Science.gov

Sample records for aerial plant organs

  1. Root ABA Accumulation in Long-Term Water-Stressed Plants is Sustained by Hormone Transport from Aerial Organs.

    PubMed

    Manzi, Matías; Lado, Joanna; Rodrigo, María Jesús; Zacarías, Lorenzo; Arbona, Vicent; Gómez-Cadenas, Aurelio

    2015-12-01

    The reduced pool of the ABA precursors, β,β-carotenoids, in roots does not account for the substantial increase in ABA content in response to water stress (WS) conditions, suggesting that ABA could be transported from other organs. Basipetal transport was interrupted by stem-girdling, and ABA levels were determined in roots after two cycles of WS induced by transplanting plants to dry perlite. Leaf applications of isotope-labeled ABA and reciprocal grafting of ABA-deficient tomato mutants were used to confirm the involvement of aerial organs on root ABA accumulation. Disruption of basipetal transport reduced ABA accumulation in roots, and this decrease was more severe after two consecutive WS periods. This effect was linked to a sharp decrease in the β,β-carotenoid pool in roots in response to water deficit. Significant levels of isotope-labeled ABA were transported from leaves to roots, mainly in plants subjected to water dehydration. Furthermore, the use of different ABA-deficient tomato mutants in reciprocal grafting combinations with wild-type genotypes confirmed the involvement of aerial organs in the ABA accumulation in roots. In conclusion, accumulation of ABA in roots after long-term WS periods largely relies on the aerial organs, suggesting a reduced ability of the roots to synthesize ABA from carotenoids. Furthermore, plants are able to transport ABA basipetally to sustain high hormone levels in roots.

  2. 1. AERIAL VIEW OF WHITSETT (INTAKE) PUMP PLANT ON LAKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. AERIAL VIEW OF WHITSETT (INTAKE) PUMP PLANT ON LAKE SHORE IN FOREGROUND; GENE IN BACKGROUND, LOOKING SOUTHWEST. - Whitsett Pump Plant, West side of Colorado River, north of Parker Dam, Parker Dam, San Bernardino County, CA

  3. Aerial photography for sensing plant anomalies

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Cardenas, R.; Hart, W. G.

    1970-01-01

    Changes in the red tonal response of Kodak Ektrachrome Infrared Aero 8443 film (EIR) are often incorrectly attributed solely to variations in infrared light reflectance of plant leaves, when the primary influence is a difference in visible light reflectance induced by varying chlorophyll contents. Comparisons are made among aerial photographic images of high- and low-chlorophyll foliage. New growth, foot rot, and boron and chloride nutrient toxicites produce low-chlorophyll foliage, and EIR transparency images of light red or white compared with dark-red images of high-chlorophyll foliage. Deposits of the sooty mold fungus that subsists on the honeydew produced by brown soft scale insects, obscure the citrus leaves' green color. Infected trees appear as black images on EIR film transparencies compared with red images of healthy trees.

  4. Aerial organ anatomy of Smilax syphilitica (Smilacaceae).

    PubMed

    Silva, João Marcelo; Andreata, Regina Helena Potsch; Appezzato-da-Glória, Beatriz

    2012-09-01

    Smilax L. in Brazil is represented by 32 taxa and it is a taxonomically difficult genus because the plants are dioecious and show wide phenotypic variation. The analysis and use of leaf anatomy characters is recognized as a frequently successful taxonomic method to distinguish between individual taxon, when floral material is absent or minute differences in flowers and foliage exist such as in Smilax. The aim of this study was to characterize the anatomical features of the aerial organs in Smilax syphilitica collected from the Atlantic Rainforest, in Santa Teresa-ES and the Smilax aff. syphilitica from the Amazon Rainforest, in Manaus, Brazil. For this, a total of three samples of Smilax were collected per site. Sample leaves and stems were fixed with FAA 50, embedded in historesin, sectioned on a rotary microtome, stained and mounted in synthetic resin. Additionally, histochemical tests were performed and cuticle ornamentation was analyzed with standard scanning electron microscopy. S. syphilitica and S. aff. syphilitica differed in cuticle ornamentation, epidermal cell arrangement and wall thickness, stomata type and orientation, calcium oxalate crystal type, and position of stem thorns. Leaf blades of S. syphilitica from the Amazon Rainforest have a network of rounded ridges on both sides, while in S. aff. syphilitica, these ridges are parallel and the spaces between them are filled with numerous membranous platelets. Viewed from the front, the epidermal cells of S. syphilitica have sinuous walls (even more pronounced in samples from the Amazon); while in S. aff. syphilitica, these cells are also sinuous but elongated in the cross-section of the blade and arranged in parallel. Stomata of S. syphilitica are paracytic, whereas in S. aff. syphilitica, are both paracytic and anisocytic, and their polar axes are directed towards the mid-vein. Calcium oxalate crystals in S. syphilitica are prisms, whereas in S. aff. syphilitica, crystal sand. Thorns occur in nodes and

  5. 20. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING NORTHEAST. THE PLANT WAS COMPOSED OF FOUR WIDELY SEPARATED AREAS, EACH ONE PERFORMING A DIFFERENT TYPE OF WORK. PLANT A (44), SOUTHWEST, FABRICATED PARTS FROM DEPLETED URANIUM, PLANT B (81), SOUTH, WAS ENRICHED URANIUM OPERATIONS, PLANT C (71), NORTH, PLUTONIUM OPERATIONS, AND PLANT D (91), EAST, WAS FINAL ASSEMBLY, SHIPPING AND RECEIVING (2/6/66). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  6. Biomechanical responses of aquatic plants to aerial conditions

    PubMed Central

    Hamann, Elena; Puijalon, Sara

    2013-01-01

    Background and Aims Wetlands are impacted by changes in hydrological regimes that can lead to periods of low water levels. During these periods, aquatic plants experience a drastic change in the mechanical conditions that they encounter, from low gravitational and tensile hydrodynamic forces when exposed to flow under aquatic conditions, to high gravitational and bending forces under terrestrial conditions. The objective of this study was to test the capacity of aquatic plants to produce self-supporting growth forms when growing under aerial conditions by assessing their resistance to terrestrial mechanical conditions and the associated morpho-anatomical changes. Methods Plastic responses to aerial conditions were assessed by sampling Berula erecta, Hippuris vulgaris, Juncus articulatus, Lythrum salicaria, Mentha aquatica, Myosotis scorpioides, Nuphar lutea and Sparganium emersum under submerged and emergent conditions. The cross-sectional area and dry matter content (DMC) were measured in the plant organs that bear the mechanical forces, and their biomechanical properties in tension and bending were assessed. Key Results All of the species except for two had significantly higher stiffness in bending and thus an increased resistance to terrestrial mechanical conditions when growing under emergent conditions. This response was determined either by an increased allocation to strengthening tissues and thus a higher DMC, or by an increased cross-sectional area. These morpho-anatomical changes also resulted in increased strength and stiffness in tension. Conclusions The capacity of the studied species to colonize this fluctuating environment can be accounted for by a high degree of phenotypic plasticity in response to emersion. Further investigation is however needed to disentangle the finer mechanisms behind these responses (e.g. allometric relations, tissue make-up), their costs and adaptive value. PMID:24187030

  7. 29. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING SOUTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING SOUTH. IN 1983, THE PERIMETER SECURITY ZONE SURROUNDING THE PLUTONIUM OPERATIONS WAS COMPLETED. IT CONSISTED OF A DOUBLE PERIMETER FENCE, CLOSED CIRCUIT TELEVISIONS, ALARMS, AND AN UNINTERRUPTED POWER SUPPLY (7/29/83). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  8. Metagenomic Analysis of Fungal Diversity on Strawberry Plants and the Effect of Management Practices on the Fungal Community Structure of Aerial Organs

    PubMed Central

    Abdelfattah, Ahmed; Wisniewski, Michael; Li Destri Nicosia, Maria Giulia; Cacciola, Santa Olga

    2016-01-01

    An amplicon metagenomic approach based on the ITS2 region of fungal rDNA was used to identify the composition of fungal communities associated with different strawberry organs (leaves, flowers, immature and mature fruits), grown on a farm using management practices that entailed the routine use of various chemical pesticides. ITS2 sequences clustered into 316 OTUs and Ascomycota was the dominant phyla (95.6%) followed by Basidiomycota (3.9%). Strawberry plants supported a high diversity of microbial organisms, but two genera, Botrytis and Cladosporium, were the most abundant, representing 70–99% of the relative abundance (RA) of all detected sequences. According to alpha and beta diversity analyses, strawberry organs displayed significantly different fungal communities with leaves having the most diverse fungal community, followed by flowers, and fruit. The interruption of chemical treatments for one month resulted in a significant modification in the structure of the fungal community of leaves and flowers while immature and mature fruit were not significantly affected. Several plant pathogens of other plant species, that would not be intuitively expected to be present on strawberry plants such as Erysiphe, were detected, while some common strawberry pathogens, such as Rhizoctonia, were less evident or absent. PMID:27490110

  9. 25. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING WEST - NORTHWEST IN 1974. IN 1972, 4,600 ACRES WERE PURCHASED AROUND THE SITE TO BETTER PROTECT THE BORDERS FROM TERRORISM AND INFILTRATION BY PROTESTORS. ANTI-NUCLEAR DEMONSTRATION BEGAN SHORTLY AFTER THE 1969 FIRE IN BUILDING 776/777, AND CONTINUED UNTIL PRODUCTION CEASED AT THE PLANT IN 1989 (10/7/74). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  10. 1. AERIAL VIEW OF THE HIGHLINE PUMPING PLANT SITE ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. AERIAL VIEW OF THE HIGHLINE PUMPING PLANT SITE ON THE WESTERN CANAL, LOOKING NORTH. THE OLD PLANT IS ON THE RIGHT BANK, NEAREST THE CANAL. THE NEW PLANT IS ON THE LEFT BANK AT THE END OF THE INLET CANAL. THE KYRENE DITCH RUNS OUT OF THE BOTTOM OF THE PICTURE, AND PART OF THE SWITCHYARD FOR THE KYRENE STEAM PLANT IS VISIBLE AT LOWER RIGHT. c. 1955 - Highline Canal & Pumping Station, South side of Salt River between Tempe, Phoenix & Mesa, Tempe, Maricopa County, AZ

  11. 32. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING NORTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING NORTHWEST. DURING THE 1980S, A NUMBER OF COMPLAINTS CONCERNING SAFETY AND ENVIRONMENTAL ERRORS SURFACED, CULMINATING IN THE 1989 RAID ON THE PLANT BY THE FBI FOR ALLEGED ENVIRONMENTAL INFRACTIONS. THAT SAME YEAR, PRODUCTION AT THE PLANT WAS HALTED FOR CORRECTION OF SAFETY DEFICIENCIES. BY 1991, A SERIES OF EVENTS WORLDWIDE REDUCED THE COLD WAR THREAT, AND IN 1992, THE SECRETARY OF ENERGY ANNOUNCED THAT THE MISSION AT THE PLANT WOULD BE CHANGED TO ENVIRONMENTAL RESTORATION AND WASTE MANAGEMENT, WITH THE GOAL OF CLEANING UP THE PLANT AND SITE (1989). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  12. Estimating soil organic carbon using aerial imagery and soil surveys

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Widespread implementation of precision agriculture practices requires low-cost, high-quality, georeferenced soil organic carbon (SOC) maps, but currently these maps require expensive sample collection and analysis. Widely available aerial imagery is a low-cost source of georeferenced data. After til...

  13. 21. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING NORTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING NORTHWEST. BY THE LATE 1960S, THE SITE HAD UNDERGONE TWO MAJOR EXPANSIONS. THE FIRST EXPANSION IN 1956-57, WHEN THE TRIGGER DESIGN CHANGED AND NECESSITATED THE ADDITION OF SEVEN NEW BUILDINGS. THE SECOND LARGE EXPANSION TOOK PLACE FROM 1964-65, WHEN ROCKY FLATS BECAME THE SOLE PRODUCER OF TRIGGERS. DURING THIS EXPANSION, ELEVEN BUILDINGS WERE ADDED, PRIMARILY IN RESEARCH AND DEVELOPMENT LABORATORIES, GUARD HOUSES, AND WASTE WATER TREATMENT (7/1/69). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  14. 13. AERIAL VIEW OF THE ROCKY FLATS PLANT FROM DIRECTLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. AERIAL VIEW OF THE ROCKY FLATS PLANT FROM DIRECTLY OVERHEAD IN 1954. IN 1950, DOW CHEMICAL COMPANY WAS CHOSEN BY THE ATOMIC ENERGY COMMISSION TO ESTABLISH THE ROCKY FLATS PLANT AS AN ATOMIC BOMB TRIGGER FABRICATION FACILITY. THE CRITERIA FOR SITING SUCH A PLANT INCLUDED A LOCATION WEST OF THE MISSISSIPPI, NORTH OF TEXAS, SOUTH OF THE NORTHERN BORDER OF COLORADO, AND EAST OF UTAH; A DRY MODERATE CLIMATE; A SUPPORTING POPULATION OF AT LEAST 25,000 PEOPLE; AND ACCESSIBILITY FROM LOS ALAMOS, NM, CHICAGO, IL, AND ST. LOUIS, MO. TWENTY-ONE AREAS IN THE UNITED STATES WERE SUGGESTED; SEVEN LOCATIONS WERE SCREENED IN THE DENVER AREA. THIS FOUR-SQUARE MILE AREA WAS SELECTED AND CONSTRUCTION BEGAN IN 1951 (8/31/54). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  15. 26. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING NORTHEAST. IN 1951, A GOOD FRIDAY ISSUE OF THE DENVER POST ANNOUNCED THE ATOMIC ENERGY COMMISSION'S PLANS TO BUILD THE ROCKY FLATS PLANT. UNDER THE HEADLINE 'THERE'S GOOD NEWS TODAY.' POLITICAL LEADERS EXPRESSED GREAT PRIDE IN THE CHOICE OF THE DENVER-BOULDER AREA AS THE SITE FOR AN ATOMIC PLANT AS QUOTED IN THE ROCKY MOUNTAIN NEWS: 'WE ARE PROUD THAT THE AREA HAS BEEN CHOSEN FOR ANOTHER IMPORTANT CONTRIBUTION TO THE NATION'S STRENGTH AND FUTURE SECURITY.' BY THE MID 1970S, PUBLIC OPINION OF THE SITE HAD CHANGED (5/4/78). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  16. Metagenomic analysis of fungal diversity on strawberry plants and the effect of management practices on the fungal community structure of aerial organs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metabarcoding, defined as Next Generation Sequencing (NGS) of amplicons of the ITS2 region (DNA barcode), was used to identify the composition of the fungal community on different strawberry organs i.e. leaves, flowers, and immature and mature fruits grown on a farm using disease and insect control ...

  17. Aerial thermography studies of power plant heated lakes

    SciTech Connect

    Villa-Aleman, E.

    2000-01-26

    Remote sensing temperature measurements of water bodies is complicated by the temperature differences between the true surface or skin water and the bulk water below. Weather conditions control the reduction of the skin temperature relative to the bulk water temperature. Typical skin temperature depressions range from a few tenths of a degree Celsius to more than one degree. In this research project, the Savannah River Technology Center (SRTC) used aerial thermography and surface-based meteorological and water temperature measurements to study a power plant cooling lake in South Carolina. Skin and bulk water temperatures were measured simultaneously for imagery calibration and to produce a database for modeling of skin temperature depressions as a function of weather and bulk water temperatures. This paper will present imagery that illustrates how the skin temperature depression was affected by different conditions in several locations on the lake and will present skin temperature modeling results.

  18. Aerial Radiation Measurements from the Fukushima Dai-ichi Nuclear Power Plant Accident

    SciTech Connect

    Guss, P. P.

    2012-07-16

    This document is a slide show type presentation concerning DOE and Aerial Measuring System (AMS) activities and results with respect to assessing the consequences of the releases from the Fukushima Dai-ichi Nuclear Power Plant. These include ground monitoring and aerial monitoring.

  19. The plant pathogen Rhodococcus fascians colonizes the exterior and interior of the aerial parts of plants.

    PubMed

    Cornelis, K; Ritsema, T; Nijsse, J; Holsters, M; Goethals, K; Jaziri, M

    2001-05-01

    Rhodococcus fascians is a plant-pathogenic bacterium that causes malformations on aerial plant parts, whereby leafy galls occur at axillary meristems. The colonization behavior on Nicotiana tabacum and Arabidopsis thaliana plants was examined. Independent of the infection methods, R. fascians extensively colonized the plant surface where the bacteria were surrounded by a slime layer. R. fascians caused the collapse of epidermal cells and penetrated intercellularly into the plant tissues. The onset of symptom development preceded the extensive colonization of the interior. The meristematic regions induced by pathogenic strain D188 were surrounded by bacteria. The nonpathogenic strain, D188-5, colonized the exterior of the plant equally well, but the linear plasmid (pFiD188) seemed to be involved in the penetration efficiency and colonization of tobacco tissues.

  20. 10. AERIAL VIEW OF CROSSCUT FACILITY SITE, SHOWING STEAM/DIESEL PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. AERIAL VIEW OF CROSSCUT FACILITY SITE, SHOWING STEAM/DIESEL PLANT BUILDING, RUNNING GENERALLY ACROSS PHOTO, AND INDIAN BEND POND IN UPPER RIGHT CORNER. November 7, 1955 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  1. Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology1

    PubMed Central

    Cruzan, Mitchell B.; Weinstein, Ben G.; Grasty, Monica R.; Kohrn, Brendan F.; Hendrickson, Elizabeth C.; Arredondo, Tina M.; Thompson, Pamela G.

    2016-01-01

    Premise of the study: Low-elevation surveys with small aerial drones (micro–unmanned aerial vehicles [UAVs]) may be used for a wide variety of applications in plant ecology, including mapping vegetation over small- to medium-sized regions. We provide an overview of methods and procedures for conducting surveys and illustrate some of these applications. Methods: Aerial images were obtained by flying a small drone along transects over the area of interest. Images were used to create a composite image (orthomosaic) and a digital surface model (DSM). Vegetation classification was conducted manually and using an automated routine. Coverage of an individual species was estimated from aerial images. Results: We created a vegetation map for the entire region from the orthomosaic and DSM, and mapped the density of one species. Comparison of our manual and automated habitat classification confirmed that our mapping methods were accurate. A species with high contrast to the background matrix allowed adequate estimate of its coverage. Discussion: The example surveys demonstrate that small aerial drones are capable of gathering large amounts of information on the distribution of vegetation and individual species with minimal impact to sensitive habitats. Low-elevation aerial surveys have potential for a wide range of applications in plant ecology. PMID:27672518

  2. An aerial radiological survey of the Pilgrim Station Nuclear Power Plant and surrounding area, Plymouth, Massachusetts

    SciTech Connect

    Proctor, A.E.

    1997-06-01

    Terrestrial radioactivity surrounding the Pilgrim Station Nuclear Power Plant was measured using aerial radiolog- ical survey techniques. The purpose of this survey was to document exposure rates near the plant and to identify unexpected, man-made radiation sources within the survey area. The surveyed area included land areas within a three-mile radius of the plant site. Data were acquired using an airborne detection system that employs sodium iodide, thallium-activated detectors. Exposure rate and photopeak counts were computed from these data and plotted on aerial photographs of the survey area. Several ground-based exposure measurements were made for comparison with the,aerial survey results. Exposure rates in areas surrounding the plant site varied from 6 to 10 microroentgens per hour, with exposure rates below 6 microroentgens per hour occurring over bogs and marshy areas. Man-made radiation was found to be higher than background levels at the plant site. Radation due to nitrogen-1 6, which is produced in the steam cycle of a boiling-water reactor, was the primaty source of activity found at the plant site. Cesium-137 activity at levels slightly above those expected from natural fallout was found at isolated locations inland from the plant site. No other detectable sources of man-made radioactivity were found.

  3. An aerial radiological survey of the Paducah Gaseous Diffusion Plant and surrounding area, Paducah, Kentucky

    SciTech Connect

    Not Available

    1992-11-01

    An aerial radiological survey of the Paducah Gaseous Diffusion Plant (PGDP) and surrounding area in Paducah, Kentucky, was conducted during May 15--25, 1990. The purpose of the survey was to measure and document the terrestrial radiological environment at the PGDP and surrounding area for use in effective environmental management and emergency response planning. The aerial survey was flown at an altitude of 61 meters (200 feet) along a series of parallel lines 107 meters (350 feet) apart. The survey encompassed an area of 62 square kilometers (24 square miles), bordered on the north by the Ohio River. The results of the aerial survey are reported as inferred exposure rates at 1 meter above ground level in the form of a gamma radiation contour map. Typical background exposure rates were found to vary from 5 to 12 microroentgens per hour ([mu]R/h). Protactinium-234m, a radioisotope indicative of uranium-238, was detected at several facilities at the PGDR. In support of the aerial survey, ground-based exposure rate and soil sample measurements were obtained at several sites within the survey perimeter. The results of the aerial and ground-based measurements were found to agree within [plus minus]15%.

  4. Co-ordinated Growth between Aerial and Root Systems in Young Apple Plants Issued from in vitro Culture

    PubMed Central

    COSTES, E.; GARCÍA-VILLANUEVA, E.; JOURDAN, C.; REGNARD, J. L.; GUÉDON, Y.

    2006-01-01

    • Background and Aims In several species exhibiting a rhythmic aerial growth, the existence of an alternation between root and shoot growth has been demonstrated. The present study aims to investigate the respective involvement of the emergence of new organs and their elongation in relation to this phenomenon and its possible genotypic variation in young apple plants. • Methods Two apple varieties, X6407 (recently named ‘Ariane’) and X3305 (‘Chantecler’ × ‘Baujade’), were compared. Five plants per variety, issued from in vitro culture, were observed in minirhizotrons over 4 months. For each plant, root emergence and growth were observed twice per week. Growth rates were calculated for all roots with more than two segments and the branching density was calculated on primary roots. On the aerial part, the number of leaves, leaf area and total shoot length were observed weekly. • Key Results No significant difference was observed between varieties in any of the final characteristics of aerial growth. Increase in leaf area and shoot length exhibited a 3-week rhythm in X3305 while a weaker signal was observed in Ariane. The primary root growth rate was homogeneous between the plants and likewise between the varieties, while their branching density differed significantly. Secondary roots emerged rhythmically, with a 3-week and a 2-week rhythm, respectively, in X3305 and ‘Ariane’. Despite a high intra-variety variability, significant differences were observed between varieties in the secondary root life span and mean length. A synchronism between leaf emergence and primary root growth was highlighted in both varieties, while an opposition phase was observed between leaf area increments and secondary root emergence in X3305 only. • Conclusion A biological model of dynamics that summarizes the interactions between processes and includes the assumption of a feedback effect of lateral root emergence on leaf emergence is proposed. PMID:16260441

  5. An Aerial Radiological Survey of the Portsmouth Gaseous Diffusion Plant and Surrounding Area, Portsmouth, Ohio

    SciTech Connect

    Namdoo Moon

    2007-12-01

    An aerial radiological survey was conducted over the 16 square-mile (~41 square-kilometer) area surrounding the Portsmouth Gaseous Diffusion Plant. The survey was performed in August 2007 utilizing a large array of helicopter mounted sodium iodide detectors. The purpose of the survey was to update the previous radiological survey levels of the environment and surrounding areas of the plant. A search for a missing radium-226 source was also performed. Implied exposure rates, man-made activity, and excess bismuth-214 activity, as calculated from the aerial data are presented in the form of isopleth maps superimposed on imagery of the surveyed area. Ground level and implied aerial exposure rates for nine specific locations are compared. Detected radioisotopes and their associated gamma ray exposure rates were consistent with those expected from normal background emitters. At specific plant locations described in the report, man-made activity was consistent with the operational histories of the location. There was no spectral activity that would indicate the presence of the lost source.

  6. An aerial survey of radioactivity associated with Atomic Energy plants

    SciTech Connect

    Davis, F.J.; Harlan, W.E.; Humphrey, P.A.; Kane, R.L.; Reinhardt, P.W.

    1992-09-02

    The project covered was an endeavor to (1) compare a group of laboratory instruments as airborne detectors of radioactivity and (2) simultaneously obtain data relative to the diffusion rate of radioactive contamination emitted into the atmosphere from off-gas stacks of production runs. Research was conducted in the Oak Ridge, Tennessee and Hanford, Washington areas. Detection was accomplished at a maximum distance of seventeen miles from the plant. Very little information of a conclusive nature was gained concerning the diffusion. Further research with the nuclear instruments, using a stronger source, is recommended. To obtain conclusive information concerning the meteorological aspects of the project, a larger observational program will be needed.

  7. Unmanned Aerial Vehicles for Alien Plant Species Detection and Monitoring

    NASA Astrophysics Data System (ADS)

    Dvořák, P.; Müllerová, J.; Bartaloš, T.; Brůna, J.

    2015-08-01

    Invasive species spread rapidly and their eradication is difficult. New methods enabling fast and efficient monitoring are urgently needed for their successful control. Remote sensing can improve early detection of invading plants and make their management more efficient and less expensive. In an ongoing project in the Czech Republic, we aim at developing innovative methods of mapping invasive plant species (semi-automatic detection algorithms) by using purposely designed unmanned aircraft (UAV). We examine possibilities for detection of two tree and two herb invasive species. Our aim is to establish fast, repeatable and efficient computer-assisted method of timely monitoring, reducing the costs of extensive field campaigns. For finding the best detection algorithm we test various classification approaches (object-, pixel-based and hybrid). Thanks to its flexibility and low cost, UAV enables assessing the effect of phenological stage and spatial resolution, and is most suitable for monitoring the efficiency of eradication efforts. However, several challenges exist in UAV application, such as geometrical and radiometric distortions, high amount of data to be processed and legal constrains for the UAV flight missions over urban areas (often highly invaded). The newly proposed UAV approach shall serve invasive species researchers, management practitioners and policy makers.

  8. Variety-based research on the phenolic content in the aerial parts of organically and conventionally grown buckwheat.

    PubMed

    Žvikas, V; Pukelevičienė, V; Ivanauskas, L; Pukalskas, A; Ražukas, A; Jakštas, V

    2016-12-15

    The aim of this study was to evaluate the impact of different farming types-organic and conventional-on phenolic content in buckwheat varieties grown in Lithuania. Rutin was identified as the dominant phenolic compound in contrast to both phenolic acids (chlorogenic and neochlorogenic acids) and other flavonoids (quercetin and quercitrin). It was determined that variety had the highest impact (p<0.05) on the phenolic content of various aerial parts of buckwheat. In most cases, farming practice significantly (p<0.05) affected the accumulation of phenolics in buckwheat. Organically grown plants usually contained higher amounts of phenolics than those grown under conventional farming conditions. According to a cluster analysis, varieties Panda, Zaleika, and VB Nojai were found to accumulate the highest amounts of phenolics.

  9. Differences in mechanical and structural properties of surface and aerial petioles of the aquatic plant Nymphaea odorata subsp. tuberosa (Nymphaeaceae).

    PubMed

    Etnier, Shelley A; Villani, Philip J

    2007-07-01

    Lily pads (Nymphaea odorata) exhibit heterophylly where a single plant may have leaves that are submerged, floating, or above (aerial) the surface of the water. Lily pads are placed in a unique situation because each leaf form is exposed to a distinctly different set of mechanical demands. While surface petioles may be loaded in tension under conditions of wind or waves, aerial petioles are loaded in compression because they must support the weight of the lamina. Using standard techniques, we compared the mechanical and morphological properties of both surface and aerial leaf petioles. Structural stiffness (EI) and the second moment of area (I) were higher in aerial petioles, although we detected no differences in other mechanical values (elastic modulus [E], extension ratio, and breaking strength). Morphologically, aerial petioles had a thicker rind, with increased collenchyma tissue and sclereid cell frequency. Aerial petioles also had a larger cross-sectional area and were more elliptical. Thus, subtle changes in the distribution of materials, rather than differences in their makeup, differentiate petiole forms. We suggest that the growth of aerial petioles may be an adaptive response to shading, allowing aerial leaves to rise above a crowded water surface.

  10. Trypanocidal constituents in plants 4. Withanolides from the aerial parts of Physalis angulata.

    PubMed

    Nagafuji, Shinya; Okabe, Hikaru; Akahane, Hiroshige; Abe, Fumiko

    2004-02-01

    The constituents of the aerial parts of Physalis angulata (Solanaceae) were investigated based on the plant's trypanocidal activity against epimastigotes of Trypanosoma cruzi, the etiologic agent for Chagas' disease. Four new withanolides were isolated, along with six known ones, from the active fraction. Their structures were determined by spectroscopic analysis. Trypanocidal activity against trypomastigotes, an infectious form of T. cruzi, was also estimated, as well as cytotoxic activity against human uterine carcinoma (HeLa) cells in vitro. Evaluation of trypanocidal activity using the colorimetric reagent Cell Counting Kit-8 was also examined.

  11. Antioxidant activity and cytotoxicity of methanol extracts from aerial parts of Korean salad plants.

    PubMed

    Heo, Buk-Gu; Park, Yong-Seo; Chon, Sang-Uk; Lee, Sook-Young; Cho, Ja-Yong; Gorinstein, Shela

    2007-01-01

    The aim of this investigation was to determine the content of total phenolics, antioxidant activity and cytotoxicity of methanol extracts from the aerial parts of 11 Korean medicinal salad plants. The highest total phenolic content of the methanol extracts was found in Aster scaber (17.1 mg 100 g(-1)), followed by Ixeris dentate (16.4 mg 100 g(-1)), Aster yomena (12.0 mg 100 g(-1)) and Sedum sarmentosum (9.1 mg 100 g(-1)) of FW. Methanol extracts of Ixeris dentate and Aster scaber at 50 microg mL(-1) exhibited the highest DPPH radical scavenging activity by 86.4 and 83.3%, respectively. It was registered a dose-dependent increase of DPPH free radical scavenging activity. Total phenolic content of the studied plant extracts was correlated with the DPPH radical scavenging activity. It was found by means of MTT assay, that cytotoxicity of the methanol extracts was the highest against HCT-116. Methanol extracts from Petasites japonicus (IC(50)<25.0 microg mL(-1)) showed the highest activity against HCT-116, following by Angelica gigas (34.75 microg mL(-1)), Erythronium japonicum (44.06 microg mL(-1)), and Aster scaber (54.87 microg mL(-1)). In conclusion, the studied salad plants have high total phenolics content and high antioxidant activity. These plants dose-dependently increased DPPH free radical scavenging activity. The total phenolics level was highly correlated with the free radical scavenging activity. Most of the studied salad plants have potent cytotoxicity activity. The results of this investigation suggest that the extracts of studied salad plants could be an addition to basic medicine for some diseases.

  12. An aerial radiological survey of the Robert Emmett Ginna Nuclear Power Plant and surrounding area, Ontario, New York

    SciTech Connect

    Proctor, A.E.

    1997-06-01

    Terrestrial radioactivity surrounding the Robert Emmett Ginna Nuclear Power Plant was measured using aerial radiological surveying techniques. The purpose of this survey was to document exposure rates near the plant and to identify unexpected, man-made radiation sources within the survey area. The surveyed area included land areas within a three-mile radius of the plant site. Data were acquired using an airborne detection system that employed sodium iodide, thallium-activated detectors. Exposure-rate and photopeak counts were computed from these data and plotted on aerial photographs of the survey area. Several ground-based exposure measurements were made for comparison with the aerial survey results. Exposure rates in the area surrounding the plant site varied from 6 to 10 microroentgens per hour. Man-made radiation (cobalt-60 within the plant site and cesium-1 37 directly over the reactor) was found at the plant site. In addition, small areas of suspected cesium-137 activity were found within the survey areas. Other than these small sites, the survey area was free of man-made radioac- tivity.

  13. Comparative transcriptome analysis between aquatic and aerial breathing organs of Channa argus to reveal the genetic basis underlying bimodal respiration.

    PubMed

    Jiang, Yanliang; Feng, Shuaisheng; Xu, Jian; Zhang, Songhao; Li, Shangqi; Sun, Xiaoqing; Xu, Peng

    2016-10-01

    Aerial breathing in fish was an important adaption for successful survival in hypoxic water. All aerial breathing fish are bimodal breathers. It is intriguing that they can obtain oxygen from both air and water. However, the genetic basis underlying bimodal breathing has not been extensively studied. In this study, we performed next-generation sequencing on a bimodal breathing fish, the Northern snakehead, Channa argus, and generated a transcriptome profiling of C. argus. A total of 53,591 microsatellites and 26,378 SNPs were identified and classified. A Ka/Ks analysis of the unigenes indicated that 63 genes were under strong positive selection. Furthermore, the transcriptomes from the aquatic breathing organ (gill) and the aerial breathing organ (suprabranchial chamber) were sequenced and compared, and the results showed 1,966 genes up-regulated in the gill and 2,727 genes up-regulated in the suprabranchial chamber. A gene pathway analysis concluded that four functional categories were significant, of which angiogenesis and elastic fibre formation were up-regulated in the suprabranchial chamber, indicating that the aerial breathing organ may be more efficient for gas exchange due to its highly vascularized and elastic structure. In contrast, ion uptake and transport and acid-base balance were up-regulated in the gill, indicating that the aquatic breathing organ functions in ion homeostasis and acid-base balance, in addition to breathing. Understanding the genetic mechanism underlying bimodal breathing will shed light on the initiation and importance of aerial breathing in the evolution of vertebrates.

  14. Orgenic plants: gene-manipulated plants compatible with organic farming.

    PubMed

    Ryffel, Gerhart U

    2012-11-01

    Based on recent advances in plant gene technology, I propose to develop a new category of GM plants, orgenic plants, that are compatible with organic farming. These orgenic plants do not contain herbicide resistance genes to avoid herbicide application in agriculture. Furthermore, they either contain genes that are naturally exchanged between species, or are sterile to avoid outcrossing if they received a transgene from a different species. These GM plants are likely to be acceptable to most skeptics of GM plants and facilitate the use of innovative new crops.

  15. Environmental geophysics and sequential aerial photo study at Sunfish and Marsden Lakes, Twin Cities Army Ammunition Plant

    SciTech Connect

    Padar, C.A.; McGinnis, L.D.; Thompson, M.D.; Anderson, A.W.; Benson, M.A.; Stevanov, J.E.; Daudt, C.R.; Miller, S.F.; Knight, D.E. |

    1995-08-01

    Geophysical studies at Site H of Twin Cities Army Ammunition Plant have delineated specific areas of dumping and waste disposal. Anomalous areas noted in the geophysical data sets have been correlated with features visible in a chronological sequence of aerial photos. The photos aid in dating the anthropogenic changes and in interpreting the geophysical anomalies observed at Site H and across Sunfish Lake. Specifically, two burn cages and what has been interpreted as their surrounding debris have been delineated. The areal extent of another waste site has been defined in the southwest corner of Area H-1. Depth estimates to the top of the Area H-1 anomalies show that the anomalies lie below lake level, indicative of dumping directly into Sunfish Lake. Except for these areas along the northwestern shore, there is no evidence of waste disposal along the shoreline or within the present-day lake margins. Magnetic, electromagnetic, and ground-penetrating-radar data have pinpointed the locations of mounds, observable in aerial photos, around the first burn cage. The second burn cage and its surrounding area have also been clearly defined from aerial photos, with support from further geophysical data. Additional analysis of the data has yielded volumetric estimates of the amount of material that would need removal in the event of excavation of the anomalous areas. Magnetic and electromagnetic profiles were also run across Marsden Lake. On the basis of these data, it has been concluded that no large-scale dumping has occurred in or around Marsden Lake.

  16. Organic control of plant diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic agriculture refers to agricultural production systems that are managed according to a number of standards which vary by governing body or political entity, but which share a common philosophy and set of general management practices. In popular culture, organic crop production is generally un...

  17. Parabolic Trough Organic Rankine Cycle Power Plant

    SciTech Connect

    Canada, S.; Cohen, G.; Cable, R.; Brosseau, D.; Price, H.

    2005-01-01

    Arizona Public Service (APS) is required to generate a portion of its electricity from solar resources in order to satisfy its obligation under the Arizona Environmental Portfolio Standard (EPS). In recent years, APS has installed and operates over 4.5 MWe of fixed, tracking, and concentrating photovoltaic systems to help meet the solar portion of this obligation and to develop an understanding of which solar technologies provide the best cost and performance to meet utility needs. During FY04, APS began construction of a 1-MWe parabolic trough concentrating solar power plant. This plant represents the first parabolic trough plant to begin construction since 1991. The plant will also be the first commercial deployment of the Solargenix parabolic trough collector technology developed under contract to the National Renewable Energy Laboratory (NREL). The plant will use an organic Rankine cycle (ORC) power plant, provided by Ormat. The ORC power plant is much simpler than a conventional steam Rankine cycle power plant and allows unattended operation of the facility.

  18. Aerial Survey Results for 131I Deposition on the Ground after the Fukushima Daiichi Nuclear Power Plant Accident

    SciTech Connect

    Torii, Tatsuo; Sugita, Takeshi; Okada, Colin E.; Reed, Michael S.; Blumenthal, Daniel J.

    2013-08-01

    In March 2011 the second largest accidental release of radioactivity in history occurred at the Fukushima Daiichi nuclear power plant following a magnitude 9.0 earthquake and subsequent tsunami. Teams from the U.S. Department of Energy, National Nuclear Security Administration Office of Emergency Response performed aerial surveys to provide initial maps of the dispersal of radioactive material in Japan. The initial results from the surveys did not report the concentration of 131I. This work reports on analyses performed on the initial survey data by a joint Japan-US collaboration to determine 131I ground concentration. This information is potentially useful in reconstruction of the inhalation and external exposure doses from this short-lived radionuclide. The deposited concentration of 134Cs is also reported.

  19. An aerial radiological survey of the Oyster Creek Nuclear Power Plant and surrounding area, Forked River, New Jersey. Date of survey: September 18--25, 1992

    SciTech Connect

    Hopkins, H.A.; McCall, K.A.

    1994-05-01

    An aerial radiological survey was conducted over the Oyster Creek Nuclear Power Plant in Forked River, New Jersey, during the period September 18 through September 24, 1992. The survey was conducted at an altitude of 150 feet (46 meters) over a 26-square-mile (67-square-kilometer) area centered on the power station. The purpose of the survey was to document the terrestrial gamma radiation environment of the Oyster Creek Nuclear Power plant and surrounding area. The results of the aerial survey are reported as inferred gamma radiation exposure rates at 1 meter above ground level in the form of a contour map. Outside the plant boundary, exposure rates were found to vary between 4 and 10 microroentgens per hour and were attributed to naturally-occurring uranium, thorium, and radioactive potassium gamma emitters. The aerial data were compared to ground-based benchmark exposure rate measurements and radionuclide assays of soil samples obtained within the survey boundary. The ground-based measurements were found to be in good agreement with those inferred from the aerial measuring system. A previous survey of the power plant was conducted in August 1969 during its initial startup phase. Exposure rates and radioactive isotopes revealed in both surveys were consistent and within normal terrestrial background levels.

  20. Draft Genome Sequence of Bacillus pumilus Strain GM3FR, an Endophyte Isolated from Aerial Plant Tissues of Festuca rubra L.

    PubMed Central

    Hollensteiner, Jacqueline; Daniel, Rolf; Liesegang, Heiko; Vidal, Stefan

    2017-01-01

    ABSTRACT Here, we report the draft genome sequence of Bacillus pumilus GM3FR, an endophytic bacterium isolated from aerial plant tissues of Festuca rubra L. The draft genome consists of 3.5 Mb and harbors 3,551 predicted protein-encoding genes. The genome provides insights into the biocontrol potential of B. pumilus GM3FR. PMID:28360161

  1. High-Throughput Phenotyping of Sorghum Plant Height Using an Unmanned Aerial Vehicle and Its Application to Genomic Prediction Modeling

    PubMed Central

    Watanabe, Kakeru; Guo, Wei; Arai, Keigo; Takanashi, Hideki; Kajiya-Kanegae, Hiromi; Kobayashi, Masaaki; Yano, Kentaro; Tokunaga, Tsuyoshi; Fujiwara, Toru; Tsutsumi, Nobuhiro; Iwata, Hiroyoshi

    2017-01-01

    Genomics-assisted breeding methods have been rapidly developed with novel technologies such as next-generation sequencing, genomic selection and genome-wide association study. However, phenotyping is still time consuming and is a serious bottleneck in genomics-assisted breeding. In this study, we established a high-throughput phenotyping system for sorghum plant height and its response to nitrogen availability; this system relies on the use of unmanned aerial vehicle (UAV) remote sensing with either an RGB or near-infrared, green and blue (NIR-GB) camera. We evaluated the potential of remote sensing to provide phenotype training data in a genomic prediction model. UAV remote sensing with the NIR-GB camera and the 50th percentile of digital surface model, which is an indicator of height, performed well. The correlation coefficient between plant height measured by UAV remote sensing (PHUAV) and plant height measured with a ruler (PHR) was 0.523. Because PHUAV was overestimated (probably because of the presence of taller plants on adjacent plots), the correlation coefficient between PHUAV and PHR was increased to 0.678 by using one of the two replications (that with the lower PHUAV value). Genomic prediction modeling performed well under the low-fertilization condition, probably because PHUAV overestimation was smaller under this condition due to a lower plant height. The predicted values of PHUAV and PHR were highly correlated with each other (r = 0.842). This result suggests that the genomic prediction models generated with PHUAV were almost identical and that the performance of UAV remote sensing was similar to that of traditional measurements in genomic prediction modeling. UAV remote sensing has a high potential to increase the throughput of phenotyping and decrease its cost. UAV remote sensing will be an important and indispensable tool for high-throughput genomics-assisted plant breeding.

  2. High-Throughput Phenotyping of Sorghum Plant Height Using an Unmanned Aerial Vehicle and Its Application to Genomic Prediction Modeling.

    PubMed

    Watanabe, Kakeru; Guo, Wei; Arai, Keigo; Takanashi, Hideki; Kajiya-Kanegae, Hiromi; Kobayashi, Masaaki; Yano, Kentaro; Tokunaga, Tsuyoshi; Fujiwara, Toru; Tsutsumi, Nobuhiro; Iwata, Hiroyoshi

    2017-01-01

    Genomics-assisted breeding methods have been rapidly developed with novel technologies such as next-generation sequencing, genomic selection and genome-wide association study. However, phenotyping is still time consuming and is a serious bottleneck in genomics-assisted breeding. In this study, we established a high-throughput phenotyping system for sorghum plant height and its response to nitrogen availability; this system relies on the use of unmanned aerial vehicle (UAV) remote sensing with either an RGB or near-infrared, green and blue (NIR-GB) camera. We evaluated the potential of remote sensing to provide phenotype training data in a genomic prediction model. UAV remote sensing with the NIR-GB camera and the 50th percentile of digital surface model, which is an indicator of height, performed well. The correlation coefficient between plant height measured by UAV remote sensing (PHUAV) and plant height measured with a ruler (PHR) was 0.523. Because PHUAV was overestimated (probably because of the presence of taller plants on adjacent plots), the correlation coefficient between PHUAV and PHR was increased to 0.678 by using one of the two replications (that with the lower PHUAV value). Genomic prediction modeling performed well under the low-fertilization condition, probably because PHUAV overestimation was smaller under this condition due to a lower plant height. The predicted values of PHUAV and PHR were highly correlated with each other (r = 0.842). This result suggests that the genomic prediction models generated with PHUAV were almost identical and that the performance of UAV remote sensing was similar to that of traditional measurements in genomic prediction modeling. UAV remote sensing has a high potential to increase the throughput of phenotyping and decrease its cost. UAV remote sensing will be an important and indispensable tool for high-throughput genomics-assisted plant breeding.

  3. Plant organ chambers in plant physiology field research

    SciTech Connect

    Sinclair, T.R.

    1980-10-01

    Plant organ chambers used for measuring gas exchange demonstrate that with due-concern for the chamber environment and for the normal growth of the plants, useful data on physiological performance under field conditions can be collected. Recent advances in electronics, particularly the development of minicomputers and microprocessors, have greatly expanded the potential for monitoring and controlling plant organ chambers in field physiology research. These tools allow the scope of the research to be considerably broadened because many chambers can be observed essentially simultaneously and continuously on a long-term basis. The inherent limitations of artificialities and ambiguities in the data can be minimized by good control of the chamber environment and a multiplicity of chambers. While these technological advances allow intensive field physiological research, they also require a substantial commitment from the experimenter. During the data collection, a continuing, long-term effort is required to assure high quality data. Having completed the data collection, the experimenter is confronted with a very large volume of data that must be analyzed and interpreted. Yet, the rewards of these commitments appear to be an ever-increasing understanding of the physiological processes existing in plants grown under field conditions.

  4. A Groud and Aerial BattleField Spatio-Temporal Data Unified OrganizeModel and Aplication

    NASA Astrophysics Data System (ADS)

    Feng, LI; Qin, Li; Gang, WAN; Xuefeng, CAO

    2016-11-01

    Aiming at the requirement of battlefield environment data model in joint operations, this paper proposed a groud and aerial battlefield spatio-temporal data unified organize model based on grid division. The thought of shere grid division is adopt to divide the space, and extend to the time dimension. Also, the spatio-temporal grid coding is designed. The field and object are combined to build the BSTD organization model, where the panet layer unit and panet volume unit are considered as the reference space separately to quantitatively describe the field, and the spatio-temporal grid coding is adopt to describe the space and time attributes of the objects. The relevant experiment is designed in paratroop tactics wargame simulation, and the results verify the feasibility of the model.

  5. Spray droplet size, drift potential, and risks to nontarget organisms from aerially applied glyphosate for coca control in Colombia.

    PubMed

    Hewitt, Andrew J; Solomon, Keith R; Marshall, E J P

    2009-01-01

    A wind tunnel atomization study was conducted to measure the emission droplet size spectra for water and Glyphos (a glyphosate formulation sold in Colombia) + Cosmo-flux sprays for aerial application to control coca and poppy crops in Colombia. The droplet size spectra were measured in a wind tunnel for an Accu-Flo nozzle (with 16 size 0.085 [2.16 mm] orifices), under appropriate simulated aircraft speeds (up to 333 km/h), using a laser diffraction instrument covering a dynamic size range for droplets of 0.5 to 3,500 microm. The spray drift potential of the glyphosate was modeled using the AGDISP spray application and drift model, using input parameters representative of those occurring in Colombia for typical aerial application operations. The droplet size spectra for tank mixes containing glyphosate and Cosmo-Flux were considerably finer than water and became finer with higher aircraft speeds. The tank mix with 44% glyphosate had a D(v0.5) of 128 microm, while the value at the 4.9% glyphosate rate was 140 microm. These are classified as very fine to fine sprays. Despite being relatively fine, modeling showed that the droplets would not evaporate as rapidly as most similarly sized agricultural sprays because the nonvolatile proportion of the tank mix (active and inert adjuvant ingredients) was large. Thus, longer range drift is small and most drift that does occur will deposit relatively close to the application area. Drift will only occur downwind and, with winds of velocity less than the modeled maximum of 9 km/h, the drift distance would be substantially reduced. Spray drift potential might be additionally reduced through various practices such as the selection of nozzles, tank mix adjuvants, aircraft speeds, and spray pressures that would produce coarser sprays. Species sensitivity distributions to glyphosate were constructed for plants and amphibians. Based on modeled drift and 5th centile concentrations, appropriate no-spray buffer zones (distance from the

  6. Trypanocidal constituents in plants 6. 1) Minor withanolides from the aerial parts of Physalis angulata.

    PubMed

    Abe, Fumiko; Nagafuji, Shinya; Okawa, Masafumi; Kinjo, Junei

    2006-08-01

    Further study of the methanol extract of the aerial parts of Physalis angulata (Solanaceae) resulted in the isolation of new withanolides, designated physagulins L, M and N, together with known withanolide, physagulin D and flavonol glycoside, quercetin 3-O-rhamnosyl-(1-->6)-galactoside. The chemical structures of these new withanolides were elucidated by detailed spectroscopic analyses to be (20R,22R)-15alpha-acetoxy-5alpha,6beta,14beta,17beta,27-pentahydroxy-1-oxo-witha-2, 24-dienolide, (20S,22S)-15alpha-acetoxy-5alpha,6beta,14alpha,23beta-tetrahydroxy-1-oxo-witha-2,16,24-trienolide and (20S,22R)-15alpha-acetoxy-5beta,6beta-epoxy-14alpha-hydoxy-3beta-methoxy-1-oxo-witha-16,24-dienolide, respectively. All these compounds showed weak trypanocidal activity against trypomastigotes, an infectious form of Trypanosoma cruzi, the etiologic agent for Chagas' disease. Withanolides obtained in the previous paper showed considerable trypanocidal activity, suggesting the structure-activity relationships.

  7. Modeling and inverse controller design for an unmanned aerial vehicle based on the self-organizing map.

    PubMed

    Cho, Jeongho; Principe, Jose C; Erdogmus, Deniz; Motter, Mark A

    2006-03-01

    The next generation of aircraft will have dynamics that vary considerably over the operating regime. A single controller will have difficulty to meet the design specifications. In this paper, a self-organizing map (SOM)-based local linear modeling scheme of an unmanned aerial vehicle (UAV) is developed to design a set of inverse controllers. The SOM selects the operating regime depending only on the embedded output space information and avoids normalization of the input data. Each local linear model is associated with a linear controller, which is easy to design. Switching of the controllers is done synchronously with the active local linear model that tracks the different operating conditions. The proposed multiple modeling and control strategy has been successfully tested in a simulator that models the LoFLYTE UAV.

  8. Epidermis is a pivotal site of at least four secondary metabolic pathways in Catharanthus roseus aerial organs.

    PubMed

    Mahroug, Samira; Courdavault, Vincent; Thiersault, Martine; St-Pierre, Benoit; Burlat, Vincent

    2006-05-01

    Catharanthus roseus produces a wide range of secondary metabolites, some of which present high therapeutic values such as antitumoral monoterpenoid indole alkaloids (MIAs), vinblastine and vincristine, and the hypotensive MIA, ajmalicine. We have recently shown that a complex multicellular organisation of the MIA biosynthetic pathway occurred in C. roseus aerial organs. In particular, the final steps of both the secoiridoid-monoterpene and indole pathways specifically occurred in the epidermis of leaves and petals. Chorismate is the common precursor of indole and phenylpropanoid pathways. In an attempt to better map the spatio-temporal organisation of diverse secondary metabolisms in Catharanthus roseus aerial organs, we studied the expression pattern of genes encoding enzymes of the phenylpropanoid pathway (phenylalanine ammonia-lyase [PAL, E.C. 4.3.1.5], cinnamate 4-hydroxylase [C4H, E.C. 1.14.13.11] and chalcone synthase [CHS, E.C. 2.3.1.74]). In situ hybridisation experiments revealed that CrPAL and CrC4H were specifically localised to lignifying xylem, whereas CrPAL, CrC4H and CrCHS were specifically expressed in the flavonoid-rich upper epidermis. Interestingly, these three genes were co-expressed in the epidermis (at least the upper, adaxial one) together with three MIA-related genes, indicating that single epidermis cells were capable of concomitantly producing a wide range of diverse secondary metabolites (e.g. flavonoïds, indoles, secoiridoid-monoterpenes and MIAs). These results, and data showing co-accumulation of flavonoids and alkaloids in single cells of C. roseus cell lines, indicated the spatio-temporal feasibility of putative common regulation mechanisms for the expression of these genes involved in at least four distinct secondary metabolisms.

  9. Homologous recombination in plants is organ specific.

    PubMed

    Boyko, Alexander; Filkowski, Jody; Hudson, Darryl; Kovalchuk, Igor

    2006-03-20

    In this paper we analysed the genome stability of various Arabidopsis thaliana plant organs using a transgenic recombination system. The system was based on two copies of non-functional GUS (lines #651 and #11) or LUC (line #15D8) reporter genes serving as a recombination substrate. Both reporter assays showed that recombination in flowers or stems were rare events. Most of the recombination sectors were found in leaves and roots, with leaves having over 2-fold greater number of the recombination events per single cell genome as compared to roots. The recombination events per single genome were 9.7-fold more frequent on the lateral half of the leaves than on the medial halves. This correlated with a 2.5-fold higher metabolic activity in the energy source (lateral) versus energy sink (medial) of leaves. Higher metabolic activity was paralleled by a higher anthocyanin production in lateral halves. The level of double strand break (DSB) occurrence was also different among plant organs; the highest level was observed in roots and the lowest in leaves. High level of DSBs strongly positively correlated with the activity of the key repair enzymes, AtKU70 and AtRAD51. The ratio of AtRAD51 to AtKU70 expression was the highest in leaves, supporting the more active involvement of homologous recombination pathway in the repair of DSBs in this organ. Western blot analysis confirmed the real time PCR expression data for AtKU70 gene.

  10. Genomic Diversity of Biocontrol Strains of Pseudomonas spp. Isolated from Aerial or Root Surfaces of Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The striking ecological, metabolic, and biochemical diversity of Pseudomonas has intrigued microbiologists for many decades. To explore the genomic diversity of biocontrol strains of Pseudomonas spp., we derived high quality draft sequences of seven strains known to suppress plant disease. The str...

  11. The Effect of Gravity on the Structural Strength and Form of Aerial Plant Axes

    ERIC Educational Resources Information Center

    Murakami, Kiyofumi; Tajima, Ayumi

    2004-01-01

    The relationship between the form and structure of plants and their gravitational environment is one of the most important teaching subjects of biological education. However, the teaching materials for the gravity effect have so long been concerned only with gravitropism, i.e. the short-time response of adjusting the orientation of seedling roots…

  12. Aerial radiation monitoring around the Fukushima Dai-ichi Nuclear Power Plant using an unmanned helicopter.

    PubMed

    Sanada, Yukihisa; Torii, Tatsuo

    2015-01-01

    The Great East Japan Earthquake on March 11, 2011 generated a series of large tsunami that seriously damaged the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), which resulted in the release of radioactive materials into the environment. To provide further details regarding the distribution of air dose rate and the distribution of radioactive cesium ((134)Cs and (137)Cs) deposition on the ground within a radius of approximately 5 km from the nuclear power plant, we carried out measurements using an unmanned helicopter equipped with a radiation detection system. The distribution of the air dose rate at a height of 1 m above the ground and the radioactive cesium deposition on the ground was calculated. Accordingly, the footprint of radioactive plumes that extended from the FDNPP was illustrated.

  13. Gravitropism of axial organs in multicellular plants.

    PubMed

    Kutschera, U

    2001-01-01

    Gravitropism of plant organs such as roots, stems and coleoptiles can be separated into four distinct phases: 1. perception (gravity sensing), 2. transduction of a signal into the target region and 3. the response (differential growth). This last reaction is followed by a straightening of the curved organ (4.). The perception of the gravitropic stimulus upon horizontal positioning of the organ (1.) occurs via amyloplasts that sediment within the statocytes. This conclusion is supported by our finding that submerged rice coleoptiles that lack sedimentable amyloplasts show no graviresponse. The mode of signal transduction (2.) from the statocytes to the peripheral cell layers is still unknown. Differential growth (3.) consists of a cessation of cell expansion on the upper side and an enhancement of elongation on the lower side of the organ. Based on the facts that the sturdy outer epidermal wall (OEW) constitutes the growth-controlling structure of the coleoptile and that growth-related osmiophilic particles accumulate on the upper OEW, it is concluded that the differential incorporation of wall material (presumably glycoproteins) is causally involved. During gravitropic bending, electron-dense particles ('wall-loosening capacity') accumulate on the growth-inhibited upper OEW. It is proposed that the autotropic straightening response, which is in part due to an acceleration of cell elongation on the curved upper side, may be attributable to an incorporation of the accumulated particles ('release of wall-loosening capacity'). This novel mechanism of autotropic re-bending and its implications for the Cholodny-Went hypothesis are discussed.

  14. Aerial Explorers

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg; Ippolito, Corey

    2005-01-01

    This paper presents recent results from a mission architecture study of planetary aerial explorers. In this study, several mission scenarios were developed in simulation and evaluated on success in meeting mission goals. This aerial explorer mission architecture study is unique in comparison with previous Mars airplane research activities. The study examines how aerial vehicles can find and gain access to otherwise inaccessible terrain features of interest. The aerial explorer also engages in a high-level of (indirect) surface interaction, despite not typically being able to takeoff and land or to engage in multiple flights/sorties. To achieve this goal, a new mission paradigm is proposed: aerial explorers should be considered as an additional element in the overall Entry, Descent, Landing System (EDLS) process. Further, aerial vehicles should be considered primarily as carrier/utility platforms whose purpose is to deliver air-deployed sensors and robotic devices, or symbiotes, to those high-value terrain features of interest.

  15. Uniformity of environmental conditions and plant growth in a hydroponic culture system for use in a growth room with aerial CO2 control

    NASA Technical Reports Server (NTRS)

    Vessey, J. K.; York, E. K.; Henry, L. T.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1988-01-01

    A portable system of hydroponic culture was developed that maintained temperature, pH, and nutrient concentrations of circulating nutrient solutions. The hydroponic system is used within a controlled-environment room (CER) for control of aerial environment. The CER was equipped with an auto-calibrating system for atmospheric CO2 control. The control systems for the hydroponic chambers were able to maintain acidity within +/- 0.2 pH units and the temperature with +/- 0.5 degree C. Mixing time for the 200-liter volume of solution within a hydroponic chamber was less than 12 min. The CO2 control system was able to maintain aerial concentrations within +/- 10 ppm CO2 during the light period. The only gradient found to occur within the hydroponic chambers or CER was a slight gradient in aerial temperature along the length of hydroponic chambers. Growth of soybeans [Glycine max (L.) Merr.] was characterized during a 3-week period of vegetative development by leaf number and area, plant dry weight, total N content of plants, and N depletion from the nutrient solution. The growth characteristics among populations for three hydroponic chambers within the CER were not significantly different, and the percent standard errors of means of the measurements within populations from each chamber were nearly all less than 10%. Thus, the uniformity of plant growth reflected the uniformity of environmental conditions.

  16. Study on release and transport of aerial radioactive materials in reprocessing plants

    SciTech Connect

    Amano, Y.; Tashiro, S.; Uchiyama, G.; Abe, H.; Yamane, Y.; Yoshida, K.; Kodama, T.

    2013-07-01

    The release and transport characteristics of radioactive materials at a boiling accident of the high active liquid waste (HALW) in a reprocessing plant have been studied for improving experimental data of source terms of the boiling accident. In the study, a heating test and a thermogravimetry and differential thermal analysis (TG-DTA) test were conducted. In the heating test using a simulated HALW, it was found that ruthenium was mainly released into the air in the form of gas and that non-volatile elements were released into the air in the form of mist. In the TG-DTA test, the rate constants and reaction heat of thermal decomposition of ruthenium nitrosyl nitrate were obtained from TG and DTA curves. (authors)

  17. Effect of a fungal infection on the profile of volatile organic compounds emitted by plant roots.

    PubMed

    Fiers, M; Lognay, G; Wathelet, J P; Fauconnier, M L; Jijakli, M H

    2012-01-01

    It is known since few years that the aerial and underground parts of the plants emit volatile organic compounds (VOCs) that can interact with other organisms of the environment. They are involved in the attraction of seed dispersers and pollinators, the repellence of enemies via direct or indirect mechanisms and the induction of defence systems in other parts of the same plant or in other plants in the vicinity (Dudareva et al., 2006). It has been shown previously that the VOCs spectrum emitted by plants hardly depends on their physiological state (Kant et al., 2009). However those phenomenons were poorly studied at the edaphic level. Thus, the Rhizovol project, a multidisciplinary project in Gembloux Agro-Bio Tech was set up to study the emissions of VOCs by plant roots and their interactions with other organisms of the rhizosphere. As a partner of this project, the Plant Pathology Unit of Gembloux Agro-Bio Tech chose to study the effect of a fungal infection on the profile of VOCs emitted by plant roots, based on three model organisms, barley (Hordeum vulgare L.), since it is a major crop in Belgium that can suffer a large range of aggressions, and two pathogenic fungi, Cochliobolus sativus and Fusarium culmorum, responsible for root and foot rots and seedling blight on cereals (Wiese, 1977). Later in the development, C. sativus produces elongate brown-black lesions (spot blotch) and F. culmorum induces head blight and produces mycotoxins that make the grain unsuitable for consumption (Nielsen et al., 2011). The objective of this work was to identify the VOCs emitted during the dual interactions between barley roots and a pathogenic fungus. The study was performed in two steps; first, the independent analyses of the VOCs emitted by each of the partners (C. sativus, F. culmorum and healthy barley roots), then the analyses of the VOCs spectrum emitted during dual interactions.

  18. Simulating aerial gravitropism and posture control in plants: what has been done, what is missing

    NASA Astrophysics Data System (ADS)

    Coutand, Catherine; Pot, Guillaume; Bastien, R.; Badel, Eric; Moulia, Bruno

    The gravitropic response requires a process of perception of the signal and a motor process to actuate the movements. Different models have been developed, some focuses on the perception process and some focuses on the motor process. The kinematics of the gravitropic response will be first detailed to set the phenomenology of gravi- and auto-tropism. A model of perception (AC model) will be first presented to demonstrate that sensing inclination is not sufficient to control the gravitropic movement, and that proprioception is also involved. Then, “motor models” will be reviewed. In herbaceous plants, differential growth is the main motor. Modelling tropic movements with simulating elongation raises some difficulties that will be explained. In woody structures the main motor process is the differentiation of reaction wood via cambial growth. We will first present the simplest biomechanical model developed to simulate gravitropism and its limits will be pointed out. Then a more sophisticated model (TWIG) will be presented with a special focus on the importance of wood viscoelasticity and the wood maturation process and its regulation by a mechanosensing process. The presentation will end by a balance sheet of what is done and what is missing for a complete modelling of gravitropism and will present first results of a running project dedicating to get the data required to include phototropism in the actual models.

  19. Study of nsLTPs in Lotus japonicus genome reveal a specific epidermal cell member (LjLTP10) regulated by drought stress in aerial organs with a putative role in cutin formation.

    PubMed

    Tapia, G; Morales-Quintana, L; Parra, C; Berbel, A; Alcorta, M

    2013-07-01

    The cuticle is the first defense against pathogens and the second way water is lost in plants. Hydrophobic layers covering aerial plant organs from primary stages of development form cuticle, including major classes of aliphatic wax components and cutin. Extensive research has been conducted to understand cuticle formation mechanisms in plants. However, many questions remain unresolved in the transport of lipid components to form cuticle. Database studies of the Lotus japonicus genome have revealed the presence of 24 sequences classified as putative non-specific lipid transfer proteins (nsLTPs), which were classified in seven groups; four groups were selected because of their expression in aerial organs. LjLTP8 forms a cluster with DIR1 in Arabidopsis thaliana while LjLTP6, LjLTP9, and LjLTP10 were grouped as type I LTPs. In silico studies showed a high level of structural conservation, and substrate affinity studies revealed palmitoyl-CoA as the most likely ligand for these LTPs, although the Lyso-Myristoyl Phosphatidyl Choline, Lyso-myristoyl phosphatidyl glycerol, and Lyso-stearyl phosphatidyl choline ligands also showed a high affinity with the proteins. The LjLTP6 and LjLTP10 genes were expressed in both the stems and the leaves under normal conditions and were highly induced during drought stress. LjLTP10 was the most induced gene in shoots during drought. The gene was only expressed in the epidermal cells of stems, primordial leaves, and young leaflets. LjLTP10 was positively regulated by MeJA but repressed by abscisic acid (ABA), ethylene, and H2O2, while LjLTP6 was weakly induced by MeJA, repressed by H2O2, and not affected by ABA and ethylene. We suggest that LjLTP10 is involved in plant development of stem and leaf cuticle, but also in acclimation to tolerate drought stress in L. japonicus.

  20. 27. AERIAL VIEW LOOKING EAST DOWN THE WEST ACCESS ROAD. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. AERIAL VIEW LOOKING EAST DOWN THE WEST ACCESS ROAD. THE FIRST LARGE PROTEST AT THE PLANT CAME IN 1978. IT WAS THE FIRST MAJOR PROTEST AT ANY DEPARTMENT OF ENERGY PLANT. IN RESPONSE TO CONTINUING ANTI- NUCLEAR PROTESTS, IN PARTICULAR A 1979 RALLY THAT DREW 10,000 PARTICIPANTS, ROCKWELL EMPLOYEES AT THE PLANT FORMED A GRASSROOT ORGANIZATION, CITIZENS FOR ENERGY AND FREEDOM, AND ORGANIZED A PRO-NUCLEAR RALLY, 'POWER TO THE PEOPLE,' THAT ATTRACTED 16,000 PEOPLE (5/4/78). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  1. Assessing the impacts of canopy openness and flight parameters on detecting a sub-canopy tropical invasive plant using a small unmanned aerial system

    NASA Astrophysics Data System (ADS)

    Perroy, Ryan L.; Sullivan, Timo; Stephenson, Nathan

    2017-03-01

    Small unmanned aerial systems (sUAS) have great potential to facilitate the early detection and management of invasive plants. Here we show how very high-resolution optical imagery, collected from small consumer-grade multirotor UAS platform at altitudes of 30-120 m above ground level (agl), can be used to detect individual miconia (Miconia calvescens) plants in a highly invaded tropical rainforest environment on the island of Hawai'i. The central aim of this research was to determine how overstory vegetation cover, imagery resolution, and camera look-angle impact the aerial detection of known individual miconia plants. For our finest resolution imagery (1.37 cm ground sampling distance collected at 30 m agl), we obtained a 100% detection rate for sub-canopy plants with above-crown openness values >40% and a 69% detection rate for those with >20% openness. We were unable to detect any plants with <10% above crown openness. Detection rates progressively declined with coarser spatial resolution imagery, ending in a 0% detection rate for the 120 m agl flights (ground sampling distance of 5.31 cm). The addition of forward-looking oblique imagery improved detection rates for plants below overstory vegetation, though this effect decreased with increasing flight altitude. While dense overstory canopy cover, limited flight times, and visual line of sight regulations present formidable obstacles for detecting miconia and other invasive plant species, we show that sUAS platforms carrying optical sensors can be an effective component of an integrated management plan within challenging subcanopy forest environments.

  2. Plant Diseases and Management Approaches in Organic Farming Systems.

    PubMed

    van Bruggen, A H C; Finckh, M R

    2016-08-04

    Organic agriculture has expanded worldwide. Numerous papers were published in the past 20 years comparing plant diseases in organic and conventional crops. Root diseases are generally less severe owing to greater soil health, whereas some foliar diseases can be problematic in organic agriculture. The soil microbial community and nitrogen availability play an important role in disease development and yield. Recently, the focus has shifted to optimizing organic crop production by improving plant nutrition, weed control, and plant health. Crop-loss assessment relating productivity to all yield-forming and -reducing factors would benefit organic production and sustainability evaluation.

  3. Effect of organic amendments and mineral fertilizer on zinc bioavailability, plant content and translocation

    NASA Astrophysics Data System (ADS)

    Chami, Ziad Al; Cavoski, Ivana; Mondelli, Donato; Miano, Teodoro

    2013-04-01

    Organic matter plays a key role in heavy metal bioavailability through changes in soil chemical characteristics, and by its metal-chelating ability, the latter being one of the most important factors controlling the mobility and bioavailability of heavy metals in the soil-plant system. In this research, rocket (Eruca vesicaria L. Cavalieri), a common edible plant species in the Mediterranean regions, was used as bio-indicator to evaluate the effect of different organic amendments on Zn toxicity, absorption, and translocation. The main objectives of this study were to investigate the bioavailability of Zn in an artificially contaminated soil after the addition of compost, manure and chemical fertilizers at agronomically recommended doses and to evaluate their ability to reduce Zn concentration in the edible plant part. A greenhouse pots experiment was carried out using rocket plant grown on an artificially contaminated soil. In this study, the effect of compost, manure and chemical fertilizers on Zn fate in a soil-plant system was evaluated. At the end of the experiment main growth parameters and Zn content in plants were determined. In addition, Zn speciation in the soil was assessed using the original BCR sequential extraction and the DTPA extraction. The overall assessment of experimental results is that compost, followed by chemical fertilizers treatments, was the most efficient in enhancing plant growth and decreasing metal toxicity and concentrations in plant tissues. Manure amendments increased plant Zn content and toxicity in rocket plants. In the case of compost treatment, this effect can be attributed to the humified OM present in compost; while the negative effect of manure is due to its content in low molecular weight organic acids. The effect of chemical fertilizers treatment could be attributed to the addition of P fertilizer in soluble and highly available forms to the plants. On the contrary, using DTPA and BCR sequential extraction procedure, all

  4. ENZYMATIC PROCESSES USED BY PLANTS TO DEGRADE ORGANIC COMPOUNDS

    EPA Science Inventory

    This is a review of recent plant enzyme systems that have been studied in uptake and transformation of organic contaminants. General procedures of plant preparation and enzyme isolation are covered. Six plant enzyme systems have been investigated for activity with selected pollut...

  5. SCHOOL PLANTS AND SCHOOL DISTRICT ORGANIZATION.

    ERIC Educational Resources Information Center

    ENGLEHARDT, GEORGE D.

    A DESIRABLE SCHOOL PLANT IS ONE WHICH PROVIDES A PHYSICAL ENVIRONMENT WHERE THE LEARNING AND TEACHING PROCESSES CAN PROCEED AT THE MAXIMUM RATE. THE OBJECTIVES OF MAJOR CONCERN IN SCHOOL PLANT PLANNING ARE--(1) SPATIAL ADEQUACY, (2) QUALITY, (3) SAFETY, (4) AESTHETICS, (5) ADAPTABILITY, AND (6) EFFICIENCY AND ECONOMY. CERTAIN SEQUENTIAL STEPS NEED…

  6. Soil Organic Matter and Management of Plant-Parasitic Nematodes

    PubMed Central

    Widmer, T. L.; Mitkowski, N. A.; Abawi, G. S.

    2002-01-01

    Organic matter and its replenishment has become a major component of soil health management programs. Many of the soil's physical, chemical, and biological properties are a function of organic matter content and quality. Adding organic matter to soil influences diverse and important biological activities. The diversity and number of free-living and plant-parasitic nematodes are altered by rotational crops, cover crops, green manures, and other sources of organic matter. Soil management programs should include the use of the proper organic materials to improve soil chemical, physical, and biological parameters and to suppress plant-parasitic nematodes and soilborne pathogens. It is critical to monitor the effects of organic matter additions on activities of major and minor plant-parasitic nematodes in the production system. This paper presents a general review of information in the literature on the effects of crop rotation, cover crops, and green manures on nematodes and their damage to economic crops. PMID:19265946

  7. Longitudinal Waves Organize and Control Plants

    NASA Astrophysics Data System (ADS)

    Wagner, Orvin

    2002-03-01

    Since the discovery of longitudinal waves in plants (W-waves)in 1988 I have taken data related to influences of these waves. These data include spacings betweenstructures on plants,sap flow data, electrical data from probes traceable to effects produced by these waves, data related to the influences of gravity, data related to these waves traveling between plants and on and on. All of the data suggest that the waves provide a basis for a unified theory for plant growth and development. They likely provide a basis for growth and development for all life. The wave influences are present on the microscopic level in live plants but may not show in the microscopic pieces of material often scrutinized by the usual researcher. It is this author's conclusion that the waves mentioned are important in all life and provide what we call life which has been so difficult to pinpoint in previous work. The waves show in dead material but generally are of a much smaller amplitude in the resonating live material. In the wave theory one might compare something alive to a properly operating laser. See the Wagner web site.

  8. Does Accelerated Soil Organic Matter Decomposition in the Presence of Plants Increase Plant N Availability?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant roots can increase microbial activity and soil organic matter (SOM) decomposition via rhizosphere priming effects. It is virtually unknown how differences in the priming effect among plant species and soil type affect N mineralization and plant uptake. In a greenhouse experiment, we tested whe...

  9. Aerial Photography

    NASA Technical Reports Server (NTRS)

    1985-01-01

    John Hill, a pilot and commercial aerial photographer, needed an information base. He consulted NERAC and requested a search of the latest developments in camera optics. NERAC provided information; Hill contacted the manufacturers of camera equipment and reduced his photographic costs significantly.

  10. Internal and external regulation of plant organ stoichiometry.

    PubMed

    Minden, V; Kleyer, M

    2014-09-01

    Internal differences between plant organs are caused by the functional differentiation of plant tissue, whereas external supply rates of elements constrain nutrient uptake. Previous studies have concentrated on foliar or whole-plant stoichiometric response to the environment, whereas investigation of organ-specific comparisons is still pending. We explore C:N:P ratios of stems, leaves, diaspores and belowground organs in marsh plants, and evaluate the influence of environmental constraints using standardised major axis regression (SMA). For a pooled dataset, SMA resulted in distinct patterns of isometric and anisometric slopes between plant organs. Bivariate line-fitting for a split dataset of four ecological groups revealed that species of the frequently inundated marsh had higher N:C ratios than those of the infrequently inundated marsh. The influence of nutrient availability was detectable in decreased P:C and increased N:P ratios in P-poor sites. Across ecological groups, leaves and diaspores showed higher elemental homeostasis than stems and belowground organs. Any change in N:C ratios of belowground organs and diaspores in response to the environment was accompanied by an even stronger internal change in stem N:C ratios, indicating a pivotal role of stems of herbaceous plants in ecosystem processes. We found distinct patterns of C:N:P ratios in plant organs related to their internal function and external environmental constraints. Leaves and diaspores showed a higher degree of homeostasis than stems and belowground organs. We detected a clear external signal in element:element ratios of plant organs, with low soil P translating into lower tissue P:C ratio and stronger N retention in leaves as a response to salt stress.

  11. Temperature rise in plant reproductive organs under low gravity conditions

    NASA Astrophysics Data System (ADS)

    Kitaya, Yoshiaki; Hirai, Hiroaki

    Excess temperature rise in plant reproductive organs such as anthers and stigmas could cause fertility impediments and thus produce sterile seeds without adequately controlled environ-ments in closed plant growth facilities. There is a possibility such a situation could occur in Bioregenerative Life Support Systems under microgravity conditions in space because there will be little natural convective or thermal mixing. This study was conducted to determine the thermal situation of the plant reproductive organs as affected by gravity levels of 0.01, 1.0 and 2.0 g for 20 seconds each during parabolic airplane flights and to make an estimation of temperature increases in the reproductive organs in closed plant growth facilities under mi-crogravity in space. Thermal images of reproductive organs of rice and tomato were captured using infrared thermography at an air temperature of 31.5C, a relative humidity of 11

  12. Organic Matter Application Can Reduce Copper Toxicity in Tomato Plants

    ERIC Educational Resources Information Center

    Campbell, Brian

    2010-01-01

    Copper fungicides and bactericides are often used in tomato cultivation and can cause toxic Cu levels in soils. In order to combat this, organic matter can be applied to induce chelation reactions and form a soluble complex by which much of the Cu can leach out of the soil profile or be taken up safely by plants. Organic acids such as citric,…

  13. Geminivirus-Mediated Delivery of Florigen Promotes Determinate Growth in Aerial Organs and Uncouples Flowering from Photoperiod in Cotton

    PubMed Central

    McGarry, Roisin C.; Ayre, Brian G.

    2012-01-01

    Background Plant architecture and the timing and distribution of reproductive structures are fundamental agronomic traits shaped by patterns of determinate and indeterminate growth. Florigen, encoded by FLOWERING LOCUS T (FT) in Arabidopsis and SINGLE FLOWER TRUSS (SFT) in tomato, acts as a general growth hormone, advancing determinate growth. Domestication of upland cotton (Gossypium hirsutum) converted it from a lanky photoperiodic perennial to a highly inbred, compact day-neutral plant that is managed as an annual row-crop. This dramatic change in plant architecture provides a unique opportunity to analyze the transition from perennial to annual growth. Methodology/Principal Findings To explore these architectural changes, we addressed the role of day-length upon flowering in an ancestral, perennial accession and in a domesticated variety of cotton. Using a disarmed Cotton leaf crumple virus (CLCrV) as a transient expression system, we delivered FT to both cotton accessions. Ectopic expression of FT in ancestral cotton mimicked the effects of day-length, promoting photoperiod-independent flowering, precocious determinate architecture, and lanceolate leaf shape. Domesticated cotton infected with FT demonstrated more synchronized fruiting and enhanced “annualization”. Transient expression of FT also facilitated simple crosses between wild photoperiodic and domesticated day-neutral accessions, effectively demonstrating a mechanism to increase genetic diversity among cultivated lines of cotton. Virus was not detected in the F1 progeny, indicating that crosses made by this approach do not harbor recombinant DNA molecules. Conclusions These findings extend our understanding of FT as a general growth hormone that regulates shoot architecture by advancing organ-specific and age-related determinate growth. Judicious manipulation of FT could benefit cotton architecture to improve crop management. PMID:22615805

  14. Plant disease management in organic farming systems.

    PubMed

    van Bruggen, Ariena H C; Gamliel, Abraham; Finckh, Maria R

    2016-01-01

    Organic farming (OF) has significantly increased in importance in recent decades. Disease management in OF is largely based on the maintenance of biological diversity and soil health by balanced crop rotations, including nitrogen-fixing and cover crops, intercrops, additions of manure and compost and reductions in soil tillage. Most soil-borne diseases are naturally suppressed, while foliar diseases can sometimes be problematic. Only when a severe disease outbreak is expected are pesticides used that are approved for OF. A detailed overview is given of cultural and biological control measures. Attention is also given to regulated pesticides. We conclude that a systems approach to disease management is required, and that interdisciplinary research is needed to solve lingering disease problems, especially for OF in the tropics. Some of the organic regulations are in need of revision in close collaboration with various stakeholders.

  15. Hydrogen isotopic compositions of organic compounds in plants reflect the plant's carbon metabolism

    NASA Astrophysics Data System (ADS)

    Cormier, M. A.; Kahmen, A.; Werner, R. A.

    2015-12-01

    The main factors controlling δ2H of plant organic compounds are generally assumed to be the plant's source water and the evaporative deuterium enrichment of leaf water. Hydrogen isotope analyses of plant compounds from sediments or tree rings are therefore mainly applied to assess hydrological conditions at different spatial and temporal scales. However, the biochemical hydrogen isotope fractionation occurring during biosynthesis of plant organic compounds (ɛbio) also accounts for a large part of the variability observed in the δ2H values. Nevertheless, only few studies have directly addressed the physiological basis of this variability and even fewer studies have thus explored possible applications of hydrogen isotope variability in plant organic compounds for plant physiological research. Here we show two datasets indicating that the plant's carbon metabolism can have a substantial influence on δ2H values of n-alkanes and cellulose. First, we performed a controlled experiment where we forced plants into heterotrophic and autotrophic C-metabolism by growing them under four different light treatments. Second, we assessed the δ2H values of different parasitic heterotrophic plants and their autotrophic host plants. Our two datasets show a systematic shift in ɛbio of up to 80 ‰ depending on the plant's carbon metabolism (heterotrophic or autotrophic). Differences in n-alkane and cellulose δ2H values in plants with autotrophic vs. heterotrophic metabolisms can be explained by different NADPH pools that are used by the plants to build their compounds either with assimilates that originate directly from photosynthesis or from stored carbohydrates. Our results have significant implications for the calibration and interpretation of geological records. More importantly, as the δ2H values reflect the plant's carbon metabolism involved during the tissue formation, our findings highlight the potential of δ2H values as new tool for studying plant and ecosystem carbon

  16. Specific organization of Golgi apparatus in plant cells.

    PubMed

    Vildanova, M S; Wang, W; Smirnova, E A

    2014-09-01

    Microtubules, actin filaments, and Golgi apparatus are connected both directly and indirectly, but it is manifested differently depending on the cell organization and specialization, and these connections are considered in many original studies and reviews. In this review we would like to discuss what underlies differences in the structural organization of the Golgi apparatus in animal and plant cells: specific features of the microtubule cytoskeleton organization, the use of different cytoskeleton components for Golgi apparatus movement and maintenance of its integrity, or specific features of synthetic and secretory processes. We suppose that a dispersed state of the Golgi apparatus in higher plant cells cannot be explained only by specific features of the microtubule system organization and by the absence of centrosome as an active center of their organization because the Golgi apparatus is organized similarly in the cells of other organisms that possess the centrosome and centrosomal microtubules. One of the key factors determining the Golgi apparatus state in plant cells is the functional uniformity or functional specialization of stacks. The functional specialization does not suggest the joining of the stacks to form a ribbon; therefore, the disperse state of the Golgi apparatus needs to be supported, but it also can exist "by default". We believe that the dispersed state of the Golgi apparatus in plants is supported, on one hand, by dynamic connections of the Golgi apparatus stacks with the actin filament system and, on the other hand, with the endoplasmic reticulum exit sites distributed throughout the endoplasmic reticulum.

  17. OSC2 and CYP716A14v2 Catalyze the Biosynthesis of Triterpenoids for the Cuticle of Aerial Organs of Artemisia annua

    PubMed Central

    Moses, Tessa; Pollier, Jacob; Shen, Qian; Soetaert, Sandra; Reed, James; Erffelinck, Marie-Laure; Van Nieuwerburgh, Filip C.W.; Vanden Bossche, Robin; Osbourn, Anne; Thevelein, Johan M.; Deforce, Dieter; Tang, Kexuan

    2015-01-01

    Artemisia annua is widely studied for its ability to accumulate the antimalarial sesquiterpenoid artemisinin. In addition to producing a variety of sesquiterpenoids, A. annua also accumulates mono-, di-, and triterpenoids, the majority of which are produced in the glandular trichomes. A. annua also has filamentous trichomes on its aerial parts, but little is known of their biosynthesis potential. Here, through a comparative transcriptome analysis between glandular and filamentous trichomes, we identified two genes, OSC2 and CYP716A14v2, encoding enzymes involved in the biosynthesis of specialized triterpenoids in A. annua. By expressing these genes in Saccharomyces cerevisiae and Nicotiana benthamiana, we characterized the catalytic function of these proteins and could reconstitute the specialized triterpenoid spectrum of A. annua in these heterologous hosts. OSC2 is a multifunctional oxidosqualene cyclase that produces α-amyrin, β-amyrin, and δ-amyrin. CYP716A14v2 is a P450 belonging to the functionally diverse CYP716 family and catalyzes the oxidation of pentacyclic triterpenes, leading to triterpenes with a carbonyl group at position C-3, thereby providing an alternative biosynthesis pathway to 3-oxo triterpenes. Together, these enzymes produce specialized triterpenoids that are constituents of the wax layer of the cuticle covering the aerial parts of A. annua and likely function in the protection of the plant against biotic and abiotic stress. PMID:25576188

  18. Surface feature based classification of plant organs from 3D laserscanned point clouds for plant phenotyping

    PubMed Central

    2013-01-01

    Background Laserscanning recently has become a powerful and common method for plant parameterization and plant growth observation on nearly every scale range. However, 3D measurements with high accuracy, spatial resolution and speed result in a multitude of points that require processing and analysis. The primary objective of this research has been to establish a reliable and fast technique for high throughput phenotyping using differentiation, segmentation and classification of single plants by a fully automated system. In this report, we introduce a technique for automated classification of point clouds of plants and present the applicability for plant parameterization. Results A surface feature histogram based approach from the field of robotics was adapted to close-up laserscans of plants. Local geometric point features describe class characteristics, which were used to distinguish among different plant organs. This approach has been proven and tested on several plant species. Grapevine stems and leaves were classified with an accuracy of up to 98%. The proposed method was successfully transferred to 3D-laserscans of wheat plants for yield estimation. Wheat ears were separated with an accuracy of 96% from other plant organs. Subsequently, the ear volume was calculated and correlated to the ear weight, the kernel weights and the number of kernels. Furthermore the impact of the data resolution was evaluated considering point to point distances between 0.3 and 4.0 mm with respect to the classification accuracy. Conclusion We introduced an approach using surface feature histograms for automated plant organ parameterization. Highly reliable classification results of about 96% for the separation of grapevine and wheat organs have been obtained. This approach was found to be independent of the point to point distance and applicable to multiple plant species. Its reliability, flexibility and its high order of automation make this method well suited for the demands of

  19. Nematode feeding sites: unique organs in plant roots.

    PubMed

    Kyndt, Tina; Vieira, Paulo; Gheysen, Godelieve; de Almeida-Engler, Janice

    2013-11-01

    Although generally unnoticed, nearly all crop plants have one or more species of nematodes that feed on their roots, frequently causing tremendous yield losses. The group of sedentary nematodes, which are among the most damaging plant-parasitic nematodes, cause the formation of special organs called nematode feeding sites (NFS) in the root tissue. In this review we discuss key metabolic and cellular changes correlated with NFS development, and similarities and discrepancies between different types of NFS are highlighted.

  20. Application of organic acids for plant protection against phytopathogens.

    PubMed

    Morgunov, Igor G; Kamzolova, Svetlana V; Dedyukhina, Emilia G; Chistyakova, Tatiana I; Lunina, Julia N; Mironov, Alexey A; Stepanova, Nadezda N; Shemshura, Olga N; Vainshtein, Mikhail B

    2017-02-01

    The basic tendency in the field of plant protection concerns with reducing the use of pesticides and their replacement by environmentally acceptable biological preparations. The most promising approach to plant protection is application of microbial metabolites. In the last years, bactericidal, fungicidal, and nematodocidal activities were revealed for citric, succinic, α-ketoglutaric, palmitoleic, and other organic acids. It was shown that application of carboxylic acids resulted in acceleration of plant development and the yield increase. Of special interest is the use of arachidonic acid in very low concentrations as an inductor (elicitor) of protective functions in plants. The bottleneck in practical applications of these simple, nontoxic, and moderately priced preparations is the absence of industrial production of the mentioned organic acids of required quality since even small contaminations of synthetic preparations decrease their quality and make them dangerous for ecology and toxic for plants, animals, and human. This review gives a general conception on the use of organic acids for plant protection against the most dangerous pathogens and pests, as well as focuses on microbiological processes for production of these microbial metabolites of high quality from available, inexpensive, and renewable substrates.

  1. Tracking iron oxide nanoparticles in plant organs using magnetic measurements

    NASA Astrophysics Data System (ADS)

    Govea-Alcaide, E.; Masunaga, S. H.; De Souza, A.; Fajardo-Rosabal, L.; Effenberger, F. B.; Rossi, L. M.; Jardim, R. F.

    2016-10-01

    Common bean plants were grown in soil and irrigated with water solutions containing different concentrations of Fe_3{O}_4 nanoparticles (NPs) with a mean diameter close to 10 nm. No toxicity on plant growth has been detected as a consequence of Fe deficiency or excess in leaves. In order to track the Fe_3{O}_4 NPs, magnetization measurements were performed in soils and in three different dried organs of the plants: roots, stems, and leaves. Some magnetic features of both temperature and magnetic field dependence of magnetization M( T, H) arising from Fe_3{O}_4 NPs were identified in all the three organs of the plants. Based on the results of saturation magnetization M_s at 300 K, the estimated number of Fe_3{O}_4 NPs was found to increase from 2 to 3 times in leaves of common bean plants irrigated with solutions containing magnetic material. The combined results indicated that M( T, H) measurements, conducted in a wide range of temperature and applied magnetic fields up to 70 kOe, constitute a useful tool through which the uptake, translocation, and accumulation of magnetic nanoparticles by plant organs may be monitored and tracked.

  2. Methods in plant foliar volatile organic compounds research.

    PubMed

    Materić, Dušan; Bruhn, Dan; Turner, Claire; Morgan, Geraint; Mason, Nigel; Gauci, Vincent

    2015-12-01

    Plants are a major atmospheric source of volatile organic compounds (VOCs). These secondary metabolic products protect plants from high-temperature stress, mediate in plant-plant and plant-insect communication, and affect our climate globally. The main challenges in plant foliar VOC research are accurate sampling, the inherent reactivity of some VOC compounds that makes them hard to detect directly, and their low concentrations. Plant VOC research relies on analytical techniques for trace gas analysis, usually based on gas chromatography and soft chemical ionization mass spectrometry. Until now, these techniques (especially the latter one) have been developed and used primarily by physicists and analytical scientists, who have used them in a wide range of scientific research areas (e.g., aroma, disease biomarkers, hazardous compound detection, atmospheric chemistry). The interdisciplinary nature of plant foliar VOC research has recently attracted the attention of biologists, bringing them into the field of applied environmental analytical sciences. In this paper, we review the sampling methods and available analytical techniques used in plant foliar VOC research to provide a comprehensive resource that will allow biologists moving into the field to choose the most appropriate approach for their studies.

  3. Differential Effect of Plant Lipids on Membrane Organization

    PubMed Central

    Grosjean, Kevin; Mongrand, Sébastien; Beney, Laurent; Simon-Plas, Françoise; Gerbeau-Pissot, Patricia

    2015-01-01

    The high diversity of the plant lipid mixture raises the question of their respective involvement in the definition of membrane organization. This is particularly the case for plant plasma membrane, which is enriched in specific lipids, such as free and conjugated forms of phytosterols and typical phytosphingolipids, such as glycosylinositolphosphoceramides. This question was here addressed extensively by characterizing the order level of membrane from vesicles prepared using various plant lipid mixtures and labeled with an environment-sensitive probe. Fluorescence spectroscopy experiments showed that among major phytosterols, campesterol exhibits a stronger ability than β-sitosterol and stigmasterol to order model membranes. Multispectral confocal microscopy, allowing spatial analysis of membrane organization, demonstrated accordingly the strong ability of campesterol to promote ordered domain formation and to organize their spatial distribution at the membrane surface. Conjugated sterol forms, alone and in synergy with free sterols, exhibit a striking ability to order membrane. Plant sphingolipids, particularly glycosylinositolphosphoceramides, enhanced the sterol-induced ordering effect, emphasizing the formation and increasing the size of sterol-dependent ordered domains. Altogether, our results support a differential involvement of free and conjugated phytosterols in the formation of ordered domains and suggest that the diversity of plant lipids, allowing various local combinations of lipid species, could be a major contributor to membrane organization in particular through the formation of sphingolipid-sterol interacting domains. PMID:25575593

  4. Biosynthesis, function and metabolic engineering of plant volatile organic compounds.

    PubMed

    Dudareva, Natalia; Klempien, Antje; Muhlemann, Joëlle K; Kaplan, Ian

    2013-04-01

    Plants synthesize an amazing diversity of volatile organic compounds (VOCs) that facilitate interactions with their environment, from attracting pollinators and seed dispersers to protecting themselves from pathogens, parasites and herbivores. Recent progress in -omics technologies resulted in the isolation of genes encoding enzymes responsible for the biosynthesis of many volatiles and contributed to our understanding of regulatory mechanisms involved in VOC formation. In this review, we largely focus on the biosynthesis and regulation of plant volatiles, the involvement of floral volatiles in plant reproduction as well as their contribution to plant biodiversity and applications in agriculture via crop-pollinator interactions. In addition, metabolic engineering approaches for both the improvement of plant defense and pollinator attraction are discussed in light of methodological constraints and ecological complications that limit the transition of crops with modified volatile profiles from research laboratories to real-world implementation.

  5. Antimicrobial activity of selected Iranian medicinal plants against a broad spectrum of pathogenic and drug multiresistant micro-organisms.

    PubMed

    Abedini, A; Roumy, V; Mahieux, S; Gohari, A; Farimani, M M; Rivière, C; Samaillie, J; Sahpaz, S; Bailleul, F; Neut, C; Hennebelle, T

    2014-10-01

    The antimicrobial activities of 44 methanolic extracts from different parts of Iranian indigenous plant species used in traditional medicines of Iran were tested against a panel of 35 pathogenic and multiresistant bacteria and 1 yeast. The antimicrobial efficacy was determined using Müller-Hinton agar in Petri dishes seeded by a multiple inoculator and minimal inhibition concentration (MIC) method. The 21 most active extracts (MIC < 0·3 mg ml(-1) for one or several micro-organisms) were submitted to a more refined measurement. The best antibacterial activity was obtained by 10 plants. Microdilution assays allowed to determinate the MIC and MBC of the 21 most active extracts. The lowest achieved MIC value was 78 μg ml(-1), with 4 extracts. This work confirms the antimicrobial activity of assayed plants and suggests further examination to identify the chemical structure of their antimicrobial compounds. Significance and impact of the study: This study describes the antimicrobial screening of Iranian plant extracts chosen according to traditional practice against 36 microbial strains, from reference culture collections or recent clinical isolates, and enables to select 4 candidates for further chemical characterization and biological assessment: Dorema ammoniacum, Ferula assa-foetida, Ferulago contracta (seeds) and Perovskia abrotanoides (aerial parts). This may be useful in the development of potential antimicrobial agents, from easily harvested and highly sustainable plant parts. Moreover, the weak extent of cross-resistance between plant extracts and antibiotics warrants further research and may promote a strategy based on less potent but time-trained products.

  6. Modeling and Inverse Controller Design for an Unmanned Aerial Vehicle Based on the Self-Organizing Map

    NASA Technical Reports Server (NTRS)

    Cho, Jeongho; Principe, Jose C.; Erdogmus, Deniz; Motter, Mark A.

    2005-01-01

    The next generation of aircraft will have dynamics that vary considerably over the operating regime. A single controller will have difficulty to meet the design specifications. In this paper, a SOM-based local linear modeling scheme of an unmanned aerial vehicle (UAV) is developed to design a set of inverse controllers. The SOM selects the operating regime depending only on the embedded output space information and avoids normalization of the input data. Each local linear model is associated with a linear controller, which is easy to design. Switching of the controllers is done synchronously with the active local linear model that tracks the different operating conditions. The proposed multiple modeling and control strategy has been successfully tested in a simulator that models the LoFLYTE UAV.

  7. Quantitative Evaluation of Plant Actin Cytoskeletal Organization During Immune Signaling.

    PubMed

    Lu, Yi-Ju; Day, Brad

    2017-01-01

    High spatial and temporal resolution microscopy-based methods are valuable tools for the precise real-time imaging of changes in cellular organization in response to stimulus perception. Here, we describe a quantitative method for the evaluation of the plant actin cytoskeleton during immune stimulus perception and the activation of defense signaling. As a measure of the biotic stress-induced changes in actin filament organization, we present methods for analyzing changes in actin filament organization following elicitation of pattern-triggered immunity and effector-triggered immunity. Using these methods, it is possible to not only quantitatively evaluate changes in actin cytoskeletal organization following biotic stress perception, but to also use these protocols to assess changes in actin filament organization following perception of a wide range of stimuli, including abiotic and developmental cues. As described herein, we present an example application of this method, designed to evaluate changes in actin cytoskeletal organization following pathogen perception and immune signaling.

  8. Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics.

    PubMed

    Abhilash, P C; Jamil, Sarah; Singh, Nandita

    2009-01-01

    , PCBs etc. Another approach to enhancing phytoremediation ability is the construction of plants that secrete chemical degrading enzymes into the rhizosphere. Recent studies revealed that accelerated ethylene production in response to stress induced by contaminants is known to inhibit root growth and is considered as major limitation in improving phytoremediation efficiency. However, this can be overcome by the selective expression of bacterial ACC deaminase (which regulates ethylene levels in plants) in plants together with multiple genes for the different phases of xenobiotic degradation. This review examines the recent developments in use of transgenic-plants for the enhanced metabolism, degradation and phytoremediation of organic xenobiotics and its future directions.

  9. Repeat-containing protein effectors of plant-associated organisms

    PubMed Central

    Mesarich, Carl H.; Bowen, Joanna K.; Hamiaux, Cyril; Templeton, Matthew D.

    2015-01-01

    Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms. PMID:26557126

  10. Hierarchical organization of a Sardinian sand dune plant community

    PubMed Central

    Ceccherelli, Giulia; Bertness, Mark

    2016-01-01

    Coastal sand dunes have attracted the attention of plant ecologists for over a century, but they have largely relied on correlations to explain dune plant community organization. We examined long-standing hypotheses experimentally that sand binding, inter-specific interactions, abiotic factors and seedling recruitment are drivers of sand dune plant community structure in Sardinia, Italy. Removing foundation species from the fore-, middle- and back-dune habitats over three years led to erosion and habitat loss on the fore-dune and limited plant recovery that increased with dune elevation. Reciprocal species removals in all zones suggested that inter-specific competition is common, but that dominance is transient, particularly due to sand burial disturbance in the middle-dune. A fully factorial 2-year manipulation of water, nutrient availability and substrate stability revealed no significant proximate response to these physical factors in any dune zone. In the fore- and middle-dune, plant seeds are trapped under adult plants during seed germination, and seedling survivorship and growth generally increase with dune height in spite of increased herbivory in the back-dune. Sand and seed erosion leads to limited seed recruitment on the fore-dune while high summer temperatures and preemption of space lead to competitive dominance of woody plants in the back-dune. Our results suggest that Sardinian sand dune plant communities are organized hierarchically, structured by sand binding foundation species on the fore-dune, sand burial in the middle-dune and increasingly successful seedling recruitment, growth and competitive dominance in the back-dune. PMID:27478701

  11. Hierarchical organization of a Sardinian sand dune plant community.

    PubMed

    Cusseddu, Valentina; Ceccherelli, Giulia; Bertness, Mark

    2016-01-01

    Coastal sand dunes have attracted the attention of plant ecologists for over a century, but they have largely relied on correlations to explain dune plant community organization. We examined long-standing hypotheses experimentally that sand binding, inter-specific interactions, abiotic factors and seedling recruitment are drivers of sand dune plant community structure in Sardinia, Italy. Removing foundation species from the fore-, middle- and back-dune habitats over three years led to erosion and habitat loss on the fore-dune and limited plant recovery that increased with dune elevation. Reciprocal species removals in all zones suggested that inter-specific competition is common, but that dominance is transient, particularly due to sand burial disturbance in the middle-dune. A fully factorial 2-year manipulation of water, nutrient availability and substrate stability revealed no significant proximate response to these physical factors in any dune zone. In the fore- and middle-dune, plant seeds are trapped under adult plants during seed germination, and seedling survivorship and growth generally increase with dune height in spite of increased herbivory in the back-dune. Sand and seed erosion leads to limited seed recruitment on the fore-dune while high summer temperatures and preemption of space lead to competitive dominance of woody plants in the back-dune. Our results suggest that Sardinian sand dune plant communities are organized hierarchically, structured by sand binding foundation species on the fore-dune, sand burial in the middle-dune and increasingly successful seedling recruitment, growth and competitive dominance in the back-dune.

  12. Methods in plant foliar volatile organic compounds research1

    PubMed Central

    Materić, Dušan; Bruhn, Dan; Turner, Claire; Morgan, Geraint; Mason, Nigel; Gauci, Vincent

    2015-01-01

    Plants are a major atmospheric source of volatile organic compounds (VOCs). These secondary metabolic products protect plants from high-temperature stress, mediate in plant–plant and plant–insect communication, and affect our climate globally. The main challenges in plant foliar VOC research are accurate sampling, the inherent reactivity of some VOC compounds that makes them hard to detect directly, and their low concentrations. Plant VOC research relies on analytical techniques for trace gas analysis, usually based on gas chromatography and soft chemical ionization mass spectrometry. Until now, these techniques (especially the latter one) have been developed and used primarily by physicists and analytical scientists, who have used them in a wide range of scientific research areas (e.g., aroma, disease biomarkers, hazardous compound detection, atmospheric chemistry). The interdisciplinary nature of plant foliar VOC research has recently attracted the attention of biologists, bringing them into the field of applied environmental analytical sciences. In this paper, we review the sampling methods and available analytical techniques used in plant foliar VOC research to provide a comprehensive resource that will allow biologists moving into the field to choose the most appropriate approach for their studies. PMID:26697273

  13. Tubulin tyrosine nitration regulates microtubule organization in plant cells

    PubMed Central

    Blume, Yaroslav B.; Krasylenko, Yuliya A.; Demchuk, Oleh M.; Yemets, Alla I.

    2013-01-01

    During last years, selective tyrosine nitration of plant proteins gains importance as well-recognized pathway of direct nitric oxide (NO) signal transduction. Plant microtubules are one of the intracellular signaling targets for NO, however, the molecular mechanisms of NO signal transduction with the involvement of cytoskeletal proteins remain to be elucidated. Since biochemical evidence of plant α-tubulin tyrosine nitration has been obtained recently, potential role of this posttranslational modification in regulation of microtubules organization in plant cell is estimated in current paper. It was shown that 3-nitrotyrosine (3-NO2-Tyr) induced partially reversible Arabidopsis primary root growth inhibition, alterations of root hairs morphology and organization of microtubules in root cells. It was also revealed that 3-NO2-Tyr intensively decorates such highly dynamic microtubular arrays as preprophase bands, mitotic spindles and phragmoplasts of Nicotiana tabacum Bright Yellow-2 (BY-2) cells under physiological conditions. Moreover, 3D models of the mitotic kinesin-8 complexes with the tail of detyrosinated, tyrosinated and tyrosine nitrated α-tubulin (on C-terminal Tyr 450 residue) from Arabidopsis were reconstructed in silico to investigate the potential influence of tubulin nitrotyrosination on the molecular dynamics of α-tubulin and kinesin-8 interaction. Generally, presented data suggest that plant α-tubulin tyrosine nitration can be considered as its common posttranslational modification, the direct mechanism of NO signal transduction with the participation of microtubules under physiological conditions and one of the hallmarks of the increased microtubule dynamics. PMID:24421781

  14. Do plants reflect atmospheric concentrations of persistent organic contaminants?

    SciTech Connect

    Jones, K.C.

    1994-12-31

    Chemical analysis of several types of plants -- such as pine needles, lichens, mosses and grasses -- has been used by numerous workers as a means of inferring spatial and temporal variations in the atmospheric concentrations of persistent organic compounds (e.g. PCBs, PAHs, CBs and PCDD/Fs). This is usually because plants are perceived as convenient `passive` air samplers and assumed to `integrate` variations in ambient concentrations during their lifetime. More recently, various researchers have sought to understand the mechanisms of exchange/uptake at the air vegetation surface, with a view to refining the use of vegetation sampling techniques and understanding the role of vegetation in influencing the global cycling of these compounds. This presentation will review some of the recent advances in this area, highlighting some of pitfalls and beneficial uses of employing plants as `monitoring tools`.

  15. Plant cell, tissue and organ culture: the most flexible foundations for plant metabolic engineering applications.

    PubMed

    Ogita, Shinjiro

    2015-05-01

    Significant advances in plant cell, tissue and organ culture (PCTOC) have been made in the last five decades. PCTOC is now thought to be the underlying technique for understanding general or specific biological functions of the plant kingdom, and it is one of the most flexible foundations for morphological, physiological and molecular biological applications of plants. Furthermore, the recent advances in the field of information technology (IT) have enabled access to a large amount of information regarding all aspects of plant biology. For example, sequencing information is stored in mega repositories such as the National Center for Biotechnology Information (NCBI), which can be easily accessed by researchers worldwide. To date, the PCTOC and IT combination strategy for regulation of target plant metabolism and the utilization of bioactive plant metabolites for commercial purposes is essential. In this review, the advantages and the limitations of these methodologies, especially regarding the production of bioactive plant secondary metabolites and metabolic engineering in target plants are discussed mainly from the phenotypic view point.

  16. Comparison of aerial counts at different sites in beef and sheep abattoirs and the relationship between aerial and beef carcass contamination.

    PubMed

    Okraszska-Lasica, Wioletta; Bolton, D J; Sheridan, J J; McDowell, D A

    2012-12-01

    The study examined and compared levels of aerial contamination in commercial beef and sheep plants at four sites, i.e. lairage, hide/fleece pulling, evisceration and chilling. Aerial contamination was determined by impaction and sedimentation onto Plate Count Agar to enumerate Total Viable Counts, MacConkey Agar to enumerate coliforms and Violate Red Bile Glucose Agar to enumerate Enterobacteriaceae. AS I cannot see any difference in the text here - I am not sure what the change is?. The levels of aerial contamination were similar at equivalent sites in beef and sheep plants, irrespective of the sampling method or the type of organisms recovered. Mean log counts recovered on each medium in the chillers were generally significantly lower (P < .05) than the corresponding mean log numbers recovered at the other three sites. The relationship between impaction (air) and sedimentation (surface) counts could be described by the surface to air ratio (SAR) which in this study had an R(2) of 0.77. Further studies in an experimental plant compared counts recovered from the neck of beef carcasses with aerial counts determined by impaction and sedimentation onto agar and irradiated meat pieces. A relationship between counts on beef carcasses and in the air could not be established, irrespective of the method used to compare counts.

  17. The physical principles underpinning self-organization in plants.

    PubMed

    Turner, Philip; Nottale, Laurent

    2017-01-01

    Based on laboratory based growth of plant-like structures from inorganic materials, we present new theory for the emergence of plant structure at a range of scales dictated by levels of ionization, which can be traced directly back to proteins transcribed from genetic code and their interaction with external sources of charge in real plants. Beyond a critical percolation threshold, individual charge induced quantum potentials merge to form a complex, interconnected geometric web, creating macroscopic quantum potentials, which lead to the emergence of macroscopic quantum processes. The assembly of molecules into larger, ordered structures operates within these charge-induced coherent bosonic fields, acting as a structuring force in competition with exterior potentials. Within these processes many of the phenomena associated with standard quantum theory are recovered, including quantization, non-dissipation, self-organization, confinement, structuration conditioned by the environment, environmental fluctuations leading to macroscopic quantum decoherence and evolutionary time described by a time dependent Schrödinger-like equation, which describes models of bifurcation and duplication. The work provides a strong case for the existence of quintessence-like behaviour, with macroscopic quantum potentials and associated forces having their equivalence in standard quantum mechanics. The theory offers new insight into evolutionary processes in structural biology, with selection at any point in time, being made from a wide range of spontaneously emerging potential structures (dependent on conditions), which offer advantage for a specific organism. This is valid for both the emergence of structures from a prebiotic medium and the wide range of different plant structures we see today.

  18. 5. AERIAL VIEW, LOOKING NORTH, OF BUILDING 371 AFTER CONSTRUCTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. AERIAL VIEW, LOOKING NORTH, OF BUILDING 371 AFTER CONSTRUCTION WAS COMPLETED. (11/7/78) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  19. Volatile organic compound emission profiles of four common arctic plants

    NASA Astrophysics Data System (ADS)

    Vedel-Petersen, Ida; Schollert, Michelle; Nymand, Josephine; Rinnan, Riikka

    2015-11-01

    The biogenic volatile organic compound (BVOC) emissions from plants impact atmosphere and climate. The species-specific emissions, and thereby the atmospheric impact, of many plant species are still unknown. Knowledge of BVOC emission from arctic plants is particularly limited. The vast area and relatively high leaf temperature give the Arctic potential for emissions that cannot be neglected. This field study aimed to elucidate the BVOC emission profiles for four common arctic plant species in their natural environment during the growing season. BVOCs were sampled from aboveground parts of Empetrum hermaphroditum, Salix glauca, Salix arctophila and Betula nana using the dynamic enclosure technique and collection of volatiles in adsorbent cartridges, analyzed by gas chromatography-mass spectrometry. Sampling occurred three times: in late June/early July, in mid-July and in early August. E. hermaphroditum emitted the least BVOCs, dominated by sesquiterpenes (SQTs) and non-isoprenoid BVOCs. The Salix spp. emitted the most, dominated by isoprene. The emissions of B. nana were composed of about two-thirds non-isoprenoid BVOCs, with moderate amounts of monoterpenes (MTs) and SQTs. The total B. nana emissions and the MT and SQT emissions standardized to 30 °C were highest in the first measurement in early July, while the other species had the highest emissions in the last measurement in early August. As climate change is expected to increase plant biomass and change vegetation composition in the Arctic, the BVOC emissions from arctic ecosystems will also change. Our results suggest that if the abundance of deciduous shrubs like Betula and Salix spp. increases at the expense of slower growing evergreens like E. hermaphroditum, there is the potential for increased emissions of isoprene, MTs and non-isoprenoid BVOCs in the Arctic.

  20. Radiation effects on organic materials in nuclear plants. Final report

    SciTech Connect

    Bruce, M B; Davis, M V

    1981-11-01

    A literature search was conducted to identify information useful in determining the lowest level at which radiation causes damage to nuclear plant equipment. Information was sought concerning synergistic effects of radiation and other environmental stresses. Organic polymers are often identified as the weak elements in equipment. Data on radiation effects are summarized for 50 generic name plastics and 16 elastomers. Coatings, lubricants, and adhesives are treated as separate groups. Inorganics and metallics are considered briefly. With a few noted exceptions, these are more radiation resistant than organic materials. Some semiconductor devices and electronic assemblies are extremely sensitive to radiation. Any damage threshold including these would be too low to be of practical value. With that exception, equipment exposed to less than 10/sup 4/ rads should not be significantly affected. Equipment containing no Teflon should not be significantly affected by 10/sup 5/ rads. Data concerning synergistic effects and radiation sensitization are discussed. The authors suggest correlations between the two effects.

  1. Aerial radiation surveys

    SciTech Connect

    Jobst, J.

    1980-01-01

    A recent aerial radiation survey of the surroundings of the Vitro mill in Salt Lake City shows that uranium mill tailings have been removed to many locations outside their original boundary. To date, 52 remote sites have been discovered within a 100 square kilometer aerial survey perimeter surrounding the mill; 9 of these were discovered with the recent aerial survey map. Five additional sites, also discovered by aerial survey, contained uranium ore, milling equipment, or radioactive slag. Because of the success of this survey, plans are being made to extend the aerial survey program to other parts of the Salt Lake valley where diversions of Vitro tailings are also known to exist.

  2. Conceptual hierarchical modeling to describe wetland plant community organization

    USGS Publications Warehouse

    Little, A.M.; Guntenspergen, G.R.; Allen, T.F.H.

    2010-01-01

    Using multivariate analysis, we created a hierarchical modeling process that describes how differently-scaled environmental factors interact to affect wetland-scale plant community organization in a system of small, isolated wetlands on Mount Desert Island, Maine. We followed the procedure: 1) delineate wetland groups using cluster analysis, 2) identify differently scaled environmental gradients using non-metric multidimensional scaling, 3) order gradient hierarchical levels according to spatiotem-poral scale of fluctuation, and 4) assemble hierarchical model using group relationships with ordination axes and post-hoc tests of environmental differences. Using this process, we determined 1) large wetland size and poor surface water chemistry led to the development of shrub fen wetland vegetation, 2) Sphagnum and water chemistry differences affected fen vs. marsh / sedge meadows status within small wetlands, and 3) small-scale hydrologic differences explained transitions between forested vs. non-forested and marsh vs. sedge meadow vegetation. This hierarchical modeling process can help explain how upper level contextual processes constrain biotic community response to lower-level environmental changes. It creates models with more nuanced spatiotemporal complexity than classification and regression tree procedures. Using this process, wetland scientists will be able to generate more generalizable theories of plant community organization, and useful management models. ?? Society of Wetland Scientists 2009.

  3. Hydroperiod regime controls the organization of plant species in wetlands.

    PubMed

    Foti, Romano; del Jesus, Manuel; Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio

    2012-11-27

    With urban, agricultural, and industrial needs growing throughout the past decades, wetland ecosystems have experienced profound changes. Most critically, the biodiversity of wetlands is intimately linked to its hydrologic dynamics, which in turn are being drastically altered by ongoing climate changes. Hydroperiod regimes, e.g., percentage of time a site is inundated, exert critical control in the creation of niches for different plant species in wetlands. However, the spatial signatures of the organization of plant species in wetlands and how the different drivers interact to yield such signatures are unknown. Focusing on Everglades National Park (ENP) in Florida, we show here that cluster sizes of each species follow a power law probability distribution and that such clusters have well-defined fractal characteristics. Moreover, we individuate and model those signatures via the interplay between global forcings arising from the hydroperiod regime and local controls exerted by neighboring vegetation. With power law clustering often associated with systems near critical transitions, our findings are highly relevant for the management of wetland ecosystems. In addition, our results show that changes in climate and land management have a quantifiable predictable impact on the type of vegetation and its spatial organization in wetlands.

  4. Hydroperiod regime controls the organization of plant species in wetlands

    PubMed Central

    Foti, Romano; del Jesus, Manuel; Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio

    2012-01-01

    With urban, agricultural, and industrial needs growing throughout the past decades, wetland ecosystems have experienced profound changes. Most critically, the biodiversity of wetlands is intimately linked to its hydrologic dynamics, which in turn are being drastically altered by ongoing climate changes. Hydroperiod regimes, e.g., percentage of time a site is inundated, exert critical control in the creation of niches for different plant species in wetlands. However, the spatial signatures of the organization of plant species in wetlands and how the different drivers interact to yield such signatures are unknown. Focusing on Everglades National Park (ENP) in Florida, we show here that cluster sizes of each species follow a power law probability distribution and that such clusters have well-defined fractal characteristics. Moreover, we individuate and model those signatures via the interplay between global forcings arising from the hydroperiod regime and local controls exerted by neighboring vegetation. With power law clustering often associated with systems near critical transitions, our findings are highly relevant for the management of wetland ecosystems. In addition, our results show that changes in climate and land management have a quantifiable predictable impact on the type of vegetation and its spatial organization in wetlands. PMID:23150589

  5. [Chromosomal organization of the genomes of small-chromosome plants].

    PubMed

    Muravenko, O V; Zelenin, A V

    2009-11-01

    An effective approach to study the chromosome organization in genomes of plants with small chromosomes and/or with low-informative C-banding patterns was developed in the course of investigation of the karyotypes of cotton plant, camomile, flax, and pea. To increase the resolving power of chromosome analysis, methods were worked out for revealing early replication patterns on chromosomes and for artificial impairment of mitotic chromosome condensation with the use of a DNA intercalator, 9-aminoacridine (9-AMA). To estimate polymorphism of the patterns of C-banding of small chromosomes on preparations obtained with the use of 9-AMA, it is necessary to choose a length interval that must not exceed three average sizes of metaphase chromosomes without the intercalator. The use of 9-AMA increases the resolution of differential C- and OR-banding and the precision of physical chromosome mapping by the FISH method. Of particular importance in studying small chromosomes is optimization of the computer-aided methods used to obtain and process chromosome images. The complex approach developed for analysis of the chromosome organization in plant genomes was used to study the karyotypes of 24 species of the genus Linum L. It permitted their chromosomes to be identified for the first time, and, in addition, B chromosomes were discovered and studied in the karyotypes of the species of the section Syllinum. By similarity of the karyotypes, the studied flax species were distributed in eight groups in agreement with the clusterization of these species according to the results of RAPD analysis performed in parallel. Systematic positions and phylogenetic relationships of the studied flax species were verified. Out results can serve as an important argument in favour of the proposal to develop a special program for sequencing the genome of cultivated flax (L. usitatissimum L.), which is a major representative of small-chromosome species.

  6. Problems of organizing zero-effluent production in coking plants

    SciTech Connect

    Maiskii, S.V.; Kagasov, V.M.

    1981-01-01

    The basic method of protecting the environment against pollution by coking plants in the future must be the organization of zero-waste production cycles. Problems associated with the elimination of effluent are considered. In the majority of plants at present, the phenolic effluent formed during coal carbonization and chemical product processing is completely utilized within the plant as a coke quenching medium (the average rate of phenolic effluent formation is 0.4 m/sup 3//ton of dry charge, which equals the irrecoverable water losses in coke quenching operations). However, the increasing adoption of dry coke cooling is inevitably associated with increasing volumes of surplus effluent which cannot be disposed of in coke quenching towers. As a result of experiments it was concluded that: 1. The utilization of phenolic effluent in closed-cycle watercooling systems does not entirely solve the effluent disposal problem. The volume of surplus effluent depends on the volume originally formed, the rate of consuming water in circulation and the time of year. In order to dispose of surplus effluent, wet quenching must be retained for a proportion of the coke produced. 2. The greatest hazards in utilizing phenolic effluent in closed-cycle watercooling systems are corrosion and the build-up of suspended solids. The water must be filtered and biochemically purified before it is fed into the closed-cycle watercooling systems. The total ammonia content after purification should not exceed 100 to 150 mg/l. 3. Stormwater and thawed snow can be used in closed-cycle water supply systems after purification. 4. The realization of zero-effluent conditions in existing plants will require modifications to the existing water supply systems.

  7. Organ Size Regulation in Plants: Insights from Compensation

    PubMed Central

    Horiguchi, Gorou; Tsukaya, Hirokazu

    2011-01-01

    The regulation of organ size in higher organisms is a fundamental issue in developmental biology. In flowering plants, a phenomenon called “compensation” has been observed where a cell proliferation defect in developing leaf primordia triggers excessive cell expansion. As a result, final leaf size is not significantly reduced compared to that expected from the reduction in leaf cell numbers. Recent genetic studies have revealed several key features of the compensation phenomenon. Compensation is induced either cell autonomously or non-cell autonomously depending on the trigger that impairs cell proliferation; a certain type of compensation is induced only when cell proliferation is impaired beyond a threshold level. Excessive cell expansion is achieved by either an increased cell expansion rate or a prolonged period of cell expansion via genetic pathways that are also required for normal cell expansion. These results indicate that cell proliferation and cell expansion are coordinated through multiple pathways during leaf size determination. Further classification of compensation pathways and their characterization at the molecular level will provide a deeper understanding of organ size regulation. PMID:22639585

  8. Scenario approach for assessing the utility of dispersal information in decision support for aerially spread plant pathogens, applied to Phytophthora infestans.

    PubMed

    Skelsey, P; Rossing, W A H; Kessel, G J T; van der Werf, W

    2009-07-01

    Opportunities exist to improve decision support systems through the use of dispersal information gained from epidemiological research. However, dispersal and demographic information is often fragmentary in plant pathology, and this uncertainty creates a risk of inappropriate action whenever such information is used as a basis for decision making. In this article, a scenario-based simulation approach is used to evaluate crop and economic risks and benefits in the use of dispersal information for decision making using the potato late blight pathosystem (Phytophthora infestans-Solanum tuberosum) as a case study. A recently validated spatiotemporal potato late blight model was coupled to submodels for crop growth, tuber dry matter production, and fungicide efficacy. The yield response of a range of management scenarios to a single influx of primary inoculum (the initial spore load) was calculated. Damage curves (relative yield loss versus initial spore load) from a range of combinations of varietal susceptibility and fungicide treatments were used to classify the various management scenarios as either sensitive to initial spore load or tolerant to initial spore load, thus identifying where a high degree of accuracy would be required in dispersal information for appropriate decision making, and where a greater degree of uncertainty could be tolerated. General epidemics, resulting from spatially homogeneous initial spore loads, responded more strongly to the size of the initial spore load than focal epidemics, resulting from an initial spot infection. Susceptible cultivars responded with sizeable yield losses even at low levels of initial spore load, regardless of the fungicide management regime used. These results indicated that, for susceptible cultivars (late cultivars in particular), the degree of accuracy that would be required in dispersal information for appropriate decision making is unlikely to be practically attainable. The results also indicated that, contrary

  9. The organization and operation of the Savannah River Plant`s groundwater monitoring program. Revision 3

    SciTech Connect

    Olson, C.M.; Heffner, J.D.

    1988-09-01

    The Savannah River Plant (SRP) is operated by Du Pont for the Department of Energy. The plant has been operating since 1952 and is one of the largest industrial facilities in the nation. Its function is to produce nuclear materials for the national defense. This paper describes the organization and operation of the Groundwater Monitoring Program (GMP) at the SRP. Groundwater has been actively monitored for radiological parameters at the SRP since the commencement of site operations in the 1950s. More recently, monitoring expanded to include chemical parameters and numerous additional facilities. The GMP is a large monitoring program. Over 700 wells monitor more than 70 facilities which are spread over 300 square miles. The program includes both Du Pont personnel and contractors and is responsible for all phases of groundwater monitoring: the installation (or abandonment) of monitoring wells, the determination of water quality (sample collection, analysis, data review, etc.), and the generation of reports.

  10. Organic pollution removal from coke plant wastewater using coking coal.

    PubMed

    Gao, Lihui; Li, Shulei; Wang, Yongtian; Sun, Hao

    2015-01-01

    Coke plant wastewater (CPW) is an intractable chemical wastewater, and it contains many toxic pollutants. This article presents the results of research on a semi-industrial adsorption method of coking wastewater treatment. As a sorbent, the coking coal (CC) was a dozen times less expensive than active carbon. The treatment was conducted within two scenarios, as follows: (1) adsorption after biological treatment of CPW with CC at 40 g L(-1); the chemical oxygen demand (COD) removal was 75.66%, and the concentration was reduced from 178.99 to 43.56 mg L(-1); (2) given an adsorption by CC of 250 g L(-1) prior to the biological treatment of CPW, the eliminations of COD and phenol were 58.08% and 67.12%, respectively. The CC that adsorbed organic pollution and was returned to the coking system might have no effect on both coke oven gas and coke.

  11. Belowground volatiles facilitate interactions between plant roots and soil organisms.

    PubMed

    Wenke, Katrin; Kai, Marco; Piechulla, Birgit

    2010-02-01

    Many interactions between organisms are based on the emission and perception of volatiles. The principle of using volatile metabolites as communication signals for chemo-attractant or repellent for species-specific interactions or mediators for cell-to-cell recognition does not stop at an apparently unsuitable or inappropriate environment. These infochemicals do not only diffuse through the atmosphere to process their actions aboveground, but belowground volatile interactions are similarly complex. This review summarizes various eucaryotes (e.g., plant (roots), invertebrates, fungi) and procaryotes (e.g., rhizobacteria) which are involved in these volatile-mediated interactions. The soil volatiles cannot be neglected anymore, but have to be considered in the future as valuable infochemicals to understand the entire integrity of the ecosystems.

  12. Antihypertensive peptides from animal products, marine organisms, and plants.

    PubMed

    Lee, Seung Yun; Hur, Sun Jun

    2017-08-01

    Bioactive peptides from food proteins exert beneficial effects on human health, such as angiotensin-converting enzyme (ACE) inhibition and antihypertensive activity. Several studies have reported that ACE-inhibitory peptides can come from animal products, marine organisms, and plants-derived by hydrolyzing enzymes such as pepsin, chymotrypsin, and trypsin-and microbial enzymes such as alcalase, thermolysin, flavourzyme, and proteinase K. Different ACE-inhibitory effects are closely related with different peptide sequences and molecular weights. Sequences of ACE-inhibitory peptides are composed of hydrophobic (proline) and aliphatic amino acids (isoleucine and leucine) at the N-terminus. As result of this review, we assume that low molecular weight peptides have a greater ACE inhibition because lower molecular weight peptides have a higher absorbency in the body. Therefore, the ACE-inhibitory effect is closely related with the degree of enzymatic hydrolysis and the composition of the peptide sequence.

  13. Aerial Image Systems

    NASA Astrophysics Data System (ADS)

    Clapp, Robert E.

    1987-09-01

    Aerial images produce the best stereoscopic images of the viewed world. Despite the fact that every optic in existence produces an aerial image, few persons are aware of their existence and possible uses. Constant reference to the eye and other optical systems have produced a psychosis of design that only considers "focal planes" in the design and analysis of optical systems. All objects in the field of view of the optical device are imaged by the device as an aerial image. Use of aerial images in vision and visual display systems can provide a true stereoscopic representation of the viewed world. This paper discusses aerial image systems - their applications and designs and presents designs and design concepts that utilize aerial images to obtain superior visual displays, particularly with application to visual simulation.

  14. Effects of airborne volatile organic compounds on plants.

    PubMed

    Cape, J N

    2003-01-01

    Routine measurements of volatile organic compounds (VOCs) in air have shown that average concentrations are very much smaller than those used in laboratory experiments designed to study the effects of VOCs on plants. However, maximum hourly concentrations of some VOCs can be 100 times larger than the average, even in rural air. Experimental studies have rarely extended for longer than a few days, so there is little information on potential long-term effects of exposure to small concentrations. This review considers the available evidence for long-term effects, based on laboratory and field data. Previous reviews of the literature from Germany and the USA are cited, prior to an assessment of the effects of individual VOCs. Although hydrocarbons from vehicle exhausts have been implicated in the observed effects on roadside vegetation, the evidence suggests that it is the nitrogen oxides in the exhaust gases that are mostly responsible. There is evidence that aromatic hydrocarbons can be metabolised in plants, although the fate of the metabolites is not known. There is a large literature on the effects of ethylene, because of its role as a plant hormone. Effects have been reported in the field, in response to industrial emissions, and dose-response experiments over several weeks in laboratory studies have clearly identified the potential for effects at ambient concentrations. The main responses are morphological (e.g. epinasty), which may be reversible, and on the development of flowers and fruit. Effects on seed production may be positive or negative, depending on the exposure concentration. Chlorinated hydrocarbons have been identified as potentially harmful to vegetation, but only one long-term experiment has studied dose-response relationships. As for ethylene, the most sensitive indication of effect was on seed production, although long-term accumulation of trichloroacetic acid in tissue may also be a problem. There is little evidence of the direct effects of

  15. Contributions of host cellular trafficking and organization to the outcomes of plant-pathogen interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years it has become increasingly apparent that dynamic changes in protein localization, membrane trafficking pathways, and cellular organization play a major role in determining the outcome of interactions between plants and pathogenic microorganisms. Plants have evolved sophisticated perc...

  16. Dechlorination and decolorization of chloro-organics in pulp bleach plant E-1 effluents by advanced oxidation processes.

    PubMed

    Wang, Rui; Chen, Chen-Loung; Gratzl, Josef S

    2004-09-01

    Studies were conducted on the composition of chloro-organics in kraft-pulp bleach plant E-1 effluents and their response toward advanced oxidation processes, such as UV-, O(2)/UV-, O(3)/UV- and O(3)-H(2)O(2)/UV-photolysis processes with irradiation of 254 nm photons. The studies were extended to ozonation and O(3)-H(2)O(2) oxidation systems in alkaline aqueous solution. The effects of process variables included initial pH, addition of oxidant to the UV-photolysis system on the decolorization and dechlorination of the chloro-organics the E-1 bleaching effluents were also studied. The decolorization and dechlorination rate constants are increased in the presence of molecular oxygen in the UV-photolysis systems, but are decreased on addition of hydrogen peroxide. The dechlorination rate constants are increased appreciably on oxidation with ozone alone and a combination of ozone and hydrogen peroxide as compared to those of the corresponding UV-photolysis systems under aerial atmosphere.

  17. 12. Photographic copy of aerial photograph dated October 1988; Photographed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Photographic copy of aerial photograph dated October 1988; Photographed by Aerial Services, Incorporated, Waterloo, Iowa; THE RATH COMPLEX FROM DIRECTLY OVERHEAD; THE PACKING PLANT BUILDINGS OCCUPY UPPER RIGHT QUADRANT OF PHOTO; 18TH STREET BRIDGE AT CENTER - Rath Packing Company, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  18. 11. Photographic copy of aerial photograph dated ca. 1954; Photographer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photographic copy of aerial photograph dated ca. 1954; Photographer unknown; Original owned by Waterloo Courier, Waterloo, Iowa; AERIAL VIEW OF RATH COMPLEX, LOOKING WEST; BEEF KILLING BUILDING (149 AND LIVESTOCK HOLDING AREAS ARE AT LEFT CENTER; FERTILIZER PLANT/STORAGE BUILDINGS ARE AT BOTTOM OF PHOTO - Rath Packing Company, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  19. Effect of plant diversity on the diversity of soil organic compounds.

    PubMed

    El Moujahid, Lamiae; Le Roux, Xavier; Michalet, Serge; Bellvert, Florian; Weigelt, Alexandra; Poly, Franck

    2017-01-01

    The effect of plant diversity on aboveground organisms and processes was largely studied but there is still a lack of knowledge regarding the link between plant diversity and soil characteristics. Here, we analyzed the effect of plant identity and diversity on the diversity of extractible soil organic compounds (ESOC) using 87 experimental grassland plots with different levels of plant diversity and based on a pool of over 50 plant species. Two pools of low molecular weight organic compounds, LMW1 and LMW2, were characterized by GC-MS and HPLC-DAD, respectively. These pools include specific organic acids, fatty acids and phenolics, with more organic acids in LMW1 and more phenolics in LMW2. Plant effect on the diversity of LMW1 and LMW2 compounds was strong and weak, respectively. LMW1 richness observed for bare soil was lower than that observed for all planted soils; and the richness of these soil compounds increased twofold when dominant plant species richness increased from 1 to 6. Comparing the richness of LMW1 compounds observed for a range of plant mixtures and for plant monocultures of species present in these mixtures, we showed that plant species richness increases the richness of these ESOC mainly through complementarity effects among plant species associated with contrasted spectra of soil compounds. This could explain previously reported effects of plant diversity on the diversity of soil heterotrophic microorganisms.

  20. Effect of plant diversity on the diversity of soil organic compounds

    PubMed Central

    El Moujahid, Lamiae; Michalet, Serge; Bellvert, Florian; Weigelt, Alexandra; Poly, Franck

    2017-01-01

    The effect of plant diversity on aboveground organisms and processes was largely studied but there is still a lack of knowledge regarding the link between plant diversity and soil characteristics. Here, we analyzed the effect of plant identity and diversity on the diversity of extractible soil organic compounds (ESOC) using 87 experimental grassland plots with different levels of plant diversity and based on a pool of over 50 plant species. Two pools of low molecular weight organic compounds, LMW1 and LMW2, were characterized by GC-MS and HPLC-DAD, respectively. These pools include specific organic acids, fatty acids and phenolics, with more organic acids in LMW1 and more phenolics in LMW2. Plant effect on the diversity of LMW1 and LMW2 compounds was strong and weak, respectively. LMW1 richness observed for bare soil was lower than that observed for all planted soils; and the richness of these soil compounds increased twofold when dominant plant species richness increased from 1 to 6. Comparing the richness of LMW1 compounds observed for a range of plant mixtures and for plant monocultures of species present in these mixtures, we showed that plant species richness increases the richness of these ESOC mainly through complementarity effects among plant species associated with contrasted spectra of soil compounds. This could explain previously reported effects of plant diversity on the diversity of soil heterotrophic microorganisms. PMID:28166250

  1. Metal uptake of Nerium oleander from aerial and underground organs and its use as a biomonitoring tool for airborne metallic pollution in cities.

    PubMed

    Vázquez, S; Martín, A; García, M; Español, C; Navarro, E

    2016-04-01

    The analysis of the airborne particulate matter-PM-incorporated to plant leaves may be informative of the air pollution in the surroundings, allowing their use as biomonitoring tools. Regarding metals, their accumulation in leaves can be the result of both atmospheric incorporation of metallic PM on aboveground plant organs and root uptake of soluble metals. In this study, the use of Nerium oleander leaves as a biomonitoring tool for metallic airborne pollution has been assessed. The metal uptake in N. oleander was assessed as follows: (a) for radicular uptake by irrigation with airborne metals as Pb, Cd, Cr, Ni, As, Ce and Zn (alone and in mixture) and (b) for direct leave exposure to urban PM. Plants showed a high resistance against the toxicity of metals under both single and multiple metal exposures. Except for Zn, the low values of translocation and bioaccumulation factors confirmed the excluder behaviour of N. oleander with respect to the metals provided by the irrigation. For metal uptake from airborne pollution, young plants grown under controlled conditions were deployed during 42 days in locations of the city of Zaragoza (700,000 h, NE Spain), differing in their level of traffic density. Samples of PM2.5 particles and the leaves of N. oleander were simultaneously collected weekly. High correlations in Pb concentrations were found between leaves and PM2.5; in a lesser extent, correlations were also found for Fe, Zn and Ti. Scanning electron microscopy showed the capture of airborne pollution particles in the large and abundant substomatal chambers of N. oleander leaves. Altogether, results indicate that N. Oleander, as a metal resistant plant by metal exclusion, is a suitable candidate as a biomonitoring tool for airborne metal pollution in urban areas.

  2. Soil organisms shape the competition between grassland plant species.

    PubMed

    Sabais, Alexander C W; Eisenhauer, Nico; König, Stephan; Renker, Carsten; Buscot, François; Scheu, Stefan

    2012-12-01

    Decomposers and arbuscular mycorrhizal fungi (AMF) both determine plant nutrition; however, little is known about their interactive effects on plant communities. We set up a greenhouse experiment to study effects of plant competition (one- and two-species treatments), Collembola (Heteromurus nitidus and Protaphorura armata), and AMF (Glomus intraradices) on the performance (above- and belowground productivity and nutrient uptake) of three grassland plant species (Lolium perenne, Trifolium pratense, and Plantago lanceolata) belonging to three dominant plant functional groups (grasses, legumes, and herbs). Generally, L. perenne benefited from being released from intraspecific competition in the presence of T. pratense and P. lanceolata. However, the presence of AMF increased the competitive strength of P. lanceolata and T. pratense against L. perenne and also modified the effects of Collembola on plant productivity. The colonization of roots by AMF was reduced in treatments with two plant species suggesting that plant infection by AMF was modified by interspecific plant interactions. Collembola did not affect total colonization of roots by AMF, but increased the number of mycorrhizal vesicles in P. lanceolata. AMF and Collembola both enhanced the amount of N and P in plant shoot tissue, but impacts of Collembola were less pronounced in the presence of AMF. Overall, the results suggest that, by differentially affecting the nutrient acquisition and performance of plant species, AMF and Collembola interactively modify plant competition and shape the composition of grassland plant communities. The results suggest that mechanisms shaping plant community composition can only be understood when complex belowground interactions are considered.

  3. The Impact of Unmanned Aerial Systems on Joint Operational Art

    DTIC Science & Technology

    2012-05-17

    The Impact of Unmanned Aerial Systems on Joint Operational Art A Monograph by Major Joel E Pauls USAF School of Advanced Military Studies...Unmanned Aerial Systems on Joint Operational Art 6. AUTHOR(S) Joel E. Pauls Major, United States Air Force 7. PERFORMING ORGANIZATION NAME(S) AND...Approved for Public Release; Distribution is Unlimited 13. ABSTRACT (Maximum 200 Words) The use of Unmanned Aerial Systems (UAS) by the United States

  4. Effects of lighting and air movement on temperatures in reproductive organs of plants in a closed plant growth facility

    NASA Astrophysics Data System (ADS)

    Kitaya, Y.; Hirai, H.

    Temperature increases in plant reproductive organs such as anthers and stigmas could cause fertility impediments and thus produce sterile seeds under artificial lighting conditions without adequately controlled environments in closed plant growth facilities. There is a possibility such a situation could occur in Bioregenerative Life Support Systems under microgravity conditions in space because there will be little natural convective or thermal mixing. This study was conducted to determine the temperature of the plant reproductive organs as affected by illumination and air movement under normal gravitational forces on the earth and to make an estimation of the temperature increase in reproductive organs in closed plant growth facilities under microgravity in space. Thermal images of reproductive organs of rice and strawberry were captured using infrared thermography at air temperatures of 10 11 °C. Compared to the air temperature, temperatures of petals, stigmas and anthers of strawberry increased by 24, 22 and 14 °C, respectively, after 5 min of lighting at an irradiance of 160 W m-2 from incandescent lamps. Temperatures of reproductive organs and leaves of strawberry were significantly higher than those of rice. The temperatures of petals, stigmas, anthers and leaves of strawberry decreased by 13, 12, 13 and 14 °C, respectively, when the air velocity was increased from 0.1 to 1.0 ms-1. These results show that air movement is necessary to reduce the temperatures of plant reproductive organs in plant growth facilities.

  5. Is it really organic?--multi-isotopic analysis as a tool to discriminate between organic and conventional plants.

    PubMed

    Laursen, K H; Mihailova, A; Kelly, S D; Epov, V N; Bérail, S; Schjoerring, J K; Donard, O F X; Larsen, E H; Pedentchouk, N; Marca-Bell, A D; Halekoh, U; Olesen, J E; Husted, S

    2013-12-01

    Novel procedures for analytical authentication of organic plant products are urgently needed. Here we present the first study encompassing stable isotopes of hydrogen, carbon, nitrogen, oxygen, magnesium and sulphur as well as compound-specific nitrogen and oxygen isotope analysis of nitrate for discrimination of organically and conventionally grown plants. The study was based on wheat, barley, faba bean and potato produced in rigorously controlled long-term field trials comprising 144 experimental plots. Nitrogen isotope analysis revealed the use of animal manure, but was unable to discriminate between plants that were fertilised with synthetic nitrogen fertilisers or green manures from atmospheric nitrogen fixing legumes. This limitation was bypassed using oxygen isotope analysis of nitrate in potato tubers, while hydrogen isotope analysis allowed complete discrimination of organic and conventional wheat and barley grains. It is concluded, that multi-isotopic analysis has the potential to disclose fraudulent substitutions of organic with conventionally cultivated plants.

  6. Varying responses of insect herbivores to altered plant chemistry under organic and conventional treatments

    PubMed Central

    Staley, Joanna T.; Stewart-Jones, Alex; Pope, Tom W.; Wright, Denis J.; Leather, Simon R.; Hadley, Paul; Rossiter, John T.; van Emden, Helmut F.; Poppy, Guy M.

    2010-01-01

    The hypothesis that plants supplied with organic fertilizers are better defended against insect herbivores than those supplied with synthetic fertilizers was tested over two field seasons. Organic and synthetic fertilizer treatments at two nitrogen concentrations were supplied to Brassica plants, and their effects on the abundance of herbivore species and plant chemistry were assessed. The organic treatments also differed in fertilizer type: a green manure was used for the low-nitrogen treatment, while the high-nitrogen treatment contained green and animal manures. Two aphid species showed different responses to fertilizers: the Brassica specialist Brevicoryne brassicae was more abundant on organically fertilized plants, while the generalist Myzus persicae had higher populations on synthetically fertilized plants. The diamondback moth Plutella xylostella (a crucifer specialist) was more abundant on synthetically fertilized plants and preferred to oviposit on these plants. Glucosinolate concentrations were up to three times greater on plants grown in the organic treatments, while foliar nitrogen was maximized on plants under the higher of the synthetic fertilizer treatments. The varying response of herbivore species to these strong differences in plant chemistry demonstrates that hypotheses on defence in organically grown crops have over-simplified the response of phytophagous insects. PMID:19906673

  7. Varying responses of insect herbivores to altered plant chemistry under organic and conventional treatments.

    PubMed

    Staley, Joanna T; Stewart-Jones, Alex; Pope, Tom W; Wright, Denis J; Leather, Simon R; Hadley, Paul; Rossiter, John T; van Emden, Helmut F; Poppy, Guy M

    2010-03-07

    The hypothesis that plants supplied with organic fertilizers are better defended against insect herbivores than those supplied with synthetic fertilizers was tested over two field seasons. Organic and synthetic fertilizer treatments at two nitrogen concentrations were supplied to Brassica plants, and their effects on the abundance of herbivore species and plant chemistry were assessed. The organic treatments also differed in fertilizer type: a green manure was used for the low-nitrogen treatment, while the high-nitrogen treatment contained green and animal manures. Two aphid species showed different responses to fertilizers: the Brassica specialist Brevicoryne brassicae was more abundant on organically fertilized plants, while the generalist Myzus persicae had higher populations on synthetically fertilized plants. The diamondback moth Plutella xylostella (a crucifer specialist) was more abundant on synthetically fertilized plants and preferred to oviposit on these plants. Glucosinolate concentrations were up to three times greater on plants grown in the organic treatments, while foliar nitrogen was maximized on plants under the higher of the synthetic fertilizer treatments. The varying response of herbivore species to these strong differences in plant chemistry demonstrates that hypotheses on defence in organically grown crops have over-simplified the response of phytophagous insects.

  8. 47 CFR 32.2421 - Aerial cable.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the original cost of single or paired conductor cable, wire and other associated material used in... cable or aerial wire as well as the cost of other material used in construction of such plant... cost of optical fiber cable and other associated material used in constructing a physical path for...

  9. A Good University Physical Plant Organization and What Makes It Click. Revised July 1966.

    ERIC Educational Resources Information Center

    Fifield, M. F.

    The organization and administration of a university or college physical plant department is dealt with specifically. The following aspects of a good physical plant department are discussed--(1) leadership, (2) organization, (3) communications, (4) budgetary support, (5) facilities and equipment, (6) skill of personnel, (7) design to serve, (8)…

  10. AERIAL VIEW LOOKING FURTHER SOUTH EAST, VILLAGE CREEK WATER TREATMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL VIEW LOOKING FURTHER SOUTH EAST, VILLAGE CREEK WATER TREATMENT PLANT ON RIGHT SIDE, ENSLEY IN BACKGROUND. - Birmingham Southern Railroad Yard, Thirty-fourth Street, Ensley, Jefferson County, AL

  11. 4. Aerial view of Whitsett intake (lower right), Parker Dam ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Aerial view of Whitsett intake (lower right), Parker Dam and village (left), Gene Wash Reservoir, Gene Pump Plant and village (right). - Parker Dam, Spanning Colorado River between AZ & CA, Parker, La Paz County, AZ

  12. Principles and limitations of stable isotopes in differentiating organic and conventional foodstuffs: 1. Plant products.

    PubMed

    Inácio, Caio Teves; Chalk, Phillip Michael; Magalhães, Alberto M T

    2015-01-01

    Among the lighter elements having two or more stable isotopes (H, C, N, O, S), δ(15)N appears to be the most promising isotopic marker to differentiate plant products from conventional and organic farms. Organic plant products vary within a range of δ(15)N values of +0.3 to +14.6%, while conventional plant products range from negative to positive values, i.e. -4.0 to +8.7%. The main factors affecting δ(15)N signatures of plants are N fertilizers, biological N2 fixation, plant organs and plant age. Correlations between mode of production and δ(13)C (except greenhouse tomatoes warmed with natural gas) or δ(34)S signatures have not been established, and δ(2)H and δ(18)O are unsuitable markers due to the overriding effect of climate on the isotopic composition of plant-available water. Because there is potential overlap between the δ(15)N signatures of organic and conventionally produced plant products, δ(15)N has seldom been used successfully as the sole criterion for differentiation, but when combined with complementary analytical techniques and appropriate statistical tools, the probability of a correct identification increases. The use of organic fertilizers by conventional farmers or the marketing of organic produce as conventional due to market pressures are additional factors confounding correct identification. The robustness of using δ(15)N to differentiate mode of production will depend on the establishment of databases that have been verified for individual plant products.

  13. Ground cover estimated from aerial photographs

    NASA Technical Reports Server (NTRS)

    Gerbermann, A. H.; Cuellar, J. A.; Wiegand, C. L.

    1976-01-01

    Estimates of per cent ground cover made by ground observers were compared with independent estimates made on the basis of low-altitude (640-1219 m) aerial photographs of the same fields. Standard statistical simple correlation and linear regression analyses revealed a high correlation between the two estimation methods. In crops such as grain, sorghum, corn, and forage sorghum, in which the broadest part of the leaf canopy is near the top of the plant, there was a tendency to overestimate the per cent ground cover from aerial photographs.

  14. Social organization influences the exchange and species richness of medicinal plants in Amazonian homegardens

    PubMed Central

    2016-01-01

    Medicinal plants provide indigenous and peasant communities worldwide with means to meet their healthcare needs. Homegardens often act as medicine cabinets, providing easily accessible medicinal plants for household needs. Social structure and social exchanges have been proposed as factors influencing the species diversity that people maintain in their homegardens. Here, we assess the association between the exchange of medicinal knowledge and plant material and medicinal plant richness in homegardens. Using Tsimane’ Amazonian homegardens as a case study, we explore whether social organization shapes exchanges of medicinal plant knowledge and medicinal plant material. We also use network centrality measures to evaluate people’s location and performance in medicinal plant knowledge and plant material exchange networks. Our results suggest that social organization, specifically kinship and gender relations, influences medicinal plant exchange patterns significantly. Homegardens total and medicinal plant species richness are related to gardeners’ centrality in the networks, whereby people with greater centrality maintain greater plant richness. Thus, together with agroecological conditions, social relations among gardeners and the culturally specific social structure seem to be important determinants of plant richness in homegardens. Understanding which factors pattern general species diversity in tropical homegardens, and medicinal plant diversity in particular, can help policy makers, health providers, and local communities to understand better how to promote and preserve medicinal plants in situ. Biocultural approaches that are also gender sensitive offer a culturally appropriate means to reduce the global and local loss of both biological and cultural diversity. PMID:27668001

  15. Social organization influences the exchange and species richness of medicinal plants in Amazonian homegardens.

    PubMed

    2016-03-01

    Medicinal plants provide indigenous and peasant communities worldwide with means to meet their healthcare needs. Homegardens often act as medicine cabinets, providing easily accessible medicinal plants for household needs. Social structure and social exchanges have been proposed as factors influencing the species diversity that people maintain in their homegardens. Here, we assess the association between the exchange of medicinal knowledge and plant material and medicinal plant richness in homegardens. Using Tsimane' Amazonian homegardens as a case study, we explore whether social organization shapes exchanges of medicinal plant knowledge and medicinal plant material. We also use network centrality measures to evaluate people's location and performance in medicinal plant knowledge and plant material exchange networks. Our results suggest that social organization, specifically kinship and gender relations, influences medicinal plant exchange patterns significantly. Homegardens total and medicinal plant species richness are related to gardeners' centrality in the networks, whereby people with greater centrality maintain greater plant richness. Thus, together with agroecological conditions, social relations among gardeners and the culturally specific social structure seem to be important determinants of plant richness in homegardens. Understanding which factors pattern general species diversity in tropical homegardens, and medicinal plant diversity in particular, can help policy makers, health providers, and local communities to understand better how to promote and preserve medicinal plants in situ. Biocultural approaches that are also gender sensitive offer a culturally appropriate means to reduce the global and local loss of both biological and cultural diversity.

  16. Drosophila melanogaster "a potential model organism" for identification of pharmacological properties of plants/plant-derived components.

    PubMed

    Panchal, Komal; Tiwari, Anand K

    2017-03-18

    Plants/plant-derived components have been used from ancient times to treat/cure several human diseases. Plants and their parts possess several chemical components that play the vital role in the improvement of human health and their life expectancy. Allopathic medicines have been playing a key role in the treatment of several diseases. Though allopathic medicines provide fast relief, long time consumption cause serious health concerns such as hyperallergic reactions, liver damage, etc. So, the study of medicinal plants which rarely cause any side effect is very important to mankind. Plants contain many health benefit properties like antioxidant, anti-aging, neuroprotective, anti-genotoxic, anti-mutagenic and bioinsecticidal activity. Thus, identification of pharmacological properties of plants/plant-derived components are of utmost importance to be explored. Several model organisms have been used to identify the pharmacological properties of the different plants or active components therein and Drosophila is one of them. Drosophila melanogaster "fruit fly" is a well understood, high-throughput model organism being used more than 110 years to study the different biological aspects related to the development and diseases. Most of the developmental and cell signaling pathways and ∼75% human disease-related genes are conserved between human and Drosophila. Using Drosophila, one can easily analyze the pharmacological properties of plants/plant-derived components by performing several assays available with flies such as survivorship, locomotor, antioxidant, cell death, etc. The current review focuses on the potential of Drosophila melanogaster for the identification of medicinal/pharmacological properties associated with plants/plant-derived components.

  17. [Contribution of plant litters to sediments organic matter in Jiulong river estuary wetland].

    PubMed

    Luo, Zhuan-Xi; Qiu, Zhao-Zheng; Wang, Zhen-Hong; Yan, Chang-Zhou

    2013-03-01

    The purpose of this study was to characterize the decomposition process of different plant litters and its controlling factors, and to quantify the different contribution rates to sediments organic matter throughout the decomposition of different plant litters. Results showed that the decomposition rates of plant litters buried at medium tidal level were 0.655 a(-1) for mangrove and 1.723 a(-1) for Spartina, which were greater than those with 0.651 a(-1) for mangrove and 1.586 a(-1) for Spartina at high tidal level. The reduction of carbon concentration in plant litters at high tidal level was lower than that at medium tidal level, while the increment of nitrogen and sulfur concentrations in plant litters at high tidal level was greater than those at medium tidal. And the isotope abundance of carbon (delta13C) in plant litters at medium tidal level reduced much more significantly than that at high tidal level. The contribution rates of plant litters carbon to sediments organic matter differed among tidal levels, plant species and decomposition duration. Specifically, the decomposition of mangrove litters contributed 5.96% to the sediment organic matter at medium tidal level, which was greater than that (3.03%) at high tidal level. Similarly, the decomposition of Spartina litters contributed 14.81% to the sediment organic matter at medium tidal level, which was also greater than that (13.97%) at high tidal level. The contribution of the decomposition of Spartina litters organic matter (average with 14.39%) was greater than that of mangrove litters (4.50%). The decomposition of plant litters requires a long process. The contribution of plant litters to sediments organic matter throughout one year decomposition was lower than that in complete decomposition, in particular, mangrove litters. Our study showed that the quantitative differences in plant litters-derived sediment organic matter would improve the proper estimation of the contribution of litters to wetland

  18. Characterization of culturable bacterial endophytes and their capacity to promote plant growth from plants grown using organic or conventional practices

    PubMed Central

    Xia, Ye; DeBolt, Seth; Dreyer, Jamin; Scott, Delia; Williams, Mark A.

    2015-01-01

    Plants have a diverse internal microbial biota that has been shown to have an important influence on a range of plant health attributes. Although these endophytes have been found to be widely occurring, few studies have correlated agricultural production practices with endophyte community structure and function. One agricultural system that focuses on preserving and enhancing soil microbial abundance and biodiversity is organic farming, and numerous studies have shown that organically managed system have increased microbial community characteristics. Herein, the diversity and specificity of culturable bacterial endophytes were evaluated in four vegetable crops: corn, tomato, melon, and pepper grown under organic or conventional practices. Endophytic bacteria were isolated from surface-sterilized shoot, root, and seed tissues and sequence identified. A total of 336 bacterial isolates were identified, and grouped into 32 species and five phyla. Among these, 239 isolates were from organically grown plants and 97 from those grown conventionally. Although a diverse range of bacteria were documented, 186 were from the Phylum Firmicutes, representing 55% of all isolates. Using the Shannon diversity index, we observed a gradation of diversity in tissues, with shoots and roots having a similar value, and seeds having the least diversity. Importantly, endophytic microbial species abundance and diversity was significantly higher in the organically grown plants compared to those grown using conventional practices, potentially indicating that organic management practices may increase endophyte presence and diversity. The impact that these endophytes could have on plant growth and yield was evaluated by reintroducing them into tomato plants in a greenhouse environment. Of the bacterial isolates tested, 61% were found to promote tomato plant growth and 50–64% were shown to enhance biomass accumulation, illustrating their potential agroecosystem application. PMID:26217348

  19. AERIAL METHODS OF EXPLORATION

    DTIC Science & Technology

    The development of photointerpretation techniques for identifying kimberlite pipes on aerial photographs is discussed. The geographic area considered is the Daldyn region, which lies in the zone of Northern Taiga of Yakutiya.

  20. Inter-organ defense networking: Leaf whitefly sucking elicits plant immunity to crown gall disease caused by Agrobacterium tumefaciens.

    PubMed

    Park, Yong-Soon; Ryu, Choong-Min

    2015-01-01

    Plants have elaborate defensive machinery to protect against numerous pathogens and insects. Plant hormones function as modulators of defensive mechanisms to maintain plant resistance to natural enemies. Our recent study suggests that salicylic acid (SA) is the primary phytohormone regulating plant responses to Agrobacterium tumefaciens infection. Tobacco (Nicotiana benthamiana Domin.) immune responses against Agrobacterium-mediated crown gall disease were activated by exposure to the sucking insect whitefly, which stimulated SA biosynthesis in aerial tissues; in turn, SA synthesized in aboveground tissues systemically modulated SA secretion in root tissues. Further investigation revealed that endogenous SA biosynthesis negatively modulated Agrobacterium-mediated plant genetic transformation. Our study provides novel evidence that activation of the SA-signaling pathway mediated by a sucking insect infestation has a pivotal role in subsequently attenuating Agrobacterium infection. These results demonstrate new insights into interspecies cross-talking among insects, plants, and soil bacteria.

  1. The organization of plant communities: negative plant-soil feedbacks and semiarid grasslands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimates of species losses and evidence of positive plant diversity-productivity relationships have spurred interest in understanding the mechanism(s) regulating species coexistence and relative abundance. Plant-soil biota feedbacks appear to affect plant diversity and community structure by eithe...

  2. Longitudinal Waves Organize and Control Plants and Other Life

    NASA Astrophysics Data System (ADS)

    Wagner, Orvin E.

    2002-04-01

    Since the discovery of longitudinal waves in plants (W-waves) in 1988 I have taken data related to influences of these waves. These data include spacings between structures on plants, sap flow data, electrical data from probes traceable to effects produced by these waves, data related to the influences of gravity, data related to these waves traveling between plants and on and on. All of the data suggest that these waves provide a basis for a unified theory for plant growth and development. They likely provide a basis for growth and development for all life. The wave influences are present on the microscopic level in live plants but may not show in the microscopic pieces of material often scrutinized by the usual researcher. It is this author's conclusion that the waves mentioned are important in all life and provide what we call life which has been so difficult to pinpoint in previous work. The waves show in dead material but generally are of a much smaller amplitude than in resonating live material. In the wave theory one might compare something alive to a properly operating laser. See the

  3. Aerial Photography Summary Record System

    USGS Publications Warehouse

    ,

    1998-01-01

    The Aerial Photography Summary Record System (APSRS) describes aerial photography projects that meet specified criteria over a given geographic area of the United States and its territories. Aerial photographs are an important tool in cartography and a number of other professions. Land use planners, real estate developers, lawyers, environmental specialists, and many other professionals rely on detailed and timely aerial photographs. Until 1975, there was no systematic approach to locate an aerial photograph, or series of photographs, quickly and easily. In that year, the U.S. Geological Survey (USGS) inaugurated the APSRS, which has become a standard reference for users of aerial photographs.

  4. Spectral Characterization of Plant-Derived Dissolved Organic Matter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dissolved organic matter (DOM) derived from fresh or early-stage decomposing soil amendment materials may play an important role in the process of organic matter accumulation. The DOM can influence many chemical processes, due to its reactivity with both soil solution components and soil surfaces. W...

  5. Meiosis in flowering plants and other green organisms.

    PubMed

    Harrison, C Jill; Alvey, Elizabeth; Henderson, Ian R

    2010-06-01

    Sexual eukaryotes generate gametes using a specialized cell division called meiosis that serves both to halve the number of chromosomes and to reshuffle genetic variation present in the parent. The nature and mechanism of the meiotic cell division in plants and its effect on genetic variation are reviewed here. As flowers are the site of meiosis and fertilization in angiosperms, meiotic control will be considered within this developmental context. Finally, we review what is known about the control of meiosis in green algae and non-flowering land plants and discuss evolutionary transitions relating to meiosis that have occurred in the lineages giving rise to the angiosperms.

  6. The impact of plants on the reduction of volatile organic compounds in a small space.

    PubMed

    Song, Jeong-Eun; Kim, Yong-Shik; Sohn, Jang-Yeul

    2007-11-01

    This study aims at examining the reduction of indoor air contaminants by plants placed in an indoor space. Field measurements were performed using Aglaonema brevispathum, Pachira aquatica, and Ficus benjamiana, which were verified as air-purifying plants by NASA. Three conditions for the amount of plants and positions were used in two separate rooms whose dimensions are identical. The concentration of Volatile Organic Compounds (VOCs) was monitored three hours after the plants were placed and three days after the plants were placed. The variations of concentration of Benzene, Toluene, Etylbenzene, and Xylene (BTEX), as well as Formaldehyde, which are all known as the major elements of Volatile Organic Compounds were monitored. The amount of reduction in concentration of Toluene and Formaldehyde was monitored 3 hours and 3 days after the plants were placed in the space. The reduction in the concentration of Benzene, Toluene, Etylbenzene, Xylene, and Formaldehyde was significantly greater when plants were present. When plants were placed near a window, the reduction of concentration was greater. The more plants were used, the more a reduction of indoor air contaminants occurred. The effect of reducing the concentration of air contaminants increased when the amount of plants increased, and when the plants were placed in sunny area. The concentration of Toluene was reduced by 45.6 microg/m(3) when 10% of the model space was occupied by Aglaonema brevispathum.

  7. Scaling of nitrogen and phosphorus across plant organs in shrubland biomes across Northern China.

    PubMed

    Yang, Xian; Tang, Zhiyao; Ji, Chengjun; Liu, Hongyan; Ma, Wenhong; Mohhamot, Anwar; Shi, Zhaoyong; Sun, Wei; Wang, Tao; Wang, Xiangping; Wu, Xian; Yu, Shunli; Yue, Ming; Zheng, Chengyang

    2014-06-26

    Allocation of limiting resources, such as nutrients, is an important adaptation strategy for plants. Plants may allocate different nutrients within a specific organ or the same nutrient among different organs. In this study, we investigated the allocation strategies of nitrogen (N) and phosphorus (P) in leaves, stems and roots of 126 shrub species from 172 shrubland communities in Northern China using scaling analyses. Results showed that N and P have different scaling relationships among plant organs. The scaling relationships of N concentration across different plant organs tended to be allometric between leaves and non-leaf organs, and isometric between non-leaf organs. Whilst the scaling relationships of P concentration tended to be allometric between roots and non-root organs, and isometric between non-root organs. In arid environments, plant tend to have higher nutrient concentration in leaves at given root or stem nutrient concentration. Evolutionary history affected the scaling relationships of N concentration slightly, but not affected those of P concentration. Despite fairly consistent nutrients allocation strategies existed in independently evolving lineages, evolutionary history and environments still led to variations on these strategies.

  8. Scaling of nitrogen and phosphorus across plant organs in shrubland biomes across Northern China

    PubMed Central

    Yang, Xian; Tang, Zhiyao; Ji, Chengjun; Liu, Hongyan; Ma, Wenhong; Mohhamot, Anwar; Shi, Zhaoyong; Sun, Wei; Wang, Tao; Wang, Xiangping; Wu, Xian; Yu, Shunli; Yue, Ming; Zheng, Chengyang

    2014-01-01

    Allocation of limiting resources, such as nutrients, is an important adaptation strategy for plants. Plants may allocate different nutrients within a specific organ or the same nutrient among different organs. In this study, we investigated the allocation strategies of nitrogen (N) and phosphorus (P) in leaves, stems and roots of 126 shrub species from 172 shrubland communities in Northern China using scaling analyses. Results showed that N and P have different scaling relationships among plant organs. The scaling relationships of N concentration across different plant organs tended to be allometric between leaves and non-leaf organs, and isometric between non-leaf organs. Whilst the scaling relationships of P concentration tended to be allometric between roots and non-root organs, and isometric between non-root organs. In arid environments, plant tend to have higher nutrient concentration in leaves at given root or stem nutrient concentration. Evolutionary history affected the scaling relationships of N concentration slightly, but not affected those of P concentration. Despite fairly consistent nutrients allocation strategies existed in independently evolving lineages, evolutionary history and environments still led to variations on these strategies. PMID:24965183

  9. Cross-kingdom effects of plant-plant signaling via volatile organic compounds emitted by tomato (Solanum lycopersicum) plants infested by the greenhouse whitefly (Trialeurodes vaporariorum).

    PubMed

    Ángeles López, Yesenia Ithaí; Martínez-Gallardo, Norma Angélica; Ramírez-Romero, Ricardo; López, Mercedes G; Sánchez-Hernández, Carla; Délano-Frier, John Paul

    2012-11-01

    Volatile organic compounds (VOCs) emitted from plants in response to insect infestation can function as signals for the attraction of predatory/parasitic insects and/or repulsion of herbivores. VOCs also may play a role in intra- and inter-plant communication. In this work, the kinetics and composition of VOC emissions produced by tomato (Solanum lycopersicum) plants infested with the greenhouse whitefly Trialeurodes vaporariorum was determined within a 14 days period. The VOC emission profiles varied concomitantly with the duration of whitefly infestation. A total of 36 different VOCs were detected during the experiment, 26 of which could be identified: 23 terpenoids, plus decanal, decane, and methyl salicylate (MeSA). Many VOCs were emitted exclusively by infested plants, including MeSA and 10 terpenoids. In general, individual VOC emissions increased as the infestation progressed, particularly at 7 days post-infestation (dpi). Additional tunnel experiments showed that a 3 days exposure to VOC emissions from whitefly-infested plants significantly reduced infection by a biotrophic bacterial pathogen. Infection of VOC-exposed plants induced the expression of a likely tomato homolog of a methyl salicylate esterase gene, which preceded the expression of pathogenesis-related protein genes. This expression pattern correlated with reduced susceptibility in VOC-exposed plants. The observed cross-kingdom effect of plant-plant signaling via VOCs probably represents a generalized defensive response that contributes to increased plant fitness, considering that resistance responses to whiteflies and biotrophic bacterial pathogens in tomato share many common elements.

  10. The impact of plant-based antimicrobials on sensory properties of organic leafy greens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant extracts and essential oils are well known for their antibacterial activity. However, studies concerning their effect on the organoleptic properties of treated foods are limited. The objective was to study the sensory attributes of organic leafy greens treated with plant antimicrobials and ide...

  11. A partition-limited model for the plant uptake of organic contaminants from soil and water

    USGS Publications Warehouse

    Chiou, C.T.; Sheng, G.; Manes, M.

    2001-01-01

    In dealing with the passive transport of organic contaminants from soils to plants (including crops), a partition-limited model is proposed in which (i) the maximum (equilibrium) concentration of a contaminant in any location in the plant is determined by partition equilibrium with its concentration in the soil interstitial water, which in turn is determined essentially by the concentration in the soil organic matter (SOM) and (ii) the extent of approach to partition equilibrium, as measured by the ratio of the contaminant concentrations in plant water and soil interstitial water, ??pt (??? 1), depends on the transport rate of the contaminant in soil water into the plant and the volume of soil water solution that is required for the plant contaminant level to reach equilibrium with the external soil-water phase. Through reasonable estimates of plant organic-water compositions and of contaminant partition coefficients with various plant components, the model accounts for calculated values of ??pt in several published crop-contamination studies, including near-equilibrium values (i.e., ??pt ??? 1) for relatively water-soluble contaminants and lower values for much less soluble contaminants; the differences are attributed to the much higher partition coefficients of the less soluble compounds between plant lipids and plant water, which necessitates much larger volumes of the plant water transport for achieving the equilibrium capacities. The model analysis indicates that for plants with high water contents the plant-water phase acts as the major reservoir for highly water-soluble contaminants. By contrast, the lipid in a plant, even at small amounts, is usually the major reservoir for highly water-insoluble contaminants.

  12. Effect of mechanical damage on emission of volatile organic compounds from plant leaves and implications for evaluation of host plant specificity of prospective biological control agents of weeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Assessment of host plant specificity is a critical step in the evaluation of classical biological control agents of weeds, which is necessary for avoiding possible damage to nontarget plants. Volatile organic compounds (VOC) emitted by plants likely play an important role in determining which plant...

  13. Adaptive control of an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Nguen, V. F.; Putov, A. V.; Nguen, T. T.

    2017-01-01

    The paper deals with design and comparison of adaptive control systems based on plant state vector and output for unmanned aerial vehicle (UAV) with nonlinearity and uncertainty of parameters of the aircraft incomplete measurability of its state and presence of wind disturbances. The results of computer simulations of flight stabilization processes on the example of the experimental model UAV-70V (Aerospace Academy, Hanoi) with presence of periodic and non-periodic vertical wind disturbances with designed adaptive control systems based on plant state vector with state observer and plant output.

  14. Chemical composition and anticandidal properties of the essential oil isolated from aerial parts of Cotula cinerea: a rare and threatened medicinal plant in Morocco.

    PubMed

    El Bouzidi, Leila; Abbad, Abdelaziz; Fattarsi, Karine; Hassani, Lahcen; Leach, David; Markouk, Mohammed; Legendre, Laurent; Bekkouche, Khalid

    2011-10-01

    The chemical composition and anticandidal properties of the essential oil of Moroccan Cotula cinerea aerial parts have been examined. GC-MS data were used to identify 24 constituents. Oxygenated monoterpenes constituted the main fraction with trans-thujone (41.4%), cis-verbenyl acetate (24.7%), 1,8-cineole (8.2%) and camphor (5.5%) as the major components. The anticandidal activity of the essential oil was evaluated using a panel of human pathogenic fungi (Candida albicans CCMM L4 and CCMM L5, C. krusei CCMM L10, C. glabrata CCMM L7 and C. parapsilosis CCMM L18). The oil showed high anticandidal activity against all investigated strains with minimal inhibitory concentrations of 3.2 to 4.7 mg/mL depending on the tested yeast and 5.9 mg/mL as a minimal candidicidal concentration value. These findings add significant information to the pharmacological activity of Cotula cinerea essential oil, which may present a good alternative to antibiotics for the treatment of resistant strains of Candida.

  15. Root system architecture in Arabidopsis grown in culture is regulated by sucrose uptake in the aerial tissues.

    PubMed

    Macgregor, Dana R; Deak, Karen I; Ingram, Paul A; Malamy, Jocelyn E

    2008-10-01

    This article presents a detailed model for the regulation of lateral root formation in Arabidopsis thaliana seedlings grown in culture. We demonstrate that direct contact between the aerial tissues and sucrose in the growth media is necessary and sufficient to promote emergence of lateral root primordia from the parent root. Mild osmotic stress is perceived by the root, which then sends an abscisic acid-dependent signal that causes a decrease in the permeability of aerial tissues; this reduces uptake of sucrose from the culture media, which leads to a repression of lateral root formation. Osmotic repression of lateral root formation in culture can be overcome by mutations that cause the cuticle of a plant's aerial tissues to become more permeable. Indeed, we report here that the previously described lateral root development2 mutant overcomes osmotic repression of lateral root formation because of a point mutation in Long Chain Acyl-CoA Synthetase2, a gene essential for cutin biosynthesis. Together, our findings (1) impact the interpretation of experiments that use Arabidopsis grown in culture to study root system architecture; (2) identify sucrose as an unexpected regulator of lateral root formation; (3) demonstrate mechanisms by which roots communicate information to aerial tissues and receive information in turn; and (4) provide insights into the regulatory pathways that allow plants to be developmentally plastic while preserving the essential balance between aboveground and belowground organs.

  16. Aerial Explorers and Robotic Ecosystems

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg

    2004-01-01

    A unique bio-inspired approach to autonomous aerial vehicle, a.k.a. aerial explorer technology is discussed. The work is focused on defining and studying aerial explorer mission concepts, both as an individual robotic system and as a member of a small robotic "ecosystem." Members of this robotic ecosystem include the aerial explorer, air-deployed sensors and robotic symbiotes, and other assets such as rovers, landers, and orbiters.

  17. Organic Chemistry and the Native Plants of the Sonoran Desert: Conversion of Jojoba Oil to Biodiesel

    ERIC Educational Resources Information Center

    Daconta, Lisa V.; Minger, Timothy; Nedelkova, Valentina; Zikopoulos, John N.

    2015-01-01

    A new, general approach to the organic chemistry laboratory is introduced that is based on learning about organic chemistry techniques and research methods by exploring the natural products found in local native plants. As an example of this approach for the Sonoran desert region, the extraction of jojoba oil and its transesterification to…

  18. Yeast Biocontrol of a Fungal Plant Disease: A Model for Studying Organism Interrelationships

    ERIC Educational Resources Information Center

    Chanchaichaovivat, Arun; Panijpan, Bhinyo; Ruenwongsa, Pintip

    2008-01-01

    An experiment on the action of the yeast, "Saccharomyces cerevisiae", against a fungal plant disease is proposed for secondary students (Grade 11) to support their study of organism interrelationship. This biocontrol experiment serves as the basis for discussing relationships among three organisms (red chilli fruit, "Saccharomyces cerevisiae," and…

  19. Contribution of plant lignin to the soil organic matter formation and stabilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignin is the third most abundant plant constituent after cellulose and hemicellulose and thought to be one of the building blocks for soil organic matter formation. Lignin can be used as a predictor for long-term soil organic matter stabilization and C sequestration. Soils and humic acids from fo...

  20. Sorption of trace organics and engineered nanomaterials onto wetland plant material.

    PubMed

    Sharif, Fariya; Westerhoff, Paul; Herckes, Pierre

    2013-01-01

    Wastewater treatment plant (WWTP) effluents are sources for emerging pollutants, including organic compounds and engineered nanomaterials (ENMs), which then flow into aquatic systems. In this article, natural attenuation of pollutants by constructed wetland plants was investigated using lab-scale microcosm and batch sorption studies. The microcosms were operated at varying hydraulic residence times (HRTs) and contained decaying plant materials. Representative organic compounds and ENMs were simultaneously spiked into the microcosm influent, along with a conservative tracer (bromide), and then monitored in the effluent over time. It was observed that a more hydrophobic compound-natural estrogen achieved better removal than a polar organic compound – para-chlorobenzoic acid (pCBA), which mimics the behaviour of the tracer. Batch sorption experiments showed that estrogen has higher sorption affinity than pCBA, highlighting the importance of sorption to the plant materials as a removal process for the organic contaminants in the microcosms. Wetland plants were also found a potential sorbent for ENMs. Two different ENMs (nano-silver and aqueous fullerenes) were included in this study, both of which experienced comparable removal in the microcosms. Relative to the tracer, the highest removal of ENMs and trace organics was 60% and 70%, respectively. A more than two-fold increase in HRT increased the removal efficiency of the contaminants in the range of 20–60%. The outcome of this study supports that plant materials of wetlands can play an important role in removing emerging pollutants from WWTP effluent.

  1. Comparative study on Allium schoenoprasum cultivated plant and Allium schoenoprasum tissue culture organs antioxidant status.

    PubMed

    Stajner, D; Popović, B M; Calić-Dragosavac, D; Malenčić, D; Zdravković-Korać, S

    2011-11-01

    This study was designed to examine Allium schoenoprasum tissue culture organs antioxidant and scavenging activity and to make a comparison between Allium schoenoprasum cultivated plant and Allium schoenoprasum tissue culture organs antioxidant activity. This study reports the results on the root, stalk and leaf antioxidant enzyme activities (superoxide dismutase, catalase, guaiacol peroxidase and glutathione peroxidase), reduced glutathione quantity, flavonoids and soluble protein contents and quantities of malonyldialdehyde and ·OH radical. In Allium schoenoprasum tissue culture organs the total antioxidant capacity was determined by the FRAP method and scavenger activity by the DPPH method. The present results indicated that the crude extract of Allium schoenoprasum tissue culture exhibited antioxidant and scavenging abilities in all investigated plant parts, especially in the roots. According to our results, the tissue culture plants exhibited the highest activities in the roots in contrast to the cultivated plants where highest activities were observed in the leaves.

  2. The below-ground perspective of forest plants: soil provides mainly organic nitrogen for plants and mycorrhizal fungi.

    PubMed

    Inselsbacher, Erich; Näsholm, Torgny

    2012-07-01

    • Nitrogen (N) availability has a major impact on a wide range of biogeochemical processes in terrestrial ecosystems. Changes in N availability modify the capacity of plants to sequester carbon (C), but despite the crucial importance for our understanding of terrestrial ecosystems, the relative contribution of different N forms to plant N nutrition in the field is not known. Until now, reliably assessing the highly dynamic pool of plant-available N in soil microsites was virtually impossible, because of the lack of adequate sampling techniques. • For the first time we have applied a novel microdialysis technique for disturbance-free monitoring of diffusive fluxes of inorganic and organic N in 15 contrasting boreal forest soils in situ. • We found that amino acids accounted for 80% of the soil N supply, while ammonium and nitrate contributed only 10% each. In contrast to common soil extractions, microdialysis revealed that the majority of amino acids are available for plant and mycorrhizal uptake. • Our results suggest that the N supply of boreal forest soils is dominated by organic N as a major component of plant-available N and thus as a regulator of growth and C sequestration.

  3. Psychrotolerant actinomycetes of plants and organic horizons in tundra and taiga soils

    NASA Astrophysics Data System (ADS)

    Dubrova, M. S.; Zenova, G. M.; Yakushev, A. V.; Manucharova, N. A.; Makarova, E. P.; Zvyagintsev, D. G.; Chernov, I. Yu.

    2013-08-01

    It has been revealed that in organic horizons and plants of the tundra and taiga ecosystems under low temperatures, actinomycetal complexes form. The population density of psychrotolerant actinomycetes in organic horizons and plants reaches tens and hundreds of thousands CFU/g of substrate or soil, and decreases in the sequence litters > plants > soils > undecomposed plant remains > moss growths. The mycelium length of psychrotolerant actinomycetes reaches 220 m/g of substrate. Application of the FISH method has demonstrated that metabolically active psychrotolerant bacteria of the phylum Actinobacteria constitute 30% of all metabolically active psychrotolerant representatives of the Bacterià domain of the prokaryotic microbial community of soils and plants. Psychrotolerant actinomycetes in tundra and taiga ecosystems possess antimicrobial properties.

  4. Penium margaritaceum as a model organism for cell wall analysis of expanding plant cells.

    PubMed

    Rydahl, Maja G; Fangel, Jonatan U; Mikkelsen, Maria Dalgaard; Johansen, I Elisabeth; Andreas, Amanda; Harholt, Jesper; Ulvskov, Peter; Jørgensen, Bodil; Domozych, David S; Willats, William G T

    2015-01-01

    The growth of a plant cell encompasses a complex set of subcellular components interacting in a highly coordinated fashion. Ultimately, these activities create specific cell wall structural domains that regulate the prime force of expansion, internally generated turgor pressure. The precise organization of the polymeric networks of the cell wall around the protoplast also contributes to the direction of growth, the shape of the cell, and the proper positioning of the cell in a tissue. In essence, plant cell expansion represents the foundation of development. Most studies of plant cell expansion have focused primarily upon late divergent multicellular land plants and specialized cell types (e.g., pollen tubes, root hairs). Here, we describe a unicellular green alga, Penium margaritaceum (Penium), which can serve as a valuable model organism for understanding cell expansion and the underlying mechanics of the cell wall in a single plant cell.

  5. Aerial of the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Even in this aerial view at KSC, the Vehicle Assembly Building is imposing. In front of it is the Launch Control Center. In the background is the Rotation/Processing Facility, next to the Banana Creek. In the foreground is the Saturn Causeway that leads to Launch Pads 39A and 39B.

  6. Aerial photographic reproductions

    USGS Publications Warehouse

    ,

    1971-01-01

    Geological Survey vertical aerial photography is obtained primarily for topographic and geologic mapping. Reproductions from this photography are usually satisfactory for general use. Because reproductions are not stocked, but are custom processed for each order, they cannot be returned for credit or refund.

  7. Non-serotinous woody plants behave as aerial seed bank species when a late-summer wildfire coincides with a mast year

    PubMed Central

    Pounden, Edith; Greene, David F; Michaletz, Sean T

    2014-01-01

    Abstract Trees which lack obvious fire-adaptive traits such as serotinous seed-bearing structures or vegetative resprouting are assumed to be at a dramatic disadvantage in recolonization via sexual recruitment after fire, because seed dispersal is invariably quite constrained. We propose an alternative strategy in masting tree species with woody cones or cone-like structures: that the large clusters of woody tissue in a mast year will sufficiently impede heat transfer that a small fraction of seeds can survive the flaming front passage; in a mast year, this small fraction would be a very large absolute number. In Kootenay National Park in British Columbia, we examined regeneration by Engelmann spruce (Picea engelmannii), a non-serotinous conifer, after two fires, both of which coincided with mast years. Coupling models of seed survivorship within cones and seed maturation schedule to a spatially realistic recruitment model, we show that (1) the spatial pattern of seedlings on a 630 m transect from the forest edge into the burn was best explained if there was in situ seed dissemination by burnt trees; (2) in areas several hundred meters from any living trees, recruitment density was well correlated with local prefire cone density; and (3) spruce was responding exactly like its serotinous codominant, lodgepole pine (Pinus contorta). We conclude that non-serotinous species can indeed behave like aerial seed bank species in mast years if the fire takes place late in the seed maturation period. Using the example of the circumpolar boreal forest, while the joint probability of a mast year and a late-season fire will make this type of event rare (we estimate P = 0.1), nonetheless, it would permit a species lacking obvious fire-adapted traits to occasionally establish a widespread and abundant cohort on a large part of the landscape. PMID:25614797

  8. A Late Devonian Fertile Organ with Seed Plant Affinities from China

    PubMed Central

    Wang, Deming; Liu, Le; Guo, Yun; Xue, Jinzhuang; Meng, Meicen

    2015-01-01

    Seed plants underwent first major evolutionary radiation in the Late Devonian (Famennian), as evidenced by the numerous ovules described to date. However, the early pollen organs are underrepresented, so that their structure and evolution remain poorly known. Here we report a new taxon of pollen organ Placotheca minuta from the Late Devonian. The synangium consists of many basally and more or less laterally fused microsporangia borne on the margin of a pad. The prepollen is spherical and trilete. The appearance of Famennian synangia especially in Placotheca does not support the current understanding that the earliest pollen organs closely resembled the fructifications of the ancestral progymnosperms. Placotheca indicates earlier diversification of pollen organs than previously expected and is highly derived among the early pollen organs with trilete prepollen. It is suggested that, immediately after the origination of seed plants, pollen organs had evolved at a rapid rate, whereas their prepollen remained primitively spore-like. PMID:26022973

  9. Gravity, chromosomes, and organized development in aseptically cultured plant cells

    NASA Technical Reports Server (NTRS)

    Krikorian, Abraham D.

    1993-01-01

    The objectives of the PCR experiment are: to test the hypothesis that microgravity will in fact affect the pattern and developmental progression of embryogenically competent plant cells from one well-defined, critical stage to another; to determine the effects of microgravity in growth and differentiation of embryogenic carrot cells grown in cell culture; to determine whether microgravity or the space environment fosters an instability of the differentiated state; and to determine whether mitosis and chromosome behavior are adversely affected by microgravity. The methods employed will consist of the following: special embryogenically competent carrot cell cultures will be grown in cell culture chambers provided by NASDA; four cell culture chambers will be used to grow cells in liquid medium; two dishes (plant cell culture dishes) will be used to grow cells on a semi-solid agar support; progression to later embryonic stages will be induced in space via crew intervention and by media manipulation in the case of liquid grown cell cultures; progression to later stages in case of semi-solid cultures will not need crew intervention; embryo stages will be fixed at a specific interval (day 6) in flight only in the case of liquid-grown cultures; and some living cells and somatic embryos will be returned for continued post-flight development and 'grown-out.' These will derive from the semi-solid grown cultures.

  10. Unpredicted impacts of insect endosymbionts on interactions between soil organisms, plants and aphids.

    PubMed

    Hackett, Sean C; Karley, Alison J; Bennett, Alison E

    2013-10-07

    Ecologically significant symbiotic associations are frequently studied in isolation, but such studies of two-way interactions cannot always predict the responses of organisms in a community setting. To explore this issue, we adopt a community approach to examine the role of plant-microbial and insect-microbial symbioses in modulating a plant-herbivore interaction. Potato plants were grown under glass in controlled conditions and subjected to feeding from the potato aphid Macrosiphum euphorbiae. By comparing plant growth in sterile, uncultivated and cultivated soils and the performance of M. euphorbiae clones with and without the facultative endosymbiont Hamiltonella defensa, we provide evidence for complex indirect interactions between insect- and plant-microbial systems. Plant biomass responded positively to the live soil treatments, on average increasing by 15% relative to sterile soil, while aphid feeding produced shifts (increases in stem biomass and reductions in stolon biomass) in plant resource allocation irrespective of soil treatment. Aphid fecundity also responded to soil treatment with aphids on sterile soil exhibiting higher fecundities than those in the uncultivated treatment. The relative allocation of biomass to roots was reduced in the presence of aphids harbouring H. defensa compared with plants inoculated with H. defensa-free aphids and aphid-free control plants. This study provides evidence for the potential of plant and insect symbionts to shift the dynamics of plant-herbivore interactions.

  11. Plant-Associated Bacterial Degradation of Toxic Organic Compounds in Soil

    PubMed Central

    McGuinness, Martina; Dowling, David

    2009-01-01

    A number of toxic synthetic organic compounds can contaminate environmental soil through either local (e.g., industrial) or diffuse (e.g., agricultural) contamination. Increased levels of these toxic organic compounds in the environment have been associated with human health risks including cancer. Plant-associated bacteria, such as endophytic bacteria (non-pathogenic bacteria that occur naturally in plants) and rhizospheric bacteria (bacteria that live on and near the roots of plants), have been shown to contribute to biodegradation of toxic organic compounds in contaminated soil and could have potential for improving phytoremediation. Endophytic and rhizospheric bacterial degradation of toxic organic compounds (either naturally occurring or genetically enhanced) in contaminated soil in the environment could have positive implications for human health worldwide and is the subject of this review. PMID:19742157

  12. Hierarchical Helical Order in the Twisted Growth of Plant Organs

    NASA Astrophysics Data System (ADS)

    Wada, Hirofumi

    2012-09-01

    The molecular and cellular basis of left-right asymmetry in plant morphogenesis is a fundamental issue in biology. A rapidly elongating root or hypocotyl of twisting mutants of Arabidopsis thaliana exhibits a helical growth with a handedness opposite to that of the underlying cortical microtubule arrays in epidermal cells. However, how such a hierarchical helical order emerges is currently unknown. We propose a model for investigating macroscopic chiral asymmetry in Arabidopsis mutants. Our elastic model suggests that the helical pattern observed is a direct consequence of the simultaneous presence of anisotropic growth and tilting of cortical microtubule arrays. We predict that the root helical pitch angle is a function of the microtubule helical angle and elastic moduli of the tissues. The proposed model is versatile and is potentially important for other biological systems ranging from protein fibrous structures to tree trunks.

  13. 11. AERIAL VIEW OF CROSSCUT FACILITY, LOOKING NORTH. THE HYDRO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. AERIAL VIEW OF CROSSCUT FACILITY, LOOKING NORTH. THE HYDRO PLANT CENTER SITS ON THE EDGE OF RAVINE WHICH IS ACTUALLY THE BEGINNING OF THE GRAND CANAL. THE CROSS-CUT STEAM PLANT IS THE LARGE WHITE BUILDING JUST WEST OF THE HYDRO PLANT, WITH THE TRANSMISSION SWITCHYARD IN BETWEEN. THE OTHER BUILDINGS ARE SALT RIVER PROJECT FABRICATION AND EQUIPMENT SHOPS Photographer unknown, August 22, 1958 - Cross Cut Hydro Plant, North Side of Salt River, Tempe, Maricopa County, AZ

  14. 4. AERIAL VIEW, LOOKING SOUTHSOUTHWEST, OF BUILDING 371 GROUND FLOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. AERIAL VIEW, LOOKING SOUTH-SOUTHWEST, OF BUILDING 371 GROUND FLOOR UNDER CONSTRUCTION. THE GROUND FLOOR, WHICH CONTAINS THE MAJORITY OF THE PLUTONIUM RECOVERY PROCESSING EQUIPMENT, IS DIVIDED INTO COMPARTMENTS BY FIREWALLS, AIRLOCKS, AND USE OF NEGATIVE AIR PRESSURE. (1/7/75) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  15. AERIAL VIEW OF BUILDING 460, LOOKING NORTHEAST. THE BUILDING WAS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL VIEW OF BUILDING 460, LOOKING NORTHEAST. THE BUILDING WAS CONSTRUCTED TO CONSOLIDATE ALL NON-NUCLEAR MANUFACTURING AT THE ROCKY FLATS PLANT INTO ONE FACILITY. (6/13/85) - Rocky Flats Plant, Stainless Steel & Non-Nuclear Components Manufacturing, Southeast corner of intersection of Cottonwood & Third Avenues, Golden, Jefferson County, CO

  16. AERIAL VIEW OF BUILDING 991, LOOKING WEST. BUILDING 991 WAS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL VIEW OF BUILDING 991, LOOKING WEST. BUILDING 991 WAS DESIGNED FOR SHIPPING AND RECEIVING AND FOR FINAL ASSEMBLY OF WEAPON COMPONENTS. (6/26/91) - Rocky Flats Plant, Final Assembly & Shipping, Eastern portion of plant site, south of Spruce Avenue, east of Tenth Street & north of Central Avenue, Golden, Jefferson County, CO

  17. Organic farming and landscape structure: effects on insect-pollinated plant diversity in intensively managed grasslands.

    PubMed

    Power, Eileen F; Kelly, Daniel L; Stout, Jane C

    2012-01-01

    Parallel declines in insect-pollinated plants and their pollinators have been reported as a result of agricultural intensification. Intensive arable plant communities have previously been shown to contain higher proportions of self-pollinated plants compared to natural or semi-natural plant communities. Though intensive grasslands are widespread, it is not known whether they show similar patterns to arable systems nor whether local and/or landscape factors are influential. We investigated plant community composition in 10 pairs of organic and conventional dairy farms across Ireland in relation to the local and landscape context. Relationships between plant groups and local factors (farming system, position in field and soil parameters) and landscape factors (e.g. landscape complexity) were investigated. The percentage cover of unimproved grassland was used as an inverse predictor of landscape complexity, as it was negatively correlated with habitat-type diversity. Intensive grasslands (organic and conventional) contained more insect-pollinated forbs than non-insect pollinated forbs. Organic field centres contained more insect-pollinated forbs than conventional field centres. Insect-pollinated forb richness in field edges (but not field centres) increased with increasing landscape complexity (% unimproved grassland) within 1, 3, 4 and 5km radii around sites, whereas non-insect pollinated forb richness was unrelated to landscape complexity. Pollination systems within intensive grassland communities may be different from those in arable systems. Our results indicate that organic management increases plant richness in field centres, but that landscape complexity exerts strong influences in both organic and conventional field edges. Insect-pollinated forb richness, unlike that for non-insect pollinated forbs, showed positive relationships to landscape complexity reflecting what has been documented for bees and other pollinators. The insect-pollinated forbs, their

  18. Organic Farming and Landscape Structure: Effects on Insect-Pollinated Plant Diversity in Intensively Managed Grasslands

    PubMed Central

    Power, Eileen F.; Kelly, Daniel L.; Stout, Jane C.

    2012-01-01

    Parallel declines in insect-pollinated plants and their pollinators have been reported as a result of agricultural intensification. Intensive arable plant communities have previously been shown to contain higher proportions of self-pollinated plants compared to natural or semi-natural plant communities. Though intensive grasslands are widespread, it is not known whether they show similar patterns to arable systems nor whether local and/or landscape factors are influential. We investigated plant community composition in 10 pairs of organic and conventional dairy farms across Ireland in relation to the local and landscape context. Relationships between plant groups and local factors (farming system, position in field and soil parameters) and landscape factors (e.g. landscape complexity) were investigated. The percentage cover of unimproved grassland was used as an inverse predictor of landscape complexity, as it was negatively correlated with habitat-type diversity. Intensive grasslands (organic and conventional) contained more insect-pollinated forbs than non-insect pollinated forbs. Organic field centres contained more insect-pollinated forbs than conventional field centres. Insect-pollinated forb richness in field edges (but not field centres) increased with increasing landscape complexity (% unimproved grassland) within 1, 3, 4 and 5km radii around sites, whereas non-insect pollinated forb richness was unrelated to landscape complexity. Pollination systems within intensive grassland communities may be different from those in arable systems. Our results indicate that organic management increases plant richness in field centres, but that landscape complexity exerts strong influences in both organic and conventional field edges. Insect-pollinated forb richness, unlike that for non-insect pollinated forbs, showed positive relationships to landscape complexity reflecting what has been documented for bees and other pollinators. The insect-pollinated forbs, their

  19. A novel model for estimating organic chemical bioconcentration in agricultural plants

    SciTech Connect

    Hung, H.; Mackay, D.; Di Guardo, A.

    1995-12-31

    There is increasing recognition that much human and wildlife exposure to organic contaminants can be traced through the food chain to bioconcentration in vegetation. For risk assessment, there is a need for an accurate model to predict organic chemical concentrations in plants. Existing models range from relatively simple correlations of concentrations using octanol-water or octanol-air partition coefficients, to complex models involving extensive physiological data. To satisfy the need for a relatively accurate model of intermediate complexity, a novel approach has been devised to predict organic chemical concentrations in agricultural plants as a function of soil and air concentrations, without the need for extensive plant physiological data. The plant is treated as three compartments, namely, leaves, roots and stems (including fruit and seeds). Data readily available from the literature, including chemical properties, volume, density and composition of each compartment; metabolic and growth rate of plant; and readily obtainable environmental conditions at the site are required as input. Results calculated from the model are compared with observed and experimentally-determined concentrations. It is suggested that the model, which includes a physiological database for agricultural plants, gives acceptably accurate predictions of chemical partitioning between plants, air and soil.

  20. Bioremediation of polluted soil through the combined application of plants, earthworms and organic matter.

    PubMed

    Macci, Cristina; Doni, Serena; Peruzzi, Eleonora; Ceccanti, Brunello; Masciandaro, Grazia

    2012-10-26

    Two plant species (Paulownia tomentosa and Cytisus scoparius), earthworms (Eisenia fetida), and organic matter (horse manure) were used as an ecological approach to bioremediate a soil historically contaminated by heavy metals and hydrocarbons. The experiment was carried out for six months at a mesoscale level using pots containing 90 kg of polluted soil. Three different treatments were performed for each plant: (i) untreated planted soil as a control (C); (ii) planted soil + horse manure (20:1 w/w) (M); (iii) planted soil + horse manure + 15 earthworms (ME). Both the plant species were able to grow in the polluted soil and to improve the soil's bio-chemical conditions, especially when organic matter and earthworms were applied. By comparing the two plant species, few significant differences were observed in the soil characteristics; Cytisus scoparius improved soil nutrient content more than Paulownia tomentosa, which instead stimulated more soil microbial metabolism. Regarding the pollutants, Paulownia tomentosa was more efficient in reducing the heavy metal (Pb, Cr, Cd, Zn, Cu, Ni) content, while earthworms were particularly able to stimulate the processes involved in the decontamination of organic pollutants (hydrocarbons). This ecological approach, validated at a mesoscale level, has recently been transferred to a real scale situation to carry out the bioremediation of polluted soil in San Giuliano Terme Municipality (Pisa, Italy).

  1. Assessing the effect of the time since transition to organic farming on plants and butterflies.

    PubMed

    Jonason, Dennis; Andersson, Georg K S; Ockinger, Erik; Rundlöf, Maj; Smith, Henrik G; Bengtsson, Jan

    2011-06-01

    1.Environmental changes may not always result in rapid changes in species distributions, abundances or diversity. In order to estimate the effects of, for example, land-use changes caused by agri-environment schemes (AES) on biodiversity and ecosystem services, information on the time-lag between the application of the scheme and the responses of organisms is essential.2.We examined the effects of time since transition (TST) to organic farming on plant species richness and butterfly species richness and abundance. Surveys were conducted in cereal fields and adjacent field margins on 60 farms, 20 conventional and 40 organic, in two regions in Sweden. The organic farms were transferred from conventional management between 1 and 25 years before the survey took place. The farms were selected along a gradient of landscape complexity, indicated by the proportion of arable land, so that farms with similar TST were represented in all landscape types. Organism responses were assessed using model averaging.3.Plant and butterfly species richness was c.20% higher on organic farms and butterfly abundance was about 60% higher, compared with conventional farms. Time since transition affected butterfly abundance gradually over the 25-year period, resulting in a 100% increase. In contrast, no TST effect on plant or butterfly species richness was found, indicating that the main effect took place immediately after the transition to organic farming.4.Increasing landscape complexity had a positive effect on butterfly species richness, but not on butterfly abundance or plant species richness. There was no indication that the speed of response to organic farming was affected by landscape complexity.5.Synthesis and applications. The effect of organic farming on diversity was rapid for plant and butterfly species richness, whereas butterfly abundance increased gradually with time since transition. If time-lags in responses to AESs turn out to be common, long-term effects would need to be

  2. Modeling the effects of organic nitrogen uptake by plants on the carbon cycling of boreal ecosystems

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Zhuang, Q.

    2013-08-01

    Boreal forest and tundra are the major ecosystems in the northern high latitudes in which a large amount of carbon is stored. These ecosystems are nitrogen-limited due to slow mineralization rate of the soil organic nitrogen. Recently, abundant field studies have found that organic nitrogen is another important nitrogen supply for boreal ecosystems. In this study, we incorporated a mechanism that allowed boreal plants to uptake small molecular amino acids into a process-based biogeochemical model, the Terrestrial Ecosystem Model (TEM), to evaluate the impact of organic nitrogen uptake on ecosystem carbon cycling. The new version of the model was evaluated at both boreal forest and tundra sites. We found that the modeled organic nitrogen uptake accounted for 36-87% of total nitrogen uptake by plants in tundra ecosystems and 26-50% for boreal forests, suggesting that tundra ecosystem might have more relied on the organic form of nitrogen than boreal forests. The simulated monthly gross ecosystem production (GPP) and net ecosystem production (NEP) tended to be larger with the new version of the model since the plant uptake of organic nitrogen alleviated the soil nitrogen limitation especially during the growing season. The sensitivity study indicated that the most important factors controlling the plant uptake of organic nitrogen were the maximum root uptake rate (Imax) and the radius of the root (r0) in our model. The model uncertainty due to uncertain parameters associated with organic nitrogen uptake at tundra ecosystem was larger than at boreal forest ecosystems. This study suggests that considering the organic nitrogen uptake by plants is important to boreal ecosystem carbon modeling.

  3. The carbon bonus of organic nitrogen enhances nitrogen use efficiency of plants

    PubMed Central

    Cambui, Camila Aguetoni; Gruffman, Linda; Palmroth, Sari; Oren, Ram; Näsholm, Torgny

    2016-01-01

    Abstract The importance of organic nitrogen (N) for plant nutrition and productivity is increasingly being recognized. Here we show that it is not only the availability in the soil that matters, but also the effects on plant growth. The chemical form of N taken up, whether inorganic (such as nitrate) or organic (such as amino acids), may significantly influence plant shoot and root growth, and nitrogen use efficiency (NUE). We analysed these effects by synthesizing results from multiple laboratory experiments on small seedlings (Arabidopsis, poplar, pine and spruce) based on a tractable plant growth model. A key point is that the carbon cost of assimilating organic N into proteins is lower than that of inorganic N, mainly because of its carbon content. This carbon bonus makes it more beneficial for plants to take up organic than inorganic N, even when its availability to the roots is much lower – up to 70% lower for Arabidopsis seedlings. At equal growth rate, root:shoot ratio was up to three times higher and nitrogen productivity up to 20% higher for organic than inorganic N, which both are factors that may contribute to higher NUE in crop production. PMID:27241731

  4. Calcium and Calmodulin Localization in Gravitropically-responding Plant Organs

    NASA Technical Reports Server (NTRS)

    Roux, S. J.

    1985-01-01

    Antimonate staining procedures were used to detect calcium redistribution changes in corn roots. Results show that an asymmetric redistribution of Ca is induced by a gravitropic stimulus in roots as it is in shoots. Since this response occurs within 10 min, at least 5 min before any visible bending, it could play a role in the regulation of root gravitropism. Two different general approaches were used to localize calmodulin in plant tissue: radioimmunoassay of its content in tissue and in purified subcellular organelles, and immunocytochemical detection of it in roots and coleoptiles. Radioimmunoassay results indicate that calmodulin is present in large quantities in pllant cells and that it is specifically associated with mitochondria, etioplasts and nuclei. An assayed of an extract of soluble wall proteins revealed that over 1% of these proteins was calmodulin. Controls indicate that this calmodulin is not cytoplasmic in origin. A reaction product from anti-calmodulin was found mainly in the root cap cells, moderately in metazylem elements, in some cells in the stele surrounding metaxylem elements and in cortical cells.

  5. Efficient phytoremediation of organic contaminants in soils using plant-endophyte partnerships.

    PubMed

    Feng, Nai-Xian; Yu, Jiao; Zhao, Hai-Ming; Cheng, Yu-Ting; Mo, Ce-Hui; Cai, Quan-Ying; Li, Yan-Wen; Li, Hui; Wong, Ming-Hung

    2017-04-01

    Soil pollution with organic contaminants is one of the most intractable environmental problems today, posing serious threats to humans and the environment. Innovative strategies for remediating organic-contaminated soils are critically needed. Phytoremediation, based on the synergistic actions of plants and their associated microorganisms, has been recognized as a powerful in situ approach to soil remediation. Suitable combinations of plants and their associated endophytes can improve plant growth and enhance the biodegradation of organic contaminants in the rhizosphere and/or endosphere, dramatically expediting the removal of organic pollutants from soils. However, for phytoremediation to become a more widely accepted and predictable alternative, a thorough understanding of plant-endophyte interactions is needed. Many studies have recently been conducted on the mechanisms of endophyte-assisted phytoremediation of organic contaminants in soils. In this review, we highlight the superiority of organic pollutant-degrading endophytes for practical applications in phytoremediation, summarize alternative strategies for improving phytoremediation, discuss the fundamental mechanisms of endophyte-assisted phytoremediation, and present updated information regarding the advances, challenges, and new directions in the field of endophyte-assisted phytoremediation technology.

  6. De novo regeneration of Scrophularia yoshimurae Yamazaki (Scrophulariaceae) and quantitative analysis of harpagoside, an iridoid glucoside, formed in aerial and underground parts of in vitro propagated and wild plants by HPLC.

    PubMed

    Sagare, A P; Kuo, C L; Chueh, F S; Tsay, H S

    2001-11-01

    A protocol for de novo regeneration and rapid micropropagation of Scrophularia yoshimurae (Scrophulariaceae) has been developed. Multiple shoot development was achieved by culturing the shoot-tip, leaf-base, stem-node and stem-internode explants on Murashige and Skoog (MS) medium supplemented with 4.44 microM N6-benzyladenine (BA) and 1.07 microM alpha-naphthaleneacetic acid (NAA). Stem-node and shoot-tip explants showed the highest response (100%) followed by stem-internode (74.4%) and leaf-base (7.7%) explants. The shoots were multiplied by subculturing on the same medium used for shoot induction. Shoots were rooted on growth regulator-free MS basal medium and the plantlets were transplanted to soil and acclimatized in the growth chamber. The content of harpagoside, a quantitatively predominant iridoid glycoside, in different plant material was determined by high performance liquid chromatography (HPLC). The analysis revealed that the content of harpagoside in the aerial and underground parts of S. yoshimurae was significantly higher than the marketed crude drug (underground parts of Scrophularia ningpoensis).

  7. Organ-specific regulation of growth-defense tradeoffs by plants.

    PubMed

    Smakowska, Elwira; Kong, Jixiang; Busch, Wolfgang; Belkhadir, Youssef

    2016-02-01

    Plants grow while also defending themselves against phylogenetically unrelated pathogens. Because defense and growth are both costly programs, a plant's success in colonizing resource-scarce environments requires tradeoffs between the two. Here, we summarize efforts aimed at understanding how plants use iterative tradeoffs to modulate differential organ growth when defenses are elicited. First, we focus on shoots to illustrate how light, in conjunction with the growth hormone gibberellin (GA) and the defense hormone jasmonic acid (JA), act to finely regulate defense and growth programs in this organ. Second, we expand on the regulation of growth-defense trade-offs in the root, a less well-studied topic despite the critical role of this organ in acquiring resources in an environment deeply entrenched with disparate populations of microbes.

  8. New and bioactive natural products isolated from madagascar plants and marine organisms.

    PubMed

    Hou, Y; Harinantenaina, L

    2010-01-01

    Madagascar, the world's fourth biggest island has an unique biodiversity. The interest on the phytochemical investigation of Malagasy plants and marine natural products started from the isolation of the potent anti-cancerous bisindole alkaloids: vinblastine and vincristine. In this paper, works published in the last two decades (1991-2009) on 270 new natural products isolated from Madagascar higher plants, liverworts and marine organisms are reviewed. Several results on the bioassays of the isolated new natural products have been reported.

  9. Mechanisms of Heavy Metal Sequestration in Soils: Plant-Microbe Interactions and Organic Matter Aging

    SciTech Connect

    Teresa W.-M. Fan; Richard M. Higashi; David Crowley; Andrew N. Lane: Teresa A. Cassel; Peter G. Green

    2004-12-31

    For stabilization of heavy metals at contaminated sites, the three way interaction among soil organic matter (OM)-microbes-plants, and their effect on heavy metal binding is critically important for long-term sustainability, a factor that is poorly understood at the molecular level. Using a soil aging system, the humification of plant matter such as wheat straw was probed along with the effect on microbial community on soil from the former McClellan Air Force Base.

  10. Duration of emission of volatile organic compounds from mechanically damaged plant leaves.

    PubMed

    Smith, Lincoln; Beck, John J

    2015-09-01

    Classical biological control of invasive alien weeds depends on the use of arthropod herbivores that are sufficiently host specific to avoid risk of injuring nontarget plants. Host plant specificity is usually evaluated by using a combination of behavioral and developmental experiments under choice, no-choice and field conditions. Secondary plant compounds are likely to have an important influence on host plant specificity. However, relatively little is known about the volatile organic compounds (VOCs) that are emitted by target and nontarget plants, and how environmental conditions may affect their emission. Previous studies have shown that mechanical damage of leaves increases the composition and content of VOCs emitted. In this study we measured the VOC emissions of five species of plants in the subtribe Centaureinae (Asteraceae)--Carthamus tinctorius, Centaurea cineraria, Centaurea melitensis, Centaurea rothrockii, and Centaurea solstitialis--that have previously been used in host specificity experiments for a prospective biological control agent of yellow starthistle (C. solstitialis). Leaves of each plant were punctured with a needle and the VOCs were collected by solid-phase microextraction (SPME) periodically over 48 h and analyzed by GC-MS. A total of 49 compounds were detected. Damage caused an immediate increase of 200-600% in the composition of VOCs emitted from each plant species, and the amounts generally remained high for at least 48 h. The results indicate that a very unspecific mechanical damage can cause a prolonged change in the VOC profile of plants.

  11. Plant Growth Promotion by Volatile Organic Compounds Produced by Bacillus subtilis SYST2

    PubMed Central

    Tahir, Hafiz A. S.; Gu, Qin; Wu, Huijun; Raza, Waseem; Hanif, Alwina; Wu, Liming; Colman, Massawe V.; Gao, Xuewen

    2017-01-01

    Bacterial volatiles play a significant role in promoting plant growth by regulating the synthesis or metabolism of phytohormones. In vitro and growth chamber experiments were conducted to investigate the effect of volatile organic compounds (VOCs) produced by the plant growth promoting rhizobacterium Bacillus subtilis strain SYST2 on hormone regulation and growth promotion in tomato plants. We observed a significant increase in plant biomass under both experimental conditions; we observed an increase in photosynthesis and in the endogenous contents of gibberellin, auxin, and cytokinin, while a decrease in ethylene levels was noted. VOCs emitted by SYST2 were identified through gas chromatography-mass spectrometry analysis. Of 11 VOCs tested in glass jars containing plants in test tubes, only two, albuterol and 1,3-propanediole, were found to promote plant growth. Furthermore, tomato plants showed differential expression of genes involved in auxin (SlIAA1. SlIAA3), gibberellin (GA20ox-1), cytokinin (SlCKX1), expansin (Exp2, Exp9. Exp 18), and ethylene (ACO1) biosynthesis or metabolism in roots and leaves in response to B. subtilis SYST2 VOCs. Our findings suggest that SYST2-derived VOCs promote plant growth by triggering growth hormone activity, and provide new insights into the mechanism of plant growth promotion by bacterial VOCs. PMID:28223976

  12. Differential effect of plant lipids on membrane organization: specificities of phytosphingolipids and phytosterols.

    PubMed

    Grosjean, Kevin; Mongrand, Sébastien; Beney, Laurent; Simon-Plas, Françoise; Gerbeau-Pissot, Patricia

    2015-02-27

    The high diversity of the plant lipid mixture raises the question of their respective involvement in the definition of membrane organization. This is particularly the case for plant plasma membrane, which is enriched in specific lipids, such as free and conjugated forms of phytosterols and typical phytosphingolipids, such as glycosylinositolphosphoceramides. This question was here addressed extensively by characterizing the order level of membrane from vesicles prepared using various plant lipid mixtures and labeled with an environment-sensitive probe. Fluorescence spectroscopy experiments showed that among major phytosterols, campesterol exhibits a stronger ability than β-sitosterol and stigmasterol to order model membranes. Multispectral confocal microscopy, allowing spatial analysis of membrane organization, demonstrated accordingly the strong ability of campesterol to promote ordered domain formation and to organize their spatial distribution at the membrane surface. Conjugated sterol forms, alone and in synergy with free sterols, exhibit a striking ability to order membrane. Plant sphingolipids, particularly glycosylinositolphosphoceramides, enhanced the sterol-induced ordering effect, emphasizing the formation and increasing the size of sterol-dependent ordered domains. Altogether, our results support a differential involvement of free and conjugated phytosterols in the formation of ordered domains and suggest that the diversity of plant lipids, allowing various local combinations of lipid species, could be a major contributor to membrane organization in particular through the formation of sphingolipid-sterol interacting domains.

  13. Links between plant community composition, soil organic matter quality and microbial communities in contrasting tundra habitats.

    PubMed

    Eskelinen, Anu; Stark, Sari; Männistö, Minna

    2009-08-01

    Plant communities, soil organic matter and microbial communities are predicted to be interlinked and to exhibit concordant patterns along major environmental gradients. We investigated the relationships between plant functional type composition, soil organic matter quality and decomposer community composition, and how these are related to major environmental variation in non-acid and acid soils derived from calcareous versus siliceous bedrocks, respectively. We analysed vegetation, organic matter and microbial community compositions from five non-acidic and five acidic heath sites in alpine tundra in northern Europe. Sequential organic matter fractionation was used to characterize organic matter quality and phospholipid fatty acid analysis to detect major variation in decomposer communities. Non-acidic and acidic heaths differed substantially in vegetation composition, and these disparities were associated with congruent shifts in soil organic matter and microbial communities. A high proportion of forbs in the vegetation was positively associated with low C:N and high soluble N:phenolics ratios in soil organic matter, and a high proportion of bacteria in the microbial community. On the contrary, dwarf shrub-rich vegetation was associated with high C:N and low soluble N:phenolics ratios, and a high proportion of fungi in the microbial community. Our study demonstrates a strong link between the plant community composition, soil organic matter quality, and microbial community composition, and that differences in one compartment are paralleled by changes in others. Variation in the forb-shrub gradient of vegetation may largely dictate variations in the chemical quality of organic matter and decomposer communities in tundra ecosystems. Soil pH, through its direct and indirect effects on plant and microbial communities, seems to function as an ultimate environmental driver that gives rise to and amplifies the interactions between above- and belowground systems.

  14. Differing Organic Acid Exudation Pattern Explains Calcifuge and Acidifuge Behaviour of Plants

    PubMed Central

    Tyler, Germund; Ström, Lena

    1995-01-01

    Many vascular plant species are unable to colonize calcareous sites. Thus, the floristic composition of adjacent limestone and acid silicate soils differs greatly. The inability of calcifuge plants to establish in limestone sites seems related to a low capacity of such plants to solubilize and absorb Fe or phosphate from these soils. Until now, mechanisms regulating this differing ability of plants to colonize limestone sites have not been elucidated. We propose that contrasting exudation of low-molecular organic acids is a major mechanism involved and show that germinating seeds and young seedlings of limestone plants exude considerably more di- and tricarboxylic acids than calcifuges, which mainly exude monocarboxylic acids. The tricarboxylic citric acid is a powerful extractor of Fe, and the dicarboxylic oxalic acid a very effective extractor of phosphate from limestone soils. Monocarboxylic acids are very weak in these respects. The study is based on ten species from limestone soils and ten species from acid silicate soils. PMID:21247915

  15. Efficient CO2 Fixation Pathways: Energy Plant: High Efficiency Photosynthetic Organisms

    SciTech Connect

    2012-01-01

    PETRO Project: UCLA is redesigning the carbon fixation pathways of plants to make them more efficient at capturing the energy in sunlight. Carbon fixation is the key process that plants use to convert carbon dioxide (CO2) from the atmosphere into higher energy molecules (such as sugars) using energy from the sun. UCLA is addressing the inefficiency of the process through an alternative biochemical pathway that uses 50% less energy than the pathway used by all land plants. In addition, instead of producing sugars, UCLA’s designer pathway will produce pyruvate, the precursor of choice for a wide variety of liquid fuels. Theoretically, the new biochemical pathway will allow a plant to capture 200% as much CO2 using the same amount of light. The pathways will first be tested on model photosynthetic organisms and later incorporated into other plants, thus dramatically improving the productivity of both food and fuel crops.

  16. Anaerobic digestion of organic waste in Japan: the first demonstration plant at Kyoto City.

    PubMed

    Komatsu, T; Kimura, T; Kuriyama, Y; Isshiki, Y; Kawano, T; Hirao, T; Masuda, M; Yokoyama, K; Matsumoto, T; Takeda, M

    2002-01-01

    Recycling of Municipal Solid Waste is vigorously promoted in Japan and the necessity of energy recovery from organic waste is increasing. An anaerobic digestion demonstration plant for organic waste in Kyoto City, Japan has been operated for about two years. Three kinds of wastes (garbage and leftovers from hotels, yard waste and used paper) mixed at various ratios are used. The plant has maintained stable operations with each mixture, generating biogas by the decomposition of VS at the rate of about 820 m3N/ton-VS.

  17. Aerial production, mortality, and mineral accumulation-export dynamics in Spartina alterniflora and Juncus roemerianus plant stands in a Georgia salt marsh

    SciTech Connect

    Gallagher, J.L.; Reimold, R.J.; Linthurst, R.A.; Pfeiffer, W.J.

    1980-04-01

    Biomass and disappearance of dead material were measured in stands of tall creek bank Spartina alterniflora, short high marsh S. alterniflora, and Juncus roemerianus in Georgia, USA at 4-wk intervals for 1 yr and at 8-wk intervals for a second yr. Growth and mortality were calculated from these data. Net primary production estimates, using changes in biomass only, ranged from 10 to 75% lower than estimates which included the disappearance of dead material. Agreement between the methods was closest when the interval between harvests was shortest and the rate of dead material disappearance the slowest. Estimates of mean annual net primary production, computed from changes in biomass and disappearance of dead plant material, were: creekbank S. alterniflora 3700 g/m/sup 2/, high marsh S. alterniflora 1300 g/m/sup 2/, and J. roemerianus 2200 g/m/sup 2/. The seasonal amplitude in the amount of N, P, K, Ca, and Mg in the living tissue was greatest in the creekbank S. alterniflora. The maximum accumulation of most elements was in late summer. In the tissue of S. alterniflora, N and P were highest in concentration in late winter and early spring. In summer, growth occurred faster than nutrient accumulation; therefore, tissue concentrations decreased. Seasonal patterns of element disappearance from the dead plant community showed that maximum export depended on community type and the element under consideration.

  18. Plants mediate soil organic matter decomposition in response to sea level rise.

    PubMed

    Mueller, Peter; Jensen, Kai; Megonigal, James Patrick

    2016-01-01

    Tidal marshes have a large capacity for producing and storing organic matter, making their role in the global carbon budget disproportionate to land area. Most of the organic matter stored in these systems is in soils where it contributes 2-5 times more to surface accretion than an equal mass of minerals. Soil organic matter (SOM) sequestration is the primary process by which tidal marshes become perched high in the tidal frame, decreasing their vulnerability to accelerated relative sea level rise (RSLR). Plant growth responses to RSLR are well understood and represented in century-scale forecast models of soil surface elevation change. We understand far less about the response of SOM decomposition to accelerated RSLR. Here we quantified the effects of flooding depth and duration on SOM decomposition by exposing planted and unplanted field-based mesocosms to experimentally manipulated relative sea level over two consecutive growing seasons. SOM decomposition was quantified as CO2 efflux, with plant- and SOM-derived CO2 separated via δ(13) CO2 . Despite the dominant paradigm that decomposition rates are inversely related to flooding, SOM decomposition in the absence of plants was not sensitive to flooding depth and duration. The presence of plants had a dramatic effect on SOM decomposition, increasing SOM-derived CO2 flux by up to 267% and 125% (in 2012 and 2013, respectively) compared to unplanted controls in the two growing seasons. Furthermore, plant stimulation of SOM decomposition was strongly and positively related to plant biomass and in particular aboveground biomass. We conclude that SOM decomposition rates are not directly driven by relative sea level and its effect on oxygen diffusion through soil, but indirectly by plant responses to relative sea level. If this result applies more generally to tidal wetlands, it has important implications for models of SOM accumulation and surface elevation change in response to accelerated RSLR.

  19. Comparing removal of trace organic compounds and assimilable organic carbon (AOC) at advanced and traditional water treatment plants.

    PubMed

    Lou, Jie-Chung; Lin, Chung-Yi; Han, Jia-Yun; Tseng, Wei-Biu; Hsu, Kai-Lin; Chang, Ting-Wei

    2012-06-01

    Stability of drinking water can be indicated by the assimilable organic carbon (AOC). This AOC value represents the regrowth capacity of microorganisms and has large impacts on the quality of drinking water in a distribution system. With respect to the effectiveness of traditional and advanced processing methods in removing trace organic compounds (including TOC, DOC, UV(254), and AOC) from water, experimental results indicate that the removal rate of AOC at the Cheng Ching Lake water treatment plant (which utilizes advanced water treatment processes, and is hereinafter referred to as CCLWTP) is 54%, while the removal rate of AOC at the Gong Yuan water treatment plant (which uses traditional water treatment processes, and is hereinafter referred to as GYWTP) is 36%. In advanced water treatment units, new coagulation-sedimentation processes, rapid filters, and biological activated carbon filters can effectively remove AOC, total organic carbon (TOC), and dissolved organic carbon (DOC). In traditional water treatment units, coagulation-sedimentation processes are most effective in removing AOC. Simulation results and calculations made using the AutoNet method indicate that TOC, TDS, NH(3)-N, and NO(3)-N should be regularly monitored in the CCLWTP, and that TOC, temperature, and NH(3)-N should be regularly monitored in the GYWTP.

  20. Partition coefficient of cadmium between organic soils and bean and oat plants

    SciTech Connect

    Siddqui, M.F.R.; Courchesne, F.; Kennedy, G.; Zayed, J.

    1995-12-31

    Environmental fate models require the partition coefficient data of contaminants among two or more environmental compartments. The bioaccumulation of cadmium (Cd) by bean and oat plants grown on organic soils in a controlled growth chamber was investigated to validate the plant/soil partition coefficient. Total Cd was measured in the soils and in the different parts of the plants. The mean total Cd concentrations for soil cultivated with beans and oats were 0.86 and 0.69 {micro}g/g, respectively. Selective extractants (BaCl{sub 2}, Na-pyrophosphate and HNO{sub 3}-hydroxy) were used to evaluate solid phase Cd species in the soil. In the soil cultivated with bean, BaCl{sub 2} exchangeable, Na-pyrophosphate extractable and HNO{sub 3}-NH{sub 2}OH extractable Cd represented 1.2, 1.6 and 50.9% of total soil Cd, respectively. For the soil cultivated with oats, the same extractants gave values of 1.1, 1.8 and 61.9%. Cd concentration levels in bean plants followed the sequence roots > fruits = stems > leaves (p < 0.01) while the following sequence was observed for oat plants: roots > fruits > stems > leaves (p < 0.05). The partition coefficient for total Cd (Cd{sub Plant tissue}/Cd{sub Soil}) was in the range of 0.28--0.55 for bean plants and 1.03--1.86 for oat plants.

  1. Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds.

    PubMed

    Park, Yong-Soon; Dutta, Swarnalee; Ann, Mina; Raaijmakers, Jos M; Park, Kyungseok

    2015-05-29

    Volatile organic compounds (VOCs) from plant growth-promoting rhizobacteria (PGPR) play key roles in modulating plant growth and induced systemic resistance (ISR) to pathogens. Despite their significance, the physiological functions of the specific VOCs produced by Pseudomonas fluorescens SS101 (Pf.SS101) have not been precisely elucidated. The effects of Pf.SS101 and its VOCs on augmentation of plant growth promotion were investigated in vitro and in planta. A significant growth promotion was observed in plants exposed Pf.SS101 under both conditions, suggesting that its VOCs play a key role in promoting plant growth. Solid-phase micro-extraction (SPME) and a gas chromatography-mass spectrophotometer (GC-MS) system were used to characterize the VOCs emitted by Pf.SS101 and 11 different compounds were detected in samples inoculated this bacterium, including 13-Tetradecadien-1-ol, 2-butanone and 2-Methyl-n-1-tridecene. Application of these compounds resulted in enhanced plant growth. This study suggests that Pf.SS101 promotes the growth of plants via the release of VOCs including 13-Tetradecadien-1-ol, 2-butanone and 2-Methyl-n-1-tridecene, thus increasing understanding of the role of VOCs in plant-bacterial inter-communication.

  2. Defense Science Board Study on Unmanned Aerial Vehicles and Uninhabited Combat Aerial Vehicles

    DTIC Science & Technology

    2004-02-01

    Defense Science Board Study on Unmanned Aerial Vehicles and Uninhabited Combat Aerial Vehicles February 2004 Office...COVERED - 4. TITLE AND SUBTITLE Defense Science Board Study on Unmanned Aerial Vehicles and Uninhabited Combat Aerial Vehicles 5a. CONTRACT...the Defense Science Board Task Force on Unmanned Aerial Vehicles and Uninhabited Combat Aerial Vehicles I am pleased to forward the final report of

  3. Microtubule dynamics of the centrosome-like polar organizers from the basal land plant Marchantia polymorpha.

    PubMed

    Buschmann, Henrik; Holtmannspötter, Michael; Borchers, Agnes; O'Donoghue, Martin-Timothy; Zachgo, Sabine

    2016-02-01

    The liverwort Marchantia employs both modern and ancestral devices during cell division: it forms preprophase bands and in addition it shows centrosome-like polar organizers. We investigated whether polar organizers and preprophase bands cooperate to set up the division plane. To this end, two novel green fluorescent protein-based microtubule markers for dividing cells of Marchantia were developed. Cells of the apical notch formed polar organizers first and subsequently assembled preprophase bands. Polar organizers were formed de novo from multiple mobile microtubule foci localizing to the nuclear envelope. The foci then became concentrated by bipolar aggregation. We determined the comet production rate of polar organizers and show that microtubule plus ends of astral microtubules polymerize faster than those found on cortical microtubules. Importantly, it was observed that conditions increasing polar organizer numbers interfere with preprophase band formation. The data show that polar organizers have much in common with centrosomes, but that they also have specialized features. The results suggest that polar organizers contribute to preprophase band formation and in this way are involved in controlling the division plane. Our analyses of the basal land plant Marchantia shed new light on the evolution of plant cell division.

  4. Plant roots alter microbial potential for mediation of soil organic carbon decomposition

    NASA Astrophysics Data System (ADS)

    Firestone, M.; Shi, S.; Herman, D.; He, Z.; Zhou, J.

    2014-12-01

    Plant root regulation of soil organic carbon (SOC) decomposition is a key controller of terrestrial C-cycling. Although many studies have tested possible mechanisms underlying plant "priming" of decomposition, few have investigated the microbial mediators of decomposition, which can be greatly influenced by plant activities. Here we examined effects of Avena fatua roots on decomposition of 13C-labeled root litter in a California grassland soil over two simulated growing-seasons. The presence of plant roots consistently suppressed rates of litter decomposition. Reduction of inorganic nitrogen (N) concentration in soil reduced but did not completely relieve this suppressive effect. The presence of plants significantly altered the abundance, composition and functional potential of microbial communities. Significantly higher signal intensities of genes capable of degrading low molecular weight organic compounds (e.g., glucose, formate and malate) were observed in microbial communities from planted soils, while microorganisms in unplanted soils had higher relative abundances of genes involved in degradation of some macromolecules (e.g., hemicellulose and lignin). Additionally, compared to unplanted soils, microbial communities from planted soils had higher signal intensities of proV and proW, suggesting microbial osmotic stress in planted soils. Possible mechanisms for the observed inhibition of decomposition are 1) microbes preferentially using simple substrates from root exudates and 2) soil drying by plant evapotranspiration impairing microbial activity. We propose a simple data-based model suggesting that the impacts of roots, the soil environment, and microbial community composition on decomposition processes result from impacts of these factors on the soil microbial functional gene potential.

  5. Functional analysis of a reproductive organ predominant expressing promoter in cotton plants.

    PubMed

    Ren, Maozhi; Chen, Quanjia; Li, Li; Zhang, Rui; Guo, Sandui

    2005-10-01

    Transgenic Bt insect-resistant cotton plants have high insect resistance in the early stage of development, but relatively low resistance in the late stage. Substituting a reproductive organ-specific promoter for the CaMV35S promoter presently being used could be an ideal solution. For the first time, the promoter sequence of ADP-ribosylation factor 1 (arf1) gene was isolated from Gossypium hirsutumY18 by means of inverse PCR. The sequencing result discovered the unique structure of the arf1 promoter, including four promoter-specific elements, the initiator, TATA box, CAAT box and GC box, and also an intron in 5'-untranslation region. Four plant expression vectors were constructed for functional analysis of the promoter. Based on the pBl121 plant expression vector, four truncated arf1 promoters took the place of the CaMV35S promoter. These vectors were different only in their promoter regions. They were introduced into cotton plants via pollen tube pathway. Histochemical GUS staining and fluorescence quantitative analyses were performed to examine the expression patterns of the GUS gene driven by the 4 arf1 truncated promoters in transgenic cotton plants respectively. The results showed that the arf1 promoter was a typical reproductive organ-specific promoter. Hopefully, the arf1 promoter can be a regulatory element for designing cotton reproductive organs with desired characteristics.

  6. Riverine Dissolved Organic Matter Degradation Modeled Through Microbial Incubations of Vascular Plant Leachates

    NASA Astrophysics Data System (ADS)

    Harfmann, J.; Hernes, P.; Chuang, C. Y.

    2015-12-01

    Dissolved organic matter (DOM) contains as much carbon as is in the atmosphere, provides the main link between terrestrial and marine carbon reservoirs, and fuels the microbial food web. The fate and removal of DOM is a result of several complex conditions and processes, including photodegradation, sorption/desorption, dominant vascular plant sources, and microbial abundance. In order to better constrain factors affecting microbial degradation, laboratory incubations were performed using Sacramento River water for microbial inoculums and vascular plant leachates. Four vascular plant sources were chosen based on their dominance in the Sacramento River Valley: gymnosperm needles from Pinus sabiniana (foothill pine), angiosperm dicot leaves from Quercus douglassi (blue oak), angiosperm monocot mixed annual grasses, and angiosperm monocot mixed Schoenoplectus acutus (tule) and Typha spp. (cattails). Three concentrations of microbial inoculum were used for each plant material, ranging from 0.2% to 10%. Degradation was monitored as a function of time using dissolved organic carbon (DOC), UV-Vis absorbance, and fluorescent dissolved organic matter (fDOM), and was compared across vascular plant type and inoculum concentration.

  7. The DOE ARM Aerial Facility

    SciTech Connect

    Schmid, Beat; Tomlinson, Jason M.; Hubbe, John M.; Comstock, Jennifer M.; Mei, Fan; Chand, Duli; Pekour, Mikhail S.; Kluzek, Celine D.; Andrews, Elisabeth; Biraud, S.; McFarquhar, Greg

    2014-05-01

    The Department of Energy Atmospheric Radiation Measurement (ARM) Program is a climate research user facility operating stationary ground sites that provide long-term measurements of climate relevant properties, mobile ground- and ship-based facilities to conduct shorter field campaigns (6-12 months), and the ARM Aerial Facility (AAF). The airborne observations acquired by the AAF enhance the surface-based ARM measurements by providing high-resolution in-situ measurements for process understanding, retrieval-algorithm development, and model evaluation that are not possible using ground- or satellite-based techniques. Several ARM aerial efforts were consolidated into the AAF in 2006. With the exception of a small aircraft used for routine measurements of aerosols and carbon cycle gases, AAF at the time had no dedicated aircraft and only a small number of instruments at its disposal. In this "virtual hangar" mode, AAF successfully carried out several missions contracting with organizations and investigators who provided their research aircraft and instrumentation. In 2009, AAF started managing operations of the Battelle-owned Gulfstream I (G-1) large twin-turboprop research aircraft. Furthermore, the American Recovery and Reinvestment Act of 2009 provided funding for the procurement of over twenty new instruments to be used aboard the G-1 and other AAF virtual-hangar aircraft. AAF now executes missions in the virtual- and real-hangar mode producing freely available datasets for studying aerosol, cloud, and radiative processes in the atmosphere. AAF is also engaged in the maturation and testing of newly developed airborne sensors to help foster the next generation of airborne instruments.

  8. A domain-centric analysis of oomycete plant pathogen genomes reveals unique protein organization.

    PubMed

    Seidl, Michael F; Van den Ackerveken, Guido; Govers, Francine; Snel, Berend

    2011-02-01

    Oomycetes comprise a diverse group of organisms that morphologically resemble fungi but belong to the stramenopile lineage within the supergroup of chromalveolates. Recent studies have shown that plant pathogenic oomycetes have expanded gene families that are possibly linked to their pathogenic lifestyle. We analyzed the protein domain organization of 67 eukaryotic species including four oomycete and five fungal plant pathogens. We detected 246 expanded domains in fungal and oomycete plant pathogens. The analysis of genes differentially expressed during infection revealed a significant enrichment of genes encoding expanded domains as well as signal peptides linking a substantial part of these genes to pathogenicity. Overrepresentation and clustering of domain abundance profiles revealed domains that might have important roles in host-pathogen interactions but, as yet, have not been linked to pathogenicity. The number of distinct domain combinations (bigrams) in oomycetes was significantly higher than in fungi. We identified 773 oomycete-specific bigrams, with the majority composed of domains common to eukaryotes. The analyses enabled us to link domain content to biological processes such as host-pathogen interaction, nutrient uptake, or suppression and elicitation of plant immune responses. Taken together, this study represents a comprehensive overview of the domain repertoire of fungal and oomycete plant pathogens and points to novel features like domain expansion and species-specific bigram types that could, at least partially, explain why oomycetes are such remarkable plant pathogens.

  9. Genes and quantitative genetic variation involved with senescence in cells, organs, and the whole plant

    PubMed Central

    Pujol, Benoit

    2015-01-01

    Senescence, the deterioration of morphological, physiological, and reproductive functions with age that ends with the death of the organism, was widely studied in plants. Genes were identified that are linked to the deterioration of cells, organs and the whole plant. It is, however, unclear whether those genes are the source of age dependent deterioration or get activated to regulate such deterioration. Furthermore, it is also unclear whether such genes are active as a direct consequence of age or because they are specifically involved in some developmental stages. At the individual level, it is the relationship between quantitative genetic variation, and age that can be used to detect the genetic signature of senescence. Surprisingly, the latter approach was only scarcely applied to plants. This may be the consequence of the demanding requirements for such approaches and/or the fact that most research interest was directed toward plants that avoid senescence. Here, I review those aspects in turn and call for an integrative genetic theory of senescence in plants. Such conceptual development would have implications for the management of plant genetic resources and generate progress on fundamental questions raised by aging research. PMID:25755664

  10. Integrating plant litter quality, soil organic matter stablilization, and the carbon saturation concept

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent research suggests labile plant litters promote the stabilization of soil organic matter (SOM) in physico-chemically protected fractions with relatively slow turnover. However, the effect of litter quality on SOM stabilization is inconsistent. Labile, ‘high quality’ litters characterized by hi...

  11. Tillage and planting date effects on weed dormancy, emergence, and early growth in organic corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed management is a major constraint to adoption of reduced-tillage practices for organic grain production. Tillage, cover crop management, and crop planting date are all factors that influence the periodicity and growth potential of important weed species in these systems. Therefore, we assessed...

  12. CHARACTERIZATION OF MERCURY EMISSIONS AT A CHLOR-ALKALI PLANT: STUDY ORGANIZATION AND IMPLEMENTATION

    EPA Science Inventory

    The paper describes the organization and implementation of a detailed emissions measurement campaign conducted over a 2-week period at the Olin Corporation's mercury chlor-alkali plant in Augusta, GA. (NOTE: Since data analysis is continuing, study results will be provided later...

  13. Weed management practices for organic production of trailing blackberry. I. Plant growth and early fruit production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed management practices were evaluated in a new field of trailing blackberry established in western Oregon. The field was planted in May 2010 and certified organic in May 2012. Treatments included two cultivars, ‘Marion’ and ‘Black Diamond’, grown in 1) non-weeded plots, where weeds were cut to th...

  14. Book Review: "The Rhizosphere: Biochemistry and Organic Substances at the Soil-Plant Interface, Second Edition"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complexity of the biological, chemical, and physical interactions occurring in the volume of soil surrounding the root of a growing plant dictates that a multidisciplinary approach must be taken to improve our understanding of this rhizosphere. Hence, "The Rhizosphere: Biochemistry and Organic S...

  15. DIFFERENTIATION IN N15 UPTAKE AND THE ORGANIZATION OF AN ARCTIC TUNDRA PLANT COMMUNITY

    EPA Science Inventory

    We used N15 soil-labeling techniques to examine how the dominant species in a N-limited, tussock tundra plant community partitioned soil N, and how such partitioning may contribute to community organization. The five most abundant species were well differentiated with respect to...

  16. Determination of the Fate of Dissolved Organic Nitrogen in the Three Wastewater Treatment Plants, Jordan

    ERIC Educational Resources Information Center

    Wedyan, Mohammed; Al Harahsheh, Ahmed; Qnaisb, Esam

    2016-01-01

    This research aimed to assess the composition of total dissolved nitrogen (TDN) species, particularly dissolved organic nitrogen (DON), over the traditional wastewater treatment operations in three biological nutrient removal (BNR) wastewater treatment plants (WWTPs) in Jordan. It had been found that the DON percentage was up to 30% of TDN within…

  17. Organic blueberry production systems: management of plant nutrition, irrigation requirements, and weeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A long-term systems trial was established to evaluate management practices for organic production of northern highbush blueberry (Vaccinium corymbosum L.). The factorial experiment included two planting bed treatments (flat and raised beds), source and rate of fertilizer (feather meal and fish emuls...

  18. Organic blueberry production systems: management of plant nutrition, irrigation requirements, and weeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A long-term systems trial was established to evaluate factorial management practices for organic production of highbush blueberry. The practices include: flat and raised planting beds; feather meal and fish emulsion fertilizer applied at 29 and 57 kg/ha N; sawdust mulch, compost topped with sawdust ...

  19. Tightly-Coupled Plant-Soil Nitrogen Cycling: Comparison of Organic Farms across an Agricultural Landscape.

    PubMed

    Bowles, Timothy M; Hollander, Allan D; Steenwerth, Kerri; Jackson, Louise E

    2015-01-01

    How farming systems supply sufficient nitrogen (N) for high yields but with reduced N losses is a central challenge for reducing the tradeoffs often associated with N cycling in agriculture. Variability in soil organic matter and management of organic farms across an agricultural landscape may yield insights for improving N cycling and for evaluating novel indicators of N availability. We assessed yields, plant-soil N cycling, and root expression of N metabolism genes across a representative set of organic fields growing Roma-type tomatoes (Solanum lycopersicum L.) in an intensively-managed agricultural landscape in California, USA. The fields spanned a three-fold range of soil carbon (C) and N but had similar soil types, texture, and pH. Organic tomato yields ranged from 22.9 to 120.1 Mg ha-1 with a mean similar to the county average (86.1 Mg ha-1), which included mostly conventionally-grown tomatoes. Substantial variability in soil inorganic N concentrations, tomato N, and root gene expression indicated a range of possible tradeoffs between yields and potential for N losses across the fields. Fields showing evidence of tightly-coupled plant-soil N cycling, a desirable scenario in which high crop yields are supported by adequate N availability but low potential for N loss, had the highest total and labile soil C and N and received organic matter inputs with a range of N availability. In these fields, elevated expression of a key gene involved in root N assimilation, cytosolic glutamine synthetase GS1, confirmed that plant N assimilation was high even when inorganic N pools were low. Thus tightly-coupled N cycling occurred on several working organic farms. Novel combinations of N cycling indicators (i.e. inorganic N along with soil microbial activity and root gene expression for N assimilation) would support adaptive management for improved N cycling on organic as well as conventional farms, especially when plant-soil N cycling is rapid.

  20. Plant-derived compounds stimulate the decomposition of organic matter in arctic permafrost soils

    NASA Astrophysics Data System (ADS)

    Wild, Birgit; Gentsch, Norman; Čapek, Petr; Diáková, Kateřina; Alves, Ricardo J. Eloy; Bárta, Jiři; Gittel, Antje; Hugelius, Gustaf; Knoltsch, Anna; Kuhry, Peter; Lashchinskiy, Nikolay; Mikutta, Robert; Palmtag, Juri; Schleper, Christa; Schnecker, Jörg; Shibistova, Olga; Takriti, Mounir; Torsvik, Vigdis L.; Urich, Tim; Watzka, Margarete; Šantrůčková, Hana; Guggenberger, Georg; Richter, Andreas

    2016-05-01

    Arctic ecosystems are warming rapidly, which is expected to promote soil organic matter (SOM) decomposition. In addition to the direct warming effect, decomposition can also be indirectly stimulated via increased plant productivity and plant-soil C allocation, and this so called “priming effect” might significantly alter the ecosystem C balance. In this study, we provide first mechanistic insights into the susceptibility of SOM decomposition in arctic permafrost soils to priming. By comparing 119 soils from four locations across the Siberian Arctic that cover all horizons of active layer and upper permafrost, we found that an increased availability of plant-derived organic C particularly stimulated decomposition in subsoil horizons where most of the arctic soil carbon is located. Considering the 1,035 Pg of arctic soil carbon, such an additional stimulation of decomposition beyond the direct temperature effect can accelerate net ecosystem C losses, and amplify the positive feedback to global warming.

  1. Plant-derived compounds stimulate the decomposition of organic matter in arctic permafrost soils

    PubMed Central

    Wild, Birgit; Gentsch, Norman; Čapek, Petr; Diáková, Kateřina; Alves, Ricardo J. Eloy; Bárta, Jiři; Gittel, Antje; Hugelius, Gustaf; Knoltsch, Anna; Kuhry, Peter; Lashchinskiy, Nikolay; Mikutta, Robert; Palmtag, Juri; Schleper, Christa; Schnecker, Jörg; Shibistova, Olga; Takriti, Mounir; Torsvik, Vigdis L.; Urich, Tim; Watzka, Margarete; Šantrůčková, Hana; Guggenberger, Georg; Richter, Andreas

    2016-01-01

    Arctic ecosystems are warming rapidly, which is expected to promote soil organic matter (SOM) decomposition. In addition to the direct warming effect, decomposition can also be indirectly stimulated via increased plant productivity and plant-soil C allocation, and this so called “priming effect” might significantly alter the ecosystem C balance. In this study, we provide first mechanistic insights into the susceptibility of SOM decomposition in arctic permafrost soils to priming. By comparing 119 soils from four locations across the Siberian Arctic that cover all horizons of active layer and upper permafrost, we found that an increased availability of plant-derived organic C particularly stimulated decomposition in subsoil horizons where most of the arctic soil carbon is located. Considering the 1,035 Pg of arctic soil carbon, such an additional stimulation of decomposition beyond the direct temperature effect can accelerate net ecosystem C losses, and amplify the positive feedback to global warming. PMID:27157964

  2. [Spatial distribution characteristics of organic carbon in the soil-plant systems in the Yellow River estuary tidal flat wetland].

    PubMed

    Dong, Hong-Fang; Yu, Jun-Bao; Sun, Zhi-Gao; Mu, Xiao-Jie; Chen, Xiao-Bing; Mao, Pei-Li; Wu, Chun-Fa; Guan, Bo

    2010-06-01

    Well-understand the organic carbon status in the Yellow River delta is the most important for studying the biogeochemical processes of the muddy-sandy coastal wetland and ecological restoration. The spatial distribution characteristics and its impact factors of organic carbon in the plant-soil systems of new-born tidal flat wetland in the Yellow River estuary were studied. The results showed that the difference of plant organic carbon content in different plant communities were not obvious, however significant difference of the plant organic carbon density was observed. Moreover, the M-shaped spatial distribution of the plant organic carbon density, which was similar to the plant biomass, was found in the study. The organic carbon contents in top soils were varied from 0.75 to 8.35 g x kg(-1), which was much lower than that in the typical freshwater marsh wetlands ecosystem. The spatial distribution trend of soil organic carbon density was similar to the soil organic carbon. The correlation analysis showed that soil organic carbon density was negatively correlated with pH, and positively correlated with TN, C/N and salinity. However, the correlations of plant organic carbon density with the soil organic carbon density, TN, C/N, pH and salinity were not significant.

  3. DOE/NNSA Aerial Measuring System (AMS): Flying the 'Real' Thing

    SciTech Connect

    Craig Lyons

    2011-06-24

    This slide show documents aerial radiation surveys over Japan. Map product is a compilation of daily aerial measuring system missions from the Fukushima Daiichi power plant to 80 km radius. In addition, other flights were conducted over US military bases and the US embassy.

  4. 2. AERIAL VIEW OF MINUTEMAN SILOS. Low oblique aerial view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. AERIAL VIEW OF MINUTEMAN SILOS. Low oblique aerial view (original in color) of the two launch silos, covered. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Missile Silo Type, Test Area 1-100, northeast end of Test Area 1-100 Road, Boron, Kern County, CA

  5. Aerial Video Imaging

    NASA Technical Reports Server (NTRS)

    1991-01-01

    When Michael Henry wanted to start an aerial video service, he turned to Johnson Space Center for assistance. Two NASA engineers - one had designed and developed TV systems in Apollo, Skylab, Apollo- Soyuz and Space Shuttle programs - designed a wing-mounted fiberglass camera pod. Camera head and angles are adjustable, and the pod is shaped to reduce vibration. The controls are located so a solo pilot can operate the system. A microprocessor displays latitude, longitude, and bearing, and a GPS receiver provides position data for possible legal references. The service has been successfully utilized by railroads, oil companies, real estate companies, etc.

  6. Representativity of mosses as biomonitor organisms for the accumulation of environmental chemicals in plants and soils

    SciTech Connect

    Thomas, W.

    1986-06-01

    The suitability of mosses for air pollution monitoring of benzohexachloride isomers and polyaromatic hydrocarbons is shown by residue data of different samples from Europe. The interpretation of the results makes it obvious that next to regional pattern analysis, hypotheses for atmospheric transport and deposition processes of different environmental chemicals can also be formed. An evaluation of these kinds of bioindicator methods is presented by a quantitative comparison of air pollution data and accumulated residues in plants. The results indicate a high retention efficiency of mosses for pollutants dominantly adsorbed to particulate matter in the air, like polyaromatic hydrocarbons and heavy metals. The comparison of residue data of trace pollutants in mosses and other plants underlines the indicator functions of lower plants for air monitoring patterns with the exception of chlorinated hydrocarbons. They are more effective enriched by coniferous plants which contain ingredients able to absorb and transport these groups of environmental pollutants in the organism.

  7. Imaging Nuclear Morphology and Organization in Cleared Plant Tissues Treated with Cell Cycle Inhibitors.

    PubMed

    de Souza Junior, José Dijair Antonino; de Sa, Maria Fatima Grossi; Engler, Gilbert; Engler, Janice de Almeida

    2016-01-01

    Synchronization of root cells through chemical treatment can generate a large number of cells blocked in specific cell cycle phases. In plants, this approach can be employed for cell suspension cultures and plant seedlings. To identify plant cells in the course of the cell cycle, especially during mitosis in meristematic tissues, chemical inhibitors can be used to block cell cycle progression. Herein, we present a simplified and easy-to-apply protocol to visualize mitotic figures, nuclei morphology, and organization in whole Arabidopsis root apexes. The procedure is based on tissue clearing, and fluorescent staining of nuclear DNA with DAPI. The protocol allows carrying out bulk analysis of nuclei and cell cycle phases in root cells and will be valuable to investigate mutants like overexpressing lines of genes disturbing the plant cell cycle.

  8. Smelling global climate change: mitigation of function for plant volatile organic compounds.

    PubMed

    Yuan, Joshua S; Himanen, Sari J; Holopainen, Jarmo K; Chen, Feng; Stewart, C Neal

    2009-06-01

    Plant volatile organic compounds (VOCs) have important roles in plant adaptation to the environment and serve as infochemicals in multitrophic interactions. Global climate change factors, such as increased atmospheric carbon dioxide, ozone and temperature, could alter how insects perceive such compounds. Here we review recent research on the influence of climate change parameters on the ecological functions of VOCs, with specific focus on terpenoids, the best-characterized VOCs. We summarize how emission patterns and concentrations of VOCs could change in future environments, mainly from the perspectives of plant defense and stress responses. We discuss how higher carbon dioxide concentrations, elevated ozone levels and increased temperatures could affect the biological functions of VOCs, particularly their role in plant defense.

  9. The lateral organ boundaries gene defines a novel, plant-specific gene family.

    PubMed

    Shuai, Bin; Reynaga-Peña, Cristina G; Springer, Patricia S

    2002-06-01

    The LATERAL ORGAN BOUNDARIES (LOB) gene in Arabidopsis defines a new conserved protein domain. LOB is expressed in a band of cells at the adaxial base of all lateral organs formed from the shoot apical meristem and at the base of lateral roots. LOB encodes a predicted protein that does not have recognizable functional motifs, but that contains a conserved domain (the LOB domain) that is present in 42 other Arabidopsis proteins and in proteins from a variety of other plant species. Proteins showing similarity to the LOB domain were not found outside of plant databases, indicating that this unique protein may play a role in plant-specific processes. Genes encoding LOB domain proteins are expressed in a variety of temporal- and tissue-specific patterns, suggesting that they may function in diverse processes. Loss-of-function LOB mutants have no detectable phenotype under standard growth conditions, suggesting that LOB is functionally redundant or required during growth under specific environmental conditions. Ectopic expression of LOB leads to alterations in the size and shape of leaves and floral organs and causes male and female sterility. The expression of LOB at the base of lateral organs suggests a potential role for LOB in lateral organ development.

  10. Chemical characteristics of organic aerosols in Algiers city area: influence of a fat manufacture plant

    NASA Astrophysics Data System (ADS)

    Yassaa, Noureddine; Meklati, Brahim Youcef; Cecinato, Angelo

    Total concentrations and homologue distributions of organic fraction constituents have been determined in particulate matter emitted from different units of a fat manufacturer (i.e. oils refining and conditioning plants, and production and conditioning units of a soap industry) located in Algiers area, as well as in atmospheric aerosols. In particular n-alkanes, n-alkanoic and n-alkenoic acids, n-alkan-2-ones and polycyclic aromatic hydrocarbons (PAH) were investigated. Organic aerosol contents varied broadly among the plant units, depending upon nature of the manufactured products. The percent composition of all classes of compounds investigated in ambient atmosphere was similar to those observed indoor at industrial plant units. Organic acids, n-alkanoic as well as n-alkenoic, appeared by far the most abundant organic constituents of aerosols, both indoor and outdoor, ranging from 7.7 to 19.8 and from 12.7 to 17.1 μg m -3, respectively. The huge occurrence of acids and n-alkanes in ambient aerosols was consistent with their high levels present in oil and fat materials. Among minor components of aerosols, n-alkan-2-ones and PAH, seemed to be related to thermally induced ageing and direct combustion of raw organic material used for oil and soap production.

  11. The brighter side of soils: quantum dots track organic nitrogen through fungi and plants.

    PubMed

    Whiteside, Matthew D; Treseder, Kathleen K; Atsatt, Peter R

    2009-01-01

    Soil microorganisms mediate many nutrient transformations that are central in terrestrial cycling of carbon and nitrogen. However, uptake of organic nutrients by microorganisms is difficult to study in natural systems. We assessed quantum dots (fluorescent nanoscale semiconductors) as a new tool to observe uptake and translocation of organic nitrogen by fungi and plants. We conjugated quantum dots to the amino groups of glycine, arginine, and chitosan and incubated them with Penicillium fungi (a saprotroph) and annual bluegrass (Poa annua) inoculated with arbuscular mycorrhizal fungi. As experimental controls, we incubated fungi and bluegrass samples with substrate-free quantum dots as well as unbound quantum dot substrate mixtures. Penicillium fungi, annual bluegrass, and arbuscular mycorrhizal fungi all showed uptake and translocation of quantum dot-labeled organic nitrogen, but no uptake of quantum dot controls. Additionally, we observed quantum dot-labeled organic nitrogen within soil hyphae, plant roots, and plant shoots using field imaging techniques. This experiment is one of the first to demonstrate direct uptake of organic nitrogen by arbuscular mycorrhizal fungi.

  12. Mobilization and plant accumulation of prometryne in soil by two different sources of organic matter.

    PubMed

    Jiang, Lei; Ma, Li; Sui, Ying; Han, Su Qing; Yang, Hong

    2011-07-01

    Prometryne is a selective herbicide of the s-triazine chemical family. Due to its weak absorption onto soil, it readily leaches down through the soil and contaminates underground water. Application of organic manure to soil has become a widespread practice as a disposal strategy to improve soil properties. In this study, we demonstrated the effect of pig manure compost (PMC) and lake-bed sludge (SL) on the sorption/desorption, mobility and bioavailability of prometryne in soil using comprehensive analysis approaches. Downward movement of prometryne was monitored in the packed soil column. Addition of PMC or SL decreased considerably the mobility and total concentration of prometryne in the soil leachate. Bioavailability analyses with wheat plants revealed that addition of the organic matter reduced accumulation of prometryne in tissues and increased plant elongation and biomass. These results indicate that the organic amendments are effective in modifying adsorption and mobility of the pesticide in soil.

  13. A New Organic Dye-Based Staining for The Detection of Plant DNA in Agarose Gels.

    PubMed

    Sönmezoğlu, Özlem Ateş; Özkay, Kerime

    2015-01-01

    Ethidium bromide (EtBr) is used to stain DNA in agarose gel electrophoresis, but this dye is mutagenic and carcinogenic. We investigated N-719, which is a visible, reliable and organic Ruthenium-based dye, and five fluorescent alternatives for staining plant DNA. For prestaining and poststaining, N-719, GelRed, and SYBR Safe stained both DNA and PCR product bands as clearly as EtBr. SYBR Green I, methylene blue, and crystal violet were effective for poststaining only. The organic dye N-719 stained DNA bands as sensitively and as clearly as EtBr. Consequently, organic dyes can be used as alternatives to EtBr in plant biotechnology studies.

  14. Phytoremediation of uranium-contaminated soils: Role of organic acids in triggering uranium hyperaccumulation in plants

    SciTech Connect

    Huang, J.W.; Blaylock, M.J.; Kapulnik, Y.; Ensley, B.D.

    1998-07-01

    Uranium phytoextraction, the use of plants to extract U from contaminated soils, is an emerging technology. The authors report on the development of this technology for the cleanup of U-contaminated soils. In this research, they investigated the effects of various soil amendments on U desorption from soil to soil solution, studied the physiological characteristics of U uptake and accumulation in plants, and developed techniques to trigger U hyperaccumulation in plants. A key to the success of U phytoextraction is to increase soil U availability to plants. The authors have found that some organic acids can be added to soils to increase U desorption from soil to soil solution and to trigger a rapid U accumulation in plants. Of the organic acids (acetic acid, citric acid, and malic acid) tested, citric acid was the most effective in enhancing U accumulation in plants. Shoot U concentrations of Brassica juncea and Brassica chinensis grown in a U-contaminated soil increased from less than 5 mg kg{sup {minus}1} to more than 5,000 mg kg{sup {minus}1} in citric acid-treated soils. To their knowledge, this is the highest shoot U concentration reported for plants grown on U-contaminated soils. Using this U hyperaccumulation technique, they are now able to increase U accumulation in shoots of selected plant species grown in two U-contaminated soils by more than 1,000-fold within a few days. The results suggest that U phytoextraction may provide an environmentally friendly alternative for the cleanup of U-contaminated soils.

  15. Overview of organic amendments for management of plant-parasitic nematodes, with case studies from Florida.

    PubMed

    McSorley, Robert

    2011-06-01

    Organic amendments have been widely used for management of plant-parasitic nematodes. Relatively rapid declines in nematode population levels may occur when decomposing materials release toxic compounds, while longer-term effects might include increases in nematode antagonists. Improved crop nutrition and plant growth following amendment use may lead to tolerance of plant-parasitic nematodes. Results depend on a great variety of factors such as material used, processing/composting of material, application rate, test arena, crop rotation and agronomic practices, soil type, climate, and other environmental factors. Reasons for variable performance and interpretation of results from amendment studies are discussed. Case studies of amendments for nematode management are reviewed from Florida, where composts and crop residues are the most frequently used amendments. Plant growth was often improved by amendment application, free-living nematodes (especially bacterivores) were often stimulated, but suppression of plant-parasitic nematodes was inconsistent. Amendments were generally not as effective as soil fumigation with methyl bromide for managing root-knot nematodes (Meloidogyne spp.), and often population levels or galling of root-knot nematodes in amended plots did not differ from those in non-amended control plots. While amendments may improve plant growth and stimulate soil food webs, additional study and testing are needed before they could be used reliably for management of plant-parasitic nematodes under Florida conditions.

  16. Microextraction techniques for the determination of volatile and semivolatile organic compounds from plants: a review.

    PubMed

    Yang, Cui; Wang, Juan; Li, Donghao

    2013-10-17

    Vegetables and fruits are necessary for human health, and traditional Chinese medicine that uses plant materials can cure diseases. Thus, understanding the composition of plant matrix has gained increased attention in recent years. Since plant matrix is very complex, the extraction, separation and quantitation of these chemicals are challenging. In this review we focus on the microextraction techniques used in the determination of volatile and semivolatile organic compounds (such as esters, alcohols, aldehydes, hydrocarbons, ketones, terpenes, sesquiterpene, phenols, acids, plant secondary metabolites and pesticides) from plants (e.g., fruits, vegetables, medicinal plants, tree leaves, etc.). These microextraction techniques include: solid phase microextraction (SPME), stir-bar sorptive extraction (SBSE), single drop microextraction (SDME), hollow fiber liquid phase microextraction (HF-LPME), dispersive liquid liquid microextraction (DLLME), and gas purge microsyringe extraction (GP-MSE). We have taken into consideration papers published from 2008 to the end of January 2013, and provided critical and interpretative review on these techniques, and formulated future trends in microextraction for the determination of volatile and semivolatile compounds from plants.

  17. Overview of Organic Amendments for Management of Plant-Parasitic Nematodes, with Case Studies from Florida

    PubMed Central

    2011-01-01

    Organic amendments have been widely used for management of plant-parasitic nematodes. Relatively rapid declines in nematode population levels may occur when decomposing materials release toxic compounds, while longer-term effects might include increases in nematode antagonists. Improved crop nutrition and plant growth following amendment use may lead to tolerance of plant-parasitic nematodes. Results depend on a great variety of factors such as material used, processing/composting of material, application rate, test arena, crop rotation and agronomic practices, soil type, climate, and other environmental factors. Reasons for variable performance and interpretation of results from amendment studies are discussed. Case studies of amendments for nematode management are reviewed from Florida, where composts and crop residues are the most frequently used amendments. Plant growth was often improved by amendment application, free-living nematodes (especially bacterivores) were often stimulated, but suppression of plant-parasitic nematodes was inconsistent. Amendments were generally not as effective as soil fumigation with methyl bromide for managing root-knot nematodes (Meloidogyne spp.), and often population levels or galling of root-knot nematodes in amended plots did not differ from those in non-amended control plots. While amendments may improve plant growth and stimulate soil food webs, additional study and testing are needed before they could be used reliably for management of plant-parasitic nematodes under Florida conditions. PMID:22791915

  18. Unpredicted impacts of insect endosymbionts on interactions between soil organisms, plants and aphids

    PubMed Central

    Hackett, Sean C.; Karley, Alison J.; Bennett, Alison E.

    2013-01-01

    Ecologically significant symbiotic associations are frequently studied in isolation, but such studies of two-way interactions cannot always predict the responses of organisms in a community setting. To explore this issue, we adopt a community approach to examine the role of plant–microbial and insect–microbial symbioses in modulating a plant–herbivore interaction. Potato plants were grown under glass in controlled conditions and subjected to feeding from the potato aphid Macrosiphum euphorbiae. By comparing plant growth in sterile, uncultivated and cultivated soils and the performance of M. euphorbiae clones with and without the facultative endosymbiont Hamiltonella defensa, we provide evidence for complex indirect interactions between insect– and plant–microbial systems. Plant biomass responded positively to the live soil treatments, on average increasing by 15% relative to sterile soil, while aphid feeding produced shifts (increases in stem biomass and reductions in stolon biomass) in plant resource allocation irrespective of soil treatment. Aphid fecundity also responded to soil treatment with aphids on sterile soil exhibiting higher fecundities than those in the uncultivated treatment. The relative allocation of biomass to roots was reduced in the presence of aphids harbouring H. defensa compared with plants inoculated with H. defensa-free aphids and aphid-free control plants. This study provides evidence for the potential of plant and insect symbionts to shift the dynamics of plant–herbivore interactions. PMID:23926148

  19. Climatic and geomorphic drivers of plant organic matter transport in the Arun River, E Nepal

    NASA Astrophysics Data System (ADS)

    Hoffmann, Bernd; Feakins, Sarah J.; Bookhagen, Bodo; Olen, Stephanie M.; Adhikari, Danda P.; Mainali, Janardan; Sachse, Dirk

    2016-10-01

    Fixation of atmospheric CO2 in terrestrial vegetation, and subsequent export and deposition of terrestrial plant organic matter in marine sediments is an important component of the global carbon cycle, yet it is difficult to quantify. This is partly due to the lack of understanding of relevant processes and mechanisms responsible for organic-matter transport throughout a landscape. Here we present a new approach to identify terrestrial plant organic matter source areas, quantify contributions and ascertain the role of ecologic, climatic, and geomorphic controls on plant wax export in the Arun River catchment spanning the world's largest elevation gradient from 205 to 8848 m asl, in eastern Nepal. Our approach takes advantage of the distinct stable hydrogen isotopic composition (expressed as δD values) of plant wax n-alkanes produced along this gradient, transported in river waters and deposited in flood deposits alongside the Arun River and its tributaries. In mainstem-flood deposits, we found that plant wax n-alkanes were mostly derived from the lower elevations constituting only a small fraction (15%) of the catchment. Informed by remote sensing data, we tested four differently weighted isotopic mixing models that quantify sourcing of tributary plant-derived organic matter along the Arun and compare it to our field observations. The weighting parameters included catchment area, net primary productivity (NPP) and annual rainfall amount as well as catchment relief as erosion proxy. When weighted by catchment area the isotopic mixing model could not explain field observations on plant wax δD values along the Arun, which is not surprising because the large arid Tibetan Plateau is not expected to be a major source. Weighting areal contributions by annual rainfall and NPP captured field observations within model prediction errors suggesting that plant productivity may influence source strength. However weighting by a combination of rainfall and catchment relief also

  20. Organic farming benefits local plant diversity in vineyard farms located in intensive agricultural landscapes.

    PubMed

    Nascimbene, Juri; Marini, Lorenzo; Paoletti, Maurizio G

    2012-05-01

    The majority of research on organic farming has considered arable and grassland farming systems in Central and Northern Europe, whilst only a few studies have been carried out in Mediterranean agro-systems, such as vineyards, despite their economic importance. The main aim of the study was to test whether organic farming enhances local plant species richness in both crop and non-crop areas of vineyard farms located in intensive conventional landscapes. Nine conventional and nine organic farms were selected in an intensively cultivated region (i.e. no gradient in landscape composition) in northern Italy. In each farm, vascular plants were sampled in one vineyard and in two non-crop linear habitats, grass strips and hedgerows, adjacent to vineyards and therefore potentially influenced by farming. We used linear mixed models to test the effect of farming, and species longevity (annual vs. perennial) separately for the three habitat types. In our intensive agricultural landscapes organic farming promoted local plant species richness in vineyard fields, and grassland strips while we found no effect for linear hedgerows. Differences in species richness were not associated to differences in species composition, indicating that similar plant communities were hosted in vineyard farms independently of the management type. This negative effect of conventional farming was probably due to the use of herbicides, while mechanical operations and mowing regime did not differ between organic and conventional farms. In grassland strips, and only marginally in vineyards, we found that the positive effect of organic farming was more pronounced for perennial than annual species.

  1. Effects of light intensity light quality and air velocity on temperature in plant reproductive organs

    NASA Astrophysics Data System (ADS)

    Kitaya, Y.; Hirai, H.

    Excess temperature increase in plant reproductive organs such as anthers and stigmata could cause fertility impediments and thus produce sterile seeds under artificial lighting conditions in closed plant growth facilities There is a possibility that the aberration was caused by an excess increase in temperatures of reproductive organs in Bioregenerative Life Support Systems under microgravity conditions in space The fundamental study was conducted to know the thermal situation of the plant reproductive organs as affected by light intensity light quality and air velocity on the earth and to estimate the excess temperature increase in the reproductive organs in closed plant growth facilities in space Thermal images of reproductive organs of rice and strawberry were captured using infrared thermography at an air temperature of 10 r C The temperatures in flowers at 300 mu mol m -2 s -1 PPFD under the lights from red LEDs white LEDs blue LEDs fluorescent lamps and incandescent lamps increased by 1 4 1 7 1 9 6 0 and 25 3 r C respectively for rice and by 2 8 3 4 4 1 7 8 and 43 4 r C respectively for strawberry The flower temperatures increased with increasing PPFD levels The temperatures in petals anthers and stigmas of strawberry at 300 mu mol m -2 s -1 PPFD under incandescent lamps increased by 32 7 29 0 and 26 6 r C respectively at 0 1 m s -1 air velocity and by 20 6 18 5 and 15 9 r C respectively at 0 8 m s -1 air velocity The temperatures of reproductive organs decreased with increasing

  2. Different effects of plant-derived dissolved organic matter (DOM) and urea on the priming of soil organic carbon.

    PubMed

    Qiu, Qingyan; Wu, Lanfang; Ouyang, Zhu; Li, Binbin; Xu, Yanyan

    2016-03-01

    Soil organic carbon (SOC) mineralization is important for the regulation of the global climate and soil fertility. Decomposition of SOC may be significantly affected by the supply of plant-derived labile carbon (C). To investigate the impact of plant-derived dissolved organic matter (DOM) and urea (N) additions on the decomposition of native SOC as well as to elucidate the underlying mechanisms of priming effects (PEs), a batch of incubation experiments was conducted for 250 days by application of (13)C-labeled plant-derived DOM and urea to soils. The direction of PE induced by the addition of DOM was different from the addition of N, i.e. it switched from negative to positive in DOM-amended soils, whereas in the N-treated soil it switched from positive to negative. Adding DOM alone was favorable for soil C sequestration (59 ± 5 mg C per kg soil), whereas adding N alone or together with DOM accelerated the decomposition of native SOC, causing net C losses (-62 ± 4 and -34 ± 31 mg C per kg soil, respectively). These findings indicate that N addition and its interaction with DOM are not favorable for soil C sequestration. Adding DOM alone increased the level of dissolved organic carbon (DOC), but it did not increase the level of soil mineral N. Changes in the ratio of microbial biomass carbon (MBC) to microbial biomass nitrogen (MBN) and microbial metabolic quotient (qCO2) after the addition of DOM and N suggest that a possible shift in the microbial community composition may occur in the present study. Adding DOM with or without N increased the activities of β-glucosidase and urease. Changes in the direction and magnitude of PE were closely related to changes in soil C and N availability. Soil C and N availability might influence the PE through affecting the microbial biomass and extracellular enzyme activity as well as causing a possible shift in the microbial community composition.

  3. Mask degradation monitoring with aerial mask inspector

    NASA Astrophysics Data System (ADS)

    Tseng, Wen-Jui; Fu, Yung-Ying; Lu, Shih-Ping; Jiang, Ming-Sian; Lin, Jeffrey; Wu, Clare; Lifschitz, Sivan; Tam, Aviram

    2013-06-01

    As design rule continues to shrink, microlithography is becoming more challenging and the photomasks need to comply with high scanner laser energy, low CDU, and ever more aggressive RETs. This give rise to numerous challenges in the semiconductor wafer fabrication plants. Some of these challenges being contamination (mainly haze and particles), mask pattern degradation (MoSi oxidation, chrome migration, etc.) and pellicle degradation. Fabs are constantly working to establish an efficient methodology to manage these challenges mainly using mask inspection, wafer inspection, SEM review and CD SEMs. Aerial technology offers a unique opportunity to address the above mask related challenges using one tool. The Applied Materials Aera3TM system has the inherent ability to inspect for defects (haze, particles, etc.), and track mask degradation (e.g. CDU). This paper focuses on haze monitoring, which is still a significant challenge in semiconductor manufacturing, and mask degradation effects that are starting to emerge as the next challenge for high volume semiconductor manufacturers. The paper describes Aerial inspector (Aera3) early haze methodology and mask degradation tracking related to high volume manufacturing. These will be demonstrated on memory products. At the end of the paper we take a brief look on subsequent work currently conducted on the more general issue of photo mask degradation monitoring by means of an Aerial inspector.

  4. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?

    PubMed

    Cotrufo, M Francesca; Wallenstein, Matthew D; Boot, Claudia M; Denef, Karolien; Paul, Eldor

    2013-04-01

    The decomposition and transformation of above- and below-ground plant detritus (litter) is the main process by which soil organic matter (SOM) is formed. Yet, research on litter decay and SOM formation has been largely uncoupled, failing to provide an effective nexus between these two fundamental processes for carbon (C) and nitrogen (N) cycling and storage. We present the current understanding of the importance of microbial substrate use efficiency and C and N allocation in controlling the proportion of plant-derived C and N that is incorporated into SOM, and of soil matrix interactions in controlling SOM stabilization. We synthesize this understanding into the Microbial Efficiency-Matrix Stabilization (MEMS) framework. This framework leads to the hypothesis that labile plant constituents are the dominant source of microbial products, relative to input rates, because they are utilized more efficiently by microbes. These microbial products of decomposition would thus become the main precursors of stable SOM by promoting aggregation and through strong chemical bonding to the mineral soil matrix.

  5. Soil organic matter decomposition follows plant productivity response to sea-level rise

    NASA Astrophysics Data System (ADS)

    Mueller, Peter; Jensen, Kai; Megonigal, James Patrick

    2015-04-01

    The accumulation of soil organic matter (SOM) is an important mechanism for many tidal wetlands to keep pace with sea-level rise. SOM accumulation is governed by the rates of production and decomposition of organic matter. While plant productivity responses to sea-level rise are well understood, far less is known about the response of SOM decomposition to accelerated sea-level rise. Here we quantified the effects of sea-level rise on SOM decomposition by exposing planted and unplanted tidal marsh monoliths to experimentally manipulated flood duration. The study was performed in a field-based mesocosm facility at the Smithsonian Global Change Research Wetland, a micro tidal brackish marsh in Maryland, US. SOM decomposition was quantified as CO2 efflux, with plant- and SOM-derived CO2 separated using a stable carbon isotope approach. Despite the dogma that decomposition rates are inversely related to flooding, SOM mineralization was not sensitive to varying flood duration over a 35 cm range in surface elevation in unplanted mesocoms. In the presence of plants, decomposition rates were strongly and positively related to aboveground biomass (p≤0.01, R2≥0.59). We conclude that rates of soil carbon loss through decomposition are driven by plant responses to sea level in this intensively studied tidal marsh. If our result applies more generally to tidal wetlands, it has important implications for modeling carbon sequestration and marsh accretion in response to accelerated sea-level rise.

  6. Uptake of airborne semivolatile organic compounds in agricultural plants: Field measurements of interspecies variability

    SciTech Connect

    Boehme, F.; Welsch-Pausch, K.; McLachlan, M.S.

    1999-06-01

    The accumulation of semivolatile organic compounds (SOCs) in plants is important because plants are the major vector of these compounds into terrestrial food chains and because plants play an important role in scavenging SOCs from the atmosphere and transferring them to the soil. Agricultural plants are of particular interest because they are a key link in the atmosphere-fodder-milk/beef food chain that accounts for much of background human exposure to persistent lipophilic organic pollutants such as PCBs and PCDD/Fs. In this study the accumulation of PCBs, PCDD/Fs, PAHs, and some chlorobenzenes was determined in eight grassland species as well as maize and sunflower leaves collected simultaneously at a semirural site in Central Europe. Air samples were collected at the same site during the growth of these plants, and the particle-bound and gaseous concentrations were determined. A newly developed interpretive framework was employed to analyze the data, and it was established whether the accumulation of a given compound was due primarily to equilibrium partitioning, kinetically limited gaseous deposition, or particle-bound deposition. The interspecies variability in uptake was then examined, and it was found that for those compounds which had accumulated primarily via kinetically limited gaseous deposition and particle-bound deposition the variation among the 10 species was generally a factor of <4.

  7. Plant growth response in experimental soilless mixes prepared from coal combustion products and organic waste materials

    SciTech Connect

    Bardhan, S.; Watson, M.; Dick, W.A.

    2008-07-15

    Large quantities of organic materials such as animal manures, yard trimmings, and biosolids are produced each year. Beneficial use options for them are often limited, and composting has been proposed as a way to better manage these organic materials. Similarly, burning of coal created 125 million tons of coal combustion products (CCP) in the United States in 2006. An estimated 53 million tons of CCP were reused, whereas the remainder was deposited in landfills. By combining CCP and composted organic materials (COM), we were able to create soilless plant growth mixes with physicochemical conditions that can support excellent plant growth. An additional benefit is the conservation of natural raw materials, such as peat, which is generally used for making soilless mixes. Experimental mixes were formulated by combining CCP and COM at ratios ranging from 2:8 to 8:2 (vol/vol), respectively. Water content at saturation for the created mixes was 63% to 72%, whereas for the commercial control, it was 77%. pH values for the best performing mixes ranged between 5.9 and 6.8. Electrical conductivity and concentrations of required plant nutrient were also within plant growth recommendations for container media. Significantly (P < 0.0001) higher plant biomass growth (7%-130%) was observed in the experimental mixes compared with a commercial mix. No additional fertilizers were provided during the experiment, and reduced fertilization costs can thus accrue as an added benefit to the grower. In summary, combining CCP and COM, derived from source materials often viewed as wastes, can create highly productive plant growth mixes.

  8. Leaf level emissions of volatile organic compounds (VOC) from some Amazonian and Mediterranean plants

    NASA Astrophysics Data System (ADS)

    Bracho-Nunez, A.; Knothe, N. M.; Welter, S.; Staudt, M.; Costa, W. R.; Liberato, M. A. R.; Piedade, M. T. F.; Kesselmeier, J.

    2012-11-01

    As volatile organic compounds (VOCs) significantly affect atmospheric chemistry (oxidative capacity) and physics (secondary organic aerosol formation and effects), emission inventories defining regional and global biogenic VOC emission strengths are important. The aim of this work was to achieve a description of VOC emissions from poorly described tropical vegetation to be compared with the quite well investigated and highly heterogeneous emissions from Mediterranean vegetation. For this task, common plant species of both ecosystems were investigated. Sixteen plant species from the Mediterranean area, which is known for its special diversity in VOC emitting plant species, were chosen. In contrast, little information is currently available regarding emissions of VOCs from tropical tree species at the leaf level. Twelve plant species from different environments of the Amazon basin, i.e. Terra firme, Várzea and Igapó, were screened for emission of VOCs at leaf level with a branch enclosure system. Analysis of the volatile organics was performed online by a proton-transfer-reaction mass spectrometer (PTR-MS) and offline by collection on adsorbent tubes and subsequent gas chromatographic analysis. Isoprene was quantitatively the most dominant compound emitted followed by monoterpenes, methanol and acetone. Most of the Mediterranean species emitted a variety of monoterpenes, whereas only five tropical species were monoterpene emitters exhibiting a quite conservative emission pattern (α-pinene > limonene > sabinene > β-pinene). Mediterranean plants showed additional emissions of sesquiterpenes, whereas in the case of plants from the Amazon region no sesquiterpenes were detected probably due to a lack of sensitivity in the measuring systems. On the other hand methanol emissions, an indicator of growth, were common in most of the tropical and Mediterranean species. A few species from both ecosystems showed acetone emissions. The observed heterogeneous emissions

  9. The influence of humic acids derived from earthworm-processed organic wastes on plant growth.

    PubMed

    Atiyeh, R M; Lee, S; Edwards, C A; Arancon, N Q; Metzger, J D

    2002-08-01

    Some effects of humic acids, formed during the breakdown of organic wastes by earthworms (vermicomposting), on plant growth were evaluated. In the first experiment, humic acids were extracted from pig manure vermicompost using the classic alkali/acid fractionation procedure and mixed with a soilless container medium (Metro-Mix 360), to provide a range of 0, 50, 100, 150, 200, 250, 500, 1,000, 2,000, and 4,000 mg of humate per kg of dry weight of container medium, and tomato seedlings were grown in the mixtures. In the second experiment, humates extracted from pig manure and food wastes vermicomposts were mixed with vermiculite to provide a range of 0, 50, 125, 250, 500, 1,000, and 4,000 mg of humate per kg of dry weight of the container medium, and cucumber seedlings were grown in the mixtures. Both tomato and cucumber seedlings were watered daily with a solution containing all nutrients required to ensure that any differences in growth responses were not nutrient-mediated. The incorporation of both types of vermicompost-derived humic acids, into either type of soilless plant growth media, increased the growth of tomato and cucumber plants significantly, in terms of plant heights, leaf areas, shoot and root dry weights. Plant growth increased with increasing concentrations of humic acids incorporated into the medium up to a certain proportion, but this differed according to the plant species, the source of the vermicompost, and the nature of the container medium. Plant growth tended to be increased by treatments of the plants with 50-500 mg/kg humic acids, but often decreased significantly when the concentrations of humic acids derived in the container medium exceeded 500-1,000 mg/kg. These growth responses were most probably due to hormone-like activity of humic acids from the vermicomposts or could have been due to plant growth hormones adsorbed onto the humates.

  10. Eukaryotic Components Remodeled Chloroplast Nucleoid Organization during the Green Plant Evolution

    PubMed Central

    Kobayashi, Yusuke; Takusagawa, Mari; Harada, Naomi; Fukao, Yoichiro; Yamaoka, Shohei; Kohchi, Takayuki; Hori, Koichi; Ohta, Hiroyuki; Shikanai, Toshiharu; Nishimura, Yoshiki

    2016-01-01

    Chloroplast (cp) DNA is thought to originate from the ancestral endosymbiont genome and is compacted to form nucleoprotein complexes, cp nucleoids. The structure of cp nucleoids is ubiquitously observed in diverse plants from unicellular algae to flowering plants and is believed to be a multifunctional platform for various processes, including cpDNA replication, repair/recombination, transcription, and inheritance. Despite its fundamental functions, the protein composition for cp nucleoids in flowering plants was suggested to be divergent from those of bacteria and algae, but the evolutionary process remains elusive. In this research, we aimed to reveal the evolutionary history of cp nucleoid organization by analyzing the key organisms representing the three evolutionary stages of eukaryotic phototrophs: the chlorophyte alga Chlamydomonas reinhardtii, the charophyte alga Klebsormidium flaccidum, and the most basal land plant Marchantia polymorpha. To clarify the core cp nucleoid proteins in C. reinhardtii, we performed an LC-MS/MS analysis using highly purified cp nucleoid fractions and identified a novel SAP domain-containing protein with a eukaryotic origin as a constitutive core component. Then, homologous genes for cp nucleoid proteins were searched for in C. reinhardtii, K. flaccidum, and M. polymorpha using the genome databases, and their intracellular localizations and DNA binding activities were investigated by cell biological/biochemical analyses. Based on these results, we propose a model that recurrent modification of cp nucleoid organization by eukaryotic factors originally related to chromatin organization might have been the driving force for the diversification of cp nucleoids since the early stage of green plant evolution. PMID:26608058

  11. Energy demand for elimination of organic micropollutants in municipal wastewater treatment plants.

    PubMed

    Mousel, Danièle; Palmowski, Laurence; Pinnekamp, Johannes

    2017-01-01

    Organic micropollutants (OMP), e.g. pharmaceuticals and household/industrial chemicals, are not fully eliminated in state-of-the-art municipal wastewater treatment plants and can potentially harm the aquatic environment. Therefore, several pilot and large-scale investigations on the elimination of organic micropollutants have taken place in recent years. Based on the present findings, the most efficient treatment steps to eliminate organic micropollutants have proven to be ozonation, adsorption on powdered activated carbon (PAC), or filtration through granular activated carbon (GAC). Yet a further treatment step implies an increase in energy demand of the wastewater treatment plant, which has to be considered along with OMP elimination. To this aim, data on energy demand of ten large-scale municipal wastewater treatment plants (WWTP) with processes for OMP elimination was collected and analyzed. Moreover, calculations on energy demand beyond the WWTP for production and transport of ancillary materials were performed to assess the cumulative energy demand of the processes. An assessment of the greenhouse gas emissions of the processes was achieved, which shall facilitate future life cycle analyses. The results show that energy demand of ozonation at the wastewater treatment plant is dependent upon the ozone dosage and is significantly higher than energy demand of PAC addition or GAC filtration (2 to 4 times higher without consideration of delivery heads). Despite uncertainties regarding the energy demand for production of activated carbon, it could be shown that the cumulative energy demand of adsorption steps is significantly higher than the energy demand at the WWTP. Using reactivated GAC can lead to energy and greenhouse gas emissions savings compared to using fresh GAC/PAC. Moreover, energy demand is always plant-specific and depends on different factors (delivery heads, existing filtration or post-treatment etc.). Since processes for elimination of organic

  12. The 3D reconstruction of greenhouse tomato plant based on real organ samples and parametric L-system

    NASA Astrophysics Data System (ADS)

    Xin, Longjiao; Xu, Lihong; Li, Dawei; Fu, Daichang

    2014-04-01

    In this paper, a fast and effective 3D reconstruction method for the growth of greenhouse tomato plant is proposed by using real organ samples and a parametric L-system. By analyzing the stereo structure of tomato plant, we extracts rules and parameters to assemble an L-system that is able to simulate the plant growth, and then the components of the L-system are translated into plant organ entities via image processing and computer graphics techniques. This method can efficiently and faithfully simulate the growing process of the greenhouse tomato plant.

  13. Computer-aided drafting and design (CAD) in the Plant Engineering organization at Sandia National Laboratories

    SciTech Connect

    Hall, J.T.; Knott, D.D.; Moore, M.B.

    1983-03-01

    The Plant Engineering organization at Sandia National Laboratories, Albuquerque (SNLA), has been working with a CAD system for approximately 2 1/2 yr, and finds itself at a crossroads. CAD has not been a panacea to workload problems to date, and Plant Engineering commissioned a study to try to determine why and to make recommendations to management on what steps might be taken in the future. Recommendations range from making the current system more productive to enhancing it significantly with newer and more powerful graphics technology.

  14. Thermal treatment and leaching of biochar alleviates plant growth inhibition from mobile organic compounds

    PubMed Central

    Sackett, Tara E.; Thomas, Sean C.

    2016-01-01

    Recent meta-analyses of plant responses to biochar boast positive average effects of between 10 and 40%. Plant responses, however, vary greatly across systems, and null or negative biochar effects are increasingly reported. The mechanisms responsible for such responses remain unclear. In a glasshouse experiment we tested the effects of three forestry residue wood biochars, applied at five dosages (0, 5, 10, 20, and 50 t/ha) to a temperate forest drystic cambisol as direct surface applications and as complete soil mixes on the herbaceous pioneers Lolium multiflorum and Trifolium repens. Null and negative effects of biochar on growth were found in most cases. One potential cause for null and negative plant responses to biochar is plant exposure to mobile compounds produced during pyrolysis that leach or evolve following additions of biochars to soil. In a second glasshouse experiment we examined the effects of simple leaching and heating techniques to ameliorate potentially phytotoxic effects of volatile and leachable compounds released from biochar. We used Solid Phase Microextraction (SPME)–gas chromatography–mass spectrometry (GC-MS) to qualitatively describe organic compounds in both biochar (through headspace extraction), and in the water leachates (through direct injection). Convection heating and water leaching of biochar prior to application alleviated growth inhibition. Additionally, growth was inhibited when filtrate from water-leached biochar was applied following germination. SPME-GC-MS detected primarily short-chained carboxylic acids and phenolics in both the leachates and solid chars, with relatively high concentrations of several known phytotoxic compounds including acetic acid, butyric acid, 2,4-di-tert-butylphenol and benzoic acid. We speculate that variable plant responses to phytotoxic organic compounds leached from biochars may largely explain negative plant growth responses and also account for strongly species-specific patterns of plant

  15. Thermal treatment and leaching of biochar alleviates plant growth inhibition from mobile organic compounds.

    PubMed

    Gale, Nigel V; Sackett, Tara E; Thomas, Sean C

    2016-01-01

    Recent meta-analyses of plant responses to biochar boast positive average effects of between 10 and 40%. Plant responses, however, vary greatly across systems, and null or negative biochar effects are increasingly reported. The mechanisms responsible for such responses remain unclear. In a glasshouse experiment we tested the effects of three forestry residue wood biochars, applied at five dosages (0, 5, 10, 20, and 50 t/ha) to a temperate forest drystic cambisol as direct surface applications and as complete soil mixes on the herbaceous pioneers Lolium multiflorum and Trifolium repens. Null and negative effects of biochar on growth were found in most cases. One potential cause for null and negative plant responses to biochar is plant exposure to mobile compounds produced during pyrolysis that leach or evolve following additions of biochars to soil. In a second glasshouse experiment we examined the effects of simple leaching and heating techniques to ameliorate potentially phytotoxic effects of volatile and leachable compounds released from biochar. We used Solid Phase Microextraction (SPME)-gas chromatography-mass spectrometry (GC-MS) to qualitatively describe organic compounds in both biochar (through headspace extraction), and in the water leachates (through direct injection). Convection heating and water leaching of biochar prior to application alleviated growth inhibition. Additionally, growth was inhibited when filtrate from water-leached biochar was applied following germination. SPME-GC-MS detected primarily short-chained carboxylic acids and phenolics in both the leachates and solid chars, with relatively high concentrations of several known phytotoxic compounds including acetic acid, butyric acid, 2,4-di-tert-butylphenol and benzoic acid. We speculate that variable plant responses to phytotoxic organic compounds leached from biochars may largely explain negative plant growth responses and also account for strongly species-specific patterns of plant

  16. Refuse derived soluble bio-organics enhancing tomato plant growth and productivity

    SciTech Connect

    Sortino, Orazio; Dipasquale, Mauro; Montoneri, Enzo; Tomasso, Lorenzo; Perrone, Daniele G.; Vindrola, Daniela; Negre, Michele; Piccone, Giuseppe

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Municipal bio-wastes are a sustainable source of bio-based products. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics promote chlorophyll synthesis. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics enhance plant growth and fruit ripening rate. Black-Right-Pointing-Pointer Sustainable chemistry exploiting urban refuse allows sustainable development. Black-Right-Pointing-Pointer Chemistry, agriculture and the environment benefit from biowaste technology. - Abstract: Municipal bio-refuse (CVD), containing kitchen wastes, home gardening residues and public park trimmings, was treated with alkali to yield a soluble bio-organic fraction (SBO) and an insoluble residue. These materials were characterized using elemental analysis, potentiometric titration, and 13C NMR spectroscopy, and then applied as organic fertilizers to soil for tomato greenhouse cultivation. Their performance was compared with a commercial product obtained from animal residues. Plant growth, fruit yield and quality, and soil and leaf chemical composition were the selected performance indicators. The SBO exhibited the best performance by enhancing leaf chlorophyll content, improving plant growth and fruit ripening rate and yield. No product performance-chemical composition relationship could be assessed. Solubility could be one reason for the superior performance of SBO as a tomato growth promoter. The enhancement of leaf chlorophyll content is discussed to identify a possible link with the SBO photosensitizing properties that have been demonstrated in other work, and thus with photosynthetic performance.

  17. Amino acid transporter mutants of Arabidopsis provides evidence that a non-mycorrhizal plant acquires organic nitrogen from agricultural soil.

    PubMed

    Ganeteg, Ulrika; Ahmad, Iftikhar; Jämtgård, Sandra; Aguetoni-Cambui, Camila; Inselsbacher, Erich; Svennerstam, Henrik; Schmidt, Susanne; Näsholm, Torgny

    2017-03-01

    Although organic nitrogen (N) compounds are ubiquitous in soil solutions, their potential role in plant N nutrition has been questioned. We performed a range of experiments on Arabidopsis thaliana genetically modified to enhance or reduce root uptake of amino acids. Plants lacking expression of the Lysine Histidine Transporter 1 (LHT1) displayed significantly lower contents of (13) C and (15) N label and of U-(13) C5 ,(15) N2 L-glutamine, as determined by liquid chromatography-mass spectrometry when growing in pots and supplied with dually labelled L-glutamine compared to wild type plants and LHT1-overexpressing plants. Slopes of regressions between accumulation of (13) C-labelled carbon and (15) N-labelled N were higher for LHT1-overexpressing plants than wild type plants, while plants lacking expression of LHT1 did not display a significant regression between the two isotopes. Uptake of labelled organic N from soil tallied with that of labelled ammonium for wild type plants and LHT1-overexpressing plants but was significantly lower for plants lacking expression of LHT1. When grown on agricultural soil plants lacking expression of LHT1 had the lowest, and plants overexpressing LHT1 the highest C/N ratios and natural δ(15) N abundance suggesting their dependence on different N pools. Our data show that LHT1 expression is crucial for plant uptake of organic N from soil.

  18. The plant cell wall integrity maintenance mechanism-concepts for organization and mode of action.

    PubMed

    Hamann, Thorsten

    2015-02-01

    One of the main differences between plant and animal cells are the walls surrounding plant cells providing structural support during development and protection like an adaptive armor against biotic and abiotic stress. During recent years it has become widely accepted that plant cells use a dedicated system to monitor and maintain the functional integrity of their walls. Maintenance of integrity is achieved by modifying the cell wall and cellular metabolism in order to permit tightly controlled changes in wall composition and structure. While a substantial amount of evidence supporting the existence of the mechanism has been reported, knowledge regarding its precise mode of action is still limited. The currently available evidence suggests similarities of the plant mechanism with respect to both design principles and molecular components involved to the very well characterized system active in the model organism Saccharomyces cerevisiae. There the system has been implicated in cell morphogenesis as well as response to abiotic stresses such as osmotic challenges. Here the currently available knowledge on the yeast system will be reviewed initially to provide a framework for the subsequent discussion of the plant cell wall integrity maintenance mechanism. The review will then end with a discussion on possible design principles for the cell wall integrity maintenance mechanism and the function of the plant turgor pressure in this context.

  19. Age matters: the effects of volatile organic compounds emitted by Trichoderma atroviride on plant growth.

    PubMed

    Lee, Samantha; Hung, Richard; Yap, Melanie; Bennett, Joan W

    2015-06-01

    Studying the effects of microbial volatile organic compounds (VOCs) on plant growth is challenging because the production of volatiles depends on many environmental factors. Adding to this complexity, the method of volatile exposure itself can lead to different responses in plants and may account for some of the contrasting results. In this work, we present an improved experimental design, a plate-within-a-plate method, to study the effects of VOCs produced by filamentous fungi. We demonstrate that the plant growth response to VOCs is dependent on the age of the plant and fungal cultures. Plants exposed to volatiles emitted by 5-day-old Trichoderma atroviride for 14 days exhibited inhibition, while plants exposed to other exposure conditions had growth promotion or no significant change. Using GC-MS, we compared fungal volatile emission of 5-day-old and 14-day-old T. atroviride. As the fungi aged, a few compounds were no longer detected, but 24 new compounds were discovered.

  20. Vascular Plant and Vertebrate Inventory of Organ Pipe Cactus National Monument

    USGS Publications Warehouse

    Schmidt, Cecilia A.; Powell, Brian F.; Halvorson, William L.

    2007-01-01

    Executive Summary We summarized inventory and monitoring efforts for plants and vertebrates at Organ Pipe Cactus National Monument (NM) in Arizona. We used data from previous research to compile complete species lists for the monument and to assess inventory completeness. There have been 1,031 species of plants and vertebrates observed at the monument. Most of the species on the list are documented by voucher specimens. There are 59 non-native species established in the monument: one mammal, three birds, and 55 non-native plants. Most non-native plant species were first recorded along roads. In each taxon-specific chapter, we highlight areas that contribute disproportionately to species richness or that have unique species for the monument. Of particular importance are Quitobaquito Springs and Pond, which are responsible for the monument having one of the highest number of bird species in the Sonoran Desert Network of parks. Quitobaquito also contains the only fish in the monument, the endangered Quitobaquito pupfish (Cyprinodon eremus). Other important resources for the plants and vertebrates include the xeroriparian washes (e.g., Alamo Canyon) and the Ajo Mountains. Based on the review of past studies, we believe the inventories of vascular plants and vertebrates are nearly complete and that the monument has one of the most complete inventories of any unit in the Sonoran Desert Network.

  1. In situ stimulation vs. bioaugmentation: Can microbial inoculation of plant roots enhance biodegradation of organic compounds?

    SciTech Connect

    Kingsley, M.T.; Metting, F.B. Jr.; Fredrickson, J.K.; Seidler, R.J.

    1993-06-01

    The use of plant roots and their associated rhizosphere bacteria for biocontainment and biorestoration offers several advantages for treating soil-dispersed contaminants and for application to large land areas. Plant roots function as effective delivery systems, since root growth transports bacteria vertically and laterally along the root in the soil column (see [ 1,2]). Movement of microbes along roots and downward in the soil column can be enhanced via irrigation [1-4]. For example, Ciafardini et al. [3] increased the nodulation and the final yield of soybeans during pod filling by including Bradyrhizobium japonicum in the irrigation water. Using rhizosphere microorganisms is advantageous for biodegradation of compounds that are degraded mainly by cometabolic processes, e.g., trichloroethylene (TCE). The energy source for bacterial growth and metabolism is supplied by the plant in the form of root exudates and other sloughed organic material. Plants are inexpensive, and by careful choice of species that possess either tap or fibrous root growth patterns, they can be used to influence mass transport of soil contaminants to the root surface via the transpiration stream [5]. Cropping of plants to remove heavy metals from contaminated soils has been proposed as a viable, low-cost, low-input treatment option [6]. The interest in use of plants as a remediation strategy has even reached the popular press [7], where the use of ragweed for the reclamation of sites contaminated with tetraethyl lead and other heavy metals was discussed.

  2. AERIAL OVERVIEW, LOOKING WEST TOWARD PRATT CITY, WITH EXTRACTION OPERATIONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL OVERVIEW, LOOKING WEST TOWARD PRATT CITY, WITH EXTRACTION OPERATIONS (BOTTOM LEFT AND CENTER), COKE BY-PRODUCT PLANT (CENTER), AND THE FORMER THOMAS FURNACE COMMUNITY, NOW THE THOMAS NATIONAL REGISTER HISTORIC DISTRICT (CENTER RIGHT). - Wade Sand & Gravel Company, AL 78, Thomas, Jefferson County, AL

  3. 47. CAPE COD AIR STATION PAVE PAWS FACILITY AERIAL VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. CAPE COD AIR STATION PAVE PAWS FACILITY AERIAL VIEW OF "A" FACE (LEFT) WITH CLEANING SYSTEM INSTALLED (NOW REMOVED) AND "B" FACE (RIGHT) WITH CONSTRUCTION CRANE IN USE. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  4. 26. Aerial photograph dated 20 June 1942, showing north end ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Aerial photograph dated 20 June 1942, showing north end of Gould Island from the southwest. At upper left is firing pier. Shop building and power plant under construction at center. Photo courtesy of Naval Undersea Warfare Center, Division Newport, Rhode Island. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  5. AERIAL VIEW OF MAIN PROCESSING BUILDING SHOWING CONSTRUCTION PROGRESS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL VIEW OF MAIN PROCESSING BUILDING SHOWING CONSTRUCTION PROGRESS AND EXCAVATION FOR LABORATORY ON LEFT. INL PHOTO NUMBER NRTS-51-1759. Unknown Photographer, 3/28/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  6. 24. Duplicate negative of an historic negative. 'AERIAL VIEW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Duplicate negative of an historic negative. 'AERIAL VIEW OF AREA 'B' HOLSTON ORDNANCE WORKS.' 1944. #OCMH 4-12.2ASAV3 in Super Explosives Program RDX and Its Composition A, B, & C, Record Group No. 319, National Archives, Washington, D.C. - Holston Army Ammunition Plant, RDX-and-Composition-B Manufacturing Line 9, Kingsport, Sullivan County, TN

  7. Factors affecting the isotopic composition of organic matter. (1) Carbon isotopic composition of terrestrial plant materials.

    PubMed

    Yeh, H W; Wang, W M

    2001-07-01

    The stable isotope composition of the light elements (i.e., H, C, N, O and S) of organic samples varies significantly and, for C, is also unique and distinct from that of inorganic carbon. This is the result of (1) the isotope composition of reactants, (2) the nature of the reactions leading to formation and post-formational modification of the samples, (3) the environmental conditions under which the reactions took place, and (4) the relative concentration of the reactants compared to that of the products (i.e., [products]/[reactants] ratio). This article will examine the carbon isotope composition of terrestrial plant materials and its relationship with the above factors. delta13C(PDB) values of terrestrial plants range approximately from -8 to -38%, inclusive of C3-plants (-22 to -38%), C4-plants (-8 to -15%) and CAM-plants (-13 to -30%). Thus, the delta13C(PDB) values largely reflect the photosynthesis pathways of a plant as well as the genetics (i.e., species difference), delta13C(PDB) values of source CO2, relevant humidity, CO2/O2 ratios, wind and light intensity etc. Significant variations in these values also exist among different tissues, different portions of a tissue and different compounds. This is mainly a consequence of metabolic reactions. Animals mainly inherit the delta13C(PDB) values of the foods they consume; therefore, their delta13C(PDB) values are similar. The delta13C(PDB) values of plant materials, thus, contain information regarding the inner workings of the plants, the environmental conditions under which they grow, the delta13C(PDB) values of CO2 sources etc., and are unique. Furthermore, this uniqueness is passed on to their derivative matter, such as animals, humus etc. Hence, they are very powerful tools in many areas of research, including the ecological and environmental sciences.

  8. Fossil organic carbon in wastewater and its fate in treatment plants.

    PubMed

    Law, Yingyu; Jacobsen, Geraldine E; Smith, Andrew M; Yuan, Zhiguo; Lant, Paul

    2013-09-15

    This study reports the presence of fossil organic carbon in wastewater and its fate in wastewater treatment plants. The findings pinpoint the inaccuracy of current greenhouse gas accounting guidelines which defines all organic carbon in wastewater to be of biogenic origin. Stable and radiocarbon isotopes ((13)C and (14)C) were measured throughout the process train in four municipal wastewater treatment plants equipped with secondary activated sludge treatment. Isotopic mass balance analyses indicate that 4-14% of influent total organic carbon (TOC) is of fossil origin with concentrations between 6 and 35 mg/L; 88-98% of this is removed from the wastewater. The TOC mass balance analysis suggests that 39-65% of the fossil organic carbon from the influent is incorporated into the activated sludge through adsorption or from cell assimilation while 29-50% is likely transformed to carbon dioxide (CO2) during secondary treatment. The fossil organic carbon fraction in the sludge undergoes further biodegradation during anaerobic digestion with a 12% decrease in mass. 1.4-6.3% of the influent TOC consists of both biogenic and fossil carbon is estimated to be emitted as fossil CO2 from activated sludge treatment alone. The results suggest that current greenhouse gas accounting guidelines, which assume that all CO2 emission from wastewater is biogenic may lead to underestimation of emissions.

  9. Refuse derived soluble bio-organics enhancing tomato plant growth and productivity.

    PubMed

    Sortino, Orazio; Dipasquale, Mauro; Montoneri, Enzo; Tomasso, Lorenzo; Perrone, Daniele G; Vindrola, Daniela; Negre, Michele; Piccone, Giuseppe

    2012-10-01

    Municipal bio-refuse (CVD), containing kitchen wastes, home gardening residues and public park trimmings, was treated with alkali to yield a soluble bio-organic fraction (SBO) and an insoluble residue. These materials were characterized using elemental analysis, potentiometric titration, and 13C NMR spectroscopy, and then applied as organic fertilizers to soil for tomato greenhouse cultivation. Their performance was compared with a commercial product obtained from animal residues. Plant growth, fruit yield and quality, and soil and leaf chemical composition were the selected performance indicators. The SBO exhibited the best performance by enhancing leaf chlorophyll content, improving plant growth and fruit ripening rate and yield. No product performance-chemical composition relationship could be assessed. Solubility could be one reason for the superior performance of SBO as a tomato growth promoter. The enhancement of leaf chlorophyll content is discussed to identify a possible link with the SBO photosensitizing properties that have been demonstrated in other work, and thus with photosynthetic performance.

  10. Leaf level emissions of volatile organic compounds (VOC) from some Amazonian and Mediterranean plants

    NASA Astrophysics Data System (ADS)

    Bracho-Nunez, A.; Knothe, , N. M.; Welter, S.; Staudt, M.; Costa, W. R.; Liberato, M. A. R.; Piedade, M. T. F.; Kesselmeier, J.

    2013-09-01

    Emission inventories defining regional and global biogenic volatile organic compounds (VOC) emission strengths are needed to determine the impact of VOC on atmospheric chemistry (oxidative capacity) and physics (secondary organic aerosol formation and effects). The aim of this work was to contribute with measurements of tree species from the poorly described tropical vegetation in direct comparison with the quite well-investigated, highly heterogeneous emissions from Mediterranean vegetation. VOC emission from sixteen plant species from the Mediterranean area were compared with twelve plant species from different environments of the Amazon basin by an emission screening at leaf level using branch enclosures. Analysis of the volatile organics was performed online by a proton-transfer-reaction mass spectrometer (PTR-MS) and offline by collection on adsorbent tubes and subsequent gas chromatographic analysis. Isoprene was the most dominant compound emitted followed by monoterpenes, methanol and acetone. The average loss rates of VOC carbon in relation to the net CO2 assimilation were found below 4% and indicating normal unstressed plant behavior. Most of the Mediterranean species emitted a large variety of monoterpenes, whereas only five tropical species were identified as monoterpene emitters exhibiting a quite conservative emission pattern (α-pinene < limonene < sabinene < ß-pinene). Mediterranean plants showed additional emissions of sesquiterpenes. In the case of Amazonian plants no sesquiterpenes were detected. However, missing of sesquiterpenes may also be due to a lack of sensitivity of the measuring systems. Furthermore, our screening activities cover only 1% of tree species of such tropical areas as estimated based on recent biodiversity reports. Methanol emissions, an indicator of growth, were found to be common in most of the tropical and Mediterranean species. A few species from both ecosystems showed acetone emissions. The observed heterogeneous

  11. Plant toxic and non-toxic nature of organic dyes through adsorption mechanism on cellulose surface.

    PubMed

    Buvaneswari, Natesan; Kannan, Chellapandian

    2011-05-15

    Effluents releasing from dyeing industries directly affect the soil, water, plant and human life. Among these dyes, plant poisoning, soil polluting and water polluting nature of organic dyes are not yet identified. The plant poisoning and non-poisoning organic dyes are identified through adsorption mechanism of cationic malachite green (MG) and anionic methyl orange (MO) on brinjal plant root powder (cellulose). The positive ΔH(o) (44 kJ mol(-1)) of MG higher than 40 kJ mol(-1) confirmed the adsorption of MG on cellulose is chemisorption and the negative ΔH(o) (-11 kJ mol(-1)) less than 40 kJ mol(-1) showed that the adsorption of MO on cellulose is physisorption. The ΔG(o) values for the adsorption of MG and MO on BPR are not much increased with increase of temperature which indicated that the adsorption is independent of the temperature. The entropy change for the adsorption of MG and MO has proved that the MG (+ΔS(o)) has less disorder at the adsorption interface and MO (-ΔS(o)) has the high disorder at the adsorption interface. The recovery of both dyes has been studied in water at 80°C on BPR surface and observed that the MO recovery is 95% and MG is 10%. The poor desorption of MG is due to the strong chemisorption on BPR (cellulose) surface proves its plant poisoning nature. The high recovery of MO due to physisorption mechanism proves that MO is not poisoning the plant.

  12. The aquatic vascular plant Ruppia maritima as an indicator organisms for contaminated sediments

    SciTech Connect

    Tagliabue, M.D.; Thursby, G.B.; Walker, H.A.; Johnston, R.K.

    1994-12-31

    An ongoing estuarine ecological risk assessment case study for the Portsmouth Naval Shipyard in the Great Bay (Kittery, ME, Portsmouth, NH) has been the catalyst for continued methods development with a rooted aquatic plant for a sediment toxicity test. A test using the aquatic vascular plant Ruppia maritima would be similar in it`s utility to the Algal (Champia parvula) Reproduction Test, an accepted, short term test (US EPA Short term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Marine and Estuarine Organisms). Laboratory studies were conducted to evaluate effects of lead, the primary site contaminant on R. maritima in the Great Bay. Morphology and life cycle of R. maritima are similar to that of the aquatic vascular plant Zostra marina which comprises up to 46% of the Great Bay habitat (Short 1992). R. maritima`s reduced size makes it a practical laboratory organism and Ruppia`s effects may offer useful insights into potential effects on Zostra or other aquatic vascular plants. Presently rooted vascular plants are not found in the site of concern (Clark Cove). This can be contributed to either of two factors; the physical parameters of the site, i.e., a depositional zone or the chemical parameters, i.e., metals contamination, specifically lead. Exposure of bedded and nonbedded plants occurred over a four day and ten day period using lead sulfate. Concentrations for bedded exposures were as follows, 0.3, 0.5, 0.8, 1.0 simultaneously extracted metal/acid volatile sulfide (SEM/AVS) molar ratios, and 0.1, 1.0, 10.0 and 100.0mg/l Pb for water only exposures. Some reduction in cumulative leaf growth was observed in the site samples as well as the spiked samples as compared to site controls. Results of this study and associated research which focuses on the further development of the Ruppia test methods will be presented.

  13. Inverse modeling of the biodegradation of emerging organic contaminants in the soil-plant system.

    PubMed

    Hurtado, Carlos; Trapp, Stefan; Bayona, Josep M

    2016-08-01

    Understanding the processes involved in the uptake and accumulation of organic contaminants into plants is very important to assess the possible human risk associated with. Biodegradation of emerging contaminants in plants has been observed, but kinetical studies are rare. In this study, we analyse experimental data on the uptake of emerging organic contaminants into lettuce derived in a greenhouse experiment. Measured soil, root and leaf concentrations from four contaminants were selected within the applicability domain of a steady-state two-compartment standard plant uptake model: bisphenol A (BPA), carbamazepine (CBZ), triclosan (TCS) and caffeine (CAF). The model overestimated concentrations in most cases, when no degradation rates in plants were entered. Subsequently, biodegradation rates were fitted so that the measured concentrations were met. Obtained degradation kinetics are in the order, BPA < CAF ≈ TCS < CBZ in roots, and BPA ≈ TCS < CBZ < CAF in leaves. Kinetics determined by inverse modeling are, despite the inherent uncertainty, indicative of the dissipation rates. The advantage of the procedure that is additional knowledge can be gained from existing experimental data. Dissipation kinetics found via inverse modeling is not a conclusive proof for biodegradation and confirmation by experimental studies is needed.

  14. Microcystin-LR and Cylindrospermopsin Induced Alterations in Chromatin Organization of Plant Cells

    PubMed Central

    Máthé, Csaba; M-Hamvas, Márta; Vasas, Gábor

    2013-01-01

    Cyanobacteria produce metabolites with diverse bioactivities, structures and pharmacological properties. The effects of microcystins (MCYs), a family of peptide type protein-phosphatase inhibitors and cylindrospermopsin (CYN), an alkaloid type of protein synthesis blocker will be discussed in this review. We are focusing mainly on cyanotoxin-induced changes of chromatin organization and their possible cellular mechanisms. The particularities of plant cells explain the importance of such studies. Preprophase bands (PPBs) are premitotic cytoskeletal structures important in the determination of plant cell division plane. Phragmoplasts are cytoskeletal structures involved in plant cytokinesis. Both cyanotoxins induce the formation of multipolar spindles and disrupted phragmoplasts, leading to abnormal sister chromatid segregation during mitosis. Thus, MCY and CYN are probably inducing alterations of chromosome number. MCY induces programmed cell death: chromatin condensation, nucleus fragmentation, necrosis, alterations of nuclease and protease enzyme activities and patterns. The above effects may be related to elevated reactive oxygen species (ROS) and/or disfunctioning of microtubule associated proteins. Specific effects: MCY-LR induces histone H3 hyperphosphorylation leading to incomplete chromatid segregation and the formation of micronuclei. CYN induces the formation of split or double PPB directly related to protein synthesis inhibition. Cyanotoxins are powerful tools in the study of plant cell organization. PMID:24084787

  15. The simulation of organic rankine cycle power plant with n-pentane working fluid

    NASA Astrophysics Data System (ADS)

    Nurhilal, Otong; Mulyana, Cukup; Suhendi, Nendi; Sapdiana, Didi

    2016-02-01

    In the steam power plant in Indonesia the dry steam from separator directly used to drive the turbin. Meanwhile, brine from the separator with low grade temperature reinjected to the earth. The brine with low grade temperature can be converted indirectly to electrical power by organic Rankine cycle (ORC) methods. In ORC power plant the steam are released from vaporization of organic working fluid by brine. The steam released are used to drive an turbine which in connected to generator to convert the mechanical energy into electric energy. The objective of this research is the simulation ORC power plant with n-pentane as organic working fluid. The result of the simulation for brine temperature around 165°C and the pressure 8.001 bar optained the net electric power around 1173 kW with the cycle thermal efficiency 14.61% and the flow rate of n-pentane around 15.51 kg/s. This result enable to applied in any geothermal source in Indonesia.

  16. Aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.

    1978-01-01

    Thermal infrared scanning from an aircraft is a convenient and commercially available means for determining relative rates of energy loss from building roofs. The need to conserve energy as fuel costs makes the mass survey capability of aerial thermography an attractive adjunct to community energy awareness programs. Background information on principles of aerial thermography is presented. Thermal infrared scanning systems, flight and environmental requirements for data acquisition, preparation of thermographs for display, major users and suppliers of thermography, and suggested specifications for obtaining aerial scanning services were reviewed.

  17. Plants: An International Scientific Open Access Journal to Publish All Facets of Plants, Their Functions and Interactions with the Environment and Other Living Organisms.

    PubMed

    Fernando, W G Dilantha

    2012-02-06

    Plants are one of the two major groups of living organisms that are an essential entity to the function of the biosphere. Plants can be found in all known parts of the earth, in all shapes and sizes. They include the green algae, mosses, ferns, vines, grasses, bushes, herbs, flowering plants and trees. Although some plants are parasitic, most produce their own food through photosynthesis. Most plants initiate from a seed. The importance of plants in the food chain dates back to ancient times. The first humans gathered wild plants for food. As settlements developed, food crops were cultivated, leading to selection of high-yielding cultivated varieties to feed the growing populations. Unlike plants, humans and other animals are unable to manufacture their own food. Therefore, they are dependent, directly or indirectly, on plants. Plants are found in natural ecosystems such as rain forests, and also in agricultural areas and urbanized settings. They are an essential part of our daily lives providing food, clean air, and important ecosystem functions. The study of plants and their function could be considered the most complex of interactions. From the time a seed germinates, it goes through a myriad of physiological processes that can be closely studied using modern tools and molecular biological methods. An open access journal such as Plants will give millions of readers access to that information around the world.

  18. Gravity response mechanisms of lateral organs and the control of plant architecture in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Mullen, J.; Hangarter, R.

    Most research on gravity responses in plants has focused on primary roots and shoots, which typically grow in a vertical orientation. However, the patterns of lateral organ formation and their growth orientation, which typically are not vertical, govern plant architecture. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting the overall root system architecture. We have found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of the new lateral roots is determined by what is called the gravitropic set-point angle (GSA). In Arabidopsis shoots, rosette leaves and inflorescence branches also display GSA-dependent developmental changes in their orientation. The developmental control of the GSA of lateral organs in Arabidopsis provides us with a useful system for investigating the components involved in regulating directionality of tropistic responses. We have identified several Arabidopsis mutants that have either altered lateral root orientations, altered orientation of lateral organs in the shoot, or both, but maintain normal primary organ orientation. The mgsa ({m}odified {g}ravitropic {s}et-point {a}ngle) mutants with both altered lateral root and shoot orientation show that there are common components in the regulation of growth orientation in the different organs. Rosette leaves and lateral roots also have in common a regulation of positioning by red light. Further molecular and physiological analyses of the GSA mutants will provide insight into the basis of GSA regulation and, thus, a better understanding of how gravity controls plant architecture. [This work was

  19. The aquatic vascular plant Ruppia maritima as an indicator organism for contaminated sediments

    SciTech Connect

    Tagliabue, M.D.; Thursby, G.B.; Walker, H.A.; Johnston, R.K.

    1995-12-31

    An ongoing estuarine ecological risk assessment case study for the Portsmouth Naval Shipyard in the Great Bay Estuary (New Hampshire, Maine) was the catalyst to continue development a rooted aquatic plant sediment toxicity test. Laboratory studies were conducted to evaluate effects of lead, the primary site contaminant on R. maritima in the Great Bay. Although the aquatic vascular plant Zostra marina comprises up to 46% of the Great Bay subtidal habitat, R. maritima`s much smaller size makes it a more practical laboratory organism. Effects on Ruppia may offer useful insights into potential effects on Zostra or other aquatic vascular plants. Presently rooted vascular plants are not found in Clark Cove located adjacent to a landfill disposal site on the shipyard. The absence of rooted vegetation can be contributed to, physical parameters of the site (turbidity, grain size, texture) or chemical parameters (heavy metal/Pb contamination, redox potential). Exposure of bedded and nonbedded plants occurred over a four day and ten day period using lead sulfate. Concentrations for bedded exposures were as follows, 0.3, 0.5, 0.8, 1.0 simultaneously extracted metal/acid volatile sulfide (SEM/AVS) molar ratios, and 0.1, 1.0, 10.0 and 100.0mg/l Pb for water only exposures. Reduction in cumulative leaf growth was observed for the Clark Cove sediments as well as the spiked sediments as compared to reference sediments.

  20. Isolation of plant DNA for PCR and genotyping using organic extraction and CTAB.

    PubMed

    Springer, Nathan M

    2010-11-01

    A general difficulty in isolation of DNA from plant cells is the presence of a cell wall. It is necessary to degrade plant cell walls, either physically or enzymatically, in order to effectively isolate plant DNA. Additionally, some tissues (such as endosperm) or some species contain high levels of starches or phenolic compounds that can complicate DNA isolation. A number of plant DNA isolation protocols are designed to overcome species-specific difficulties. This is a relatively simple protocol that uses an extraction buffer containing cetyltrimethylammonium bromide (CTAB); it can be used for many plant species. It provides a substantial amount of high-quality DNA that is suitable for polymerase chain reaction (PCR) procedures and is stable for long periods of time. The cost per sample is very low. In addition, this protocol is relatively robust and can be performed by individuals who have had relatively little training. A typical undergraduate student can perform ~200-300 isolations in a day using this protocol. The disadvantages are that it requires a freeze-dryer and a mill or paint-shaker-like device and that it utilizes an organic extraction step, requiring the use of a fume hood.

  1. Organic farmers use of wild food plants and fungi in a hilly area in Styria (Austria)

    PubMed Central

    2010-01-01

    Background Changing lifestyles have recently caused a severe reduction of the gathering of wild food plants. Knowledge about wild food plants and the local environment becomes lost when plants are no longer gathered. In Central Europe popular scientific publications have tried to counter this trend. However, detailed and systematic scientific investigations in distinct regions are needed to understand and preserve wild food uses. This study aims to contribute to these investigations. Methods Research was conducted in the hill country east of Graz, Styria, in Austria. Fifteen farmers, most using organic methods, were interviewed in two distinct field research periods between July and November 2008. Data gathering was realized through freelisting and subsequent semi-structured interviews. The culinary use value (CUV) was developed to quantify the culinary importance of plant species. Hierarchical cluster analysis was performed on gathering and use variables to identify culture-specific logical entities of plants. The study presented was conducted within the framework of the master's thesis about wild plant gathering of the first author. Solely data on gathered wild food species is presented here. Results Thirty-nine wild food plant and mushroom species were identified as being gathered, whereas 11 species were mentioned by at least 40 percent of the respondents. Fruits and mushrooms are listed frequently, while wild leafy vegetables are gathered rarely. Wild foods are mainly eaten boiled, fried or raw. Three main clusters of wild gathered food species were identified: leaves (used in salads and soups), mushrooms (used in diverse ways) and fruits (eaten raw, with milk (products) or as a jam). Conclusions Knowledge about gathering and use of some wild food species is common among farmers in the hill country east of Graz. However, most uses are known by few farmers only. The CUV facilitates the evaluation of the culinary importance of species and makes comparisons

  2. 2. AERIAL VIEW, LOOKING NORTHNORTHEAST, OF THE SUBBASEMENT OF BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. AERIAL VIEW, LOOKING NORTH-NORTHEAST, OF THE SUB-BASEMENT OF BUILDING 371 UNDER CONSTRUCTION. THE SUB-BASEMENT, THE BOTTOM LEVEL, IS AN IRREGULARLY SHAPED AREA, CONSISTING PRIMARILY OF THE LOWER PORTION OF THE PLUTONIUM STORAGE VAULT AND ITS TRANSFER, REPAIR, AND STACKER-RETRIEVER MAINTENANCE BAYS. THE PLUTONIUM STORAGE VAULT RUNS EAST-WEST. (7/2/74) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  3. 3. AERIAL VIEW, LOOKING SOUTH, OF BUILDING 371 BASEMENT UNDER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. AERIAL VIEW, LOOKING SOUTH, OF BUILDING 371 BASEMENT UNDER CONSTRUCTION. THE BASEMENT HOUSES HEATING, VENTILATION, AND AIR CONDITIONING EQUIPMENT AND MECHANICAL UTILITIES, THE UPPER PART OF THE PLUTONIUM STORAGE VAULT AND MAINTENANCE BAY, AND SMALL PLUTONIUM PROCESSING AREAS. THE BASEMENT LEVEL IS DIVIDED INTO NEARLY EQUAL NORTH AND SOUTH PARTS BY THE UPPER PORTION OF THE PLUTONIUM STORAGE VAULT. (10/7/74) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  4. 1. AERIAL VIEW, LOOKING SOUTHSOUTHEAST, OF BUILDING 371 UNDER CONSTRUCTION. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. AERIAL VIEW, LOOKING SOUTH-SOUTHEAST, OF BUILDING 371 UNDER CONSTRUCTION. THE BUILDING IS A MULTI-LEVEL STRUCTURE, PARTIALLY UNDERGROUND. THE PLUTONIUM STORAGE VAULT EXTENDS FROM THE WEST SIDE OF THE BUILDING. FOOTERS FOR BUILDING 374 ARE VISIBLE TO THE LEFT OF BUILDING 371. (5/2/74) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  5. Aerial Photography: Use in Detecting Simulated Insect Defoliation in Corn

    NASA Technical Reports Server (NTRS)

    Chiang, H. C.; Latham, R.; Meyer, M. P.

    1973-01-01

    Artificial defoliation in corn was used to explore the usefulness of aerial photography in detecting crop insect infestations. Defoliation on the top of plants was easily detected, while that on the base was less so. Aero infrared film with Wratten 89B filter gave the best results, and morning flights at the scale of 1:15840 are recommended. Row direction, plant growth stage, and time elapse since defoliation were not important factors.

  6. 9. AERIAL VIEW OF CROSSCUT FACILITY, LOOKING SOUTHWEST. THE NEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. AERIAL VIEW OF CROSSCUT FACILITY, LOOKING SOUTHWEST. THE NEW CROSSCUT CANAL ENTERS THE PICTURE AT FOREGROUND RIGHT, EMPTYING INTO THE FOREBAY AND DESILTING BASIN CENTER. THE DUAL PENSTOCKS ARE SEEN AS THE STRAIGHT LINE RUNNING TOWARD THE HYDRO PLANTS ACROSS VAN BUREN STREET. top. THE BEGINNING OF THE GRAND CANAL IS VISIBLE, CURVING TO THE RIGHT BEYOND THE RAILROAD TRACKS Photographer unknown, no date - Cross Cut Hydro Plant, North Side of Salt River, Tempe, Maricopa County, AZ

  7. Exposure to isophorone and other organic solvents in a screen printing plant.

    PubMed

    Samimi, B

    1982-01-01

    A study was conducted in a screen printing plant to determine the exposure of workers to isophorone and other organic solvents. One hundred twenty-four charcoal tube samples were collected from both workers breathing zones and various workplace areas. Sampling times were 50-90 minutes. Maximum mean TWACs of isophorone and cyclohexanone were 23 +/- 5.4 ppm and 28 +/- 5 ppm, respectively, at the breathing zones of printing press workers. Exposure levels for other organic vapors such as cellosolve acetate, butyl acetate, xylenes, diacetone alchohol, and petroleum distillate are also presented. Mean TWACs of personal samples were generally higher than area samples due to proximity of the solvent evaporating surfaces to the workers breathing zones. Mean TWACs for the individual organic vapors did not exceed OSHA Limits. However, the sum of (TWAC/TLV) ratios of organic vapors with additive health effects exceeded unity at the breathing zones of workers handling inks and solvents. Actual 8-hour worker exposures were assumed to be lower because workers were exposed to lower concentrations (about 9/10 of the additive TLVs) in the plant's general atmosphere during non-active periods of the work shift. Recommendations for improvement of working conditions and reduction of exposure levels are made.

  8. Aerial Refueling Clearance Process Guide

    DTIC Science & Technology

    2014-08-21

    08-2014 2. REPORT TYPE Guidance Document 3. DATES COVERED 2008-2014 4. TITLE AND SUBTITLE Aerial Refueling Clearance Process Guide Attachment: Aerial...ATP-3.3.4.2 covers general operational procedures for AR and national/organizational SRDs cover data and procedures specific to their AR platforms...Receptacle, Probe/Drogue, and BDA Kit. 3.1.3 The items for assessment consideration cover several areas of interface for both the tanker and the

  9. Evaluation of the micronutrient composition of plant foods produced by organic and conventional agricultural methods.

    PubMed

    Hunter, Duncan; Foster, Meika; McArthur, Jennifer O; Ojha, Rachel; Petocz, Peter; Samman, Samir

    2011-07-01

    The aim of the present analysis was to evaluate the micronutrient content of plant foods produced by organic and conventional agricultural methods. Studies were identified from a search of electronic databases (1980-2007, inclusive) as well as manual searches. A total of 66 studies (describing 1440 micronutrient comparisons) were identified. Thirty-three studies (908 comparisons) satisfied the screening criteria which considered cultivar, harvesting, and soil conditions. In studies that satisfied the screening criteria, the absolute levels of micronutrients were higher in organic foods more often than in conventional foods (462 vs 364 comparisons, P=0.002), and the total micronutrient content, expressed as a percent difference, was higher in organic (+5.7%, P<0.001) as compared to conventionally grown produce. The micronutrient content of food groups was more frequently reported to be higher for organic vegetables and legumes compared to their conventional counterparts (vegetables, 267 vs 197, P<0.001; legumes, 79 vs 46, P=0.004). This trend was supported by a mean percent difference in micronutrient content favoring organic vegetables (+5.9%, P<0.001) and legumes (+5.7%, P<0.001). Further research is required to determine the effect of organic agricultural methods on a broader range of nutrients and their potential impact on health.

  10. Marsh plant response to metals: Exudation of aliphatic low molecular weight organic acids (ALMWOAs)

    NASA Astrophysics Data System (ADS)

    Rocha, A. Cristina S.; Almeida, C. Marisa R.; Basto, M. Clara P.; Vasconcelos, M. Teresa S. D.

    2016-03-01

    Metal exposure is known to induce the production and secretion of substances, such as aliphatic low molecular weight organic acids (ALMWOAs), into the rhizosphere by plant roots. Knowledge on this matter is extensive for soil plants but still considerably scarce regarding marsh plants roots adapted to high salinity media. Phragmites australis and Halimione portulacoides, two marsh plants commonly distributed in European estuarine salt marshes, were used to assess the response of roots of both species, in terms of ALMWOAs exudation, to Cu, Ni and Cd exposure (isolated and in mixture since in natural environment, they are exposed to mixture of metals). As previous studies were carried out in unrealistic and synthetic media, here a more natural medium was selected. Therefore, in vitro experiments were carried out, with specimens of both marsh plants, and in freshwater contaminated with two different Cu, Ni and Cd concentrations (individual metal and in mixture). Both marsh plants were capable of liberating ALMWOAs into the surrounding medium. Oxalic, citric and maleic acids were found in P. australis root exudate solutions and oxalic and maleic acids in H. portulacoides root exudate solutions. ALMWOA liberation by both plants was plant species and metal-dependent. For instance, Cu affected the exudation of oxalic acid by H. portulacoides and of oxalic and citric acids by P. australis roots. In contrast, Ni and Cd did not stimulate any specific response. Regarding the combination of all metals, H. portulacoides showed a similar response to that observed for Cu individually. However, in the P. australis case, at high metal concentration mixture, a synergetic effect led to the increase of oxalic acid levels in root exudate solution and to a decrease of citric acid liberation. A correlation between ALMWOAs exudation and metal accumulation could not be established. P. australis and H. portulacoides are considered suitable metal phytoremediators of estuarine impacted areas

  11. Permafrost Thaw, Soil Moisture and Plant Community Change Alter Organic Matter Decomposition in Alaskan Tundra

    NASA Astrophysics Data System (ADS)

    Natali, S.; Mauritz, M.; Pegoraro, E.; Schuur, E.

    2015-12-01

    Climate warming in arctic tundra has been associated with increased plant productivity and a shift in plant community composition, specifically an increase in shrub cover, which can impact soil organic matter through changes in the size and composition of the leaf litter pool. Shifts in litter quantity and quality will in turn interact with changes in the soil environment as the climate continues to warm. We examined the effects of permafrost thaw, soil moisture changes, and plant community composition on leaf litter decomposition in an upland tundra ecosystem in Interior Alaska. We present warming and drying effects on decomposition rates of graminoid-dominated and shrub-dominated leaf litter mixtures over three years (2 cm depth), and annual decomposition of a common cellulose substrate (0-10 cm and 10-20 cm) over five years at a permafrost thaw and soil drying experiment. We expected that warming and drying would increase decomposition, and that decomposition would be greater in the shrub litter than in the graminoid litter mix. Decomposition of Betula nana, the dominant shrub, was 50% greater in the shrub-dominated litter mix compared to the graminoid-dominated litter. Surprisingly, there was no significant difference in total litter mass loss between graminoid and shrub litter mixtures, despite significant differences in decomposition rates of the dominant plant species when decomposed alone and in community mixtures. Drying decreased decomposition of B. nana and of the shrub community litter overall, but after two years there was no detected warming effect on shrub-community decomposition. In contrast to leaf litter decomposition, both warming and drying increased decomposition of the common substrate. Warming caused an almost twofold increase in cellulose decomposition in surface soil (0-10cm), and drying caused a twofold increase in cellulose decomposition from deeper organic layer soils (10-20cm). These results demonstrate the importance of interactions

  12. Cross-talk between environmental stresses and plant metabolism during reproductive organ abscission

    PubMed Central

    Sawicki, Mélodie; Aït Barka, Essaïd; Clément, Christophe; Vaillant-Gaveau, Nathalie; Jacquard, Cédric

    2015-01-01

    In plants, flowering is a crucial process for reproductive success and continuity of the species through time. Fruit production requires the perfect development of reproductive structures. Abscission, a natural process, can occur to facilitate shedding of no longer needed, infected, or damaged organs. If stress occurs during flower development, abscission can intervene at flower level, leading to reduced yield. Flower abscission is a highly regulated developmental process simultaneously influenced and activated in response to exogenous (changing environmental conditions, interactions with microorganisms) and endogenous (physiological modifications) stimuli. During climate change, plant communities will be more susceptible to environmental stresses, leading to increased flower and fruit abscission, and consequently a decrease in fruit yield. Understanding the impacts of stress on the reproductive phase is therefore critical for managing future agricultural productivity. Here, current knowledge on flower/fruit abscission is summarized by focusing specifically on effects of environmental stresses leading to this process in woody plants. Many of these stresses impair hormonal balance and/or carbohydrate metabolism, but the exact mechanisms are far from completely known. Hormones are the abscission effectors and the auxin/ethylene balance is of particular importance. The carbohydrate pathway is the result of complex regulatory processes involving the balance between photosynthesis and mobilization of reserves. Hormones and carbohydrates together participate in complex signal transduction systems, especially in response to stress. The available data are discussed in relation to reproductive organ development and the process of abscission. PMID:25711702

  13. [Soluble organic carbon in plant litters on Loess Plateau: content and biodegradability].

    PubMed

    Wang, Chun-yang; Zhou, Jian-bin; Xia, Zhi-min; Chen, Xing-li

    2010-12-01

    The litters of eight plant species from the Loess Plateau were cut into pieces with 2 mm and 1 cm in size, and extracted with distilled water and 0.01 mol x L(-1) CaCl2 to determine the soluble organic carbon (SOC) content. In the meantime, a 7-day indoor incubation test was conducted at (25 +/- 3) degrees C to investigate their biodegradability. The SOC content and the ratio of SOC to total carbon (SOC/TC) in the litters were 18.20-156.82 g x kg(-1) and 4.21%-32.84%, respectively. Shrub litter had a slightly higher SOC content than tree litter, while grass litter had the lowest SOC content. After 7-day incubation, the biodegradation rate of SOC in the plant litters ranged from 44.5% to 80.6% (62.9% on average), and decreased in the order of shrub > tree > grass. By the end of the incubation, the proportion of soluble organic matter in solution had a significant increasing trend, which was related to the rapid biodegradation of labile composition in the litters. The higher content and higher biodegradation rate of SOC in plant litters might play important roles in nutrient cycling and energy flow during the vegetation restoration on Loess Plateau.

  14. Vetiver grass, Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes.

    PubMed

    Danh, Luu Thai; Truong, Paul; Mammucari, Raffaella; Tran, Tam; Foster, Neil

    2009-01-01

    Glasshouse and field studies showed that Vetiver grass can produce high biomass (>100t/ tha(-1) year(-1)) and highly tolerate extreme climatic variation such as prolonged drought, flood, submergence and temperatures (-15 degrees - 55 degrees C), soils high in acidity and alkalinity (pH 3.3-9.5), high levels of Al (85% saturation percentage), Mn (578 mg kg(-1)), soil salinity (ECse 47.5 dS m(-1)), sodicity (ESP 48%), anda wide range of heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn). Vetiver can accumulate heavy metals, particularly lead (shoot 0.4% and root 1%) and zinc (shoot and root 1%). The majority of heavy metals are accumulated in roots thus suitable for phytostabilization, and for phytoextraction with addition of chelating agents. Vetiver can also absorb and promote biodegradation of organic wastes (2,4,6-trinitroluene, phenol, ethidium bromide, benzo[a]pyrene, atrazine). Although Vetiver is not as effective as some other species in heavy metal accumulation, very few plants in the literature have a wide range of tolerance to extremely adverse conditions of climate and growing medium (soil, sand, and railings) combined into one plant as vetiver. All these special characteristics make vetiver a choice plant for phytoremediation of heavy metals and organic wastes.

  15. How well does the clinostat mimic the effect of microgravity on plant cells and organs?

    PubMed

    Sievers, A; Hejnowicz, Z

    1992-10-01

    The effect of clinostatting and microgravity on plant cells and organs is considered on the basis of distinguishing two types of gravistimulation: static and dynamic. The former is switched off both by clinostatting and microgravity, the latter is switched off by microgravity but occurs inevitably during clinostatting and may be perceived by cells if the rotation is not fast enough. Effects of clinostatting and microgravity on different examples of static gravistimulation (tonic effects, formation of compression wood, growth of "grass nodes," compensation of epinasty, stabilization of cellular polarity) are considered. The mechanism of the dynamic stimulation is presented; it is related to the displacement of the gravity sensing masses in the cell containing them, and involves disturbance of cytoskeletal tension. The low threshold for gravity perception and short minimal time of dynamic stimulation are emphasized. Only a relatively fast rotating clinostat, on which the radial distance of the cells from the rotational axis is small enough to keep the centrifugal force low, can effectively compensate gravity. However, one must take into account the extreme sensitivity of plants to mechanical stresses that may appear during clinostatting at different levels of plant organization.

  16. Medicinal Plants and Other Living Organisms with Antitumor Potential against Lung Cancer

    PubMed Central

    Monteiro, Luara de Sousa; Bastos, Katherine Xavier; Barbosa-Filho, José Maria; de Athayde-Filho, Petrônio Filgueiras; Diniz, Margareth de Fátima Formiga Melo; Sobral, Marianna Vieira

    2014-01-01

    Lung cancer is a disease with high morbidity and mortality rates. As a result, it is often associated with a significant amount of suffering and a general decrease in the quality of life. Herbal medicines are recognized as an attractive approach to lung cancer therapy with little side effects and are a major source of new drugs. The aim of this work was to review the medicinal plants and other living organisms with antitumor potential against lung cancer. The assays were conducted with animals and humans, and Lewis lung carcinoma was the most used experimental model. China, Japan, South Korea, and Ethiopia were the countries that most published studies of species with antitumor activity. Of the 38 plants evaluated, 27 demonstrated antitumor activity. In addition, six other living organisms were cited for antitumor activity against lung cancer. Mechanisms of action, combination with chemotherapeutic drugs, and new technologies to increase activity and reduce the toxicity of the treatment are discussed. This review was based on the NAPRALERT databank, Web of Science, and Chemical Abstracts. This work shows that natural products from plants continue to be a rich source of herbal medicines or biologically active compounds against cancer. PMID:25147575

  17. Genomic Organization and Evolutionary Conservation of Plant D-Type Cyclins1[C][W

    PubMed Central

    Menges, Margit; Pavesi, Giulio; Morandini, Piero; Bögre, Laszlo; Murray, James A.H.

    2007-01-01

    Plants contain more genes encoding core cell cycle regulators than other organisms but it is unclear whether these represent distinct functions. D-type cyclins (CYCD) play key roles in the G1-to-S-phase transition, and Arabidopsis (Arabidopsis thaliana) contains 10 CYCD genes in seven defined subgroups, six of which are conserved in rice (Oryza sativa). Here, we identify 22 CYCD genes in the poplar (Populus trichocarpa) genome and confirm that these six CYCD subgroups are conserved across higher plants, suggesting subgroup-specific functions. Different subgroups show gene number increases, with CYCD3 having three members in Arabidopsis, six in poplar, and a single representative in rice. All three species contain a single CYCD7 gene. Despite low overall sequence homology, we find remarkable conservation of intron/exon boundaries, because in most CYCD genes of plants and mammals, the first exon ends in the conserved cyclin signature. Only CYCD3 genes contain the complete cyclin box in a single exon, and this structure is conserved across angiosperms, again suggesting an early origin for the subgroup. The single CYCD gene of moss has a gene structure closely related to those of higher plants, sharing an identical exon/intron structure with several higher plant subgroups. However, green algae have CYCD genes structurally unrelated to higher plants. Conservation is also observed in the location of potential cyclin-dependent kinase phosphorylation sites within CYCD proteins. Subgroup structure is supported by conserved regulatory elements, particularly in the eudicot species, including conserved E2F regulatory sites within CYCD3 promoters. Global expression correlation analysis further supports distinct expression patterns for CYCD subgroups. PMID:17951462

  18. Removal of high organic loads from winery wastewater by aquatic plants.

    PubMed

    Zimmels, Y; Kirzhner, F; Schreiber, J

    2008-09-01

    Laboratory- and field-scale purification tests of raw and diluted winery wastewater (WWW) were carried out using aquatic plants at high organic loads. The laboratory tests were performed using artificial light at 1800 to 1900 lux. The objective of the current study was to define the potential of floating and emergent aquatic macrophytes and the microorganisms attached to their roots, to reduce high organic loads that characterize WWW, thereby providing, for these effluents, an effective treatment and management system. These microorganisms are believed to have a major role in the treatment process. In this context, the potential of floating and emergent macrophytes to improve the water quality of raw compared with diluted WWW was evaluated. In raw WWW (chemical oxygen demand [COD] 5.6 g/L),growth inhibition of both water hyacinth (Eichhornia crassipes) and water pennywort (Hydrocotyle umbellata) was observed. A 1:1 dilution of WWW with fresh (tap) water facilitated growth of these plants. At this dilution level, growth of pennywort was limited, while that of water hyacinth was robust. In terms of reductions in biochemical oxygen demand, COD, and total suspended solids, both water hyacinth and pennywort performed better in diluted compared with raw WWW. At 1:1 and 1:3 dilution, 95.9 to 97% of the COD was removed after 23 days, in the presence of Hydrocotyle and Eichhornia plants and aeration. The capacity of new emergent plants to remove high organic loads from WWW, at enhanced kinetics, was demonstrated. This unique property was tested and compared with the role of the gravel media that support growth of the high-capacity emergent plants. In the presence of reed and salt marsh plants, 83 to 99% of the COD was removed within a period of 24 to 29 days, at 1.5:1 dilution. The new emergent plants proved to be effective, even at record high levels of COD. At an initial level of 16,460 mg/L, the COD was brought down to 2870 mg/L after 24 days (82.6% removal), while 12

  19. Plant leaves as indoor air passive samplers for volatile organic compounds (VOCs).

    PubMed

    Wetzel, Todd A; Doucette, William J

    2015-03-01

    Volatile organic compounds (VOCs) enter indoor environments through internal and external sources. Indoor air concentrations of VOCs vary greatly but are generally higher than outdoors. Plants have been promoted as indoor air purifiers for decades, but reports of their effectiveness differ. However, while air-purifying applications may be questionable, the waxy cuticle coating on leaves may provide a simple, cost-effective approach to sampling indoor air for VOCs. To investigate the potential use of plants as indoor air VOC samplers, a static headspace approach was used to examine the relationship between leaf and air concentrations, leaf lipid contents and octanol-air partition coefficients (Koa) for six VOCs and four plant species. The relationship between leaf and air concentrations was further examined in an actual residence after the introduction of several chlorinated VOC emission sources. Leaf-air concentration factors (LACFs), calculated from linear regressions of the laboratory headspace data, were found to increase as the solvent extractable leaf lipid content and Koa value of the VOC increased. In the studies conducted in the residence, leaf concentrations paralleled the changing air concentrations, indicating a relatively rapid air to leaf VOC exchange. Overall, the data from the laboratory and residential studies illustrate the potential for plant leaves to be used as cost effective, real-time indoor air VOC samplers.

  20. An overview of organically bound tritium experiments in plants following a short atmospheric HTO exposure.

    PubMed

    Galeriu, D; Melintescu, A; Strack, S; Atarashi-Andoh, M; Kim, S B

    2013-04-01

    The need for a less conservative, but reliable risk assessment of accidental tritium releases is emphasized in the present debate on the nuclear energy future. The development of a standard conceptual model for accidental tritium releases must be based on the process level analysis and the appropriate experimental database. Tritium transfer from atmosphere to plants and the subsequent conversion into organically bound tritium (OBT) strongly depends on the plant characteristics, seasons, and meteorological conditions, which have a large variability. The present study presents an overview of the relevant experimental data for the short term exposure, including the unpublished information, also. Plenty of experimental data is provided for wheat, rice, and soybean and some for potato, bean, cherry tomato, radish, cabbage, and tangerine as well. Tritiated water (HTO) uptake by plants during the daytime and nighttime has an important role in further OBT synthesis. OBT formation in crops depends on the development stage, length, and condition of exposure. OBT translocation to the edible plant parts differs between the crops analyzed. OBT formation during the nighttime is comparable with that during the daytime. The present study is a preliminary step for the development of a robust model of crop contamination after an HTO accidental release.

  1. Emission of volatile organic compounds (VOC) from tropical plant species in India.

    PubMed

    Padhy, P K; Varshney, C K

    2005-06-01

    Foliar emission of volatile organic compounds (VOC) from common Indian plant species was measured. Dynamic flow enclosure technique was used and the gas samples were collected onto Tenax-GC/Carboseive cartridges. The Tenax-GC/Carboseive cartridges were attached to the thermal disorber sample injection system and the gas sample was analysed using gas chromatography (GC) with flame ionisation detection (FID). Fifty-one local plant species were screened, out of which 36 species were found to emit VOC (4 high emitter; 28 moderate emitter; and 4 low-emitter), while in the remaining 15 species no VOC emission was detected or the levels of emission were below detection limit (BDL). VOC emission was found to vary from one species to another. There was a marked seasonal and diurnal variation in VOC emission. The minimum and maximum VOC emission values were < 0.1 and 87 microgg(-1) dry leaf h(-1) in Ficus infectoria and Lantana camara respectively. Out of the 51 plant species studied, 13 species are reported here for the first time. Among the nine tree species (which were selected for detailed study), the highest average hourly emission (9.69+/-8.39 microgg(-1) dry leaf) was observed in Eucalyptus species and the minimum in Syzygium jambolanum (1.89+/-2.48 microgg(-1) dry leaf). An attempt has been made to compare VOC emission from different plant species between present study and the literature (tropical and other regions).

  2. Towards an understanding of feedbacks between plant productivity, acidity and dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Rowe, Ed; Tipping, Ed; Davies, Jessica; Monteith, Don; Evans, Chris

    2014-05-01

    The recent origin of much dissolved organic carbon (DOC) (Tipping et al., 2010) implies that plant productivity is a major control on DOC fluxes. However, the flocculation, sorption and release of potentially-dissolved organic matter are governed by pH, and widespread increases in DOC concentrations observed in northern temperate freshwater systems seem to be primarily related to recovery from acidification (Monteith et al., 2007). We explore the relative importance of changes in productivity and pH using a model, MADOC, that incorporates both these effects (Rowe et al., 2014). The feedback whereby DOC affects pH is included. The model uses an annual timestep and relatively simple flow-routing, yet reproduces observed changes in DOC flux and pH in experimental (Evans et al., 2012) and survey data. However, the first version of the model probably over-estimated responses of plant productivity to nitrogen (N) deposition in upland semi-natural ecosystems. There is a strong case that plant productivity is an important regulator of DOC fluxes, and theoretical reasons for suspecting widespread productivity increases in recent years due not only to N deposition but to temperature and increased atmospheric CO2 concentrations. However, evidence that productivity has increased in upland semi-natural ecosystems is sparse, and few studies have assessed the major limitations to productivity in these habitats. In systems where phosphorus (P) limitation prevails, or which are co-limited, productivity responses to anthropogenic drivers will be limited. We present a revised version of the model that incorporates P cycling and appears to represent productivity responses to atmospheric N pollution more realistically. Over the long term, relatively small fluxes of nutrient elements into and out of ecosystems can profoundly affect productivity and the accumulation of organic matter. Dissolved organic N (DON) is less easily intercepted by plants and microbes than mineral N, and DON

  3. Plant growth-promoting rhizobacteria strain Bacillus amyloliquefaciens NJN-6-enriched bio-organic fertilizer suppressed Fusarium wilt and promoted the growth of banana plants.

    PubMed

    Yuan, Jun; Ruan, Yunze; Wang, Beibei; Zhang, Jian; Waseem, Raza; Huang, Qiwei; Shen, Qirong

    2013-04-24

    Bacillus amyloliquefaciens strain NJN-6 is an important plant growth-promoting rhizobacteria (PGPR) which can produce secondary metabolites antagonistic to several soil-borne pathogens. In this study, the ability of a bio-organic fertilizer (BIO) containing NJN-6 strain to promote the growth and suppress Fusarium wilt of banana plants was evaluated in a pot experiment. The results showed that the application of BIO significantly decreased the incidence of Fusarium wilt and promoted the growth of banana plants compared to that for the organic fertilizer (OF). To determine the beneficial mechanism of the strain, the colonization of NJN-6 strain on banana roots was evaluated using scanning electron microscopy (SEM). The plant growth-promoting hormones indole-3-acetic acid (IAA) and gibberellin A3 (GA3), along with antifungal lipopeptides iturin A, were detected when the NJN-6 strain was incubated in both Landy medium with additional l-tryptophan and in root exudates of banana plants. In addition, some antifungal volatile organic compounds and iturin A were also detected in BIO. In summary, strain NJN-6 could colonize the roots of banana plants after the application of BIO and produced active compounds which were beneficial for the growth of banana plants.

  4. Characterization of organic matter of plants from lakes by thermal analysis in a N2 atmosphere

    NASA Astrophysics Data System (ADS)

    Guo, Fei; Wu, Fengchang; Mu, Yunsong; Hu, Yan; Zhao, Xiaoli; Meng, Wei; Giesy, John P.; Lin, Ying

    2016-03-01

    Organic matter (OM) has been characterized using thermal analysis in O2 atmospheres, but it is not clear if OM can be characterized using slow thermal degradation in N2 atmospheres (STDN). This article presents a new method to estimate the behavior of OM in anaerobic environment. Seventeen different plants from Tai Lake (Ch: Taihu), China were heated to 600 °C at a rate of 10 °C min‑1 in a N2 atmosphere and characterized by use of differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). DSC chromatograms were compared with 9 standard compounds. Seven peaks were observed in DSC chromatograms, 2 main peaks strongly correlated with biochemical indices, and one main peak was a transitional stage. Energy absorbed by a peak at approximately 200 °C and total organic carbon were well correlated, while energy absorbed at approximately 460 °C was negatively correlated with lignin content. Presence of peaks at approximately 350 and 420 °C varied among plant biomass sources, providing potential evidence for biomass identification. Methods of STDN reported here were rapid and accurate ways to quantitatively characterize OM, which may provide useful information for understanding anaerobic behaviors of natural organic matters.

  5. Regulation by organic acids of polysaccharide-mediated microbe-plant interactions.

    PubMed

    Nakata, K; Kobayashi, T; Takiguchi, Y; Yamaguchi, T

    2000-10-01

    A polysaccharide flocculant of Klebsiella pneumoniae H12 has been suggested to mediate microbe-plant interactions with the aid of Ca2+ [K. Nakata et al., Biosci. Biotechnol. Biochem., 64, 459-465, 2000]. Here, two-way regulation of polysaccharide-mediated interactions between K. pneumoniae and Raphanus sativus was studied using organic acids. Namely, 10 mM equivalents of organic acids promoted production of the polysaccharide by the bacterium, but inhibited flocculation of bacterial cells by the polysaccharide. These phenomena were counterbalanced by equi-molar equivalents of Ca2+, suggesting competition for Ca2+ between the carboxylic residues of the polysaccharide and those of the aliphatic acids. By electron microscopy observations, bacterial cell aggregates were sparsely distributed over the main roots and root hairs, had various sizes, and seemed to tightly adhere to root tissues. Their shapes seemed to be distorted and abundant in cavities. In brief, these microscopical observations may be explained by a two-way regulation system of bacterial adhesion to a plant by organic acids.

  6. Characterization of organic matter of plants from lakes by thermal analysis in a N2 atmosphere

    PubMed Central

    Guo, Fei; Wu, Fengchang; Mu, Yunsong; Hu, Yan; Zhao, Xiaoli; Meng, Wei; Giesy, John P.; Lin, Ying

    2016-01-01

    Organic matter (OM) has been characterized using thermal analysis in O2 atmospheres, but it is not clear if OM can be characterized using slow thermal degradation in N2 atmospheres (STDN). This article presents a new method to estimate the behavior of OM in anaerobic environment. Seventeen different plants from Tai Lake (Ch: Taihu), China were heated to 600 °C at a rate of 10 °C min−1 in a N2 atmosphere and characterized by use of differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). DSC chromatograms were compared with 9 standard compounds. Seven peaks were observed in DSC chromatograms, 2 main peaks strongly correlated with biochemical indices, and one main peak was a transitional stage. Energy absorbed by a peak at approximately 200 °C and total organic carbon were well correlated, while energy absorbed at approximately 460 °C was negatively correlated with lignin content. Presence of peaks at approximately 350 and 420 °C varied among plant biomass sources, providing potential evidence for biomass identification. Methods of STDN reported here were rapid and accurate ways to quantitatively characterize OM, which may provide useful information for understanding anaerobic behaviors of natural organic matters. PMID:26953147

  7. First complete chromosomal organization of a protozoan plant parasite (Phytomonas spp.).

    PubMed

    Marín, Clotilde; Alberge, Blandine; Dollet, Michel; Pagès, Michel; Bastien, Patrick

    2008-01-01

    Phytomonas spp. are members of the family Trypanosomatidae that parasitize plants and may cause lethal diseases in crops such as Coffee Phloem necrosis, Hartrot in coconut, and Marchitez sorpresiva in oil palm. In this study, the molecular karyotype of 6 isolates from latex plants has been entirely elucidated by pulsed-field gel electrophoresis and DNA hybridization. Twenty-one chromosomal linkage groups constituting heterologous chromosomes and sizing between 0.3 and 3 Mb could be physically defined by the use of 75 DNA markers (sequence-tagged sites and genes). From these data, the genome size can be estimated at 25.5 (+/-2) Mb. The physical linkage groups were consistently conserved in all strains examined. Moreover, the finding of several pairs of different-sized homologous chromosomes strongly suggest diploidy for this organism. The definition of the complete molecular karyotype of Phytomonas represents an essential primary step toward sequencing the genome of this parasite of economical importance.

  8. Biosafety research for non-target organism risk assessment of RNAi-based GE plants

    PubMed Central

    Roberts, Andrew F.; Devos, Yann; Lemgo, Godwin N. Y.; Zhou, Xuguo

    2015-01-01

    RNA interference, or RNAi, refers to a set of biological processes that make use of conserved cellular machinery to silence genes. Although there are several variations in the source and mechanism, they are all triggered by double stranded RNA (dsRNA) which is processed by a protein complex into small, single stranded RNA, referred to as small interfering RNAs (siRNA) with complementarity to sequences in genes targeted for silencing. The use of the RNAi mechanism to develop new traits in plants has fueled a discussion about the environmental safety of the technology for these applications, and this was the subject of a symposium session at the 13th ISBGMO in Cape Town, South Africa. This paper continues that discussion by proposing research areas that may be beneficial for future environmental risk assessments of RNAi-based genetically modified plants, with a particular focus on non-target organism assessment. PMID:26594220

  9. Thermochemical Pretreatments of Organic Fraction of Municipal Solid Waste from a Mechanical-Biological Treatment Plant

    PubMed Central

    Álvarez-Gallego, Carlos José; Fdez-Güelfo, Luis Alberto; Romero Aguilar, María de los Ángeles; Romero García, Luis Isidoro

    2015-01-01

    The organic fraction of municipal solid waste (OFMSW) usually contains high lignocellulosic and fatty fractions. These fractions are well-known to be a hard biodegradable substrate for biological treatments and its presence involves limitations on the performance of anaerobic processes. To avoid this, thermochemical pretreatments have been applied on the OFMSW coming from a full-scale mechanical-biological treatment (MBT) plant, in order to pre-hydrolyze the waste and improve the organic matter solubilisation. To study the solubilisation yield, the increments of soluble organic matter have been measured in terms of dissolved organic carbon (DOC), soluble chemical oxygen demand (sCOD), total volatile fatty acids (TVFA) and acidogenic substrate as carbon (ASC). The process variables analyzed were temperature, pressure and NaOH dosage. The levels of work for each variable were three: 160–180–200 °C, 3.5–5.0–6.5 bar and 2–3–4 g NaOH/L. In addition, the pretreatment time was also modified among 15 and 120 min. The best conditions for organic matter solubilisation were 160 °C, 3 g NaOH/L, 6.5 bar and 30 min, with yields in terms of DOC, sCOD, TVFA and ASC of 176%, 123%, 119% and 178% respectively. Thus, predictably the application of this pretreatment in these optimum conditions could improve the H2 production during the subsequent Dark Fermentation process. PMID:25671816

  10. Thermochemical pretreatments of organic fraction of municipal solid waste from a mechanical-biological treatment plant.

    PubMed

    Álvarez-Gallego, Carlos José; Fdez-Güelfo, Luis Alberto; de los Ángeles Romero Aguilar, María; Romero García, Luis Isidoro

    2015-02-09

    The organic fraction of municipal solid waste (OFMSW) usually contains high lignocellulosic and fatty fractions. These fractions are well-known to be a hard biodegradable substrate for biological treatments and its presence involves limitations on the performance of anaerobic processes. To avoid this, thermochemical pretreatments have been applied on the OFMSW coming from a full-scale mechanical-biological treatment (MBT) plant, in order to pre-hydrolyze the waste and improve the organic matter solubilisation. To study the solubilisation yield, the increments of soluble organic matter have been measured in terms of dissolved organic carbon (DOC), soluble chemical oxygen demand (sCOD), total volatile fatty acids (TVFA) and acidogenic substrate as carbon (ASC). The process variables analyzed were temperature, pressure and NaOH dosage. The levels of work for each variable were three: 160-180-200 °C, 3.5-5.0-6.5 bar and 2-3-4 g NaOH/L. In addition, the pretreatment time was also modified among 15 and 120 min. The best conditions for organic matter solubilisation were 160 °C, 3 g NaOH/L, 6.5 bar and 30 min, with yields in terms of DOC, sCOD, TVFA and ASC of 176%, 123%, 119% and 178% respectively. Thus, predictably the application of this pretreatment in these optimum conditions could improve the H2 production during the subsequent Dark Fermentation process.

  11. K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms.

    PubMed

    Nieves-Cordones, Manuel; Alemán, Fernando; Martínez, Vicente; Rubio, Francisco

    2014-05-15

    Potassium (K(+)) is an essential macronutrient for plants. It is taken into the plant by the transport systems present in the plasma membranes of root epidermal and cortical cells. The identity of these systems and their regulation is beginning to be understood and the systems of K(+) transport in the model species Arabidopsis thaliana remain far better characterized than in any other plant species. Roots can activate different K(+) uptake systems to adapt to their environment, important to a sessile organism that needs to cope with a highly variable environment. The mechanisms of K(+) acquisition in the model species A. thaliana are the best characterized at the molecular level so far. According to the current model, non-selective channels are probably the main pathways for K(+) uptake at high concentrations (>10mM), while at intermediate concentrations (1mM), the inward rectifying channel AKT1 dominates K(+) uptake. Under lower concentrations of external K(+) (100μM), AKT1 channels, together with the high-affinity K(+) uptake system HAK5 contribute to K(+) acquisition, and at extremely low concentrations (<10μM) the only system capable of taking up K(+) is HAK5. Depending on the species the high-affinity system has been named HAK5 or HAK1, but in all cases it fulfills the same functions. The activation of these systems as a function of the K(+) availability is achieved by different mechanisms that include phosphorylation of AKT1 or induction of HAK5 transcription. Some of the characteristics of the systems for root K(+) uptake are shared by other organisms, whilst others are specific to plants. This indicates that some crucial properties of the ancestral of K(+) transport systems have been conserved through evolution while others have diverged among different kingdoms.

  12. Plant-Microbial Interactions Define Potential Mechanisms of Organic Matter Priming in the Rhizosphere

    NASA Astrophysics Data System (ADS)

    Zhalnina, K.; Cho, H. J.; Hao, Z.; Mansoori, N.; Karaoz, U.; Jenkins, S.; White, R. A., III; Lipton, M. S.; Deng, K.; Zhou, J.; Pett-Ridge, J.; Northen, T.; Firestone, M. K.; Brodie, E.

    2015-12-01

    In the rhizosphere, metabolic processes of plants and microorganisms are closely coupled, and together with soil minerals, their interactions regulate the turnover of soil organic C (SOC). Plants provide readily assimilable metabolites for microorganisms through exudation, and it has been hypothesized that increasing concentrations of exudate C may either stimulate or suppress rates of SOC mineralization (rhizosphere priming). Both positive and negative rhizosphere priming has been widely observed, however the underlying mechanisms remain poorly understood. To begin to identify the molecular mechanisms underlying rhizosphere priming, we isolated a broad range of soil bacteria from a Mediterranean grassland dominated by annual grass. Thirty-nine heterotrophic bacteria were selected for genome sequencing and both rRNA gene analysis and metagenome coverage suggest that these isolates represent naturally abundant strain variants. We analyzed their genomes for potential metabolic traits related to life in the rhizosphere and the decomposition of polymeric SOC. While the two dominant groups, Alphaproteobacteria and Actinobacteria, were enriched in polymer degrading enzymes, Alphaproteobacterial isolates contained greater gene copies of transporters related to amino acid, organic acid and auxin uptake or export, suggesting an enhanced metabolic potential for life in the root zone. To verify this metabolic potential, we determined the enzymatic activities of these isolates and revealed preferences of strains to degrade certain polymers (xylan, cellulose or lignin). Fourier Transform Infrared spectroscopy is being used to determine which polymeric components of plant roots are targeted by specific strains and how exudates may impact their degradation. To verify the potential of isolates to assimilate root exudates and export key metabolites we are using LC-MS/MS based exometabolomic profiling. The traits hypothesized and verified here (transporters, enzymes, exudate uptake

  13. Hazardous organic compounds in biogas plant end products--soil burden and risk to food safety.

    PubMed

    Suominen, K; Verta, M; Marttinen, S

    2014-09-01

    The end products (digestate, solid fraction of the digestate, liquid fraction of the digestate) of ten biogas production lines in Finland were analyzed for ten hazardous organic compounds or compound groups: polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), polychlorinated biphenyls (PCB(7)), polyaromatic hydrocarbons (PAH(16)), bis-(2-ethylhexyl) phthalate (DEHP), perfluorinated alkyl compounds (PFCs), linear alkylbenzene sulfonates (LASs), nonylphenols and nonylphenol ethoxylates (NP+NPEOs), polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA). Biogas plant feedstocks were divided into six groups: municipal sewage sludge, municipal biowaste, fat, food industry by-products, animal manure and others (consisting of milling by-products (husk) and raw former foodstuffs of animal origin from the retail trade). There was no clear connection between the origin of the feedstocks of a plant and the concentrations of hazardous organic compounds in the digestate. For PCDD/Fs and for DEHP, the median soil burden of the compound after a single addition of digestate was similar to the annual atmospheric deposition of the compound or compound group in Finland or other Nordic countries. For PFCs, the median soil burden was somewhat lower than the atmospheric deposition in Finland or Sweden. For NP+NPEOs, the soil burden was somewhat higher than the atmospheric deposition in Denmark. The median soil burden of PBDEs was 400 to 1000 times higher than the PBDE air deposition in Finland or in Sweden. With PBDEs, PFCs and HBCD, the impact of the use of end products should be a focus of further research. Highly persistent compounds, such as PBDE- and PFC-compounds may accumulate in agricultural soil after repeated use of organic fertilizers containing these compounds. For other compounds included in this study, agricultural use of biogas plant end products is unlikely to cause risk to food safety in Finland.

  14. A three step approach for removing organic matter from South African water sources and treatment plants

    NASA Astrophysics Data System (ADS)

    Nkambule, T. I.; Krause, R. W. M.; Haarhoff, J.; Mamba, B. B.

    The high variability in the levels and composition of natural organic matter (NOM) in South-African water sources in different regions means that no single treatment process can be prescribed for each water treatment plant operating in the country. In order to remove NOM from water in a water treatment train, the composition of the NOM in the source water must be taken into account, especially as it may not necessarily be uniform since the composition is dependent on local environmental situation. The primary objective of this study was to characterise the NOM present in South African source waters through an extensive sampling of representative water types across the country and then develop a rapid NOM characterisation protocol. Water samples were thus collected from eight different water treatment plants located throughout the country at different sites of their water treatment trains. Raw water samples, the intermediate samples before filtration and water samples before disinfection were collected at these drinking water treatment plants. The fluorescence excitation-emission matrices (FEEMs), biodegradable dissolved organic carbon (BDOC), ultraviolet (UV) characterisation (200-900 nm) and dissolved organic carbon (DOC) analysis were used to characterise the NOM in the water samples. The FEEM and UV results revealed that the samples were composed mainly of humic substances with a high UV-254 absorbance, while some samples had marine humic substances and non-humic substances. The sample’s DOC results were within the range of 3.25-21.44 mg C/L, which was indicative of the varying nature of the NOM composition in the regions where samples were obtained. The BDOC fraction of the NOM, on the other hand, ranged from 20% to 65%, depending on the geographical location of the sampling site. It is evident from the results obtained that the NOM composition varied per sampling site which would eventually have a bearing on its treatability. The various water treatment

  15. Black Nitrogen or Plant-Derived Organic Nitrogen - which Form is More Efficiently Sequestered in Soils?

    NASA Astrophysics Data System (ADS)

    López-Martín, María; Velasco-Molina, Marta; Knicker, Heike

    2014-05-01

    Input of charcoal after forest fires can lead to considerable changes of the quality and quantity of organic matter in soils (SOM). This affects not only its organic C pool but also shifts its organic N composition from peptideous to N-heterocyclic structures (Knicker et al., 1996). In the present study we sought to understand how this alteration is affecting the N availability in fire affected soils. Therefore, we performed a medium-term pot experiment in which grass material (Lolium perenne) was grown on soil material (Cambisols) of a fire-affected and a fire-unaffected forest. The soils were topped with mixtures of ground fresh grass residues and KNO3 or charred grass material (pyrogenic organic matter; PyOM) with KNO3. Here, either the organic N or the inorganic N was isotopically enriched with 15N. Following the 15N concentration in the soil matrix and the growing plants as a function of incubation time (up to 16 months) by isotopic ratio mass spectrometry allowed us to indentify which N-source is most efficiently stabilized and how PyOM is affecting this process. Preliminary data indicated that only after the germination of the seeds, the concentration of the added inorganic 15N in the soil decreased considerably most likely due to its uptake by the growing plants but also due to N-losses by leaching and volatilization. Additional addition of plant residues or PyOM had no major effect on this behavior. Covering the soil with 15N-grass residues which simulates a litter layer led to a slow increase of the 15N concentration in the mineral soil during the first month. This is best explained by the ongoing incorporation of the litter into the soil matrix. After that a small decrease was observed, showing that the organic N was only slowly mobilized. Addition of 15N-PyOM showed a comparable behavior but with 15N concentration in the soil corresponding to twice of those of the pots amended with 15N-grass residues. After that the 15N concentrations decrease quickly

  16. Effects of different forms of plant-derived organic matter on nitrous oxide emissions.

    PubMed

    Qiu, Qingyan; Wu, Lanfang; Ouyang, Zhu; Li, Binbin; Xu, Yanyan

    2016-07-13

    To investigate the impact of different forms of plant-derived organic matter on nitrous oxide (N2O) emissions, an incubation experiment with the same rate of total nitrogen (N) application was carried out at 25 °C for 250 days. Soils were incorporated with maize-derived organic matter (i.e., maize residue-derived dissolved organic matter and maize residues with different C/N ratios) and an inorganic N fertilizer (urea). The pattern and magnitude of nitrous oxide (N2O) emissions were affected by the form of N applied. Single application of maize-derived organic matter resulted in a higher N2O emission than single application of the inorganic N fertilizer or combined application of the inorganic N fertilizer and maize-derived organic matter. The positive effect of maize residue-derived dissolved organic matter (DOM) addition on N2O emissions was relatively short-lived and mainly occurred at the early stage following DOM addition. In contrast, the positive effect induced by maize residue addition was more pronounced and lasted for a longer period. Single application of maize residues resulted in a substantial decrease in soil nitric nitrogen (NO3(-)-N), but it did not affect the production of N2O. No significant relationship between N2O emission and NO3(-)-N and ammonium nitrogen (NH4(+)-N) suggested that the availability of soil N was not limiting the production of N2O in our study. The key factors affecting soil N2O emission were the soil dissolved organic carbon (DOC) content and metabolism quotient (qCO2). Both of them could explain 87% of the variation in cumulative N2O emission. The C/N ratio of maize-derived organic matter was a poor predictor of N2O emission when the soil was not limited by easily available C and the available N content met the microbial N demands for nitrification and denitrification. The results suggested that the magnitude of N2O emission was determined by the impact of organic amendments on soil C availability and microbial activity

  17. Isotopic ((13)C) fractionation during plant residue decomposition and its implications for soil organic matter studies.

    PubMed

    Schweizer; Fear; Cadisch

    1999-07-01

    Carbon isotopic fractionations in plant materials and those occurring during decomposition have direct implications in studies of short-and longer-term soil organic matter dynamics. Thus the products of decomposition, the evolved CO(2) and the newly formed soil organic matter, may vary in their (13)C signature from that of the original plant material. To evaluate the importance of such fractionation processes, the variations in (13)C signatures between and within plant parts of a tropical grass (Brachiaria humidicola) and tropical legume (Desmodium ovalifolium) were measured and the changes in (13)C content (signatures) during decomposition were monitored over a period of four months. As expected the grass materials were less depleted in (13)C (-11.4 to -11.9 per thousand) than those of the legume (-27.3 to -25.8 per thousand). Root materials of the legume were less (1.5 per thousand) depleted in (13)C compared with the leaves. Plant lignin-C was strongly depleted in (13)C compared with the bulk material by up to 2.5 per thousand in the legume and up to 4.7 per thousand in the grass. Plant materials were subsequently incubated in a sand/nutrient-solution/microbial inoculum mixture. The respiration product CO(2) was trapped in NaOH and precipitated as CaCO(3), suitable for analysis using an automated C/N analyser coupled to an isotope ratio mass spectrometer. Significant depletion in (13)C of the evolved CO(2) was observed during the initial stages of decomposition probably as a result of microbial fractionation as it was not associated with the (13)C signatures of the measured more decomposable fractions (non-acid detergent fibre and cellulose). While the cumulative CO(2)-(13)C signatures of legume materials became slightly enriched with ongoing decomposition, the CO(2)-C of the grass materials remained depleted in (13)C. Associated isotopic fractionation correction factors for source identification of CO(2-)C varied with time and suggested errors of 2-19% in the

  18. The improvement of removal effects on organic pollutants in Wastewater Treatment Plants (WWTP)

    NASA Astrophysics Data System (ADS)

    Marincas, O.; Petrov, P.; Ternes, T.; Avram, V.; Moldovan, Z.

    2009-08-01

    Purpose of this study is to improve the efficiency of removal in wastewater treatment plants of some organic pollutants like pharmaceuticals, antioxidants, pesticides (triazines, phenylurea herbicides), personal care products (PCPs) musk fragrances (galaxolide and tonalide) and estrogens using zeolites with excellent absorption capacity. The zeolite selected for all experiments was Szedimentin-MW. The experiment took place in three stages: no zeolite addition, zeolite added at the end of the bioreactor and zeolite added at the start of the bioreactor. The water samples were pre-concentrated with solid phase extraction (SPE) procedure and analyzed with analytical system Gas Chromatography/Mass Spectrometry (GC/MS).

  19. Recent Advances in the Application of Metabolomics to Studies of Biogenic Volatile Organic Compounds (BVOC) Produced by Plant

    PubMed Central

    Iijima, Yoko

    2014-01-01

    In many plants, biogenic volatile organic compounds (BVOCs) are produced as specialized metabolites that contribute to the characteristics of each plant. The varieties and composition of BVOCs are chemically diverse by plant species and the circumstances in which the plants grow, and also influenced by herbivory damage and pathogen infection. Plant-produced BVOCs are receptive to many organisms, from microorganisms to human, as both airborne attractants and repellants. In addition, it is known that some BVOCs act as signals to prime a plant for the defense response in plant-to-plant communications. The compositional profiles of BVOCs can, thus, have profound influences in the physiological and ecological aspects of living organisms. Apart from that, some of them are commercially valuable as aroma/flavor compounds for human. Metabolomic technologies have recently revealed new insights in biological systems through metabolic dynamics. Here, the recent advances in metabolomics technologies focusing on plant-produced BVOC analyses are overviewed. Their application markedly improves our knowledge of the role of BVOCs in chemosystematics, ecological influences, and aroma research, as well as being useful to prove the biosynthetic mechanisms of BVOCs. PMID:25257996

  20. Replisome Localization in Vegetative and Aerial Hyphae of Streptomyces coelicolor

    PubMed Central

    Ruban-Ośmiałowska, Beata; Jakimowicz, Dagmara; Smulczyk-Krawczyszyn, Aleksandra; Chater, Keith F.; Zakrzewska-Czerwińska, Jolanta

    2006-01-01

    Using a functional fusion of DnaN to enhanced green fluorescent protein, we examined the subcellular localization of the replisome machinery in the vegetative mycelium and aerial mycelium of the multinucleoid organism Streptomyces coelicolor. Chromosome replication took place in many compartments of both types of hypha, with the apical compartments of the aerial mycelium exhibiting the highest replication activity. Within a single compartment, the number of “current” ongoing DNA replications was lower than the expected chromosome number, and the appearance of fluorescent foci was often heterogeneous, indicating that this process is asynchronous within compartments and that only selected chromosomes undergo replication. PMID:17015671

  1. Characteristics and transformations of dissolved organic nitrogen in municipal biological nitrogen removal wastewater treatment plants

    NASA Astrophysics Data System (ADS)

    Huo, Shouliang; Xi, Beidou; Yu, Honglei; Qin, Yanwen; Zan, Fengyu; Zhang, Jingtian

    2013-12-01

    Dissolved organic nitrogen (DON) represents most of the dissolved nitrogen in the effluent of biological nitrogen removal (BNR) wastewater treatment plants (WWTPs). The characteristics of wastewater-derived DON in two different WWTPs were investigated by several different methods. The major removals of DON and biodegradable dissolved organic nitrogen (BDON) along the treatment train were observed in the anaerobic process. Dissolved combined amino acids (DCAA) and dissolved free amino acids (DFAA) in the effluent accounted approximately for less than 4% and 1% of the effluent DON, respectively. Approximately half of wastewater-derived DON was capable of passing through a 1 kDa ultrafilter, and low MW DON cannot effectively be removed by BNR processes. More than 80% of effluent DON was composed of hydrophilic compounds, which stimulate algal growth. The study provided important information for future upgrading of WWTPs or the selection of DON removal systems to meet more demanding nitrogen discharge limits.

  2. Influence of biochar and plant growth on organic matter dynamics in a reclaimed mine residue

    NASA Astrophysics Data System (ADS)

    Moreno-Barriga, Fabián; Díaz, Vicente; Alberto, Jose; Faz, Ángel; Zornoza, Raúl

    2016-04-01

    This study aims at assessing the impact of biochar and marble waste amendment and the development of vegetation in acidic mine wastes on organic matter dynamics. For this purpose, a mine residue was collected in a tailing pond from the Sierra Minera of Cartagena-La Unión (SE Spain), and a greenhouse experiment was established for 120 days. Marble waste (MW) was added in a rate of 200 g kg-1 as a source of calcium carbonate to increase the pH from 3 to 7.5-8 (average pH in the native soils of the area). We added biochar as a source of organic carbon and nutrients, in two different rates, 50 g kg-1 (BC1) and 100 g kg-1 (BC2). To assess the influence of vegetation growth on the creation of a technosoil from mine residues and its impact on organic matter dynamics, the plant species Piptatherum miliaceum (PM) was planted in half the pots with the different amendments. Thus, five treatments were established: unamended and unplanted control (CT), BC1, BC2, BC1+PM and BC2+PM. Results showed that the different treatments had no significant effect on aggregates stability, microbial biomass carbon and the emission of N2O and CH4. So, it seems that longer periods are needed to increase the stability of aggregates and microbial populations, since even the combined use of biochar, marble waste and vegetation was not enough to increase these properties in 120 days. Nonetheless, it was positive that the addition of biochar and the release of root exudates did not trigger the emission of greenhouse gases. Organic carbon significantly increased with the addition of biochar, with values similar to the dose applied, indicating high stability and low mineralization of the amendment. The addition of amendments significantly increased arylesterase activity, while the growth of the plant was needed to significantly increase β-glucosidase activity. The soluble carbon significantly decreased in BC1 and BC2 with regards to CT, while no significant differences were observed among CT and

  3. HPLC-Profiles of Tocopherols, Sugars, and Organic Acids in Three Medicinal Plants Consumed as Infusions

    PubMed Central

    Roriz, Custódio Lobo; Barros, Lillian; Carvalho, Ana Maria; Ferreira, Isabel C. F. R.

    2014-01-01

    Pterospartum tridentatum (L.) Willk, Gomphrena globosa L., and Cymbopogon citratus (DC.) Stapf are medicinal plants that require a more detailed chemical characterization, given the importance of their consumption as infusions. Therefore, the individual profiles in tocopherols, free sugars, and organic acids were obtained by high performance liquid chromatography (HPLC) coupled to different detectors (fluorescence, refraction index, and photodiode array, resp.). C. citratus revealed the highest content of α-, and total tocopherols, glucose, sucrose, succinic, and ascorbic acids. P. tridentatum presented the highest fructose and total sugars content. Otherwise, G. globosa showed the highest organic acids concentration. As far as we know, this is the first study reporting the mentioned chemical compounds in G. globosa and C. citratus. PMID:26904623

  4. Variable Contribution of Soil and Plant Derived Carbon to Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Steinbeiss, S.; Gleixner, G.

    2005-12-01

    The seasonal variation in the amount and sources of dissolved organic matter (DOM) in soil profiles was investigated. In general DOM in soil solution can evolve from the decomposition and mobilization of soil organic matter (SOM), dissolution of dead microbial cells or from the input of plant material such as root exudates or decomposing litter. Here we used vegetation change from C3 to C4 plants to quantify the plant derived carbon in DOM. In 2002 an agricultural field was converted to an experimental grass land. The average carbon isotope value of SOM was -26.5 per mill (sd = 0.2) for the plough horizon. On two independent plots, each 10 x 20 m, we used Amaranthus retroflexus as C4 plant with a carbon isotope label of 13.0 per mill to distinguish unlabeled SOM and plant derived carbon sources. To quantify the contribution of litter input on DOM formation we applied a split plot design. One half had no litter and the other half double amount of above ground litter. Soil water was collected in 10, 20 and 30 cm depth biweekly and DOM concentrations in solution and carbon isotope ratios of the freeze dried and decarbonized material were investigated. During winter uniform concentrations of DOM of about 7 mg/l were measured throughout all depth and treatments. In spring when soil temperatures increase and water availability decreases DOM concentrations increased with similar rates in all depth. Even in the second year of Amaranth growth the carbon isotope ratios of DOM in winter and spring had no C4 signal. The carbon isotope ratios of -26 to -27 per mill suggest SOM as carbon source and contradict a contribution of root exudates to the DOM pool. During summer almost no soil solution was collected. After rewetting in fall DOM concentrations up to 50 mg/l in 10 cm depth and up to 35 mg/l in deeper layers were found. These high concentrations held carbon isotope signals from -25 to -26.5 per mill contradicting carbon input from plant material. With ongoing wetting of

  5. Modeling the effects of organic nitrogen uptake by plants on the carbon cycling of boreal forest and tundra ecosystems

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Zhuang, Q.

    2013-12-01

    Boreal forest and tundra are the major ecosystems in the northern high latitudes in which a large amount of carbon is stored. These ecosystems are nitrogen-limited due to slow mineralization rate of the soil organic nitrogen. Recently, abundant field studies have found that organic nitrogen is another important nitrogen supply for boreal forest and tundra ecosystems. In this study, we incorporated a mechanism that allowed boreal plants to uptake small molecular amino acids into a process-based biogeochemical model, the Terrestrial Ecosystem Model (TEM), to evaluate the impact of organic nitrogen uptake on ecosystem carbon cycling. The new version of the model was evaluated for both boreal forest and tundra sites. We found that the modeled organic nitrogen uptake accounted for 36-87% of total nitrogen uptake by plants in tundra ecosystems and 26-50% for boreal forests, suggesting that tundra ecosystem might have more relied on the organic form of nitrogen than boreal forests. The simulated monthly gross ecosystem production (GPP) and net ecosystem production (NEP) tended to be larger with the new version of the model since the plant uptake of organic nitrogen alleviated the soil nitrogen limitation especially during the growing season. The sensitivity study indicated that the most important factors controlling the plant uptake of organic nitrogen was the soil amino acid diffusion coefficient (De) in our model, suggesting that the organic nitrogen uptake by plants is likely to be regulated by the edaphic characteristics of diffusion. The model uncertainty due to uncertain parameters associated with organic nitrogen uptake of the tundra ecosystem was larger than the boreal forest ecosystems. This study suggests that considering the organic nitrogen uptake by plants is important to carbon modeling of boreal forest and tundra ecosystems.

  6. Plant inter-species effects on rhizosphere priming of soil organic matter decomposition

    NASA Astrophysics Data System (ADS)

    Pausch, Johanna; Zhu, Biao; Cheng, Weixin

    2015-04-01

    Living roots and their rhizodeposits can stimulate microbial activity and soil organic matter (SOM) decomposition up to several folds. This so-called rhizosphere priming effect (RPE) varies widely among plant species possibly due to species-specific differences in the quality and quantity of rhizodeposits and other root functions. However, whether the RPE is influenced by plant inter-species interactions remains largely unexplored, even though these interactions can fundamentally shape plant functions such as carbon allocation and nutrient uptake. In a 60-day greenhouse experiment, we continuously labeled monocultures and mixtures of sunflower, soybean and wheat with 13C-depleted CO2 and partitioned total CO2 efflux released from soil at two stages of plant development for SOM- and root-derived CO2. The RPE was calculated as the difference in SOM-derived CO2 between the planted and the unplanted soil, and was compared among the monocultures and mixtures. We found that the RPE was positive under all plants, ranging from 43% to 136% increase above the unplanted control. There were no significant differences in RPE at the vegetative stage. At the flowering stage however, the RPE in the soybean-wheat mixture was significantly higher than those in the sunflower monoculture, the sunflower-wheat mixture, and the sunflower-soybean mixture. These results indicated that the influence of plant inter-specific interactions on the RPE is case-specific and phenology-dependent. To evaluate the intensity of inter-specific effects on priming, we calculated an expected RPE for the mixtures based on the RPE of the monocultures weighted by their root biomass and compared it to the measured RPE under mixtures. At flowering, the measured RPE was significantly lower for the sunflower-wheat mixture than what can be expected from their monocultures, suggesting that RPE was significantly reduced by the inter-species effects of sunflower and wheat. In summary, our results clearly demonstrated

  7. Effect of empty fruit bunch to the accumulated plant height, mass of fresh and dry weight of tomato plant treated with organic and inorganic fertilizer

    NASA Astrophysics Data System (ADS)

    Elias, Aishah; Mutalib, Sahilah Abd.; Mustapha, Wan Aida Wan

    2016-11-01

    A glasshouse experiment was conducted to study the effect of different type of compost and fertilizers on the growth of tomato (Lycopersicon esculentum). The experiment consisted of sixteen treatments. Compost of Empty fruit bunch (EFB) and cow dung is mixed in the ratio of 3:2:1 (soil: compost: sand) and put into 25.4 mm2 polyethylene bag. Organic fertilizer of 10 ml were added twice a week, while inorganic fertilizer was applied at the rate of 3 g per polyethylene bag of soil three weeks after sowing. Treatment without fertilizer application was established as a control. The treatments were laid in a split-split plot design with three replications. Plant growth was assessed using accumulating plant height, fresh weight and dry weight. The application of organic plus inorganic fertilizer had significant effects on plant height. The application of organic fertilizer combination with cow dung gave significant difference to plant mass (fresh and dry). The data obtained from these treatments were significantly higher than the data obtained from the control (without fertilizer). In conclusion, the type of compost did not gave significant difference towards plant height while it only gave significant difference towards plant mass.

  8. Organic matrix based slow release fertilizer enhances plant growth, nitrate assimilation and seed yield of Indian mustard (Brassica juncea L.).

    PubMed

    Sharma, Vinod K; Singh, Rana P

    2011-09-01

    Field experiments were conducted to study the effect of organic matrix based slow release fertilizers (SRFs) on plant growth, nitrate assimilation and seed yield of Brassica juncea L. cv, pusa bold. The agro-waste materials like cow dung, clay soil, neem leaves and rice bran were mixed together in 2:2:1:1 ratio and used as organic matrix for the immobilization of chemical fertilizer nutrients with commercial grade saresh (Acacia gum, 15% solution) as binder. Different fertilizer treatments were organic matrix based slow release fertilizers, SRF-I (542.0 kg ha(-1)); SRF-II (736.5 kg ha(-1)) and chemical fertilizer combinations, boron (3 kg ha(-1))+sulphur (15 kg ha(-1))+nitrogen (80 kg ha(-1)) and boron (3 kg ha(-1)) + sulphur (15 kg ha(-1))+nitrogen (80 kg ha(-1))+phosphorus (15 kg ha(-1))+potassium (100 kg ha(-1)). Organic matrix based SRF-II released ammonium up to 50-d in wetsoil under laboratory conditions which showed maximum retention of the nutrients. Avery significant increase in plant growth, nitrate assimilation and seed yield was recorded in organic matrix based SRF-II applied plants. The maximum percent increase in biomass production was observed with organic matrix based SRF-II (increase of 65.8% in root fresh weight, 38.0% in root dry weight, 45.9% in leaf fresh weight plant(-1) and 27.5 % in leaf dry weight plant(-1) in 60-d old plants). It also increased the acquisition and assimilation of nitrate from the plant's rhizosphere which was evident by 45.6% increase in nitrate, 27.5% in nitrite and 11.7% in nitrate reductase activity (NRA) in leaves of 45-d old plants over control. The organic matrix based SRF-II significantly increased the seed yield by 28% in Indian mustard. Cost analysis revealed thatthis formulation is cost effective as it is based on agro waste materials.

  9. Experimental charcoalification of plant reproductive organs: Taphonomic implications for taxonomic information loss

    SciTech Connect

    Lupia, R. )

    1992-01-01

    Charcoalification can preserve reproductive organs of plants in exceptional detail, but it has not been clear to what extent these taxonomically important structures suffer non-allometric size reduction during this process. To address this problem, seven angiosperm and two gymnosperm species were buried in sand and experimentally charcoalified in a muffle furnace at 325--350 degrees Celsius for two hours, and percent size reduction measured. Carpels, stamens, and petals never shrank by the same amount for a given angiosperm species. To determine the effect of different periods of heating on organs, one angiosperm species was treated for 0.5, 1, 2, 4, and 6 hours. Organs continued to shrink over this entire period without reaching a plateau. This is important in designing future experiments, and in terms of interpreting fossils, since heat treatment varies across a single site in natural fires. Observations made during this study suggest that some carpels and petals never become charcoalified, that stamens are particularly susceptible to fragmentation after charcoalification, that some organs show predictable damage which is correlated with time, and that the saturation of a structure with water can significantly retard charcoalification for heat exposure of less than one hour. These factors may severely affect the entry of the charred remains into the fossil record. Despite the suggestion that female structures can be expected to shrink the least, it is impossible to prescribe quantitative correction factors to permit accurate reconstructions without constraining additional variables such as temperature and duration of heating.

  10. Fate of natural organic matter at a full-scale Drinking Water Treatment Plant in Greece.

    PubMed

    Papageorgiou, A; Papadakis, N; Voutsa, D

    2016-01-01

    The aim of this study was to investigate the fate of natural organic matter (NOM) and subsequent changes during the various treatment processes at a full-scale Drinking Water Treatment Plant (DWTP). Monthly sampling campaigns were conducted for 1 year at six sites along DWTP of Thessaloniki, Northern Greece including raw water from the Aliakmonas River that supplies DWTP and samples from various treatment processes (pre-ozonation, coagulation, sand filtration, ozonation, and granular activated carbon (GAC) filtration). The concentration of NOM and its characteristics as well as the removal efficiency of various treatment processes on the basis of dissolved organic carbon, UV absorbance, specific ultra-violet absorbance, fluorescence intensity, hydrophobicity, biodegradable dissolved organic carbon, and formation potential of chlorination by-products trihalomethanes (THMs) and haloacetic acids (HAAs) were studied. The concentration of dissolved organic carbon (DOC) in reservoir of the Aliakmonas River ranged from 1.46 to 1.84 mg/L, exhibiting variations regarding UV, fluorescence, and hydrophobic character through the year. Along DWTP, a significant reduction of aromatic, fluorophoric, and hydrophobic character of NOM was observed resulting in significant elimination of THM (63%) and HAAs (75%) precursors.

  11. [Effect of constitutive expression of ARGOS-LIKE gene on dimensions of cells and organs of transgenic tobacco plants].

    PubMed

    Kuluev, B R; Khiazev, A V; Safiullina, M G; Cemeris, A V

    2013-05-01

    Transgenic tobacco plants that overexpress the ARGOS-LIKE (ARL) gene of Arabidopsis thaliana have been developed. The transgenic plants possessed increased dimensions of leaves and stem, whereas the magnitude of flowers was modified to a lesser degree. The increase in the organ dimensions was a result of stimulation of cell expansion; the cell quantity in the organ was even decreased. Ectopic expression of the ARL gene was promoted in order to increase in the level of mRNA of tobacco expansine NtEXPA5. It has been shown that the ARL gene of A. thaliana can be used to obtain transgenic plants with increased sizes of the leaves and stem.

  12. Strategies for Searching for Biosignatures in Ancient Martian Sub-Aerial Surface Environments

    NASA Astrophysics Data System (ADS)

    Horgan, B.

    2016-05-01

    Organics can be preserved in sub-aerial soil environments if the soils have high clay contents and were formed under reducing (saturated) conditions. Possible ancient soils with these characteristics are present on Mars.

  13. Penium margaritaceum: A Unicellular Model Organism for Studying Plant Cell Wall Architecture and Dynamics.

    PubMed

    Domozych, David S

    2014-11-18

    Penium margaritaceum is a new and valuable unicellular model organism for studying plant cell wall structure and developmental dynamics. This charophyte has a cell wall composition remarkably similar to the primary cell wall of many higher plants and clearly-defined inclusive zones containing specific polymers. Penium has a simple cylindrical phenotype with a distinct region of focused wall synthesis. Specific polymers, particularly pectins, can be identified using monoclonal antibodies raised against polymers of higher plant cell walls. Immunofluorescence-based labeling is easily performed using live cells that subsequently can be returned to culture and monitored. This feature allows for rapid assessment of wall expansion rates and identification of multiple polymer types in the wall microarchitecture during the cell cycle. Cryofixation by means of spray freezing provides excellent transmission electron microscopy imaging of the cell, including its elaborate endomembrane and cytoskeletal systems, both integral to cell wall development. Penium's fast growth rate allows for convenient microarray screening of various agents that alter wall biosynthesis and metabolism. Finally, recent successful development of transformed cell lines has allowed for non-invasive imaging of proteins in cells and for RNAi reverse genetics that can be used for cell wall biosynthesis studies.

  14. Plant-specific volatile organic compound emission rates from young and mature leaves of Mediterranean vegetation

    NASA Astrophysics Data System (ADS)

    Bracho-Nunez, Araceli; Welter, Saskia; Staudt, Michael; Kesselmeier, Jürgen

    2011-08-01

    The seasonality of vegetation, i.e., developmental stages and phenological processes, affects the emission of volatile organic compounds (VOCs). Despite the potential significance, the contributions of seasonality to VOC emission quality and quantity are not well understood and are therefore often ignored in emission simulations. We investigated the VOC emission patterns of young and mature leaves of several Mediterranean plant species in relation to their physiological and developmental changes during the growing period and estimated Es. Foliar emissions of isoprenoids and oxygenated VOCs like methanol and acetone were measured online by means of a proton transfer reaction mass spectrometer (PTR-MS) and offline with gas chromatography coupled with a mass spectrometer and flame ionization detector. The results suggest that VOC emission is a developmentally regulated process and that quantitative and qualitative variability is plant species specific. Leaf ontogeny clearly influenced both the VOC Es and the relative importance of different VOCs. Methanol was the major compound contributing to the sum of target VOC emissions in young leaves (11.8 ± 10.4 μg g-1 h-1), while its contribution was minor in mature leaves (4.1 ± 4.1 μg g-1 h-1). Several plant species showed a decrease or complete subsidence of monoterpene, sesquiterpene, and acetone emissions upon maturity, perhaps indicating a potential response to the higher defense demands of young emerging leaves.

  15. Light represses transcription of asparagine synthetase genes in photosynthetic and nonphotosynthetic organs of plants

    SciTech Connect

    Tsai, Fongying; Coruzzi, G. )

    1991-10-01

    Asparagine synthetase (AS) mRNA in Pisum sativum accumulates preferentially in plants grown in the dark. Nuclear run-on experiments demonstrate that expression of both the AS1 and AS2 genes is negatively regulated by light at the level of transcription. A decrease in the transcriptional rate of the AS1 gene can be detected as early as 20 min after exposure to light. Time course experiments reveal that the levels of AS mRNA fluctuate dramatically during a normal light/dark cycle. This is due to a direct effect of light and not to changes associated with circadian rhythm. A novel finding is that the light-repressed expression of the AS1 gene is as dramatic nonphotosynthetic organs such as roots as it is in leaves. Experiments demonstrate that the small amount of light which passes through the soil is sufficient to repress AS1 expression in roots, indicating that light has a direct effect on AS1 gene expression in roots. The negative regulation of AS gene expression by light was shown to be a general phenomenon in plants which also occurs in nonlegumes such as Nicotiana plumbaginifolia and Nicotiana tabacum. Thus, the AS genes can serve as a model with which to dissect the molecular basis for light-regulated transcriptional repression in plants.

  16. Impacts of simulated herbivory on volatile organic compound emission profiles from coniferous plants

    DOE PAGES

    Faiola, C. L.; Jobson, B. T.; VanReken, T. M.

    2015-01-28

    The largest global source of volatile organic compounds (VOCs) in the atmosphere is from biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. This study investigated the effects of one global change stressor, increased herbivory, on plant emissions from five different coniferous species: bristlecone pine (Pinus aristata), blue spruce (Picea pungens), western redcedar (Thuja plicata), grand fir (Abies grandis), and Douglas-fir (Pseudotsuga menziesii). Herbivory was simulated in the laboratory via exogenous application of methyl jasmonate (MeJA), a herbivory proxy. Gas-phase species were measured continuously with a gasmore » chromatograph coupled to a mass spectrometer and flame ionization detector (GC–MS–FID). Stress responses varied between the different plant types and even between experiments using the same set of saplings. The compounds most frequently impacted by the stress treatment were alpha-pinene, beta-pinene, 1,8-cineol, beta-myrcene, terpinolene, limonene, and the cymene isomers. Individual compounds within a single experiment often exhibited a different response to the treatment from one another.« less

  17. Impacts of simulated herbivory on volatile organic compound emission profiles from coniferous plants

    NASA Astrophysics Data System (ADS)

    Faiola, C. L.; Jobson, B. T.; VanReken, T. M.

    2015-01-01

    The largest global source of volatile organic compounds (VOCs) in the atmosphere is from biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. This study investigated the effects of one global change stressor, increased herbivory, on plant emissions from five different coniferous species: bristlecone pine (Pinus aristata), blue spruce (Picea pungens), western redcedar (Thuja plicata), grand fir (Abies grandis), and Douglas-fir (Pseudotsuga menziesii). Herbivory was simulated in the laboratory via exogenous application of methyl jasmonate (MeJA), a herbivory proxy. Gas-phase species were measured continuously with a gas chromatograph coupled to a mass spectrometer and flame ionization detector (GC-MS-FID). Stress responses varied between the different plant types and even between experiments using the same set of saplings. The compounds most frequently impacted by the stress treatment were alpha-pinene, beta-pinene, 1,8-cineol, beta-myrcene, terpinolene, limonene, and the cymene isomers. Individual compounds within a single experiment often exhibited a different response to the treatment from one another.

  18. Roles of Organic Acid Anion Secretion in Aluminium Tolerance of Higher Plants

    PubMed Central

    Yang, Lin-Tong; Qi, Yi-Ping; Jiang, Huan-Xin; Chen, Li-Song

    2013-01-01

    Approximately 30% of the world's total land area and over 50% of the world's potential arable lands are acidic. Furthermore, the acidity of the soils is gradually increasing as a result of the environmental problems including some farming practices and acid rain. At mildly acidic or neutral soils, aluminium(Al) occurs primarily as insoluble deposits and is essentially biologically inactive. However, in many acidic soils throughout the tropics and subtropics, Al toxicity is a major factor limiting crop productivity. The Al-induced secretion of organic acid (OA) anions, mainly citrate, oxalate, and malate, from roots is the best documented mechanism of Al tolerance in higher plants. Increasing evidence shows that the Al-induced secretion of OA anions may be related to the following several factors, including (a) anion channels or transporters, (b) internal concentrations of OA anions in plant tissues, (d) temperature, (e) root plasma membrane (PM) H+-ATPase, (f) magnesium (Mg), and (e) phosphorus (P). Genetically modified plants and cells with higher Al tolerance by overexpressing genes for the secretion and the biosynthesis of OA anions have been obtained. In addition, some aspects needed to be further studied are also discussed. PMID:23509687

  19. Bioconcentration of gaseous organic chemicals in plant leaves: Comparison of experimental data with model predictions

    SciTech Connect

    Polder, M.D.; Hulzebos, E.M.; Jager, D.T.

    1998-01-01

    This literature study is performed to support the implementation of two models in a risk assessment system for the evaluation of chemicals and their risk for human health and the environment. One of the exposure pathways for humans and cattle is the uptake of chemicals by plants. In this risk assessment system the transfer of gaseous organic substances from air to plants modeled by Riederer is included. A similar model with a more refined approach, including dilution by growth, is proposed by Trapp and Matthies, which was implemented in the European version of this risk assessment system (EUSES). In this study both models are evaluated by comparison with experimental data on leaf/air partition coefficients found in the literature. For herbaceous plants both models give good estimations for the leaf/air partition coefficient up to 10{sup 7}, with deviations for most substances within a factor of five. For the azalea and spruce group the fit between experimental BCF values and the calculated model values is less adequate. For substances for which Riederer estimates a leaf/air partition coefficient above 10{sup 7}, the approach of Trapp and Matthies seems more adequate; however, few data were available.

  20. Roles of organic acid anion secretion in aluminium tolerance of higher plants.

    PubMed

    Yang, Lin-Tong; Qi, Yi-Ping; Jiang, Huan-Xin; Chen, Li-Song

    2013-01-01

    Approximately 30% of the world's total land area and over 50% of the world's potential arable lands are acidic. Furthermore, the acidity of the soils is gradually increasing as a result of the environmental problems including some farming practices and acid rain. At mildly acidic or neutral soils, aluminium (Al) occurs primarily as insoluble deposits and is essentially biologically inactive. However, in many acidic soils throughout the tropics and subtropics, Al toxicity is a major factor limiting crop productivity. The Al-induced secretion of organic acid (OA) anions, mainly citrate, oxalate, and malate, from roots is the best documented mechanism of Al tolerance in higher plants. Increasing evidence shows that the Al-induced secretion of OA anions may be related to the following several factors, including (a) anion channels or transporters, (b) internal concentrations of OA anions in plant tissues, (d) temperature, (e) root plasma membrane (PM) H(+)-ATPase, (f) magnesium (Mg), and (e) phosphorus (P). Genetically modified plants and cells with higher Al tolerance by overexpressing genes for the secretion and the biosynthesis of OA anions have been obtained. In addition, some aspects needed to be further studied are also discussed.

  1. Functions of tocopherols in the cells of plants and other photosynthetic organisms.

    PubMed

    Mokrosnop, V M

    2014-01-01

    Tocopherol synthesis has only been observed in photosynthetic organisms (plants, algae and some cyanobacteria). Tocopherol is synthesized in the inner membrane of chloroplasts and distributed between chloroplast membranes, thylakoids and plastoglobules. Physiological significance of tocopherols for human and animal is well-studied, but relatively little is known about their function in plant organisms. Among the best characterized functions oftocopherols in cells is their ability to scavenge and quench reactive oxygen species and fat-soluble by-products of oxidative stress. There are the data on the participation of different mechanisms of α-tocopherol action in protecting photosystem II (PS II) from photoinhibition both by deactivation of singlet oxygen produced by PSII and by reduction of proton permeability of thylakoid membranes, leading to acidification of lumen under high light conditions and activation of violaxanthin de-epoxidase. Additional biological activity of tocopherols, independent of its antioxidant functions have been demonstrated. Basic mechanisms for these effects are connected with the modulation of signal transduction pathways by specific tocopherols and, in some instances, by transcriptional activation of gene expression.

  2. Impact of liquid fertilizers on plant growth, yield, fruit quality and fertigation management in an organic processing blackberry production system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of organic fertilizer source on the growth, fruit quality, and yield of blackberry cultivars (‘Marion’ and ‘Black Diamond’) grown in machine-harvested, organic production systems for the processed market was evaluated from 2011-13. The planting was established in spring 2010 using approve...

  3. Plant specific volatile organic compound emission factors from young and mature leaves of Mediterranean vegetation

    NASA Astrophysics Data System (ADS)

    Bracho-Nunez, Araceli; Welter, Saskia; Staudt, Michael; Kesselmeier, Jürgen

    2010-05-01

    Terrestrial vegetation is the most important source of atmospheric volatile organic compounds (VOC) with significant influence on the chemistry and physics of the atmosphere. VOCs influence the oxidative capacity of the atmosphere and contribute to the formation and growth of secondary organic aerosols affecting cloud development and precipitation. The aim of our study was to investigate potential quantitative and qualitative differences in VOC emission patterns of young and mature leaves for nine typical Mediterranean plant species. The Mediterranean area was chosen due to its special diversity in VOC emitting plant species. Foliar isoprenoid emissions as well as emissions of oxygenated VOC like methanol and acetone were measured under standard light and temperature conditions during spring and summer 2008 at the CEFE-CNRS institute in Montpellier, France. A proton transfer reaction mass spectrometer (PTR-MS) was used for online measurement of VOCs. While PTR-MS is an excellent technique for fast chemical measurements it lacks specificity and compounds with the same mass cannot be distinguished. For this reason, cartridge samples were collected and afterwards analyzed with GC-FID. In parallel offline VOC analyses were performed with gas chromatography (GC) coupled to a mass spectrometer and flame ionization detector, enabling assignment of the observed PTR-MS mass to charge ratios (m/z) to specific identification based on the GC-FID retention times. Thus, combining the PTR-MS and GC-FID analyses enabled accurate and online identification of the VOCs emitted. The results emphasise that VOC emission is a developmentally regulated process and quantitative and qualitative variability is plant species specific. Leaf ontogeny clearly influenced not only the standard emission rate but also the VOC composition, with methanol being the major compound that contributes to the total VOC emissions in young leaves and maintaining or decreasing its contribution with maturity.

  4. Headspace solid-phase microextraction--comprehensive two-dimensional gas chromatography of wound induced plant volatile organic compound emissions.

    PubMed

    Perera, Ranjini M M; Marriott, Philip J; Galbally, Ian E

    2002-12-01

    Plant emissions of volatile organic compounds from mechanically wounded Agrostis stolonifera, Pennisetum clandestinum, Eucalyptus leucoxylon and Trifolium repens have been sampled by headspace-solid phase microextraction (HS-SPME) and analysed by using comprehensive two-dimensional gas chromatography (GCxGC) for measurement of the plant emissions. GCxGC produces a fingerprint of the volatile organic compounds in a 2D separation space that may be approximately interpreted as a boiling point-polarity space, and may then be presented as a two-dimensional contour plot. This allows identification of sample-dependent variations in component distributions in the 2D plot, which will contain information about plant differences and should therefore facilitate recognition of different plant materials and displays the gross differences in volatiles between each plant species.

  5. High-resolution spatial patterns of Soil Organic Carbon content derived from low-altitude aerial multi-band imagery on the Broadbalk Wheat Experiment at Rothamsted,UK

    NASA Astrophysics Data System (ADS)

    Aldana Jague, Emilien; Goulding, Keith; Heckrath, Goswin; Macdonald, Andy; Poulton, Paul; Stevens, Antoine; Van Wesemael, Bas; Van Oost, Kristof

    2014-05-01

    Soil organic C (SOC) contents in arable landscapes change as a function of management, climate and topography (Johnston et al, 2009). Traditional methods to measure soil C stocks are labour intensive, time consuming and expensive. Consequently, there is a need for developing low-cost methods for monitoring SOC contents in agricultural soils. Remote sensing methods based on multi-spectral images may help map SOC variation in surface soils. Recently, the costs of both Unmanned Aerial Vehicles (UAVs) and multi-spectral cameras have dropped dramatically, opening up the possibility for more widespread use of these tools for SOC mapping. Long-term field experiments with distinct SOC contents in adjacent plots, provide a very useful resource for systematically testing remote sensing approaches for measuring SOC. This study focusses on the Broadbalk Wheat Experiment at Rothamsted (UK). The Broadbalk experiment started in 1843. It is widely acknowledged to be the oldest continuing agronomic field experiment in the world. The initial aim of the experiment was to test the effects of different organic manures and inorganic fertilizers on the yield of winter wheat. The experiment initially contained 18 strips, each about 320m long and 6m wide, separated by paths of 1.5-2.5m wide. The strips were subsequently divided into ten sections (>180 plots) to test the effects of other factors (crop rotation, herbicides, pesticides etc.). The different amounts and combinations of mineral fertilisers (N,P,K,Na & Mg) and Farmyard Manure (FYM) applied to these plots for over 160 years has resulted in very different SOC contents in adjacent plots, ranging between 0.8% and 3.5%. In addition to large inter-plot variability in SOC there is evidence of within-plot trends related to the use of discard areas between plots and movement of soil as a result of ploughing. The objectives of this study are (i) to test whether low-altitude multi-band imagery can be used to accurately predict spatial

  6. Conventional and organic soil fertility management practices affect corn plant nutrition and Ostrinia nubilalis (Lepidoptera: Crambidae) larval performance.

    PubMed

    Murrell, Ebony G; Cullen, Eileen M

    2014-10-01

    Few studies compare how different soil fertilization practices affect plant mineral content and insect performance in organic systems. This study examined: 1) The European corn borer, Ostrinia nubilalis (Hübner), larval response on corn (Zea mays L.) grown in field soils with different soil management histories; and 2) resilience of these plants to O. nubilalis herbivory. Treatments included: 1) standard organic--organically managed soil fertilized with dairy manure and 2 yr of alfalfa (Medicago sativa L.) in the rotation; 2) basic cation saturation ratio--organically managed soil fertilized with dairy manure and alfalfa nitrogen credits, plus addition of gypsum (CaSO4·2H2O) according to the soil balance hypothesis; and 3) conventional--conventionally managed soil fertilized with synthetic fertilizers. Corn plants were reared to maturity in a greenhouse, and then infested with 0-40 O. nubilalis larvae for 17 d. O. nubilalis exhibited negative competitive response to increasing larval densities. Mean development time was significantly faster for larvae consuming basic cation saturation ratio plants than those on standard organic plants, with intermediate development time on conventional plants. Neither total yield (number of kernels) nor proportion kernels damaged differed among soil fertility treatments. Soil nutrients differed significantly in S and in Ca:Mg and Ca:K ratios, but principal components analysis of plant tissue samples taken before O. nubilalis infestation showed that S, Fe, and Cu contributed most to differences in plant nutrient profiles among soil fertility treatments. Results demonstrate that different fertilization regimens can significantly affect insect performance within the context of organic systems, but the effects in this study were relatively minor compared with effects of intraspecific competition.

  7. The Organization of Controller Motifs Leading to Robust Plant Iron Homeostasis.

    PubMed

    Agafonov, Oleg; Selstø, Christina Helen; Thorsen, Kristian; Xu, Xiang Ming; Drengstig, Tormod; Ruoff, Peter

    2016-01-01

    Iron is an essential element needed by all organisms for growth and development. Because iron becomes toxic at higher concentrations iron is under homeostatic control. Plants face also the problem that iron in the soil is tightly bound to oxygen and difficult to access. Plants have therefore developed special mechanisms for iron uptake and regulation. During the last years key components of plant iron regulation have been identified. How these components integrate and maintain robust iron homeostasis is presently not well understood. Here we use a computational approach to identify mechanisms for robust iron homeostasis in non-graminaceous plants. In comparison with experimental results certain control arrangements can be eliminated, among them that iron homeostasis is solely based on an iron-dependent degradation of the transporter IRT1. Recent IRT1 overexpression experiments suggested that IRT1-degradation is iron-independent. This suggestion appears to be misleading. We show that iron signaling pathways under IRT1 overexpression conditions become saturated, leading to a breakdown in iron regulation and to the observed iron-independent degradation of IRT1. A model, which complies with experimental data places the regulation of cytosolic iron at the transcript level of the transcription factor FIT. Including the experimental observation that FIT induces inhibition of IRT1 turnover we found a significant improvement in the system's response time, suggesting a functional role for the FIT-mediated inhibition of IRT1 degradation. By combining iron uptake with storage and remobilization mechanisms a model is obtained which in a concerted manner integrates iron uptake, storage and remobilization. In agreement with experiments the model does not store iron during its high-affinity uptake. As an iron biofortification approach we discuss the possibility how iron can be accumulated even during high-affinity uptake.

  8. Microbial contributions to N-immobilization and organic matter preservation in decaying plant detritus

    NASA Astrophysics Data System (ADS)

    Tremblay, Luc; Benner, Ronald

    2006-01-01

    Microbial contributions to the detritus of two vascular plant tissues, smooth cordgrass ( Spartina alterniflora) and black mangrove leaves ( Avicennia germinans), were estimated over a 4-year decomposition period under subaqueous marine conditions. During this period, 93-97% of the initial plant tissues was decomposed. Bulk elemental and isotopic compositions of the detritus were measured along with hydrolyzable amino sugars (AS) and amino acids (AA), including the bacterial biomarkers muramic acid and the D-enantiomers of AA. A major enrichment in N relative to C occurred during decomposition. Net increases of AS, AA, and bacterial biomarkers in decaying detritus were observed. Three independent approaches indicated that on average 60-75% of the N and 20-40% of the C in highly decomposed detritus were not from the original plant tissues but were mostly from heterotrophic bacteria. During decomposition hydrolyzable AS + AA yields (˜54% of total N) were strongly correlated with total N in both types of detritus. The uncharacterized N appeared to have the same origin and dynamics as AA, suggesting the contribution of other bacterial biomolecules not measured here. There was little indication of humification or abiotic processes. Instead, N-immobilization appeared primarily bacterially mediated. Although varying dynamics were observed among individual molecules, bacterial detritus exhibited an average reactivity similar to plant detritus. Only a minor fraction of the bacterial detritus escaped rapid biodegradation and the relationship between bacterial activity and N-immobilization is consistent with an enzymatically mediated preservation mechanism. Bacteria and their remains are ubiquitous in all ecosystems and thus could comprise a major fraction of the preserved and uncharacterized organic matter in the environment.

  9. Soil organic carbon responses to grazing and woody plant encroachment in a semi-desert grassland

    NASA Astrophysics Data System (ADS)

    Throop, H. L.; Archer, S. R.; McClaran, M.; Ojima, D.; Keough, C.; Parton, W.

    2006-12-01

    The majority of carbon (C) in grassland and savanna ecosystems is belowground. Recent estimates suggest the historic and ongoing proliferation of woody plants in these systems may account for a significant fraction of the Northern Hemisphere carbon (C) sink. A large degree of uncertainty in the direction and magnitude of soil C pool response to woody encroachment exists, however. Soil organic C (SOC) response to woody encroachment may be modified by current and historical land management patterns, but the nature of these relationships is poorly understood. We used CENTURY, a process-based ecosystem model, to explore historical patterns and project future changes in SOC in response to Prosopis velutina encroachment and livestock grazing in a southern Arizona semi-desert grassland. We parameterized and adapted CENTURY for our study site using woody and herbaceous biomass data and P. velutina growth rate estimates. Modeled contemporary SOC levels were +/- 15% of measured levels. Simulations of historical grazing management suggest that grassland SOC dropped nearly 50% (from 1020 to 530 g C m-2) in response to heavy, continuous livestock grazing initiated around 1850. SOC recovery varied with the degree of relaxation of grazing intensity, with nearly full recovery occurring in areas where grazing was excluded between 1903 and 2005 (modeled SOC = 930 g C m-2 in 2005). Woody encroachment, beginning around 1900, had a strong positive influence on modeled SOC, with the greatest accumulations associated with plants greater than 60 years old. Grazing mediated this response, such that sub-canopy SOC in grazed areas was 200-300 g C m-2 less than that in ungrazed areas. Forward simulations suggest that SOC will continue to increase until woody plant stands reach ca. 130 years of age, at which point SOC will stabilize around 3300 g C m^{- 2} for grazed sites and 3000 g C m-2 for ungrazed sites. Results indicate that woody plant encroachment has strong positive influence on SOC

  10. The Organization of Controller Motifs Leading to Robust Plant Iron Homeostasis

    PubMed Central

    Agafonov, Oleg; Selstø, Christina Helen; Thorsen, Kristian; Xu, Xiang Ming; Drengstig, Tormod; Ruoff, Peter

    2016-01-01

    Iron is an essential element needed by all organisms for growth and development. Because iron becomes toxic at higher concentrations iron is under homeostatic control. Plants face also the problem that iron in the soil is tightly bound to oxygen and difficult to access. Plants have therefore developed special mechanisms for iron uptake and regulation. During the last years key components of plant iron regulation have been identified. How these components integrate and maintain robust iron homeostasis is presently not well understood. Here we use a computational approach to identify mechanisms for robust iron homeostasis in non-graminaceous plants. In comparison with experimental results certain control arrangements can be eliminated, among them that iron homeostasis is solely based on an iron-dependent degradation of the transporter IRT1. Recent IRT1 overexpression experiments suggested that IRT1-degradation is iron-independent. This suggestion appears to be misleading. We show that iron signaling pathways under IRT1 overexpression conditions become saturated, leading to a breakdown in iron regulation and to the observed iron-independent degradation of IRT1. A model, which complies with experimental data places the regulation of cytosolic iron at the transcript level of the transcription factor FIT. Including the experimental observation that FIT induces inhibition of IRT1 turnover we found a significant improvement in the system’s response time, suggesting a functional role for the FIT-mediated inhibition of IRT1 degradation. By combining iron uptake with storage and remobilization mechanisms a model is obtained which in a concerted manner integrates iron uptake, storage and remobilization. In agreement with experiments the model does not store iron during its high-affinity uptake. As an iron biofortification approach we discuss the possibility how iron can be accumulated even during high-affinity uptake. PMID:26800438

  11. Mitochondrial and peroxisomal beta-oxidation capacities of organs from a non-oilseed plant.

    PubMed

    Masterson, C; Wood, C

    2001-09-22

    Until recently, beta-oxidation was believed to be exclusively located in the peroxisomes of all higher plants. Whilst this is true for germinating oilseeds undergoing gluconeogenesis, evidence demonstrating mitochondrial beta-oxidation in other plant systems has refuted this central dogma of plant lipid metabolism. This report describes a comparative study of the dual mitochondrial and peroxisomal beta-oxidation capacities of plant organs. Oxidation of [1-(14)C] palmitate was measured in the cotyledons, plumules and radicles of Pisum sativum L., which is a starchy seed, over a 14 day period from the commencement of imbibition. Respiratory chain inhibitors were used for differentiating between mitochondrial and peroxisomal beta-oxidation. Peroxisomal beta-oxidation gave a steady, baseline rate and, in the early stages of seedling development, accounted for 70-100% of the beta-oxidation observed. Mitochondrial beta-oxidation gave peaks of activity at days 7 and 10-11, accounting for up to 82% of the total beta-oxidation activity at these times. These peaks coincide with key stages of seedling development and were not observed when normal development was disrupted by growth in the dark. Peroxisomal beta-oxidation was unaffected by etiolation. Since mitochondrial beta-oxidation was overt only during times of intense biosynthetic activity it might be switched on or off during seedling development. In contrast, peroxisomes maintained a continuous, low beta-oxidation activity that could be essential in removing harmful free fatty acids, e.g. those produced by protein and lipid turnover.

  12. Dynamics of aerial target pursuit

    NASA Astrophysics Data System (ADS)

    Pal, S.

    2015-12-01

    During pursuit and predation, aerial species engage in multitasking behavior that involve simultaneous target detection, tracking, decision-making, approach and capture. The mobility of the pursuer and the target in a three dimensional environment during predation makes the capture task highly complex. Many researchers have studied and analyzed prey capture dynamics in different aerial species such as insects and bats. This article focuses on reviewing the capture strategies adopted by these species while relying on different sensory variables (vision and acoustics) for navigation. In conclusion, the neural basis of these capture strategies and some applications of these strategies in bio-inspired navigation and control of engineered systems are discussed.

  13. Characteristics and fate of organic nitrogen in municipal biological nutrient removal wastewater treatment plants.

    PubMed

    Czerwionka, K; Makinia, J; Pagilla, K R; Stensel, H D

    2012-05-01

    The aim of this study was to investigate the occurrence and fate of colloidal and dissolved organic nitrogen (CON and DON) across biological nutrient removal (BNR) activated sludge bioreactors. Primary and secondary effluent total nitrogen (TN) measurements and component fractionation, CON and DON concentration profiles across BNR bioreactors, and laboratory batch experiments with the process mixed liquor were carried out at several full-scale BNR plants in northern Poland. The organic nitrogen (ON) components were divided into high CON, low CON, and DON based on sequential filtration through 1.2, 0.45 and 0.1 μm pore-size filters. The average influent DON(0.1 μm) (<0.1 μm) concentrations ranged from 1.1 g N/m(3) to 3.9 g N/m(3) and accounted for only 4-13% of total organic nitrogen. In the effluents, however, this contribution increased to 12-45% (the DON(0.1 μm) concentrations varied in a narrow range of 0.5-1.3 g N/m(3)). Conversions of ON inside the bioreactors were investigated in more detail in two largest plants, i.e. Gdansk (565,000 PE) and Gdynia (516,000 PE). Inside the two studied bioreactors, the largest reductions of the colloidal fraction were found to occur in the anaerobic and anoxic compartments, whereas an increase of DON(0.1 μm) concentrations was observed under aerobic conditions in the last compartment. Batch experiments with the process mixed liquor confirmed that DON(0.1 μm) was explicitly produced in the aerobic phase and significant amounts of ON were converted in the anoxic phase of the experiments.

  14. Applications of Fluorescence Spectroscopy for dissolved organic matter characterization in wastewater treatment plants

    NASA Astrophysics Data System (ADS)

    Goffin, Angélique; Guérin, Sabrina; Rocher, Vincent; Varrault, Gilles

    2016-04-01

    Dissolved organic matter (DOM) influences wastewater treatment plants efficiency (WTTP): variations in its quality and quantity can induce a foaming phenomenon and a fouling event inside biofiltration processes. Moreover, in order to manage denitrification step (control and optimization of the nitrate recirculation), it is important to be able to estimate biodegradable organic matter quantity before biological treatment. But the current methods used to characterize organic matter quality, like biological oxygen demand are laborious, time consuming and sometimes not applicable to directly monitor organic matter in situ. In the context of MOCOPEE research program (www.mocopee.com), this study aims to assess the use of optical techniques, such as UV-Visible absorbance and more specifically fluorescence spectroscopy in order to monitor and to optimize process efficiency in WWTP. Fluorescence excitation-emission matrix (EEM) spectroscopy was employed to prospect the possibility of using this technology online and in real time to characterize dissolved organic matter in different effluents of the WWTP Seine Centre (240,000 m3/day) in Paris, France. 35 sewage water influent samples were collected on 10 days at different hours. Data treatment were performed by two methods: peak picking and parallel factor analysis (PARAFAC). An evolution of DOM quality (position of excitation - emission peaks) and quantity (intensity of fluorescence) was observed between the different treatment steps (influent, primary treatment, biological treatment, effluent). Correlations were found between fluorescence indicators and different water quality key parameters in the sewage influents. We developed different multivariate linear regression models in order to predict a variety of water quality parameters by fluorescence intensity at specific excitation-emission wavelengths. For example dissolved biological oxygen demand (r2=0,900; p<0,0001) and ammonium concentration (r2=0,898; p<0

  15. Egg parasitoid attraction toward induced plant volatiles is disrupted by a non-host herbivore attacking above or belowground plant organs.

    PubMed

    Moujahed, Rihem; Frati, Francesca; Cusumano, Antonino; Salerno, Gianandrea; Conti, Eric; Peri, Ezio; Colazza, Stefano

    2014-01-01

    Plants respond to insect oviposition by emission of oviposition-induced plant volatiles (OIPVs) which can recruit egg parasitoids of the attacking herbivore. To date, studies demonstrating egg parasitoid attraction to OIPVs have been carried out in tritrophic systems consisting of one species each of plant, herbivore host, and the associated egg parasitoid. Less attention has been given to plants experiencing multiple attacks by host and non-host herbivores that potentially could interfere with the recruitment of egg parasitoids as a result of modifications to the OIPV blend. Egg parasitoid attraction could also be influenced by the temporal dynamics of multiple infestations, when the same non-host herbivore damages different organs of the same plant species. In this scenario we investigated the responses of egg parasitoids to feeding and oviposition damage using a model system consisting of Vicia faba, the above-ground insect herbivore Nezara viridula, the above- and below-ground insect herbivore Sitona lineatus, and Trissolcus basalis, a natural enemy of N. viridula. We demonstrated that the non-host S. lineatus disrupts wasp attraction toward plant volatiles induced by the host N. viridula. Interestingly, V. faba damage inflicted by either adults (i.e., leaf-feeding) or larvae (i.e., root-feeding) of S. lineatus, had a similar disruptive effect on T. basalis host location, suggesting that a common interference mechanism might be involved. Neither naïve wasps or wasps with previous oviposition experience were attracted to plant volatiles induced by N. viridula when V. faba plants were concurrently infested with S. lineatus adults or larvae. Analysis of the volatile blends among healthy plants and above-ground treatments show significant differences in terms of whole volatile emissions. Our results demonstrate that induced plant responses caused by a non-host herbivore can disrupt the attraction of an egg parasitoid to a plant that is also infested with its hosts.

  16. Air monitoring for volatile organic compounds at the Pilot Plant Complex, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Schneider, J.F.; O`Neill, H.J.; Raphaelian, L.A.; Tomczyk, N.A.; Sytsma, L.F.; Cohut, V.J.; Cobo, H.A.; O`Reilly, D.P.; Zimmerman, R.E.

    1995-03-01

    The US Army`s Aberdeen Proving Ground has been a test site for a variety of munitions, including chemical warfare agents (CWA). The Pilot Plant Complex (PPC) at Aberdeen was the site of development, manufacture, storage, and disposal of CWA. Deterioration of the buildings and violations of environmental laws led to closure of the complex in 1986. Since that time, all equipment, piping, and conduit in the buildings have been removed. The buildings have been declared free of surface CWA contamination as a result of air sampling using the military system. However, no air sampling has been done to determine if other hazardous volatile organic compounds are present in the PPC, although a wide range of toxic and/or hazardous materials other than CWA was used in the PPC. The assumption has been that the air in the PPC is not hazardous. The purpose of this air-monitoring study was to screen the indoor air in the PPC to confirm the assumption that the air does not contain volatile organic contaminants at levels that would endanger persons in the buildings. A secondary purpose was to identify any potential sources of volatile organic contaminants that need to be monitored in subsequent sampling efforts.

  17. Transcriptional repression by MYB3R proteins regulates plant organ growth

    PubMed Central

    Kobayashi, Kosuke; Suzuki, Toshiya; Iwata, Eriko; Nakamichi, Norihito; Suzuki, Takamasa; Chen, Poyu; Ohtani, Misato; Ishida, Takashi; Hosoya, Hanako; Müller, Sabine; Leviczky, Tünde; Pettkó-Szandtner, Aladár; Darula, Zsuzsanna; Iwamoto, Akitoshi; Nomoto, Mika; Tada, Yasuomi; Higashiyama, Tetsuya; Demura, Taku; Doonan, John H; Hauser, Marie-Theres; Sugimoto, Keiko; Umeda, Masaaki; Magyar, Zoltán; Bögre, László; Ito, Masaki

    2015-01-01

    In multicellular organisms, temporal and spatial regulation of cell proliferation is central for generating organs with defined sizes and morphologies. For establishing and maintaining the post-mitotic quiescent state during cell differentiation, it is important to repress genes with mitotic functions. We found that three of the Arabidopsis MYB3R transcription factors synergistically maintain G2/M-specific genes repressed in post-mitotic cells and restrict the time window of mitotic gene expression in proliferating cells. The combined mutants of the three repressor-type MYB3R genes displayed long roots, enlarged leaves, embryos, and seeds. Genome-wide chromatin immunoprecipitation revealed that MYB3R3 binds to the promoters of G2/M-specific genes and to E2F target genes. MYB3R3 associates with the repressor-type E2F, E2FC, and the RETINOBLASTOMA RELATED proteins. In contrast, the activator MYB3R4 was in complex with E2FB in proliferating cells. With mass spectrometry and pairwise interaction assays, we identified some of the other conserved components of the multiprotein complexes, known as DREAM/dREAM in human and flies. In plants, these repressor complexes are important for periodic expression during cell cycle and to establish a post-mitotic quiescent state determining organ size. PMID:26069325

  18. Interactive effects of temperature and UVB radiation on methane emissions from different organs of pea plants grown in hydroponic system.

    PubMed

    Abdulmajeed, Awatif M; Derby, Samantha R; Strickland, Samantha K; Qaderi, Mirwais M

    2017-01-01

    There is no information on variation of methane (CH4) emissions from plant organs exposed to multiple environmental factors. We investigated the interactive effects of temperature and ultraviolet-B (UVB) radiation on CH4 emissions from different organs of pea (Pisum sativum L. var. UT234 Lincoln). Plants were grown hydroponically under two temperatures (22/18°C and 28/24°C; 16h day/8h night) and two levels of UVB radiation [0 and 5kJm(-2) d(-1)] in controlled-environment growth chambers for ten days, after two weeks of initial growth under ambient temperatures. Methane emission, dry mass, growth index, electrical conductivity (EC), pectin, total chlorophyll content, gas exchange and flavonoids were measured in the appropriate plant organs - leaf, stem and root. Higher temperatures increased CH4 emissions, leaf mass ratio, and shoot: root mass ratio. Neither temperature nor UVB had significant effects on leaf, stem, root and total dry mass, EC, pectin, total chlorophyll, as well as specific leaf mass. Among plant organs, there were differences in CH4, EC, pectin and total chlorophyll. Methane and EC were highest for the stem and lowest for the leaf; leaf had highest, but stem had lowest, pectin content; total chlorophyll was highest in the leaf but lowest in the root. Higher temperatures decreased leaf flavonoids, net carbon dioxide assimilation, and water use efficiency. Overall, environmental stressors increased aerobic CH4 emission rates, which varied with plant organs.

  19. Nutrient allocation among plant organs across 13 tree species in three Bornean rain forests with contrasting nutrient availabilities.

    PubMed

    Aoyagi, Ryota; Kitayama, Kanehiro

    2016-07-01

    Allocation of nitrogen (N) and phosphorus (P) among plant organs is an important factor regulating growth rate, which is a key ecological process associated with plant life-history strategies. However, few studies have explored how N and P investment in photosynthetic (leaves) and non-photosynthetic (stems and roots) organs changes in relation to depletion of each element. We investigated nutrient concentrations of plant organs in relation to whole-plant nutrient concentration (total nutrient weight per total biomass) as an index of nutrient status of each individual using the saplings of the 13 species in three tropical rain forests with contrasting N and P availabilities (tropical evergreen forests and tropical heath forests). We found a steeper decrease in foliar N concentration than foliar P concentration with decreasing whole-plant nutrient concentration. Moreover, the steeper decrease in foliar N concentration was associated with relatively stable N concentration in stems, and vice versa for P. We suggest that the depletion of N is associated with a rapid dilution of foliar N because the cell walls in non-photosynthetic organs function as an N sink. On the other hand, these species can maintain foliar P concentration by decreasing stem P concentrations despites the depletion of P. Our results emphasize the significance of non-photosynthetic organs as an N sink for understanding the variation of foliar nutrient concentrations for the tree species in the three Bornean rain forests with different N and P availabilities.

  20. Investigation of an MLE Algorithm for Quantification of Aerial Radiological Measurements

    SciTech Connect

    Reed, Michael; Essex, James

    2012-05-10

    Aerial radiation detection is routinely used by many organizations (DHS, DOE, EPA, etc.) for the purposes of identifying the presence of and quantifying the existence of radiation along the ground. This work involves the search for lost or missing sources, as well as the characterization of large-scale releases such as might occur in a nuclear power plant accident. The standard in aerial radiological surveys involves flying large arrays of sodium-iodide detectors at altitude (15 to 700 meters) to acquire geo-referenced, 1 Hz, 1024-channel spectra. The historical shortfalls of this technology include: • Very low spatial resolution (typical field of view is circle of two-times altitude) • Relatively low detectability associated with large stand-off distances • Fundamental challenges in performing ground-level quantification This work uses modern computational power in conjunction with multi-dimensional deconvolution algorithms in an effort to improve spatial resolution, enhance detectability, and provide a robust framework for quantification.

  1. Interactions between Streptomyces coelicolor and Bacillus subtilis: Role of Surfactants in Raising Aerial Structures

    PubMed Central

    Straight, Paul D.; Willey, Joanne M.; Kolter, Roberto

    2006-01-01

    Using mixed-species cultures, we have undertaken a study of interactions between two common spore-forming soil bacteria, Bacillus subtilis and Streptomyces coelicolor. Our experiments demonstrate that the development of aerial hyphae and spores by S. coelicolor is inhibited by surfactin, a lipopeptide surfactant produced by B. subtilis. Current models of aerial development by sporulating bacteria and fungi postulate a role for surfactants in reducing surface tension at air-liquid interfaces, thereby removing the major barrier to aerial growth. S. coelicolor produces SapB, an amphipathic peptide that is surface active and required for aerial growth on certain media. Loss of aerial hyphae in developmental mutants can be rescued by addition of purified SapB. While a surfactant from a fungus can substitute for SapB in a mutant that lacks aerial hyphae, not all surfactants have this effect. We show that surfactin is required for formation of aerial structures on the surface of B. subtilis colonies. However, in contrast to this positive role, our experiments reveal that surfactin acts antagonistically by arresting S. coelicolor aerial development and causing altered expression of developmental genes. Our observations support the idea that surfactants function specifically for a given organism regardless of their shared ability to reduce surface tension. Production of surfactants with antagonistic activity could provide a powerful competitive advantage during surface colonization and in competition for resources. PMID:16788200

  2. Aerial Refueling Clearance Initiation Request

    DTIC Science & Technology

    2016-07-14

    and receiver agencies. The AR Clearance Initiation Request document recognizes the requirement for definitive aerial refueling agreements between...include directions for the development or content of these contractual agreements. 15. –SUBJECT TERMS See Document Terms and Definitions , Page 8 16...7 Terms and Definitions

  3. Reconnaissance mapping from aerial photographs

    NASA Technical Reports Server (NTRS)

    Weeden, H. A.; Bolling, N. B. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Engineering soil and geology maps were successfully made from Pennsylvania aerial photographs taken at scales from 1:4,800 to 1:60,000. The procedure involved a detailed study of a stereoscopic model while evaluating landform, drainage, erosion, color or gray tones, tone and texture patterns, vegetation, and cultural or land use patterns.

  4. 27. Aerial photograph dated 14 October 1943 taken directly over ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. Aerial photograph dated 14 October 1943 taken directly over Gould Island. Completed complex shown at north end of the island (to right in photograph), including power plant, shop, frame approach, firing pier, and small harbor formed by finger pier off east side of firing pier. Photo courtesy of Naval Undersea Warfare Center, Division Newport, Rhode Island. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  5. 29. Aerial photograph (1973) looking south across Gould Island. Firing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Aerial photograph (1973) looking south across Gould Island. Firing pier (still possessing third and fourth levels) in foreground. Pitched roof extending from south end of firing pier marks location of frame approach between pier and shop building (center rear) and power plant (to right of shop). Photo courtesy of Naval Undersea Warfare Center, Division Newport, Rhode Island. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  6. 25. Aerial photograph dated 20 June 1942, showing north end ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Aerial photograph dated 20 June 1942, showing north end of Gould Island from the northeast (caption on photo is in error). Shop and power plant under construction at left, firing pier under construction at far right. Photo courtesy of Naval Undersea Warfare Center, Division Newport, Rhode Island. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  7. 28. AERIAL VIEW LOOKING EAST AT THE WEST GATE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. AERIAL VIEW LOOKING EAST AT THE WEST GATE IN 1978. SHOWN IS BUILDING 100, THE MAIN ENTRANCE POINT TO THE SITE FROM 1969 UNTIL 1985. DURING THIS TIME EACH AUTOMOBILE THAT ENTERED THE SITE WAS SEARCHED. IN 1985, BUILDING 120 WAS BUILT AT THE OUTERMOST WEST EDGE OF THE SITE. THERE WERE 29 FACILITIES AROUND THE SITE DEDICATED TO SECURITY (5/4/78). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  8. Unmanned Aerial Vehicles unique cost estimating requirements

    NASA Astrophysics Data System (ADS)

    Malone, P.; Apgar, H.; Stukes, S.; Sterk, S.

    Unmanned Aerial Vehicles (UAVs), also referred to as drones, are aerial platforms that fly without a human pilot onboard. UAVs are controlled autonomously by a computer in the vehicle or under the remote control of a pilot stationed at a fixed ground location. There are a wide variety of drone shapes, sizes, configurations, complexities, and characteristics. Use of these devices by the Department of Defense (DoD), NASA, civil and commercial organizations continues to grow. UAVs are commonly used for intelligence, surveillance, reconnaissance (ISR). They are also use for combat operations, and civil applications, such as firefighting, non-military security work, surveillance of infrastructure (e.g. pipelines, power lines and country borders). UAVs are often preferred for missions that require sustained persistence (over 4 hours in duration), or are “ too dangerous, dull or dirty” for manned aircraft. Moreover, they can offer significant acquisition and operations cost savings over traditional manned aircraft. Because of these unique characteristics and missions, UAV estimates require some unique estimating methods. This paper describes a framework for estimating UAV systems total ownership cost including hardware components, software design, and operations. The challenge of collecting data, testing the sensitivities of cost drivers, and creating cost estimating relationships (CERs) for each key work breakdown structure (WBS) element is discussed. The autonomous operation of UAVs is especially challenging from a software perspective.

  9. Ocean surface winds drive dynamics of transoceanic aerial movements.

    PubMed

    Felicísimo, Angel M; Muñoz, Jesús; González-Solis, Jacob

    2008-08-13

    Global wind patterns influence dispersal and migration processes of aerial organisms, propagules and particles, which ultimately could determine the dynamics of colonizations, invasions or spread of pathogens. However, studying how wind-mediated movements actually happen has been hampered so far by the lack of high resolution global wind data as well as the impossibility to track aerial movements. Using concurrent data on winds and actual pathways of a tracked seabird, here we show that oceanic winds define spatiotemporal pathways and barriers for large-scale aerial movements. We obtained wind data from NASA SeaWinds scatterometer to calculate wind cost (impedance) models reflecting the resistance to the aerial movement near the ocean surface. We also tracked the movements of a model organism, the Cory's shearwater (Calonectris diomedea), a pelagic bird known to perform long distance migrations. Cost models revealed that distant areas can be connected through "wind highways" that do not match the shortest great circle routes. Bird routes closely followed the low-cost "wind-highways" linking breeding and wintering areas. In addition, we found that a potential barrier, the near surface westerlies in the Atlantic sector of the Intertropical Convergence Zone (ITCZ), temporally hindered meridional trans-equatorial movements. Once the westerlies vanished, birds crossed the ITCZ to their winter quarters. This study provides a novel approach to investigate wind-mediated movements in oceanic environments and shows that large-scale migration and dispersal processes over the oceans can be largely driven by spatiotemporal wind patterns.

  10. Reconnaissance of selected organic contaminants in effluent and ground water at fifteen municipal wastewater treatment plants in Florida, 1983- 84

    USGS Publications Warehouse

    Pruitt, J.B.; Troutman, D.E.; Irwin, G.A.

    1985-01-01

    Results of a 1983-84 reconnaissance of 15 municipal wastewater treatment plants in Florida indicated that effluent from most of the plants contains trace concentrations of volatile organic compounds. Chloroform was detected in the effluent at 11 of the 15 plants and its common occurrence was likely the result of chlorination. The maximum concentration of chloroform detected in the effluent sampled was 120 micrograms/L. Detectable concentrations of selected organophosphorus insecticides were also common. For example, diazinon was detected in the effluent at 12 of the 15 plants with a maximum concentration of 1.5 micrograms/L. Organochlorine insecticides, primarily lindane, were detected in the effluent at 8 of the 15 plants with a maximum concentration of 1.0 micrograms/L. Volatile compounds, primarily chloroform, were detected in water from monitor wells at four plants and organophosphorus insecticides, primarily diazinon, were present in the groundwater at three treatment plants. Organochlorine insecticides were not detected in any samples from monitor wells. Based on the limited data available, this cursory reconaissance suggests that the organic contaminants commonly occurring in the effluent of many of the treatment plants are not transported into the local groundwater. (Author 's abstract)

  11. Aerial Radiation Detection

    SciTech Connect

    W. M. Quam

    1999-09-30

    An airborne system designed for the detection of radioactive sources on the soil surface from an aircraft normally senses gamma rays emitted by the source. Gamma rays have the longest path length (least attenuation) through the air of any of the common radioactive emissions and will thus permit source detection at large distances. A secondary benefit from gamma rays detection if that nearly all radioactive isotopes can be identified by the spectrum of gammas emitted. Major gaseous emissions from fuel processing plants emit gammas that may be detected and identified. Some types of special nuclear material also emit neutrons which are also useful for detection at a distance.

  12. Plant diversity effects on leaching of nitrate, ammonium, and dissolved organic nitrogen from an experimental grassland

    NASA Astrophysics Data System (ADS)

    Leimer, Sophia; Oelmann, Yvonne; Wirth, Christian; Wilcke, Wolfgang

    2014-05-01

    Leaching of nitrogen (N) from soil represents a resource loss and, in particular leaching of nitrate, can threaten drinking water quality. As plant diversity leads to a more exhaustive resource use, we investigated the effects of plant species richness, functional group richness, and the presence of specific functional groups on nitrate, ammonium, dissolved organic N (DON), and total dissolved N (TDN) leaching from an experimental grassland in the first 4 years after conversion from fertilized arable land to unfertilized grassland. The experiment is located in Jena, Germany, and consists of 82 plots with 1, 2, 4, 8, 16, or 60 plant species and 1-4 functional groups (legumes, grasses, non-leguminous tall herbs, non-leguminous small herbs). Nitrate, ammonium, and TDN concentrations in soil solution in the 0-0.3 m soil layer were measured every second week during 4 years on 62 plots and DON concentrations were calculated as difference between TDN and inorganic N. Missing concentrations in soil solution were estimated using a Bayesian statistical model. Downward water fluxes (DF) per plot from the 0-0.3 m soil layer were simulated in weekly resolution with a water balance model in connection with a Bayesian model for simulating missing soil water content measurements. To obtain annual nitrate, ammonium, and DON leaching from the 0-0.3 m soil layer per plot, we multiplied the respective concentrations in soil solution with DF and aggregated the data to annual sums. TDN leaching resulted from summation of nitrate, ammonium, and DON leaching. DON leaching contributed most to TDN leaching, particularly in plots without legumes. Dissolved inorganic N leaching in this grassland was dominated by nitrate. The amount of annual ammonium leaching was small and little influenced by plant diversity. Species richness affected DON leaching only in the fourth and last investigated year, possibly because of a delayed soil biota effect that increased microbial transformation of organic

  13. The safety assessment of food ingredients derived from plant cell, tissue and organ cultures: a review.

    PubMed

    Murthy, Hosakatte Niranjana; Georgiev, Milen I; Park, So-Young; Dandin, Vijayalaxmi S; Paek, Kee-Yoeup

    2015-06-01

    Plant cell, tissue and organ cultures (PCTOC) have become an increasingly attractive alternative for the production of various high molecular weight molecules which are used as flavourings, fragrances, colouring agents and food additives. Although PCTOC products are cultivated in vitro in a contamination free environment, the raw material produced from PCTOC may contain many components apart from the target compound. In some cases, PCTOC raw materials may also carry toxins, which may be naturally occurring or accumulated during the culture process. Assessment of the safety of PCTOC products is, therefore, a priority of the biotech industries involved in their production. The safety assessment involves the evaluation of starting material, production process and the end product. Before commercialisation, PCTOC products should be evaluated for their chemical and biological properties, as well as for their toxicity. In this review, measures and general criteria for biosafety evaluation of PCTOC products are addressed and thoroughly discussed.

  14. Influence of conventional and organic agricultural practices on the phenolic content in eggplant pulp: Plant-to-plant variation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumer awareness, pesticide and fertilizer contaminations, and environmental concerns have resulted in increased demand for organically grown farm products. The present study evaluates the influence that organic versus conventional farming practices exert on the total phenolic content in eggplant...

  15. Accumulation of plant small heat-stress proteins in storage organs.

    PubMed

    Lubaretz, Olga; Zur Nieden, Uta

    2002-06-01

    Plant small heat-stress proteins (sHSPs) have been shown to be expressed not only after exposure to elevated temperatures, but also at particular developmental stages such as embryogenesis, microsporogenesis, and fruit maturation. This paper presents new data on the occurrence of sHSPs in vegetative tissues, their tissue-specific distribution, and cellular localization. We have found sHSPs in 1-year-old twigs of Acer platanoides L. and Sambucus nigra L. and in the liana Aristolochia macrophylla Lamk. exclusively in the winter months. In tendrils of Aristolochia, sHSPs were localized in vascular cambium cells. After budding, in spring, these proteins were no longer present. Furthermore, accumulation of sHSPs was demonstrated in tubers and bulbs of Allium cepa L., Amaryllis ( Hippeastrum hybridum hort.), Crocus albiflorus L., Hyacinthus orientalis L., Narcissus pseudonarcissus L., Tulipa gesneriana L., and Solanum tuberosum L. (potato). In potato tubers and bulb scales of Narcissus the stress proteins were localized in the central vacuoles of storage parenchyma cells. In order to obtain more information on a possible functional correlation between storage proteins and sHSPs, the accumulation of both types of protein in tobacco seeds during seed ripening and germination was monitored. The expression of sHSPs and globulins started simultaneously at about the 17th day after anthesis. During seed germination the sHSPs disappeared in parallel with the storage proteins. Furthermore, in embryos of transgenic tobacco plants, which do not contain any protein bodies or storage proteins, no sHSPs were found. Thus, the occurrence of sHSPs in perennial plant storage organs seems to be associated with the presence of storage proteins.

  16. Influence of two plant extracts on broilers performance, digestibility, and digestive organ size.

    PubMed

    Hernández, F; Madrid, J; García, V; Orengo, J; Megías, M D

    2004-02-01

    A 42-d trial was conducted to study the influence of 2 plant extracts on performance, digestibility, and digestive organ weights in broilers. The feeding program consisted of a starter diet until 21 d and a finisher diet until 42 d. There were 4 treatment groups: control; 10 ppm avilamycin (AB); 200 ppm essential oil extract (EOE) from oregano, cinnamon, and pepper; and 5,000 ppm Labiatae extract (LE) from sage, thyme, and rosemary. No differences in feed intake or feed conversion were observed. From 14 to 21 d of age, broilers fed the LE diet grew faster than the broilers fed the control or EOE feeds (68.8 vs. 63.9 and 61.6 g/d, respectively). Antibiotic and plant extract supplementation improved apparent whole-tract and ileal digestibility of the nutrients. For starter feed, LE supplementation improved apparent fecal digestibility of DM (P < 0.01), and all additives increased ether extract digestibility (P < 0.001). However, no effect was detected for CP digestibility (P > 0.1). At the ileal level, the AB, EOE, and LE supplementation of the starter feed increased DM and starch (P < 0.01) digestibility but not CP digestibility (P > 0.1). All additives improved apparent fecal digestibility of DM and CP of the finisher diet. No differences were observed for proventriculus, gizzard, liver, pancreas, or large or small intestine weight. In the present study, both plant extracts improved the digestibility of the feeds for broilers. The effect of different additives on digestibility improved the performance slightly, but this effect was not statistically significant.

  17. Cyanide-resistant respiration in photosynthetic organs of freshwater aquatic plants.

    PubMed

    Azcón-Bieto, J; Murillo, J; Peñuelas, J

    1987-07-01

    THE RATE AND SENSITIVITY TO INHIBITORS (KCN AND SALICYLHYDROXAMIC ACID[SHAM]) OF RESPIRATORY OXYGEN UPTAKE HAS BEEN INVESTIGATED IN PHOTOSYNTHETIC ORGANS OF SEVERAL FRESHWATER AQUATIC PLANT SPECIES: six angiosperms, two bryophytes, and an alga. The oxygen uptake rates on a dry weight basis of angiosperm leaves were generally higher than those of the corresponding stems. Leaves also had a higher chlorophyll content than stems. Respiration of leaves and stems of aquatic angiosperms was generally cyanide-resistant, the percentage of resistance being higher than 50% with very few exceptions. The cyanide resistance of respiration of whole shoots of two aquatic bryophytes and an alga was lower and ranged between 25 and 50%. These results suggested that the photosynthetic tissues of aquatic plants have a considerable alternative pathway capacity. The angiosperm leaves generally showed the largest alternative path capacity. In all cases, the respiration rate of the aquatic plants studied was inhibited by SHAM alone by about 13 to 31%. These results were used for calculating the actual activities of the cytochrome and alternative pathways. These activities were generally higher in the leaves of angiosperms. The basal oxygen uptake rate of Myriophyllum spicatum leaves was not stimulated by sucrose, malate or glycine in the absence of the uncoupler carbonylcyanide-m-chlorophenylhydrazone (CCCP), but was greatly increased by CCCP, either in the presence or in the absence of substrates. These results suggest that respiration was limited by the adenylate system, and not by substrate availability. The increase in the respiratory rate by CCCP was due to a large increase in the activities of both the cytochrome and alternative pathways. The respiration rate of M. spicatum leaves in the presence of substrates was little inhibited by SHAM alone, but the SHAM-resistant rate (that is, the cytochrome path) was greatly stimulated by the further addition of CCCP. Similarly, the cyanide

  18. Cyanide-resistant respiration in photosynthetic organs of freshwater aquatic plants. [Myriophyllum spicatum

    SciTech Connect

    Azcon-Bieto, J.; Murillo, J.; Penuelas, J.

    1987-07-01

    The rate and sensitivity to inhibitors (KCN and salicylhydroxamic acid(SHAM)) of respiratory oxygen uptake has been investigated in photosynthetic organs of several freshwater aquatic plant species. The oxygen uptake rates on a dry weigh basis of angiosperm leaves were generally higher than those of the corresponding stems. Leaves also had a higher chlorophyll content than stems. Respiration of leaves and stems of aquatic angiosperms was generally cyanide-resistant. The cyanide resistance of respiration of whole shoots of two aquatic bryophytes and an alga was lower. These results suggested that the photosynthetic tissues of aquatic plants have a considerable alternative pathway capacity. The angiosperm leaves generally showed the largest alternative path capacity. In all cases, the respiration rate of the aquatic plants studied was inhibited by SHAM alone by about 13 to 31%. These results were used for calculating the actual activities of the cytochrome and alternative pathways. These activities were generally higher in the leaves of angiosperms. The basal oxygen uptake rate of Myriophyllum spicatum leaves was greatly increased by CCCP, either in the presence or in the absence of substrates. These results suggest that respiration was limited by the adenylate system, and not by substrate availability. The increase in the respiratory rate by CCCP was due to a large increase in the activities of both the cytochrome and alternative pathways. The respiration rate of M. spicatum leaves in the presence of substrates was little inhibited by SHAM alone, but the SHAM-resistant rate (that is, the cytochrome path) was greatly stimulated by the further addition of CCCP. Similarly, the cyanide-resistant rate of O/sub 2/ uptake was also increased by the uncoupler.

  19. A Comparative study of Volatile Organic Compounds from two desert plant species growing in Southern Arizona

    NASA Astrophysics Data System (ADS)

    Paasche, K. M.; Meyers, K.; Jardine, K.

    2012-12-01

    Throughout their lives, plants are subjected to a multitude of stressors, ranging from herbivory to changes in weather. In order to survive, plants have created an arsenal of volatile organic compounds (VOCs), including green leaf volatiles (GLVs) and aromatic compounds, to combat these stressors. In this study, two plant species, Baccharis salicifolia (Seep willow) and Dodonaea viscosa (Hopbush) were examined for isoprenoids, GLVs, and aromatic compound emissions. Although, the species are not related, they should share some emitted compounds as they can be seen growing in the same environment, though the majority of the emitted compounds should remain unique to each species type. Both the Seep willow, sampled in Catalina State Park, and the Hopbush, sampled at Biosphere 2, were sampled using a Teflon bag enclosure connected to an apex lite air-sampling device and a thermal desorption (TD) tube, which was used to collect the emitted compounds. TD tube samples were analyzed using a Unity 2 thermal desorption system, which was directly connected to a 5975C series gas chromatograph/electron impact mass spectrometer with a triple-axis detector. The major compounds emitted from the Seep willow were GLVs (Octanal, Decanal, and Nonanal) and aromatics (Benzoic acid, Benzaldehyde, 1,2,3-Trifluorobenzene, and Acetophenone). The major compounds emitted from the Hopbush were isoprene and monoterpenes (1R-α-Pinene, Limonene, and α-Phellandrene.) Our results show the two species emit completely different compounds from each other, which could indicate adaptive differences. The Hopbush may be a hardier species better adapted to the Arizona environment as isoprene and monoterpenes have been indicated in thermo tolerance. GLVs on the other hand indicate the Seep willow is under severe stress.

  20. On the use of plant emitted volatile organic compounds for atmospheric chemistry simulation experiments

    NASA Astrophysics Data System (ADS)

    Kiendler-Scharr, A.; Hohaus, T.; Yu, Z.; Tillmann, R.; Kuhn, U.; Andres, S.; Kaminski, M.; Wegener, R.; Novelli, A.; Fuchs, H.; Wahner, A.

    2015-12-01

    Biogenic volatile organic compounds (BVOC) contribute to about 90% of the emitted VOC globally with isoprene being one of the most abundant BVOC (Guenther 2002). Intensive efforts in studying and understanding the impact of BVOC on atmospheric chemistry were undertaken in the recent years. However many uncertainties remain, e.g. field studies have shown that in wooded areas measured OH reactivity can often not be explained by measured BVOC and their oxidation products (e.g. Noelscher et al. 2012). This discrepancy may be explained by either a lack of understanding of BVOC sources or insufficient understanding of BVOC oxidation mechanisms. Plants emit a complex VOC mixture containing likely many compounds which have not yet been measured or identified (Goldstein and Galbally 2007). A lack of understanding BVOC sources limits bottom-up estimates of secondary products of BVOC oxidation such as SOA. Similarly, the widespread oversimplification of atmospheric chemistry in simulation experiments, using single compound or simple BVOC mixtures to study atmospheric chemistry processes limit our ability to assess air quality and climate impacts of BVOC. We will present applications of the new extension PLUS (PLant chamber Unit for Simulation) to our atmosphere simulation chamber SAPHIR. PLUS is used to produce representative BVOC mixtures from direct plant emissions. We will report on the performance and characterization of the newly developed chamber. As an exemplary application, trees typical of a Boreal forest environment were used to compare OH reactivity as directly measured by LIF to the OH reactivity calculated from BVOC measured by GC-MS and PTRMS. The comparison was performed for both, primary emissions of trees without any influence of oxidizing agents and using different oxidation schemes. For the monoterpene emitters investigated here, we show that discrepancies between measured and calculated total OH reactivity increase with increasing degree of oxidation

  1. Soil Organic Matter Quality of an Oxisol Affected by Plant Residues and Crop Sequence under No-Tillage

    NASA Astrophysics Data System (ADS)

    Cora, Jose; Marcelo, Adolfo

    2013-04-01

    Plant residues are considered the primarily resource for soil organic matter (SOM) formation and the amounts and properties of plant litter are important controlling factors for the SOM quality. We determined the amounts, quality and decomposition rate of plant residues and the effects of summer and winter crop sequences on soil organic C (TOC) content, both particulate organic C (POC) and mineral-associated organic C (MOC) pools and humic substances in a Brazilian Rhodic Eutrudox soil under a no-tillage system. The organic C analysis in specifics pools used in this study was effective and should be adopted in tropical climates to evaluate the soil quality and the sustainability of various cropping systems. Continuous growth of soybean (Glycine max L. Merrill) on summer provided higher contents of soil POC and continuous growth of maize (Zea mays L.) provided higher soil humic acid and MOC contents. Summer soybean-maize rotation provided the higher plant diversity, which likely improved the soil microbial activity and the soil organic C consumption. The winter sunn hemp (Crotalaria juncea L.), pigeon pea (Cajanus cajan (L.) Millsp), oilseed radish (Raphanus sativus L.) and pearl millet (Pennisetum americanum (L.) Leeke) enhanced the soil MOC, a finding that is attributable to the higher N content of the crop residue. Sunn hemp and pigeon pea provided the higher soil POC content. Sunn hemp showed better performance and positive effects on the SOM quality, making it a suitable winter crop choice for tropical conditions with a warm and dry winter.

  2. Plant clonal morphologies and spatial patterns as self-organized responses to resource-limited environments.

    PubMed

    Couteron, P; Anthelme, F; Clerc, M; Escaff, D; Fernandez-Oto, C; Tlidi, M

    2014-10-28

    We propose here to interpret and model peculiar plant morphologies (cushions and tussocks) observed in the Andean Altiplano as localized structures. Such structures resulting in a patchy, aperiodic aspect of the vegetation cover are hypothesized to self-organize thanks to the interplay between facilitation and competition processes occurring at the scale of basic plant components biologically referred to as 'ramets'. (Ramets are often of clonal origin.) To verify this interpretation, we applied a simple, fairly generic model (one integro-differential equation) emphasizing via Gaussian kernels non-local facilitative and competitive feedbacks of the vegetation biomass density on its own dynamics. We show that under realistic assumptions and parameter values relating to ramet scale, the model can reproduce some macroscopic features of the observed systems of patches and predict values for the inter-patch distance that match the distances encountered in the reference area (Sajama National Park in Bolivia). Prediction of the model can be confronted in the future with data on vegetation patterns along environmental gradients so as to anticipate the possible effect of global change on those vegetation systems experiencing constraining environmental conditions.

  3. Aging effects on fire-retardant additives in organic materials for nuclear-plant applications

    SciTech Connect

    Clough, R.L.

    1982-08-01

    Inhibiting fire is a major concern of nuclear safety. One of the most widely used commercial fire-retardant additives incorporated into cable insulation and other organic materials to reduce their flammability has been the halocarbon (usually a chlorinated hydrocarbon), typically in combination with antimony oxide. Such materials may be installed for the design lifetime of a nuclear plant; this report describes an investigation of the long-term aging behavior of these fire-retardant additives in polymeric materials. Extensive aging experiments on fire-retarded formulations of ethylene propylene rubber (EPR) and of chlorosulfonated polyethylene (CSPE) have been carried out, with chemical analysis of halogen and antimony content performed as a function of aging time and conditions. Oxygen index flammability measurements were also performed on selected samples. Significant fire-retardant losses (both chlorine (Cl) and antimony (Sb)) were found to occur in certain of the fire-retardant materials but not in others, depending on the molecular structure of the particular halogen-containing component. The data indicate that the loss of halogen- and antimony-based fire retardants appears to be insignificant under ambient conditions expected for nuclear plants.

  4. Analysis of volatile organic compound from Elaeis guineensis inflorescences planted on different soil types in Malaysia

    NASA Astrophysics Data System (ADS)

    Muhamad Fahmi, M. H.; Ahmad Bukhary, A. K.; Norma, H.; Idris, A. B.

    2016-11-01

    The main attractant compound for Eleidobius kamerunicus to male spikelet Elaeis guineensis (oil palm) were determined by analyzing volatile organic compound extracted from E. guineenses inflorescences planted on different soil types namely peat soil, clay soil and sandy soil. Anthesizing male oil palm inflorescences were randomly choosen from palm aged between 4-5 years old age. Extraction of the volatiles from the oil palm inflorescences were performed by Accelerated Solvent Extraction method (ASE). The extracted volatile compound were determined by using gas chromatography-mass spectrometry. Out of ten identified compound, estragole was found to be a major compound in sandy soil (37.49%), clay soil (30.71%) and peat soil (27.79%). Other compound such as 9,12-octadecadieonic acid and n-hexadecanoic acid were found as major compound in peat soil (27.18%) and (7.45%); sandy soil (14.15 %) and (9.31%); and clay soil (30.23%) and (4.99%). This study shows that estragole was the predominant volatile compound detected in oil palm inflorescences with highly concentrated in palm planted in sandy soil type.

  5. Dissolved organic nitrogen and its biodegradable portion in a water treatment plant with ozone oxidation.

    PubMed

    Wadhawan, Tanush; Simsek, Halis; Kasi, Murthy; Knutson, Kristofer; Prüβ, Birgit; McEvoy, John; Khan, Eakalak

    2014-05-01

    Biodegradability of dissolved organic nitrogen (DON) has been studied in wastewater, freshwater and marine water but not in drinking water. Presence of biodegradable DON (BDON) in water prior to and after chlorination may promote formation of nitrogenous disinfectant by-products and growth of microorganisms in the distribution system. In this study, an existing bioassay to determine BDON in wastewater was adapted and optimized, and its application was tested on samples from four treatment stages of a water treatment plant including ozonation and biologically active filtration. The optimized bioassay was able to detect BDON in 50 μg L(-1) as N of glycine and glutamic solutions. BDON in raw (144-275 μg L(-1) as N), softened (59-226 μg L(-1) as N), ozonated (190-254 μg L(-1) as N), and biologically filtered (17-103 μg L(-1) as N) water samples varied over a sampling period of 2 years. The plant on average removed 30% of DON and 68% of BDON. Ozonation played a major role in increasing the amount of BDON (31%) and biologically active filtration removed 71% of BDON in ozonated water.

  6. Emissions of volatile organic compounds during the decomposition of plant litter

    NASA Astrophysics Data System (ADS)

    Gray, Christopher M.; Monson, Russell K.; Fierer, Noah

    2010-09-01

    Volatile organic compounds (VOCs) are emitted during plant litter decomposition, and such VOCs can have wide-ranging impacts on atmospheric chemistry, terrestrial biogeochemistry, and soil ecology. However, we currently have a limited understanding of the relative importance of biotic versus abiotic sources of these VOCs and whether distinct types of litter emit different types and quantities of VOCs during decomposition. We analyzed VOCs emitted by microbes or by abiotic mechanisms during the decomposition of litter from 12 plant species in a laboratory experiment using proton transfer reaction mass spectrometry (PTR-MS). Net emissions from litter with active microbial populations (non-sterile litters) were between 0 and 11 times higher than emissions from sterile controls over a 20-d incubation period, suggesting that abiotic sources of VOCs are generally less important than biotic sources. In all cases, the sterile and non-sterile litter treatments emitted different types of VOCs, with methanol being the dominant VOC emitted from litters during microbial decomposition, accounting for 78 to 99% of the net emissions. We also found that the types of VOCs released during biotic decomposition differed in a predictable manner among litter types with VOC profiles also changing as decomposition progressed over time. These results show the importance of incorporating both the biotic decomposition of litter and the species-dependent differences in terrestrial vegetation into global VOC emission models.

  7. Towards understanding organic nitrogen species in emissions from post-combustion CO2 capture plants

    NASA Astrophysics Data System (ADS)

    Ge, X.; Zhang, Q.

    2012-12-01

    Post-combustion capture of carbon dioxide using aqueous amine solutions is the most advanced technology for reducing CO2 emissions from fossil fuel power plants. This technology, however, may lead to the emissions of amines and various nitrogen-containing degradation products with serious potential implications for human health and the environment. Understanding the chemistry of emissions from amine-based CO2-capture plants is therefore important and requires analytical methods that are capable of thoroughly characterizing the composition and concentration of organic nitrogen (ON) species in actual or simulated flue gas. In this study, we have developed a suite of methods for analyzing particulate and gaseous samples for the bulk and molecular compositions of these species. Specifically, we have optimized high-resolution aerosol mass spectrometry (HR-ToF-AMS) for real-time and offline analyses of the bulk chemistry of ON species. We have also developed methods for quantitatively analyzing up to 12 amino compounds using ion chromatography. In addition, by applying liquid chromatography-tandem mass spectrometry (LC-MS/MS), we have studied the molecular masses and empirical formulas of individual ON molecules. This suite of techniques has been applied for characterizing liquid and particulate samples generated from simulated amine-based CO2 capture process. The results from these analyses will be presented.

  8. Spatial organization and correlation properties quantify structural changes on mesoscale of parenchymatous plant tissue

    SciTech Connect

    Valous, N. A.; Delgado, A.; Sun, D.-W.; Drakakis, K.

    2014-02-14

    The study of plant tissue parenchyma's intercellular air spaces contributes to the understanding of anatomy and physiology. This is challenging due to difficulty in making direct measurements of the pore space and the complex mosaic of parenchymatous tissue. The architectural complexity of pore space has shown that single geometrical measurements are not sufficient for characterization. The inhomogeneity of distribution depends not only on the percentage content of phase, but also on how the phase fills the space. The lacunarity morphometric, as multiscale measure, provides information about the distribution of gaps that correspond to degree of spatial organization in parenchyma. Additionally, modern theories have suggested strategies, where the focus has shifted from the study of averages and histograms to the study of patterns in data fluctuations. Detrended fluctuation analysis provides information on the correlation properties of the parenchyma at different spatial scales. The aim is to quantify (with the aid of the aforementioned metrics), the mesostructural changes—that occur from one cycle of freezing and thawing—in the void phase of pome fruit parenchymatous tissue, acquired with X-ray microcomputed tomography. Complex systems methods provide numerical indices and detailed insights regarding the freezing-induced modifications upon the arrangement of cells and voids. These structural changes have the potential to lead to physiological disorders. The work can further stimulate interest for the analysis of internal plant tissue structures coupled with other physico-chemical processes or phenomena.

  9. Spatial organization and correlation properties quantify structural changes on mesoscale of parenchymatous plant tissue

    NASA Astrophysics Data System (ADS)

    Valous, N. A.; Delgado, A.; Drakakis, K.; Sun, D.-W.

    2014-02-01

    The study of plant tissue parenchyma's intercellular air spaces contributes to the understanding of anatomy and physiology. This is challenging due to difficulty in making direct measurements of the pore space and the complex mosaic of parenchymatous tissue. The architectural complexity of pore space has shown that single geometrical measurements are not sufficient for characterization. The inhomogeneity of distribution depends not only on the percentage content of phase, but also on how the phase fills the space. The lacunarity morphometric, as multiscale measure, provides information about the distribution of gaps that correspond to degree of spatial organization in parenchyma. Additionally, modern theories have suggested strategies, where the focus has shifted from the study of averages and histograms to the study of patterns in data fluctuations. Detrended fluctuation analysis provides information on the correlation properties of the parenchyma at different spatial scales. The aim is to quantify (with the aid of the aforementioned metrics), the mesostructural changes—that occur from one cycle of freezing and thawing—in the void phase of pome fruit parenchymatous tissue, acquired with X-ray microcomputed tomography. Complex systems methods provide numerical indices and detailed insights regarding the freezing-induced modifications upon the arrangement of cells and voids. These structural changes have the potential to lead to physiological disorders. The work can further stimulate interest for the analysis of internal plant tissue structures coupled with other physico-chemical processes or phenomena.

  10. Permissible radionuclide loading for organic ion exchange resins from nuclear power plants

    SciTech Connect

    MacKenzie, D.R.; Lin, M.; Barletta, R.E.

    1983-10-01

    A questionnaire on the use of ion exchange resins in nuclear power plants was sent to all operating reactors in the US. Responses were received from 23 of the 48 utilities approached. Information was sought concerning the amounts of radionuclides held by the resins, and the effects of its radiation on the resins both during operation and after removal from service. Relevant information from the questionnaires is summarized and discussed. Available literature on the effects of ionizing radiation on organic ion exchange resins has been reviewed. On the basis of published data on damage to resins by radiation, the technical rationale is given to support NRC's draft branch technical position on a maximum permissible radionuclide loading. It is considered advisable to formulate the rule in terms of a delivered dose rather than a curie loading. A maximum permissible dose of 10/sup 8/ rad is chosen because, while it is large enough that a measurable amount of damage will be done to the resin, it is small enough that the damage will be negligible at a power plant or disposal site. A test procedure has been written which a generator could use to qualify a specific resin for service at a higher dose than permitted by the general rule.

  11. Cell Number Regulator1 affects plant and organ size in maize: implications for crop yield enhancement and heterosis.

    PubMed

    Guo, Mei; Rupe, Mary A; Dieter, Jo Ann; Zou, Jijun; Spielbauer, Daniel; Duncan, Keith E; Howard, Richard J; Hou, Zhenglin; Simmons, Carl R

    2010-04-01

    Genes involved in cell number regulation may affect plant growth and organ size and, ultimately, crop yield. The tomato (genus Solanum) fruit weight gene fw2.2, for instance, governs a quantitative trait locus that accounts for 30% of fruit size variation, with increased fruit size chiefly due to increased carpel ovary cell number. To expand investigation of how related genes may impact other crop plant or organ sizes, we identified the maize (Zea mays) gene family of putative fw2.2 orthologs, naming them Cell Number Regulator (CNR) genes. This family represents an ancient eukaryotic family of Cys-rich proteins containing the PLAC8 or DUF614 conserved motif. We focused on native expression and transgene analysis of the two maize members closest to Le-fw2.2, namely, CNR1 and CNR2. We show that CNR1 reduced overall plant size when ectopically overexpressed and that plant and organ size increased when its expression was cosuppressed or silenced. Leaf epidermal cell counts showed that the increased or decreased transgenic plant and organ size was due to changes in cell number, not cell size. CNR2 expression was found to be negatively correlated with tissue growth activity and hybrid seedling vigor. The effects of CNR1 on plant size and cell number are reminiscent of heterosis, which also increases plant size primarily through increased cell number. Regardless of whether CNRs and other cell number-influencing genes directly contribute to, or merely mimic, heterosis, they may aid generation of more vigorous and productive crop plants.

  12. 5. AERIAL VIEW LOOKING SOUTH AT THE PLUTONIUM BUILDINGS (700S). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. AERIAL VIEW LOOKING SOUTH AT THE PLUTONIUM BUILDINGS (700S). BUILDING 776/777 IS THE LARGE BUILDING IN THE CENTER PORTION OF THE PHOTOGRAPH. BUILDING 771 IS IN THE LOWER RIGHT CORNER, AND BUILDING 707 IS TO THE SOUTH OF BUILDING 776/777. (6/21/88) - Rocky Flats Plant, Plutonium Fabrication, Central section of Plant, Golden, Jefferson County, CO

  13. AERIAL SHOWING COMPLETED REMOTE ANALYTICAL FACILITY (CPP627) ADJOINING FUEL PROCESSING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL SHOWING COMPLETED REMOTE ANALYTICAL FACILITY (CPP-627) ADJOINING FUEL PROCESSING BUILDING AND EXCAVATION FOR HOT PILOT PLANT TO RIGHT (CPP-640). INL PHOTO NUMBER NRTS-60-1221. J. Anderson, Photographer, 3/22/1960 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  14. 52. Neg. No.none, ca. 1950's, PhotographerUnknown, AERIAL VIEWS OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. Neg. No.-none, ca. 1950's, Photographer-Unknown, AERIAL VIEWS OF THE FORD MOTOR COMPANY ASSEMBLY PLANT, SOMETIME AFTER THE ADDITION OF THE NORTHERN WING - Ford Motor Company Long Beach Assembly Plant, Assembly Building, 700 Henry Ford Avenue, Long Beach, Los Angeles County, CA

  15. Anti-arthritic activity of various extracts of Sida rhombifolia aerial parts.

    PubMed

    Gupta, S R; Nirmal, S A; Patil, R Y; Asane, G S

    2009-01-01

    Aerial parts of the plant Sida rhombifolia Linn. (Malvaceae) were extracted successively to produce various extracts. These extracts were screened for various parameters of anti-arthritic activity, such as adjuvant-induced arthritis, motor performance, mean distance travelled, and histopathological study. Results showed that the polar constituents (ethanol and aqueous extracts) of the plant S. rhombifolia were useful in the treatment of arthritis.

  16. Multi-Megawatt Organic Rankine Engine power plant (MORE). Phase 1A: System design of MORE power plant for industrial energy conservation emphasizing the cement industry

    NASA Astrophysics Data System (ADS)

    Bair, E. K.; Breindel, B.; Collamore, F. N.; Hodgson, J. N.; Olson, G. K.

    1980-01-01

    The Multi-Megawatt Organic Rankine Engine (MORE) program is directed towards the development of a large, organic Rankine power plant for energy conservation from moderate temperature industrial heat streams. Organic Rankine power plants are ideally suited for use with heat sources in the temperature range below 1100 F. Cement manufacture was selected as the prototype industry for the MORE system because of the range of parameters which can be tested in a cement application. This includes process exit temperatures of 650 F to 1110 F for suspension preheater and long dry kilns, severe, dust loading, multi-metawatt power generation potential, and boiler exhaust gas acid dew point variations. The work performed during the Phase 1A System Design contract period is described. The System Design task defines the complete MORE system and its installation to the level necessary to obtain detailed performance maps, equipment specifications, planning of supporting experiments, and credible construction and hardware cost estimates. The MORE power plant design is based upon installation in the Black Mountain Quarry Cement Plant near Victorville, California.

  17. LMWOA (low molecular weight organic acid) exudation by salt marsh plants: Natural variation and response to Cu contamination

    NASA Astrophysics Data System (ADS)

    Mucha, Ana P.; Almeida, C. Marisa R.; Bordalo, Adriano A.; Vasconcelos, M. Teresa S. D.

    2010-06-01

    This work aimed to evaluate, in vitro, the capability of roots of two salt marsh plants to release low molecular weight organic acids (LMWOAs) and to ascertain whether Cu contamination would stimulate or not organic acids exudation. The sea rush Juncus maritimus and the sea-club rush Scirpus maritimus, both from the lower Douro river estuary (NW Portugal), were used. Plants were collected seasonally, four times a year in 2004, during low tide. After sampling, plant roots were washed for removal of adherent particles and immersed for 2 h in a solution that matched salinity (3) and pH (7.5) of the pore water from the same location to obtain plant exudates. In one of the seasons, similar experiments were carried out but spiking the solution with different amounts of Cu in order to embrace the range between 0 and 1600 nM. In the final solutions as well as in sediment pore water LMWOAs were determined by high performance liquid chromatography. Plants were able to release, in a short period of time, relatively high amounts of LMWOAs (oxalate, citrate, malate, malonate, and succinate). In the sediment pore water oxalate, succinate and acetate were also detected. Therefore, plant roots probably contributed to the presence of some of these organic compounds in pore water. Exudation differed between the plant species and also showed some seasonally variation, particularly for S. maritimus. The release of oxalate by J. maritimus increased with Cu increase in the media. However, exudation of the other LMWOAs did not seem to be stimulated by Cu contamination in the media. This fact is compatible with the existence of alternative internal mechanisms for Cu detoxification, as denoted by the fact that in media contaminated with Cu both plant species accumulated relatively high amounts (29-83%) of the initially dissolved Cu. This study expands our knowledge on the contribution of globally dominant salt marsh plants to the release of LMWOAs into the environment.

  18. Microbial inoculants and organic amendment improves plant establishment and soil rehabilitation under semiarid conditions.

    PubMed

    Mengual, Carmen; Schoebitz, Mauricio; Azcón, Rosario; Roldán, Antonio

    2014-02-15

    The re-establishment of autochthonous shrub species is an essential strategy for recovering degraded soils under semiarid Mediterranean conditions. A field assay was carried out to determine the combined effects of the inoculation with native rhizobacteria (Bacillus megaterium, Enterobacter sp, Bacillus thuringiensis and Bacillus sp) and the addition of composted sugar beet (SB) residue on physicochemical soil properties and Lavandula dentata L. establishment. One year after planting, Bacillus sp. and B. megaterium + SB were the most effective treatments for increasing shoot dry biomass (by 5-fold with respect to control) and Enterobacter sp + SB was the most effective treatments for increasing dry root biomass. All the treatments evaluated significantly increased the foliar nutrient content (NPK) compared to control values (except B. thuringiensis + SB). The organic amendment had significantly increased available phosphorus content in rhizosphere soil by 29% respect to the control. Enterobacter sp combined with sugar beet residue improved total N content in soil (by 46% respect to the control) as well as microbiological and biochemical properties. The selection of the most efficient rhizobacteria strains and their combined effect with organic residue seems to be a critical point that drives the effectiveness of using these biotechnological tools for the revegetation and rehabilitation of degraded soils under semiarid conditions.

  19. Membrane bioreactor process of organic wastewater from brassylic acid manufacturing plant.

    PubMed

    Wu, Z C; Zeng, P; Wang, S F; Gao, T Y

    2001-04-01

    The wastewater treatment from brassylic acid manufacturing plant using membrane bioreactor (MBR) was studied. The membrane bioreactor consisted of batch-operation biological aeration tank and ultrafiltration evaluation tank. The content of test included the affection of variation operation conditions on ultrafiltration separation, the general characteristics of MBR process, and the difference comparing with the conventional biological treatment. The results are as follows: (1) among the test membrane material, polyether sulphone (PES) membrane is more suitable for the wastewater treatment; (2) when the cutoff molecular weight is among 10,000-50,000, the higher the cutoff molecular weight, the bigger the water flux is in the test; (3) under the operation pressure, water flux increases accompanying with the increasing of operation pressure; (4) the paper filtered COD concentration has more affection on the water flux than the suspended solid concentration; (5) as the volume loading of MBR increases, the accumulation of high molecule organic substance and colloid increases, the membrane permeate COD concentration and paper filtered COD concentration increase too, meanwhile the water flux reduces; (6) when the sludge retention time of activated sludge of MBR increases, the accumulation of high molecule organic substance and colloid reduces, the membrane permeate COD concentration and paper filtered COD concentration reduce too, and the water flux increases; (7) comparing with the conventional biological process, the microbial activity is higher, but the microbial species is less.

  20. Root-zone temperature influences the distribution of Cu and Zn in potato-plant organs.

    PubMed

    Baghour, Mourad; Moreno, Diego A; Víllora, Gemma; López-Cantarero, Inmaculada; Hernández, Joaquín; Castilla, Nicolas; Romero, Luis

    2002-01-02

    Root-zone temperatures (RZT) in relation to Cu and Zn uptake and tissue accumulation, and to total biomass, in potato plants (Solanum tuberosum L. var. Spunta) were studied. Using five different plastic mulches (no cover, transparent polyethylene, white polyethylene, coextruded white-black polyethylene, and black polyethylene) resulted in significantly different RZT (16, 20, 23, 27, and 30 degrees C, respectively). These RZT significantly influenced Cu and Zn content (concentrated) and the biomass in various potato organs. Root-zone temperature at 20 degrees C resulted in significantly high Cu content in leaflets, and soluble Cu content in leaflets and stems, whereas 23 and 27 degrees C resulted in significantly high Cu content in roots. However, RZT had no effect on Cu content in tubers or stems or on soluble Cu in roots or tubers. The RZT at 20 degrees C resulted in significantly high Zn and soluble Zn in stems, roots, and tubers; whereas, at 27 degrees C Zn and soluble Zn content were significantly highest in leaflets. The most biomass occurred in roots and tubers at 27 degrees C; whereas in leaves and stems, the RZT influence was highly variable. Total accumulation of both Cu forms was affected by RZT at 20 degrees C, with roots and tubers having significantly the least Cu and stems and leaflets having the most. Total accumulation of both Zn forms by RZT in potato organs was highly variable, but tubers consistently accumulated the most.

  1. Factors affecting the uptake of 14C-labeled organic chemicals by plants from soil

    SciTech Connect

    Topp, E.; Scheunert, I.; Attar, A.; Korte, F.

    1986-04-01

    The uptake of /sup 14/C from various /sup 14/C-labeled organic chemicals from different chemical classes by barley and cress seedlings from soil was studied for 7 days in a closed aerated laboratory apparatus. Uptake by roots and by leaves via the air was determined separately. Although comparative long-term outdoor studies showed that an equilibrium is not reached within a short time period, plant concentration factors after 7 days could be correlated to some physicochemical and structural substance properties. Barley root concentration factors due to root uptake, expressed as concentration in roots divided by concentration in soil, gave a fairly good negative correlation to adsorption coefficients based on soil organic carbon. Barley root concentration factors, expressed as concentration in roots divided by concentration in soil liquid, gave a positive correlation to the n-octanol/water partition coefficients. Uptake of chemicals by barley leaves via air was strongly positively correlated to volatilization of chemicals from soil. Both root and foliar uptake by barley could be correlated well to the molecular weight of 14 chemicals. Uptake of chemicals by cress differed from that by barley, and correlations to physicochemical substance properties mostly were poor.

  2. Detecting climate-change responses of plants and soil organic matter using isotopomers

    NASA Astrophysics Data System (ADS)

    Schleucher, Jürgen; Ehlers, Ina; Segura, Javier; Haei, Mahsa; Augusti, Angela; Köhler, Iris; Zuidema, Pieter; Nilsson, Mats; Öquist, Mats

    2015-04-01

    Responses of vegetation and soils to environmental changes will strongly influence future climate, and responses on century time scales are most important for feedbacks on the carbon cycle, climate models, prediction of crop productivity, and for adaptation to climate change. That plants respond to increasing CO2 on century time scales has been proven by changes in stomatal index, but very little is known beyond this. In soil, the complexity of soil organic matter (SOM) has hampered a sufficient understanding of the temperature sensitivity of SOM turnover. Here we present new stable isotope methodology that allows detecting shifts in metabolism on long time scales, and elucidating SOM turnover on the molecular level. Compound-specific isotope analysis measures isotope ratios of defined metabolites, but as average of the entire molecule. Here we demonstrate how much more detailed information can be obtained from analyses of intramolecular distributions of stable isotopes, so-called isotopomer abundances. As key tool, we use nuclear magnetic resonance (NMR) spectroscopy, which allows detecting isotope abundance with intramolecular resolution and without risk for isotope fractionation during analysis. Enzyme isotope fractionations create non-random isotopomer patterns in biochemical metabolites. At natural isotope abundance, these patterns continuously store metabolic information. We present a strategy how these patterns can be used as to extract signals on plant physiology, climate variables, and their interactions. Applied in retrospective analyses to herbarium samples and tree-ring series, we detect century-time-scale metabolic changes in response to increasing atmospheric CO2, with no evidence for acclimatory reactions by the plants. In trees, the increase in photosynthesis expected from increasing CO2 ("CO2 fertilization) was diminished by increasing temperatures, which resolves the discrepancy between expected increases in photosynthesis and commonly observed

  3. Tracing CO2 fluxes and plant volatile organic compound emissions by stable isotopes

    NASA Astrophysics Data System (ADS)

    Werner, Christiane; Wegener, Frederik; Jardine, Kolby

    2014-05-01

    Plant metabolic processes exert a large influence on global climate and air quality through the emission of the greenhouse gas CO2 and volatile organic compounds (VOCs). Despite the enormous importance, processes controlling plant carbon allocation into primary and secondary metabolism, such as respiratory CO2 emission and VOC synthesis, remains unclear. The vegetation exerts a large isotopic imprint on the atmosphere through both, photosynthetic carbon isotope discrimination and fractionation during respiratory CO2 release (δ13Cres). While the former is well understood, many processes driving carbon isotope fractionation during respiration are unknown1. There are striking differences in variations of δ13Cres between plant functional groups, which have been proposed to be related to carbon partitioning in the metabolic branching points of the respiratory pathways and secondary metabolism, which are linked via a number of interfaces including the central metabolite pyruvate2. Notably, it is a known substrate in a large array of secondary pathways leading to the biosynthesis of many volatile organic compounds (VOCs), such as volatile isoprenoids, oxygenated VOCs, aromatics, fatty acid oxidation products, which can be emitted by plants. Here we investigate if carbon isotope fractionation in light and dark respired CO2 is associated with VOC emissions in the atmosphere. Specifically, we hypothesize that a high carbon flux through the pyruvate into various VOC synthesis pathways is associated with a pronounced 13C-enrichment of respired CO2 above the putative substrate, as it involves the decarboxylation of the 13C-enriched C-1 from pyruvate. Based on simultaneous real-time measurements of stable carbon isotope composition of branch respired CO2 (CRDS) and VOC fluxes (PTR-MS) we traced carbon flow into these pathways by pyruvate positional labeling. We demonstrated that in a Mediterranean shrub the 13C-enriched C-1 from pyruvate is released in substantial amounts as

  4. Effectiveness of metal-metal and metal-organic compound combinations against Plutella xylostella: implications for plant elemental defense.

    PubMed

    Jhee, Edward M; Boyd, Robert S; Eubanks, Micky D

    2006-02-01

    Plants that contain elevated foliar metal concentrations can be categorized as accumulators or, if the accumulation is extreme, hyperaccumulators. The defense hypothesis suggests that these plants may be defended against folivore attack, and recent research has indicated that metal concentrations at or below the accumulator range may be defensively effective. This experiment explored the toxicity of four metals hyper-accumulated by plants (Cd, Ni, Pb, and Zn) and asked if combinations of metals, or metals and organic chemicals, might broaden the defensive effectiveness of metals. Metals were used alone and in certain metal + metal (Zn plus Ni, Pb, or Cd) and metal + organic defensive chemical (Ni plus tannic acid, atropine, or nicotine) combinations. Artificial diet amended with these treatments was fed to larvae of the crucifer specialist herbivore Plutella xylostella. Combinations of metals and metals + organic chemicals significantly decreased survival and pupation rates, compared to single treatments, for at least some concentrations in every experiment. Effects of combinations were additive rather than synergistic or antagonistic. Because Zn enhanced the toxicity of other metals and Ni enhanced the toxicity of organic defensive chemicals, our findings suggest that the defensive effects of metals are more widespread among plants than previously believed. They also support the hypothesis that herbivore defense may have led to the evolution of metal hyper-accumulation by increasing the preexisting defensive effects of metals at accumulator levels in plants.

  5. USGS aerial resolution targets.

    USGS Publications Warehouse

    Salamonowicz, P.H.

    1982-01-01

    It is necessary to measure the achievable resolution of any airborne sensor that is to be used for metric purposes. Laboratory calibration facilities may be inadequate or inappropriate for determining the resolution of non-photographic sensors such as optical-mechanical scanners, television imaging tubes, and linear arrays. However, large target arrays imaged in the field can be used in testing such systems. The USGS has constructed an array of resolution targets in order to permit field testing of a variety of airborne sensing systems. The target array permits any interested organization with an airborne sensing system to accurately determine the operational resolution of its system. -from Author

  6. Ectomycorrhizal symbiosis can enhance plant nutrition through improved access to discrete organic nutrient patches of high resource quality.

    PubMed

    Tibbett, M; Sanders, F E

    2002-06-01

    It is known that roots can respond to patches of fertility; however, root proliferation is often too slow to exploit resources fully, and organic nutrient patches may be broken down and leached, immobilized or chemically fixed before they are invaded by the root system. The ability of fungal hyphae to exploit resource patches is far greater than that of roots due to their innate physiological and morphological plasticity, which allows comprehensive exploration and rapid colonization of resource patches in soils. The fungal symbionts of ectomycorrhizal plants excrete significant quantities of enzymes such as chitinases, phosphatases and proteases. These might allow the organic residue to be tapped directly for nutrients such as N and P. Pot experiments conducted with nutrient-stressed ectomycorrhizal and control willow plants showed that when high quality organic nutrient patches were added, they were colonized rapidly by the ectomycorrhizal mycelium. These established willows (0.5 m tall) were colonized by Hebeloma syrjense P. Karst. for 1 year prior to nutrient patch addition. Within days after patch addition, colour changes in the leaves of the mycorrhizal plants (reflecting improved nutrition) were apparent, and after I month the concentration of N and P in the foliage of mycorrhizal plants was significantly greater than that in non-mycorrhizal plants subject to the same nutrient addition. It seems likely that the mycorrhizal plants were able to compete effectively with the wider soil microbiota and tap directly into the high quality organic resource patch via their extra-radical mycelium. We hypothesize that ectomycorrhizal plants may reclaim some of the N and P invested in seed production by direct recycling from failed seeds in the soil. The rapid exploitation of similar discrete, transient, high-quality nutrient patches may have led to underestimations when determining the nutritional benefits of ectomycorrhizal colonization.

  7. 11. AERIAL VIEW LOOKING NORTH AT THE BUILDING 800 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. AERIAL VIEW LOOKING NORTH AT THE BUILDING 800 - AREA COMPLEX. ENRICHED URANIUM COMPONENTS WERE MANUFACTURED IN THIS AREA OF THE SITE. BUILDING 881, IN THE RIGHT FOREGROUND OF THE PHOTOGRAPH, WAS THE ORIGINAL PLANT B. BUILDING 883, USED FOR ROLLING AND FORMING URANIUM COMPONENTS, IS DIRECTLY TO THE NORTH OF BUILDING 881. TO THE EAST OF BUILDING 883 IS BUILDING 885, A RESEARCH AND DEVELOPMENT FACILITY FOR ALLOYS AND NON-PLUTONIUM METALS. IN THE FOREGROUND TO THE WEST OF BUILDING 881 IS AN OFFICE BUILDING, 850 (6/7/90). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  8. Chemical constituents from the aerial parts of Gynura bicolor.

    PubMed

    Chen, Jian; Mangelinckx, Sven; Adams, An; Li, Wei-Lin; Wang, Zheng-Tao; De Kimpe, Norbert

    2012-12-01

    Gynura bicolor (Willd.) DC., is used in folk recipes for the treatment of diabetes mellitus in Jiangsu, Zhejiang and Sichuan province in the south of China. A previous pharmacological study proved that the plant showed significant hypoglycemic activity on normal and alloxan-diabetic mice. In this study, two terpenes, four megastigmane-type norisoprenoids and two glycosides were isolated from the aqueous ethanolic extract of the aerial parts of Gynura bicolor and characterized mainly by NMR spectroscopy and mass spectrometry. Thes e compounds were isolated for the first time from this plant, and no evidence could be found for the previous reported presence of megastigmane-type norisoprenoids in the genus Gynura.

  9. Distribution of triterpene acids and their derivatives in organs of cowberry (Vaccinium vitis-idaea L.) plant.

    PubMed

    Szakiel, Anna; Mroczek, Agnieszka

    2007-01-01

    Wild berries of the genus Vaccinium have become increasingly popular in human health promotion due to their nutritional and medicinal properties. Some striking divergence of opinion about the content of triterpenoids in these plants still exists, meanwhile, this very large class of natural isoprenoids exhibits a wide range of biological activities and hence is of growing research interest. An investigation of triterpenoidal constituents from the cowberry (Vaccinium vitis-idaea L.) plant led to the isolation of two isomeric acids: oleanolic and ursolic and the occurrence of their derivatives in this plant was demonstrated for the first time. Free triterpene acids as well as small amounts of their bound forms (presumable glycosides and glycoside esters) occur in fruits and the vegetative part of the plant, however, in various amounts and different ratios. The total content of both acids was the highest in organs regarded as traditional herbal resources, namely fruits and leaves (1 and 0.6% of dry mass, respectively), whereas it was markedly lower in stems and rhizomes. However, the rhizomes were in turn the plant organ containing relatively the highest amount of the bound forms of both acids (0.01% of dry mass). Ursolic acid was dominant in the whole plant, but the ratio of oleanolic to ursolic acid was significantly different in individual organs, decreasing from the upper (fruits 1:2.4, leaves 1:2) to the lower (stems 1:3.5, rhizomes 1:5.2) parts of the plant. This pattern of distribution of triterpenoids in the plant may have an important physiological and ecological meaning.

  10. Aerial Photographs and Satellite Images

    USGS Publications Warehouse

    ,

    1997-01-01

    Photographs and other images of the Earth taken from the air and from space show a great deal about the planet's landforms, vegetation, and resources. Aerial and satellite images, known as remotely sensed images, permit accurate mapping of land cover and make landscape features understandable on regional, continental, and even global scales. Transient phenomena, such as seasonal vegetation vigor and contaminant discharges, can be studied by comparing images acquired at different times. The U.S. Geological Survey (USGS), which began using aerial photographs for mapping in the 1930's, archives photographs from its mapping projects and from those of some other Federal agencies. In addition, many images from such space programs as Landsat, begun in 1972, are held by the USGS. Most satellite scenes can be obtained only in digital form for use in computer-based image processing and geographic information systems, but in some cases are also available as photographic products.

  11. Predator foraging altitudes reveal the structure of aerial insect communities.

    PubMed

    Helms, Jackson A; Godfrey, Aaron P; Ames, Tayna; Bridge, Eli S

    2016-06-29

    The atmosphere is populated by a diverse array of dispersing insects and their predators. We studied aerial insect communities by tracking the foraging altitudes of an avian insectivore, the Purple Martin (Progne subis). By attaching altitude loggers to nesting Purple Martins and collecting prey delivered to their nestlings, we determined the flight altitudes of ants and other insects. We then tested hypotheses relating ant body size and reproductive ecology to flight altitude. Purple Martins flew up to 1,889 meters above ground, and nestling provisioning trips ranged up to 922 meters. Insect communities were structured by body size such that species of all sizes flew near the ground but only light insects flew to the highest altitudes. Ant maximum flight altitudes decreased by 60% from the lightest to the heaviest species. Winged sexuals of social insects (ants, honey bees, and termites) dominated the Purple Martin diet, making up 88% of prey individuals and 45% of prey biomass. By transferring energy from terrestrial to aerial food webs, mating swarms of social insects play a substantial role in aerial ecosystems. Although we focus on Purple Martins and ants, our combined logger and diet method could be applied to a range of aerial organisms.

  12. Predator foraging altitudes reveal the structure of aerial insect communities

    PubMed Central

    Helms, Jackson A.; Godfrey, Aaron P.; Ames, Tayna; Bridge, Eli S.

    2016-01-01

    The atmosphere is populated by a diverse array of dispersing insects and their predators. We studied aerial insect communities by tracking the foraging altitudes of an avian insectivore, the Purple Martin (Progne subis). By attaching altitude loggers to nesting Purple Martins and collecting prey delivered to their nestlings, we determined the flight altitudes of ants and other insects. We then tested hypotheses relating ant body size and reproductive ecology to flight altitude. Purple Martins flew up to 1,889 meters above ground, and nestling provisioning trips ranged up to 922 meters. Insect communities were structured by body size such that species of all sizes flew near the ground but only light insects flew to the highest altitudes. Ant maximum flight altitudes decreased by 60% from the lightest to the heaviest species. Winged sexuals of social insects (ants, honey bees, and termites) dominated the Purple Martin diet, making up 88% of prey individuals and 45% of prey biomass. By transferring energy from terrestrial to aerial food webs, mating swarms of social insects play a substantial role in aerial ecosystems. Although we focus on Purple Martins and ants, our combined logger and diet method could be applied to a range of aerial organisms. PMID:27352817

  13. Aerial robotic data acquisition system

    SciTech Connect

    Hofstetter, K.J.; Hayes, D.W.; Pendergast, M.M.; Corban, J.E.

    1993-12-31

    A small, unmanned aerial vehicle (UAV), equipped with sensors for physical and chemical measurements of remote environments, is described. A miniature helicopter airframe is used as a platform for sensor testing and development. The sensor output is integrated with the flight control system for real-time, interactive, data acquisition and analysis. Pre-programmed flight missions will be flown with several sensors to demonstrate the cost-effective surveillance capabilities of this new technology.

  14. Biogeochemical cycling in an organic-rich coastal marine basin: 9. Sources and accumulation rates of vascular plant-derived organic material

    NASA Astrophysics Data System (ADS)

    Haddad, Robert I.; Martens, Christopher S.

    1987-11-01

    The sources, degradation and burial of vascular plant debris deposited over the past several decades in the lagoonal sediments of Cape Lookout Bight, North Carolina, are quantified using alkaline cupric oxide lignin oxidation product (LOP) analysis. Non-woody angiosperms, accounting for 92 ± 32% of the recognizable sedimentary vascular plant debris, are calculated to contribute 23 ± 17% of the total organic carbon buried over the past decade (upper meter of sediment column). When combined with a previously established sedimentary organic carbon budget for this site (Martens and Klump, 1984; Martens et al., 1987, in preparation) a vascular plant derived carbon burial rate of 26 ± 20 mole C m -2 yr -1 is calculated for this same time interval. The refractory nature and invariant depth distributions of the lignin oxidation products (LOP), when coupled with evidence for constant degradation rates of metabolizable materials, indicate that sediment accumulation at this site has been a steady state process with respect to source and burial of organic carbon since its conversion from an inner-continental shelf to a lagoonal environment during the late 1960's. Thus systematic down-core decreases in labile organic matter result from early diagenetic processes rather than input rate variations.

  15. Tracing pharmaceuticals in a municipal plant for integrated wastewater and organic solid waste treatment.

    PubMed

    Jelic, Aleksandra; Fatone, Francesco; Di Fabio, Silvia; Petrovic, Mira; Cecchi, Franco; Barcelo, Damia

    2012-09-01

    The occurrence and removal of 42 pharmaceuticals, belonging to different therapeutic groups (analgesics and anti-inflammatory drugs, anti-ulcer agent, psychiatric drugs, antiepileptic drug, antibiotics, ß-blockers, diuretics, lipid regulator and cholesterol lowering statin drugs and anti-histamines), were studied in the wastewater and sewage sludge trains of a full scale integrated treatment plant. The plant employs a biological nutrient removal (BNR) process for the treatment of municipal wastewater, and a single-stage mesophilic anaerobic co-digestion for the treatment of wasted activated sludge mixed with the organic fraction of municipal solid waste (OFMSW), followed by a short-cut nitrification-denitrification of the anaerobic supernatant in a sequential batch reactor. Influent and effluent wastewater, as well as thickened, digested and treated sludge were sampled and analyzed for the selected pharmaceuticals in order to study their presence and fate during the treatment. Twenty three compounds were detected in influent and effluent wastewater and eleven in sludge. Infiltration of groundwater in the sewer system led to a dilution of raw sewage, resulting in lower concentrations in wastewater (up to 0.7 μg/L in influent) and sludge (70 ng/g d.w.). Due to the dilution, overall risk quotient for the mixture of pharmaceuticals detected in effluent wastewater was less than one, indicating no direct risk for the aquatic environment. A wide range of removal efficiencies during the treatment was observed, i.e. <20% to 90%. The influent concentrations of the target pharmaceuticals, as polar compounds, were undoubtedly mostly affected by BNR process in the wastewater train, and less by anaerobic-co-digestion. Mass balance calculations showed that less than 2% of the total mass load of the studied pharmaceuticals was removed by sorption. Experimentally estimated distribution coefficients (<500 L/kg) also indicated that the selected pharmaceuticals preferably remain in

  16. Volatile organic compound emissions from wastewater treatment plants in Taiwan: legal regulations and costs of control.

    PubMed

    Cheng, Wen-Hsi; Hsu, Shu-Kang; Chou, Ming-Shean

    2008-09-01

    This study assessed volatile organic compound (VOC) emission characteristics from wastewater treatment plants (WWTPs) in five Taiwanese industrial districts engaged in numerous manufacturing processes, including petrochemical, science-based industry (primarily semiconductors, photo-electronics, electronic products and biological technology), as well as multiple manufacturing processes (primarily pharmaceuticals and paint manufacturing). The most aqueous hydrocarbons dissolved in the wastewater of Taiwanese WWTPs were acetone, acrylonitrile, methylene chloride, and chloroform for the petrochemical districts; acetone, chloroform, and toluene for the science-based districts; and chlorinated and aromatic hydrocarbons for the multiple industrial districts. The aqueous pollutants in the united WWTPs were closely related to the characteristics of the manufacturing plants in the districts. To effectively prevent VOC emissions from the primary treatment section of petrochemical WWTPs, the updated regulations governing VOC emissions were issued by the Taiwanese Environmental Protection Administration in September 2005, legally mandating a seal cover system incorporating venting and air purification equipment. Cost analysis indicates that incinerators with regenerative heat recovery are optimal for treating high VOC concentrations, exceeding 10,000 ppm as CH(4), from the oil separation basins. However, the emission concentrations, ranging from 100 to 1,000 ppm as CH(4) from the other primary treatment facilities and bio-treatment stages, should be collected and then injected into the biological oxidation basins via existing or new blowers. The additional capital and operating costs required to treat the VOC emissions of 1,000 ppm as CH(4) from primary treatment facilities are less than USD 0.1 for per m(3) wastewater treatment capacity.

  17. Beta diversity at different spatial scales: plant communities in organic and conventional agriculture.

    PubMed

    Gabriel, Doreen; Roschewitz, Indra; Tscharntke, Teja; Thies, Carsten

    2006-10-01

    Biodiversity studies that guide agricultural subsidy policy have generally compared farming systems at a single spatial scale: the field. However, diversity patterns vary across spatial scales. Here, we examined the effects of farming system (organic vs. conventional) and position in the field (edge vs. center) on plant species richness in wheat fields at three spatial scales. We quantified alpha-, beta-, and gamma-diversity at the microscale in 800 plots, at the mesoscale in 40 fields, and at the macroscale in three regions using the additive partitioning approach, and evaluated the relative contribution of beta-diversity at each spatial scale to total observed species richness. We found that alpha-, beta-, and gamma-diversity were higher in organic than conventional fields and higher at the field edge than in the field center at all spatial scales. In both farming systems, beta-diversity at the meso- and macroscale explained most of the overall species richness (up to 37% and 25%, respectively), indicating considerable differences in community composition among fields and regions due to environmental heterogeneity. The spatial scale at which beta-diversity contributed the most to overall species richness differed between rare and common species. Total richness of rare species (present in < or = 5% of total samples) was mainly explained by differences in community composition at the meso- and macroscale (up to 27% and 48%, respectively), but only in organic fields. Total richness of common species (present in > or = 25% of total samples) was explained by differences in community composition at the micro- and mesoscale (up to 29% and 47%, respectively), i.e., among plots and fields, independent of farming system. Our results show that organic farming made the greatest contribution to total species richness at the meso (among fields) and macro (among regions) scale due to environmental heterogeneity. Hence, agri-environment schemes should exploit this large

  18. Telemetry of Aerial Radiological Measurements

    SciTech Connect

    H. W. Clark, Jr.

    2002-10-01

    Telemetry has been added to National Nuclear Security Administration's (NNSA's) Aerial Measuring System (AMS) Incident Response aircraft to accelerate availability of aerial radiological mapping data. Rapid aerial radiological mapping is promptly performed by AMS Incident Response aircraft in the event of a major radiological dispersal. The AMS airplane flies the entire potentially affected area, plus a generous margin, to provide a quick look at the extent and severity of the event. The primary result of the AMS Incident Response over flight is a map of estimated exposure rate on the ground along the flight path. Formerly, it was necessary to wait for the airplane to land before the map could be seen. Now, while the flight is still in progress, data are relayed via satellite directly from the aircraft to an operations center, where they are displayed and disseminated. This permits more timely utilization of results by decision makers and redirection of the mission to optimize its value. The current telemetry capability can cover all of North America. Extension to a global capability is under consideration.

  19. Characteristics of microbial volatile organic compound flux rates from soil and plant litter

    NASA Astrophysics Data System (ADS)

    Gray, C. M.; Fierer, N.

    2013-12-01

    Our knowledge of microbial production and consumption of volatile organic compounds (VOCs) from soil and litter, as well as which microorganisms are involved, is relatively limited compared to what we know about VOC emissions from terrestrial plants. With climate change expecting to alter plant community composition, nitrogen (N) deposition rates, mean annual temperatures, precipitation patterns, and atmospheric VOC concentrations, it is unknown how microbial production and consumption of VOCs from litter and soil will respond. We have spent the last 5 years quantifying VOC flux rates in decaying plant litter, mineral soils and from a subalpine field site using a proton transfer reaction mass spectrometer (PTR-MS). Microbial production, relative to abiotic sources, accounted for 78% to 99% of the total VOC emissions from decomposing litter, highlighting the importance of microbial metabolisms in these systems. Litter chemistry correlated with the types of VOCs emitted, of which, methanol was emitted at the highest rates from all studies. The net emissions of carbon as VOCs was found to be up to 88% of that emitted as CO2 suggesting that VOCs likely represent an important component of the carbon cycle in many terrestrial systems. Nitrogen additions drastically reduced VOC emissions from litter to near zero, though it is still not understood whether this was due to an increase in consumption or a decrease in production. In the field, the root system contributed to 53% of the carbon that was emitted as VOCs from the soil with increasing air temperatures correlating to an increase in VOC flux rates from the soil system. Finally, we are currently utilizing next generation sequencing techniques (Illumina MiSeq) along with varying concentrations of isoprene, the third most abundant VOC in the atmosphere behind methane and methanol, above soils in a laboratory incubation to determine consumption rates and the microorganisms (bacteria, archaea and fungi) associated with the

  20. Modes of Action and Functions of ERECTA-family Receptor-like Kinases in Plant Organ Growth and Development

    SciTech Connect

    TORII, Keiko U.

    2012-05-01

    Higher plants constitute the central resource for renewable lignocellulose biomass that can supplement for the world's depleting stores of fossil fuels. As such, understanding the molecular and genetic mechanisms of plant organ growth will provide key knowledge and genetic resources that enables manipulation of plant biomass feedstock for better growth and productivity. The goal of this proposal is to understand how cell proliferation and growth are coordinated during aboveground organ morphogenesis, and how cell-cell signaling mediated by a family of receptor kinases coordinates plant organogenesis. The well-established model plant Arabidopsis thaliana is used for our research to facilitate rapid progress. Specifically, we focus on how ERECTA-family leucine-rich repeat receptor kinases (LRR-RLKs) interact in a synergistic manner to promote organogenesis and pattern formation in Arabidopsis. This project was highly successful, resulted in fourteen publications including nine peer-reviewed original research articles. One provisional US patent has been filed through this DOE funding. We have addressed the critical roles for a family of receptor kinases in coordinating proliferation and differentiation of plants, and we successfully elucidated the downstream targets of this signaling pathway in specifying stomatal patterning.

  1. Monoacylglycerols Are Components of Root Waxes and Can Be Produced in the Aerial Cuticle by Ectopic Expression of a Suberin-Associated Acyltransferase1[W][OA

    PubMed Central

    Li, Yonghua; Beisson, Fred; Ohlrogge, John; Pollard, Mike

    2007-01-01

    The interface between plants and the environment is provided for aerial organs by epicuticular waxes that have been extensively studied. By contrast, little is known about the nature, biosynthesis, and role of waxes at the root-rhizosphere interface. Waxes isolated by rapid immersion of Arabidopsis (Arabidopsis thaliana) roots in organic solvents were rich in saturated C18-C22 alkyl esters of p-hydroxycinnamic acids, but also contained significant amounts of both α- and β-isomers of monoacylglycerols with C22 and C24 saturated acyl groups and the corresponding free fatty acids. Production of these compounds in root waxes was positively correlated to the expression of sn-glycerol-3-P acyltransferase5 (GPAT5), a gene encoding an acyltransferase previously shown to be involved in aliphatic suberin synthesis. This suggests a direct metabolic relationship between suberin and some root waxes. Furthermore, when ectopically expressed in Arabidopsis, GPAT5 produced very-long-chain saturated monoacylglycerols and free fatty acids as novel components of cuticular waxes. The crystal morphology of stem waxes was altered and the load of total stem wax compounds was doubled, although the major components typical of the waxes found on wild-type plants decreased. These results strongly suggest that GPAT5 functions in vivo as an acyltransferase to a glycerol-containing acceptor and has access to the same pool of acyl intermediates and/or may be targeted to the same membrane domain as that of wax synthesis in aerial organs. PMID:17496107

  2. Weed management, training, and irrigation practices for organic production of trailing blackberry: I. Mature plant growth and fruit production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed management, training time, and irrigation practices were evaluated from 2013-2014 in a mature field of trailing blackberry (Rubus L. subgenus Rubus Watson) established in western Oregon. The field was planted in 2010 and certified organic in 2012, before the first harvest season. Treatments inc...

  3. Weed management practices for organic production of trailing blackberry. II. Accumulation and loss of plant biomass and nutrients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to assess the impact of cultivar and weed management on accumulation and loss of plant biomass and nutrients during the first 3 years of establishment when using organic fertilizer in trailing blackberry. Treatments included two cultivars, Marion and Black Diamond, each with ei...

  4. Weed management, training, and irrigation practices for organic production of trailing blackberry: II. Soil and plant nutrient concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic production of blackberries is increasing, but there is relatively little known about how production practices affect plant and soil nutrient status. The impact of cultivar (‘Black Diamond’ and ‘Marion’), weed management (weed mat, hand weeding, and no weeding), primocane training time (Augus...

  5. Costs of establishing northern highbush blueberry in organic systems: impacts of planting method, fertilization, and mulch type

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A systems trial was established to evaluate factorial management practices for organic production of northern highbush blueberry. The practices include: flat and raised planting beds; feather meal and fish emulsion fertilizer applied at 29 and 57 kg/ha N; sawdust mulch, compost topped with sawdust m...

  6. Disinfection of model indicator organisms in a drinking water pilot plant by using PEROXONE

    SciTech Connect

    Wolfe, R.L.; Stewart, M.H.; Liang, S.; McGuire, M.J. )

    1989-09-01

    PEROXONE is an advanced oxidation process generated by combining ozone and hydrogen peroxide. This process stimulates the production of hydroxyl radicals, which have been shown to be superior to ozone for the destruction of some organic contaminants. In this study, pilot-scale experiments were conducted to evaluate the microbicidal effectiveness of PEROXONE and ozone against three model indicator groups. Escherichia coli and MS2 coliphage were seeded into the influent to the preozonation contactors of a pilot plant simulating conventional water treatment and were exposed to four ozone dosages, four hydrogen peroxide/ozone weight ratios, and four contact times in two source waters--Colorado River water and state project water--of different quality. The removal of heterotrophic plate count bacteria was also monitored. Results of the study indicated that the microbicidal activity of PEROXONE was greatly affected by the applied ozone dose, H2O2/O3 ratio, contact time, source water quality, and type of microorganism tested. At contact times of 5 min or less, ozone alone was a more potent bactericide than PEROXONE at all H2O2/O3 ratios tested. However, this decrease in the bactericidal potency of PEROXONE was dramatic only as the H2O2/O3 ratio was increased from 0.5 to 0.8. The fact that the bactericidal activity of PEROXONE generally decreased with increasing H2O2/O3 ratios was thought to be related to the lower ozone residuals produced. The viricidal activity of PEROXONE and ozone was comparable at all of the H2O2/O3 ratios. Heterotrophic plate count bacteria were the most resistant group of organisms. Greater inactivation of E. coli and MS2 was observed in Colorado River water than in state project water and appeared to result from differences in the turbidity and alkalinity of the two waters. Regardless of source water, greater than 4.5 log10 of E.

  7. Soil organic matter influences cerium translocation and physiological processes in kidney bean plants exposed to cerium oxide nanoparticles.

    PubMed

    Majumdar, Sanghamitra; Peralta-Videa, Jose R; Trujillo-Reyes, Jesica; Sun, Youping; Barrios, Ana C; Niu, Genhua; Margez, Juan P Flores-; Gardea-Torresdey, Jorge L

    2016-11-01

    Soil organic matter plays a major role in determining the fate of the engineered nanomaterials (ENMs) in the soil matrix and effects on the residing plants. In this study, kidney bean plants were grown in soils varying in organic matter content and amended with 0-500mg/kg cerium oxide nanoparticles (nano-CeO2) under greenhouse condition. After 52days of exposure, cerium accumulation in tissues, plant growth and physiological parameters including photosynthetic pigments (chlorophylls and carotenoids), net photosynthesis rate, transpiration rate, and stomatal conductance were recorded. Additionally, catalase and ascorbate peroxidase activities were measured to evaluate oxidative stress in the tissues. The translocation factor of cerium in the nano-CeO2 exposed plants grown in organic matter enriched soil (OMES) was twice as the plants grown in low organic matter soil (LOMS). Although the leaf cover area increased by 65-111% with increasing nano-CeO2 concentration in LOMS, the effect on the physiological processes were inconsequential. In OMES leaves, exposure to 62.5-250mg/kg nano-CeO2 led to an enhancement in the transpiration rate and stomatal conductance, but to a simultaneous decrease in carotenoid contents by 25-28%. Chlorophyll a in the OMES leaves also decreased by 27 and 18% on exposure to 125 and 250mg/kg nano-CeO2. In addition, catalase activity increased in LOMS stems, and ascorbate peroxidase increased in OMES leaves of nano-CeO2 exposed plants, with respect to control. Thus, this study provides clear evidence that the properties of the complex soil matrix play decisive roles in determining the fate, bioavailability, and biological transport of ENMs in the environment.

  8. Nitrogen control of 13C enrichment in heterotrophic organs relative to leaves in a landscape-building desert plant species

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Gu, L.; Bao, F.; Cao, Y.; Hao, Y.; He, J.; Li, J.; Li, Y.; Ren, Y.; Wang, F.; Wu, R.; Yao, B.; Zhao, Y.; Lin, G.; Wu, B.; Lu, Q.; Meng, P.

    2015-01-01

    A longstanding puzzle in isotope studies of C3 plant species is that heterotrophic plant organs (e.g., stems, roots, seeds, and fruits) tend to be enriched in 13C compared to the autotrophic organ (leaves) that provides them with photosynthate. Our inability to explain this puzzle suggests key deficiencies in understanding post-photosynthetic metabolic processes. It also limits the effectiveness of applications of stable carbon isotope analyses in a variety of scientific disciplines ranging from plant physiology to global carbon cycle studies. To gain insight into this puzzle, we excavated whole plant architectures of Nitraria tangutorum Bobrov, a C3 species that has an exceptional capability of fixing sands and building sand dunes, in two deserts in northwestern China. We systematically and simultaneously measured carbon isotope ratios and nitrogen and phosphorous contents of different parts of the excavated plants. We also determined the seasonal variations in leaf carbon isotope ratios on nearby intact plants of N. tangutorum. We found, for the first time, that higher nitrogen contents in heterotrophic organs were significantly correlated with increased heterotrophic 13C enrichment compared to leaves. However, phosphorous contents had no effect on the enrichment. In addition, new leaves had carbon isotope ratios similar to roots but were progressively depleted in 13C as they matured. We concluded that a nitrogen-mediated process, hypothesized to be the refixation of respiratory CO2 by phosphoenolpyruvate (PEP) carboxylase, was responsible for the differences in 13C enrichment among different heterotrophic organs, while processes such as fractionating foliar metabolism and preferentially loading into phloem of 13C-enriched sugars may contribute to the overall autotrophic-heterotrophic difference in carbon isotope compositions.

  9. Nitrogen control of 13C enrichment in heterotrophic organs relative to leaves in a landscape-building desert plant species

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Gu, L.; Bao, F.; Cao, Y.; Hao, Y.; He, J.; Li, J.; Li, Y.; Ren, Y.; Wang, F.; Wu, R.; Yao, B.; Zhao, Y.; Lin, G.; Wu, B.; Lu, Q.; Meng, P.

    2014-09-01

    A longstanding puzzle in isotope studies of C3 plant species is that heterotrophic plant organs (e.g., stems, roots, seeds, and fruits) tend to be enriched in 13C compared to the autotrophic organ (leaves) that provides them with photosynthate. Our inability to explain this puzzle suggests key deficiencies in understanding post-photosynthetic metabolic processes. It also limits the effectiveness of applications of stable carbon isotope analyses in a variety of scientific disciplines ranging from plant physiology to global carbon cycle studies. To gain insight into this puzzle, we excavated whole plant architectures of Nitraria tangutorum Bobrov, a C3 species that has an exceptional capability of fixing sands and building sand dunes, in two deserts in northwestern China. We systematically and simultaneously measured carbon isotope ratios and nitrogen and phosphorous contents of different parts of the excavated plants. We also determined the seasonal variations in leaf carbon isotope ratios on nearby intact plants of N. tangutorum. We found, for the first time, that higher nitrogen contents in heterotrophic organs were significantly correlated with increased heterotrophic 13C enrichment compared to leaves. However, phosphorous contents had no effect on the enrichment. In addition, new leaves had carbon isotope ratios similar to roots but were progressively depleted in 13C as they matured. We concluded that a nitrogen-mediated process, probably the refixation of respiratory CO2 by phosphoenolpyruvate (PEP) carboxylase, was responsible for the differences in 13C enrichment among different heterotrophic organs while processes within leaves or during phloem loading may contribute to the overall autotrophic - heterotrophic difference in carbon isotope compositions.

  10. Nitrogen control of 13C enrichment in heterotrophic organs relative to leaves in a landscape-building desert plant species

    DOE PAGES

    Zhang, J.; Gu, L.; Bao, F.; ...

    2014-09-10

    A longstanding puzzle in isotope studies of C3 plant species is that heterotrophic plant organs (e.g., stems, roots, seeds, and fruits) tend to be enriched in 13C compared to the autotrophic organ (leaves) that provides them with photosynthate. Our inability to explain this puzzle suggests key deficiencies in understanding post-photosynthetic metabolic processes. It also limits the effectiveness of applications of stable carbon isotope analyses in a variety of scientific disciplines ranging from plant physiology to global carbon cycle studies. To gain insight into this puzzle, we excavated whole plant architectures of Nitraria tangutorum Bobrov, a C3 species that has anmore » exceptional capability of fixing sands and building sand dunes, in two deserts in northwestern China. We systematically and simultaneously measured carbon isotope ratios and nitrogen and phosphorous contents of different parts of the excavated plants. We also determined the seasonal variations in leaf carbon isotope ratios on nearby intact plants of N. tangutorum. We found, for the first time, that higher nitrogen contents in heterotrophic organs were significantly correlated with increased heterotrophic 13C enrichment compared to leaves. However, phosphorous contents had no effect on the enrichment. In addition, new leaves had carbon isotope ratios similar to roots but were progressively depleted in 13C as they matured. We concluded that a nitrogen-mediated process, probably the refixation of respiratory CO2 by phosphoenolpyruvate (PEP) carboxylase, was responsible for the differences in 13C enrichment among different heterotrophic organs while processes within leaves or during phloem loading may contribute to the overall autotrophic – heterotrophic difference in carbon isotope compositions.« less

  11. Spatial Feature Evaluation for Aerial Scene Analysis

    SciTech Connect

    Swearingen, Thomas S; Cheriyadat, Anil M

    2013-01-01

    High-resolution aerial images are becoming more readily available, which drives the demand for robust, intelligent and efficient systems to process increasingly large amounts of image data. However, automated image interpretation still remains a challenging problem. Robust techniques to extract and represent features to uniquely characterize various aerial scene categories is key for automated image analysis. In this paper we examined the role of spatial features to uniquely characterize various aerial scene categories. We studied low-level features such as colors, edge orientations, and textures, and examined their local spatial arrangements. We computed correlograms representing the spatial correlation of features at various distances, then measured the distance between correlograms to identify similar scenes. We evaluated the proposed technique on several aerial image databases containing challenging aerial scene categories. We report detailed evaluation of various low-level features by quantitatively measuring accuracy and parameter sensitivity. To demonstrate the feature performance, we present a simple query-based aerial scene retrieval system.

  12. Application of Copper Indium Gallium Diselenide Photovoltaic Cells to Extend the Endurance and Capabilities of the Raven RQ-11B Unmanned Aerial Vehicle

    DTIC Science & Technology

    2010-09-01

    Unmanned Aerial Vehicle 6. AUTHOR( S ) Javier V. Coba 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Naval Postgraduate...School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME( S ) AND ADDRESS(ES) Unmanned Aerial...73 D. ENERGY CALCULATIONS ...............................75 1. Fully Charged Battery ........................75 2. Raven’s Energy

  13. Ecotoxicity of boric acid in standard laboratory tests with plants and soil organisms.

    PubMed

    Princz, Juliska; Becker, Leonie; Scheffczyk, Adam; Stephenson, Gladys; Scroggins, Rick; Moser, Thomas; Römbke, Jörg

    2017-03-17

    To verify the continuous sensitivity of ecotoxicological tests (mainly the test organisms), reference substances with known toxicity are regularly tested. Ideally, this substance(s) would lack specificity in its mode action, be bioavailable and readily attainable with cost-effective means of chemical characterization. Boric acid has satisfied these criteria, but has most recently been characterized as a substance of very high concern, due to reproductive effects in humans, thus limiting its recommendation as an ideal reference toxicant. However, there is probably no other chemical for which ecotoxicity in soil has been so intensively studied; an extensive literature review yielded lethal (including avoidance) and sublethal data for 38 taxa. The ecotoxicity data were evaluated using species sensitivity distributions, collectively across all taxa, and separately according to species type, endpoints, soil type and duration. The lack of specificity in the mode of action yielded broad toxicity among soil taxa and soil types, and provided a collective approach to assessing species sensitivity, while taking into consideration differences in test methodologies and exposure durations. Toxicity was species-specific with Folsomia candida and enchytraied species demonstrating the most sensitivity; among plants, the following trend occurred: dicotyledonous (more sensitive) ≫ monocotyledonous ≫ gymnosperm species. Sensitivity was also time and endpoint specific, with endpoints such as lethality and avoidance being less sensitive than reproduction effects. Furthermore, given the breadth of data and toxicity demonstrated by boric acid, lessons learned from its evaluation are discussed to recommend the properties required by an ideal reference substance for the soil compartment.

  14. Differentiating plant cells switched to proliferation remodel the functional organization of nuclear domains.

    PubMed

    Testillano, P S; González-Melendi, P; Coronado, M J; Seguí-Simarro, J M; Moreno-Risueño, M A; Risueño, M C

    2005-01-01

    The immature pollen grain, the microspore, under stress conditions can switch its developmental program towards proliferation and embryogenesis. The comparison between the gametophytic and sporophytic pathways followed by the microspore permitted us to analyse the nuclear changes in plant differentiating cells when switched to proliferation. The nucleus is highly dynamic, the architecture of its well organised functional domains--condensed chromatin, interchromatin region, nuclear bodies and nucleolus--changing in response to DNA replication, RNA transcription, processing and transport. In the present work, the rearrangements of the nuclear domains during the switch to proliferation have been determined by in situ molecular identification methods for the subcellular localization of chromatin at different functional states, rDNA, elements of the nuclear machinery (PCNA, splicing factors), signalling and stress proteins. The study of the changes in the nuclear domains was determined by a correlative approach at confocal and electron microscopy levels. The results showed that the switch of the developmental program and the activation of the proliferative activity affected the functional organization of the nuclear domains, which accordingly changed their architecture and functional state. A redistribution of components, among them various signalling molecules which targeted structures within the interchromatin region upon translocation from the cytoplasm, was also observed.

  15. Spectroscopic evidence of uranium immobilization in acidic wetlands by natural organic matter and plant roots.

    PubMed

    Li, Dien; Kaplan, Daniel I; Chang, Hyun-Shik; Seaman, John C; Jaffé, Peter R; Koster van Groos, Paul; Scheckel, Kirk G; Segre, Carlo U; Chen, Ning; Jiang, De-Tong; Newville, Matthew; Lanzirotti, Antonio

    2015-03-03

    Biogeochemistry of uranium in wetlands plays important roles in U immobilization in storage ponds of U mining and processing facilities but has not been well understood. The objective of this work was to study molecular mechanisms responsible for high U retention by Savannah River Site (SRS) wetland sediments under varying redox and acidic (pH = 2.6-5.8) conditions using U L3-edge X-ray absorption spectroscopy. Uranium in the SRS wetland sediments existed primarily as U(VI) bonded as a bidentate to carboxylic sites (U-C bond distance at ∼2.88 Å), rather than phenolic or other sites of natural organic matter (NOM). In microcosms simulating the SRS wetland processes, U immobilization on roots was 2 orders of magnitude higher than on the adjacent brown or more distant white sands in which U was U(VI). Uranium on the roots were both U(IV) and U(VI), which were bonded as a bidentate to carbon, but the U(VI) may also form a U phosphate mineral. After 140 days of air exposure, all U(IV) was reoxidized to U(VI) but remained as a bidentate bonding to carbon. This study demonstrated NOM and plant roots can highly immobilize U(VI) in the SRS acidic sediments, which has significant implication for the long-term stewardship of U-contaminated wetlands.

  16. Spectroscopic evidence of uranium immobilization in acidic wetlands by natural organic matter and plant roots

    SciTech Connect

    Li, Dien; Kaplan, Daniel I.; Chang, Hyun-Shik; Seaman, John C.; Jaffé, Peter R.; Koster van Groos, Paul; Scheckel, Kirk G.; Segre, Carlo U.; Chen, Ning; Jiang, De-Tong; Newville, Matthew; Lanzirotti, Antonio

    2015-03-03

    Biogeochemistry of uranium in wetlands plays important roles in U immobilization in storage ponds of U mining and processing facilities but has not been well understood. The objective of this work was to study molecular mechanisms responsible for high U retention by Savannah River Site (SRS) wetland sediments under varying redox and acidic (pH = 2.6–5.8) conditions using U L₃-edge X-ray absorption spectroscopy. Uranium in the SRS wetland sediments existed primarily as U(VI) bonded as a bidentate to carboxylic sites (U–C bond distance at ~2.88 Å), rather than phenolic or other sites of natural organic matter (NOM). In microcosms simulating the SRS wetland processes, U immobilization on roots was two orders of magnitude higher than on the adjacent brown or more distant white sands in which U was U(VI). Uranium on the roots were both U(IV) and U(VI), which were bonded as a bidentate to carbon, but the U(VI) may also form a U phosphate mineral. After 140 days of air exposure, all U(IV) was re-oxidized to U(VI) but remained as a bidentate bonding to carbon. This study demonstrated NOM and plant roots can highly immobilize U(VI) in the SRS acidic sediments, which has significant implication for the long-term stewardship of U-contaminated wetlands.

  17. Spectroscopic evidence of uranium immobilization in acidic wetlands by natural organic matter and plant roots

    DOE PAGES

    Li, Dien; Kaplan, Daniel I.; Chang, Hyun-Shik; ...

    2015-03-03

    Biogeochemistry of uranium in wetlands plays important roles in U immobilization in storage ponds of U mining and processing facilities but has not been well understood. The objective of this work was to study molecular mechanisms responsible for high U retention by Savannah River Site (SRS) wetland sediments under varying redox and acidic (pH = 2.6–5.8) conditions using U L₃-edge X-ray absorption spectroscopy. Uranium in the SRS wetland sediments existed primarily as U(VI) bonded as a bidentate to carboxylic sites (U–C bond distance at ~2.88 Å), rather than phenolic or other sites of natural organic matter (NOM). In microcosms simulatingmore » the SRS wetland processes, U immobilization on roots was two orders of magnitude higher than on the adjacent brown or more distant white sands in which U was U(VI). Uranium on the roots were both U(IV) and U(VI), which were bonded as a bidentate to carbon, but the U(VI) may also form a U phosphate mineral. After 140 days of air exposure, all U(IV) was re-oxidized to U(VI) but remained as a bidentate bonding to carbon. This study demonstrated NOM and plant roots can highly immobilize U(VI) in the SRS acidic sediments, which has significant implication for the long-term stewardship of U-contaminated wetlands.« less

  18. Cytoplasmic streaming in plant cells emerges naturally by microfilament self-organization.

    PubMed

    Woodhouse, Francis G; Goldstein, Raymond E

    2013-08-27

    Many cells exhibit large-scale active circulation of their entire fluid contents, a process termed cytoplasmic streaming. This phenomenon is particularly prevalent in plant cells, often presenting strikingly regimented flow patterns. The driving mechanism in such cells is known: myosin-coated organelles entrain cytoplasm as they process along actin filament bundles fixed at the periphery. Still unknown, however, is the developmental process that constructs the well-ordered actin configurations required for coherent cell-scale flow. Previous experimental works on streaming regeneration in cells of Characean algae, whose longitudinal flow is perhaps the most regimented of all, hint at an autonomous process of microfilament self-organization driving the formation of streaming patterns during morphogenesis. Working from first principles, we propose a robust model of streaming emergence that combines motor dynamics with both microscopic and macroscopic hydrodynamics to explain how several independent processes, each ineffectual on its own, can reinforce to ultimately develop the patterns of streaming observed in the Characeae and other streaming species.

  19. Determination of tropane alkaloids atropine and scopolamine by liquid chromatography-mass spectrometry in plant organs of Datura species.

    PubMed

    Jakabová, Silvia; Vincze, Lajos; Farkas, Agnes; Kilár, Ferenc; Boros, Borbála; Felinger, Attila

    2012-04-06

    Hyoscyamine (atropine) and scopolamine are the predominant tropane alkaloids in the Datura genus, occurring in all plant organs. The assessment of the alkaloid content of various plant parts is essential from the viewpoint of medical use, but also as a potential risk of toxicity for humans and animals. Therefore, a reliable method for the determination of tropane alkaloid content is of high importance. The present work aimed at the elaboration of a rapid method for determination of the most abundant Datura alkaloids by LC-MS technique using a new generation of core-shell particle packed column. Tropane alkaloid content was investigated in various plant organs of four Datura taxa (D. innoxia, D. metel, D. stramonium, and D. stramonium var. tatula), grown under the same conditions, in two developmental stages. We have developed a rapid LC-MS method for the quantitative determination of atropine and scopolamine, which was successfully applied to quantify the alkaloids in different plant organs (leaves, flowers, stems, seeds) of thorn apples after a simple sample preparation step. Elaboration and validation of the method and analysis of plant extracts were done by UFLC-MS technique, employing an Ascentis Express C18 column. Detection was done in positive ionization mode (ESI+) and the method suitability was evaluated by several validation characteristics. Quantitation limits are 333 and 167 pgmL(-1) for scopolamine and atropine, respectively, and the method shows very good repeatability. The analysis of Datura extracts revealed significant differences depending on the species, the organ and the sampling period. Atropine was found to be dominant over scopolamine in three out of the four taxa investigated. D. innoxia showed the highest concentrations of scopolamine in all organs examined, whereas D. metel accumulated the lowest scopolamine levels. Hyoscyamine, measured as atropine, was the highest in D. stramonium var. tatula, and the lowest in D. innoxia. Samples

  20. Unmanned Aerial Vehicles Master Plan, 1993.

    DTIC Science & Technology

    2007-11-02

    PHOTOGRAPH THIS SHEET AND RETURN To DTIC-FDAC DTIC 70A DOCUMENT PROCESSMING I~ SlEW -, mmllamm LOAN DOCUMENT DEPARTMENT OF DEFENSE UNMANNED AERIAL VEHICLES (UAV...11 B. Program Executive Officer for Cruise Missiles 3 and Unmanned Aerial Vehicles (PEO[CU...69 I ! I I ivI -- UAV 1993 MASTER PLAN U I EXECUTIVE SUMMARY 3 A. OVERVIEW Unmanned Aerial Vehicles (UAVs)* can make significant

  1. Complementary effects of soil organism and plant propagule introductions in restoration of species-rich grassland communities.

    SciTech Connect

    Kardol, Paul; Bezemer, T Martijn; van der Putten, Wim H.

    2009-01-01

    A common practice in biodiversity conservation is restoration of former species-rich grassland on ex-arable land. Major constraints for grassland restoration are high soil fertility and limited dispersal ability of plant species to target sites. Usually, studies focus on soil fertility or on methods to introduce plant seeds. However, the question is whether soil fertility reduction is always necessary for getting plant species established on target sites. In a three-year field experiment with ex-arable soil with intensive farming history, we tested single and combined effects of soil fertility reduction and sowing mid-successional plant species on plant community development and soil biological properties. A controlled microcosm study was performed to test short-term effects of soil fertility reduction measures on biomass production of mid-successional species. Soil fertility was manipulated by adding carbon (wood or straw) to incorporate plant-available nutrients into organic matter, or by removing nutrients through top soil removal (TSR). The sown species established successfully and their establishment was independent of carbon amendments. TSR reduced plant biomass, and effectively suppressed arable weeds, however, created a desert-like environment, inhibiting the effectiveness of sowing mid-successional plant species. Adding straw or wood resulted in short-term reduction of plant biomass, suggesting a temporal decrease in plant-available nutrients by microbial immobilisation. Straw and wood addition had little effects on soil biological properties, whereas TSR profoundly reduced numbers of bacteria, fungal biomass and nematode abundance. In conclusion, in ex-arable soils, on a short term sowing is more effective for grassland restoration than strategies aiming at soil fertility reduction.

  2. Landscape scale controls on the vascular plant component of dissolved organic carbon across a freshwater delta

    NASA Astrophysics Data System (ADS)

    Eckard, Robert S.; Hernes, Peter J.; Bergamaschi, Brian A.; Stepanauskas, Ramunas; Kendall, Carol

    2007-12-01

    Lignin phenol concentrations and compositions were determined on dissolved organic carbon (DOC) extracts (XAD resins) within the Sacramento-San Joaquin River Delta (the Delta), the tidal freshwater portion of the San Francisco Bay Estuary, located in central California, USA. Fourteen stations were sampled, including the following habitats and land-use types: wetland, riverine, channelized waterway, open water, and island drains. Stations were sampled approximately seasonally from December, 1999 through May, 2001. DOC concentrations ranged from 1.3 mg L -1 within the Sacramento River to 39.9 mg L -1 at the outfall from an island drain (median 3.0 mg L -1), while lignin concentrations ranged from 3.0 μg L -1 within the Sacramento River to 111 μg L -1 at the outfall from an island drain (median 11.6 μg L -1). Both DOC and lignin concentrations varied significantly among habitat/land-use types and among sampling stations. Carbon-normalized lignin yields ranged from 0.07 mg (100 mg OC) -1 at an island drain to 0.84 mg (100 mg OC) -1 for a wetland (median 0.36 mg (100 mg OC) -1), and also varied significantly among habitat/land-use types. A simple mass balance model indicated that the Delta acted as a source of lignin during late autumn through spring (10-83% increase) and a sink for lignin during summer and autumn (13-39% decrease). Endmember mixing models using S:V and C:V signatures of landscape scale features indicated strong temporal variation in sources of DOC export from the Delta, with riverine source signatures responsible for 50% of DOC in summer and winter, wetland signatures responsible for 40% of DOC in summer, winter, and late autumn, and island drains responsible for 40% of exported DOC in late autumn. A significant negative correlation was observed between carbon-normalized lignin yields and DOC bioavailability in two of the 14 sampling stations. This study is, to our knowledge, the first to describe organic vascular plant DOC sources at the level of

  3. Landscape scale controls on the vascular plant component of dissolved organic carbon across a freshwater delta

    USGS Publications Warehouse

    Eckard, Robert S.; Hernes, Peter J.; Bergamaschi, Brian A.; Stepanauskas, Ramunas; Kendall, Carol

    2007-01-01

    Lignin phenol concentrations and compositions were determined on dissolved organic carbon (DOC) extracts (XAD resins) within the Sacramento-San Joaquin River Delta (the Delta), the tidal freshwater portion of the San Francisco Bay Estuary, located in central California, USA. Fourteen stations were sampled, including the following habitats and land-use types: wetland, riverine, channelized waterway, open water, and island drains. Stations were sampled approximately seasonally from December, 1999 through May, 2001. DOC concentrations ranged from 1.3 mg L-1 within the Sacramento River to 39.9 mg L-1 at the outfall from an island drain (median 3.0 mg L-1), while lignin concentrations ranged from 3.0 μL-1 within the Sacramento River to 111 μL-1 at the outfall from an island drain (median 11.6 μL-1). Both DOC and lignin concentrations varied significantly among habitat/land-use types and among sampling stations. Carbon-normalized lignin yields ranged from 0.07 mg (100 mg OC)-1 at an island drain to 0.84 mg (100 mg OC)-1 for a wetland (median 0.36 mg (100 mg OC)-1), and also varied significantly among habitat/land-use types. A simple mass balance model indicated that the Delta acted as a source of lignin during late autumn through spring (10-83% increase) and a sink for lignin during summer and autumn (13-39% decrease). Endmember mixing models using S:V and C:V signatures of landscape scale features indicated strong temporal variation in sources of DOC export from the Delta, with riverine source signatures responsible for 50% of DOC in summer and winter, wetland signatures responsible for 40% of DOC in summer, winter, and late autumn, and island drains responsible for 40% of exported DOC in late autumn. A significant negative correlation was observed between carbon-normalized lignin yields and DOC bioavailability in two of the 14 sampling stations. This study is, to our knowledge, the first to describe organic vascular plant DOC sources at the level of localized

  4. Analysis of chemical reaction kinetics of depredating organic pollutants from secondary effluent of wastewater treatment plant in constructed wetlands.

    PubMed

    Wang, Hao; Jiang, Dengling; Yang, Yong; Cao, Guoping

    2013-01-01

    Four subsurface constructed wetlands were built to treat the secondary effluent of a wastewater treatment plant in Tangshan, China. The chemical pollutant indexes of chemical oxygen demand (COD) were analyzed to evaluate the removal efficiency of organic pollutants from the secondary effluent of the wastewater treatment plant. In all cases, the subsurface constructed wetlands were efficient in treating organic pollutants. Under the same hydraulic loading condition, the horizontal flow wetlands exhibited better efficiency of COD removal than vertical flow wetlands: the removal rates in horizontal flow wetlands could be maintained at 68.4 ± 2.42% to 92.2 ± 1.61%, compared with 63.8 ± 1.19% to 85.0 ± 1.25% in the vertical flow wetlands. Meanwhile, the chemical reaction kinetics of organic pollutants was analyzed, and the results showed that the degradation courses of the four subsurface wetlands all corresponded with the first order reaction kinetics to a large extent.

  5. [Effects of moisture content in organic substrate on the physiological characters, fruit quality and yield of tomato plant].

    PubMed

    Xia, Xiu-Bo; Yu, Xian-Chang; Gao, Jun-Jie

    2007-12-01

    With tomato cultivar Qifen as test crop, this paper studied its growth, physiological characters, fruit yield, fruit quality, and water use efficiency (WUE) under effects of relative moisture content of organic substrate. The results showed that with increasing moisture content in organic substrate, the plant height, stem diameter, node length, leaf area per plant, leaf pigment content, water potential, osmotic potential, root vigor, and fruit yield increased markedly, but fruit quality and WUE decreased significantly. Considering from the aspects of fruit yield, fruit quality and WUE, 80% moisture content of organic substrate could be used as a favorable quantitative index for the water management of tomato cultivation, under which, 26 kg x m(-2) fruit yield could be achieved. If only considering fruit quality, 50% moisture content could be used as the index for water management.

  6. Controls on microbial accessibility to soil organic carbon following woody plant encroachment into grasslands

    NASA Astrophysics Data System (ADS)

    Creamer, Courtney; Boutton, Thomas; Olk, Dan; Filley, Timothy

    2010-05-01

    Woody plant encroachment (WPE) into savannas and grasslands is a global phenomenon that alters soil organic carbon (SOC) dynamics through changes in litter quality and quantity, soil structure, microbial ecology, and hydrology. To elucidate the controls on microbial accessibility to SOC, bulk soils from a chronosequence of progressive WPE into native grasslands at the Texas Agrilife La Copita Research Area were incubated for one year. The quantity and stable carbon isotope composition of respired CO2, and plant biopolymer chemistry in SOC were tracked. Respiration rates declined exponentially over the course of the experiment with 15-25% of the total CO2 respired released in the first month of incubation. Between 8 and 18% of the total SOC was mineralized to CO2 throughout the incubation. After day 84 a significantly (p<0.05) greater portion of SOC was mineralized from soils of older woody clusters (34-86 years) than from soils of younger woody clusters (14-23 years) and the native grassland. Invading woody stands of ≃≥35 years of age represent a transition point in WPE where respiration dynamics become distinct in wooded elements compared to grasslands; this distinction has been previously observed through changes in belowground SOC accrual, C input chemistry, and mycorrhizal productivity. Despite documented SOC accrual following WPE at La Copita, we observed no evidence of enhanced SOC stabilization in these respiration experiments. In fact, a greater proportion of total SOC was lost from the soil of mature woody stands than from young stands, suggesting SOC accumulation observed with WPE may be due to greater input rates or microbial dynamics not captured in the laboratory incubation. Compound-specific analyses indicated there was a significant (p<0.05) loss of C from carbohydrates, amino acids, and amino sugars during the incubation. Amino nitrogen tended to become more concentrated during the incubation, although the trend was not significant. Relatively

  7. Effect of plant cover on distribution of soil organic matter pools

    NASA Astrophysics Data System (ADS)

    Gunina, Anna; Kuzyakov, Yakov; Ryzhova, Irina

    2013-04-01

    ) because of the identical texture of soil parent material. The portion of biochemically protected C was maximal in agricultural soil - 27%, whereas on forest plots it was 2 times less. The amount of C in this pool did not strongly differ among the investigated soils, but C/N ratio was lower under agricultural crops than under forests. This indicates deeper degradation of organics in cultivated soil, N addition by fertilization, and a growing contribution of microbially-derived C to the biochemically protected pool. Wide C/N ratio in biochemically protected pool in the forest soils reflects the accumulation of primary recalcitrant plant substances with high C/N such as lignin and cellulose. Thus, forest vegetation contributes mainly to the SOM sequestration in the spatial inaccessible pool and is source of the high amount of non-protected C. Under agricultural crops however, the most of SOM is stabilized by interactions with silt and clay and is stabilized biochemically.

  8. [Aerosol size distribution of organic carbon and elemental carbon on the top of coke oven and in the plant area].

    PubMed

    Liu, Xiao-Feng; Peng, Lin; Bai, Hui-Ling; Mu, Ling; Song, Chong-Fang

    2013-08-01

    In order to investigate the characteristic of organic carbon (OC) and elemental carbon (EC) in particles on the top of coke oven and in the plant area, the particle matter samples of five size fraction including < or = 1.4 microm, 1.4-2.1 microm, 2.1-4.2 microm, 4.2-10.2 microm and > or = 10.2 microm were collected using Staplex234 cascade impactor, and OC and EC were analyzed by Elementar Analysensysteme GmbH vario EL cube. The mass concentrations of OC and EC associated with TSP on the top of coke oven were 291.6 microg x m(-3) and 255.1 microg x m(-3), while those in the plant area were 377.8 microg x m(-3) and 151.7 microg x m(-3). The mass concentration of secondary organic carbon (SOC) in particles with size of < or = 1.4 microm was 147.3 microg x m(-3) in the plant area. The value of OC/EC in particles less than 2.1 microm was 1.3 on the top of coke oven. The mass concentration of EC in TSP in the plant area was lower than that on the top of coke oven, while the mass concentration of OC in the plant area was significantly higher than that on the top of coke oven. The mass concentrations of OC and EC associated with particles less than 10.2 microm in the plant area were far higher than those in the atmosphere of area where the coke plant is located. The OC and EC in particles, which were collected both on the top of coke oven and in the plant area, were mainly enriched in fine particles. The size distribution of OC showed a clear distinction between the coke oven top and the plant area, which revealed that OC in the plant area was more preferably enriched in fine particles than that on the top of coke oven, and the same size distribution of EC was found on the top of coke oven and in the plant area. In the plant area, the mass concentration of SOC and the contribution of SOC to OC increased with the decreasing diameter in particles with diameter of less than 10.2 microm.

  9. Soil organic carbon can be up-taken by plant roots and stored in plant biosilica: NanoSIMS and isotopic labeling evidences

    NASA Astrophysics Data System (ADS)

    Alexandre, Anne; Santos, Guaciara M.; balesdent, Jerôme; Basile-Doelsch, Isabelle; Borschneck, Daniel; Cazevieille, Patrick; Chevassus-Rosset, Claire; Doelsch, Emmanuel; Harutyunyan, Araks; Lemee, Laurent; Mazur, Jean-Charles; Reyerson, Paul; Signoret, Patrick

    2015-04-01

    Plant biosilica particles called phytoliths contain occluded organic compounds (phytC). Over the last few years, phytC content, nature, origin, paleoenvironmental meaning and impact in the global C cycle has been the subject of increasing debate[1, 2]. Inconsistencies in phytC quantification were fed by the scarcity of in-situ characterization of phytC in phytoliths and by inadequate extraction methods[3]. Very recently, 14C-AMS analyses of soil organic matter (SOM), amendments, plant tissues, atmospheric CO2 and phytolith samples, evidenced that a small but significant pool of phytC is not photosynthetic but derived from old SOM[4,5]. From there, several investigations were started to go further into the characterization of phytC and the mechanisms in play behind old SOM absorption by plant roots and old SOM occlusion in plant biosilica. Here, we first reconstruct at high spatial resolution the 3-dimentional location of phytC and its C/N signature using 3D X-ray microscopy and Nano-scale Secondary Ion Mass Spectrometry (NanoSIMS). A pool of phytC appears homogeneously distributed in the silica structure and its C:N estimate is in the range of amino acid signatures[6]. Then, we use 13C and 15N-labelled amino acids monitored from an hydroponic solution to grass roots, stems, leaves and phytoliths to evidence that amino acids are absorbed as such by the roots and are concentrated in phytC rather than in the plant tissues. These findings strengthen and complement the 14C evidences. Both of them dissuade attempts to use phytC as a proxy of plant C. Further, they open new avenues of investigation regarding the processes which drive SOM mobilization by plant uptake, for a better understanding of soil/plant interactions involved in the terrestrial C cycle. [1] Santos et al. 2010. Radiocarbon 52:113 [2] Santos et al. 2012. Biogeosci. 9:1873 [3] Corbineau et al. 2013 R. Paleobot. Palyn. 197: 179 [4] Reyerson et al. 2013 AGU Fall meeting 2013 (1803125) [5] Santos et al. 2014

  10. Plant uptake of pharmaceutical chemicals detected in recycled organic manure and reclaimed wastewater.

    PubMed

    Tanoue, Rumi; Sato, Yuri; Motoyama, Miki; Nakagawa, Shuhei; Shinohara, Ryota; Nomiyama, Kei

    2012-10-17

    Land application of recycled manure produced from biosolids and reclaimed wastewater can transfer pharmaceutical chemicals to terrestrial environments, giving rise to potential accumulation of these residues in edible plants. In this study, the potential for plant uptake of 13 pharmaceutical chemicals, and the relation between the accumulation features within the plant and the physicochemical properties were examined by exposing pea and cucumber to an aqueous solution containing pharmaceutical chemicals. Ten of 13 compounds tested were detected in plant leaves and stems. Comparison of the plant uptake characteristics and the octanol-water partition coefficient of pharmaceutical chemicals showed that compounds with an intermediate polarity such as carbamazepine and crotamiton could be easily transported to plant shoots. Moreover, these results suggest the possibility of highly hydrophilic pharmaceutical chemicals such as trimethoprim and sulfonamides to be accumulated in plant roots owing to their low permeability in root cell membranes.

  11. CHROMOPHORIC DISSOLVED ORGANIC MATTER (CDOM) DERIVED FROM DECOMPOSITION OF VARIOUS VASCULAR PLANT AND ALGAL SOURCES

    EPA Science Inventory

    Chromophoric dissolved organic (CDOM) in aquatic environments is derived from the microbial decomposition of terrestrial and microbial organic matter. Here we present results of studies of the spectral properties and photoreactivity of the CDOM derived from several organic matter...

  12. The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots.

    PubMed

    Gómez-Lama Cabanás, Carmen; Schilirò, Elisabetta; Valverde-Corredor, Antonio; Mercado-Blanco, Jesús

    2014-01-01

    Pseudomonas fluorescens PICF7, a native olive root endophyte and effective biocontrol agent (BCA) against Verticillium wilt of olive, is able to trigger a broad range of defense responses in root tissues of this woody plant. In order to elucidate whether strain PICF7 also induces systemic defense responses in above-ground organs, aerial tissues of olive plants grown under non-gnotobiotic conditions were collected at different time points after root bacterization with this endophytic BCA. A suppression subtractive hybridization (SSH) cDNA library, enriched in up-regulated genes, was generated. This strategy enabled the identification of 376 ESTs (99 contigs and 277 singlets), many of them related to response to different stresses. Five ESTs, involved in defense responses, were selected to carry out time-course quantitative real-time PCR (qRT-PCR) experiments aiming to: (1) validate the induction of these genes, and (2) shed light on their expression pattern along time (from 1 to 15 days). Induction of olive genes potentially coding for lipoxygenase 2, catalase, 1-aminocyclopropane-1-carboxylate oxidase, and phenylananine ammonia-lyase was thus confirmed at some time points. Computational analysis also revealed that different transcription factors were up-regulated in olive aerial tissues (i.e., JERF, bHLH, WRKY), as previously reported for roots. Results confirmed that root colonization by this endophytic bacterium does not only trigger defense responses in this organ but also mounts a wide array of systemic defense responses in distant tissues (stems, leaves). This sheds light on how olive plants respond to the "non-hostile" colonization by a bacterial endophyte and how induced defense response can contribute to the biocontrol activity of strain PICF7.

  13. The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots

    PubMed Central

    Gómez-Lama Cabanás, Carmen; Schilirò, Elisabetta; Valverde-Corredor, Antonio; Mercado-Blanco, Jesús

    2014-01-01

    Pseudomonas fluorescens PICF7, a native olive root endophyte and effective biocontrol agent (BCA) against Verticillium wilt of olive, is able to trigger a broad range of defense responses in root tissues of this woody plant. In order to elucidate whether strain PICF7 also induces systemic defense responses in above-ground organs, aerial tissues of olive plants grown under non-gnotobiotic conditions were collected at different time points after root bacterization with this endophytic BCA. A suppression subtractive hybridization (SSH) cDNA library, enriched in up-regulated genes, was generated. This strategy enabled the identification of 376 ESTs (99 contigs and 277 singlets), many of them related to response to different stresses. Five ESTs, involved in defense responses, were selected to carry out time-course quantitative real-time PCR (qRT-PCR) experiments aiming to: (1) validate the induction of these genes, and (2) shed light on their expression pattern along time (from 1 to 15 days). Induction of olive genes potentially coding for lipoxygenase 2, catalase, 1-aminocyclopropane-1-carboxylate oxidase, and phenylananine ammonia-lyase was thus confirmed at some time points. Computational analysis also revealed that different transcription factors were up-regulated in olive aerial tissues (i.e., JERF, bHLH, WRKY), as previously reported for roots. Results confirmed that root colonization by this endophytic bacterium does not only trigger defense responses in this organ but also mounts a wide array of systemic defense responses in distant tissues (stems, leaves). This sheds light on how olive plants respond to the “non-hostile” colonization by a bacterial endophyte and how induced defense response can contribute to the biocontrol activity of strain PICF7. PMID:25250017

  14. Controls upon microbial accessibility to soil organic matter following woody plant encroachment into grasslands

    NASA Astrophysics Data System (ADS)

    Creamer, C. A.; Boutton, T. W.; Filley, T. R.

    2009-12-01

    Woody plant encroachment (WPE) into savannas and grasslands is a global phenomenon that alters soil organic matter (SOM) dynamics through changes in litter quality and quantity, soil structure, microbial ecology, and soil hydrology. To elucidate the controls upon microbial accessibility to SOM, bulk soils from a chronosequence of progressive WPE into native grasslands at the Texas A&M Agricultural Experimental Station La Copita Research Area were incubated for one year. The quantity and stable carbon isotope composition of respired CO2, plant biopolymer chemistry in SOM, and microbial community structure were tracked. Respiration rates declined steadily over the course of the experiment with 15-25% of the total CO2 respired released in the first month of incubation. Between 8 and 18% of the total carbon was mineralized to CO2 throughout the incubation. After day 84 a significantly (p < 0.05) greater portion of carbon was mineralized from soils of older woody clusters (34-86 years) than from soils of younger clusters (14-23 years) and the native grassland. Approximately 80% of patterns seen in cumulative CO2 loss could be explained by the proportions of macro- and micro-aggregates within each soil, suggesting soil structure is a major controlling factor of respiration rates. Despite documented carbon accrual within La Copita soils due to WPE, we observed no evidence of enhanced carbon stabilization in these respiration experiments. In fact, a greater proportion of total carbon was lost from the soil of mature woody stands than from young stands, suggesting carbon accumulation observed with WPE may be due to greater input rates or microbial dynamics not captured in the laboratory incubation. A cluster approximately 34 years in age represents a transition point in WPE where respiration dynamics become distinct between grassland and wooded elements. By day 84 of the incubation CO2 respired from all soils was depleted with respect to bulk SOM (1.5 to 5‰) and this

  15. Structure and development of 'witches' broom' galls in reproductive organs of Byrsonima sericea (Malpighiaceae) and their effects on host plants.

    PubMed

    Guimarães, A L A; Neufeld, P M; Santiago-Fernandes, L D R; Vieira, A C M

    2015-03-01

    Galls are anomalies in plant development of parasitic origin that affect the cellular differentiation or growth and represent a remarkable plant-parasite interaction. Byrsonima sericea DC. (Malpighiaceae) is a super host of several different types of gall in both vegetative and reproductive organs. The existence of galls in reproductive organs and their effects on the host plant are seldom described in the literature. In this paper, we present a novel study of galls in plants of the Neotropical region: the 'witches' broom' galls developed in floral structures of B. sericea. The unaffected inflorescences are characterised by a single indeterminate main axis with spirally arranged flower buds. The flower buds developed five unaffected brownish hairy sepals and five pairs of elliptical yellow elaiophores, five yellow fringed petals, 10 stamens and a pistil with superior tricarpellar and trilocular ovary. The affected inflorescences showed changes in architecture, with branches arising from the main axis and flower buds. The flower buds exhibited several morphological and anatomical changes. The sepals, petals and carpels converted into leaf-like structures after differentiation. Stamens exhibited degeneration of the sporogenous tissue and structures containing hyphae and spores. The gynoecium did not develop, forming a central meristematic region, from which emerges the new inflorescence. In this work, we discuss the several changes in development of reproductive structures caused by witches' broom galls and their effects on reproductive success of the host plants.

  16. A Spherical Aerial Terrestrial Robot

    NASA Astrophysics Data System (ADS)

    Dudley, Christopher J.

    This thesis focuses on the design of a novel, ultra-lightweight spherical aerial terrestrial robot (ATR). The ATR has the ability to fly through the air or roll on the ground, for applications that include search and rescue, mapping, surveillance, environmental sensing, and entertainment. The design centers around a micro-quadcopter encased in a lightweight spherical exoskeleton that can rotate about the quadcopter. The spherical exoskeleton offers agile ground locomotion while maintaining characteristics of a basic aerial robot in flying mode. A model of the system dynamics for both modes of locomotion is presented and utilized in simulations to generate potential trajectories for aerial and terrestrial locomotion. Details of the quadcopter and exoskeleton design and fabrication are discussed, including the robot's turning characteristic over ground and the spring-steel exoskeleton with carbon fiber axle. The capabilities of the ATR are experimentally tested and are in good agreement with model-simulated performance. An energy analysis is presented to validate the overall efficiency of the robot in both modes of locomotion. Experimentally-supported estimates show that the ATR can roll along the ground for over 12 minutes and cover the distance of 1.7 km, or it can fly for 4.82 minutes and travel 469 m, on a single 350 mAh battery. Compared to a traditional flying-only robot, the ATR traveling over the same distance in rolling mode is 2.63-times more efficient, and in flying mode the system is only 39 percent less efficient. Experimental results also demonstrate the ATR's transition from rolling to flying mode.

  17. Ecological responses to UV radiation: interactions between the biological effects of UV on plants and on associated organisms.

    PubMed

    Paul, Nigel D; Moore, Jason P; McPherson, Martin; Lambourne, Cathryn; Croft, Patricia; Heaton, Joanna C; Wargent, Jason J

    2012-08-01

    Solar ultraviolet (UV)-B radiation (280-315 nm) has a wide range of effects on terrestrial ecosystems, yet our understanding of how UV-B influences the complex interactions of plants with pest, pathogen and related microorganisms remains limited. Here, we report the results of a series of experiments in Lactuca sativa which aimed to characterize not only key plant responses to UV radiation in a field environment but also consequential effects for plant interactions with a sap-feeding insect, two model plant pathogens and phylloplane microorganism populations. Three spectrally modifying filters with contrasting UV transmissions were used to filter ambient sunlight, and when compared with our UV-inclusive filter, L. sativa plants grown in a zero UV-B environment showed significantly increased shoot fresh weight, reduced foliar pigment concentrations and suppressed population growth of green peach aphid (Myzus persicae). Plants grown under a filter which allowed partial transmission of UV-A radiation and negligible UV-B transmission showed increased density of leaf surface phylloplane microbes compared with the UV-inclusive treatment. Effects of UV treatment on the severity of two plant pathogens, Bremia lactucae and Botrytis cinerea, were complex as both the UV-inclusive and zero UV-B filters reduced the severity of pathogen persistence. These results are discussed with reference to known spectral responses of plants, insects and microorganisms, and contrasted with established fundamental responses of plants and other organisms to solar UV radiation, with particular emphasis on the need for future integration between different experimental approaches when investigating the effects of solar UV radiation.

  18. The effects of farm size and organic farming on diversity of birds, pollinators, and plants in a Swedish landscape.

    PubMed

    Belfrage, Kristina; Björklund, Johanna; Salomonsson, Lennart

    2005-12-01

    This study compares diversity and abundance of birds plus abundance of butterflies, bumblebees and herbaceous plants between six small farms (<52 ha arable land) and six large farms (>135 ha arable land) in Roslagen in southeastern Sweden. Two of the large and four of the small farms were organic. Large-scale landscape mosaic and underlying bedrock were similar for all farms. Statistical analysis was performed using box-plots on medians and analysis of variance on mean values. More than twice as many bird species and territories, butterflies, and herbaceous plant species, and five times more bumblebees were found on the small compared to the large farms. The largest differences were found between small organic and large conventional farms. Differences were also noted between small and large organic farms: 56% more bird species were found on small organic than on large organic farms, although none of the farms used any pesticides. We therefore argue that the consideration of organic agriculture's effect on biodiversity should include factors affected by farm size.

  19. Unmanned aerial vehicles in astronomy

    NASA Astrophysics Data System (ADS)

    Biondi, Federico; Magrin, Demetrio; Ragazzoni, Roberto; Farinato, Jacopo; Greggio, Davide; Dima, Marco; Gullieuszik, Marco; Bergomi, Maria; Carolo, Elena; Marafatto, Luca; Portaluri, Elisa

    2016-07-01

    In this work we discuss some options for using Unmanned Aerial Vehicles (UAVs) for daylight alignment activities and maintenance of optical telescopes, relating them to a small numbers of parameters, and tracing which could be the schemes, requirements and benefits for employing them both at the stage of erection and maintenance. UAVs can easily reach the auto-collimation points of optical components of the next class of Extremely Large Telescopes. They can be equipped with tools for the measurement of the co-phasing, scattering, and reflectivity of segmented mirrors or environmental parameters like C2n and C2T to characterize the seeing during both the day and the night.

  20. Metabolite Profiles in Various Plant Organs of Justicia gendarussa Burm.f. and Its in Vitro Cultures

    PubMed Central

    Indrayoni, Putu; Purwanti, Diah Intan; Wongso, Suwidji; Prajogo, Bambang E.W.; Indrayanto, Gunawan

    2016-01-01

    Metabolite profiles of plant organs and their in vitro cultures of Justicia gendarussa have been studied by using Ultra Performance Liquid Chromatography-Quadrupole Time-of-Flight-Mass Spectrometry (UPLC-Qtof-MS). Samples of leaves, stems, roots, and shoot cultures showed similar patterns of metabolites, while samples of root cultures gave very different profiles. Concentrations of secondary metabolites in shoot cultures were relatively low compared to those in the leaves and roots of the plants. The results suggested that secondary metabolites in J. gendarussa were biosynthetized in the leaves, then transported to the roots. PMID:28117321

  1. Metabolite Profiles in Various Plant Organs of Justicia gendarussa Burm.f. and Its in Vitro Cultures.

    PubMed

    Indrayoni, Putu; Purwanti, Diah Intan; Wongso, Suwidji; Prajogo, Bambang E W; Indrayanto, Gunawan

    2016-04-13

    Metabolite profiles of plant organs and their in vitro cultures of Justicia gendarussa have been studied by using Ultra Performance Liquid Chromatography-Quadrupole Time-of-Flight-Mass Spectrometry (UPLC-Qtof-MS). Samples of leaves, stems, roots, and shoot cultures showed similar patterns of metabolites, while samples of root cultures gave very different profiles. Concentrations of secondary metabolites in shoot cultures were relatively low compared to those in the leaves and roots of the plants. The results suggested that secondary metabolites in J. gendarussa were biosynthetized in the leaves, then transported to the roots.

  2. Effect of ecosystem retrogression on stable nitrogen and carbon isotopes of plants, soils and consumer organisms in boreal forest islands.

    PubMed

    Hyodo, Fujio; Wardle, David A

    2009-07-01

    In the prolonged absence of catastrophic disturbance, ecosystem retrogression occurs, and this involves increased nutrient limitation, and reduced aboveground and belowground ecosystem processes rates. Little is known about how the nitrogen and carbon stable isotope ratios (delta(15)N and delta(13)C) of plants, soils and consumer organisms respond to retrogression in boreal forests. We investigated a 5000 year chronosequence of forested islands in the boreal zone of northern Sweden, for which the time since lightning-induced wildfire increases with decreasing island size, leading to ecosystem retrogression. For this system, tissue delta(15)N of three abundant plant species (Betula pubescens, Vaccinium myrtillus and Pleurozium schreberi) and humus all increased as retrogression proceeded. This is probably due to enhanced ecosystem inputs of N by biological fixation, and greater dependency of the plants on organic N during retrogression. The delta(13)C of B. pubescens and plant-derived humus also increased during retrogression, probably through nutrient limitation increasing plant physiological stress. Unlike the plants, delta(15)N of invertebrates (lycosid spiders and ants) did not increase during retrogression, probably because of their partial dependence on aquatic-derived prey that had a variable delta(15)N signature. The delta(13)C of the invertebrates increased as retrogression proceeded and converged towards that of an aquatic prey source (chironomid flies), suggesting increased dependence on aquatic-derived prey during retrogression. These results show that measurement of delta(15)N and delta(13)C of plants, soils, and consumers across the same environmental gradient can provide insights into environmental factors that drive both the aboveground and belowground subsystems, as well as the linkages between them.

  3. Dual, differential isotope labeling shows the preferential movement of labile plant constituents into mineral-bonded soil organic matter.

    PubMed

    Haddix, Michelle L; Paul, Eldor A; Cotrufo, M Francesca

    2016-06-01

    The formation and stabilization of soil organic matter (SOM) are major concerns in the context of global change for carbon sequestration and soil health. It is presently believed that lignin is not selectively preserved in soil and that chemically labile compounds bonding to minerals comprise a large fraction of the SOM. Labile plant inputs have been suggested to be the main precursor of the mineral-bonded SOM. Litter decomposition and SOM formation are expected to have temperature sensitivity varying with the lability of plant inputs. We tested this framework using dual (13) C and (15) N differentially labeled plant material to distinguish the metabolic and structural components within a single plant material. Big Bluestem (Andropogon gerardii) seedlings were grown in an enriched (13) C and (15) N environment and then prior to harvest, removed from the enriched environment and allowed to incorporate natural abundance (13) C-CO2 and (15) N fertilizer into the metabolic plant components. This enabled us to achieve a greater than one atom % difference in (13) C between the metabolic and structural components within the plant litter. This differentially labeled litter was incubated in soil at 15 and 35 °C, for 386 days with CO2 measured throughout the incubation. After 14, 28, 147, and 386 days of incubation, the soil was subsequently fractionated. There was no difference in temperature sensitivity of the metabolic and structural components with regard to how much was respired or in the amount of litter biomass stabilized. Only the metabolic litter component was found in the sand, silt, or clay fraction while the structural component was exclusively found in the light fraction. These results support the stabilization framework that labile plant components are the main precursor of mineral-associated organic matter.

  4. Occupational hygiene in terms of volatile organic compounds (VOCs) and bioaerosols at two solid waste management plants in Finland.

    PubMed

    Lehtinen, Jenni; Tolvanen, Outi; Nivukoski, Ulla; Veijanen, Anja; Hänninen, Kari

    2013-04-01

    Factors affecting occupational hygiene were measured at the solid waste transferring plant at Hyvinkää and at the optic separation plant in Hämeenlinna. Measurements consisted of volatile organic compounds (VOCs) and bioaerosols including microbes, dust and endotoxins. The most abundant compounds in both of the plants were aliphatic and aromatic hydrocarbons, esters of carboxylic acids, ketones and terpenes. In terms of odour generation, the most important emissions were acetic acid, 2,3-butanedione, ethyl acetate, alpha-pinene and limonene due to their low threshold odour concentrations. At the optic waste separation plant, limonene occurred at the highest concentration of all single compounds of identified VOCs. The concentration of any single volatile organic compound did not exceed the occupational exposure limit (OEL) concentration. However, 2,3-butanedione as a health risk compound is discussed based on recent scientific findings linking it to lung disease. Microbe and dust concentrations were low at the waste transferring plant. Only endotoxin concentrations may cause health problems; the average concentration inside the plant was 425 EU/m(3) which clearly exceeded the threshold value of 90 EU/m(3). In the wheel loader cabin the endotoxin concentrations were below 1 EU/m(3). High microbial and endotoxin concentrations were measured in the processing hall at the optic waste separation plant. The average concentration of endotoxins was found to be 10,980 EU/m(3), a concentration which may cause health risks. Concentrations of viable fungi were quite high in few measurements in the control room. The most problematic factor was endotoxins whose average measured concentrations was 4853 EU/m(3).

  5. Change of soil organic matter quality and quantity by deep-rooting plants - a molecular approach

    NASA Astrophysics Data System (ADS)

    Gocke, Martina; Derenne, Sylvie; Anquetil, Christelle; Huguet, Arnaud; Dignac, Marie-France; Rumpel, Cornelia; Wiesenberg, Guido L. B.

    2015-04-01

    Under predicted rising atmospheric CO2 concentration, soils are discussed to potentially act as C sinks. Stability and long-term storage of soil OM are affected by both molecular structure of incorporated organic remains and environmental factors. It is increasingly accepted that roots contribute to significant portions of topsoil OM, whereas their role for C cycling is less known for depths >> 1 m, i.e. the deep subsoil and underlying soil parent material like terrestrial sediments. To trace root-related features and organic remains, transects were sampled from ancient (3-10 ky) and recent calcified roots (rhizoliths) via surrounding sediment towards sediment free of visible root remains, at two sites. At the Nussloch loess-paleosol sequence (SW Germany), transects were collected as intact cores and scanned by X-ray microtomography for visualization of rhizoliths and rhizosphere. Afterwards, cores were cut into concentric slices and, similar to rhizolith and sediment samples from the sandy deep subsoil at Sopron (NW Hungary), analyzed for suberin molecular markers. Suberin biomarkers were found in both recent and ancient root systems, demonstrating their suitability to identify root-derived OM in terrestrial sediments with ages of several tens of ky. Varying relative portions of the respective suberin markers enabled the attribution of Sopron rhizoliths to oak origin, and assessment of the rhizosphere, which extended up to several cm. This confirms recent studies which demonstrated the possible postsedimentary incorporation of considerable amounts of root and rhizomicrobial remains in loess, based on biomarkers deriving either from plants and microorganisms (alkanes, fatty acids) or solely from microorganisms (GDGTs). 3D scanning of Nussloch rhizoliths and surrounding loess showed large channels of former root growth, whereas the root tissue was commonly degraded. Additionally, microtomography enabled assessment of abundant fine calcified roots as well as biopores

  6. Disinfection of model indicator organisms in a drinking water pilot plant by using PEROXONE.

    PubMed Central

    Wolfe, R L; Stewart, M H; Liang, S; McGuire, M J

    1989-01-01

    PEROXONE is an advanced oxidation process generated by combining ozone and hydrogen peroxide. This process stimulates the production of hydroxyl radicals, which have been shown to be superior to ozone for the destruction of some organic contaminants. In this study, pilot-scale experiments were conducted to evaluate the microbicidal effectiveness of PEROXONE and ozone against three model indicator groups. Escherichia coli and MS2 coliphage were seeded into the influent to the preozonation contactors of a pilot plant simulating conventional water treatment and were exposed to four ozone dosages (0.5, 1.0, 2.0, and 4.0 mg/liter), four hydrogen peroxide/ozone (H2O2/O3) weight ratios (0, 0.3, 0.5, and 0.8), and four contact times (4, 5, 12, and 16 min) in two source waters--Colorado River water and state project water--of different quality. The removal of heterotrophic plate count bacteria was also monitored. Results of the study indicated that the microbicidal activity of PEROXONE was greatly affected by the applied ozone dose, H2O2/O3 ratio, contact time, source water quality, and type of microorganism tested. At contact times of 5 min or less, ozone alone was a more potent bactericide than PEROXONE at all H2O2/O3 ratios tested. However, this decrease in the bactericidal potency of PEROXONE was dramatic only as the H2O2/O3 ratio was increased from 0.5 to 0.8. The fact that the bactericidal activity of PEROXONE generally decreased with increasing H2O2/O3 ratios was thought to be related to the lower ozone residuals produced. The viricidal activity of PEROXONE and ozone was comparable at all of the H2O2/O3 ratios. Heterotrophic plate count bacteria were the most resistant group of organisms. Greater inactivation of E. coli and MS2 was observed in Colorado River water than in state project water and appeared to result from differences in the turbidity and alkalinity of the two waters. Regardless of source water, greater than 4.5 log10 of E. coli and MS2 was inactivated

  7. Foraging potential of underground storage organ plants in the southern Cape, South Africa.

    PubMed

    Singels, Elzanne; Potts, Alastair J; Cowling, Richard M; Marean, Curtis W; De Vynck, Jan; Esler, Karen J

    2016-12-01

    Underground storage organs (USOs) serve as a staple source of carbohydrates for many hunter-gatherer societies and they feature prominently in discussions of diets of early modern humans. While the way of life of hunter-gatherers in South Africa's Cape no longer exists, there is extensive ethnographic, historical, and archaeological evidence of hunter-gatherers' use of USOs. This is to be expected, given that the Cape supports the largest concentration of plant species with USOs globally. The southern Cape is the location of several Middle Stone Age sites that are highly significant to research on the origins of behaviourally modern humans, and this provided the context for our research. Here, we evaluate the foraging potential of USOs by identifying how abundant edible biomass is in the southern Cape, how easily it is gathered, and how nutritious it is. One hundred 5 × 5 m plots were assessed in terms of USO species and abundance. Nearly all of the sites sampled (83%) contained edible USOs and some had high concentrations of edible biomass. Extrapolating from these sites suggests that the edible USO biomass falls within the range of biomass observed in areas supporting extant hunter-gatherer communities. The nutritional content for six USO species was assessed; these contained between 40 and 228 calories/100 g. Furthermore, foraging events were staged to provide an indication of the potential return rates for the same six USOs. The target species grow near the soil surface, mostly in sandy soils, and were gathered with minimal effort. Some 50% of the foraging events conducted yielded enough calories to meet the daily requirements of a hunter-gatherer within two hours. In conclusion, we demonstrate that USOs are a readily available source of carbohydrates in the southern Cape landscape and, therefore, there is a strong possibility that USOs played a critical role in providing food for early humans.

  8. Further studies on South African plants: Acaricidal activity of organic plant extracts against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae).

    PubMed

    Wellington, Kevin W; Leboho, Tlabo; Sakong, Bellonah M; Adenubi, Olubukola T; Eloff, Jacobus N; Fouche, Gerda

    2017-01-30

    The goal of our research is to develop a lower cost eco-friendly tick control method because acaricides that are commonly used to control ticks are often toxic, harmful to the environment or too expensive for resource-limited farmers. Acetone and ethanol extracts were prepared and their acaricidal activities determined against the southern cattle tick, Rhipicephalus (Boophilus) microplus. A 1% solution of each of the plant extracts was prepared for efficacy testing using the adapted Shaw Larval Immersion Test (SLIT). The acetone stem extract from Cissus quadrangularis (Vitaceae) and the ethanol leaf and flower extract from Calpurnia aurea (Fabaceae) had potent activity like that of the commercial acaricide, chlorfenvinphos [corrected mortality (CM)=100.0%]. The ethanol extracts of the stem of C. quadrangularis (CM=98.9%) and that of the roots, leaves and fruit of Senna italica subsp arachoides (CM=96.7%) also had good acaricidal activity. There is potential for the development of botanicals as natural acaricides against R. (B.) microplus that can be used commercially to protect animals against tick infestation. Further studies to isolate the acaricidal active compounds and to determine the environmental fate, species toxicity and skin toxicity of these plants species are, however, required before they can be considered as a treatment against ticks.

  9. Soil organic matter and salinity affect copper bioavailability in root zone and uptake by Vicia faba L. plants.

    PubMed

    Matijevic, Lana; Romic, Davor; Romic, Marija

    2014-10-01

    Processes that control the mobility, transformation and toxicity of metals in soil are of special importance in the root-developing zone. For this reason, there is a considerable interest in understanding trace elements (TEs) behavior in soil, emphasising the processes by which plants take them up. Increased root-zone salinity can affect plant TEs uptake and accumulation in plant tissue. Furthermore, copper (Cu) complexation by soil organic matter (SOM) is an effective mechanism of Cu retention in soils, controlling thus its bioavailability. Therefore, a greenhouse pot experiment was conducted to study the effects of soil Cu contamination in a saline environment on faba bean (Vicia faba L.) element uptake. Treatment with NaCl salinity was applied (control, 50 mM NaCl and 100 mM NaCl) on faba bean plants grown in a control and in a soil spiked with Cu (250 and 500 mg kg(-1)). Low and high SOM content trial variants were studied. Cu accumulation occurred in faba bean leaf, pod and seed. Cu contamination affected plant element concentrations in leaves (Na, Ca, Mg, Mn), pod (Zn, Mn) and seed (Mn, Mo, Zn). Root-zone salinity also affected faba bean element concentrations. Furthermore, Cu contamination-salinity and salinity-SOM interactions were significant for pod Cu concentration, suggesting that Cu phytoavailability could be affected by these interactions. Future research will be focused on the mechanisms of Cu translocation in plant and adaptation aspects of abiotic stress.

  10. Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture.

    PubMed

    Schwabe, Franziska; Schulin, Rainer; Limbach, Ludwig K; Stark, Wendelin; Bürge, Diane; Nowack, Bernd

    2013-04-01

    An important aspect in risk assessment of nanoparticles (NPs) is to understand their environmental interactions. We used hydroponic plant cultures to study nanoparticle-plant-root interaction and translocation and exposed wheat and pumpkin to suspensions of uncoated CeO2-NP for 8d (primary particle size 17-100 nm, 100 mg L(-1)) in the absence and presence of fulvic acid (FA) and gum arabic (GA) as representatives of different types of natural organic matter. The behavior of CeO2-NPs in the hydroponic solution was monitored regarding agglomeration, sedimentation, particle size distribution, surface charge, amounts of root association, and translocation into shoots. NP-dispersions were stable over 8d in the presence of FA or GA, but with growing plants, changes in pH, particle agglomeration rate, and hydrodynamic diameter were observed. None of the plants exhibited reduced growth or any toxic response during the experiment. We found that CeO2-NPs translocated into pumpkin shoots, whereas this did not occur in wheat plants. The presence of FA and GA affected the amount of CeO2 associated with roots (pure>FA>GA) but did not affect the translocation factor. Additionally, we could confirm via TEM and SEM that CeO2-NPs adhered strongly to root surfaces of both plant species.

  11. The use of color infrared aerial photography in determining salt marsh vegetation and delimiting man-made structures of Lynnhaven Bay, Virginia. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Holman, R. E., III

    1974-01-01

    Color infrared aerial photography was found to be superior to color aerial photography in an ecological study of Lynnhaven Bay, Virginia. The research was divided into three phases: (1) Determination of the feasibility of correlating color infrared aerial photography with saline wetland species composition and zonation patterns, (2) determination of the accuracy of the aerial interpretation and problems related to the aerial method used; and (3) comparison of developed with undeveloped areas along Lynnhaven Bay's shoreline. Wetland species composition and plant community zonation bands were compared with aerial infrared photography and resulted in a high degree of correlation. Problems existed with changing physical conditions; time of day, aircraft angle and sun angle, making it necessary to use several different characteristics in wetland species identification. The main characteristics used were known zonation patterns, textural signatures and color tones. Lynnhaven Bay's shoreline was 61.5 percent developed.

  12. Approximate Dynamic Programming and Aerial Refueling

    DTIC Science & Technology

    2007-06-01

    were values derived from “AFPAM 10-1403, AIR MOBILITY PLANNING FACTORS” used by the US Air Force when making gross calculations of aerial refueling...Aerial Refueling. U.S. Centennial of Flight Commision. centennialofflight.gov/essay/EvolutionofT echnology /refueling?Tech22.htm. 20003. 5 [6] DOD Needs

  13. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Aerial wire. 32.2431 Section 32.2431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire. (a) This account shall include the original cost of bare line wire and other material used in...

  14. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Aerial wire. 32.2431 Section 32.2431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire. (a) This account shall include the original cost of bare line wire and other material used in...

  15. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Aerial wire. 32.2431 Section 32.2431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire. (a) This account shall include the original cost of bare line wire and other material used in...

  16. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Aerial wire. 32.2431 Section 32.2431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire. (a) This account shall include the original cost of bare line wire and other material used in...

  17. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Aerial wire. 32.2431 Section 32.2431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire. (a) This account shall include the original cost of bare line wire and other material used in...

  18. BOREAS Level-0 ER-2 Aerial Photography

    NASA Technical Reports Server (NTRS)

    Newcomer, Jeffrey A.; Dominquez, Roseanne; Hall, Forrest G. (Editor)

    2000-01-01

    For BOReal Ecosystem-Atmosphere Study (BOREAS), the ER-2 and other aerial photography was collected to provide finely detailed and spatially extensive documentation of the condition of the primary study sites. The ER-2 aerial photography consists of color-IR transparencies collected during flights in 1994 and 1996 over the study areas.

  19. Astronomical Methods in Aerial Navigation

    NASA Technical Reports Server (NTRS)

    Beij, K Hilding

    1925-01-01

    The astronomical method of determining position is universally used in marine navigation and may also be of service in aerial navigation. The practical application of the method, however, must be modified and adapted to conform to the requirements of aviation. Much of this work of adaptation has already been accomplished, but being scattered through various technical journals in a number of languages, is not readily available. This report is for the purpose of collecting under one cover such previous work as appears to be of value to the aerial navigator, comparing instruments and methods, indicating the best practice, and suggesting future developments. The various methods of determining position and their application and value are outlined, and a brief resume of the theory of the astronomical method is given. Observation instruments are described in detail. A complete discussion of the reduction of observations follows, including a rapid method of finding position from the altitudes of two stars. Maps and map cases are briefly considered. A bibliography of the subject is appended.

  20. [Effects of biological organic fertilizer on microbial community's metabolic activity in a soil planted with chestnut (Castanea mollissima)].

    PubMed

    Chen, Lin; Gu, Jie; Hu, Ting; Gao, Hua; Chen, Zhi-Xue; Qin, Qing-Jun; Wang, Xiao-Juan

    2013-06-01

    A field experiment was conducted in Zhashui County of Shaanxi Province, Northwest China in 2011 to study the effects of biological organic fertilizer on the microbial community's metabolic activity in a soil planted with chestnut (Castanea mollissima). Three treatments were installed, i. e., control, compound fertilizer, and biological organic fertilizer. Soil samples were collected at harvest, and the metabolic activity was tested by Biolog method. In the treatment of biological organic fertilizer, the average well color development, Shannon evenness, richness, and McIntosh indices of microbial community were all significantly higher than the other two treatments. As compared with the control, applying biological organic fertilizer improved the ability of soil microbes in utilizing the carbon sources of carbohydrates and polymers, while applying compound fertilizer was in opposite. The principal component analysis demonstrated that there was an obvious difference in the soil microbial community among different treatments, mainly depending on the species of carbohydrates and amino acids.

  1. Use of aerial photography to inventory aquatic vegetation

    USGS Publications Warehouse

    Schloesser, Donald W.; Brown, Charles L.; Manny, Bruce A.

    1988-01-01

    This study demonstrates the feasibility of using low-altitude aerial photography to inventory submersed macrophytes in the connecting channels of the Great Lakes. For this purpose, we obtained aerial color transparencies and collateral ground truth information about submersed vegetation at 160 stations within four study sites in the St. Clair and Detroit rivers, September 17 to October 4, 1984. Photographs were interpreted by five test subjects to determine with what accuracy they could detect beds of submersed macrophytes, and the precision of delineating the extent of such vegetation beds. The interpreters correctly determined the presence or absence of vegetation 80% of the time (range 73-86%). Differences between individuals were statistically significant. Determination of the presence or absence of macrophytes depended partly on their relative abundance and water clarity. Analysis of one photograph from each of the four study sites revealed that photointerpreters delineated between 35 and 75 ha of river bottom covered by vegetation. This wide range indicates that individuals should be tested to assess their relative capability and be trained before they are employed to delineate plant beds in large-scale inventories. Within limits, low-altitude aerial photography, combined with collateral ground truth information, can be used to determine the presence or absence and delineate the extent of submersed macrophytes in connecting channels of the Great Lakes.

  2. Comprehensive emission measurements from prescribed burning in Florida: field and laboratory, aerial and ground

    EPA Science Inventory

    Simultaneous aerial- and ground-based emission sampling was conducted during prescribed burns at Eglin Air Force Base in November 2012 on a short grass/shrub field and a pine forest. Cumulative emission samples for volatile organic compounds, elemental carbon, organic carbon, c...

  3. “Comprehensive emission measurements from prescribed burning in Florida: field and laboratory, aerial and ground”

    EPA Science Inventory

    Simultaneous aerial- and ground-based emission sampling was conducted during prescribed burns at Eglin Air Force Base in November 2012 on a short grass/shrub field and a pine forest. Cumulative emission samples for volatile organic comounds, elemental carbon