Science.gov

Sample records for aerial plant surfaces

  1. Differences in mechanical and structural properties of surface and aerial petioles of the aquatic plant Nymphaea odorata subsp. tuberosa (Nymphaeaceae).

    PubMed

    Etnier, Shelley A; Villani, Philip J

    2007-07-01

    Lily pads (Nymphaea odorata) exhibit heterophylly where a single plant may have leaves that are submerged, floating, or above (aerial) the surface of the water. Lily pads are placed in a unique situation because each leaf form is exposed to a distinctly different set of mechanical demands. While surface petioles may be loaded in tension under conditions of wind or waves, aerial petioles are loaded in compression because they must support the weight of the lamina. Using standard techniques, we compared the mechanical and morphological properties of both surface and aerial leaf petioles. Structural stiffness (EI) and the second moment of area (I) were higher in aerial petioles, although we detected no differences in other mechanical values (elastic modulus [E], extension ratio, and breaking strength). Morphologically, aerial petioles had a thicker rind, with increased collenchyma tissue and sclereid cell frequency. Aerial petioles also had a larger cross-sectional area and were more elliptical. Thus, subtle changes in the distribution of materials, rather than differences in their makeup, differentiate petiole forms. We suggest that the growth of aerial petioles may be an adaptive response to shading, allowing aerial leaves to rise above a crowded water surface. PMID:21636476

  2. Genomic diversity of Pseudomonas spp. isolated from aerial or root surfaces of plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among the diverse strains of Pseudomonas fluorescens and Pseudomonas chlororaphis inhabiting plant surfaces are those that protect plants from infection by pathogens. To explore the diversity of these bacteria, we derived genomic sequences of seven strains that suppress plant disease. Along with t...

  3. Genomic Diversity of Biocontrol Strains of Pseudomonas spp. Isolated from Aerial or Root Surfaces of Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The striking ecological, metabolic, and biochemical diversity of Pseudomonas has intrigued microbiologists for many decades. To explore the genomic diversity of biocontrol strains of Pseudomonas spp., we derived high quality draft sequences of seven strains known to suppress plant disease. The str...

  4. 32. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING NORTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING NORTHWEST. DURING THE 1980S, A NUMBER OF COMPLAINTS CONCERNING SAFETY AND ENVIRONMENTAL ERRORS SURFACED, CULMINATING IN THE 1989 RAID ON THE PLANT BY THE FBI FOR ALLEGED ENVIRONMENTAL INFRACTIONS. THAT SAME YEAR, PRODUCTION AT THE PLANT WAS HALTED FOR CORRECTION OF SAFETY DEFICIENCIES. BY 1991, A SERIES OF EVENTS WORLDWIDE REDUCED THE COLD WAR THREAT, AND IN 1992, THE SECRETARY OF ENERGY ANNOUNCED THAT THE MISSION AT THE PLANT WOULD BE CHANGED TO ENVIRONMENTAL RESTORATION AND WASTE MANAGEMENT, WITH THE GOAL OF CLEANING UP THE PLANT AND SITE (1989). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  5. 29. Oblique Aerial View of North Plant, Looking North, Showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Oblique Aerial View of North Plant, Looking North, Showing Powerhouse in Left Center and 1929 Bridge in Right Center (undated) - Atwater Kent Manufacturing Company, North Plant, 5000 Wissahickon Avenue, Philadelphia, Philadelphia County, PA

  6. 27. Oblique Aerial View of North and South Plants, Looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. Oblique Aerial View of North and South Plants, Looking East, with Powerhouse in Center Foreground (undated) - Atwater Kent Manufacturing Company, North Plant, 5000 Wissahickon Avenue, Philadelphia, Philadelphia County, PA

  7. 1. AERIAL VIEW OF WHITSETT (INTAKE) PUMP PLANT ON LAKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. AERIAL VIEW OF WHITSETT (INTAKE) PUMP PLANT ON LAKE SHORE IN FOREGROUND; GENE IN BACKGROUND, LOOKING SOUTHWEST. - Whitsett Pump Plant, West side of Colorado River, north of Parker Dam, Parker Dam, San Bernardino County, CA

  8. Aerial photography for sensing plant anomalies

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Cardenas, R.; Hart, W. G.

    1970-01-01

    Changes in the red tonal response of Kodak Ektrachrome Infrared Aero 8443 film (EIR) are often incorrectly attributed solely to variations in infrared light reflectance of plant leaves, when the primary influence is a difference in visible light reflectance induced by varying chlorophyll contents. Comparisons are made among aerial photographic images of high- and low-chlorophyll foliage. New growth, foot rot, and boron and chloride nutrient toxicites produce low-chlorophyll foliage, and EIR transparency images of light red or white compared with dark-red images of high-chlorophyll foliage. Deposits of the sooty mold fungus that subsists on the honeydew produced by brown soft scale insects, obscure the citrus leaves' green color. Infected trees appear as black images on EIR film transparencies compared with red images of healthy trees.

  9. D Surface Generation from Aerial Thermal Imagery

    NASA Astrophysics Data System (ADS)

    Khodaei, B.; Samadzadegan, F.; Dadras Javan, F.; Hasani, H.

    2015-12-01

    Aerial thermal imagery has been recently applied to quantitative analysis of several scenes. For the mapping purpose based on aerial thermal imagery, high accuracy photogrammetric process is necessary. However, due to low geometric resolution and low contrast of thermal imaging sensors, there are some challenges in precise 3D measurement of objects. In this paper the potential of thermal video in 3D surface generation is evaluated. In the pre-processing step, thermal camera is geometrically calibrated using a calibration grid based on emissivity differences between the background and the targets. Then, Digital Surface Model (DSM) generation from thermal video imagery is performed in four steps. Initially, frames are extracted from video, then tie points are generated by Scale-Invariant Feature Transform (SIFT) algorithm. Bundle adjustment is then applied and the camera position and orientation parameters are determined. Finally, multi-resolution dense image matching algorithm is used to create 3D point cloud of the scene. Potential of the proposed method is evaluated based on thermal imaging cover an industrial area. The thermal camera has 640×480 Uncooled Focal Plane Array (UFPA) sensor, equipped with a 25 mm lens which mounted in the Unmanned Aerial Vehicle (UAV). The obtained results show the comparable accuracy of 3D model generated based on thermal images with respect to DSM generated from visible images, however thermal based DSM is somehow smoother with lower level of texture. Comparing the generated DSM with the 9 measured GCPs in the area shows the Root Mean Square Error (RMSE) value is smaller than 5 decimetres in both X and Y directions and 1.6 meters for the Z direction.

  10. 20. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING NORTHEAST. THE PLANT WAS COMPOSED OF FOUR WIDELY SEPARATED AREAS, EACH ONE PERFORMING A DIFFERENT TYPE OF WORK. PLANT A (44), SOUTHWEST, FABRICATED PARTS FROM DEPLETED URANIUM, PLANT B (81), SOUTH, WAS ENRICHED URANIUM OPERATIONS, PLANT C (71), NORTH, PLUTONIUM OPERATIONS, AND PLANT D (91), EAST, WAS FINAL ASSEMBLY, SHIPPING AND RECEIVING (2/6/66). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  11. Aerial thermography studies of power plant heated lakes

    SciTech Connect

    Villa-Aleman, E.

    2000-01-26

    Remote sensing temperature measurements of water bodies is complicated by the temperature differences between the true surface or skin water and the bulk water below. Weather conditions control the reduction of the skin temperature relative to the bulk water temperature. Typical skin temperature depressions range from a few tenths of a degree Celsius to more than one degree. In this research project, the Savannah River Technology Center (SRTC) used aerial thermography and surface-based meteorological and water temperature measurements to study a power plant cooling lake in South Carolina. Skin and bulk water temperatures were measured simultaneously for imagery calibration and to produce a database for modeling of skin temperature depressions as a function of weather and bulk water temperatures. This paper will present imagery that illustrates how the skin temperature depression was affected by different conditions in several locations on the lake and will present skin temperature modeling results.

  12. 29. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING SOUTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING SOUTH. IN 1983, THE PERIMETER SECURITY ZONE SURROUNDING THE PLUTONIUM OPERATIONS WAS COMPLETED. IT CONSISTED OF A DOUBLE PERIMETER FENCE, CLOSED CIRCUIT TELEVISIONS, ALARMS, AND AN UNINTERRUPTED POWER SUPPLY (7/29/83). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  13. 25. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING WEST - NORTHWEST IN 1974. IN 1972, 4,600 ACRES WERE PURCHASED AROUND THE SITE TO BETTER PROTECT THE BORDERS FROM TERRORISM AND INFILTRATION BY PROTESTORS. ANTI-NUCLEAR DEMONSTRATION BEGAN SHORTLY AFTER THE 1969 FIRE IN BUILDING 776/777, AND CONTINUED UNTIL PRODUCTION CEASED AT THE PLANT IN 1989 (10/7/74). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  14. AERIAL VIEW LOOKING NORTHEAST. CLOSEUP OF RAIL MILL, POWER PLANT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL VIEW LOOKING NORTHEAST. CLOSE-UP OF RAIL MILL, POWER PLANT, ROD STORAGE, & MACHINE SHOP AT RIGHT OF TRACKS. BAR & BLOOMING MILL, PIT FURNACE BUILDING, OPEN HEARTH, & BLAST FURNACE NO. 1 & NO. 2 AT LEFT OF TRACKS. - Pittsburgh Steel Company, Monessen Works, Donner Avenue, Monessen, Westmoreland County, PA

  15. 1. AERIAL VIEW OF THE HIGHLINE PUMPING PLANT SITE ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. AERIAL VIEW OF THE HIGHLINE PUMPING PLANT SITE ON THE WESTERN CANAL, LOOKING NORTH. THE OLD PLANT IS ON THE RIGHT BANK, NEAREST THE CANAL. THE NEW PLANT IS ON THE LEFT BANK AT THE END OF THE INLET CANAL. THE KYRENE DITCH RUNS OUT OF THE BOTTOM OF THE PICTURE, AND PART OF THE SWITCHYARD FOR THE KYRENE STEAM PLANT IS VISIBLE AT LOWER RIGHT. c. 1955 - Highline Canal & Pumping Station, South side of Salt River between Tempe, Phoenix & Mesa, Tempe, Maricopa County, AZ

  16. Distribution of radionuclides in the surface sea water developed by aerial radiological survey

    NASA Astrophysics Data System (ADS)

    Inomata, Yayoi; Aoyama, Michio; Hirose, Katsumi; Sanada, Yukihisa; Torii, Tatsuo; Tsubono, Takaki; Tsumune, Daisuke; Yamada, Masatoshi

    2014-05-01

    This study provides new data analysis method of aerial radiological survey to monitor the distribution of anthropogenic radioactivity in surface seawaters as a first attempt. The aerial radiological survey was performed by the U.S. Department of Energy National Nuclear Security Administration (DOE/NNSA) within a 30 km radius of the Fukushima Daiichi Nuclear Power Plant (FNPP1) on 18 April 2011. We found good correlations between the observed concentrations of FNPP1 derived radionuclides (131I, 134Cs, 137Cs) in the surface seawater and gamma-ray dose rates by aerial radiological surveys (correlation coefficients for 131I, 0.89; 134Cs, 0.96;137Cs, 0.95). The detection limits of 131I, 134Cs, and 137Cs in surface seawaters for the aerial radiological survey are 25, 21, 24 Bq L-1, respectively. Based on these relations, we find that the area with high concentrations of the FNPP1 derived radionuclides spread south-southeast from the FNPP1. The maximum concentrations of 131I, 134Cs, and 137Cs reached 303, 456, and 528 Bq L-1, respectively. The131I/134Cs ratios in surface waters of the high activities area are about 0.6-0.7. Considering the radioactive decay of 131I (half-life: 8.021 d), we confirm that radionuclides in the surface seawater of this area are due to direct release from FNPP1 to the ocean. From these results, it is concluded that the aerial radiological survey is very effective to investigate the accurate distribution of anthropogenic radioactivity in the surface seawater. Furthermore, the model reproduced the distribution pattern of the FNPP1 derived radionuclides in surface seawater obtained by the aerial radiological survey, although simulated results by regional ocean model are underestimated.

  17. 21. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING NORTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING NORTHWEST. BY THE LATE 1960S, THE SITE HAD UNDERGONE TWO MAJOR EXPANSIONS. THE FIRST EXPANSION IN 1956-57, WHEN THE TRIGGER DESIGN CHANGED AND NECESSITATED THE ADDITION OF SEVEN NEW BUILDINGS. THE SECOND LARGE EXPANSION TOOK PLACE FROM 1964-65, WHEN ROCKY FLATS BECAME THE SOLE PRODUCER OF TRIGGERS. DURING THIS EXPANSION, ELEVEN BUILDINGS WERE ADDED, PRIMARILY IN RESEARCH AND DEVELOPMENT LABORATORIES, GUARD HOUSES, AND WASTE WATER TREATMENT (7/1/69). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  18. 13. AERIAL VIEW OF THE ROCKY FLATS PLANT FROM DIRECTLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. AERIAL VIEW OF THE ROCKY FLATS PLANT FROM DIRECTLY OVERHEAD IN 1954. IN 1950, DOW CHEMICAL COMPANY WAS CHOSEN BY THE ATOMIC ENERGY COMMISSION TO ESTABLISH THE ROCKY FLATS PLANT AS AN ATOMIC BOMB TRIGGER FABRICATION FACILITY. THE CRITERIA FOR SITING SUCH A PLANT INCLUDED A LOCATION WEST OF THE MISSISSIPPI, NORTH OF TEXAS, SOUTH OF THE NORTHERN BORDER OF COLORADO, AND EAST OF UTAH; A DRY MODERATE CLIMATE; A SUPPORTING POPULATION OF AT LEAST 25,000 PEOPLE; AND ACCESSIBILITY FROM LOS ALAMOS, NM, CHICAGO, IL, AND ST. LOUIS, MO. TWENTY-ONE AREAS IN THE UNITED STATES WERE SUGGESTED; SEVEN LOCATIONS WERE SCREENED IN THE DENVER AREA. THIS FOUR-SQUARE MILE AREA WAS SELECTED AND CONSTRUCTION BEGAN IN 1951 (8/31/54). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  19. 26. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING NORTHEAST. IN 1951, A GOOD FRIDAY ISSUE OF THE DENVER POST ANNOUNCED THE ATOMIC ENERGY COMMISSION'S PLANS TO BUILD THE ROCKY FLATS PLANT. UNDER THE HEADLINE 'THERE'S GOOD NEWS TODAY.' POLITICAL LEADERS EXPRESSED GREAT PRIDE IN THE CHOICE OF THE DENVER-BOULDER AREA AS THE SITE FOR AN ATOMIC PLANT AS QUOTED IN THE ROCKY MOUNTAIN NEWS: 'WE ARE PROUD THAT THE AREA HAS BEEN CHOSEN FOR ANOTHER IMPORTANT CONTRIBUTION TO THE NATION'S STRENGTH AND FUTURE SECURITY.' BY THE MID 1970S, PUBLIC OPINION OF THE SITE HAD CHANGED (5/4/78). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  20. Ocean Surface Winds Drive Dynamics of Transoceanic Aerial Movements

    PubMed Central

    Felicísimo, Ángel M.; Muñoz, Jesús; González-Solis, Jacob

    2008-01-01

    Global wind patterns influence dispersal and migration processes of aerial organisms, propagules and particles, which ultimately could determine the dynamics of colonizations, invasions or spread of pathogens. However, studying how wind-mediated movements actually happen has been hampered so far by the lack of high resolution global wind data as well as the impossibility to track aerial movements. Using concurrent data on winds and actual pathways of a tracked seabird, here we show that oceanic winds define spatiotemporal pathways and barriers for large-scale aerial movements. We obtained wind data from NASA SeaWinds scatterometer to calculate wind cost (impedance) models reflecting the resistance to the aerial movement near the ocean surface. We also tracked the movements of a model organism, the Cory's shearwater (Calonectris diomedea), a pelagic bird known to perform long distance migrations. Cost models revealed that distant areas can be connected through “wind highways” that do not match the shortest great circle routes. Bird routes closely followed the low-cost “wind-highways” linking breeding and wintering areas. In addition, we found that a potential barrier, the near surface westerlies in the Atlantic sector of the Intertropical Convergence Zone (ITCZ), temporally hindered meridional trans-equatorial movements. Once the westerlies vanished, birds crossed the ITCZ to their winter quarters. This study provides a novel approach to investigate wind-mediated movements in oceanic environments and shows that large-scale migration and dispersal processes over the oceans can be largely driven by spatiotemporal wind patterns. PMID:18698354

  1. Biomechanical responses of aquatic plants to aerial conditions

    PubMed Central

    Hamann, Elena; Puijalon, Sara

    2013-01-01

    Background and Aims Wetlands are impacted by changes in hydrological regimes that can lead to periods of low water levels. During these periods, aquatic plants experience a drastic change in the mechanical conditions that they encounter, from low gravitational and tensile hydrodynamic forces when exposed to flow under aquatic conditions, to high gravitational and bending forces under terrestrial conditions. The objective of this study was to test the capacity of aquatic plants to produce self-supporting growth forms when growing under aerial conditions by assessing their resistance to terrestrial mechanical conditions and the associated morpho-anatomical changes. Methods Plastic responses to aerial conditions were assessed by sampling Berula erecta, Hippuris vulgaris, Juncus articulatus, Lythrum salicaria, Mentha aquatica, Myosotis scorpioides, Nuphar lutea and Sparganium emersum under submerged and emergent conditions. The cross-sectional area and dry matter content (DMC) were measured in the plant organs that bear the mechanical forces, and their biomechanical properties in tension and bending were assessed. Key Results All of the species except for two had significantly higher stiffness in bending and thus an increased resistance to terrestrial mechanical conditions when growing under emergent conditions. This response was determined either by an increased allocation to strengthening tissues and thus a higher DMC, or by an increased cross-sectional area. These morpho-anatomical changes also resulted in increased strength and stiffness in tension. Conclusions The capacity of the studied species to colonize this fluctuating environment can be accounted for by a high degree of phenotypic plasticity in response to emersion. Further investigation is however needed to disentangle the finer mechanisms behind these responses (e.g. allometric relations, tissue make-up), their costs and adaptive value. PMID:24187030

  2. Cooperative Lander-Surface/Aerial Microflyer Missions for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita; Lay, Norman; Hine, Butler; Zornetzer, Steven

    2004-01-01

    Concepts are being investigated for exploratory missions to Mars based on Bioinspired Engineering of Exploration Systems (BEES), which is a guiding principle of this effort to develop biomorphic explorers. The novelty lies in the use of a robust telecom architecture for mission data return, utilizing multiple local relays (including the lander itself as a local relay and the explorers in the dual role of a local relay) to enable ranges 10 to 1,000 km and downlink of color imagery. As illustrated in Figure 1, multiple microflyers that can be both surface or aerially launched are envisioned in shepherding, metamorphic, and imaging roles. These microflyers imbibe key bio-inspired principles in their flight control, navigation, and visual search operations. Honey-bee inspired algorithms utilizing visual cues to perform autonomous navigation operations such as terrain following will be utilized. The instrument suite will consist of a panoramic imager and polarization imager specifically optimized to detect ice and water. For microflyers, particularly at small sizes, bio-inspired solutions appear to offer better alternate solutions than conventional engineered approaches. This investigation addresses a wide range of interrelated issues, including desired scientific data, sizes, rates, and communication ranges that can be accomplished in alternative mission scenarios. The mission illustrated in Figure 1 offers the most robust telecom architecture and the longest range for exploration with two landers being available as main local relays in addition to an ephemeral aerial probe local relay. The shepherding or metamorphic plane are in their dual role as local relays and image data collection/storage nodes. Appropriate placement of the landing site for the scout lander with respect to the main mission lander can allow coverage of extremely large ranges and enable exhaustive survey of the area of interest. In particular, this mission could help with the path planning and risk

  3. Aerial Radiation Measurements from the Fukushima Dai-ichi Nuclear Power Plant Accident

    SciTech Connect

    Guss, P. P.

    2012-07-16

    This document is a slide show type presentation concerning DOE and Aerial Measuring System (AMS) activities and results with respect to assessing the consequences of the releases from the Fukushima Dai-ichi Nuclear Power Plant. These include ground monitoring and aerial monitoring.

  4. Reference LIDAR Surfaces for Enhanced Aerial Triangulation and Camera Calibration

    NASA Astrophysics Data System (ADS)

    Gneeniss, A. S.; Mills, J. P.; Miller, P. E.

    2013-04-01

    Due to the complementary characteristics of lidar and photogrammetry, the integration of data derived from these techniques continues to receive attention from the relevant research communities. The research presented in this paper draws on this by adopting lidar data as a control surface from which aerial triangulation and camera system calibration can be performed. The research methodology implements automatic registration between the reference lidar DTM and dense photogrammetric point clouds which are derived using Integrated Sensing Orientation (ISO). This utilises a robust least squares surface matching algorithm, which is iterated to improve results by increasing the photogrammetric point quality through self-calibrating bundle adjustment. After a successful registration, well distributed lidar control points (LCPs) are automatically extracted from the transformed photogrammetric point clouds using predefined criteria. Finally, self-calibrating bundle block adjustment using different configurations of LCPs is performed to refine camera interior orientation (IO) parameters. The methodology has been assessed using imagery from a Vexcel UltraCamX large format camera. Analysis and the performance of the camera and its impact on the registration accuracy was performed. Furthermore, refinement of camera IO parameters was also applied using the derived LCPs. Tests also included investigations into the influence of the number and weight of LCPs in the accuracy of the bundle adjustment. Results from the UltraCamX block were compared with reference calibration results using ground control points in the test area, with good agreement found between the two approaches.

  5. Determination of Cotton Plant Injury by Aerial Application of Glyphosate Using Remote Sensing and Spray Drift Sampling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Off-target drift of aerially applied glyphosate can cause plant injury, which is of great concern to farmers and aerial applicators. To determine the extent of crop injury due to near-field drift, an experiment was conducted from a single aerial application of glyphosate. For a larger-scoped project...

  6. 10. AERIAL VIEW OF CROSSCUT FACILITY SITE, SHOWING STEAM/DIESEL PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. AERIAL VIEW OF CROSSCUT FACILITY SITE, SHOWING STEAM/DIESEL PLANT BUILDING, RUNNING GENERALLY ACROSS PHOTO, AND INDIAN BEND POND IN UPPER RIGHT CORNER. November 7, 1955 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  7. An aerial radiological survey of the Pilgrim Station Nuclear Power Plant and surrounding area, Plymouth, Massachusetts

    SciTech Connect

    Proctor, A.E.

    1997-06-01

    Terrestrial radioactivity surrounding the Pilgrim Station Nuclear Power Plant was measured using aerial radiolog- ical survey techniques. The purpose of this survey was to document exposure rates near the plant and to identify unexpected, man-made radiation sources within the survey area. The surveyed area included land areas within a three-mile radius of the plant site. Data were acquired using an airborne detection system that employs sodium iodide, thallium-activated detectors. Exposure rate and photopeak counts were computed from these data and plotted on aerial photographs of the survey area. Several ground-based exposure measurements were made for comparison with the,aerial survey results. Exposure rates in areas surrounding the plant site varied from 6 to 10 microroentgens per hour, with exposure rates below 6 microroentgens per hour occurring over bogs and marshy areas. Man-made radiation was found to be higher than background levels at the plant site. Radation due to nitrogen-1 6, which is produced in the steam cycle of a boiling-water reactor, was the primaty source of activity found at the plant site. Cesium-137 activity at levels slightly above those expected from natural fallout was found at isolated locations inland from the plant site. No other detectable sources of man-made radioactivity were found.

  8. An aerial radiological survey of the Paducah Gaseous Diffusion Plant and surrounding area, Paducah, Kentucky

    SciTech Connect

    Not Available

    1992-11-01

    An aerial radiological survey of the Paducah Gaseous Diffusion Plant (PGDP) and surrounding area in Paducah, Kentucky, was conducted during May 15--25, 1990. The purpose of the survey was to measure and document the terrestrial radiological environment at the PGDP and surrounding area for use in effective environmental management and emergency response planning. The aerial survey was flown at an altitude of 61 meters (200 feet) along a series of parallel lines 107 meters (350 feet) apart. The survey encompassed an area of 62 square kilometers (24 square miles), bordered on the north by the Ohio River. The results of the aerial survey are reported as inferred exposure rates at 1 meter above ground level in the form of a gamma radiation contour map. Typical background exposure rates were found to vary from 5 to 12 microroentgens per hour ([mu]R/h). Protactinium-234m, a radioisotope indicative of uranium-238, was detected at several facilities at the PGDR. In support of the aerial survey, ground-based exposure rate and soil sample measurements were obtained at several sites within the survey perimeter. The results of the aerial and ground-based measurements were found to agree within [plus minus]15%.

  9. An aerial radiological survey of the Portsmouth Gaseous Diffusion Plant and surrounding area, Portsmouth, Ohio

    SciTech Connect

    Not Available

    1992-09-01

    An aerial radiological survey was conducted from July 11--20, 1990, over an 83-square-kilometer (32-square-mile) area surrounding the Portsmouth Gaseous Diffusion Plant located near Portsmouth, Ohio. The survey was conducted at a nominal altitude of 91 meters (300 feet) with line spacings of 122 meters (400 feet). A contour map of the terrestrial gamma exposure rate extrapolated to 1 meter above ground level (AGL) was prepared and overlaid on an aerial photograph and a set of United States Geological Survey (USGS) topographic maps of the area. The terrestrial exposure rates varied from about 7 to 14 microroentgens per hour ([mu]R/h) at 1 meter above the ground. Analysis of the data for man-made sources and for the uranium decay product, protactinium-234m ([sup 234m]Pa), showed five sites within the boundaries of the Portsmouth Gaseous Diffusion Plant with elevated readings. Spectra obtained in the vicinity of the buildings at the Portsmouth Gaseous Diffusion Plant showed the presence of [sup 234m]Pa, a uranium-238 ([sup 238]U) decay product. In addition, spectral analysis of the data obtained over the processing plant facility showed gamma activity indicative of uranium-235 ([sup 234]U). No other man-made gamma ray emitting radioactive material was detected, either on or off the Portsmouth Gaseous Diffusion Plant property. Soil samples and pressurized ion chamber measurements were obtained at five different locations within the survey boundlaries to support the aerial data.

  10. An Aerial Radiological Survey of the Portsmouth Gaseous Diffusion Plant and Surrounding Area, Portsmouth, Ohio

    SciTech Connect

    Namdoo Moon

    2007-12-01

    An aerial radiological survey was conducted over the 16 square-mile (~41 square-kilometer) area surrounding the Portsmouth Gaseous Diffusion Plant. The survey was performed in August 2007 utilizing a large array of helicopter mounted sodium iodide detectors. The purpose of the survey was to update the previous radiological survey levels of the environment and surrounding areas of the plant. A search for a missing radium-226 source was also performed. Implied exposure rates, man-made activity, and excess bismuth-214 activity, as calculated from the aerial data are presented in the form of isopleth maps superimposed on imagery of the surveyed area. Ground level and implied aerial exposure rates for nine specific locations are compared. Detected radioisotopes and their associated gamma ray exposure rates were consistent with those expected from normal background emitters. At specific plant locations described in the report, man-made activity was consistent with the operational histories of the location. There was no spectral activity that would indicate the presence of the lost source.

  11. Aerial Explorers

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg; Ippolito, Corey

    2005-01-01

    This paper presents recent results from a mission architecture study of planetary aerial explorers. In this study, several mission scenarios were developed in simulation and evaluated on success in meeting mission goals. This aerial explorer mission architecture study is unique in comparison with previous Mars airplane research activities. The study examines how aerial vehicles can find and gain access to otherwise inaccessible terrain features of interest. The aerial explorer also engages in a high-level of (indirect) surface interaction, despite not typically being able to takeoff and land or to engage in multiple flights/sorties. To achieve this goal, a new mission paradigm is proposed: aerial explorers should be considered as an additional element in the overall Entry, Descent, Landing System (EDLS) process. Further, aerial vehicles should be considered primarily as carrier/utility platforms whose purpose is to deliver air-deployed sensors and robotic devices, or symbiotes, to those high-value terrain features of interest.

  12. An aerial survey of radioactivity associated with Atomic Energy plants

    SciTech Connect

    Davis, F.J.; Harlan, W.E.; Humphrey, P.A.; Kane, R.L.; Reinhardt, P.W.

    1992-09-02

    The project covered was an endeavor to (1) compare a group of laboratory instruments as airborne detectors of radioactivity and (2) simultaneously obtain data relative to the diffusion rate of radioactive contamination emitted into the atmosphere from off-gas stacks of production runs. Research was conducted in the Oak Ridge, Tennessee and Hanford, Washington areas. Detection was accomplished at a maximum distance of seventeen miles from the plant. Very little information of a conclusive nature was gained concerning the diffusion. Further research with the nuclear instruments, using a stronger source, is recommended. To obtain conclusive information concerning the meteorological aspects of the project, a larger observational program will be needed.

  13. Unmanned Aerial Vehicles for Alien Plant Species Detection and Monitoring

    NASA Astrophysics Data System (ADS)

    Dvořák, P.; Müllerová, J.; Bartaloš, T.; Brůna, J.

    2015-08-01

    Invasive species spread rapidly and their eradication is difficult. New methods enabling fast and efficient monitoring are urgently needed for their successful control. Remote sensing can improve early detection of invading plants and make their management more efficient and less expensive. In an ongoing project in the Czech Republic, we aim at developing innovative methods of mapping invasive plant species (semi-automatic detection algorithms) by using purposely designed unmanned aircraft (UAV). We examine possibilities for detection of two tree and two herb invasive species. Our aim is to establish fast, repeatable and efficient computer-assisted method of timely monitoring, reducing the costs of extensive field campaigns. For finding the best detection algorithm we test various classification approaches (object-, pixel-based and hybrid). Thanks to its flexibility and low cost, UAV enables assessing the effect of phenological stage and spatial resolution, and is most suitable for monitoring the efficiency of eradication efforts. However, several challenges exist in UAV application, such as geometrical and radiometric distortions, high amount of data to be processed and legal constrains for the UAV flight missions over urban areas (often highly invaded). The newly proposed UAV approach shall serve invasive species researchers, management practitioners and policy makers.

  14. Extracellular lipids of Camelina sativa: characterization of chloroform-extractable waxes from aerial and subterranean surfaces.

    PubMed

    Razeq, Fakhria M; Kosma, Dylan K; Rowland, Owen; Molina, Isabel

    2014-10-01

    Camelina sativa (L.) Crantz is an emerging low input, stress tolerant crop with seed oil composition suitable for biofuel and bioproduct production. The chemical compositions and ultrastructural features of surface waxes from C. sativa aerial cuticles, seeds, and roots were analyzed using gas chromatography and microscopy. Alkanes, primary fatty alcohols, and free fatty acids were common components of all analyzed organs. A particular feature of leaf waxes was the presence of alkyl esters of long-chain fatty acids and very long-chain fatty alcohols, ranging from C38 to C50 and dominated by C42, C44 and C46 homologues. Stem waxes were mainly composed of non-sterol pentacyclic triterpenes. Flowers accumulated significant amounts of methyl-branched iso-alkanes (C29 and C31 total carbon number) in addition to straight-chain alkanes. Seed waxes were mostly primary fatty alcohols of up to 32 carbons in length and unbranched C29 and C31 alkanes. The total amount of identified wax components extracted by rapid chloroform dipping of roots was 280μgg(-1) (fresh weight), and included alkyl hydroxycinnamates, predominantly alkyl coumarates and alkyl caffeates. This study provides qualitative and quantitative information on the waxes of C. sativa root, shoot, and seed boundary tissues, allowing the relative activities of wax biosynthetic pathways in each respective plant organ to be assessed. This detailed description of the protective surface waxes of C. sativa may provide insights into its drought-tolerant and pathogen-resistant properties, and also identifies C. sativa as a potential source of renewable high-value natural products. PMID:25081105

  15. Uav Aerial Survey: Accuracy Estimation for Automatically Generated Dense Digital Surface Model and Orthothoto Plan

    NASA Astrophysics Data System (ADS)

    Altyntsev, M. A.; Arbuzov, S. A.; Popov, R. A.; Tsoi, G. V.; Gromov, M. O.

    2016-06-01

    A dense digital surface model is one of the products generated by using UAV aerial survey data. Today more and more specialized software are supplied with modules for generating such kind of models. The procedure for dense digital model generation can be completely or partly automated. Due to the lack of reliable criterion of accuracy estimation it is rather complicated to judge the generation validity of such models. One of such criterion can be mobile laser scanning data as a source for the detailed accuracy estimation of the dense digital surface model generation. These data may be also used to estimate the accuracy of digital orthophoto plans created by using UAV aerial survey data. The results of accuracy estimation for both kinds of products are presented in the paper.

  16. Accuracy Comparison of Digital Surface Models Created by Unmanned Aerial Systems Imagery and Terrestrial Laser Scanner

    NASA Astrophysics Data System (ADS)

    Naumann, M.; Geist, M.; Bill, R.; Niemeyer, F.; Grenzdörffer, G.

    2013-08-01

    The main focus of the paper is a comparative study in which we have investigated, whether automatically generated digital surface models (DSM) obtained from unmanned aerial systems (UAS) imagery are comparable with DSM obtained from terrestrial laser scanning (TLS). The research is conducted at a pilot dike for coastal engineering. The effort and the achievable accuracy of both DSMs are compared. The error budgets of these two methods are investigated and the models obtained in each case compared against each other.

  17. The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor

    PubMed Central

    Elliot, Marie A.; Karoonuthaisiri, Nitsara; Huang, Jianqiang; Bibb, Maureen J.; Cohen, Stanley N.; Kao, Camilla M.; Buttner, Mark J.

    2003-01-01

    The filamentous bacterium Streptomyces coelicolor differentiates by forming specialized, spore-bearing aerial hyphae that grow into the air. Using microarrays, we identified genes that are down-regulated in a mutant unable to erect aerial hyphae. Through this route, we identified a previously unknown layer of aerial mycelium surface proteins (the “chaplins”). The chaplins share a hydrophobic domain of ∼40 residues (the “chaplin domain”), and all have a secretion signal. The five short chaplins (ChpD,E,F,G,H) have one chaplin domain, whereas the three long chaplins (ChpA,B,C) have two chaplin domains and a C-terminal “sorting signal” that targets them for covalent attachment to the cell wall by sortase enzyme. Expression of the two chaplin genes examined (chpE, chpH) depended on aerial hyphae formation but not sporulation, and egfp fusions showed their expression localized to aerial structures. Mass spectrometry of cell wall extracts confirmed that the short chaplins localized to the cell surface. Deletion of chaplin genes caused severe delays in aerial hyphae formation, a phenotype rescued by exogenous application of chaplin proteins. These observations implicate the chaplins in aerial mycelium formation, and suggest that coating of the envelope by the chaplins is required for aerial hyphae to grow out of the aqueous environment of the substrate mycelium into the air. PMID:12832397

  18. Underwater binocular imaging of aerial objects versus the position of eyes relative to the flat water surface.

    PubMed

    Barta, András; Horváth, Gábor

    2003-12-01

    The apparent position, size, and shape of aerial objects viewed binocularly from water change as a result of the refraction of light at the water surface. Earlier studies of the refraction-distorted structure of the aerial binocular visual field of underwater observers were restricted to either vertically or horizontally oriented eyes. Here we calculate the position of the binocular image point of an aerial object point viewed by two arbitrarily positioned underwater eyes when the water surface is flat. Assuming that binocular image fusion is performed by appropriate vergent eye movements to bring the object's image onto the foveae, the structure of the aerial binocular visual field is computed and visualized as a function of the relative positions of the eyes. We also analyze two erroneous representations of the underwater imaging of aerial objects that have occurred in the literature. It is demonstrated that the structure of the aerial binocular visual field of underwater observers distorted by refraction is more complex than has been thought previously. PMID:14686517

  19. An aerial radiological survey of the Fort Calhoun Nuclear Power Plant and surrounding area, Fort Calhoun, Nebraska

    SciTech Connect

    Not Available

    1994-05-01

    An aerial radiological survey was conducted over the Fort Calhoun Nuclear Power Plant in Fort Calhoun, Nebraska, during the period June 19 through June 28, 1993. The survey was conducted at an altitude of 150 feet (46 meters) over a 25-square-mile (65-square-kilometer) area centered on the power station. The purpose of the survey was to document the terrestrial gamma radiation environment of the Fort Calhoun Nuclear Power Plant and surrounding area. The results of the aerial survey are reported as inferred gamma radiation exposure rates at 1 meter above ground level in the form of a contour map. Outside the plant boundary, exposure rates were found to vary between 6 and 12 microroentgens per hour and were attributed to naturally-occurring uranium, thorium, and potassium. The aerial data were compared to ground-based benchmark exposure rate measurements and radionuclide assays of soil samples obtained within the survey boundary. The ground-based measurements were found to be in good agreement with those inferred from the aerial measuring system. A previous survey was conducted on August 9 and 10, 1972, before the plant began operation. Exposure rates measured in both surveys were consistent with normal terrestrial background.

  20. Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions

    PubMed Central

    2012-01-01

    Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions. PMID:23151272

  1. An aerial radiological survey of the Robert Emmett Ginna Nuclear Power Plant and surrounding area, Ontario, New York

    SciTech Connect

    Proctor, A.E.

    1997-06-01

    Terrestrial radioactivity surrounding the Robert Emmett Ginna Nuclear Power Plant was measured using aerial radiological surveying techniques. The purpose of this survey was to document exposure rates near the plant and to identify unexpected, man-made radiation sources within the survey area. The surveyed area included land areas within a three-mile radius of the plant site. Data were acquired using an airborne detection system that employed sodium iodide, thallium-activated detectors. Exposure-rate and photopeak counts were computed from these data and plotted on aerial photographs of the survey area. Several ground-based exposure measurements were made for comparison with the aerial survey results. Exposure rates in the area surrounding the plant site varied from 6 to 10 microroentgens per hour. Man-made radiation (cobalt-60 within the plant site and cesium-1 37 directly over the reactor) was found at the plant site. In addition, small areas of suspected cesium-137 activity were found within the survey areas. Other than these small sites, the survey area was free of man-made radioac- tivity.

  2. Enabling high-quality observations of surface imperviousness for water runoff modelling from unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Tokarczyk, Piotr; Leitao, Joao Paulo; Rieckermann, Jörg; Schindler, Konrad; Blumensaat, Frank

    2015-04-01

    Modelling rainfall-runoff in urban areas is increasingly applied to support flood risk assessment particularly against the background of a changing climate and an increasing urbanization. These models typically rely on high-quality data for rainfall and surface characteristics of the area. While recent research in urban drainage has been focusing on providing spatially detailed rainfall data, the technological advances in remote sensing that ease the acquisition of detailed land-use information are less prominently discussed within the community. The relevance of such methods increase as in many parts of the globe, accurate land-use information is generally lacking, because detailed image data is unavailable. Modern unmanned air vehicles (UAVs) allow acquiring high-resolution images on a local level at comparably lower cost, performing on-demand repetitive measurements, and obtaining a degree of detail tailored for the purpose of the study. In this study, we investigate for the first time the possibility to derive high-resolution imperviousness maps for urban areas from UAV imagery and to use this information as input for urban drainage models. To do so, an automatic processing pipeline with a modern classification method is tested and applied in a state-of-the-art urban drainage modelling exercise. In a real-life case study in the area of Lucerne, Switzerland, we compare imperviousness maps generated from a consumer micro-UAV and standard large-format aerial images acquired by the Swiss national mapping agency (swisstopo). After assessing their correctness, we perform an end-to-end comparison, in which they are used as an input for an urban drainage model. Then, we evaluate the influence which different image data sources and their processing methods have on hydrological and hydraulic model performance. We analyze the surface runoff of the 307 individual sub-catchments regarding relevant attributes, such as peak runoff and volume. Finally, we evaluate the model

  3. Comparison of Digital Surface Models for Snow Depth Mapping with Uav and Aerial Cameras

    NASA Astrophysics Data System (ADS)

    Boesch, R.; Bühler, Y.; Marty, M.; Ginzler, C.

    2016-06-01

    Photogrammetric workflows for aerial images have improved over the last years in a typically black-box fashion. Most parameters for building dense point cloud are either excessive or not explained and often the progress between software releases is poorly documented. On the other hand, development of better camera sensors and positional accuracy of image acquisition is significant by comparing product specifications. This study shows, that hardware evolutions over the last years have a much stronger impact on height measurements than photogrammetric software releases. Snow height measurements with airborne sensors like the ADS100 and UAV-based DSLR cameras can achieve accuracies close to GSD * 2 in comparison with ground-based GNSS reference measurements. Using a custom notch filter on the UAV camera sensor during image acquisition does not yield better height accuracies. UAV based digital surface models are very robust. Different workflow parameter variations for ADS100 and UAV camera workflows seem to have only random effects.

  4. Root ABA Accumulation in Long-Term Water-Stressed Plants is Sustained by Hormone Transport from Aerial Organs.

    PubMed

    Manzi, Matías; Lado, Joanna; Rodrigo, María Jesús; Zacarías, Lorenzo; Arbona, Vicent; Gómez-Cadenas, Aurelio

    2015-12-01

    The reduced pool of the ABA precursors, β,β-carotenoids, in roots does not account for the substantial increase in ABA content in response to water stress (WS) conditions, suggesting that ABA could be transported from other organs. Basipetal transport was interrupted by stem-girdling, and ABA levels were determined in roots after two cycles of WS induced by transplanting plants to dry perlite. Leaf applications of isotope-labeled ABA and reciprocal grafting of ABA-deficient tomato mutants were used to confirm the involvement of aerial organs on root ABA accumulation. Disruption of basipetal transport reduced ABA accumulation in roots, and this decrease was more severe after two consecutive WS periods. This effect was linked to a sharp decrease in the β,β-carotenoid pool in roots in response to water deficit. Significant levels of isotope-labeled ABA were transported from leaves to roots, mainly in plants subjected to water dehydration. Furthermore, the use of different ABA-deficient tomato mutants in reciprocal grafting combinations with wild-type genotypes confirmed the involvement of aerial organs in the ABA accumulation in roots. In conclusion, accumulation of ABA in roots after long-term WS periods largely relies on the aerial organs, suggesting a reduced ability of the roots to synthesize ABA from carotenoids. Furthermore, plants are able to transport ABA basipetally to sustain high hormone levels in roots. PMID:26542111

  5. A lifting surface approximation for roll stall of Micro Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Shields, Matt; Mohseni, Kamran

    2012-11-01

    The lateral stability of Micro Aerial Vehicles (MAVs) has been known to be adversely affected by the low aspect ratio (LAR) nature of these aircraft. While this has typically been attributed to the small moments of inertia about the plane of symmetry, recent experimental results display the development of a significant roll stability derivative (Cl , β) for flat plate (0% camber) wings. The roll moment can be attributed to the asymmetric development of the tip vortices of a yawed wing and the resulting deviation from the wing loading at zero sideslip. Furthermore, results indicate that a harmonic yaw oscillation at increasing angular velocities results in a delay effect as the formation of the tip vortex is affected by the rotation of the wing; that is, the roll moment does not reach its steady value at a given yaw angle until after the model yaws past the angle. A model based on modified lifting surface theory is developed to determine the influence of the induced velocities of the skewed tip vortices on the lateral loading of both the static and oscillating wing; experimentally determined parameters are used to compensate for the separated flow experienced by MAV wings and not considered in conventional lifting surface methods.

  6. Strategies for Searching for Biosignatures in Ancient Martian Sub-Aerial Surface Environments

    NASA Astrophysics Data System (ADS)

    Horgan, B.

    2016-05-01

    Organics can be preserved in sub-aerial soil environments if the soils have high clay contents and were formed under reducing (saturated) conditions. Possible ancient soils with these characteristics are present on Mars.

  7. Antioxidant Property of Aerial Parts and Root of Phyllanthus fraternus Webster, an Important Medicinal Plant

    PubMed Central

    Upadhyay, Richa; Chaurasia, Jitendra Kumar; Tiwari, Kavindra Nath; Singh, Karuna

    2014-01-01

    In present study free radical scavenging potential of aerial parts and root of Phyllanthus fraternus was investigated. Extraction was done in water and ethanol. Total antioxidant capacity was measured by DPPH free radical scavenging method; ethanolic extract of aerial part was most potent in activity with 50% inhibition at 258 μg/mL concentration. Lipid peroxidation (LPO) was measured in terms of thiobarbituric acid-reactive substances (TBARS) by using egg-yolk homogenates as lipid-rich media with EC50 of aerial part (ethanolic) 1522 μg/mL which was found to be most active. Superoxide (SO) radical scavenging activity was measured using riboflavin-light-nitroblue tetrazolium assay. Ethanolic and aqueous extract of both aerial part and root was almost similar in superoxide radical scavenging activity. Reducing power was determined on the basis of Fe3+-Fe2+ transformation in the presence of extract. Total phenolic and flavonoid contents were also measured by spectroscopic method. Results showed that the ethanolic fraction of aerial part is most active towards antioxidant potential and this activity is related to its polyphenolic content and reducing potential. Thus, P. fraternus extract can be used as potent natural antioxidant. PMID:24587744

  8. Real-time Accurate Surface Reconstruction Pipeline for Vision Guided Planetary Exploration Using Unmanned Ground and Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Almeida, Eduardo DeBrito

    2012-01-01

    This report discusses work completed over the summer at the Jet Propulsion Laboratory (JPL), California Institute of Technology. A system is presented to guide ground or aerial unmanned robots using computer vision. The system performs accurate camera calibration, camera pose refinement and surface extraction from images collected by a camera mounted on the vehicle. The application motivating the research is planetary exploration and the vehicles are typically rovers or unmanned aerial vehicles. The information extracted from imagery is used primarily for navigation, as robot location is the same as the camera location and the surfaces represent the terrain that rovers traverse. The processed information must be very accurate and acquired very fast in order to be useful in practice. The main challenge being addressed by this project is to achieve high estimation accuracy and high computation speed simultaneously, a difficult task due to many technical reasons.

  9. Observations of the atmosphere and surface state over Terra Nova Bay, Antarctica, using unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Cassano, John J.; Seefeldt, Mark W.; Palo, Scott; Knuth, Shelley L.; Bradley, Alice C.; Herrman, Paul D.; Kernebone, Peter A.; Logan, Nick J.

    2016-03-01

    In September 2012 five Aerosonde unmanned aircraft were used to make measurements of the atmospheric state over the Terra Nova Bay polynya, Antarctica, to explore the details of air-sea ice-ocean coupling. A total of 14 flights were completed in September 2012. Ten of the flight missions consisted of two unmanned aerial systems (UAS) sampling the atmosphere over Terra Nova Bay on 5 different days, with one UAS focusing on the downwind evolution of the air mass and a second UAS flying transects roughly perpendicular to the low-level winds. The data from these coordinated UAS flights provide a comprehensive three-dimensional data set of the atmospheric state (air temperature, humidity, pressure, and wind) and surface skin temperature over Terra Nova Bay. The remaining UAS flights during the September 2012 field campaign included two local flights near McMurdo Station for flight testing, a single UAS flight to Terra Nova Bay, and a single UAS flight over the Ross Ice Shelf and Ross Sea polynya. A data set containing the atmospheric and surface data as well as operational aircraft data have been submitted to the United States Antarctic Program Data Coordination Center (USAP-DCC, http://www.usap-data.org/) for free access (http://gcmd.nasa.gov/getdif.htm?NSF-ANT10-43657, doi:10.15784/600125).

  10. Using Unmanned Aerial Vehicle (UAV) Imagery to Investigate Surface Displacements and Surface Features of the Super-Sauze Earthflow (France)

    NASA Astrophysics Data System (ADS)

    James, M. R.; Tizzard, S.; Niethammer, U.

    2014-12-01

    We present the result of using imagery collected with a small rotary wing UAV (unmanned aerial vehicle) to investigate surface displacements and fissures on the Super-Sauze earthflow (France); a slow moving earthflow with the potential to develop into rapid and highly destructive mud flows. UAV imagery acquired in October 2009 was processed using a structure-from-motion and multi-view stereo (SfM-MVS) approach in PhotoScan software. Identification of ~200 ground control points throughout the image set was facilitated by automated image matching in SfM_georef software[1] and the data incorporated into PhotoScan for network optimisation and georeferencing. The completed 2009 model enabled an ~5 cm spatial resolution orthoimage to be generated with an expected accuracy (based on residuals on control) of ~0.3 m. This was supported by comparison to a previously created 2008 model, which gave standard deviations on tie points (located on stationary terrain) of 0.27 m and 0.43 m in Easting and Northing respectively. The high resolution of the orthoimage allowed an investigation into surface displacements and geomorphology of surface features (compared to the 2008 model). The results have produced a comprehensive surface displacement map of the Super-Sauze earthflow, as well as highlighting interesting variations in fissure geomorphology and density between the 2008 and 2009 models. This study underscored the capability for UAV imagery and SfM-MVS to generate highly detailed orthographic imagery and DEMs with a low cost approach that offers significant potential for landslide hazard assessments. [1] http://www.lancaster.ac.uk/staff/jamesm/software/sfm_georef.htm

  11. Environmental geophysics and sequential aerial photo study at Sunfish and Marsden Lakes, Twin Cities Army Ammunition Plant

    SciTech Connect

    Padar, C.A.; McGinnis, L.D.; Thompson, M.D.; Anderson, A.W.; Benson, M.A.; Stevanov, J.E.; Daudt, C.R.; Miller, S.F.; Knight, D.E. |

    1995-08-01

    Geophysical studies at Site H of Twin Cities Army Ammunition Plant have delineated specific areas of dumping and waste disposal. Anomalous areas noted in the geophysical data sets have been correlated with features visible in a chronological sequence of aerial photos. The photos aid in dating the anthropogenic changes and in interpreting the geophysical anomalies observed at Site H and across Sunfish Lake. Specifically, two burn cages and what has been interpreted as their surrounding debris have been delineated. The areal extent of another waste site has been defined in the southwest corner of Area H-1. Depth estimates to the top of the Area H-1 anomalies show that the anomalies lie below lake level, indicative of dumping directly into Sunfish Lake. Except for these areas along the northwestern shore, there is no evidence of waste disposal along the shoreline or within the present-day lake margins. Magnetic, electromagnetic, and ground-penetrating-radar data have pinpointed the locations of mounds, observable in aerial photos, around the first burn cage. The second burn cage and its surrounding area have also been clearly defined from aerial photos, with support from further geophysical data. Additional analysis of the data has yielded volumetric estimates of the amount of material that would need removal in the event of excavation of the anomalous areas. Magnetic and electromagnetic profiles were also run across Marsden Lake. On the basis of these data, it has been concluded that no large-scale dumping has occurred in or around Marsden Lake.

  12. The content and toxicity of heavy metals in soils affected by aerial emissions from the Pechenganikel plant

    NASA Astrophysics Data System (ADS)

    Evdokimova, G. A.; Mozgova, N. P.; Korneikova, M. V.

    2014-05-01

    The zoning of the terrestrial ecosystems exposed to the aerial emissions from the Pechenganikel plant (Murmansk oblast) was performed; it was based on the state of the soil cover in 2012. The following parameters were determined: the pH, the contents of heavy metals (HMs) and exchangeable calcium and magnesium, the proportion between the organic and mineral soil components, and the state of the soil micro-biota. Three zones differing in the intensity of the soil pollution were distinguished: the zone of strong pollution (at a distance of 3 km from the source of the emission), the zone of medium pollution (16 km), and the zone of weak pollution (25-30 km to the southwest from the pollution source). In the last ten years, the soil pollution in the zone influenced by aerial emissions from the Pechenganikel plant has remained the same. The amount of bacteria and fungi in the air is directly related to that in the soil. The results obtained point to the bacterial pollution of the atmosphere nearby the industrial center. In the vicinity of the plant, gram-negative bacteria ( Gracilicutes) predominate in the air; in remote areas, gram-positive bacteria ( Fermicutes) are dominants. In the air nearby the industrial center, potentially pathogenic fungi ( Gongronella butleri and Alternaria alternata) were revealed.

  13. Large-scale aerial images capture details of invasive plant populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Satellite and aerial remote sensing have been successfully used to measure invasive weed infestations over very large areas, but have limited resolution. Ground-based methods have provided detailed measurements of invasive weeds, but can measure only limited areas. Here we test a novel approach th...

  14. Cesium-134 and strontium-85 in strawberry plants following wet aerial deposition.

    PubMed

    Carini, F; Brambilla, M; Mitchell, N; Ould-Dada, Z

    2003-01-01

    The understanding of the processes that control the behavior of radionuclides in crops can support policymakers to take actions to protect the environment and safeguard human health. Data concerning the behavior of radionuclides in fruits are limited. Strawberry (Fragaria x ananassa Duchesne) plants were contaminated on the aboveground part by sprinkling an aqueous solution of 134Cs and 85Sr at three growing stages: predormancy, anthesis, and beginning of ripening. Intercepted activity was more affected by the posture and physical orientation of leaves rather than by leaf area or biomass. Fruit interception ranges from 0.2 to 1.2% of the sprinkled activity. Translocation coefficients from leaf to fruit are on the order of 10(-4) for 134Cs and 10(-5) for 85Sr. Translocation reaches its highest intensity between anthesis and ripening. If deposition occurs when plants are bearing fruits, the fruit activity will be affected by the activity initially deposited on the fruit surfaces. This is important for 85Sr as it is not translocated in the phloem. The loss of the dead leaves at the resumption of growth causes high plant decontamination, but a fraction of both radionuclides remains in the storage organs, roots, and shoots, which is retranslocated to fruits in the following spring. The values of the environmental half-time, t(w), after deposition at predormancy are 114 d for 134Cs and 109 d for 85Sr. Cesium-134 tends to be allocated to fruits, while 85Sr remains in leaves and crowns. Translocation of radionuclides to roots results in soil contamination. PMID:14674549

  15. Hierarchically sculptured plant surfaces and superhydrophobicity.

    PubMed

    Koch, Kerstin; Bohn, Holger Florian; Barthlott, Wilhelm

    2009-12-15

    More than 400 million years of evolution of land plants led to a high diversity of adapted surface structures. Superhydrophobic biological surfaces are of special interest for the development of biomimetic materials for self-cleaning, drag reduction, and energy conservation. The key innovation in superhydrophobic biological surfaces is hierarchical sculpturing. In plants, a hydrophobic wax coating creates water-repelling surfaces that in combination with two or more levels of sculpturing leads to superhydrophobicity. Hierarchical structuring is of special interest for technical "biomimetic" materials with low adhesion and self-cleaning properties. Here we introduce hierarchical surface sculptures of plants with up to six levels. The article gives an overview of the composition of hierarchical surfaces for superhydrophobicity and their use as models for the development of artificial self-cleaning or drag-reducing surfaces. PMID:19634871

  16. Performance Validation of High Resolution Digital Surface Models Generated by Dense Image Matching with the Aerial Images

    NASA Astrophysics Data System (ADS)

    Yastikli, N.; Bayraktar, H.; Erisir, Z.

    2014-11-01

    The digital surface models (DSM) are the most popular products to determine visible surface of Earth which includes all non-terrain objects such as vegetation, forest, and man-made constructions. The airborne light detection and ranging (LiDAR) is the preferred technique for high resolution DSM generation in local coverage. The automatic generation of the high resolution DSM is also possible with stereo image matching using the aerial images. The image matching algorithms usually rely on the feature based matching for DSM generation. First, feature points are extracted and then corresponding features are searched in the overlapping images. These image matching algorithms face with the problems in the areas which have repetitive pattern such as urban structure and forest. The recent innovation in camera technology and image matching algorithm enabled the automatic dense DSM generation for large scale city and environment modelling. The new pixel-wise matching approaches are generates very high resolution DSMs which corresponds to the ground sample distance (GSD) of the original images. The numbers of the research institutes and photogrammetric software vendors are currently developed software tools for dense DSM generation using the aerial images. This new approach can be used high resolution DSM generation for the larger cities, rural areas and forest even Nation-wide applications. In this study, the performance validation of high resolution DSM generated by pixel-wise dense image matching in part of Istanbul was aimed. The study area in Istanbul is including different land classes such as open areas, forest and built-up areas to test performance of dense image matching in different land classes. The obtained result from this performance validation in Istanbul test area showed that, high resolution DSM which corresponds to the ground sample distance (GSD) of original aerial image can be generated successfully by pixel-wise dense image matching using commercial and

  17. Aerial Survey Results for 131I Deposition on the Ground after the Fukushima Daiichi Nuclear Power Plant Accident

    SciTech Connect

    Torii, Tatsuo; Sugita, Takeshi; Okada, Colin E.; Reed, Michael S.; Blumenthal, Daniel J.

    2013-08-01

    In March 2011 the second largest accidental release of radioactivity in history occurred at the Fukushima Daiichi nuclear power plant following a magnitude 9.0 earthquake and subsequent tsunami. Teams from the U.S. Department of Energy, National Nuclear Security Administration Office of Emergency Response performed aerial surveys to provide initial maps of the dispersal of radioactive material in Japan. The initial results from the surveys did not report the concentration of 131I. This work reports on analyses performed on the initial survey data by a joint Japan-US collaboration to determine 131I ground concentration. This information is potentially useful in reconstruction of the inhalation and external exposure doses from this short-lived radionuclide. The deposited concentration of 134Cs is also reported.

  18. An aerial radiological survey of the Oyster Creek Nuclear Power Plant and surrounding area, Forked River, New Jersey. Date of survey: September 18--25, 1992

    SciTech Connect

    Hopkins, H.A.; McCall, K.A.

    1994-05-01

    An aerial radiological survey was conducted over the Oyster Creek Nuclear Power Plant in Forked River, New Jersey, during the period September 18 through September 24, 1992. The survey was conducted at an altitude of 150 feet (46 meters) over a 26-square-mile (67-square-kilometer) area centered on the power station. The purpose of the survey was to document the terrestrial gamma radiation environment of the Oyster Creek Nuclear Power plant and surrounding area. The results of the aerial survey are reported as inferred gamma radiation exposure rates at 1 meter above ground level in the form of a contour map. Outside the plant boundary, exposure rates were found to vary between 4 and 10 microroentgens per hour and were attributed to naturally-occurring uranium, thorium, and radioactive potassium gamma emitters. The aerial data were compared to ground-based benchmark exposure rate measurements and radionuclide assays of soil samples obtained within the survey boundary. The ground-based measurements were found to be in good agreement with those inferred from the aerial measuring system. A previous survey of the power plant was conducted in August 1969 during its initial startup phase. Exposure rates and radioactive isotopes revealed in both surveys were consistent and within normal terrestrial background levels.

  19. Region-Based 3d Surface Reconstruction Using Images Acquired by Low-Cost Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Lari, Z.; Al-Rawabdeh, A.; He, F.; Habib, A.; El-Sheimy, N.

    2015-08-01

    Accurate 3D surface reconstruction of our environment has become essential for an unlimited number of emerging applications. In the past few years, Unmanned Aerial Systems (UAS) are evolving as low-cost and flexible platforms for geospatial data collection that could meet the needs of aforementioned application and overcome limitations of traditional airborne and terrestrial mobile mapping systems. Due to their payload restrictions, these systems usually include consumer-grade imaging and positioning sensor which will negatively impact the quality of the collected geospatial data and reconstructed surfaces. Therefore, new surface reconstruction surfaces are needed to mitigate the impact of using low-cost sensors on the final products. To date, different approaches have been proposed to for 3D surface construction using overlapping images collected by imaging sensor mounted on moving platforms. In these approaches, 3D surfaces are mainly reconstructed based on dense matching techniques. However, generated 3D point clouds might not accurately represent the scanned surfaces due to point density variations and edge preservation problems. In order to resolve these problems, a new region-based 3D surface renostruction trchnique is introduced in this paper. This approach aims to generate a 3D photo-realistic model of individually scanned surfaces within the captured images. This approach is initiated by a Semi-Global dense Matching procedure is carried out to generate a 3D point cloud from the scanned area within the collected images. The generated point cloud is then segmented to extract individual planar surfaces. Finally, a novel region-based texturing technique is implemented for photorealistic reconstruction of the extracted planar surfaces. Experimental results using images collected by a camera mounted on a low-cost UAS demonstrate the feasibility of the proposed approach for photorealistic 3D surface reconstruction.

  20. Environmental waste site characterization utilizing aerial photographs, remote sensing, and surface geophysics

    SciTech Connect

    Pope, P.; Van Eeckhout, E.; Rofer, C.; Baldridge, S.; Ferguson, J.; Jiracek, G.; Balick, L.; Josten, N.; Carpenter, M.

    1996-04-18

    Six different techniques were used to delineate 40 year old trench boundary at Los Alamos National Laboratory. Data from historical aerial photographs, a magnetic gradient survey, airborne multispectral and thermal infra-red imagery, seismic refraction, DC resistivity, and total field magnetometry were utilized in this process. Each data set indicated a southern and northern edge for the trench. Average locations and 95% confidence limits for each edge were determined along a survey line perpendicular to the trench. Trench edge locations were fairly consistent among all six techniques. Results from a modeling effort performed with the total magnetic field data was the least consistent. However, each method provided unique and complementary information, and the integration of all this information led to a more complete characterization of the trench boundaries and contents.

  1. USING AERIAL HYPERSPECTRAL REMOTE SENSING IMAGERY TO ESTIMATE CORN PLANT STAND DENSITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since corn plant stand density is important for optimizing crop yield, several researchers have recently developed ground-based systems for automatic measurement of this crop growth parameter. Our objective was to use data from such a system to assess the potential for estimation of corn plant stan...

  2. An Aerial Radiological survey of the Alvin W. Vogtle Nuclear Plant and surrounding area, Waynesboro, Georgia: Date of survey: August--September 1988

    SciTech Connect

    Not Available

    1990-09-01

    An Aerial Radiological Survey was conducted during the period of August 24 to September 14, 1988 over an area of approximately 310 square kilometers (120 square miles) surrounding the Alvin W. Vogtle Nuclear Plant. The Vogtle Nuclear Plant is located near Augusta, Georgia, along the Savannah River and adjacent to the Savannah River Site (SRS). Several anomalous areas were identified in the portion of the survey extending into the SRS perimeter. The dominant isotopes found in these areas were cesium-137 and cobalt-60. All of these man-made anomalies identified by the aerial measurements were attributed to SRS processing. For the remainder of the survey area, the inferred radiation exposure rates generally varied from 6 to 10 microroentgens per hour ({mu}R/h), which was found to be due to naturally occurring uranium, thorium, and radioactive potassium gamma emitters. The reported exposure rate values included an estimated cosmic ray contribution of 3.6 {mu}R/h. Soils samples and pressurized ion chamber measurements were obtained at three locations within the survey boundaries to support the aerial data. The exposure rate values obtained from these groundbased measurements were in agreement with the corresponding inferred aerial values. 6 refs., 13 figs., 4 tabs.

  3. 33 CFR 334.200 - Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Cedar Point; thence easterly to the southern tip of Barren Island; thence southeasterly to latitude 38... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U.S. Naval Air Station, Patuxent...

  4. 33 CFR 334.200 - Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Cedar Point; thence easterly to the southern tip of Barren Island; thence southeasterly to latitude 38... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U.S. Naval Air Station, Patuxent...

  5. 33 CFR 334.200 - Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Cedar Point; thence easterly to the southern tip of Barren Island; thence southeasterly to latitude 38... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U.S. Naval Air Station, Patuxent...

  6. 33 CFR 334.200 - Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Cedar Point; thence easterly to the southern tip of Barren Island; thence southeasterly to latitude 38... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U.S. Naval Air Station, Patuxent...

  7. 33 CFR 334.200 - Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Cedar Point; thence easterly to the southern tip of Barren Island; thence southeasterly to latitude 38... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U.S. Naval Air Station, Patuxent...

  8. The Effect of Gravity on the Structural Strength and Form of Aerial Plant Axes

    ERIC Educational Resources Information Center

    Murakami, Kiyofumi; Tajima, Ayumi

    2004-01-01

    The relationship between the form and structure of plants and their gravitational environment is one of the most important teaching subjects of biological education. However, the teaching materials for the gravity effect have so long been concerned only with gravitropism, i.e. the short-time response of adjusting the orientation of seedling roots…

  9. Land Surface Reflectance Retrieval from Hyperspectral Data Collected by an Unmanned Aerial Vehicle over the Baotou Test Site

    PubMed Central

    Duan, Si-Bo; Li, Zhao-Liang; Tang, Bo-Hui; Wu, Hua; Ma, Lingling; Zhao, Enyu; Li, Chuanrong

    2013-01-01

    To evaluate the in-flight performance of a new hyperspectral sensor onboard an unmanned aerial vehicle (UAV-HYPER), a comprehensive field campaign was conducted over the Baotou test site in China on 3 September 2011. Several portable reference reflectance targets were deployed across the test site. The radiometric performance of the UAV-HYPER sensor was assessed in terms of signal-to-noise ratio (SNR) and the calibration accuracy. The SNR of the different bands of the UAV-HYPER sensor was estimated to be between approximately 5 and 120 over the homogeneous targets, and the linear response of the apparent reflectance ranged from approximately 0.05 to 0.45. The uniform and non-uniform Lambertian land surface reflectance was retrieved and validated using in situ measurements, with root mean square error (RMSE) of approximately 0.01–0.07 and relative RMSE of approximately 5%–12%. There were small discrepancies between the retrieved uniform and non-uniform Lambertian land surface reflectance over the homogeneous targets and under low aerosol optical depth (AOD) conditions (AOD = 0.18). However, these discrepancies must be taken into account when adjacent pixels had large land surface reflectance contrast and under high AOD conditions (e.g. AOD = 1.0). PMID:23785513

  10. Land surface reflectance retrieval from hyperspectral data collected by an unmanned aerial vehicle over the Baotou test site.

    PubMed

    Duan, Si-Bo; Li, Zhao-Liang; Tang, Bo-Hui; Wu, Hua; Ma, Lingling; Zhao, Enyu; Li, Chuanrong

    2013-01-01

    To evaluate the in-flight performance of a new hyperspectral sensor onboard an unmanned aerial vehicle (UAV-HYPER), a comprehensive field campaign was conducted over the Baotou test site in China on 3 September 2011. Several portable reference reflectance targets were deployed across the test site. The radiometric performance of the UAV-HYPER sensor was assessed in terms of signal-to-noise ratio (SNR) and the calibration accuracy. The SNR of the different bands of the UAV-HYPER sensor was estimated to be between approximately 5 and 120 over the homogeneous targets, and the linear response of the apparent reflectance ranged from approximately 0.05 to 0.45. The uniform and non-uniform Lambertian land surface reflectance was retrieved and validated using in situ measurements, with root mean square error (RMSE) of approximately 0.01-0.07 and relative RMSE of approximately 5%-12%. There were small discrepancies between the retrieved uniform and non-uniform Lambertian land surface reflectance over the homogeneous targets and under low aerosol optical depth (AOD) conditions (AOD = 0.18). However, these discrepancies must be taken into account when adjacent pixels had large land surface reflectance contrast and under high AOD conditions (e.g. AOD = 1.0). PMID:23785513

  11. Aerial radiation monitoring around the Fukushima Dai-ichi Nuclear Power Plant using an unmanned helicopter.

    PubMed

    Sanada, Yukihisa; Torii, Tatsuo

    2015-01-01

    The Great East Japan Earthquake on March 11, 2011 generated a series of large tsunami that seriously damaged the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), which resulted in the release of radioactive materials into the environment. To provide further details regarding the distribution of air dose rate and the distribution of radioactive cesium ((134)Cs and (137)Cs) deposition on the ground within a radius of approximately 5 km from the nuclear power plant, we carried out measurements using an unmanned helicopter equipped with a radiation detection system. The distribution of the air dose rate at a height of 1 m above the ground and the radioactive cesium deposition on the ground was calculated. Accordingly, the footprint of radioactive plumes that extended from the FDNPP was illustrated. PMID:25053518

  12. Uniformity of environmental conditions and plant growth in a hydroponic culture system for use in a growth room with aerial CO2 control

    NASA Technical Reports Server (NTRS)

    Vessey, J. K.; York, E. K.; Henry, L. T.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1988-01-01

    A portable system of hydroponic culture was developed that maintained temperature, pH, and nutrient concentrations of circulating nutrient solutions. The hydroponic system is used within a controlled-environment room (CER) for control of aerial environment. The CER was equipped with an auto-calibrating system for atmospheric CO2 control. The control systems for the hydroponic chambers were able to maintain acidity within +/- 0.2 pH units and the temperature with +/- 0.5 degree C. Mixing time for the 200-liter volume of solution within a hydroponic chamber was less than 12 min. The CO2 control system was able to maintain aerial concentrations within +/- 10 ppm CO2 during the light period. The only gradient found to occur within the hydroponic chambers or CER was a slight gradient in aerial temperature along the length of hydroponic chambers. Growth of soybeans [Glycine max (L.) Merr.] was characterized during a 3-week period of vegetative development by leaf number and area, plant dry weight, total N content of plants, and N depletion from the nutrient solution. The growth characteristics among populations for three hydroponic chambers within the CER were not significantly different, and the percent standard errors of means of the measurements within populations from each chamber were nearly all less than 10%. Thus, the uniformity of plant growth reflected the uniformity of environmental conditions.

  13. Aerial radiological survey of the Shearon Harris Nuclear Power Plant and surrounding area, Bonsal, North Carolina. Date of survey: June 1984

    SciTech Connect

    Jobst, J.E.

    1984-10-01

    An aerial radiological survey of the Shearon Harris Nuclear Power Plant near Bonsal, North Carolina was conducted during the period 19 to 26 June 1984. The survey encompassed a 263-square-kilometer (101-square-mile) area centered on the reactor facilities. Inferred exposure rates were due primarily to naturally occurring gamma-emitting radionuclides and cosmic ray activity (estimated at 3.6 ..mu..R/h). The exposure rates varied broadly, from 4 to 11 ..mu..R/h. Most of the forest and farm land in the surrounding countryside ranged from 6 to 9 ..mu..R/h. Two areas showed slightly elevated activity (9 to 11 ..mu..R/h) due to Plant activities: (1) the land immediately surrounding the reactor because of construction materials and the absence of vegetation, (2) a metallurgical laboratory storage area containing small quantities of fission products. Spectral analysis of the latter showed that /sup 60/Co was the primary contributor to this elevated activity. Ground-based measurements made in several areas around the Plant site were consistent with the aerial data. This was the first aerial radiological survey conducted over this area. 6 references, 7 figures, 3 tables.

  14. USING GIS AND AERIAL PHOTOGRAPHY TO DETERMINE A HISTORICAL IMPERVIOUS SURFACE/STREAMFLOW RELATIONSHIP

    EPA Science Inventory

    Impervious surfaces are a leading contributor to non-point-source water pollution in urban watersheds. These surfaces include such features as roads, parking lots, rooftops and driveways. Arcview GIS and the Image Analysis extension have been utilized to geo-register and map imp...

  15. Surface Temperature Mapping of the University of Northern Iowa Campus Using High Resolution Thermal Infrared Aerial Imageries

    PubMed Central

    Savelyev, Alexander; Sugumaran, Ramanathan

    2008-01-01

    The goal of this project was to map the surface temperature of the University of Northern Iowa campus using high-resolution thermal infrared aerial imageries. A thermal camera with a spectral bandwidth of 3.0-5.0 μm was flown at the average altitude of 600 m, achieving ground resolution of 29 cm. Ground control data was used to construct the pixel- to-temperature conversion model, which was later used to produce temperature maps of the entire campus and also for validation of the model. The temperature map then was used to assess the building rooftop conditions and steam line faults in the study area. Assessment of the temperature map revealed a number of building structures that may be subject to insulation improvement due to their high surface temperatures leaks. Several hot spots were also identified on the campus for steam pipelines faults. High-resolution thermal infrared imagery proved highly effective tool for precise heat anomaly detection on the campus, and it can be used by university facility services for effective future maintenance of buildings and grounds.

  16. Study on release and transport of aerial radioactive materials in reprocessing plants

    SciTech Connect

    Amano, Y.; Tashiro, S.; Uchiyama, G.; Abe, H.; Yamane, Y.; Yoshida, K.; Kodama, T.

    2013-07-01

    The release and transport characteristics of radioactive materials at a boiling accident of the high active liquid waste (HALW) in a reprocessing plant have been studied for improving experimental data of source terms of the boiling accident. In the study, a heating test and a thermogravimetry and differential thermal analysis (TG-DTA) test were conducted. In the heating test using a simulated HALW, it was found that ruthenium was mainly released into the air in the form of gas and that non-volatile elements were released into the air in the form of mist. In the TG-DTA test, the rate constants and reaction heat of thermal decomposition of ruthenium nitrosyl nitrate were obtained from TG and DTA curves. (authors)

  17. Attachment of Agrobacterium to plant surfaces

    PubMed Central

    Matthysse, Ann G.

    2014-01-01

    Agrobacterium tumefaciens binds to the surfaces of inanimate objects, plants, and fungi. These bacteria are excellent colonizers of root surfaces. In addition, they also bind to soil particles and to the surface of artificial or man-made substances, such as polyesters and plastics. The mechanisms of attachment to these different surfaces have not been completely elucidated. At least two types of binding have been described unipolarpolysaccharide-dependent polar attachment and unipolar polysaccharide-independent attachment (both polar and lateral). The genes encoding the enzymes for the production of the former are located on the circular chromosome, while the genes involved in the latter have not been identified. The expression of both of these types of attachment is regulated in response to environmental signals. However, the signals to which they respond differ so that the two types of attachment are not necessarily expressed coordinately. PMID:24926300

  18. Simulating aerial gravitropism and posture control in plants: what has been done, what is missing

    NASA Astrophysics Data System (ADS)

    Coutand, Catherine; Pot, Guillaume; Bastien, R.; Badel, Eric; Moulia, Bruno

    The gravitropic response requires a process of perception of the signal and a motor process to actuate the movements. Different models have been developed, some focuses on the perception process and some focuses on the motor process. The kinematics of the gravitropic response will be first detailed to set the phenomenology of gravi- and auto-tropism. A model of perception (AC model) will be first presented to demonstrate that sensing inclination is not sufficient to control the gravitropic movement, and that proprioception is also involved. Then, “motor models” will be reviewed. In herbaceous plants, differential growth is the main motor. Modelling tropic movements with simulating elongation raises some difficulties that will be explained. In woody structures the main motor process is the differentiation of reaction wood via cambial growth. We will first present the simplest biomechanical model developed to simulate gravitropism and its limits will be pointed out. Then a more sophisticated model (TWIG) will be presented with a special focus on the importance of wood viscoelasticity and the wood maturation process and its regulation by a mechanosensing process. The presentation will end by a balance sheet of what is done and what is missing for a complete modelling of gravitropism and will present first results of a running project dedicating to get the data required to include phototropism in the actual models.

  19. Aerial Vehicle Surveys of other Planetary Atmospheres and Surfaces: Imaging, Remote-sensing, and Autonomy Technology Requirements

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Gregory; Ippolito, Corey; Alena, Rick

    2005-01-01

    The objective of this paper is to review the anticipated imaging and remote-sensing technology requirements for aerial vehicle survey missions to other planetary bodies in our Solar system that can support in-atmosphere flight. In the not too distant future such planetary aerial vehicle (a.k.a. aerial explorers) exploration missions will become feasible. Imaging and remote-sensing observations will be a key objective for these missions. Accordingly, it is imperative that optimal solutions in terms of imaging acquisition and real-time autonomous analysis of image data sets be developed for such vehicles.

  20. A Mobile System for Measuring Water Surface Velocities Using Unmanned Aerial Vehicle and Large-Scale Particle Image Velocimetry

    NASA Astrophysics Data System (ADS)

    Chen, Y. L.

    2015-12-01

    Measurement technologies for velocity of river flow are divided into intrusive and nonintrusive methods. Intrusive method requires infield operations. The measuring process of intrusive methods are time consuming, and likely to cause damages of operator and instrument. Nonintrusive methods require fewer operators and can reduce instrument damages from directly attaching to the flow. Nonintrusive measurements may use radar or image velocimetry to measure the velocities at the surface of water flow. The image velocimetry, such as large scale particle image velocimetry (LSPIV) accesses not only the point velocity but the flow velocities in an area simultaneously. Flow properties of an area hold the promise of providing spatially information of flow fields. This study attempts to construct a mobile system UAV-LSPIV by using an unmanned aerial vehicle (UAV) with LSPIV to measure flows in fields. The mobile system consists of a six-rotor UAV helicopter, a Sony nex5T camera, a gimbal, an image transfer device, a ground station and a remote control device. The activate gimbal helps maintain the camera lens orthogonal to the water surface and reduce the extent of images being distorted. The image transfer device can monitor the captured image instantly. The operator controls the UAV by remote control device through ground station and can achieve the flying data such as flying height and GPS coordinate of UAV. The mobile system was then applied to field experiments. The deviation of velocities measured by UAV-LSPIV of field experiments and handhold Acoustic Doppler Velocimeter (ADV) is under 8%. The results of the field experiments suggests that the application of UAV-LSPIV can be effectively applied to surface flow studies.

  1. Automatic Analysis and Classification of the Roof Surfaces for the Installation of Solar Panels Using a Multi-Data Source and Multi-Sensor Aerial Platform

    NASA Astrophysics Data System (ADS)

    López, L.; Lagüela, S.; Picon, I.; González-Aguilera, D.

    2015-02-01

    A low-cost multi-sensor aerial platform, aerial trike, equipped with visible and thermographic sensors is used for the acquisition of all the data needed for the automatic analysis and classification of roof surfaces regarding their suitability to harbour solar panels. The geometry of a georeferenced 3D point cloud generated from visible images using photogrammetric and computer vision algorithms, and the temperatures measured on thermographic images are decisive to evaluate the surfaces, slopes, orientations and the existence of obstacles. This way, large areas may be efficiently analysed obtaining as final result the optimal locations for the placement of solar panels as well as the required geometry of the supports for the installation of the panels in those roofs where geometry is not optimal.

  2. Design and development of a smart aerial platform for surface hydrological measurements

    NASA Astrophysics Data System (ADS)

    Tauro, F.; Pagano, C.; Porfiri, M.; Grimaldi, S.

    2013-12-01

    Currently available experimental methodologies for surface hydrological monitoring rely on the use of intrusive sensing technologies which tend to provide local rather than distributed information on the flow physics. In this context, drawbacks deriving from the use of invasive instrumentation are partially alleviated by Large Scale Particle Image Velocimetry (LSPIV). LSPIV is based on the use of cameras mounted on masts along river banks which capture images of artificial tracers or naturally occurring objects floating on water surfaces. Images are then georeferenced and the displacement of groups of floating tracers statistically analyzed to reconstruct flow velocity maps at specific river cross-sections. In this work, we mitigate LSPIV spatial limitations and inaccuracies due to image calibration by designing and developing a smart platform which integrates digital acquisition system and laser calibration units onboard of a custom-built quadricopter. The quadricopter is designed to be lightweight, low cost as compared to kits available on the market, highly customizable, and stable to guarantee minimal vibrations during image acquisition. The onboard digital system includes an encased GoPro Hero 3 camera whose axis is constantly kept orthogonal to the water surface by means of an in-house developed gimbal. The gimbal is connected to the quadricopter through a shock absorber damping device which further reduces eventual vibrations. Image calibration is performed through laser units mounted at known distances on the quadricopter landing apparatus. The vehicle can be remotely controlled by the open-source Ardupilot microcontroller. Calibration tests and field experiments are conducted in outdoor environments to assess the feasibility of using the smart platform for acquisition of high quality images of natural streams. Captured images are processed by LSPIV algorithms and average flow velocities are compared to independently acquired flow estimates. Further, videos

  3. Detection of surface elevation changes using an unmanned aerial vehicle on the debris-free Storbreen glacier in Norway

    NASA Astrophysics Data System (ADS)

    Kraaijenbrink, Philip; Andreassen, Liss; Immerzeel, Walter

    2016-04-01

    Recent studies have shown that the application of unmanned aerial vehicles (UAVs) has great potential to investigate the dynamic behavior of glaciers. The studies have successfully deployed UAVs over generally contrast-rich surfaces of debris-covered glaciers and highly crevassed bare ice glaciers. In this study, the potential of UAVs in glaciology is further exploited, as we use a fixed-wing UAV over the largely snow-covered Storbreen glacier in Norway in September 2015. The acquired UAV-imagery was processed into accurate digital elevation models and image mosaics using a Structure from Motion workflow. Georeferencing of the data was obtained by ingesting ground control points into the workflow that were accurately measured with a differential global navigation satellite system (DGNSS). Geodetic accuracy was determined by comparison with DGNSS surface profiles and stake positions that were measured on the same day. The processed data were compared with a LIDAR survey and airborne imagery acquisition from September and October 2009 to examine mass loss patterns and glacier retreat. Results show that the UAV is capable of producing high-quality elevation models and image mosaics for the low-contrast snow-covered Storbreen at unprecedented detail. The accuracy of the output product is lower when compared to contrast-rich debris-covered glaciers, but still considerably more accurate than spaceborne data products. Comparison with LIDAR data shows a spatially heterogeneous downwasting pattern of about 0.75 m a‑1 over 2009-2015 for the upper part of Storbreen. The lower part exhibits considerably more downwasting in the range of 0.9-2.1 m a‑1. We conclude that UAVs can be valuable for surveys of snow-covered glaciers to provide sufficient accurate elevation models and image mosaics, and we recommend the use of UAVs for the routine monitoring of benchmark glaciers such as Storbreen.

  4. Assessing the accuracy and repeatability of automated photogrammetrically generated digital surface models from unmanned aerial system imagery

    NASA Astrophysics Data System (ADS)

    Chavis, Christopher

    Using commercial digital cameras in conjunction with Unmanned Aerial Systems (UAS) to generate 3-D Digital Surface Models (DSMs) and orthomosaics is emerging as a cost-effective alternative to Light Detection and Ranging (LiDAR). Powerful software applications such as Pix4D and APS can automate the generation of DSM and orthomosaic products from a handful of inputs. However, the accuracy of these models is relatively untested. The objectives of this study were to generate multiple DSM and orthomosaic pairs of the same area using Pix4D and APS from flights of imagery collected with a lightweight UAS. The accuracy of each individual DSM was assessed in addition to the consistency of the method to model one location over a period of time. Finally, this study determined if the DSMs automatically generated using lightweight UAS and commercial digital cameras could be used for detecting changes in elevation and at what scale. Accuracy was determined by comparing DSMs to a series of reference points collected with survey grade GPS. Other GPS points were also used as control points to georeference the products within Pix4D and APS. The effectiveness of the products for change detection was assessed through image differencing and observance of artificially induced, known elevation changes. The vertical accuracy with the optimal data and model is ≈ 25 cm and the highest consistency over repeat flights is a standard deviation of ≈ 5 cm. Elevation change detection based on such UAS imagery and DSM models should be viable for detecting infrastructure change in urban or suburban environments with little dense canopy vegetation.

  5. Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials.

    PubMed

    Koch, Kerstin; Barthlott, Wilhelm

    2009-04-28

    The diversity of plant surface structures, evolved over 460 million years, has led to a large variety of highly adapted functional structures. The plant cuticle provides structural and chemical modifications for surface wetting, ranging from superhydrophilic to superhydrophobic. In this paper, the structural basics of superhydrophobic and superhydrophilic plant surfaces and their biological functions are introduced. Wetting in plants is influenced by the sculptures of the cells and by the fine structure of the surfaces, such as folding of the cuticle, or by epicuticular waxes. Hierarchical structures in plant surfaces are shown and further types of plant surface structuring leading to superhydrophobicity and superhydrophilicity are presented. The existing and potential uses of superhydrophobic and superhydrophilic surfaces for self-cleaning, drag reduction during moving in water, capillary liquid transport and other biomimetic materials are shown. PMID:19324720

  6. Identification of disrupted surfaces due to military activity at the Ft. Irwin National Training Center: An aerial photograph and satellite image analysis

    SciTech Connect

    McCarthy, L.E.; Marsh, S.E.; Lee, C.

    1996-07-01

    Concern for environmental management of our natural resources is most often focused on the anthropogenic impacts placed upon these resources. Desert landscapes, in particular, are fragile environments, and minimal stresses on surficial materials can greatly increase the rate and character of erosional responses. The National Training Center, Ft. Irwin, located in the middle of the Mojave Desert, California, provides an isolated study area of intense ORV activity occurring over a 50-year period. Geomorphic surfaces, and surficial disruption from two study sites within the Ft. Irwin area were mapped from 1947, 1:28,400, and 1993 1:12,000 black and white aerial photographs. Several field checks were conducted to verify this mapping. However, mapping from black and white aerial photography relies heavily on tonal differences, patterns, and morphological criteria. Satellite imagery, sensitive to changes in mineralogy, can help improve the ability to distinguish geomorphic units in desert regions. In order to assess both the extent of disrupted surfaces and the surficial geomorphology discemable from satellite imagery, analysis was done on SPOT panchromatic and Landsat Thematic Mapper (TM) multispectral imagery acquired during the spring of 1987 and 1993. The resulting classified images provide a clear indication of the capabilities of the satellite data to aid in the delineation of disrupted geomorphic surfaces.

  7. Ozone - plant surface reactions an important ozone loss term?

    NASA Astrophysics Data System (ADS)

    Hansel, Armin; Jud, Werner; Fischer, Lukas; Canaval, Eva; Wohlfahrt, Georg; Tissier, Alain

    2015-04-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants responsible for global crop losses with associated economic costs of several billions dollar per year. Plant injuries have been related to the uptake of ozone through stomatal pores and oxidative effects damaging the internal leaf tissue. But a striking question remains: How much ozone enters the plant through open stomata and how much ozone is lost by chemical reactions at the plant surface? Until now surface losses are estimated from measured total ozone deposition fluxes and calculated stomatal conductance values. While stomatal conductance of CO2 and H2O is well understood and extensively used in describing plant atmosphere gas exchange, stomatal conductance of ozone is not well known. Here we use different Nicotiana tabacum varieties and find that surface reactions of ozone with diterpenoids synthesized by glandular trichomes reduce ozone flux through open stomata. Our measurements reveal that fast ozone loss at the plant surface is accompanied with prompt release of oxygenated volatile compounds. In the ozone fumigation experiments of different Nicotiana tabacum varieties the release of specific volatile oxy-VOCs allowed to identify the semi volatile precursor compounds at the plant surface. Ozone fumigation experiments with Norway spruce (Picea abies) and Scots Pine (Pinus sylvestris), two common species in the Northern Hemisphere, show also a significant ozone loss at the plant surface for Picea abies. Fluid dynamic calculations of ozone transport in the diffusive leaf boundary layer reveal a vertical but no horizontal ozone gradient thus reducing ozone fluxes through the pores in case of efficient ozone scavenging plant surfaces. We explain this efficient ozone protection mechanism by the porous surface architecture of plants in combination with unsaturated semi-volatile compounds deposited at the plant surface. These results show that unsaturated semi-volatile compounds at

  8. AERIAL RADIOLOGICAL SURVEYS

    SciTech Connect

    Proctor, A.E.

    1997-06-09

    Measuring terrestrial gamma radiation from airborne platforms has proved to be a useful method for characterizing radiation levels over large areas. Over 300 aerial radiological surveys have been carried out over the past 25 years including U.S. Department of Energy (DOE) sites, commercial nuclear power plants, Formerly Utilized Sites Remedial Action Program/Uranium Mine Tailing Remedial Action Program (FUSRAP/UMTRAP) sites, nuclear weapons test sites, contaminated industrial areas, and nuclear accident sites. This paper describes the aerial measurement technology currently in use by the Remote Sensing Laboratory (RSL) for routine environmental surveys and emergency response activities. Equipment, data-collection and -analysis methods, and examples of survey results are described.

  9. From plant surface to plant metabolism: the uncertain fate of foliar-applied nutrients.

    PubMed

    Fernández, Victoria; Brown, Patrick H

    2013-01-01

    The application of agrochemical sprays to the aerial parts of crop plants is an important agricultural practice world-wide. While variable effectiveness is often seen in response to foliar treatments, there is abundant evidence showing the beneficial effect of foliar fertilizers in terms of improving the metabolism, quality, and yields of crops. This mini-review is focused on the major bottlenecks associated with the uptake and translocation of foliar-applied nutrient solutions. A better understanding of the complex scenario surrounding the ultimate delivery of foliar-applied nutrients to sink cells and organs is essential for improving the effectiveness and performance of foliar fertilizers. PMID:23914198

  10. An aerial radiological survey of the Waste Isolation Pilot Plant and surrounding area, Carlsbad, New Mexico: Date of survey, April 1988

    SciTech Connect

    Not Available

    1989-06-01

    An aerial radiological survey was conducted during the period April 8 to April 19, 1988 over a 404-square-kilometer (156-square-mile) area covering the Waste Isolation Pilot Plant (WIPP) located near Carlsbad, New Mexico, the surrounding area. The survey was conducted at a nominal altitude of 91 meters (300 feet) with a line spacing of 152 meters (500 feet). A contour map of the terrestrial exposure rates plus the cosmic exposure rate extrapolated to 1 meter above ground level was prepared and overlaid on an aerial photograph of the area. The average terrestrial exposure rates ranged from approximately 6.0 to 9.0 microroentgens per hour ({mu}R/h). Two areas of increased exposure rate were evident. Both areas indicated higher than normal concentrations of naturally occurring radionuclides. A machine-aided search of the data for man-made sources of radiation indicated the presence of Cs-137 at the Gnome Site, which was expected from previous survey work done in the area. No other sources of man-made radiation were found.

  11. Guiding the Search for Surface Rupture and Paleoseismic Sites using Low-Level Aerial Surveys, Geodetic Imaging, Remote Sensing and Field Mapping (Invited)

    NASA Astrophysics Data System (ADS)

    Hudnut, K. W.; Fletcher, J. M.; Teran, O.; Gonzalez-Garcia, J. J.; Hinojosa, A.; Rockwell, T. K.; Akciz, S. O.; Leprince, S.; Fielding, E. J.; Briggs, R. W.; Crone, A. J.; Gold, R. D.; Prentice, C. S.; Stock, J.; Avouac, J.; Simons, M.; Galetzka, J. E.; Lynch, D. K.; Cowgill, E.; Oskin, M. E.; Morelan, A.; Aslaksen, M.; Sellars, J.; Woolard, J.

    2010-12-01

    The significant earthquakes of 2010 produced surficial expressions ranging from blind faulting and coastal uplift in Leogane, Haiti and Maule, Chile to surface faulting in Baja California, Mexico and Yushu, China. In Haiti and Baja California geodetic imaging methods strongly guided field reconnaissance and surface rupture mapping efforts, yet in quite different ways. In these challenging examples, InSAR, UAVSAR and optical image differencing, as well as SAR pixel tracking methods, were used to locate and quantify ground deformation and ruptures. In Baja California prominent rupture occurred in parts of the Cucapah mountains, yet along an 11 km-long stepover section, the zone of faulting was discontinuous and obscured by rockfalls. Optical image differencing helped identify surface rupture, especially through this stepover. SAR pixel tracking confirmed that rupture occurred along the newly identified Indiviso fault in Baja California, though masked by ground failure in the Colorado River Delta. Also in Baja California (and extending north of the US-MX border), a complex set of NE-SW cross-faults and N-S breaks were imaged with UAVSAR, InSAR, and aerial photography allowing the intricate pattern of faulting to be scrutinized. In Haiti, surface rupture along the inferred source fault was not observed during initial reconnaissance. This led to extensive imagery- and field-based searches for surface deformation, aided by InSAR, which revealed that surface deformation was caused primarily by off-fault blind thrusting. In Baja California, high resolution (up to 3-5 cm GSD) aerial imaging by low-altitude aerial stereo photography was then used to identify promising locations for measuring slip vectors on the fault, and to aid in mapping the surface rupture in detail (at 1:500 scale). Digital aerial photography with 0.1 m GSD by NOAA using their DSS 439 camera was rapidly reduced to orthomosaics (at 0.25 m GSD) and then used as uniform base imagery for rupture mapping. In

  12. Surface and thickness variations of Brenva Glacier tongue (Mont Blanc, Italian Alps) in the second half of the 20th century by historical maps and aerial photogrammetry comparisons

    NASA Astrophysics Data System (ADS)

    D Agata, C.; Zanutta, A.; Muzzu Martis, D.; Mancini, F.; Smiraglia, C.

    2003-04-01

    Aim of this contribution is the evaluation of volumetric and surface variations of Brenva Glacier (Mont Blanc, Italian Alps) during the second half of the 20th century, by GIS-based processing of maps and aerial photogrammetry technique. Brenva Glacier is a typical debris covered glacier, located in a valley on the S-E side of the Mont Blanc. The glacier covers a surface of 7 kmq and shows a length of 7,6 km at maximum. The glacier snout reaches 1415 m a.s.l., which is the lowest glacier terminus of the Italian Alps. To evaluate glacier variations different historical maps were used: 1) The 1959 Map, at the scale 1:5.000, by EIRA (Ente Italiano Rilievi Aerofotogrammetrici, Firenze), from terrestrial photogrammetric survey, published in the Bollettino del Comitato Glaciologico Italiano, 2, n. 19, 1971. 2) The 1971 Map, at the scale 1:5.000, from aerial photogrammetry (Alifoto, Torino) published in the Bollettino del Comitato Glaciologico Italiano, 2, n. 20, 1972. 3) The 1988 Map, at the scale 1:10.000, (Region Aosta Valley, Regional Technical Map) from 1983 aerial photogrammetric survey. 4) The 1999 Map, at the scale 1:10.000, (Region Aosta Valley, Regional Technical Map) from 1991 aerial photogrammetry survey. For the same purpose the following aereal photographs were used: 1) The 1975 image, CGR (Italian General Company aerial Surveys) flight RAVDA (Administrative Autonomous Region Aosta Valley), at the scale 1:17.000. 2) The 1991 image, CGR (Italian General Company aerial Surveys) flight RAVDA (Administrative Autonomous Region Aosta Valley), at the scale 1:17.000. Aerial imageries have been acquired over a long period from 1975 to 1991. The black and white images were scanned at suitable resolution if compared with the imagery scale and several models, representing the glacier tongue area, oriented using the inner and outer orientation parameters delivered with the images, were produced. The digital photogrammetric system, after orientation and matching, produces

  13. A Classroom Simulation of Aerial Photography.

    ERIC Educational Resources Information Center

    Baker, Simon

    1981-01-01

    Explains how a simulation of aerial photography can help students in a college level beginning course on interpretation of aerial photography understand the interrelationships of the airplane, the camera, and the earth's surface. Procedures, objectives, equipment, and scale are discussed. (DB)

  14. Planialtimetric Accuracy Evaluation of Digital Surface Model (dsm) and Digital Terrain Model (dtm) Obtained from Aerial Survey with LIDAR

    NASA Astrophysics Data System (ADS)

    Cruz, C. B. M.; Barros, R. S.; Rabaco, L. M. L.

    2012-07-01

    It's noticed a significant increase in the development of orbital and airborne sensors that enable the extraction of three-dimensional data. Consequently, it's important the increment of studies about the quality of altimetric values derived from these sensors to verify if the improvements implemented in the acquisition of data may influence the results. In this context, as part of a larger project that aims to evaluate the accuracy of various sensors, this work aims to analysis the planialtimetric accuracy of DSM and DTM generated from an aerial survey with LIDAR, using as reference for the planimetric analysis of the orthophotos obtained. The project was developed for an area of São Sebastião city, located in the basin of the North Coast of São Paulo state. The area's relief is very steep, with a predominance of dense forest vegetation, typical of the Atlantic Forest. All points have been established in the field, with the use of GNSS of one frequency (L1) through static relative positioning, acquiring a minimum of 1,500 epochs, for a distance less than 20 km to the base. In this work it's considered the Brazilian standard specifications for classification of cartographic bases (PEC). The Brazilian company responsible for the aerial survey (LACTEC) gave the following products for analysis: point clouds in raw format (x, y, z) using orthometric heights; point clouds (first and last pulse) for each range of flight to verify systematic errors; DTM uniformly spaced, filtering small natural obstacles, buildings and vegetation, in Geotiff format; DSM also uniformly spaced, in Geotiff format; and the mosaic of georeferenced digital images. The analysis realized on products from the LIDAR indicated their adoption to the scales 1:2,000 (Class A for the orthophotos and Class B for the DTM) and 1:5,000 (class C for the DSM). There were no indications of trends in the results. The average error was 0.01 m. It's important that new areas with different topographic

  15. Secret Message at the Plant Surface

    PubMed Central

    Boccalandro, Hernán; Casal, Jorge

    2007-01-01

    In general, stomata open during the day and close at night. This behavior has a crucial importance because it maximizes the update of CO2 for photosynthesis and minimizes the water loss. Blue light is one of the environmental factors that regulates this process. Certainly, when either entire plants or epidermal strips adapted to the dark are exposed to blue light, the stomata open widely their pores. But, what does happen if we illuminate individual stomata instead of peels or entire plants? In the inaugural issue of PLoS ONE, we have answered this question by irradiating individual stomata with a laser attached to a confocal microscope. Our study not only demonstrates that the stomata function independently from the behavior of their neighbors, and illuminates the implication of the blue light receptors PHOTOTROPIN1 and PHOTOTROPIN2 in such response. It also gives clues about the physiological relevancy of this behavior. PMID:19704603

  16. Plant Surface Cues Prime Ustilago maydis for Biotrophic Development

    PubMed Central

    Tollot, Marie; Naik, Vikram; Vranes, Miroslav; Warmann, Tobias; Münch, Karin; Rössel, Nicole; Kahmann, Regine

    2014-01-01

    Infection-related development of phytopathogenic fungi is initiated by sensing and responding to plant surface cues. This response can result in the formation of specialized infection structures, so-called appressoria. To unravel the program inducing filaments and appressoria in the biotrophic smut fungus Ustilago maydis, we exposed cells to a hydrophobic surface and the cutin monomer 16-hydroxy hexadecanoic acid. Genome-wide transcriptional profiling at the pre-penetration stage documented dramatic transcriptional changes in almost 20% of the genes. Comparisons with the U. maydis sho1 msb2 double mutant, lacking two putative sensors for plant surface cues, revealed that these plasma membrane receptors regulate a small subset of the surface cue-induced genes comprising mainly secreted proteins including potential plant cell wall degrading enzymes. Targeted gene deletion analysis ascribed a role to up-regulated GH51 and GH62 arabinofuranosidases during plant penetration. Among the sho1/msb2-dependently expressed genes were several secreted effectors that are essential for virulence. Our data also demonstrate specific effects on two transcription factors that redirect the transcriptional regulatory network towards appressorium formation and plant penetration. This shows that plant surface cues prime U. maydis for biotrophic development. PMID:25033195

  17. Beryllium surface levels in a military ammunition plant.

    PubMed

    Sanderson, Wayne T; Leonard, Stephanie; Ott, Darrin; Fuortes, Laurence; Field, William

    2008-07-01

    This study evaluated the presence of beryllium surface contamination in a U.S. conventional munitions plant as an indicator of possible past beryllium airborne and skin exposure and used these measurements to classify job categories by potential level of exposure. Surface samples were collected from production and nonproduction areas of the plant and at regional industrial reference sites with no known history of beryllium use. Surface samples of premoistened wiping material were analyzed for beryllium mass content using inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and results expressed as micrograms of beryllium per 100 square centimeters (micro g/100 cm(2)). Beryllium was detected in 87% of samples collected at the munitions plant and in 72% of the samples collected at regional reference sites. Two munitions plant samples from areas near sanders and grinders were above 3.0 micro g/100 cm(2) (U.S. Department of Energy surface contamination limit). The highest surface level found at the reference sites was 0.44 micro g/100 cm(2). Workers in areas where beryllium-containing alloy tools were sanded or ground, but not other work areas, may have been exposed to airborne beryllium concentrations above levels encountered in other industries where metal work is conducted. Surface sampling provided information useful for categorizing munitions plant jobs by level of past beryllium airborne and skin exposure and, subsequently, for identifying employees within exposure strata to be screened for beryllium sensitization. PMID:18569510

  18. Quantifying Aerial Concentrations of Maize Pollen in the Atmospheric Surface Layer Using Remote-Piloted Airplanes and Lagrangian Stochastic Modeling

    NASA Astrophysics Data System (ADS)

    Aylor, Donald E.; Boehm, Matthew T.; Shields, Elson J.

    2006-07-01

    The extensive adoption of genetically modified crops has led to a need to understand better the dispersal of pollen in the atmosphere because of the potential for unwanted movement of genetic traits via pollen flow in the environment. The aerial dispersal of maize pollen was studied by comparing the results of a Lagrangian stochastic (LS) model with pollen concentration measurements made over cornfields using a combination of tower-based rotorod samplers and airborne radio-controlled remote-piloted vehicles (RPVs) outfitted with remotely operated pollen samplers. The comparison between model and measurements was conducted in two steps. In the first step, the LS model was used in combination with the rotorod samplers to estimate the pollen release rate Q for each sampling period. In the second step, a modeled value for the concentration Cmodel, corresponding to each RPV measured value Cmeasure, was calculated by simulating the RPV flight path through the LS model pollen plume corresponding to the atmospheric conditions, field geometry, wind direction, and source strength. The geometric mean and geometric standard deviation of the ratio Cmodel/Cmeasure over all of the sampling periods, except those determined to be upwind of the field, were 1.42 and 4.53, respectively, and the lognormal distribution corresponding to these values was found to fit closely the PDF of Cmodel/Cmeasure. Model output was sensitive to the turbulence parameters, with a factor-of-100 difference in the average value of Cmodel over the range of values encountered during the experiment. In comparison with this large potential variability, it is concluded that the average factor of 1.4 between Cmodel and Cmeasure found here indicates that the LS model is capable of accurately predicting, on average, concentrations over a range of atmospheric conditions.

  19. Quantifying the Accuracy of a Quad-Rotor Unmanned Aerial Vehicle as a Platform for Atmospheric Pressure, Temperature and Humidity Measurements near the Surface.

    NASA Astrophysics Data System (ADS)

    Guest, P. S.

    2014-12-01

    Miniature multi-rotor unmanned aerial vehicles (UAVs) can be used to directly sample the lower atmosphere over land and over the ocean in the vicinity of ships or shorelines. These UAVs are generally inexpensive and easy to operate. The author used the InstantEye quad-rotor UAV, manufactured by Physical Sciences Inc., as a test platform for meteorological measurements. In this case, the atmospheric sensor was the RS-92 radiosonde manufactured by Vaisala Inc. The author will present quantitative results of several experiments performed over land at Camp Roberts, California in which the InstantEye with radiosonde sensors was flown alongside a calibrated meteorological tower, thus allowing the accuracy of the UAV measurements to be quantified. Measurements near the surface were most strongly affected by turbulent fluctuations during sunny, low wind days over a dry surface. The rotor wash (1) provides sensor aeration which counteracts radiation contamination effects (2) creates a dynamic pressure effect in lowest 1.5 m and (3) moves air from a different level (1 - 2 m). Horizontal motion of the UAV had little effect on the measurements. The accuracy of the mean temperature measurements in the surface layer during unstable conditions was estimated to be 0.2 to 0.3 C, if samples are taken for at least one minute, except in the lowest 1.5 m above the surface, where rotor wash effects brought hot surface air to the sensors, degrading the accuracy. Above the turbulent surface layer, the temperature measurements approached a 0.1 C accuracy.

  20. Plant surface wax affects parasitoid's response to host footprints

    NASA Astrophysics Data System (ADS)

    Rostás, Michael; Ruf, Daniel; Zabka, Vanessa; Hildebrandt, Ulrich

    2008-10-01

    The plant surface is the substrate upon which herbivorous insects and natural enemies meet and thus represents the stage for interactions between the three trophic levels. Plant surfaces are covered by an epicuticular wax layer which is highly variable depending on species, cultivar or plant part. Differences in wax chemistry may modulate ecological interactions. We explored whether caterpillars of Spodoptera frugiperda, when walking over a plant surface, leave a chemical trail (kairomones) that can be detected by the parasitoid Cotesia marginiventris. Chemistry and micromorphology of cuticular waxes of two barley eceriferum wax mutants ( cer-za.126, cer-yp.949) and wild-type cv. Bonus (wt) were assessed. The plants were then used to investigate potential surface effects on the detectability of caterpillar kairomones. Here we provide evidence that C. marginiventris responds to chemical footprints of its host. Parasitoids were able to detect the kairomone on wild-type plants and on both cer mutants but the response to cer-yp.949 (reduced wax, high aldehyde fraction) was less pronounced. Experiments with caterpillar-treated wt and mutant leaves offered simultaneously, confirmed this observation: no difference in wasp response was found when wt was tested against cer-za.126 (reduced wax, wt-like chemical composition) but wt was significantly more attractive than cer-yp.949. This demonstrates for the first time that the wax layer can modulate the detectability of host kairomones.

  1. Plant surface reactions: an ozone defence mechanism impacting atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Jud, W.; Fischer, L.; Canaval, E.; Wohlfahrt, G.; Tissier, A.; Hansel, A.

    2015-07-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants, responsible for global crop losses with associated economic costs of several billion dollars per year. Plant injuries have been linked to the uptake of ozone through stomatal pores and oxidative damage of the internal leaf tissue. But a striking question remains: how much ozone effectively enters the plant through open stomata and how much is lost by chemical reactions at the plant surface? In this laboratory study we could show that semi-volatile organic compounds exuded by the glandular trichomes of different Nicotiana tabacum varieties are an efficient ozone sink at the plant surface. In our experiments, different diterpenoid compounds were responsible for a strongly variety dependent ozone uptake of plants under dark conditions, when stomatal pores are almost closed. Surface reactions of ozone were accompanied by prompt release of oxygenated volatile organic compounds, which could be linked to the corresponding precursor compounds: ozonolysis of cis-abienol (C20H34O) - a diterpenoid with two exocyclic double bonds - caused emissions of formaldehyde (HCHO) and methyl vinyl ketone (C4H6O). The ring-structured cembratrien-diols (C20H34O2) with three endocyclic double bonds need at least two ozonolysis steps to form volatile carbonyls such as 4-oxopentanal (C5H8O2), which we could observe in the gas phase, too. Fluid dynamic calculations were used to model ozone distribution in the diffusion limited leaf boundary layer under daylight conditions. In the case of an ozone-reactive leaf surface, ozone gradients in the vicinity of stomatal pores are changed in such a way, that ozone flux through the open stomata is strongly reduced. Our results show that unsaturated semi-volatile compounds at the plant surface should be considered as a source of oxygenated volatile organic compounds, impacting gas phase chemistry, as well as efficient ozone sink improving the ozone tolerance of plants.

  2. Characterization of surface oil thickness distribution patterns observed during the Deepwater Horizon (MC-252) oil spill with aerial and satellite remote sensing.

    PubMed

    Svejkovsky, Jan; Hess, Mark; Muskat, Judd; Nedwed, Tim J; McCall, Jenifer; Garcia, Oscar

    2016-09-15

    Knowledge of the spatial distribution of oil thickness patterns within an on-water spill is of obvious importance for immediate spill response activities as well as for subsequent evaluation of the spill impacts. For long-lasting continuous spills like the 2010 3-month Deepwater Horizon (DWH) event in the Gulf of Mexico, it is also important to identify changes in the dominant oil features through time. This study utilized very high resolution (≤5m) aerial and satellite imagery acquired during the DWH spill to evaluate the shape, size and thickness of surface oil features that dominated the DWH slick. Results indicate that outside of the immediate spill source region, oil distributions did not encompass a broad, varied range of thicknesses. Instead, the oil separated into four primary, distinct characterizations: 1) invisible surface films detectable only with Synthetic Aperture Radar imaging because of the decreased surface backscatter, 2) thicker sheen & rainbow areas (<0.005mm), 3) large regional areas of relatively thin, "metallic appearance" films (0.005-0.08mm), and 4) strands of thick, emulsified oil (>1mm) that were consistently hundreds of meters long but most commonly only 10-50m wide. Where present within the slick footprint, each of the three distinct visible oil thickness classes maintained its shape characteristics both spatially (at different distances from the source and in different portions of the slick), and temporally (from mid-May through July 2010). The region over the source site tended to contain a more continuous range of oil thicknesses, however, our results indicate that the continuous injection of subsurface dispersants starting in late May significantly altered (lowered) that range. In addition to characterizing the oil thickness distribution patterns through the timeline of one of the world's largest oil spills, this paper also details the extension of using high resolution aerial imagery to calibrate medium resolution satellite data

  3. Hyperspatial Thermal Imaging of Surface Hydrothermal Features at Pilgrim Hot Springs, Alaska using a small Unmanned Aerial System (sUAS)

    NASA Astrophysics Data System (ADS)

    Haselwimmer, C. E.; Wilson, R.; Upton, C.; Prakash, A.; Holdmann, G.; Walker, G.

    2013-12-01

    Thermal remote sensing provides a valuable tool for mapping and monitoring surface hydrothermal features associated with geothermal activity. The increasing availability of low-cost, small Unmanned Aerial Systems (sUAS) with integrated thermal imaging sensors offers a means to undertake very high spatial resolution (hyperspatial), quantitative thermal remote sensing of surface geothermal features in support of exploration and long-term monitoring efforts. Results from the deployment of a quadcopter sUAS equipped with a thermal camera over Pilgrim Hot Springs, Alaska for detailed mapping and heat flux estimation for hot springs, seeps, and thermal pools are presented. Hyperspatial thermal infrared imagery (4 cm pixels) was acquired over Pilgrim Hot Springs in July 2013 using a FLIR TAU 640 camera operating from an Aeryon Scout sUAS flying at an altitude of 40m. The registered and mosaicked thermal imagery is calibrated to surface temperature values using in-situ measurements of uniform blackbody tarps and the temperatures of geothermal and other surface pools acquired with a series of water temperature loggers. Interpretation of the pre-processed thermal imagery enables the delineation of hot springs, the extents of thermal pools, and the flow and mixing of individual geothermal outflow plumes with an unprecedented level of detail. Using the surface temperatures of thermal waters derived from the FLIR data and measured in-situ meteorological parameters the hot spring heat flux and outflow rate is calculated using a heat budget model for a subset of the thermal drainage. The heat flux/outflow rate estimates derived from the FLIR data are compared against in-situ measurements of the hot spring outflow rate recorded at the time of the thermal survey.

  4. Evaluation of the surface free energy of plant surfaces: toward standardizing the procedure

    PubMed Central

    Fernández, Victoria; Khayet, Mohamed

    2015-01-01

    Plant surfaces have been found to have a major chemical and physical heterogeneity and play a key protecting role against multiple stress factors. During the last decade, there is a raising interest in examining plant surface properties for the development of biomimetic materials. Contact angle measurement of different liquids is a common tool for characterizing synthetic materials, which is just beginning to be applied to plant surfaces. However, some studies performed with polymers and other materials showed that for the same surface, different surface free energy values may be obtained depending on the number and nature of the test liquids analyzed, materials' properties, and surface free energy calculation methods employed. For 3 rough and 3 rather smooth plant materials, we calculated their surface free energy using 2 or 3 test liquids and 3 different calculation methods. Regardless of the degree of surface roughness, the methods based on 2 test liquids often led to the under- or over-estimation of surface free energies as compared to the results derived from the 3-Liquids method. Given the major chemical and structural diversity of plant surfaces, it is concluded that 3 different liquids must be considered for characterizing materials of unknown physico-chemical properties, which may significantly differ in terms of polar and dispersive interactions. Since there are just few surface free energy data of plant surfaces with the aim of standardizing the calculation procedure and interpretation of the results among for instance, different species, organs, or phenological states, we suggest the use of 3 liquids and the mean surface tension values provided in this study. PMID:26217362

  5. Evaluation of the surface free energy of plant surfaces: toward standardizing the procedure.

    PubMed

    Fernández, Victoria; Khayet, Mohamed

    2015-01-01

    Plant surfaces have been found to have a major chemical and physical heterogeneity and play a key protecting role against multiple stress factors. During the last decade, there is a raising interest in examining plant surface properties for the development of biomimetic materials. Contact angle measurement of different liquids is a common tool for characterizing synthetic materials, which is just beginning to be applied to plant surfaces. However, some studies performed with polymers and other materials showed that for the same surface, different surface free energy values may be obtained depending on the number and nature of the test liquids analyzed, materials' properties, and surface free energy calculation methods employed. For 3 rough and 3 rather smooth plant materials, we calculated their surface free energy using 2 or 3 test liquids and 3 different calculation methods. Regardless of the degree of surface roughness, the methods based on 2 test liquids often led to the under- or over-estimation of surface free energies as compared to the results derived from the 3-Liquids method. Given the major chemical and structural diversity of plant surfaces, it is concluded that 3 different liquids must be considered for characterizing materials of unknown physico-chemical properties, which may significantly differ in terms of polar and dispersive interactions. Since there are just few surface free energy data of plant surfaces with the aim of standardizing the calculation procedure and interpretation of the results among for instance, different species, organs, or phenological states, we suggest the use of 3 liquids and the mean surface tension values provided in this study. PMID:26217362

  6. Aerial radiation surveys

    SciTech Connect

    Jobst, J.

    1980-01-01

    A recent aerial radiation survey of the surroundings of the Vitro mill in Salt Lake City shows that uranium mill tailings have been removed to many locations outside their original boundary. To date, 52 remote sites have been discovered within a 100 square kilometer aerial survey perimeter surrounding the mill; 9 of these were discovered with the recent aerial survey map. Five additional sites, also discovered by aerial survey, contained uranium ore, milling equipment, or radioactive slag. Because of the success of this survey, plans are being made to extend the aerial survey program to other parts of the Salt Lake valley where diversions of Vitro tailings are also known to exist.

  7. 5. AERIAL VIEW, LOOKING NORTH, OF BUILDING 371 AFTER CONSTRUCTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. AERIAL VIEW, LOOKING NORTH, OF BUILDING 371 AFTER CONSTRUCTION WAS COMPLETED. (11/7/78) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  8. Structures and construction of nuclear power plants on lunar surface

    NASA Astrophysics Data System (ADS)

    Shimizu, Katsunori; Kobatake, Masuhiko; Ogawa, Sachio; Kanamori, Hiroshi; Okada, Yasuhiko; Mano, Hideyuki; Takagi, Kenji

    1991-07-01

    The best structure and construction techniques of nuclear power plants in the severe environments on the lunar surface are studied. Facility construction types (functional conditions such as stable structure, shield thickness, maintainability, safety distances, and service life), construction conditions (such as construction methods, construction equipment, number of personnel, time required for construction, external power supply, and required transportation) and construction feasibility (construction method, reactor transportation between the moon and the earth, ground excavation for installation, loading and unloading, transportation, and installation, filling up the ground, electric power supply of plant S (300 kW class) and plant L (3000 kW class)) are outlined. Items to pay attention to in construction are (1) automation and robotization of construction; (2) cost reduction by multi functional robots; and (3) methods of supplying power to robots. A precast concrete block manufacturing plant is also outlined.

  9. Aerial Image Systems

    NASA Astrophysics Data System (ADS)

    Clapp, Robert E.

    1987-09-01

    Aerial images produce the best stereoscopic images of the viewed world. Despite the fact that every optic in existence produces an aerial image, few persons are aware of their existence and possible uses. Constant reference to the eye and other optical systems have produced a psychosis of design that only considers "focal planes" in the design and analysis of optical systems. All objects in the field of view of the optical device are imaged by the device as an aerial image. Use of aerial images in vision and visual display systems can provide a true stereoscopic representation of the viewed world. This paper discusses aerial image systems - their applications and designs and presents designs and design concepts that utilize aerial images to obtain superior visual displays, particularly with application to visual simulation.

  10. Mass loading of soil particles on plant surfaces

    SciTech Connect

    Pinder, J.E. III; McLeod, K.W. )

    1989-12-01

    Radionuclide-bearing soil particles on plant surfaces can be ingested and contribute to human dose, but evaluating the potential dose is limited by the relatively few data available on the masses of soil particles present on plant surfaces. This report summarizes mass loading data (i.e., mass of soil per unit of vegetation) for crops in the southeastern United States and compares these data to (1) those from other regions and (2) the mass loadings used in radionuclide transfer models to predict soil contamination of plant surfaces. Mass loadings were estimated using the 238Pu content of crops as an indicator of soil on plant surfaces. Crops were grown in two soils: a sandy clay loam soil and a loamy sand soil. Concentrations of soil on southeastern crops (i.e., mg soil g-1 plant) differed by more than a factor of 100 due to differences in crop growth form and biomass. Mean concentrations ranged from 1.7 mg g-1 for corn to 260 mg g-1 for lettuce. Differences in mass loadings between soils were less than those among crops. Concentrations differed by less than a factor of two between the two soil types. Because of (1) the differences among crops and (2) the limited data available from other systems, it is difficult to draw conclusions regarding regional or climatic variation in mass loadings. There is, however, little evidence to suggest large differences among regions. The mass loadings used to predict soil contamination in current radionuclide transfer models appear to be less than those observed for most crops.

  11. Raman and surface enhanced Raman spectroscopic investigation on Lamiaceae plants

    NASA Astrophysics Data System (ADS)

    Rösch, P.; Popp, J.; Kiefer, W.

    1999-05-01

    The essential oils of Thymus vulgaris and Origanum vulgaris are studied by means of micro-Raman spectroscopy. The containing monoterpenes can be identified by their Raman spectra. Further the essential oils are investigated in their natural environment, the so-called oil cells of these Lamiaceae plants, with surface enhanced Raman spectroscopy (SERS). This method has the advantage to enhance Raman signals and furthermore the SERS effect leads to fluorescence quenching.

  12. Surface sensing and signaling networks in plant pathogenic fungi.

    PubMed

    Kou, Yanjun; Naqvi, Naweed I

    2016-09-01

    Pathogenic fungi have evolved highly varied and remarkable strategies to invade and infect their plant hosts. Typically, such fungal pathogens utilize highly specialized infection structures, morphologies or cell types produced from conidia or ascospores on the cognate host surfaces to gain entry therein. Such diverse infection strategies require intricate coordination in cell signaling and differentiation in phytopathogenic fungi. Here, we present an overview of our current understanding of cell signaling and infection-associated development that primes host penetration in the top ten plant pathogenic fungi, which utilize specific receptors to sense and respond to different surface cues, such as topographic features, hydrophobicity, hardness, plant lipids, phytohormones, and/or secreted enzymes. Subsequently, diverse signaling components such as G proteins, cyclic AMP/Protein Kinase A and MAP kinases are activated to enable the differentiation of infection structures. Recent studies have also provided fascinating insights into the spatio-temporal dynamics and specialized sequestration and trafficking of signaling moieties required for proper development of infection structures in phytopathogenic fungi. Molecular insight in such infection-related morphogenesis and cell signaling holds promise for identifying novel strategies for intervention of fungal diseases in plants. PMID:27133541

  13. Aerial photographic reproductions

    USGS Publications Warehouse

    U.S. Geological Survey

    1975-01-01

    The National Cartographic Information Center of the U.S. Geological Survey maintains records of aerial photographic coverage of the United States and its Territories, based on reports from other Federal agencies as well as State governmental agencies and commercial companies. From these records, the Center furnishes data to prospective purchasers on available photography and the agency holding the aerial film.

  14. 11. Photographic copy of aerial photograph dated ca. 1954; Photographer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photographic copy of aerial photograph dated ca. 1954; Photographer unknown; Original owned by Waterloo Courier, Waterloo, Iowa; AERIAL VIEW OF RATH COMPLEX, LOOKING WEST; BEEF KILLING BUILDING (149 AND LIVESTOCK HOLDING AREAS ARE AT LEFT CENTER; FERTILIZER PLANT/STORAGE BUILDINGS ARE AT BOTTOM OF PHOTO - Rath Packing Company, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  15. 12. Photocopy of photograph (original negative located at Aerial Mapping ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Photocopy of photograph (original negative located at Aerial Mapping Company, Phoenix, Arizona, Negative No. 90046) Photographer unknown, March 28, 1990. DIMENSION-CONTROLLED AERIAL PHOTOGRAPHIC MAP. - Yuma Main Street Water Treatment Plant, Jones Street at foot of Main Street, Yuma, Yuma County, AZ

  16. 12. Photographic copy of aerial photograph dated October 1988; Photographed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Photographic copy of aerial photograph dated October 1988; Photographed by Aerial Services, Incorporated, Waterloo, Iowa; THE RATH COMPLEX FROM DIRECTLY OVERHEAD; THE PACKING PLANT BUILDINGS OCCUPY UPPER RIGHT QUADRANT OF PHOTO; 18TH STREET BRIDGE AT CENTER - Rath Packing Company, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  17. Trends in quantitative aerial thermography

    SciTech Connect

    Schott, J.R.; Wilkinson, E.P.

    1983-06-01

    Recent improvements in aerial thermographic techniques, particularly in achievable spatial resolution and noise equivalent temperature variation, have enabled the use of thermography in a more objective fashion. Interpretation of the information contained in thermograms has also been improved through the use of certain techniques accounting for roof material type (emissivity), background effects, and atmospheric variables. With current methods, roof surface temperature from aerial imagery can be measured to within 1.8/sup 0/F (1.0/sup 0/C) of the actual temperature. These advances in thermogram analysis have opened the door for potential direct measurement of rooftop heat-loss levels from thermogram data. Ultimately, it is felt that this type of information would make it feasible to direct intensive energy-conservation efforts toward a smaller population, where the need and cost benefits will be the greatest.

  18. Estimating seasonal changes of land cover, surface wetness and latent heat flux of wet polygonal tundra (Samoylov Island, Lena-Delta, Siberia) with high-resolution aerial and hyperspectral CHRIS Proba satellite imagery

    NASA Astrophysics Data System (ADS)

    Muster, S.; Langer, M.; Boike, J.

    2009-12-01

    Vegetation cover, land cover and surface wetness are few of the many factors exerting control on the partitioning of energy to latent, sensible and ground heat flux. Spatial estimates of these factors can be inferred from remote sensing data. The fractionated polygonal tundra landscape of Samoylov Island of wet and dry surfaces induces strong spatial variations of resistance to evapotranspiration. The development of low-centered ice-wedge polygons results in a prominent microrelief that is the most important factor for small-scale differences in vegetation type and near surface soil moisture. Depressed polygon centers alternate with elevated polygon rims with elevation differences of up to 0.5 m over a few meters distance. In the depressed polygon centers, drainage is strongly impeded due to the underlying permafrost resulting in water-saturated soils or small ponds. A process-based understanding of the surface energy balance, however, needs to consider both the temporal and the spatial variations of the surface. In the course of the summer season, the surface wetness changes significantly since the water table falls about 5 cm below the surface. This change in surface wetness is likely to be associated with changing evapotranspiration rates. We consider the effect of seasonal changes in land cover, vegetation cover and surface wetness on latent heat flux by investigating a time-series of high-resolution aerial and hyperspectral satellite imagery and comparing them to ground-based measurements of near-surface soil moisture and latent heat flux. Two sets of aerial images from August 15 and September 11, 2008 in the VNIR provide detailed information of the polygonal landscape with a resolution of 0.3m. CHRIS Proba imagery provides hyperspectral data with 18 spectral bands in the VNIR range (400 - 1050 nm) and a resolution of 17 m. Acquisition dates are June 21, July 23 and September 10, 2008. Daily point-based measurements of near-surface soil moisture and latent

  19. Nicotiana tabacum as model for ozone - plant surface reactions

    NASA Astrophysics Data System (ADS)

    Jud, Werner; Fischer, Lukas; Wohlfahrt, Georg; Tissier, Alain; Canaval, Eva; Hansel, Armin

    2015-04-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants, responsible for global crop losses with associated economic costs of several billion dollars per year. The ensuing injuries have been related to the uptake of ozone through the stomatal pores and oxidative effects damaging the internal leaf tissue. A striking question of current research is the environment and plant specific partitioning of ozone loss between gas phase, stomatal or plant surface sink terms. Here we show results from ozone fumigation experiments using various Nicotiana Tabacum varieties, whose surfaces are covered with different amounts of unsaturated diterpenoids exuded by their glandular trichomes. Exposure to elevated ozone levels (50 to 150 ppbv) for 5 to 15 hours in an exceptionally clean cuvette system did neither result in a reduction of photosynthesis nor caused any visible leaf damage. Both these ozone induced stress effects have been observed previously in ozone fumigation experiments with the ozone sensitive tobacco line Bel-W3. In our case ozone fumigation was accompanied by a continuous release of oxygenated volatile organic compounds, which could be clearly associated to their condensed phase precursors for the first time. Gas phase reactions of ozone were avoided by choosing a high enough gas exchange rate of the plant cuvette system. In the case of the Ambalema variety, that is known to exude only the diterpenoid cis-abienol, ozone fumigation experiments yield the volatiles formaldehyde and methyl vinyl ketone (MVK). The latter could be unequivocally separated from isomeric methacrolein (MACR) by the aid of a Selective Reagent Ion Time-of-Flight Mass Spectrometer (SRI-ToF-MS), which was switched every six minutes from H3O+ to NO+ primary ion mode and vice versa. Consistent with the picture of an ozone protection mechanism caused by reactive diterpenoids at the leaf surface are the results from dark-light experiments. The ozone loss obtained from the

  20. GENERAL EXTERIOR VIEW, LOOKING NORTHEAST, OF THE SURFACE PLANT WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL EXTERIOR VIEW, LOOKING NORTHEAST, OF THE SURFACE PLANT WITH CONVEYORS. JIM WALTER RESOURCES INC. MINING DIVISION OPERATES FOUR UNDERGROUND COAL MINES IN THE BLUE CREEK COAL FIELD OF BIRMINGHAM DISTRICT, THREE IN TUSCALOOSA COUNTY AND ONE IN JEFFERSON COUNTY. TOTAL ANNUAL PRODUCTION IS 8,000,000 TONS. AT 2,300 DEEP, JIM WALTER'S BROOKWOOD MINES ARE THE DEEPEST UNDERGROUND COAL MINES IN NORTH AMERICA. THEY PRODUCE A HIGH-GRADE MEDIUM VOLATILE LOW SULPHUR METALLURGICAL COAL. THE BROOKWOOD NO. 5 MINE (PICTURED IN THIS PHOTOGRAPH) EMPLOYS THE LONGWALL MINING TECHNIQUES WITH BELTS CONVEYING COAL FROM UNDERGROUND OPERATIONS TO THE SURFACE. - JIm Walter Resources, Incorporated, Brookwood No. 5 Mine, 12972 Lock 17 Road, Brookwood, Tuscaloosa County, AL

  1. GENERAL AERIAL VIEW OF LAKE ALDWELL AND ELWHA DAM AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL AERIAL VIEW OF LAKE ALDWELL AND ELWHA DAM AND POWERHOUSE, WITH STRAIT OF JUAN DE FUCA TO THE NORTH. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Elwha Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  2. AERIAL PHOTO OF ELWHA RIVER, SPILLWAYS AT GLINES DAM, POWERHOUSE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL PHOTO OF ELWHA RIVER, SPILLWAYS AT GLINES DAM, POWERHOUSE, SURGE TANK AND TRANSFORMER YARD WITH HISTORIC SHED (WAREHOUSE). PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Glines Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  3. GENERAL AERIAL VIEW, LOOKING SOUTH, AT GLINES DAM AND POWERHOUSE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL AERIAL VIEW, LOOKING SOUTH, AT GLINES DAM AND POWERHOUSE, LAKE MILLS RESERVOIR, AND THE ELWHA RIVER. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Glines Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  4. AERIAL PHOTO, LOOKING SOUTH, SHOWING POWERHOUSE, SURGE TANK, TRANSFORMER YARD, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL PHOTO, LOOKING SOUTH, SHOWING POWERHOUSE, SURGE TANK, TRANSFORMER YARD, GLINES DAM, AND LAKE MILLS RESERVOIR. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Glines Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  5. GENERAL AERIAL VIEW OF NORTH END OF LAKE ALDWELL (RESERVOIR) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL AERIAL VIEW OF NORTH END OF LAKE ALDWELL (RESERVOIR) WITH ELWHA DAM AND POWERHOUSE. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Elwha Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  6. GENERAL AERIAL VIEW TO SOUTH OF ELWHA DAM AND POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL AERIAL VIEW TO SOUTH OF ELWHA DAM AND POWERHOUSE WITH NORTH END OF RESERVOIR. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Elwha Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  7. 1. AERIAL VIEW, LOOKING NORTH, FROM RED MOUNTAIN TO USX ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. AERIAL VIEW, LOOKING NORTH, FROM RED MOUNTAIN TO USX FAIRFIELD WORKS (TOP LEFT) WITH WENONAH SINTERING PLANT (BOTTOM CENTER) AND WENONAH COMMUNITY (CENTER RIGHT). - High Line Railroad, From Red Mountain to Fairfield Works, Birmingham, Jefferson County, AL

  8. AERIAL VIEW LOOKING FURTHER SOUTH EAST, VILLAGE CREEK WATER TREATMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL VIEW LOOKING FURTHER SOUTH EAST, VILLAGE CREEK WATER TREATMENT PLANT ON RIGHT SIDE, ENSLEY IN BACKGROUND. - Birmingham Southern Railroad Yard, Thirty-fourth Street, Ensley, Jefferson County, AL

  9. 4. Aerial view of Whitsett intake (lower right), Parker Dam ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Aerial view of Whitsett intake (lower right), Parker Dam and village (left), Gene Wash Reservoir, Gene Pump Plant and village (right). - Parker Dam, Spanning Colorado River between AZ & CA, Parker, La Paz County, AZ

  10. Ground cover estimated from aerial photographs

    NASA Technical Reports Server (NTRS)

    Gerbermann, A. H.; Cuellar, J. A.; Wiegand, C. L.

    1976-01-01

    Estimates of per cent ground cover made by ground observers were compared with independent estimates made on the basis of low-altitude (640-1219 m) aerial photographs of the same fields. Standard statistical simple correlation and linear regression analyses revealed a high correlation between the two estimation methods. In crops such as grain, sorghum, corn, and forage sorghum, in which the broadest part of the leaf canopy is near the top of the plant, there was a tendency to overestimate the per cent ground cover from aerial photographs.

  11. Connecting Surface Planting with Subsurface Erosion Due to Groundwater Flow

    NASA Astrophysics Data System (ADS)

    Reardon, M.; Curran, J. C.

    2014-12-01

    Bank erosion and failure is a major contributor of fine sediment to streams and rivers, and can be driven by subsurface flow. In restoration projects, vegetation is often planted on banks to reduce erosion and stabilize the banks. However, the relationship between subsurface flow, erosion and vegetation remains somewhat speculative. A comparative study quantified the effect of surface planting on subsurface erosion and soil strength. Six 32-gallon containers were layered with a sandy loam overlying a highly conductive sand layer and a confining clay. Three treatments were applied in pairs: switchgrass (Panicum virgatum L.), sod (turf-type tall fescue and Kentucky bluegrass mix), and no vegetation. After a vegetation establishment period, the 2, 10, and 100 year rainfalls were simulated. Samples collected from ports in the containers were analyzed for subsurface drainage volume and suspended sediment concentration. After all rainfall simulations, a sediment core was taken from each container to measure shear strength and root density. Results indicate the relative benefits of vegetative planting to reduce subsurface erosion during storms and enhance soil strength. Switchgrass reduced the total amount of sediment removed from containers during all three storms when compared to the sod and during the 10 and 100 year storms when compared to the bare ground. Results from the volume analysis were more variable. Switchgrass retained the greatest volume of water from the 100 year storm event, but also released the largest fraction of water in the 2 and 10 year storms. Both sod and switchgrass planting considerably increased the time required for the soil samples to fail despite reducing the shear stress at failure. Where switchgrass grew long, woody roots, the sod developed a dense mat of interconnected thin roots. We suspect the different root patterns between sod and switchgrass to be a dominant factor in the response of the different containers.

  12. The Physics of Pollen and Spore Rebound from Plant Surfaces.

    NASA Astrophysics Data System (ADS)

    Paw U, Kyaw Tha

    1980-12-01

    The problem of particle rebound from plant surfaces has been examined. Particle rebound is a component of net deposition; the other components are reentrainment and impingement. I carried out several sets of wind tunnel experiments to examine the nature of rebound, reentrainment and impingement. Quantitative and qualitative analyses were carried out on the data. A simple computer model was created to predict particle deposition in wind tunnel conditions. My work confirms that rebound is an important process in the wind tunnel, and implies the existence of a process I call 'rebound/reentrainment'. I tested several major hypotheses. The first was that biological materials exhibit the same physical rebound characteristics as artificial materials. The second was that particles rebound in a manner predicted by Dahneke's (1971, 1975) theory. The third was that rebound is a dominant component of net deposition. The fourth was that surface characteristics may seriously influence rebound. I carried out my experiments in a low-speed wind tunnel. For surfaces I used glass and the leaves of tulip poplar (Liriodendron tulipifera), Coleus (Coleus blumeii) and American elm (Ulmus americana). For particles I used glass microbeads, lycopodium spores (Lycopodium spp.), and ragweed pollen (Ambrosia trifida). Four main sets of experiments were carried out. I examined rebound, as a function of particle speed, of particles impinging upon leaf surfaces, reentrainment of spores and pollen as a function of wind speed and time, net deposition, as a function of wind speed, and adhesion of pollen and spores to the leaf surfaces. From these experiments I concluded that in general, pollen and spore rebound can be described well by Dahneke's (1971, 1975) theory. Particle differences are far more significant than surface differences in the rebound process. I postulate the existence of rebound/reentrainment when particles impinge on surfaces with tangential fluid flow present. Particles will

  13. Aerial radiation survey at a military range.

    SciTech Connect

    Williams, G. P.; Martino, L. E.; Wrobel, J.; Environmental Assessment; U.S. Army Aberdeen Proving Ground

    2001-04-01

    Aberdeen Proving Ground (APG) is currently listed on the Superfund National Priorities List because of past waste handling practices at 13 'study areas.' Concern has been expressed that anthropogenic radioisotopes may have been released at some of the study areas, with the potential of posing health risks to human or ecological receptors. This concern was addressed by thoroughly searching archival records, sampling and analyzing environmental media, and performing an aerial radiation survey. The aerial radiation survey techniques employed have been used over all U.S. Department of Energy and commercial reactor sites. Use of the Aerial Measurement System (AMS) allowed investigators to safely survey areas where surveys using hand-held instruments would be difficult to perform. In addition, the AMS delivered a full spectrum of the measured gamma radiation, thereby providing a means of determining which radioisotopes were present at the surface. As a quality check on the aerial measurements, four ground truth measurements were made at selected locations and compared with the aerial data for the same locations. The results of the survey revealed no evidence of surface radioactive contamination. The measured background radiation, including the cosmic contribution, ranged from 4 to 11 {mu}R/h.

  14. Using Aerial Hydromulch in Post-fire Chaparral in Southern California: Effectiveness and Consequences

    NASA Astrophysics Data System (ADS)

    Wohlgemuth, P. M.; Beyers, J. L.; Robichaud, P. R.

    2012-12-01

    High severity wildfire can make landscapes susceptible to accelerated erosion that may retard resource recovery. High levels of erosion can also threaten life, property, and infrastructure in downstream human communities. Land managers often use mitigation measures on the burned hillside slopes to control post-fire sediment fluxes both as the first step in post-fire restoration and to protect off-site human developments. Aerial hydromulch, a slurry of paper or wood fiber with tackifiers and other amendments that dries to a permeable crust, is a relatively new erosion control treatment that has not been rigorously field-tested in wildland settings. Concerns have been raised over the ability of aerial hydromulch to reduce hillslope erosion as well as its potential for negative effects on post-fire ecosystem recovery. Since 2007 we have measured sediment fluxes and vegetation development on plots treated operationally with aerial hydromulch and compared them to untreated controls after three separate wildfires in southern California. These study plots, located on steep slopes with coarse upland soils previously covered with dense mixed chaparral vegetation, were monitored with silt fences to trap eroded sediment. Meter-square quadrats were used to measure ground and vegetation cover. Although dependent on rainfall and site characteristics, surface erosion on untreated plots generally attenuated sharply with years since burning. We found that aerial hydromulch did reduce bare ground on the treated plots and that this cover persisted through the first post-fire winter rainy season. For the initial year after a fire, aerial hydromulch reduced hillslope erosion from small and medium rainstorms, but not during an extremely high intensity rainfall event. Hydromulch had no effect on regrowing plant cover, shrub seedling density, or species richness. Thus, in chaparral ecosystems aerial hydromulch appears to be an effective post-fire erosion control measure that is

  15. Aerial Photography Summary Record System

    USGS Publications Warehouse

    U.S. Geological Survey

    1998-01-01

    The Aerial Photography Summary Record System (APSRS) describes aerial photography projects that meet specified criteria over a given geographic area of the United States and its territories. Aerial photographs are an important tool in cartography and a number of other professions. Land use planners, real estate developers, lawyers, environmental specialists, and many other professionals rely on detailed and timely aerial photographs. Until 1975, there was no systematic approach to locate an aerial photograph, or series of photographs, quickly and easily. In that year, the U.S. Geological Survey (USGS) inaugurated the APSRS, which has become a standard reference for users of aerial photographs.

  16. Using Unmanned Aerial Vehicles and GPS Receivers

    NASA Technical Reports Server (NTRS)

    Gary, B.

    1995-01-01

    It is proposed that a small fleet of unmanned aerial vehicles (UAVs) be used over a period of years to monitor the rise of pressure surfaces caused by the hypothesized rise in average temperature of the troposphere due to global warming. Global Positioning Satellite System (GPS) receivers would be used for the precise tracking required.

  17. Aerial Explorers and Robotic Ecosystems

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg

    2004-01-01

    A unique bio-inspired approach to autonomous aerial vehicle, a.k.a. aerial explorer technology is discussed. The work is focused on defining and studying aerial explorer mission concepts, both as an individual robotic system and as a member of a small robotic "ecosystem." Members of this robotic ecosystem include the aerial explorer, air-deployed sensors and robotic symbiotes, and other assets such as rovers, landers, and orbiters.

  18. Exploration of Titan using Vertical Lift Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Young, L. A.

    2001-01-01

    Autonomous vertical lift aerial vehicles (such as rotorcraft or powered-lift vehicles) hold considerable potential for supporting planetary science and exploration missions. Vertical lift aerial vehicles would have the following advantages/attributes for planetary exploration: low-speed and low-altitude detailed aerial surveys; remote-site sample return to lander platforms; precision placement of scientific probes; soft landing capability for vehicle reuse (multiple flights) and remote-site monitoring; greater range, speed, and access to hazardous terrain than a surface rover; greater resolution of surface details than an orbiter or balloons. Exploration of Titan presents an excellent opportunity for the development and usage of such vehicles.

  19. Aerial photographic reproductions

    USGS Publications Warehouse

    U.S. Geological Survey

    1971-01-01

    Geological Survey vertical aerial photography is obtained primarily for topographic and geologic mapping. Reproductions from this photography are usually satisfactory for general use. Because reproductions are not stocked, but are custom processed for each order, they cannot be returned for credit or refund.

  20. Aerial of the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Even in this aerial view at KSC, the Vehicle Assembly Building is imposing. In front of it is the Launch Control Center. In the background is the Rotation/Processing Facility, next to the Banana Creek. In the foreground is the Saturn Causeway that leads to Launch Pads 39A and 39B.

  1. Aerial Perspective Artistry

    ERIC Educational Resources Information Center

    Wolfe, Linda

    2010-01-01

    This article presents a lesson centering on aerial perspective artistry of students and offers suggestions on how art teachers should carry this project out. This project serves to develop students' visual perception by studying reproductions by famous artists. This lesson allows one to imagine being lured into a landscape capable of captivating…

  2. AERIAL MEASUREMENTS OF CONVECTION CELL ELEMENTS IN HEATED LAKES

    SciTech Connect

    Villa-Aleman, E; Saleem Salaymeh, S; Timothy Brown, T; Alfred Garrett, A; Malcolm Pendergast, M; Linda Nichols, L

    2007-12-19

    Power plant-heated lakes are characterized by a temperature gradient in the thermal plume originating at the discharge of the power plant and terminating at the water intake. The maximum water temperature discharged by the power plant into the lake depends on the power generated at the facility and environmental regulations on the temperature of the lake. Besides the observed thermal plume, cloud-like thermal cells (convection cell elements) are also observed on the water surface. The size, shape and temperature of the convection cell elements depends on several parameters such as the lake water temperature, wind speed, surfactants and the depth of the thermocline. The Savannah River National Laboratory (SRNL) and Clemson University are collaborating to determine the applicability of laboratory empirical correlations between surface heat flux and thermal convection intensity. Laboratory experiments at Clemson University have demonstrated a simple relationship between the surface heat flux and the standard deviation of temperature fluctuations. Similar results were observed in the aerial thermal imagery SRNL collected at different locations along the thermal plume and at different elevations. SRNL will present evidence that the results at Clemson University are applicable to cooling lakes.

  3. Aerial measurements of convection cell elements in heated lakes

    NASA Astrophysics Data System (ADS)

    Villa-Aleman, E.; Salaymeh, S. R.; Brown, T. B.; Garrett, A. J.; Nichols, L. S.; Pendergast, M. M.

    2008-03-01

    Power plant-heated lakes are characterized by a temperature gradient in the thermal plume originating at the discharge of the power plant and terminating at the water intake. The maximum water temperature discharged by the power plant into the lake depends on the power generated at the facility and environmental regulations on the temperature of the lake. Besides the observed thermal plume, cloud-like thermal cells (convection cell elements) are also observed on the water surface. The size, shape and temperature of the convection cell elements depends on several parameters such as the lake water temperature, wind speed, surfactants and the depth of the thermocline. The Savannah River National Laboratory (SRNL) and Clemson University are collaborating to determine the applicability of laboratory empirical correlations between surface heat flux and thermal convection intensity. Laboratory experiments at Clemson University have demonstrated a simple relationship between the surface heat flux and the standard deviation of temperature fluctuations. Similar results were observed in the aerial thermal imagery SRNL collected at different locations along the thermal plume and at different elevations. SRNL will present evidence that the results at Clemson University are applicable to cooling lakes.

  4. Aerial Radiation Detection

    SciTech Connect

    W. M. Quam

    1999-09-30

    An airborne system designed for the detection of radioactive sources on the soil surface from an aircraft normally senses gamma rays emitted by the source. Gamma rays have the longest path length (least attenuation) through the air of any of the common radioactive emissions and will thus permit source detection at large distances. A secondary benefit from gamma rays detection if that nearly all radioactive isotopes can be identified by the spectrum of gammas emitted. Major gaseous emissions from fuel processing plants emit gammas that may be detected and identified. Some types of special nuclear material also emit neutrons which are also useful for detection at a distance.

  5. Aquatic plant surface as a niche for methanotrophs

    PubMed Central

    Yoshida, Naoko; Iguchi, Hiroyuki; Yurimoto, Hiroya; Murakami, Akio; Sakai, Yasuyoshi

    2014-01-01

    This study investigated the potential local CH4 sink in various plant parts as a boundary environment of CH4 emission and consumption. By comparing CH4 consumption activities in cultures inoculated with parts from 39 plant species, we observed significantly higher consumption of CH4 associated with aquatic plants than other emergent plant parts such as woody plant leaves, macrophytic marine algae, and sea grass. In situ activity of CH4 consumption by methanotrophs associated with different species of aquatic plants was in the range of 3.7–37 μmol·h−1·g−1 dry weight, which was ca 5.7–370-fold higher than epiphytic CH4 consumption in submerged parts of emergent plants. The qPCR-estimated copy numbers of the particulate methane monooxygenase-encoding gene pmoA were variable among the aquatic plants and ranged in the order of 105–107 copies·g−1 dry weight, which correlated with the observed CH4 consumption activities. Phylogenetic identification of methanotrophs on aquatic plants based on the pmoA sequence analysis revealed a predominance of diverse gammaproteobacterial type-I methanotrophs, including a phylotype of a possible plant-associated methanotroph with the closest identity (86–89%) to Methylocaldum gracile. PMID:24550901

  6. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley

    NASA Astrophysics Data System (ADS)

    Bendig, Juliane; Yu, Kang; Aasen, Helge; Bolten, Andreas; Bennertz, Simon; Broscheit, Janis; Gnyp, Martin L.; Bareth, Georg

    2015-07-01

    In this study we combined selected vegetation indices (VIs) and plant height information to estimate biomass in a summer barley experiment. The VIs were calculated from ground-based hyperspectral data and unmanned aerial vehicle (UAV)-based red green blue (RGB) imaging. In addition, the plant height information was obtained from UAV-based multi-temporal crop surface models (CSMs). The test site is a summer barley experiment comprising 18 cultivars and two nitrogen treatments located in Western Germany. We calculated five VIs from hyperspectral data. The normalised ratio index (NRI)-based index GnyLi (Gnyp et al., 2014) showed the highest correlation (R2 = 0.83) with dry biomass. In addition, we calculated three visible band VIs: the green red vegetation index (GRVI), the modified GRVI (MGRVI) and the red green blue VI (RGBVI), where the MGRVI and the RGBVI are newly developed VI. We found that the visible band VIs have potential for biomass prediction prior to heading stage. A robust estimate for biomass was obtained from the plant height models (R2 = 0.80-0.82). In a cross validation test, we compared plant height, selected VIs and their combination with plant height information. Combining VIs and plant height information by using multiple linear regression or multiple non-linear regression models performed better than the VIs alone. The visible band GRVI and the newly developed RGBVI are promising but need further investigation. However, the relationship between plant height and biomass produced the most robust results. In summary, the results indicate that plant height is competitive with VIs for biomass estimation in summer barley. Moreover, visible band VIs might be a useful addition to biomass estimation. The main limitation is that the visible band VIs work for early growing stages only.

  7. Non-serotinous woody plants behave as aerial seed bank species when a late-summer wildfire coincides with a mast year

    PubMed Central

    Pounden, Edith; Greene, David F; Michaletz, Sean T

    2014-01-01

    Abstract Trees which lack obvious fire-adaptive traits such as serotinous seed-bearing structures or vegetative resprouting are assumed to be at a dramatic disadvantage in recolonization via sexual recruitment after fire, because seed dispersal is invariably quite constrained. We propose an alternative strategy in masting tree species with woody cones or cone-like structures: that the large clusters of woody tissue in a mast year will sufficiently impede heat transfer that a small fraction of seeds can survive the flaming front passage; in a mast year, this small fraction would be a very large absolute number. In Kootenay National Park in British Columbia, we examined regeneration by Engelmann spruce (Picea engelmannii), a non-serotinous conifer, after two fires, both of which coincided with mast years. Coupling models of seed survivorship within cones and seed maturation schedule to a spatially realistic recruitment model, we show that (1) the spatial pattern of seedlings on a 630 m transect from the forest edge into the burn was best explained if there was in situ seed dissemination by burnt trees; (2) in areas several hundred meters from any living trees, recruitment density was well correlated with local prefire cone density; and (3) spruce was responding exactly like its serotinous codominant, lodgepole pine (Pinus contorta). We conclude that non-serotinous species can indeed behave like aerial seed bank species in mast years if the fire takes place late in the seed maturation period. Using the example of the circumpolar boreal forest, while the joint probability of a mast year and a late-season fire will make this type of event rare (we estimate P = 0.1), nonetheless, it would permit a species lacking obvious fire-adapted traits to occasionally establish a widespread and abundant cohort on a large part of the landscape. PMID:25614797

  8. AERIAL VIEW OF BUILDING 991, LOOKING WEST. BUILDING 991 WAS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL VIEW OF BUILDING 991, LOOKING WEST. BUILDING 991 WAS DESIGNED FOR SHIPPING AND RECEIVING AND FOR FINAL ASSEMBLY OF WEAPON COMPONENTS. (6/26/91) - Rocky Flats Plant, Final Assembly & Shipping, Eastern portion of plant site, south of Spruce Avenue, east of Tenth Street & north of Central Avenue, Golden, Jefferson County, CO

  9. 4. AERIAL VIEW, LOOKING SOUTHSOUTHWEST, OF BUILDING 371 GROUND FLOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. AERIAL VIEW, LOOKING SOUTH-SOUTHWEST, OF BUILDING 371 GROUND FLOOR UNDER CONSTRUCTION. THE GROUND FLOOR, WHICH CONTAINS THE MAJORITY OF THE PLUTONIUM RECOVERY PROCESSING EQUIPMENT, IS DIVIDED INTO COMPARTMENTS BY FIREWALLS, AIRLOCKS, AND USE OF NEGATIVE AIR PRESSURE. (1/7/75) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  10. AERIAL VIEW OF BUILDING 460, LOOKING NORTHEAST. THE BUILDING WAS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL VIEW OF BUILDING 460, LOOKING NORTHEAST. THE BUILDING WAS CONSTRUCTED TO CONSOLIDATE ALL NON-NUCLEAR MANUFACTURING AT THE ROCKY FLATS PLANT INTO ONE FACILITY. (6/13/85) - Rocky Flats Plant, Stainless Steel & Non-Nuclear Components Manufacturing, Southeast corner of intersection of Cottonwood & Third Avenues, Golden, Jefferson County, CO

  11. 11. AERIAL VIEW OF CROSSCUT FACILITY, LOOKING NORTH. THE HYDRO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. AERIAL VIEW OF CROSSCUT FACILITY, LOOKING NORTH. THE HYDRO PLANT CENTER SITS ON THE EDGE OF RAVINE WHICH IS ACTUALLY THE BEGINNING OF THE GRAND CANAL. THE CROSS-CUT STEAM PLANT IS THE LARGE WHITE BUILDING JUST WEST OF THE HYDRO PLANT, WITH THE TRANSMISSION SWITCHYARD IN BETWEEN. THE OTHER BUILDINGS ARE SALT RIVER PROJECT FABRICATION AND EQUIPMENT SHOPS Photographer unknown, August 22, 1958 - Cross Cut Hydro Plant, North Side of Salt River, Tempe, Maricopa County, AZ

  12. Sea Ice Mapping using Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Solbø, S.; Storvold, R.

    2011-12-01

    Mapping of sea ice extent and sea ice features is an important task in climate research. Since the arctic coastal and oceanic areas have a high probability of cloud coverage, aerial platforms are superior to satellite measurements for high-resolution optical measurements. However, routine observations of sea ice conditions present a variety of problems using conventional piloted aircrafts. Specially, the availability of suitable aircrafts for lease does not cover the demand in major parts of the arctic. With the recent advances in unmanned aerial systems (UAS), there is a high possibility of establishing routine, cost effective aerial observations of sea ice conditions in the near future. Unmanned aerial systems can carry a wide variety of sensors useful for characterizing sea-ice features. For instance, the CryoWing UAS, a system initially designed for measurements of the cryosphere, can be equipped with digital cameras, surface thermometers and laser altimeters for measuring freeboard of ice flows. In this work we will present results from recent CryoWing sea ice flights on Svalbard, Norway. The emphasis will be on data processing for stitching together images acquired with the non-stabilized camera payload, to form high-resolution mosaics covering large spatial areas. These data are being employed to map ice conditions; including ice and lead features and melt ponds. These high-resolution mosaics are also well suited for sea-ice mechanics, classification studies and for validation of satellite sea-ice products.

  13. Metagenomic Analysis of Fungal Diversity on Strawberry Plants and the Effect of Management Practices on the Fungal Community Structure of Aerial Organs.

    PubMed

    Abdelfattah, Ahmed; Wisniewski, Michael; Li Destri Nicosia, Maria Giulia; Cacciola, Santa Olga; Schena, Leonardo

    2016-01-01

    An amplicon metagenomic approach based on the ITS2 region of fungal rDNA was used to identify the composition of fungal communities associated with different strawberry organs (leaves, flowers, immature and mature fruits), grown on a farm using management practices that entailed the routine use of various chemical pesticides. ITS2 sequences clustered into 316 OTUs and Ascomycota was the dominant phyla (95.6%) followed by Basidiomycota (3.9%). Strawberry plants supported a high diversity of microbial organisms, but two genera, Botrytis and Cladosporium, were the most abundant, representing 70-99% of the relative abundance (RA) of all detected sequences. According to alpha and beta diversity analyses, strawberry organs displayed significantly different fungal communities with leaves having the most diverse fungal community, followed by flowers, and fruit. The interruption of chemical treatments for one month resulted in a significant modification in the structure of the fungal community of leaves and flowers while immature and mature fruit were not significantly affected. Several plant pathogens of other plant species, that would not be intuitively expected to be present on strawberry plants such as Erysiphe, were detected, while some common strawberry pathogens, such as Rhizoctonia, were less evident or absent. PMID:27490110

  14. Metagenomic Analysis of Fungal Diversity on Strawberry Plants and the Effect of Management Practices on the Fungal Community Structure of Aerial Organs

    PubMed Central

    Abdelfattah, Ahmed; Wisniewski, Michael; Li Destri Nicosia, Maria Giulia; Cacciola, Santa Olga

    2016-01-01

    An amplicon metagenomic approach based on the ITS2 region of fungal rDNA was used to identify the composition of fungal communities associated with different strawberry organs (leaves, flowers, immature and mature fruits), grown on a farm using management practices that entailed the routine use of various chemical pesticides. ITS2 sequences clustered into 316 OTUs and Ascomycota was the dominant phyla (95.6%) followed by Basidiomycota (3.9%). Strawberry plants supported a high diversity of microbial organisms, but two genera, Botrytis and Cladosporium, were the most abundant, representing 70–99% of the relative abundance (RA) of all detected sequences. According to alpha and beta diversity analyses, strawberry organs displayed significantly different fungal communities with leaves having the most diverse fungal community, followed by flowers, and fruit. The interruption of chemical treatments for one month resulted in a significant modification in the structure of the fungal community of leaves and flowers while immature and mature fruit were not significantly affected. Several plant pathogens of other plant species, that would not be intuitively expected to be present on strawberry plants such as Erysiphe, were detected, while some common strawberry pathogens, such as Rhizoctonia, were less evident or absent. PMID:27490110

  15. Remotely deployable aerial inspection using tactile sensors

    NASA Astrophysics Data System (ADS)

    MacLeod, C. N.; Cao, J.; Pierce, S. G.; Sullivan, J. C.; Pipe, A. G.; Dobie, G.; Summan, R.

    2014-02-01

    For structural monitoring applications, the use of remotely deployable Non-Destructive Evaluation (NDE) inspection platforms offer many advantages, including improved accessibility, greater safety and reduced cost, when compared to traditional manual inspection techniques. The use of such platforms, previously reported by researchers at the University Strathclyde facilitates the potential for rapid scanning of large areas and volumes in hazardous locations. A common problem for both manual and remote deployment approaches lies in the intrinsic stand-off and surface coupling issues of typical NDE probes. The associated complications of these requirements are obviously significantly exacerbated when considering aerial based remote inspection and deployment, resulting in simple visual techniques being the preferred sensor payload. Researchers at Bristol Robotics Laboratory have developed biomimetic tactile sensors modelled on the facial whiskers (vibrissae) of animals such as rats and mice, with the latest sensors actively sweeping their tips across the surface in a back and forth motion. The current work reports on the design and performance of an aerial inspection platform and the suitability of tactile whisking sensors to aerial based surface monitoring applications.

  16. Remotely deployable aerial inspection using tactile sensors

    SciTech Connect

    MacLeod, C. N.; Cao, J.; Pierce, S. G.; Dobie, G.; Summan, R.; Sullivan, J. C.; Pipe, A. G.

    2014-02-18

    For structural monitoring applications, the use of remotely deployable Non-Destructive Evaluation (NDE) inspection platforms offer many advantages, including improved accessibility, greater safety and reduced cost, when compared to traditional manual inspection techniques. The use of such platforms, previously reported by researchers at the University Strathclyde facilitates the potential for rapid scanning of large areas and volumes in hazardous locations. A common problem for both manual and remote deployment approaches lies in the intrinsic stand-off and surface coupling issues of typical NDE probes. The associated complications of these requirements are obviously significantly exacerbated when considering aerial based remote inspection and deployment, resulting in simple visual techniques being the preferred sensor payload. Researchers at Bristol Robotics Laboratory have developed biomimetic tactile sensors modelled on the facial whiskers (vibrissae) of animals such as rats and mice, with the latest sensors actively sweeping their tips across the surface in a back and forth motion. The current work reports on the design and performance of an aerial inspection platform and the suitability of tactile whisking sensors to aerial based surface monitoring applications.

  17. The DOE ARM Aerial Facility

    SciTech Connect

    Schmid, Beat; Tomlinson, Jason M.; Hubbe, John M.; Comstock, Jennifer M.; Mei, Fan; Chand, Duli; Pekour, Mikhail S.; Kluzek, Celine D.; Andrews, Elisabeth; Biraud, S.; McFarquhar, Greg

    2014-05-01

    The Department of Energy Atmospheric Radiation Measurement (ARM) Program is a climate research user facility operating stationary ground sites that provide long-term measurements of climate relevant properties, mobile ground- and ship-based facilities to conduct shorter field campaigns (6-12 months), and the ARM Aerial Facility (AAF). The airborne observations acquired by the AAF enhance the surface-based ARM measurements by providing high-resolution in-situ measurements for process understanding, retrieval-algorithm development, and model evaluation that are not possible using ground- or satellite-based techniques. Several ARM aerial efforts were consolidated into the AAF in 2006. With the exception of a small aircraft used for routine measurements of aerosols and carbon cycle gases, AAF at the time had no dedicated aircraft and only a small number of instruments at its disposal. In this "virtual hangar" mode, AAF successfully carried out several missions contracting with organizations and investigators who provided their research aircraft and instrumentation. In 2009, AAF started managing operations of the Battelle-owned Gulfstream I (G-1) large twin-turboprop research aircraft. Furthermore, the American Recovery and Reinvestment Act of 2009 provided funding for the procurement of over twenty new instruments to be used aboard the G-1 and other AAF virtual-hangar aircraft. AAF now executes missions in the virtual- and real-hangar mode producing freely available datasets for studying aerosol, cloud, and radiative processes in the atmosphere. AAF is also engaged in the maturation and testing of newly developed airborne sensors to help foster the next generation of airborne instruments.

  18. Influence of the Plant Defense Response to Escherichia coli O157:H7 Cell Surface Structures on Survival of That Enteric Pathogen on Plant Surfaces

    PubMed Central

    Seo, Suengwook

    2012-01-01

    Consumption of fresh and fresh-cut fruits and vegetables contaminated with Escherichia coli O157:H7 has resulted in hundreds of cases of illness and, in some instances, death. In this study, the influence of cell surface structures of E. coli O157:H7, such as flagella, curli fimbriae, lipopolysaccharides, or exopolysaccharides, on plant defense responses and on survival or colonization on the plant was investigated. The population of the E. coli O157:H7 ATCC 43895 wild-type strain was significantly lower on wild-type Arabidopsis plants than that of the 43895 flagellum-deficient mutant. The population of the E. coli O157:H7 43895 flagellum mutant was greater on both wild-type and npr1-1 mutant (nonexpressor of pathogenesis-related [PR] genes) plants and resulted in less PR gene induction, estimated based on a weak β-glucuronidase (GUS) signal, than did the 43895 wild-type strain. These results suggest that the flagella, among the other pathogen-associated molecular patterns (PAMPs), made a substantial contribution to the induction of plant defense response and contributed to the decreased numbers of the E. coli O157:H7 ATCC 43895 wild-type strain on the wild-type Arabidopsis plant. A curli-deficient E. coli O157:H7 86-24 strain survived better on wild-type Arabidopsis plants than the curli-producing wild-type 86-24 strain did. The curli-deficient E. coli O157:H7 86-24 strain exhibited a GUS signal at a level substantially lower than that of the curli-producing wild-type strain. Curli were recognized by plant defense systems, consequently affecting bacterial survival. The cell surface structures of E. coli O157:H7 have a significant impact on the induction of differential plant defense responses, thereby impacting persistence or survival of the pathogen on plants. PMID:22706044

  19. Aerial Video Imaging

    NASA Technical Reports Server (NTRS)

    1991-01-01

    When Michael Henry wanted to start an aerial video service, he turned to Johnson Space Center for assistance. Two NASA engineers - one had designed and developed TV systems in Apollo, Skylab, Apollo- Soyuz and Space Shuttle programs - designed a wing-mounted fiberglass camera pod. Camera head and angles are adjustable, and the pod is shaped to reduce vibration. The controls are located so a solo pilot can operate the system. A microprocessor displays latitude, longitude, and bearing, and a GPS receiver provides position data for possible legal references. The service has been successfully utilized by railroads, oil companies, real estate companies, etc.

  20. Infrared film for aerial photography

    USGS Publications Warehouse

    Anderson, William H.

    1979-01-01

    Considerable interest has developed recently in the use of aerial photographs for agricultural management. Even the simplest hand-held aerial photographs, especially those taken with color infrared film, often provide information not ordinarily available through routine ground observation. When fields are viewed from above, patterns and variations become more apparent, often allowing problems to be spotted which otherwise may go undetected.

  1. AERIAL PHOTOGRAPHY AND LEGAL APPLICATIONS

    EPA Science Inventory

    Aerial photographic interpretation is the process of examining objects on aerial photographs and determining their significance. t is often defined as both art and science because the process, and the quality of the derived information, is often a qualitative nature and much depe...

  2. Environmental applications utilizing digital aerial imagery

    SciTech Connect

    Monday, H.M.

    1995-06-01

    This paper discusses the use of satellite imagery, aerial photography, and computerized airborne imagery as applied to environmental mapping, analysis, and monitoring. A project conducted by the City of Irving, Texas involves compliance with national pollutant discharge elimination system (NPDES) requirements stipulated by the Environmental Protection Agency. The purpose of the project was the development and maintenance of a stormwater drainage utility. Digital imagery was collected for a portion of the city to map the City`s porous and impervious surfaces which will then be overlaid with property boundaries in the City`s existing Geographic information System (GIS). This information will allow the City to determine an equitable tax for each land parcel according to the amount of water each parcel is contributing to the stormwater system. Another project involves environmental compliance for warm water discharges created by utility companies. Environmental consultants are using digital airborne imagery to analyze thermal plume affects as well as monitoring power generation facilities. A third project involves wetland restoration. Due to freeway and other forms of construction, plus a major reduction of fresh water supplies, the Southern California coastal wetlands are being seriously threatened. These wetlands, rich spawning grounds for plant and animal life, are home to thousands of waterfowl and shore birds who use this habitat for nesting and feeding grounds. Under the leadership of Southern California Edison (SCE) and CALTRANS (California Department of Transportation), several wetland areas such as the San Dieguito Lagoon (Del Mar, California), the Sweetwater Marsh (San Diego, California), and the Tijuana Estuary (San Diego, California) are being restored and closely monitored using digital airborne imagery.

  3. DOE/NNSA Aerial Measuring System (AMS): Flying the 'Real' Thing

    SciTech Connect

    Craig Lyons

    2011-06-24

    This slide show documents aerial radiation surveys over Japan. Map product is a compilation of daily aerial measuring system missions from the Fukushima Daiichi power plant to 80 km radius. In addition, other flights were conducted over US military bases and the US embassy.

  4. COLONIZATION OF SUBTERRANEAN PLANT SURFACES AND SUPPRESSION OF SOILBORNE PLANT PATHOGENS: STUDIES WITH ENTEROBACTER CLOACAE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is generally assumed that biocontrol organisms must colonize subterranean plant parts for effective suppression of soilborne plant pathogens in many biocontrol interactions. Unfortunately our knowledge of the processes that lead to effective colonization is unclear. Also unclear is our knowledg...

  5. Aerial measurement of heat loss: Phase II

    SciTech Connect

    Not Available

    1982-07-01

    The purpose of the program described was to develop techniques to reduce or eliminate some of the variables associated with thermogram analysis in order to provide more objective interpretation of the data collected with greater potential for accuracy. A procedure is given for measuring temperature which accounts for atmospheric, background, and differential emissivity effects. The residual error was found to be 1.0/sup 0/C. A technique was then identified and developed for determining heat loss lovels from roof top surface temperature data. A thermal integrity factor was defined as a function of insulation level and thermostat setting. Comparing these thermal integrity factors with aerial thermography data indicates that aerial thermography can be used to objectively and confidently define heat loss levels from building roofs. (LEW)

  6. Perception of Plant Steroid Hormones at the Cell Surface

    SciTech Connect

    Li, Jianming

    2013-03-25

    The proposed research had two main objectives: 1) investigating the molecular mechanism by which BRs activate the BRI1-containing steroid receptor; and 2) to investigate the molecular mechanism of BRI1 function. During the course of this project, several research papers were published from other laboratories, which reported studies similar to our proposed experiments. We therefore changed our research direction and focused our research efforts on 1) molecular genetic studies of several extragenic suppressors of a weak bri1-9 mutant (which were named as EMS-mutagenized bri1 suppressor or ebs) and 2) biochemical characterization of the protein products of the cloned EBS genes. This switch turned out to be extremely successful and led to a surprising discovery that the dwarf phenotype of the well-studied bri1-9 mutant is not due to the failure of the bri1 receptor to bind the plant steroid hormone but rather caused by the retention of a structurally-imperfect but biochemically-competent bri1-9 and its subsequent degradation in the endoplasmic reticulum. This initial discovery coupled with subsequent cloning and further studies of additional EBS genes significantly increased our understanding of the protein quality control mechanisms in plants, a severely under-studied research topic in plant biology.

  7. Mask degradation monitoring with aerial mask inspector

    NASA Astrophysics Data System (ADS)

    Tseng, Wen-Jui; Fu, Yung-Ying; Lu, Shih-Ping; Jiang, Ming-Sian; Lin, Jeffrey; Wu, Clare; Lifschitz, Sivan; Tam, Aviram

    2013-06-01

    As design rule continues to shrink, microlithography is becoming more challenging and the photomasks need to comply with high scanner laser energy, low CDU, and ever more aggressive RETs. This give rise to numerous challenges in the semiconductor wafer fabrication plants. Some of these challenges being contamination (mainly haze and particles), mask pattern degradation (MoSi oxidation, chrome migration, etc.) and pellicle degradation. Fabs are constantly working to establish an efficient methodology to manage these challenges mainly using mask inspection, wafer inspection, SEM review and CD SEMs. Aerial technology offers a unique opportunity to address the above mask related challenges using one tool. The Applied Materials Aera3TM system has the inherent ability to inspect for defects (haze, particles, etc.), and track mask degradation (e.g. CDU). This paper focuses on haze monitoring, which is still a significant challenge in semiconductor manufacturing, and mask degradation effects that are starting to emerge as the next challenge for high volume semiconductor manufacturers. The paper describes Aerial inspector (Aera3) early haze methodology and mask degradation tracking related to high volume manufacturing. These will be demonstrated on memory products. At the end of the paper we take a brief look on subsequent work currently conducted on the more general issue of photo mask degradation monitoring by means of an Aerial inspector.

  8. Unmanned aerial optical systems for spatial monitoring of Antarctic mosses

    NASA Astrophysics Data System (ADS)

    Lucieer, Arko; Turner, Darren; Veness, Tony; Malenovsky, Zbynek; Harwin, Stephen; Wallace, Luke; Kelcey, Josh; Robinson, Sharon

    2013-04-01

    The Antarctic continent has experienced major changes in temperature, wind speed and stratospheric ozone levels during the last 50 years. In a manner similar to tree rings, old growth shoots of Antarctic mosses, the only plants on the continent, also preserve a climate record of their surrounding environment. This makes them an ideal bio-indicator of the Antarctic climate change. Spatially extensive ground sampling of mosses is laborious and time limited due to the short Antarctic growing season. Obviously, there is a need for an efficient method to monitor spatially climate change induced stress of the Antarctic moss flora. Cloudy weather and high spatial fragmentation of the moss turfs makes satellite imagery unsuitable for this task. Unmanned aerial systems (UAS), flying at low altitudes and collecting image data even under a full overcast, can, however, overcome the insufficiency of satellite remote sensing. We, therefore, developed scientific UAS, consisting of a remote-controlled micro-copter carrying on-board different remote sensing optical sensors, tailored to perform fast and cost-effective mapping of Antarctic flora at ultra-high spatial resolution (1-10 cm depending on flight altitude). A single lens reflex (SLR) camera carried by UAS acquires multi-view aerial photography, which processed by the Structure from Motion computer vision algorithm provides an accurate three-dimensional digital surface model (DSM) at ultra-high spatial resolution. DSM is the key input parameter for modelling a local seasonal snowmelt run-off, which provides mosses with the vital water supply. A lightweight multispectral camera on-board of UVS is collecting images of six selected spectral wavebands with the full-width-half-maximum (FWHM) of 10 nm. The spectral bands can be used to compute various vegetation optical indices, e.g. Difference Vegetation Index (NDVI) or Photochemical Reflectance Index (PRI), assessing the actual physiological state of polar vegetation. Recently

  9. AERIAL MEASURING SYSTEM IN JAPAN

    SciTech Connect

    Lyons, Craig; Colton, David

    2012-01-01

    The U.S. Department of Energy National Nuclear Security Agency’s Aerial Measuring System deployed personnel and equipment to partner with the U.S. Air Force in Japan to conduct multiple aerial radiological surveys. These were the first and most comprehensive sources of actionable information for U.S. interests in Japan and provided early confirmation to the government of Japan as to the extent of the release from the Fukushima Daiichi Nuclear Power Generation Station. Many challenges were overcome quickly during the first 48 hours; including installation and operation of Aerial Measuring System equipment on multiple U.S. Air Force Japan aircraft, flying over difficult terrain, and flying with talented pilots who were unfamiliar with the Aerial Measuring System flight patterns. These all combined to make for a dynamic and non-textbook situation. In addition, the data challenges of the multiple and on-going releases, and integration with the Japanese government to provide valid aerial radiological survey products that both military and civilian customers could use to make informed decisions, was extremely complicated. The Aerial Measuring System Fukushima response provided insight in addressing these challenges and gave way to an opportunity for the expansion of the Aerial Measuring System’s mission beyond the borders of the US.

  10. Near-surface silica does not increase radiative heat dissipation from plant leaves

    NASA Astrophysics Data System (ADS)

    Olof Björn, Lars; Li, Shaoshan

    2011-07-01

    It has been suggested that plants are able to increase radiative heat dissipation from their leaves by depositing near-surface silica, in this way increasing emissivity of infrared radiation and lowering leaf temperature. In order to test this theory, we have compared emissivity and radiative dissipation over the mid-infrared range 2.5-22.3 μm of leaves of plants that accumulate silica and plants that do not. Our data do not support the theory that accumulation of silica increases radiative heat dissipation by plant leaves.

  11. Airborne remote sensing assessment of the damage to cotton caused by spray drift from aerially applied glyphosate through spray deposition measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Off-target drift of aerially applied glyphosate can cause plant injury, which is of great concern to farmers and aerial applicators. To determine the extent of crop injury due to near-field drift, an experiment was conducted with a single aerial application of glyphosate. For identification of the d...

  12. Aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.

    1978-01-01

    Thermal infrared scanning from an aircraft is a convenient and commercially available means for determining relative rates of energy loss from building roofs. The need to conserve energy as fuel costs makes the mass survey capability of aerial thermography an attractive adjunct to community energy awareness programs. Background information on principles of aerial thermography is presented. Thermal infrared scanning systems, flight and environmental requirements for data acquisition, preparation of thermographs for display, major users and suppliers of thermography, and suggested specifications for obtaining aerial scanning services were reviewed.

  13. Inertial instrument system for aerial surveying

    USGS Publications Warehouse

    Brown, R.H.; Chapman, W.H.; Hanna, W.F.; Mongan, C.E.; Hursh, J.W.

    1985-01-01

    An inertial guidance system for aerial surveying has been developed under contract to the U.S. Geological Survey. This prototype system, known as the aerial profiling of terrain (APT) system, is designed to determine continuously the positions of points along an aircraft flight path, or the underlying terrain profile, to an accuracy of + or - 0.5 ft (15 cm) vertically and + or - 2 ft (61 cm) horizontally. The system 's objective thus is to accomplish, from a fixed-wing aircraft, what would traditionally be accomplished from ground-based topographic surveys combined with aerial photography and photogrammetry. The two-part strategy for measuring the terrain profile entails: (1) use of an inertial navigator for continuous determination of the three-coordinate position of the aircraft, and (2) use of an eye-safe pulsed laser profiler for continuous measurement of the vertical distance from aircraft to land surface, so that the desired terrain profile can then be directly computed. The APT system, installed in a DeHavilland Twin Otter aircraft, is typically flown at a speed of 115 mph (105 knots) at an altitude of 2,000 ft (610 m) above the terrain. Performance-evaluation flights have shown that the vertical and horizontal accuracy specifications are met. (USGS)

  14. 47. CAPE COD AIR STATION PAVE PAWS FACILITY AERIAL VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. CAPE COD AIR STATION PAVE PAWS FACILITY AERIAL VIEW OF "A" FACE (LEFT) WITH CLEANING SYSTEM INSTALLED (NOW REMOVED) AND "B" FACE (RIGHT) WITH CONSTRUCTION CRANE IN USE. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  15. AERIAL VIEW OF MAIN PROCESSING BUILDING SHOWING CONSTRUCTION PROGRESS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL VIEW OF MAIN PROCESSING BUILDING SHOWING CONSTRUCTION PROGRESS AND EXCAVATION FOR LABORATORY ON LEFT. INL PHOTO NUMBER NRTS-51-1759. Unknown Photographer, 3/28/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  16. 3. Lower end of the Old Crosscut Canal, aerial view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Lower end of the Old Crosscut Canal, aerial view to north. The Old Crosscut runs top left to lower right, west of meat packing plant and stockyards. Photographer unknown, c. 1939. Source: Pueblo Grande Museum Cultural Park. - Old Crosscut Canal, North Side of Salt River, Phoenix, Maricopa County, AZ

  17. 26. Aerial photograph dated 20 June 1942, showing north end ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Aerial photograph dated 20 June 1942, showing north end of Gould Island from the southwest. At upper left is firing pier. Shop building and power plant under construction at center. Photo courtesy of Naval Undersea Warfare Center, Division Newport, Rhode Island. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  18. GENERAL CLOSEUP AERIAL OF ELWHA DAM AND POWER HOUSE LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL CLOSE-UP AERIAL OF ELWHA DAM AND POWER- HOUSE LOOKING DOWN ON SURGE TANK, BIFURCATED PENSTOCK, SPILLWAYS, AND NORTH END OF RESERVOIR. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Elwha Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  19. AERIAL OVERVIEW, LOOKING WEST TOWARD PRATT CITY, WITH EXTRACTION OPERATIONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL OVERVIEW, LOOKING WEST TOWARD PRATT CITY, WITH EXTRACTION OPERATIONS (BOTTOM LEFT AND CENTER), COKE BY-PRODUCT PLANT (CENTER), AND THE FORMER THOMAS FURNACE COMMUNITY, NOW THE THOMAS NATIONAL REGISTER HISTORIC DISTRICT (CENTER RIGHT). - Wade Sand & Gravel Company, AL 78, Thomas, Jefferson County, AL

  20. 24. Duplicate negative of an historic negative. 'AERIAL VIEW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Duplicate negative of an historic negative. 'AERIAL VIEW OF AREA 'B' HOLSTON ORDNANCE WORKS.' 1944. #OCMH 4-12.2ASAV3 in Super Explosives Program RDX and Its Composition A, B, & C, Record Group No. 319, National Archives, Washington, D.C. - Holston Army Ammunition Plant, RDX-and-Composition-B Manufacturing Line 9, Kingsport, Sullivan County, TN

  1. Laser decontamination of epoxy painted concrete surfaces in nuclear plants

    NASA Astrophysics Data System (ADS)

    Anthofer, A.; Lippmann, W.; Hurtado, A.

    2014-04-01

    Laser technology offers an efficient decontamination of surfaces contaminated by polychlorinated biphenyls (PCB) by precise application of highly focused laser beam power. In the context of nuclear decommissioning all walls and floors of a reactor building have to be cleaned from chemical-toxic substances. State of the art is a manual and mechanic ablation and a subsequent treatment in a hazardous waste incinerator. In this study, alternatively, a laser-based system exhibiting, decontamination rates of up to 6.4 m2/h has been operated using a 10 kW diode laser in continuous wave (CW) mode with a spot size of 45×10 mm2 and a wavelength of 980-1030 nm. The system allows a rapid heating of the surfaces up to temperatures of more than 1000 °C leading to ablation and thermal decomposition of PCB in one process step. Thermal quenching prevents formation of polychlorinated dioxines (PCDD) and polychlorinate furans (PCDF) in the flue gas. Additionally, an in situ measurement system based on laser induced fluorescence (LIF) is developed to monitor the thermal decomposition of PCB. For initial experiments samples covered with epoxy paint were used to evaluate the process and to carry out finite element based simulations. In this paper, experimental results of ablation tests by laser irradiation of epoxy painted concrete are presented and discussed.

  2. Geometric optical investigation of the underwater visual field of aerial animals.

    PubMed

    Horváth, G; Varjú, D

    1990-11-01

    The underwater visual field distorted by refraction for aerial animals living near the water surface is investigated by means of geometric optics. The imaging of underwater objects by one and two aerial eyes is studied. The underwater binocular image field is determined for pairs of aerial eyes placed in horizontal and vertical planes. Some possible biooptical consequences of the visual detection of underwater prey and predator by aerial animals are discussed on the basis of the structure of their distorted visual field. PMID:2134486

  3. Effective use of high CO₂ efflux at the soil surface in a tropical understory plant.

    PubMed

    Ishida, Atsushi; Nakano, Takashi; Adachi, Minaco; Yoshimura, Kenichi; Osada, Noriyuki; Ladpala, Phanumard; Diloksumpun, Sapit; Puangchit, Ladawan; Yoshimura, Jin

    2015-01-01

    Many terrestrial plants are C3 plants that evolved in the Mesozoic Era when atmospheric CO2 concentrations ([CO2]) were high. Given current conditions, C3 plants can no longer benefit from high ambient [CO2]. Kaempferia marginata Carey is a unique understory ginger plant in the tropical dry forests of Thailand. The plant has two large flat leaves that spread on the soil surface. We found a large difference in [CO2] between the partly closed space between the soil surface and the leaves (638 µmol mol(-1)) and the atmosphere at 20 cm above ground level (412 µmol mol(-1)). This finding indicates that the plants capture CO2 efflux from the soil. Almost all of the stomata are located on the abaxial leaf surface. When ambient air [CO2] was experimentally increased from 400 to 600 μmol mol(-1), net photosynthetic rates increased by 45 to 48% under near light-saturated conditions. No significant increase was observed under low light conditions. These data demonstrate that the unique leaf structure enhances carbon gain by trapping soil CO2 efflux at stomatal sites under relatively high light conditions, suggesting that ambient air [CO2] can serve as an important selective agent for terrestrial C3 plants. PMID:25758763

  4. Natural and planted flora of the log mountain surface - mined demonstration area, Bell County, Kentucky

    SciTech Connect

    Thompson, R.L.; Wade, G.L.; Straw, R.A.

    1996-12-31

    A descriptive study of the naturally invading and planted flora was conducted during 1984-1985 on a 14- and 21-year-old contour surface mine the 14.2 ha Log Mountain Demonstration Area (LMDA), in Bell County, Kentucky. Six habitats are designated from areas created from coal mining; the 1963 bench, 1970 bench, bench highwalls, mine outslopes, mine seeps, and coal haul-telephone microwave tower road. Twenty-four of 25 woody and herbaceous species (11 indigenous, 13 non-indigenous) have persisted from plantings by personnel of the Northeastern Forest Experiment Station, USDA Forest Service. We recommend 11 native and exotic woody and herbaceous species for planting on coal surface-mined areas. An annotated list of vascular plants comprises 360 taxa (286 indigenous, 74 non-indigenous) in 224 genera from 82 families. Taxa consist of 1 Lycopodiophyta, 1 Equisetophyta, 8 Polypodiophyta, 7 Pinophyta, and 343 Magnoliophyta. The most species-rich families are the Asteraceae (64), Poaceae (39), Fabaceae (20), Cyperaceae (16), Rosaceae (13), and Lamiaceae (11). A total of 155 Bell County distribution records were documented. Three threatened Kentucky species (Gentiana decora, Liparis loeselii, Silene ovata) were present in refugial habitats created by surface mining. The high species richness has resulted from native and naturalized invading species from the environs, native and exotic planted species, and species from the remnant seed bank. Forest vegetation is a complex mosaic of natural and semi-natural plant communities on the unplanted and planted areas of LMDA.

  5. Effective use of high CO2 efflux at the soil surface in a tropical understory plant

    PubMed Central

    Ishida, Atsushi; Nakano, Takashi; Adachi, Minaco; Yoshimura, Kenichi; Osada, Noriyuki; Ladpala, Phanumard; Diloksumpun, Sapit; Puangchit, Ladawan; Yoshimura, Jin

    2015-01-01

    Many terrestrial plants are C3 plants that evolved in the Mesozoic Era when atmospheric CO2 concentrations ([CO2]) were high. Given current conditions, C3 plants can no longer benefit from high ambient [CO2]. Kaempferia marginata Carey is a unique understory ginger plant in the tropical dry forests of Thailand. The plant has two large flat leaves that spread on the soil surface. We found a large difference in [CO2] between the partly closed space between the soil surface and the leaves (638 µmol mol−1) and the atmosphere at 20 cm above ground level (412 µmol mol−1). This finding indicates that the plants capture CO2 efflux from the soil. Almost all of the stomata are located on the abaxial leaf surface. When ambient air [CO2] was experimentally increased from 400 to 600 μmol mol−1, net photosynthetic rates increased by 45 to 48% under near light-saturated conditions. No significant increase was observed under low light conditions. These data demonstrate that the unique leaf structure enhances carbon gain by trapping soil CO2 efflux at stomatal sites under relatively high light conditions, suggesting that ambient air [CO2] can serve as an important selective agent for terrestrial C3 plants. PMID:25758763

  6. Modeling aerial refueling operations

    NASA Astrophysics Data System (ADS)

    McCoy, Allen B., III

    Aerial Refueling (AR) is the act of offloading fuel from one aircraft (the tanker) to another aircraft (the receiver) in mid flight. Meetings between tanker and receiver aircraft are referred to as AR events and are scheduled to: escort one or more receivers across a large body of water; refuel one or more receivers; or train receiver pilots, tanker pilots, and boom operators. In order to efficiently execute the Aerial Refueling Mission, the Air Mobility Command (AMC) of the United States Air Force (USAF) depends on computer models to help it make tanker basing decisions, plan tanker sorties, schedule aircraft, develop new organizational doctrines, and influence policy. We have worked on three projects that have helped AMC improve its modeling and decision making capabilities. Optimal Flight Planning. Currently Air Mobility simulation and optimization software packages depend on algorithms which iterate over three dimensional fuel flow tables to compute aircraft fuel consumption under changing flight conditions. When a high degree of fidelity is required, these algorithms use a large amount of memory and CPU time. We have modeled the rate of aircraft fuel consumption with respect to AC GrossWeight, Altitude and Airspeed. When implemented, this formula will decrease the amount of memory and CPU time needed to compute sortie fuel costs and cargo capacity values. We have also shown how this formula can be used in optimal control problems to find minimum costs flight plans. Tanker Basing Demand Mismatch Index. Since 1992, AMC has relied on a Tanker Basing/AR Demand Mismatch Index which aggregates tanker capacity and AR demand data into six regions. This index was criticized because there were large gradients along regional boundaries. Meanwhile tankers frequently cross regional boundaries to satisfy the demand for AR support. In response we developed continuous functions to score locations with respect to their proximity to demand for AR support as well as their

  7. Reliability Assessment for Low-cost Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Freeman, Paul Michael

    Existing low-cost unmanned aerospace systems are unreliable, and engineers must blend reliability analysis with fault-tolerant control in novel ways. This dissertation introduces the University of Minnesota unmanned aerial vehicle flight research platform, a comprehensive simulation and flight test facility for reliability and fault-tolerance research. An industry-standard reliability assessment technique, the failure modes and effects analysis, is performed for an unmanned aircraft. Particular attention is afforded to the control surface and servo-actuation subsystem. Maintaining effector health is essential for safe flight; failures may lead to loss of control incidents. Failure likelihood, severity, and risk are qualitatively assessed for several effector failure modes. Design changes are recommended to improve aircraft reliability based on this analysis. Most notably, the control surfaces are split, providing independent actuation and dual-redundancy. The simulation models for control surface aerodynamic effects are updated to reflect the split surfaces using a first-principles geometric analysis. The failure modes and effects analysis is extended by using a high-fidelity nonlinear aircraft simulation. A trim state discovery is performed to identify the achievable steady, wings-level flight envelope of the healthy and damaged vehicle. Tolerance of elevator actuator failures is studied using familiar tools from linear systems analysis. This analysis reveals significant inherent performance limitations for candidate adaptive/reconfigurable control algorithms used for the vehicle. Moreover, it demonstrates how these tools can be applied in a design feedback loop to make safety-critical unmanned systems more reliable. Control surface impairments that do occur must be quickly and accurately detected. This dissertation also considers fault detection and identification for an unmanned aerial vehicle using model-based and model-free approaches and applies those

  8. Influence of surface and subsurface tillage on soil physical properties and soil/plant relationships of planted loblolly pine

    SciTech Connect

    D. L. Kelting; H. L. Allen

    2000-05-01

    Soil tillage can improve tree survival and growth by reducing competing vegetation, increasing nutrient availability, improving planting quality, and improving soil physical properties. The authors conducted a tillage study with competition control and nutrient amendments to isolate the physical effects of tillage on tree growth. The objectives of this study were to understand: (1) how tillage affects soil physical properties; (2) the relationships between these properties and root growth; (3) linkages between root growth response and aboveground growth; and (4) tillage effects on aboveground growth. Four replicates of a 2x2 factorial combination of surface (disking) and subsurface (subsoiling) were installed on a well-drained, clay-textured subsoil, soil located on the Piedmont of North Carolina. Disking improved soil physical properties (reduced bulk density and increased aeration porosity) in the surface 20-cm of soil. Subsoiling improved soil physical properties at all depths in the planting row, with improvements still noted at 60-cm from the planting row in the surface 10-cm of soil. Rooting patterns followed the changes in soil physical properties. Despite improvements in soil physical properties and changes in rooting patterns, aboveground tree growth was not affected by tillage. The results of this study point to the need for better diagnostics for identifying sites were tillage is appropriate in situations where fertilization and vegetation control are planned. Potential factors to consider are presence and abundance of old root channels, soil shrink/swell capacity, soil structure, presence and depth to root restricting layers, and historical precipitation records.

  9. Exploration of Titan Using Vertical Lift Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Young, L. A.

    2001-01-01

    Autonomous vertical lift aerial vehicles (such as rotorcraft or powered-lift vehicles) hold considerable potential for supporting planetary science and exploration missions. Vertical lift aerial vehicles would have the following advantages/attributes for planetary exploration: (1) low-speed and low-altitude detailed aerial surveys; (2) remote-site sample return to lander platforms; (3) precision placement of scientific probes; (4) soft landing capability for vehicle reuse (multiple flights) and remote-site monitoring; (5) greater range, speed, and access to hazardous terrain than a surface rover; and (6) greater resolution of surface details than an orbiter or balloons. Exploration of Titan presents an excellent opportunity for the development and usage of such vehicles. Additional information is contained in the original extended abstract.

  10. Aerial Photography: Use in Detecting Simulated Insect Defoliation in Corn

    NASA Technical Reports Server (NTRS)

    Chiang, H. C.; Latham, R.; Meyer, M. P.

    1973-01-01

    Artificial defoliation in corn was used to explore the usefulness of aerial photography in detecting crop insect infestations. Defoliation on the top of plants was easily detected, while that on the base was less so. Aero infrared film with Wratten 89B filter gave the best results, and morning flights at the scale of 1:15840 are recommended. Row direction, plant growth stage, and time elapse since defoliation were not important factors.

  11. 9. AERIAL VIEW OF CROSSCUT FACILITY, LOOKING SOUTHWEST. THE NEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. AERIAL VIEW OF CROSSCUT FACILITY, LOOKING SOUTHWEST. THE NEW CROSSCUT CANAL ENTERS THE PICTURE AT FOREGROUND RIGHT, EMPTYING INTO THE FOREBAY AND DESILTING BASIN CENTER. THE DUAL PENSTOCKS ARE SEEN AS THE STRAIGHT LINE RUNNING TOWARD THE HYDRO PLANTS ACROSS VAN BUREN STREET. top. THE BEGINNING OF THE GRAND CANAL IS VISIBLE, CURVING TO THE RIGHT BEYOND THE RAILROAD TRACKS Photographer unknown, no date - Cross Cut Hydro Plant, North Side of Salt River, Tempe, Maricopa County, AZ

  12. 3. AERIAL VIEW, LOOKING SOUTH, OF BUILDING 371 BASEMENT UNDER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. AERIAL VIEW, LOOKING SOUTH, OF BUILDING 371 BASEMENT UNDER CONSTRUCTION. THE BASEMENT HOUSES HEATING, VENTILATION, AND AIR CONDITIONING EQUIPMENT AND MECHANICAL UTILITIES, THE UPPER PART OF THE PLUTONIUM STORAGE VAULT AND MAINTENANCE BAY, AND SMALL PLUTONIUM PROCESSING AREAS. THE BASEMENT LEVEL IS DIVIDED INTO NEARLY EQUAL NORTH AND SOUTH PARTS BY THE UPPER PORTION OF THE PLUTONIUM STORAGE VAULT. (10/7/74) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  13. 1. AERIAL VIEW, LOOKING SOUTHSOUTHEAST, OF BUILDING 371 UNDER CONSTRUCTION. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. AERIAL VIEW, LOOKING SOUTH-SOUTHEAST, OF BUILDING 371 UNDER CONSTRUCTION. THE BUILDING IS A MULTI-LEVEL STRUCTURE, PARTIALLY UNDERGROUND. THE PLUTONIUM STORAGE VAULT EXTENDS FROM THE WEST SIDE OF THE BUILDING. FOOTERS FOR BUILDING 374 ARE VISIBLE TO THE LEFT OF BUILDING 371. (5/2/74) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  14. 2. AERIAL VIEW, LOOKING NORTHNORTHEAST, OF THE SUBBASEMENT OF BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. AERIAL VIEW, LOOKING NORTH-NORTHEAST, OF THE SUB-BASEMENT OF BUILDING 371 UNDER CONSTRUCTION. THE SUB-BASEMENT, THE BOTTOM LEVEL, IS AN IRREGULARLY SHAPED AREA, CONSISTING PRIMARILY OF THE LOWER PORTION OF THE PLUTONIUM STORAGE VAULT AND ITS TRANSFER, REPAIR, AND STACKER-RETRIEVER MAINTENANCE BAYS. THE PLUTONIUM STORAGE VAULT RUNS EAST-WEST. (7/2/74) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  15. Plant surface reactions: an opportunistic ozone defence mechanism impacting atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Jud, W.; Fischer, L.; Canaval, E.; Wohlfahrt, G.; Tissier, A.; Hansel, A.

    2016-01-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants, responsible for global crop losses with associated economic costs of several billion dollars per year. Plant injuries have been linked to the uptake of ozone through stomatal pores and oxidative damage of the internal leaf tissue. But a striking question remains: can surface reactions limit the stomatal uptake of ozone and therefore reduce its detrimental effects to plants?In this laboratory study we could show that semi-volatile organic compounds exuded by the glandular trichomes of different Nicotiana tabacum varieties are an efficient ozone sink at the plant surface. In our experiments, different diterpenoid compounds were responsible for a strongly variety-dependent ozone uptake of plants under dark conditions, when stomatal pores are almost closed. Surface reactions of ozone were accompanied by a prompt release of oxygenated volatile organic compounds, which could be linked to the corresponding precursor compounds: ozonolysis cis-abienol (C20H34O) - a diterpenoid with two exocyclic double bonds - caused emissions of formaldehyde (HCHO) and methyl vinyl ketone (C4H6O). The ring-structured cembratrien-diols (C20H34O2) with three endocyclic double bonds need at least two ozonolysis steps to form volatile carbonyls such as 4-oxopentanal (C5H8O2), which we could observe in the gas phase, too.Fluid dynamic calculations were used to model ozone distribution in the diffusion-limited leaf boundary layer under daylight conditions. In the case of an ozone-reactive leaf surface, ozone gradients in the vicinity of stomatal pores are changed in such a way that the ozone flux through the open stomata is strongly reduced.Our results show that unsaturated semi-volatile compounds at the plant surface should be considered as a source of oxygenated volatile organic compounds, impacting gas phase chemistry, as well as efficient ozone sink improving the ozone tolerance of plants.

  16. Monitoring Surface CO2 Leaks Using Hyperspectral Plant Signatures During the 2008 and 2009 ZERT Shallow Subsurface CO2 Release Experiment in Bozeman, MT

    NASA Astrophysics Data System (ADS)

    Male, E. J.; Pickles, W.; Silver, E. A.; Hoffmann, G. D.; Lewicki, J. L.; Apple, M. E.; Repasky, K. S.; Dobeck, L.; Burton, E. A.

    2009-12-01

    Hyperspectral plant signatures can be a powerful tool in the monitoring, verification, and accounting (MVA) of geologic carbon sequestration fields. They can be used to ensure safe and effective sequestration of carbon on short term, as well as on long term timescales. A compromised sequestration field could release CO2 to the surface, where it can negatively impact overlying vegetation. Plant stress caused by a CO2 leak can be observed as changes in the visible to near-infrared reflectance spectra of vegetation. We tested this technique during two controlled shallow CO2 injections during the summers of 2008 and 2009, with each injection lasting for approximately 4 weeks. CO2 gas was released through a 100-meter long horizontal injection well, at a flow rate of 300 kg/day in 2008, and 200 kg/day in 2009. In both years, overlying vegetation comprised various short and tall grasses, alfalfa, and dandelions. During the spring of 2009, following the 2008 experiment, a species of short grass, Kentucky Bluegrass (Poa pratensis), grew predominately in areas where high CO2 fluxes were previously measured, suggesting long term changes to the site as a result of the CO2 leaks. We used a “FieldSpec Pro” spectrometer by Analytical Spectral Devices (ASD, Inc.) to monitor plant health by measuring spectral signatures nearly daily for both experiments. We measured plants located directly over the injection well to10 m away from the well. Acquiring data both inside and outside of the CO2 leak zones allowed us to normalize our measurements to seasonal changes and other environmental factors that affected the vegetation. In both the 2008 and 2009 experiments, we began to observe plant stress within approximately 4 days of the start of each injection. The measured plant stress each year was located within zones of high CO2 flux from the injections. This correlation was also seen in aerial hyperspectral imagery acquired in 2008 by Resonon Inc. of Bozeman, MT using their self

  17. Effect of Mulch Surface Color on Root-knot of Tomato Grown in Simulated Planting Beds.

    PubMed

    Fortnum, B A; Kasperbauer, M J; Decoteau, D R

    2000-03-01

    The effect of different-colored polyethylene mulches on quantity and spectra of reflected light, plant morphology, and root-knot disease was studied in tomato (Lycopersicon esculentum) grown in simulated planting beds. Tomato plants were inoculated with Meloidogyne incognita at initial populations (Pi) of 0, 1,000, 10,000, or 50,000 eggs/plant, and grown in a greenhouse for 50 days over white, red, or black mulch. Soil temperature was kept constant among the mulch treatments by placing an insulation barrier between the colored mulch and the soil surface. Soil temperature varied less than 0.5 degrees C between soil chambers at solar noon. Tomatoes grown over white mulch received more reflected photosynthetic light and had greater shoot weights (27%), root weights (32%), and leaf area (20%) than plants grown over black mulch. Plants grown over red mulch received a higher far-red-to-red ratio in the reflected light. Mulch color altered the plant's response to root-knot nematode infection by changing the distribution of mass in axillary shoots. At high Pi, axillary leaf area and leaf weight were greater in tomato grown over white mulch than when grown over red mulch. The root-gall index was lower for plants grown over white mulch than similar plants grown over red mulch. PMID:19270954

  18. COMPUTER SIMULATIONS OF SPRAY RETENTION BY A 3D BARLEY PLANT: EFFECT OF FORMULATION SURFACE TENSION.

    PubMed

    Massinon, M; De Cock, N; Salah, S Ouled Taleb; Lebeau, F

    2015-01-01

    A spray retention model was used in this study to explore theoretically the effect of a range of mixture surface tension on the spray retention and the variability of deposits. The spray retention model was based on an algorithm that tested whether droplets from a virtual nozzle intercepted a 3D plant model. If so, the algorithm determined the contribution of the droplet to the overall retention depending on the droplet impact behaviour on the leaf; adhesion, rebound or splashing. The impact outcome probabilities, function of droplet impact energy, were measured using high-speed imaging on an excised indoor grown barley leaf (BBCH12) both for pure water (surface tension of 0.072 N/m) and a non-ionic super spreader (static surface tension of 0.021 N/m) depending on the surface orientation. The modification of spray mixture properties in the simulations was performed by gradually changing the spray the droplet impact probabilities between pure water and a solution with non-ionic surfactant exhibiting super spreading properties. The plant architecture was measured using a structured light scanner. The final retention was expressed as the volume of liquid retained by the whole plant relative to the projected leaf surface area in the main spray direction. One hundred simulations were performed at different volumes per hectare and flat-fan nozzles for each formulation surface tension. The coefficient of variation was used as indicator of variability of deposits. The model was able to discriminate between mixture surface tension. The spray retention increased as the mixture surface tension decreased. The variability of deposits also decreased as the surface tension decreased. The proposed modelling approach provides a suited tool for sensitivity analysis: nozzle kind, pressure, volume per hectare applied, spray mixture physicochemical properties, plant species, growth stage could be screened to determine the best spraying characteristics maximizing the retention. The

  19. Radiological monitoring plan for the Oak Ridge Y-12 Plant: Surface Water

    SciTech Connect

    1997-10-01

    The Y-12 Plant conducts a surface water monitoring program in response to DOE Orders and state of Tennessee requirements under the National Pollutant Discharge Elimination System (NPDES). The anticipated codification of DOE Order 5400.5 for radiation protection of the public and the environment (10 CFR Part 834) will require an environmental radiation protection plan (ERPP). The NPDES permit issued by the state of Tennessee requires a radiological monitoring plan (RMP) for Y-12 Plant surface waters. In a May 4, 1995 memo, the state of Tennessee, Division of Water Pollution Control, stated their desired needs and goals regarding the content of RMPs, associated documentation, and data resulting from the RMPs required under the NPDES permitting system (L. Bunting, General Discussion, Radiological Monitoring Plans, Tennessee Division of Water Pollution Control, May 4,1995). Appendix A provides an overview of how the Y-12 Plant will begin to address these needs and goals. It provides a more complete, documented basis for the current Y-12 Plant surface water monitoring program and is intended to supplement documentation provided in the Annual Site Environmental Reports (ASERs), NPDES reports, Groundwater Quality Assessment Reports, and studies conducted under the Y-12 Plant Environmental Restoration (ER) Program. The purpose of this update to the Y-12 Plant RMP is to satisfy the requirements of the current NPDES permit, DOE Order 5400.5, and 10 CFR Part 834, as current proposed, by defining the radiological monitoring plan for surface water for the Y-12 Plant. This plan includes initial storm water monitoring and data analysis. Related activities such as sanitary sewer and sediment monitoring are also summarized. The plan discusses monitoring goals necessary to determine background concentrations of radionuclides, to quantify releases, determine trends, satisfy regulatory requirements, support consequence assessments, and meet requirements that releases be ``as low as

  20. Influence of Host-Plant Surface Chemicals on the Oviposition of the Cereal Stemborer Busseola Fusca.

    PubMed

    Juma, Gerald; Clément, Gilles; Ahuya, Peter; Hassanali, Ahmed; Derridj, Sylvie; Gaertner, Cyrile; Linard, Romain; Le Ru, Bruno; Frérot, Brigitte; Calatayud, Paul-André

    2016-05-01

    The chemical composition of plant surfaces plays a role in selection of host plants by herbivorous insects. Once the insect reaches the plant, these cues determine host acceptance. Laboratory studies have shown that the stem borer Busseola fusca (Lepidoptera: Noctuidae), an important pest of sorghum and maize in sub-Saharan Africa, is able to differentiate between host and non-host plant species. However, no information is available on the cues used by this insect to seek and accept the host plant. Thus, the role of surface phytochemical stimuli on host selection and oviposition by B. fusca was studied in the laboratory using two host plants, sorghum, Sorghum bicolor, and maize, Zea mays, and one non-host plant, Napier grass, Pennisetum purpureum. The numbers of eggs and egg masses deposited on the three plant species were compared first under no-choice and choice conditions. In both cases, more eggs and egg masses were laid on maize and sorghum than on the non-host. Artificial surrogate stems treated with a water or chloroform surface extract of each plant were then compared with surrogate stems treated with, respectively, water or chloroform as controls, under similar conditions. Surrogate stems treated with plant water extracts did not show an increase in oviposition when compared to controls, indicating that the major compounds in these extracts, i.e., simple sugars and free amino acids, are not significantly responsible for the oviposition preference. By contrast, a chloroform extract of sorghum enhanced oviposition on the surrogate stems compared to the control, while those of maize and Napier grass showed no significant effects. Analysis of the chloroform extract of sorghum showed higher amounts of α-amyrin, ß-amyrin, and n-nonacosane compared to those of maize and Napier grass. A blend of the three chemicals significantly increased oviposition compared to the chloroform-treated control, indicating that these compounds are part of the surface chemical

  1. 27. AERIAL VIEW LOOKING EAST DOWN THE WEST ACCESS ROAD. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. AERIAL VIEW LOOKING EAST DOWN THE WEST ACCESS ROAD. THE FIRST LARGE PROTEST AT THE PLANT CAME IN 1978. IT WAS THE FIRST MAJOR PROTEST AT ANY DEPARTMENT OF ENERGY PLANT. IN RESPONSE TO CONTINUING ANTI- NUCLEAR PROTESTS, IN PARTICULAR A 1979 RALLY THAT DREW 10,000 PARTICIPANTS, ROCKWELL EMPLOYEES AT THE PLANT FORMED A GRASSROOT ORGANIZATION, CITIZENS FOR ENERGY AND FREEDOM, AND ORGANIZED A PRO-NUCLEAR RALLY, 'POWER TO THE PEOPLE,' THAT ATTRACTED 16,000 PEOPLE (5/4/78). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  2. Exploring the Plant-Microbe Interface by Profiling the Surface-Associated Proteins of Barley Grains.

    PubMed

    Sultan, Abida; Andersen, Birgit; Svensson, Birte; Finnie, Christine

    2016-04-01

    Cereal grains are colonized by a microbial community that actively interacts with the plant via secretion of various enzymes, hormones, and metabolites. Microorganisms decompose plant tissues by a collection of depolymerizing enzymes, including β-1,4-xylanases, that are in turn inhibited by plant xylanase inhibitors. To gain insight into the importance of the microbial consortia and their interaction with barley grains, we used a combined gel-based (2-DE coupled to MALDI-TOF-TOF MS) and gel-free (LC-MS/MS) proteomics approach complemented with enzyme activity assays to profile the surface-associated proteins and xylanolytic activities of two barley cultivars. The surface-associated proteome was dominated by plant proteins with roles in defense and stress-responses, while the relatively less abundant microbial (bacterial and fungal) proteins were involved in cell-wall and polysaccharide degradation and included xylanases. The surface-associated proteomes showed elevated xylanolytic activity and contained several xylanases. Integration of proteomics with enzyme assays is a powerful tool for analysis and characterization of the interaction between microbial consortia and plants in their natural environment. PMID:26928395

  3. Nano-scale surface wrinkling in chiral liquid crystals and plant-based plywoods.

    PubMed

    Rofouie, Pardis; Pasini, Damiano; Rey, Alejandro D

    2015-02-14

    We present theoretical scaling and computational analysis of nanostructured free surfaces formed in chiral liquid crystals (LC) and plant-based twisted plywoods. A nemato-capillary model is used to derive a generalized equation that governs the shape of cholesteric free surfaces. It is shown that the shape equation includes three distinct contributions to the capillary pressure: area dilation, area rotation, and director curvature. To analyse the origin of periodic reliefs in plywood surfaces, these three pressure contributions and corresponding surface energies are systematically investigated. It is found that for weak homeotropic surface anchoring, the nano-wrinkling is driven by the director curvature pressure mechanism. Consequently, the model predicts that for a planar surface with a uniform tangential helix vector, no surface nano-scale wrinkling can be observed because the director curvature pressure is zero. Scaling is used to derive the explicit relation between the wrinkling's amplitude to the wavelength ratio as a function of the anisotropic surface tension, which is then validated with experimental values. These new findings can be used to characterize plant-based twisted plywoods, as well as to inspire the design of biomimetic chiro-optical devices. PMID:25531936

  4. Surface erosion at disturbed alpine sites: effects of vegetation cover and plant diversity

    NASA Astrophysics Data System (ADS)

    Martin, C.; Pohl, M.; Alewell, C.; Körner, C.; Buttler, A.; Rixen, C.

    2009-04-01

    The relationship between plant diversity and soil stability in disturbed alpine terrain is poorly studied. In this paper, we investigated the influence of plant cover and diversity on water run-off and sediment yield on ski slopes. Rainfall simulations were conducted on a micro-scale (25 x 25 cm) to be able to replicate plots with different degrees of vegetation cover. We selected plots with 10%, 30% and 60% of vegetation cover containing different combinations of plant diversities: (i) grass, (ii) herb, (iii) moss/ lichen, and all combinations of these plant groups. Each combination was replicated five times with an applied rain intensity of 375 ml min-1 for about 5 minutes. As could be expected, percent vegetation cover had a large effect on surface erosion: sediment yield decreased with increasing vegetation cover. However, within the plots with 60% cover, sediment yield was lower at higher plant diversity and functional group diversity. The findings of this study support the view that beside the re-establishment of a closed vegetation cover, plant diversity is a relevant factor to reduce surface erosion at disturbed sites in alpine ecosystems.

  5. Investigation of the pathway of contaminated soil transported to plant surfaces by raindrop splash

    SciTech Connect

    Dreicer, M.; Hakonson, T.E.; Whicker, F.W.; White, G.C.

    1983-10-21

    The environmental transport pathway of soil-borne radioisotopes to vegetation surfaces via raindrop splash was studied. The data show that soil can significantly contribute to the contamination found on plants. Further detailed study is needed to calculate the rate constant for the raindrop splash and retention pathways. 8 references, 1 figure. (ACR)

  6. PILOT PLANT STUDY OF THE EFFECT OF A SURFACE ELECTRIC FIELD ON FABRIC FILTER OPERATION

    EPA Science Inventory

    The paper gives results of a pilot plant study of electrostatically augmented fabric filtration (ESFF) to transfer laboratory technology to the field environment. (Note: Electrostatic fields at the fabric surface of fabric dust collectors have been observed in the laboratory to r...

  7. Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis.

    PubMed

    Dhonukshe, Pankaj; Baluska, Frantisek; Schlicht, Markus; Hlavacka, Andrej; Samaj, Jozef; Friml, Jirí; Gadella, Theodorus W J

    2006-01-01

    Dividing plant cells perform a remarkable task of building a new cell wall within the cytoplasm in a few minutes. A long-standing paradigm claims that this primordial cell wall, known as the cell plate, is generated by delivery of newly synthesized material from Golgi apparatus-originated secretory vesicles. Here, we show that, in diverse plant species, cell surface material, including plasma membrane proteins, cell wall components, and exogenously applied endocytic tracers, is rapidly delivered to the forming cell plate. Importantly, this occurs even when de novo protein synthesis is blocked. In addition, cytokinesis-specific syntaxin KNOLLE as well as plasma membrane (PM) resident proteins localize to endosomes that fuse to initiate the cell plate. The rate of endocytosis is strongly enhanced during cell plate formation, and its genetic or pharmacological inhibition leads to cytokinesis defects. Our results reveal that endocytic delivery of cell surface material significantly contributes to cell plate formation during plant cytokinesis. PMID:16399085

  8. 'Insect aquaplaning' on a superhydrophilic hairy surface: how Heliamphora nutans Benth. pitcher plants capture prey.

    PubMed

    Bauer, Ulrike; Scharmann, Mathias; Skepper, Jeremy; Federle, Walter

    2013-02-22

    Trichomes are a common feature of plants and perform important and diverse functions. Here, we show that the inward-pointing hairs on the inner wall of insect-trapping Heliamphora nutans pitchers are highly wettable, causing water droplets to spread rapidly across the surface. Wetting strongly enhanced the slipperiness and increased the capture rate for ants from 29 to 88 per cent. Force measurements and tarsal ablation experiments revealed that wetting affected the insects' adhesive pads but not the claws, similar to the 'aquaplaning' mechanism of (unrelated) Asian Nepenthes pitcher plants. The inward-pointing trichomes provided much higher traction when insects were pulled outwards. The wetness-dependent capture mechanisms of H. nutans and Nepenthes pitchers present a striking case of functional convergence, whereas the use of wettable trichomes constitutes a previously unknown mechanism to make plant surfaces slippery. PMID:23256197

  9. Aerial camera auto focusing system

    NASA Astrophysics Data System (ADS)

    Wang, Xuan; Lan, Gongpu; Gao, Xiaodong; Liang, Wei

    2012-10-01

    Before the aerial photographic task, the cameras focusing work should be performed at first to compensate the defocus caused by the changes of the temperature, pressure etc. A new method of aerial camera auto focusing is proposed through traditional photoelectric self-collimation combined with image processing method. Firstly, the basic principles of optical self-collimation and image processing are introduced. Secondly, the limitations of the two are illustrated and the benefits of the new method are detailed. Then the basic principle, the system composition and the implementation of this new method are presented. Finally, the data collection platform is set up reasonably and the focus evaluation function curve is draw. The results showed that: the method can be used in the Aerial camera focusing field, adapt to the aviation equipment trends of miniaturization and lightweight .This paper is helpful to the further work of accurate and automatic focusing.

  10. Assessment of surface water in the vicinity of fertilizer factory using fish and plants.

    PubMed

    Radić, Sandra; Gregorović, Gordana; Stipaničev, Draženka; Cvjetko, Petra; Srut, Maja; Vujčić, Valerija; Oreščanin, Višnja; Vinko Klobučar, Göran Igor

    2013-10-01

    The genotoxic and toxic potential of polluted surface water exposed to a fertilizer factory effluent was evaluated using assays with fish (Cyprinus carpio) and plant (Lemna minor) model organisms. Beside classical physicochemical parameters, the contents of fluorides, some heavy metals and polycyclic aromatic hydrocarbons were analyzed as well. Surface water caused inhibition of plant growth and decrease of photosynthetic pigment content. Regarding DNA damage and oxidative stress parameters, both fish and plants showed similar response to the surface water. In confirmation to biochemical markers, histopathological analysis of gill and liver tissues revealed a higher incidence of lesions in fish exposed to polluted surface water. Generally, results obtained by biological monitoring were mostly in agreement with chemical analysis of the surface water, although several discrepancies were observed which might be due to difference in sensitivity of model organisms or in experimental conditions (laboratory and field exposure). The results imply that conventional chemical analysis should be extended to genotoxicity/toxicity assays as measured biological effects and the potential health hazard cannot be predicted based on the physicochemical characteristics of water samples alone. PMID:23871567

  11. Dynamics of aerial target pursuit

    NASA Astrophysics Data System (ADS)

    Pal, S.

    2015-12-01

    During pursuit and predation, aerial species engage in multitasking behavior that involve simultaneous target detection, tracking, decision-making, approach and capture. The mobility of the pursuer and the target in a three dimensional environment during predation makes the capture task highly complex. Many researchers have studied and analyzed prey capture dynamics in different aerial species such as insects and bats. This article focuses on reviewing the capture strategies adopted by these species while relying on different sensory variables (vision and acoustics) for navigation. In conclusion, the neural basis of these capture strategies and some applications of these strategies in bio-inspired navigation and control of engineered systems are discussed.

  12. AERIAL OF VEHICLE ASSEMBLY BUILDING & SURROUNDING AREA

    NASA Technical Reports Server (NTRS)

    1977-01-01

    AERIAL OF VEHICLE ASSEMBLY BUILDING & SURROUNDING AREA KSC-377C-0082.41 116-KSC-377C-82.41, P-15877, ARCHIVE-04151 Aerial view - Shuttle construction progress - VAB and Orbiter Processing Facilities - direction northwest.

  13. Distribution patterns of MCA-coated granules aerially applied to corn fields of Southern Hungary between 2000 and 2002.

    PubMed

    Wennemann, L; Hummel, H E

    2003-01-01

    Field studies in corn (Zea mays L.) were conducted to evaluate distribution patterns of 4-methoxy-cinnamaldehyde (MCA) coated corn grits after aerial application with a Dromader fixed wing aircraft. The kairomone mimic MCA is synthetically available and a quite specific and efficient adult attractant for the invasive alien maize pest western corn rootworm (WCR) Diabrotica virgifera virgifera LeConte. Orientation disruptive properties of MCA for WCR when applied at unphysiologically high concentrations are currently under investigation. For successful implementation of the MCA disruption technique, the distribution patterns of MCA coated corn granules ('grits') in the field are important. Grits are degrained corn cobs, shredded to different sizes, coated with MCA and used as a carrier material to disseminate MCA vapors into corn fields. Granules of 10-12 mesh size were aerially applied eight times at rates ranging from 12.4 to 25.0 kg/ha. The goal is to evaluate distribution patterns of corn grits treated with MCA in three fields located at Csanadpalota, Kardoskút and Mezöhegyes in Southern Hungary between 2000 and 2002. Increasing rates reflect our attempts in finding and optimising the most even distribution of granules in the field. Field experiments were evaluated by collecting grits in 30-cm plastic saucers and by counting grits accumulated on corn plant parts. Variation in grit number per unit area and frequency of corn granule number per plant showed some transient technical application problems. Analysis of grits collected in the saucers revealed some statistical difference between the different application dates as well as differences in rates applied. Altogether grits in saucers were more evenly distributed in comparison to the grits collected on plant parts. As the corn plants age, their leaves and whorls present a smaller and smaller surface area where granules can accumulate. Altogether, however, grit distribution patterns indicate that aerial

  14. Purification of fuel and nitrate contaminated ground water using a free water surface constructed wetland plant

    SciTech Connect

    Machate, T.; Heuermann, E.; Schramm, K.W.; Kettrup, A.

    1999-10-01

    Contaminated ground water from a former coke plant site was purified in a free water surface (FWS) constructed wetland plant during a 3-mo short-term experiment. The pilot plant (total surface area 27 m{sup 2}) was filled with a 1 m thick lava-gravel substrate planted with cattail (Typha spp.) and bulrush (Scirpus lacustrls). Major contaminants were low to moderate concentrations of polycyclic aromatic hydrocarbons, BTEX, nitrate, and nitrite. The wetland was dosed at hydraulic loading rates of q{sub A} = 4.8 and 9.6 cm d{sup {minus}1} with a hydraulic residence time (HRT) of 13.7 and 6.8 d. The surface removal rates of PAH were between 98.8 and 1914 mg m{sup {minus}2} d{sup {minus}1}. Efficiency was always {gt}99%. Extraction of lava gravel showed that approx. 0.4% of the applied PAH were retained on the substratum. The ratio of {Sigma}2,3-ring PAH and {Sigma}4,5,6-ring PAH showed a shift from 1:0.11 in water to 1:2.5 in lava. The removal of BTEX was {gt}99%, but might be in part due to volatilization. The efficiency in the removal of nitrate was 91% and of nitrite was 97%. Purification performance was not influenced by hydraulic loading rates or after die-back of the macrophytes.

  15. Oxidative stress and antioxidants at biosurfaces: plants, skin, and respiratory tract surfaces.

    PubMed Central

    Cross, C E; van der Vliet, A; Louie, S; Thiele, J J; Halliwell, B

    1998-01-01

    Atmospheric pollutants represent an important source of oxidative and nitrosative stress to both terrestrial plants and to animals. The exposed biosurfaces of plants and animals are directly exposed to these pollutant stresses. Not surprisingly, living organisms have developed complex integrated extracellular and intracellular defense systems against stresses related to reactive oxygen and nitrogen species (ROS, RNS), including O3 and NO2. Plant and animal epithelial surfaces and respiratory tract surfaces contain antioxidants that would be expected to provide defense against environmental stress caused by ambient ROS and RNS, thus ameliorating their injurious effects on more delicate underlying cellular constituents. Parallelisms among these surfaces with regard to their antioxidant constituents and environmental oxidants are presented. The reactive substances at these biosurfaces not only represent an important protective system against oxidizing environments, but products of their reactions with ROS/RNS may also serve as biomarkers of environmental oxidative stress. Moreover, the reaction products may also induce injury to underlying cells or cause cell activation, resulting in production of proinflammatory substances including cytokines. In this review we discuss antioxidant defense systems against environmental toxins in plant cell wall/apoplastic fluids, dead keratinized cells/interstitial fluids of stratum corneum (the outermost skin layer), and mucus/respiratory tract lining fluids. Images Figure 1 Figure 3 PMID:9788905

  16. Insecticide dissipation from soil and plant surfaces in tropical horticulture of southern Benin, West Africa.

    PubMed

    Rosendahl, Ingrid; Laabs, Volker; Atcha-Ahowé, Cyrien; James, Braima; Amelung, Wulf

    2009-06-01

    In Sub-Saharan Africa, horticulture provides livelihood opportunities for millions of people, especially in urban and peri-urban areas. Although the vegetable agroecosystems are often characterized by intensive pesticide use, risks resulting therefrom are largely unknown under tropical horticultural conditions. The objective of this study therefore was to study the fate of pesticides in two representative horticultural soils (Acrisol and Arenosol) and plants (Solanum macrocarpon L.) after field application and thus to gain first insight on environmental persistence and dispersion of typical insecticides used in vegetable horticulture in Benin, West Africa. On plant surfaces, dissipation was rapid with half lives ranging from 2 to 87 h (alpha-endosulfan < beta-endosulfan < deltamethrin). Soil dissipation was considerably slower than dissipation from plant surfaces with half-lives ranging from 3 (diazinon) to 74 d (total endosulfan), but persistence of pesticides in soil was still reduced compared to temperate climates. Nevertheless, for deltamethrin and endosulfan, a tendency for mid-term accumulation in soil upon repeated applications was observed. The soil and plant surface concentrations of the metabolite endosulfan sulfate increased during the entire trial period, indicating that this compound is a potential long-term pollutant even in tropical environments. PMID:19513446

  17. Development of Soils and Communities of Plants and Arbuscular Mycorrhizal Fungi on West Virginia Surface Mines

    NASA Astrophysics Data System (ADS)

    Levy, Michael A.; Cumming, Jonathan R.

    2014-11-01

    Surface mining followed by reclamation to pasture is a major driver of land use and cover change in Appalachia. Prior research suggests that many aspects of ecosystem recovery are either slow or incomplete. We examined ecosystem structure—including soil physical and chemical properties, arbuscular mycorrhizal fungal (AMF) infectivity and community composition, and plant diversity and community composition—on a chronosequence of pasture-reclaimed surface mines and a non-mined pasture in northern West Virginia. Surface mining and reclamation dramatically altered ecosystem structure. Some aspects of ecosystem structure, including many measures of soil chemistry and infectivity of AMF, returned rapidly to levels found on the non-mined reference site. Other aspects of ecosystem structure, notably soil physical properties and AMF and plant communities, showed incomplete or no recovery over the short-to-medium term. In addition, invasive plants were prevalent on reclaimed mine sites. The results point to the need for investigation on how reclamation practices could minimize establishment of exotic invasive plant species and reduce the long-term impacts of mining on ecosystem structure and function.

  18. Xylella fastidiosa outer membrane vesicles modulate plant colonization by blocking attachment to surfaces.

    PubMed

    Ionescu, Michael; Zaini, Paulo A; Baccari, Clelia; Tran, Sophia; da Silva, Aline M; Lindow, Steven E

    2014-09-16

    Outer membrane vesicles (OMVs) of Gram-negative bacteria have been studied intensively in recent years, primarily in their role in delivering virulence factors and antigens during pathogenesis. However, the near ubiquity of their production suggests that they may play other roles, such as responding to envelope stress or trafficking various cargoes to prevent dilution or degradation by other bacterial species. Here we show that OMVs produced by Xylella fastidiosa, a xylem-colonizing plant pathogenic bacterium, block its interaction with various surfaces such as the walls of xylem vessels in host plants. The release of OMVs was suppressed by the diffusible signal factor-dependent quorum-sensing system, and a X. fastidiosa ΔrpfF mutant in which quorum signaling was disrupted was both much more virulent to plants and less adhesive to glass and plant surfaces than the WT strain. The higher virulence of the ΔrpfF mutant was associated with fivefold higher numbers of OMVs recovered from xylem sap of infected plants. The frequency of attachment of X. fastidiosa to xylem vessels was 20-fold lower in the presence of OMVs than in their absence. OMV production thus is a strategy used by X. fastidiosa cells to adjust attachment to surfaces in its transition from adhesive cells capable of insect transmission to an "exploratory" lifestyle for systemic spread within the plant host which would be hindered by attachment. OMV production may contribute to the movement of other bacteria in porous environments by similarly reducing their contact with environmental constituents. PMID:25197068

  19. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... lift, except in case of emergency. (x) Climbers shall not be worn while performing work from an aerial... 29 Labor 8 2010-07-01 2010-07-01 false Aerial lifts. 1926.453 Section 1926.453 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Scaffolds § 1926.453 Aerial lifts. (a)...

  20. Utilization of coal-fired power plant combustion by-products in surface mine reclamation

    SciTech Connect

    Wendell, R.R.

    1992-01-01

    A three year study investigated the suitability of a mixture of fly ash and flue gas desulfurization sludge, termed fly ash scrubber sludge (FASS), for use in surface mine reclamation. Objectives were: characterization of FASS physical and chemical properties; effects on soil properties; effects of soil/FASS mixtures on crop plants; and development of recommendations for utilization of FASS in surface mine reclamation practices. Elemental data were divided into: major elements (Al, Ca, Cl, Fe, K, Mg and Na), comprising greater than 0.1% of the total weight; minor elements (B, Mn, Pb and Zn), present in amounts between 100 mg/kg and 0.1%; and trace elements (As, Ba, Co, Cr, Cu, Ni, Se and Sr), present at less than 100 mg/kg. The feasibility of near-surface disposal of FASS in reclamation was investigated and its potential evaluated as a soil amendment for forage and row crops. Boron and Cl were of primary importance to both crop plants and water quality. Chloride was not attenuated by soils and was readily leached to depths below plant rooting volumes. Plant-available B was markedly decreased after the first year by leaching and immobilization. Incorporation of 15% FASS in the surface soil reduced fatal boron toxicity in soybeans and a 22% reduction in alfalfa forage yield in 1989. Additional treatments included: 50% FASS mixed with glacial till subsoil; and 100% FASS located below a 30cm topsoil layer. Fly ash scrubber sludge added below the topsoil reduced soybean grain yield by 81% and alfalfa forage yield by 48%. Severe B toxicity symptoms occurred, and the grain and forages produced were unuseable. Toxicity symptoms were most severe during periods of low rainfall, and subsided with favorable soil moisture conditions. Leaching and weathering resulted in markedly reduced toxicity symptoms and enrichment of elements in plant tissues in 1990. Boron was considered the limiting factor in determining application amounts.

  1. Exploring the interactions between water and sediment fluxes, plant growth, and land surface form through modeling

    NASA Astrophysics Data System (ADS)

    Flores Cervantes, J. H.; Bras, R. L.

    2006-12-01

    In a numerical model we explore the interactions between water fluxes, sediment fluxes, and plant growth, on a simulated land surface, and how these interactions shape the land surface in time. We hypothesize that the form of the land surface and the distribution of plants in space depends on the studied interactions. Our numerical model combines elements of an existing "landscape evolution model" where the land surface properties are assumed homogeneous, with: i) a model of soil thickness where a dynamic soil moisture is simulated; and ii) a model of vegetation growth and death as a function of soil moisture. Vegetation cover affects the land surface properties such as the critical shear stress and infiltration capacity. In the resulting model the land surface properties are spatially (and temporally) variable. Seasonality, runon, and the effects of differences in solar radiation in hillslopes with different inclination and orientation (with respect to the geographic north) in the evaporation and transpiration processes, are among the new elements incorporated into the new model. We compare this numerical model to field observations at a location in the Sevilleta Long Term Ecological Research (LTER) Site, NM, where opposing hillslopes, one facing north and the other facing south, are clearly different. The south facing slope has a scarcer vegetation and signs of more fluvial erosion than the north facing slope, which receives less solar radiation and thus is likely to experience less water losses due to evaporation.

  2. Preliminary Modelling of Mass Flux at the Surface of Plant Leaves within the MELiSSA Higher Plant Compartments

    NASA Astrophysics Data System (ADS)

    Holmberg, Madeleine; Paille, Christel; Lasseur, Christophe

    The ESA project Micro Ecological Life Support System Alternative (MELiSSA) is an ecosystem of micro-organisms and higher plants, constructed with the objective of being operated as a tool to understand artificial ecosystems to be used for a long-term or permanent manned planetary base (e.g. Moon or Mars). The purpose of such a system is to provide for generation of food, water recycling, atmospheric regeneration and waste management within defined standards of quality and reliability. As MELiSSA consists of individual compartments which are connected to each other, the robustness of the system is fully dependent on the control of each compartment, as well as the flow management between them. Quality of consumables and reliability of the ecosystem rely on the knowledge, understanding and control of each of the components. This includes the full understanding of all processes related to the higher plants. To progress in that direction, this paper focuses on the mechanical processes driving the gas and liquid exchanges between the plant leaf and its environment. The process responsible for the mass transfer on the surface of plant leaves is diffusion. The diffusion flux is dependent on the behaviour of the stoma of the leaf and also on the leaf boundary layer (BL). In this paper, the physiology of the leaf is briefly examined in order to relate parameters such as light quality, light quantity, CO2 concentration, temperature, leaf water potential, humidity, vapour pressure deficit (VPD) gradients and pollutants to the opening or closing of stomata. The diffusion process is described theoretically and the description is compared to empirical approaches. The variables of the BL are examined and the effect airflow in the compartment has on the BL is investigated. Also presented is the impact changes in different environmental parameters may have on the fluid exchanges. Finally, some tests, to evaluate the accuracy of the concluded model, are suggested.

  3. How does the VPD response of isohydric and anisohydric plants depend on leaf surface particles?

    PubMed

    Burkhardt, J; Pariyar, S

    2016-01-01

    Atmospheric vapour pressure deficit (VPD) is the driving force for plant transpiration. Plants have different strategies to respond to this 'atmospheric drought'. Deposited aerosols on leaf surfaces can interact with plant water relations and may influence VPD response. We studied transpiration and water use efficiency of pine, beech and sunflower by measuring sap flow, gas exchange and carbon isotopes, thereby addressing different time scales of plant/atmosphere interaction. Plants were grown (i) outdoors under rainfall exclusion (OD) and in ventilated greenhouses with (ii) ambient air (AA) or (iii) filtered air (FA), the latter containing <1% ambient aerosol concentrations. In addition, some AA plants were sprayed once with 25 mM salt solution of (NH4 )2 SO4 or NaNO3 . Carbon isotope values (δ(13) C) became more negative in the presence of more particles; more negative for AA compared to FA sunflower and more negative for OD Scots pine compared to other growth environments. FA beech had less negative δ(13) C than AA, OD and NaNO3 -treated beech. Anisohydric beech showed linearly increasing sap flow with increasing VPD. The slopes doubled for (NH4 )2 SO4 - and tripled for NaNO3 -sprayed beech compared to control seedlings, indicating decreased ability to resist atmospheric demand. In contrast, isohydric pine showed constant transpiration rates with increasing VPD, independent of growth environment and spray, likely caused by decreasing gs with increasing VPD. Generally, NaNO3 spray had stronger effects on water relations than (NH4 )2 SO4 spray. The results strongly support the role of leaf surface particles as an environmental factor affecting plant water use. Hygroscopic and chaotropic properties of leaf surface particles determine their ability to form wicks across stomata. Such wicks enhance unproductive water loss of anisohydric plant species and decrease CO2 uptake of isohydric plants. They become more relevant with increasing number of fine particles and

  4. Reconnaissance mapping from aerial photographs

    NASA Technical Reports Server (NTRS)

    Weeden, H. A.; Bolling, N. B. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Engineering soil and geology maps were successfully made from Pennsylvania aerial photographs taken at scales from 1:4,800 to 1:60,000. The procedure involved a detailed study of a stereoscopic model while evaluating landform, drainage, erosion, color or gray tones, tone and texture patterns, vegetation, and cultural or land use patterns.

  5. Design of an integrated aerial image sensor

    NASA Astrophysics Data System (ADS)

    Xue, Jing; Spanos, Costas J.

    2005-05-01

    The subject of this paper is a novel integrated aerial image sensor (IAIS) system suitable for integration within the surface of an autonomous test wafer. The IAIS could be used as a lithography processing monitor, affording a "wafer's eye view" of the process, and therefore facilitating advanced process control and diagnostics without integrating (and dedicating) the sensor to the processing equipment. The IAIS is composed of an aperture mask and an array of photo-detectors. In order to retrieve nanometer scale resolution of the aerial image with a practical photo-detector pixel size, we propose a design of an aperture mask involving a series of spatial phase "moving" aperture groups. We demonstrate a design example aimed at the 65nm technology node through TEMPEST simulation. The optimized, key design parameters include an aperture width in the range of 30nm, aperture thickness in the range of 70nm, and offer a spatial resolution of about 5nm, all with comfortable fabrication tolerances. Our preliminary simulation work indicates the possibility of the IAIS being applied to the immersion lithography. A bench-top far-field experiment verifies that our approach of the spatial frequency down-shift through forming large Moire patterns is feasible.

  6. Radiological monitoring plan for the Oak Ridge Y-12 Plant: Surface water

    SciTech Connect

    1995-07-25

    National Pollutant Discharge Elimination System (NPDES) Permit TN0002968, issued April 28, 1995, requires that the Y-12 Plant Radiological Monitoring Plan for surface water be modified (Part 111-H). These modifications shall consist of expanding the plan to include storm water monitoring and an assessment of alpha, beta, and gamma emitters. In addition, a meeting was held with personnel from the Tennessee Department of Environment and Conservation (TDEC) on May 4, 1995. In this meeting, TDEC personnel provided guidance to Y-12 Plant personnel in regard to the contents of the modified plan. This report contains a revised plan incorporating the permit requirements and guidance provided by TDEC personnel. In addition, modifications were made to address future requirements of the new regulation for radiation protection of the public and the environment in regards to surface water monitoring.

  7. Surface metabolic composition of berries collected from 13 Bulgarian grapevine plants.

    PubMed

    Todorova, I T; Batovska, D I; Parushev, S P; Djakova, G J; Popov, S S

    2010-06-01

    The surface metabolic composition of berries, collected from the Bulgarian grapevine variety Storgozia, and 12 of its seedlings were studied by GC/MS. Diverse surface metabolites were identified. The main components were long chain n-alkanes, terpenoids, and esterified long-chain fatty acids. Amongst them, the terpenoids were most abundant, including, as are typical for plants, sesquiterpenoids, diterpenoids and triterpenoids. Cyperene, a sesquiterpene hydrocarbon, was identified for the first time in grapes. This compound and most of the other identified metabolites are known to possess biological functions that most probably contribute to the quality of grape berries and their defences against biotic and abiotic stressors. PMID:20496231

  8. Aerospace toxicology overview: aerial application and cabin air quality.

    PubMed

    Chaturvedi, Arvind K

    2011-01-01

    Aerospace toxicology is a rather recent development and is closely related to aerospace medicine. Aerospace toxicology can be defined as a field of study designed to address the adverse effects of medications, chemicals, and contaminants on humans who fly within or outside the atmosphere in aviation or on space flights. The environment extending above and beyond the surface of the Earth is referred to as aerospace. The term aviation is frequently used interchangeably with aerospace. The focus of the literature review performed to prepare this paper was on aerospace toxicology-related subject matters, aerial application and aircraft cabin air quality. Among the important topics addressed are the following: · Aerial applications of agricultural chemicals, pesticidal toxicity, and exposures to aerially applied mixtures of chemicals and their associated formulating solvents/surfactants The safety of aerially encountered chemicals and the bioanalytical methods used to monitor exposures to some of them · The presence of fumes and smoke, as well as other contaminants that may generally be present in aircraft/space vehicle cabin air · And importantly, the toxic effects of aerially encountered contaminants, with emphasis on the degradation products of oils, fluids, and lubricants used in aircraft, and finally · Analytical methods used for monitoring human exposure to CO and HCN are addressed in the review, as are the signs and symptoms associated with exposures to these combustion gases. Although many agricultural chemical monitoring studies have been published, few have dealt with the occurrence of such chemicals in aircraft cabin air. However, agricultural chemicals do appear in cabin air; indeed, attempts have been made to establish maximum allowable concentrations for several of the more potentially toxic ones that are found in aircraft cabin air. In this article, I emphasize the need for precautionary measures to be taken to minimize exposures to aerially

  9. 25. Aerial photograph dated 20 June 1942, showing north end ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Aerial photograph dated 20 June 1942, showing north end of Gould Island from the northeast (caption on photo is in error). Shop and power plant under construction at left, firing pier under construction at far right. Photo courtesy of Naval Undersea Warfare Center, Division Newport, Rhode Island. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  10. 27. Aerial photograph dated 14 October 1943 taken directly over ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. Aerial photograph dated 14 October 1943 taken directly over Gould Island. Completed complex shown at north end of the island (to right in photograph), including power plant, shop, frame approach, firing pier, and small harbor formed by finger pier off east side of firing pier. Photo courtesy of Naval Undersea Warfare Center, Division Newport, Rhode Island. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  11. 28. AERIAL VIEW LOOKING EAST AT THE WEST GATE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. AERIAL VIEW LOOKING EAST AT THE WEST GATE IN 1978. SHOWN IS BUILDING 100, THE MAIN ENTRANCE POINT TO THE SITE FROM 1969 UNTIL 1985. DURING THIS TIME EACH AUTOMOBILE THAT ENTERED THE SITE WAS SEARCHED. IN 1985, BUILDING 120 WAS BUILT AT THE OUTERMOST WEST EDGE OF THE SITE. THERE WERE 29 FACILITIES AROUND THE SITE DEDICATED TO SECURITY (5/4/78). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  12. 29. Aerial photograph (1973) looking south across Gould Island. Firing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Aerial photograph (1973) looking south across Gould Island. Firing pier (still possessing third and fourth levels) in foreground. Pitched roof extending from south end of firing pier marks location of frame approach between pier and shop building (center rear) and power plant (to right of shop). Photo courtesy of Naval Undersea Warfare Center, Division Newport, Rhode Island. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  13. Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating.

    PubMed

    Judy, Jonathan D; Unrine, Jason M; Rao, William; Wirick, Sue; Bertsch, Paul M

    2012-08-01

    We used the model organisms Nicotiana tabacum L. cv Xanthi (tobacco) and Triticum aestivum (wheat) to investigate plant uptake of 10-, 30-, and 50-nm diameter Au manufactured nanomaterials (MNMs) coated with either tannate (T-MNMs) or citrate (C-MNMs). Primary particle size, hydrodynamic size, and zeta potential were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), and electrophoretic mobility measurements, respectively. Plants were exposed to NPs hydroponically for 3 or 7 days for wheat and tobacco, respectively. Volume averaged Au concentrations were determined using inductively coupled plasma mass spectrometry (ICP-MS). Spatial distribution of Au in tissue samples was determined using laser ablation ICP-MS (LA-ICP-MS) and scanning X-ray fluorescence microscopy (μXRF). Both C-MNMs and T-MNMs of each size treatment bioaccumulated in tobacco, but no bioaccumulation of MNMs was observed for any treatment in wheat. These results indicate that MNMs of a wide range of size and with different surface chemistries are bioavailable to plants, provide mechanistic information regarding the role of cell wall pores in plant uptake of MNMs, and raise questions about the importance of plant species to MNM bioaccumulation. PMID:22784043

  14. Electrostatic application of inert silica dust based insecticides onto plant surfaces.

    PubMed

    Ulrichs, C; Krause, F; Rocksch, T; Goswami, A; Mewis, I

    2006-01-01

    One of the most effective naturally occurring insecticide powders is diatomaceous earth (DE), which contains above 96 % of silica (silicon dioxide SiO2). In recent days, the possibility to use new improved DE formulations for plant protection in horticulture has been the focus of research. For aphids and other under-leaf insects only insecticides deposited on leaf undersides are effective. We tested electrostatic application of different silica containing dusts onto the cruciferous crop pak-choi (Brassica chinensis). The materials tested were Fossil Shield 90.0s, Advasan, Biobeck PA910, and a formulation newly developed by the Urban Horticultural Section at Humboldt University called "Al-06". Silica materials were tested for their effect on plant photosynthesis and efficacy against the mustard beetle (Phaedon cochleariae F.). All materials have been effective in contact experiments against tested insects. However, significant differences were observed between materials after application onto plant leaves. Fossil Shield, Advasan, and Al-06 application resulted in a good coverage and in high protection against the mustard beetle. Biobeck PA910 was easily removed by wind from leaf surfaces and did not protect the plants well. However, photosynthesis has been reduced in treated plants and remained at a lower level even after dust removal. Experimental results are critically discussed in the view of future potential for crop protection programs. PMID:17390789

  15. Impact of cell shape in hierarchically structured plant surfaces on the attachment of male Colorado potato beetles (Leptinotarsa decemlineata)

    PubMed Central

    Seidel, Robin; Bohn, Holger Florian; Speck, Thomas

    2012-01-01

    Summary Plant surfaces showing hierarchical structuring are frequently found in plant organs such as leaves, petals, fruits and stems. In our study we focus on the level of cell shape and on the level of superimposed microstructuring, leading to hierarchical surfaces if both levels are present. While it has been shown that epicuticular wax crystals and cuticular folds strongly reduce insect attachment, and that smooth papillate epidermal cells in petals improve the grip of pollinators, the impact of hierarchical surface structuring of plant surfaces possessing convex or papillate cells on insect attachment remains unclear. We performed traction experiments with male Colorado potato beetles on nine different plant surfaces with different structures. The selected plant surfaces showed epidermal cells with either tabular, convex or papillate cell shape, covered either with flat films of wax, epicuticular wax crystals or with cuticular folds. On surfaces possessing either superimposed wax crystals or cuticular folds we found traction forces to be almost one order of magnitude lower than on surfaces covered only with flat films of wax. Independent of superimposed microstructures we found that convex and papillate epidermal cell shapes slightly enhance the attachment ability of the beetles. Thus, in plant surfaces, cell shape and superimposed microstructuring yield contrary effects on the attachment of the Colorado potato beetle, with convex or papillate cells enhancing attachment and both wax crystals or cuticular folds reducing attachment. However, the overall magnitude of traction force mainly depends on the presence or absence of superimposed microstructuring. PMID:22428097

  16. Ecological filtering and plant traits variation across quarry geomorphological surfaces: implication for restoration.

    PubMed

    Gilardelli, Federica; Sgorbati, Sergio; Armiraglio, Stefano; Citterio, Sandra; Gentili, Rodolfo

    2015-05-01

    Revegetation patterns after quarry abandonment have been widely studied from several ecological points of view, but a trait-based approach is still lacking. The aim of this study was to characterise the plant species assemblages and the associated functional traits filtered on different geomorphological surfaces in abandoned limestone quarry areas: artificial cliffs, embankments, and platforms. We then verified if species with certain traits were better able to overcome the dispersal and environmental filters necessary for establishment. To this aim, we analyzed 113 vegetation plots and collected data on 25 morphological, ecological, and dispersal traits to detect species adaptaions across these man-made environments. As a case study, we investigated the extraction basin of Botticino (Lombardy, Italy), the second largest in Italy. The results obtained by SIMPER and CCA analyses showed that rockiness, stoniness, slope, elevation, and time of surfaces are the main filters that varied across quarries and affected plant assemblages at the macro-scale level. Across the three geomorphological surfaces (meso-scale) of quarries, more specific abiotic filters selecting species were found. In turn, traits differentiation according to the three main geomorphological surfaces of quarry emphasized that further filters acting at the micro-scale imply differences in dispersal mechanisms and resource availability. This work highlighted the utility to study species assemblages and environmental filters to address quarry restoration according to the type of geomorphological surface. The investigation of some traits (chorological form, life forms, seed dispersal,s and plant height) can furnish some interesting indications for practice individuating further abiotic filters acting at the micro-scale. PMID:25662933

  17. Ecological Filtering and Plant Traits Variation Across Quarry Geomorphological Surfaces: Implication for Restoration

    NASA Astrophysics Data System (ADS)

    Gilardelli, Federica; Sgorbati, Sergio; Armiraglio, Stefano; Citterio, Sandra; Gentili, Rodolfo

    2015-05-01

    Revegetation patterns after quarry abandonment have been widely studied from several ecological points of view, but a trait-based approach is still lacking. The aim of this study was to characterise the plant species assemblages and the associated functional traits filtered on different geomorphological surfaces in abandoned limestone quarry areas: artificial cliffs, embankments, and platforms. We then verified if species with certain traits were better able to overcome the dispersal and environmental filters necessary for establishment. To this aim, we analyzed 113 vegetation plots and collected data on 25 morphological, ecological, and dispersal traits to detect species adaptaions across these man-made environments. As a case study, we investigated the extraction basin of Botticino (Lombardy, Italy), the second largest in Italy. The results obtained by SIMPER and CCA analyses showed that rockiness, stoniness, slope, elevation, and time of surfaces are the main filters that varied across quarries and affected plant assemblages at the macro-scale level. Across the three geomorphological surfaces (meso-scale) of quarries, more specific abiotic filters selecting species were found. In turn, traits differentiation according to the three main geomorphological surfaces of quarry emphasized that further filters acting at the micro-scale imply differences in dispersal mechanisms and resource availability. This work highlighted the utility to study species assemblages and environmental filters to address quarry restoration according to the type of geomorphological surface. The investigation of some traits (chorological form, life forms, seed dispersal,s and plant height) can furnish some interesting indications for practice individuating further abiotic filters acting at the micro-scale.

  18. Pattern Selection in Plants: Coupling Chemical Dynamics to Surface Growth in Three Dimensions

    PubMed Central

    Holloway, David M.; Harrison, Lionel G.

    2008-01-01

    Background and Aims A study is made by computation of the interplay between the pattern formation of growth catalysts on a plant surface and the expansion of the surface to generate organismal shape. Consideration is made of the localization of morphogenetically active regions, and the occurrence within them of symmetry-breaking processes such as branching from an initially dome-shaped tip or meristem. Representation of a changing and growing three-dimensional shape is necessary, as two-dimensional work cannot distinguish, for example, formation of an annulus from dichotomous branching. Methods For the formation of patterns of chemical concentrations, the Brusselator reaction-diffusion model is used, applied on a hemispherical shell and generating patterns that initiate as surface spherical harmonics. The initial shape is hemispherical, represented as a mesh of triangles. These are combined into finite elements, each made up of all the triangles surrounding each node. Chemical pattern is converted into shape change by moving nodes outwards according to the concentration of growth catalyst at each, to relieve misfits caused by area increase of the finite element. New triangles are added to restore the refinement of the mesh in rapidly growing regions. Key Results The postulated mechanism successfully generates: tip growth (or stalk extension by an apical meristem) to ten times original hemisphere height; tip flattening and resumption of apical advance; and dichotomous branching and higher-order branching to make whorled structures. Control of the branching plane in successive dichotomous branchings is tackled with partial success and clarification of the issues. Conclusions The representation of a growing plant surface in computations by an expanding mesh that has no artefacts constraining changes of shape and symmetry has been achieved. It is shown that one type of pattern-forming mechanism, Turing-type reaction-diffusion, acting within a surface to pattern a

  19. UV Light Inactivation of Human and Plant Pathogens in Unfiltered Surface Irrigation Water

    PubMed Central

    Jones, Lisa A.; Worobo, Randy W.

    2014-01-01

    Fruit and vegetable growers continually battle plant diseases and food safety concerns. Surface water is commonly used in the production of fruits and vegetables and can harbor both human- and plant-pathogenic microorganisms that can contaminate crops when used for irrigation or other agricultural purposes. Treatment methods for surface water are currently limited, and there is a need for suitable treatment options. A liquid-processing unit that uses UV light for the decontamination of turbid juices was analyzed for its efficacy in the treatment of surface waters contaminated with bacterial or oomycete pathogens, i.e., Escherichia coli, Salmonella enterica, Listeria monocytogenes, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, and Phytophthora capsici. Five-strain cocktails of each pathogen, containing approximately 108 or 109 CFU/liter for bacteria or 104 or 105 zoospores/liter for Ph. capsici, were inoculated into aliquots of two turbid surface water irrigation sources and processed with the UV unit. Pathogens were enumerated before and after treatment. In general, as the turbidity of the water source increased, the effectiveness of the UV treatment decreased, but in all cases, 99.9% or higher inactivation was achieved. Log reductions ranged from 10.0 to 6.1 and from 5.0 to 4.2 for bacterial pathogens and Ph. capsici, respectively. PMID:24242253

  20. UV light inactivation of human and plant pathogens in unfiltered surface irrigation water.

    PubMed

    Jones, Lisa A; Worobo, Randy W; Smart, Christine D

    2014-02-01

    Fruit and vegetable growers continually battle plant diseases and food safety concerns. Surface water is commonly used in the production of fruits and vegetables and can harbor both human- and plant-pathogenic microorganisms that can contaminate crops when used for irrigation or other agricultural purposes. Treatment methods for surface water are currently limited, and there is a need for suitable treatment options. A liquid-processing unit that uses UV light for the decontamination of turbid juices was analyzed for its efficacy in the treatment of surface waters contaminated with bacterial or oomycete pathogens, i.e., Escherichia coli, Salmonella enterica, Listeria monocytogenes, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, and Phytophthora capsici. Five-strain cocktails of each pathogen, containing approximately 10(8) or 10(9) CFU/liter for bacteria or 10(4) or 10(5) zoospores/liter for Ph. capsici, were inoculated into aliquots of two turbid surface water irrigation sources and processed with the UV unit. Pathogens were enumerated before and after treatment. In general, as the turbidity of the water source increased, the effectiveness of the UV treatment decreased, but in all cases, 99.9% or higher inactivation was achieved. Log reductions ranged from 10.0 to 6.1 and from 5.0 to 4.2 for bacterial pathogens and Ph. capsici, respectively. PMID:24242253

  1. Aerial Photographs and Satellite Images

    USGS Publications Warehouse

    U.S. Geological Survey

    1997-01-01

    Photographs and other images of the Earth taken from the air and from space show a great deal about the planet's landforms, vegetation, and resources. Aerial and satellite images, known as remotely sensed images, permit accurate mapping of land cover and make landscape features understandable on regional, continental, and even global scales. Transient phenomena, such as seasonal vegetation vigor and contaminant discharges, can be studied by comparing images acquired at different times. The U.S. Geological Survey (USGS), which began using aerial photographs for mapping in the 1930's, archives photographs from its mapping projects and from those of some other Federal agencies. In addition, many images from such space programs as Landsat, begun in 1972, are held by the USGS. Most satellite scenes can be obtained only in digital form for use in computer-based image processing and geographic information systems, but in some cases are also available as photographic products.

  2. Aerial robotic data acquisition system

    SciTech Connect

    Hofstetter, K.J.; Hayes, D.W.; Pendergast, M.M.; Corban, J.E.

    1993-12-31

    A small, unmanned aerial vehicle (UAV), equipped with sensors for physical and chemical measurements of remote environments, is described. A miniature helicopter airframe is used as a platform for sensor testing and development. The sensor output is integrated with the flight control system for real-time, interactive, data acquisition and analysis. Pre-programmed flight missions will be flown with several sensors to demonstrate the cost-effective surveillance capabilities of this new technology.

  3. Surface and sub-surface anatomy of the landscape: integrating Unmanned Aerial Vehicle Structure from Motion (UAV-SfM) and Ground Penetrating Radar (GRP) to investigate sedimentary features in the field. - an example from NW Australia

    NASA Astrophysics Data System (ADS)

    Callow, Nik; Leopold, Matthias; May, Simon Matthias

    2015-04-01

    Geomorphology is confronted by the challenge of reconstructing landscape features at appropriate scales, resolution and accuracy, that allows meaningful analysis of environmental processes and their implications. Field geomorphology offers a discrete snapshot (i.e. one or two field campaigns) to reconstruct how features have changed, evolved or responded over time. We explore the application of an emerging photogrammetry technique called Structure-from-Motion (SfM), which uses multiple photographs of the same feature (but taken at different locations) to create high-accuracy three-dimensional models of surface of sedimentary fans formed by extreme wave events. This approach is complimented by investigation of the sub-surface morphology using Ground Penetrating Radar (GPR). Using an UAV "octocopter", we captured 1208 photos with a DSLR camera (Canon EoS-M) at the height of 50m with a ground pixel resolution of 9mm, above a cyclone wash-over fan in the Exmouth Gulf (Western Australia) that measured about 500m inland by 300m wide. Based on 38 ground control point targets (with between 4 and 45 individual photographs per target) the SfM surface had an absolute total (XYZ) accuracy of 51mm (39mm X, 29mm Y and 14mm Y), based on RTK-DGPS surveying from a local ground reference station (with an absolute AUSPOS accuracy of 57mm X, 6mm Y, 50mm Z to AHD) and an overall relative point accuracy of 7mm. A sparse point cloud of over 5.5 million data points was generated using only points with a reconstruction accuracy of <50mm, before spectral unsupervised classification (RGB colour of each XYZ pixel) using K-Means clustering within Python. The output was then manually classified into ground and non-ground points, and the geostatistical analyst functionality of ArcGIS used to produce a final bare-earth DEM. This approach has allowed the study team to economically collect an unprecedented high-resolution and accuracy topographic model of this feature to compliment on

  4. Telemetry of Aerial Radiological Measurements

    SciTech Connect

    H. W. Clark, Jr.

    2002-10-01

    Telemetry has been added to National Nuclear Security Administration's (NNSA's) Aerial Measuring System (AMS) Incident Response aircraft to accelerate availability of aerial radiological mapping data. Rapid aerial radiological mapping is promptly performed by AMS Incident Response aircraft in the event of a major radiological dispersal. The AMS airplane flies the entire potentially affected area, plus a generous margin, to provide a quick look at the extent and severity of the event. The primary result of the AMS Incident Response over flight is a map of estimated exposure rate on the ground along the flight path. Formerly, it was necessary to wait for the airplane to land before the map could be seen. Now, while the flight is still in progress, data are relayed via satellite directly from the aircraft to an operations center, where they are displayed and disseminated. This permits more timely utilization of results by decision makers and redirection of the mission to optimize its value. The current telemetry capability can cover all of North America. Extension to a global capability is under consideration.

  5. Hierarchical Structure and Multifunctional Surface Properties of Carnivorous Pitcher Plants Nepenthes

    NASA Astrophysics Data System (ADS)

    Hsu, Chiao-Peng; Lin, Yu-Min; Chen, Po-Yu

    2015-04-01

    Carnivorous pitcher plants of the genus Nepenthes have evolved specialized leaves fulfilling the multi-functions of attracting, capturing, retaining and digesting the prey, mostly arthropods. Different capturing mechanisms have been proposed and discussed in previous works. The most important capture mechanism is the unique super-hydrophilic surface properties of the peristome. The combination of a hierarchical surface structure and nectar secretions results in an exceptional water-lubricated trapping system. Anisotropic and unidirectional wettability is attributed to the ridge-like surface and epidermal folding. The three-dimensional plate-like wax crystals in the hydrophobic waxy zone can further prevent the prey from escaping. The captured prey are then digested in the hydrophilic digestive zone. The hybrid species Nepenthes × Miranda was investigated in this study. The surface morphology and hierarchical microstructure were characterized by scanning electron microscope. Contact angle measurement and wetting efficiency tests were performed to determine the wettability of the peristome under fresh, nectar-free and sucrose-coated conditions with controlled temperature and humidity. The results showed that sucrose-coated peristome surfaces possess the best wetting efficiency. The structure-property-function relationship and the capturing mechanism of Nepenthes were elucidated, which could further lead to the design and synthesis of novel bio-inspired surfaces and potential applications.

  6. 52. Neg. No.none, ca. 1950's, PhotographerUnknown, AERIAL VIEWS OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. Neg. No.-none, ca. 1950's, Photographer-Unknown, AERIAL VIEWS OF THE FORD MOTOR COMPANY ASSEMBLY PLANT, SOMETIME AFTER THE ADDITION OF THE NORTHERN WING - Ford Motor Company Long Beach Assembly Plant, Assembly Building, 700 Henry Ford Avenue, Long Beach, Los Angeles County, CA

  7. 5. AERIAL VIEW LOOKING SOUTH AT THE PLUTONIUM BUILDINGS (700S). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. AERIAL VIEW LOOKING SOUTH AT THE PLUTONIUM BUILDINGS (700S). BUILDING 776/777 IS THE LARGE BUILDING IN THE CENTER PORTION OF THE PHOTOGRAPH. BUILDING 771 IS IN THE LOWER RIGHT CORNER, AND BUILDING 707 IS TO THE SOUTH OF BUILDING 776/777. (6/21/88) - Rocky Flats Plant, Plutonium Fabrication, Central section of Plant, Golden, Jefferson County, CO

  8. Predicting the dynamic impact behaviour of spray droplets on flat plant surfaces.

    PubMed

    Delele, M A; Nuyttens, D; Duga, A T; Ambaw, A; Lebeau, F; Nicolai, B M; Verboven, P

    2016-09-14

    The dynamic impact behaviour of water droplets on plant surfaces was investigated based on a multiphase computational fluid dynamics (CFD) model. The study was conducted using the Volume Of Fluid (VOF) approach. The static contact angle of water droplets on leaf surfaces of different plants (apple, pear, leek and cabbage) was measured and found to vary between 54.9 and 138.2°. Impact experiments were conducted by monitoring the flow and impact characteristics of water droplets on leaves in still air with a high speed camera. Droplets were generated by an agricultural flat fan spray nozzle moving across the leaf at constant speed. The nozzle produced droplets with diameters ranging from 20.6 up to 550.8 μm, and droplet velocity values near the impact between 0.03 and 13.2 m s(-1). The CFD model was capable of predicting the observed dynamic impact behaviour of droplets on the plant surfaces. The fate of the droplets after the impact process for adhesion, bouncing or splashing was accurately predicted for Weber numbers (We) in the range of 0.007 to 1096 and droplet Reynolds numbers (Re) between 5 to 8000. The process was highly dependent on the surface and droplet flow characteristics during the impact. Combinations of We, Re and Ohnesorge (Oh) numbers defined the droplet maximum spread factor, the number of secondary droplets generated as a result of the splashing process and the transition between the different impact outcomes. These criteria can then be used in field scale spray deposition and drift models to better understand agricultural spray operations. PMID:27501228

  9. Immunogenicity of Plasmodium yoelii merozoite surface protein 4/5 produced in transgenic plants.

    PubMed

    Wang, Lina; Webster, Diane E; Campbell, Alison E; Dry, Ian B; Wesselingh, Steve L; Coppel, Ross L

    2008-01-01

    Malaria is a major global health problem for which effective control measures are urgently needed. Considerable effort has been focused on the development of effective vaccines against the causative parasite and protective vaccine trials are now being reported. Due to the relative poverty and lack of infrastructure in malaria-endemic areas, a successful immunisation strategy will depend critically on cheap and scaleable methods of vaccine production, distribution and delivery. One promising technology is transgenic plants, both as a bioreactor for the vaccine-manufacturing process as well as a matrix for oral immunisation. In this study, we investigated the feasibility of using transgenic plants to induce protective immunity against malaria infection using Plasmodium yoelii merozoite surface protein 4/5 (PyMSP4/5) in a mouse model of malaria infection. Our data show that the PyMSP4/5 protein can be produced in plants in a configuration that reacts with protective antibodies. Optimisation of codon usage for the PyMSP4/5 gene resulted in significantly increased antigen expression in plants. PyMSP4/5 protein from the codon-optimised construct accumulated to 0.25% of total soluble protein, a sixfold increase over the native gene sequence. Tobacco-made PyMSP4/5 was able to induce antigen-specific antibodies in mice following parenteral delivery, as well as boost the antibody responses induced by DNA vaccination when delivered parenterally or orally. We believe this is the first report to show that plant-made malaria antigens are immunogenic. However, the antibody levels were not high enough to protect the immunised mice against a lethal challenge with P. yoelii. Further strategies are needed to achieve a protective dose, including improvements to antigen expression levels in plants and strategies to enhance the immunogenicity of the expressed antigen. PMID:17681344

  10. Observations of temporary plant stress induced by the surface shock of a 1-kt underground chemical explosion

    SciTech Connect

    Pickles, W.L.

    1995-12-04

    The Non-Proliferation Experiment (NPE) involved carefully monitoring a 1-kt chemical underground explosion using extensive seismological measurements and low-altitude overhead imagery. Lawrence Livermore National Laboratory has conducted a study to determine whether the multispectral overhead imagery acquired during the NPE can be combined with other techniques to locate the ground zero (GZ) of an underground nuclear explosion within the seismic error ellipse. This report describes the use of such overhead images to detect the changes in plant metabolisms, normally referred to as plant stress, that appear to have been induced by the surface accelerations caused by the NPE underground explosion. The metabolic condition of the plants on the surface above the explosion point was determined using a published plant stress measuring methodology to analyze the multispectral images taken from a low-flying aircraft. The surface areas that experienced accelerations greater than 0.2 g show measurable plant stress, within 56 hours of the underground explosion, in all of the plant species. The pattern of the plants` stress generally follows the pattern of the measured surface acceleration. Seven days after the explosion, the levels of apparent plant stress had relaxed to about one-third what they were 56 hours after the explosion, while the pattern of the apparent plant stress remained the same.

  11. Improved land cover mapping using aerial photographs and satellite images

    NASA Astrophysics Data System (ADS)

    Varga, Katalin; Szabó, Szilárd; Szabó, Gergely; Dévai, György; Tóthmérész, Béla

    2014-10-01

    Manual Land Cover Mapping using aerial photographs provides sufficient level of resolution for detailed vegetation or land cover maps. However, in some cases it is not possible to achieve the desired information over large areas, for example from historical data where the quality and amount of available images is definitely lower than from modern data. The use of automated and semiautomated methods offers the means to identify the vegetation cover using remotely sensed data. In this paper automated methods were tested on aerial photographs and satellite images to extract better and more reliable information about vegetation cover. These testswere performed by using automated analysis of LANDSAT7 images (with and without the surface model of the Shuttle Radar Topography Mission (SRTM)) and two temporally similar aerial photographs. The spectral bands were analyzed with supervised (maximum likelihood) methods. In conclusion, the SRTM and the combination of two temporally similar aerial photographs from earlier years were useful in separating the vegetation cover on a floodplain area. In addition the different date of the vegetation season also gave reliable information about the land cover. High quality information about old and present vegetation on a large area is an essential prerequisites ensuring the conservation of ecosystems

  12. Le rôle des plantes dans le transfert du silicium à la surface des continentsThe role of plants in the transfer of silicon at the surface of the continents

    NASA Astrophysics Data System (ADS)

    Meunier, Jean-Dominique

    2003-12-01

    Silicon is the most abundant element after oxygen in the lithosphere (27 wt%). Plants and soil microorganisms are important contributors to the weathering of silicates. Plants are able to accumulate several percent of Si in the biomass. The importance of plants in the rates of Si output to surface waters is discussed in this paper. To cite this article: J.-D. Meunier, C. R. Geoscience 335 (2003).

  13. Purification ability and carbon dioxide flux from surface flow constructed wetlands treating sewage treatment plant effluent.

    PubMed

    Wu, Haiming; Lin, Li; Zhang, Jian; Guo, Wenshan; Liang, Shuang; Liu, Hai

    2016-11-01

    In this study, a two-year experiment was carried out to investigate variation of carbon dioxide (CO2) flux from free water surface constructed wetlands (FWS CW) systems treating sewage treatment plant effluent, and treatment performance was also evaluated. The better 74.6-76.6% COD, 92.7-94.4% NH4(+)-N, 60.1-84.7% TN and 49.3-70.7% TP removal efficiencies were achieved in planted CW systems compared with unplanted systems. The planted CW was a net CO2 sink, while the unplanted CW was a net CO2 source in the entire study period. An obvious annual and seasonal variability of CO2 fluxes from different wetland systems was also presented with the average CO2 flux ranging from -592.83mgm(-2)h(-1) to 553.91mgm(-2)h(-1) during 2012-2013. In addition, the net exchange of CO2 between CW systems and the atmosphere was significantly affected by air temperature, and the presence of plants also had the significant effect on total CO2 emissions. PMID:27544264

  14. 11. AERIAL VIEW LOOKING NORTH AT THE BUILDING 800 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. AERIAL VIEW LOOKING NORTH AT THE BUILDING 800 - AREA COMPLEX. ENRICHED URANIUM COMPONENTS WERE MANUFACTURED IN THIS AREA OF THE SITE. BUILDING 881, IN THE RIGHT FOREGROUND OF THE PHOTOGRAPH, WAS THE ORIGINAL PLANT B. BUILDING 883, USED FOR ROLLING AND FORMING URANIUM COMPONENTS, IS DIRECTLY TO THE NORTH OF BUILDING 881. TO THE EAST OF BUILDING 883 IS BUILDING 885, A RESEARCH AND DEVELOPMENT FACILITY FOR ALLOYS AND NON-PLUTONIUM METALS. IN THE FOREGROUND TO THE WEST OF BUILDING 881 IS AN OFFICE BUILDING, 850 (6/7/90). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  15. Surface water and wastewater treatment using a new tannin-based coagulant. Pilot plant trials.

    PubMed

    Sánchez-Martín, J; Beltrán-Heredia, J; Solera-Hernández, C

    2010-10-01

    A new tannin-based coagulant-flocculant (Tanfloc) was tested for water treatment at a pilot plant level. Four types of water sample were treated: surface water (collected from a river), and municipal, textile industry (simulated by a 100 mg L(-1) aqueous solution of an acid dye), and laundry (simulated by a 50 mg L(-1) aqueous solution of an anionic surfactant) wastewaters. The pilot plant process consisted of coagulation, sedimentation, and filtration. The experiments were carried out with an average coagulant dosage of 92.2 mg L(-1) (except in the case of the surface water for which the dosage was 2 mg L(-1)). The efficacy of the water purification was notable in every case: total turbidity removal in the surface water and municipal wastewater, about 95% dye removal in the case of the textile industry wastewater, and about 80% surfactant removal in the laundry wastewater. Filtration improved the removal of suspended solids, both flocs and turbidity, and slightly improved the process as a whole. The efficiency of Tanfloc in these pilot studies was similar to or even better than that obtained in batch trials. PMID:20580152

  16. Condensed listing of surface boreholes at the Waste Isolation Pilot Plant Project through 31 December 1995

    SciTech Connect

    Hill, L.R.; Aguilar, R.; Mercer, J.W.; Newman, G.

    1997-01-01

    This report contains a condensed listing of Waste Isolation Pilot Plant (WIPP) project surface boreholes drilled for the purpose of site selection and characterization through 31 December 1995. The US Department of Energy (DOE) sponsored the drilling activities, which were conducted primarily by Sandia National Laboratories. The listing provides physical attributes such as location (township, range, section, and state-plane coordinates), elevation, and total borehole depth, as well as the purpose for the borehole, drilling dates, and information about extracted cores. The report also presents the hole status (plugged, testing, monitoring, etc.) and includes salient findings and references. Maps with borehole locations and times-of-drilling charts are included.

  17. Observing snow cover using unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Spallek, Waldemar; Witek, Matylda; Niedzielski, Tomasz

    2016-04-01

    Snow cover is a key environmental variable that influences high flow events driven by snow-melt episodes. Estimates of snow extent (SE), snow depth (SD) and snow water equivalent (SWE) allow to approximate runoff caused by snow-melt episodes. These variables are purely spatial characteristics, and hence their pointwise measurements using terrestrial monitoring systems do not offer the comprehensive and fully-spatial information on water storage in snow. Existing satellite observations of snow reveal moderate spatial resolution which, not uncommonly, is not fine enough to estimate the above-mentioned snow-related variables for small catchments. High-resolution aerial photographs and the resulting orthophotomaps and digital surface models (DSMs), obtained using unmanned aerial vehicles (UAVs), may offer spatial resolution of 3 cm/px. The UAV-based observation of snow cover may be done using the near-infrared (NIR) cameras and visible-light cameras. Since the beginning of 2015, in frame of the research project no. LIDER/012/223/L-5/13/NCBR/2014 financed by the National Centre for Research and Development of Poland, we have performed a series of the UAV flights targeted at four sites in the Kwisa catchment in the Izerskie Mts. (part of the Sudetes, SW Poland). Observations are carried out with the ultralight UAV swinglet CAM (produced by senseFly, lightweight 0.5 kg, wingspan 80 cm) which enables on-demand sampling at low costs. The aim of the field work is to acquire aerial photographs taken using the visible-light and NIR cameras for a purpose of producing time series of DSMs and orthophotomaps with snow cover for all sites. The DSMs are used to calculate SD as difference between observational (with snow) and reference (without snow) models. In order to verify such an approach to compute SD we apply several procedures, one of which is the estimation of SE using the corresponding orthophotomaps generated on a basis of visual-light and NIR images. The objective of this

  18. Accumulation and Risk of Triclosan in Surface Sediments Near the Outfalls of Municipal Wastewater Treatment Plants.

    PubMed

    Chen, Lei; Wang, Zheng; Jing, Zhaoqian; Wang, Zhulai; Cao, Shiwei; Yu, Ting

    2015-10-01

    Triclosan is an antimicrobial agent which is widely used in many personal care products. This toxic chemical is frequently found in the aquatic environment. The municipal wastewater treatment plant (WWTP) effluent has been reported to be one of the major sources for triclosan in the aquatic system. The aim of the present study was to investigate the accumulation of triclosan in the surface sediments near the outfalls of the five major municipal WWTPs of Nanjing, China, as well as to evaluate its potential ecological risk. The concentration of triclosan in the sediment samples ranged from 48.3 to 226 ng/g dry weight, which was well correlated with the acute and genetic toxicity by bioassay. The results suggested that triclosan released from municipal WWTPs could accumulate in the surface sediments nearby and may pose undetermined risk to aquatic organisms. PMID:26271613

  19. Analysis of sucrose esters--insecticides from the surface of tobacco plant leaves.

    PubMed

    Simonovska, Breda; Srbinoska, Marija; Vovk, Irena

    2006-09-15

    Sucrose esters from the surface of leaves of Nicotiana tabacum L. have been shown to possess interesting biological activities. We developed a simple and effective method for their analysis using HPTLC silica gel plates, n-hexane-ethyl acetate (1:3, v/v) as developing solvent and aniline-diphenylamine as a detection reagent. Off-line TLC-MS was also used for the detection and identification of the compounds. Solutions containing sucrose esters upon alkaline hydrolysis give sucrose, which is used for indirect estimation by TLC of the sucrose ester content. The method is applicable for the screening for sucrose esters in plant extracts. The extract obtained from the surface of green leaves of oriental tobacco type Prilep P-23 contains sucrose esters and is effective against Myzus persicae (Sulzer) in laboratory and field experiments. PMID:16820155

  20. Abundance of rice root aphid among selected plant species and on plants grown with different soil-surface media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rice root aphid, Rhopalosiphum rufiabdominalis (Sasaki), is distributed worldwide and colonizes a wide range of plants. However, relatively little is known about the suitability of different host plants, optimal rearing techniques, and the aphid’s impact on plant fitness. To improve understand...

  1. Modelling the impact of climatic conditions and plant species on the nitrogen release from mulch of legumes at the soil surface

    NASA Astrophysics Data System (ADS)

    Gaudinat, Germain; Lorin, Mathieu; Valantin-morison, Muriel; Garnier, Patricia

    2015-04-01

    Cover crops provide multiple services to the agro ecosystem. Among them, the use of legumes as cover crop is one of the solutions for limiting the use of herbicides, mineral fertilizers, and insecticides. However, the dynamic of mineralization is difficult to understand because of the difficulty of measuring nitrogen release from mulch in field. Indeed, residues are degraded at the soil surface as mulch, while the nitrogen uptake by the main crop occurred simultaneously in the soil. This work aims to study the dynamics of nitrogen mineralization from legume residues through i) the use of a model able to describe the physical and biological dynamic of mulch and ii) a data set from a field experiment of intercropping systems "oilseed rape-legumes" from different species (grass pea, lentil, Berseem clover, field pea, vetch). The objective of the simulations is to identify the variations of expected quantities of nitrogen from different legumes. The soil-plant model of mulch decomposition PASTIS-Mulch was used to determine the nitrogen supply from mulch available for rapeseed. These simulation results were compared to the data collected in the experimental field of Grignon (France). We performed analyzes of biochemical and physical characteristics of legume residues and monitored the evolution of mulches (moisture, density, cover surface, biomass) in fields. PASTIS simulations of soil temperature, soil moisture, mulch humidity and mulch decomposition were close to the experimental results. The PASTIS model was suitable to simulate the dynamic of legume mulches in the case of "rape - legume" associations. The model simulated nitrogen restitution of aerial and root parts. We found a more rapid nitrogen release by grass pea than other species. Vetch released less nitrogen than the other species. The scenarios for climate conditions were : i) a freezing in December that causes the destruction of plants, or a destruction by herbicide in March, ii) a strong or a weak rainy

  2. A Spherical Aerial Terrestrial Robot

    NASA Astrophysics Data System (ADS)

    Dudley, Christopher J.

    This thesis focuses on the design of a novel, ultra-lightweight spherical aerial terrestrial robot (ATR). The ATR has the ability to fly through the air or roll on the ground, for applications that include search and rescue, mapping, surveillance, environmental sensing, and entertainment. The design centers around a micro-quadcopter encased in a lightweight spherical exoskeleton that can rotate about the quadcopter. The spherical exoskeleton offers agile ground locomotion while maintaining characteristics of a basic aerial robot in flying mode. A model of the system dynamics for both modes of locomotion is presented and utilized in simulations to generate potential trajectories for aerial and terrestrial locomotion. Details of the quadcopter and exoskeleton design and fabrication are discussed, including the robot's turning characteristic over ground and the spring-steel exoskeleton with carbon fiber axle. The capabilities of the ATR are experimentally tested and are in good agreement with model-simulated performance. An energy analysis is presented to validate the overall efficiency of the robot in both modes of locomotion. Experimentally-supported estimates show that the ATR can roll along the ground for over 12 minutes and cover the distance of 1.7 km, or it can fly for 4.82 minutes and travel 469 m, on a single 350 mAh battery. Compared to a traditional flying-only robot, the ATR traveling over the same distance in rolling mode is 2.63-times more efficient, and in flying mode the system is only 39 percent less efficient. Experimental results also demonstrate the ATR's transition from rolling to flying mode.

  3. The design of aerial camera focusing mechanism

    NASA Astrophysics Data System (ADS)

    Hu, Changchang; Yang, Hongtao; Niu, Haijun

    2015-10-01

    In order to ensure the imaging resolution of aerial camera and compensating defocusing caused by the changing of atmospheric temperature, pressure, oblique photographing distance and other environmental factor [1,2], and to meeting the overall design requirements of the camera for the lower mass and smaller size , the linear focusing mechanism is designed. Through the target surface support, the target surface component is connected with focusing driving mechanism. Make use of precision ball screws, focusing mechanism transforms the input rotary motion of motor into linear motion of the focal plane assembly. Then combined with the form of linear guide restraint movement, the magnetic encoder is adopted to detect the response of displacement. And the closed loop control is adopted to realize accurate focusing. This paper illustrated the design scheme for a focusing mechanism and analyzed its error sources. It has the advantages of light friction and simple transmission chain and reducing the transmission error effectively. And this paper also analyses the target surface by finite element analysis and lightweight design. Proving that the precision of focusing mechanism can achieve higher than 3um, and the focusing range is +/-2mm.

  4. Aerosols attenuating the solar radiation collected by solar tower plants: The horizontal pathway at surface level

    NASA Astrophysics Data System (ADS)

    Elias, Thierry; Ramon, Didier; Dubus, Laurent; Bourdil, Charles; Cuevas-Agulló, Emilio; Zaidouni, Taoufik; Formenti, Paola

    2016-05-01

    Aerosols attenuate the solar radiation collected by solar tower plants (STP), along two pathways: 1) the atmospheric column pathway, between the top of the atmosphere and the heliostats, resulting in Direct Normal Irradiance (DNI) changes; 2) the grazing pathway close to surface level, between the heliostats and the optical receiver. The attenuation along the surface-level grazing pathway has been less studied than the aerosol impact on changes of DNI, while it becomes significant in STP of 100 MW or more. Indeed aerosols mostly lay within the surface atmospheric layer, called the boundary layer, and the attenuation increases with the distance covered by the solar radiation in the boundary layer. In STP of 100 MW or more, the distance between the heliostats and the optical receiver becomes large enough to produce a significant attenuation by aerosols. We used measured aerosol optical thickness and computed boundary layer height to estimate the attenuation of the solar radiation at surface level at Ouarzazate (Morocco). High variabilities in aerosol amount and in vertical layering generated a significant magnitude in the annual cycle and significant inter-annual changes. Indeed the annual mean of the attenuation caused by aerosols over a 1-km heliostat-receiver distance was 3.7% in 2013, and 5.4% in 2014 because of a longest desert dust season. The monthly minimum attenuation of less than 3% was observed in winter and the maximum of more than 7% was observed in summer.

  5. Oral immunization with hepatitis B surface antigen expressed in transgenic plants

    PubMed Central

    Kong, Qingxian; Richter, Liz; Yang, Yu Fang; Arntzen, Charles J.; Mason, Hugh S.; Thanavala, Yasmin

    2001-01-01

    Oral immunogenicity of recombinant hepatitis B surface antigen (HBsAg) derived from yeast (purified product) or in transgenic potatoes (uncooked unprocessed sample) was compared. An oral adjuvant, cholera toxin, was used to increase immune responses. Transgenic plant material containing HBsAg was the superior means of both inducing a primary immune response and priming the mice to respond to a subsequent parenteral injection of HBsAg. Electron microscopy of transgenic plant samples revealed evidence that the HBsAg accumulated intracellularly; we conclude that natural bioencapsulation of the antigen may provide protection from degradation in the digestive tract until plant cell degradation occurs near an immune effector site in the gut. The correlate of protection from hepatitis B virus infection is serum antibody titers induced by vaccination; the protective level in humans is 10 milliunits/ml or greater. Mice fed HBsAg-transgenic potatoes produced HBsAg-specific serum antibodies that exceeded the protective level and, on parenteral boosting, generated a strong long-lasting secondary antibody response. We have also shown the effectiveness of oral delivery by using a parenteral prime-oral boost immunization schedule. The demonstrated success of oral immunization for hepatitis B virus with an “edible vaccine” provides a strategy for contributing a means to achieve global immunization for hepatitis B prevention and eradication. PMID:11553782

  6. Predictive occurrence models for coastal wetland plant communities: Delineating hydrologic response surfaces with multinomial logistic regression

    NASA Astrophysics Data System (ADS)

    Snedden, Gregg A.; Steyer, Gregory D.

    2013-02-01

    Understanding plant community zonation along estuarine stress gradients is critical for effective conservation and restoration of coastal wetland ecosystems. We related the presence of plant community types to estuarine hydrology at 173 sites across coastal Louisiana. Percent relative cover by species was assessed at each site near the end of the growing season in 2008, and hourly water level and salinity were recorded at each site Oct 2007-Sep 2008. Nine plant community types were delineated with k-means clustering, and indicator species were identified for each of the community types with indicator species analysis. An inverse relation between salinity and species diversity was observed. Canonical correspondence analysis (CCA) effectively segregated the sites across ordination space by community type, and indicated that salinity and tidal amplitude were both important drivers of vegetation composition. Multinomial logistic regression (MLR) and Akaike's Information Criterion (AIC) were used to predict the probability of occurrence of the nine vegetation communities as a function of salinity and tidal amplitude, and probability surfaces obtained from the MLR model corroborated the CCA results. The weighted kappa statistic, calculated from the confusion matrix of predicted versus actual community types, was 0.7 and indicated good agreement between observed community types and model predictions. Our results suggest that models based on a few key hydrologic variables can be valuable tools for predicting vegetation community development when restoring and managing coastal wetlands.

  7. Predictive occurrence models for coastal wetland plant communities: delineating hydrologic response surfaces with multinomial logistic regression

    USGS Publications Warehouse

    Snedden, Gregg A.; Steyer, Gregory D.

    2013-01-01

    Understanding plant community zonation along estuarine stress gradients is critical for effective conservation and restoration of coastal wetland ecosystems. We related the presence of plant community types to estuarine hydrology at 173 sites across coastal Louisiana. Percent relative cover by species was assessed at each site near the end of the growing season in 2008, and hourly water level and salinity were recorded at each site Oct 2007–Sep 2008. Nine plant community types were delineated with k-means clustering, and indicator species were identified for each of the community types with indicator species analysis. An inverse relation between salinity and species diversity was observed. Canonical correspondence analysis (CCA) effectively segregated the sites across ordination space by community type, and indicated that salinity and tidal amplitude were both important drivers of vegetation composition. Multinomial logistic regression (MLR) and Akaike's Information Criterion (AIC) were used to predict the probability of occurrence of the nine vegetation communities as a function of salinity and tidal amplitude, and probability surfaces obtained from the MLR model corroborated the CCA results. The weighted kappa statistic, calculated from the confusion matrix of predicted versus actual community types, was 0.7 and indicated good agreement between observed community types and model predictions. Our results suggest that models based on a few key hydrologic variables can be valuable tools for predicting vegetation community development when restoring and managing coastal wetlands.

  8. Subpicosecond surface dynamics in genomic DNA from in vitro-grown plant species: a SERS assessment.

    PubMed

    Muntean, Cristina M; Bratu, Ioan; Leopold, Nicolae; Morari, Cristian; Buimaga-Iarinca, Luiza; Purcaru, Monica A P

    2015-09-01

    In this work the surface-enhanced Raman total half band widths of seven genomic DNAs from leaves of chrysanthemum (Dendranthema grandiflora Ramat.), common sundew (Drosera rotundifolia L.), edelweiss (Leontopodium alpinum Cass), Epilobium hirsutum L., Hypericum richeri ssp. transsilvanicum (Čelak) Ciocârlan, rose (Rosa x hybrida L.) and redwood (Sequoia sempervirens D. Don. Endl.) have been measured. We have shown that surface-enhanced Raman spectroscopy (SERS) can be used to study the fast subpicosecond dynamics of DNA in the proximity of a metallic surface. The dependencies of the total half band widths and the global relaxation times, on the DNA molecular subgroup structure and on the type of genomic DNA, are reported. In our study, the full widths at half-maximum (FWHMs) for the SERS bands of genomic DNAs from different leaf tissues are typically in the wavenumber range from 15 to 55 cm(-1). Besides, it can be observed that molecular relaxation processes studied in this work have a global relaxation time smaller than 0.71 ps and larger than 0.19 ps. A comparison between different ranges of FT-Raman and SERS band parameters, respectively, corresponding to DNA extracted from leaf tissues is given. It is shown that the interaction between DNA and a metallic surface has the potential to lead to a shortening of the global relaxation times, as compared with molecular dynamics in solution. We have found that the surface dynamics of molecular subgroups in plant DNA is, in some cases, about two times faster than the solution dynamics of nucleic acids. This can be rationalized in a qualitative manner by invoking the complex landscape of the interaction energy between the molecule and the silver surface. PMID:25687823

  9. Heterogeneous transcription of an indoleacetic acid biosynthetic gene in Erwinia herbicola on plant surfaces

    PubMed Central

    Brandl, M. T.; Quiñones, B.; Lindow, S. E.

    2001-01-01

    We investigated the spatial pattern of expression of ipdC, a plant inducible gene involved in indoleacetic acid biosynthesis in Erwinia herbicola, among individual cells on plants to gain a better understanding of the role of this phenotype in the epiphytic ecology of bacteria and the factors involved in the regulation of ipdC. Nonpathogenic E. herbicola strain 299R harboring a transcriptional fusion of ipdC to gfp was inoculated onto bean plants, recovered from individual leaves 48 h after inoculation, and subjected to fluorescence in situ hybridization using a 16S rRNA oligonucleotide probe specific to strain 299R. Epifluorescence images captured through a rhodamine filter were used to distinguish the 5carboxytetramethylrhodamine-labeled cells of strain 299R from other leaf microflora. Quantification of the green fluorescence intensity of individual cells by analysis of digital images revealed that about 65% of the 299R cells recovered from bean leaves had higher ipdC expression than in culture. Additionally, 10% of the cells exhibited much higher levels of green fluorescence than the median fluorescence intensity, indicating that they are more heterogeneous with respect to ipdC expression on plants than in culture. Examination of 299R cells in situ on leaf surfaces by confocal laser scanning microscopy after fluorescence in situ hybridization of cells on leaf samples showed that even cells that were in close proximity exhibited dramatically different green fluorescence intensities, and thus, were in a physical or chemical microenvironment that induced differential expression of ipdC. PMID:11248099

  10. Heterogeneous transcription of an indoleacetic acid biosynthetic gene in Erwinia herbicola on plant surfaces.

    PubMed

    Brandl, M T; Quiñones, B; Lindow, S E

    2001-03-13

    We investigated the spatial pattern of expression of ipdC, a plant inducible gene involved in indoleacetic acid biosynthesis in Erwinia herbicola, among individual cells on plants to gain a better understanding of the role of this phenotype in the epiphytic ecology of bacteria and the factors involved in the regulation of ipdC. Nonpathogenic E. herbicola strain 299R harboring a transcriptional fusion of ipdC to gfp was inoculated onto bean plants, recovered from individual leaves 48 h after inoculation, and subjected to fluorescence in situ hybridization using a 16S rRNA oligonucleotide probe specific to strain 299R. Epifluorescence images captured through a rhodamine filter were used to distinguish the 5carboxytetramethylrhodamine-labeled cells of strain 299R from other leaf microflora. Quantification of the green fluorescence intensity of individual cells by analysis of digital images revealed that about 65% of the 299R cells recovered from bean leaves had higher ipdC expression than in culture. Additionally, 10% of the cells exhibited much higher levels of green fluorescence than the median fluorescence intensity, indicating that they are more heterogeneous with respect to ipdC expression on plants than in culture. Examination of 299R cells in situ on leaf surfaces by confocal laser scanning microscopy after fluorescence in situ hybridization of cells on leaf samples showed that even cells that were in close proximity exhibited dramatically different green fluorescence intensities, and thus, were in a physical or chemical microenvironment that induced differential expression of ipdC. PMID:11248099

  11. Aqueous stability of gadolinium in surface waters receiving sewage treatment plant effluent Boulder Creek, Colorado

    USGS Publications Warehouse

    Verplanck, P.L.; Taylor, H.E.; Nordstrom, D.K.; Barber, L.B.

    2005-01-01

    In many surface waters, sewage treatment plant (STP) effluent is a substantial source of both regulated and unregulated contaminants, including a suite of complex organic compounds derived from household chemicals, pharmaceutical, and industrial and medical byproducts. In addition, STP effluents in some urban areas have also been shown to have a positive gadolinium (Gd) anomaly in the rare earth element (REE) pattern, with the Gd derived from its use in medical facilities. REE concentrations are relatively easy to measure compared to many organic wastewater compounds and may provide a more widely utilized tracer of STP effluents. To evaluate whether sewage treatment plant-associated Gd is a useful tracer of treatment plant effluent, an investigation of the occurrence, fate, and transport of rare earth elements was undertaken. The rare earth element patterns of four of five STP effluents sampled display positive Gd anomalies. The one site that did not have a Gd anomaly serves a small community, population 1200, with no medical facilities. Biosolids from a large metropolitan STP are not enriched in Gd even though the effluent is, suggesting that a substantial fraction of Gd remains in the aqueous phase through routine treatment plant operation. To evaluate whether STP-derived Gd persists in the fluvial environment, a 14-km study reach downstream of an STP was sampled. Gadolinium anomalies were present at all five downstream sites, but the magnitude of the anomaly decreased. Effluent from STPs is a complex mixture of organic and inorganic constituents, and to better understand the chemical interactions and their effect on REEs, the aqueous speciation was modeled using comprehensive chemical analyses of water samples collected downstream of STP input. These calculations suggest that the REEs will likely remain dissolved because phosphate and carbonate complexes dominate over free REE ions. This study supports the application of Gd anomalies as a useful tracer of urban

  12. Astronomical Methods in Aerial Navigation

    NASA Technical Reports Server (NTRS)

    Beij, K Hilding

    1925-01-01

    The astronomical method of determining position is universally used in marine navigation and may also be of service in aerial navigation. The practical application of the method, however, must be modified and adapted to conform to the requirements of aviation. Much of this work of adaptation has already been accomplished, but being scattered through various technical journals in a number of languages, is not readily available. This report is for the purpose of collecting under one cover such previous work as appears to be of value to the aerial navigator, comparing instruments and methods, indicating the best practice, and suggesting future developments. The various methods of determining position and their application and value are outlined, and a brief resume of the theory of the astronomical method is given. Observation instruments are described in detail. A complete discussion of the reduction of observations follows, including a rapid method of finding position from the altitudes of two stars. Maps and map cases are briefly considered. A bibliography of the subject is appended.

  13. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Aerial lifts. 1926.453 Section 1926.453 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Scaffolds § 1926.453 Aerial lifts. (a) General requirements. (1) Unless otherwise provided...

  14. BOREAS Level-0 ER-2 Aerial Photography

    NASA Technical Reports Server (NTRS)

    Newcomer, Jeffrey A.; Dominquez, Roseanne; Hall, Forrest G. (Editor)

    2000-01-01

    For BOReal Ecosystem-Atmosphere Study (BOREAS), the ER-2 and other aerial photography was collected to provide finely detailed and spatially extensive documentation of the condition of the primary study sites. The ER-2 aerial photography consists of color-IR transparencies collected during flights in 1994 and 1996 over the study areas.

  15. Lutein, a Natural Carotenoid, Induces α-1,3-Glucan Accumulation on the Cell Wall Surface of Fungal Plant Pathogens.

    PubMed

    Otaka, Junnosuke; Seo, Shigemi; Nishimura, Marie

    2016-01-01

    α-1,3-Glucan, a component of the fungal cell wall, is a refractory polysaccharide for most plants. Previously, we showed that various fungal plant pathogens masked their cell wall surfaces with α-1,3-glucan to evade plant immunity. This surface accumulation of α-1,3-glucan was infection specific, suggesting that plant factors might induce its production in fungi. Through immunofluorescence observations of fungal cell walls, we found that carrot (Daucus carota) extract induced the accumulation of α-1,3-glucan on germlings in Colletotrichum fioriniae, a polyphagous fungal pathogen that causes anthracnose disease in various dicot plants. Bioassay-guided fractionation of carrot leaf extract successfully identified two active substances that caused α-1,3-glucan accumulation in this fungus: lutein, a carotenoid widely distributed in plants, and stigmasterol, a plant-specific membrane component. Lutein, which had a greater effect on C. fioriniae, also induced α-1,3-glucan accumulation in other Colletotrichum species and in the phylogenetically distant rice pathogen Cochliobolus miyabeanus, but not in the rice pathogen Magnaporthe oryzae belonging to the same phylogenetic subclass as Colletotrichum. Our results suggested that fungal plant pathogens reorganize their cell wall components in response to specific plant-derived compounds, which these pathogens may encounter during infection. PMID:27483218

  16. Measurements from an Aerial Vehicle: A New Tool for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Wright, Henry S.; Levine, Joel S.; Croom, Mark A.; Edwards, William C.; Qualls, Garry D.; Gasbarre, Joseph F.

    2004-01-01

    Aerial vehicles fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Aerial vehicles used in planetary exploration bridge the scale and resolution measurement gaps between orbiters (global perspective with limited spatial resolution) and landers (local perspective with high spatial resolution) thus complementing and extending orbital and landed measurements. Planetary aerial vehicles can also survey scientifically interesting terrain that is inaccessible or hazardous to landed missions. The use of aerial assets for performing observations on Mars, Titan, or Venus will enable direct measurements and direct follow-ons to recent discoveries. Aerial vehicles can be used for remote sensing of the interior, surface and atmosphere of Mars, Venus and Titan. Types of aerial vehicles considered are airplane "heavier than air" and airships and balloons "lighter than air". Interdependencies between the science measurements, science goals and objectives, and platform implementation illustrate how the proper balance of science, engineering, and cost, can be achieved to allow for a successful mission. Classification of measurement types along with how those measurements resolve science questions and how these instruments are accommodated within the mission context are discussed.

  17. Adaptive planning of emergency aerial photogrammetric mission

    NASA Astrophysics Data System (ADS)

    Shen, Fuqiang; Zhu, Qing; Zhang, Junxiao; Miao, Shuangxi; Zhou, Xingxia; Cao, Zhenyu

    2015-12-01

    Aiming at the diversity of emergency aerial photogrammetric mission requirements, complex ground and air environmental constraints make the planning mission time-consuming. This paper presents a fast adaptation for the UAV aerial photogrammetric mission planning. First, Building emergency aerial UAVs mission the unified expression of UAVs model and mechanical model of performance parameters in the semantic space make the integrated expression of mission requirements and low altitude environment. Proposed match assessment method which based on resource and mission efficiency. Made the Adaptive match of UAV aerial resources and mission. According to the emergency aerial resource properties, considering complex air-ground environment and mission requirements constraints. Made accurate design of UAV route. Experimental results show, the method scientific and efficient, greatly enhanced the emergency response rate.

  18. Optical coherence tomography biospeckle imaging for fast monitoring varying surface responses of a plant leaf under ozone stress

    NASA Astrophysics Data System (ADS)

    Srimal, L. K. T.; Kadono, H.; Rajagopalan, U. M.

    2013-05-01

    In this study, Optical Coherence Tomography (OCT) was used to investigate the effect of short term ozone exposure on both front and back surfaces of the leaves of Allium tuberosum plant. Plant leaves were subjected to treat with 240ppb level of ozone, and imaging data were acquired from back and front surfaces of the leaves. Variations of the biological activations were monitored based on the biospeckles. Standard deviations (SD) of OCT temporal signal at each point were calculated and used to visualize the effect of ozone exposure. Leaf back surface showed higher SDs in biospeckle OCT signal in comparison to these of the front surface. These observations prove that the short term ozone stress on plant can be investigated successively with biospeckle OCT imaging technique.

  19. Surface complexation modeling of uranyl adsorption on corrensite from the Waste Isolation Pilot Plant Site

    SciTech Connect

    Park, Sang-Won; Leckie, J.O.; Siegel, M.D.

    1995-09-01

    Corrensite is the dominant clay mineral in the Culebra Dolomite at the Waste Isolation Pilot Plant. The surface characteristics of corrensite, a mixed chlorite/smectite clay mineral, have been studied. Zeta potential measurements and titration experiments suggest that the corrensite surface contains a mixture of permanent charge sites on the basal plane and SiOH and AlOH sites with a net pH-dependent charge at the edge of the clay platelets. Triple-layer model parameters were determined by the double extrapolation technique for use in chemical speciation calculations of adsorption reactions using the computer program HYDRAQL. Batch adsorption studies showed that corrensite is an effective adsorbent for uranyl. The pH-dependent adsorption behavior indicates that adsorption occurs at the edge sites. Adsorption studies were also conducted in the presence of competing cations and complexing ligands. The cations did not affect uranyl adsorption in the range studied. This observation lends support to the hypothesis that uranyl adsorption occurs at the edge sites. Uranyl adsorption was significantly hindered by carbonate. It is proposed that the formation of carbonate uranyl complexes inhibits uranyl adsorption and that only the carbonate-free species adsorb to the corrensite surface. The presence of the organic complexing agents EDTA and oxine also inhibits uranyl sorption.

  20. The Rise of Flowering Plants and Land Surface Physics: The Cretaceous and Eocene Were Different

    NASA Astrophysics Data System (ADS)

    Upchurch, G. R.; Feild, T.

    2010-12-01

    The Cretaceous and Eocene have served as the poster children of past greenhouse climates. One difference between the two time periods is that angiosperms (flowering plants) underwent a major diversification and rise to dominance during the mid-Cretaceous to Paleocene. Flowering plants differ from all other living and fossil plants in having significantly higher rates of transpiration and photosynthesis, which in modern leaves correlate with the density of venation (Dv), a feature that can be measured directly from fossils. This increase in Dv, coupled with an increase in the abundance of angiosperms, is thought to have had major impact on the climate system. This is, in part, because transpiration plays an important role in determining the ratio of sensible to latent heat flux from the land surface and in determining precipitation rate in regions such as the equatorial rainforest. Analysis of Dv in fossil leaves indicates two phases of increase in transpiration rate for angiosperms during the Cretaceous-Paleocene. The oldest known angiosperms (Aptian-early Albian) have a low Dv characteristic of extant and fossil ferns and gymnosperms. At this time angiosperms are low-stature plants of minor importance in terms of relative abundance and diversity (<5%). The first phase of Dv increase occurs during the Late Albian to Cenomanian, where average Dv is 40% greater than that of conifers and ferns, and maximum Dv reaches levels characteristic of many trees from the temperate zone. This first phase coincides with the first local dominance of angiosperms, the first occurrence of moderate to large angiosperm trees (up to 1 m in diameter) , and the first common occurrence of angiosperms in the Arctic. The second phase of Dv increase occurs during the Maastrichtian to Paleocene, where average Dv reaches levels characteristic of modern tropical forests and maximum Dv reaches the level found in highly productive modern vegetation. This second phase coincides with the rise to

  1. Applicability of New Approaches of Sensor Orientation to Micro Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Rehak, M.; Skaloud, J.

    2016-06-01

    This study highlights the benefits of precise aerial position and attitude control in the context of mapping with Micro Aerial Vehicles (MAVs). Accurate mapping with MAVs is gaining importance in applications such as corridor mapping, road and pipeline inspections or mapping of large areas with homogeneous surface structure, e.g. forests or agricultural fields. There, accurate aerial control plays a major role in successful terrain reconstruction and artifact-free ortophoto generation. The presented experiments focus on new approaches of aerial control. We confirm practically that the relative aerial position and attitude control can improve accuracy in difficult mapping scenarios. Indeed, the relative orientation method represents an attractive alternative in the context of MAVs for two reasons. First, the procedure is somewhat simplified, e.g. the angular misalignment, so called boresight, between the camera and the inertial measurement unit (IMU) does not have to be determined and, second, the effect of possible systematic errors in satellite positioning (e.g. due to multipath and/or incorrect recovery of differential carrier-phase ambiguities) is mitigated. First, we present a typical mapping project over an agricultural field and second, we perform a corridor road mapping. We evaluate the proposed methods in scenarios with and without automated image observations. We investigate a recently proposed concept where adjustment is performed using image observations limited to ground control and check points, so called fast aerial triangulation (Fast AT). In this context we show that accurate aerial control (absolute or relative) together with a few image observations can deliver accurate results comparable to classical aerial triangulation with thousands of image measurements. This procedure in turns reduces the demands on processing time and the requirements on the existence of surface texture. Finally, we compare the above mentioned procedures with direct sensor

  2. Use of aerial photography to inventory aquatic vegetation

    USGS Publications Warehouse

    Schloesser, Donald W.; Brown, Charles L.; Manny, Bruce A.

    1988-01-01

    This study demonstrates the feasibility of using low-altitude aerial photography to inventory submersed macrophytes in the connecting channels of the Great Lakes. For this purpose, we obtained aerial color transparencies and collateral ground truth information about submersed vegetation at 160 stations within four study sites in the St. Clair and Detroit rivers, September 17 to October 4, 1984. Photographs were interpreted by five test subjects to determine with what accuracy they could detect beds of submersed macrophytes, and the precision of delineating the extent of such vegetation beds. The interpreters correctly determined the presence or absence of vegetation 80% of the time (range 73-86%). Differences between individuals were statistically significant. Determination of the presence or absence of macrophytes depended partly on their relative abundance and water clarity. Analysis of one photograph from each of the four study sites revealed that photointerpreters delineated between 35 and 75 ha of river bottom covered by vegetation. This wide range indicates that individuals should be tested to assess their relative capability and be trained before they are employed to delineate plant beds in large-scale inventories. Within limits, low-altitude aerial photography, combined with collateral ground truth information, can be used to determine the presence or absence and delineate the extent of submersed macrophytes in connecting channels of the Great Lakes.

  3. The use of color infrared aerial photography in determining salt marsh vegetation and delimiting man-made structures of Lynnhaven Bay, Virginia. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Holman, R. E., III

    1974-01-01

    Color infrared aerial photography was found to be superior to color aerial photography in an ecological study of Lynnhaven Bay, Virginia. The research was divided into three phases: (1) Determination of the feasibility of correlating color infrared aerial photography with saline wetland species composition and zonation patterns, (2) determination of the accuracy of the aerial interpretation and problems related to the aerial method used; and (3) comparison of developed with undeveloped areas along Lynnhaven Bay's shoreline. Wetland species composition and plant community zonation bands were compared with aerial infrared photography and resulted in a high degree of correlation. Problems existed with changing physical conditions; time of day, aircraft angle and sun angle, making it necessary to use several different characteristics in wetland species identification. The main characteristics used were known zonation patterns, textural signatures and color tones. Lynnhaven Bay's shoreline was 61.5 percent developed.

  4. Mapping Urban Ecosystem Services Using High Resolution Aerial Photography

    NASA Astrophysics Data System (ADS)

    Pilant, A. N.; Neale, A.; Wilhelm, D.

    2010-12-01

    Ecosystem services (ES) are the many life-sustaining benefits we receive from nature: e.g., clean air and water, food and fiber, cultural-aesthetic-recreational benefits, pollination and flood control. The ES concept is emerging as a means of integrating complex environmental and economic information to support informed environmental decision making. The US EPA is developing a web-based National Atlas of Ecosystem Services, with a component for urban ecosystems. Currently, the only wall-to-wall, national scale land cover data suitable for this analysis is the National Land Cover Data (NLCD) at 30 m spatial resolution with 5 and 10 year updates. However, aerial photography is acquired at higher spatial resolution (0.5-3 m) and more frequently (1-5 years, typically) for most urban areas. Land cover was mapped in Raleigh, NC using freely available USDA National Agricultural Imagery Program (NAIP) with 1 m ground sample distance to test the suitability of aerial photography for urban ES analysis. Automated feature extraction techniques were used to extract five land cover classes, and an accuracy assessment was performed using standard techniques. Results will be presented that demonstrate applications to mapping ES in urban environments: greenways, corridors, fragmentation, habitat, impervious surfaces, dark and light pavement (urban heat island). Automated feature extraction results mapped over NAIP color aerial photograph. At this scale, we can look at land cover and related ecosystem services at the 2-10 m scale. Small features such as individual trees and sidewalks are visible and mappable. Classified aerial photo of Downtown Raleigh NC Red: impervious surface Dark Green: trees Light Green: grass Tan: soil

  5. [Death by explosion of an aerial mine].

    PubMed

    Stockhausen, Sarah; Wöllner, Kirsten; Madea, Burkhard; Doberentz, Elke

    2014-01-01

    Civilians are rarely killed by military weapons except in times of war. In early 2014, a 50-year-old man died in an explosion of an aerial mine from the Second World War when he was crushing concrete chunks with an excavator at a recycling plant. In the burned operator's cab, the remains of a body were found on the driver's seat. The thorax and the head were missing. Still sticking in the shoe, the right foot severed at the ankle was found about 7 m from the excavator together with numerous small to tiny body parts. At autopsy, the completely disrupted, strongly charred lower torso of a male connected to the left extremities as well as a large number of small tissue fragments and calcined bones were found. According to calculations performed by the seismographical station on the basis of seismic data, only about 45-60 percent of the charge had detonated. The autopsy results illustrate all the more the massive impact of such an explosion. PMID:26548019

  6. Genotoxicity of dried Hoodia parviflora aerial parts.

    PubMed

    Lynch, Barry; Lau, Annette; Baldwin, Nigel; Hofman-Hüther, Hana; Bauter, Mark R; Marone, Palma Ann

    2013-05-01

    Hoodia parviflora is being developed commercially for use in weight loss food and dietary supplement products. Its effects are ascribed to a number of glycosides that have been shown to be present in plant extracts from several Hoodia species, the best known of which is H. gordonii. H. parviflora has been identified as an alternative to H. gordonii, and, as part of the process to develop H. parviflora, in vitro genotoxicity tests, as recommended by recent European Food Safety Authority guidance, were conducted on a dried powder preparation of H. parviflora aerial parts. The preparation was tested for reverse mutation at doses up to 5,000μg/plate in Salmonella typhimurium strains TA98, TA100, TA1535, and TA1537, and in Escherichia coli WP2 uvrA TA, both in the presence and in the absence of an exogenous source of metabolic activation (rat liver S9). In addition, the dried powder was evaluated in an in vitro cytotoxicity chromosome aberration assay using human lymphocytes. Test conditions included both a 4 (up to 2500μg/mg) and 44-h exposure period (up to 1000μg/mg) and the incorporation of an exogenous source of metabolic activation (4-h exposure only). H. parviflora dried powder was non-genotoxic in both in vitro assays. PMID:23348409

  7. Learning from superhydrophobic plants: the use of hydrophilic areas on superhydrophobic surfaces for droplet control.

    PubMed

    Shirtcliffe, N J; McHale, G; Newton, M I

    2009-12-15

    In many countries, the mornings in spring are graced with spectacular displays of dew drops hanging on spiders' webs and on leaves. Some leaves, in particular, sport particularly large droplets that last well into the morning. In this paper, we study a group of plants that show this effect on their superhydrophobic leaves to try to discover how and why they do it. We describe the structures they use to gather droplets and suggest that these droplets are used as a damper to absorb kinetic energy allowing water to be redirected from sideways motion into vertical motion. Model surfaces in the shape of leaves and as more general flat sheets show that this principle can be used to manipulate water passively, such as on the covers of solar panels, and could also be used in parts of microfluidic devices. The mode of transport can be switched between rolling droplets and rivulets to maximize control. PMID:20560556

  8. 3D Surface Reconstruction of Plant Seeds by Volume Carving: Performance and Accuracies

    PubMed Central

    Roussel, Johanna; Geiger, Felix; Fischbach, Andreas; Jahnke, Siegfried; Scharr, Hanno

    2016-01-01

    We describe a method for 3D reconstruction of plant seed surfaces, focusing on small seeds with diameters as small as 200 μm. The method considers robotized systems allowing single seed handling in order to rotate a single seed in front of a camera. Even though such systems feature high position repeatability, at sub-millimeter object scales, camera pose variations have to be compensated. We do this by robustly estimating the tool center point from each acquired image. 3D reconstruction can then be performed by a simple shape-from-silhouette approach. In experiments we investigate runtimes, theoretically achievable accuracy, experimentally achieved accuracy, and show as a proof of principle that the proposed method is well sufficient for 3D seed phenotyping purposes. PMID:27375628

  9. Ground and Surface Water for Drinking: A Laboratory Study on Genotoxicity Using Plant Tests

    PubMed Central

    Feretti, Donatella; Ceretti, Elisabetta; Gustavino, Bianca; Zerbini, llaria; Zani, Claudia; Monarca, Silvano; Rizzoni, Marco

    2012-01-01

    Surface waters are increasingly utilized for drinking water because groundwater sources are often polluted. Several monitoring studies have detected the presence of mutagenicity in drinking water, especially from surface sources due to the reaction of natural organic matter with disinfectant. The study aimed to investigate the genotoxic potential of the products of reaction between humic substances, which are naturally present in surface water, and three disinfectants: chlorine dioxide, sodium hypochlorite and peracetic acid. Commercial humic acids dissolved in distilled water at different total organic carbon (TOC) concentrations were studied in order to simulate natural conditions of both ground water (TOC=2.5 mg/L) and surface water (TOC=7.5 mg/L). These solutions were treated with the biocides at a 1:1 molar ratio of C:disinfectant and tested for genotoxicity using the anaphase chromosomal aberration and micronucleus tests in Allium cepa, and the Vicia faba and Tradescantia micronucleus tests. The tests were carried out after different times and with different modes of exposure, and at 1:1 and 1:10 dilutions of disinfected and undisinfected humic acid solutions. A genotoxic effect was found for sodium hypochlorite in all plant tests, at both TOCs considered, while chlorine dioxide gave positive results only with the A.cepa tests. Some positive effects were also detected for PAA (A.cepa and Tradescantia). No relevant differences were found in samples with different TOC values. The significant increase in all genotoxicity end-points induced by all tested disinfectants indicates that a genotoxic potential is exerted even in the presence of organic substances at similar concentrations to those frequently present in drinking water. PMID:25170443

  10. Investigation of chemical rinses suitable for very small meat plants to reduce pathogens on beef surfaces.

    PubMed

    Yoder, Sally F; Henning, William R; Mills, Edward W; Doores, Stephanie; Ostiguy, Nancy; Cutter, Catherine N

    2012-01-01

    Numerous antimicrobial interventions are capable of reducing the prevalence of harmful bacteria on raw meat products. There is a need to identify effective and inexpensive antimicrobial interventions that could, in practice, be used in very small meat plants because of limited financial, space, and labor resources. Eight antimicrobial compounds (acetic acid, citric acid, lactic acid, peroxyacetic acid, acidified sodium chlorite, chlorine dioxide, sodium hypochlorite, and aqueous ozone) were applied at various concentrations with small, hand-held spraying equipment, and bactericidal effectiveness was examined. Beef plate pieces were inoculated with fecal slurry containing a pathogen cocktail (Escherichia coli O157:H7, Salmonella Typhimurium, Campylobacter coli, and Campylobacter jejuni) and natural populations of aerobic plate counts, coliforms, and E. coli. Antimicrobial solutions were applied to beef surfaces via a portable, pressurized hand-held spray tank, and treated surfaces were subjected to appropriate methods for the enumeration and isolation of pathogens and hygiene indicators. Relative antimicrobial effectiveness was determined (from greatest to least): (i) organic acids, (ii) peroxyacetic acid, (iii) chlorinated compounds, and (iv) aqueous ozone. Using the equipment described, a 2% lactic acid rinse provided 3.5- to 6.4-log CFU/cm(2) reductions across all bacterial populations studied. Conversely, aqueous ozone yielded 0.02- to 2.9-log CFU/cm(2) reductions in pathogens and hygiene indicators, and did not differ significantly from a control tap water rinse (P = 0.055 to 0.731). This 2% lactic acid rinse will be subsequently combined with a previously described water wash to create a multistep antimicrobial intervention that will be examined under laboratory conditions and validated in very small meat plants. PMID:22221350

  11. Surface decontamination and quality enhancement in meat steaks using plant extracts as natural biopreservatives.

    PubMed

    Tayel, Ahmed A; El-Tras, Wael F; Moussa, Shaaban H; El-Sabbagh, Sabha M

    2012-08-01

    Nine plant extracts were evaluated as biopreservatives to decontaminate and maintain the quality of meat steaks. Most of the extracts exhibited a remarkable antibacterial activity against antibiotic resistant strains from Salmonella Typhimurium and Staphylococcus aureus. The pomegranate peel extract (PPE), cinnamon bark extract (CBE), and lemon grass leaves extract (LGE) were the most effective as bactericides, with minimal inhibitory concentrations (MIC) of 250, 350, and 550 μg/mL, respectively. The most effective treatments, for decontaminating meat steak surfaces, were the application of combined PPE, CBE, and LGE at their MIC values and the treatment with double MIC from PPE; these treatments resulted in complete bacterial inhibitions during the first 2 days of storage period for 7 days. The sensory evaluation of treated steaks revealed that these two treatments had the highest panelist overall scores. The highest scores, for individual attributes, were observed in the treated steaks with double MIC from PPE. Application of plant extracts could be impressively recommended for comprehensive meat decontamination and quality attributes enhancement. PMID:22827400

  12. Surface Decontamination of System Components in Uranium Conversion Plant at KAERI

    SciTech Connect

    Choi, W. K.; Kim, K. N.; Won, H. J.; Jung, C. H.; Oh, W. Z.

    2003-02-25

    A chemical decontamination process using nitric acid solution was selected as in-situ technology for recycle or release with authorization of a large amount of metallic waste including process system components such as tanks, piping, etc., which is generated by dismantling a retired uranium conversion plant at Korea Atomic Energy Research Institute (KAERI). The applicability of nitric acid solution for surface decontamination of metallic wastes contaminated with uranium compounds was evaluated through the basic research on the dissolution of UO2 and ammonium uranyl carbonate (AUC) powder. Decontamination performance was verified by using the specimens contaminated with such uranium compounds as UO2 and AUC taken from the uranium conversion plant. Dissolution rate of UO2 powder is notably enhanced by the addition of H2O2 as an oxidant even in the condition of a low concentration of nitric acid and low temperature compared with those in a nitric acid solution without H2O2. AUC powders dissolve easily in nitric acid solutions until the solution pH attains about 2.5 {approx} 3. Above that solution pH, however, the uranium concentration in the solution is lowered drastically by precipitation as a form of U3(NH3)4O9 . 5H2O. Decontamination performance tests for the specimens contaminated with UO2 and AUC were quite successful with the application of decontamination conditions obtained through the basic studies on the dissolution of UO2 and AUC powders.

  13. A Gravity-Responsive Time-Keeping Protein of the Plant and Animal Cell Surface

    NASA Technical Reports Server (NTRS)

    Morre, D. James

    2003-01-01

    The hypothesis under investigation was that a ubiquinol (NADH) oxidase protein of the cell surface with protein disulfide-thiol interchange activity (= NOX protein) is a plant and animal time-keeping ultradian (period of less than 24 h) driver of both cell enlargement and the biological clock that responds to gravity. Despite considerable work in a large number of laboratories spanning several decades, this is, to my knowledge, our work is the first demonstration of a time-keeping biochemical reaction that is both gravity-responsive and growth-related and that has been shown to determine circadian periodicity. As such, the NOX protein may represent both the long-sought biological gravity receptor and the core oscillator of the cellular biological clock. Completed studies have resulted in 12 publications and two issued NASA-owned patents of the clock activity. The gravity response and autoentrainment were characterized in cultured mammalian cells and in two plant systems together with entrainment by light and small molecules (melatonin). The molecular basis of the oscillatory behavior was investigated using spectroscopic methods (Fourier transform infrared and circular dichroism) and high resolution electron microscopy. We have also applied these findings to an understanding of the response to hypergravity. Statistical methods for analysis of time series phenomena were developed (Foster et al., 2003).

  14. Cycloartane Triterpenes from the Aerial Parts of Actaea racemosa.

    PubMed

    Imai, Ayano; Lankin, David C; Nikolić, Dejan; Ahn, Soyoun; van Breemen, Richard B; Farnsworth, Norman R; McAlpine, James B; Chen, Shao-Nong; Pauli, Guido F

    2016-03-25

    Investigating the phytochemical equivalence of the aerial parts of Actaea racemosa (syn. Cimicifuga racemosa) relative to the widely used roots/rhizomes, this study provides a perspective for the potential use of renewable ("green") plant parts as a source of black cohosh botanical preparations. In addition to the characterization of Nω-methylserotonin as one representative marker of the Actaea alkaloids, nine cycloartane triterpenes were isolated and characterized, including the two new triterpene glycosides (1S,15R)-1,15,25-trihydroxy-3-O-β-d-xylopyranosyl-acta-(16S,23R,24R)-16,23;16,24-binoxoside (1) and 3-O-α-l-arabinopyranosyl-(1S,24R)-1,24,25-trihydroxy-15-oxo-acta-(16R,23R)-16,23-monoxoside (2). Their structures were elucidated by spectroscopic data interpretation. The relative configuration of 1 was deduced by (1)H iterative full-spin analysis (HiFSA), making it the first example of the complete analysis of the complex (1)H NMR spectrum of a triterpene glycoside. In addition to the new compounds 1 and 2, the aerial plant parts were shown to contain the previously known binoxosides 3, 4, 6, and 7, the monoxoside 8, and the binoxols 5 and 9. Overall, the metabolome of the aerial plant parts consists of a variety of Actaea triterpenes, similar to those found in roots/rhizomes, a tendency toward C-1 and C-7 hydroxylation of the cycloartanol skeleton, a greater abundance of aglycones, and the presence of comparable amounts of Nω-methylserotonin. PMID:26760374

  15. Observing river stages using unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Niedzielski, Tomasz; Witek, Matylda; Spallek, Waldemar

    2016-08-01

    We elaborated a new method for observing water surface areas and river stages using unmanned aerial vehicles (UAVs). It is based on processing multitemporal five orthophotomaps produced from the UAV-taken visible light images of nine sites of the river, acquired with a sufficient overlap in each part. Water surface areas are calculated in the first place, and subsequently expressed as fractions of total areas of water-covered terrain at a given site of the river recorded on five dates. The logarithms of the fractions are later calculated, producing five samples, each consisted of nine elements. In order to detect statistically significant increments of water surface areas between two orthophotomaps, we apply the asymptotic and bootstrapped versions of the Student's t test, preceded by other tests that aim to check model assumptions. The procedure is applied to five orthophotomaps covering nine sites of the Ścinawka river (south-western (SW) Poland). The data have been acquired during the experimental campaign, at which flight settings were kept unchanged over nearly 3 years (2012-2014). We have found that it is possible to detect transitions between water surface areas associated with all characteristic water levels (low, mean, intermediate and high stages). In addition, we infer that the identified transitions hold for characteristic river stages as well. In the experiment we detected all increments of water level: (1) from low stages to mean, intermediate and high stages; (2) from mean stages to intermediate and high stages; and (3) from intermediate stages to high stages. Potential applications of the elaborated method include verification of hydrodynamic models and the associated predictions of high flows as well as monitoring water levels of rivers in ungauged basins.

  16. COCOA: tracking in aerial imagery

    NASA Astrophysics Data System (ADS)

    Ali, Saad; Shah, Mubarak

    2006-05-01

    Unmanned Aerial Vehicles (UAVs) are becoming a core intelligence asset for reconnaissance, surveillance and target tracking in urban and battlefield settings. In order to achieve the goal of automated tracking of objects in UAV videos we have developed a system called COCOA. It processes the video stream through number of stages. At first stage platform motion compensation is performed. Moving object detection is performed to detect the regions of interest from which object contours are extracted by performing a level set based segmentation. Finally blob based tracking is performed for each detected object. Global tracks are generated which are used for higher level processing. COCOA is customizable to different sensor resolutions and is capable of tracking targets as small as 100 pixels. It works seamlessly for both visible and thermal imaging modes. The system is implemented in Matlab and works in a batch mode.

  17. Unmanned aerial survey of elephants.

    PubMed

    Vermeulen, Cédric; Lejeune, Philippe; Lisein, Jonathan; Sawadogo, Prosper; Bouché, Philippe

    2013-01-01

    The use of a UAS (Unmanned Aircraft System) was tested to survey large mammals in the Nazinga Game Ranch in the south of Burkina Faso. The Gatewing ×100™ equipped with a Ricoh GR III camera was used to test animal reaction as the UAS passed, and visibility on the images. No reaction was recorded as the UAS passed at a height of 100 m. Observations, made on a set of more than 7000 images, revealed that only elephants (Loxodonta africana) were easily visible while medium and small sized mammals were not. The easy observation of elephants allows experts to enumerate them on images acquired at a height of 100 m. We, therefore, implemented an aerial strip sample count along transects used for the annual wildlife foot count. A total of 34 elephants were recorded on 4 transects, each overflown twice. The elephant density was estimated at 2.47 elephants/km(2) with a coefficient of variation (CV%) of 36.10%. The main drawback of our UAS was its low autonomy (45 min). Increased endurance of small UAS is required to replace manned aircraft survey of large areas (about 1000 km of transect per day vs 40 km for our UAS). The monitoring strategy should be adapted according to the sampling plan. Also, the UAS is as expensive as a second-hand light aircraft. However the logistic and flight implementation are easier, the running costs are lower and its use is safer. Technological evolution will make civil UAS more efficient, allowing them to compete with light aircraft for aerial wildlife surveys. PMID:23405088

  18. Unmanned Aerial Survey of Elephants

    PubMed Central

    Vermeulen, Cédric; Lejeune, Philippe; Lisein, Jonathan; Sawadogo, Prosper; Bouché, Philippe

    2013-01-01

    The use of a UAS (Unmanned Aircraft System) was tested to survey large mammals in the Nazinga Game Ranch in the south of Burkina Faso. The Gatewing ×100™ equipped with a Ricoh GR III camera was used to test animal reaction as the UAS passed, and visibility on the images. No reaction was recorded as the UAS passed at a height of 100 m. Observations, made on a set of more than 7000 images, revealed that only elephants (Loxodonta africana) were easily visible while medium and small sized mammals were not. The easy observation of elephants allows experts to enumerate them on images acquired at a height of 100 m. We, therefore, implemented an aerial strip sample count along transects used for the annual wildlife foot count. A total of 34 elephants were recorded on 4 transects, each overflown twice. The elephant density was estimated at 2.47 elephants/km2 with a coefficient of variation (CV%) of 36.10%. The main drawback of our UAS was its low autonomy (45 min). Increased endurance of small UAS is required to replace manned aircraft survey of large areas (about 1000 km of transect per day vs 40 km for our UAS). The monitoring strategy should be adapted according to the sampling plan. Also, the UAS is as expensive as a second-hand light aircraft. However the logistic and flight implementation are easier, the running costs are lower and its use is safer. Technological evolution will make civil UAS more efficient, allowing them to compete with light aircraft for aerial wildlife surveys. PMID:23405088

  19. Aerial videotape mapping of coastal geomorphic changes

    USGS Publications Warehouse

    Debusschere, Karolien; Penland, Shea; Westphal, Karen A.; Reimer, P. Douglas; McBride, Randolph A.

    1991-01-01

    An aerial geomorphic mapping system was developed to examine the spatial and temporal variability in the coastal geomorphology of Louisiana. Between 1984 and 1990 eleven sequential annual and post-hurricane aerial videotape surveys were flown covering periods of prolonged fair weather, hurricane impacts and subsequent post-storm recoveries. A coastal geomorphic classification system was developed to map the spatial and temporal geomorphic changes between these surveys. The classification system is based on 10 years of shoreline monitoring, analysis of aerial photography for 1940-1989, and numerous field surveys. The classification system divides shorelines into two broad classes: natural and altered. Each class consists of several genetically linked categories of shorelines. Each category is further subdivided into morphologic types on the basis of landform relief, elevation, habitat type, vegetation density and type, and sediment characteristics. The classification is used with imagery from the low-altitude, high-resolution aerial videotape surveys to describe and quantify the longshore and cross-shore geomorphic, sedimentologic, and vegetative character of Louisiana's shoreline systems. The mapping system makes it possible to delineate and map detailed geomorphic habitat changes at a resolution higher than that of conventional vertical aerial photography. Morphologic units are mapped parallel to the regional shoreline from the aerial videotape imagery onto the base maps at a scale of 1:24,000. The base maps were constructed from vertical aerial photography concurrent with the data of the video imagery.

  20. Lignans and other constituents from aerial parts of Haplophyllum villosum.

    PubMed

    Parhoodeh, Parimah; Rahmani, Mawardi; Hashim, Najihah Mohd; Sukari, Mohd Aspollah; Lian, Gwendoline Ee Cheng

    2011-01-01

    During our phytochemical investigation of Haplophyllum villosum (Rutaceae), a perennial herb from Iran, a new 4,8-diaryl-3,7-dioxobicyclo-(3,3,0)-octane type lignan, eudesmin A (1), together with four known compounds--eudesmin (2), haplamine (3), umbelliferone (4) and scopoletin (5)--were isolated from aerial parts of the plant. The structures of the compounds were elucidated using NMR spectral analysis (¹H-NMR, ¹³C-NMR, HSQC, COSY and HMBC) as well as UV, IR and MS spectra and comparison with previously reported data. PMID:21383663

  1. 24. AERIAL VIEW LOOKING SOUTHEAST AT BUILDING 371 UNDER CONSTRUCTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. AERIAL VIEW LOOKING SOUTHEAST AT BUILDING 371 UNDER CONSTRUCTION IN 1974. BY 1968, BUILDING 771 WAS OUTMODED AND NEW TECHNOLOGIES HAD BEEN DEVELOPED FOR PLUTONIUM RECOVERY. AS A RESULT, A NEW RECOVERY BUILDING, BUILDING 371 WAS PLANNED. BUILDING 371 SUFFERED FROM VARIOUS DESIGN PROBLEMS, WHICH PREVENTED ITS OPENING UNTIL 1981 AND CAUSED TERMINATION OF RECOVERY OPERATIONS IN 1986. IT NEVER BECAME FULLY OPERATIONAL. TO THE EAST OF BUILDING 371, IS THE 700 BUILDING COMPLEX (4/74). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  2. CONTEXTUAL AERIAL VIEW OF "EXCLUSION" MTR AREA WITH IDAHO CHEMICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTEXTUAL AERIAL VIEW OF "EXCLUSION" MTR AREA WITH IDAHO CHEMICAL PROCESSING PLANT IN BACKGROUND AT CENTER TOP OF VIEW. CAMERA FACING EAST. EXCLUSION GATE HOUSE AT LEFT OF VIEW. BEYOND MTR BUILDING AND ITS WING, THE PROCESS WATER BUILDING AND WORKING RESERVOIR ARE LEFT-MOST. FAN HOUSE AND STACK ARE TO ITS RIGHT. PLUG STORAGE BUILDING IS RIGHT-MOST STRUCTURE. NOTE FAN LOFT ABOVE MTR BUILDING'S ONE-STORY WING. THIS WAS LATER CONVERTED FOR OFFICES. INL NEGATIVE NO. 3610. Unknown Photographer, 10/30/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  3. A Monte Carlo/response surface strategy for sensitivity analysis: application to a dynamic model of vegetative plant growth

    NASA Technical Reports Server (NTRS)

    Lim, J. T.; Gold, H. J.; Wilkerson, G. G.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1989-01-01

    We describe the application of a strategy for conducting a sensitivity analysis for a complex dynamic model. The procedure involves preliminary screening of parameter sensitivities by numerical estimation of linear sensitivity coefficients, followed by generation of a response surface based on Monte Carlo simulation. Application is to a physiological model of the vegetative growth of soybean plants. The analysis provides insights as to the relative importance of certain physiological processes in controlling plant growth. Advantages and disadvantages of the strategy are discussed.

  4. Hierarchical Surface Architecture of Plants as an Inspiration for Biomimetic Fog Collectors.

    PubMed

    Azad, M A K; Barthlott, W; Koch, K

    2015-12-01

    Fog collectors can enable us to alleviate the water crisis in certain arid regions of the world. A continuous fog-collection cycle consisting of a persistent capture of fog droplets and their fast transport to the target is a prerequisite for developing an efficient fog collector. In regard to this topic, a biological superior design has been found in the hierarchical surface architecture of barley (Hordeum vulgare) awns. We demonstrate here the highly wettable (advancing contact angle 16° ± 2.7 and receding contact angle 9° ± 2.6) barbed (barb = conical structure) awn as a model to develop optimized fog collectors with a high fog-capturing capability, an effective water transport, and above all an efficient fog collection. We compare the fog-collection efficiency of the model sample with other plant samples naturally grown in foggy habitats that are supposed to be very efficient fog collectors. The model sample, consisting of dry hydrophilized awns (DH awns), is found to be about twice as efficient (fog-collection rate 563.7 ± 23.2 μg/cm(2) over 10 min) as any other samples investigated under controlled experimental conditions. Finally, a design based on the hierarchical surface architecture of the model sample is proposed for the development of optimized biomimetic fog collectors. PMID:26561871

  5. Structure of convective surface deposits and effect on MHD steam-plant design

    NASA Astrophysics Data System (ADS)

    Johnson, T. R.; Chow, L. S. H.; Smyk, E. B.

    Experimental and analytical investigations are being made of the seed-ash deposits that will form on convective-heat-transfer surfaces in the MHD steam-bottoming plant. The results show that, although fouling of the steam and air heaters will be severe, the fouling problems can be solved by proper specification of tube bank arrangements, gas velocities, soot-blower placement, and soot-blowing schedule, which will vary depending on the gas temperature. At gas temperatures below the seed melting point, weak, non-adherent deposits are formed and can be easily controlled by conventional soot blowers. At gas temperatures well above the seed melting point, it appears practical to operate steam and air heaters without soot blowing, because the deposit thickness will be limited by the formation of a freely flowing, molten surface. The intermediate-temperature range (1300 to 16000K) is the most troublesome because the deposits can become very strong and adherent. This section of the steam heaters must be designed to limit heat fluxes and must be operated with frequent soot blowing.

  6. Aerial Terrain Mapping Using Unmanned Aerial Vehicle Approach

    NASA Astrophysics Data System (ADS)

    Tahar, K. N.

    2012-08-01

    This paper looks into the latest achievement in the low-cost Unmanned Aerial Vehicle (UAV) technology in their capacity to map the semi-development areas. The objectives of this study are to establish a new methodology or a new algorithm in image registration during interior orientation process and to determine the accuracy of the photogrammetric products by using UAV images. Recently, UAV technology has been used in several applications such as mapping, agriculture and surveillance. The aim of this study is to scrutinize the usage of UAV to map the semi-development areas. The performance of the low cost UAV mapping study was established on a study area with two image processing methods so that the results could be comparable. A non-metric camera was attached at the bottom of UAV and it was used to capture images at both sites after it went through several calibration steps. Calibration processes were carried out to determine focal length, principal distance, radial lens distortion, tangential lens distortion and affinity. A new method in image registration for a non-metric camera is discussed in this paper as a part of new methodology of this study. This method used the UAV Global Positioning System (GPS) onboard to register the UAV image for interior orientation process. Check points were established randomly at both sites using rapid static Global Positioning System. Ground control points are used for exterior orientation process, and check point is used for accuracy assessment of photogrammetric product. All acquired images were processed in a photogrammetric software. Two methods of image registration were applied in this study, namely, GPS onboard registration and ground control point registration. Both registrations were processed by using photogrammetric software and the result is discussed. Two results were produced in this study, which are the digital orthophoto and the digital terrain model. These results were analyzed by using the root mean square

  7. The surface coat of plant-parasitic nematodes: chemical composition, origin, and biological role-a review.

    PubMed

    Spiegel, Y; McClure, M A

    1995-06-01

    Chemical composition, origin, and biological role of the surface coat (SC) of plant-parasitic nematodes are described and compared with those of animal-parasitic and free-living nematodes. The SC of the plant-parasitic nematodes is 5-30 nm thick and is characterized by a net negative charge. It consists, at least in part, of glycoproteins and proteins with various molecular weights, depending upon the nematode species. The lability of its components and the binding of human red blood cells to the surface of many tylenchid plant-parasitic nematodes, as well as the binding of several neoglycoproteins to the root-knot nematode Meloidogyne, suggest the presence of carbohydrate-recognition-domains for host plants and parasitic or predatory soil microorganisms (Pasteuria penetrans and Dactylaria spp., for example). These features may also assist in nematode adaptations to soil environments and to plant hosts with defense mechanisms that depend on reactions to nematode surfaces. Surface coat proteins can be species and race specific, a characteristic with promising diagnostic potential. PMID:19277272

  8. Modeling diffuse sources of surface water contamination with plant protection products

    NASA Astrophysics Data System (ADS)

    Wendland, Sandra; Bock, Michael; Böhner, Jürgen; Lembrich, David

    2015-04-01

    Entries of chemical pollutants in surface waters are a serious environmental problem. Among water pollutants plant protection products (ppp) from farming practice are of major concern not only for water suppliers and environmental agencies, but also for farmers and industrial manufacturers. Lost chemicals no longer fulfill their original purpose on the field, but lead to severe damage of the environment and surface waters. Besides point-source inputs of chemical pollutants, the diffuse-source inputs from agricultural procedures play an important and not yet sufficiently studied role concerning water quality. The two most important factors for diffuse inputs are erosion and runoff. The latter usually occurs before erosion begins, and is thus often not visible in hindsight. Only if it has come to erosion, it is obvious to expect runoff in foresight at this area, too. In addition to numerous erosion models, there are also few applications to model runoff processes available. However, these conventional models utilize approximations of catchment parameters based on long-term average values or theoretically calculated concentration peaks which can only provide indications to relative amounts. Our study aims to develop and validate a simplified spatially-explicit dynamic model with high spatiotemporal resolution that enables to measure current and forecast runoff potential not only at catchment scale but field-differentiated. This method allows very precise estimations of runoff risks and supports risk reduction measures to be targeted before fields are treated. By focusing on water pathways occurring on arable land, targeted risk reduction measures like buffer strips at certain points and adapted ppp use can be taken early and pollution of rivers and other surface waters through transported pesticides, fertilizers and their products could be nearly avoided or largely minimized. Using a SAGA-based physical-parametric modeling approach, major factors influencing runoff

  9. Oblique Aerial Photography Tool for Building Inspection and Damage Assessment

    NASA Astrophysics Data System (ADS)

    Murtiyoso, A.; Remondino, F.; Rupnik, E.; Nex, F.; Grussenmeyer, P.

    2014-11-01

    Aerial photography has a long history of being employed for mapping purposes due to some of its main advantages, including large area imaging from above and minimization of field work. Since few years multi-camera aerial systems are becoming a practical sensor technology across a growing geospatial market, as complementary to the traditional vertical views. Multi-camera aerial systems capture not only the conventional nadir views, but also tilted images at the same time. In this paper, a particular use of such imagery in the field of building inspection as well as disaster assessment is addressed. The main idea is to inspect a building from four cardinal directions by using monoplotting functionalities. The developed application allows to measure building height and distances and to digitize man-made structures, creating 3D surfaces and building models. The realized GUI is capable of identifying a building from several oblique points of views, as well as calculates the approximate height of buildings, ground distances and basic vectorization. The geometric accuracy of the results remains a function of several parameters, namely image resolution, quality of available parameters (DEM, calibration and orientation values), user expertise and measuring capability.

  10. The future of structural fieldwork - UAV assisted aerial photogrammetry

    NASA Astrophysics Data System (ADS)

    Vollgger, Stefan; Cruden, Alexander

    2015-04-01

    Unmanned aerial vehicles (UAVs), commonly referred to as drones, are opening new and low cost possibilities to acquire high-resolution aerial images and digital surface models (DSM) for applications in structural geology. UAVs can be programmed to fly autonomously along a user defined grid to systematically capture high-resolution photographs, even in difficult to access areas. The photographs are subsequently processed using software that employ SIFT (scale invariant feature transform) and SFM (structure from motion) algorithms. These photogrammetric routines allow the extraction of spatial information (3D point clouds, digital elevation models, 3D meshes, orthophotos) from 2D images. Depending on flight altitude and camera setup, sub-centimeter spatial resolutions can be achieved. By "digitally mapping" georeferenced 3D models and images, orientation data can be extracted directly and used to analyse the structural framework of the mapped object or area. We present UAV assisted aerial mapping results from a coastal platform near Cape Liptrap (Victoria, Australia), where deformed metasediments of the Palaeozoic Lachlan Fold Belt are exposed. We also show how orientation and spatial information of brittle and ductile structures extracted from the photogrammetric model can be linked to the progressive development of folds and faults in the region. Even though there are both technical and legislative limitations, which might prohibit the use of UAVs without prior commercial licensing and training, the benefits that arise from the resulting high-resolution, photorealistic models can substantially contribute to the collection of new data and insights for applications in structural geology.

  11. Building population mapping with aerial imagery and GIS data

    NASA Astrophysics Data System (ADS)

    Ural, Serkan; Hussain, Ejaz; Shan, Jie

    2011-12-01

    Geospatial distribution of population at a scale of individual buildings is needed for analysis of people's interaction with their local socio-economic and physical environments. High resolution aerial images are capable of capturing urban complexities and considered as a potential source for mapping urban features at this fine scale. This paper studies population mapping for individual buildings by using aerial imagery and other geographic data. Building footprints and heights are first determined from aerial images, digital terrain and surface models. City zoning maps allow the classification of the buildings as residential and non-residential. The use of additional ancillary geographic data further filters residential utility buildings out of the residential area and identifies houses and apartments. In the final step, census block population, which is publicly available from the U.S. Census, is disaggregated and mapped to individual residential buildings. This paper proposes a modified building population mapping model that takes into account the effects of different types of residential buildings. Detailed steps are described that lead to the identification of residential buildings from imagery and other GIS data layers. Estimated building populations are evaluated per census block with reference to the known census records. This paper presents and evaluates the results of building population mapping in areas of West Lafayette, Lafayette, and Wea Township, all in the state of Indiana, USA.

  12. 1. AERIAL VIEW OF SLC3 FROM THE NORTHEAST SHOWING THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. AERIAL VIEW OF SLC-3 FROM THE NORTHEAST SHOWING THE EAST (LEFT) AND WEST (RIGHT) LAUNCH PADS, AND CABLE TRAYS FROM SLC-3W. SEWAGE TREATMENT PLANT (BLDG. 769) AND STORAGE SHED (BLDG. 773) IN LEFT FOREGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  13. REMOTE SENSING OF SULFUR DIOXIDE EFFECTS ON VEGETATION - PHOTOMETRIC ANALYSIS OF AERIAL PHOTOGRAPHS

    EPA Science Inventory

    Spectral reflectances were measured by tri-band densitometry of aerial color-infrared photographs of soybean (Glycine mas fields that had been affected by sulfur dioside (SO2) emissions from large, coal-fired power plants in northwestern Alabama and western Tennessee. The photogr...

  14. USE OF A SPECTRORADIOMETER TO STUDY AERIAL PHOTOGRAPHS OF OZONE-TREATED SOYBEANS

    EPA Science Inventory

    A scanning spectroradiometer was used to measure the optical densities of an aerial photograph of an experimental field in which soybeans were growing in response to different concentrations of ozone, an air pollutant. he plants were growing in 3 m diameter, 2.4m high open top ex...

  15. Application of Digital Image Correlation Method to Improve the Accuracy of Aerial Photo Stitching

    NASA Astrophysics Data System (ADS)

    Tung, Shih-Heng; Jhou, You-Liang; Shih, Ming-Hsiang; Hsiao, Han-Wei; Sung, Wen-Pei

    2016-04-01

    Satellite images and traditional aerial photos have been used in remote sensing for a long time. However, there are some problems with these images. For example, the resolution of satellite image is insufficient, the cost to obtain traditional images is relatively high and there is also human safety risk in traditional flight. These result in the application limitation of these images. In recent years, the control technology of unmanned aerial vehicle (UAV) is rapidly developed. This makes unmanned aerial vehicle widely used in obtaining aerial photos. Compared to satellite images and traditional aerial photos, these aerial photos obtained using UAV have the advantages of higher resolution, low cost. Because there is no crew in UAV, it is still possible to take aerial photos using UAV under unstable weather conditions. Images have to be orthorectified and their distortion must be corrected at first. Then, with the help of image matching technique and control points, these images can be stitched or used to establish DEM of ground surface. These images or DEM data can be used to monitor the landslide or estimate the volume of landslide. For the image matching, we can use such as Harris corner method, SIFT or SURF to extract and match feature points. However, the accuracy of these methods for matching is about pixel or sub-pixel level. The accuracy of digital image correlation method (DIC) during image matching can reach about 0.01pixel. Therefore, this study applies digital image correlation method to match extracted feature points. Then the stitched images are observed to judge the improvement situation. This study takes the aerial photos of a reservoir area. These images are stitched under the situations with and without the help of DIC. The results show that the misplacement situation in the stitched image using DIC to match feature points has been significantly improved. This shows that the use of DIC to match feature points can actually improve the accuracy of

  16. Mannosylerythritol lipids secreted by phyllosphere yeast Pseudozyma antarctica is associated with its filamentous growth and propagation on plant surfaces.

    PubMed

    Yoshida, Shigenobu; Morita, Tomotake; Shinozaki, Yukiko; Watanabe, Takashi; Sameshima-Yamashita, Yuka; Koitabashi, Motoo; Kitamoto, Dai; Kitamoto, Hiroko

    2014-01-01

    The biological function of mannosylerythritol lipids (MELs) towards their producer, Pseudozyma antarctica, on plant surfaces was investigated. MEL-producing wild-type strain and its MEL production-defective mutant strain (ΔPaEMT1) were compared in terms of their phenotypic traits on the surface of plastic plates, onion peels, and fresh leaves of rice and wheat. While wild-type cells adhering on plastic surfaces and onion peels changed morphologically from single cells to elongated ones for a short period of about 4 h and 1 day, respectively, ΔPaEMT1 cells did not. Microscopic observation of both strains grown on plant leaf surfaces verified that the wild type colonized a significantly bigger area than that of ΔPaEMT1. However, when MELs were exogenously added to the mutant cells on plant surfaces, their colonized area became enlarged. High-performance liquid chromatography analysis revealed a secretion of higher amount of MELs in the cell suspension incubated with wheat leaf cuttings compared to that in the suspension without cuttings. Transcriptional analysis by real-time reverse transcriptase PCR verified that the expression of erythritol/mannose transferase gene and MELs transporter gene of P. antarctica increased in the cells inoculated onto wheat leaves at 4, 6, and 8 days of incubation, indicating a potential of P. antarctica to produce MELs on the leaves. These findings demonstrate that MELs produced by P. antarctica on plant surfaces could be expected to play a significant role in fungal morphological development and propagation on plant surfaces. PMID:24706213

  17. Experimental Evaluation of Shark Detection Rates by Aerial Observers

    PubMed Central

    Robbins, William D.; Peddemors, Victor M.; Kennelly, Steven J.; Ives, Matthew C.

    2014-01-01

    Aerial surveys are a recognised technique to identify the presence and abundance of marine animals. However, the capability of aerial observers to reliably sight coastal sharks has not been previously assessed, nor have differences in sighting rates between aircraft types been examined. In this study we investigated the ability of observers in fixed-wing and helicopter aircraft to sight 2.5 m artificial shark analogues placed at known depths and positions. Initial tests revealed that the shark analogues could only be detected at shallow depths, averaging only 2.5 m and 2.7 m below the water surface for observers in fixed-wing and helicopter aircraft, respectively. We then deployed analogues at shallower depths along a 5 km-long grid, and assessed their sightability to aircraft observers through a series of transects flown within 500 m. Analogues were seen infrequently from all distances, with overall sighting rates of only 12.5% and 17.1% for fixed-wing and helicopter observers, respectively. Although helicopter observers had consistently higher success rates of sighting analogues within 250 m of their flight path, neither aircraft observers sighted more than 9% of analogues deployed over 300 m from their flight paths. Modelling of sighting rates against environmental and experimental variables indicated that observations were affected by distance, aircraft type, sun glare and sea conditions, while the range of water turbidities observed had no effect. We conclude that aerial observers have limited ability to detect the presence of submerged animals such as sharks, particularly when the sharks are deeper than ∼2.6 m, or over 300 m distant from the aircraft's flight path, especially during sunny or windy days. The low rates of detections found in this study cast serious doubts on the use of aerial beach patrols as an effective early-warning system to prevent shark attacks. PMID:24498258

  18. High resolution channel geometry from repeat aerial imagery

    NASA Astrophysics Data System (ADS)

    King, T.; Neilson, B. T.; Jensen, A.; Torres-Rua, A. F.; Winkelaar, M.; Rasmussen, M. T.

    2015-12-01

    River channel cross sectional geometry is a key attribute for controlling the river energy balances where surface heat fluxes dominate and discharge varies significantly over short time periods throughout the open water season. These dynamics are seen in higher gradient portions of Arctic rivers where surface heat fluxes can dominates river energy balances and low hillslope storage produce rapidly varying hydrographs. Additionally, arctic river geometry can be highly dynamic in the face of thermal erosion of permafrost landscape. While direct in-situ measurements of channel cross sectional geometry are accurate, they are limited in spatial resolution and coverage, and can be access limited in remote areas. Remote sensing can help gather data at high spatial resolutions and large areas, however techniques for extracting channel geometry is often limited to the banks and flood plains adjacent to river, as the water column inhibits sensing of the river bed itself. Green light LiDAR can be used to map bathymetry, however this is expensive, difficult to obtain at large spatial scales, and dependent on water quality. Alternatively, 3D photogrammetry from aerial imagery can be used to analyze the non-wetted portion of the river channel, but extracting full cross sections requires extrapolation into the wetted portion of the river. To bridge these gaps, an approach for using repeat aerial imagery surveys with visual (RGB) and near infrared (NIR) to extract high resolution channel geometry for the Kuparuk River in the Alaskan Arctic was developed. Aerial imagery surveys were conducted under multiple flow conditions and water surface geometry (elevation and width) were extracted through photogrammetry. Channel geometry was extracted by combining water surface widths and elevations from multiple flights. The accuracy of these results were compared against field surveyed cross sections at many locations throughout the study reach and a digital elevation model created under

  19. Adapting unmanned aerial vehicles for turbulence measurement

    NASA Astrophysics Data System (ADS)

    Witte, Brandon; Helvey, Jacob; Mullen, Jon; Thamann, Michael; Bailey, Sean

    2015-11-01

    We describe the approach of using highly instrumented and autonomous unmanned aerial vehicles (UAVs) to spatially interrogate the atmospheric boundary layer's turbulent flow structure. This approach introduces new capabilities not available in contemporary micro-meteorological measurement techniques such as instrumented towers, balloons, and manned aircraft. A key advantage in utilizing UAVs as an atmospheric turbulence research tool is that it reduces the reliance on assumptions regarding temporal evolution of the turbulence inherent within Taylor's frozen flow hypothesis by facilitating the ability to spatially sample the flow field over a wide range of spatial scales. In addition, UAVs offer the ability to measure in a wide range of boundary conditions and distance from the earth's surface, the ability to gather many boundary layer thicknesses of data during brief periods of statistical quasi-stationarity, and the ability to acquire data where and when it is needed. We describe recent progress made in manufacturing purpose-built airframes and adapting pre-fabricated airframes for these measurements by integrating sensors into those airframes and developing data analysis techniques to isolate the atmospheric turbulence from the measured velocity signal. This research is supported by NSF Award CBET-1351411.

  20. Verification of Potency of Aerial Digital Oblique Cameras for Aerial Photogrammetry in Japan

    NASA Astrophysics Data System (ADS)

    Nakada, Ryuji; Takigawa, Masanori; Ohga, Tomowo; Fujii, Noritsuna

    2016-06-01

    Digital oblique aerial camera (hereinafter called "oblique cameras") is an assembly of medium format digital cameras capable of shooting digital aerial photographs in five directions i.e. nadir view and oblique views (forward and backward, left and right views) simultaneously and it is used for shooting digital aerial photographs efficiently for generating 3D models in a wide area. For aerial photogrammetry of public survey in Japan, it is required to use large format cameras, like DMC and UltraCam series, to ensure aerial photogrammetric accuracy. Although oblique cameras are intended to generate 3D models, digital aerial photographs in 5 directions taken with them should not be limited to 3D model production but they may also be allowed for digital mapping and photomaps of required public survey accuracy in Japan. In order to verify the potency of using oblique cameras for aerial photogrammetry (simultaneous adjustment, digital mapping and photomaps), (1) a viewer was developed to interpret digital aerial photographs taken with oblique cameras, (2) digital aerial photographs were shot with an oblique camera owned by us, a Penta DigiCAM of IGI mbH, and (3) accuracy of 3D measurements was verified.

  1. Aerial radiological survey of the Nuclear Fuel Services Center (NFS) and surrounding area, West Valley, New York, September 1979

    SciTech Connect

    Not Available

    1980-12-01

    An aerial radiological survey encompassing the Western New York Nuclear Fuel Services Center (NFS) near West Valley, New York, was conducted during 7-12 September 1979. The survey data showed that the average ground surface radiation levels for the site and its environs are less than were measured during the 1969 survey when reprocessing was occurring. The area exhibiting above-background radiation levels is decreasing with time due to (1) radioactive decay, (2) dilution and dispersion of man-made radionuclide reprocessing plant effluents produced during the period April 1966 to early 1972, and (3) the discontinuation of reprocessing operations. Excluding specific, localized NFS site facility areas, the background radiation levels for the recently surveyed area approximate the preoperational background radiation levels.

  2. Draper Laboratory small autonomous aerial vehicle

    NASA Astrophysics Data System (ADS)

    DeBitetto, Paul A.; Johnson, Eric N.; Bosse, Michael C.; Trott, Christian A.

    1997-06-01

    The Charles Stark Draper Laboratory, Inc. and students from Massachusetts Institute of Technology and Boston University have cooperated to develop an autonomous aerial vehicle that won the 1996 International Aerial Robotics Competition. This paper describes the approach, system architecture and subsystem designs for the entry. This entry represents a combination of many technology areas: navigation, guidance, control, vision processing, human factors, packaging, power, real-time software, and others. The aerial vehicle, an autonomous helicopter, performs navigation and control functions using multiple sensors: differential GPS, inertial measurement unit, sonar altimeter, and a flux compass. The aerial transmits video imagery to the ground. A ground based vision processor converts the image data into target position and classification estimates. The system was designed, built, and flown in less than one year and has provided many lessons about autonomous vehicle systems, several of which are discussed. In an appendix, our current research in augmenting the navigation system with vision- based estimates is presented.

  3. Officials: Aerial Spraying Working Against Miami Mosquitoes

    MedlinePlus

    ... Officials: Aerial Spraying Working Against Miami Mosquitoes The insects are to blame for first cases of Zika ... mosquitoes in a part of Miami where the insects have been linked to 16 cases of Zika ...

  4. Rangeland monitoring with unmanned aerial vehicles (UAVs)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned aerial vehicles (UAVs) have great potential for rangeland management applications, such as monitoring vegetation change, developing grazing strategies, determining rangeland health, and assessing remediation treatment effectiveness. UAVs have several advantages: they can be deployed quickly...

  5. Locating buildings in aerial photos

    NASA Technical Reports Server (NTRS)

    Green, James S.

    1994-01-01

    Algorithms and techniques for use in the identification and location of large buildings in digitized copies of aerial photographs are developed and tested. The building data would be used in the simulation of objects located in the vicinity of an airport that may be detected by aircraft radar. Two distinct approaches are considered. Most building footprints are rectangular in form. The first approach studied is to search for right-angled corners that characterize rectangular objects and then to connect these corners to complete the building. This problem is difficult because many nonbuilding objects, such as street corners, parking lots, and ballparks often have well defined corners which are often difficult to distinguish from rooftops. Furthermore, rooftops come in a number of shapes, sizes, shadings, and textures which also limit the discrimination task. The strategy used linear sequences of different samples to detect straight edge segments at multiple angles and to determine when these segments meet at approximately right-angles with respect to each other. This technique is effective in locating corners. The test image used has a fairly rectangular block pattern oriented about thirty degrees clockwise from a vertical alignment, and the overall measurement data reflect this. However, this technique does not discriminate between buildings and other objects at an operationally suitable rate. In addition, since multiple paths are tested for each image pixel, this is a time consuming task. The process can be speeded up by preprocessing the image to locate the more optimal sampling paths. The second approach is to rely on a human operator to identify and select the building objects and then to have the computer determine the outline and location of the selected structures. When presented with a copy of a digitized aerial photograph, the operator uses a mouse and cursor to select a target building. After a button on the mouse is pressed, with the cursor fully within

  6. Reliable aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.; Bowman, R. L.

    1981-01-01

    A method for energy conservation, the aerial thermography survey, is discussed. It locates sources of energy losses and wasteful energy management practices. An operational map is presented for clear sky conditions. The map outlines the key environmental conditions conductive to obtaining reliable aerial thermography. The map is developed from defined visual and heat loss discrimination criteria which are quantized based on flat roof heat transfer calculations.

  7. Aerial righting reflexes in flightless animals.

    PubMed

    Jusufi, Ardian; Zeng, Yu; Full, Robert J; Dudley, Robert

    2011-12-01

    Animals that fall upside down typically engage in an aerial righting response so as to reorient dorsoventrally. This behavior can be preparatory to gliding or other controlled aerial behaviors and is ultimately necessary for a successful landing. Aerial righting reflexes have been described historically in various mammals such as cats, guinea pigs, rabbits, rats, and primates. The mechanisms whereby such righting can be accomplished depend on the size of the animal and on anatomical features associated with motion of the limbs and body. Here we apply a comparative approach to the study of aerial righting to explore the diverse strategies used for reorientation in midair. We discuss data for two species of lizards, the gecko Hemidactylus platyurus and the anole Anolis carolinensis, as well as for the first instar of the stick insect Extatosoma tiaratum, to illustrate size-dependence of this phenomenon and its relevance to subsequent aerial performance in parachuting and gliding animals. Geckos can use rotation of their large tails to reorient their bodies via conservation of angular momentum. Lizards with tails well exceeding snout-vent length, and correspondingly large tail inertia to body inertia ratios, are more effective at creating midair reorientation maneuvers. Moreover, experiments with stick insects, weighing an order of magnitude less than the lizards, suggest that aerodynamic torques acting on the limbs and body may play a dominant role in the righting process for small invertebrates. Both inertial and aerodynamic effects, therefore, can play a role in the control of aerial righting. We propose that aerial righting reflexes are widespread among arboreal vertebrates and arthropods and that they represent an important initial adaptation in the evolution of controlled aerial behavior. PMID:21930662

  8. Application of the two-surface method for determining the sound power level of equipment in a power plant environment

    SciTech Connect

    Nuspl, S.P.

    1982-01-01

    The physical size and power requirements of some power plant equipment precludes any type of laboratory test for sound output, yet this information is often desired. Sound data usually is required on a free-field basis at some specified distance, or in terms of sound power level. As its name implies, the two-surface method of determining sound power level requires two enclosing measurement surfaces which are parallel to each other and are at some distance from the equipment under test. Average sound levels are determined from a series of grid measurements on each surface. These levels are derived using energy-averaging techniques and may represent overall, octave, or third-octave measurements. By calculating the difference in sound pressure levels and the area ratio of inner to outer surface, and by using information on hand (namely the inner surface area and average sound level on the inner surface), the sound power level can be calculated.

  9. Endurance bounds of aerial systems

    NASA Astrophysics Data System (ADS)

    Harrington, Aaron M.; Kroninger, Christopher M.

    2014-06-01

    Within the past few years micro aerial vehicles (MAVs) have received much more attention and are starting to proliferate into military as well as civilian roles. However, one of the major drawbacks for this technology currently, has been their poor endurance, usually below 10 minutes. This is a direct result of the inefficiencies inherent in their design. Often times, designers do not consider the various components in the vehicle design and match their performance to the desired mission for the vehicle. These vehicles lack a prescribed set of design guidelines or empirically derived design equations which often limits their design to selection of commercial off-the-shelf components without proper consideration of their affect on vehicle performance. In the current study, the design space for different vehicle configurations has been examined including insect flapping, avian flapping, rotary wing, and fixed wing, and their performance bounds are established. The propulsion system typical of a rotary wing vehicle is analyzed to establish current baselines for efficiency of vehicles at this scale. The power draw from communications is analyzed to determine its impact on vehicle performance. Finally, a representative fixed wing MAV is examined and the effects of adaptive structures as a means for increasing vehicle endurance and range are examined. This paper seeks to establish the performance bounds for micro air vehicles and establish a path forward for future designs so that efficiency may be maximized.

  10. An aerial radiological survey of the project Rio Blanco and surrounding area

    SciTech Connect

    Singman, L.V.

    1994-11-01

    A team from the Remote Sensing Laboratory in Las Vegas, Nevada, conducted an aerial radiation survey of the area surrounding ground zero of Project Rio Blanco in the northwestern section of Colorado in June 1993. The object of the survey was to determine if there were man-made radioisotopes on or near the surface resulting from a nuclear explosion in 1972. No indications of surface contamination were found. A search for the cesium-137 radioisotope was negative. The Minimum Detectable Activity for cesium-137 is presented for several detection probabilities. The natural terrestrial exposure rates in units of Roentgens per hour were mapped and are presented in the form of a contour map over-laid on an aerial photograph. A second team made independent ground-based measurements in four places within the survey area. The average agreement of the ground-based with aerial measurements was six percent.

  11. Influence of curli expression on biofilm formation and attachment to plant surface by shiga toxigenic E. coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga-toxigenic Escherichia coli O157:H7 (STEC) outbreaks have been linked to consumption of fresh produce. Bacteria extracellular appendages, such as curli fibers and cellulose may play critical role in STEC biofilm formation and adherence to plant surface. We determined cellulose and curli product...

  12. UTILIZATION OF A RESPONSE-SURFACE TECHNIQUE IN THE STUDY OF PLANT RESPONSES TO OZONE AND SULFUR DIOXIDE MIXTURES

    EPA Science Inventory

    A second order rotatable design was used to obtain polynomial equations describing the effects of combinations of sulfur dioxide (SO2) and ozone (O3) on foliar injury and plant growth. The response surfaces derived from these equations were displayed as contour or isometric (3-di...

  13. ‘Insect aquaplaning’ on a superhydrophilic hairy surface: how Heliamphora nutans Benth. pitcher plants capture prey

    PubMed Central

    Bauer, Ulrike; Scharmann, Mathias; Skepper, Jeremy; Federle, Walter

    2013-01-01

    Trichomes are a common feature of plants and perform important and diverse functions. Here, we show that the inward-pointing hairs on the inner wall of insect-trapping Heliamphora nutans pitchers are highly wettable, causing water droplets to spread rapidly across the surface. Wetting strongly enhanced the slipperiness and increased the capture rate for ants from 29 to 88 per cent. Force measurements and tarsal ablation experiments revealed that wetting affected the insects' adhesive pads but not the claws, similar to the ‘aquaplaning’ mechanism of (unrelated) Asian Nepenthes pitcher plants. The inward-pointing trichomes provided much higher traction when insects were pulled outwards. The wetness-dependent capture mechanisms of H. nutans and Nepenthes pitchers present a striking case of functional convergence, whereas the use of wettable trichomes constitutes a previously unknown mechanism to make plant surfaces slippery. PMID:23256197

  14. Fabrication of biomimetically-patterned surfaces and their application to probing plant-bacteria interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding of plant-bacterial interactions is of critical importance for developing effective control measures against infectious diseases caused by foodborne human pathogens. However, limitations of existing scientific tools to access and evaluate natural plant tissues, and the large variations ...

  15. Nutrient capital sequestration in pioneer plant communities on surface-mine spoil

    SciTech Connect

    Wade, G.L.

    1985-01-01

    Four pioneer plant communities on a surface-mine spoil were compared in terms of biomass production and nutrient capital sequestration. A chenopodium album-dominated community (Treatment 4) produced the greatest amount of biomass. Next were a community derived from a forest topsoil seed bank spread over mine spoil (Treatment 2), a seed bank community with common reclamation species seeded into it (Treatment 3), and a mix of grasses and Lespedeza commonly used in reclamation (Treatment 1). Amounts of nutrients sequestered in vegetation were not strictly proportional to biomass. Community nutrient contents were largely influenced by community biomass and the nutrient uptake characteristics of the species with most biomass. Significant changes in soil chemistry were found after one growing season. Addition of the reclamation mix of grasses and Lespedeza to the seed bank resulted in significantly fewer established native species. Native species lost their normal dominance and exhibited stunted growth and phenological delay in Treatment 3. Nutrient content niche, nutrient content niche share, and niche breadth (Levins; B) were calculated for important species in each community. Native species generally had reduced niche breadths and niche shares when reclamation species were added to the community. Community content niche, the sums of species content niches, varied between different types of pioneer communities.

  16. Did debris-covered glaciers serve as pleistocene refugia for plants? A new hypothesis derived from observations of recent plant growth on glacier surfaces

    USGS Publications Warehouse

    Fickert, T.; Friend, D.; Gruninger, F.; Molnia, B.; Richter, M.

    2007-01-01

    This study proposes a new hypothesis: Debris-covered glaciers served as Pleistocene biological refugia. This is based on detailed studies of vascular plant growth on six debris-mantled glaciers, literally around the world, as well as many casual observations also across the globe. We find that such glaciers are quite common and are distributed globally. Using Carbon Glacier, Mount Rainier, U.S.A., as a type locality and case study, we show aspects of the floristic and structural diversity as well as spatial patterns of plant growth on the glacier surface. Migration strategies, root characteristics, and origin and dispersal strategies for vascular plant species are documented. Also reported are special microclimatic conditions in these areas allowing for this remarkable plant ecology. We find that alpine taxa can grow considerably below their usual altitudinal niche due to the cooler subsurface soil temperatures found on glacial debris with ice underneath, and that may have significantly altered the spatial distribution of such flora during full glacial conditions. This in turn creates previously undocumented areas from which alpine, and perhaps arctic, plant species reestablished in post-glacial time. This hypothesis is complementary to both the nunatak hypothesis and tabula rasa theory and possibly helps solve the ongoing controversy between them. ?? 2007 Regents of the University of Colorado.

  17. An aerial radiological survey of the Millstone Nuclear Power Station and surrounding area

    SciTech Connect

    Vojtech, R.J.

    1994-03-01

    An aerial radiological survey was conducted during the period of September 10 to 18, 1990, over a 40-square-mile (104-square-kilometer) area surrounding the Millstone Nuclear Power Station (MNPS). The MNPS is located on the Long Island Sound shoreline, three kilometers south of Waterford, Connecticut. The purpose of the survey was to measure and document the terrestrial gamma ray environment of the plant and surrounding areas. A contour map showing radiation exposure rates at 1 meter above ground level was constructed from the aerial data and overlaid on an aerial photograph and a United States Geological Survey map of the area. The exposure rates within the survey region are quite uniform. The area is characterized by an exposure rate of 10-12 microroentgens per hour including an estimated cosmic ray contribution of 3.6 {mu}R/h. This is typical of natural background. The only exception to the natural background readings is the Millstone station itself, which is characterized by an exposure rate consistent with the standard operation of the reactor units. Radionuclide assays of soil samples and pressurized-ion-chamber gamma ray measurements were obtained at five locations within the survey boundaries. These measurements were taken in support of, and are in agreement with, the aerial data. The radiological environment near the plant is consistent with normal plant operation.

  18. Aerial photo SBVC1962". Photo no. 360. Low oblique aerial view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Aerial photo -SBVC-1962". Photo no. 360. Low oblique aerial view of the campus, looking southeast. Stamped on the rear: "Ron Wilhite, Sun-Telegram photo, file, 10/22/62/ - San Bernardino Valley College, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  19. 22. AERIAL VIEW LOOKING EAST DOWN CENTRAL AVENUE FROM WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. AERIAL VIEW LOOKING EAST DOWN CENTRAL AVENUE FROM WEST OF THE ADMINISTRATIVE AND SUPPORT AREA OF THE PLANT. ON THE LEFT (NORTH) SIDE OF THE STREET IN THE FOREGROUND OF THE PHOTOGRAPH IS BUILDING 111, THE GENERAL ADMINISTRATION BUILDING. TO THE EAST OF BUILDING 111 IS BUILDING 112, THE CAFETERIA. FURTHER TO THE EAST IS BUILDING 331, THE VEHICLE MAINTENANCE GARAGE AND FIRE DEPARTMENT; BUILDING 333, THE PAINT SHOP; BUILDING 334, THE ELECTRICAL AND GENERAL MAINTENANCE SHOP; AND BUILDING 551, THE GENERAL WAREHOUSE. ON THE RIGHT (SOUTH) SIDE OF CENTRAL AVENUE, IN THE FOREGROUND IS BUILDING 121, FIREARMS REPAIR. BEHIND BUILDING 121 IS BUILDING 122, EMERGENCY MEDICAL SERVICES, AND BUILDING 123, HEALTH PHYSICS LABORATORY. BUILDING 441, THE PRODUCTION ... - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  20. [Monomeric indole alkaloids from the aerial parts of Catharanthus roseus].

    PubMed

    Zhong, Xiang-Zhang; Wang, Guo-Cai; Wang, Ying; Zhang, Xiao-Qi; Ye, Wen-Cai

    2010-04-01

    Catharanthus roseus (L.) G. Don is a plant of the Catharanthus genus of Apocynaceae which has been reported to have therapeutic effects of detoxication and anticancer. In order to further study the alkaloid constituents of C. roseus, the aerial parts of the plant were extracted with 95% EtOH, and then treated with 2% H2SO4 and NH3H2O to obtain total alkaloids. The total alkaloids were separated and purified by column chromatography over silica gel and prepared by high performance liquid chromatography (HPLC). Their structures were elucidated on the basis of physicochemical properties and spectral data. A new alkaloid together with five known compounds were isolated and identified as vindolinine B (1), lochnericine (2), horhammericine (3), vindorosine (4), vindoline (5), and coronaridine (6). Compound 1 is a new compound and named as vindolinine B. PMID:21355212

  1. Y-12 Plant Groundwater Protection Program Groundwater and Surface Water sampling and Analysis Plan for Calendar Year 2000

    SciTech Connect

    1999-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2000 at the U.S. Department of Energy (DOE) Y-12 Plant that will be managed by tie Y-12 Plant Groundwater Protection Program (GWPP). Groundwater and surface water monitoring during CY 2000 will be performed in three hydrogeologic regimes at the Y-12 Plant: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of the Y-12 Plant (Figure 1). Groundwater and surface water monitoring performed under the auspices of the Y-12 Plant GWPP during CY 2000 will comply with: Tennessee Department of Environment and Conservation regulations governing detection monitoring at nonhazardous Solid Waste Disposal Facilities (SWDF); and DOE Order 5400.1 surveillance monitoring and exit pathway/perimeter monitoring. Some of the data collected for these monitoring drivers also will be used to meet monitoring requirements of the Integrated Water Quality Program, which is managed by Bechtel Jacobs Company LLC. Data from five wells that are monitored for SWDF purposes in the Chestnut Ridge Regime will be used to comply with requirements specified in the Resource Conservation and Recovery Act post closure permit regarding corrective action monitoring. Modifications to the CY 2000 monitoring program may be necessary during implementation. Changes in regulatory or programmatic requirements may alter the analytes specified for selected monitoring wells, or wells could be added or removed from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 Plant GWPP manager and documented as addenda to this sampling and analysis plan.

  2. Pasadena, California Anaglyph with Aerial Photo Overlay

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This anaglyph shows NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California. Red-blue glasses are required to see the 3-D effect. The surrounding residential areas of La Canada-Flintridge (to the left) and Altadena/Pasadena (to the right) are also shown. JPL is located at the base of the San Gabriel Mountains, an actively growing mountain range, seen towards the top of the image. The large canyon coming out of the mountains (top to bottom of image) is the Arroyo Seco, which is a major drainage channel for the mountains. Sand and gravel removal operations in the lower part of the arroyo (bottom of image) are removing debris brought down by flood and mudflow events. Old landslide scars (lobe-shaped features) are seen in the arroyo, evidence that living near steep canyon slopes in tectonically active areas can be hazardous. The data can also be utilized by recreational users such as hikers enjoying the natural beauty of these rugged mountains.

    This anaglyph was generated using topographic data from the Shuttle Radar Topography Mission to create two differing perspectives of a single image, one perspective for each eye. The detailed aerial image was provided by U. S. Geological Survey digital orthophotography. Each point in the image is shifted slightly, depending on its elevation. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna

  3. Spatial distribution of heavy metals in surface soil, plant and mushroom beside high-frequency road

    NASA Astrophysics Data System (ADS)

    Krbić, Biljana Å.; Milovac, Snežana; Stošić, Dušan; Zorić, Miroslav; Matavulj, Milan

    2010-05-01

    One of the undesirable aspects of urbanization process is the introduction of potentially harmful pollutants into environment. Urban soils are often contaminated by metals deriving from industry, transportation and other human activities. In this study, concentration of heavy metals were investigated in roadside surface soil, linden tree bark (Tilia sp.), mushroom Schizophyllum commune and dust samples collected at different distances (0.2 - 200 m) from main high-frequency road. The samples were microwave digested in accordance to US EPA 3051 method and analyzed by flame (Cd, Cu, Co, Fe, Ni, Mn, Pb and Zn), graphite furnace (Cr) and cold vapor (Hg) atomic absorption spectrometry. The results of the analysis were used to determine major sources and distribution of heavy metals pollution. The obtained results showed significant decrease of traffic-related metals (Fe, Zn, Pb, Ni, Cu and Cd) in soil samples with increasing distance from road edge. In order to assess possible pollution, heavy metal contents in soil were compared with the National legislation and Netherlands soil quality standards. Also, elevated concentrations of traffic-related metals, especially Pb and Cr in analyzed tree bark, mushroom and dust samples, indicate the obvious roadside contamination whose primary contributors appear to be vehicular local traffic. In addition, Index of Bioaccumulation (IBA) was calculated in order to estimate plant and mushroom ability of heavy metals accumulation. Assessment of statistical differences among samples was performed by one-way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) test. Moreover, Principal Component Analysis (PCA) was performed on the heavy metals content allowed a meaningful classification of the samples according to the main sources of pollution.

  4. Multidomain, Surface Layer-associated Glycoside Hydrolases Contribute to Plant Polysaccharide Degradation by Caldicellulosiruptor Species.

    PubMed

    Conway, Jonathan M; Pierce, William S; Le, Jaycee H; Harper, George W; Wright, John H; Tucker, Allyson L; Zurawski, Jeffrey V; Lee, Laura L; Blumer-Schuette, Sara E; Kelly, Robert M

    2016-03-25

    The genome of the extremely thermophilic bacterium Caldicellulosiruptor kronotskyensisencodes 19 surface layer (S-layer) homology (SLH) domain-containing proteins, the most in any Caldicellulosiruptorspecies genome sequenced to date. These SLH proteins include five glycoside hydrolases (GHs) and one polysaccharide lyase, the genes for which were transcribed at high levels during growth on plant biomass. The largest GH identified so far in this genus, Calkro_0111 (2,435 amino acids), is completely unique toC. kronotskyensisand contains SLH domains. Calkro_0111 was produced recombinantly inEscherichia colias two pieces, containing the GH16 and GH55 domains, respectively, as well as putative binding and spacer domains. These displayed endo- and exoglucanase activity on the β-1,3-1,6-glucan laminarin. A series of additional truncation mutants of Calkro_0111 revealed the essential architectural features required for catalytic function. Calkro_0402, another of the SLH domain GHs inC. kronotskyensis, when produced inE. coli, was active on a variety of xylans and β-glucans. Unlike Calkro_0111, Calkro_0402 is highly conserved in the genus Caldicellulosiruptorand among other biomass-degrading Firmicutes but missing from Caldicellulosiruptor bescii As such, the gene encoding Calkro_0402 was inserted into the C. besciigenome, creating a mutant strain with its S-layer extensively decorated with Calkro_0402. This strain consequently degraded xylans more extensively than wild-typeC. bescii The results here provide new insights into the architecture and role of SLH domain GHs and demonstrate that hemicellulose degradation can be enhanced through non-native SLH domain GHs engineered into the genomes of Caldicellulosiruptorspecies. PMID:26814128

  5. Remote sensing of biomass and annual net aerial primary productivity of a salt marsh

    NASA Technical Reports Server (NTRS)

    Hardisky, M. A.; Klemas, V.; Daiber, F. C.; Roman, C. T.

    1984-01-01

    Net aerial primary productivity is the rate of storage of organic matter in above-ground plant issues exceeding the respiratory use by the plants during the period of measurement. It is pointed out that this plant tissue represents the fixed carbon available for transfer to and consumption by the heterotrophic organisms in a salt marsh or the estuary. One method of estimating annual net aerial primary productivity (NAPP) required multiple harvesting of the marsh vegetation. A rapid nondestructive remote sensing technique for estimating biomass and NAPP would, therefore, be a significant asset. The present investigation was designed to employ simple regression models, equating spectral radiance indices with Spartina alterniflora biomass to nondestructively estimate salt marsh biomass. The results of the study showed that the considered approach can be successfully used to estimate salt marsh biomass.

  6. Vehicle Detection of Aerial Image Using TV-L1 Texture Decomposition

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wang, G.; Li, Y.; Huang, Y.

    2016-06-01

    Vehicle detection from high-resolution aerial image facilitates the study of the public traveling behavior on a large scale. In the context of road, a simple and effective algorithm is proposed to extract the texture-salient vehicle among the pavement surface. Texturally speaking, the majority of pavement surface changes a little except for the neighborhood of vehicles and edges. Within a certain distance away from the given vector of the road network, the aerial image is decomposed into a smoothly-varying cartoon part and an oscillatory details of textural part. The variational model of Total Variation regularization term and L1 fidelity term (TV-L1) is adopted to obtain the salient texture of vehicles and the cartoon surface of pavement. To eliminate the noise of texture decomposition, regions of pavement surface are refined by seed growing and morphological operation. Based on the shape saliency analysis of the central objects in those regions, vehicles are detected as the objects of rectangular shape saliency. The proposed algorithm is tested with a diverse set of aerial images that are acquired at various resolution and scenarios around China. Experimental results demonstrate that the proposed algorithm can detect vehicles at the rate of 71.5% and the false alarm rate of 21.5%, and that the speed is 39.13 seconds for a 4656 x 3496 aerial image. It is promising for large-scale transportation management and planning.

  7. Evaluation of aerial delivery systems for spray deposition and efficacy against sweet potato whitefly on cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sweet potato whiteflies (SWF), Bemisia argentifolii, live on the bottom surface of cotton leaves. Except crawlers, nymphal stages of the insect will not move about to contact insecticides. Aerial sprays to suppress SWF require improved application techniques designed to increase spray deposition a...

  8. Impact of post-infiltration soil aeration at different growth stages of sub-surface trickle-irrigated tomato plants

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Jia, Zong-xia; Niu, Wen-Quan; Wang, Jing-wei

    2016-07-01

    Sensitivity to low rhizosphere soil aeration may change over time and therefore plant response may also depend on different growth stages of a crop. This study quantified effects of soil aeration during 5 different periods, on growth and yield of trickle-irrigated potted single tomato plants. Irrigation levels were 0.6 to 0.7 (low level) or 0.7 to 0.8 (high level) of total water holding capacity of the pots. Soil was aerated by injecting 2.5 l of air into each pot through the drip tubing immediately after irrigation. Fresh fruit yield, above ground plant dry weight, plant height, and leaf area index response to these treatments were measured. For all these 4 response variables, means of post-infiltration aeration between 58 to 85 days after sowing were 13.4, 43.5, 13.7, and 37.7% higher than those for the non-aerated pots, respectively. The results indicated that: post-infiltration soil aeration can positively impact the yield and growth of sub-surface trickle-irrigated potted tomato plants; positive effects on plant growth can be obtained with aeration during the whole growth period or with aeration for partial periods; positive growth effects of partial periods of aeration appears to persist and result in yield benefit.

  9. UAV using the open-source flight-control-system in the application of aerial survey

    NASA Astrophysics Data System (ADS)

    Huang, Ji-chen; Ru, Chen

    2015-12-01

    The aerial survey as one of the branches of the Space Information Technology system, has an important application in data acquisition of the earth's surface. In recent years, the trend of UVA (unmanned aerial vehicle) to replace traditional survey aircraft has become increasingly obvious with the progress of science and technology. At present, the price of the commercial UAV Flight Control System is higher, limiting the application of UVA. This paper mainly discusses the possibility that the open-source's flight-control-system take the place of the commercial one. Result is that the costs of UVA are reduced, and make the application more widely.

  10. The feasibility of unmanned aerial vehicle-based acoustic atmospheric tomography.

    PubMed

    Finn, Anthony; Rogers, Kevin

    2015-08-01

    A technique for remotely monitoring the near-surface air temperature and wind fields up to altitudes of 1 km is presented and examined. The technique proposes the measurement of sound spectra emitted by the engine of a small unmanned aerial vehicle using sensors located on the aircraft and the ground. By relating projected and observed Doppler shifts in frequency and converting them into effective sound speed values, two- and three-dimensional spatially varying atmospheric temperature and wind velocity fields may be reconstructed using tomography. The feasibility and usefulness of the technique relative to existing unmanned aerial vehicle-based meteorological techniques using simulation and trials is examined. PMID:26328703

  11. The Development and Flight Testing of an Aerially Deployed Unmanned Aerial System

    NASA Astrophysics Data System (ADS)

    Smith, Andrew

    An investigation into the feasibility of aerial deployed unmanned aerial vehicles was completed. The investigation included the development and flight testing of multiple unmanned aerial systems to investigate the different components of potential aerial deployment missions. The project consisted of two main objectives; the first objective dealt with the development of an airframe capable of surviving aerial deployment from a rocket and then self assembling from its stowed configuration into its flight configuration. The second objective focused on the development of an autopilot capable of performing basic guidance, navigation, and control following aerial deployment. To accomplish these two objectives multiple airframes were developed to verify their completion experimentally. The first portion of the project, investigating the feasibility of surviving an aerial deployment, was completed using a fixed wing glider that following a successful deployment had 52 seconds of controlled flight. Before developing the autopilot in the second phase of the project, the glider was significantly upgraded to fix faults discovered in the glider flight testing and to enhance the system capabilities. Unfortunately to conform to outdoor flight restrictions imposed by the university and the Federal Aviation Administration it was required to switch airframes before flight testing of the new fixed wing platform could begin. As a result, an autopilot was developed for a quadrotor and verified experimentally completely indoors to remain within the limits of governing policies.

  12. Plant uptake of diclofenac in a mesocosm-scale free water surface constructed wetland by Cyperus alternifolius.

    PubMed

    Zhai, Jun; Rahaman, Md Hasibur; Ji, Jiucui; Luo, Zhiyoung; Wang, Quanfeng; Xiao, Haiwen; Wang, Kunping

    2016-01-01

    This study aimed to assess the uptake of diclofenac, a widely used nonsteroidal anti-inflammatory pharmaceutical, by a macrophyte Cyperus alternifolius in a mesocosm-scale free water surface (FWS) constructed wetland. Quantitative analysis of diclofenac concentrations in water solution and plant tissues was conducted by high performance liquid chromatography analysis after sample pre-treatment with solid-phase extraction and liquid extraction, respectively. The FWS with Cyperus alternifolius obtained a maximum 69.3% diclofenac removal efficiency, while a control system without plant only had a removal efficiency of 2.7% at the end of the experiment period of 70 days. Based on mass balance study of the experimental system, it was estimated that plant uptake and in-plant conversion of diclofenac contributed about 21.4% of the total diclofenac removal in the mesocosm while the remaining 78.6% diclofenac was eliminated through biotic and abiotic conversion of diclofenac in the water phase. Diclofenac on the root surface and in roots, stems and leaves of Cyperus alternifolius was found at the concentrations of 0.15-2.59 μg/g, 0.21-2.66 μg/g, 0.06-0.53 μg/g, and 0.005-0.02 μg/g of fresh weight of plant tissues, respectively. The maximum bioaccumulation factor of diclofenac was calculated in roots (21.04) followed by root surface (20.49), stems (4.19), and leaves (0.16), respectively. Diclofenac translocation potentiality from root to stem was found below 0.5, suggesting a slow and passive translocation process of diclofenac. Current study demonstrated high potential of Cyperus alternifolius for phytoremediation of diclofenac in FWS and can be applied in other engineered ecosystems. PMID:27332847

  13. Noise from aerial bursts of fireworks

    NASA Technical Reports Server (NTRS)

    Maglieri, D. J.; Henderson, H. R.

    1973-01-01

    A study was made recording the pressure time histories of the aerial bursts of mortars of various sizes launched during an actual fireworks display. The peak overpressure and duration of blast noise as well as the energy spectral density are compared with the characteristics of a blasting cap and of an F-104 aircraft at a Mach number of 1.4 and an altitude of 42,000 ft. Noise levels of the fireworks aerial bursts peaked 15 decibels below levels deemed damaging to hearing.

  14. Advanced Image Processing of Aerial Imagery

    NASA Technical Reports Server (NTRS)

    Woodell, Glenn; Jobson, Daniel J.; Rahman, Zia-ur; Hines, Glenn

    2006-01-01

    Aerial imagery of the Earth is an invaluable tool for the assessment of ground features, especially during times of disaster. Researchers at the NASA Langley Research Center have developed techniques which have proven to be useful for such imagery. Aerial imagery from various sources, including Langley's Boeing 757 Aries aircraft, has been studied extensively. This paper discusses these studies and demonstrates that better-than-observer imagery can be obtained even when visibility is severely compromised. A real-time, multi-spectral experimental system will be described and numerous examples will be shown.

  15. MicroProbe Small Unmanned Aerial System

    NASA Technical Reports Server (NTRS)

    Bland, Geoffrey; Miles, Ted

    2012-01-01

    The MicroProbe unmanned aerial system (UAS) concept incorporates twin electric motors mounted on the vehicle wing, thus enabling an aerodynamically and environmentally clean nose area for atmospheric sensors. A payload bay is also incorporated in the fuselage to accommodate remote sensing instruments. A key feature of this concept is lightweight construction combined with low flying speeds to minimize kinetic energy and associated hazards, as well as maximizing spatial resolution. This type of aerial platform is needed for Earth science research and environmental monitoring. There were no vehicles of this type known to exist previously.

  16. Metrically preserving the USGS aerial film archive

    USGS Publications Warehouse

    Moe, Donald; Longhenry, Ryan

    2013-01-01

    Since 1972, the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center in Sioux Falls, South Dakota, has provided fi lm-based products to the public. EROS is home to an archive of 12 million frames of analog photography ranging from 1937 to the present. The archive contains collections from both aerial and satellite platforms including programs such as the National High Altitude Program (NHAP), National Aerial Photography Program (NAPP), U.S. Antarctic Resource Center (USARC), Declass 1(CORONA, ARGON, and LANYARD), Declass 2 (KH-7 and KH-9), and Landsat (1972 – 1992, Landsat 1–5).

  17. Laser Doppler velocimeter aerial spray measurements

    NASA Technical Reports Server (NTRS)

    Zalay, A. D.; Eberle, W. R.; Howle, R. E.; Shrider, K. R.

    1978-01-01

    An experimental research program for measuring the location, spatial extent, and relative concentration of airborne spray clouds generated by agricultural aircraft is described. The measurements were conducted with a ground-based laser Doppler velocimeter. The remote sensing instrumentation, experimental tests, and the results of the flight tests are discussed. The cross section of the aerial spray cloud and the observed location, extent, and relative concentration of the airborne particulates are presented. It is feasible to use a mobile laser Doppler velocimeter to track and monitor the transport and dispersion of aerial spray generated by an agricultural aircraft.

  18. The adsorption behavior of mercury on the hematite (1-102) surface from coal-fired power plant emissions

    NASA Astrophysics Data System (ADS)

    Jung, J. E.; Jew, A. D.; Rupp, E.; Aboud, S.; Brown, G. E.; Wilcox, J.

    2014-12-01

    One of the biggest environmental concerns caused by coal-fired power plants is the emission of mercury (Hg). Worldwide, 475 tons of Hg are released from coal-burning processes annually, comprising 24% of total anthropogenic Hg emissions. Because of the high toxicity of Hg species, US Environmental Protection Agency (EPA) proposed a standard on Hg and air toxic pollutants (Mercury and Air Toxics Standards, MATS) for new and existing coal-fired power plants in order to eliminate Hg in flue gas prior to release through the stack. To control the emission of Hg from coal-derived flue gas, it is important to understand the behavior, speciation of Hg as well as the interaction between Hg and solid materials, such as fly ash or metal oxides, in the flue gas stream. In this study, theoretical investigations using density functional theory (DFT) were carried out in conjunction with experiments to investigate the adsorption behavior of oxidized Hg on hematite (α-Fe2O3), an important mineral component of fly ash which readily sorbes Hg from flue gas. For DFT calculation, the two α-Fe2O3 (1-102) surfaces modeled consisted of two different surface terminations: (1) M2-clean, which corresponds to the oxygen-terminated surface with the first layer of cations removed and with no hydroxyl groups and (2) M2-OH2-OH, which has bihydroxylated top oxygen atoms and a second layer of hydroxylated oxygen atoms. These surface terminations were selected because both surfaces are highly stable in the temperature range of flue gases. The most probable adsorption sites of Hg, Cl and HgCl on the two α-Fe2O3 surface terminations were suggested based on calculated adsorption energies. Additionally, Bader charge and projected density of states (PDOS) analyses were conducted to characterize the oxidation state of adsorbates and their bonding interactions with the surfaces. Results indicate that oxidized Hg physically adsorbs on the M2-clean surface with a binding energy of -0.103 eV and that

  19. AERIAL OF VISITORS INFORMATION CENTER [VIC] & ROCKET GARDEN

    NASA Technical Reports Server (NTRS)

    1973-01-01

    AERIAL OF VISITORS INFORMATION CENTER [VIC] & ROCKET GARDEN KSC-373C-0556.20 116-KSC-373C-556.20, P-01622-B, ARCHIVE-04455 Aerial view of Easter crowds at Visitors Information Center, Kennedy Space Center, Florida.

  20. Phloem unloading in aerial roots of Monstera deliciosa.

    PubMed

    Eschrich, W

    1983-05-01

    Plants of Monstera deliciosa Liebm. pruned to exemplars with one leaf and one aerial root were labeled with 7.4 MBq (14)CO2 over the leaf blade. Microautoradiographs of soluble and insoluble radioactivity were prepared from three different regions of the aerial root. In addition, histochemical localization of ATPase was carried out on similar aerial roots. Vigorously growing aerial roots grew as fast as 26 mm d(-1), and zones of differentiation extended more than 10 cm from the root tip. In the region 2-3 cm from the root tip, in which only protoelements of the vascular tissue were differentiated, (14)C-label was restricted to the protophloem. The activity of ATPase was recognized in many different cellular organelles of the meristematic phloem parenchyma. In the region 5-6 cm from the root tip, in which the first metaelements differentiated, all parenchyma cells of the central cylinder and many cortical cells showed (14)C-label, in addition to the densely labeled protophloem. Differentiating vessels were heavily labeled at sites where secondary walls were formed. In this region of the root, ATPase activity was concentrated on the plasmalemma and cortical cytoplasma of the sieve tubes, and on the tonoplast of the phloem parenchyma cells. In contrast, the strands of internal metaphloem with giant sieve tubes, which are scattered among the metaxylem, were neither labeled nor did they show ATPase activity. In the zone 19-20 cm from the root tip, regions of cell differentiation in the sclerenchymatic mantle of the inner cortex, the late-formed metaxylem vessels and some strands of the internal metaphloem could be identified by dense (14)C-label. Low ATPase activity was found in the plasmalemma of practically all living cells. In this nearly mature region, a strong peroxidase activity was observed in the radial walls of the endodermis. The results indicate that phloem unloading was strongest at sites of root differentiation, where ATPase activity was concentrated in the

  1. Overland flow from plant patches: Coupled effects of preferential infiltration, surface roughness and depression storage at the semiarid Patagonian Monte

    NASA Astrophysics Data System (ADS)

    Rossi, María J.; Ares, Jorge O.

    2016-02-01

    The objective of this study is to characterize and quantify the overland flow generated from the plant patch areas of spotted vegetation toward the immediate surrounding bare ground including the coupled effects of preferential infiltration, surface roughness and depression storage. To this aim a series of overland flow plot experiments were designed in areas of the Patagonian Monte where evidence of patch-to-soil overland flow was observed. The experiments produced data on the plot micro-topography and physical properties of the soil, root density and the frictional parameters of the overland flow as well as the extent of the areas of water depression storage. The obtained data were used to calibrate a spatial-explicit (CREST) hydrological model of the flows and pathways generated by stemflow and throughfall during characteristic storms in the area. Good agreement between the model estimates and the measured data was found. This work provides physically-based metrics of runoff redistribution from the plant patch areas toward the immediate surrounding bare soil areas, including the effect of plant roots and depression storage as influenced by various shapes of the plant patch slopes. It is concluded that water transport can result from stemflow and throughfall at the patch areas during typical rainfall events at the semiarid Patagonian Monte. Implications of this phenomenon in the surface distribution of water, nutrients and seeds may feasibly follow.

  2. Looking into the water with oblique head tilting: revision of the aerial binocular imaging of underwater objects.

    PubMed

    Horváth, Gábor; Buchta, Krisztián; Varjú, Dezsö

    2003-06-01

    It is a well-known phenomenon that when we look into the water with two aerial eyes, both the apparent position and the apparent shape of underwater objects are different from the real ones because of refraction at the water surface. Earlier studies of the refraction-distorted structure of the underwater binocular visual field of aerial observers were restricted to either vertically or horizontally oriented eyes. We investigate a generalized version of this problem: We calculate the position of the binocular image point of an underwater object point viewed by two arbitrarily positioned aerial eyes, including oblique orientations of the eyes relative to the flat water surface. Assuming that binocular image fusion is performed by appropriate vergent eye movements to bring the object's image onto the foveas, the structure of the underwater binocular visual field is computed and visualized in different ways as a function of the relative positions of the eyes. We show that a revision of certain earlier treatments of the aerial imaging of underwater objects is necessary. We analyze and correct some widespread erroneous or incomplete representations of this classical geometric optical problem that occur in different textbooks. Improving the theory of aerial binocular imaging of underwater objects, we demonstrate that the structure of the underwater binocular visual field of aerial observers distorted by refraction is more complex than has been thought previously. PMID:12801180

  3. Accumulation of artificial radionuclides in agricultural plants in the area used for surface nuclear tests.

    PubMed

    Kozhakhanov, T E; Lukashenko, S N; Larionova, N V

    2014-11-01

    The paper reports on the study of artificial radionuclide accumulation in agricultural crops grown at the territory with high concentration of radionuclides, and first of all - with high concentration of transuranium elements. As a result of this work, peculiarities of accumulation and distribution of artificial radionuclides in the vegetative and generative organs of the studied plants have been revealed. Basic accumulation factors have been found for (137)Cs, (90)Sr, (239+240)Pu, and (241)Am in agricultural products. Accumulation factor dependence on type of planting was found for the investigated types of plants. It has been found that the vegetative organs accumulate radionuclides most of all. PMID:25128979

  4. AMS/NRCan Joint Survey Report: Aerial Campaign

    SciTech Connect

    Wasiolek, Piotr; Stampahar, Jez; Malchow, Rusty; Stampahar, Tom; Lukens, Mike; Seywerd, Henry; Fortin, Richard; Harvey, Brad; Sinclair, Laurel

    2014-12-31

    In January 2014 the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) Aerial Measuring System (AMS) and the Natural Resources Canada (NRCan) Nuclear Emergency Response project conducted a series of joint surveys at a number of locations in Nevada including the Nevada National Security Site (NNSS). The goal of this project was to compare the responses of the two agencies’ aerial radiation detection systems and data analysis techniques. This test included varied radioactive surface contamination levels and isotopic composition experienced at the NNSS and the differing data processing techniques utilized by the respective teams. Because both teams used the commercial aerial radiation detection systems from Radiation Solutions, Inc., the main focus of the campaign was to investigate the data acquisition techniques, data analysis, and ground-truth verification. The NRCan system consisted of four 4" × 4" × 16" NaI(Tl) scintillator crystals of which two were externally mounted in a modified commercial cargo basket certified for the Eurocopter AS350; the NNSA AMS system consisted of twelve 2" × 4" × 16" NaI(Tl) crystals in externally mounted dedicated pods. For NRCan, the joint survey provided an opportunity to characterize their system’s response to extended sources of various fission products at the NNSS. Since both systems play an important role in their respective countries’ national framework of radiological emergency response and are subject to multiple mutual cooperation agreements, it was important for each country to obtain more thorough knowledge of how they would employ these important assets and define the roles that they would each play in an actual response.

  5. Use of unmanned aerial vehicles (UAV) for urban tree inventories

    NASA Astrophysics Data System (ADS)

    Ritter, Brian A.

    In contrast to standard aerial imagery, unmanned aerial systems (UAS) utilize recent technological advances to provide an affordable alternative for imagery acquisition. Increased value can be realized through clarity and detail providing higher resolution (2-5 cm) over traditional products. Many natural resource disciplines such as urban forestry will benefit from UAS. Tree inventories for risk assessment, biodiversity, planning, and design can be efficiently achieved with the UAS. Recent advances in photogrammetric processing have proved automated methods for three dimensional rendering of aerial imagery. Point clouds can be generated from images providing additional benefits. Association of spatial locational information within the point cloud can be used to produce elevation models i.e. digital elevation, digital terrain and digital surface. Taking advantage of this point cloud data, additional information such as tree heights can be obtained. Several software applications have been developed for LiDAR data which can be adapted to utilize UAS point clouds. This study examines solutions to provide tree inventory and heights from UAS imagery. Imagery taken with a micro-UAS was processed to produce a seamless orthorectified image. This image provided an accurate way to obtain a tree inventory within the study boundary. Utilizing several methods, tree height models were developed with variations in spatial accuracy. Model parameters were modified to offset spatial inconsistencies providing statistical equality of means. Statistical results (p = 0.756) with a level of significance (α = 0.01) between measured and modeled tree height means resulted with 82% of tree species obtaining accurate tree heights. Within this study, the UAS has proven to be an efficient tool for urban forestry providing a cost effective and reliable system to obtain remotely sensed data.

  6. Bypassing both surface attachment and surface recognition requirements for appressorium formation by overactive ras signaling in Magnaporthe oryzae.

    PubMed

    Zhou, Xiaoying; Zhao, Xinhua; Xue, Chaoyang; Dai, Yafeng; Xu, Jin-Rong

    2014-09-01

    Magnaporthe oryzae forms a highly specialized infection structure called an appressorium for plant penetration. In M. oryzae and many other plant-pathogenic fungi, surface attachment and surface recognition are two essential requirements for appressorium formation. Development of appressoria in the air has not been reported. In this study, we found that expression of a dominant active MoRAS2(G18V) allele in M. oryzae resulted in the formation of morphologically abnormal appressoria on nonconducive surfaces, in liquid suspensions, and on aerial hyphae without attachment to hard surfaces. Both the Pmk1 mitogen-activated protein kinase cascade and cAMP signaling pathways that regulate surface recognition and appressorium morphogenesis in M. oryzae were overactivated in the MoRAS2(G18V) transformant. In mutants deleted of PMK1 or CPKA, expression of MoRAS2(G18V) had no significant effects on appressorium morphogenesis. Furthermore, expression of dominant MoRAS2 in Colletotrichum graminicola and C. gloeosporioides also caused the formation of appressorium-like structures in aerial hyphae. Overall, our data indicate that MoRas2 functions upstream from both the cAMP-PKA and Pmk1 pathways and overactive Ras signaling leads to improper activation of these two pathways and appressorium formation without surface attachment in appressorium-forming pathogens. PMID:24835254

  7. Water relations in the interaction of foliar bacterial pathogens with plants.

    PubMed

    Beattie, Gwyn A

    2011-01-01

    This review examines the many ways in which water influences the relations between foliar bacterial pathogens and plants. As a limited resource in aerial plant tissues, water is subject to manipulation by both plants and pathogens. A model is emerging that suggests that plants actively promote localized desiccation at the infection site and thus restrict pathogen growth as one component of defense. Similarly, many foliar pathogens manipulate water relations as one component of pathogenesis. Nonvascular pathogens do this using effectors and other molecules to alter hormonal responses and enhance intercellular watersoaking, whereas vascular pathogens use many mechanisms to cause wilt. Because of water limitations on phyllosphere surfaces, bacterial colonists, including pathogens, benefit from the protective effects of cellular aggregation, synthesis of hygroscopic polymers, and uptake and production of osmoprotective compounds. Moreover, these bacteria employ tactics for scavenging and distributing water to overcome water-driven barriers to nutrient acquisition, movement, and signal exchange on plant surfaces. PMID:21438680

  8. Effect of photosynthetically elevated pH on performance of surface flow-constructed wetland planted with Phragmites australis.

    PubMed

    Yin, Xiaole; Zhang, Jian; Hu, Zhen; Xie, Huijun; Guo, Wenshan; Wang, Qingsong; Ngo, Huu Hao; Liang, Shuang; Lu, Shaoyong; Wu, Weizhong

    2016-08-01

    Combination of emergent and submerged plants has been proved to be able to enhance pollutant removal efficiency of surface flow-constructed wetland (SFCW) during winter. However, intensive photosynthesis of submerged plants during summer would cause pH increase, which may have adverse effects on emergent plants. In this study, nitrogen transformation of lab-scale SFCW under pH gradient of 7.5, 8.5, 9.5 and 10.5 was systematically investigated. The results showed that total nitrogen (TN) removal efficiency decreased from 76.3 ± 0.04 to 51.8 ± 0.04 % when pH increased from 7.5 to 10.5, which was mainly attributed to plant assimilation decay and inhibition of microbe activities (i.e., nitrite-oxidizing bacteria and denitrifiers). Besides, the highest sediment adsorption in SFCW was observed at pH of 8.5. In general, the combination of submerged and emergent plants is feasible for most of the year, but precaution should be taken to mitigate the negative effect of high alkaline conditions when pH rises to above 8.5 in midsummer. PMID:27121016

  9. 7 CFR 1755.507 - Aerial cable services.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... § 1755.507 Aerial cable services. (a) Where more than six pairs are needed initially, and where an aerial service is necessary, the service shall consist of 22 AWG filled aerial cable of a pair size adequate for... from the building, the wall bracket shall be reinforced against pullout by an arrangement equivalent...

  10. 7 CFR 1755.507 - Aerial cable services.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... § 1755.507 Aerial cable services. (a) Where more than six pairs are needed initially, and where an aerial service is necessary, the service shall consist of 22 AWG filled aerial cable of a pair size adequate for... from the building, the wall bracket shall be reinforced against pullout by an arrangement equivalent...

  11. 7 CFR 1755.507 - Aerial cable services.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... § 1755.507 Aerial cable services. (a) Where more than six pairs are needed initially, and where an aerial service is necessary, the service shall consist of 22 AWG filled aerial cable of a pair size adequate for... from the building, the wall bracket shall be reinforced against pullout by an arrangement equivalent...

  12. 47 CFR 32.6421 - Aerial cable expense.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Aerial cable expense. 32.6421 Section 32.6421... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6421 Aerial cable expense. (a) This account shall include expenses associated with aerial cable. (b) Subsidiary record...

  13. 47 CFR 32.6421 - Aerial cable expense.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Aerial cable expense. 32.6421 Section 32.6421... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6421 Aerial cable expense. (a) This account shall include expenses associated with aerial cable. (b) Subsidiary record...

  14. 47 CFR 32.6421 - Aerial cable expense.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Aerial cable expense. 32.6421 Section 32.6421... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6421 Aerial cable expense. (a) This account shall include expenses associated with aerial cable. (b) Subsidiary record...

  15. 47 CFR 32.6421 - Aerial cable expense.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Aerial cable expense. 32.6421 Section 32.6421... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6421 Aerial cable expense. (a) This account shall include expenses associated with aerial cable. (b) Subsidiary record...

  16. Geography via Aerial Field Trips: Do It This Way, 6.

    ERIC Educational Resources Information Center

    Richason, Benjamin F., Jr.; Guell, Carl E.

    To provide guidance for geography teachers, this booklet presents information on how to plan and execute aerial field trips. The aerial field trip can be employed as an effective visual aid technique in the teaching of geography, especially for presenting earth generalizations and interrelationships. The benefits of an aerial field trip are…

  17. Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Riley, W. J.; Tang, J.; Koven, C. D.

    2015-03-01

    Soil is a complex system where biotic (e.g., plant roots, micro-organisms) and abiotic (e.g., mineral surfaces) consumers compete for resources necessary for life (e.g., nitrogen, phosphorus). This competition is ecologically significant, since it regulates the dynamics of soil nutrients and controls aboveground plant productivity. Here we develop, calibrate, and test a nutrient competition model that accounts for multiple soil nutrients interacting with multiple biotic and abiotic consumers. As applied here for tropical forests, the Nutrient COMpetition model (N-COM) includes three primary soil nutrients (NH4+, NO3-, and POx (representing the sum of PO43-, HPO42-, and H2PO4-)) and five potential competitors (plant roots, decomposing microbes, nitrifiers, denitrifiers, and mineral surfaces). The competition is formulated with a quasi-steady-state chemical equilibrium approximation to account for substrate (multiple substrates share one consumer) and consumer (multiple consumers compete for one substrate) effects. N-COM successfully reproduced observed soil heterotrophic respiration, N2O emissions, free phosphorus, sorbed phosphorus, and free NH4+ at a tropical forest site (Tapajos). The overall model posterior uncertainty was moderately well constrained. Our sensitivity analysis revealed that soil nutrient competition was primarily regulated by consumer-substrate affinity rather than environmental factors such as soil temperature or soil moisture. Our results imply that the competitiveness (from most to least competitive) followed this order: (1) for NH4+, nitrifiers ~ decomposing microbes > plant roots, (2) for NO3-, denitrifiers ~ decomposing microbes > plant roots, (3) for POx, mineral surfaces > decomposing microbes ~ plant roots. Although smaller, plant relative competitiveness is of the same order of magnitude as microbes. We then applied the N-COM model to analyze field nitrogen and phosphorus perturbation experiments in two tropical forest sites (in Hawaii

  18. Surface α-1,3-Glucan Facilitates Fungal Stealth Infection by Interfering with Innate Immunity in Plants

    PubMed Central

    Fujikawa, Takashi; Kouzai, Yusuke; Minami, Eiichi; Yano, Shigekazu; Koga, Hironori; Meshi, Tetsuo; Nishimura, Marie

    2012-01-01

    Plants evoke innate immunity against microbial challenges upon recognition of pathogen-associated molecular patterns (PAMPs), such as fungal cell wall chitin. Nevertheless, pathogens may circumvent the host PAMP-triggered immunity. We previously reported that the ascomycete Magnaporthe oryzae, a famine-causing rice pathogen, masks cell wall surfaces with α-1,3-glucan during invasion. Here, we show that the surface α-1,3-glucan is indispensable for the successful infection of the fungus by interfering with the plant's defense mechanisms. The α-1,3-glucan synthase gene MgAGS1 was not essential for infectious structure development but was required for infection in M. oryzae. Lack or degradation of surface α-1,3-glucan increased fungal susceptibility towards chitinase, suggesting the protective role of α-1,3-glucan against plants' antifungal enzymes during infection. Furthermore, rice plants secreting bacterial α-1,3-glucanase (AGL-rice) showed strong resistance not only to M. oryzae but also to the phylogenetically distant ascomycete Cochlioborus miyabeanus and the polyphagous basidiomycete Rhizoctonia solani; the histocytochemical analysis of the latter two revealed that α-1,3-glucan also concealed cell wall chitin in an infection-specific manner. Treatment with α-1,3-glucanase in vitro caused fragmentation of infectious hyphae in R. solani but not in M. oryzae or C. miyabeanus, indicating that α-1,3-glucan is also involved in maintaining infectious structures in some fungi. Importantly, rapid defense responses were evoked (a few hours after inoculation) in the AGL-rice inoculated with M. oryzae, C. miyabeanus and R. solani as well as in non-transgenic rice inoculated with the ags1 mutant. Taken together, our results suggest that α-1,3-glucan protected the fungal cell wall from degradative enzymes secreted by plants even from the pre-penetration stage and interfered with the release of PAMPs to delay innate immune defense responses. Because α-1,3-glucan is

  19. Surface α-1,3-glucan facilitates fungal stealth infection by interfering with innate immunity in plants.

    PubMed

    Fujikawa, Takashi; Sakaguchi, Ayumu; Nishizawa, Yoko; Kouzai, Yusuke; Minami, Eiichi; Yano, Shigekazu; Koga, Hironori; Meshi, Tetsuo; Nishimura, Marie

    2012-01-01

    Plants evoke innate immunity against microbial challenges upon recognition of pathogen-associated molecular patterns (PAMPs), such as fungal cell wall chitin. Nevertheless, pathogens may circumvent the host PAMP-triggered immunity. We previously reported that the ascomycete Magnaporthe oryzae, a famine-causing rice pathogen, masks cell wall surfaces with α-1,3-glucan during invasion. Here, we show that the surface α-1,3-glucan is indispensable for the successful infection of the fungus by interfering with the plant's defense mechanisms. The α-1,3-glucan synthase gene MgAGS1 was not essential for infectious structure development but was required for infection in M. oryzae. Lack or degradation of surface α-1,3-glucan increased fungal susceptibility towards chitinase, suggesting the protective role of α-1,3-glucan against plants' antifungal enzymes during infection. Furthermore, rice plants secreting bacterial α-1,3-glucanase (AGL-rice) showed strong resistance not only to M. oryzae but also to the phylogenetically distant ascomycete Cochlioborus miyabeanus and the polyphagous basidiomycete Rhizoctonia solani; the histocytochemical analysis of the latter two revealed that α-1,3-glucan also concealed cell wall chitin in an infection-specific manner. Treatment with α-1,3-glucanase in vitro caused fragmentation of infectious hyphae in R. solani but not in M. oryzae or C. miyabeanus, indicating that α-1,3-glucan is also involved in maintaining infectious structures in some fungi. Importantly, rapid defense responses were evoked (a few hours after inoculation) in the AGL-rice inoculated with M. oryzae, C. miyabeanus and R. solani as well as in non-transgenic rice inoculated with the ags1 mutant. Taken together, our results suggest that α-1,3-glucan protected the fungal cell wall from degradative enzymes secreted by plants even from the pre-penetration stage and interfered with the release of PAMPs to delay innate immune defense responses. Because α-1,3-glucan is

  20. Formation of deposits on the surfaces of superheaters and economisers of MSW incinerator plants.

    PubMed

    Reichelt, J; Pfrang-Stotz, G; Bergfeldt, B; Seifert, H; Knapp, P

    2013-01-01

    Mineralogical and chemical investigations of deposits from superheaters and economisers from a MSWI plant in Mannheim, Germany, lead to a classification system which provides information about the most critical parameters leading to fouling and corrosion. With the help of this classification system parameters like the geometry of boilers and the waste input can be changed in order to prolong run times between revisions and enhance energy efficiency of MSWI plants. PMID:23017646

  1. Estimation of aerial deposition and foliar uptake of xenobiotics: Assessment of current models

    SciTech Connect

    Link, S.O.; Fellows, R.J.; Cataldo, D.A.; Droppo, J.G.; Van Voris, P.

    1987-10-01

    This report reviews existing mathematical and/or computer simulation models that estimate xenobiotic deposition to and transport through (both curricular and stomatal) vegetative surfaces. The report evaluates the potential for coupling the best of those models to the existing Uptake, Translocation, Accumulation, and Biodegradation model to be used for future xenobiotic exposure assessments. Here xenobiotic compounds are defined as airborne contaminants, both organic and gaseous pollutants, that are introduced into the environment by man. Specifically this document provides a detailed review of the state-of-the-art models that addressed aerial deposition of particles and gases to foliage; foliar and cuticular transport, metabolism, and uptake of organic xenobiotics; and stomatal transport of gaseous and volatile organic xenobiotic pollutants. Where detailed information was available, parameters for each model are provided on a chemical by chemical as well as species by species basis. Sufficient detail is provided on each model to assess the potential for adapting or coupling the model to the existing UTAB plant exposure model. 126 refs., 6 figs., 10 tabs.

  2. Aerial Infrared Photos for Citrus Growers

    NASA Technical Reports Server (NTRS)

    Blazquez, C. H.; Horn, F. W. J.

    1982-01-01

    Handbook advises on benefits and methods of aerial photography with color infrared film. Interpretation of photographs is discussed in detail. Necessary equipment for interpretation is described--light table, magnifying lenses, and microfiche viewers, for example. Advice is given on rating tree condition; identifying effects of diseases, insects, and nematodes; and evaluating effects of soil, water, and weather.

  3. "A" Is for Aerial Maps and Art

    ERIC Educational Resources Information Center

    Todd, Reese H.; Delahunty, Tina

    2007-01-01

    The technology of satellite imagery and remote sensing adds a new dimension to teaching and learning about maps with elementary school children. Just a click of the mouse brings into view some images of the world that could only be imagined a generation ago. Close-up aerial pictures of the school and neighborhood quickly catch the interest of…

  4. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the American National...) Vertical towers; and (v) A combination of any such devices. Aerial equipment may be made of metal, wood... on the edge of the basket or use planks, ladders, or other devices for a work position. (v) A...

  5. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the American National...) Vertical towers; and (v) A combination of any such devices. Aerial equipment may be made of metal, wood... on the edge of the basket or use planks, ladders, or other devices for a work position. (v) A...

  6. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the American National...) Vertical towers; and (v) A combination of any such devices. Aerial equipment may be made of metal, wood... on the edge of the basket or use planks, ladders, or other devices for a work position. (v) A...

  7. ENVIRONMENTAL APPLICATION OF LOW ALTITUDE AERIAL PHOTOGRAPHY

    EPA Science Inventory

    The most practical avenue for development of these goals is to continue to use the LAAPS system at field sites that require aerial imaging. For the sake of convenience, I believe that the local field sites can provide a convenient location to develop new applications and test enh...

  8. Aerial Scene Recognition using Efficient Sparse Representation

    SciTech Connect

    Cheriyadat, Anil M

    2012-01-01

    Advanced scene recognition systems for processing large volumes of high-resolution aerial image data are in great demand today. However, automated scene recognition remains a challenging problem. Efficient encoding and representation of spatial and structural patterns in the imagery are key in developing automated scene recognition algorithms. We describe an image representation approach that uses simple and computationally efficient sparse code computation to generate accurate features capable of producing excellent classification performance using linear SVM kernels. Our method exploits unlabeled low-level image feature measurements to learn a set of basis vectors. We project the low-level features onto the basis vectors and use simple soft threshold activation function to derive the sparse features. The proposed technique generates sparse features at a significantly lower computational cost than other methods~\\cite{Yang10, newsam11}, yet it produces comparable or better classification accuracy. We apply our technique to high-resolution aerial image datasets to quantify the aerial scene classification performance. We demonstrate that the dense feature extraction and representation methods are highly effective for automatic large-facility detection on wide area high-resolution aerial imagery.

  9. A TOOL FOR PLANNING AERIAL PHOTOGRAPHY

    EPA Science Inventory

    abstract The U.S. EPAs Pacific Coastal Ecology Branch has developed a tool in the form of an Excel. spreadsheet that facilitates planning aerial photography missions. The spreadsheet accepts various input parameters such as desired photo-scale and boundary coordinates of the stud...

  10. The Art and Science of Aerial Perspective

    ERIC Educational Resources Information Center

    Kegel, Susan

    2006-01-01

    The author is always looking for ways to see connections and to adapt experiences across different subjects. Combining art with other disciplines helps keep students engaged, even the really analytical and verbal learners. Aerial perspective is an art technique, a scientific principle, and a vehicle for introducing Chinese painting and…

  11. Calculating aerial images from EUV masks

    NASA Astrophysics Data System (ADS)

    Pistor, Thomas V.; Neureuther, Andrew R.

    1999-06-01

    Aerial images for line/space patterns, arrays of posts and an arbitrary layout pattern are calculated for EUV masks in a 4X EUV imaging system. Both mask parameters and illumination parameters are varied to investigate their effects on the aerial image. To facilitate this study, a parallel version of TEMPEST with a Fourier transform boundary condition was developed and run on a network of 24 microprocessors. Line width variations are observed when absorber thickness or sidewall angle changes. As the line/space pattern scales to smaller dimensions, the aspect ratios of the absorber features increase, introducing geometric shadowing and reducing aerial image intensity and contrast. 100nm square posts have circular images of diameter close to 100nm, but decreasing in diameter significantly when the corner round radius at the mask becomes greater than 50 nm. Exterior mask posts image slightly smaller and with higher ellipticity than interior mask posts. The aerial image of the arbitrary test pattern gives insight into the effects of the off-axis incidence employed in EUV lithography systems.

  12. 10. AERIAL VIEW LOOKING NORTHWEST AT THE 400AREA COMPLEX. THIS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. AERIAL VIEW LOOKING NORTHWEST AT THE 400-AREA COMPLEX. THIS AREA OF THE PLANT MANUFACTURED NON-PLUTONIUM WEAPONS COMPONENTS FROM BERYLLIUM, DEPLETED URANIUM, AND STAINLESS STEEL. THE 400 - AREA ALSO INCLUDED A FACILITY FOR THE MODIFICATION OF SAFE SECURE TRANSPORT VEHICLES FOR SPECIAL NUCLEAR MATERIALS BEING SHIPPED TO AND FROM THE SITE. BUILDING 444, IN THE UPPER RIGHT EDGE OF THE PHOTOGRAPH, WAS THE ORIGINAL PLANT A. THE LARGE BUILDING IN THE TOP OF THE PHOTOGRAPH IS BUILDING 460, BUILT AS A STATE-OF-THE-ART STAINLESS STEEL MANUFACTURING FACILITY (6/27/95). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  13. Modeling plant, microorganisms, and mineral surface competition for soil nitrogen and phosphorus: Competition representations and ecological significance

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Riley, W. J.; Chambers, J. Q.; Tang, J.

    2014-12-01

    It is widely accepted that terrestrial ecosystem carbon dynamics are strongly coupled and controlled by soil nutrients status. Nutrient availability serves as an indicator of aboveground carbon productivity and ecosystem stability, especially when soils are infertile. In these conditions, plants have to outcompete microorganism and mineral surfaces to acquire nutrients required for photosynthesis, respiration, seed production, defense, etc. It is usually hypothesized that microbes are short-term winners but long-term losers in nutrient competition. Microbes quickly trap available soil nitrogen and phosphorous, thereby preventing nutrient inaccessibility through hydrological leaching and mineral surface adsorption. Over longer temporal scales, nutrients are released into the soil and become available for plant uptake. Despite its ecological significance, nutrient competition is either absent or over-simplified (e.g., assuming all consumers are equally competitive) in terrestrial biogeochemistry models. Here, we aim to test the representation of different competitive strategies and to investigate their ecological consequences with a newly developed biogeochemical model structure. The new model includes three major soil nutrients (ammonia, nitrate, and phosphate) and multiple consumers (plants, microbes, mineral surfaces, nitrifiers, and denitrifiers). We analyze predicted soil carbon, nitrogen, and phosphorus dynamics with three different competitive strategies: (1) plants compete poorly against microorganisms; (2) all consumers are equally competitive; and (3) an explicit Equilibrium Chemical Approximation (ECA; Tang and Riley (2013)) treatment. We find that very different ecosystem states are predicted when assuming different competitive structures, and that the ECA approach provides the best match with a large suite of observational constraints from tropical experimental and transect studies. We conclude that terrestrial biogeochemical models should represent a

  14. Impact of using paper mill sludge for surface-mine reclamation on runoff water quality and plant growth

    SciTech Connect

    Shipitalo, M.J.; Bonta, J.V.

    2008-11-15

    Paper mills generate large amounts of solid waste consisting of fibrous cellulose, clay, and lime. Paper mill Sludge (PMS) can improve reclamation of surface-coal mines where low pH and organic-carbon levels in the spoil cover material can inhibit revegetation. When applied at high rates, however, PMS may adversely impact the quality of surface runoff. Therefore, we applied PMS at 0, 224, and 672 dry Mg ha{sup -1} to 22.1 x 4.6-m plots at a recently mined site and monitored runoff for a total of 13 mo. The zero-rate plots served as controls and received standard reclamation consisting of mulching with hay and fertilization at planting. Compared to the control plots, PMS reduced runoff fourfold to sixfold and decreased erosion from 47 Mg ha{sup -1} to < 1 Mg ha{sup -1}. Most of the reduction occurred in the 2.5 mo before the plots were planted. Flow-weighted average dissolved oxygen concentrations in runoff from plots at the 224 and 672 Mg ha{sup -1} rates, however, were much lower ({<=} 0.4 vs. 8.2 mg L{sup -1}) and chemical oxygen demand (COD) was much higher for the 672 Mg ha{sup -1} rate plots than the control plots during the pre-plant period (7229 vs. 880 mg L{sup -1}). There were few noteworthy differences in water quality among treatments post-planting, but plant dry-matter yields were greater for the PMS plots than for the controls. The 672 Mg ha{sup -1} rate did not increase COD or nutrient loads compared to the 224 Mg ha{sup -1} rate and may have more persistent beneficial effects by increasing soil organic carbon levels and pH to a greater extent.

  15. Foulant Characteristics Comparison in Recycling Cooling Water System Makeup by Municipal Reclaimed Water and Surface Water in Power Plant

    PubMed Central

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water. PMID:25893132

  16. Foulant characteristics comparison in recycling cooling water system makeup by municipal reclaimed water and surface water in power plant.

    PubMed

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water. PMID:25893132

  17. 23. AERIAL VIEW LOOKING SOUTHEAST AT THE PLUTONIUM OPERATION BUILDINGS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. AERIAL VIEW LOOKING SOUTHEAST AT THE PLUTONIUM OPERATION BUILDINGS 771, 776/777, AND 707. BUILDING 771, IN THE FOREGROUND, WAS BUILT IN 1952 TO HOUSE ALL PLUTONIUM OPERATIONS. BY 1956, BUILDING 771 WAS NO LONGER ADEQUATE FOR PRODUCTION DEMANDS. BUILDING 776/777, TO THE SOUTH OF BUILDING 771, WAS CONSTRUCTED TO HOUSE PLUTONIUM FABRICATION AND FOUNDRY OPERATIONS. PLUTONIUM RECOVERY REMAINED IN BUILDING 771. BY 1967, CONSTRUCTION ON BUILDING 707, TO THE SOUTH OF BUILDING 776/777, BEGAN AS PRODUCTION LEVELS CONTINUED TO EXPAND NECESSITATING THE NEED FOR ADDITIONAL PLUTONIUM FABRICATION SPACE (7/1/69). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  18. Unmanned aerial vehicles (UAV) in atmospheric research and satellite validation

    NASA Astrophysics Data System (ADS)

    Sitnikov, Nikolay; Borisov, Yuriy; Akmulin, Dimitry; Chekulaev, Igor; Efremov, Denis; Sitnikova, Vera; Ulanovsky, Alexey; Popovicheva, Olga

    The perspectives of the development of methods and facilities based on UAV for atmospheric investigations are considered. Some aspects of these methods applications are discussed. Developments of the experimental samples of UAV onboard equipment for measurements of atmospheric parameters carried out in Central Aerological Observatory are presented. Hardware system for the UAV is developed. The results of measurements of the spatial distributions of the thermodynamic parameters and the concentrations of some gas species onboard of remotely piloted and unmanned aerial vehicles obtained in field tests are presented. The development can be used for satellite data validation, as well as operative environmental monitoring of contaminated areas in particular, chemical plants, natural and industrial disasters territories, areas and facilities for space purposes , etc.

  19. Mutagenic Activity of Indigofera truxillensis and I. suffruticosa Aerial Parts

    PubMed Central

    Calvo, Tamara Regina; Cardoso, Cássia Regina Primila; da Silva Moura, Adriana Candido; dos Santos, Lourdes Campaner; Colus, Ilce Mara Syllos; Vilegas, Wagner; Varanda, Eliana Aparecida

    2011-01-01

    Indigofera truxillensis and I. suffruticosa, are used as a source of indigo dye and to treat several diseases. The mutagenic activity of the methanolic extracts from aerial parts, glycerolipid, flavonoid and alkaloid fractions of the extract were evaluated by means of Salmonella/microsome assays using TA100, TA98, TA102 and TA97a strains. The methanolic extract of I. truxillensis showed mutagenic activity in the TA98 strain without S9 while glycerolipid fraction was devoid of activity. The flavonoid and alkaloid fractions of both plants showed mutagenicity. Chemical analysis of flavonoid fractions of I. truxillensis and I. suffruticosa resulted in the identification of kaempferol, quercetin and their derivatives. The alkaloid fraction of both the species contained indigo and indirubin and indigo was found mainly responsible for the mutagenic activity. PMID:19696193

  20. CONTEXTUAL AERIAL VIEW OF "COLD" NORTH HALF OF MTR COMPLEX. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTEXTUAL AERIAL VIEW OF "COLD" NORTH HALF OF MTR COMPLEX. CAMERA FACING EASTERLY. FOREGROUND CORNER CONTAINS OIL STORAGE TANKS. WATER TANKS AND WELL HOUSES ARE BEYOND THEM TO THE LEFT. LARGE LIGHT-COLORED BUILDING IN CENTER OF VIEW IS STEAM PLANT. DEMINERALIZER AND WATER STORAGE TANK ARE BEYOND. SIX-CELL COOLING TOWER AND ITS PUMP HOUSE ARE ABOVE IT IN VIEW. SERVICE BUILDINGS INCLUDING CANTEEN ARE ON NORTH SIDE OF ROAD. "EXCLUSION" AREA IS BEYOND ROAD. COMPARE LOCATION OF EXCLUSION-AREA GATE WITH PHOTO ID-33-G-202. INL NEGATIVE NO. 3608. Unknown Photographer, 10/30/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  1. Chemical constituents of aerial parts and roots of Pycnanthemum flexuosum.

    PubMed

    Murata, Toshihiro; Nakano, Mari; Miyase, Toshio; Yoshizaki, Fumihiko

    2014-01-01

    An extract of whole plants of Pycnanthemum flexuosum showed an inhibitory effect on hyaluronidase activity. From an 80% acetone extract of aerial parts, 3-[(3E)-4-phenylbut-3-enoylamino]propionic acid, 3-O-β-D-glucuronopyranosyl-echinocystic acid 28-O-β-D-xylopyranosyl-(1→3)-[3,4-diacetyl-β-D-xylopyranosyl-(1→4)]-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyl ester, vanillic acid 1-O-[(5-O-syringoyl)-β-D-apiofuranosyl]-(1→2)-β-D-glucopyranoside, and (4S,5R)-4-hydroxy-5-phenyl-tetrahydrofuran-2-one were isolated together with 30 known compounds. Six known compounds were isolated from an 80% acetone extract of roots, and eritrichin was revealed as a hyaluronidase inhibitor in P. flexuosum. PMID:24632638

  2. Use of Acoustic Wind Profilers for Uninhabited Aerial Vehicle Flight Test Activities

    NASA Technical Reports Server (NTRS)

    Donnohue, Casey J.; Underwood, Ken; Bellue, Dan G.

    2001-01-01

    Sonic detection and ranging (SODAR) systems provide crucial information to meteorologists for advising uninhabited aerial vehicle (UAV) flight crews and mission directors on historical, current, and forecasted wind and turbulence conditions. The SODAR system provided advanced warning of increasing surface winds for an X-38 flight on February 6, 1999. The SODAR system has also provided important postflight data for X-38 engineers to review the performance of the parafoil in the presence of strong wind shears near the surface at landing.

  3. Object and activity detection from aerial video

    NASA Astrophysics Data System (ADS)

    Se, Stephen; Shi, Feng; Liu, Xin; Ghazel, Mohsen

    2015-05-01

    Aerial video surveillance has advanced significantly in recent years, as inexpensive high-quality video cameras and airborne platforms are becoming more readily available. Video has become an indispensable part of military operations and is now becoming increasingly valuable in the civil and paramilitary sectors. Such surveillance capabilities are useful for battlefield intelligence and reconnaissance as well as monitoring major events, border control and critical infrastructure. However, monitoring this growing flood of video data requires significant effort from increasingly large numbers of video analysts. We have developed a suite of aerial video exploitation tools that can alleviate mundane monitoring from the analysts, by detecting and alerting objects and activities that require analysts' attention. These tools can be used for both tactical applications and post-mission analytics so that the video data can be exploited more efficiently and timely. A feature-based approach and a pixel-based approach have been developed for Video Moving Target Indicator (VMTI) to detect moving objects at real-time in aerial video. Such moving objects can then be classified by a person detector algorithm which was trained with representative aerial data. We have also developed an activity detection tool that can detect activities of interests in aerial video, such as person-vehicle interaction. We have implemented a flexible framework so that new processing modules can be added easily. The Graphical User Interface (GUI) allows the user to configure the processing pipeline at run-time to evaluate different algorithms and parameters. Promising experimental results have been obtained using these tools and an evaluation has been carried out to characterize their performance.

  4. Laser Surface Treatment of Hydro and Thermal Power Plant Components and Their Coatings: A Review and Recent Findings

    NASA Astrophysics Data System (ADS)

    Mann, B. S.

    2015-11-01

    High-power diode laser (HPDL) surface modification of hydro and thermal power plant components is of the utmost importance to minimize their damages occurring due to cavitation erosion, water droplet erosion, and particle erosion (CE, WDE, and PE). Special emphasis is given on the HPDL surface treatment of martensitic and precipitate-hardened stainless steels, Ti6Al4V alloy, plasma ion nitro-carburized layers, high pressure high velocity oxy-fuel and twin-wire arc sprayed coatings. WDE test results of all these materials and coatings in `untreated' and `HPDL- treated at 1550 °C' conditions, up to 8.55 million cycles, are already available. Their WDE testing was further continued up to 10.43 million cycles. The X20Cr13 and X10CrNiMoV1222, the most common martensitic stainless steels used in hydro and thermal power plants, were HPDL surface treated at higher temperature (1650 °C) and their WDE test results were also obtained up to 10.43 million cycles. It is observed that the increased HPDL surface temperature from 1550 to 1650 °C has resulted in significant improvement in their WDE resistances because of increased martensitic (ά) phase at higher temperature. After conducting long-range WDE tests, the correlation of CE, WDE, and PE resistances of these materials and protective coatings with their mechanical properties such as fracture toughness and microhardness product, ultimate resilience, modified resilience, and ultimate modified resilience has been reviewed and discussed. One of the edges of a 500 MW low pressure steam turbine moving blade (X10CrNiMoV1222 stainless steel) was HPDL surface treated at 1550 °C and its radii of curvatures and deflections were measured. These were compared with the data available earlier from a flat rectangular sample of similar composition and identical HPDL surface temperature.

  5. Yeast surface display is a novel tool for the rapid immunological characterization of plant-derived food allergens.

    PubMed

    Popovic, Milica; Prodanovic, Radivoje; Ostafe, Raluca; Schillberg, Stefan; Fischer, Rainer; Gavrovic-Jankulovic, Marija

    2015-03-01

    High-throughput characterization of allergens relies often on phage display technique which is subject to the limitations of a prokaryotic expression system. Substituting the phage display platform with a yeast surface display could lead to fast immunological characterization of allergens with complex structures. Our objective was to evaluate the potential of yeast surface display for characterization of plant-derived food allergens. The coding sequence of mature actinidin (Act d 1) was cloned into pCTCON2 surface display vector. Flow cytometry was used to confirm localization of recombinant Act d 1 on the surface of yeast cells using rabbit polyclonal antisera IgG and IgE from sera of kiwifruit-allergic individuals. Immunological (dot blot, immunoblot ELISA and ELISA inhibition), biochemical (enzymatic activity in gel) and biological (basophil activation) characterization of Act d 1 after solubilization from the yeast cell confirmed that recombinant Act d 1 produced on the surface of yeast cell is similar to its natural counterpart isolated from green kiwifruit. Yeast surface display is a potent technique that enables fast immunochemical characterization of allergens in situ without the need for protein purification and offers an alternative that could lead to improvement of standard immunodiagnostic and immunotherapeutic approaches. PMID:25537533

  6. Potential use of a roadside fern (Pteris vittata) to biomonitor Pb and other aerial metal deposition

    SciTech Connect

    Ho, Y.B.; Tai, K.M.

    1985-10-01

    Lead, widely used as antiknock additives in gasoline in many parts of the world, is released from vehicular exhausts and contaminates the roadside environment. The Pb-containing particulates often settle onto roadside vegetation by sedimentation, impaction and interception resulting in high Pb content in the vegetation. The concentrations of Pb in such plants in turn are often used to demonstrate the extent of aerial deposition of Pb along roadsides. Hong Kong is a city with high traffic density of over 200 vehicles per kilometer of road. In these studies it was found that some plants could be utilized as biomonitors of atmospheric Pb and other trace metals in the roadside environment. This paper reports on the Pb and other trace metal levels in the fern Pteris vittata growing along roadside and its possible use as biomonitor species for aerial deposition of metals.

  7. Lichens as monitors of aerial heavy metal pollutants in and around Kampala

    SciTech Connect

    Nyangababo, J.T.

    1987-01-01

    The use of ion exchange resins and biological materials has aroused much interest in the search for inexpensive devices for monitoring pollution. Recent investigators have shown that plants themselves may be used as indicators of aerial fallout of heavy metals. Other workers have pursued the concept of using biological materials still further, by using mosses as indicators of aerial metal depositions. Lichens possess remarkable ion-exchange properties similar to many ion-exchange resins and are therefore suitable for the collection and retention of airborne metals. Lichens have been shown to be good indicators of pollution level; a close correlation is usually found between the distribution pattern of lichen species and the trace metal content of the surrounding air. This study was undertaken to determine the degree of contamination of the Kampala, Uganda environment by heavy metals from industries and motor traffic by using lichens as and indicator device. One type of lichen species (Calyrneferes usambaricum) was used as the test plant.

  8. Ultramap v3 - a Revolution in Aerial Photogrammetry

    NASA Astrophysics Data System (ADS)

    Reitinger, B.; Sormann, M.; Zebedin, L.; Schachinger, B.; Hoefler, M.; Tomasi, R.; Lamperter, M.; Gruber, B.; Schiester, G.; Kobald, M.; Unger, M.; Klaus, A.; Bernoegger, S.; Karner, K.; Wiechert, A.; Ponticelli, M.; Gruber, M.

    2012-07-01

    In the last years, Microsoft has driven innovation in the aerial photogrammetry community. Besides the market leading camera technology, UltraMap has grown to an outstanding photogrammetric workflow system which enables users to effectively work with large digital aerial image blocks in a highly automated way. Best example is the project-based color balancing approach which automatically balances images to a homogeneous block. UltraMap V3 continues innovation, and offers a revolution in terms of ortho processing. A fully automated dense matching module strives for high precision digital surface models (DSMs) which are calculated either on CPUs or on GPUs using a distributed processing framework. By applying constrained filtering algorithms, a digital terrain model can be derived which in turn can be used for fully automated traditional ortho texturing. By having the knowledge about the underlying geometry, seamlines can be generated automatically by applying cost functions in order to minimize visual disturbing artifacts. By exploiting the generated DSM information, a DSMOrtho is created using the balanced input images. Again, seamlines are detected automatically resulting in an automatically balanced ortho mosaic. Interactive block-based radiometric adjustments lead to a high quality ortho product based on UltraCam imagery. UltraMap v3 is the first fully integrated and interactive solution for supporting UltraCam images at best in order to deliver DSM and ortho imagery.

  9. Improving low-temperature performance of surface flow constructed wetlands using Potamogeton crispus L. plant.

    PubMed

    Fan, Jinlin; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan; Yin, Xiaole

    2016-10-01

    In this study, enhanced organics and nitrogen removal efficiency in SFCWs by different submerged plants for polluted river water treatment under cold temperature was evaluated. High average removal efficiencies of COD (92.45%), NH4(+)-N (93.70%) and TN (55.62%) were achieved in experimental SFCWs with Potamogeton crispus compared with SFCWs with other plants. SFCWs with underground Phragmites australis root also presented better performance than the unplanted systems, indicating its positive role of contamination removal in winter. The results of this study indicated SFCWs with hardy submerged plant P. crispus could be a more effective and sustainable strategy for removing organics and nitrogen in shallow nutrient enriched river water ecosystems under cold climate. PMID:27381001

  10. Input of 137Cs and 90Sr into plants from the surface of soil aggregates and the intraped space

    NASA Astrophysics Data System (ADS)

    Fokin, A. D.; Torshin, S. P.; Bebneva, Yu. M.; Gadzhiagaeva, R. A.; Zolotareva, Yu. I.; Umer, M. I.

    2014-12-01

    Soil aggregates with different localization of radionuclides—(a) only on the aggregate surface, (b) only in the intraped space, and (c) uniformly distributed throughout the aggregate volume—have been obtained under laboratory conditions, which has allowed separately assessing the roles of different aggregate parts in the uptake of radionuclides by plant roots and the reaggregation rate of the soil material. The uptake rate of the radionuclides localized on the surface of soil aggregates, especially 137Cs, by plants manifold exceeds their uptake observed at the localization of pollutants throughout the aggregate volume or only in their intraped material. The input rate of radionuclides into plants decreases with time. For 137Cs, this decrease is due to the strengthening of the sorption fixation of the radionuclide (about 15%) and the reaggregation of the soil material (85%). Under natural conditions, at a depth of 10 cm in the dark gray forest soil of a forest belt, aggregates 7-10 mm in size are subjected to 40-75% destruction and reaggregation on the average within a year, which corresponds, with consideration for the statistical dispersion of the initial data, to the aggregate lifetime of 1.5 to 3 years.

  11. Captive bubble and sessile drop surface characterization of a submerged aquatic plant, Hydrilla verticillata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The surface energy parameters of the invasive aquatic weed, Hydrilla verticillata, were determined using contact angle measurements using two different methods. The abaxial and adaxial surfaces of the leaves and stem were characterized for the weed while submerged in water using captive air and octa...

  12. Ion chromatography separation of cotton surface melezitose and raffinose: entomological vs. plant sugars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    According to previous studies, certain levels of the carbohydrates melezitose and trehalulose deposited on the surface of cotton are indicative of either whitefly or aphid contamination, which may cause problems during cotton processing. Obtaining reliable IC values for those surface sugars is para...

  13. Shake rattle and roll: the bony labyrinth and aerial descent in squamates.

    PubMed

    Boistel, Renaud; Herrel, Anthony; Lebrun, Renaud; Daghfous, Gheylen; Tafforeau, Paul; Losos, Jonathan B; Vanhooydonck, Bieke

    2011-12-01

    Controlled aerial descent has evolved many times independently in vertebrates. Squamates (lizards and snakes) are unusual in that respect due to the large number of independent origins of the evolution of this behavior. Although some squamates such as flying geckos of the genus Ptychozoon and the flying dragons of the genus Draco show obvious adaptations including skin flaps or enlarged ribs allowing them to increase their surface area and slow down their descent, many others appear unspecialized. Yet, specializations can be expected at the level of the sensory and neural systems allowing animals to maintain stability during controlled aerial descent. The vestibular system is a likely candidate given that it is an acceleration detector and is well-suited to detect changes in pitch, roll and yaw. Here we use conventional and synchrotron μCT scans to quantify the morphology of the vestibular system in squamates able to perform controlled aerial descent compared to species characterized by a terrestrial or climbing life style. Our results show the presence of a strong phylogenetic signal in the data with the vestibular system in species from the same family being morphologically similar. However, both our shape analysis and an analysis of the dimensions of the vestibular system showed clear differences among animals with different life-styles. Species able to perform a controlled aerial descent differed in the position and shape of the inner ear, especially of the posterior ampulla. Given the limited stability of squamates against roll and the fact that the posterior ampulla is tuned to changes in roll this suggests an adaptive evolution of the vestibular system in squamates using controlled aerial descent. Future studies testing for similar differences in other groups of vertebrates known to use controlled aerial descent are needed to test the generality of this observation. PMID:21700578

  14. Robust adaptive control for Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Kahveci, Nazli E.

    The objective of meeting higher endurance requirements remains a challenging task for any type and size of Unmanned Aerial Vehicles (UAVs). According to recent research studies significant energy savings can be realized through utilization of thermal currents. The navigation strategies followed across thermal regions, however, are based on rather intuitive assessments of remote pilots and lack any systematic path planning approaches. Various methods to enhance the autonomy of UAVs in soaring applications are investigated while seeking guarantees for flight performance improvements. The dynamics of the aircraft, small UAVs in particular, are affected by the environmental conditions, whereas unmodeled dynamics possibly become significant during aggressive flight maneuvers. Besides, the demanded control inputs might have a magnitude range beyond the limits dictated by the control surface actuators. The consequences of ignoring these issues can be catastrophic. Supporting this claim NASA Dryden Flight Research Center reports considerable performance degradation and even loss of stability in autonomous soaring flight tests with the subsequent risk of an aircraft crash. The existing control schemes are concluded to suffer from limited performance. Considering the aircraft dynamics and the thermal characteristics we define a vehicle-specific trajectory optimization problem to achieve increased cross-country speed and extended range of flight. In an environment with geographically dispersed set of thermals of possibly limited lifespan, we identify the similarities to the Vehicle Routing Problem (VRP) and provide both exact and approximate guidance algorithms for the navigation of automated UAVs. An additional stochastic approach is used to quantify the performance losses due to incorrect thermal data while dealing with random gust disturbances and onboard sensor measurement inaccuracies. One of the main contributions of this research is a novel adaptive control design with

  15. Lichens as bioindicators of aerial fallout of heavy metals in Zaria, Nigeria

    SciTech Connect

    Kapu, M.M. Ahmadu Bello Univ., Zaria ); Ipaye, M.M.; Ega, R.A.I.; Balarabe, M.L. ); Akanya, H.O. ); Schaeffer, D.J. )

    1991-09-01

    Lichens and other epiphytic cryptogams possess efficient ion-exchange mechanisms which enable many species to accumulate airborne metals and which probably contribute to their tolerating metals at concentrations high enough to cause death to other plant species. A direct relationship between the distribution pattern of lichens and the trace metal content of the surrounding air has been demonstrated. The present study used lichens to assess the aerial fallout of heavy metals from traffic in Zaria, northern Nigeria.

  16. Colonization on Root Surface by a Phenanthrene-Degrading Endophytic Bacterium and Its Application for Reducing Plant Phenanthrene Contamination

    PubMed Central

    Liu, Juan; Liu, Shuang; Sun, Kai; Sheng, Yuehui; Gu, Yujun; Gao, Yanzheng

    2014-01-01

    A phenanthrene-degrading endophytic bacterium, Pn2, was isolated from Alopecurus aequalis Sobol grown in soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Based on morphology, physiological characteristics and the 16S rRNA gene sequence, it was identified as Massilia sp. Strain Pn2 could degrade more than 95% of the phenanthrene (150 mg·L−1) in a minimal salts medium (MSM) within 48 hours at an initial pH of 7.0 and a temperature of 30°C. Pn2 could grow well on the MSM plates with a series of other PAHs, including naphthalene, acenaphthene, anthracene and pyrene, and degrade them to different degrees. Pn2 could also colonize the root surface of ryegrass (Lolium multiflorum Lam), invade its internal root tissues and translocate into the plant shoot. When treated with the endophyte Pn2 under hydroponic growth conditions with 2 mg·L−1 of phenanthrene in the Hoagland solution, the phenanthrene concentrations in ryegrass roots and shoots were reduced by 54% and 57%, respectively, compared with the endophyte-free treatment. Strain Pn2 could be a novel and useful bacterial resource for eliminating plant PAH contamination in polluted environments by degrading the PAHs inside plants. Furthermore, we provide new perspectives on the control of the plant uptake of PAHs via endophytic bacteria. PMID:25247301

  17. Fire Alters Emergence of Invasive Plant Species from Soil Surface-Deposited Seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    1. Fire is recognized as an important process controlling ecosystem structure and function. Restoration of fire regimes is complicated by global concerns about exotic plants invasions, yet little is known of how the two may interact. Characterizing relationships between fire conditions and the vi...

  18. Non-Invasive Examination of Plant Surfaces by Opto-Electronic Means--Using Russet as a Prime Example.

    PubMed

    Klemm, Matthias; Röttger, Olga; Damerow, Lutz; Blanke, Michael

    2016-01-01

    (1) BACKGROUND: Many disorders and diseases of agricultural produce change the physical features of surfaces of plant organs; in terms of russet, e.g., of apple or pear, affected fruit peel becomes rough and brown in color, which is associated with changes in light reflection; (2) OBJECTIVE AND METHODS: The objective of the present project was an interdisciplinary approach between horticultural science and engineering to examine two new innovative technologies as to their suitability for the non-destructive determination of surfaces of plant organs, using russet as an example, and (a) an industrial luster sensor (type CZ-H72, Keyence, Japan) and (b) a new type of a three-dimensional (3D) color microscope (VHX 5000); (3) RESULTS: In the case of russet, i.e., suberinization of the fruit peel, peel roughness increased by ca. 2.5-fold from ca. 20 µm to ca. 50 µm on affected fruit sections when viewed at 200× magnification. Russeted peel showed significantly reduced luster, with smaller variation than russet-devoid peel with larger variation; (4) CONCLUSION: These results indicate that both sensors are suitable for biological material and their use for non-contact, non-invasive detection of surface disorders on agricultural produce such as russet may be a very powerful tool for many applications in agriculture and beyond in the future. PMID:27043561

  19. Non-Invasive Examination of Plant Surfaces by Opto-Electronic Means—Using Russet as a Prime Example

    PubMed Central

    Klemm, Matthias; Röttger, Olga; Damerow, Lutz; Blanke, Michael

    2016-01-01

    (1) Background: Many disorders and diseases of agricultural produce change the physical features of surfaces of plant organs; in terms of russet, e.g., of apple or pear, affected fruit peel becomes rough and brown in color, which is associated with changes in light reflection; (2) Objective and Methods: The objective of the present project was an interdisciplinary approach between horticultural science and engineering to examine two new innovative technologies as to their suitability for the non-destructive determination of surfaces of plant organs, using russet as an example, and (a) an industrial luster sensor (type CZ-H72, Keyence, Japan) and (b) a new type of a three-dimensional (3D) color microscope (VHX 5000); (3) Results: In the case of russet, i.e., suberinization of the fruit peel, peel roughness increased by ca. 2.5-fold from ca. 20 µm to ca. 50 µm on affected fruit sections when viewed at 200× magnification. Russeted peel showed significantly reduced luster, with smaller variation than russet-devoid peel with larger variation; (4) Conclusion: These results indicate that both sensors are suitable for biological material and their use for non-contact, non-invasive detection of surface disorders on agricultural produce such as russet may be a very powerful tool for many applications in agriculture and beyond in the future. PMID:27043561

  20. EFFECT OF AMBIENT LIGHT, AERIAL EXPOSURE, AND SEASON ON EELGRASS (ZOSTERA MARINA) METRICS IN A NORTHEAST PACIFIC (USA) ESTUARY

    EPA Science Inventory

    Although light is the principal factor controlling the lower depth limit of seagrasses, little attention has been given to how reduced winter lighting may affect intertidal plants. In the present study intertidal light intensity, temperature, and aerial exposure were measured ove...

  1. Anti-inflammatory and antinociceptive activities of Solenostemon monostachyus aerial part extract in mice

    PubMed Central

    Okokon, Jude Fiom; Davis, Koofreh; Nwidu, Lucky Legbosi

    2016-01-01

    Objective: Solenostemon monostachyus is used in traditional medicine for the treatment of various ailments such as ulcer, hypertension, pains and inflammatory diseases. Evaluation of anti-inflammatory and analgesic activities of S. monostachyus aerial parts was carried out to ascertain its uses in traditional medicine. Materials and Methods: The aerial parts of S. monostachyus was cold extracted by soaking the dried powdered material in ethanol. The aerial parts crude extract (75 –225 mg/kg) of S. monostachyus was investigated for analgesic and anti-inflammatory activities using various experimental models; acetic acid, formalin and thermal- induced pains models for analgesic study and carrageenin, egg albumin and xylene – induced edema models for anti-inflammatory investigation. Results: The extract caused a significant (p<0.05 – 0.001) dose-dependent reduction of inflammation and pains induced by different phlogistic agents used. These effects were comparable to those of the standard drug, (ASA, 100 mg/kg) used in some models. Conclusion: The anti-inflammatory and analgesic effects of this plant may in part be mediated through the chemical constituents of the plant and the results of the analgesic action suggest central and peripheral mechanisms. The findings of this work confirm the ethno medical use of this plant to treat inflammatory conditions. PMID:27462551

  2. Towards spatially smart abatement of human pharmaceuticals in surface waters: Defining impact of sewage treatment plants on susceptible functions.

    PubMed

    Coppens, Lieke J C; van Gils, Jos A G; Ter Laak, Thomas L; Raterman, Bernard W; van Wezel, Annemarie P

    2015-09-15

    For human pharmaceuticals, sewage treatment plants (STPs) are a major point of entry to surface waters. The receiving waters provide vital functions. Modeling the impact of STPs on susceptible functions of the surface water system allows for a spatially smart implementation of abatement options at, or in the service area of, STPs. This study was performed on a nation-wide scale for the Netherlands. Point source emissions included were 345 Dutch STPs and nine rivers from neighboring countries. The Dutch surface waters were represented by 2511 surface water units. Modeling was performed for two extreme discharge conditions. Monitoring data of 7 locations along the rivers Rhine and Meuse fall mostly within the range of modeled concentrations. Half of the abstracted volumes of raw water for drinking water production, and a quarter of the Natura 2000 areas (European Union nature protection areas) hosted by the surface waters, are influenced by STPs at low discharge. The vast majority of the total impact of all Dutch STPs during both discharge conditions can be attributed to only 19% of the STPs with regard to the drinking water function, and to 39% of the STPs with regard to the Natura 2000 function. Attributing water treatment technologies to STPs as one of the possible measures to improve water quality and protect susceptible functions can be done in a spatially smart and cost-effective way, using consumption-based detailed hydrological and water quality modeling. PMID:26102555

  3. Municipal Wastewater Treatment Plant Biosludge Applications and Perfluoroalkyl Acid Surface Water Contamination in North Carolina

    EPA Science Inventory

    Implications and Questions- Perfluorinated compounds at high concentrations in sludges, on fields, in surface water in areas receiving sludge applications-Urban and suburban sludges typically disposed of in rural locations, usually marketed as “free fertilizer” becaus...

  4. Comparative plant uptake and microbial degradation of trichloroethylene in the rhizospheres of five plant species-- implications for bioremediation of contaminated surface soils

    SciTech Connect

    Anderson, T.A.; Walton, B.T.

    1992-01-01

    The objective of this study was to collect data that would provide a foundation for the concept of using vegetation to enhance in situ bioremediation of contaminated surface soils. Soil and vegetation (Lespedeza cuneata, Paspalum notatum, Pinus taeda, and Solidago sp.) samples from the Miscellaneous Chemicals Basin (MCB) at the Savannah River Site were used in tests to identify critical plant and microbiological variables affecting the fate of trichloroethylene (TCE) in the root zone. Microbiological assays including phospholipid acid analyses, and {sup 14}C-acetate incorporation were conducted to elucidate differences in rhizosphere and nonvegetated soil microbial communities from the MCB. The microbial activity, biomass, and degradation of TCE in rhizosphere soils were significantly greater than corresponding nonvegetated soils. Vegetation had a positive effect on microbial degradation of {sup 14}C-TCE in whole-plant experiments. Soils from the MCB containing Lespedeza cuneata, Pinus taeda, and Glycine max mineralized greater than 25% of the {sup 14}C- TCE added compared with less than 20% in nonvegetated soils. Collectively, these results provide evidence for the positive role of vegetation in enhancing biodegradation.

  5. A summary of the sources of input parameter values for the Waste Isolation Pilot Plant final porosity surface calculations

    SciTech Connect

    Butcher, B.M.

    1997-08-01

    A summary of the input parameter values used in final predictions of closure and waste densification in the Waste Isolation Pilot Plant disposal room is presented, along with supporting references. These predictions are referred to as the final porosity surface data and will be used for WIPP performance calculations supporting the Compliance Certification Application to be submitted to the U.S. Environmental Protection Agency. The report includes tables and list all of the input parameter values, references citing their source, and in some cases references to more complete descriptions of considerations leading to the selection of values.

  6. Development of a 3D Soil-Plant-Atmosphere Continuum (SPAC) coupled to a Land Surface Model

    NASA Astrophysics Data System (ADS)

    Bisht, G.; Riley, W. J.; Lorenzetti, D.; Tang, J.

    2015-12-01

    Exchange of water between the atmosphere and biosphere via evapotranspiration (ET) influences global hydrological, energy, and biogeochemical cycles. Isotopic analysis has shown that evapotranspiration over the continents is largely dominated by transpiration. Water is taken up from soil by plant roots, transported through the plant's vascular system, and evaporated from the leaves. Yet current Land Surface Models (LSMs) integrated into Earth System Models (ESMs) treat plant roots as passive components. These models distribute the ET sink vertically over the soil column, neglect the vertical pressure distribution along the plant vascular system, and assume that leaves can directly access water from any soil layer within the root zone. Numerous studies have suggested that increased warming due to climate change will lead drought and heat-induced tree mortality. A more mechanistic treatment of water dynamics in the soil-plant-atmosphere continuum (SPAC) is essential for investigating the fate of ecosystems under a warmer climate. In this work, we describe a 3D SPAC model that can be coupled to a LSM. The SPAC model uses the variably saturated Richards equations to simulate water transport. The model uses individual governing equations and constitutive relationships for the various SPAC components (i.e., soil, root, and xylem). Finite volume spatial discretization and backward Euler temporal discretization is used to solve the SPAC model. The Portable, Extensible Toolkit for Scientific Computation (PETSc) is used to numerically integrate the discretized system of equations. Furthermore, PETSc's multi-physics coupling capability (DMComposite) is used to solve the tightly coupled system of equations of the SPAC model. Numerical results are presented for multiple test problems.

  7. Formation of deposits on the surfaces of superheaters and economisers of MSW incinerator plants

    SciTech Connect

    Reichelt, J.; Pfrang-Stotz, G.; Bergfeldt, B.; Seifert, H.; Knapp, P.

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Composition of deposits depends on the temperature profile and boiler geometry. Black-Right-Pointing-Pointer The mineralogy of deposits defines critical and uncritical zones in the boiler. Black-Right-Pointing-Pointer Critical zones in boilers can be characterised by a classification systems. Black-Right-Pointing-Pointer Specific measures to enhance energy efficiency can be defined. - Abstract: Mineralogical and chemical investigations of deposits from superheaters and economisers from a MSWI plant in Mannheim, Germany, lead to a classification system which provides information about the most critical parameters leading to fouling and corrosion. With the help of this classification system parameters like the geometry of boilers and the waste input can be changed in order to prolong run times between revisions and enhance energy efficiency of MSWI plants.

  8. The growth-defense pivot: Crisis management in plants mediated by LRR-RK surface receptors

    PubMed Central

    Belkhadir, Youssef; Yang, Li; Hetzel, Jonathan; Dangl, Jeffery L.; Chory, Joanne

    2014-01-01

    Plants must adapt to their environment and require mechanisms for sensing their surroundings and responding appropriately. An expanded family of greater than 200 leucine-rich repeat receptor kinases (LRR-RKs) transduces fluctuating and often contradictory signals from the environment into changes in nuclear gene expression. Two LRR-RKs, BRASSINOSTEROID INSENSITIVE 1 (BRI1), a steroid receptor, and FLAGELLIN-SENSITIVE 2 (FLS2), an innate immune receptor that recognizes bacterial flagellin, act cooperatively to partition necessary growth-defense tradeoffs. BRI1 and FLS2 share common signaling components and slightly different activation mechanisms. BRI1 and FLS2 are paradigms for understanding signaling mechanisms of LRR-containing receptors in plants. PMID:25089011

  9. Aerial color infrared photography applications to citriculture

    NASA Technical Reports Server (NTRS)

    Blazquez, C. H.; Horn, F. W., Jr.

    1980-01-01

    Results of a one-year experimental study on the use of aerial color infrared photography in citrus grove management are presented. It is found that the spring season, when trees are in flush (have young leaves), is the best season to photograph visible differences between healthy and diseased trees. It is also shown that the best photography can be obtained with a 12-in. focal length lens. The photographic scale that allowed good photo interpretation with simple inexpensive equipment was 1 in. = 330 ft. The use of a window-overlay transparency method allowed rapid photo interpretation and data recording in computer-compatible forms. Aerial color infrared photography carried out during the spring season revealed a more accurate status of tree condition than visual inspection.

  10. Controller Design of Quadrotor Aerial Robot

    NASA Astrophysics Data System (ADS)

    Yali, Yu; SunFeng; Yuanxi, Wang

    This paper deduced the nonlinear dynamic model of a quadrotor aerial robot, which was a VTOL (vertical tale-off and landing) unmanned air vehicle. Since that is a complex model with the highly nonlinear multivariable strongly coupled and under-actuated property, the controller design of it was very difficult. Aimed at attaining the excellent controller, the whole system can be divided into three interconnected parts: attitude subsystem, vertical subsystem, position subsystem. Then nonlinear control strategy of them has been described, such as SDRE and Backstepping. The controller design was presented to stabilize the whole system. Through simulation result indicates, the various models have shown that the control law stabilize a quadrotor aerial robot with good tracking performance and robotness of the system.

  11. Journey to the cell surface--the central role of the trans-Golgi network in plants.

    PubMed

    Gendre, Delphine; Jonsson, Kristoffer; Boutté, Yohann; Bhalerao, Rishikesh P

    2015-03-01

    The secretion of proteins, lipids, and carbohydrates to the cell surface is essential for plant development and adaptation. Secreted substances synthesized at the endoplasmic reticulum pass through the Golgi apparatus and trans-Golgi network (TGN) en route to the plasma membrane via the conventional secretion pathway. The TGN is morphologically and functionally distinct from the Golgi apparatus. The TGN is located at the crossroads of many trafficking pathways and regulates a range of crucial processes including secretion to the cell surface, transport to the vacuole, and the reception of endocytic cargo. This review outlines the TGN's central role in cargo secretion, showing that its behavior is more complex and controlled than the bulk-flow hypothesis suggests. Its formation, structure, and maintenance are discussed along with the formation and release of secretory vesicles. PMID:25187082

  12. Ultralight photovoltaic modules for unmanned aerial vehicles

    SciTech Connect

    Nowlan, M.J.; Maglitta, J.C.; Darkazalli, G.; Lamp, T.

    1997-12-31

    New lightweight photovoltaic modules are being developed for powering high altitude unmanned aerial vehicles (UAVs). Modified low-cost terrestrial solar cell and module technologies are being applied to minimize vehicle cost. New processes were developed for assembling thin solar cells, encapsulant films, and cover films. An innovative by-pass diode mounting approach that uses a solar cell as a heat spreader was devised and tested. Materials and processes will be evaluated through accelerated environmental testing.

  13. Comparative Analysis of the Tour Jete and Aerial with Detailed Analysis of Aerial Takeoff Mechanics

    NASA Astrophysics Data System (ADS)

    Pierson, Mimi; Coplin, Kim

    2006-10-01

    Whether internally as muscle tension or from external sources, forces are necessary for all motion. This research focused on athletic rotations where conditions of flight are established during takeoff. By studying reaction forces that produce torques, moments of inertia, and linear and angular differences between distinct rotations around different principle axes of the body (tour jete in ballet - longitudinal axis; aerial in gymnastics - anteroposterior axis), and by looking at the values of angular momentum in the specific mechanics of aerial takeoff, we can gain insight into possible causes of injury, flaws in technique and limitations of athletes. Results showed significant differences in the horizontal and vertical components of takeoff between the tour jete and the aerial, and a realization that torque was produced in different biomechanical planes. Both rotations showed braking forces before takeoff to counteract forward momentum and increase vertical lift, but the angle of applied force varied, and the horizontal components of velocity and force and vertical velocity as well as moment of inertia throughout flight were consistently greater for the aerial. Breakdown of aerial takeoff highlighted the relative importance of the takeoff phases, showing that completion depends fundamentally upon the rotation of the rear foot and torso twisting during takeoff rather than the last foot in contact with the ground.

  14. Investigation of water washes suitable for very small meat plants to reduce pathogens on beef surfaces.

    PubMed

    Yoder, Sally Flowers; Henning, William R; Mills, Edward W; Doores, Stephanie; Ostiguy, Nancy; Cutter, Catherine N

    2010-05-01

    Water washing with a handheld hose was performed on beef surfaces to ascertain the most effective combination of methods needed to remove potentially harmful microorganisms. For these experiments, beef brisket surfaces were experimentally inoculated with a fecal slurry containing Escherichia coli O157:H7, Salmonella Typhimurium, Campylobacter coli, and Campylobacter jejuni. In a pilot study, surfaces were washed with cold water (15 degrees C) at various water pressures, spray distances, application times, and drip times, and remaining bacterial populations were determined following the enumeration and isolation of pathogens and naturally occurring hygiene indicators (mesophilic aerobic bacteria, coliforms, and E. coli). The most efficacious combinations of these washing conditions were applied subsequently to artificially contaminated beef brisket surfaces in conjunction with hot (77 degrees C), warm (54 degrees C), and additional cold (15 degrees C) water washes. In the cold water washing pilot study, combinations of physical washing conditions significantly reduced all bacterial populations (P < 0.05). Further studies clearly indicated the superior bactericidal effectiveness of hot water washing; E. coli O157:H7 and Salmonella Typhimurium were reduced by 3.8 and 4.1 log CFU/cm(2), respectively. Overall, higher water temperature, longer application times, and shorter spray distances more effectively removed pathogens from inoculated beef surfaces. These findings will be used to formulate water washing recommendations for very small meat processing establishments. PMID:20501042

  15. Application of bacteriophages to reduce biofilms formed by hydrogen sulfide producing bacteria on surfaces in a rendering plant.

    PubMed

    Gong, Chao; Jiang, Xiuping

    2015-08-01

    Hydrogen sulfide producing bacteria (SPB) in raw animal by-products are likely to grow and form biofilms in the rendering processing environments, resulting in the release of harmful hydrogen sulfide (H2S) gas. The objective of this study was to reduce SPB biofilms formed on different surfaces typically found in rendering plants by applying a bacteriophage cocktail. Using a 96-well microplate method, we determined that 3 SPB strains of Citrobacter freundii and Hafnia alvei are strong biofilm formers. Application of 9 bacteriophages (10(7) PFU/mL) from families of Siphoviridae and Myoviridae resulted in a 33%-70% reduction of biofilm formation by each SPB strain. On stainless steel and plastic templates, phage treatment (10(8) PFU/mL) reduced the attached cells of a mixed SPB culture (no biofilm) by 2.3 and 2.7 log CFU/cm(2) within 6 h at 30 °C, respectively, as compared with 2 and 1.5 log CFU/cm(2) reductions of SPB biofilms within 6 h at 30 °C. Phage treatment was also applied to indigenous SPB biofilms formed on the environmental surface, stainless steel, high-density polyethylene plastic, and rubber templates in a rendering plant. With phage treatment (10(9) PFU/mL), SPB biofilms were reduced by 0.7-1.4, 0.3-0.6, and 0.2-0.6 log CFU/cm(2) in spring, summer, and fall trials, respectively. Our study demonstrated that bacteriophages could effectively reduce the selected SPB strains either attached to or in formed biofilms on various surfaces and could to some extent reduce the indigenous SPB biofilms on the surfaces in the rendering environment. PMID:26102989

  16. Localization of aerial broadband noise by pinnipeds

    NASA Astrophysics Data System (ADS)

    Holt, Marla M.; Schusterman, Ronald J.; Southall, Brandon L.; Kastak, David

    2004-05-01

    Although many pinnipeds (seals, sea lions, and walruses) emit broadband calls on land as part of their communication system, few studies have addressed these animals' ability to localize aerial broadband sounds. In this study, the aerial sound localization acuities of a female northern elephant seal (Mirounga angustirostris), a male harbor seal (Phoca vitulina), and a female California sea lion (Zalophus californianus) were measured in the horizontal plane. The stimulus was broadband white noise that was band pass filtered between 1.2 and 15 kHz. Testing was conducted in a hemi-anechoic chamber using a left/right forced choice procedure to measure the minimum audible angle (MAA) for each subject. MAAs were defined as half the angular separation of two sound sources bisected by a subject's midline that corresponded to 75% correct discrimination. MAAs were 4.7°, 3.6°, and 4.2° for the northern elephant seal, harbor seal, and California sea lion, respectively. These results demonstrate that individuals of these pinniped species have sound localization abilities comparable to the domestic cat and rhesus macaque. The acuity differences between our subjects were small and not predicted by head size. These results likely reflect the relatively acute general abilities of pinnipeds to localize aerial broadband signals.

  17. Aerial target recognition using MRA, GVF snakes, and polygon approximation

    NASA Astrophysics Data System (ADS)

    Lu, Zhen Z.; Zhang, Taiyi; Xu, Jian

    2003-04-01

    The traditional method to extract target contour from aerial target image is changing the aerial image into a gray level image with multiple thresholds or binary image with single threshold. From the edge of target, contour can be extracted according to the changed value. The traditional method is useful only when contrast between target and background is in the proper degree. Snakes are curves defined within an image domain that can move under the influence of internal force coming from within the curve itself and external forces are defined so that the snake will conform to an object boundary or other desired features within an image. Snakes have been proved an effective method and widely used in image processing and computer vision. Snakes synthesize parametric curves within an image domain and allow them to move toward desired edges. Particular advantages of the GVF(Gradient Vector Flow) snakes over a traditional snakes are its insensitivity to initialization and its ability to move into boundary concavities. Its initializations can be inside, outside, or across the object"s boundary. The GVF snake does not need prior knowledge about whether to shrink or expand toward the boundary. This increased capture range is achieved through a diffusion process that does not blur the edges of themselves. Affected by the light from different incident angle, the brightness of aerial target surface changed greatly in a complicate mode. So the GVF snakes is not fast, accurate and effective all the time for this kind of images. A new contour extracting method, GVF Snakes Combined with wavelet multi-resolution Analysis is proposed in this paper. In this algorithm, bubble wavelet is used iteratively to do the multi resolution analysis in the order of degressive scale before GVF Snakes is used every time to extract accurate contour of target. After accurate contour is extracted, polygon approximation is used to extract characteristics to realize the recognition of aerial target

  18. Utilization of a Response-Surface Technique in the Study of Plant Responses to Ozone and Sulfur Dioxide Mixtures 1

    PubMed Central

    Ormrod, Douglas P.; Tingey, David T.; Gumpertz, Marcia L.; Olszyk, David M.

    1984-01-01

    A second order rotatable design was used to obtain polynomial equations describing the effects of combinations of sulfur dioxide (SO2) and ozone (O3) on foliar injury and plant growth. The response surfaces derived from these equations were displayed as contour or isometric (3-dimensional) plots. The contour plots aided in the interpretation of the pollutant interactions and were judged easier to use than the isometric plots. Plants of `Grand Rapids' lettuce (Lactuca sativa L.), `Cherry Belle' radish (Raphanus sativus L.), and `Alsweet' pea (Pisum sativum L.) were grown in a controlled environment chamber and exposed to seven combinations of SO2 and O3. Injury was evaluated based on visible chlorosis and necrosis and growth was evaluated as leaf area and dry weight. Covariate measurements were used to increase precision. Radish and pea had greater injury, in general, that did lettuce; all three species were sensitive to O3, and pea was most sensitive and radish least sensitive to SO2. Leaf injury responses were relatively more affected by the pollutants than were plant growth responses in radish and pea but not in lettuce. In radish, hypocotyl growth was more sensitive to the pollutants than was leaf growth. PMID:16663598

  19. Pilot-plant study of the effect of a surface electric-field on fabric filter operation

    SciTech Connect

    VanOsdell, D.W.; Furlong, D.A.; Hovis, L.S.

    1985-10-01

    The paper gives results of a pilot-plant study of electrostatically augmented fabric filtration (ESFF) to transfer laboratory technology to the field environment. (Note: Electrostatic fields at the fabric surface of fabric dust collectors have been observed in the laboratory to reduce the flow resistance of the collected dust and to reduce the dust penetration into the fabric.) Conclusions include: (1) using an electric field parallel to the fabric surface, without particle charging, to enhance fabric filter operation is operable at pilot scale (the pilot plant operated on flue gas from an industrial boiler); (2) the electrical hardware developed for the pulse-cleaned baghouse is workable and durable in the operating environment and has potential for commercial use; (3) at any given face velocity, the ESFF baghouse has a reduced residual pressure drop and a reduced rate of pressure drop increase when compared with a conventional fabric filter; (4) the pulse-cleaned ESFF baghouse could be operated in a stable fashion at filter face velocities up to about twice that at which the conventional baghouse was stable; and (5) the pilot unit results are consistent with dust cake expansion and lowered porosity due to a tendency to form dendritic structures as the dust cake collects.

  20. Plant surfaces of vegetable crops mediate interactions between chemical footprints of true bugs and their egg parasitoids.

    PubMed

    Giudice, Daniela Lo; Peri, Ezio; Bue, Mauro Lo; Colazza, Stefano

    2010-01-01

    During the host location process, egg parasitoids can eavesdrop on chemical cues released from immature and adult hosts. These indirect host-related cues are highly detectable, but of low reliability because they lead egg parasitoid females to an area where oviposition is likely to occur rather then providing wasps with direct information on the presence of eggs and their location. In the host-parasitoid associations between true bugs and their scelionid egg parasitoids, female wasps perceive the chemical residues left by host adults walking on substrates as contact kairomones, displaying a characteristic arrestment posture. In this study, we demonstrated that epicuticular waxes of leaves of two vegetable crops, broad bean, Vicia faba and collard greens, Brassica oleracea, mediate the foraging behaviour of Trissolcus basalis (Wollaston) by adsorbing contact kairomones from adults of Nezara viridula (L.). Trissolcus basalis females showed no response when released on the adaxial leaf surface of broad bean or collard green plants with intact cuticular wax layers that had not been exposed to bugs, whereas wasps displayed the arrestment posture when intact leaves were contaminated by chemical residues from host females. Adaxial leaf surfaces that were dewaxed with an aqueous solution of gum arabic and afterwards contaminated by N. viridula females elicited no arrestment responses from wasp females. Similarly, leaves contaminated by host females and subsequently dewaxed did not elicit responses from female wasps. These findings reveal the important role of plant waxes in N. viridula-T. basalis semiochemical communication. PMID:20539789

  1. High Density Aerial Image Matching: State-Of and Future Prospects

    NASA Astrophysics Data System (ADS)

    Haala, N.; Cavegn, S.

    2016-06-01

    Ongoing innovations in matching algorithms are continuously improving the quality of geometric surface representations generated automatically from aerial images. This development motivated the launch of the joint ISPRS/EuroSDR project "Benchmark on High Density Aerial Image Matching", which aims on the evaluation of photogrammetric 3D data capture in view of the current developments in dense multi-view stereo-image matching. Originally, the test aimed on image based DSM computation from conventional aerial image flights for different landuse and image block configurations. The second phase then put an additional focus on high quality, high resolution 3D geometric data capture in complex urban areas. This includes both the extension of the test scenario to oblique aerial image flights as well as the generation of filtered point clouds as additional output of the respective multi-view reconstruction. The paper uses the preliminary outcomes of the benchmark to demonstrate the state-of-the-art in airborne image matching with a special focus of high quality geometric data capture in urban scenarios.

  2. Using an Unmanned Aerial Vehicle (UAV) to capture micro-topography of Antarctic moss beds

    NASA Astrophysics Data System (ADS)

    Lucieer, Arko; Turner, Darren; King, Diana H.; Robinson, Sharon A.

    2014-04-01

    Mosses, the dominant flora of East Antarctica, show evidence of drying in recent decades, likely due to the regional effects of climate change. Given the relatively small area that such moss beds occupy, new tools are needed to map and monitor these fragile ecosystems in sufficient detail. In this study, we collected low altitude aerial photography with a small multi-rotor Unmanned Aerial Vehicle (UAV). Structure from Motion (SfM) computer vision techniques were applied to derive ultra-high resolution 3D models from multi-view aerial photography. A 2 cm digital surface model (DSM) and 1 cm orthophoto mosaic were derived from the 3D model and aerial photographs, respectively. The geometric accuracy of the orthophoto and DSM was 4 cm. A weighted contributing upstream area was derived with the D-infinity algorithm, based on the DSM and a snow cover map derived from the orthophoto. The contributing upstream area was used as a proxy for water availability from snowmelt, one of the key environmental drivers of moss health. A Monte Carlo simulation with 300 realisations was implemented to model the impact of error in the DSM on runoff direction. Significant correlations were found between these simulated water availability values and field measurements of moss health and water content. In the future ultra-high spatial resolution DSMs acquired with a UAV could thus be used to determine the impact of changing snow cover on the health and spatial distribution of polar vegetation non-destructively.

  3. Dual amyloid domains promote differential functioning of the chaplin proteins during Streptomyces aerial morphogenesis

    PubMed Central

    Capstick, David S.; Jomaa, Ahmad; Hanke, Chistopher; Ortega, Joaquin; Elliot, Marie A.

    2011-01-01

    The chaplin proteins are functional amyloids found in the filamentous Streptomyces bacteria. These secreted proteins are required for the aerial development of Streptomyces coelicolor, and contribute to an intricate rodlet ultrastructure that decorates the surfaces of aerial hyphae and spores. S. coelicolor encodes eight chaplin proteins. Previous studies have revealed that only three of these proteins (ChpC, ChpE, and ChpH) are necessary for promoting aerial development, and of these three, ChpH is the primary developmental determinant. Here, we show that the model chaplin, ChpH, contains two amyloidogenic domains: one in the N terminus and one in the C terminus of the mature protein. These domains have different polymerization properties as determined using fluorescence spectroscopy, secondary structure analyses, and electron microscopy. We coupled these in vitro assays with in vivo genetic studies to probe the connection between ChpH amyloidogenesis and its biological function. Using mutational analyses, we demonstrated that both N- and C-terminal amyloid domains of ChpH were required for promoting aerial hypha formation, while the N-terminal domain was dispensable for assembly of the rodlet ultrastructure. These results suggest that there is a functional differentiation of the dual amyloid domains in the chaplin proteins. PMID:21628577

  4. Class 1 integrase, sulfonamide and tetracycline resistance genes in wastewater treatment plant and surface water.

    PubMed

    Makowska, Nicoletta; Koczura, Ryszard; Mokracka, Joanna

    2016-02-01

    Wastewater treatment plants are considered hot spots for multiplication and dissemination of antibiotic-resistant bacteria and resistance genes. In this study, we determined the presence of class 1 integron integrase and genes conferring resistance to tetracyclines and sulfonamides in the genomes of culturable bacteria isolated from a wastewater treatment plant and the river that receives the treated wastewater. Moreover, using PCR-based metagenomic approach, we quantified intI1, tet and sul genes. Wastewater treatment caused the decrease in the total number of culturable heterotrophs and bacteria resistant to tetracycline and sulfonamides, along with the decrease in the number of intI1, sul and tet gene copies per ml, with significant reduction of tet(B). On the other hand, the treatment process increased both the frequency of tetracycline- and sulfonamide-resistant bacteria and intI1-positive strains, and the relative abundance of all quantified antibiotic resistance genes (ARGs) and intI1 gene; in the case of tet(A) and sul2 significantly. The discharge of treated wastewater increased the number of intI1, tet and sul genes in the receiving river water both in terms of copy number per ml and relative abundance. Hence, despite the reduction of the number of ARGs and ARBs, wastewater treatment selects for bacteria with ARGs in effluent. PMID:26519797

  5. Synthesis of silver nanoparticles using methanol and dichloromethane extracts of Pulicaria gnaphalodes (Vent.) Boiss. aerial parts.

    PubMed

    Chitsazi, Mohammad Reza; Korbekandi, Hassan; Asghari, Gholamreza; Bahri Najafi, Rahim; Badii, Akbar; Iravani, Siavash

    2016-01-01

    The objectives were to study the potential of Pulicaria gnaphalodes (Vent.) Boiss. aerial parts in production of nanoparticles and the effect of the extraction solvent on the produced nanoparticles. Methanol and dichloromethane extracts were prepared by percolation of the plant powder. Both the extracts of P. gnaphalodes (Vent.) Boiss. successfully produced small and polydispersed nanoparticles with low aggregates in early hours of the biotransformation. Methanol extract produced spherical and many single nanoparticles, whereas dichloromethane produced porous polyhedral and more aggregated nanoparticles. Methanol extract of this plant seems to be quiet useful for industrial scale production of nanoparticles. PMID:25154745

  6. Aerial and soil seed banks enable populations of an annual species to cope with an unpredictable dune ecosystem

    PubMed Central

    Gao, Ruiru; Yang, Xuejun; Yang, Fan; Wei, Lingling; Huang, Zhenying; Walck, Jeffrey L.

    2014-01-01

    Background and Aims Simultaneous formation of aerial and soil seed banks by a species provides a mechanism for population maintenance in unpredictable environments. Eolian activity greatly affects growth and regeneration of plants in a sand dune system, but we know little about the difference in the contributions of these two seed banks to population dynamics in sand dunes. Methods Seed release, germination, seedling emergence and survival of a desert annual, Agriophyllum squarrosum (Chenopodiaceae), inhabiting the Ordos Sandland in China, were determined in order to explore the different functions of the aerial and soil seed banks. Key Results The size of the aerial seed bank was higher than that of the soil seed bank throughout the growing season. Seed release was positively related to wind velocity. Compared with the soil seed bank, seed germination from the aerial seed bank was lower at low temperature (5/15 °C night/day) but higher in the light. Seedling emergence from the soil seed bank was earlier than that from the aerial seed bank. Early-emerged (15 April–15 May) seedlings died due to frost, but seedlings that emerged during the following months survived to reproduce successfully. Conclusions The timing of seed release and different germination behaviour resulted in a temporal heterogeneity of seedling emergence and establishment between the two seed banks. The study suggests that a bet-hedging strategy for the two seed banks enables A. squarrosum populations to cope successfully with the unpredictable desert environment. PMID:24918206

  7. IR reflection spectra of the silicate surface layer of yellowed rice plant leaf

    NASA Astrophysics Data System (ADS)

    Sato, Kenzo

    1986-09-01

    We have investigated the IR reflectional properties of the three-hold cytrogical surface layer (kutchikura layer on silicate layer n(SiO2) on silicate cellulose layer C6H10SixOy) and that of chlorophyll, a(C55H72MgN4O5) etc., present in bladder's cells by using our experimental method. From analysis of three set of anisotropical reflection spectra assigned as due to CO, SiO and NC surface oscillators contained in the cytrogical cells and measured at 2500 2200 cm-1, 1200 700 cm-1 and at 700 200 cm-1 regions, we have confirmed some important results. One is their quantized directional distributions that of the numbers of fine step spectrum and that of the reflection integrals of these spectra. Here, that of the NC oscillators were found to distribute in pentagonal directions relating to the molecular structure of chlorophyll. Second, we confirmed the pecularity of eight fine step-series measured in these sensitive spectra comparing with that of bamboo's seven series. Third, from analysis of the stepnized variation of the “reflection integrals”, we estimated the origin of this effect as which is presumably due to statistical, transfer of the 2p4 valence electrons etc. in the oxygen atoms from C=O, Si=O double bonding side upto the shallower quantized states, E(N,J) which were formed softly around the MediaObjects/10762_2005_BF01012055_f1.tif and MediaObjects/10762_2005_BF01012055_f2.tif surface oscillators. And these surface oscillators were confirmed as to make photo-chemical reaction process by receiving energy higher than ˜24 m eV especially under the illumination of sunshine etc.

  8. Cooling our communities: A guidebook on tree planting and light-colored surfacing

    SciTech Connect

    Akbari, H.; Davis, S.; Huang, J.; Dorsano, S.; Winnett, S.

    1992-01-01

    This book is a practical guide that presents the current state of knowledge on potential environmental and economic benefits of strategic landscaping and altering surface colors in our communities. The guidebook, reviews the causes, magnitude, and impacts of increased urban warming, then focuses on actions by citizens and communities that can be undertaken to improve the quality of our homes and towns in cost-effective ways.

  9. Anti-inflammatory Activity of Constituents Isolated from Aerial Part of Angelica acutiloba Kitagawa.

    PubMed

    Uto, Takuhiro; Tung, Nguyen Huu; Taniyama, Risa; Miyanowaki, Tosihide; Morinaga, Osamu; Shoyama, Yukihiro

    2015-12-01

    Recently, the resources of medicinal plants have been exhausting. The root of Angelica acutiloba is one of the most important ingredients in Japanese Kampo medicine for the treatment of gynecological diseases. In our search for alternative medicinal plant resources of the root of A. acutiloba, we found that its aerial part has the anti-inflammatory potency as well as the root. Phytochemical investigation of the aerial part resulted in the isolation of four compounds including a new dimeric phthalide, namely tokiaerialide (2), along with Z-ligustilide (1), falcarindiol (3), and bergaptol (4). Next, we investigated the in vitro anti-inflammatory activity of 1-4 in lipopolysaccharide-stimulated RAW264 macrophages. Among the isolated compounds, 1 exhibited the most potent inhibition against lipopolysaccharide-induced production of prostaglandin E2 , nitric oxide, and pro-inflammatory cytokines (interleukin-6 and tumor necrosis factor-α). Compounds 3 and 4 also inhibited all inflammatory mediators, but their inhibitory abilities were weaker than those of 1. Furthermore, 1, 3, and 4 strongly also induced heme oxygenase-1. These results suggest that 1, 3, and 4 potentially exert anti-inflammatory activity, and the aerial part of A. acutiloba may be considered to be a useful medicinal resource for inflammatory diseases. PMID:26463105

  10. Recent field studies of dry deposition to surfaces in plant canopies

    SciTech Connect

    Lindberg, S.E.; Lovett, G.M.; Bondietti, E.A.; Davidson, C.I.

    1984-01-01

    A variety of field techniques were used to assess the dry deposition of sulfur. In a deciduous forest canopy in eastern Tennessee, inert petri plates and adjacent chestnut oak leaves showed similar SO/sub 4//sup -2/ deposition velocities of about 0.1 cm s/sup -1/. In the same forest, statistical analysis of throughfall yielded a deposition velocity of 0.48 cm s/sup -1/ for total sulfur (SO/sub 4//sup -2/ plus SO/sub 2/). The throughfall technique appears useful for scaling individual surface measurements to larger spatial and temporal scales. On a grassy field in Illinois, flat Teflon plates, petri dishes, and dustfall buckets were exposed side by side. Measured sulfate deposition increased with increasing rim height on the collection surface, and deposition velocities ranged from 0.14 to 0.70 cm s/sup -1/. Much of the deposition to these surfaces can be attributed to large-particle SO/sub 4//sup -2/. Dry season (summer) deposition velocities of /sup 7/Be in California were found to be similar to dry deposition velocities of /sup 212/Pb in Tennessee, ranging from 0.18 to 0.35 cm s/sup -1/. These natural radionuclides attach to submicron aerosols in the atmosphere and may be useful tracers of submicron SO/sub 4//sup -2/ deposition. 9 references, 5 figures, 4 tables.

  11. Influence of the Nogales International Wastewater Treatment Plant on surface water in the Santa Cruz River and local aquifers

    NASA Astrophysics Data System (ADS)

    LaBrie, H. M.; Brusseau, M. L.; Huth, H.

    2015-12-01

    As water resources become limited in Arizona due to drought and excessive use of ground water, treated wastewater effluent is becoming essential in creating natural ecosystems and recharging the decreasing groundwater supplies. Therefore, future water supplies are heavily dependent of the flow (quantity) and quality of the treated effluent. The Nogales International Wastewater Treatment Plant (NIWTP) releases treated wastewater from both Nogales, Arizona and Nogales, Sonora, Mexico into the Santa Cruz River. This released effluent not only has the potential to impact surface water, but also groundwater supplies in Southern Arizona. In the recent past, the NIWTP has had reoccurring issues with elevated levels of cadmium, in addition to other, more infrequent, releases of high amounts of other metals. The industrial demographic of the region, as well as limited water quality regulations in Mexico makes the NIWTP and its treated effluent an important area of study. In addition, outdated infrastructure can potentially lead to damaging environmental impacts, as well as human health concerns. The Santa Cruz River has been monitored and studied in the past, but in recent years, there has been a halt in research regarding the state of the river. Data from existing water quality databases and recent sampling reports are used to address research questions regarding the state of the Santa Cruz River. These questions include: 1) How will change in flow eventually impact surface water and future groundwater supplies 2) What factors influence this flow (such as extreme flooding and drought) 3) What is the impact of effluent on surface water quality 4) Can changes in surface water quality impact groundwater quality 5) How do soil characteristics and surface flow impact the transport of released contaminants Although outreach to stakeholders across the border and updated infrastructure has improved the quality of water in the river, there are many areas to improve upon as the

  12. Bacterial diversity in biofilms formed on condenser tube surfaces in a nuclear power plant.

    PubMed

    Choi, Dong H; Noh, Jae H; Yu, Ok H; Kang, Yeon S

    2010-11-01

    To elucidate the bacterial diversity in biofilms formed on a condenser tube from a nuclear power plant, 16S rRNA gene sequences were examined using a PCR-cloning-sequencing approach. Twelve operational taxonomic units were retrieved in the clone library, and the estimated species richness was low (13.2). Most of the clones (94.7%) were affiliated with α-Proteobacteria; Planctomycetes and γ-Proteobacteria were much rarer. Interestingly, except for one clone belonging to Pseudoalteromonas, most of the sequences displayed sequence similarities <97% of those of the closest type strains. Based on 16S rRNA phylogenetic analysis, most bacteria were assigned to novel taxa above the species level. The low species richness and unusual bacterial composition may be attributable to selective pressure from chlorine in the cooling water. To prevent or control bacterial biofilms in cooling circuits, additional studies of the physiology and ecology of these species will be essential. PMID:21058056

  13. Observed and simulated effect of plant physiology and structure on land surface energy fluxes and soil conditions

    NASA Astrophysics Data System (ADS)

    Lu, Yen-Sen; Rihani, Jehan; Langensiepen, Matthias; Simmer, Clemens

    2016-04-01

    The parameterization of stomatal conductance and leaf area index (LAI) in land surface models largely influence simulated terrestrial system states. While stomatal conductance mainly controls transpiration, latent heat flux, and root-water-uptake, LAI impacts additionally the radiative energy exchange. Thus both affect canopy evaporation and transpiration and land surface energy and water fluxes as a whole. Common parameterizations of stomatal conductance follow either semi-mechanistic forms based on photosynthesis (Ball-Berry Type (BB)) or forms which consider environmental factors such as impact of light, temperature, humidity and soil moisture (Jarvis-Stewart Type (JS)). Both approaches differ also in the interpretation of humidity effects and light-use efficiency. While soil moisture plays an important role for root-water-uptake there is no clear conclusion yet about how soil moisture interacts with stomata activity. Values for LAI can be obtained from field measurements, satellite estimates or modelling and are used as an essential model input. While field measurements are very time consuming and only represent single points, satellite estimates may have biases caused by variable albedo and sensor limitations. Representing LAI within land surface models requires complex schemes in order to represent all processes contributing to plant growth. We use the Terrestrial System Modelling Platform (TerrSysMP) over the Rur watershed in Germany for studying the influence of plant physiology and structure on the state of the terrestrial system. The Transregional Collaborative Research Center 32 (TR32) extensively monitors this catchment for almost a decade. The land surface (CLM3.5) and the subsurface (ParFlow) modules of TerrSysMP are conditioned based on satellite-retrieved land cover and the soil map from FAO and forced with a high-resolution reanalysis by DWD. For studying the effect of plant physiology, the Ball-Berry-Leuning, and Jarvis-Stewart stomatal

  14. New phytoconstituents from the aerial parts of Fumaria parviflora Lam

    PubMed Central

    Jameel, Mohammad; Ali, Abuzer; Ali, Mohammed

    2014-01-01

    Fumaria parviflora Lam. (Fumariaceae) is an annual herb found throughout the world. Traditionally it has great significance in various disorders. In folk medicine of Turkey it is used against hepato-biliary dysfunction and imported from Iran. In Charaka and Sushruta, it is recommended for treatment of fevers, blood disorders, chronic skin diseases, urinary diseases and cough. The compounds were isolated from methanolic extract of the plants by column chromatography using silica gel (60-120 mesh) as stationary phase and structure of the isolated compounds have been established on the basis of spectral data analysis and chemical reactions. Phytochemical investigation of its aerial parts led to the isolation of five new compounds characterized as (5αH,11αH)-8-oxo-homoiridolide (1), n-docosanyl-2-O-β-D-glucopyranosyl salicylate (2), 2-methyl-6-hydroxymethylenedodecan-10-oyl-12, 15-olide14-O-β-D-xylopyranoside (3), 4-oxo-stigmast-5-en-3β-ol-D-glucopyranoside (4) and salicylic acid-O-β-D-xylopyranoside (5) along with the known compounds α-D-glucopyranosyl hexadecanoate (6) and α-D-glucopyranosyl- (2 → 1ʹ)-α-D-glucopyranoside (7). The isolated compounds are useful as they will provide essential data and information for the further researchers and development of effective analytical marker for identity, purity and quality control of this traditional plant in future. PMID:24959414

  15. 20. AERIAL VIEW LOOKING NORTH FROM ARLINGTON TOWARDS LINCOLN MEMORIAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. AERIAL VIEW LOOKING NORTH FROM ARLINGTON TOWARDS LINCOLN MEMORIAL - Arlington Memorial Bridge, Spanning Potomac River between Lincoln Memorial & Arlington National Cemetery, Washington, District of Columbia, DC

  16. 21. AERIAL VIEW LOOKING EAST TOWARDS LINCOLN MEMORIAL AND WASHINGTON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. AERIAL VIEW LOOKING EAST TOWARDS LINCOLN MEMORIAL AND WASHINGTON MONUMENT - Arlington Memorial Bridge, Spanning Potomac River between Lincoln Memorial & Arlington National Cemetery, Washington, District of Columbia, DC

  17. 1. Aerial view, looking northeast up Newark Bay, showing entire ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Aerial view, looking northeast up Newark Bay, showing entire island Charles Wisniewski, photographer, January 1985 - Shooters Island, Ships Graveyard, Newark Bay, Staten Island (subdivision), Richmond County, NY

  18. Aerial ropeways transport over flat and rough terrain

    SciTech Connect

    Not Available

    1983-06-01

    The modern aerial ropeway provides a very economic and efficient means of transporting bulk material over long distances, particularly over rough and mountainous terrain. There are currently two types of circulating aerial ropeway systems: monocable and bicable. Development of the present generation of ropeways has seen the capacity of conventional monocable increase to a maximum of 300 tons per hour, and that of bicable to 650 tons per hour. During this period of development, covering the last 30 to 40 years, reliability and efficiency of aerial systems has increased. Recent examples of aerial ropeway systems in Zimbabwe, Taiwan, and the Sudan are cited to illustrate the cost effectiveness and reliability of such systems.

  19. Surface Soil Preparetion for Leguminous Plants Growing in Degraded Areas by Mining Located in Amazon Forest-Brazil

    NASA Astrophysics Data System (ADS)

    Irio Ribeiro, Admilson; Hashimoto Fengler, Felipe; Araújo de Medeiros, Gerson; Márcia Longo, Regina; Frederici de Mello, Giovanna; José de Melo, Wanderley

    2015-04-01

    The revegetation of areas degraded by mining usually requires adequate mobilization of surface soil for the development of the species to be implemented. Unlike the traditional tillage, which has periodicity, the mobilization of degraded areas for revegetation can only occur at the beginning of the recovery stage. In this sense, the process of revegetation has as purpose the establishment of local native vegetation with least possible use of inputs and superficial tillage in order to catalyze the process of natural ecological succession, promoting the reintegration of areas and minimizing the negative impacts of mining activities in environmental. In this context, this work describes part of a study of land reclamation by tin exploitation in the Amazon ecosystem in the National Forest Jamari- Rondonia Brazil. So, studied the influence of surface soil mobilization in pit mine areas and tailings a view to the implementation of legumes. The results show that the surface has areas of mobilizing a significant effect on the growth of leguminous plants, areas for both mining and to tailings and pit mine areas.

  20. Spatial distribution of water stress and evapotranspiration estimates using an unmanned aerial vehicle (UAV)

    NASA Astrophysics Data System (ADS)

    Rauneker, P.; Lischeid, G.

    2012-04-01

    The estimation of spatial distribution of evapotranspiration poses a particular challenge in quantitative hydrology. Conventional methods provide punctual measurements of evapotranspiration rates which may be transformed into aggregated mean values by extrapolation or the application of empirical models. The influence of spatial structures (heterogeneity of the landscape) in relevant small spatial scales is captured insufficiently by these methods. Modern optical remote sensors aboard an unmanned aerial vehicle (UAV) provide the basis for the generation of high spatial resolution data. Spectral data in the optical, near infrared and thermal infrared domain will be used as input into a surface energy balance (SEB) model to produce evapotranspiration maps. The spectral properties of vegetation are of particular importance for the calculation, since plants are the link between soil and atmosphere and thus have major impact on evapotranspiration rates of land surfaces. First estimates of plant status and indicators of transpiration behavior will be obtained by applying and combining water stress parameters of different wavelengths. As opposed to satellite data, time-series of self-determined spatial and temporal resolution may be created by varying flight altitude and turnaround times. Thus it is possible to analyze the influence of landscape structures, as well as the chronological development of the observed parameters. Located at the interface between hydrology and remote sensing this work utilizes an innovative remote sensing platform to gain distributed spectral information. This information will be used to visualize evapotranspiration patterns in hydrological heterogeneous areas. Particular attention will be paid to the analysis of transition zones of varying water supply and under the influence of selected environmental parameters (e.g. soil moisture, depth of GW-table). To reach that goal it is essential to generate a robust processing chain, involving all

  1. Evaluation of DSMs generated from multi-temporal aerial photographs using emerging structure from motion-multi-view stereo technology

    NASA Astrophysics Data System (ADS)

    Ishiguro, Satoshi; Yamano, Hiroya; Oguma, Hiroyuki

    2016-09-01

    An accuracy assessment of digital surface models (DSMs) generated from archived aerial photographs using the structure from motion-multi-view stereo (SfM-MVS) technique was carried out. A four-step accuracy-assessment procedure was adopted using aerial photography from eight periods, as follows. Step 1: generate a DSM and orthophoto from digital aerial photographs taken in 2013 and ground control points (GCPs) measured by GNSS. Step 2: assess the accuracy of the DSM by comparison with altitude measured by leveling survey. Step 3: generate other historical DSMs and orthophotos from historical aerial photographs using GCPs extracted from the DSM of 2013. Step 4: assess the accuracy of all historical DSMs by comparing with the leveling survey. Then re-calculate the accuracy of historical DSMs by reducing the inherent error in the 2013 DSM. The DSM based on the aerial photographs taken in 2013 was generated with a resolution of 48.2 cm. The residual height error of the GCPs was 15.4 cm. Validation against the altitudes of 171 points revealed that this DSM has a height root-mean-square-error (RMSE) of 24.1 cm and is 9.2 cm lower than the leveling data on average. Even using US military photos with unconfirmed detailed specifications, the model can measure the altitude with an RMSE value of 121.5 cm. It appears therefore that analysis by SfM-MVS can give comparable measurement accuracy to traditional aerial photogrammetry. The low cost and high accuracy obtained with archived aerial photographs are worthy of special mention.

  2. Autonomous charging to enable long-endurance missions for small aerial robots

    NASA Astrophysics Data System (ADS)

    Mulgaonkar, Yash; Kumar, Vijay

    2014-06-01

    The past decade has seen an increased interest towards research involving Autonomous Micro Aerial Vehicles (MAVs). The predominant reason for this is their agility and ability to perform tasks too difficult or dangerous for their human counterparts and to navigate into places where ground robots cannot reach. Among MAVs, rotary wing aircraft such as quadrotors have the ability to operate in confined spaces, hover at a given point in space and perch1 or land on a flat surface. This makes the quadrotor a very attractive aerial platform giving rise to a myriad of research opportunities. The potential of these aerial platforms is severely limited by the constraints on the flight time due to limited battery capacity. This in turn arises from limits on the payload of these rotorcraft. By automating the battery recharging process, creating autonomous MAVs that can recharge their on-board batteries without any human intervention and by employing a team of such agents, the overall mission time can be greatly increased. This paper describes the development, testing, and implementation of a system of autonomous charging stations for a team of Micro Aerial Vehicles. This system was used to perform fully autonomous long-term multi-agent aerial surveillance experiments with persistent station keeping. The scalability of the algorithm used in the experiments described in this paper was also tested by simulating a persistence surveillance scenario for 10 MAVs and charging stations. Finally, this system was successfully implemented to perform a 9½ hour multi-agent persistent flight test. Preliminary implementation of this charging system in experiments involving construction of cubic structures with quadrotors showed a three-fold increase in effective mission time.

  3. Evaluating the influence of plant-specific physiological parameterizations on the partitioning of land surface energy fluxes

    NASA Astrophysics Data System (ADS)

    Sulis, Mauro; Langensiepen, Matthias; Shrestha, Prabhakar; Schickling, Anke; Simmer, Clemens; Kollet, Stefan

    2015-04-01

    Vegetation has a significant influence on the partitioning of radiative forcing, the spatial and temporal variability of soil water and soil temperature. Therefore plant physiological properties play a key role in mediating and amplifying interactions and feedback mechanisms in the soil-vegetation-atmosphere continuum. Because of the direct impact on latent heat fluxes, these properties may also influence weather generating processes, such as the evolution of the atmospheric boundary layer (ABL). In land surface models, plant physiological properties are usually obtained from literature synthesis by unifying several plant/crop species in predefined vegetation classes. In this work, crop-specific physiological characteristics, retrieved from detailed field measurements, are included in the bio-physical parameterization of the Community Land Model (CLM), which is a component of the Terrestrial Systems Modeling Platform (TerrSysMP). The measured set of parameters for two typical European mid-latitudinal crops (sugar beet and winter wheat) is validated using eddy covariance measurements (sensible heat and latent heat) over multiple years from three measurement sites located in the North Rhine-Westphalia region, Germany. We found clear improvements of CLM simulations, when using the crop-specific physiological characteristics of the plants instead of the generic crop type when compared to the measurements. In particular, the increase of latent heat fluxes in conjunction with decreased sensible heat fluxes as simulated by the two new crop-specific parameter sets leads to an improved quantification of the diurnal energy partitioning. These findings are cross-validated using estimates of gross primary production extracted from net ecosystem exchange measurements. This independent analysis reveals that the better agreement between observed and simulated latent heat using the plant-specific physiological properties largely stems from an improved simulation of the

  4. An aerial 3D printing test mission

    NASA Astrophysics Data System (ADS)

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy

    2016-05-01

    This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.

  5. Aerial thermography in archaeological prospection: Applications & processing

    NASA Astrophysics Data System (ADS)

    Cool, Autumn Chrysantha

    Aerial thermography is one of the least utilized archaeological prospection methods, yet it has great potential for detecting anthropogenic anomalies. Thermal infrared radiation is absorbed and reemitted at varying rates by all objects on and within the ground depending upon their density, composition, and moisture content. If an area containing archaeological features is recorded at the moment when their thermal signatures most strongly contrast with that of the surrounding matrix, they can be visually identified in thermal images. Research conducted in the 1960s and 1970s established a few basic rules for conducting thermal survey, but the expense associated with the method deterred most archaeologists from using this technology. Subsequent research was infrequent and almost exclusively appeared in the form of case studies. However, as the current proliferation of unmanned aerial vehicles (UAVs) and compact thermal cameras draws renewed attention to aerial thermography as an attractive and exciting form of survey, it is appropriate and necessary to reevaluate our approach. In this thesis I have taken a two-pronged approach. First, I built upon the groundwork of earlier researchers and created an experiment to explore the impact that different environmental and climatic conditions have on the success or failure of thermal imaging. I constructed a test site designed to mimic a range of archaeological features and imaged it under a variety of conditions to compare and contrast the results. Second, I explored a new method for processing thermal data that I hope will lead to a means of reducing noise and increasing the clarity of thermal images. This step was done as part of a case study so that the effectiveness of the processing method could be evaluated by comparison with the results of other geophysical surveys.

  6. Photogrammetric mapping using unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Graça, N.; Mitishita, E.; Gonçalves, J.

    2014-11-01

    Nowadays Unmanned Aerial Vehicle (UAV) technology has attracted attention for aerial photogrammetric mapping. The low cost and the feasibility to automatic flight along commanded waypoints can be considered as the main advantages of this technology in photogrammetric applications. Using GNSS/INS technologies the images are taken at the planned position of the exposure station and the exterior orientation parameters (position Xo, Yo, Zo and attitude ω, φ, χ) of images can be direct determined. However, common UAVs (off-the-shelf) do not replace the traditional aircraft platform. Overall, the main shortcomings are related to: difficulties to obtain the authorization to perform the flight in urban and rural areas, platform stability, safety flight, stability of the image block configuration, high number of the images and inaccuracies of the direct determination of the exterior orientation parameters of the images. In this paper are shown the obtained results from the project photogrammetric mapping using aerial images from the SIMEPAR UAV system. The PIPER J3 UAV Hydro aircraft was used. It has a micro pilot MP2128g. The system is fully integrated with 3-axis gyros/accelerometers, GPS, pressure altimeter, pressure airspeed sensors. A Sony Cyber-shot DSC-W300 was calibrated and used to get the image block. The flight height was close to 400 m, resulting GSD near to 0.10 m. The state of the art of the used technology, methodologies and the obtained results are shown and discussed. Finally advantages/shortcomings found in the study and main conclusions are presented

  7. BOREAS Level-0 C-130 Aerial Photography

    NASA Technical Reports Server (NTRS)

    Newcomer, Jeffrey A.; Dominguez, Roseanne; Hall, Forrest G. (Editor)

    2000-01-01

    For BOReal Ecosystem-Atmosphere Study (BOREAS), C-130 and other aerial photography was collected to provide finely detailed and spatially extensive documentation of the condition of the primary study sites. The NASA C-130 Earth Resources aircraft can accommodate two mapping cameras during flight, each of which can be fitted with 6- or 12-inch focal-length lenses and black-and-white, natural-color, or color-IR film, depending upon requirements. Both cameras were often in operation simultaneously, although sometimes only the lower resolution camera was deployed. When both cameras were in operation, the higher resolution camera was often used in a more limited fashion. The acquired photography covers the period of April to September 1994. The aerial photography was delivered as rolls of large format (9 x 9 inch) color transparency prints, with imagery from multiple missions (hundreds of prints) often contained within a single roll. A total of 1533 frames were collected from the C-130 platform for BOREAS in 1994. Note that the level-0 C-130 transparencies are not contained on the BOREAS CD-ROM set. An inventory file is supplied on the CD-ROM to inform users of all the data that were collected. Some photographic prints were made from the transparencies. In addition, BORIS staff digitized a subset of the tranparencies and stored the images in JPEG format. The CD-ROM set contains a small subset of the collected aerial photography that were the digitally scanned and stored as JPEG files for most tower and auxiliary sites in the NSA and SSA. See Section 15 for information about how to acquire additional imagery.

  8. Recent advances in aerial gamma-ray surveying.

    PubMed

    Dickson, Bruce L

    2004-01-01

    Aerial gamma-ray surveying uses NaI(Tl) detectors mounted in small aircraft to measure gamma radiation, emitted from the earth's surface. The data are collected as gamma-ray spectra, typically with 1 s counting times, from which are derived K, U and Th concentrations in the ground. Applications of aerial surveying include geological mapping for mineral exploration, soil mapping for agriculture, pollution studies and location of lost sources. Recent advances in applying statistical methods to the spectral data have resulted in large reductions in the noise levels in the surveys. Some of the methods available to do this include noise adjusted singular value decomposition (NASVD) [Proceedings of Exploration 97: Fourth Decennial International Conference on Mineral Exploration (1997) 753] and maximum noise fraction (MNF) and enhanced MNF (eMNF) [Explor. Geophys. 31 (2000) 73]. These methods, in general, apply normalization for variance to the spectra, use a principal component method to obtain the "significant" components of the data and reconstruct cleaned spectra, which are then processed in a standard manner to get radionuclide concentrations. However, they differ in the detail of the application and thus give slightly different results. In this paper, the application of noise reduction methods to various synthetic surveys is used to examine the strengths and weaknesses of the methods. In tests where there are high correlations between U and Th, the eMNF method performs best although the results are improved by prior clustering of the data by the Th/U ratio. If the data show no correlations, then the effectiveness of all the noise removal methods is reduced. If a data set is small (<1500 spectra), then MNF appears to be the better method. Consideration of the various tests suggests an optimum process whereby spectra are sorted into groups by the Th/U ratio of areas identified in a standard processing and then cleaned by eMNF or MNF, depending on the number of spectra

  9. Aerial Photogrammetric Analysis of a Scree Slope and Cliff

    NASA Astrophysics Data System (ADS)

    Saunders, Greg; Galland, Olivier; Mair, Karen

    2014-05-01

    Mapping the physical features of landslide tracks provides information about factors controlling landslide movement. The increasing availability of unmanned aerial vehicles (UAV) provides the opportunity to efficiently and cost effectively map terrain. The main goal of this field study is to create a streamlined work-flow from acquisition to interpretation for the photogrammetric analysis of landslide tracks. Here an open source software package MicMac is used for ortho-image and point-cloud creation. A series of two flights were conducted over a scree (rockfall) slope in Kolsas, Norway. The slope runs roughly 500 m north-south with a maximum width of 60 m. A cliff to the west is the source area for the scree. The cliff consists of conglomerate, basalt, and porphyry from bottom to top respectively. The grain size of boulders in the scree slope apparently varies due to lateral differences in the cliff composition. The flights were completed under cloud cover and consisted of multiple lengthwise passes over the scree field. There was a minimum of 75% overlap between images. During the first flight the altitude was roughly 100 m, the camera was positioned normal to the scree (60 degrees from horizontal), and the resolution was 2.7 cm per pixel. The second flight had an altitude of 200 m, the camera orientation was 30 degrees from horizontal, and the resolution was 4.0 cm per pixel. Using the Micmac engine, Ortho-photos and Digital Elevation Models (DEM) were created for both the scree and the cliff. This data will allow for analysis of grain-size, surface roughness, grain-shape, fracture plane orientation, as well as geological mapping. Further work will focus the quantitative assessment of the significance different camera altitudes and angles have on the results. The work-flow used in this study provides a repeatable method for aerial photogrammetric surveys of scree slopes.

  10. Influence of wastewater treatment plant discharges on microplastic concentrations in surface water.

    PubMed

    Estahbanati, Shirin; Fahrenfeld, N L

    2016-11-01

    The abundance of microplastic particles in the marine environment is well documented, but less is known about microplastics in the freshwater environment. Wastewater treatment plants (WWTPs) may not effectively remove microplastics allowing for their release to the freshwater environment. To investigate concentration of microplastic in fresh water and the impact of WWTP effluent, samples were collected upstream and downstream of four major municipal WWTPs on the Raritan River, NJ. Microplastics were categorized into three quantitative categories (500-2000 μm, 250-500 μm, 125-250 μm), and one semi-quantitative category (63-125 μm). Then, microplastics were classified as primary (manufactured in small size) or secondary (derived from larger plastics) based on morphology. The concentration of microplastics in the 125-250 and 250-500 μm size categories significantly increased downstream of WWTP. The smaller size classes, often not quantified in microplastic studies, were in high relative abundance across sampling sites. While primary microplastics significantly increased downstream of WWTP, secondary microplastic was the dominant type in the quantitative size categories (66-88%). A moderate correlation between microplastic and distance downstream was observed. These results have implications for understanding the fate and transport of microplastics in the freshwater environment. PMID:27508863

  11. Aeolic vibration of aerial electricity transmission cables

    NASA Astrophysics Data System (ADS)

    Avila, A.; Rodriguez-Vera, Ramon; Rayas, Juan A.; Barrientos, Bernardino

    2005-02-01

    A feasibility study for amplitude and frequency vibration measurement in aerial electricity transmission cable has been made. This study was carried out incorporating a fringe projection method for the experimental part and horizontal taut string model for theoretical one. However, this kind of model ignores some inherent properties such as cable sag and cable inclination. Then, this work reports advances on aeolic vibration considering real cables. Catenary and sag are considered in our theoretical model in such a way that an optical theodolite for measuring has been used. Preliminary measurements of the catenary as well as numerical simulation of a sagged cable vibration are given.

  12. Aerial view of Runway 33 at SLF

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This aerial view shows the approach on Runway 33 at the KSC Shuttle Landing Facility. The runway is 15,000 feet long, with 1,000-foot paved overruns at each end; 300 feet wide (about length of football field), with 50-foot asphalt shoulders each side; 16 inches thick in the center, and 15 inches thick on sides. It has a slope of 24 inches from the center line to the edge for drainage. The single landing strip is considered two runways, depending on approach -- Runway 15 from northwest, Runway 33 from southeast.

  13. Aerial views of the San Andreas Fault

    USGS Publications Warehouse

    Moore, M.

    1988-01-01

    These aerial photographs of the San Andreas fault were taken in 1965 by Robert E. Wallace of the U.S Geological Survey. The pictures were taken with a Rolliflex camera on 20 format black and white flim; Wallace was aboard a light, fixed-wing aircraft, flying mostly at low altitudes. He photographed the fault from San Francisco near its north end where it enters by the Salton Sea. These images represent only a sampling of the more than 300 images prodcued during this project. All the photographs reside in the U.S Geological Survey Library in Menlo Park, California. 

  14. Robust crack detection strategies for aerial inspection

    NASA Astrophysics Data System (ADS)

    Aldea, Emanuel; Le Hégarat, Sylvie

    2015-04-01

    In this work, we evaluate the relevance of current state of the art algorithms widely employed in the detection of cracks, for the specific context of aerial inspection, which is characterized by image quality degradation. In this study we focus on minimal cost path and on Marked Point Process algorithms, and we test their resilience to motion blur. The results show that the current strategies for defect detection are sensitive to the quality of input images; alternatively, we suggest some improvements based on a-contrario methods that are able to cope with significant motion blur.

  15. Delivery of Unmanned Aerial Vehicle Data

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Sullivan, Donald V.

    2011-01-01

    To support much of NASA's Upper Atmosphere Research Program science, NASA has acquired two Global Hawk Unmanned Aerial Vehicles (UAVs). Two major missions are currently planned using the Global Hawk: the Global Hawk Pacific (GloPac) and the Genesis and Rapid Intensification Processes (GRIP) missions. This paper briefly describes GloPac and GRIP, the concept of operations and the resulting requirements and communication architectures. Also discussed are requirements for future missions that may use satellite systems and networks owned and operated by third parties.

  16. Aerial view of the Press Site

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In this aerial view, The News Center sits beyond a large parking lot, on a hill at the northeastern end of the Launch Complex 39 Area , next to the turn basin (at left). From left, the grandstand faces the launch pads several miles away on the Atlantic seashore; behind it, the television studio is the site of media conferences; next, the large white-roofed building is the hub of information and activity for press representatives. Lined up on the right of the Press Site are various buildings and trailers, home to major news networks. The parking lot can accommodate the hundreds of media personnel who attend Space Shuttle launches.

  17. Dynamics of Aerial Tower Formation in Bacillus subtilis Biofilms

    NASA Astrophysics Data System (ADS)

    Sinha, Naveen; Seminara, Agnese; Wilking, James; Brenner, Michael; Weitz, Dave

    2012-02-01

    Biofilms are highly-organized colonies of bacteria that form on surfaces. These colonies form sophisticated structures which make them robust and difficult to remove from environments such as catheters, where they pose serious infection problems. Previous work has shown that sub-mm sized aerial towers form on the surface of Bacillus subtilis colony biofilms. Spore-formation is located preferentially at the tops of these towers, known as fruiting bodies, which aid in the dispersal and propagation of the colony to new sites. The formation of towers is strongly affected by the quorum-sensing molecule surfactin and the cannibalism pathway of the bacteria. In the present work, we use confocal fluorescence microscopy to study the development of individual fruiting bodies, allowing us to visualize the time-dependent spatial distribution of matrix-forming and sporulating bacteria within the towers. With this information, we investigate the physical mechanisms, such as surface tension and polymer concentration gradients, that drive the formation of these structures.

  18. [Study of penetration to surface waters of pesticides used for protection of greenhouse plants].

    PubMed

    Sadło, S; Rupar, J

    1991-01-01

    Study was made of waste waters from two of the seven state horticultural farms producing vegetables and flowers, located in South-Eastern Poland, samples were taken from collectors carrying waste waters from the greenhouse culture surface, from a ditch and from the Wisłok River where these waste waters are carried. Pesticides were extracted with dichloromethane or petroleum ether. Extracts were evaporated to dryness, whereupon the residues were dissolved in 5 ml of acetone or petroleum ether, and were analysed by gas chromotography (series 104 Pye Unicam gas chromotograph fitted with ECD and TID detectors). The following pesticides were found to penetrate into waste waters: methylpyrimiphos, methidathion, fenitrothion diazinon, methoxychlor, endosulfan, iprodione, vinclozoline, captan, carbendazim (MBC), dichlofluanid. These pesticides were present also in water samples collected from aditch into which waste waters from one of the investigated state farms are carried. There were no pesticides in samples of the Wisłok River waters. PMID:1803443

  19. Coagulation/flocculation process for dye removal using sludge from water treatment plant: optimization through response surface methodology.

    PubMed

    Moghaddam, S Sadri; Moghaddam, M R Alavi; Arami, M

    2010-03-15

    In this study, performance of a waterworks sludge (FCS: ferric chloride sludge) for the removal of acid red 119 (AR119) dye from aqueous solutions were investigated. For this purpose, response surface methodology (RSM) was applied to optimize three operating variables of coagulation/flocculation process including initial pH, coagulant dosage and initial dye concentration. The results showed that the decrease of initial pH was always beneficial for enhancing dye removal and no re-stabilization phenomenon was occurred even at the used maximum FCS dosage. It seems that iron hydroxides of the FCS could neutralize the negative charges on dye molecules or cause to the trapping of the dye ones. Therefore, the sweep flocculation and/or the charge neutralization might play key roles in the enhancement of dye removal. The optimum initial pH, FCS dosage and initial dye concentration were found to be 3.5, 236.68 mg dried FCS/L and 65.91 mg/L, respectively. Dye removal of 96.53% is observed which confirms close to RSM results. Therefore, it can be concluded that reusing the FCS as a low-cost material into the coagulation/flocculation process in wastewater treatment plants can offer some advantages such as high efficiency for AR119 dye removal and economic savings on overall treatment plant operation costs. PMID:19944532

  20. Study of the immunogenicity of hepatitis B surface antigen synthesized in transgenic potato plants with increased biosafety.

    PubMed

    Rukavtsova, Elena B; Rudenko, Natalya V; Puchko, Elena N; Zakharchenko, Natalya S; Buryanov, Yaroslav I

    2015-06-10

    Oral immunogenicity of the hepatitis B surface antigen (HBsAg) synthesized in the tubers of marker-free potato plants has been demonstrated. Experiments were performed in the two groups of outbred NMRI mice. At the beginning of investigations, the mice of experimental group were fed the tubers of transgenic potato synthesizing the HBsAg three times. The mice of control group were fed nontransgenic potato. Intraperitoneal injection of the commercial vaccine against hepatitis B (0.5μg/mouse) was made on day 71 of the experiment. Enzyme-linked immunoassay (ELISA) of the serum of immunized animals showed an increase in the level of HBsAg antibodies significantly above the protective value, which was maintained for 1 year after the immunization. In 1 year, the experimental group of mice underwent additional oral immunization with HBsAg-containing potato tubers. As a result, the level of antibodies against the HBsAg increased and remained at a high protective level for several months. The findings show the possibility of using transgenic plants as a substance for obtaining a safe edible vaccine against hepatitis B. PMID:25840367

  1. Zooplankton community structure of the sea surface microlayer near nuclear power plants and marine fish culture zones in Daya Bay

    NASA Astrophysics Data System (ADS)

    Yang, Yu-Feng; Wang, Zhao-Ding; Pan, Ming-Xiang; Jiao, Nian-Zhi

    2002-06-01

    The authors' surveys in May June 1999 (two cruises) at six sampling stations near nuclear power plants (NPP) and marine fish culture zones in Daya Bay, Guangdong, revealed species composition, densities and body-size of the sea surface microlayer (SM) zooplankton (>35 μm). Results showed that protozoans and copepod nauplii were the predominant components, accounting for 65.40% to 95.56% of total zooplankton in abundance. The size-frequency distributions showed that the frequency of micro-zooplankton (0.02 0.2 mm) reached 0.8235. The SM zooplankton community structure revealed in the present study was quite different from that revealed by investigations in the 1980s in Daya Bay. Difference of sampling method has important influence on the obtained zooplankton community structure. SM zooplankton consisted of micro- and mesozooplankton (0.2 2.0 mm), with micro-zooplankton being predominant. Some possible cause-effect relations between the zooplankton community structure and mariculture, nuclear power plants cooling systems and sampling method are discussed.

  2. Plant and soil surface responses to a combination of shrub removal and grazing in a shrub-encroached woodland.

    PubMed

    Daryanto, Stefani; Eldridge, David J

    2010-12-01

    Shrub encroachment into open woodland is a widespread phenomenon in semi-arid woodlands worldwide. Encroachment or woody thickening, is thought to result from overgrazing, changes in fire regimes and increased atmospheric carbon dioxide concentrations. Eighteen years after one-off shrub removal by ploughing we assessed the effects of four different land management systems resulting from two levels each of grazing (grazed, ungrazed) with and without ploughing, on the cover of landscape units, soil surface condition, diversity of understorey plants and density of shrubs. We recorded 2-7 times more patches under conventional conservation (unploughed-ungrazed) than the others treatments, and plant cover and diversity were greater on the two conservation (ungrazed) plots, irrespective of ploughing. Soils under shrubs and log mounds had greater indices of infiltration, stability and nutrients. Shrub density under the active pastoral (ploughed-grazed) treatment was two and a half times greater than that in other treatments, but results were not significant. The effects of different treatments on shrubs were largely species-specific. Overall, our results suggest that ploughing does not provide long-term control of encroaching shrubs. PMID:20696514

  3. Occurrence, fate and interrelation of selected antibiotics in sewage treatment plants and their receiving surface water.

    PubMed

    Wu, Ming-Hong; Que, Chen-Jing; Xu, Gang; Sun, Yan-Feng; Ma, Jing; Xu, Hui; Sun, Rui; Tang, Liang

    2016-10-01

    The occurrence and fate of 12 commonly used antibiotics, two fluoroquinolones (FQs), three sulfonamides (SAs), three macrolides (MLs), two β-lactams and two tetracyclines (TCs), were studied in four sewage treatment plants (STPs) and their receiving water, the Huangpu River, Shanghai. The levels of selected antibiotics in the STPs ranged from ngL(-1) to μgL(-1), while ofloxacin (OFL) was predominant (reach up to 2936.94ngL(-1)). The highest and lowest proportions were of FQs (STP 1, STP 2 and STP 3) and TCs (in four STPs) respectively in both influents and effluents. And the second-highest proportion was of FQs in STP 4 (only 2% lower than the highest). What could be inferred was that the usage of TCs were extremely low while the usage of FQs were larger than other antibiotics in our study area. The elimination of antibiotics through these STPs was incomplete and a wide range of removal efficiencies (-442.8% to 100%) during the treatment was observed. Based on the mass loadings as well as the per-capita mass loadings of target antibiotics in four STPs, OFL was considered the primary contaminant herein. In the Huangpu River, 3 antibiotics were not detected in any water samples, while the detection frequencies of 4 antibiotics were 100%. The highest concentration detected in the river was 53.91ngL(-1) of sulfapyridine (SD). The Spearman correlation analysis of antibiotics in STPs and the nearby water samples suggests that the antibiotics discharged from some STPs might influence the receiving water to some extent. Moreover, most of the hazard quotient (HQ) values in STP effluents were one order magnitude higher than those in their receiving water. However, there is no imminent significant ecotoxicological risk caused by any single compound in the effluents and receiving waters. PMID:27318556

  4. Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Riley, W. J.; Tang, J.; Koven, C. D.

    2016-01-01

    Soil is a complex system where biotic (e.g., plant roots, micro-organisms) and abiotic (e.g., mineral surfaces) consumers compete for resources necessary for life (e.g., nitrogen, phosphorus). This competition is ecologically significant, since it regulates the dynamics of soil nutrients and controls aboveground plant productivity. Here we develop, calibrate and test a nutrient competition model that accounts for multiple soil nutrients interacting with multiple biotic and abiotic consumers. As applied here for tropical forests, the Nutrient COMpetition model (N-COM) includes three primary soil nutrients (NH4+, NO3- and POx; representing the sum of PO43-, HPO42- and H2PO4-) and five potential competitors (plant roots, decomposing microbes, nitrifiers, denitrifiers and mineral surfaces). The competition is formulated with a quasi-steady-state chemical equilibrium approximation to account for substrate (multiple substrates share one consumer) and consumer (multiple consumers compete for one substrate) effects. N-COM successfully reproduced observed soil heterotrophic respiration, N2O emissions, free phosphorus, sorbed phosphorus and NH4+ pools at a tropical forest site (Tapajos). The overall model uncertainty was moderately well constrained. Our sensitivity analysis revealed that soil nutrient competition was primarily regulated by consumer-substrate affinity rather than environmental factors such as soil temperature or soil moisture. Our results also imply that under strong nutrient limitation, relative competitiveness depends strongly on the competitor functional traits (affinity and nutrient carrier enzyme abundance). We then applied the N-COM model to analyze field nitrogen and phosphorus perturbation experiments in two tropical forest sites (in Hawaii and Puerto Rico) not used in model development or calibration. Under soil inorganic nitrogen and phosphorus elevated conditions, the model accurately

  5. Multilevel measurements of surface temperature over undulating terrain planted to barley

    NASA Technical Reports Server (NTRS)

    Reginato, R. J. (Principal Investigator); Millard, J. P.; Hatfield, J. L.; Jackson, R. D.

    1981-01-01

    A ground and aircraft program was conducted to extend ground based methods for measuring soil moisture and crop water stress to aircraft and satellite altitudes. A 260ha agricultural field in California was used over the 1977-78 growing season. For cloud free days ground based temperature measurements over bare soil were related to soil moisture content. Water stress resulted from too much water, not from lack of it, as was expected. A theoretical examination of the canopy air temperature difference as affected by vapor pressure deficit and net radiation was developed. This analysis shows why surface temperatures delineate crop water stress under conditions of low humidity, but not under high humidity conditions. Multilevel temperatures acquired from the ground, low and high altitude aircraft, and the Heat Capacity Mapping Mission (HCMM) spacecraft were compared for two day and one night overpasses. The U-2 and low altitude temperatures were within 0.5 C. The HCMM data were analyzed using both the pre- and post-launch calibrations, with the former being considerably closer in agreement with the aircraft data than the latter.

  6. 3D Buildings Extraction from Aerial Images

    NASA Astrophysics Data System (ADS)

    Melnikova, O.; Prandi, F.

    2011-09-01

    This paper introduces a semi-automatic method for buildings extraction through multiple-view aerial image analysis. The advantage of the used semi-automatic approach is that it allows processing of each building individually finding the parameters of buildings features extraction more precisely for each area. On the early stage the presented technique uses an extraction of line segments that is done only inside of areas specified manually. The rooftop hypothesis is used further to determine a subset of quadrangles, which could form building roofs from a set of extracted lines and corners obtained on the previous stage. After collecting of all potential roof shapes in all images overlaps, the epipolar geometry is applied to find matching between images. This allows to make an accurate selection of building roofs removing false-positive ones and to identify their global 3D coordinates given camera internal parameters and coordinates. The last step of the image matching is based on geometrical constraints in contrast to traditional correlation. The correlation is applied only in some highly restricted areas in order to find coordinates more precisely, in such a way significantly reducing processing time of the algorithm. The algorithm has been tested on a set of Milan's aerial images and shows highly accurate results.

  7. Community aerial mosquito control and naled exposure.

    PubMed

    Duprey, Zandra; Rivers, Samantha; Luber, George; Becker, Alan; Blackmore, Carina; Barr, Dana; Weerasekera, Gayanga; Kieszak, Stephanie; Flanders, W Dana; Rubin, Carol

    2008-03-01

    In October 2004, the Florida Department of Health (FLDOH) and the Centers for Disease Control and Prevention (CDC) assessed human exposure to ultra-low volume (ULV) aerial application of naled. Teams administered activity questionnaires regarding pesticide exposure and obtained baseline urine samples to quantify prespray naled metabolite levels. Following the spray event, participants were asked to collect postspray urine specimens within 12 h of the spray event and at 8-h intervals for up to 40 h. Upon completion, a postspray activity questionnaire was administered to study participants. Two hundred five (87%) participants completed the study. The urine analysis showed that although 67% of prespray urine samples had detectable levels of a naled metabolite, the majority of postspray samples were below the limit of detection (< LOD). Only at the "postspray 6" time period, which corresponds to a time greater than 5 half-lives (> 40 h) following exposure, the number of samples with detectable levels exceeded 50%. There was a significant decrease in naled metabolites from prespray to postspray (= .02), perhaps associated with a significant reduction (< or = 0.05) in some participants that may have resulted in pesticide exposure by means other than the mosquito control operations. These data suggest that aerial spraying of naled does not result in increased levels of naled in humans, provided the naled is used according to label instructions. PMID:18437813

  8. Unmanned Aerial Vehicles unique cost estimating requirements

    NASA Astrophysics Data System (ADS)

    Malone, P.; Apgar, H.; Stukes, S.; Sterk, S.

    Unmanned Aerial Vehicles (UAVs), also referred to as drones, are aerial platforms that fly without a human pilot onboard. UAVs are controlled autonomously by a computer in the vehicle or under the remote control of a pilot stationed at a fixed ground location. There are a wide variety of drone shapes, sizes, configurations, complexities, and characteristics. Use of these devices by the Department of Defense (DoD), NASA, civil and commercial organizations continues to grow. UAVs are commonly used for intelligence, surveillance, reconnaissance (ISR). They are also use for combat operations, and civil applications, such as firefighting, non-military security work, surveillance of infrastructure (e.g. pipelines, power lines and country borders). UAVs are often preferred for missions that require sustained persistence (over 4 hours in duration), or are “ too dangerous, dull or dirty” for manned aircraft. Moreover, they can offer significant acquisition and operations cost savings over traditional manned aircraft. Because of these unique characteristics and missions, UAV estimates require some unique estimating methods. This paper describes a framework for estimating UAV systems total ownership cost including hardware components, software design, and operations. The challenge of collecting data, testing the sensitivities of cost drivers, and creating cost estimating relationships (CERs) for each key work breakdown structure (WBS) element is discussed. The autonomous operation of UAVs is especially challenging from a software perspective.

  9. Moving Obstacle Avoidance for Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Lin, Yucong

    There has been a vast increase in applications of Unmanned Aerial Vehicles (UAVs) in civilian domains. To operate in the civilian airspace, a UAV must be able to sense and avoid both static and moving obstacles for flight safety. While indoor and low-altitude environments are mainly occupied by static obstacles, risks in space of higher altitude primarily come from moving obstacles such as other aircraft or flying vehicles in the airspace. Therefore, the ability to avoid moving obstacles becomes a necessity for Unmanned Aerial Vehicles. Towards enabling a UAV to autonomously sense and avoid moving obstacles, this thesis makes the following contributions. Initially, an image-based reactive motion planner is developed for a quadrotor to avoid a fast approaching obstacle. Furthermore, A Dubin's curve based geometry method is developed as a global path planner for a fixed-wing UAV to avoid collisions with aircraft. The image-based method is unable to produce an optimal path and the geometry method uses a simplified UAV model. To compensate these two disadvantages, a series of algorithms built upon the Closed-Loop Rapid Exploratory Random Tree are developed as global path planners to generate collision avoidance paths in real time. The algorithms are validated in Software-In-the-Loop (SITL) and Hardware-In-the-Loop (HIL) simulations using a fixed-wing UAV model and in real flight experiments using quadrotors. It is observed that the algorithm enables a UAV to avoid moving obstacles approaching to it with different directions and speeds.

  10. Aerial survey estimates of fallow deer abundance

    USGS Publications Warehouse

    Gogan, Peter J.; Gates, Natalie B.; Lubow, Bruce C.; Pettit, Suzanne

    2012-01-01

    Reliable estimates of the distribution and abundance of an ungulate species is essential prior to establishing and implementing a management program. We used ground surveys to determine distribution and ground and aerial surveys and individually marked deer to estimate the abundance of fallow deer (Dama dama) in north-coastal California. Fallow deer had limited distribution and heterogeneous densities. Estimated post-rut densities across 4 annual surveys ranged from a low of 1.4 (SE=0.2) deer/km2 to a high of 3.3 (se=0.5) deer/km2 in a low density stratum and from 49.0 (SE=8.3) deer/km2 to 111.6 deer/km2 in a high density stratum. Sightability was positively influenced by the presence of white color-phase deer in a group and group size, and varied between airial and ground-based observers and by density strata. Our findings underscore the utility of double-observer surveys and aerial surveys with individually marked deer, both incorporating covariates to model sightability, to estimate deer abundance.

  11. Monitoring and Assuring the Quality of Digital Aerial Data

    NASA Technical Reports Server (NTRS)

    Christopherson, Jon

    2007-01-01

    This viewgraph presentation explains the USGS plan for monitoring and assuring the quality of digital aerial data. The contents include: 1) History of USGS Aerial Imaging Involvement; 2) USGS Research and Results; 3) Outline of USGS Quality Assurance Plan; 4) Other areas of Interest; and 5) Summary

  12. Aerial application methods for increasing spray deposition on wheat heads

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB) is a major disease of wheat and barley in several small grain production areas in the United States and, as such, the development and evaluation of aerial application technologies that enhance the efficacy of fungicides with aerial spray applications is critical to its man...

  13. 7 CFR 1755.506 - Aerial wire services

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Aerial wire services 1755.506 Section 1755.506 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE TELECOMMUNICATIONS POLICIES ON SPECIFICATIONS, ACCEPTABLE MATERIALS, AND STANDARD CONTRACT FORMS § 1755.506 Aerial wire services...

  14. AERIAL OF VISITORS INFORMATION CENTER [VIC] & ROCKET GARDEN EXHIBIT

    NASA Technical Reports Server (NTRS)

    1975-01-01

    AERIAL OF VISITORS INFORMATION CENTER [VIC] & ROCKET GARDEN EXHIBIT KSC-375C-0604.12 116-KSC-375C-604.12, P-20220, ARCHIVE-04465 Aerial view of Kennedy Space Center Visitors Information Center looking east-northeastward. New food services building under construction is visible at upper left.

  15. Kite Aerial Photography (KAP) as a Tool for Field Teaching

    ERIC Educational Resources Information Center

    Sander, Lasse

    2014-01-01

    Kite aerial photography (KAP) is proposed as a creative tool for geography field teaching and as a medium to approach the complexity of readily available geodata. The method can be integrated as field experiment, surveying technique or group activity. The acquired aerial images can instantaneously be integrated in geographic information systems…

  16. An algorithm for approximate rectification of digital aerial images

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-resolution aerial photography is one of the most valuable tools available for managing extensive landscapes. With recent advances in digital camera technology, computer hardware, and software, aerial photography is easier to collect, store, and transfer than ever before. Images can be automa...

  17. DETAIL VIEW OF AERIAL TRAM CABLE COUNTERWEIGHT SYSTEM, LOOKING DOWN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF AERIAL TRAM CABLE COUNTERWEIGHT SYSTEM, LOOKING DOWN THROUGH THE LOWER TERMINAL FLOOR. TWO SUSPENDED ROCK FILLED WOODEN BOXES CAN BE SEEN AT BOTTOM. THE METAL FRAMEWORK WAS INSTALLED BY THE PARK SERVICE DURING THE AERIAL TRAM'S STABILIZATION IN THE 1983. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  18. The remote characterization of vegetation using Unmanned Aerial Vehicle photography

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned Aerial Vehicles (UAVs) can fly in place of piloted aircraft to gather remote sensing information on vegetation characteristics. The type of sensors flown depends on the instrument payload capacity available, so that, depending on the specific UAV, it is possible to obtain video, aerial phot...

  19. Effects of pesticides aerial applications on rice quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerial application of pesticides has become an important research topic in recent years. This research investigated the effects of two types of commercial pesticides on the rice quality under low volume aerial application. It could provide guidance for the pesticide application and choose the right ...

  20. A practical guide to the design of rhombic aerials

    NASA Astrophysics Data System (ADS)

    Tyler, J. N.

    1985-04-01

    Basic principles of the rhombic aerial are explained and design charts are presented. These, compiled using two simple computer programs, offer a considerable time saving in design. Examples of aerials designed using the charts are given, together with polar diagrams of their theoretical performance.