moves from the standards of analogue to digital technology with considerably reduced cost.

  1. Aerial photo SBVC1962". Photo no. 360. Low oblique aerial view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Aerial photo -SBVC-1962". Photo no. 360. Low oblique aerial view of the campus, looking southeast. Stamped on the rear: "Ron Wilhite, Sun-Telegram photo, file, 10/22/62/ - San Bernardino Valley College, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  2. Integration of aerial imaging and variable-rate technology for site-specific aerial herbicide application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As remote sensing and variable rate technology are becoming more available for aerial applicators, practical methodologies on effective integration of these technologies are needed for site-specific aerial applications of crop production and protection materials. The objectives of this study were to...

  3. Use of low-altitude aerial photography to identify submersed aquatic macrophytes

    USGS Publications Warehouse

    Schloesser, Donald W.; Manny, Bruce A.; Brown, Charles L.; Jaworski, Eugene

    1987-01-01

    The feasibility of using low-altitude aerial photography to identify beds of submersed macrophytes is demonstrated. True color aerial photos and collateral ground survey information for submersed aquatic macrophyte beds at 10 sites in the St.Clair-Detroit River system were obtained in September 1978. Using the photos and collateral ground survey information, a dichotomous key was developed for the identification of six classes - beds of five genera of macrophytes and one substrate type. A test was prepared to determine how accurately photo interpreters could identify the six classes. The test required an interpreter to examine an unlabeled, outlined area on photographs and identify it using the key. Six interpreters were tested. One pair of interpreters was trained in the interpretation of a variety of aerial photos, a second pair