Science.gov

Sample records for aerial plant tissues

  1. Draft Genome Sequence of Bacillus pumilus Strain GM3FR, an Endophyte Isolated from Aerial Plant Tissues of Festuca rubra L.

    PubMed Central

    Hollensteiner, Jacqueline; Daniel, Rolf; Liesegang, Heiko; Vidal, Stefan

    2017-01-01

    ABSTRACT Here, we report the draft genome sequence of Bacillus pumilus GM3FR, an endophytic bacterium isolated from aerial plant tissues of Festuca rubra L. The draft genome consists of 3.5 Mb and harbors 3,551 predicted protein-encoding genes. The genome provides insights into the biocontrol potential of B. pumilus GM3FR. PMID:28360161

  2. 1. AERIAL VIEW OF WHITSETT (INTAKE) PUMP PLANT ON LAKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. AERIAL VIEW OF WHITSETT (INTAKE) PUMP PLANT ON LAKE SHORE IN FOREGROUND; GENE IN BACKGROUND, LOOKING SOUTHWEST. - Whitsett Pump Plant, West side of Colorado River, north of Parker Dam, Parker Dam, San Bernardino County, CA

  3. Aerial photography for sensing plant anomalies

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Cardenas, R.; Hart, W. G.

    1970-01-01

    Changes in the red tonal response of Kodak Ektrachrome Infrared Aero 8443 film (EIR) are often incorrectly attributed solely to variations in infrared light reflectance of plant leaves, when the primary influence is a difference in visible light reflectance induced by varying chlorophyll contents. Comparisons are made among aerial photographic images of high- and low-chlorophyll foliage. New growth, foot rot, and boron and chloride nutrient toxicites produce low-chlorophyll foliage, and EIR transparency images of light red or white compared with dark-red images of high-chlorophyll foliage. Deposits of the sooty mold fungus that subsists on the honeydew produced by brown soft scale insects, obscure the citrus leaves' green color. Infected trees appear as black images on EIR film transparencies compared with red images of healthy trees.

  4. The plant pathogen Rhodococcus fascians colonizes the exterior and interior of the aerial parts of plants.

    PubMed

    Cornelis, K; Ritsema, T; Nijsse, J; Holsters, M; Goethals, K; Jaziri, M

    2001-05-01

    Rhodococcus fascians is a plant-pathogenic bacterium that causes malformations on aerial plant parts, whereby leafy galls occur at axillary meristems. The colonization behavior on Nicotiana tabacum and Arabidopsis thaliana plants was examined. Independent of the infection methods, R. fascians extensively colonized the plant surface where the bacteria were surrounded by a slime layer. R. fascians caused the collapse of epidermal cells and penetrated intercellularly into the plant tissues. The onset of symptom development preceded the extensive colonization of the interior. The meristematic regions induced by pathogenic strain D188 were surrounded by bacteria. The nonpathogenic strain, D188-5, colonized the exterior of the plant equally well, but the linear plasmid (pFiD188) seemed to be involved in the penetration efficiency and colonization of tobacco tissues.

  5. 20. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING NORTHEAST. THE PLANT WAS COMPOSED OF FOUR WIDELY SEPARATED AREAS, EACH ONE PERFORMING A DIFFERENT TYPE OF WORK. PLANT A (44), SOUTHWEST, FABRICATED PARTS FROM DEPLETED URANIUM, PLANT B (81), SOUTH, WAS ENRICHED URANIUM OPERATIONS, PLANT C (71), NORTH, PLUTONIUM OPERATIONS, AND PLANT D (91), EAST, WAS FINAL ASSEMBLY, SHIPPING AND RECEIVING (2/6/66). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  6. Biomechanical responses of aquatic plants to aerial conditions

    PubMed Central

    Hamann, Elena; Puijalon, Sara

    2013-01-01

    Background and Aims Wetlands are impacted by changes in hydrological regimes that can lead to periods of low water levels. During these periods, aquatic plants experience a drastic change in the mechanical conditions that they encounter, from low gravitational and tensile hydrodynamic forces when exposed to flow under aquatic conditions, to high gravitational and bending forces under terrestrial conditions. The objective of this study was to test the capacity of aquatic plants to produce self-supporting growth forms when growing under aerial conditions by assessing their resistance to terrestrial mechanical conditions and the associated morpho-anatomical changes. Methods Plastic responses to aerial conditions were assessed by sampling Berula erecta, Hippuris vulgaris, Juncus articulatus, Lythrum salicaria, Mentha aquatica, Myosotis scorpioides, Nuphar lutea and Sparganium emersum under submerged and emergent conditions. The cross-sectional area and dry matter content (DMC) were measured in the plant organs that bear the mechanical forces, and their biomechanical properties in tension and bending were assessed. Key Results All of the species except for two had significantly higher stiffness in bending and thus an increased resistance to terrestrial mechanical conditions when growing under emergent conditions. This response was determined either by an increased allocation to strengthening tissues and thus a higher DMC, or by an increased cross-sectional area. These morpho-anatomical changes also resulted in increased strength and stiffness in tension. Conclusions The capacity of the studied species to colonize this fluctuating environment can be accounted for by a high degree of phenotypic plasticity in response to emersion. Further investigation is however needed to disentangle the finer mechanisms behind these responses (e.g. allometric relations, tissue make-up), their costs and adaptive value. PMID:24187030

  7. 29. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING SOUTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING SOUTH. IN 1983, THE PERIMETER SECURITY ZONE SURROUNDING THE PLUTONIUM OPERATIONS WAS COMPLETED. IT CONSISTED OF A DOUBLE PERIMETER FENCE, CLOSED CIRCUIT TELEVISIONS, ALARMS, AND AN UNINTERRUPTED POWER SUPPLY (7/29/83). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  8. 25. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING WEST - NORTHWEST IN 1974. IN 1972, 4,600 ACRES WERE PURCHASED AROUND THE SITE TO BETTER PROTECT THE BORDERS FROM TERRORISM AND INFILTRATION BY PROTESTORS. ANTI-NUCLEAR DEMONSTRATION BEGAN SHORTLY AFTER THE 1969 FIRE IN BUILDING 776/777, AND CONTINUED UNTIL PRODUCTION CEASED AT THE PLANT IN 1989 (10/7/74). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  9. Plant Tissue Culture Studies.

    ERIC Educational Resources Information Center

    Smith, Robert Alan

    Plant tissue culture has developed into a valid botanical discipline and is considered a key area of biotechnology, but it has not been a key component of the science curriculum because of the expensive and technical nature of research in this area. This manual presents a number of activities that are relatively easy to prepare and perform. The…

  10. 1. AERIAL VIEW OF THE HIGHLINE PUMPING PLANT SITE ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. AERIAL VIEW OF THE HIGHLINE PUMPING PLANT SITE ON THE WESTERN CANAL, LOOKING NORTH. THE OLD PLANT IS ON THE RIGHT BANK, NEAREST THE CANAL. THE NEW PLANT IS ON THE LEFT BANK AT THE END OF THE INLET CANAL. THE KYRENE DITCH RUNS OUT OF THE BOTTOM OF THE PICTURE, AND PART OF THE SWITCHYARD FOR THE KYRENE STEAM PLANT IS VISIBLE AT LOWER RIGHT. c. 1955 - Highline Canal & Pumping Station, South side of Salt River between Tempe, Phoenix & Mesa, Tempe, Maricopa County, AZ

  11. 32. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING NORTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING NORTHWEST. DURING THE 1980S, A NUMBER OF COMPLAINTS CONCERNING SAFETY AND ENVIRONMENTAL ERRORS SURFACED, CULMINATING IN THE 1989 RAID ON THE PLANT BY THE FBI FOR ALLEGED ENVIRONMENTAL INFRACTIONS. THAT SAME YEAR, PRODUCTION AT THE PLANT WAS HALTED FOR CORRECTION OF SAFETY DEFICIENCIES. BY 1991, A SERIES OF EVENTS WORLDWIDE REDUCED THE COLD WAR THREAT, AND IN 1992, THE SECRETARY OF ENERGY ANNOUNCED THAT THE MISSION AT THE PLANT WOULD BE CHANGED TO ENVIRONMENTAL RESTORATION AND WASTE MANAGEMENT, WITH THE GOAL OF CLEANING UP THE PLANT AND SITE (1989). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  12. Root system architecture in Arabidopsis grown in culture is regulated by sucrose uptake in the aerial tissues.

    PubMed

    Macgregor, Dana R; Deak, Karen I; Ingram, Paul A; Malamy, Jocelyn E

    2008-10-01

    This article presents a detailed model for the regulation of lateral root formation in Arabidopsis thaliana seedlings grown in culture. We demonstrate that direct contact between the aerial tissues and sucrose in the growth media is necessary and sufficient to promote emergence of lateral root primordia from the parent root. Mild osmotic stress is perceived by the root, which then sends an abscisic acid-dependent signal that causes a decrease in the permeability of aerial tissues; this reduces uptake of sucrose from the culture media, which leads to a repression of lateral root formation. Osmotic repression of lateral root formation in culture can be overcome by mutations that cause the cuticle of a plant's aerial tissues to become more permeable. Indeed, we report here that the previously described lateral root development2 mutant overcomes osmotic repression of lateral root formation because of a point mutation in Long Chain Acyl-CoA Synthetase2, a gene essential for cutin biosynthesis. Together, our findings (1) impact the interpretation of experiments that use Arabidopsis grown in culture to study root system architecture; (2) identify sucrose as an unexpected regulator of lateral root formation; (3) demonstrate mechanisms by which roots communicate information to aerial tissues and receive information in turn; and (4) provide insights into the regulatory pathways that allow plants to be developmentally plastic while preserving the essential balance between aboveground and belowground organs.

  13. Differences in mechanical and structural properties of surface and aerial petioles of the aquatic plant Nymphaea odorata subsp. tuberosa (Nymphaeaceae).

    PubMed

    Etnier, Shelley A; Villani, Philip J

    2007-07-01

    Lily pads (Nymphaea odorata) exhibit heterophylly where a single plant may have leaves that are submerged, floating, or above (aerial) the surface of the water. Lily pads are placed in a unique situation because each leaf form is exposed to a distinctly different set of mechanical demands. While surface petioles may be loaded in tension under conditions of wind or waves, aerial petioles are loaded in compression because they must support the weight of the lamina. Using standard techniques, we compared the mechanical and morphological properties of both surface and aerial leaf petioles. Structural stiffness (EI) and the second moment of area (I) were higher in aerial petioles, although we detected no differences in other mechanical values (elastic modulus [E], extension ratio, and breaking strength). Morphologically, aerial petioles had a thicker rind, with increased collenchyma tissue and sclereid cell frequency. Aerial petioles also had a larger cross-sectional area and were more elliptical. Thus, subtle changes in the distribution of materials, rather than differences in their makeup, differentiate petiole forms. We suggest that the growth of aerial petioles may be an adaptive response to shading, allowing aerial leaves to rise above a crowded water surface.

  14. 21. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING NORTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING NORTHWEST. BY THE LATE 1960S, THE SITE HAD UNDERGONE TWO MAJOR EXPANSIONS. THE FIRST EXPANSION IN 1956-57, WHEN THE TRIGGER DESIGN CHANGED AND NECESSITATED THE ADDITION OF SEVEN NEW BUILDINGS. THE SECOND LARGE EXPANSION TOOK PLACE FROM 1964-65, WHEN ROCKY FLATS BECAME THE SOLE PRODUCER OF TRIGGERS. DURING THIS EXPANSION, ELEVEN BUILDINGS WERE ADDED, PRIMARILY IN RESEARCH AND DEVELOPMENT LABORATORIES, GUARD HOUSES, AND WASTE WATER TREATMENT (7/1/69). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  15. Plant Tissues. Agricultural Lesson Plans.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This lesson plan is intended for use in conducting classes on plant tissues. Presented first are an attention step and a series of questions and answers designed to convey general information about plant tissues and the effect of water and minerals on them. The following topics are among those discussed: reasons why water is important to plants,…

  16. Teaching Tips: Plant Tissue Testing.

    ERIC Educational Resources Information Center

    Osborne, Ed

    1991-01-01

    Plant tissue testing can be done to monitor plant nutrition levels during the growing season and diagnose nutrient deficiency problems. They can provide feedback on crop conditions and fertility needs. (Author)

  17. 13. AERIAL VIEW OF THE ROCKY FLATS PLANT FROM DIRECTLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. AERIAL VIEW OF THE ROCKY FLATS PLANT FROM DIRECTLY OVERHEAD IN 1954. IN 1950, DOW CHEMICAL COMPANY WAS CHOSEN BY THE ATOMIC ENERGY COMMISSION TO ESTABLISH THE ROCKY FLATS PLANT AS AN ATOMIC BOMB TRIGGER FABRICATION FACILITY. THE CRITERIA FOR SITING SUCH A PLANT INCLUDED A LOCATION WEST OF THE MISSISSIPPI, NORTH OF TEXAS, SOUTH OF THE NORTHERN BORDER OF COLORADO, AND EAST OF UTAH; A DRY MODERATE CLIMATE; A SUPPORTING POPULATION OF AT LEAST 25,000 PEOPLE; AND ACCESSIBILITY FROM LOS ALAMOS, NM, CHICAGO, IL, AND ST. LOUIS, MO. TWENTY-ONE AREAS IN THE UNITED STATES WERE SUGGESTED; SEVEN LOCATIONS WERE SCREENED IN THE DENVER AREA. THIS FOUR-SQUARE MILE AREA WAS SELECTED AND CONSTRUCTION BEGAN IN 1951 (8/31/54). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  18. 26. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING NORTHEAST. IN 1951, A GOOD FRIDAY ISSUE OF THE DENVER POST ANNOUNCED THE ATOMIC ENERGY COMMISSION'S PLANS TO BUILD THE ROCKY FLATS PLANT. UNDER THE HEADLINE 'THERE'S GOOD NEWS TODAY.' POLITICAL LEADERS EXPRESSED GREAT PRIDE IN THE CHOICE OF THE DENVER-BOULDER AREA AS THE SITE FOR AN ATOMIC PLANT AS QUOTED IN THE ROCKY MOUNTAIN NEWS: 'WE ARE PROUD THAT THE AREA HAS BEEN CHOSEN FOR ANOTHER IMPORTANT CONTRIBUTION TO THE NATION'S STRENGTH AND FUTURE SECURITY.' BY THE MID 1970S, PUBLIC OPINION OF THE SITE HAD CHANGED (5/4/78). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  19. Aerial thermography studies of power plant heated lakes

    SciTech Connect

    Villa-Aleman, E.

    2000-01-26

    Remote sensing temperature measurements of water bodies is complicated by the temperature differences between the true surface or skin water and the bulk water below. Weather conditions control the reduction of the skin temperature relative to the bulk water temperature. Typical skin temperature depressions range from a few tenths of a degree Celsius to more than one degree. In this research project, the Savannah River Technology Center (SRTC) used aerial thermography and surface-based meteorological and water temperature measurements to study a power plant cooling lake in South Carolina. Skin and bulk water temperatures were measured simultaneously for imagery calibration and to produce a database for modeling of skin temperature depressions as a function of weather and bulk water temperatures. This paper will present imagery that illustrates how the skin temperature depression was affected by different conditions in several locations on the lake and will present skin temperature modeling results.

  20. Hormone Profiling in Plant Tissues.

    PubMed

    Müller, Maren; Munné-Bosch, Sergi

    2017-01-01

    Plant hormones are for a long time known to act as chemical messengers in the regulation of physiological processes during a plant's life cycle, from germination to senescence. Furthermore, plant hormones simultaneously coordinate physiological responses to biotic and abiotic stresses. To study the hormonal regulation of physiological processes, three main approaches have been used (1) exogenous application of hormones, (2) correlative studies through measurements of endogenous hormone levels, and (3) use of transgenic and/or mutant plants altered in hormone metabolism or signaling. A plant hormone profiling method is useful to unravel cross talk between hormones and help unravel the hormonal regulation of physiological processes in studies using any of the aforementioned approaches. However, hormone profiling is still particularly challenging due to their very low abundance in plant tissues. In this chapter, a sensitive, rapid, and accurate method to quantify all the five "classic" classes of plant hormones plus other plant growth regulators, such as jasmonates, salicylic acid, melatonin, and brassinosteroids is described. The method includes a fast and simple extraction procedure without time consuming steps as purification or derivatization, followed by optimized ultrahigh-performance liquid chromatography coupled to electrospray ionization-tandem mass spectrometry (UHPLC-MS/MS) analysis. This protocol facilitates the high-throughput analysis of hormone profiling and is applicable to different plant tissues.

  1. Aerial Radiation Measurements from the Fukushima Dai-ichi Nuclear Power Plant Accident

    SciTech Connect

    Guss, P. P.

    2012-07-16

    This document is a slide show type presentation concerning DOE and Aerial Measuring System (AMS) activities and results with respect to assessing the consequences of the releases from the Fukushima Dai-ichi Nuclear Power Plant. These include ground monitoring and aerial monitoring.

  2. History of plant tissue culture.

    PubMed

    Thorpe, Trevor A

    2007-10-01

    Plant tissue culture, or the aseptic culture of cells, tissues, organs, and their components under defined physical and chemical conditions in vitro, is an important tool in both basic and applied studies as well as in commercial application. It owes its origin to the ideas of the German scientist, Haberlandt, at the begining of the 20th century. The early studies led to root cultures, embryo cultures, and the first true callus/tissue cultures. The period between the 1940s and the 1960s was marked by the development of new techniques and the improvement of those that were already in use. It was the availability of these techniques that led to the application of tissue culture to five broad areas, namely, cell behavior (including cytology, nutrition, metabolism, morphogenesis, embryogenesis, and pathology), plant modification and improvement, pathogen-free plants and germplasm storage, clonal propagation, and product (mainly secondary metabolite) formation, starting in the mid-1960s. The 1990s saw continued expansion in the application of the in vitro technologies to an increasing number of plant species. Cell cultures have remained an important tool in the study of basic areas of plant biology and biochemistry and have assumed major significance in studies in molecular biology and agricultural biotechnology. The historical development of these in vitro technologies and their applications are the focus of this chapter.

  3. History of plant tissue culture.

    PubMed

    Thorpe, Trevor

    2012-01-01

    Plant tissue culture, or the aseptic culture of cells, tissues, organs, and their components under defined physical and chemical conditions in vitro, is an important tool in both basic and applied studies as well as in commercial application. It owes its origin to the ideas of the German scientist, Haberlandt, at the beginning of the twentieth century. The early studies led to root cultures, embryo cultures, and the first true callus/tissue cultures. The period between the 1940s and the 1960s was marked by the development of new techniques and the improvement of those that were already in use. It was the availability of these techniques that led to the application of tissue culture to five broad areas, namely, cell behavior (including cytology, nutrition, metabolism, morphogenesis, embryogenesis, and pathology), plant modification and improvement, pathogen-free plants and germplasm storage, clonal propagation, and product (mainly secondary metabolite) formation, starting in the mid-1960s. The 1990s saw continued expansion in the application of the in vitro technologies to an increasing number of plant species. Cell cultures have remained an important tool in the study of basic areas of plant biology and biochemistry and have assumed major significance in studies in molecular biology and agricultural biotechnology in the twenty-first century. The historical development of these in vitro technologies and their applications is the focus of this chapter.

  4. Freezing of Nonwoody Plant Tissue

    PubMed Central

    Brown, M. S.; Pereira, E. Sa B.; Finkle, Bernard J.

    1974-01-01

    Temperature recordings of the freezing of plant tissues include two plateaus or regions of reduced slope. During the second of these, small positive spikes were observed. When a completely frozen tissue was thawed and refrozen, neither the second plateau nor the spikes were recorded. Both were present, however, if the initial freezing had been terminated before the second plateau had been reached. The spikes appear to represent the release of heat of crystallization during the freezing of individual cells. Such a freezing and thawing cycle destroys the ability of the cells to remain supercooled in the presence of the ice that is formed as the first plateau is recorded. PMID:16658774

  5. The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots.

    PubMed

    Gómez-Lama Cabanás, Carmen; Schilirò, Elisabetta; Valverde-Corredor, Antonio; Mercado-Blanco, Jesús

    2014-01-01

    Pseudomonas fluorescens PICF7, a native olive root endophyte and effective biocontrol agent (BCA) against Verticillium wilt of olive, is able to trigger a broad range of defense responses in root tissues of this woody plant. In order to elucidate whether strain PICF7 also induces systemic defense responses in above-ground organs, aerial tissues of olive plants grown under non-gnotobiotic conditions were collected at different time points after root bacterization with this endophytic BCA. A suppression subtractive hybridization (SSH) cDNA library, enriched in up-regulated genes, was generated. This strategy enabled the identification of 376 ESTs (99 contigs and 277 singlets), many of them related to response to different stresses. Five ESTs, involved in defense responses, were selected to carry out time-course quantitative real-time PCR (qRT-PCR) experiments aiming to: (1) validate the induction of these genes, and (2) shed light on their expression pattern along time (from 1 to 15 days). Induction of olive genes potentially coding for lipoxygenase 2, catalase, 1-aminocyclopropane-1-carboxylate oxidase, and phenylananine ammonia-lyase was thus confirmed at some time points. Computational analysis also revealed that different transcription factors were up-regulated in olive aerial tissues (i.e., JERF, bHLH, WRKY), as previously reported for roots. Results confirmed that root colonization by this endophytic bacterium does not only trigger defense responses in this organ but also mounts a wide array of systemic defense responses in distant tissues (stems, leaves). This sheds light on how olive plants respond to the "non-hostile" colonization by a bacterial endophyte and how induced defense response can contribute to the biocontrol activity of strain PICF7.

  6. The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots

    PubMed Central

    Gómez-Lama Cabanás, Carmen; Schilirò, Elisabetta; Valverde-Corredor, Antonio; Mercado-Blanco, Jesús

    2014-01-01

    Pseudomonas fluorescens PICF7, a native olive root endophyte and effective biocontrol agent (BCA) against Verticillium wilt of olive, is able to trigger a broad range of defense responses in root tissues of this woody plant. In order to elucidate whether strain PICF7 also induces systemic defense responses in above-ground organs, aerial tissues of olive plants grown under non-gnotobiotic conditions were collected at different time points after root bacterization with this endophytic BCA. A suppression subtractive hybridization (SSH) cDNA library, enriched in up-regulated genes, was generated. This strategy enabled the identification of 376 ESTs (99 contigs and 277 singlets), many of them related to response to different stresses. Five ESTs, involved in defense responses, were selected to carry out time-course quantitative real-time PCR (qRT-PCR) experiments aiming to: (1) validate the induction of these genes, and (2) shed light on their expression pattern along time (from 1 to 15 days). Induction of olive genes potentially coding for lipoxygenase 2, catalase, 1-aminocyclopropane-1-carboxylate oxidase, and phenylananine ammonia-lyase was thus confirmed at some time points. Computational analysis also revealed that different transcription factors were up-regulated in olive aerial tissues (i.e., JERF, bHLH, WRKY), as previously reported for roots. Results confirmed that root colonization by this endophytic bacterium does not only trigger defense responses in this organ but also mounts a wide array of systemic defense responses in distant tissues (stems, leaves). This sheds light on how olive plants respond to the “non-hostile” colonization by a bacterial endophyte and how induced defense response can contribute to the biocontrol activity of strain PICF7. PMID:25250017

  7. 10. AERIAL VIEW OF CROSSCUT FACILITY SITE, SHOWING STEAM/DIESEL PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. AERIAL VIEW OF CROSSCUT FACILITY SITE, SHOWING STEAM/DIESEL PLANT BUILDING, RUNNING GENERALLY ACROSS PHOTO, AND INDIAN BEND POND IN UPPER RIGHT CORNER. November 7, 1955 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  8. Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology1

    PubMed Central

    Cruzan, Mitchell B.; Weinstein, Ben G.; Grasty, Monica R.; Kohrn, Brendan F.; Hendrickson, Elizabeth C.; Arredondo, Tina M.; Thompson, Pamela G.

    2016-01-01

    Premise of the study: Low-elevation surveys with small aerial drones (micro–unmanned aerial vehicles [UAVs]) may be used for a wide variety of applications in plant ecology, including mapping vegetation over small- to medium-sized regions. We provide an overview of methods and procedures for conducting surveys and illustrate some of these applications. Methods: Aerial images were obtained by flying a small drone along transects over the area of interest. Images were used to create a composite image (orthomosaic) and a digital surface model (DSM). Vegetation classification was conducted manually and using an automated routine. Coverage of an individual species was estimated from aerial images. Results: We created a vegetation map for the entire region from the orthomosaic and DSM, and mapped the density of one species. Comparison of our manual and automated habitat classification confirmed that our mapping methods were accurate. A species with high contrast to the background matrix allowed adequate estimate of its coverage. Discussion: The example surveys demonstrate that small aerial drones are capable of gathering large amounts of information on the distribution of vegetation and individual species with minimal impact to sensitive habitats. Low-elevation aerial surveys have potential for a wide range of applications in plant ecology. PMID:27672518

  9. Metabolomic profiling of plant tissues.

    PubMed

    Rambla, José L; López-Gresa, M P; Bellés, J M; Granell, Antonio

    2015-01-01

    Metabolomics is a powerful discipline aimed at a comprehensive and global analysis of the metabolites present in a cell, tissue, or organism, and to which increasing attention has been paid in the last few years. Given the high diversity in physical and chemical properties of plant metabolites, not a single method is able to analyze them all.Here we describe two techniques for the profiling of two quite different groups of metabolites: polar and semi-polar secondary metabolites, including many of those involved in plant response to biotic and abiotic stress, and volatile compounds, which include those responsible of most of our perception of food flavor. According to these techniques, polar and semi-polar metabolites are extracted in methanol, separated by liquid chromatography (UPLC), and detected by a UV-VIS detector (PDA) and a time-of-flight (ToF) mass spectrometer. Volatile compounds, on the other hand, are extracted by headspace solid phase microextraction (HS-SPME), and separated and detected by gas chromatography coupled to mass spectrometry (GC-MS).

  10. An aerial radiological survey of the Pilgrim Station Nuclear Power Plant and surrounding area, Plymouth, Massachusetts

    SciTech Connect

    Proctor, A.E.

    1997-06-01

    Terrestrial radioactivity surrounding the Pilgrim Station Nuclear Power Plant was measured using aerial radiolog- ical survey techniques. The purpose of this survey was to document exposure rates near the plant and to identify unexpected, man-made radiation sources within the survey area. The surveyed area included land areas within a three-mile radius of the plant site. Data were acquired using an airborne detection system that employs sodium iodide, thallium-activated detectors. Exposure rate and photopeak counts were computed from these data and plotted on aerial photographs of the survey area. Several ground-based exposure measurements were made for comparison with the,aerial survey results. Exposure rates in areas surrounding the plant site varied from 6 to 10 microroentgens per hour, with exposure rates below 6 microroentgens per hour occurring over bogs and marshy areas. Man-made radiation was found to be higher than background levels at the plant site. Radation due to nitrogen-1 6, which is produced in the steam cycle of a boiling-water reactor, was the primaty source of activity found at the plant site. Cesium-137 activity at levels slightly above those expected from natural fallout was found at isolated locations inland from the plant site. No other detectable sources of man-made radioactivity were found.

  11. Plant Tissue Culture in a Bag.

    ERIC Educational Resources Information Center

    Beck, Mike

    2000-01-01

    Describes the use of an oven bag as a sterile chamber for culture initiation and tissue transfer. Plant tissue culture is an ideal tool for introducing students to plants, cloning, and experimental design. Includes materials, methods, discussion, and conclusion sections. (SAH)

  12. An aerial radiological survey of the Paducah Gaseous Diffusion Plant and surrounding area, Paducah, Kentucky

    SciTech Connect

    Not Available

    1992-11-01

    An aerial radiological survey of the Paducah Gaseous Diffusion Plant (PGDP) and surrounding area in Paducah, Kentucky, was conducted during May 15--25, 1990. The purpose of the survey was to measure and document the terrestrial radiological environment at the PGDP and surrounding area for use in effective environmental management and emergency response planning. The aerial survey was flown at an altitude of 61 meters (200 feet) along a series of parallel lines 107 meters (350 feet) apart. The survey encompassed an area of 62 square kilometers (24 square miles), bordered on the north by the Ohio River. The results of the aerial survey are reported as inferred exposure rates at 1 meter above ground level in the form of a gamma radiation contour map. Typical background exposure rates were found to vary from 5 to 12 microroentgens per hour ([mu]R/h). Protactinium-234m, a radioisotope indicative of uranium-238, was detected at several facilities at the PGDR. In support of the aerial survey, ground-based exposure rate and soil sample measurements were obtained at several sites within the survey perimeter. The results of the aerial and ground-based measurements were found to agree within [plus minus]15%.

  13. Tissue-specific circadian clocks in plants.

    PubMed

    Endo, Motomu

    2016-02-01

    Circadian clocks affect a large proportion of differentially expressed genes in many organisms. Tissue-specific hierarchies in circadian networks in mammals have been contentiously debated, whereas little attention has been devoted to the concept in plants, owing to technical difficulties. Recently, several studies have demonstrated tissue-specific circadian clocks and their coupling in plants, suggesting that plants possess a hierarchical network of circadian clocks. The following review summarizes recent studies describing the tissue-specific functions and properties of these circadian clocks and discusses the network structure and potential messengers that might share temporal information on such a network.

  14. An Aerial Radiological Survey of the Portsmouth Gaseous Diffusion Plant and Surrounding Area, Portsmouth, Ohio

    SciTech Connect

    Namdoo Moon

    2007-12-01

    An aerial radiological survey was conducted over the 16 square-mile (~41 square-kilometer) area surrounding the Portsmouth Gaseous Diffusion Plant. The survey was performed in August 2007 utilizing a large array of helicopter mounted sodium iodide detectors. The purpose of the survey was to update the previous radiological survey levels of the environment and surrounding areas of the plant. A search for a missing radium-226 source was also performed. Implied exposure rates, man-made activity, and excess bismuth-214 activity, as calculated from the aerial data are presented in the form of isopleth maps superimposed on imagery of the surveyed area. Ground level and implied aerial exposure rates for nine specific locations are compared. Detected radioisotopes and their associated gamma ray exposure rates were consistent with those expected from normal background emitters. At specific plant locations described in the report, man-made activity was consistent with the operational histories of the location. There was no spectral activity that would indicate the presence of the lost source.

  15. An aerial survey of radioactivity associated with Atomic Energy plants

    SciTech Connect

    Davis, F.J.; Harlan, W.E.; Humphrey, P.A.; Kane, R.L.; Reinhardt, P.W.

    1992-09-02

    The project covered was an endeavor to (1) compare a group of laboratory instruments as airborne detectors of radioactivity and (2) simultaneously obtain data relative to the diffusion rate of radioactive contamination emitted into the atmosphere from off-gas stacks of production runs. Research was conducted in the Oak Ridge, Tennessee and Hanford, Washington areas. Detection was accomplished at a maximum distance of seventeen miles from the plant. Very little information of a conclusive nature was gained concerning the diffusion. Further research with the nuclear instruments, using a stronger source, is recommended. To obtain conclusive information concerning the meteorological aspects of the project, a larger observational program will be needed.

  16. Unmanned Aerial Vehicles for Alien Plant Species Detection and Monitoring

    NASA Astrophysics Data System (ADS)

    Dvořák, P.; Müllerová, J.; Bartaloš, T.; Brůna, J.

    2015-08-01

    Invasive species spread rapidly and their eradication is difficult. New methods enabling fast and efficient monitoring are urgently needed for their successful control. Remote sensing can improve early detection of invading plants and make their management more efficient and less expensive. In an ongoing project in the Czech Republic, we aim at developing innovative methods of mapping invasive plant species (semi-automatic detection algorithms) by using purposely designed unmanned aircraft (UAV). We examine possibilities for detection of two tree and two herb invasive species. Our aim is to establish fast, repeatable and efficient computer-assisted method of timely monitoring, reducing the costs of extensive field campaigns. For finding the best detection algorithm we test various classification approaches (object-, pixel-based and hybrid). Thanks to its flexibility and low cost, UAV enables assessing the effect of phenological stage and spatial resolution, and is most suitable for monitoring the efficiency of eradication efforts. However, several challenges exist in UAV application, such as geometrical and radiometric distortions, high amount of data to be processed and legal constrains for the UAV flight missions over urban areas (often highly invaded). The newly proposed UAV approach shall serve invasive species researchers, management practitioners and policy makers.

  17. [Electro-osmotic phenomena in plant tissues].

    PubMed

    Polevoĭ, V V; Bilova, T E; Shevtsov, Iu I

    2003-01-01

    The effect of a direct electric current on electrolyte transport through plant tissues was studied by applying it to 10-mm fragments of the mesocotyls of etiolated maize seedlings, similar fragments of one-year linden shoots with the normal conducting system and without vascular bundles, and isolated elements of the xylem and cell wall segments. At the current density and voltage of 9-38 microA/mm2 and 10-20 V, electrolyte solutions in plant tissues always moved toward the cathode. The results suggest that electroosmosis is one of the factors responsible for changes in solution transport through the conducting plant tissues that occur under the effect of electric current.

  18. Diffusion of biostimulators into plant tissues

    NASA Astrophysics Data System (ADS)

    Kolomazník, Karel; Pecha, Jiří; Friebrová, Veronika; Janáčová, Dagmar; Vašek, Vladimír

    2012-09-01

    Biostimulators are substances able to enhance the immune system of cultivated crops and support plant metabolism. Their utilization helps to reduce the amount of chemicals used in agriculture. To perform the desired effect, a biostimulator must be able to penetrate into the plant tissue. The time of penetration however, is limited, since the biostimulator must remain in a liquid state. This is of great importance—especially in field conditions, where the treated plants are exposed to different weather condition and other extrinsic factors. A mathematical model based on diffusion mechanisms has been elaborated to describe the biostimulator transport process from penetration of the leaves into the plant's inner tissues. By means of the effective diffusion coefficient of the prepared specific protein hydrolyzate, this model can be used to estimate the time necessary for the uptake of the minimal active amount of the biostimulator.

  19. Multielement plant tissue analysis using ICP spectrometry.

    PubMed

    Hansen, T H; de Bang, T C; Laursen, K H; Pedas, P; Husted, S; Schjoerring, J K

    2013-01-01

    Plant tissue analysis is a valuable tool for evaluating the nutritional status and quality of crops and is widely used for scientific and commercial purposes. The majority of plant analyzes are now performed by techniques based on ICP spectrometry such as inductively coupled plasma-optical emission spectroscopy (ICP-OES) or ICP-mass spectrometry (ICP-MS). These techniques enable fast and accurate measurements of multielement profiles when combined with appropriate methods for sample preparation and digestion. This chapter presents state-of-the-art methods for digestion of plant tissues and subsequent analysis of their multielement composition by ICP spectrometry. Details on upcoming techniques, expected to gain importance within the field of multielement plant tissue analysis over the coming years, are also provided. Finally, attention is given to laser ablation ICP-MS (LA-ICP-MS) for multielement bioimaging of plant tissues. The presentation of the methods covers instructions on all steps from sampling and sample preparation to data interpretation.

  20. Trypanocidal constituents in plants 4. Withanolides from the aerial parts of Physalis angulata.

    PubMed

    Nagafuji, Shinya; Okabe, Hikaru; Akahane, Hiroshige; Abe, Fumiko

    2004-02-01

    The constituents of the aerial parts of Physalis angulata (Solanaceae) were investigated based on the plant's trypanocidal activity against epimastigotes of Trypanosoma cruzi, the etiologic agent for Chagas' disease. Four new withanolides were isolated, along with six known ones, from the active fraction. Their structures were determined by spectroscopic analysis. Trypanocidal activity against trypomastigotes, an infectious form of T. cruzi, was also estimated, as well as cytotoxic activity against human uterine carcinoma (HeLa) cells in vitro. Evaluation of trypanocidal activity using the colorimetric reagent Cell Counting Kit-8 was also examined.

  1. Plant grafting: insights into tissue regeneration

    PubMed Central

    2016-01-01

    Abstract For millennia, people have cut and joined different plants together through a process known as grafting. The severed tissues adhere, the cells divide and the vasculature differentiates through a remarkable process of regeneration between two genetically distinct organisms as they become one. Grafting is becoming increasingly important in horticulture where it provides an efficient means for asexual propagation. Grafting also combines desirable roots and shoots to generate chimeras that are more vigorous, more pathogen resistant and more abiotic stress resistant. Thus, it presents an elegant and efficient way to improve plant productivity in vegetables and trees using traditional techniques. Despite this horticultural importance, we are only beginning to understand how plants regenerate tissues at the graft junction. By understanding grafting better, we can shed light on fundamental regeneration pathways and the basis for self/non‐self recognition. We can also better understand why many plants efficiently graft whereas others cannot, with the goal of improving grafting so as to broaden the range of grafted plants to create even more desirable chimeras. Here, I review the latest findings describing how plants graft and provide insight into future directions in this emerging field. PMID:28316790

  2. A continuous growth model for plant tissue

    NASA Astrophysics Data System (ADS)

    Bozorg, Behruz; Krupinski, Pawel; Jönsson, Henrik

    2016-12-01

    Morphogenesis in plants and animals involves large irreversible deformations. In plants, the response of the cell wall material to internal and external forces is determined by its mechanical properties. An appropriate model for plant tissue growth must include key features such as anisotropic and heterogeneous elasticity and cell dependent evaluation of mechanical variables such as turgor pressure, stress and strain. In addition, a growth model needs to cope with cell divisions as a necessary part of the growth process. Here we develop such a growth model, which is capable of employing not only mechanical signals but also morphogen signals for regulating growth. The model is based on a continuous equation for updating the resting configuration of the tissue. Simultaneously, material properties can be updated at a different time scale. We test the stability of our model by measuring convergence of growth results for a tissue under the same mechanical and material conditions but with different spatial discretization. The model is able to maintain a strain field in the tissue during re-meshing, which is of particular importance for modeling cell division. We confirm the accuracy of our estimations in two and three-dimensional simulations, and show that residual stresses are less prominent if strain or stress is included as input signal to growth. The approach results in a model implementation that can be used to compare different growth hypotheses, while keeping residual stresses and other mechanical variables updated and available for feeding back to the growth and material properties.

  3. Lipid hydroperoxide levels in plant tissues.

    PubMed

    Griffiths, G; Leverentz, M; Silkowski, H; Gill, N; Sánchez-Serrano, J J

    2000-08-01

    Hydroperoxides are the primary oxygenated products of polyunsaturated fatty acids and are key intermediates in the octadecanoid signalling pathway in plants. Lipid hydroperoxides (LHPO) were determined spectrophotometrically based on their reaction with an excess of Fe(2+)at low pH in the presence of the dye xylenol orange. Triphenylphosphine-mediated hydroxide formation was used to authenticate the signal generated by the hydroperoxides. The method readily detected lipid peroxidation in Phaseolus: microsomes, senescing potato leaves and in a range of other plant tissues including Phaseolus hypocotyls (26+/-5 nmol g(-1) FW), Alstroemeria floral tissues (sepals 66+/-13 nmol g(-1) FW petals 49+/-6 nmol g(-1) FW), potato leaves (334+/-75 nmol g(-1) FW), broccoli florets (568+/-68 nmol g(-1) FW) and Chlamydomonas cells (602+/-40 nmol g(-1) FW). Relative to the total fatty acid content of the tissues, the % LHPO was within the range of 0.6-1.7% for all tissue types (photosynthetic and non-photosynthetic) and represents the basal oxidation level of membrane fatty acids in plant cells. In order to relate the levels of LHPO to specific signalling pathways, transgenic potato plant lines were used in which lipoxygenase (LOX) (responsible for hydroperoxide biosynthesis) and hydroperoxide lyase (a route of hydroperoxide degradation) activities were largely reduced by an antisense-mediated approach. While the LHPO levels were similar to wild type in the individual LOX antisensed plants, basal LHPO levels, by contrast, were elevated by 38% in transgenic potato leaves antisensed in hydroperoxide lyase, indicating a role for this enzyme in the maintenance of cellular levels of LHPOs.

  4. Plant tissue and the color infrared record

    NASA Technical Reports Server (NTRS)

    Pease, R. W.

    1969-01-01

    Green plant tissue should not be considered as having a uniguely high near-infrared reflectance but rather a low visual reflectance. Leaf tissue without chloroplasts appears to reflect well both visual and near infrared wavelengths. The sensitometry of color infrared film is such that a spectral imbalance strongly favoring infrared reflection is necessary to yield a red record. It is the absorption of visual light by chlorophyll that creates the imbalance that makes the typical red record for plants possible. Reflectance measurements of leaves that have been chemically blanched or which have gone into natural chloride decline strongly suggests that it is the rise in the visual reflectance that is most important in removing the imbalance and degrading the red CIR record. The role of water in leaves appears to be that of rendering epidermal membranes translucent so that the underlying chlorophyll controls the reflection rather than the leaf surface.

  5. Transgenic maize plants by tissue electroporation.

    PubMed Central

    D'Halluin, K; Bonne, E; Bossut, M; De Beuckeleer, M; Leemans, J

    1992-01-01

    In this paper, we describe the transformation of regenerable maize tissues by electroporation. In many maize lines, immature zygotic embryos can give rise to embryogenic callus cultures from which plants can be regenerated. Immature zygotic embryos or embryogenic type I calli were wounded either enzymatically or mechanically and subsequently electroporated with a chimeric gene encoding neomycin phosphotransferase (neo). Transformed embryogenic calli were selected from electroporated tissues on kanamycin-containing media and fertile transgenic maize plants were regenerated. The neo gene was transmitted to the progeny of kanamycin-resistant transformants in a Mendelian fashion. This showed that all transformants were nonchimeric, suggesting that transformation and regeneration are a single-cell event. The maize transformation procedure presented here does not require the establishment of genotype-dependent embryogenic type II callus or cell suspension cultures and facilitates the engineering of new traits into agronomically relevant maize inbred lines. PMID:1334743

  6. Agrobacterium persistence in plant tissues after transformation.

    PubMed

    Cubero, Jaime; López, María M

    2005-01-01

    Agrobacterium spp. are routinely used in plant transformation to introduce genes of interest in valuable economic species. However, several agrobacteria species are also plant pathogens with ability to survive in different environments including the inner part of the plants. To avoid the release of genetic modified bacteria a successful plant transformation protocol must include the total elimination of agrobacteria by the use of antibiotics. Because sometimes these antibiotics failed in removing the bacteria entirely, confirmation of agrobacteria absence after plant transformation and regeneration is required. Different methodologies can be used for this purpose: isolation techniques followed by identification are used if detection of viable and culturable bacteria is necessary and techniques based on the polymerase chain reaction can be used to detect agrobacteria independently of their physiological state. Here we present several protocols to detect Agrobacterium in tissues of transformed plants as well as methods to identify the strains isolated. These identification methods can help to elucidate if they are the engineered bacteria used in the transformation process or just part of the natural endophytic microbiota.

  7. Histochemical detection of lead in plant tissues

    SciTech Connect

    Tung, G.; Temple, P.J.

    1996-06-01

    A histochemical staining technique using sodium rhodizonate was developed for detecting lead in living or preserved plant tissues. Sodium rhodizonate formed a bright scarlet-red precipitate with lead at pH 3.0, but showed no significant color responses with other metals. The precipitation of lead by this staining technique was confirmed by detection of lead in the red-stained precipitate with electron microscopy X-ray analysis. This histochemical technique for lead provided rapid, quantifiable, and unambiguous evidence for the accumulation and localization of lead in plant tissues. Soil-borne lead accumulated primarily in the roots, although at high concentrations, lead also accumulated at the ends of transpirational streams, particularly at hydathodes, trichomes, and the termini of xylem streams. Lead deposited from the atmosphere accumulated on the surface of conifer foliage and also appeared in or on cell walls of various internal cells and tissues. Lead concentrations in foliage and the color intensity of the stained deposits in spruce foliage decreased with distance from the lead source and increased with age of needles. No evidence of lead deposition inside cell contents was observed by this stain.

  8. Antioxidant activity and cytotoxicity of methanol extracts from aerial parts of Korean salad plants.

    PubMed

    Heo, Buk-Gu; Park, Yong-Seo; Chon, Sang-Uk; Lee, Sook-Young; Cho, Ja-Yong; Gorinstein, Shela

    2007-01-01

    The aim of this investigation was to determine the content of total phenolics, antioxidant activity and cytotoxicity of methanol extracts from the aerial parts of 11 Korean medicinal salad plants. The highest total phenolic content of the methanol extracts was found in Aster scaber (17.1 mg 100 g(-1)), followed by Ixeris dentate (16.4 mg 100 g(-1)), Aster yomena (12.0 mg 100 g(-1)) and Sedum sarmentosum (9.1 mg 100 g(-1)) of FW. Methanol extracts of Ixeris dentate and Aster scaber at 50 microg mL(-1) exhibited the highest DPPH radical scavenging activity by 86.4 and 83.3%, respectively. It was registered a dose-dependent increase of DPPH free radical scavenging activity. Total phenolic content of the studied plant extracts was correlated with the DPPH radical scavenging activity. It was found by means of MTT assay, that cytotoxicity of the methanol extracts was the highest against HCT-116. Methanol extracts from Petasites japonicus (IC(50)<25.0 microg mL(-1)) showed the highest activity against HCT-116, following by Angelica gigas (34.75 microg mL(-1)), Erythronium japonicum (44.06 microg mL(-1)), and Aster scaber (54.87 microg mL(-1)). In conclusion, the studied salad plants have high total phenolics content and high antioxidant activity. These plants dose-dependently increased DPPH free radical scavenging activity. The total phenolics level was highly correlated with the free radical scavenging activity. Most of the studied salad plants have potent cytotoxicity activity. The results of this investigation suggest that the extracts of studied salad plants could be an addition to basic medicine for some diseases.

  9. Crossing kingdoms: Using decellularized plants as perfusable tissue engineering scaffolds.

    PubMed

    Gershlak, Joshua R; Hernandez, Sarah; Fontana, Gianluca; Perreault, Luke R; Hansen, Katrina J; Larson, Sara A; Binder, Bernard Y K; Dolivo, David M; Yang, Tianhong; Dominko, Tanja; Rolle, Marsha W; Weathers, Pamela J; Medina-Bolivar, Fabricio; Cramer, Carole L; Murphy, William L; Gaudette, Glenn R

    2017-05-01

    Despite significant advances in the fabrication of bioengineered scaffolds for tissue engineering, delivery of nutrients in complex engineered human tissues remains a challenge. By taking advantage of the similarities in the vascular structure of plant and animal tissues, we developed decellularized plant tissue as a prevascularized scaffold for tissue engineering applications. Perfusion-based decellularization was modified for different plant species, providing different geometries of scaffolding. After decellularization, plant scaffolds remained patent and able to transport microparticles. Plant scaffolds were recellularized with human endothelial cells that colonized the inner surfaces of plant vasculature. Human mesenchymal stem cells and human pluripotent stem cell derived cardiomyocytes adhered to the outer surfaces of plant scaffolds. Cardiomyocytes demonstrated contractile function and calcium handling capabilities over the course of 21 days. These data demonstrate the potential of decellularized plants as scaffolds for tissue engineering, which could ultimately provide a cost-efficient, "green" technology for regenerating large volume vascularized tissue mass.

  10. An aerial radiological survey of the Robert Emmett Ginna Nuclear Power Plant and surrounding area, Ontario, New York

    SciTech Connect

    Proctor, A.E.

    1997-06-01

    Terrestrial radioactivity surrounding the Robert Emmett Ginna Nuclear Power Plant was measured using aerial radiological surveying techniques. The purpose of this survey was to document exposure rates near the plant and to identify unexpected, man-made radiation sources within the survey area. The surveyed area included land areas within a three-mile radius of the plant site. Data were acquired using an airborne detection system that employed sodium iodide, thallium-activated detectors. Exposure-rate and photopeak counts were computed from these data and plotted on aerial photographs of the survey area. Several ground-based exposure measurements were made for comparison with the aerial survey results. Exposure rates in the area surrounding the plant site varied from 6 to 10 microroentgens per hour. Man-made radiation (cobalt-60 within the plant site and cesium-1 37 directly over the reactor) was found at the plant site. In addition, small areas of suspected cesium-137 activity were found within the survey areas. Other than these small sites, the survey area was free of man-made radioac- tivity.

  11. Tissue-Culture Method of Cloning Rubber Plants

    NASA Technical Reports Server (NTRS)

    Ball, E. A.

    1983-01-01

    Guayule plant, a high-yield rubber plant cloned by tissue-culture method to produce multiple new plants that mature quickly. By adjusting culture medium, excised shoot tip produces up to 50 identical guayule plants. Varying concentration of cytokinin, single excised tip produces either 1 or several (up to 50) new plants.

  12. Regulatory mechanisms for specification and patterning of plant vascular tissues.

    PubMed

    Caño-Delgado, Ana; Lee, Ji-Young; Demura, Taku

    2010-01-01

    Plant vascular tissues, the conduits of water, nutrients, and small molecules, play important roles in plant growth and development. Vascular tissues have allowed plants to successfully adapt to various environmental conditions since they evolved 450 Mya. The majority of plant biomass, an important source of renewable energy, comes from the xylem of the vascular tissues. Efforts have been made to identify the underlying mechanisms of cell specification and patterning of plant vascular tissues and their proliferation. The formation of the plant vascular system is a complex process that integrates signaling and gene regulation at transcriptional and posttranscriptional levels. Recently, a wealth of molecular genetic studies and the advent of cell biology and genomic tools have enabled important progress toward understanding its underlying mechanisms. Here, we provide a comprehensive review of the cell and developmental processes of plant vascular tissue and resources recently available for studying them that will enable the discovery of new ways to develop sustainable energy using plant biomass.

  13. [Issues of large scale tissue culture of medicinal plant].

    PubMed

    Lv, Dong-Mei; Yuan, Yuan; Zhan, Zhi-Lai

    2014-09-01

    In order to increase the yield and quality of the medicinal plant and enhance the competitive power of industry of medicinal plant in our country, this paper analyzed the status, problem and countermeasure of the tissue culture of medicinal plant on large scale. Although the biotechnology is one of the most efficient and promising means in production of medicinal plant, it still has problems such as stability of the material, safety of the transgenic medicinal plant and optimization of cultured condition. Establishing perfect evaluation system according to the characteristic of the medicinal plant is the key measures to assure the sustainable development of the tissue culture of medicinal plant on large scale.

  14. Root ABA Accumulation in Long-Term Water-Stressed Plants is Sustained by Hormone Transport from Aerial Organs.

    PubMed

    Manzi, Matías; Lado, Joanna; Rodrigo, María Jesús; Zacarías, Lorenzo; Arbona, Vicent; Gómez-Cadenas, Aurelio

    2015-12-01

    The reduced pool of the ABA precursors, β,β-carotenoids, in roots does not account for the substantial increase in ABA content in response to water stress (WS) conditions, suggesting that ABA could be transported from other organs. Basipetal transport was interrupted by stem-girdling, and ABA levels were determined in roots after two cycles of WS induced by transplanting plants to dry perlite. Leaf applications of isotope-labeled ABA and reciprocal grafting of ABA-deficient tomato mutants were used to confirm the involvement of aerial organs on root ABA accumulation. Disruption of basipetal transport reduced ABA accumulation in roots, and this decrease was more severe after two consecutive WS periods. This effect was linked to a sharp decrease in the β,β-carotenoid pool in roots in response to water deficit. Significant levels of isotope-labeled ABA were transported from leaves to roots, mainly in plants subjected to water dehydration. Furthermore, the use of different ABA-deficient tomato mutants in reciprocal grafting combinations with wild-type genotypes confirmed the involvement of aerial organs in the ABA accumulation in roots. In conclusion, accumulation of ABA in roots after long-term WS periods largely relies on the aerial organs, suggesting a reduced ability of the roots to synthesize ABA from carotenoids. Furthermore, plants are able to transport ABA basipetally to sustain high hormone levels in roots.

  15. [Tissue culture of medicinal plant and abscisic acid].

    PubMed

    Fang, Hui-Yong; Zhu, Hong; Yao, Jian-Xun; Jia, Cai-Feng; Shan, Gao-Wei; Li, Min-Hui

    2013-01-01

    Abscisic acid (ABA) plays a key role in many physiological processes of plants, and it was also applied to fields of medicinal plant biotechnology. The article presents a review of some recent application of ABA in enhancing the production of secondary metabolites of medicinal plants, improving the in vitro conservation in medicinal plant tissue culture system.

  16. Repressor-mediated tissue-specific gene expression in plants

    DOEpatents

    Meagher, Richard B.; Balish, Rebecca S.; Tehryung, Kim; McKinney, Elizabeth C.

    2009-02-17

    Plant tissue specific gene expression by way of repressor-operator complexes, has enabled outcomes including, without limitation, male sterility and engineered plants having root-specific gene expression of relevant proteins to clean environmental pollutants from soil and water. A mercury hyperaccumulation strategy requires that mercuric ion reductase coding sequence is strongly expressed. The actin promoter vector, A2pot, engineered to contain bacterial lac operator sequences, directed strong expression in all plant vegetative organs and tissues. In contrast, the expression from the A2pot construct was restricted primarily to root tissues when a modified bacterial repressor (LacIn) was coexpressed from the light-regulated rubisco small subunit promoter in above-ground tissues. Also provided are analogous repressor operator complexes for selective expression in other plant tissues, for example, to produce male sterile plants.

  17. Co-ordinated Growth between Aerial and Root Systems in Young Apple Plants Issued from in vitro Culture

    PubMed Central

    COSTES, E.; GARCÍA-VILLANUEVA, E.; JOURDAN, C.; REGNARD, J. L.; GUÉDON, Y.

    2006-01-01

    • Background and Aims In several species exhibiting a rhythmic aerial growth, the existence of an alternation between root and shoot growth has been demonstrated. The present study aims to investigate the respective involvement of the emergence of new organs and their elongation in relation to this phenomenon and its possible genotypic variation in young apple plants. • Methods Two apple varieties, X6407 (recently named ‘Ariane’) and X3305 (‘Chantecler’ × ‘Baujade’), were compared. Five plants per variety, issued from in vitro culture, were observed in minirhizotrons over 4 months. For each plant, root emergence and growth were observed twice per week. Growth rates were calculated for all roots with more than two segments and the branching density was calculated on primary roots. On the aerial part, the number of leaves, leaf area and total shoot length were observed weekly. • Key Results No significant difference was observed between varieties in any of the final characteristics of aerial growth. Increase in leaf area and shoot length exhibited a 3-week rhythm in X3305 while a weaker signal was observed in Ariane. The primary root growth rate was homogeneous between the plants and likewise between the varieties, while their branching density differed significantly. Secondary roots emerged rhythmically, with a 3-week and a 2-week rhythm, respectively, in X3305 and ‘Ariane’. Despite a high intra-variety variability, significant differences were observed between varieties in the secondary root life span and mean length. A synchronism between leaf emergence and primary root growth was highlighted in both varieties, while an opposition phase was observed between leaf area increments and secondary root emergence in X3305 only. • Conclusion A biological model of dynamics that summarizes the interactions between processes and includes the assumption of a feedback effect of lateral root emergence on leaf emergence is proposed. PMID:16260441

  18. Environmental geophysics and sequential aerial photo study at Sunfish and Marsden Lakes, Twin Cities Army Ammunition Plant

    SciTech Connect

    Padar, C.A.; McGinnis, L.D.; Thompson, M.D.; Anderson, A.W.; Benson, M.A.; Stevanov, J.E.; Daudt, C.R.; Miller, S.F.; Knight, D.E. |

    1995-08-01

    Geophysical studies at Site H of Twin Cities Army Ammunition Plant have delineated specific areas of dumping and waste disposal. Anomalous areas noted in the geophysical data sets have been correlated with features visible in a chronological sequence of aerial photos. The photos aid in dating the anthropogenic changes and in interpreting the geophysical anomalies observed at Site H and across Sunfish Lake. Specifically, two burn cages and what has been interpreted as their surrounding debris have been delineated. The areal extent of another waste site has been defined in the southwest corner of Area H-1. Depth estimates to the top of the Area H-1 anomalies show that the anomalies lie below lake level, indicative of dumping directly into Sunfish Lake. Except for these areas along the northwestern shore, there is no evidence of waste disposal along the shoreline or within the present-day lake margins. Magnetic, electromagnetic, and ground-penetrating-radar data have pinpointed the locations of mounds, observable in aerial photos, around the first burn cage. The second burn cage and its surrounding area have also been clearly defined from aerial photos, with support from further geophysical data. Additional analysis of the data has yielded volumetric estimates of the amount of material that would need removal in the event of excavation of the anomalous areas. Magnetic and electromagnetic profiles were also run across Marsden Lake. On the basis of these data, it has been concluded that no large-scale dumping has occurred in or around Marsden Lake.

  19. Using Tissue Culture To Investigate Plant Cell Differentiation and Dedifferentiation.

    ERIC Educational Resources Information Center

    Bozzone, Donna M.

    1997-01-01

    Describes an experimental project that uses plant tissue culture techniques to examine cell differentiation in the carrot. Allows students to gain experience in some important techniques and to explore fundamental questions about cell differentiation. (DDR)

  20. Development of germ-free plants and tissue culture

    NASA Technical Reports Server (NTRS)

    Venketeswaran, S.

    1973-01-01

    The botanical program is reported for experiments performed at the Lunar Receiving Laboratory. Papers prepared during this program are listed. The studies reported include: tissues cultured on various mediums, nutritional studies, preparation of plant cultures for Apollo 15, and pine tissue cultures.

  1. Nonrandom bioelectrical signals in plant tissue.

    PubMed

    Karlsson, L

    1972-06-01

    The results of investigations on nonevoked bioelectrical activity in the India-rubber tree (Ficus elastica) are presented. Metal electrodes inserted into the plant issue were used as the ionic-to-electronic conduction converting elements. Nonevoked pulse bursts were observed with amplitudes in the 10 to 200 microvolts range. An upper limit value of the cell refractory period has been estimated from the maximum pulse frequency observed.

  2. Triacylglycerol Metabolism, Function, and Accumulation in Plant Vegetative Tissues

    DOE PAGES

    Xu, Changcheng; Shanklin, John

    2016-02-03

    One of the most abundant energy-dense storage compounds in eukaryotes are oils in the form of triacylglycerols , and their metabolism plays a key role in cellular energy balance, lipid homeostasis, growth, and maintenance. Plants accumulate oils primarily in seeds and fruits. Moreover, plant oils are used for food and feed and, increasingly, as feedstocks for biodiesel and industrial chemicals. Although plant vegetative tissues do not accumulate significant levels of triacylglycerols, they possess a high capacity for their synthesis, storage, and metabolism. The development of plants that accumulate oil in vegetative tissues presents an opportunity for expanded production of triacylglycerolsmore » as a renewable and sustainable bioenergy source. We review recent progress in the understanding of triacylglycerol synthesis, turnover, storage, and function in leaves and discuss emerging genetic engineering strategies targeted at enhancing triacylglycerol accumulation in biomass crops. Such plants could potentially be modified to produce oleochemical feedstocks or nutraceuticals.« less

  3. Triacylglycerol Metabolism, Function, and Accumulation in Plant Vegetative Tissues

    SciTech Connect

    Xu, Changcheng; Shanklin, John

    2016-02-03

    One of the most abundant energy-dense storage compounds in eukaryotes are oils in the form of triacylglycerols , and their metabolism plays a key role in cellular energy balance, lipid homeostasis, growth, and maintenance. Plants accumulate oils primarily in seeds and fruits. Moreover, plant oils are used for food and feed and, increasingly, as feedstocks for biodiesel and industrial chemicals. Although plant vegetative tissues do not accumulate significant levels of triacylglycerols, they possess a high capacity for their synthesis, storage, and metabolism. The development of plants that accumulate oil in vegetative tissues presents an opportunity for expanded production of triacylglycerols as a renewable and sustainable bioenergy source. We review recent progress in the understanding of triacylglycerol synthesis, turnover, storage, and function in leaves and discuss emerging genetic engineering strategies targeted at enhancing triacylglycerol accumulation in biomass crops. Such plants could potentially be modified to produce oleochemical feedstocks or nutraceuticals.

  4. Transcriptional control of tissue formation throughout plant root development

    PubMed Central

    Moreno-Risueno, Miguel A.; Sozzani, Rosangela; Yardımcı, Galip Gürkan; Petricka, Jalean J.; Vernoux, Teva; Blilou, Ikram; Alonso, Jose; Winter, Cara M.; Ohler, Uwe; Scheres, Ben; Benfey, Philip N.

    2016-01-01

    Tissue patterns are dynamically maintained. Continuous formation of plant tissues during postembryonic growth requires asymmetric divisions and the specification of cell lineages. We show that the transcription factors, the BIRDs and SCARECROW, regulate lineage identity, positional signals, patterning, and formative divisions throughout Arabidopsis root growth. These transcription factors are postembryonic determinants of the ground tissue stem cells and their lineage. Upon further activation by the positional signal SHORT-ROOT (a mobile transcription factor), they direct asymmetric cell divisions and patterning of cell types. The BIRDs and SCARECROW with SHORT-ROOT organize tissue patterns at all formative steps during growth, ensuring developmental plasticity. PMID:26494755

  5. Comparative Proteomics of Cannabis sativa Plant Tissues

    PubMed Central

    Raharjo, Tri J.; Widjaja, Ivy; Roytrakul, Sittiruk; Verpoorte, Robert

    2004-01-01

    Comparative proteomics of leaves, flowers, and glands of Cannabis sativa have been used to identify specific tissue-expressed proteins. These tissues have significantly different levels of cannabinoids. Cannabinoids accumulate primarily in the glands but can also be found in flowers and leaves. Proteins extracted from glands, flowers, and leaves were separated using two-dimensional gel electrophoresis. Over 800 protein spots were reproducibly resolved in the two-dimensional gels from leaves and flowers. The patterns of the gels were different and little correlation among the proteins could be observed. Some proteins that were only expressed in flowers were chosen for identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and peptide mass fingerprint database searching. Flower and gland proteomes were also compared, with the finding that less then half of the proteins expressed in flowers were also expressed in glands. Some selected gland protein spots were identified: F1D9.26-unknown prot. (Arabidopsis thaliana), phospholipase D beta 1 isoform 1a (Gossypium hirsutum), and PG1 (Hordeum vulgare). Western blotting was employed to identify a polyketide synthase, an enzyme believed to be involved in cannabinoid biosynthesis, resulting in detection of a single protein. PMID:15190082

  6. Experimental induction of vascular tissue in an undifferentiated plant callus

    PubMed Central

    Jeffs, R. A.; Northcote, D. H.

    1966-01-01

    1. By the implantation of wedges containing indol-3-ylacetic acid and sucrose into blocks of undifferentiated bean-callus tissue it has been possible to induce the formation of xylem and phloem cells. 2. The differentiation has been investigated cytologically and measured chemically. 3. The optimum concentrations of the nutrients in the wedge, which gave differentiation closely resembling the vascular development found in the stem of the intact plant, was 0·1mg. of indol-3-ylacetic acid/l. and 2% sucrose. 4. The ratios of the xylose/arabinose concentrations of the tissues increased in the differentiated callus tissue compared with those of the undifferentiated tissue. A similar increase has been found for the ratios determined for xylem tissue compared with those for cambium. 5. The lignin content of the differentiated tissue compared with the undifferentiated tissue was greater in both the callus and stem tissue. 6. Chemical analysis of lignin showed that in the differentiated callus tissue it consisted of sub-units based on p-hydroxybenzaldehyde and vanillin. This was compared with the lignin obtained from undifferentiated callus tissue and that obtained from the tissues of the intact stem. 7. The results of the investigation have been discussed with reference to the problems of cell growth and differentiation and related to the changing patterns of the ultrastructure of the cell during its development. ImagesPlate 2.Plate 1. PMID:5971774

  7. Salt tolerance in soybean WF-7 is partially regulated by ABA and ROS signaling and involves withholding toxic Cl- ions from aerial tissues.

    PubMed

    Ren, Shuxin; Weeda, Sarah; Li, Haiwen; Whitehead, Brodie; Guo, Yangdong; Atalay, Asmare; Parry, John

    2012-08-01

    Salt tolerance in plants is a complex trait involving multiple mechanisms. Understanding these mechanisms and their regulation will assist in developing novel strategies to engineer salt-tolerant crops. In the current study, we investigated salt-tolerant mechanisms in soybean (Glycine max) cultivar WF-7 in comparison to salt-sensitive Union. In vivo and in vitro salt assays demonstrated the salt tolerance of WF-7 at the seedling stage and during germination. After a 10-day 200 mM NaCl treatment, chlorophyll content in Union was reduced by 50 % compared to a 17 % reduction in WF-7. WF-7 was also less affected by abscisic acid (ABA) and NaCl during germination than Union. Upon ABA and NaCl treatment, the ABA-responsive genes SCOF1, ASN1, bZIP44, and AAPK1 are differentially expressed in WF-7 and Union seedlings. These results suggest that salt tolerance in WF-7 is in part regulated through an ABA-dependent pathway. In addition, following a 4-day 200 mM NaCl treatment, WF-7 produced more H₂O₂ than Union indicating the involvement of reactive oxygen species (ROS) in regulating salt tolerance in WF-7. Yet another mechanism WF-7 employs is withholding toxic chloride (Cl⁻) ions from aerial tissues. Following 200 mM NaCl treatment, Cl⁻ accumulation was mostly localized to the roots of WF-7. In contrast, most of the Cl⁻ in Union was transported into the stems and leaves. Taken together, our results demonstrated a role of ABA and ROS in regulating salt tolerance in WF-7, and the critical role of Cl⁻ in NaCl-induced mortality in soybean. Key message Withholding toxic Cl⁻ ions from leaves and, to a lesser extent, stems, confers salt tolerance to soybean WF-7. In addition, ABA and ROS may be involved in salt-stress signal transduction.

  8. Aerial Survey Results for 131I Deposition on the Ground after the Fukushima Daiichi Nuclear Power Plant Accident

    SciTech Connect

    Torii, Tatsuo; Sugita, Takeshi; Okada, Colin E.; Reed, Michael S.; Blumenthal, Daniel J.

    2013-08-01

    In March 2011 the second largest accidental release of radioactivity in history occurred at the Fukushima Daiichi nuclear power plant following a magnitude 9.0 earthquake and subsequent tsunami. Teams from the U.S. Department of Energy, National Nuclear Security Administration Office of Emergency Response performed aerial surveys to provide initial maps of the dispersal of radioactive material in Japan. The initial results from the surveys did not report the concentration of 131I. This work reports on analyses performed on the initial survey data by a joint Japan-US collaboration to determine 131I ground concentration. This information is potentially useful in reconstruction of the inhalation and external exposure doses from this short-lived radionuclide. The deposited concentration of 134Cs is also reported.

  9. An aerial radiological survey of the Oyster Creek Nuclear Power Plant and surrounding area, Forked River, New Jersey. Date of survey: September 18--25, 1992

    SciTech Connect

    Hopkins, H.A.; McCall, K.A.

    1994-05-01

    An aerial radiological survey was conducted over the Oyster Creek Nuclear Power Plant in Forked River, New Jersey, during the period September 18 through September 24, 1992. The survey was conducted at an altitude of 150 feet (46 meters) over a 26-square-mile (67-square-kilometer) area centered on the power station. The purpose of the survey was to document the terrestrial gamma radiation environment of the Oyster Creek Nuclear Power plant and surrounding area. The results of the aerial survey are reported as inferred gamma radiation exposure rates at 1 meter above ground level in the form of a contour map. Outside the plant boundary, exposure rates were found to vary between 4 and 10 microroentgens per hour and were attributed to naturally-occurring uranium, thorium, and radioactive potassium gamma emitters. The aerial data were compared to ground-based benchmark exposure rate measurements and radionuclide assays of soil samples obtained within the survey boundary. The ground-based measurements were found to be in good agreement with those inferred from the aerial measuring system. A previous survey of the power plant was conducted in August 1969 during its initial startup phase. Exposure rates and radioactive isotopes revealed in both surveys were consistent and within normal terrestrial background levels.

  10. The role of silicon in plant tissue culture.

    PubMed

    Sivanesan, Iyyakkannu; Park, Se Won

    2014-01-01

    Growth and morphogenesis of in vitro cultures of plant cells, tissues, and organs are greatly influenced by the composition of the culture medium. Mineral nutrients are necessary for the growth and development of plants. Several morpho-physiological disorders such as hooked leaves, hyperhydricity, fasciation, and shoot tip necrosis are often associated with the concentration of inorganic nutrient in the tissue culture medium. Silicon (Si) is the most abundant mineral element in the soil. The application of Si has been demonstrated to be beneficial for growth, development and yield of various plants and to alleviate various stresses including nutrient imbalance. Addition of Si to the tissue culture medium improves organogenesis, embryogenesis, growth traits, morphological, anatomical, and physiological characteristics of leaves, enhances tolerance to low temperature and salinity, protects cells and against metal toxicity, prevents oxidative phenolic browning and reduces the incidence of hyperhydricity in various plants. Therefore, Si possesses considerable potential for application in a wide range of plant tissue culture studies such as cryopreservation, organogenesis, micropropagation, somatic embryogenesis and secondary metabolites production.

  11. DNA Damage in Plant Herbarium Tissue

    PubMed Central

    Staats, Martijn; Cuenca, Argelia; Richardson, James E.; Vrielink-van Ginkel, Ria; Petersen, Gitte; Seberg, Ole; Bakker, Freek T.

    2011-01-01

    Dried plant herbarium specimens are potentially a valuable source of DNA. Efforts to obtain genetic information from this source are often hindered by an inability to obtain amplifiable DNA as herbarium DNA is typically highly degraded. DNA post-mortem damage may not only reduce the number of amplifiable template molecules, but may also lead to the generation of erroneous sequence information. A qualitative and quantitative assessment of DNA post-mortem damage is essential to determine the accuracy of molecular data from herbarium specimens. In this study we present an assessment of DNA damage as miscoding lesions in herbarium specimens using 454-sequencing of amplicons derived from plastid, mitochondrial, and nuclear DNA. In addition, we assess DNA degradation as a result of strand breaks and other types of polymerase non-bypassable damage by quantitative real-time PCR. Comparing four pairs of fresh and herbarium specimens of the same individuals we quantitatively assess post-mortem DNA damage, directly after specimen preparation, as well as after long-term herbarium storage. After specimen preparation we estimate the proportion of gene copy numbers of plastid, mitochondrial, and nuclear DNA to be 2.4–3.8% of fresh control DNA and 1.0–1.3% after long-term herbarium storage, indicating that nearly all DNA damage occurs on specimen preparation. In addition, there is no evidence of preferential degradation of organelle versus nuclear genomes. Increased levels of C→T/G→A transitions were observed in old herbarium plastid DNA, representing 21.8% of observed miscoding lesions. We interpret this type of post-mortem DNA damage-derived modification to have arisen from the hydrolytic deamination of cytosine during long-term herbarium storage. Our results suggest that reliable sequence data can be obtained from herbarium specimens. PMID:22163018

  12. High-Throughput Phenotyping of Sorghum Plant Height Using an Unmanned Aerial Vehicle and Its Application to Genomic Prediction Modeling

    PubMed Central

    Watanabe, Kakeru; Guo, Wei; Arai, Keigo; Takanashi, Hideki; Kajiya-Kanegae, Hiromi; Kobayashi, Masaaki; Yano, Kentaro; Tokunaga, Tsuyoshi; Fujiwara, Toru; Tsutsumi, Nobuhiro; Iwata, Hiroyoshi

    2017-01-01

    Genomics-assisted breeding methods have been rapidly developed with novel technologies such as next-generation sequencing, genomic selection and genome-wide association study. However, phenotyping is still time consuming and is a serious bottleneck in genomics-assisted breeding. In this study, we established a high-throughput phenotyping system for sorghum plant height and its response to nitrogen availability; this system relies on the use of unmanned aerial vehicle (UAV) remote sensing with either an RGB or near-infrared, green and blue (NIR-GB) camera. We evaluated the potential of remote sensing to provide phenotype training data in a genomic prediction model. UAV remote sensing with the NIR-GB camera and the 50th percentile of digital surface model, which is an indicator of height, performed well. The correlation coefficient between plant height measured by UAV remote sensing (PHUAV) and plant height measured with a ruler (PHR) was 0.523. Because PHUAV was overestimated (probably because of the presence of taller plants on adjacent plots), the correlation coefficient between PHUAV and PHR was increased to 0.678 by using one of the two replications (that with the lower PHUAV value). Genomic prediction modeling performed well under the low-fertilization condition, probably because PHUAV overestimation was smaller under this condition due to a lower plant height. The predicted values of PHUAV and PHR were highly correlated with each other (r = 0.842). This result suggests that the genomic prediction models generated with PHUAV were almost identical and that the performance of UAV remote sensing was similar to that of traditional measurements in genomic prediction modeling. UAV remote sensing has a high potential to increase the throughput of phenotyping and decrease its cost. UAV remote sensing will be an important and indispensable tool for high-throughput genomics-assisted plant breeding.

  13. High-Throughput Phenotyping of Sorghum Plant Height Using an Unmanned Aerial Vehicle and Its Application to Genomic Prediction Modeling.

    PubMed

    Watanabe, Kakeru; Guo, Wei; Arai, Keigo; Takanashi, Hideki; Kajiya-Kanegae, Hiromi; Kobayashi, Masaaki; Yano, Kentaro; Tokunaga, Tsuyoshi; Fujiwara, Toru; Tsutsumi, Nobuhiro; Iwata, Hiroyoshi

    2017-01-01

    Genomics-assisted breeding methods have been rapidly developed with novel technologies such as next-generation sequencing, genomic selection and genome-wide association study. However, phenotyping is still time consuming and is a serious bottleneck in genomics-assisted breeding. In this study, we established a high-throughput phenotyping system for sorghum plant height and its response to nitrogen availability; this system relies on the use of unmanned aerial vehicle (UAV) remote sensing with either an RGB or near-infrared, green and blue (NIR-GB) camera. We evaluated the potential of remote sensing to provide phenotype training data in a genomic prediction model. UAV remote sensing with the NIR-GB camera and the 50th percentile of digital surface model, which is an indicator of height, performed well. The correlation coefficient between plant height measured by UAV remote sensing (PHUAV) and plant height measured with a ruler (PHR) was 0.523. Because PHUAV was overestimated (probably because of the presence of taller plants on adjacent plots), the correlation coefficient between PHUAV and PHR was increased to 0.678 by using one of the two replications (that with the lower PHUAV value). Genomic prediction modeling performed well under the low-fertilization condition, probably because PHUAV overestimation was smaller under this condition due to a lower plant height. The predicted values of PHUAV and PHR were highly correlated with each other (r = 0.842). This result suggests that the genomic prediction models generated with PHUAV were almost identical and that the performance of UAV remote sensing was similar to that of traditional measurements in genomic prediction modeling. UAV remote sensing has a high potential to increase the throughput of phenotyping and decrease its cost. UAV remote sensing will be an important and indispensable tool for high-throughput genomics-assisted plant breeding.

  14. Effect of lunar materials on plant tissue culture.

    NASA Technical Reports Server (NTRS)

    Walkinshaw, C. H.; Venketeswaran, S.; Baur, P. S.; Croley, T. E.; Scholes, V. E.; Weete, J. D.; Halliwell, R. S.; Hall, R. H.

    1973-01-01

    Lunar material collected during the Apollo 11, 12, 14, and 15 missions has been used to treat 12 species of higher plant tissue cultures. Biochemical and morphological studies have been conducted on several of these species. Tobacco tissue cultures treated with 0.22 g of lunar material exhibited increased greening more complex chloroplasts, less cytoplasmic vacuolation and greater vesiculation. Pine tissue cultures reacted to treatment by an increased deposition of tannin-like materials. The percentage of dry weight and soluble protein was increased in cultures treated with either lunar or terrestrial rock materials.

  15. Analysis of chemical components from plant tissue samples

    NASA Technical Reports Server (NTRS)

    Laseter, J. L.

    1972-01-01

    Information is given on the type and concentration of sterols, free fatty acids, and total fatty acids in plant tissue samples. All samples were analyzed by gas chromatography and then by gas chromatography-mass spectrometry combination. In each case the mass spectral data was accumulated as a computer printout and plot. Typical gas chromatograms are included as well as tables describing test results.

  16. Tissue-Specific Protein Expression in Plant Mitochondria.

    PubMed Central

    Conley, C. A.; Hanson, M. R.

    1994-01-01

    Although the physiological role of plant mitochondria is thought to vary in different tissues at progressive stages of development, there has been little documentation that the complement of mitochondrial proteins is altered in different plant organs. Because the phenomenon of cytoplasmic male sterility suggests an unusual function for mitochondria in floral buds, we examined the tissue-specific expression of mitochondrial proteins in petunia buds at several stages of development, using both fertile and cytoplasmic male sterile plants. On tissue prints of cryostat-sectioned buds, antibodies recognizing subunit A of the mitochondrial ATPase (ATPA) localized very differently from antibodies recognizing subunit II of the cytochrome oxidase (COXII), which indicated that mitochondria in the same tissue could differentially express mitochondrially encoded proteins. The petunia cytoplasmic male sterility-associated fused (pcf) gene encodes a protein that colocalized with ATPA and the nuclear-encoded mitochondrial alternative oxidase (AOA) in sporogenous tissues, where little COXII protein was found. These overlapping and differential localization patterns may provide clues to the molecular mechanism of cytoplasmic male sterility. PMID:12244222

  17. Mass recovery methods for trichloroethylene in plant tissue.

    SciTech Connect

    Gopalakrishnan, G.; Negri, M. C.; Werth, C. J.; Energy Systems; Univ. of Illionis

    2009-06-01

    Monitoring expenses form a significant fraction of the costs associated with remediation of contaminated soil and groundwater sites. A novel monitoring method that could result in significant cost savings is the use of plants as monitoring devices; previous work indicates that plant tissue samples, especially trunk (core) and branch samples, can be used to delineate soil and groundwater plumes at phytoremediation sites. An important factor in reducing the uncertainty associated with this sampling method is development of a technique to analyze, both consistently and accurately, the chemicals stored in plant tissue samples. The present research presents a simple, robust, and inexpensive technique to recover most of the contaminant in plant branch tissue, irrespective of the age or species of the plant. Trichloroethylene (TCE) was the chemical analyzed. A number of headspace and solvent extraction techniques in the literature were evaluated, including headspace extraction at different incubation times and temperatures and solvent extraction using hexane or hot methanol. Extraction using hot methanol was relatively fast, simple, and reliable; this method recovered more than 89% of the TCE present in branches of five different tree species.

  18. Trypanocidal constituents in plants 6. 1) Minor withanolides from the aerial parts of Physalis angulata.

    PubMed

    Abe, Fumiko; Nagafuji, Shinya; Okawa, Masafumi; Kinjo, Junei

    2006-08-01

    Further study of the methanol extract of the aerial parts of Physalis angulata (Solanaceae) resulted in the isolation of new withanolides, designated physagulins L, M and N, together with known withanolide, physagulin D and flavonol glycoside, quercetin 3-O-rhamnosyl-(1-->6)-galactoside. The chemical structures of these new withanolides were elucidated by detailed spectroscopic analyses to be (20R,22R)-15alpha-acetoxy-5alpha,6beta,14beta,17beta,27-pentahydroxy-1-oxo-witha-2, 24-dienolide, (20S,22S)-15alpha-acetoxy-5alpha,6beta,14alpha,23beta-tetrahydroxy-1-oxo-witha-2,16,24-trienolide and (20S,22R)-15alpha-acetoxy-5beta,6beta-epoxy-14alpha-hydoxy-3beta-methoxy-1-oxo-witha-16,24-dienolide, respectively. All these compounds showed weak trypanocidal activity against trypomastigotes, an infectious form of Trypanosoma cruzi, the etiologic agent for Chagas' disease. Withanolides obtained in the previous paper showed considerable trypanocidal activity, suggesting the structure-activity relationships.

  19. Cloning of medicinal plants through tissue culture--a review.

    PubMed

    Chaturvedi, H C; Jain, Madhu; Kidwai, N R

    2007-11-01

    In order to have standardized formulations, the chemical constituents from plants and their parts are required to be uniform both qualitatively and quantitatively. Furthermore, an ever increasing demand of uniform medicinal plants based medicines warrants their mass cloning through plant tissue culture strategy. A good number of medicinal plants have been reported to regenerate in vitro from their various parts, but a critical evaluation of such reports reveals that only a few complete medicinal plants have been regenerated and still fewer have actually been grown in soil, while their micropropagation on a mass scale has rarely been achieved, particularly in those medicinal plants where conventional propagation is inadequate, like, the mass clonal propagation of Dioscorea floribunda leading to its successful field trials. Such facts make it imperative to document the factual position of micropropagation of medicinal plants bringing out the advancements made along with the short falls, in this important area. The present review deals with the futuristic view on the said subject restricted to higher plants.

  20. Application of plant cell and tissue culture for the production of phytochemicals in medicinal plants.

    PubMed

    Pant, Bijaya

    2014-01-01

    Approximately 80% of the world inhabitants depend on the medicinal plants in the form of traditional formulations for their primary health care system well as in the treatment of a number of diseases since the ancient time. Many commercially used drugs have come from the information of indigenous knowledge of plants and their folk uses. Linking of the indigenous knowledge of medicinal plants to modern research activities provides a new reliable approach, for the discovery of novel drugs much more effectively than with random collection. Increase in population and increasing demand of plant products along with illegal trade are causing depletion of medicinal plants and many are threatened in natural habitat. Plant tissue culture technique has proved potential alternative for the production of desirable bioactive components from plants, to produce the enough amounts of plant material that is needed and for the conservation of threatened species. Different plant tissue culture systems have been extensively studied to improve and enhance the production of plant chemicals in various medicinal plants.

  1. Genomic Diversity of Biocontrol Strains of Pseudomonas spp. Isolated from Aerial or Root Surfaces of Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The striking ecological, metabolic, and biochemical diversity of Pseudomonas has intrigued microbiologists for many decades. To explore the genomic diversity of biocontrol strains of Pseudomonas spp., we derived high quality draft sequences of seven strains known to suppress plant disease. The str...

  2. The Effect of Gravity on the Structural Strength and Form of Aerial Plant Axes

    ERIC Educational Resources Information Center

    Murakami, Kiyofumi; Tajima, Ayumi

    2004-01-01

    The relationship between the form and structure of plants and their gravitational environment is one of the most important teaching subjects of biological education. However, the teaching materials for the gravity effect have so long been concerned only with gravitropism, i.e. the short-time response of adjusting the orientation of seedling roots…

  3. The study of plant tissue by optical coherent microscopy method

    NASA Astrophysics Data System (ADS)

    Chirskaya, V. V.; Margaryants, N. B.; Zhukova, E. V.

    2016-08-01

    The article presents the results of application of the optical coherent microscopy technique using a high-resolution automatic Linnik interference microscope to study the structure of plant tissues exemplified by surface periderm layers of a tuberous nightshade (solánum tuberosum) bulb. The results of 3D visualization of the structure of the sample under examination are provided. Scanning depth was 32 µm, with axial and lateral resolution of the device 1 µm.

  4. Gravity like forces in sap conducting tissue in plants.

    NASA Astrophysics Data System (ADS)

    Wagner, Orvin

    2007-04-01

    I used miniature brass shielded Entran accelerometers in small holes in tree tissue to measure forces (penetrating the brass shield) in the direction of sap flow. These forces increased with sap flow up to 22% of gravity magnitude. It is assumed that measured forces would have been larger except for the presence of the distorting hole. These forces were measured in horizontal roots and vertical trunks (here a gravity decrease). Distances of mm. between the tissue and the accelerometer, over which the measured forces acted, could only be compared to gravity. The force's penetration of the brass shield also indicates gravity like forces. See e.g. Physiol. Chem. Phys. & Med. NMR (1995) 27: 31-34 and other publications of the author. The present generally presented controversial explanation of sap flow up tall trees apparently needs modification. Plant produced forces provide an incredible alternative. The macroscopic behavior of plants has so far been mostly ignored by physicists. The study of plants may answer some fundamental questions about gravity. (Earlier observations of weight loss in hanging weights in sap conducting tissue in bent trees led to the above work).

  5. Classification of explosives transformation products in plant tissue

    SciTech Connect

    Larson, S.L.; Jones, R.P. . Waterways Experiment Station); Escalon, L.; Parker, D. )

    1999-06-01

    Explosives contamination in surface or groundwater used for the irrigation of food crops and phytoremediation of explosives-contaminated soil or water using plant-assisted biodegradation have brought about concerns as to the fate of explosives in plants. Liquid scintillation counting, high-performance liquid chromatography, and gel permeation chromatography were utilized to characterize explosives (hexahydro-1,3,5-trinitro-1,3,5-triazine and trinitrotoluene) and their metabolites in plant tissues obtained from three separate studies. Analyzing tissues of yellow nutsedge (Cyperus esculentus), corn (Zea mays), lettuce (Lacuta sativa), tomato (Lyopersicum esculentum), radish (Raphanus sativus), and parrot feather (Myriophyllum aquaticum) from three studies where exposure to explosives at nontoxic levels occurred showed that extensive transformation of the explosive contaminant occurred, variations were noted in uptake and transformation between terrestrial and aquatic plants, the products had significantly higher polarity and water solubility than the parent compounds, and the molecular sizes of the transformation products were significantly greater than those of the parent compounds.

  6. Aerial radiation monitoring around the Fukushima Dai-ichi Nuclear Power Plant using an unmanned helicopter.

    PubMed

    Sanada, Yukihisa; Torii, Tatsuo

    2015-01-01

    The Great East Japan Earthquake on March 11, 2011 generated a series of large tsunami that seriously damaged the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), which resulted in the release of radioactive materials into the environment. To provide further details regarding the distribution of air dose rate and the distribution of radioactive cesium ((134)Cs and (137)Cs) deposition on the ground within a radius of approximately 5 km from the nuclear power plant, we carried out measurements using an unmanned helicopter equipped with a radiation detection system. The distribution of the air dose rate at a height of 1 m above the ground and the radioactive cesium deposition on the ground was calculated. Accordingly, the footprint of radioactive plumes that extended from the FDNPP was illustrated.

  7. Effects of perchlorate on growth of four wetland plants and its accumulation in plant tissues.

    PubMed

    He, Hongzhi; Gao, Haishuo; Chen, Guikui; Li, Huashou; Lin, Hai; Shu, Zhenzhen

    2013-10-01

    Perchlorate contamination in water is of concern because of uncertainties about toxicity and health effects, impact on ecosystems, and possible indirect exposure pathways to humans. Therefore, it is very important to investigate the ecotoxicology of perchlorate and to screen plant species for phytoremediation. Effects of perchlorate (20, 200, and 500 mg/L) on the growth of four wetland plants (Eichhornia crassipes, Acorus calamus L., Thalia dealbata, and Canna indica) as well as its accumulation in different plant tissues were investigated through water culture experiments. Twenty milligrams per liter of perchlorate had no significant effects on height, root length, aboveground part weight, root weight, and oxidizing power of roots of four plants, except A. calamus, and increasing concentrations of perchlorate showed that out of the four wetland plants, only A. calamus had a significant (p<0.05) dose-dependent decrease in these parameters. When treated with 500 mg/L perchlorate, these parameters and chlorophyll content in the leaf of plants showed significant decline contrasted to control groups, except the root length of E. crassipes and C. indica. The order of inhibition rates of perchlorate on root length, aboveground part weight and root weight, and oxidizing power of roots was: A. calamus > C. indica > T. dealbata > E. crassipes and on chlorophyll content in the leaf it was: A. calamus > T. dealbata > C. indica > E. crassipes. The higher the concentration of perchlorate used, the higher the amount of perchlorate accumulation in plants. Perchlorate accumulation in aboveground tissues was much higher than that in underground tissues and leaf was the main tissue for perchlorate accumulation. The order of perchlorate accumulation content and the bioconcentration factor in leaf of four plants was: E. crassipes > C. indica > T. dealbata > A. calamus. Therefore, E. crassipes might be an ideal plant with high tolerance ability and accumulation ability for constructing

  8. Aerial Explorers

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg; Ippolito, Corey

    2005-01-01

    This paper presents recent results from a mission architecture study of planetary aerial explorers. In this study, several mission scenarios were developed in simulation and evaluated on success in meeting mission goals. This aerial explorer mission architecture study is unique in comparison with previous Mars airplane research activities. The study examines how aerial vehicles can find and gain access to otherwise inaccessible terrain features of interest. The aerial explorer also engages in a high-level of (indirect) surface interaction, despite not typically being able to takeoff and land or to engage in multiple flights/sorties. To achieve this goal, a new mission paradigm is proposed: aerial explorers should be considered as an additional element in the overall Entry, Descent, Landing System (EDLS) process. Further, aerial vehicles should be considered primarily as carrier/utility platforms whose purpose is to deliver air-deployed sensors and robotic devices, or symbiotes, to those high-value terrain features of interest.

  9. Uniformity of environmental conditions and plant growth in a hydroponic culture system for use in a growth room with aerial CO2 control

    NASA Technical Reports Server (NTRS)

    Vessey, J. K.; York, E. K.; Henry, L. T.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1988-01-01

    A portable system of hydroponic culture was developed that maintained temperature, pH, and nutrient concentrations of circulating nutrient solutions. The hydroponic system is used within a controlled-environment room (CER) for control of aerial environment. The CER was equipped with an auto-calibrating system for atmospheric CO2 control. The control systems for the hydroponic chambers were able to maintain acidity within +/- 0.2 pH units and the temperature with +/- 0.5 degree C. Mixing time for the 200-liter volume of solution within a hydroponic chamber was less than 12 min. The CO2 control system was able to maintain aerial concentrations within +/- 10 ppm CO2 during the light period. The only gradient found to occur within the hydroponic chambers or CER was a slight gradient in aerial temperature along the length of hydroponic chambers. Growth of soybeans [Glycine max (L.) Merr.] was characterized during a 3-week period of vegetative development by leaf number and area, plant dry weight, total N content of plants, and N depletion from the nutrient solution. The growth characteristics among populations for three hydroponic chambers within the CER were not significantly different, and the percent standard errors of means of the measurements within populations from each chamber were nearly all less than 10%. Thus, the uniformity of plant growth reflected the uniformity of environmental conditions.

  10. Prenatal plumbing--vascular tissue formation in the plant embryo.

    PubMed

    De Rybel, Bert; Breda, Alice S; Weijers, Dolf

    2014-06-01

    The first vascular tissue precursors are specified early during embryogenesis. These precursors give rise to the multi-layered cylinder of hypocotyl and root through controlled, oriented divisions. Concomitant with its growth, the bundle is patterned into xylem and phloem tissues, and intervening procambial cells. These patterns are later maintained during post-embryonic growth and vascular cells will eventually differentiate, displaying characteristic secondary cell wall modifications. Given that the vascular system forms de novo in a simple yet predictable fashion, the embryo provides an excellent model system to study early developmental aspects of vascular tissue formation. However, the benefits of this model are only beginning to be exploited, and most knowledge about the vascular development is derived from growing post-embryonic tissues. Importantly, it is unclear how much of these established post-embryonic mechanisms can be extrapolated to tissue formation during embryogenesis. Here we review concepts established in the model plant Arabidopsis thaliana and focus on recent advances made in understanding embryonic vascular development.

  11. New insights into Fe localization in plant tissues

    PubMed Central

    Roschzttardtz, Hannetz; Conéjéro, Geneviève; Divol, Fanchon; Alcon, Carine; Verdeil, Jean-Luc; Curie, Catherine; Mari, Stéphane

    2013-01-01

    Deciphering cellular iron (Fe) homeostasis requires having access to both quantitative and qualitative information on the subcellular pools of Fe in tissues and their dynamics within the cells. We have taken advantage of the Perls/DAB Fe staining procedure to perform a systematic analysis of Fe distribution in roots, leaves and reproductive organs of the model plant Arabidopsis thaliana, using wild-type and mutant genotypes affected in iron transport and storage. Roots of soil-grown plants accumulate iron in the apoplast of the central cylinder, a pattern that is strongly intensified when the citrate effluxer FRD3 is not functional, thus stressing the importance of citrate in the apoplastic movement of Fe. In leaves, Fe level is low and only detected in and around vascular tissues. In contrast, Fe staining in leaves of iron-treated plants extends in the surrounding mesophyll cells where Fe deposits, likely corresponding to Fe-ferritin complexes, accumulate in the chloroplasts. The loss of ferritins in the fer1,3,4 triple mutant provoked a massive accumulation of Fe in the apoplastic space, suggesting that in the absence of iron buffering in the chloroplast, cells activate iron efflux and/or repress iron influx to limit the amount of iron in the cell. In flowers, Perls/DAB staining has revealed a major sink for Fe in the anthers. In particular, developing pollen grains accumulate detectable amounts of Fe in small-size intracellular bodies that aggregate around the vegetative nucleus at the binuclear stage and that were identified as amyloplasts. In conclusion, using the Perls/DAB procedure combined to selected mutant genotypes, this study has established a reliable atlas of Fe distribution in the main Arabidopsis organs, proving and refining long-assumed intracellular locations and uncovering new ones. This “iron map” of Arabidopsis will serve as a basis for future studies of possible actors of iron movement in plant tissues and cell compartments. PMID:24046774

  12. High resolution mass spectrometry imaging of plant tissues: towards a plant metabolite atlas.

    PubMed

    Bhandari, Dhaka Ram; Wang, Qing; Friedt, Wolfgang; Spengler, Bernhard; Gottwald, Sven; Römpp, Andreas

    2015-11-21

    Mass spectrometry (MS) imaging provides spatial and molecular information for a wide range of compounds. This tool can be used to investigate metabolic changes in plant physiology and environmental interactions. A major challenge in our study was to prepare tissue sections that were compatible with high spatial resolution analysis and therefore dedicated sample preparation protocols were established and optimized for the physicochemical properties of all major plant organs. We combined high spatial resolution (5 μm), in order to detect cellular features, and high mass accuracy (<2 ppm root mean square error), for molecular specificity. Mass spectrometry imaging experiments were performed in positive and negative ion mode. Changes in metabolite patterns during plant development were investigated for germination of oilseed rape. The detailed localization of more than 90 compounds allowed assignment to metabolic processes and indicated possible functions in plant tissues. The 'untargeted' nature of MS imaging allows the detection of marker compounds for the physiological status, as demonstrated for plant-pathogen interactions. Our images show excellent correlation with optical/histological examination. In contrast to previous MS imaging studies of plants, we present a complete workflow that covers multiple species, such as oilseed rape, wheat seed and rice. In addition, different major plant organs and a wide variety of compound classes were analyzed. Thus, our method could be used to develop a plant metabolite atlas as a reference to investigate systemic and local effects of pathogen infection or environmental stress.

  13. Tissue engineered plant extracts as nanofibrous wound dressing.

    PubMed

    Jin, Guorui; Prabhakaran, Molamma P; Kai, Dan; Annamalai, Sathesh Kumar; Arunachalam, Kantha D; Ramakrishna, Seeram

    2013-01-01

    Use of plant extracts for treatment of burns and wound is a common practice followed over the decades and it is an important aspect of health management. Many medicinal plants have a long history of curative properties in wound healing. Electrospun nanofibers provide high porosity with large surface area-to-volume ratio and are more appropriate for cell accommodation, nutrition infiltration, gas exchange and waste excretion. Electrospinning makes it possible to combine the advantages of utilizing these plant extracts in the form of nanofibrous mats to serve as skin graft substitutes. In this study, we investigated the potential of electrospinning four different plant extracts, namely Indigofera aspalathoides, Azadirachta indica, Memecylon edule (ME) and Myristica andamanica along with a biodegradable polymer, polycaprolactone (PCL) for skin tissue engineering. The ability of human dermal fibroblasts (HDF) to proliferate on the electrospun nanofibrous scaffolds was evaluated via cell proliferation assay. HDF proliferation on PCL/ME nanofibers was found the highest among all the other electrospun nanofibrous scaffolds and it was 31% higher than the proliferation on PCL nanofibers after 9 days of cell culture. The interaction of HDF with the electrospun scaffold was studied by F-actin and collagen staining studies. The results confirmed that PCL/ME had the least cytotoxicity among the different plant extract containing scaffolds studied here. Therefore we performed the epidermal differentiation of adipose derived stem cells on PCL/ME scaffolds and obtained early and intermediate stages of epidermal differentiation. Our studies demonstrate the potential of electrospun PCL/ME nanofibers as substrates for skin tissue engineering.

  14. Laser Capture Microdissection Protocol for Xylem Tissues of Woody Plants

    PubMed Central

    Blokhina, Olga; Valerio, Concetta; Sokołowska, Katarzyna; Zhao, Lei; Kärkönen, Anna; Niittylä, Totte; Fagerstedt, Kurt

    2017-01-01

    Laser capture microdissection (LCM) enables precise dissection and collection of individual cell types from complex tissues. When applied to plant cells, and especially to woody tissues, LCM requires extensive optimization to overcome such factors as rigid cell walls, large central vacuoles, intercellular spaces, and technical issues with thickness and flatness of the sections. Here we present an optimized protocol for the laser-assisted microdissection of developing xylem from mature trees: a gymnosperm (Norway spruce, Picea abies) and an angiosperm (aspen, Populus tremula) tree. Different cell types of spruce and aspen wood (i.e., ray cells, tracheary elements, and fibers) were successfully microdissected from tangential, cross and radial cryosections of the current year’s growth ring. Two approaches were applied to achieve satisfactory flatness and anatomical integrity of the spruce and aspen specimens. The commonly used membrane slides were ineffective as a mounting surface for the wood cryosections. Instead, in the present protocol we use glass slides, and introduce a glass slide sandwich assembly for the preparation of aspen sections. To ascertain that not only the anatomical integrity of the plant tissue, but also the molecular features were not compromised during the whole LCM procedure, good quality total RNA could be extracted from the microdissected cells. This showed the efficiency of the protocol and established that our methodology can be integrated in transcriptome analyses to elucidate cell-specific molecular events regulating wood formation in trees. PMID:28101088

  15. The role of activated charcoal in plant tissue culture.

    PubMed

    Thomas, T Dennis

    2008-01-01

    Activated charcoal has a very fine network of pores with large inner surface area on which many substances can be adsorbed. Activated charcoal is often used in tissue culture to improve cell growth and development. It plays a critical role in micropropagation, orchid seed germination, somatic embryogenesis, anther culture, synthetic seed production, protoplast culture, rooting, stem elongation, bulb formation etc. The promotary effects of AC on morphogenesis may be mainly due to its irreversible adsorption of inhibitory compounds in the culture medium and substancially decreasing the toxic metabolites, phenolic exudation and brown exudate accumulation. In addition to this activated charcoal is involved in a number of stimulatory and inhibitory activities including the release of substances naturally present in AC which promote growth, alteration and darkening of culture media, and adsorption of vitamins, metal ions and plant growth regulators, including abscisic acid and gaseous ethylene. The effect of AC on growth regulator uptake is still unclear but some workers believe that AC may gradually release certain adsorbed products, such as nutrients and growth regulators which become available to plants. This review focuses on the various roles of activated charcoal in plant tissue culture and the recent developments in this area.

  16. Study on release and transport of aerial radioactive materials in reprocessing plants

    SciTech Connect

    Amano, Y.; Tashiro, S.; Uchiyama, G.; Abe, H.; Yamane, Y.; Yoshida, K.; Kodama, T.

    2013-07-01

    The release and transport characteristics of radioactive materials at a boiling accident of the high active liquid waste (HALW) in a reprocessing plant have been studied for improving experimental data of source terms of the boiling accident. In the study, a heating test and a thermogravimetry and differential thermal analysis (TG-DTA) test were conducted. In the heating test using a simulated HALW, it was found that ruthenium was mainly released into the air in the form of gas and that non-volatile elements were released into the air in the form of mist. In the TG-DTA test, the rate constants and reaction heat of thermal decomposition of ruthenium nitrosyl nitrate were obtained from TG and DTA curves. (authors)

  17. Response of plant nutrient stoichiometry to fertilization varied with plant tissues in a tropical forest

    PubMed Central

    Mo, Qifeng; Zou, Bi; Li, Yingwen; Chen, Yao; Zhang, Weixin; Mao, Rong; Ding, Yongzhen; Wang, Jun; Lu, Xiankai; Li, Xiaobo; Tang, Jianwu; Li, Zhian; Wang, Faming

    2015-01-01

    Plant N:P ratios are widely used as indices of nutrient limitation in terrestrial ecosystems, but the response of these metrics in different plant tissues to altered N and P availability and their interactions remains largely unclear. We evaluated changes in N and P concentrations, N:P ratios of new leaves (<1 yr), older leaves (>1 yr), stems and mixed fine roots of seven species after 3-years of an N and P addition experiment in a tropical forest. Nitrogen addition only increased fine root N concentrations. P addition increased P concentrations among all tissues. The N × P interaction reduced leaf and stem P concentrations, suggesting a negative effect of N addition on P concentrations under P addition. The reliability of using nutrient ratios as indices of soil nutrient availability varied with tissues: the stoichiometric metrics of stems and older leaves were more responsive indicators of changed soil nutrient availability than those of new leaves and fine roots. However, leaf N:P ratios can be a useful indicator of inter-specific variation in plant response to nutrients availability. This study suggests that older leaf is a better choice than other tissues in the assessment of soil nutrient status and predicting plant response to altered nutrients using nutrients ratios. PMID:26416169

  18. Simulating aerial gravitropism and posture control in plants: what has been done, what is missing

    NASA Astrophysics Data System (ADS)

    Coutand, Catherine; Pot, Guillaume; Bastien, R.; Badel, Eric; Moulia, Bruno

    The gravitropic response requires a process of perception of the signal and a motor process to actuate the movements. Different models have been developed, some focuses on the perception process and some focuses on the motor process. The kinematics of the gravitropic response will be first detailed to set the phenomenology of gravi- and auto-tropism. A model of perception (AC model) will be first presented to demonstrate that sensing inclination is not sufficient to control the gravitropic movement, and that proprioception is also involved. Then, “motor models” will be reviewed. In herbaceous plants, differential growth is the main motor. Modelling tropic movements with simulating elongation raises some difficulties that will be explained. In woody structures the main motor process is the differentiation of reaction wood via cambial growth. We will first present the simplest biomechanical model developed to simulate gravitropism and its limits will be pointed out. Then a more sophisticated model (TWIG) will be presented with a special focus on the importance of wood viscoelasticity and the wood maturation process and its regulation by a mechanosensing process. The presentation will end by a balance sheet of what is done and what is missing for a complete modelling of gravitropism and will present first results of a running project dedicating to get the data required to include phototropism in the actual models.

  19. In situ hybridization for the detection of rust fungi in paraffin embedded plant tissue sections

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rust fungi infect a wide range of plant species making them of particular interest to plant pathologists. In order to study the interactions between these important pathogenic fungi and their host plants it is useful to be able to differentiate fungal tissue from plant tissue. This can be accomplish...

  20. Isolation and detection of small RNAs from plant tissues.

    PubMed

    Smith, Neil A; Eamens, Andrew L

    2012-01-01

    In plants, several classes of non-coding small RNA (sRNA) have been shown to be important regulators of gene expression in a wide variety of biological processes. The two main classes of sRNA, the small-interfering RNA (siRNA) and microRNA (miRNA) classes, are well documented and several experimental approaches have been developed to allow for their routine isolation and detection from plant tissues. Here, we describe the current methods used for the isolation of total RNA and the subsequent enrichment of low-molecular-weight (LMW) RNA species, as well as to outline how sRNAs are detected from such nucleic acid preparations.

  1. NADPH Oxidase-Dependent Superoxide Production in Plant Reproductive Tissues.

    PubMed

    Jiménez-Quesada, María J; Traverso, José Á; Alché, Juan de Dios

    2016-01-01

    In the life cycle of a flowering plant, the male gametophyte (pollen grain) produced in the anther reaches the stigmatic surface and initiates the pollen-pistil interaction, an important step in plant reproduction, which ultimately leads to the delivery of two sperm cells to the female gametophyte (embryo sac) inside the ovule. The pollen tube undergoes a strictly apical expansion characterized by a high growth rate, whose targeting should be tightly regulated. A continuous exchange of signals therefore takes place between the haploid pollen and diploid tissue of the pistil until fertilization. In compatible interactions, theses processes result in double fertilization to form a zygote (2n) and the triploid endosperm. Among the large number of signaling mechanisms involved, the redox network appears to be particularly important. Respiratory burst oxidase homologs (Rbohs) are superoxide-producing enzymes involved in a broad range of processes in plant physiology. In this study, we review the latest findings on understanding Rboh activity in sexual plant reproduction, with a particular focus on the male gametophyte from the anther development stages to the crowning point of fertilization. Rboh isoforms have been identified in both the male and female gametophyte and have proven to be tightly regulated. Their role at crucial points such as proper growth of pollen tube, self-incompatibility response and eventual fertilization is discussed.

  2. Plant cell, tissue and organ culture: the most flexible foundations for plant metabolic engineering applications.

    PubMed

    Ogita, Shinjiro

    2015-05-01

    Significant advances in plant cell, tissue and organ culture (PCTOC) have been made in the last five decades. PCTOC is now thought to be the underlying technique for understanding general or specific biological functions of the plant kingdom, and it is one of the most flexible foundations for morphological, physiological and molecular biological applications of plants. Furthermore, the recent advances in the field of information technology (IT) have enabled access to a large amount of information regarding all aspects of plant biology. For example, sequencing information is stored in mega repositories such as the National Center for Biotechnology Information (NCBI), which can be easily accessed by researchers worldwide. To date, the PCTOC and IT combination strategy for regulation of target plant metabolism and the utilization of bioactive plant metabolites for commercial purposes is essential. In this review, the advantages and the limitations of these methodologies, especially regarding the production of bioactive plant secondary metabolites and metabolic engineering in target plants are discussed mainly from the phenotypic view point.

  3. Assessing the impacts of canopy openness and flight parameters on detecting a sub-canopy tropical invasive plant using a small unmanned aerial system

    NASA Astrophysics Data System (ADS)

    Perroy, Ryan L.; Sullivan, Timo; Stephenson, Nathan

    2017-03-01

    Small unmanned aerial systems (sUAS) have great potential to facilitate the early detection and management of invasive plants. Here we show how very high-resolution optical imagery, collected from small consumer-grade multirotor UAS platform at altitudes of 30-120 m above ground level (agl), can be used to detect individual miconia (Miconia calvescens) plants in a highly invaded tropical rainforest environment on the island of Hawai'i. The central aim of this research was to determine how overstory vegetation cover, imagery resolution, and camera look-angle impact the aerial detection of known individual miconia plants. For our finest resolution imagery (1.37 cm ground sampling distance collected at 30 m agl), we obtained a 100% detection rate for sub-canopy plants with above-crown openness values >40% and a 69% detection rate for those with >20% openness. We were unable to detect any plants with <10% above crown openness. Detection rates progressively declined with coarser spatial resolution imagery, ending in a 0% detection rate for the 120 m agl flights (ground sampling distance of 5.31 cm). The addition of forward-looking oblique imagery improved detection rates for plants below overstory vegetation, though this effect decreased with increasing flight altitude. While dense overstory canopy cover, limited flight times, and visual line of sight regulations present formidable obstacles for detecting miconia and other invasive plant species, we show that sUAS platforms carrying optical sensors can be an effective component of an integrated management plan within challenging subcanopy forest environments.

  4. Extraction of DNA from plant and fungus tissues in situ

    PubMed Central

    2012-01-01

    Background When samples are collected in the field and transported to the lab, degradation of the nucleic acids contained in the samples is frequently observed. Immediate extraction and precipitation of the nucleic acids reduces degradation to a minimum, thus preserving accurate sequence information. An extraction method to obtain high quality DNA in field studies is described. Findings DNA extracted immediately after sampling was compared to DNA extracted after allowing the sampled tissues to air dry at 21°C for 48 or 72 hours. While DNA extracted from fresh tissues exhibited little degradation, DNA extracted from all tissues exposed to 21°C air for 48 or 72 hours exhibited varying degrees of degradation. Yield was higher for extractions from fresh tissues in most cases. Four microcentrifuges were compared for DNA yield: one standard electric laboratory microcentrifuge (max rcf = 16,000×g), two battery-operated microcentrifuges (max rcf = 5,000 and 3,000 ×g), and one manually-operated microcentrifuge (max rcf = 120×g). Yields for all centrifuges were similar. DNA extracted under simulated field conditions was similar in yield and quality to DNA extracted in the laboratory using the same equipment. Conclusions This CTAB (cetyltrimethylammonium bromide) DNA extraction method employs battery-operated and manually-operated equipment to isolate high quality DNA in the field. The method was tested on plant and fungus tissues, and may be adapted for other types of organisms. The method produced high quality DNA in laboratory tests and under simulated field conditions. The field extraction method should prove useful for working in remote sites, where ice, dry ice, and liquid nitrogen are unavailable; where degradation is likely to occur due to the long distances between the sample site and the laboratory; and in instances where other DNA preservation and transportation methods have been unsuccessful. It may be possible to adapt this method for genomic

  5. Cocowood Fibrovascular Tissue System—Another Wonder of Plant Evolution

    PubMed Central

    González, Oswaldo M.; Nguyen, Khoi A.

    2016-01-01

    The coconut palm (Cocos nucifera L.) stem tissue (referred to as cocowood in this study) is a complex fibrovascular system that is made up of fibrovascular bundles embedded into a parenchymatous ground tissue. The complex configuration of fibrovascular bundles along with the non-uniform distribution of the material properties likely allow senile coconut stems to optimize their biomechanical performance per unit mass (i.e., mechanical efficiency) and grow into tall, slender, and very flexible plants with minimum resources of biomass and water. For the first time, to the best of the authors' knowledge, this paper examines, from the integral (i.e., stem structure) and macroscopic (i.e., tissue structure) levels of hierarchy, the characteristic triple helix formation depicted by the fibrovascular bundles within the monocotyledon cocowood. The natural course of the tangential orientation of the axial fibrovascular bundles is mapped for the whole cocowood structure by quantifying 264 cocowood discs, corresponding to 41 senile coconut palms estimated to be >70 years old. The observed variations were modeled in this paper by simple equations that partially enabled characterization of the cocowood fibrovascular tissue system. Furthermore, 11 finite element analyses (FEA) were performed over a three dimensional (3D) finite element (FE) model resembling a characteristic coconut palm stem of 25 m in height to analyze the biomaterial reactions produced by the progressive deviation of the tangential fibrovascular bundles on the cocowood mechanical response (i.e., on the material compressive strength and the bending stiffness). The analyses in this study were carried out for the critical wind speed of 23 m/s (i.e., Gale tornado according to the Fujita tornado scale). For each analysis, the characteristic average maxima degree of orientation of the cocowood fibrovascular bundles was varied from 0° to 51°. The acquired results provided a deep understanding of the cocowood optimum

  6. Translocation of sphingoid bases and their 1-phosphates, but not fumonisins, from roots to aerial tissues of maize seedlings watered with fumonisins.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In an earlier study using maize seedlings grown from kernels inoculated with Fusarium verticillioides, fumonisin B1 (FB1) was preferentially accumulated in leaf tissue compared to FB2 and FB3. The present study tested whether maize seedlings preferentially translocate FB1 when plants are watered wit...

  7. Sphingolipid bases and their 1-phosphates, but not fumonisins, are translocated from roots to aerial tissues of maize seedlings watered with fumonisins.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In an earlier study using maize seedlings grown from kernels inoculated with Fusarium verticillioides, fumonisin B1 (FB1) was preferentially accumulated in leaf tissue compared to FB2 and FB3. The present study tested whether maize seedlings preferentially translocate FB1 when plants are watered wit...

  8. How-To-Do-It: Using Cauliflower to Demonstrate Plant Tissue Culture.

    ERIC Educational Resources Information Center

    Haldeman, Janice H.; Ellis, Jane P.

    1988-01-01

    Presents techniques used for disinfestation of plant material, preparation of equipment and media, and laboratory procedures for tissue culture using cauliflower. Details methods for preparing solutions and plant propagation by cloning. (CW)

  9. Hybrid-Cut: An Improved Sectioning Method for Recalcitrant Plant Tissue Samples

    PubMed Central

    Fang, Su-Chiung; Lien, Yi-Chen; Yang, Ting-Ting; Ko, Swee-Suak

    2016-01-01

    Maintaining plant section integrity is essential for studying detailed anatomical structures at the cellular, tissue, or even organ level. However, some plant cells have rigid cell walls, tough fibers and crystals(calcium oxalate, silica, etc.), and high water content that often disrupt tissue integrity during plant tissue sectioning. This study establishes a simple Hybrid-Cut tissue sectioning method. This protocol modifies a paraffin-based sectioning technique and improves the integrity of tissue sections from different plants. Plant tissues were embedded in paraffin before sectioning in a cryostat at -16 °C. Sectioning under low temperature hardened the paraffin blocks, reduced tearing and scratching, and improved tissue integrity significantly. This protocol was successfully applied to calcium oxalate-rich Phalaenopsis orchid tissues as well as recalcitrant tissues such as reproductive organs and leaves of rice, maize, and wheat. In addition, the high quality of tissue sections from Hybrid-Cut could be used in combination with in situ hybridization (ISH) to provide spatial expression patterns of genes of interest. In conclusion, this protocol is particularly useful for recalcitrant plant tissue containing high crystal or silica content. Good quality tissue sections enable morphological and other biological studies. PMID:27911377

  10. Embryogenesis and plant regeneration of Medicago spp. in tissue culture.

    PubMed

    Nagarajan, P; McKenzie, J S; Walton, P D

    1986-02-01

    Ten cultivars and breeding lines from two species of alfalfa (Medicago media and M. sativa) were screened for their ability to produce embryos and plantlets from the root and hypocotyl under three different tissue culture protocols. The three protocols differed in basal salt composition, vitamins, hormones and cytokinin additions. That protocol having a high 2-4,D low cytokinin induction step gave the highest percentage of embryogenic calli in some cultivars and lines. M. media cultivars and breeding lines had a high percentage of embryoid formation. M. sativa cultivars gave no embryoid formation. Two M. media breeding lines (Br1 and Le1), which were intermediate in the percentage of embryogenic calli formed from explants, had the highest number of regenerated plants established in soil. The creeping rooted M. media cultivar Heinrichs produced the highest percentage of embryogenic calli from explants but most of these embryoids were abnormal and failed to grow in soil or vermiculite. Accordingly, successful regeneration is directly related to the quality and quantity of the embryoids produced.

  11. Aerial Photography

    NASA Technical Reports Server (NTRS)

    1985-01-01

    John Hill, a pilot and commercial aerial photographer, needed an information base. He consulted NERAC and requested a search of the latest developments in camera optics. NERAC provided information; Hill contacted the manufacturers of camera equipment and reduced his photographic costs significantly.

  12. Stachyose synthesis in source leaf tissues of the CAM plant Xerosicyos danguyi H. Humb

    SciTech Connect

    Madore, M.A.; Mitchell, D.E.; Boyd, C.M. )

    1988-07-01

    Leaf tissues from Xerosicyos danguyi H. Humb., a succulent member of the Cucurbitaceae, were found to possess both galactinol synthase activity and the capacity for photosynthetic production of stachyose, the phloem transport oligosaccahride common to other nonsucculent cucurbits, the amounts of stachyose isolated from leaf tissues, and the extractable activity of galactinol synthase, were somewhat higher in leaf tissues obtained from plants operating in the Crassulacean acid metabolism (CAM) mode (well watered plants) compared to leaf tissues from plants operating in the CAM-idling mode (water-stressed plants). In contrast, in leaf discs, the photosynthetic incorporation of label into stachyose following pulse labeling with {sup 14}CO{sub 2} was similar for stressed and for nonstressed tissues. Stachyose could be extracted from, and was synthesized photosynthetically by, leaf discs which contained no vascular tissues, indicating that synthesis of stachyose can occur in photosynthetic mesophyll cells of Xerosicyos.

  13. Pattern matching and adaptive image segmentation applied to plant reproduction by tissue culture

    NASA Astrophysics Data System (ADS)

    Vazquez Rueda, Martin G.; Hahn, Federico

    1999-03-01

    This paper shows the results obtained in a system vision applied to plant reproduction by tissue culture using adaptive image segmentation and pattern matching algorithms, this analysis improves the number of tissue obtained and minimize errors, the image features of tissue are considered join to statistical analysis to determine the best match and results. Tests make on potato plants are used to present comparative results with original images processed with adaptive segmentation algorithm and non adaptive algorithms and pattern matching.

  14. Comparative study on Allium schoenoprasum cultivated plant and Allium schoenoprasum tissue culture organs antioxidant status.

    PubMed

    Stajner, D; Popović, B M; Calić-Dragosavac, D; Malenčić, D; Zdravković-Korać, S

    2011-11-01

    This study was designed to examine Allium schoenoprasum tissue culture organs antioxidant and scavenging activity and to make a comparison between Allium schoenoprasum cultivated plant and Allium schoenoprasum tissue culture organs antioxidant activity. This study reports the results on the root, stalk and leaf antioxidant enzyme activities (superoxide dismutase, catalase, guaiacol peroxidase and glutathione peroxidase), reduced glutathione quantity, flavonoids and soluble protein contents and quantities of malonyldialdehyde and ·OH radical. In Allium schoenoprasum tissue culture organs the total antioxidant capacity was determined by the FRAP method and scavenger activity by the DPPH method. The present results indicated that the crude extract of Allium schoenoprasum tissue culture exhibited antioxidant and scavenging abilities in all investigated plant parts, especially in the roots. According to our results, the tissue culture plants exhibited the highest activities in the roots in contrast to the cultivated plants where highest activities were observed in the leaves.

  15. Measurement of nitric oxide in plant tissue using difluorofluorescein and oxyhemoglobin.

    PubMed

    Ludidi, Ndiko

    2013-01-01

    Nitric oxide (NO) is now well established as a signalling molecule in plants, regulating various physiological processes ranging from development to responses to pathogens and changes in the physical environment. Various methods for the detection of NO in plant tissue have been described, and all of these methods have serious limitations that impact their utility for accurate detection of NO in plant tissues. Despite such limitations, both difluorofluorescein diacetate and oxyhemoglobin present convenient and relatively easy approaches for measuring NO in plant tissue and their utility can be enhanced by including appropriate controls to address some of the limitations that these two methods have. This chapter provides methods for measuring or detecting NO production in plant tissue using either difluorofluorescein diacetate or oxyhemoglobin.

  16. Application of plant tissue cultures in phytoremediation research: incentives and limitations.

    PubMed

    Doran, Pauline M

    2009-05-01

    The aim of this review is to critically assess the benefits and limitations associated with the use of in vitro plant cell and organ cultures as research tools in phytoremediation studies. Plant tissue cultures such as callus, cell suspensions, and hairy roots are applied frequently in phytoremediation research as model plant systems. In vitro cultures offer a range of experimental advantages in studies aimed at examining the intrinsic metabolic capabilities of plant cells and their capacity for toxicity tolerance. The ability to identify the contributions of plant cells to pollutant uptake and detoxification without interference from microorganisms is of particular significance in the search for fundamental knowledge about plants. However, if the ultimate goal of plant tissue culture experiments is the development of practical phytoremediation technology, the limitations inherent in the use of in vitro cultures as a representative of whole plants in the field must be recognized. The bioavailability of contaminants and the processes of pollutant uptake and metabolite distribution are likely to be substantially different in the two systems; this can lead to qualitative as well as quantitative differences in metabolic profiles and tolerance characteristics. Yet, many studies have demonstrated that plant tissue cultures are an extremely valuable tool in phytoremediation research. The results derived from tissue cultures can be used to predict the responses of plants to environmental contaminants, and to improve the design and thus reduce the cost of subsequent conventional whole plant experiments.

  17. Does proximity to coal-fired power plants influence fish tissue mercury?

    PubMed

    Sackett, Dana K; Aday, D Derek; Rice, James A; Cope, W Gregory; Buchwalter, David

    2010-11-01

    Much of the mercury contamination in aquatic biota originates from coal-fired power plants, point sources that release mercury into the atmosphere. Understanding mercury dynamics is primarily important because of the toxic threat mercury poses to wildlife and humans through the consumption of contaminated fish. In this study, we quantified the relative importance of proximity to coal-fired power plants on mercury accumulation in two fish species of different trophic positions. Fish, water and sediment were collected and analyzed from 14 lakes, seven near to (<10 km) and seven far from (>30 km) coal-fired power plants. Lower tissue mercury and higher tissue selenium concentrations were measured in fish collected near power plants. Moreover, mercury accumulation in fish was driven by biotic characteristics (e.g., trophic position, total length, age), waterbody characteristics (e.g., pH, dissolved organic carbon and sulfate) and distance from power plants. Proximity to an atmospheric point-source of mercury and selenium, such as a coal-fired power plant, affects the quantities of mercury and selenium accumulated in fish tissue. Differences in accumulation are hypothesized to be driven in part by selenium-mitigated reductions in fish tissue mercury near power plants. Although reduced fish tissue mercury in systems near power plants may decrease mercury-specific risks to human consumers, these benefits are highly localized and the relatively high selenium associated with these tissues may compromise ecological health.

  18. Bacterial Communities Associated with Different Anthurium andraeanum L. Plant Tissues.

    PubMed

    Sarria-Guzmán, Yohanna; Chávez-Romero, Yosef; Gómez-Acata, Selene; Montes-Molina, Joaquín Adolfo; Morales-Salazar, Eleacin; Dendooven, Luc; Navarro-Noya, Yendi E

    2016-09-29

    Plant-associated microbes have specific beneficial functions and are considered key drivers for plant health. The bacterial community structure of healthy Anthurium andraeanum L. plants was studied by 16S rRNA gene pyrosequencing associated with different plant parts and the rhizosphere. A limited number of bacterial taxa, i.e., Sinorhizobium, Fimbriimonadales, and Gammaproteobacteria HTCC2089 were enriched in the A. andraeanum rhizosphere. Endophytes were more diverse in the roots than in the shoots, whereas all shoot endophytes were found in the roots. Streptomyces, Flavobacterium succinicans, and Asteroleplasma were only found in the roots, Variovorax paradoxus only in the stem, and Fimbriimonas 97%-OTUs only in the spathe, i.e., considered specialists, while Brevibacillus, Lachnospiraceae, Pseudomonas, and Pseudomonas pseudoalcaligenes were generalist and colonized all plant parts. The anaerobic diazotrophic bacteria Lachnospiraceae, Clostridium sp., and Clostridium bifermentans colonized the shoot system. Phylotypes belonging to Pseudomonas were detected in the rhizosphere and in the substrate (an equiproportional mixture of soil, cow manure, and peat), and dominated the endosphere. Pseudomonas included nine 97%-OTUs with different patterns of distribution and phylogenetic affiliations with different species. P. pseudoalcaligenes and P. putida dominated the shoots, but were also found in the roots and rhizosphere. P. fluorescens was present in all plant parts, while P. resinovorans, P. denitrificans, P. aeruginosa, and P. stutzeri were only detected in the substrate and rhizosphere. The composition of plant-associated bacterial communities is generally considered to be suitable as an indicator of plant health.

  19. Therapeutically important proteins from in vitro plant tissue culture systems.

    PubMed

    Doran, Pauline M

    2013-01-01

    Plant cells cultured in liquid medium in bioreactors are now being used commercially to produce biopharmaceutical proteins. The emergence of in vitro plant cell culture as a production vehicle reflects the importance of key biosafety and biocontainment concerns affecting the competitiveness of alternative systems such as mammalian cell culture and agriculture. Food plant species are particularly attractive as hosts for in vitro protein production: the risk of transgene escape and food chain contamination is eliminated using containment facilities, while regulatory approval for oral delivery of drugs may be easier than if non-edible species were used. As in whole plants, proteolysis in cultured plant cells can lead to significant degradation of foreign proteins after synthesis; however, substantial progress has been made to counter the destructive effects of proteases in plant systems. Although protein secretion into the culture medium is advantageous for product recovery and purification, measures are often required to minimise extracellular protease activity and product losses due to irreversible surface adsorption. Disposable plastic bioreactors, which are being used increasingly in mammalian cell bioprocessing, are also being adopted for plant cell culture to allow rapid scale-up and generation of saleable product. This review examines a range of technical and regulatory issues affecting the choice of industrial production platform for foreign proteins, and assesses progress in the development of in vitro plant systems for biopharmaceutical production.

  20. Bacterial Communities Associated with Different Anthurium andraeanum L. Plant Tissues

    PubMed Central

    Sarria-Guzmán, Yohanna; Chávez-Romero, Yosef; Gómez-Acata, Selene; Montes-Molina, Joaquín Adolfo; Morales-Salazar, Eleacin; Dendooven, Luc; Navarro-Noya, Yendi E.

    2016-01-01

    Plant-associated microbes have specific beneficial functions and are considered key drivers for plant health. The bacterial community structure of healthy Anthurium andraeanum L. plants was studied by 16S rRNA gene pyrosequencing associated with different plant parts and the rhizosphere. A limited number of bacterial taxa, i.e., Sinorhizobium, Fimbriimonadales, and Gammaproteobacteria HTCC2089 were enriched in the A. andraeanum rhizosphere. Endophytes were more diverse in the roots than in the shoots, whereas all shoot endophytes were found in the roots. Streptomyces, Flavobacterium succinicans, and Asteroleplasma were only found in the roots, Variovorax paradoxus only in the stem, and Fimbriimonas 97%-OTUs only in the spathe, i.e., considered specialists, while Brevibacillus, Lachnospiraceae, Pseudomonas, and Pseudomonas pseudoalcaligenes were generalist and colonized all plant parts. The anaerobic diazotrophic bacteria Lachnospiraceae, Clostridium sp., and Clostridium bifermentans colonized the shoot system. Phylotypes belonging to Pseudomonas were detected in the rhizosphere and in the substrate (an equiproportional mixture of soil, cow manure, and peat), and dominated the endosphere. Pseudomonas included nine 97%-OTUs with different patterns of distribution and phylogenetic affiliations with different species. P. pseudoalcaligenes and P. putida dominated the shoots, but were also found in the roots and rhizosphere. P. fluorescens was present in all plant parts, while P. resinovorans, P. denitrificans, P. aeruginosa, and P. stutzeri were only detected in the substrate and rhizosphere. The composition of plant-associated bacterial communities is generally considered to be suitable as an indicator of plant health. PMID:27524305

  1. Traits, properties, and performance: how woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant.

    PubMed

    Lachenbruch, Barbara; McCulloh, Katherine A

    2014-12-01

    This review presents a framework for evaluating how cells, tissues, organs, and whole plants perform both hydraulic and mechanical functions. The morphological alterations that affect dual functionality are varied: individual cells can have altered morphology; tissues can have altered partitioning to functions or altered cell alignment; and organs and whole plants can differ in their allocation to different tissues, or in the geometric distribution of the tissues they have. A hierarchical model emphasizes that morphological traits influence the hydraulic or mechanical properties; the properties, combined with the plant unit's environment, then influence the performance of that plant unit. As a special case, we discuss the mechanisms by which the proxy property wood density has strong correlations to performance but without direct causality. Traits and properties influence multiple aspects of performance, and there can be mutual compensations such that similar performance occurs. This compensation emphasizes that natural selection acts on, and a plant's viability is determined by, its performance, rather than its contributing traits and properties. Continued research on the relationships among traits, and on their effects on multiple aspects of performance, will help us better predict, manage, and select plant material for success under multiple stresses in the future.

  2. A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis.

    PubMed

    Wang, Wei; Vignani, Rita; Scali, Monica; Cresti, Mauro

    2006-07-01

    A simple and universally applicable protocol for extracting high-quality proteins from recalcitrant plant tissues is described. We have used the protocol with no modification, for a wide range of leaves and fruits. In all cases, this protocol allows to obtain good electrophoretic separation of proteins. As the protocol is rapid, universal, and compatible with silver staining, it could be used for routine protein extraction from recalcitrant plant tissues for proteomic analysis.

  3. Plants regenerated from tissue culture contain stable epigenome changes in rice.

    PubMed

    Stroud, Hume; Ding, Bo; Simon, Stacey A; Feng, Suhua; Bellizzi, Maria; Pellegrini, Matteo; Wang, Guo-Liang; Meyers, Blake C; Jacobsen, Steven E

    2013-03-19

    Most transgenic crops are produced through tissue culture. The impact of utilizing such methods on the plant epigenome is poorly understood. Here we generated whole-genome, single-nucleotide resolution maps of DNA methylation in several regenerated rice lines. We found that all tested regenerated plants had significant losses of methylation compared to non-regenerated plants. Loss of methylation was largely stable across generations, and certain sites in the genome were particularly susceptible to loss of methylation. Loss of methylation at promoters was associated with deregulated expression of protein-coding genes. Analyses of callus and untransformed plants regenerated from callus indicated that loss of methylation is stochastically induced at the tissue culture step. These changes in methylation may explain a component of somaclonal variation, a phenomenon in which plants derived from tissue culture manifest phenotypic variability. DOI:http://dx.doi.org/10.7554/eLife.00354.001.

  4. Ice-cap. A high-throughput method for capturing plant tissue samples for genotype analysis.

    PubMed

    Krysan, Patrick

    2004-07-01

    High-throughput genotype screening is rapidly becoming a standard research tool in the post-genomic era. A major bottleneck currently exists, however, that limits the utility of this approach in the plant sciences. The rate-limiting step in current high-throughput pipelines is that tissue samples from living plants must be collected manually, one plant at a time. In this article I describe a novel method for harvesting tissue samples from living seedlings that eliminates this bottleneck. The method has been named Ice-Cap to reflect the fact that ice is used to capture the tissue samples. The planting of seeds, growth of seedlings, and harvesting of tissue are all performed in a 96-well format. I demonstrate the utility of this system by using tissue harvested by Ice-Cap to genotype a population of Arabidopsis seedlings that is segregating a previously characterized mutation. Because the harvesting of tissue is performed in a nondestructive manner, plants with the desired genotype can be transferred to soil and grown to maturity. I also show that Ice-Cap can be used to analyze genomic DNA from rice (Oryza sativa) seedlings. It is expected that this method will be applicable to high-throughput screening with many different plant species, making it a useful technology for performing marker assisted selection.

  5. Yield improvement strategies for the production of secondary metabolites in plant tissue culture: silymarin from Silybum marianum tissue culture.

    PubMed

    AbouZid, S

    2014-01-01

    Plant cell culture can be a potential source for the production of important secondary metabolites. This technology bears many advantages over conventional agricultural methods. The main problem to arrive at a cost-effective process is the low productivity. This is mainly due to lack of differentiation in the cultured cells. Many approaches have been used to maximise the yield of secondary metabolites produced by cultured plant cells. Among these approaches: choosing a plant with a high biosynthetic capacity, obtaining efficient cell line for growth and production of metabolite of interest, manipulating culture conditions, elicitation, metabolic engineering and organ culture. This article gives an overview of the various approaches used to maximise the production of pharmaceutically important secondary metabolites in plant cell cultures. Examples of using these different approaches are shown for the production of silymarin from Silybum marianum tissue culture.

  6. Adaptive image segmentation applied to plant reproduction by tissue culture

    NASA Astrophysics Data System (ADS)

    Vazquez Rueda, Martin G.; Hahn, Federico; Zapata, Jose L.

    1997-04-01

    This paper presents that experimental results obtained on indoor tissue culture using the adaptive image segmentation system. The performance of the adaptive technique is contrasted with different non-adaptive techniques commonly used in the computer vision field to demonstrate the improvement provided by the adaptive image segmentation system.

  7. Dental wax impressions of plant tissues for viewing with scanning electron microscopy (SEM).

    PubMed

    Beermann, Anke; Hülskamp, Martin

    2010-09-01

    Scanning electron microscopy (SEM) is a valuable method for examining surface structures. Taking wax impressions of plant structures, such as leaves, is a nondestructive procedure that makes it possible to view changes in surface structures over time, such as during development. This protocol describes a method for making dental wax impressions of plant tissues.

  8. Delivery and detection of dietary plant-based miRNAs in animal tissues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been proposed that genetic material, namely microRNAs (miRNAs), consumed in plant-based diets can affect animal gene expression. Though deep sequencing reveals the low-level presence of plant miRNAs in animal tissues, many groups have been thus far unable to replicate the finding that a rice ...

  9. Hormone-induced repression of a peroxidase isozyme in plant tissue.

    PubMed

    Ockerse, R; Siegel, B Z; Galston, A W

    1966-01-28

    Young stem sections of dwarf peas (Progress No. 9) grown in light contain at least seven peroxidase isozymes separable by electrophoresis on starch gel. An eighth isozyme appears as the tissue elongates and ages, on or off the plant. The appearance of this isozyme in excised sections is repressed by application of the plant growth hormone, indole-3-acetic acid.

  10. Sample Preparation for Mass Spectrometry Imaging of Plant Tissues: A Review

    PubMed Central

    Dong, Yonghui; Li, Bin; Malitsky, Sergey; Rogachev, Ilana; Aharoni, Asaph; Kaftan, Filip; Svatoš, Aleš; Franceschi, Pietro

    2016-01-01

    Mass spectrometry imaging (MSI) is a mass spectrometry based molecular ion imaging technique. It provides the means for ascertaining the spatial distribution of a large variety of analytes directly on tissue sample surfaces without any labeling or staining agents. These advantages make it an attractive molecular histology tool in medical, pharmaceutical, and biological research. Likewise, MSI has started gaining popularity in plant sciences; yet, information regarding sample preparation methods for plant tissues is still limited. Sample preparation is a crucial step that is directly associated with the quality and authenticity of the imaging results, it therefore demands in-depth studies based on the characteristics of plant samples. In this review, a sample preparation pipeline is discussed in detail and illustrated through selected practical examples. In particular, special concerns regarding sample preparation for plant imaging are critically evaluated. Finally, the applications of MSI techniques in plants are reviewed according to different classes of plant metabolites. PMID:26904042

  11. Detection of Pyrenophora teres in infested plant tissues by PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Net blotch of barley, a commonly occurring foliar disease is caused by Pyrenophora teres Drechs. The disease is characterized by small circular elliptical spots which enlarge to the typical narrow netlike pattern. Lesions in mature plants appear similar to spot blotch of Cochliobolus sativus, both o...

  12. RDX in Plant Tissue: Leading to Humification in Surface Soils

    DTIC Science & Technology

    2013-01-01

    24 3.2.2 Solar simulation ........................................................................................................... 24...simulated plant cell conditions as the degradation of TNT pollution has application to RDX. The study was made up of two different experimental...photodegradation of TNT in water. The extract photolysis experiment was used to simulate the photolysis that can occur in the actual cell environ

  13. Enhancing plant regeneration in tissue culture: a molecular approach through manipulation of cytokinin sensitivity.

    PubMed

    Hill, Kristine; Schaller, G Eric

    2013-10-01

    Micropropagation is used for commercial purposes worldwide, but the capacity to undergo somatic organogenesis and plant regeneration varies greatly among species. The plant hormones auxin and cytokinin are critical for plant regeneration in tissue culture, with cytokinin playing an instrumental role in shoot organogenesis. Type-B response regulators govern the transcriptional output in response to cytokinin and are required for plant regeneration. In our paper published in Plant Physiology, we explored the functional redundancy among the 11 type-B Arabidopsis response regulators (ARRs). Interestingly, we discovered that the enhanced expression of one family member, ARR10, induced hypersensitivity to cytokinin in multiple assays, including callus greening and shoot induction of explants. Here we 1) discuss the hormone dependence for in vitro plant regeneration, 2) how manipulation of the cytokinin response has been used to enhance plant regeneration, and 3) the potential of the ARR10 transgene as a tool to increase the regeneration capacity of agriculturally important crop plants. The efficacy of ARR10 for enhancing plant regeneration likely arises from its ability to transcriptionally regulate key cytokinin responsive genes combined with an enhanced protein stability of ARR10 compared with other type-B ARRs. By increasing the capacity of key tissues and cell types to respond to cytokinin, ARR10, or other type-B response regulators with similar properties, could be used as a tool to combat the recalcitrance of some crop species to tissue culture techniques.

  14. Cloning higher plants from aseptically cultured tissues and cells

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.

    1982-01-01

    A review of aseptic culture methods for higher plants is presented, which focuses on the existing problems that limit or prevent the full realization of cloning plants from free cells. It is shown that substantial progress in clonal multiplication has been made with explanted stem tips or lateral buds which can be stimulated to produce numerous precocious axillary branches. These branches can then be separated or subdivided and induced to root in order to yield populations of genetically and phenotypically uniorm plantlets. Similarly, undifferentiated calluses can sometimes be induced to form shoots and/or roots adventitiously. Although the cell culture techniques required to produce somatic embryos are presently rudimentary, steady advances are being made in learning how to stimulate formation of somatic or adventive embryos from totipotent cells grown in suspension cultures. It is concluded that many problems exist in the producing and growing of totipotent or morphogenetically competent cell suspensions, but the potential benefits are great.

  15. Role of proteolytic enzymes in degradation of plant tissues

    SciTech Connect

    Lewosz, J.; Kelman, A.; Sequeira, L.

    1991-01-01

    Strain SR 394 of Erwinia carotovora (Ecc) produced proteases constitutively in all media tested. Growth of Ecc and production of protease were enhanced significantly by the presence of poetic materials and/or plant call walls in the test media. After electrofocusing, one major and one minor protease bands, at PI 4.8 and PI 5.1, respectively, were detected. Only one band of 43 kDa was detected on SDS gels. Only one protease band was detected in SDS gels of infected plant extracts. This protease was purified to homogeneity. It in a highly thermostable metal protease; it degrades gelatin, soluble collagen and hide powderazure, shows weak activity on casein and azocasein, but does not degrade insoluble collagen or elastin.

  16. Improved Method for HPLC Analysis of Polyamines, Agmatine and Aromatic Monoamines in Plant Tissue

    PubMed Central

    Slocum, Robert D.; Flores, Hector E.; Galston, Arthur W.; Weinstein, Leonard H.

    1989-01-01

    The high performance liquid chromatographic (HPLC) method of Flores and Galston (1982 Plant Physiol 69: 701) for the separation and quantitation of benzoylated polyamines in plant tissues has been widely adopted by other workers. However, due to previously unrecognized problems associated with the derivatization of agmatine, this important intermediate in plant polyamine metabolism cannot be quantitated using this method. Also, two polyamines, putrescine and diaminopropane, also are not well resolved using this method. A simple modification of the original HPLC procedure greatly improves the separation and quantitation of these amines, and further allows the simulation analysis of phenethylamine and tyramine, which are major monoamine constituents of tobacco and other plant tissues. We have used this modified HPLC method to characterize amine titers in suspension cultured carrot (Daucus carota L.) cells and tobacco (Nicotiana tabacum L.) leaf tissues. Images Figure 4 Figure 5 PMID:11537449

  17. Improved method for HPLC analysis of polyamines, agmatine and aromatic monoamines in plant tissue

    NASA Technical Reports Server (NTRS)

    Slocum, R. D.; Flores, H. E.; Galston, A. W.; Weinstein, L. H.

    1989-01-01

    The high performance liquid chromatographic (HPLC) method of Flores and Galston (1982 Plant Physiol 69: 701) for the separation and quantitation of benzoylated polyamines in plant tissues has been widely adopted by other workers. However, due to previously unrecognized problems associated with the derivatization of agmatine, this important intermediate in plant polyamine metabolism cannot be quantitated using this method. Also, two polyamines, putrescine and diaminopropane, also are not well resolved using this method. A simple modification of the original HPLC procedure greatly improves the separation and quantitation of these amines, and further allows the simulation analysis of phenethylamine and tyramine, which are major monoamine constituents of tobacco and other plant tissues. We have used this modified HPLC method to characterize amine titers in suspension cultured carrot (Daucas carota L.) cells and tobacco (Nicotiana tabacum L.) leaf tissues.

  18. Polyphosphoinositides are present in plant tissue culture cells

    SciTech Connect

    Boss, W.F.; Massel, M.O.

    1985-11-15

    Polyphosphoinositides have been isolated from wild carrot cells grown in suspension culture. This is the first report of polyphosphoinositides in plant cells. The phospholipids were identified by comigration with known standards on thin-layer plates. After overnight labeling of the cells with myo-(2-/sup 3/H) inositol, the phosphoinositides as percent recovered inositol were 93% phosphatidylinositol., 3.7% lysophosphatidylinositol, 1.7% phosphatidylinositol monophosphate, 0.8% phosphatidylinositol bisphosphate.

  19. Species identification of plant tissues from the gut of An. sergentii by DNA analysis.

    PubMed

    Junnila, Amy; Müller, Gunter C; Schlein, Yosef

    2010-09-01

    There are three commonly used assays to identify plant material in insect guts: the cold anthrone test for fructose, the cellulose staining test for visualizing plant tissue and gas chromatography for seeking unique sugar content profiles. Though sugar and cellulose tests can distinguish between the general sources of sugar meal (nectar versus tissue), they cannot identify the species of plant sources. Even gas chromatography profiles can be problematic; there are reported instances of intra-specific variation as well as inter-specific and intergeneric variation that can mar results. Here, we explore the potential for DNA analysis to help resolve this issue. First, Anopheles sergentii were exposed to branches of two species of highly attractive flowering bushes in the laboratory and the great majority ( approximately 90-98%) were positive for sugar from nectar while very few were positive for cellulose ( approximately 0.5-8%) and DNA (6-19%). Moreover, laboratory An. sergentii showed opposing preferences, tending to obtain sugar from nectar of one plant (Tamarix nilotica) but to feed more on tissue from the other (Ochradenus baccatus). An. sergentii are exposed to a wide variety of plants in their natural desert habitats and in the absence of flowers in the dry season, they resort to feeding specifically on tissues of a few plants. According to DNA analysis the favorite plants were Suaeda asphaltica, Malva nicaeensis and Conyza dioscoridis, which are succulents that account for less than 1% of vegetation in the area.

  20. Impact of a pulsed electric field on damage of plant tissues: effects of cell size and tissue electrical conductivity.

    PubMed

    Ben Ammar, J; Lanoisellé, J-L; Lebovka, N I; Van Hecke, E; Vorobiev, E

    2011-01-01

    Efficiency of pulsed electric field (PEF) induced permeabilization at 293 K in selected fruit and vegetable plant tissues (apple, potato, carrot, courgette, orange, and banana) at electric field strength (E) of 400 V·cm(-1), 1000 V·cm(-1) and pulse duration (t(p)) of 1000 μs was studied experimentally. The mean cell radius (〈r〉) was within 30 to 60 μm, and the ratio of electrical conductivities of the intact and damaged tissues (σ(i)/σ(d)) was within 0.07 to 0.79 for the studied tissues. Electroporation theory predicts higher damage for tissue with larger cells; however, the direct correlation between PEF damage efficiency and size of cell was not always observed. To explain this anomaly, a theoretical Monte Carlo model was developed and checked for parameters typical for potato tissue. The model showed a strong dependence of PEF damage efficiency and power consumption (W) on σ(i)/σ(d) ratio. The optimum value of electric field strength (E(opt)) was an increasing function of σ(i)/σ(d), and plant tissues with high σ(i)/σ(d) ratio (σ(i)/σ(d) ≈ 1) required application of a rather strong field (for example, E(opt) ≈ 3000 V·cm(-1) for σ(i)/σ(d) ≈ 0.8). However, the PEF treatment at a lower field (E ≈ 400 V·cm(-1)) allowed regulation of the selectivity of damage of cells in dependence of their size. A good qualitative correspondence between experimental data and simulation results were observed.

  1. Experimental investigation of buried tritium in plant and animal tissues

    SciTech Connect

    Kim, S. B.; Workman, W. J. G.; Davis, P. A.

    2008-07-15

    Buried exchangeable tritium appears as part of organically bound tritium (OBT) in the traditional experimental determination of OBT. Since buried tritium quickly exchanges with hydrogen atoms in the body following ingestion, assuming that it is part of OBT rather than part of tritiated water (HTO) could result in a significant overestimate of the ingestion dose. This paper documents an experimental investigation into the existence, amount and significance of buried tritium in plant and fish samples. OBT concentrations in the samples were determined in the traditional way and also following denaturing with five chemical solutions that break down large molecules and expose buried tritium to exchange with free hydrogen atoms. A comparison of the OBT concentrations before and after denaturing, together with the concentration of HTO in the supernatant obtained after denaturing, suggests that buried OBT may exist but makes up less than 5% of the OBT concentration in plants and at most 20% of the OBT concentration in fish. The effects of rinse time and rinse water volumes were investigated to optimize the removal of exchangeable OBT from the samples. (authors)

  2. [Physical model of the plant tissue response to exposure to the microwave electromagnetic field].

    PubMed

    Kalinin, L G; Boshkova, I L

    2003-01-01

    A hypothesis was suggested to explain the effect of biostimulation of seeds exposed to microwave electromagnetic field. It was shown that the assumption on the determining influence of the microwave field on the transport properties of the conducting system of a plant satisfactorily explains the phenomena observed in germinating seeds and growing plants. A physical model of the response of a plant cell to a microwave field is presented, which served as a basis for the method of calculating the maximum possible time of exposure of plant tissue.

  3. Demonstration of the economic feasibility of plant tissue culture for jojoba (Simmondsia chinensis) and Euphorbia spp

    SciTech Connect

    Sluis, C.

    1980-09-01

    The economic feasibility of plant tissue culture was demonstrated as applied to two plants: jojoba (Simmondsia chinensis) and Euphorbia spp. The gopher weed (Euphorbia lathyris) was selected as the species of Euphorbia to research due to the interest in this plant as a potential source of hydrocarbon-like compounds. High yield female selections of jojoba were chosen from native stands and were researched to determine the economic feasibility of mass producing these plants via a tissue culture micropropagation program. The female jojoba selection was successfully mass produced through tissue culture. Modifications in initiation techniques, as well as in multiplication media and rooting parameters, were necessary to apply the tissue culture system, which had been developed for juvenile seedling tissue, to mature jojobas. Since prior attempts at transfer of tissue cultured plantlets were unsuccessful, transfer research was a major part of the project and has resulted in a system for transfer of rooted jojoba plantlets to soil. Euphorbia lathyris was successfully cultured using shoot tip cultures. Media and procedures were established for culture initiation, multiplication of shoots, callus induction and growth, and root initiation. Well-developed root systems were not attained and root initiation percentages should be increased if the system is to become commercially feasible.

  4. Illuminating a plant's tissue-specific metabolic diversity using computational metabolomics and information theory.

    PubMed

    Li, Dapeng; Heiling, Sven; Baldwin, Ian T; Gaquerel, Emmanuel

    2016-11-22

    Secondary metabolite diversity is considered an important fitness determinant for plants' biotic and abiotic interactions in nature. This diversity can be examined in two dimensions. The first one considers metabolite diversity across plant species. A second way of looking at this diversity is by considering the tissue-specific localization of pathways underlying secondary metabolism within a plant. Although these cross-tissue metabolite variations are increasingly regarded as important readouts of tissue-level gene function and regulatory processes, they have rarely been comprehensively explored by nontargeted metabolomics. As such, important questions have remained superficially addressed. For instance, which tissues exhibit prevalent signatures of metabolic specialization? Reciprocally, which metabolites contribute most to this tissue specialization in contrast to those metabolites exhibiting housekeeping characteristics? Here, we explore tissue-level metabolic specialization in Nicotiana attenuata, an ecological model with rich secondary metabolism, by combining tissue-wide nontargeted mass spectral data acquisition, information theory analysis, and tandem MS (MS/MS) molecular networks. This analysis was conducted for two different methanolic extracts of 14 tissues and deconvoluted 895 nonredundant MS/MS spectra. Using information theory analysis, anthers were found to harbor the most specialized metabolome, and most unique metabolites of anthers and other tissues were annotated through MS/MS molecular networks. Tissue-metabolite association maps were used to predict tissue-specific gene functions. Predictions for the function of two UDP-glycosyltransferases in flavonoid metabolism were confirmed by virus-induced gene silencing. The present workflow allows biologists to amortize the vast amount of data produced by modern MS instrumentation in their quest to understand gene function.

  5. Embryoidogenesis and plant regeneration from leaf tissue of Gloriosa superba.

    PubMed

    Sivakumar, G; Krishnamurthy, K V; Rajendran, T D

    2003-05-01

    The induction, maturation and germination of embryoids from leaf tissue of Gloriosa superba L. were developed by exploiting solid and liquid culture. Nodular calli were obtained from SH medium supplemented with 2,4-D and 2iP. In solid culture, the nodular calli when transferred to 2,4-D along with glycerol gave the best response (68.4 %) in embryoid induction after 20 days. After two subcultures at 7-day intervals in a medium with thiamine instead of glycerol, the embryoids matured. When mature embryoids were transferred to BAP and IBA medium, they gave rise to plantlets with single shoots and roots. In liquid culture, the medium supplemented with NAA and L-glutamine with continuous agitation, the embryoidogenic calli produced embryoids (85 %) after 21 days. The mature embryoids began to turn green and produced shoots and elongated "radicles" after 35 days.

  6. Hydraulics of Asteroxylon mackei, an early Devonian vascular plant, and the early evolution of water transport tissue in terrestrial plants.

    PubMed

    Wilson, J P; Fischer, W W

    2011-03-01

    The core of plant physiology is a set of functional solutions to a tradeoff between CO(2) acquisition and water loss. To provide an important evolutionary perspective on how the earliest land plants met this tradeoff, we constructed a mathematical model (constrained geometrically with measurements of fossils) of the hydraulic resistance of Asteroxylon, an Early Devonian plant. The model results illuminate the water transport physiology of one of the earliest vascular plants. Results show that Asteroxylon's vascular system contains cells with low hydraulic resistances; these resistances are low because cells were covered by scalariform pits, elliptical structures that permit individual cells to have large areas for water to pass from one cell to another. Asteroxylon could move a large amount of water quickly given its large pit areas; however, this would have left these plants particularly vulnerable to damage from excessive evapotranspiration. These results highlight a repeated pattern in plant evolution, wherein the evolution of highly conductive vascular tissue precedes the appearance of adaptations to increase water transport safety. Quantitative insight into the vascular transport of Asteroxylon also allows us to reflect on the quality of CO(2) proxy estimates based on early land plant fossils. Because Asteroxylon's vascular tissue lacked any safety features to prevent permanent damage, it probably used stomatal abundance and behavior to prevent desiccation. If correct, low stomatal frequencies in Asteroxylon reflect the need to limit evapotranspiration, rather than adaptation to high CO(2) concentrations in the atmosphere. More broadly, methods to reveal and understand water transport in extinct plants have a clear use in testing and bolstering fossil plant-based paleoclimate proxies.

  7. Enhanced electroporation in plant tissues via low frequency pulsed electric fields: influence of cytoplasmic streaming.

    PubMed

    Asavasanti, Suvaluk; Stroeve, Pieter; Barrett, Diane M; Jernstedt, Judith A; Ristenpart, William D

    2012-01-01

    Pulsed electric fields (PEF) are known to be effective at permeabilizing plant tissues. Prior research has demonstrated that lower pulse frequencies induce higher rates of permeabilization, but the underlying reason for this response is unclear. Intriguingly, recent microscopic observations with onion tissues have also revealed a correlation between PEF frequency and the subsequent speed of intracellular convective motion, i.e., cytoplasmic streaming. In this paper, we investigate the effect of cytoplasmic streaming on the efficacy of plant tissue permeabilization via PEF. Onion tissue samples were treated with Cytochalasin B, a known inhibitor of cytoplasmic streaming, and changes in cellular integrity and viability were measured over a wide range of frequencies and field strengths. We find that at low frequencies (f < 1 Hz), the absence of cytoplasmic streaming results in a 19% decrease in the conductivity disintegration index compared with control samples. Qualitatively, similar results were observed using a microscopic cell viability assay. The results suggest that at low frequencies convection plays a statistically significant role in distributing more conductive fluid throughout the tissue, making subsequent pulses more efficacious. The key practical implication is that PEF pretreatment at low frequency can increase the rate of tissue permeabilization in dehydration or extraction processes, and that the treatment will be most effective when cytoplasmic streaming is most active, i.e., with freshly prepared plant tissues.

  8. A Protocol for Rapid, Measurable Plant Tissue Culture Using Stem Disc Meristem Micropropagation of Garlic ("Allium Sativum L.")

    ERIC Educational Resources Information Center

    Peat, Gerry; Jones, Meriel

    2012-01-01

    Plant tissue culture is becoming an important technique for the mass propagation of plants. Problems with existing techniques, such as slow growth and contamination, have restricted the practical work in plant tissue culture carried out in schools. The new protocol using garlic meristematic stem discs explained in this article addresses many of…

  9. Glow in the dark: fluorescent proteins as cell and tissue-specific markers in plants.

    PubMed

    Ckurshumova, Wenzislava; Caragea, Adriana E; Goldstein, Rochelle S; Berleth, Thomas

    2011-09-01

    Since the hallmark discovery of Aequorea victoria's Green Fluorescent Protein (GFP) and its adaptation for efficient use in plants, fluorescent protein tags marking expression profiles or genuine proteins of interest have been used to recognize plant tissues and cell types, to monitor dynamic cell fate selection processes, and to obtain cell type-specific transcriptomes. Fluorescent tagging enabled visualization in living tissues and the precise recordings of dynamic expression pattern changes. The resulting accurate recording of cell fate acquisition kinetics in space and time has strongly stimulated mathematical modeling of self-organizing feedback mechanisms. In developmental studies, the use of fluorescent proteins has become critical, where morphological markers of tissues, cell types, or differentiation stages are either not known or not easily recognizable. In this review, we focus on the use of fluorescent markers to identify and illuminate otherwise invisible cell states in plant development.

  10. Growth and chlorophyll production in plant callus tissues grown in vitro.

    PubMed

    Vasil, I K; Hildebrandt, A C

    1966-03-01

    Growth, nutrition and chlorophyll development were studied in chlorophyllous callus tissues isolated from the following edible angiospermous plants: carrot root, crown gall of tomato, endive embryo, leaf petiole and stem of lettuce, leaf petiole of parsley, pea stem and rose stem. Growth patterns of these tissues in vitro were sigmoid. Synthetic media produced less growth, in terms of fresh weight increase, than media containing coconut milk, a highly complex and little understood natural substance. MURASHIGE and SKOOG'S synthetic medium proved useful for satisfactory growth and chlorophyll production in a number of tissues. Its usefulness was further increased by additional amounts of copper sulphate, potassium nitrate and monobasic ammonium phosphate. Increased levels of iron and magnesium inhibited growth. Incorporation of yeast extract in the tobacco-high-salts-medium produced the highest amount of growth and chlorophyll formation in endive tissue. Presence of exogenous sucrose was essential for the continued good growth of the above callus tissues in vitro. Highest amount of growth took place either in white light or in the dark. Different tissues had different responses to high or low intensities of light. Endive and carrot tissues produced in vitro were palatable to human taste. Endive tissue was particularly good as it also differentiated many small rosettes of leaves, shoots and had a mild aromatic flavor typical of the endive plants grown in nature.

  11. Single-step protocol for preparation of plant tissue for analysis by PCR.

    PubMed

    Thomson, D; Henry, R

    1995-09-01

    PCR has many applications in the isolation and analysis of plant DNA. The influence of salt and EDTA concentration, pH, incubation time and temperature on the preparation of plant material for PCR was evaluated. A general single-step method was developed in which a small amount of plant tissue was heated in a simple solution. The DNA in the supernatant was found to be suitable for most PCR applications including arbitrarily primed PCR (random-amplified polymorphic DNA) and PCR with specific primers for both single- and multiple-copy genes. The technique is much simpler than those generally used for plant DNA preparation and was successful with tissues from a wide range of species.

  12. Imaging Nuclear Morphology and Organization in Cleared Plant Tissues Treated with Cell Cycle Inhibitors.

    PubMed

    de Souza Junior, José Dijair Antonino; de Sa, Maria Fatima Grossi; Engler, Gilbert; Engler, Janice de Almeida

    2016-01-01

    Synchronization of root cells through chemical treatment can generate a large number of cells blocked in specific cell cycle phases. In plants, this approach can be employed for cell suspension cultures and plant seedlings. To identify plant cells in the course of the cell cycle, especially during mitosis in meristematic tissues, chemical inhibitors can be used to block cell cycle progression. Herein, we present a simplified and easy-to-apply protocol to visualize mitotic figures, nuclei morphology, and organization in whole Arabidopsis root apexes. The procedure is based on tissue clearing, and fluorescent staining of nuclear DNA with DAPI. The protocol allows carrying out bulk analysis of nuclei and cell cycle phases in root cells and will be valuable to investigate mutants like overexpressing lines of genes disturbing the plant cell cycle.

  13. A protocol for protein extraction from lipid-rich plant tissues suitable for electrophoresis.

    PubMed

    Zienkiewicz, Agnieszka; Rejón, Juan David; de Dios Alché, Juan; Rodríguez-García, María Isabel; Castro, Antonio Jesús

    2014-01-01

    Plant tissues contain high levels of nonprotein contaminants such as lipids, phenolic compounds, and polysaccharides among others, which interfere with protein extraction and electrophoretic separation. Preparation of good-quality protein extracts is a critical issue for successful electrophoretic analysis. Here, we describe a three-step method for protein extraction from lipid-rich plant tissues, which is suitable for both 1-D and 2-D electrophoresis and is compatible with downstream applications. The protocol includes prefractionation, filtration, and TCA/acetone precipitation steps prior to protein resolubilization.

  14. Increase of homologous recombination frequency in vascular tissue of Arabidopsis plants exposed to salt stress.

    PubMed

    Boyko, Alex; Hudson, Darryl; Bhomkar, Prasanna; Kathiria, Palak; Kovalchuk, Igor

    2006-06-01

    Here we analyzed the influence of salt stress on plant genome stability. Homologous recombination events were detected in transgenic Arabidopsis plants that carried in their genome a beta-glucuronidase recombination marker. Recombination events were scored as blue sectors using a stereo microscope. Exposure to 50 mM salt resulted in a 3.0-fold increase in recombination frequency. To analyze the organ and tissue specificity of recombination events, we examined cross-sections of leaves, stems and roots. We found that nearly 30% of recombination events in plants grown under normal conditions and nearly 50% of events in plants grown on salt were undetected by the conventional method. Most of the recombination events represented a cluster/group of cells (12 on average), although events with single cells were also detected. Recombination events were very frequent in leaf mesophyll cells. On average, individual recombination events located on leaves contained more cells than events located on roots or stems. Analysis of recombination events in cross-sectioned tissue of salt-treated plants revealed a shift in the distribution of recombination events towards the vascular tissue. We discuss the significance of the finding for plant stress physiology.

  15. Tissue culture-induced DNA methylation polymorphisms in repetitive DNA of tomato calli and regenerated plants.

    PubMed

    Smulders, M J; Rus-Kortekaas, W; Vosman, B

    1995-12-01

    The propagation of plants through tissue culture can induce a variety of genetic and epigenetic changes. Variation in DNA methylation has been proposed as a mechanism that may explain at least a part of these changes. In the present study, the methylation of tomato callus DNA was compared with that of leaf DNA, from control or regenerated plants, at MspI/HpaII sites around five middle-repetitive sequences. Although the methylation of the internal cytosine in the recognition sequence CCGG varied from zero to nearly full methylation, depending on the probe used, no differences were found between callus and leaf DNA. For the external cytosine, small differences were revealed between leaf and callus DNA with two probes, but no polymorphisms were detected among DNA samples of calli or DNA samples of leaves of regenerated plants. When callus DNA cut with HindIII was studied with one of the probes, H9D9, most of the signal was found in high-molecular-weight DNA, as opposed to control leaf DNA where almost all the signal was in a fragment of 530 bp. Also, an extra fragment of 630 bp was found in the callus DNA that was not present in control leaf DNA. Among leaves of plants regenerated from tissue culture, the 630-bp fragment was found in 10 of 68 regenerated plants. This 630-bp fragment was present among progeny of only 4 of these 10 plants after selfing, i.e. it was partly inherited. In these cases, the fragment was not found in all progeny plants, indicating heterozygosity of the regenerated plants. The data are interpreted as indicating that a HindIII site becomes methylated in callus tissue, and that some of this methylation persists in regenerated plants and is partly transmitted to their progeny.

  16. Non-serotinous woody plants behave as aerial seed bank species when a late-summer wildfire coincides with a mast year

    PubMed Central

    Pounden, Edith; Greene, David F; Michaletz, Sean T

    2014-01-01

    Abstract Trees which lack obvious fire-adaptive traits such as serotinous seed-bearing structures or vegetative resprouting are assumed to be at a dramatic disadvantage in recolonization via sexual recruitment after fire, because seed dispersal is invariably quite constrained. We propose an alternative strategy in masting tree species with woody cones or cone-like structures: that the large clusters of woody tissue in a mast year will sufficiently impede heat transfer that a small fraction of seeds can survive the flaming front passage; in a mast year, this small fraction would be a very large absolute number. In Kootenay National Park in British Columbia, we examined regeneration by Engelmann spruce (Picea engelmannii), a non-serotinous conifer, after two fires, both of which coincided with mast years. Coupling models of seed survivorship within cones and seed maturation schedule to a spatially realistic recruitment model, we show that (1) the spatial pattern of seedlings on a 630 m transect from the forest edge into the burn was best explained if there was in situ seed dissemination by burnt trees; (2) in areas several hundred meters from any living trees, recruitment density was well correlated with local prefire cone density; and (3) spruce was responding exactly like its serotinous codominant, lodgepole pine (Pinus contorta). We conclude that non-serotinous species can indeed behave like aerial seed bank species in mast years if the fire takes place late in the seed maturation period. Using the example of the circumpolar boreal forest, while the joint probability of a mast year and a late-season fire will make this type of event rare (we estimate P = 0.1), nonetheless, it would permit a species lacking obvious fire-adapted traits to occasionally establish a widespread and abundant cohort on a large part of the landscape. PMID:25614797

  17. Carbon Fluxes between Primary Metabolism and Phenolic Pathway in Plant Tissues under Stress.

    PubMed

    Caretto, Sofia; Linsalata, Vito; Colella, Giovanni; Mita, Giovanni; Lattanzio, Vincenzo

    2015-11-04

    Higher plants synthesize an amazing diversity of phenolic secondary metabolites. Phenolics are defined secondary metabolites or natural products because, originally, they were considered not essential for plant growth and development. Plant phenolics, like other natural compounds, provide the plant with specific adaptations to changing environmental conditions and, therefore, they are essential for plant defense mechanisms. Plant defensive traits are costly for plants due to the energy drain from growth toward defensive metabolite production. Being limited with environmental resources, plants have to decide how allocate these resources to various competing functions. This decision brings about trade-offs, i.e., promoting some functions by neglecting others as an inverse relationship. Many studies have been carried out in order to link an evaluation of plant performance (in terms of growth rate) with levels of defense-related metabolites. Available results suggest that environmental stresses and stress-induced phenolics could be linked by a transduction pathway that involves: (i) the proline redox cycle; (ii) the stimulated oxidative pentose phosphate pathway; and, in turn, (iii) the reduced growth of plant tissues.

  18. Carbon Fluxes between Primary Metabolism and Phenolic Pathway in Plant Tissues under Stress

    PubMed Central

    Caretto, Sofia; Linsalata, Vito; Colella, Giovanni; Mita, Giovanni; Lattanzio, Vincenzo

    2015-01-01

    Higher plants synthesize an amazing diversity of phenolic secondary metabolites. Phenolics are defined secondary metabolites or natural products because, originally, they were considered not essential for plant growth and development. Plant phenolics, like other natural compounds, provide the plant with specific adaptations to changing environmental conditions and, therefore, they are essential for plant defense mechanisms. Plant defensive traits are costly for plants due to the energy drain from growth toward defensive metabolite production. Being limited with environmental resources, plants have to decide how allocate these resources to various competing functions. This decision brings about trade-offs, i.e., promoting some functions by neglecting others as an inverse relationship. Many studies have been carried out in order to link an evaluation of plant performance (in terms of growth rate) with levels of defense-related metabolites. Available results suggest that environmental stresses and stress-induced phenolics could be linked by a transduction pathway that involves: (i) the proline redox cycle; (ii) the stimulated oxidative pentose phosphate pathway; and, in turn, (iii) the reduced growth of plant tissues. PMID:26556338

  19. Plant tissue culture of fast-growing trees for phytoremediation research.

    PubMed

    Couselo, José Luis; Corredoira, Elena; Vieitez, Ana M; Ballester, Antonio

    2012-01-01

    The ability of plants to remove pollutants from the environment is currently used in a simple and low-cost cleaning technology known as phytoremediation. Unfortunately, little is known about the metabolic pathways involved in the transformation of xenobiotic compounds and the ability of certain plants to tolerate, detoxify, and store high concentrations of heavy metals. Plant cell and tissue culture is considered an important tool for fundamental studies that provide information about the plant-contaminant relationships, help to predict plant responses to environmental contaminants, and improve the design of plants with enhanced characteristics for phytoremediation. Callus, cell suspensions, hairy roots, and shoot multiplication cultures are used to study the interactions between plants and pollutants under aseptic conditions. Many plant species have an inherent ability to accumulate/metabolize a variety of pollutants, but they normally produce little biomass. However, fast-growing trees are excellent candidates for phytoremediation because of their rapid growth, extensive root system, and high water uptake. This chapter outlines the in vitro plant production of both somaclonal variants and transgenic plants of Populus spp. that exhibit high tolerance to heavy metals.

  20. Aerial production, mortality, and mineral accumulation-export dynamics in Spartina alterniflora and Juncus roemerianus plant stands in a Georgia salt marsh

    SciTech Connect

    Gallagher, J.L.; Reimold, R.J.; Linthurst, R.A.; Pfeiffer, W.J.

    1980-04-01

    Biomass and disappearance of dead material were measured in stands of tall creek bank Spartina alterniflora, short high marsh S. alterniflora, and Juncus roemerianus in Georgia, USA at 4-wk intervals for 1 yr and at 8-wk intervals for a second yr. Growth and mortality were calculated from these data. Net primary production estimates, using changes in biomass only, ranged from 10 to 75% lower than estimates which included the disappearance of dead material. Agreement between the methods was closest when the interval between harvests was shortest and the rate of dead material disappearance the slowest. Estimates of mean annual net primary production, computed from changes in biomass and disappearance of dead plant material, were: creekbank S. alterniflora 3700 g/m/sup 2/, high marsh S. alterniflora 1300 g/m/sup 2/, and J. roemerianus 2200 g/m/sup 2/. The seasonal amplitude in the amount of N, P, K, Ca, and Mg in the living tissue was greatest in the creekbank S. alterniflora. The maximum accumulation of most elements was in late summer. In the tissue of S. alterniflora, N and P were highest in concentration in late winter and early spring. In summer, growth occurred faster than nutrient accumulation; therefore, tissue concentrations decreased. Seasonal patterns of element disappearance from the dead plant community showed that maximum export depended on community type and the element under consideration.

  1. Identification of dioxin and dioxin-like polychlorbiphenyls in plant tissues and contaminated soils.

    PubMed

    Jou, Jin-Juh; Chung, Jen-Chir; Weng, Ying-Ming; Liaw, Shu-Liang; Wang, Ming Kuang

    2007-10-01

    The environmental analysis laboratory (EAL) of the Taiwan environmental protection administration (TEPA) has been monitoring certain sites polluted in southern Taiwan by pentachlorophenol manufacture. The analytical results revealed peculiarities in the concentration distributions in plant tissues. There are no available data on dioxin and dioxin-like polychlorbiphenyls (DL-PCBs), which can be taken up from contaminated soils by plant tissues. Thus, the aims of this study were to identify, understand, and to validate these dioxin and DL-PCBs concentrations in plant tissues of the contaminated soils. This research analyzed ten species of plant tissues, including tappa (Boussonetia papyrifera) and common jasmin orange (Murraya paniculata) from sites in southern Taiwan, with different levels of contamination. Dioxin concentrations in these plant tissues ranged from 12.7 to 2919 ng WHO-TEQ(DF)/kg dry weight (d.w.), with average of 463 ng WHO-TEQ(DF)/kg d.w. (n=16). The DL-PCBs concentrations ranged from 0.236 to 1.75 ng WHO-TEQp/kg d.w., with an average of 0.605 ng WHO-TEQp/kg d.w. (n=8). Tappa is one of the most common and fastest growing plants in Taiwan. It also shows the highest tolerance to environmental contaminants and accumulates dioxin and DL-PCBs. This is one of the best species to take up dioxins and DL-PCBs effectively. It can be recommended as a candidate for dioxin and DL-PCB phyto-remediation. These data are useful to evaluate bioaccumulation of dioxin and DL-PCBs, and to study the capability of phyto-remediation in contaminated soils.

  2. Plant development. Integration of growth and patterning during vascular tissue formation in Arabidopsis.

    PubMed

    De Rybel, Bert; Adibi, Milad; Breda, Alice S; Wendrich, Jos R; Smit, Margot E; Novák, Ondřej; Yamaguchi, Nobutoshi; Yoshida, Saiko; Van Isterdael, Gert; Palovaara, Joakim; Nijsse, Bart; Boekschoten, Mark V; Hooiveld, Guido; Beeckman, Tom; Wagner, Doris; Ljung, Karin; Fleck, Christian; Weijers, Dolf

    2014-08-08

    Coordination of cell division and pattern formation is central to tissue and organ development, particularly in plants where walls prevent cell migration. Auxin and cytokinin are both critical for division and patterning, but it is unknown how these hormones converge upon tissue development. We identify a genetic network that reinforces an early embryonic bias in auxin distribution to create a local, nonresponding cytokinin source within the root vascular tissue. Experimental and theoretical evidence shows that these cells act as a tissue organizer by positioning the domain of oriented cell divisions. We further demonstrate that the auxin-cytokinin interaction acts as a spatial incoherent feed-forward loop, which is essential to generate distinct hormonal response zones, thus establishing a stable pattern within a growing vascular tissue.

  3. Target detect system in 3D using vision apply on plant reproduction by tissue culture

    NASA Astrophysics Data System (ADS)

    Vazquez Rueda, Martin G.; Hahn, Federico

    2001-03-01

    This paper presents the preliminary results for a system in tree dimension that use a system vision to manipulate plants in a tissue culture process. The system is able to estimate the position of the plant in the work area, first calculate the position and send information to the mechanical system, and recalculate the position again, and if it is necessary, repositioning the mechanical system, using an neural system to improve the location of the plant. The system use only the system vision to sense the position and control loop using a neural system to detect the target and positioning the mechanical system, the results are compared with an open loop system.

  4. Prolific plant regeneration from protoplast-derived tissues of Lotus corniculatus L. (birdsfoot trefoil).

    PubMed

    Ahuja, P S; Hadiuzzaman, S; Davey, M R; Cocking, E C

    1983-04-01

    Protoplasts isolated enzymatically from seedling roots, hypocotyls and cotyledons of Lotus corniculatus L. produced callus which underwent prolific shoot regeneration. The rapidity and ease of recovering plants from protoplast-derived tissues makes this forage legume an attractive experimental system for genetic manipulation.

  5. DNA Changes in Tissues Entrapped in Plant Resins (the Precursors of Amber)

    NASA Astrophysics Data System (ADS)

    Rogers, S. O.; Langenegger, K.; Holdenrieder, O.

    There have been many reports characterizing DNA from amber, which is a fossil version of plant resin. Here we report an investigation of the effects of plant resin (from Pseudotsuga menziesii) and drying conditions on the preservation of DNA in biological tissues. We examined the degree of degradation of the DNA by agarose gel electrophoresis of extracted DNA, by polymerase chain reaction, and by DNA sequencing. The plant resin alone appeared to cause little or no damage to DNA. Tissue immersed in plant resin that dried rapidly (exposed to sunlight) contained DNA with little apparent damage. Tissue immersed in the resin that was dried slowly (in shade without sunlight) contained DNA with some degradation (3.5% nucleotide changes). The tissue that was immersed in the resin that was constantly hydrated (by immersion in water) yielded DNA that was severely damaged (50-62% nucleotide changes). Transversions outnumbered transitions in these samples by a ratio of 1.4 : 1. A piece of Baltic amber immersed in water for 5days appeared to be impervious to the water. Thus amber inclusions that initially dried rapidly have the potential to yield undamaged DNA. Those that dried slowly may contain damaged DNA and may be unsuitable for phylogenetic and other studies.

  6. Lactococcus lactis metabolism and gene expression during growth on plant tissues.

    PubMed

    Golomb, Benjamin L; Marco, Maria L

    2015-01-01

    Lactic acid bacteria have been isolated from living, harvested, and fermented plant materials; however, the adaptations these bacteria possess for growth on plant tissues are largely unknown. In this study, we investigated plant habitat-specific traits of Lactococcus lactis during growth in an Arabidopsis thaliana leaf tissue lysate (ATL). L. lactis KF147, a strain originally isolated from plants, exhibited a higher growth rate and reached 7.9-fold-greater cell densities during growth in ATL than the dairy-associated strain L. lactis IL1403. Transcriptome profiling (RNA-seq) of KF147 identified 853 induced and 264 repressed genes during growth in ATL compared to that in GM17 laboratory culture medium. Genes induced in ATL included those involved in the arginine deiminase pathway and a total of 140 carbohydrate transport and metabolism genes, many of which are involved in xylose, arabinose, cellobiose, and hemicellulose metabolism. The induction of those genes corresponded with L. lactis KF147 nutrient consumption and production of metabolic end products in ATL as measured by gas chromatography-time of flight mass spectrometry (GC-TOF/MS) untargeted metabolomic profiling. To assess the importance of specific plant-inducible genes for L. lactis growth in ATL, xylose metabolism was targeted for gene knockout mutagenesis. Wild-type L. lactis strain KF147 but not an xylA deletion mutant was able to grow using xylose as the sole carbon source. However, both strains grew to similarly high levels in ATL, indicating redundancy in L. lactis carbohydrate metabolism on plant tissues. These findings show that certain strains of L. lactis are well adapted for growth on plants and possess specific traits relevant for plant-based food, fuel, and feed fermentations.

  7. Lactococcus lactis Metabolism and Gene Expression during Growth on Plant Tissues

    PubMed Central

    Golomb, Benjamin L.

    2014-01-01

    Lactic acid bacteria have been isolated from living, harvested, and fermented plant materials; however, the adaptations these bacteria possess for growth on plant tissues are largely unknown. In this study, we investigated plant habitat-specific traits of Lactococcus lactis during growth in an Arabidopsis thaliana leaf tissue lysate (ATL). L. lactis KF147, a strain originally isolated from plants, exhibited a higher growth rate and reached 7.9-fold-greater cell densities during growth in ATL than the dairy-associated strain L. lactis IL1403. Transcriptome profiling (RNA-seq) of KF147 identified 853 induced and 264 repressed genes during growth in ATL compared to that in GM17 laboratory culture medium. Genes induced in ATL included those involved in the arginine deiminase pathway and a total of 140 carbohydrate transport and metabolism genes, many of which are involved in xylose, arabinose, cellobiose, and hemicellulose metabolism. The induction of those genes corresponded with L. lactis KF147 nutrient consumption and production of metabolic end products in ATL as measured by gas chromatography-time of flight mass spectrometry (GC-TOF/MS) untargeted metabolomic profiling. To assess the importance of specific plant-inducible genes for L. lactis growth in ATL, xylose metabolism was targeted for gene knockout mutagenesis. Wild-type L. lactis strain KF147 but not an xylA deletion mutant was able to grow using xylose as the sole carbon source. However, both strains grew to similarly high levels in ATL, indicating redundancy in L. lactis carbohydrate metabolism on plant tissues. These findings show that certain strains of L. lactis are well adapted for growth on plants and possess specific traits relevant for plant-based food, fuel, and feed fermentations. PMID:25384484

  8. 5. AERIAL VIEW, LOOKING NORTH, OF BUILDING 371 AFTER CONSTRUCTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. AERIAL VIEW, LOOKING NORTH, OF BUILDING 371 AFTER CONSTRUCTION WAS COMPLETED. (11/7/78) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  9. An Alternative Gelling Agent for Culture and Studies of Nematodes, Bacteria, Fungi, and Plant Tissues

    PubMed Central

    Ko, M. P.; Van Gundy, S. D.

    1988-01-01

    Pluronic F127 polyol, a block copolymer of propylene oxide and ethylene oxide, was studied as an alternative to agar in culture media for nematodes, bacteria, fungi, actinomycetes, and plant tissues or seedlings, At a polyol concentration of 20% w/v, the culture media, semi-solid at room temperature (22 C) but liquid at lower temperatures, had minimal effects on the test organisms. Most of the fungi and bacteria grew as well in 20% polyol as in 1.5% agar media; however, various species of nematodes and plant seedlings or tissues exhibited differential sensitivities to different concentrations of the polyol. In cases where the organisms were unaffected, the polyol media had certain advantages over agar, including greater transparency and less contamination under nonaseptic conditions. Polyol media have potentially greater ease for recovery of embedded organisms or tissues inside the media by merely shifting to lower temperatures. PMID:19290241

  10. Studies on the polyphenol metabolism of tissue cultures derived from the tea plant (Camellia sinensis L.)

    PubMed Central

    Forrest, G. I.

    1969-01-01

    1. The growth characteristics on various media of solid and liquid suspension cultures derived from the stem of the tea plant are described; chlorophyll and anthocyanin synthesis occurred in the light. 2. Only the simplest catechins and leucoanthocyanins were present in callus tissue, although oligomeric and polymeric leucoanthocyanin fractions were also represented. Light caused an increase in all monomeric components analysed, but inhibited polymerization of the leucoanthocyanins. 3. The polyphenol oxidase activity of cultures was comparable with that of the apical regions of the intact plant, and was inversely correlated with growth rate. 4. Growth was stimulated by hormonal variation, and inhibited by high concentrations of sucrose and by high light-intensity; polyphenol concentrations were generally inversely correlated with growth rate. 5. From the inability of callus tissue and of cultured root apices to synthesize complex catechins, it is inferred that complex catechin formation in intact plants is associated with the process of cell vacuolation. PMID:5821008

  11. Effect of Endophytic Fusarium oxysporum on Host Preference of Radopholus similis to Tissue Culture Banana Plants.

    PubMed

    Athman, Shahasi Y; Dubois, Thomas; Coyne, Daniel; Gold, Clifford S; Labuschagne, Nico; Viljoen, Altus

    2006-12-01

    The burrowing nematode Radopholus similis is one of the major constraints to banana (Musa spp.) production worldwide. Resource-poor farmers can potentially manage R. similis by using naturally occurring banana endophytes, such as nonpathogenic Fusarium oxysporum, that are inoculated into tissue culture banana plantlets. At present, it is unclear at what stage in the R. similis infection process the endophytes are most effective. In this study, the effect of three endophytic F. oxysporum isolates (V5w2, Eny1.31i and Eny7.11o) on R. similis host preference of either endophyte-treated or untreated banana plants was investigated. No differences were observed between the proportion of nematodes attracted to either root segments excised from endophyte-treated or untreated plants, or in experiments using endophyte-treated and untreated tissue culture banana plantlets. These results imply that the early processes of banana plant host recognition by R. similis are not affected by endophyte infection.

  12. Effect of host plant tissue on the vector transmission of grapevine leafroll-associated virus 3.

    PubMed

    Tsai, Chi-Wei; Bosco, Domenico; Daane, Kent M; Almeida, Rodrigo P P

    2011-10-01

    Many biotic and abiotic factors affect the transmission efficiency of vector-borne plant pathogens. Insect vector within-plant distribution and host tissue preference are known to affect pathogen acquisition and inoculation rates. In this study, we first investigated whether feeding tissue affects the transmission of Grapevine leafroll-associated virus 3 by Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae) and the effect of mealybug within-plant distribution on virus transmission under greenhouse conditions. Results showed no significant effect on transmission efficiency after insect confinement on leaf blades, petioles or stems of virus source or healthy test plants for either acquisition or inoculation trials. Transmission efficiency of a single mealybug varied from 4 to 25% in those trials. Second, we tested whether leaf position affected transmission efficiency due to potentially variable virus populations within acquisition plant tissues. No significant differences of transmission rate among acquisition leaf position were observed, probably because there were no differences in the virus population within source tissues. Finally, we examined the seasonality of the virus in field-collected samples and found that GLRaV-3 prevalence varied along a growing season, such that GLRaV-3 translocated along expanding shoots to leaves. Similarly, mealybug populations are known to increase in spring, and then mealybugs spread to cordons and leaves. This coordination of spatial and temporal dynamics of the virus and its vector may increase the risk of GLRaV-3 transmission during late spring and early summer. Further integration of information about pathogen populations in plants, vector feeding behavior and vector population seasonality could lead to more effective management practices.

  13. Aerial radiation surveys

    SciTech Connect

    Jobst, J.

    1980-01-01

    A recent aerial radiation survey of the surroundings of the Vitro mill in Salt Lake City shows that uranium mill tailings have been removed to many locations outside their original boundary. To date, 52 remote sites have been discovered within a 100 square kilometer aerial survey perimeter surrounding the mill; 9 of these were discovered with the recent aerial survey map. Five additional sites, also discovered by aerial survey, contained uranium ore, milling equipment, or radioactive slag. Because of the success of this survey, plans are being made to extend the aerial survey program to other parts of the Salt Lake valley where diversions of Vitro tailings are also known to exist.

  14. Plant Tissue Culture Development and Biotechnology, Chapter 10: Molecular Tools for Studying Plant Genetic Diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitous nature of DNA is a central theme for all biology. The nucleus of each cell that makes up an organism contains genomic DNA, which is the blueprint for life. The differential expression of genes within each cell gives rise to different tissues, organs and, ultimately, different organism...

  15. Isolation of viable multicellular glands from tissue of the carnivorous plant, Nepenthes.

    PubMed

    Rottloff, Sandy; Mithöfer, Axel; Müller, Ute; Kilper, Roland

    2013-12-22

    Many plants possess specialized structures that are involved in the production and secretion of specific low molecular weight compounds and proteins. These structures are almost always localized on plant surfaces. Among them are nectaries or glandular trichomes. The secreted compounds are often employed in interactions with the biotic environment, for example as attractants for pollinators or deterrents against herbivores. Glands that are unique in several aspects can be found in carnivorous plants. In so-called pitcher plants of the genus Nepenthes, bifunctional glands inside the pitfall-trap on the one hand secrete the digestive fluid, including all enzymes necessary for prey digestion, and on the other hand take-up the released nutrients. Thus, these glands represent an ideal, specialized tissue predestinated to study the underlying molecular, biochemical, and physiological mechanisms of protein secretion and nutrient uptake in plants. Moreover, generally the biosynthesis of secondary compounds produced by many plants equipped with glandular structures could be investigated directly in glands. In order to work on such specialized structures, they need to be isolated efficiently, fast, metabolically active, and without contamination with other tissues. Therefore, a mechanical micropreparation technique was developed and applied for studies on Nepenthes digestion fluid. Here, a protocol is presented that was used to successfully prepare single bifunctional glands from Nepenthes traps, based on a mechanized microsampling platform. The glands could be isolated and directly used further for gene expression analysis by PCR techniques after preparation of RNA.

  16. Plant species differ in early seedling growth and tissue nutrient responses to arbuscular and ectomycorrhizal fungi.

    PubMed

    Holste, Ellen K; Kobe, Richard K; Gehring, Catherine A

    2017-04-01

    Experiments with plant species that can host both arbuscular mycorrhizal fungi (AMF) and ectomycorrhizal fungi (EMF) are important to separating the roles of fungal type and plant species and understanding the influence of the types of symbioses on plant growth and nutrient acquisition. We examined the effects of mycorrhizal fungal type on the growth and tissue nutrient content of two tree species (Eucalyptus grandis and Quercus costaricensis) grown under four nutrient treatments (combinations of low versus high nitrogen (N) and phosphorus (P) with different N:P ratios) in the greenhouse. Trees were inoculated with unidentified field mixtures of AMF or EMF species cultivated on root fragments of AMF- or EMF-specific bait plants. In E. grandis, inoculation with both AMF and EMF positively affected belowground plant dry weight and negatively affected aboveground dry weight, while only inoculation with AMF increased tissue nutrient content. Conversely, Q. costaricensis dry weight and nutrient content did not differ significantly among inoculation treatments, potentially due to its dependence on cotyledon reserves for growth. Mineral nutrition of both tree species differed with the ratio of N to P applied while growth did not. Our results demonstrate that both tree species' characteristics and the soil nutrient environment can affect how AMF and EMF interact with their host plants. This research highlights the importance of mycorrhizal fungal-tree-soil interactions during early seedling growth and suggests that differences between AMF and EMF associations may be crucial to understanding forest ecosystem functioning.

  17. Isolation of Viable Multicellular Glands from Tissue of the Carnivorous Plant, Nepenthes

    PubMed Central

    Rottloff, Sandy; Mithöfer, Axel; Müller, Ute; Kilper, Roland

    2013-01-01

    Many plants possess specialized structures that are involved in the production and secretion of specific low molecular weight compounds and proteins. These structures are almost always localized on plant surfaces. Among them are nectaries or glandular trichomes. The secreted compounds are often employed in interactions with the biotic environment, for example as attractants for pollinators or deterrents against herbivores. Glands that are unique in several aspects can be found in carnivorous plants. In so-called pitcher plants of the genus Nepenthes, bifunctional glands inside the pitfall-trap on the one hand secrete the digestive fluid, including all enzymes necessary for prey digestion, and on the other hand take-up the released nutrients. Thus, these glands represent an ideal, specialized tissue predestinated to study the underlying molecular, biochemical, and physiological mechanisms of protein secretion and nutrient uptake in plants. Moreover, generally the biosynthesis of secondary compounds produced by many plants equipped with glandular structures could be investigated directly in glands. In order to work on such specialized structures, they need to be isolated efficiently, fast, metabolically active, and without contamination with other tissues. Therefore, a mechanical micropreparation technique was developed and applied for studies on Nepenthes digestion fluid. Here, a protocol is presented that was used to successfully prepare single bifunctional glands from Nepenthes traps, based on a mechanized microsampling platform. The glands could be isolated and directly used further for gene expression analysis by PCR techniques after preparation of RNA. PMID:24378909

  18. Plant tissue culture--an opportunity for the production of nutraceuticals.

    PubMed

    Lucchesini, Mariella; Mensuali-Sodi, Anna

    2010-01-01

    This chapter provides a short discussion about the opportunity to cultivate in vitro plant tissue of species which synthesize secondary metabolites of nutraceutical interest. The introduction of species of particular interest in cultivation and domestication, can be an alternative to the harvest of wild species. In vitro culture techniques are a useful tool to improve production and marketing nutraceutical species which allows to make a rapid clonal propagation of plants selected for their active principles. The techniques of tissue culture are described in detail. In particular, it is underlined the necessity to clone selected plants and produce true-type plants when standardized plant products are the main goal. This can be reached by conventional micropropagation protocols culturing plants in vitro through the five culture phases. Another approach consists in applying unconventional systems in the last phase of in vitro culture which permit to develop autotrophy of the explants. Autotrophic growth improves the quality of the multiplied shoots and facilitates the acclimatization of the plantlets.

  19. In vitro propagation of plant virus using different forms of plant tissue culture and modes of culture operation.

    PubMed

    Shih, Sharon M-H; Doran, Pauline M

    2009-09-10

    Plant virus accumulation was investigated in vitro using three different forms of plant tissue culture. Suspended cells, hairy roots and shooty teratomas of Nicotiana benthamiana were infected with tobacco mosaic virus (TMV) using the same initial virus:biomass ratio. Viral infection did not affect tissue growth or morphology in any of the three culture systems. Average maximum virus concentrations in hairy roots and shooty teratomas were similar and about an order of magnitude higher than in suspended cells. Hairy roots were considered the preferred host because of their morphological stability in liquid medium and relative ease of culture. The average maximum virus concentration in the hairy roots was 0.82+/-0.14 mg g(-1) dry weight; viral coat protein represented a maximum of approximately 6% of total soluble protein in the biomass. Virus accumulation in hairy roots was investigated further using different modes of semi-continuous culture operation aimed at prolonging the root growth phase and providing nutrient supplementation; however, virus concentrations in the roots were not enhanced compared with simple batch culture. The relative infectivity of virus in the biomass declined by 80-90% during all the cultures tested, irrespective of the form of plant tissue used or mode of culture operation. Hairy root cultures inoculated with a transgenic TMV-based vector in batch culture accumulated green fluorescent protein (GFP); however, maximum GFP concentrations in the biomass were relatively low at 39 microg g(-1) dry weight, probably due to genetic instability of the vector. This work highlights the advantages of using hairy roots for in vitro propagation of TMV compared with shooty teratomas and suspended plant cells, and demonstrates that batch root culture is more effective than semi-continuous operations for accumulation of high virus concentrations in the biomass.

  20. Variation in bioactive principles of Artemisia amygdalina Decne. in wild and tissue culture regenerants.

    PubMed

    Rasool, Rafia; Ganai, Bashir Ahmad; Akbar, Seema; Kamili, Azra Nahaid; Dar, Muhammad Younus; Masood, Akbar

    2013-05-01

    Wild and tissue culture raised regenerants of Artemisia amygdalina, a critically endangered and endemic plant of Kashmir and North West Frontier Provinces of Pakistan were screened for the amount of bioactive principles and in particular antimalarial compound artemesinin. Phytochemical screening of extracts revealed the presence of terpenes, alkaloids, phenolics, tannins (polyphenolics), cardiac glycosides and steroids in wild (aerial, inflorescence) and tissue culture regenerants (in vitro grown plant, callus and green house acclimatized plants). HPLC of Artemisia amygdalina revealed the presence of artemesinin in petroleum ether extracts of wild aerial part, tissue culture raised plant and green house acclimatized plants. Acetonitrile and water in 70:30 ratios at flow rate of 1ml/min was standardised as mobile phase. Retention time for standard chromatogram was 6.7. Wild inflorescences and callus does not produce artemesinin. This is the first report of phytochemical screening and artemesinin estimation of wild and tissue culture raised regenerants of Artemisia amygdalina.

  1. Woody tissue photosynthesis and its contribution to trunk growth and bud development in young plants.

    PubMed

    Saveyn, An; Steppe, Kathy; Ubierna, Nerea; Dawson, Todd E

    2010-11-01

    Stem photosynthesis can contribute significantly to woody plant carbon balance, particularly in times when leaves are absent or in 'open' crowns with sufficient light penetration. We explored the significance of woody tissue (stem) photosynthesis for the carbon income in three California native plant species via measurements of chlorophyll concentrations, radial stem growth, bud biomass and stable carbon isotope composition of sugars in different plant organs. Young plants of Prunus ilicifolia, Umbellularia californica and Arctostaphylos manzanita were measured and subjected to manipulations at two levels: trunk light exclusion (100 and 50%) and complete defoliation. We found that long-term light exclusion resulted in a reduction in chlorophyll concentration and radial growth, demonstrating that trunk assimilates contributed to trunk carbon income. In addition, bud biomass was lower in covered plants compared to uncovered plants. Excluding 100% of the ambient light from trunks on defoliated plants led to an enrichment in ¹³C of trunk phloem sugars. We attributed this effect to a reduction in photosynthetic carbon isotope discrimination against ¹³C that in turn resulted in an enrichment in ¹³C of bud sugars. Taken together our results reveal that stem photosynthesis contributes to the total carbon income of all species including the buds in defoliated plants.

  2. Detection and Quantitation of Octopine in Normal Plant Tissue and in Crown Gall Tumors

    PubMed Central

    Johnson, Roosevelt; Guderian, Ronald H.; Eden, Francine; Chilton, Mary-Dell; Gordon, Milton P.; Nester, Eugene W.

    1974-01-01

    Octopine has been detected in normal tobacco leaf and stem tissue, normal sunflower stem tissue, pinto bean leaves, and normal tobacco callus tissue in culture. Octopine was identified in extracts by means of electrophoresis and chromatography in several solvent systems. Tobacco and sunflower tumor lines induced by various strains of Agrobacterium tumefaciens were found to contain from 1 to 240 times as much octopine as the normal plant tissues examined. Several strains of A. tumefaciens produce undifferentiated tobacco tumors containing high levels of octopine, but produce undifferentiated sunflower tumors containing normal levels of octopine and high levels of arginine. Further, strain CGIC of A. tumefaciens produces in tobacco an undifferentiated tumor which contains high levels of octopine and a teratoma which contains normal levels of octopine. This evidence shows that there is no consistent relationship between the causative strain of A. tumefaciens and the octopine content of the resulting crown gall tumor. PMID:16592142

  3. Nonresonant femtosecond laser vaporization with electrospray postionization for ex vivo plant tissue typing using compressive linear classification.

    PubMed

    Judge, Elizabeth J; Brady, John J; Barbano, Paolo Emilio; Levis, Robert J

    2011-03-15

    Laser electrospray mass spectrometry (LEMS) with offline classification is used to discriminate plant tissues at atmospheric pressure using an intense (10(13) W cm(-2)), nonresonant (800 nm) femtosecond laser pulse to vaporize cellular content for subsequent mass analysis. The tissue content of the plant within the 0.05 mm(2) laser interaction region is vaporized into the electrospray plume where the molecules are ionized prior to transfer into the mass spectrometer. The measurements for a flower petal, leaf, and stem of an impatiens plant reveal mass spectral signatures that enable discrimination as performed using a compressive linear classifier. The statistical analysis of the plant tissue samples reveals reproducibility of the data for replicate tissue samples and within a single tissue sample. A similar degree of discrimination was achieved for the green and white regions of aphelandra squarrosa (zebra plant) leaves.

  4. Ectopic KNOX Expression Affects Plant Development by Altering Tissue Cell Polarity and Identity[OPEN

    PubMed Central

    Rebocho, Alexandra B.

    2016-01-01

    Plant development involves two polarity types: tissue cell (asymmetries within cells are coordinated across tissues) and regional (identities vary spatially across tissues) polarity. Both appear altered in the barley (Hordeum vulgare) Hooded mutant, in which ectopic expression of the KNOTTED1-like Homeobox (KNOX) gene, BKn3, causes inverted polarity of differentiated hairs and ectopic flowers, in addition to wing-shaped outgrowths. These lemma-specific effects allow the spatiotemporal analysis of events following ectopic BKn3 expression, determining the relationship between KNOXs, polarity, and shape. We show that tissue cell polarity, based on localization of the auxin transporter SISTER OF PINFORMED1 (SoPIN1), dynamically reorients as ectopic BKn3 expression increases. Concurrently, ectopic expression of the auxin importer LIKE AUX1 and boundary gene NO APICAL MERISTEM is activated. The polarity of hairs reflects SoPIN1 patterns, suggesting that tissue cell polarity underpins oriented cell differentiation. Wing cell files reveal an anisotropic growth pattern, and computational modeling shows how polarity guiding growth can account for this pattern and wing emergence. The inverted ectopic flower orientation does not correlate with SoPIN1, suggesting that this form of regional polarity is not controlled by tissue cell polarity. Overall, the results suggest that KNOXs trigger different morphogenetic effects through interplay between tissue cell polarity, identity, and growth. PMID:27553356

  5. Ectopic KNOX Expression Affects Plant Development by Altering Tissue Cell Polarity and Identity.

    PubMed

    Richardson, Annis Elizabeth; Rebocho, Alexandra B; Coen, Enrico S

    2016-08-23

    Plant development involves two polarity types: tissue cell (asymmetries within cells are coordinated across tissues) and regional (identities vary spatially across tissues) polarity. Both appear altered in the barley (Hordeum vulgare) Hooded mutant, in which ectopic expression of the KNOTTED1-like Homeobox (KNOX) gene, BKn3, causes inverted polarity of differentiated hairs and ectopic flowers, in addition to wing-shaped outgrowths. These lemma-specific effects allow the spatiotemporal analysis of events following ectopic BKn3 expression, determining the relationship between KNOXs, polarity, and shape. We show that tissue cell polarity, based on localization of the auxin transporter SISTER OF PINFORMED1 (SoPIN1), dynamically reorients as ectopic BKn3 expression increases. Concurrently, ectopic expression of the auxin importer LIKE AUX1 and boundary gene NO APICAL MERISTEM is activated. The polarity of hairs reflects SoPIN1 patterns, suggesting that tissue cell polarity underpins oriented cell differentiation. Wing cell files reveal an anisotropic growth pattern, and computational modeling shows how polarity guiding growth can account for this pattern and wing emergence. The inverted ectopic flower orientation does not correlate with SoPIN1, suggesting that this form of regional polarity is not controlled by tissue cell polarity. Overall, the results suggest that KNOXs trigger different morphogenetic effects through interplay between tissue cell polarity, identity, and growth.

  6. Permeabilization of plant tissues by monopolar pulsed electric fields: effect of frequency.

    PubMed

    Asavasanti, Suvaluk; Ristenpart, William; Stroeve, Pieter; Barrett, Diane M

    2011-01-01

    Pulsed electric fields (PEF) nonthermally induce cell membrane permeabilization and thereby improve dehydration and extraction efficiencies in food plant materials. Effects of electrical field strength and number of pulses on plant tissue integrity have been studied extensively. Two previous studies on the effect of pulse frequency, however, did not provide a clear view: one study suggested no effect of frequency, while the other found a greater impact on tissue integrity at lower frequency. This study establishes the effect of pulse frequency on integrity of onion tissues. Changes in electrical characteristics, ion leakage, texture parameters, and percent weight loss were quantified for a wide range of pulse frequencies under conditions of fixed field strength and pulse number. Optical microscopy and viable-cell staining provided direct visualization of effects on individual cells. The key finding is that lower frequencies (f < 1 Hz) cause more damage to tissue integrity than higher frequencies (f = 1 to 5000 Hz). Intriguingly, the optical microscopy observations demonstrate that the speed of intracellular convective motion (that is, cytoplasmic streaming) following PEF application is strongly correlated with PEF frequency. We provide the first in situ visualization of the intracellular consequence of PEF at different frequencies in a plant tissue. We hypothesize that cytoplasmic streaming plays a significant role in moving conductive ionic species from permeabilized cells to the intercellular space between plant cells, making subsequent pulses more efficacious at sufficiently low frequencies. The results suggest that decreasing the pulse frequency in PEF may minimize the number of pulses needed to achieve a desired amount of permeabilization, thus lowering the total energy consumption. Practical Application: PEF cause pores to be formed in plant cell membranes, thereby improve moisture removal and potential extraction of desirable components. This study used in

  7. Pathogen and biological contamination management in plant tissue culture: phytopathogens, vitro pathogens, and vitro pests.

    PubMed

    Cassells, Alan C

    2012-01-01

    The ability to establish and grow plant cell, organ, and tissue cultures has been widely exploited for basic and applied research, and for the commercial production of plants (micro-propagation). Regardless of whether the application is for research or commerce, it is essential that the cultures be established in vitro free of biological contamination and be maintained as aseptic cultures during manipulation, growth, and storage. The risks from microbial contamination are spurious experimental results due to the effects of latent contaminants or losses of valuable experimental or commercial cultures. Much of the emphasis in culture contamination management historically focussed on the elimination of phytopathogens and the maintenance of cultures free from laboratory contamination by environmental bacteria, fungi (collectively referred to as "vitro pathogens", i.e. pathogens or environmental micro-organisms which cause culture losses), and micro-arthropods ("vitro pests"). Microbial contamination of plant tissue cultures is due to the high nutrient availability in the almost universally used Murashige and Skoog (Physiol Plant 15:473-497, 1962) basal medium or variants of it. In recent years, it has been shown that many plants, especially perennials, are at least locally endophytically colonized intercellularly by bacteria. The latter, and intracellular pathogenic bacteria and viruses/viroids, may pass latently into culture and be spread horizontally and vertically in cultures. Growth of some potentially cultivable endophytes may be suppressed by the high salt and sugar content of the Murashige and Skoog basal medium and suboptimal temperatures for their growth in plant tissue growth rooms. The management of contamination in tissue culture involves three stages: disease screening (syn. disease indexing) of the stock plants with disease and endophyte elimination where detected; establishment and pathogen and contaminant screening of established initial cultures

  8. Scenario approach for assessing the utility of dispersal information in decision support for aerially spread plant pathogens, applied to Phytophthora infestans.

    PubMed

    Skelsey, P; Rossing, W A H; Kessel, G J T; van der Werf, W

    2009-07-01

    Opportunities exist to improve decision support systems through the use of dispersal information gained from epidemiological research. However, dispersal and demographic information is often fragmentary in plant pathology, and this uncertainty creates a risk of inappropriate action whenever such information is used as a basis for decision making. In this article, a scenario-based simulation approach is used to evaluate crop and economic risks and benefits in the use of dispersal information for decision making using the potato late blight pathosystem (Phytophthora infestans-Solanum tuberosum) as a case study. A recently validated spatiotemporal potato late blight model was coupled to submodels for crop growth, tuber dry matter production, and fungicide efficacy. The yield response of a range of management scenarios to a single influx of primary inoculum (the initial spore load) was calculated. Damage curves (relative yield loss versus initial spore load) from a range of combinations of varietal susceptibility and fungicide treatments were used to classify the various management scenarios as either sensitive to initial spore load or tolerant to initial spore load, thus identifying where a high degree of accuracy would be required in dispersal information for appropriate decision making, and where a greater degree of uncertainty could be tolerated. General epidemics, resulting from spatially homogeneous initial spore loads, responded more strongly to the size of the initial spore load than focal epidemics, resulting from an initial spot infection. Susceptible cultivars responded with sizeable yield losses even at low levels of initial spore load, regardless of the fungicide management regime used. These results indicated that, for susceptible cultivars (late cultivars in particular), the degree of accuracy that would be required in dispersal information for appropriate decision making is unlikely to be practically attainable. The results also indicated that, contrary

  9. Tandem High-pressure Freezing and Quick Freeze Substitution of Plant Tissues for Transmission Electron Microscopy

    PubMed Central

    Bobik, Krzysztof; Dunlap, John R.; Burch-Smith, Tessa M.

    2014-01-01

    Since the 1940s transmission electron microscopy (TEM) has been providing biologists with ultra-high resolution images of biological materials. Yet, because of laborious and time-consuming protocols that also demand experience in preparation of artifact-free samples, TEM is not considered a user-friendly technique. Traditional sample preparation for TEM used chemical fixatives to preserve cellular structures. High-pressure freezing is the cryofixation of biological samples under high pressures to produce very fast cooling rates, thereby restricting ice formation, which is detrimental to the integrity of cellular ultrastructure. High-pressure freezing and freeze substitution are currently the methods of choice for producing the highest quality morphology in resin sections for TEM. These methods minimize the artifacts normally associated with conventional processing for TEM of thin sections. After cryofixation the frozen water in the sample is replaced with liquid organic solvent at low temperatures, a process called freeze substitution. Freeze substitution is typically carried out over several days in dedicated, costly equipment. A recent innovation allows the process to be completed in three hours, instead of the usual two days. This is typically followed by several more days of sample preparation that includes infiltration and embedding in epoxy resins before sectioning. Here we present a protocol combining high-pressure freezing and quick freeze substitution that enables plant sample fixation to be accomplished within hours. The protocol can readily be adapted for working with other tissues or organisms. Plant tissues are of special concern because of the presence of aerated spaces and water-filled vacuoles that impede ice-free freezing of water. In addition, the process of chemical fixation is especially long in plants due to cell walls impeding the penetration of the chemicals to deep within the tissues. Plant tissues are therefore particularly challenging, but

  10. Toxicity of molybdenum and its trace analysis in animal tissues and plants.

    PubMed

    Abbasi, S A

    1981-01-01

    A sensitive, selective, rapid and reproducible method is presented for the analysis of submicrogram levels of molybdenum in animal tissues (Liver) and plants. The method is based on solvent extraction of Molybdenum (VI) using isoamyl alcohol solution of N-o-tolyl-o-methoxy-benzohydroxamic acid at pH 1.5-2.5, and subsequent spectrophotometric determination of the yellow extract at 350 nm.

  11. Tandem high-pressure freezing and quick freeze substitution of plant tissues for transmission electron microscopy.

    PubMed

    Bobik, Krzysztof; Dunlap, John R; Burch-Smith, Tessa M

    2014-10-13

    Since the 1940s transmission electron microscopy (TEM) has been providing biologists with ultra-high resolution images of biological materials. Yet, because of laborious and time-consuming protocols that also demand experience in preparation of artifact-free samples, TEM is not considered a user-friendly technique. Traditional sample preparation for TEM used chemical fixatives to preserve cellular structures. High-pressure freezing is the cryofixation of biological samples under high pressures to produce very fast cooling rates, thereby restricting ice formation, which is detrimental to the integrity of cellular ultrastructure. High-pressure freezing and freeze substitution are currently the methods of choice for producing the highest quality morphology in resin sections for TEM. These methods minimize the artifacts normally associated with conventional processing for TEM of thin sections. After cryofixation the frozen water in the sample is replaced with liquid organic solvent at low temperatures, a process called freeze substitution. Freeze substitution is typically carried out over several days in dedicated, costly equipment. A recent innovation allows the process to be completed in three hours, instead of the usual two days. This is typically followed by several more days of sample preparation that includes infiltration and embedding in epoxy resins before sectioning. Here we present a protocol combining high-pressure freezing and quick freeze substitution that enables plant sample fixation to be accomplished within hours. The protocol can readily be adapted for working with other tissues or organisms. Plant tissues are of special concern because of the presence of aerated spaces and water-filled vacuoles that impede ice-free freezing of water. In addition, the process of chemical fixation is especially long in plants due to cell walls impeding the penetration of the chemicals to deep within the tissues. Plant tissues are therefore particularly challenging, but

  12. The effect of chemical processing on the δ 13C value of plant tissue

    NASA Astrophysics Data System (ADS)

    Van de Water, Peter K.

    2002-04-01

    The effect of standard processing techniques on the δ 13C value of plant tissue was tested using species representing the three photosynthetic pathways, including angiosperms and gymnosperms within the C 3 taxonomic division. The species include Cowania mexicana (C 3 angiosperm), Juniperus osteosperma (C 3 gymnosperm), Opuntia spp. (crassulacean acid metabolism [CAM] angiosperm), and Atriplex canescens (C 4 angiosperm). Each species is represented by 5 plants collected at two different sites, for a total of 10 samples. The samples were processed to whole plant tissue, holocellulose, α-cellulose, and nitrocellulose. An additional process was added with the discovery of residual Ca-oxalate crystals in holocellulose samples. Both C 3 species show δ 13C values becoming 13C enriched with increased processing. The CAM representative shows the opposite trend, with 13C depletion during the progression of treatments. The greatest range of values and most inconsistent trends occur in the C 4 representative. Removal of the Ca-oxalate fraction resulted in different mean weight percentages and δ 13C values among the species. Calculated δ 13C values of the Ca-oxalate crystals show depletion from the tissue values in the two C 3 species and enrichment in the C 4 and CAM representatives. The C. mexicana samples show the greatest change between the tissue and Ca-oxalates (7.3‰) but the least mean weight percentage (11%), whereas A. canescens shows the greatest overall change, with a -2.8‰ isotopic shift and over 48% mean weight percentage. Variability within the samples undergoing each treatment remained relatively unchanged even with increased cellulose purity. This paper provides estimates of isotopic offsets necessary to correct from one treatment to another. Significant differences in δ 13C among different treatments confirm the need to state the tissue fraction analyzed when reporting δ 13C results.

  13. Aerial Image Systems

    NASA Astrophysics Data System (ADS)

    Clapp, Robert E.

    1987-09-01

    Aerial images produce the best stereoscopic images of the viewed world. Despite the fact that every optic in existence produces an aerial image, few persons are aware of their existence and possible uses. Constant reference to the eye and other optical systems have produced a psychosis of design that only considers "focal planes" in the design and analysis of optical systems. All objects in the field of view of the optical device are imaged by the device as an aerial image. Use of aerial images in vision and visual display systems can provide a true stereoscopic representation of the viewed world. This paper discusses aerial image systems - their applications and designs and presents designs and design concepts that utilize aerial images to obtain superior visual displays, particularly with application to visual simulation.

  14. Tissue culture system using a PANDA ring resonator and wavelength router for hydroponic plant.

    PubMed

    Kamoldilok, Surachart; Suwanpayak, Nathaporn; Suttirak, Saisudawan; Yupapin, Preecha P

    2012-06-01

    A novel system of nanofluidics trapping and delivery, which is known as a tissue culture system is proposed. By using the intense optical pulse(i.e., a soliton pulse) and a system constructed by a liquid core waveguide, the optical vortices (gradient optical fields/wells) can be generated, where the trapping tools in the same way as the optical tweezers in the PANDA ring resonator can be formed. By controlling the suitable parameters, the intense optical vortices can be generated within the PANDA ring resonator, in which the nanofluidics can be trapped and moved (transported) dynamically within the Tissue culture system(a wavelength router), which can be used for tissue culture and delivery in the hydroponic plant system.

  15. Turning a plant tissue into a living cell froth through isotropic growth.

    PubMed

    Corson, Francis; Hamant, Olivier; Bohn, Steffen; Traas, Jan; Boudaoud, Arezki; Couder, Yves

    2009-05-26

    The forms resulting from growth processes are highly sensitive to the nature of the driving impetus, and to the local properties of the medium, in particular, its isotropy or anisotropy. In turn, these local properties can be organized by growth. Here, we consider a growing plant tissue, the shoot apical meristem of Arabidopsis thaliana. In plants, the resistance of the cell wall to the growing internal turgor pressure is the main factor shaping the cells and the tissues. It is well established that the physical properties of the walls depend on the oriented deposition of the cellulose microfibrils in the extracellular matrix or cell wall; this order is correlated to the highly oriented cortical array of microtubules attached to the inner side of the plasma membrane. We used oryzalin to depolymerize microtubules and analyzed its influence on the growing meristem. This had no short-term effect, but it had a profound impact on the cell anisotropy and the resulting tissue growth. The geometry of the cells became similar to that of bubbles in a soap froth. At a multicellular scale, this switch to a local isotropy induced growth into spherical structures. A theoretical model is presented in which a cellular structure grows through the plastic yielding of its walls under turgor pressure. The simulations reproduce the geometrical properties of a normal tissue if cell division is included. If not, a "cell froth" very similar to that observed experimentally is obtained. Our results suggest strong physical constraints on the mechanisms of growth regulation.

  16. Spatial organization and correlation properties quantify structural changes on mesoscale of parenchymatous plant tissue

    SciTech Connect

    Valous, N. A.; Delgado, A.; Sun, D.-W.; Drakakis, K.

    2014-02-14

    The study of plant tissue parenchyma's intercellular air spaces contributes to the understanding of anatomy and physiology. This is challenging due to difficulty in making direct measurements of the pore space and the complex mosaic of parenchymatous tissue. The architectural complexity of pore space has shown that single geometrical measurements are not sufficient for characterization. The inhomogeneity of distribution depends not only on the percentage content of phase, but also on how the phase fills the space. The lacunarity morphometric, as multiscale measure, provides information about the distribution of gaps that correspond to degree of spatial organization in parenchyma. Additionally, modern theories have suggested strategies, where the focus has shifted from the study of averages and histograms to the study of patterns in data fluctuations. Detrended fluctuation analysis provides information on the correlation properties of the parenchyma at different spatial scales. The aim is to quantify (with the aid of the aforementioned metrics), the mesostructural changes—that occur from one cycle of freezing and thawing—in the void phase of pome fruit parenchymatous tissue, acquired with X-ray microcomputed tomography. Complex systems methods provide numerical indices and detailed insights regarding the freezing-induced modifications upon the arrangement of cells and voids. These structural changes have the potential to lead to physiological disorders. The work can further stimulate interest for the analysis of internal plant tissue structures coupled with other physico-chemical processes or phenomena.

  17. Spatial organization and correlation properties quantify structural changes on mesoscale of parenchymatous plant tissue

    NASA Astrophysics Data System (ADS)

    Valous, N. A.; Delgado, A.; Drakakis, K.; Sun, D.-W.

    2014-02-01

    The study of plant tissue parenchyma's intercellular air spaces contributes to the understanding of anatomy and physiology. This is challenging due to difficulty in making direct measurements of the pore space and the complex mosaic of parenchymatous tissue. The architectural complexity of pore space has shown that single geometrical measurements are not sufficient for characterization. The inhomogeneity of distribution depends not only on the percentage content of phase, but also on how the phase fills the space. The lacunarity morphometric, as multiscale measure, provides information about the distribution of gaps that correspond to degree of spatial organization in parenchyma. Additionally, modern theories have suggested strategies, where the focus has shifted from the study of averages and histograms to the study of patterns in data fluctuations. Detrended fluctuation analysis provides information on the correlation properties of the parenchyma at different spatial scales. The aim is to quantify (with the aid of the aforementioned metrics), the mesostructural changes—that occur from one cycle of freezing and thawing—in the void phase of pome fruit parenchymatous tissue, acquired with X-ray microcomputed tomography. Complex systems methods provide numerical indices and detailed insights regarding the freezing-induced modifications upon the arrangement of cells and voids. These structural changes have the potential to lead to physiological disorders. The work can further stimulate interest for the analysis of internal plant tissue structures coupled with other physico-chemical processes or phenomena.

  18. Tissue regeneration after bark girdling: an ideal research tool to investigate plant vascular development and regeneration.

    PubMed

    Chen, Jia-Jia; Zhang, Jing; He, Xin-Qiang

    2014-06-01

    Regeneration is a common strategy for plants to survive the intrinsic and extrinsic challenges they face through their life cycle, and it may occur upon wounding. Bark girdling is applied to improve fruit production or harvest bark as medicinal material. When tree bark is removed, the cambium and phloem will be peeled off. After a small strip of bark is removed from trees, newly formed periderm and wound cambium develop from the callus on the surface of the trunk, and new phloem is subsequently derived from the wound cambium. However, after large-scale girdling, the newly formed sieve elements (SEs) appear earlier than the regenerated cambium, and both of them derive from differentiating xylem cells rather than from callus. This secondary vascular tissue regeneration mainly involves three key stages: callus formation and xylem cell dedifferentiation; SEs appearance and wound cambium formation. The new bark is formed within 1 month in poplar, Eucommia; thus, it provides high temporal resolution of regenerated tissues at different stages. In this review, we will illustrate the morphology, gene expression and phytohormone regulation of vascular tissue regeneration after large-scale girdling in trees, and also discuss the potential utilization of the bark girdling system in studies of plant vascular development and tissue regeneration.

  19. Zooming In on Plant Hormone Analysis: Tissue- and Cell-Specific Approaches.

    PubMed

    Novák, Ondřej; Napier, Richard; Ljung, Karin

    2017-02-10

    Plant hormones are a group of naturally occurring, low-abundance organic compounds that influence physiological processes in plants. Our knowledge of the distribution profiles of phytohormones in plant organs, tissues, and cells is still incomplete, but advances in mass spectrometry have enabled significant advances in tissue- and cell-type-specific analyses of phytohormones over the last decade. Mass spectrometry is able to simultaneously identify and quantify hormones and their related substances. Biosensors, on the other hand, offer continuous monitoring; can visualize local distributions and realtime quantification; and, in the case of genetically encoded biosensors, are noninvasive. Thus, biosensors offer additional, complementary technologies for determining temporal and spatial changes in phytohormone concentrations. In this review, we focus on recent advances in mass spectrometry-based quantification, describe monitoring systems based on biosensors, and discuss validations of the various methods before looking ahead at future developments for both approaches. Expected final online publication date for the Annual Review of Plant Biology Volume 68 is April 29, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  20. 12. Photographic copy of aerial photograph dated October 1988; Photographed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Photographic copy of aerial photograph dated October 1988; Photographed by Aerial Services, Incorporated, Waterloo, Iowa; THE RATH COMPLEX FROM DIRECTLY OVERHEAD; THE PACKING PLANT BUILDINGS OCCUPY UPPER RIGHT QUADRANT OF PHOTO; 18TH STREET BRIDGE AT CENTER - Rath Packing Company, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  1. 11. Photographic copy of aerial photograph dated ca. 1954; Photographer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photographic copy of aerial photograph dated ca. 1954; Photographer unknown; Original owned by Waterloo Courier, Waterloo, Iowa; AERIAL VIEW OF RATH COMPLEX, LOOKING WEST; BEEF KILLING BUILDING (149 AND LIVESTOCK HOLDING AREAS ARE AT LEFT CENTER; FERTILIZER PLANT/STORAGE BUILDINGS ARE AT BOTTOM OF PHOTO - Rath Packing Company, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  2. Dark CO2 Fixation and its Role in the Growth of Plant Tissue

    PubMed Central

    Splittstoesser, Walter E.

    1966-01-01

    Experiments were designed to determine the significance of dark CO2 fixation in excised maize roots, carrot slices and excised tomato roots grown in tissue culture. Bicarbonate-14C was used to determine the pathway and amounts of CO2 fixation, while leucine-14C was used to estimate protein synthesis in tissues aerated with various levels of CO2. Organic acids were labeled from bicarbonate-14C, with malate being the major labeled acid. Only glutamate and aspartate were labeled in the amino acid fraction and these 2 amino acids comprised over 90% of the 14C label in the ethanol-water insoluble residue. Studies with leucine-14C as an indicator of protein synthesis in carrot slices and tomato roots showed that those tissues aerated with air incorporated 33% more leucine-14C into protein than those aerated with CO2-free air. Growth of excised tomato roots aerated with air was 50% more than growth of tissue aerated with CO2-free air. These studies are consistent with the suggestion that dark fixation of CO2 is involved in the growth of plant tissues. PMID:16656316

  3. Dehydrotomatine and alpha-tomatine content in tomato fruits and vegetative plant tissues.

    PubMed

    Kozukue, Nobuyuki; Han, Jae-Sook; Lee, Kap-Rang; Friedman, Mendel

    2004-04-07

    Tomato plants (Lycopersicon esculentum) synthesize the glycoalkaloids dehydrotomatine and alpha-tomatine, possibly as a defense against bacteria, fungi, viruses, and insects. We used a high-performance liquid chromatography method with UV detection at 208 nm for the analysis of these compounds in various tissues. An Inertsil ODS-2 column with a mobile phase of acetonitrile/20 mM KH2PO4 (24/76, v/v) afforded good separation of the two glycoalkaloids in mini-tomato extracts, fruit harvested at different stages of maturity, and calyxes, flowers, leaves, roots, and stems. The two peaks appeared at approximately 17 and approximately 21 min. Recoveries from tomato fruit extracts spiked with dehydrotomatine and alpha-tomatine were 87.7 +/- 6.8 and 89.8 +/- 3.4% (n = 5), respectively. The detection limit is estimated to be 0.39 microg for dehydrotomatine and 0.94 microg for alpha-tomatine. The dehydrotomatine and alpha-tomatine content of tomatoes varied from 42 to 1498 and 521 to 16 285 microg/g of fresh weight, respectively. The ratio of alpha-tomatine to dehydrotomatine ranged from 10.9 to 12.5 in tomatoes and from 2.3 to 7.8 in the other plant tissues. These results suggest that the biosynthesis of the glycoalkaloids is under separate genetic control in each plant part. Degradation of both glycoalkaloids occurred at approximately the same rate during maturation of the tomatoes on the vine. An Inertsil NH2 column, with acetonitrile/1 mM KH2PO4 (96/4, v/v) as the eluent, enabled the fractionation of commercial tomatidine into tomatidenol and tomatidine, the aglycons of dehydrotomatine and alpha-tomatine, respectively. The information should be useful for evaluating tomatoes and vegetative tissues for dehydrotomatine/alpha-tomatine content during fruit development and their respective roles in host-plant resistance and the diet.

  4. Rapid and efficient isolation of high quality nucleic acids from plant tissues rich in polyphenols and polysaccharides.

    PubMed

    Japelaghi, Reza Heidari; Haddad, Raheem; Garoosi, Ghasem-Ali

    2011-10-01

    Isolation of high quality nucleic acids from plant tissues rich in polysaccharides and polyphenols is often difficult. The presence of these substances can affect the quality and/or quantity of the nucleic acids isolated. Here, we describe a rapid and efficient nucleic acids extraction protocol that in contrast to other methods tested, effectively purify high quality nucleic acids from plant tissues rich in polysaccharides and polyphenolic compounds such as different grape tissues and fruit tissue of fruit trees. The nucleic acids isolated with this protocol were successfully used for many functional genomic based experiments including polymerase chain reaction, reverse transcription polymerase chain reaction (RT-PCR), cloning, and semiquantitative RT-PCR.

  5. Microwaves and tea: new tools to process plant tissue for transmission electron microscopy.

    PubMed

    Carpentier, Anaïs; Abreu, Susana; Trichet, Michael; Satiat-Jeunemaitre, Béatrice

    2012-07-01

    Optimizing sample processing, reducing the duration of the preparation of specimen, and adjusting procedures to adhere to new health and safety regulations, are the current challenges of plant electron microscopists. To address these issues, plant processing protocols for TEM, combining the use of polyphenolic compounds as substitute for uranyl acetate with microwave technology are being developed. In the present work, we optimized microwave-assisted processing of different types of plant tissue for ultrastuctural and immunocytochemical studies. We also explored Oolong tea extract as alternative for uranyl acetate for the staining of plant samples. We obtained excellent preservation of cell ultrastructure when samples were embedded in epoxy resin, and of cell antigenicity, when embedded in LR-White resin. Furthermore, Oolong tea extract successfully replaced uranyl acetate as a counterstain on ultrathin sections, and for in block staining. These novel protocols reduce the time spent at the bench, and improve safety conditions for the investigator. The preservation of the cell components when following these approaches is of high quality. Altogether, they offer significant simplification of the procedures required for electron microscopy of plant ultrastructure.

  6. Biological Warfare of the Spiny Plant Introducing Pathogenic Microorganisms into Herbivore's Tissues.

    PubMed

    Halpern, Malka; Waissler, Avivit; Dror, Adi; Lev-Yadun, Simcha

    2011-01-01

    Recently, it has been proposed that plants which have spines, thorns, and prickles use pathogenic aerobic and anaerobic bacteria, as well as pathogenic fungi, for defense against herbivores, especially vertebrates. Their sharp defensive appendages may inject various pathogenic agents into the body of the herbivores by piercing the outer defensive layer of the skin in a type of biological warfare. Here, we review data regarding the various bacterial taxa found on spines, as well as the medical literature regarding infections by bacteria and fungi related to spine injuries. We also present new evidence that, concerning the microbial flora, spines belonging to the palm tree Washingtonia filifera are probably a different habitat than the nondefensive green photosynthetic leaf surfaces. In addition, many plant species have microscopic internal and external spines (raphids and silica needles) which can also wound large herbivores as well as insects and other small invertebrate herbivores that usually attack in between large spines, prickles, and thorns. The large spines and sharp microscopic structures may inject not only the microorganisms that inhabit them into the herbivore's tissues, but also those preexisting on the skin surface or inside the digestive system of the herbivores and on the surface of nonspiny plant parts. A majority of the spiny plants visually advertise their spiny nature, a characteristic known as aposematism (warning coloration). The pathogenic microorganisms may sometimes be much more dangerous than the physical wounds inflicted by the spines. In accordance, we suggest that the possible cooperation or even just the random association of spines with pathogenic microorganisms contributed to the evolution of aposematism in spiny plants and animals. The role of these sharp defensive structures in inserting pathogenic viruses into the tissues of herbivores was never studied systematically and deserves special attention.

  7. The Impact of Microfibril Orientations on the Biomechanics of Plant Cell Walls and Tissues.

    PubMed

    Ptashnyk, Mariya; Seguin, Brian

    2016-11-01

    The microscopic structure and anisotropy of plant cell walls greatly influence the mechanical properties, morphogenesis, and growth of plant cells and tissues. The microscopic structure and properties of cell walls are determined by the orientation and mechanical properties of the cellulose microfibrils and the mechanical properties of the cell wall matrix. Viewing the shape of a plant cell as a square prism with the axis aligning with the primary direction of expansion and growth, the orientation of the microfibrils within the side walls, i.e. the parts of the cell walls on the sides of the cells, is known. However, not much is known about their orientation at the upper and lower ends of the cell. Here we investigate the impact of the orientation of cellulose microfibrils within the upper and lower parts of the plant cell walls by solving the equations of linear elasticity numerically. Three different scenarios for the orientation of the microfibrils are considered. We also distinguish between the microstructure in the side walls given by microfibrils perpendicular to the main direction of the expansion and the situation where the microfibrils are rotated through the wall thickness. The macroscopic elastic properties of the cell wall are obtained using homogenization theory from the microscopic description of the elastic properties of the cell wall microfibrils and wall matrix. It is found that the orientation of the microfibrils in the upper and lower parts of the cell walls affects the expansion of the cell in the lateral directions and is particularly important in the case of forces acting on plant cell walls and tissues.

  8. In situ detection of salicylic acid binding sites in plant tissues.

    PubMed

    Liu, Jing-Wen; Deng, Da-Yi; Yu, Ying; Liu, Fang-Fei; Lin, Bi-Xia; Cao, Yu-Juan; Hu, Xiao-Gang; Wu, Jian-Zhong

    2015-02-01

    The determination of hormone-binding sites in plants is essential in understanding the mechanisms behind hormone function. Salicylic acid (SA) is an important plant hormone that regulates responses to biotic and abiotic stresses. In order to label SA-binding sites in plant tissues, a quantum dots (QDs) probe functionalized with a SA moiety was successfully synthesized by coupling CdSe QDs capped with 3-mercaptopropionic acid (MPA) to 4-amino-2-hydroxybenzoic acid (PAS), using 1-ethyl-3-(3-dimethyllaminopropyl) carbodiimide (EDC) as the coupling agent. The probe was then characterized by dynamic light scattering and transmission electron microscopy, as well as UV/vis and fluorescence spectrophotometry. The results confirmed the successful conjugation of PAS to CdSe QDs and revealed that the conjugates maintained the properties of the original QDs, with small core diameters and adequate dispersal in solution. The PAS-CdSe QDs were used to detect SA-binding sites in mung bean and Arabidopsis thaliana seedlings in vitro and in vivo. The PAS-CdSe QDs were effectively transported into plant tissues and specifically bound to SA receptors in vivo. In addition, the effects of the PAS-CdSe QDs on cytosolic Ca(2+) levels in the tips of A. thaliana seedlings were investigated. Both SA and PAS-CdSe QDs had similar effects on the trend in cytosolic-free Ca(2+) concentrations, suggesting that the PAS-CdSe QDs maintained the bioactivity of SA. To summarize, PAS-CdSe QDs have high potential as a fluorescent probe for the in vitro/in vivo labeling and imaging of SA receptors in plants.

  9. Application of the chloramphenicol acetyltransferase (CAT) diffusion assay to transgenic plant tissues.

    PubMed

    Peach, C; Velten, J

    1992-02-01

    Chloramphenicol acetyltransferase (CAT) activity was quantified in crude extracts from tobacco callus tissues using a modification of a previously reported diffusion assay. We describe here the alterations necessary in applying this rapid and simple assay procedure to plant materials. Due to the high concentration of nonspecific oxidases present in most plant tissues, some type of protective agent is required to maintain enzyme activity. We have tested beta-mercaptoethanol, cysteine, dithiothreitol, ascorbic acid and polyvinyl pyrrolidone as protective agents within the initial extraction buffer. We also investigated the effect of heat (60 degrees C, 10 min) and 5 mM EDTA on CAT activity. The highest CAT activity was obtained using 5 mM cysteine plus 5 mM EDTA in 40 mM Tris-HCl (pH 7.8) as the initial extraction buffer followed by a heat treatment. Using this buffer, CAT activity was stable on ice for more than two hours. In our hands, total acetyl-coenzyme A concentration within the assay mixture was found to be saturating at 250 microM and the Km determined to be 100 microM. Assays performed using the same crude plant extract indicate that 1) duplicate assays show less than 1.5% variation in activities and 2) CAT activity increases linearly with respect to volume of extract used.

  10. An intact cuticle in distal tissues is essential for the induction of systemic acquired resistance in plants.

    PubMed

    Xia, Ye; Gao, Qing-Ming; Yu, Keshun; Lapchyk, Ludmila; Navarre, DuRoy; Hildebrand, David; Kachroo, Aardra; Kachroo, Pradeep

    2009-02-19

    Systemic acquired resistance (SAR), initiated by a plant upon recognition of microbial effectors, involves generation of a mobile signal at the primary infection site, which translocates to and activates defense responses in distal tissues via unknown mechanism(s). We find that an acyl carrier protein, ACP4, is required to perceive the mobile SAR signal in distal tissues of Arabidopsis. Although acp4 plants generated the mobile signal, they failed to induce the systemic immunity response. Defective SAR in acp4 plants was not due to impairment in salicylic acid (SA)-, methyl SA-, or jasmonic acid-mediated plant hormone signaling pathways but was associated with the impaired cuticle of acp4 leaves. Other cuticle-impairing genetic mutations or physical removal of the cuticle also compromised SAR. This cuticular requirement was relevant only during mobile signal generation and its translocation to distal tissues. Collectively, these data suggest an active role for the plant cuticle in SAR-related molecular signaling.

  11. Cellular Force Microscopy for in Vivo Measurements of Plant Tissue Mechanics1[W][OA

    PubMed Central

    Routier-Kierzkowska, Anne-Lise; Weber, Alain; Kochova, Petra; Felekis, Dimitris; Nelson, Bradley J.; Kuhlemeier, Cris; Smith, Richard S.

    2012-01-01

    Although growth and morphogenesis are controlled by genetics, physical shape change in plant tissue results from a balance between cell wall loosening and intracellular pressure. Despite recent work demonstrating a role for mechanical signals in morphogenesis, precise measurement of mechanical properties at the individual cell level remains a technical challenge. To address this challenge, we have developed cellular force microscopy (CFM), which combines the versatility of classical microindentation techniques with the high automation and resolution approaching that of atomic force microscopy. CFM’s large range of forces provides the possibility to map the apparent stiffness of both plasmolyzed and turgid tissue as well as to perform micropuncture of cells using very high stresses. CFM experiments reveal that, within a tissue, local stiffness measurements can vary with the level of turgor pressure in an unexpected way. Altogether, our results highlight the importance of detailed physically based simulations for the interpretation of microindentation results. CFM’s ability to be used both to assess and manipulate tissue mechanics makes it a method of choice to unravel the feedbacks between mechanics, genetics, and morphogenesis. PMID:22353572

  12. [Dehydration in the cryopreservation of moist plant tissues and in seed maturation].

    PubMed

    Chetverikova, E P

    2008-01-01

    The possibility of long-term cryopreservation of plant objects depends on their water content. In orthodox seeds, it decreases at the late stage of maturation and is accompanied by the synthesis of protectors--sugars and proteins. These seeds easily withstand cryopreservation. Organs with a high water content, meristems, and recalcitrant seeds are dried in presence of sucrose before plunging in liquid nitrogen. In orthodox seeds, artificially dried moist seeds, and meristems, the cellular content forms glass structures that are estimated in frozen materials by differential scanning calorimetry and electron paramagnetic resonance methods. It is proposed that the glass cellular content is connected with the duration of cryopreservation. Methodical approaches to successive cryopreservation of moist plant tissues are described.

  13. Free flow and capillary isoelectric focusing of bacteria from the tomatoes plant tissues.

    PubMed

    Horká, Marie; Horký, Jaroslav; Matousková, Hana; Slais, Karel

    2009-02-06

    The means of the preconcentration and preseparation of selected species or pathovars of bacteria directly from the plant tissue suspension by free flow isoelectric focusing are introduced here. After the focusing, the resulting fraction of microorganisms, native or dynamically modified by the non-ionogenic tenside on the basis of pyrenebutanoate, was separated by capillary isoelectric focusing and/or cultivated and positively identified by gas chromatographic analysis of fatty acid methyl esters. Simultaneously, capillary isoelectric focusing with UV and fluorometric detection was used for the rapid estimation of unknown isoelectric points of the examined plant pathogenic species of genus Clavibacter, Xanthomonas and Pseudomonas prior to the preconcentration and preseparation. The microorganisms were of different origin, native and/or dynamically modified by the non-ionogenic tenside.

  14. Development of Plant Gene Vectors for Tissue-Specific Expression Using GFP as a Reporter Gene

    NASA Technical Reports Server (NTRS)

    Jackson, Jacquelyn; Egnin, Marceline; Xue, Qi-Han; Prakash, C. S.

    1997-01-01

    Reporter genes are widely employed in plant molecular biology research to analyze gene expression and to identify promoters. Gus (UidA) is currently the most popular reporter gene but its detection requires a destructive assay. The use of jellyfish green fluorescent protein (GFP) gene from Aequorea Victoria holds promise for noninvasive detection of in vivo gene expression. To study how various plant promoters are expressed in sweet potato (Ipomoea batatas), we are transcriptionally fusing the intron-modified (mGFP) or synthetic (modified for codon-usage) GFP coding regions to these promoters: double cauliflower mosaic virus 35S (CaMV 35S) with AMV translational enhancer, ubiquitin7-intron-ubiquitin coding region (ubi7-intron-UQ) and sporaminA. A few of these vectors have been constructed and introduced into E. coli DH5a and Agrobacterium tumefaciens EHA105. Transient expression studies are underway using protoplast-electroporation and particle bombardment of leaf tissues.

  15. A non-phenol-chloroform extraction of double-stranded RNA from plant and fungal tissues.

    PubMed

    Balijja, Alitukiriza; Kvarnheden, Anders; Turchetti, Tullio

    2008-09-01

    Double-stranded RNA (dsRNA) molecules of viruses are found in nature at a very high frequency. Their detection in plants and fungi has been carried out with difficulty due to the complicated dsRNA extraction techniques used commonly which includes phenol-chloroform extractions. In this study, an extraction method for isolation of dsRNA is described that is free of phenol and chloroform. A lysis buffer, containing beta-mercaptoethanol and polyvinylpolypyrrolidone (PVPP-40), was added to homogenised tissues and the subsequent supernatant was filtered through a cellulose CF-11 mini-column. DsRNA molecules were separated based on the differing affinity of nucleic acids for the cellulose CF-11 resin in 20% ethanol buffer. This easy, rapid and cheap technique has been successfully tested on fungi and plants containing different dsRNA virus molecules, indicating the possibility of a wide use of the method.

  16. An improved method for quantitative analysis of total fructans in plant tissues.

    PubMed

    Liu, Zhiqian; Mouradov, Aidyn; Smith, Kevin F; Spangenberg, German

    2011-11-15

    Current methods for measuring fructan levels in plant tissues are time-consuming and costly. They often involve multiple or sequential extractions, enzymatic or acid hydrolysis of fructan polymers, and multiple HPLC runs to quantify fructan-derived hexoses. Here we describe a new method that requires a single extraction step, followed by selective precipitation of fructans by acetone, acid hydrolysis of the precipitate, and a short (10 min) HPLC run to complete the procedure. We used perennial ryegrass samples to show that the new method has similar sensitivity, but better reproducibility, than a more complex method that is widely used. We have used the new method to study developmentally related changes in fructan levels in glasshouse-grown perennial ryegrass plants.

  17. Factors Affecting the Extraction of Intact Ribonucleic Acid from Plant Tissues Containing Interfering Phenolic Compounds

    PubMed Central

    Newbury, H. John; Possingham, John V.

    1977-01-01

    Using conventional methods it is impossible to extract RNA as uncomplexed intact molecules from the leaves of grapevines (Vitis vinifera L.) and from a number of woody perennial species that contain high levels of reactive phenolic compounds. A procedure involving the use of high concentrations of the chaotropic agent sodium perchlorate prevents the binding of phenolic compounds to RNA during extraction. Analyses of the phenolics present in plant tissues used in these experiments indicate that there is a poor correlation between the total phenolic content and the complexing of RNA. However, qualitative analyses suggest that proanthocyanidins are involved in the tanning of RNA during conventional extractions. PMID:16660134

  18. 47 CFR 32.2421 - Aerial cable.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the original cost of single or paired conductor cable, wire and other associated material used in... cable or aerial wire as well as the cost of other material used in construction of such plant... cost of optical fiber cable and other associated material used in constructing a physical path for...

  19. Plant Tissues in 3D via X-Ray Tomography: Simple Contrasting Methods Allow High Resolution Imaging

    PubMed Central

    Staedler, Yannick M.; Masson, David; Schönenberger, Jürg

    2013-01-01

    Computed tomography remains strongly underused in plant sciences despite its high potential in delivering detailed 3D phenotypical information because of the low X-ray absorption of most plant tissues. Existing protocols to study soft tissues display poor performance, especially when compared to those used on animals. More efficient protocols to study plant material are therefore needed. Flowers of Arabidopsis thaliana and Marcgravia caudata were immersed in a selection of contrasting agents used to treat samples for transmission electron microscopy. Grayscale values for floral tissues and background were measured as a function of time. Contrast was quantified via a contrast index. The thick buds of Marcgravia were scanned to determine which contrasting agents best penetrate thick tissues. The highest contrast increase with cytoplasm-rich tissues was obtained with phosphotungstate, whereas osmium tetroxide and bismuth tatrate displayed the highest contrast increase with vacuolated tissues. Phosphotungstate also displayed the best sample penetration. Furthermore, infiltration with phosphotungstate allowed imaging of all plants parts at a high resolution of 3 µm, which approaches the maximum resolution of our equipment: 1.5 µm. The high affinity of phosphotungstate for vasculature, cytoplasm-rich tissue, and pollen causes these tissues to absorb more X-rays than the surrounding tissues, which, in turn, makes these tissues appear brighter on the scan data. Tissues with different brightness can then be virtually dissected from each other by selecting the bracket of grayscale to be visualized. Promising directions for the future include in silico phenotyping and developmental studies of plant inner parts (e.g., ovules, vasculature, pollen, and cell nuclei) via virtual dissection as well as correlations of quantitative phenotypes with omics datasets. Therefore, this work represents a crucial improvement of previous methods, allowing new directions of research to be

  20. Plant tissues in 3D via X-ray tomography: simple contrasting methods allow high resolution imaging.

    PubMed

    Staedler, Yannick M; Masson, David; Schönenberger, Jürg

    2013-01-01

    Computed tomography remains strongly underused in plant sciences despite its high potential in delivering detailed 3D phenotypical information because of the low X-ray absorption of most plant tissues. Existing protocols to study soft tissues display poor performance, especially when compared to those used on animals. More efficient protocols to study plant material are therefore needed. Flowers of Arabidopsis thaliana and Marcgravia caudata were immersed in a selection of contrasting agents used to treat samples for transmission electron microscopy. Grayscale values for floral tissues and background were measured as a function of time. Contrast was quantified via a contrast index. The thick buds of Marcgravia were scanned to determine which contrasting agents best penetrate thick tissues. The highest contrast increase with cytoplasm-rich tissues was obtained with phosphotungstate, whereas osmium tetroxide and bismuth tatrate displayed the highest contrast increase with vacuolated tissues. Phosphotungstate also displayed the best sample penetration. Furthermore, infiltration with phosphotungstate allowed imaging of all plants parts at a high resolution of 3 µm, which approaches the maximum resolution of our equipment: 1.5 µm. The high affinity of phosphotungstate for vasculature, cytoplasm-rich tissue, and pollen causes these tissues to absorb more X-rays than the surrounding tissues, which, in turn, makes these tissues appear brighter on the scan data. Tissues with different brightness can then be virtually dissected from each other by selecting the bracket of grayscale to be visualized. Promising directions for the future include in silico phenotyping and developmental studies of plant inner parts (e.g., ovules, vasculature, pollen, and cell nuclei) via virtual dissection as well as correlations of quantitative phenotypes with omics datasets. Therefore, this work represents a crucial improvement of previous methods, allowing new directions of research to be

  1. Expression of a Ricin Toxin B Subunit: Insulin Fusion Protein in Edible Plant Tissues

    PubMed Central

    Carter, James E.; Odumosu, Oludare; Langridge, William H. R.

    2013-01-01

    Onset of juvenile Type 1 diabetes (T1D) occurs when autoreactive lymphocytes progressively destroy the insulin-producing beta-cells in the pancreatic Islets of Langerhans. The increasing lack of insulin and subsequent onset of hyperglycemia results in increased damage to nerves, blood vessels, and tissues leading to the development of a host of severe disease symptoms resulting in premature morbidity and mortality. To enhance restoration of normoglycemia and immunological homeostasis generated by lymphocytes that mediate the suppression of autoimmunity, the non-toxic B chain of the plant AB enterotoxin ricin (RTB), a castor bean lectin binding a variety of epidermal cell receptors, was genetically linked to the coding region of the proinsulin gene (INS) and expressed as a fusion protein (INS–RTB) in transformed potato plants. This study is the first documented example of a plant enterotoxin B subunit linked to an autoantigen and expressed in transgenic plants for enhanced immunological suppression of T1D autoimmunity. PMID:19898971

  2. Ecosystem engineering and manipulation of host plant tissues by the insect borer Oncideres albomarginata chamela.

    PubMed

    Calderón-Cortés, Nancy; Uribe-Mú, Claudia A; Martínez-Méndez, A Karen; Escalera-Vázquez, Luis H; Cristobal-Pérez, E Jacob; García-Oliva, Felipe; Quesada, Mauricio

    2016-01-01

    Ecosystem engineering by insect herbivores occurs as the result of structural modification of plants manipulated by insects. However, only few studies have evaluated the effect of these modifications on the plant responses induced by stem-borers that act as ecosystem engineers. In this study, we evaluated the responses induced by the herbivory of the twig-girdler beetle Oncideres albomarginata chamela (Cerambycidae: Lamiinae) on its host plant Spondias purpurea (Anacardiaceae), and its relationship with the ecosystem engineering process carried out by this stem-borer. Our results demonstrated that O. albomarginata chamela branch removal induced the development of lateral branches increasing the resources needed for the development of future insect generations, of its own offspring and of many other insect species. Detached branches represent habitats with high content of nitrogen and phosphorous, which eventually can be incorporated into the ecosystem, increasing nutrient cycling efficiency. Consequently, branch removal and the subsequent plant tissue regeneration induced by O. albomarginata chamela represent key mechanisms underlying the ecosystem engineering process carried out by this stem-borer, which enhances arthropod diversity in the ecosystem.

  3. Electrophysiological model of intact and processed plant tissues: cell disintegration criteria.

    PubMed

    Angersbach, A; Heinz, V; Knorr, D

    1999-01-01

    Frequency versus conductivity relationships of food cell system, based on impedance measurements as characterized by polarization effects of the Maxwell-Wagner type at intact membrane interfaces, are presented. The electrical properties of a biological membrane (represented as a resistor and capacitor) are responsible for the dependence of the total conductivity of the cell system on the alternating current frequency. Based on an equivalent circuit model of a single plant cell, the electrical conductivity spectrum of the cell system in intact plant tissue (potato, carrot, banana, and apple) was determined in a frequency range between 3 kHz and 50 MHz. The electrical properties of a cell system with different ratios of intact/ruptured cells could also be predicted on the basis of a description of a cell system consisting of elementary layers with regularly distributed intact and ruptured cells as well as of extracellular compartments. This simple determination of the degree of cell permeabilization (cell disintegration index, p(o)) is based upon electric conductivity changes in the cell sample. For accurate calculations of p(o), the sample conductivities before and after treatment, obtained at low- (f(l)) and high-frequency (f(h)) ranges of the so-called beta-dispersion, were used. In this study with plant cell systems, characteristic conductivities used were measured at frequencies f(l) = 3 kHz and f(h) = 12.5 MHz. The disintegration index was used to analyze the degree of cell disruption after different treatments (such as mechanical disruption, heating, freeze-thaw cycles, application of electric field pulses, and enzymatic treatment) of the plant tissues.

  4. Salmonella enterica virulence genes are required for bacterial attachment to plant tissue.

    PubMed

    Barak, Jeri D; Gorski, Lisa; Naraghi-Arani, Pejman; Charkowski, Amy O

    2005-10-01

    Numerous Salmonella enterica food-borne illness outbreaks have been associated with contaminated vegetables, in particular sprouted seeds, and the incidence of reported contamination has steadily risen. In order to understand the physiology of S. enterica serovar Newport on plants, a screen was developed to identify transposon mutants that were defective in attachment to alfalfa sprouts. Twenty independent mutants from a pool of 6,000 were selected for reduced adherence to alfalfa sprouts. Sixty-five percentage of these mutants had insertions in uncharacterized genes. Among the characterized genes were strains with insertions in the intergenic region between agfB, the surface-exposed aggregative fimbria (curli) nucleator, and agfD, a transcriptional regulator of the LuxR superfamily, and rpoS, the stationary-phase sigma factor. Both AgfD and RpoS have been reported to regulate curli and cellulose production and RpoS regulates other adhesins such as pili. The intergenic and rpoS mutants were reduced in initial attachment to alfalfa sprouts by 1 log unit compared to the wild type. Mutations of agfA, curli subunit, and agfB in S. enterica serovar Enteritidis differentially affected attachment to plant tissue. The agfA mutation was not reduced in ability to attach to or colonize alfalfa sprouts, whereas the agfB mutation was reduced. Thus, agfB alone can play a role in attachment of S. enterica to plant tissue. These results reveal that S. enterica genes important for virulence in animal systems are also required for colonization of plants, a secondary host that can serve as a vector of S. enterica from animal to animal.

  5. AERIAL VIEW LOOKING FURTHER SOUTH EAST, VILLAGE CREEK WATER TREATMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL VIEW LOOKING FURTHER SOUTH EAST, VILLAGE CREEK WATER TREATMENT PLANT ON RIGHT SIDE, ENSLEY IN BACKGROUND. - Birmingham Southern Railroad Yard, Thirty-fourth Street, Ensley, Jefferson County, AL

  6. 4. Aerial view of Whitsett intake (lower right), Parker Dam ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Aerial view of Whitsett intake (lower right), Parker Dam and village (left), Gene Wash Reservoir, Gene Pump Plant and village (right). - Parker Dam, Spanning Colorado River between AZ & CA, Parker, La Paz County, AZ

  7. Early diagenesis of vascular plant tissues: Lignin and cutin decomposition and biogeochemical implications

    NASA Astrophysics Data System (ADS)

    Opsahl, Stephen; Benner, Ronald

    1995-12-01

    Long-term subaqueous decomposition patterns of five different vascular plant tissues including mangrove leaves and wood ( Avicennia germinans), cypress needles and wood ( Taxodium distichum) and smooth cordgrass ( Spartina alternifora) were followed for a period of 4.0 years, representing the longest litter bag decomposition study to date. All tissues decomposed under identical conditions and final mass losses were 97, 68, 86, 39, and 93%, respectively. Analysis of the lignin component of herbaceous tissues using alkaline CuO oxidation was complicated by the presence of a substantial ester-bound phenol component composed primarily of cinnamyl phenols. To overcome this problem, we introduce a new parameter to represent lignin, Λ6. Λ6 is comprised only of the six syringyl and vanillyl phenols and was found to be much less sensitive to diagenetic variation than the commonly used parameter Λ, which includes the cinnamyl phenols. Patterns of change in lignin content were strongly dependent on tissue type, ranging from 77% enrichment in smooth cordgrass to 6% depletion in cypress needles. In contrast, depletion of cutin was extensive (65-99%) in all herbaceous tissues. Despite these differences in the overall reactivity of lignin and cutin, both macromolecules were extensively degraded during the decomposition period. The long-term decomposition series also provided very useful information about the compositional parameters which are derived from the specific oxidation products of both lignin and cutin. The relative lability of ester-bound cinnamyl phenols compromised their use in parameters to distinguish woody from herbaceous plant debris. The dimer to monomer ratios of lignin-derived phenols indicated that most intermonomeric linkages in lignin degraded at similar rates. Acid to aldehyde ratios of vanillyl and syringyl phenols became elevated, particularly during the latter stages of decomposition supporting the use of these parameters as indicators of diagenetic

  8. 3D Reconstruction of Frozen Plant Tissue: a unique histological analysis to image post-freeze responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter hardiness in plants is the result of a complex interaction between genes, the tissue where those genes are expressed and the environment. The light microscope is a valuable tool to understand this complexity which will ultimately help researchers improve the tolerance of plants to freezing st...

  9. [Diversity and tissue distribution of fungal endophytes in Alpinia officinarum: an important south-China medicinal plant].

    PubMed

    Zhou, Ren-Chao; Huang, Juan; Li, Ze-En; Li, Shu-Bin

    2014-08-01

    In the present study, terminal-restriction fragment length polymorphism (T-RFLP) technique was applied to assess the diversity and tissue distribution of the fungal endophyte communities of Alpinia officinarum collected from Longtang town in Xuwen county, Guangdong province, China, at which the pharmacological effect of the medicine plant is traditional considered to be the significantly higher than that in any other growth areas in China. A total of 28 distinct Terminal-Restriction Fragment (T-RFs) were detected with HhaI Mono-digestion targeted amplified fungal nuclear ribosomal internal transcribed spacer region sequences (rDNA ITS) from the root, rhizome, stem, and leaf internal tissues of A. officinarum plant, indicating that at least 28 distinct fungal species were able to colonize the internal tissue of the host plant. The rDNA ITS-T-RFLP profiles obtained from different tissues of the host plant were obvious distinct. And the numbers of total T-RFs, and the dominant T-RFs detected from various tissues were significantly different. Based on the obtained T-RFLP profiles, Shannon's diversity index and the Shannon's evenness index were calculated, which were significantly different among tissues (P < 0.05). Furthermore, two types of active chemicals, total volatile oils by water vapor distillation method and galangin by methanol extraction-HPLC method, were examined in the each tissue of the tested plant. Both of tested components were detected in all of the four tissues of the medicine plant with varying contents. And the highest was in rhizome tissue. Correlation analysis revealed there were significant negative correlations between both of the tested active components contents and calculated Shannon's diversity index, as well as the Shannon's evenness index of the fungal endophyte communities of the host plant (P = 0, Pearson correlation coefficient ≤ -0.962), and significant positive correlations between both of the tested active components contents and

  10. A global analysis of parenchyma tissue fractions in secondary xylem of seed plants.

    PubMed

    Morris, Hugh; Plavcová, Lenka; Cvecko, Patrick; Fichtler, Esther; Gillingham, Mark A F; Martínez-Cabrera, Hugo I; McGlinn, Daniel J; Wheeler, Elisabeth; Zheng, Jingming; Ziemińska, Kasia; Jansen, Steven

    2016-03-01

    Parenchyma is an important tissue in secondary xylem of seed plants, with functions ranging from storage to defence and with effects on the physical and mechanical properties of wood. Currently, we lack a large-scale quantitative analysis of ray parenchyma (RP) and axial parenchyma (AP) tissue fractions. Here, we use data from the literature on AP and RP fractions to investigate the potential relationships of climate and growth form with total ray and axial parenchyma fractions (RAP). We found a 29-fold variation in RAP fraction, which was more strongly related to temperature than with precipitation. Stem succulents had the highest RAP values (mean ± SD: 70.2 ± 22.0%), followed by lianas (50.1 ± 16.3%), angiosperm trees and shrubs (26.3 ± 12.4%), and conifers (7.6 ± 2.6%). Differences in RAP fraction between temperate and tropical angiosperm trees (21.1 ± 7.9% vs 36.2 ± 13.4%, respectively) are due to differences in the AP fraction, which is typically three times higher in tropical than in temperate trees, but not in RP fraction. Our results illustrate that both temperature and growth form are important drivers of RAP fractions. These findings should help pave the way to better understand the various functions of RAP in plants.

  11. An electrochemical approach to monitor pH change in agar media during plant tissue culture.

    PubMed

    Wang, Min; Ha, Yang

    2007-05-15

    In this work, metal oxide microelectrodes were developed to monitor pH change in agar media during plant tissue culture. An antimony wire was produced by a new approach "capillary melt method". The surface of the obtained antimony wire was oxidized in a potassium nitrate melt to fabricate an antimony oxide film for pH sensing. Characterization results show that the oxide layer grown on the wire surface consists of Sb(2)O(3) crystal phase. The sensing response, open-circuit potential, of the electrode has a good linear relationship (R(2)=1.00) with pH value of the test solution. Adding organic compounds into the test media would not affect the linear relationship, although the slope of the lines varied with different ingredients added. The antimony oxide electrodes were employed to continuously monitor pH change of agar culture media during a 2-week plant tissue culture of Dendrobium candidum. The antimony oxide electrode fabricated this way has the advantages of low cost, easy fabrication, fast response, and almost no contamination introduced into the system. It would be suitable for in situ and continuous pH measurement in many bio applications.

  12. Ground cover estimated from aerial photographs

    NASA Technical Reports Server (NTRS)

    Gerbermann, A. H.; Cuellar, J. A.; Wiegand, C. L.

    1976-01-01

    Estimates of per cent ground cover made by ground observers were compared with independent estimates made on the basis of low-altitude (640-1219 m) aerial photographs of the same fields. Standard statistical simple correlation and linear regression analyses revealed a high correlation between the two estimation methods. In crops such as grain, sorghum, corn, and forage sorghum, in which the broadest part of the leaf canopy is near the top of the plant, there was a tendency to overestimate the per cent ground cover from aerial photographs.

  13. Development of Rapid Isothermal Amplification Assays for Detection of Phytophthora spp. in Plant Tissue.

    PubMed

    Miles, Timothy D; Martin, Frank N; Coffey, Michael D

    2015-02-01

    Several isothermal amplification techniques recently have been developed that are tolerant of inhibitors present in many plant extracts, which can reduce the need for obtaining purified DNA for running diagnostic assays. One such commercially available technique that has similarities with real-time polymerase chain reaction (PCR) for designing primers and a labeled probe is recombinase polymerase amplification (RPA). This technology was used to develop two simple and rapid approaches for detection of Phytophthora spp.: one genus-specific assay multiplexed with a plant internal control and the other species-specific assays for Phytophthora ramorum and P. kernoviae. All assays were tested for sensitivity (ranging from 3 ng to 1 fg of DNA) and specificity using DNA extracted from more than 136 Phytophthora taxa, 21 Pythium spp., 1 Phytopythium sp., and a wide range of plant species. The lower limit of linear detection using purified DNA was 200 to 300 fg of DNA in all pathogen RPA assays. Six different extraction buffers were tested for use during plant tissue maceration and the assays were validated in the field by collecting 222 symptomatic plant samples from over 50 different hosts. Only 56 samples were culture positive for Phytophthora spp. whereas 91 were positive using the Phytophthora genus-specific RPA test and a TaqMan real-time PCR assay. A technique for the generation of sequencing templates from positive RPA amplifications to confirm species identification was also developed. These RPA assays have added benefits over traditional technologies because they are rapid (results can be obtained in as little as 15 min), do not require DNA extraction or extensive training to complete, use less expensive portable equipment than PCR-based assays, and are significantly more specific than current immunologically based methods. This should provide a rapid, field-deployable capability for pathogen detection that will facilitate point-of-sample collection processing

  14. Sensitive PCR analysis of animal tissue samples for fragments of endogenous and transgenic plant DNA.

    PubMed

    Nemeth, Anne; Wurz, Andreas; Artim, Lori; Charlton, Stacy; Dana, Greg; Glenn, Kevin; Hunst, Penny; Jennings, James; Shilito, Ray; Song, Ping

    2004-10-06

    An optimized DNA extraction protocol for animal tissues coupled with sensitive PCR methods was used to determine whether trace levels of feed-derived DNA fragments, plant and/or transgenic, are detectable in animal tissue samples including dairy milk and samples of muscle (meat) from chickens, swine, and beef steers. Assays were developed to detect DNA fragments of both the high copy number chloroplast-encoded maize rubisco gene (rbcL) and single copy nuclear-encoded transgenic elements (p35S and a MON 810-specific gene fragment). The specificities of the two rbcL PCR assays and two transgenic DNA PCR assays were established by testing against a range of conventional plant species and genetically modified maize crops. The sensitivities of the two rbcL PCR assays (resulting in 173 and 500 bp amplicons) were similar, detecting as little as 0.08 and 0.02 genomic equivalents, respectively. The sensitivities of the p35S and MON 810 PCR assays were approximately 5 and 10 genomic equivalents for 123 bp and 149 bp amplicons, respectively, which were considerably less than the sensitivity of the rbcL assays in terms of plant cell equivalents, but approximately similar when the higher numbers of copies of the chloroplast genome per cell are taken into account. The 173 bp rbcL assay detected the target plant chloroplast DNA fragment in 5%, 15%, and 53% of the muscle samples from beef steers, broiler chickens, and swine, respectively, and in 86% of the milk samples from dairy cows. Reanalysis of new aliquots of 31 of the pork samples that were positive in the 173 bp rbcL PCR showed that 58% of these samples were reproducibly positive in this same PCR assay. The 500 bp rbcL assay detected DNA fragments in 43% of the swine muscle samples and 79% of the milk samples. By comparison, no statistically significant detections of transgenic DNA fragments by the p35S PCR assay occurred with any of these animal tissue samples.

  15. Potential of Chilopsis Linearis for Gold Phytomining: Using XAS to Determine Gold Reduction And Nanoparticle Formation Within Plant Tissues

    SciTech Connect

    E, Rodriguez; Parsons, J.G.; Peralta-Videa, J.R.; Cruz-Jiminez, G.; Romera-Gonzalez, J.; Sanchez-Salcido, B.E.; Saupe, G.B.; Duarte-Gardea, M.; Gardea-Torresdey, J.L.

    2009-06-04

    This study reports on the capability of the desert plant Chilopsis linearis (Cav.) Sweet (desert willow) to uptake gold (Au) from gold-enriched media at different plant-growth stages. Plants were exposed to 20, 40, 80, 160, and 320 mg Au L{sup -1} in agar-based growing media for 13, 18, 23, and 35 d. The Au content and oxidation state of Au in the plants were determined using an inductively coupled plasma/optical emission spectrometer (ICP/OES) and X-ray absorption spectroscopy (XAS), respectively. Gold concentrations ranging from 20 to 80 mg Au L{sup -1} did not significantly affect Chilopsis linearis plant growth. The concentration of gold in the plants increased as the age of the plant increased. The Au concentrations in leaves for the 20, 40, 80, and 160 mg Au L{sup -1} treatments were 32, 60, 62, and 179 mg Au kg{sup -1} dry weight mass, respectively, demonstrating the gold uptake capability of desert willow. The XAS data indicated that desert willow produced gold nanoparticles within plant tissues. Plants exposed to 160 mg Au L{sup -1} formed nanoparticles that averaged approximately 8, 35, and 18 in root, stem, and leaves, respectively. It was observed that the average size of the Au nanoparticles formed by the plants is related to the total Au concentration in tissues and their location in the plant.

  16. Robotics and Dynamic Image Analysis for Studies of Gene Expression in Plant Tissues

    PubMed Central

    Hernandez-Garcia, Carlos M.; Chiera, Joseph M.; Finer, John J.

    2010-01-01

    Gene expression in plant tissues is typically studied by destructive extraction of compounds from plant tissues for in vitro analyses. The methods presented here utilize the green fluorescent protein (gfp) gene for continual monitoring of gene expression in the same pieces of tissues, over time. The gfp gene was placed under regulatory control of different promoters and introduced into lima bean cotyledonary tissues via particle bombardment. Cotyledons were then placed on a robotic image collection system, which consisted of a fluorescence dissecting microscope with a digital camera and a 2-dimensional robotics platform custom-designed to allow secure attachment of culture dishes. Images were collected from cotyledonary tissues every hour for 100 hours to generate expression profiles for each promoter. Each collected series of 100 images was first subjected to manual image alignment using ImageReady to make certain that GFP-expressing foci were consistently retained within selected fields of analysis. Specific regions of the series measuring 300 x 400 pixels, were then selected for further analysis to provide GFP Intensity measurements using ImageJ software. Batch images were separated into the red, green and blue channels and GFP-expressing areas were identified using the threshold feature of ImageJ. After subtracting the background fluorescence (subtraction of gray values of non-expressing pixels from every pixel) in the respective red and green channels, GFP intensity was calculated by multiplying the mean grayscale value per pixel by the total number of GFP-expressing pixels in each channel, and then adding those values for both the red and green channels. GFP Intensity values were collected for all 100 time points to yield expression profiles. Variations in GFP expression profiles resulted from differences in factors such as promoter strength, presence of a silencing suppressor, or nature of the promoter. In addition to quantification of GFP intensity, the

  17. AERIAL METHODS OF EXPLORATION

    DTIC Science & Technology

    The development of photointerpretation techniques for identifying kimberlite pipes on aerial photographs is discussed. The geographic area considered is the Daldyn region, which lies in the zone of Northern Taiga of Yakutiya.

  18. Development of a fluorescent in situ hybridization (FISH) technique for visualizing CGMMV in plant tissues.

    PubMed

    Shargil, D; Zemach, H; Belausov, E; Lachman, O; Kamenetsky, R; Dombrovsky, A

    2015-10-01

    Cucumber green mottle mosaic virus (CGMMV), which belongs to the genus Tobamovirus, is a major pathogen of cucurbit crops grown indoors and in open fields. Currently, immunology (e.g., ELISA) and molecular amplification techniques (e.g., RT-PCR) are employed extensively for virus detection in plant tissues and commercial seed lots diagnostics. In this study, a fluorescent in situ hybridization (FISH) technique, using oligonucleotides whose 5'-terminals were labeled with red cyanine 3 (Cy3) or green fluorescein isothiocyanate (FITC), was developed for the visualization of the pathogen in situ. This simple and reliable method allows detection and localization of CGMMV in the vegetative and reproductive tissues of cucumber and melon. When this technique was applied in male flowers, anther tissues were found to be infected; whereas the pollen grains were found to be virus-free. These results have meaningful epidemiological implications for the management of CGMMV, particularly with regard to virus transfer via seed and the role of insects as CGMMV vectors.

  19. Nitrate dynamics in natural plants: insights based on the concentration and natural isotope abundances of tissue nitrate

    PubMed Central

    Liu, Xue-Yan; Koba, Keisuke; Makabe, Akiko; Liu, Cong-Qiang

    2014-01-01

    The dynamics of nitrate (NO−3), a major nitrogen (N) source for natural plants, has been studied mostly through experimental N addition, enzymatic assay, isotope labeling, and genetic expression. However, artificial N supply may not reasonably reflect the N strategies in natural plants because NO−3 uptake and reduction may vary with external N availability. Due to abrupt application and short operation time, field N addition, and isotopic labeling hinder the elucidation of in situ NO−3-use mechanisms. The concentration and natural isotopes of tissue NO−3 can offer insights into the plant NO−3 sources and dynamics in a natural context. Furthermore, they facilitate the exploration of plant NO−3 utilization and its interaction with N pollution and ecosystem N cycles without disturbing the N pools. The present study was conducted to review the application of the denitrifier method for concentration and isotope analyses of NO−3 in plants. Moreover, this study highlights the utility and advantages of these parameters in interpreting NO−3 sources and dynamics in natural plants. We summarize the major sources and reduction processes of NO−3 in plants, and discuss the implications of NO−3 concentration in plant tissues based on existing data. Particular emphasis was laid on the regulation of soil NO−3 and plant ecophysiological functions in interspecific and intra-plant NO−3 variations. We introduce N and O isotope systematics of NO−3 in plants and discuss the principles and feasibilities of using isotopic enrichment and fractionation factors; the correlation between concentration and isotopes (N and O isotopes: δ18O and Δ17O); and isotope mass-balance calculations to constrain sources and reduction of NO−3 in possible scenarios for natural plants are deliberated. Finally, we offer a preliminary framework of intraplant δ18O-NO−3 variation, and summarize the uncertainties in using tissue NO−3 parameters to interpret plant NO−3 utilization

  20. Nitrate dynamics in natural plants: insights based on the concentration and natural isotope abundances of tissue nitrate.

    PubMed

    Liu, Xue-Yan; Koba, Keisuke; Makabe, Akiko; Liu, Cong-Qiang

    2014-01-01

    The dynamics of nitrate (NO(-) 3), a major nitrogen (N) source for natural plants, has been studied mostly through experimental N addition, enzymatic assay, isotope labeling, and genetic expression. However, artificial N supply may not reasonably reflect the N strategies in natural plants because NO(-) 3 uptake and reduction may vary with external N availability. Due to abrupt application and short operation time, field N addition, and isotopic labeling hinder the elucidation of in situ NO(-) 3-use mechanisms. The concentration and natural isotopes of tissue NO(-) 3 can offer insights into the plant NO(-) 3 sources and dynamics in a natural context. Furthermore, they facilitate the exploration of plant NO(-) 3 utilization and its interaction with N pollution and ecosystem N cycles without disturbing the N pools. The present study was conducted to review the application of the denitrifier method for concentration and isotope analyses of NO(-) 3 in plants. Moreover, this study highlights the utility and advantages of these parameters in interpreting NO(-) 3 sources and dynamics in natural plants. We summarize the major sources and reduction processes of NO(-) 3 in plants, and discuss the implications of NO(-) 3 concentration in plant tissues based on existing data. Particular emphasis was laid on the regulation of soil NO(-) 3 and plant ecophysiological functions in interspecific and intra-plant NO(-) 3 variations. We introduce N and O isotope systematics of NO(-) 3 in plants and discuss the principles and feasibilities of using isotopic enrichment and fractionation factors; the correlation between concentration and isotopes (N and O isotopes: δ(18)O and Δ(17)O); and isotope mass-balance calculations to constrain sources and reduction of NO(-) 3 in possible scenarios for natural plants are deliberated. Finally, we offer a preliminary framework of intraplant δ(18)O-NO(-) 3 variation, and summarize the uncertainties in using tissue NO(-) 3 parameters to interpret

  1. [Death by explosion of an aerial mine].

    PubMed

    Stockhausen, Sarah; Wöllner, Kirsten; Madea, Burkhard; Doberentz, Elke

    2014-01-01

    Civilians are rarely killed by military weapons except in times of war. In early 2014, a 50-year-old man died in an explosion of an aerial mine from the Second World War when he was crushing concrete chunks with an excavator at a recycling plant. In the burned operator's cab, the remains of a body were found on the driver's seat. The thorax and the head were missing. Still sticking in the shoe, the right foot severed at the ankle was found about 7 m from the excavator together with numerous small to tiny body parts. At autopsy, the completely disrupted, strongly charred lower torso of a male connected to the left extremities as well as a large number of small tissue fragments and calcined bones were found. According to calculations performed by the seismographical station on the basis of seismic data, only about 45-60 percent of the charge had detonated. The autopsy results illustrate all the more the massive impact of such an explosion.

  2. Volatile profiling of aromatic traditional medicinal plant, Polygonum minus in different tissues and its biological activities.

    PubMed

    Ahmad, Rafidah; Baharum, Syarul Nataqain; Bunawan, Hamidun; Lee, Minki; Mohd Noor, Normah; Rohani, Emelda Roseleena; Ilias, Norashikin; Zin, Noraziah Mohamad

    2014-11-20

    The aim of this research was to identify the volatile metabolites produced in different organs (leaves, stem and roots) of Polygonum minus, an important essential oil producing crop in Malaysia. Two methods of extraction have been applied: Solid Phase Microextraction (SPME) and hydrodistillation coupled with Gas Chromatography-Mass Spectrometry (GC-MS). Approximately, 77 metabolites have been identified and aliphatic compounds contribute significantly towards the aroma and flavour of this plant. Two main aliphatic compounds: decanal and dodecanal were found to be the major contributor. Terpenoid metabolites were identified abundantly in leaves but not in the stem and root of this plant. Further studies on antioxidant, total phenolic content, anticholinesterase and antimicrobial activities were determined in the essential oil and five different extracts. The plant showed the highest DPPH radical scavenging activity in polar (ethanol) extract for all the tissues tested. For anti-acetylcholinesterase activity, leaf in aqueous extract and methanol extract showed the best acetylcholinesterase inhibitory activities. However, in microbial activity, the non-polar extracts (n-hexane) showed high antimicrobial activity against Methicillin-resistant Staphylococcus aureus (MRSA) compared to polar extracts. This study could provide the first step in the phytochemical profiles of volatile compounds and explore the additional value of pharmacology properties of this essential oil producing crop Polygonum minus.

  3. Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp.

    PubMed

    Bogdanove, Adam J; Koebnik, Ralf; Lu, Hong; Furutani, Ayako; Angiuoli, Samuel V; Patil, Prabhu B; Van Sluys, Marie-Anne; Ryan, Robert P; Meyer, Damien F; Han, Sang-Wook; Aparna, Gudlur; Rajaram, Misha; Delcher, Arthur L; Phillippy, Adam M; Puiu, Daniela; Schatz, Michael C; Shumway, Martin; Sommer, Daniel D; Trapnell, Cole; Benahmed, Faiza; Dimitrov, George; Madupu, Ramana; Radune, Diana; Sullivan, Steven; Jha, Gopaljee; Ishihara, Hiromichi; Lee, Sang-Won; Pandey, Alok; Sharma, Vikas; Sriariyanun, Malinee; Szurek, Boris; Vera-Cruz, Casiana M; Dorman, Karin S; Ronald, Pamela C; Verdier, Valérie; Dow, J Maxwell; Sonti, Ramesh V; Tsuge, Seiji; Brendel, Volker P; Rabinowicz, Pablo D; Leach, Jan E; White, Frank F; Salzberg, Steven L

    2011-10-01

    Xanthomonas is a large genus of bacteria that collectively cause disease on more than 300 plant species. The broad host range of the genus contrasts with stringent host and tissue specificity for individual species and pathovars. Whole-genome sequences of Xanthomonas campestris pv. raphani strain 756C and X. oryzae pv. oryzicola strain BLS256, pathogens that infect the mesophyll tissue of the leading models for plant biology, Arabidopsis thaliana and rice, respectively, were determined and provided insight into the genetic determinants of host and tissue specificity. Comparisons were made with genomes of closely related strains that infect the vascular tissue of the same hosts and across a larger collection of complete Xanthomonas genomes. The results suggest a model in which complex sets of adaptations at the level of gene content account for host specificity and subtler adaptations at the level of amino acid or noncoding regulatory nucleotide sequence determine tissue specificity.

  4. Two New Complete Genome Sequences Offer Insight into Host and Tissue Specificity of Plant Pathogenic Xanthomonas spp.▿†

    PubMed Central

    Bogdanove, Adam J.; Koebnik, Ralf; Lu, Hong; Furutani, Ayako; Angiuoli, Samuel V.; Patil, Prabhu B.; Van Sluys, Marie-Anne; Ryan, Robert P.; Meyer, Damien F.; Han, Sang-Wook; Aparna, Gudlur; Rajaram, Misha; Delcher, Arthur L.; Phillippy, Adam M.; Puiu, Daniela; Schatz, Michael C.; Shumway, Martin; Sommer, Daniel D.; Trapnell, Cole; Benahmed, Faiza; Dimitrov, George; Madupu, Ramana; Radune, Diana; Sullivan, Steven; Jha, Gopaljee; Ishihara, Hiromichi; Lee, Sang-Won; Pandey, Alok; Sharma, Vikas; Sriariyanun, Malinee; Szurek, Boris; Vera-Cruz, Casiana M.; Dorman, Karin S.; Ronald, Pamela C.; Verdier, Valérie; Dow, J. Maxwell; Sonti, Ramesh V.; Tsuge, Seiji; Brendel, Volker P.; Rabinowicz, Pablo D.; Leach, Jan E.; White, Frank F.; Salzberg, Steven L.

    2011-01-01

    Xanthomonas is a large genus of bacteria that collectively cause disease on more than 300 plant species. The broad host range of the genus contrasts with stringent host and tissue specificity for individual species and pathovars. Whole-genome sequences of Xanthomonas campestris pv. raphani strain 756C and X. oryzae pv. oryzicola strain BLS256, pathogens that infect the mesophyll tissue of the leading models for plant biology, Arabidopsis thaliana and rice, respectively, were determined and provided insight into the genetic determinants of host and tissue specificity. Comparisons were made with genomes of closely related strains that infect the vascular tissue of the same hosts and across a larger collection of complete Xanthomonas genomes. The results suggest a model in which complex sets of adaptations at the level of gene content account for host specificity and subtler adaptations at the level of amino acid or noncoding regulatory nucleotide sequence determine tissue specificity. PMID:21784931

  5. A workflow to preserve genome-quality tissue samples from plants in botanical gardens and arboreta1

    PubMed Central

    Gostel, Morgan R.; Kelloff, Carol; Wallick, Kyle; Funk, Vicki A.

    2016-01-01

    Premise of the study: Internationally, gardens hold diverse living collections that can be preserved for genomic research. Workflows have been developed for genomic tissue sampling in other taxa (e.g., vertebrates), but are inadequate for plants. We outline a workflow for tissue sampling intended for two audiences: botanists interested in genomics research and garden staff who plan to voucher living collections. Methods and Results: Standard herbarium methods are used to collect vouchers, label information and images are entered into a publicly accessible database, and leaf tissue is preserved in silica and liquid nitrogen. A five-step approach for genomic tissue sampling is presented for sampling from living collections according to current best practices. Conclusions: Collecting genome-quality samples from gardens is an economical and rapid way to make available for scientific research tissue from the diversity of plants on Earth. The Global Genome Initiative will facilitate and lead this endeavor through international partnerships. PMID:27672517

  6. Parameters affecting the efficient delivery of mesoporous silica nanoparticle materials and gold nanorods into plant tissues by the biolistic method.

    PubMed

    Martin-Ortigosa, Susana; Valenstein, Justin S; Sun, Wei; Moeller, Lorena; Fang, Ning; Trewyn, Brian G; Lin, Victor S-Y; Wang, Kan

    2012-02-06

    Applying nanotechnology to plant science requires efficient systems for the delivery of nanoparticles (NPs) to plant cells and tissues. The presence of a cell wall in plant cells makes it challenging to extend the NP delivery methods available for animal research. In this work, research is presented which establishes an efficient NP delivery system for plant tissues using the biolistic method. It is shown that the biolistic delivery of mesoporous silica nanoparticle (MSN) materials can be improved by increasing the density of MSNs through gold plating. Additionally, a DNA-coating protocol is used based on calcium chloride and spermidine for MSN and gold nanorods to enhance the NP-mediated DNA delivery. Furthermore, the drastic improvement of NP delivery is demonstrated when the particles are combined with 0.6 μm gold particles during bombardment. The methodology described provides a system for the efficient delivery of NPs into plant cells using the biolistic method.

  7. Advancements in mass spectrometry for biological samples: Protein chemical cross-linking and metabolite analysis of plant tissues

    SciTech Connect

    Klein, Adam

    2015-01-01

    This thesis presents work on advancements and applications of methodology for the analysis of biological samples using mass spectrometry. Included in this work are improvements to chemical cross-linking mass spectrometry (CXMS) for the study of protein structures and mass spectrometry imaging and quantitative analysis to study plant metabolites. Applications include using matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to further explore metabolic heterogeneity in plant tissues and chemical interactions at the interface between plants and pests. Additional work was focused on developing liquid chromatography-mass spectrometry (LC-MS) methods to investigate metabolites associated with plant-pest interactions.

  8. Constitutive and induced defenses to herbivory in above- and belowground plant tissues.

    PubMed

    Kaplan, Ian; Halitschke, Rayko; Kessler, André; Sardanelli, Sandra; Denno, Robert F

    2008-02-01

    A recent surge in attention devoted to the ecology of soil biota has prompted interest in quantifying similarities and differences between interactions occurring in above- and belowground communities. Furthermore, linkages that interconnect the dynamics of these two spatially distinct ecosystems are increasingly documented. We use a similar approach in the context of understanding plant defenses to herbivory, including how they are allocated between leaves and roots (constitutive defenses), and potential cross-system linkages (induced defenses). To explore these issues we utilized three different empirical approaches. First, we manipulated foliar and root herbivory on tobacco (Nicotiana tabacum) and measured changes in the secondary chemistry of above- and belowground tissues. Second, we reviewed published studies that compared levels of secondary chemistry between leaves and roots to determine how plants distribute putative defense chemicals across the above- and belowground systems. Last, we used meta-analysis to quantify the impact of induced responses across plant tissue types. In the tobacco system, leaf-chewing insects strongly induced higher levels of secondary metabolites in leaves but had no impact on root chemistry. Nematode root herbivores, however, elicited changes in both leaves and roots. Virtually all secondary chemicals measured were elevated in nematode-induced galls, whereas the impact of root herbivory on foliar chemistry was highly variable and depended on where chemicals were produced within the plant. Importantly, nematodes interfered with aboveground metabolites that have biosynthetic sites located in roots (e.g., nicotine) but had the opposite effect (i.e., nematodes elevated foliar expression) on chemicals produced in shoots (e.g., phenolics and terpenoids). Results from our literature review suggest that, overall, constitutive defense levels are extremely similar when comparing leaves with roots, although certain chemical classes (e

  9. Plant maturity and nitrogen fertilization affected fructan metabolism in harvestable tissues of timothy (Phleum pratense L.).

    PubMed

    Ould-Ahmed, Marouf; Decau, Marie-Laure; Morvan-Bertrand, Annette; Prud'homme, Marie-Pascale; Lafrenière, Carole; Drouin, Pascal

    2014-10-15

    Timothy (Phleum pratense L.) is an important grass forage used for pasture, hay, and silage in regions with cool and humid growth seasons. One of the factors affecting the nutritive value of this grass is the concentration of non-structural carbohydrates (NSC), mainly represented by fructans. NSC concentration depends on multiple factors, making it hardly predictable. To provide a better understanding of NSC metabolism in timothy, the effects of maturity stage and nitrogen (N) fertilization level on biomass, NSC and N-compound concentrations were investigated in the tissues used for forage (leaf blades and stems surrounded by leaf sheaths) of hydroponically grown plants. Moreover, activities and relative expression level of enzymes involved in fructan metabolism were measured in the same tissues. Forage biomass was not altered by the fertilization level but was strongly modified by the stage of development. It increased from vegetative to heading stages while leaf-to-stem biomass ratio decreased. Total NSC concentration, which was not altered by N fertilization level, increased between heading and anthesis due to an accumulation of fructans in leaf blades. Fructan metabolizing enzyme activities (fructosyltransferase-FT and fructan exohydrolase-FEH) were not or only slightly altered by both maturity stage and N fertilization level. Conversely, the relative transcript levels of genes coding for enzymes involved in fructan metabolism were modified by N supply (PpFT1 and Pp6-FEH1) or maturity stage (PpFT2). The relative transcript level of PpFT1 was the highest in low N plants while that of Pp6-FEH1 was the highest in high N plants. Morevoer, transcript level of PpFT1 was negatively correlated with nitrate concentration while that of PpFT2 was positively correlated with sucrose concentration. This distinct regulation of the two genes coding for 6-sucrose:fructan fructosyltransferase (6-SFT) may allow a fine adequation of C allocation towards fructan synthesis in

  10. Regeneration of whole fertile plants from 30,000-y-old fruit tissue buried in Siberian permafrost.

    PubMed

    Yashina, Svetlana; Gubin, Stanislav; Maksimovich, Stanislav; Yashina, Alexandra; Gakhova, Edith; Gilichinsky, David

    2012-03-06

    Whole, fertile plants of Silene stenophylla Ledeb. (Caryophyllaceae) have been uniquely regenerated from maternal, immature fruit tissue of Late Pleistocene age using in vitro tissue culture and clonal micropropagation. The fruits were excavated in northeastern Siberia from fossil squirrel burrows buried at a depth of 38 m in undisturbed and never thawed Late Pleistocene permafrost sediments with a temperature of -7 °C. Accelerator mass spectrometry (AMS) radiocarbon dating showed fruits to be 31,800 ± 300 y old. The total γ-radiation dose accumulated by the fruits during this time was calculated as 0.07 kGy; this is the maximal reported dose after which tissues remain viable and seeds still germinate. Regenerated plants were brought to flowering and fruiting and they set viable seeds. At present, plants of S. stenophylla are the most ancient, viable, multicellular, living organisms. Morphophysiological studies comparing regenerated and extant plants obtained from modern seeds of the same species in the same region revealed that they were distinct phenotypes of S. stenophylla. The first generation cultivated from seeds obtained from regenerated plants progressed through all developmental stages and had the same morphological features as parent plants. The investigation showed high cryoresistance of plant placental tissue in permafrost. This natural cryopreservation of plant tissue over many thousands of years demonstrates a role for permafrost as a depository for an ancient gene pool, i.e., preexisting life, which hypothetically has long since vanished from the earth's surface, a potential source of ancient germplasm, and a laboratory for the study of rates of microevolution.

  11. The safety assessment of food ingredients derived from plant cell, tissue and organ cultures: a review.

    PubMed

    Murthy, Hosakatte Niranjana; Georgiev, Milen I; Park, So-Young; Dandin, Vijayalaxmi S; Paek, Kee-Yoeup

    2015-06-01

    Plant cell, tissue and organ cultures (PCTOC) have become an increasingly attractive alternative for the production of various high molecular weight molecules which are used as flavourings, fragrances, colouring agents and food additives. Although PCTOC products are cultivated in vitro in a contamination free environment, the raw material produced from PCTOC may contain many components apart from the target compound. In some cases, PCTOC raw materials may also carry toxins, which may be naturally occurring or accumulated during the culture process. Assessment of the safety of PCTOC products is, therefore, a priority of the biotech industries involved in their production. The safety assessment involves the evaluation of starting material, production process and the end product. Before commercialisation, PCTOC products should be evaluated for their chemical and biological properties, as well as for their toxicity. In this review, measures and general criteria for biosafety evaluation of PCTOC products are addressed and thoroughly discussed.

  12. Isolation of functional RNA from plant tissues rich in phenolic compounds.

    PubMed

    Schneiderbauer, A; Sandermann, H; Ernst, D

    1991-08-15

    A method for the isolation of RNA from different tissues of trees (seedlings, saplings, and adult trees) is described. Using this procedure it is possible to remove large amounts of disturbing polyphenolic compounds from nucleic acids. The method involves an acetone treatment of the freeze-dried and powdered plant material, the use of high salt concentrations in the extraction buffer and an aqueous two-phase system. These steps were combined with the conventional phenol/chloroform extraction and CsCl centrifugation. The method has been successfully applied to the isolation and purification of RNA from pine (Pinus sylvestris L. and Pinus mugo Turr.), Norway spruce (Picea abies L.), and beech (Fagus sylvatica L.). The functional quality of RNA extracted by this procedure has been characterized by its uv spectrum, by agarose gel electrophoresis with ethidium bromide staining, Northern blot hybridization, and in vitro translation.

  13. Application of SEM and EDX in studying biomineralization in plant tissues.

    PubMed

    He, Honghua; Kirilak, Yaowanuj

    2014-01-01

    This chapter describes protocols using formalin-acetic acid-alcohol (FAA) to fix plant tissues for studying biomineralization by means of scanning electron microscopy (SEM) and qualitative energy-dispersive X-ray microanalysis (EDX). Specimen preparation protocols for SEM and EDX mainly include fixation, dehydration, critical point drying (CPD), mounting, and coating. Gold-coated specimens are used for SEM imaging, while gold- and carbon-coated specimens are prepared for qualitative X-ray microanalyses separately to obtain complementary information on the elemental compositions of biominerals. During the specimen preparation procedure for SEM, some biominerals may be dislodged or scattered, making it difficult to determine their accurate locations, and light microscopy is used to complement SEM studies. Specimen preparation protocols for light microscopy generally include fixation, dehydration, infiltration and embedding with resin, microtome sectioning, and staining. In addition, microwave processing methods are adopted here to speed up the specimen preparation process for both SEM and light microscopy.

  14. Use of Solid-Phase Extraction To Determine Ergosterol Concentrations in Plant Tissue Colonized by Fungi

    PubMed Central

    Gessner, M. O.; Schmitt, A. L.

    1996-01-01

    At present, the ergosterol and acetate-to-ergosterol techniques are generally considered to be the methods of choice to quantify fungal biomass, growth rate, and productivity under natural conditions. Both methods rely on the accurate isolation and quantification of ergosterol, a major membrane component of eumycotic fungi. Taking advantage of the solid-phase extraction (SPE) technique, we present a novel method to determine the ergosterol concentration in lipid extracts derived from plant tissues and dead organic matter colonized by fungi. In this method, a primary alkaline extract is acidified and passed through a reversed-phase (C(inf18)) SPE column. The column is then washed with an alkaline methanol-water solution to eliminate interfering substances and increase pH and is thoroughly dried in air. Ergosterol is eluted with alkaline isopropanol. This eluting solvent was chosen to produce a strongly basic pH of the final extract and thus confer stability on the ergosterol molecule before high-performance liquid chromatography analysis. The recovery of ergosterol from plant tissues and the O(infhf) horizon of a woodland soil ranged from 85 to 98%, and the overall extraction efficiency was similar to that obtained by a conventional procedure involving liquid-liquid extraction. Potential pitfalls of ergosterol analysis by SPE include (i) insufficient acidification before sample loading on the extraction column, resulting in a poor affinity of ergosterol for the sorbent; (ii) incomplete drying of the sorbent bed before the elution step; and (iii) chemical breakdown of ergosterol after elution, which was found to be related to a low pH of the final extract and a high concentration of matrix compounds. When these pitfalls are avoided, SPE is an attractive alternative to existing methods of ergosterol analysis of environmental samples. PMID:16535229

  15. Aerial Photography Summary Record System

    USGS Publications Warehouse

    ,

    1998-01-01

    The Aerial Photography Summary Record System (APSRS) describes aerial photography projects that meet specified criteria over a given geographic area of the United States and its territories. Aerial photographs are an important tool in cartography and a number of other professions. Land use planners, real estate developers, lawyers, environmental specialists, and many other professionals rely on detailed and timely aerial photographs. Until 1975, there was no systematic approach to locate an aerial photograph, or series of photographs, quickly and easily. In that year, the U.S. Geological Survey (USGS) inaugurated the APSRS, which has become a standard reference for users of aerial photographs.

  16. Screenhouse and field persistence of nonpathogenic endophytic Fusarium oxysporum in Musa tissue culture plants.

    PubMed

    Paparu, Pamela; Dubois, Thomas; Gold, Clifford S; Niere, Björn; Adipala, Ekwamu; Coyne, Daniel

    2008-04-01

    Two major biotic constraints to highland cooking banana (Musa spp., genome group AAA-EA) production in Uganda are the banana weevil Cosmopolites sordidus and the burrowing nematode Radopholus similis. Endophytic Fusarium oxysporum strains inoculated into tissue culture banana plantlets have shown control of the banana weevil and the nematode. We conducted screenhouse and field experiments to investigate persistence in the roots and rhizome of two endophytic Fusarium oxysporum strains, V2w2 and III4w1, inoculated into tissue-culture banana plantlets of highland cooking banana cultivars Kibuzi and Nabusa. Re-isolation of F. oxysporum showed that endophyte colonization decreased faster from the rhizomes than from the roots of inoculated plants, both in the screenhouse and in the field. Whereas rhizome colonization by F. oxysporum decreased in the screenhouse (4-16 weeks after inoculation), root colonization did not. However, in the field (17-33 weeks after inoculation), a decrease was observed in both rhizome and root colonization. The results show a better persistence in the roots than rhizomes of endophytic F. oxysporum strains V2w2 and III4w1.

  17. Preventing False Negatives for Histochemical Detection of Phenolics and Lignins in PEG-Embedded Plant Tissues.

    PubMed

    Ferreira, Bruno G; Falcioni, Renan; Guedes, Lubia M; Avritzer, Sofia C; Antunes, Werner C; Souza, Luiz A; Isaias, Rosy M S

    2017-02-01

    Polyethylene glycol (PEG) is a low-cost and advantageous embedding medium, which maintains the majority of cell contents unaltered during the embedding process. Some hard or complex plant materials are better embedded in PEG than in other usual embedding media. However, the histochemical tests for phenolics and lignins in PEG-embedded plant tissues commonly result in false negatives. We hypothesize that these false negatives should be prevented by the use of distinct fixatives, which should avoid the bonds between PEG and phenols. Novel protocols for phenolics and flavanols detection are efficiently tested, with fixation of the samples in ferrous sulfate and formalin or in caffeine and sodium benzoate, respectively. The differentiation of lignin types is possible in safranin-stained sections observed under fluorescence. The Maule's test faultlessly distinguishes syringyl-rich from guaiacyl- and hydroxyphenyl-rich lignins in PEG-embedded material under light microscopy. Current hypothesis is corroborated, that is, the adequate fixation solves the false-negative results, and the new proposed protocols fill up some gaps on the detection of phenolics and lignins.

  18. An evolutionary view of plant tissue culture: somaclonal variation and selection.

    PubMed

    Wang, Qin-Mei; Wang, Li

    2012-09-01

    Plants regenerated from in vitro cultures possess an array of genetic and epigenetic changes. This phenomenon is known as 'somaclonal variation' and the frequency of somaclonal variation (SV) is usually elevated far beyond that expected in nature. Initially, the relationship between time in culture and detected SV was found to support the widespread belief that SV accumulates with culture age. However, a few studies indicated that older cultures yielded regenerants with less SV. What leads to this seemed contradiction? In this article, we have proposed a novel in vitro callus selection hypothesis, differentiation bottleneck (D-bottleneck) and dedifferentiation bottleneck (Dd-bottleneck), which consider natural selection theory to be fit for cell population in vitro. The results of multiplication races between the cells with the true-to-type phenotype and the deleterious cells determine the increase/decrease of SV frequencies in calli or regenerants as in vitro culture time goes on. The possibility of interpreting the complex situation of time-related SV by the evolutionary theory is discussed in this paper. In addition, the SV threshold, space-determined hypothesis and D-bottleneck are proposed to interpret the loss of the regenerability through a long period of plant tissue culture (PTC).

  19. Multiscale characterization of pyritized plant tissues in blueschist facies metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Bernard, Sylvain; Benzerara, Karim; Beyssac, Olivier; Brown, Gordon E., Jr.

    2010-09-01

    Pyritized plant tissues with well-preserved morphology were studied in rocks from Vanoise (western Alps, France) that experienced high-pressure, low-temperature metamorphic conditions in the blueschist facies during the Alpine orogeny. Organic and inorganic phases composing these fossils were characterized down to the nanometer scale by Raman microspectroscopy, scanning transmission X-ray microscopy and transmission electron microscopy. The graphitic but disordered organic matter composing these fossils is chemically and structurally homogeneous and mostly contains aromatic functional groups. Its original chemistry remains undefined likely because it was significantly transformed by diagenetic processes and/or thermal degradation during metamorphism. Various mineral phases are closely associated with this organic matter, including sulphides such as pyrite and pyrrhotite, carbonates such as ankerite and calcite, and iron oxides. A tentative time sequence of formation of these diverse mineral phases relative to organic matter decay is proposed. The absence of traces of organic matter sulphurization, the pervasive pyritization of the vascular tissues and the presence of ankerite suggest that the depositional/diagenetic environment of these metasediments was likely rich in reactive iron. Fe-sulphides and ankerite likely precipitated early and might have promoted the preservation of the fossilized biological soft tissues by providing mechanical resistance to compaction during diagenesis and subsequent metamorphism. In contrast, iron oxides which form rims of 100-nm in thickness at the interface between organic matter and Fe-sulphides may result from metamorphic processes. This study illustrates that it may be possible in some instances to deconvolve metamorphic from diagenetic imprints and opens new avenues to better constrain processes that may allow the preservation of organic fossils during diagenesis and metamorphism.

  20. Ionic Balance in Different Tissues of the Tomato Plant in Relation to Nitrate, Urea, or Ammonium Nutrition

    PubMed Central

    Kirkby, E. A.; Mengel, K.

    1967-01-01

    An investigation was carried out to study the cation-anion balance in different tissues of tomato plants supplied with nitrate, urea, or ammonium nitrogen in water culture. Irrespective of the form of nutrition, a very close balance was found in the tissues investigated (leaves, petioles, stems, and roots) between total cations (Ca, Mg, K and Na), and total anions (NO3−, H2PO4−, SO4−−, Cl−) total non-volatile organic acids, oxalate, and uronic acids. In comparison with the tissues of the nitrate fed plants, the corresponding ammonium tissues contained lower concentrations of inorganic cations, and organic acids and a correspondingly higher proportion of inorganic anions. Tissues from the urea plants were intermediate between the other 2 treatments. These results were independent of concentration or dilution effects, caused by growth. In all tissues approximately equivalent amounts of diffusible cations (Ca++, Mg++, K+ and Na+), and diffusible anions (No3−, SO4−−, H2PO4−, Cl−) and non-volatile organic acids were found. An almost 1:1 ratio occurred between the levels of bound calcium and magnesium, and oxalate and uronic acids. This points to the fact that in the tomato plant the indiffusible anions are mainly oxalate and pectate. Approximately equivalent values were found for the alkalinity of the ash, and organic anions (total organic acids including oxalate, and uronic acids). The influence of nitrate, urea, and ammonium nitrogen nutrition on the cation-anion balance and the organic acid content of the plant has been considered and the effects of these different nitrogen forms on both the pH of the plant and the nutrient medium and its consequences discussed. PMID:16656486

  1. Qualitative and quantitative analysis of anthraquinone derivatives in rhizomes of tissue culture-raised Rheum emodi Wall. plants.

    PubMed

    Malik, Sonia; Sharma, Nandini; Sharma, Upendra K; Singh, Narendra P; Bhushan, Shashi; Sharma, Madhu; Sinha, Arun K; Ahuja, Paramvir S

    2010-06-15

    This paper presents quantification of five anthraquinone derivatives (emodin glycoside, chrysophanol glycoside, emodin, chrysophanol and physcion) in rhizomes of hardened micro-propagated Rheum emodi plants using high-performance liquid chromatography (HPLC). Aseptic shoot cultures were raised using rhizome buds. Shoot multiplication occurred in both agar gelled and liquid Murashige and Skoog (MS) medium supplemented with 10.0 microM 6-benzylaminopurine (BAP) and 5.0 microM indole-3-butyric acid (IBA). Rooted plantlets obtained on plant growth regulator (PGR)-free medium were transferred to soil with 92% survival. HPLC analysis revealed the presence of five anthraquinone derivatives: emodin glycoside, chrysophanol glycoside, emodin, chrysophanol and physcion in rhizomes of tissue culture-raised plants. Only emodin glycoside (1) and chrysophanol glycoside (2) were present in 6-month-old hardened tissue cultured plants. In addition, the other three derivatives (emodin (3), chrysophanol (4) and physcion (5)) were also detected after 9 months.

  2. Micro-scale elemental partition in tissues of the aquatic plant Lemna minor L. exposed to highway drainage water

    NASA Astrophysics Data System (ADS)

    Mendes Godinho, R.; Raimundo, J.; Vale, C.; Anes, B.; Brito, P.; Alves, L. C.; Pinheiro, T.

    2013-07-01

    In the scope of a monitoring program to assess the environmental impact of automobile traffic over one main bridge in Lisbon, both water and duckweed (Lemna minor L.) were sampled from the road drainage tanks and analyzed for chemical elements. Plants uptake Cr, Mn, Cu, and Zn metals from rain water draining the bridge road. Nuclear microprobe elemental maps of cryosections of L. minor tissues showed that incorporated elements were internalized in fronds of the plant. This approach at micrometer level allows a better knowledge of the elemental tissue partitioning in this biomonitor organism.

  3. Adaptive control of an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Nguen, V. F.; Putov, A. V.; Nguen, T. T.

    2017-01-01

    The paper deals with design and comparison of adaptive control systems based on plant state vector and output for unmanned aerial vehicle (UAV) with nonlinearity and uncertainty of parameters of the aircraft incomplete measurability of its state and presence of wind disturbances. The results of computer simulations of flight stabilization processes on the example of the experimental model UAV-70V (Aerospace Academy, Hanoi) with presence of periodic and non-periodic vertical wind disturbances with designed adaptive control systems based on plant state vector with state observer and plant output.

  4. Tissue Culture as a Source of Replicates in Nonmodel Plants: Variation in Cold Response in Arabidopsis lyrata ssp. petraea

    PubMed Central

    Kenta, Tanaka; Edwards, Jessica E. M.; Butlin, Roger K.; Burke, Terry; Quick, W. Paul; Urwin, Peter; Davey, Matthew P.

    2016-01-01

    While genotype–environment interaction is increasingly receiving attention by ecologists and evolutionary biologists, such studies need genetically homogeneous replicates—a challenging hurdle in outcrossing plants. This could be potentially overcome by using tissue culture techniques. However, plants regenerated from tissue culture may show aberrant phenotypes and “somaclonal” variation. Here, we examined somaclonal variation due to tissue culturing using the response to cold treatment of photosynthetic efficiency (chlorophyll fluorescence measurements for Fv/Fm, Fv′/Fm′, and ΦPSII, representing maximum efficiency of photosynthesis for dark- and light-adapted leaves, and the actual electron transport operating efficiency, respectively, which are reliable indicators of photoinhibition and damage to the photosynthetic electron transport system). We compared this to variation among half-sibling seedlings from three different families of Arabidopsis lyrata ssp. petraea. Somaclonal variation was limited, and we could detect within-family variation in change in chlorophyll fluorescence due to cold shock successfully with the help of tissue-culture derived replicates. Icelandic and Norwegian families exhibited higher chlorophyll fluorescence, suggesting higher performance after cold shock, than a Swedish family. Although the main effect of tissue culture on Fv/Fm, Fv′/Fm′, and ΦPSII was small, there were significant interactions between tissue culture and family, suggesting that the effect of tissue culture is genotype-specific. Tissue-cultured plantlets were less affected by cold treatment than seedlings, but to a different extent in each family. These interactive effects, however, were comparable to, or much smaller than the single effect of family. These results suggest that tissue culture is a useful method for obtaining genetically homogenous replicates for studying genotype–environment interaction related to adaptively-relevant phenotypes, such

  5. Tissue Culture as a Source of Replicates in Nonmodel Plants: Variation in Cold Response in Arabidopsis lyrata ssp. petraea.

    PubMed

    Kenta, Tanaka; Edwards, Jessica E M; Butlin, Roger K; Burke, Terry; Quick, W Paul; Urwin, Peter; Davey, Matthew P

    2016-12-07

    While genotype-environment interaction is increasingly receiving attention by ecologists and evolutionary biologists, such studies need genetically homogeneous replicates-a challenging hurdle in outcrossing plants. This could be potentially overcome by using tissue culture techniques. However, plants regenerated from tissue culture may show aberrant phenotypes and "somaclonal" variation. Here, we examined somaclonal variation due to tissue culturing using the response to cold treatment of photosynthetic efficiency (chlorophyll fluorescence measurements for Fv/Fm, Fv'/Fm', and ΦPSII, representing maximum efficiency of photosynthesis for dark- and light-adapted leaves, and the actual electron transport operating efficiency, respectively, which are reliable indicators of photoinhibition and damage to the photosynthetic electron transport system). We compared this to variation among half-sibling seedlings from three different families of Arabidopsis lyrata ssp. petraea Somaclonal variation was limited, and we could detect within-family variation in change in chlorophyll fluorescence due to cold shock successfully with the help of tissue-culture derived replicates. Icelandic and Norwegian families exhibited higher chlorophyll fluorescence, suggesting higher performance after cold shock, than a Swedish family. Although the main effect of tissue culture on Fv/Fm, Fv'/Fm', and ΦPSII was small, there were significant interactions between tissue culture and family, suggesting that the effect of tissue culture is genotype-specific. Tissue-cultured plantlets were less affected by cold treatment than seedlings, but to a different extent in each family. These interactive effects, however, were comparable to, or much smaller than the single effect of family. These results suggest that tissue culture is a useful method for obtaining genetically homogenous replicates for studying genotype-environment interaction related to adaptively-relevant phenotypes, such as cold response, in

  6. Chemical composition and anticandidal properties of the essential oil isolated from aerial parts of Cotula cinerea: a rare and threatened medicinal plant in Morocco.

    PubMed

    El Bouzidi, Leila; Abbad, Abdelaziz; Fattarsi, Karine; Hassani, Lahcen; Leach, David; Markouk, Mohammed; Legendre, Laurent; Bekkouche, Khalid

    2011-10-01

    The chemical composition and anticandidal properties of the essential oil of Moroccan Cotula cinerea aerial parts have been examined. GC-MS data were used to identify 24 constituents. Oxygenated monoterpenes constituted the main fraction with trans-thujone (41.4%), cis-verbenyl acetate (24.7%), 1,8-cineole (8.2%) and camphor (5.5%) as the major components. The anticandidal activity of the essential oil was evaluated using a panel of human pathogenic fungi (Candida albicans CCMM L4 and CCMM L5, C. krusei CCMM L10, C. glabrata CCMM L7 and C. parapsilosis CCMM L18). The oil showed high anticandidal activity against all investigated strains with minimal inhibitory concentrations of 3.2 to 4.7 mg/mL depending on the tested yeast and 5.9 mg/mL as a minimal candidicidal concentration value. These findings add significant information to the pharmacological activity of Cotula cinerea essential oil, which may present a good alternative to antibiotics for the treatment of resistant strains of Candida.

  7. Aerial Explorers and Robotic Ecosystems

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg

    2004-01-01

    A unique bio-inspired approach to autonomous aerial vehicle, a.k.a. aerial explorer technology is discussed. The work is focused on defining and studying aerial explorer mission concepts, both as an individual robotic system and as a member of a small robotic "ecosystem." Members of this robotic ecosystem include the aerial explorer, air-deployed sensors and robotic symbiotes, and other assets such as rovers, landers, and orbiters.

  8. Fungal endophytes in aboveground tissues of desert plants: infrequent in culture, but highly diverse and distinctive symbionts.

    PubMed

    Massimo, Nicholas C; Nandi Devan, M M; Arendt, Kayla R; Wilch, Margaret H; Riddle, Jakob M; Furr, Susan H; Steen, Cole; U'Ren, Jana M; Sandberg, Dustin C; Arnold, A Elizabeth

    2015-07-01

    In hot deserts, plants cope with aridity, high temperatures, and nutrient-poor soils with morphological and biochemical adaptations that encompass intimate microbial symbioses. Whereas the root microbiomes of arid-land plants have received increasing attention, factors influencing assemblages of symbionts in aboveground tissues have not been evaluated for many woody plants that flourish in desert environments. We evaluated the diversity, host affiliations, and distributions of endophytic fungi associated with photosynthetic tissues of desert trees and shrubs, focusing on nonsucculent woody plants in the species-rich Sonoran Desert. To inform our strength of inference, we evaluated the effects of two different nutrient media, incubation temperatures, and collection seasons on the apparent structure of endophyte assemblages. Analysis of >22,000 tissue segments revealed that endophytes were isolated four times more frequently from photosynthetic stems than leaves. Isolation frequency was lower than expected given the latitude of the study region and varied among species a function of sampling site and abiotic factors. However, endophytes were very species-rich and phylogenetically diverse, consistent with less arid sites of a similar latitudinal position. Community composition differed among host species, but not as a function of tissue type, sampling site, sampling month, or exposure. Estimates of abundance, diversity, and composition were not influenced by isolation medium or incubation temperature. Phylogenetic analyses of the most commonly isolated genus (Preussia) revealed multiple evolutionary origins of desert-plant endophytism and little phylogenetic structure with regard to seasonality, tissue preference, or optimal temperatures and nutrients for growth in vitro. Together, these results provide insight into endophytic symbioses in desert-plant communities and can be used to optimize strategies for capturing endophyte biodiversity at regional scales.

  9. Fungal endophytes in above-ground tissues of desert plants: infrequent in culture, but highly diverse and distinctive symbionts

    PubMed Central

    Massimo, Nicholas C.; Nandi Devan, MM; Arendt, Kayla R.; Wilch, Margaret H.; Riddle, Jakob M.; Furr, Susan H.; Steen, Cole; U'Ren, Jana M.; Sandberg, Dustin C.; Arnold, A. Elizabeth

    2015-01-01

    In hot deserts, plants cope with aridity, high temperatures, and nutrient-poor soils with morphological and biochemical adaptations that encompass intimate microbial symbioses. Whereas the root microbiomes of arid-land plants have received increasing attention, factors influencing assemblages of symbionts in above-ground tissues have not been evaluated for many woody plants that flourish in desert environments. We evaluated the diversity, host affiliations, and distributions of endophytic fungi associated with photosynthetic tissues of desert trees and shrubs, focusing on non-succulent woody plants in the species-rich Sonoran Desert. To inform our strength of inference, we evaluated the effects of two different nutrient media, incubation temperatures, and collection seasons on the apparent structure of endophyte assemblages. Analysis of >22,000 tissue segments revealed that endophytes were isolated four times more frequently from photosynthetic stems than leaves. Isolation frequency was lower than expected given the latitude of the study region, and varied among species a function of sampling site and abiotic factors. However, endophytes were very species-rich and phylogenetically diverse, consistent with less-arid sites of a similar latitudinal position. Community composition differed among host species, but not as a function of tissue type, sampling site, sampling month, or exposure. Estimates of abundance, diversity and composition were not influenced by isolation medium or incubation temperature. Phylogenetic analyses of the most commonly isolated genus (Preussia) revealed multiple evolutionary origins of desert-plant endophytism and little phylogenetic structure with regard to seasonality, tissue preference, or optimal temperatures and nutrients for growth in vitro. Together, these results provide insight into endophytic symbioses in desert plant communities, and can be used to optimize strategies for capturing endophyte biodiversity at regional scales. PMID

  10. Agar-block microcosms for controlled plant tissue decomposition by aerobic fungi.

    PubMed

    Schilling, Jonathan S; Jacobson, K Brook

    2011-02-03

    The two principal methods for studying fungal biodegradation of lignocellulosic plant tissues were developed for wood preservative testing (soil-block; agar-block). It is well-accepted that soil-block microcosms yield higher decay rates, fewer moisture issues, lower variability among studies, and higher thresholds of preservative toxicity. Soil-block testing is thus the more utilized technique and has been standardized by American Society for Testing and Materials (ASTM) (method D 1413-07). The soil-block design has drawbacks, however, using locally-variable soil sources and in limiting the control of nutrients external (exogenous) to the decaying tissues. These drawbacks have emerged as a problem in applying this method to other, increasingly popular research aims. These modern aims include degrading lignocellulosics for bioenergy research, testing bioremediation of co-metabolized toxics, evaluating oxidative mechanisms, and tracking translocated elements along hyphal networks. Soil-blocks do not lend enough control in these applications. A refined agar-block approach is necessary. Here, we use the brown rot wood-degrading fungus Serpula lacrymans to degrade wood in agar-block microcosms, using deep Petri dishes with low-calcium agar. We test the role of exogenous gypsum on decay in a time-series, to demonstrate the utility and expected variability. Blocks from a single board rip (longitudinal cut) are conditioned, weighed, autoclaved, and introduced aseptically atop plastic mesh. Fungal inoculations are at each block face, with exogenous gypsum added at interfaces. Harvests are aseptic until the final destructive harvest. These microcosms are designed to avoid block contact with agar or Petri dish walls. Condensation is minimized during plate pours and during incubation. Finally, inoculum/gypsum/wood spacing is minimized but without allowing contact. These less technical aspects of agar-block design are also the most common causes of failure and the key source of

  11. Routine sample preparation and HPLC analysis for ascorbic acid (vitamin C) determination in wheat plants and Arabidopsis leaf tissues.

    PubMed

    Szalai, Gabriella; Janda, T; Pál, Magda

    2014-06-01

    Plants have developed various mechanisms to protect themselves against oxidative stress. One of the most important non-enzymatic antioxidants is ascorbic acid. There is thus a need for a rapid, sensitive method for the analysis of the reduced and oxidised forms of ascorbic acid in crop plants. In this paper a simple, economic, selective, precise and stable HPLC method is presented for the detection of ascorbate in plant tissue. The sensitivity, the short retention time and the simple isocratic elution mean that the method is suitable for the routine quantification of ascorbate in a high daily sample number. The method has been found to be better than previously reported methods, because of the use of an economical, readily available mobile phase, UV detection and the lack of complicated extraction procedures. The method has been tested on Arabidopsis plants with different ascorbate levels and on wheat plants during Cd stress.

  12. Frost resistance of reproductive tissues during various stages of development in high mountain plants.

    PubMed

    Neuner, Gilbert; Erler, Agnes; Ladinig, Ursula; Hacker, Jürgen; Wagner, Johanna

    2013-01-01

    Frost resistance of reproductive vs aboveground vegetative structures was determined for six common European high alpine plant species that can be exposed to frosts throughout their whole reproductive cycle. Freezing tests were carried out in the bud, anthesis and fruit stage. Stigma and style, ovary, placenta, ovule, flower stalk/peduncle and, in Ranunculus glacialis, the receptacle were separately investigated. In all species, the vegetative organs tolerated on an average 2-5 K lower freezing temperatures than the most frost-susceptible reproductive structures that differed in their frost resistance. In almost all species, stigma, style and the flower stalk/peduncle were the most frost-susceptible reproductive structures. Initial frost damage (LT₁₀) to the most susceptible reproductive structure usually occurred between -2 and -4°C independent of the reproductive stage. The median LT₅₀ across species for stigma and style ranged between -3.4 and -3.7°C and matched the mean ice nucleation temperature (-3.7 ± 1.4°C). In R. glacialis, the flower stalk was the most frost-susceptible structure (-5.4°C), and was in contrast to the other species ice-tolerant. The ovule and the placenta were usually the most frost-resistant structures. During reproductive development, frost resistance (LT₅₀) of single reproductive structures mostly showed no significant change. However, significant increases or decreases were also observed (2.1 ± 1.2 K). Reproductive tissues of nival species generally tolerated lower temperatures than species occurring in the alpine zone. The low frost resistance of reproductive structures before, during and shortly after anthesis increases the probability of frost damage and thus, may restrict successful sexual plant reproduction with increasing altitude.

  13. Chromium localization in plant tissues of Lycopersicum esculentum Mill using ICP-MS and ion microscopy (SIMS)

    NASA Astrophysics Data System (ADS)

    Mangabeira, Pedro Antonio; Gavrilov, Konstantin L.; Almeida, Alex-Alan Furtado de; Oliveira, Arno Heeren; Severo, Maria Isabel; Rosa, Tiago Santana; Silva, Delmira da Costa; Labejof, Lise; Escaig, Françoise; Levi-Setti, Riccardo; Mielke, Marcelo Schramm; Loustalot, Florence Grenier; Galle, Pierre

    2006-03-01

    High-resolution imaging secondary ion mass spectrometry (HRI-SIMS) in combination with inductively coupled plasma mass spectrometry (ICP-MS) were utilised to determine specific sites of chromium concentration in tomato plant tissues (roots, stems and leaves). The tissues were obtained from plants grown for 2 months in hydroponic conditions with Cr added in a form chromium salt (CrCl 3·6H 2O) to concentrations of 25 and 50 mg/L. The chemical fixation procedure used permit to localize only insoluble or strongly bound Cr components in tomato plant tissue. In this work no quantitative SIMS analysis was made. HRI-SIMS analysis revealed that the transport of chromium is restricted to the vascular system of roots, stems and leaves. No Cr was detected in epidermis, palisade parenchyma and spongy parenchyma cells of the leaves. The SIMS-300 spectra obtained from the tissues confirm the HRI-SIMS observations. The roots, and especially walls of xylem vessels, were determined as the principal site of chromium accumulation in tomato plants.

  14. Aerial of the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Even in this aerial view at KSC, the Vehicle Assembly Building is imposing. In front of it is the Launch Control Center. In the background is the Rotation/Processing Facility, next to the Banana Creek. In the foreground is the Saturn Causeway that leads to Launch Pads 39A and 39B.

  15. Aerial photographic reproductions

    USGS Publications Warehouse

    ,

    1971-01-01

    Geological Survey vertical aerial photography is obtained primarily for topographic and geologic mapping. Reproductions from this photography are usually satisfactory for general use. Because reproductions are not stocked, but are custom processed for each order, they cannot be returned for credit or refund.

  16. Salt stress enhances xylem development and expression of S-adenosyl-L-methionine synthase in lignifying tissues of tomato plants.

    PubMed

    Sánchez-Aguayo, Inmaculada; Rodríguez-Galán, José Manuel; García, Remedios; Torreblanca, José; Pardo, José Manuel

    2004-12-01

    S-Adenosyl-L-methionine synthase (SAM; ATP: L-methionine adenosyltransferase, EC 2.5.1.6) catalyzes the biosynthesis of S-adenosyl-L-methionine (AdoMet), a universal methyl-group donor. This enzyme is induced by salinity stress in tomato (Lycopersicon esculentum Mill.). To elucidate the role of SAM and AdoMet in the adaptation of plants to a saline environment, the expression pattern and histological distribution of SAM was investigated in control and salt-stressed tomato plants. Immunohistochemical analysis showed that SAM proteins were expressed in all cell types and plant organs, albeit with preferential accumulation in lignified tissues. Lignin deposition was estimated by histochemical tests and the extent of tissue lignification in response to salinity was quantified by image analysis. The average number of lignified cells in vascular bundles was significantly greater in plants under salt stress, with a maximal expansion of the lignified area found in the root vasculature. Accordingly, the greatest abundance of SAM gene transcripts and proteins occurred in roots. These results indicate that increased SAM activity correlated with a greater deposition of lignin in the vascular tissues of plants under salinity stress. A model is proposed in which an increased number of lignified tracheary elements in tomato roots under salt stress may enhance the cell-to-cell pathway for water transport, which would impart greater selectivity and reduced ion uptake, and compensate for diminished bulk flow of water and solutes along the apoplastic pathway.

  17. In situ fluorescence labelling of jasmonic acid binding sites in plant tissues with cadmium-free quantum dots.

    PubMed

    Liao, Qiumei; Yu, Ying; Cao, Yujuan; Lin, Bixia; Wei, Jingjing

    2015-02-01

    The fluorescence labelling of plant hormone binding sites is an important analytical technique in research on the molecular mechanisms of plant hormone activities. The authors synthesised a jasmonic acid (JA)-conjugated ZnS:Mn quantum dot (QD) probe, with a cubic structure and average hydrodynamic sizes of about 17.0 nm. The maximum fluorescence emission of the probe was recorded at about 585 nm. The probe was used for fluorescence labelling of JA binding sites in mung bean seedling tissues. Analysis revealed that the probe exhibited high selectivity to JA binding sites and good performance in eliminating interference from background fluorescence in plant tissues. In addition, the probe did not exhibit any apparent biotoxicity, and is much more suitable than probes constructed from CdTe QDs for the analysis of biological samples.

  18. Studies on the medicinal properties of Solanum chrysotrichum in tissue culture: I. Callus formation and plant induction from axillary buds.

    PubMed

    Villarreal, M L; Muñoz, J

    1991-01-01

    A tissue culture method is described for micropropagation and callus formation from Solanum chrysotricum axillary bud explants in Murashige and Skoog's (MS) medium, supplemented with various growth regulators. Induction of rooted plants were initiated only when indol-3 acetic acid (IAA) was present as an auxin in combination with either of two cytokinins: kinetin (KN) or benzyladenine (BA); however, the combination of IAA (0.1 mg.lt.-1) + BA (0.2 mg.lt.-1) was found to be best suited for morphogenesis purposes. Alternatively, callus tissue formation was influenced in presence of naphthalene acetic acid; which in combination with kinetin (NAA 0.1 mg.lt.-1 + KN 0.2 mg.lt.-1) exhibit the best response studied. The plant material obtained by this procedure is proposed for pharmacological and chemical studies of this important antimycotic plant remedy.

  19. Species and tissue type regulate long-term decomposition of brackish marsh plants grown under elevated CO2 conditions

    NASA Astrophysics Data System (ADS)

    Jones, Joshua A.; Cherry, Julia A.; McKee, Karen L.

    2016-02-01

    Organic matter accumulation, the net effect of plant production and decomposition, contributes to vertical soil accretion in coastal wetlands, thereby playing a key role in whether they keep pace with sea-level rise. Any factor that affects decomposition may affect wetland accretion, including atmospheric CO2 concentrations. Higher CO2 can influence decomposition rates by altering plant tissue chemistry or by causing shifts in plant species composition or biomass partitioning. A combined greenhouse-field experiment examined how elevated CO2 affected plant tissue chemistry and subsequent decomposition of above- and belowground tissues of two common brackish marsh species, Schoenoplectus americanus (C3) and Spartina patens (C4). Both species were grown in monoculture and in mixture under ambient (350-385 μL L-1) or elevated (ambient + 300 μL L-1) atmospheric CO2 conditions, with all other growth conditions held constant, for one growing season. Above- and belowground tissues produced under these treatments were decomposed under ambient field conditions in a brackish marsh in the Mississippi River Delta, USA. Elevated CO2 significantly reduced nitrogen content of S. americanus, but not sufficiently to affect subsequent decomposition. Instead, long-term decomposition (percent mass remaining after 280 d) was controlled by species composition and tissue type. Shoots of S. patens had more mass remaining (41 ± 2%) than those of S. americanus (12 ± 2%). Belowground material decomposed more slowly than that placed aboveground (62 ± 1% vs. 23 ± 3% mass remaining), but rates belowground did not differ between species. Increases in atmospheric CO2 concentration will likely have a greater effect on overall decomposition in this brackish marsh community through shifts in species dominance or biomass allocation than through effects on tissue chemistry. Consequent changes in organic matter accumulation may alter marsh capacity to accommodate sea-level rise through vertical

  20. Tissue culture study of the medicinal plant leek (allium ampeloprasum L).

    PubMed

    Monemi, Mohammad Bagher; Kazemitabar, S Kamal; Bakhshee Khaniki, Gholamreza; Yasari, Esmaeil; Sohrevardi, Firouzeh; Pourbagher, Roghayeh

    2014-01-01

    Persian shallot, also called leek (Allium ampeloprasum), is a monocotyledon plant of the lily family (Liliaceae). It belongs to the genus Allium, has a characteristic taste and morphological features, making it to be considered as one of the popular herbal medicine. This research was conducted with the purpose of obtaining optimal conditions for tissue culture of Persian shallot and comparing its active ingredient production in vitro versus in vivo. In this study, the auxin 2, 4-D and benzyl aminopurine- 6 (BAP) hormones, each at two concentrations (0.5 and 0.1 mg/ L) and Kin at 0.5 mg/ L were used in the format of a randomized complete block design in three replications. Results showed that the best culture media for callus formation for leaf and seed explants were the MS cultures with the hormonal compositions (0.5 mg/ L of 2, 4- D, 0.1 mg/ L of BAP) and (0.5 mg/ L of Kin and 0.1 mg/ L of 2, 4- D). Identification of the chemical composition of the essential oils, extracted either from leek callus or leaf was carried out using GC mass analysis. Twenty one compounds were detected in the GC mass spectra, seven of which constitutv about 51.5% of the total amount of compounds present in the essential oils were identified. Our data demonstrate that the leek essential oil constituents as well as callus formation can be affected by culture medium condition.

  1. Water exchange in plant tissue studied by proton NMR in the presence of paramagnetic centers.

    PubMed

    Bacić, G; Ratković, S

    1984-04-01

    The proton NMR relaxation of water in maize roots in the presence of paramagnetic centers, Mn2+, Mn- EDTA2 -, and dextran-magnetite was measured. It was shown that the NMR method of Conlon and Outhred (1972, Biochem. Biophys. Acta. 288:354-361) can be applied to a heterogenous multicellular system, and the water exchange time between cortical cells and the extracellular space can be calculated. The water exchange is presumably controlled by the intracellular unstirred layers. The Mn- EDTA2 - complex is a suitable paramagnetic compound for complex tissue, while the application of dextran-magnetite is probably restricted to studies of water exchange in cell suspensions. The water free space of the root and viscosity of the cells cytoplasm was estimated with the use of Mn- EDTA2 -. The convenience of proton NMR for studying the multiphase uptake of paramagnetic ions by plant root as well as their transport to leaves is demonstrated. A simple and rapid NMR technique (spin-echo recovery) for continuous measurement of the uptake process is presented.

  2. Infrared microspectroscopic imaging of plant tissues: spectral visualization of Triticum aestivum kernel and Arabidopsis leaf microstructure

    PubMed Central

    Warren, Frederick J; Perston, Benjamin B; Galindez-Najera, Silvia P; Edwards, Cathrina H; Powell, Prudence O; Mandalari, Giusy; Campbell, Grant M; Butterworth, Peter J; Ellis, Peter R

    2015-01-01

    Infrared microspectroscopy is a tool with potential for studies of the microstructure, chemical composition and functionality of plants at a subcellular level. Here we present the use of high-resolution bench top-based infrared microspectroscopy to investigate the microstructure of Triticum aestivum L. (wheat) kernels and Arabidopsis leaves. Images of isolated wheat kernel tissues and whole wheat kernels following hydrothermal processing and simulated gastric and duodenal digestion were generated, as well as images of Arabidopsis leaves at different points during a diurnal cycle. Individual cells and cell walls were resolved, and large structures within cells, such as starch granules and protein bodies, were clearly identified. Contrast was provided by converting the hyperspectral image cubes into false-colour images using either principal component analysis (PCA) overlays or by correlation analysis. The unsupervised PCA approach provided a clear view of the sample microstructure, whereas the correlation analysis was used to confirm the identity of different anatomical structures using the spectra from isolated components. It was then demonstrated that gelatinized and native starch within cells could be distinguished, and that the loss of starch during wheat digestion could be observed, as well as the accumulation of starch in leaves during a diurnal period. PMID:26400058

  3. Specific gravity of woody tissue from lowland Neotropical plants: differences among forest types.

    PubMed

    Casas, Luisa Fernanda; Aldana, Ana María; Henao-Diaz, Francisco; Villanueva, Boris; Stevenson, Pablo R

    2017-02-27

    Wood density, or more precisely, wood specific gravity, is an important parameter when estimating above ground biomass, which has become a central tool for the management and conservation of forests around the world. When using biomass allometric equations for tropical forests, researchers are often required to assume phylogenetic trait conservatism, which allows to assign genus and family level wood specific gravity mean values, to many woody species. The lack of information on this trait for many Neotropical plant species has led to an imprecise estimation of the biomass stored in Neotropical forests. The data presented here has information of woody tissue specific gravity from 2,602 individual stems for 386 species, including trees, lianas and hemi-epiphytes of lowland tropical forests in Colombia. This dataset was produced by us collecting wood cores from woody species in five localities in the Orinoco and Magdalena Basins in Colombia. We found lower mean specific gravity values in várzea than in terra firme and igapó. This article is protected by copyright. All rights reserved.

  4. Infrared microspectroscopic imaging of plant tissues: spectral visualization of Triticum aestivum kernel and Arabidopsis leaf microstructure.

    PubMed

    Warren, Frederick J; Perston, Benjamin B; Galindez-Najera, Silvia P; Edwards, Cathrina H; Powell, Prudence O; Mandalari, Giusy; Campbell, Grant M; Butterworth, Peter J; Ellis, Peter R

    2015-11-01

    Infrared microspectroscopy is a tool with potential for studies of the microstructure, chemical composition and functionality of plants at a subcellular level. Here we present the use of high-resolution bench top-based infrared microspectroscopy to investigate the microstructure of Triticum aestivum L. (wheat) kernels and Arabidopsis leaves. Images of isolated wheat kernel tissues and whole wheat kernels following hydrothermal processing and simulated gastric and duodenal digestion were generated, as well as images of Arabidopsis leaves at different points during a diurnal cycle. Individual cells and cell walls were resolved, and large structures within cells, such as starch granules and protein bodies, were clearly identified. Contrast was provided by converting the hyperspectral image cubes into false-colour images using either principal component analysis (PCA) overlays or by correlation analysis. The unsupervised PCA approach provided a clear view of the sample microstructure, whereas the correlation analysis was used to confirm the identity of different anatomical structures using the spectra from isolated components. It was then demonstrated that gelatinized and native starch within cells could be distinguished, and that the loss of starch during wheat digestion could be observed, as well as the accumulation of starch in leaves during a diurnal period.

  5. 11. AERIAL VIEW OF CROSSCUT FACILITY, LOOKING NORTH. THE HYDRO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. AERIAL VIEW OF CROSSCUT FACILITY, LOOKING NORTH. THE HYDRO PLANT CENTER SITS ON THE EDGE OF RAVINE WHICH IS ACTUALLY THE BEGINNING OF THE GRAND CANAL. THE CROSS-CUT STEAM PLANT IS THE LARGE WHITE BUILDING JUST WEST OF THE HYDRO PLANT, WITH THE TRANSMISSION SWITCHYARD IN BETWEEN. THE OTHER BUILDINGS ARE SALT RIVER PROJECT FABRICATION AND EQUIPMENT SHOPS Photographer unknown, August 22, 1958 - Cross Cut Hydro Plant, North Side of Salt River, Tempe, Maricopa County, AZ

  6. 4. AERIAL VIEW, LOOKING SOUTHSOUTHWEST, OF BUILDING 371 GROUND FLOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. AERIAL VIEW, LOOKING SOUTH-SOUTHWEST, OF BUILDING 371 GROUND FLOOR UNDER CONSTRUCTION. THE GROUND FLOOR, WHICH CONTAINS THE MAJORITY OF THE PLUTONIUM RECOVERY PROCESSING EQUIPMENT, IS DIVIDED INTO COMPARTMENTS BY FIREWALLS, AIRLOCKS, AND USE OF NEGATIVE AIR PRESSURE. (1/7/75) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  7. AERIAL VIEW OF BUILDING 460, LOOKING NORTHEAST. THE BUILDING WAS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL VIEW OF BUILDING 460, LOOKING NORTHEAST. THE BUILDING WAS CONSTRUCTED TO CONSOLIDATE ALL NON-NUCLEAR MANUFACTURING AT THE ROCKY FLATS PLANT INTO ONE FACILITY. (6/13/85) - Rocky Flats Plant, Stainless Steel & Non-Nuclear Components Manufacturing, Southeast corner of intersection of Cottonwood & Third Avenues, Golden, Jefferson County, CO

  8. AERIAL VIEW OF BUILDING 991, LOOKING WEST. BUILDING 991 WAS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL VIEW OF BUILDING 991, LOOKING WEST. BUILDING 991 WAS DESIGNED FOR SHIPPING AND RECEIVING AND FOR FINAL ASSEMBLY OF WEAPON COMPONENTS. (6/26/91) - Rocky Flats Plant, Final Assembly & Shipping, Eastern portion of plant site, south of Spruce Avenue, east of Tenth Street & north of Central Avenue, Golden, Jefferson County, CO

  9. Metagenomic Analysis of Fungal Diversity on Strawberry Plants and the Effect of Management Practices on the Fungal Community Structure of Aerial Organs

    PubMed Central

    Abdelfattah, Ahmed; Wisniewski, Michael; Li Destri Nicosia, Maria Giulia; Cacciola, Santa Olga

    2016-01-01

    An amplicon metagenomic approach based on the ITS2 region of fungal rDNA was used to identify the composition of fungal communities associated with different strawberry organs (leaves, flowers, immature and mature fruits), grown on a farm using management practices that entailed the routine use of various chemical pesticides. ITS2 sequences clustered into 316 OTUs and Ascomycota was the dominant phyla (95.6%) followed by Basidiomycota (3.9%). Strawberry plants supported a high diversity of microbial organisms, but two genera, Botrytis and Cladosporium, were the most abundant, representing 70–99% of the relative abundance (RA) of all detected sequences. According to alpha and beta diversity analyses, strawberry organs displayed significantly different fungal communities with leaves having the most diverse fungal community, followed by flowers, and fruit. The interruption of chemical treatments for one month resulted in a significant modification in the structure of the fungal community of leaves and flowers while immature and mature fruit were not significantly affected. Several plant pathogens of other plant species, that would not be intuitively expected to be present on strawberry plants such as Erysiphe, were detected, while some common strawberry pathogens, such as Rhizoctonia, were less evident or absent. PMID:27490110

  10. Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications.

    PubMed

    Neelakandan, Anjanasree K; Wang, Kan

    2012-04-01

    In vitro cell and tissue-based systems have tremendous potential in fundamental research and for commercial applications such as clonal propagation, genetic engineering and production of valuable metabolites. Since the invention of plant cell and tissue culture techniques more than half a century ago, scientists have been trying to understand the morphological, physiological, biochemical and molecular changes associated with tissue culture responses. Establishment of de novo developmental cell fate in vitro is governed by factors such as genetic make-up, stress and plant growth regulators. In vitro culture is believed to destabilize the genetic and epigenetic program of intact plant tissue and can lead to chromosomal and DNA sequence variations, methylation changes, transposon activation, and generation of somaclonal variants. In this review, we discuss the current status of understanding the genomic and epigenomic changes that take place under in vitro conditions. It is hoped that a precise and comprehensive knowledge of the molecular basis of these variations and acquisition of developmental cell fate would help to devise strategies to improve the totipotency and embryogenic capability in recalcitrant species and genotypes, and to address bottlenecks associated with clonal propagation.

  11. A phloem-limited fijivirus induces the formation of neoplastic phloem tissues that house virus multiplication in the host plant

    PubMed Central

    Shen, Jiangfeng; Chen, Xian; Chen, Jianping; Sun, Liying

    2016-01-01

    A number of phloem-limited viruses induce the development of tumours (enations) in the veins of host plants, but the relevance of tumour induction to the life cycle of those viruses is unclear. In this study, we performed molecular and structural analyses of tumours induced by rice black-streaked dwarf virus (RBSDV, genus Fijivirus) infection in maize plants. The transcript level of the maize cdc2 gene, which regulates the cell cycle, was highly elevated in tumour tissues. Two-dimensional electrophoresis identified 25 cellular proteins with altered accumulation in the tumour tissues. These proteins are involved in various metabolic pathways, including photosynthesis, redox, energy pathways and amino acid synthesis. Histological analysis indicated that the tumours predominantly originated from hyperplastic growth of phloem, but those neoplastic tissues have irregular structures and cell arrangements. Immunodetection assays and electron microscopy observations indicated that in the shoots, RBSDV is confined to phloem and tumour regions and that virus multiplication actively occurs in the tumour tissue, as indicated by the high accumulation of non-structural proteins and formation of viroplasms in the tumour cells. Thus, the induction of tumours by RBSDV infection provides a larger environment that is favourable for virus propagation in the host plant. PMID:27432466

  12. De novo regeneration of Scrophularia yoshimurae Yamazaki (Scrophulariaceae) and quantitative analysis of harpagoside, an iridoid glucoside, formed in aerial and underground parts of in vitro propagated and wild plants by HPLC.

    PubMed

    Sagare, A P; Kuo, C L; Chueh, F S; Tsay, H S

    2001-11-01

    A protocol for de novo regeneration and rapid micropropagation of Scrophularia yoshimurae (Scrophulariaceae) has been developed. Multiple shoot development was achieved by culturing the shoot-tip, leaf-base, stem-node and stem-internode explants on Murashige and Skoog (MS) medium supplemented with 4.44 microM N6-benzyladenine (BA) and 1.07 microM alpha-naphthaleneacetic acid (NAA). Stem-node and shoot-tip explants showed the highest response (100%) followed by stem-internode (74.4%) and leaf-base (7.7%) explants. The shoots were multiplied by subculturing on the same medium used for shoot induction. Shoots were rooted on growth regulator-free MS basal medium and the plantlets were transplanted to soil and acclimatized in the growth chamber. The content of harpagoside, a quantitatively predominant iridoid glycoside, in different plant material was determined by high performance liquid chromatography (HPLC). The analysis revealed that the content of harpagoside in the aerial and underground parts of S. yoshimurae was significantly higher than the marketed crude drug (underground parts of Scrophularia ningpoensis).

  13. Laser assisted microdissection, an efficient technique to understand tissue specific gene expression patterns and functional genomics in plants.

    PubMed

    Gautam, Vibhav; Sarkar, Ananda K

    2015-04-01

    Laser assisted microdissection (LAM) is an advanced technology used to perform tissue or cell-specific expression profiling of genes and proteins, owing to its ability to isolate the desired tissue or cell type from a heterogeneous population. Due to the specificity and high efficiency acquired during its pioneering use in medical science, the LAM technique has quickly been adopted for use in many biological researches. Today, it has become a potent tool to address a wide range of questions in diverse field of plant biology. Beginning with comparative transcriptome analysis of different tissues such as reproductive parts, meristems, lateral organs, roots etc., LAM has also been extensively used in plant-pathogen interaction studies, proteomics, and metabolomics. In combination with next generation sequencing and proteomics analysis, LAM has opened up promising opportunities in the area of large scale functional studies in plants. Ever since the advent of this technique, significant improvements have been achieved in term of its instrumentation and method, which has made LAM a more efficient tool applicable in wider research areas. Here, we discuss the advancement of LAM technique with special emphasis on its methodology and highlight its scope in modern research areas of plant biology. Although we put emphasis on use of LAM in transcriptome studies, which is mostly used, we also discuss its recent application and scope in proteome and metabolome studies.

  14. Direct measurement of VOC diffusivities in tree tissues: impacts on tree-based phytoremediation and plant contamination.

    PubMed

    Baduru, Krishna K; Trapp, Stefan; Burken, Joel G

    2008-02-15

    Recent discoveries in the phytoremediation of volatile organic compounds (VOCs) show that vapor-phase transport into roots leads to VOC removal from the vadose zone and diffusion and volatilization out of plants is an important fate following uptake. Volatilization to the atmosphere constitutes one fundamental terminal fate processes for VOCs that have been translocated from contaminated soil or groundwater, and diffusion constitutes the mass transfer mechanism to the plant-atmosphere interface. Therefore, VOC diffusion through woody plant tissues, that is, xylem, has a direct impact on contaminant fate in numerous vegetation-VOC interactions, including the phytoremediation of soil vapors and dissolved aqueous-phase contaminants. The diffusion of VOCs through freshly excised tree tissue was directly measured for common groundwater contaminants, chlorinated compounds such as trichloroethylene, perchloroethene, and tetrachloroethane and aromatic hydrocarbons such as benzene, toluene, and methyl tert-butyl ether. All compounds tested are currently being treated at full scale with tree-based phytoremediation. Diffusivities were determined by modeling the diffusive transport data with a one-dimensional diffusive flux model, developed to mimic the experimental arrangement. Wood-water partition coefficients were also determined as needed for the model application. Diffusivities in xylem tissues were found to be inversely related to molecular weight, and values determined herein were compared to previous modeling on the basis of a tortuous diffusion path in woody tissues. The comparison validates the predictive model for the first time and allows prediction for other compounds on the basis of chemical molecular weight and specific plant properties such as water, lignin, and gas contents. This research provides new insight into phytoremediation efforts and into potential fruit contamination for fruit-bearing trees, specifically establishing diffusion rates from the

  15. Ricinosomes: an organelle for developmentally regulated programmed cell death in senescing plant tissues

    NASA Astrophysics Data System (ADS)

    Gietl, C.; Schmid, M.

    2001-02-01

    This review describes aspects of programmed cell death (PCD). Present research maps the enzymes involved and explores the signal transduction pathways involved in their synthesis. A special organelle (the ricinosome) has been discovered in the senescing endosperm of germinating castor beans (Ricinus communis) that develops at the beginning of PCD and delivers large amounts of a papain-type cysteine endopeptidase (CysEP) in the final stages of cellular disintegration. Castor beans store oil and proteins in a living endosperm surrounding the cotyledons. These stores are mobilized during germination and transferred into the cotyledons. PCD is initiated after this transfer is complete. The CysEP is synthesized in the lumen of the endoplasmic reticulum (ER) where it is retained by its C-terminal KDEL peptide as a rather inactive pro-enzyme. Large number of ricinosomes bud from the ER at the same time as the nuclear DNA is characteristically fragmented during PCD. The mitochondria, glyoxysomes and ribosomes are degraded in autophagic vacuoles, while the endopeptidase is activated by removal of the propeptide and the KDEL tail and enters the cytosol. The endosperm dries and detaches from the cotyledons. A homologous KDEL-tailed cysteine endopeptidase has been found in several senescing tissues; it has been localized in ricinosomes of withering day-lily petals and dying seed coats. Three genes for a KDEL-tailed cysteine endopeptidase have been identified in Arabidopsis. One is expressed in senescing ovules, the second in the vascular vessels and the third in maturing siliques. These genes open the way to exploring PCD in plants.

  16. Ricinosomes: an organelle for developmentally regulated programmed cell death in senescing plant tissues.

    PubMed

    Gietl, C; Schmid, M

    2001-02-01

    This review describes aspects of programmed cell death (PCD). Present research maps the enzymes involved and explores the signal transduction pathways involved in their synthesis. A special organelle (the ricinosome) has been discovered in the senescing endosperm of germinating castor beans (Ricinus communis) that develops at the beginning of PCD and delivers large amounts of a papain-type cysteine endopeptidase (CysEP) in the final stages of cellular disintegration. Castor beans store oil and proteins in a living endosperm surrounding the cotyledons. These stores are mobilized during germination and transferred into the cotyledons. PCD is initiated after this transfer is complete. The CysEP is synthesized in the lumen of the endoplasmic reticulum (ER) where it is retained by its C-terminal KDEL peptide as a rather inactive pro-enzyme. Large number of ricinosomes bud from the ER at the same time as the nuclear DNA is characteristically fragmented during PCD. The mitochondria, glyoxysomes and ribosomes are degraded in autophagic vacuoles, while the endopeptidase is activated by removal of the propeptide and the KDEL tail and enters the cytosol. The endosperm dries and detaches from the cotyledons. A homologous KDEL-tailed cysteine endopeptidase has been found in several senescing tissues; it has been localized in ricinosomes of withering day-lily petals and dying seed coats. Three genes for a KDEL-tailed cysteine endopeptidase have been identified in Arabidopsis. One is expressed in senescing ovules, the second in the vascular vessels and the third in maturing siliques. These genes open the way to exploring PCD in plants.

  17. Growth of plant tissue cultures in simulated lunar soil: Implications for a lunar base CELSS (Controlled Ecological Life Support System)

    NASA Technical Reports Server (NTRS)

    Venketeswaran, S.

    1988-01-01

    Experiments were carried out on plant tissue cultures, seed germination, seedling development and plants grown on Simulated Lunar Soil to evaluate the potential of future development of lunar based agriculture. The studies done to determine the effect of the placement of SLS on tissue cultures showed no adverse effect of SLS on tissue cultures. Although statistically insignificant, SLS in suspension showed a comparatively higher growth rate. Observations indicate the SLS, itself cannot support calli growth but was able to show a positive effect on growth rate of calli when supplemented with MS salts. This positive effect related to nutritive value of the SLS was found to have improved at high pH levels, than at the recommended low pH levels for standard media. Results from seed germination indicated that there is neither inhibitory, toxicity nor stimulatory effect of SLS, even though SLS contains high amounts of aluminum compounds compared to earth soil. Analysis of seeding development and growth data showed significant reduction in growth rate indicating that, SLS was a poor growth medium for plant life. This was confirmed by the studies done with embryos and direct plant growth on SLS. Further observations attributed this poor quality of SLS is due to it's lack of essential mineral elements needed for plant growth. By changing the pH of the soil, to more basic conditions, the quality of SLS for plant growth could be improved up to a significant level. Also it was found that the quality of SLS could be improved by almost twice, by external supply of major mineral elements, directly to SLS.

  18. Manipulation of lignin composition in plants using a tissue-specific promoter

    DOEpatents

    Chapple, Clinton C. S.

    2003-08-26

    The present invention relates to methods and materials in the field of molecular biology, the manipulation of the phenylpropanoid pathway and the regulation of proteins synthesis through plant genetic engineering. More particularly, the invention relates to the introduction of a foreign nucleotide sequence into a plant genome, wherein the introduction of the nucleotide sequence effects an increase in the syringyl content of the plant's lignin. In one specific aspect, the invention relates to methods for modifying the plant lignin composition in a plant cell by the introduction there into of a foreign nucleotide sequence comprising at issue specific plant promoter sequence and a sequence encoding an active ferulate-5-hydroxylase (F5H) enzyme. Plant transformants harboring an inventive promoter-F5H construct demonstrate increased levels of syringyl monomer residues in their lignin, rendering the polymer more readily delignified and, thereby, rendering the plant more readily pulped or digested.

  19. Perturbation of the ubiquitin system causes leaf curling, vascular tissue alterations and necrotic lesions in a higher plant.

    PubMed Central

    Bachmair, A; Becker, F; Masterson, R V; Schell, J

    1990-01-01

    A ubiquitin variant with Lys48 changed to Arg acts in vitro as an inhibitor of ubiquitin dependent protein degradation. To assess the role of this proteolytic pathway in the life cycle of plants, we expressed the ubiquitin variant in Nicotiana tabacum. Expression of variant mono- or polyubiquitin leads to marked abnormalities in vascular tissue. In addition, overexpression of variant polyubiquitin induces discrete lesions on leaves. This indicates that perturbations of the ubiquitin system can induce a programmed necrotic response in plants. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:2176155

  20. Analysis of Explosives in Plant Tissues: Modifications to Method 8330 for Soil.

    DTIC Science & Technology

    1998-05-01

    containing tomato plant 30 Figure 13. Chromatograms of RDX containing radish root 31 Figure 14. Chromatograms of RDX containing lettuce 32...grown hydroponically in TNT solutions have shown to both retain TNT and reductively transform TNT (Palazzo and Leggett 1986a,b). Con- siderable...quantities of bound monoaminodinitrotoluenes were recovered from hydroponically grown plants using acid hydrolysis of plant material following benzene

  1. Manipulation of host plant cells and tissues by gall-inducing insects and adaptive strategies used by different feeding guilds.

    PubMed

    Oliveira, D C; Isaias, R M S; Fernandes, G W; Ferreira, B G; Carneiro, R G S; Fuzaro, L

    2016-01-01

    Biologists who study insect-induced plant galls are faced with the overwhelming diversity of plant forms and insect species. A challenge is to find common themes amidst this diversity. We discuss common themes that have emerged from our cytological and histochemical studies of diverse neotropical insect-induced galls. Gall initiation begins with recognition of reactive plant tissues by gall inducers, with subsequent feeding and/or oviposition triggering a cascade of events. Besides, to induce the gall structure insects have to synchronize their life cycle with plant host phenology. We predict that reactive oxygen species (ROS) play a role in gall induction, development and histochemical gradient formation. Controlled levels of ROS mediate the accumulation of (poly)phenols, and phytohormones (such as auxin) at gall sites, which contributes to the new cell developmental pathways and biochemical alterations that lead to gall formation. The classical idea of an insect-induced gall is a chamber lined with a nutritive tissue that is occupied by an insect that directly harvests nutrients from nutritive cells via its mouthparts, which function mechanically and/or as a delivery system for salivary secretions. By studying diverse gall-inducing insects we have discovered that insects with needle-like sucking mouthparts may also induce a nutritive tissue, whose nutrients are indirectly harvested as the gall-inducing insects feeds on adjacent vascular tissues. Activity of carbohydrate-related enzymes across diverse galls corroborates this hypothesis. Our research points to the importance of cytological and histochemical studies for elucidating mechanisms of induced susceptibility and induced resistance.

  2. Acquisition and Evolution of Plant Pathogenesis–Associated Gene Clusters and Candidate Determinants of Tissue-Specificity in Xanthomonas

    PubMed Central

    Van Sluys, Marie-Anne; White, Frank F.; Ryan, Robert P.; Dow, J. Maxwell; Rabinowicz, Pablo; Salzberg, Steven L.; Leach, Jan E.; Sonti, Ramesh; Brendel, Volker; Bogdanove, Adam J.

    2008-01-01

    Background Xanthomonas is a large genus of plant-associated and plant-pathogenic bacteria. Collectively, members cause diseases on over 392 plant species. Individually, they exhibit marked host- and tissue-specificity. The determinants of this specificity are unknown. Methodology/Principal Findings To assess potential contributions to host- and tissue-specificity, pathogenesis-associated gene clusters were compared across genomes of eight Xanthomonas strains representing vascular or non-vascular pathogens of rice, brassicas, pepper and tomato, and citrus. The gum cluster for extracellular polysaccharide is conserved except for gumN and sequences downstream. The xcs and xps clusters for type II secretion are conserved, except in the rice pathogens, in which xcs is missing. In the otherwise conserved hrp cluster, sequences flanking the core genes for type III secretion vary with respect to insertion sequence element and putative effector gene content. Variation at the rpf (regulation of pathogenicity factors) cluster is more pronounced, though genes with established functional relevance are conserved. A cluster for synthesis of lipopolysaccharide varies highly, suggesting multiple horizontal gene transfers and reassortments, but this variation does not correlate with host- or tissue-specificity. Phylogenetic trees based on amino acid alignments of gum, xps, xcs, hrp, and rpf cluster products generally reflect strain phylogeny. However, amino acid residues at four positions correlate with tissue specificity, revealing hpaA and xpsD as candidate determinants. Examination of genome sequences of xanthomonads Xylella fastidiosa and Stenotrophomonas maltophilia revealed that the hrp, gum, and xcs clusters are recent acquisitions in the Xanthomonas lineage. Conclusions/Significance Our results provide insight into the ancestral Xanthomonas genome and indicate that differentiation with respect to host- and tissue-specificity involved not major modifications or wholesale

  3. Inhibition of phenylpropanoid biosynthesis in Artemisia annua L.: a novel approach to reduce oxidative browning in plant tissue culture.

    PubMed

    Jones, Andrew Maxwell Phineas; Saxena, Praveen Kumar

    2013-01-01

    Oxidative browning is a common and often severe problem in plant tissue culture systems caused by the accumulation and oxidation of phenolic compounds. The current study was conducted to investigate a novel preventative approach to address this problem by inhibiting the activity of the phenylalanine ammonia lyase enzyme (PAL), thereby reducing the biosynthesis of phenolic compounds. This was accomplished by incorporating 2-aminoindane-2-phosphonic acid (AIP), a competitive PAL inhibitor, into culture media of Artemisia annua as a model system. Addition of AIP into culture media resulted in significant reductions in visual tissue browning, a reduction in total phenol content, as well as absorbance and autoflourescence of tissue extracts. Reduced tissue browning was accompanied with a significant increase in growth on cytokinin based medium. Microscopic observations demonstrated that phenolic compounds accumulated in discrete cells and that these cells were more prevalent in brown tissue. These cells were highly plasmolyzed and often ruptured during examination, demonstrating a mechanism in which phenolics are released into media in this system. These data indicate that inhibiting phenylpropanoid biosynthesis with AIP is an effective approach to reduce tissue browning in A. annua. Additional experiments with Ulmus americana and Acer saccharum indicate this approach is effective in many species and it could have a wide application in systems where oxidative browning restricts the development of biotechnologies.

  4. Defense Science Board Study on Unmanned Aerial Vehicles and Uninhabited Combat Aerial Vehicles

    DTIC Science & Technology

    2004-02-01

    Defense Science Board Study on Unmanned Aerial Vehicles and Uninhabited Combat Aerial Vehicles February 2004 Office...COVERED - 4. TITLE AND SUBTITLE Defense Science Board Study on Unmanned Aerial Vehicles and Uninhabited Combat Aerial Vehicles 5a. CONTRACT...the Defense Science Board Task Force on Unmanned Aerial Vehicles and Uninhabited Combat Aerial Vehicles I am pleased to forward the final report of

  5. Rhizospheric Bacterial Strain Brevibacterium casei MH8a Colonizes Plant Tissues and Enhances Cd, Zn, Cu Phytoextraction by White Mustard

    PubMed Central

    Płociniczak, Tomasz; Sinkkonen, Aki; Romantschuk, Martin; Sułowicz, Sławomir; Piotrowska-Seget, Zofia

    2016-01-01

    Environmental pollution by heavy metals has become a serious problem in the world. Phytoextraction, which is one of the plant-based technologies, has attracted the most attention for the bioremediation of soils polluted with these contaminants. The aim of this study was to determine whether the multiple-tolerant bacterium, Brevibacterium casei MH8a isolated from the heavy metal-contaminated rhizosphere soil of Sinapis alba L., is able to promote plant growth and enhance Cd, Zn, and Cu uptake by white mustard under laboratory conditions. Additionally, the ability of the rifampicin-resistant spontaneous mutant of MH8a to colonize plant tissues and its mechanisms of plant growth promotion were also examined. In order to assess the ecological consequences of bioaugmentation on autochthonous bacteria, the phospholipid fatty acid (PLFA) analysis was used. The MH8a strain exhibited the ability to produce ammonia, 1-amino-cyclopropane-1-carboxylic acid deaminase, indole 3-acetic acid and HCN but was not able to solubilize inorganic phosphate and produce siderophores. Introduction of MH8a into soil significantly increased S. alba biomass and the accumulation of Cd (208%), Zn (86%), and Cu (39%) in plant shoots in comparison with those grown in non-inoculated soil. Introduced into the soil, MH8a was able to enter the plant and was found in the roots and leaves of inoculated plants thus indicating its endophytic features. PLFA analysis revealed that the MH8a that was introduced into soil had a temporary influence on the structure of the autochthonous bacterial communities. The plant growth-promoting features of the MH8a strain and its ability to enhance the metal uptake by white mustard and its long-term survival in soil as well as its temporary impact on autochthonous microorganisms make the strain a suitable candidate for the promotion of plant growth and the efficiency of phytoextraction. PMID:26909087

  6. Down-regulation of tissue N:P ratios in terrestrial plants by elevated CO2

    NASA Astrophysics Data System (ADS)

    Deng, Q.; Hui, D.; Luo, Y.; Elser, J. J.; Wang, Y.; Loladze, I.; Zhang, Q.; Dennis, S.

    2015-12-01

    Increasing atmospheric CO2 concentrations generally alter element stoichiometry in plants. However, a comprehensive evaluation of the elevated CO2 impact on plant nitrogen:phosphorus (N:P) ratios and the underlying mechanism has not been conducted. We synthesized the results from 112 previously published studies using meta-analysis to evaluate the effects of elevated CO2 on the N:P ratio of terrestrial plants and to explore the underlying mechanism based on plant growth and soil P dynamics. Our results show that terrestrial plants grown under elevated CO2 had lower N:P ratios in both above- and below-ground biomass across different ecosystem types. The response ratio for plant N:P was negatively correlated with the response ratio for plant growth in croplands and grasslands, and showed a stronger relationship for P than for N. In addition, the CO2-induced down-regulation of plant N:P was accompanied by 19.3% and 4.2% increases in soil phosphatase activity and labile P, respectively, and a 10.1% decrease in total soil P. Our results show that down-regulation of plant N:P under elevated CO2 corresponds with accelerated soil P cycling. These findings should be useful for better understanding of terrestrial plant stoichiometry in response to elevated CO2 and of the underlying mechanisms affecting nutrient dynamics under climate change.

  7. Growth response and tissue accumulation trends of herbaceous wetland plant species exposed to elevated aqueous mercury levels.

    PubMed

    Willis, Jonathan M; Gambrell, Robert P; Hester, Mark W

    2010-08-01

    The impacts of elevated aqueous mercury levels (0, 2, and 4 ppm) on the growth status and mercury tissue concentrations of Eleocharis parvula, Saururus cernuus, Juncus effuses, Typha latifolia, and Panicum hemitomon were determined. Both short-term (net CO2 assimilation) and long-term (biomass) indicators of plant growth status suggest that Eleocharis parvula, Saururus cernuus, and Juncus effuses were relatively unimpacted by elevated mercury levels, whereas Typha latifolia and Panicum hemitomon were somewhat impacted at elevated mercury levels. Eleocharis parvula, Panicum hemitomon, and Typha latifolia generally had the greatest overall belowground tissue concentrations of mercury (2 ppm treatment: 7.21, 7.32, and 9.64 ppm respectively; 4 ppm treatment: 16.23, 18.23, and 13.98 ppm, respectively) and aboveground tissue concentrations of mercury (2 ppm treatment: 0.01, 0.04, 0.02; 4 ppm treatment: 0.26; 0.11; 0.17 ppm, respectively). However, the species investigated in this study demonstrated lower levels of mercury accumulation into tissues when compared with similar investigations of other aquatic plants, suggesting that the above species are not optimal for phytoremediation efforts.

  8. Prediction of atmospheric δ13CO2 using fossil plant tissues

    SciTech Connect

    A. Hope Jahren; Arens, Nan Crystal; Harbeson, Stephanie A.

    2008-06-30

    To summarize the content: we presented the results of laboratory experiments designed to quantify the relationship between plant tissue δ13C and δ13CO2 values under varying environmental conditions, including differential pCO2 ranging from 1 to 3 times today’s levels. As predicted, plants grown under elevated pCO2 showed increased average biomass compared to controls grown at the same temperature. Across a very large range in δ13Ca (≈ 24 ‰) and pCO2 (≈ 740 ppmv) we observed a consistent correlation between δ13Ca and δ13Cp (p<0.001). We show an average isotopic depletion of -25.4 ‰ for above-ground tissue and -23.2 ‰ for below-ground tissue of Raphanus sativus L. relative to the composition of the atmosphere under which it formed. For both above- and below-ground tissue, grown at both ~23 °C and ~29 °C, correlation was strong and significant (r2 ≥ 0.98, p<0.001); variation in pCO2 level had little or no effect on this relationship.

  9. Minitags for small molecules: detecting targets of reactive small molecules in living plant tissues using 'click chemistry'.

    PubMed

    Kaschani, Farnusch; Verhelst, Steven H L; van Swieten, Paul F; Verdoes, Martijn; Wong, Chung-Sing; Wang, Zheming; Kaiser, Markus; Overkleeft, Herman S; Bogyo, Matthew; van der Hoorn, Renier A L

    2009-01-01

    Small molecules offer unprecedented opportunities for plant research since plants respond to, metabolize, and react with a diverse range of endogenous and exogenous small molecules. Many of these small molecules become covalently attached to proteins. To display these small molecule targets in plants, we introduce a two-step labelling method for minitagged small molecules. Minitags are small chemical moieties (azide or alkyne) that are inert under biological conditions and have little influence on the membrane permeability and specificity of the small molecule. After labelling, proteomes are extracted under denaturing conditions and minitagged proteins are coupled to reporter tags through a 'click chemistry' reaction. We introduce this two-step labelling procedure in plants by studying the well-characterized targets of E-64, a small molecule cysteine protease inhibitor. In contrast to biotinylated E-64, minitagged E-64 efficiently labels vacuolar proteases in vivo. We displayed, purified and identified targets of a minitagged inhibitor that targets the proteasome and cysteine proteases in living plant cells. Chemical interference assays with inhibitors showed that MG132, a frequently used proteasome inhibitor, preferentially inhibits cysteine proteases in vivo. The two-step labelling procedure can be applied on detached leaves, cell cultures, seedlings and other living plant tissues and, when combined with photoreactive groups, can be used to identify targets of herbicides, phytohormones and reactive small molecules selected from chemical genetic screens.

  10. Diversity of endophytic fungi associated with the foliar tissue of a hemi-parasitic plant Macrosolen cochinchinensis.

    PubMed

    Zhou, Sheng-Liang; Yan, Shu-Zhen; Liu, Qi-Sha; Chen, Shuang-Lin

    2015-01-01

    Foliar fungal endophytes are an important plant-associated fungal group. However, little is known about these fungi in hemi-parasitic plants, a unique plant group which derive nutrients from living plants of its hosts by haustoria while are photosynthetic to some degree. In this paper, the endophytic fungi in the leaves of a species of hemi-parasitic plant, Macrosolen cochinchinensis, were studied by both culture-dependent and culture-independent methods. By culture-dependent method, a total of 511 isolates were recovered from 452 of 600 leaf fragments (colonization rate = 75.3 %) and were identified to be 51 taxa. Valsa sp. was the most abundant (relative abundance = 38.4 %), followed by Cladosporium sp. 1 (13.5 %), Ulocladium sp. (4.3 %), Phomopsis sp. 2 (3.7 %), Hendersonia sp. (3.5 %), and Diaporthe sp. 4 (3.5 %). The Shannon index (H') of the isolated endophytic fungi was 2.628, indicating a moderate diversity. By culture-independent method, Aspergillus spp., Cladosporium sp., Mycosphaerella sp., Acremonium strictum, and Tremella sp. were detected. To our knowledge, the Tremella species have never been detected as endophytes so far. In addition, a cloned sequence was not similar with any current sequence in the Genbank, which may represent a novel species. Altogether, this study documented endophytic fungal assemble in the leaves of M. cochinchinensis which was worthy of our attention, and may expand our knowledge about endophytic fungi within the photosynthetic tissues of plants.

  11. Challenges in electrochemical pre-purification of recombinant proteins from green plant tissues: sgfp produced in tobacco leaves.

    PubMed

    Robić, Goran

    2013-01-01

    The use of recombinant proteins has increased greatly in recent years, as have the number of techniques and materials used for their production and purification. The principal advantage of using plants as bioreactors is the cost of the recombinant protein production, which is about 1000-fold lower as in the case of using CHO cells commonly applied in industry today. Among the different types of "green" bioreactors being studied today, there is a general consensus among scientists that production in green plant tissues such as leaves is more feasible. However, the presence of chlorophyll and phenolic compounds in plant extracts, which can precipitate and denature the proteins besides damaging separation membranes and gels, makes this technology impracticable on a commercial scale. Electrochemically produced aluminium hydroxide gel can be used to adsorb these compounds, and pre-purify recombinant synthetic green fluorescent protein (sGFP) produced in Nicotiana benthamiana leaves. Removal efficiencies of 99.7% of chlorophyll, 88.5% of phenolic compounds, and 38.5% of native proteins from the N. benthamiana extracts were achieved without removing sGFP from the extracts. Since electrochemical preparation of aluminum hydroxide gel is a cost-effective technique, its use can substantially contribute to the development of future production platforms for recombinant proteins produced in green plant tissues of pharmaceutical and industrial interest.

  12. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1.

    PubMed

    Zhang, Huiming; Kim, Mi-Seong; Sun, Yan; Dowd, Scot E; Shi, Huazhong; Paré, Paul W

    2008-06-01

    Elevated sodium (Na(+)) decreases plant growth and, thereby, agricultural productivity. The ion transporter high-affinity K(+) transporter (HKT)1 controls Na(+) import in roots, yet dysfunction or overexpression of HKT1 fails to increase salt tolerance, raising questions as to HKT1's role in regulating Na(+) homeostasis. Here, we report that tissue-specific regulation of HKT1 by the soil bacterium Bacillus subtilis GB03 confers salt tolerance in Arabidopsis thaliana. Under salt stress (100 mM NaCl), GB03 concurrently down- and upregulates HKT1 expression in roots and shoots, respectively, resulting in lower Na(+) accumulation throughout the plant compared with controls. Consistent with HKT1 participation in GB03-induced salt tolerance, GB03 fails to rescue salt-stressed athkt1 mutants from stunted foliar growth and elevated total Na(+) whereas salt-stressed Na(+) export mutants sos3 show GB03-induced salt tolerance with enhanced shoot and root growth as well as reduced total Na(+). These results demonstrate that tissue-specific regulation of HKT1 is critical for managing Na(+) homeostasis in salt-stressed plants, as well as underscore the breadth and sophistication of plant-microbe interactions.

  13. Dianthin 30 and 32 from Dianthus caryophyllus: two inhibitors of plant protein synthesis and their tissue distribution.

    PubMed

    Reisbig, R R; Bruland, O

    1983-07-15

    The ability of dianthin 30 and 32 to inhibit translation in reticulocyte lysates and wheat germ extracts has been studied. The dianthins, like the A chains of the toxins abrin and ricin, inhibited protein synthesis in reticulocyte lysates by inactivating the 60S ribosomal subunit. They also inhibited, at concentrations of 10 ng/ml, a protein-synthesizing system from wheat germ and inactivated isolated wheat germ ribosomes. The concentration of the dianthins in different tissues of the plant was determined by rocket immunoelectrophoresis and by the dianthin's ability to inhibit protein synthesis. Dianthin 32 was found only in the leaves and in growing shoots, while dianthin 30 was present throughout the plant. In the older parts of the plant, the dianthins constituted between 1 and 3% of the total extractable protein whereas much less was found in the younger parts.

  14. DOE/NNSA Aerial Measuring System (AMS): Flying the 'Real' Thing

    SciTech Connect

    Craig Lyons

    2011-06-24

    This slide show documents aerial radiation surveys over Japan. Map product is a compilation of daily aerial measuring system missions from the Fukushima Daiichi power plant to 80 km radius. In addition, other flights were conducted over US military bases and the US embassy.

  15. 2. AERIAL VIEW OF MINUTEMAN SILOS. Low oblique aerial view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. AERIAL VIEW OF MINUTEMAN SILOS. Low oblique aerial view (original in color) of the two launch silos, covered. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Missile Silo Type, Test Area 1-100, northeast end of Test Area 1-100 Road, Boron, Kern County, CA

  16. Measurement of cytosolic-free Ca²⁺ in plant tissue.

    PubMed

    McAinsh, Martin R; Ng, Carl K-Y

    2013-01-01

    A range of techniques have been used to measure the concentration of cytosolic-free Ca(2+) ([Ca(2+)](cyt)) in plant cells. Fluorescent Ca(2+)-sensitive indicators have been used extensively to measure plant [Ca(2+)](cyt) and a number of techniques are available for loading these into plant cells. Here we describe a method for measuring [Ca(2+)](cyt) in the guard cells of the model plant species Commelina communis by ratio photometry and imaging techniques using the ratiometric fluorescent Ca(2+)-sensitive indicator fura-2.

  17. Aerial Video Imaging

    NASA Technical Reports Server (NTRS)

    1991-01-01

    When Michael Henry wanted to start an aerial video service, he turned to Johnson Space Center for assistance. Two NASA engineers - one had designed and developed TV systems in Apollo, Skylab, Apollo- Soyuz and Space Shuttle programs - designed a wing-mounted fiberglass camera pod. Camera head and angles are adjustable, and the pod is shaped to reduce vibration. The controls are located so a solo pilot can operate the system. A microprocessor displays latitude, longitude, and bearing, and a GPS receiver provides position data for possible legal references. The service has been successfully utilized by railroads, oil companies, real estate companies, etc.

  18. Species and tissue type regulate long-term decomposition of brackish marsh plants grown under elevated CO2 conditions

    USGS Publications Warehouse

    Jones, Joshua A; Cherry, Julia A; Mckee, Karen L.

    2016-01-01

    Organic matter accumulation, the net effect of plant production and decomposition, contributes to vertical soil accretion in coastal wetlands, thereby playing a key role in whether they keep pace with sea-level rise. Any factor that affects decomposition may affect wetland accretion, including atmospheric CO2 concentrations. Higher CO2 can influence decomposition rates by altering plant tissue chemistry or by causing shifts in plant species composition or biomass partitioning. A combined greenhouse-field experiment examined how elevated CO2 affected plant tissue chemistry and subsequent decomposition of above- and belowground tissues of two common brackish marsh species, Schoenoplectus americanus (C3) and Spartina patens (C4). Both species were grown in monoculture and in mixture under ambient (350-385 μL L-1) or elevated (ambient + 300 μL L-1) atmospheric CO2 conditions, with all other growth conditions held constant, for one growing season. Above- and belowground tissues produced under these treatments were decomposed under ambient field conditions in a brackish marsh in the Mississippi River Delta, USA. Elevated CO2 significantly reduced nitrogen content of S. americanus, but not sufficiently to affect subsequent decomposition. Instead, long-term decomposition (percent mass remaining after 280 d) was controlled by species composition and tissue type. Shoots of S. patens had more mass remaining (41 ± 2%) than those of S. americanus (12 ± 2 %). Belowground material decomposed more slowly than that placed aboveground (62 ± 1% vs. 23 ± 3% mass remaining), but rates belowground did not differ between species. Increases in atmospheric CO2concentration will likely have a greater effect on overall decomposition in this brackish marsh community through shifts in species dominance or biomass allocation than through effects on tissue chemistry. Consequent changes in organic matter accumulation may alter marsh capacity to accommodate sea-level rise

  19. Variability Between Vials of Cryopreserved Shoot Tips from Tissue Cultured Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    At the USDA-ARS National Center for Genetic Resources Preservation, cryopreservation is used as a method of long-term storage of valuable plant genetic resources from vegetatively-propagated crop plants. The main germplasm collections for vegetatively-propagated crops are maintained as field planti...

  20. Three-dimensional reconstruction of frozen and thawed plant tissues from microscopic images

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Histological analysis of frozen and thawed plants has been conducted for many years but the observation of individual sections only provides a 2 dimensional representation of a 3 dimensional phenomenon. Most techniques for viewing internal plant structure in 3 dimensions is either low in resolution...

  1. ANTIOXIDANT ACTIVITY OF TISSUE CULTURE-RAISED BALLOTA NIGRA L. PLANTS GROWN EX VITRO.

    PubMed

    Makowczyńska, Joanna; Grzegorczyk-KAROLAK, Izabela; Wysokińska, Halina

    2015-01-01

    Antioxidant properties and total phenolic and flavonoid contents were evaluated in methanolic extracts of shoots from Ballota nigra plants initiated in vitro (from nodal explants) and in vivo (from seeds). The plants were grown in greenhouse and in the field, and were analyzed at the vegetative and flowering stages. The shoot extract of wild-grown plants of B. nigra was also investigated. The results indicate that antioxidant potential of the B. nigra extracts seems to be due to their scavenging of free radicals (DPPH assay) and metal reducing (FRAP test), while they were less effective at the prevention of linoleic acid peroxidation (LPO test). The extracts from shoots of in vitro derived plants were found to exhibit the greatest antioxidant properties. The extracts were also characterized by the highest content of phenolic compounds and their level was affected by plant developmental stage. The extracts of shoots collected at the flowering period exhibited higher amounts of phenolics and flavonoids than in the extracts of immature plants. A close correlation between the total phenolic content and flavonoid content and antioxidant activity using the DPPH and FRAP assays was obtained. The results of the present study suggest the use in vitro-derived plants of B. nigra instead of using wild plants for pharmaceutical purposes.

  2. Short Communication An efficient method for simultaneous extraction of high-quality RNA and DNA from various plant tissues.

    PubMed

    Oliveira, R R; Viana, A J C; Reátegui, A C E; Vincentz, M G A

    2015-12-29

    Determination of gene expression is an important tool to study biological processes and relies on the quality of the extracted RNA. Changes in gene expression profiles may be directly related to mutations in regulatory DNA sequences or alterations in DNA cytosine methylation, which is an epigenetic mark. Correlation of gene expression with DNA sequence or epigenetic mark polymorphism is often desirable; for this, a robust protocol to isolate high-quality RNA and DNA simultaneously from the same sample is required. Although commercial kits and protocols are available, they are mainly optimized for animal tissues and, in general, restricted to RNA or DNA extraction, not both. In the present study, we describe an efficient and accessible method to extract both RNA and DNA simultaneously from the same sample of various plant tissues, using small amounts of starting material. The protocol was efficient in the extraction of high-quality nucleic acids from several Arabidopsis thaliana tissues (e.g., leaf, inflorescence stem, flower, fruit, cotyledon, seedlings, root, and embryo) and from other tissues of non-model plants, such as Avicennia schaueriana (Acanthaceae), Theobroma cacao (Malvaceae), Paspalum notatum (Poaceae), and Sorghum bicolor (Poaceae). The obtained nucleic acids were used as templates for downstream analyses, such as mRNA sequencing, quantitative real time-polymerase chain reaction, bisulfite treatment, and others; the results were comparable to those obtained with commercial kits. We believe that this protocol could be applied to a broad range of plant species, help avoid technical and sampling biases, and facilitate several RNA- and DNA-dependent analyses.

  3. Aquatic plant nutrients, moss phosphatase activities and tissue composition in four upland streams in northern England

    NASA Astrophysics Data System (ADS)

    Ellwood, N. T. W.; Haile, S. M.; Whitton, B. A.

    2008-02-01

    SummaryA study was made of the water chemistry, tissue nutrients and surface phosphatase activities of the 2-cm apices of three mosses in four upland streams in northern England, UK. This was part of a project to optimize methods for assessing nutrient fractions in environments with highly variable water chemistry. Aqueous N and P fractions showed the greatest variability followed by moss phosphatase activities, with nutrient composition of the shoot apices the least variable. There was no consistent pattern as to which aqueous N or P fraction was the most variable. The ratio between total inorganic N and total filtrable P ranged over three orders of magnitude in some streams. The interrelations between tissue N and P concentrations, tissue N:P ratio, phosphatase activities and aqueous variables showed: Significant +ve relationship between tissue N and aqueous NO 3-N in some populations, but not between tissue P and aqueous P concentration; Significant +ve relationships between phosphatase activities and aqueous organic N, but none with aqueous organic P; Significant +ve relationships between phosphodiesterase:phosphomonoesterase activities and aqueous organic N; Significant -ve relationships between phosphatase activities and tissue P concentration; Significant +ve relationships between phosphatase activities and tissue N:P. Both types of biological measurement are valuable for monitoring ambient nutrients in upland streams. Neither is clearly better than the other, so both should be included in surveys.

  4. Mask degradation monitoring with aerial mask inspector

    NASA Astrophysics Data System (ADS)

    Tseng, Wen-Jui; Fu, Yung-Ying; Lu, Shih-Ping; Jiang, Ming-Sian; Lin, Jeffrey; Wu, Clare; Lifschitz, Sivan; Tam, Aviram

    2013-06-01

    As design rule continues to shrink, microlithography is becoming more challenging and the photomasks need to comply with high scanner laser energy, low CDU, and ever more aggressive RETs. This give rise to numerous challenges in the semiconductor wafer fabrication plants. Some of these challenges being contamination (mainly haze and particles), mask pattern degradation (MoSi oxidation, chrome migration, etc.) and pellicle degradation. Fabs are constantly working to establish an efficient methodology to manage these challenges mainly using mask inspection, wafer inspection, SEM review and CD SEMs. Aerial technology offers a unique opportunity to address the above mask related challenges using one tool. The Applied Materials Aera3TM system has the inherent ability to inspect for defects (haze, particles, etc.), and track mask degradation (e.g. CDU). This paper focuses on haze monitoring, which is still a significant challenge in semiconductor manufacturing, and mask degradation effects that are starting to emerge as the next challenge for high volume semiconductor manufacturers. The paper describes Aerial inspector (Aera3) early haze methodology and mask degradation tracking related to high volume manufacturing. These will be demonstrated on memory products. At the end of the paper we take a brief look on subsequent work currently conducted on the more general issue of photo mask degradation monitoring by means of an Aerial inspector.

  5. A Review of Mid-Infrared and Near-Infrared Imaging: Principles, Concepts and Applications in Plant Tissue Analysis.

    PubMed

    Türker-Kaya, Sevgi; Huck, Christian W

    2017-01-20

    Plant cells, tissues and organs are composed of various biomolecules arranged as structurally diverse units, which represent heterogeneity at microscopic levels. Molecular knowledge about those constituents with their localization in such complexity is very crucial for both basic and applied plant sciences. In this context, infrared imaging techniques have advantages over conventional methods to investigate heterogeneous plant structures in providing quantitative and qualitative analyses with spatial distribution of the components. Thus, particularly, with the use of proper analytical approaches and sampling methods, these technologies offer significant information for the studies on plant classification, physiology, ecology, genetics, pathology and other related disciplines. This review aims to present a general perspective about near-infrared and mid-infrared imaging/microspectroscopy in plant research. It is addressed to compare potentialities of these methodologies with their advantages and limitations. With regard to the organization of the document, the first section will introduce the respective underlying principles followed by instrumentation, sampling techniques, sample preparations, measurement, and an overview of spectral pre-processing and multivariate analysis. The last section will review selected applications in the literature.

  6. l-Ascorbic Acid Is Accumulated in Source Leaf Phloem and Transported to Sink Tissues in Plants1

    PubMed Central

    Franceschi, Vincent R.; Tarlyn, Nathan M.

    2002-01-01

    l-Ascorbic acid (AsA) was found to be loaded into phloem of source leaves and transported to sink tissues. When l-[14C]AsA was applied to leaves of intact plants of three different species, autoradiographs and HPLC analysis demonstrated that AsA was accumulated into phloem and transported to root tips, shoots, and floral organs, but not to mature leaves. AsA was also directly detected in Arabidopsis sieve tube sap collected from an English green aphid (Sitobion avenae) stylet. Feeding a single leaf of intact Arabidopsis or Medicago sativa with 10 or 20 mm l-galactono-1,4-lactone (GAL-l), the immediate precursor of AsA, lead to a 7- to 8-fold increase in AsA in the treated leaf and a 2- to 3-fold increase of AsA in untreated sink tissues of the same plant. The amount of AsA produced in treated leaves and accumulated in sink tissues was proportional to the amount of GAL-l applied. Studies of the ability of organs to produce AsA from GAL-l showed mature leaves have a 3- to 10-fold higher biosynthetic capacity and much lower AsA turnover rate than sink tissues. The results indicate AsA transporters reside in the phloem, and that AsA translocation is likely required to meet AsA demands of rapidly growing non-photosynthetic tissues. This study also demonstrates that source leaf AsA biosynthesis is limited by substrate availability rather than biosynthetic capacity, and sink AsA levels may be limited to some extent by source production. Phloem translocation of AsA may be one factor regulating sink development because AsA is critical to cell division/growth. PMID:12376632

  7. Metabolism of Tritiated Gibberellins in d-5 Dwarf Maize: I. In Excised Tissues and Intact Dwarf and Normal Plants.

    PubMed

    Davies, L J; Rappaport, L

    1975-04-01

    Metabolism of [(3)H]gibberellin A(1) ([(3)H]GA(1)) was followed in intact seedlings and excised apices and leaf tissue of both dwarf and normal (tall) plants of d-5 maize (Zea mays L.). The three metabolites produced were tentatively identified as [(3)H]GA(s), [(3)H]GA(s)-glucoside ([(3)H]GA(s)-glu), and [(3)H]GA(1)-X, an unknown.In 3-hour, pulse-labeling experiments with tissues of incubated, expanding leaves, more than 70% of the [(3)H]GA(1) taken up was metabolized to the three products within 12 to 15 hours. [(3)H]GA(1) fed to the roots of 7-day-old seedlings was readily translocated to the leaves, and all three metabolites were found in both roots and leaves. [(3)H]GA(1)-X was the major metabolite in roots, whereas in leaves the major metabolite was [(3)H]GA(s)-glu. There were no consistent differences in [(3)H]GA(1) metabolism between dwarf and normal plants, indicating that dwarfism in d-5 maize is not associated with modified GA(1) metabolism.In excised, mature leaf tissue, [(3)H]GA(1) metabolism was slower than in excised, young leaf tissue. Mature leaf tissues produced [(3)H]GA(s)-glu as by far the major metabolite, with [(3)H]GA(s) and [(3)H]GA(1)-X as minor metabolites. In contrast, in young leaves the three metabolites appeared sequentially in significant proportions: [(3)H]GA(8) first, followed by [(3)H]GA(s)-glu and, finally, [(3)H]GA(1)-X.

  8. Differential Expression of Kunitz and Bowman-Birk Soybean Proteinase Inhibitors in Plant and Callus Tissue 1

    PubMed Central

    Tan-Wilson, Anna L.; Hartl, Philippe M.; Delfel, Norman E.; Wilson, Karl A.

    1985-01-01

    Bowman-Birk soybean trypsin inhibitor (BBSTI) but not Kunitz soybean trypsin inhibitor (KSTI) was found in samples of undifferentiated and partially differentiated Amsoy 71 tissue culture callus. This suggests the differential metabolism of these two classes of proteinase inhibitors, whether the difference be in synthesis, in rates of degradation, or both. The differential metabolism of the proteinase inhibitors is also seen in the plant. Both BBSTI and KSTI were found in the hypocotyl, root, and epicotyl of the Amsoy 71 soybean seedling in addition to their expected presence in the cotyledons. Whereas the ratio of KSTI to BBSTI in the cotyledon was higher, the ratio of BBSTI to KSTI was higher in the extracotyledonary tissues of the seedling. The levels of both classes of proteinase inhibitors declined during seedling growth, except in the epicotyl and the proximal root. In both of these tissues, an increase in BBSTI, but not in KSTI content, expressed as milligrams inhibitor per plant part, occurred. Images Fig. 1 Fig. 4 PMID:16664236

  9. Protein extraction for two-dimensional electrophoresis from olive leaf, a plant tissue containing high levels of interfering compounds.

    PubMed

    Wang, Wei; Scali, Monica; Vignani, Rita; Spadafora, Antonia; Sensi, Elisabetta; Mazzuca, Silvia; Cresti, Mauro

    2003-07-01

    The purpose of this research is to establish a routine procedure for the application of proteomic analysis to olive tree. Olive leaf tissue is notoriously recalcitrant to common protein extraction methods due to high levels of interfering compounds. We developed a protocol for isolating proteins suitable for two-dimensional electrophoresis (2-DE) from olive leaf. The remarkable characteristics of the protocol include: (i) additional grinding dry acetone powder of leaf tissue to a finer extent, (ii) after extensive organic solvent washes to remove pigments, lipids etc., using aqueous tricholoroacetic acid washes to remove water-soluble contaminants, and (iii) phenol extraction of proteins in the presence of sodium dodecyl sulfate. The final protein preparation is free of interfering compounds based on its well-resolved 2-DE patterns. The protocol can be completed within 3 h, and protein yield is approximately 2.49 mg.g(-1) of aged leaf. We also evaluated the protocol by immunoblotting with anti-tyrosinate alpha-tubulin antibody. To our knowledge, this is the first time that a protocol for protein extraction from olive leaf appears to give satisfactory and reproducible results. The protocol is expected to be applicable to other recalcitrant plant tissues and could be of interest to laboratories involved in plant proteomics.

  10. Using Bulk Magnetic Susceptibility to Resolve Internal and External Signals in the NMR Spectra of Plant Tissues

    NASA Astrophysics Data System (ADS)

    Shachar-Hill, Yair; Befroy, Douglas E.; Pfeffer, Philip E.; Ratcliffe, R. George

    1997-07-01

    Internal and external NMR signals from a variety of plant cells and plant tissues can be resolved by changing the bulk magnetic susceptibility (BMS) of the perfusing medium with [Gd (EDTA)]-or Dy(DTPA-BMA). This separation is observed in samples consisting of cylindrical cells oriented along theB0field, and is consistent with established theoretical predictions about BMS effects. Evidence is presented that the shifted signals represent material outside the tissue as well as some contribution from intercellular spaces and cell walls, while intracellular signals are unshifted. The paramagnetic complexes used to separate the signals are shown to be nontoxic and to have no effect on a number of transport processes. The method has been applied to roots, shoots, and giant algal cells, facilitating the interpretation of thein vivospectra from a range of biologically important magnetic isotopes. The potential of the method for studies of transport is illustrated with experiments showing: (i)14N/15N isotopic exchange of nitrate in roots; (ii) the influx of HDO into root and shoot segments; and (iii) the use of saturation transfer to follow water movement into and out of plant cells.

  11. Detection of transgenic and endogenous plant DNA in digesta and tissues of sheep and pigs fed Roundup Ready canola meal.

    PubMed

    Sharma, Ranjana; Damgaard, Dana; Alexander, Trevor W; Dugan, Mike E R; Aalhus, Jennifer L; Stanford, Kim; McAllister, Tim A

    2006-03-08

    The persistence of plant-derived recombinant DNA in sheep and pigs fed genetically modified (Roundup Ready) canola was assessed by PCR and Southern hybridization analysis of DNA extracted from digesta, gastrointestinal (GI) tract tissues, and visceral organs. Sheep (n = 11) and pigs (n = 36) were fed to slaughter on diets containing 6.5 or 15% Roundup Ready canola. Native plant DNA (high- and low-copy-number gene fragments) and the cp4 epsps transgene that encodes 5-enolpyruvyl shikimate-3-phosphate synthase were tracked in ruminal, abomasal, and large intestinal digesta and in tissue from the esophagus, rumen, abomasum, small and large intestine, liver, and kidney of sheep and in cecal content and tissue from the duodenum, cecum, liver, spleen, and kidney of pigs. High-copy chloroplast-specific DNA (a 520-bp fragment) was detected in all digesta samples, the majority (89-100%) of intestinal tissues, and at least one of each visceral organ sample (frequencies of 3-27%) from sheep and swine. Low-copy rubisco fragments (186- and 540-bp sequences from the small subunit) were present at slightly lower, variable frequencies in digesta (18-82%) and intestinal tissues (9-27% of ovine and 17-25% of porcine samples) and infrequently in visceral organs (1 of 88 ovine samples; 3 of 216 porcine samples). Each of the five cp4 epsps transgene fragments (179-527 bp) surveyed was present in at least 27% of ovine large intestinal content samples (maximum = 64%) and at least 33% of porcine cecal content samples (maximum = 75%). In sheep, transgene fragments were more common in intestinal digesta than in ruminal or abomasal content. Transgene fragments were detected in 0 (esophagus) to 3 (large intestine) GI tract tissues from the 11 sheep and in 0-10 of the duodenal and cecal tissues collected from 36 pigs. The feed-ingested recombinant DNA was not detected in visceral tissues (liver, kidney) of lambs or in the spleen from pigs. Of note, however, one liver and one kidney sample from

  12. AERIAL OVERVIEW, LOOKING WEST TOWARD PRATT CITY, WITH EXTRACTION OPERATIONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL OVERVIEW, LOOKING WEST TOWARD PRATT CITY, WITH EXTRACTION OPERATIONS (BOTTOM LEFT AND CENTER), COKE BY-PRODUCT PLANT (CENTER), AND THE FORMER THOMAS FURNACE COMMUNITY, NOW THE THOMAS NATIONAL REGISTER HISTORIC DISTRICT (CENTER RIGHT). - Wade Sand & Gravel Company, AL 78, Thomas, Jefferson County, AL

  13. 47. CAPE COD AIR STATION PAVE PAWS FACILITY AERIAL VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. CAPE COD AIR STATION PAVE PAWS FACILITY AERIAL VIEW OF "A" FACE (LEFT) WITH CLEANING SYSTEM INSTALLED (NOW REMOVED) AND "B" FACE (RIGHT) WITH CONSTRUCTION CRANE IN USE. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  14. 26. Aerial photograph dated 20 June 1942, showing north end ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Aerial photograph dated 20 June 1942, showing north end of Gould Island from the southwest. At upper left is firing pier. Shop building and power plant under construction at center. Photo courtesy of Naval Undersea Warfare Center, Division Newport, Rhode Island. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  15. AERIAL VIEW OF MAIN PROCESSING BUILDING SHOWING CONSTRUCTION PROGRESS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL VIEW OF MAIN PROCESSING BUILDING SHOWING CONSTRUCTION PROGRESS AND EXCAVATION FOR LABORATORY ON LEFT. INL PHOTO NUMBER NRTS-51-1759. Unknown Photographer, 3/28/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  16. 24. Duplicate negative of an historic negative. 'AERIAL VIEW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Duplicate negative of an historic negative. 'AERIAL VIEW OF AREA 'B' HOLSTON ORDNANCE WORKS.' 1944. #OCMH 4-12.2ASAV3 in Super Explosives Program RDX and Its Composition A, B, & C, Record Group No. 319, National Archives, Washington, D.C. - Holston Army Ammunition Plant, RDX-and-Composition-B Manufacturing Line 9, Kingsport, Sullivan County, TN

  17. Introduction of the factor of partitioning in the lithogenic enrichment factors of trace element bioaccumulation in plant tissues.

    PubMed

    Sardans, Jordi; Peñuelas, Josep

    2006-04-01

    Bioindicators are widely used in the study of trace elements inputs into the environment and great efforts have been conducted to separate atmospheric from soil borne inputs on biomass accumulation. Many monitoring studies of trace element pollution take into account the dust particles located in the plant surface plus the contents of the plant tissues. However, it is usually only the trace element content in the plant tissues that is relevant on plant health. Enrichment factor equations take into account the trace element enrichment of biomasses with respect soil or bedrocks by comparing the ratios of the trace element in question to a lithogenic element, usually Al. However, the enrichment equations currently in use are inadequate because they do not take into account the fact that Al (or whichever reference element) and the element in question may have different solubility-absorption-retention levels depending on the rock and soil types involved. This constrain will become critical when results from different sites are compared and so in this article we propose that the solubility factors of each element are taken into account in order to overcome this constrain. We analysed Sb, Co, Ni, Cr, Pb, Cd, Mn, V, Zn, Cu, As, Hg, and Al concentration in different zones of Catalonia (NE Spain) using the evergreen oak Quercus ilex and the moss Hypnum cupressiforme as target species. We compared the results obtained in rural and non industrial areas with those from the Barcelona Metropolitan Area. We observed differences in Al concentrations of soils and bedrocks at each different site, together with the differences in solubility between Al and the element in question, and a weak correlation between total soil content and water extract content through different sites for most trace elements. All these findings show the unsuitability of the current enrichment factors for calculating lithospheric and atmospheric contributions to trace element concentrations in biomass tissues

  18. The signature of seeds in resurrection plants: a molecular and physiological comparison of desiccation tolerance in seeds and vegetative tissues.

    PubMed

    Illing, Nicola; Denby, Katherine J; Collett, Helen; Shen, Arthur; Farrant, Jill M

    2005-11-01

    Desiccation-tolerance in vegetative tissues of angiosperms has a polyphyletic origin and could be due to 1) appropriation of the seed-specific program of gene expression that protects orthodox seeds against desiccation, and/or 2) a sustainable version of the abiotic stress response. We tested these hypotheses by comparing molecular and physiological data from the development of orthodox seeds, the response of desiccation-sensitive plants to abiotic stress, and the response of desiccation-tolerant plants to extreme water loss. Analysis of publicly-available gene expression data of 35 LEA proteins and 68 anti-oxidant enzymes in the desiccation-sensitive Arabidopsis thaliana identified 13 LEAs and 4 anti-oxidants exclusively expressed in seeds. Two (a LEA6 and 1-cys-peroxiredoxin) are not expressed in vegetative tissues in A. thaliana, but have orthologues that are specifically activated in desiccating leaves of Xerophyta humilis. A comparison of antioxidant enzyme activity in two desiccation-sensitive species of Eragrostis with the desiccation-tolerant E. nindensis showed equivalent responses upon initial dehydration, but activity was retained at low water content in E. nindensis only. We propose that these antioxidants are housekeeping enzymes and that they are protected from damage in the desiccation-tolerant species. Sucrose is considered an important protectant against desiccation in orthodox seeds, and we show that sucrose accumulates in drying leaves of E. nindensis, but not in the desiccation-sensitive Eragrostis species. The activation of "seed-specific" desiccation protection mechanisms (sucrose accumulation and expression of LEA6 and 1-cys-peroxiredoxin genes) in the vegetative tissues of desiccation-tolerant plants points towards acquisition of desiccation tolerance from seeds.

  19. Levels of organochlorine pesticides in soils and rye plant tissues in a field study.

    PubMed

    Waliszewski, Stefan M; Carvajal, Octavio; Infanzon, Rosa M; Trujillo, Patricia; Aguirre, Angel A; Maxwell, Mary

    2004-11-17

    The organochlorine pesticides are lipophilic and persistent and tend to accumulate in soils and growing plants. The contamination of growing plants occurs by adhesion of volatile substances from the air to the plant surface and by the migration of contaminants through xylem in inner ascendant transport. Persistent organochlorine pesticides (HCB, alpha,gamma-HCH, pp'DDE, op'DDT, pp'DDT) levels were determined in soils and rye plants. The aims of the study were the monitoring of organochlorine pesticide concentrations and the comparison of these levels among soil, rye straw, and rye grains. Fifty soil samples and 50 rye plant (50 straw and 50 grains) samples were taken. The GLC-ECD chromatographic results indicated the following contamination levels distributed among soil, straw, and grains: HCB (0.7-1.2-0.7 microg.kg(-1)), alpha-HCH (0.6-3.4-1.2 microg.kg(-1)), gamma-HCH (1.8-27.3-4.4 microg.kg(-1)), Sigma-HCH (2.5-30.7-5.6 microg.kg(-1)), pp'DDE (1.0-7.8-5.5 microg.kg(-1)), op'DDT (16.1-20.4-17.0 microg.kg(-1)), pp'DDT (38.0-41.7-49.6 microg.kg(-1)), and Sigma-DDT (54.2-63.2-72.1 microg.kg(-1)). The study verified the presence of organochlorine pesticides in the Mexican agricultural environment and their migration from soil to the growing rye plants. However, DDT has been banned since 1999 for sanitary reasons, and Lindane is applied only in some cases as a seed dresser. The determined organochlorine pesticide levels in rye plants are low, at residual levels that are below Codex Alimentarius Commission maximum residue limits.

  20. Analysis of S-methylmethionine and S-adenosylmethionine in plant tissue by a dansylation, Dual-isotope method

    SciTech Connect

    Macnicol, P.K.

    1986-10-01

    A method is presented for determining the levels of S-methylmethionine (MeMet) and S-adenosylmethionine (AdoMet) in the same plant tissue sample, utilizing readily available equipment. The bottom limit of sensitivity, ca. 100 pmol, can be lowered if required. A trichloracetic acid homogenate of the tissue is supplemented with (carboxyl-/sup 14/C)MeMet and (carboxyl-/sup 14/C)AdoMet. After separation of MeMet and AdoMet from each other and from endogenous homoserine on a phosphocellulose column, the two fractions are heat treated at appropriate pH values to liberate (/sup 14/C)homoserine. Quantitation is via the /sup 3/H//sup 14/C ratio of (/sup 3/H)dansyl-(/sup 14/C)homoserine isolated by thin-layer chromatography. The method is validated with pea cotyledon, corn root, and cauliflower leaf.

  1. Agrobacterium tumefaciens-mediated transformation of embryogenic tissue and transgenic plant regeneration in Chamaecyparis obtusa Sieb. et Zucc.

    PubMed

    Taniguchi, T; Kurita, M; Ohmiya, Y; Kondo, T

    2005-03-01

    A genetic transformation procedure for Chamaecyparis obtusa was developed after co-cultivation of embryogenic tissues with disarmed Agrobacterium tumefaciens strain C58/pMP90, which harbours the sgfp (synthetic green fluorescent protein) visual reporter and nptII (neomycin phoshotransferase II) selectable marker genes. The highest transformation frequency was 22.5 independent transformed lines per dish (250 mg embryogenic tissue) following selection on kanamycin medium. Transgenic plantlets were regenerated through the maturation and germination of somatic embryos. The intensity of GFP fluorescence, observed under a fluorescence microscope, varied from very faint to relatively strong, depending on the transgenic line or part of the transgenic plant. The integration of the genes into the genome of regenerated plantlets was confirmed by Southern blot analysis.

  2. Microautoradiography of Water-Soluble Compounds in Plant Tissue after Freeze-Drying and Pressure Infiltration with Epoxy Resin

    PubMed Central

    Vogelmann, Thomas C.; Dickson, Richard E.

    1982-01-01

    It is difficult to retain and localize radioactive, water-soluble compounds within plant cells. Existing techniques retain water-soluble compounds with varying rates of efficiency and are limited to processing only a few samples at one time. We developed a modified pressure infiltration technique for the preparation of microautoradiographs of 14C-labeled, water-soluble compounds in plant tissue. Samples from cottonwood (Populus deltoides Bartr. ex Marsh.) labeled with 14C were excised, quick frozen in liquid N2, freeze-dried at −50°C, and pressure-infiltrated with epoxy resin without intermediate solvents or prolonged incubation times. The technique facilitates the mass processing of samples for microautoradiography, gives good cellular retention of labeled water-soluble compounds, and is highly reproducible. Images Fig. 2 PMID:16662542

  3. Phylogenic diversity and tissue specificity of fungal endophytes associated with the pharmaceutical plant, Stellera chamaejasme L. revealed by a cultivation-independent approach.

    PubMed

    Jin, Hui; Yang, Xiaoyan; Lu, Dengxue; Li, Chunjie; Yan, Zhiqiang; Li, Xiuzhuang; Zeng, Liming; Qin, Bo

    2015-10-01

    The fungal endophytes associated with medicinal plants have been demonstrated as a reservoir with novel natural products useful in medicine and agriculture. It is desirable to explore the species composition, diversity and tissue specificity of endophytic fungi that inhabit in different tissues of medicinal plants. In this study, a culture-independent survey of fungal diversity in the rhizosphere, leaves, stems and roots of a toxic medicinal plant, Stellera chamaejasme L., was conducted by sequence analysis of clone libraries of the partial internal transcribed spacer region. Altogether, 145 fungal OTUs (operational taxonomic units), represented by 464 sequences, were found in four samples, of these 109 OTUs (75.2 %) belonging to Ascomycota, 20 (13.8 %) to Basidiomycota, 14 (9.7 %) to Zygomycota, 1 (0.7 %) to Chytridiomycota, and 1 (0.7 %) to Glomeromycota. The richness and diversity of fungal communities were strongly influenced by plant tissue environments, and the roots are associated with a surprisingly rich endophyte community. The endophyte assemblages associated with S. chamaejasme were strongly shaped by plant tissue environments, and exhibited a certain degree of tissue specificity. Our results suggested that a wide variety of fungal assemblages inhabit in S. chamaejasme, and plant tissue environments conspicuously influence endophyte community structure.

  4. Growth of plant tissue cultures in simulated lunar soil: Implications for a lunar base Controlled Ecological Life Support System (CELSS)

    NASA Technical Reports Server (NTRS)

    Venketeswaran, S.

    1987-01-01

    Experiments to determine whether plant tissue cultures can be grown in the presence of simulated lunar soil (SLS) and the effect of simulated lunar soil on the growth and morphogenesis of such cultures, as well as the effect upon the germination of seeds and the development of seedlings were carried out . Preliminary results on seed germination and seedling growth of rice and calli growth of winged bean and soybean indicate that there is no toxicity or inhibition caused by SLS. SLS can be used as a support medium with supplements of certain major and micro elements.

  5. Increased plant sterol deposition in vascular tissue characterizes patients with severe aortic stenosis and concomitant coronary artery disease.

    PubMed

    Luister, Alexandra; Schött, Hans Frieder; Husche, Constanze; Schäfers, Hans-Joachim; Böhm, Michael; Plat, Jogchum; Gräber, Stefan; Lütjohann, Dieter; Laufs, Ulrich; Weingärtner, Oliver

    2015-07-01

    The aim of the study was to evaluate the relationship between phytosterols, oxyphytosterols, and other markers of cholesterol metabolism and concomitant coronary artery disease (CAD) in patients with severe aortic stenosis who were scheduled for elective aortic valve replacement. Markers of cholesterol metabolism (plant sterols and cholestanol as markers of cholesterol absorption and lathosterol as an indicator of cholesterol synthesis) and oxyphytosterols were determined in plasma and aortic valve tissue from 104 consecutive patients with severe aortic stenosis (n=68 statin treatment; n=36 no statin treatment) using gas chromatography-flame ionization and mass spectrometry. The extent of CAD was determined by coronary angiography prior to aortic valve replacement. Patients treated with statins were characterized by lower plasma cholesterol, cholestanol, and lathosterol concentrations. However, statin treatment did not affect the sterol concentrations in cardiovascular tissue. The ratio of campesterol-to-cholesterol was increased by 0.46±0.34μg/mg (26.0%) in plasma of patients with CAD. The absolute values for the cholesterol absorption markers sitosterol and campesterol were increased by 18.18±11.59ng/mg (38.8%) and 11.40±8.69ng/mg (30.4%) in the tissues from patients with documented CAD compared to those without concomitant CAD. Campesterol oxides were increased by 0.06±0.02ng/mg (17.1%) in the aortic valve cusps and oxidized sitosterol-to-cholesterol ratios were up-regulated by 0.35±0.2ng/mg (22.7%) in the plasma of patients with CAD. Of note, neither cholestanol nor the ratio of cholestanol-to-cholesterol was associated with CAD. Patients with concomitant CAD are characterized by increased deposition of plant sterols, but not cholestanol in aortic valve tissue. Moreover, patients with concomitant CAD were characterized by increased oxyphytosterol concentrations in plasma and aortic valve cusps.

  6. A Simple, Rapid Method for Determination of Melatonin in Plant Tissues by UPLC Coupled with High Resolution Orbitrap Mass Spectrometry

    PubMed Central

    Ye, Tiantian; Hao, Yan-Hong; Yu, Lei; Shi, Haitao; Reiter, Russel J.; Feng, Yu-Qi

    2017-01-01

    Melatonin (MLT) was involved in regulating various stages of plant growth and development. However, due to the low concentration and complex matrixes of plant, the analysis of MLT is a challenging task. In this study, we developed a rapid and efficient method with simplified sample preparation by employing UPLC coupled with a high resolution Orbitrap mass spectrometry, and stable isotope-labeled MLT (MLT-d4) was first used as internal standard in the developed analytical method. In the developed method, we used one-step liquid–liquid extraction to purify the crude extracts both from shoot and root of rice for the analysis, which remarkably simplify the sample preparation process. The method exhibits high specificity and recovery yield (>96.4%). Good linearities were obtained for MLT ranging from 0.01 to 20 ng/ mL with determination coefficient (R2) of 0.9991. The limit of detection for MLT was 0.03 pg. Reproducibility of the method was evaluated by intra-day and inter-day measurements and the results showed that relative standard deviations were less than 7.2%. Moreover, MLT quantification was accomplished by using only 100 mg fresh plant tissues. Additionally, the established method was successfully applied to investigate the spatiotemporal distributions of MLT in rice under cadmium (Cd) stress condition. We found that the content of MLT in shoot and root of rice increased under Cd stress, suggesting that MLT would play a crucial role in modulating the responses to Cd stress in different plant tissues. PMID:28179912

  7. VirtualLeaf: an open-source framework for cell-based modeling of plant tissue growth and development.

    PubMed

    Merks, Roeland M H; Guravage, Michael; Inzé, Dirk; Beemster, Gerrit T S

    2011-02-01

    Plant organs, including leaves and roots, develop by means of a multilevel cross talk between gene regulation, patterned cell division and cell expansion, and tissue mechanics. The multilevel regulatory mechanisms complicate classic molecular genetics or functional genomics approaches to biological development, because these methodologies implicitly assume a direct relation between genes and traits at the level of the whole plant or organ. Instead, understanding gene function requires insight into the roles of gene products in regulatory networks, the conditions of gene expression, etc. This interplay is impossible to understand intuitively. Mathematical and computer modeling allows researchers to design new hypotheses and produce experimentally testable insights. However, the required mathematics and programming experience makes modeling poorly accessible to experimental biologists. Problem-solving environments provide biologically intuitive in silico objects ("cells", "regulation networks") required for setting up a simulation and present those to the user in terms of familiar, biological terminology. Here, we introduce the cell-based computer modeling framework VirtualLeaf for plant tissue morphogenesis. The current version defines a set of biologically intuitive C++ objects, including cells, cell walls, and diffusing and reacting chemicals, that provide useful abstractions for building biological simulations of developmental processes. We present a step-by-step introduction to building models with VirtualLeaf, providing basic example models of leaf venation and meristem development. VirtualLeaf-based models provide a means for plant researchers to analyze the function of developmental genes in the context of the biophysics of growth and patterning. VirtualLeaf is an ongoing open-source software project (http://virtualleaf.googlecode.com) that runs on Windows, Mac, and Linux.

  8. Tissue-specific expression and post-translational modifications of plant- and bacterial-type phosphoenolpyruvate carboxylase isozymes of the castor oil plant, Ricinus communis L.

    PubMed

    O'Leary, Brendan; Fedosejevs, Eric T; Hill, Allyson T; Bettridge, James; Park, Joonho; Rao, Srinath K; Leach, Craig A; Plaxton, William C

    2011-11-01

    This study employs transcript profiling together with immunoblotting and co-immunopurification to assess the tissue-specific expression, protein:protein interactions, and post-translational modifications (PTMs) of plant- and bacterial-type phosphoenolpyruvate carboxylase (PEPC) isozymes (PTPC and BTPC, respectively) in the castor plant, Ricinus communis. Previous studies established that the Class-1 PEPC (PTPC homotetramer) of castor oil seeds (COS) is activated by phosphorylation at Ser-11 and inhibited by monoubiquitination at Lys-628 during endosperm development and germination, respectively. Elimination of photosynthate supply to developing COS by depodding caused the PTPC of the endosperm and cotyledon to be dephosphorylated, and then subsequently monoubiquitinated in vivo. PTPC monoubiquitination rather than phosphorylation is widespread throughout the castor plant and appears to be the predominant PTM of Class-1 PEPC that occurs in planta. The distinctive developmental patterns of PTPC phosphorylation versus monoubiquitination indicates that these two PTMs are mutually exclusive. By contrast, the BTPC: (i) is abundant in the inner integument, cotyledon, and endosperm of developing COS, but occurs at low levels in roots and cotyledons of germinated COS, (ii) shows a unique developmental pattern in leaves such that it is present in leaf buds and young expanding leaves, but undetectable in fully expanded leaves, and (iii) tightly interacts with co-expressed PTPC to form the novel and allosterically-desensitized Class-2 PEPC heteromeric complex. BTPC and thus Class-2 PEPC up-regulation appears to be a distinctive feature of rapidly growing and/or biosynthetically active tissues that require a large anaplerotic flux from phosphoenolpyruvate to replenish tricarboxylic acid cycle C-skeletons being withdrawn for anabolism.

  9. Post-embryonic organogenesis and plant regeneration from tissues: two sides of the same coin?

    PubMed Central

    Perianez-Rodriguez, Juan; Manzano, Concepcion; Moreno-Risueno, Miguel A.

    2014-01-01

    Plants have extraordinary developmental plasticity as they continuously form organs during post-embryonic development. In addition they may regenerate organs upon in vitro hormonal induction. Advances in the field of plant regeneration show that the first steps of de novo organogenesis through in vitro culture in hormone containing media (via formation of a proliferating mass of cells or callus) require root post-embryonic developmental programs as well as regulators of auxin and cytokinin signaling pathways. We review how hormonal regulation is delivered during lateral root initiation and callus formation. Implications in reprograming, cell fate and pluripotency acquisition are discussed. Finally, we analyze the function of cell cycle regulators and connections with epigenetic regulation. Future work dissecting plant organogenesis driven by both endogenous and exogenous cues (upon hormonal induction) may reveal new paradigms of common regulation. PMID:24904615

  10. Evaluation of two-dimensional electrophoresis and liquid chromatography – tandem mass spectrometry for tissue-specific protein profiling of laser-microdissected plant samples

    SciTech Connect

    Schad, Martina; Lipton, Mary S.; Giavalisco, Patrick; Smith, Richard D.; Kehr, Julia

    2005-07-14

    Laser microdissection (LM) allows the collection of homogeneous tissue- and cell specific plant samples. The employment of this technique with subsequent protein analysis has thus far not been reported for plant tissues, probably due to the difficulties associated with defining a reasonable cellular morphology and, in parallel, allowing efficient protein extraction from tissue samples. The relatively large sample amount needed for successful proteome analysis is an additional issue that complicates protein profiling on a tissue- or even cell-specific level. In contrast to transcript profiling that can be performed from very small sample amounts due to efficient amplification strategies, there is as yet no amplification procedure for proteins available. In the current study, we compared different tissue preparation techniques prior to LM/laser pressure catapulting (LMPC) with respect to their suitability for protein retrieval. Cryosectioning was identified as the best compromise between tissue morphology and effective protein extraction. After collection of vascular bundles from Arabidopsis thaliana stem tissue by LMPC, proteins were extracted and subjected to protein analysis, either by classical two-dimensional gel electrophoresis (2-DE), or by high-efficiency liquid chromatography (LC) in conjunction with tandem mass spectrometry (MS/MS). Our results demonstrate that both methods can be used with LMPC collected plant material. But because of the significantly lower sample amount required for LC-MS/MS than for 2-DE, the combination of LMPC and LC-MS/MS has a higher potential to promote comprehensive proteome analysis of specific plant tissues.

  11. Aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.

    1978-01-01

    Thermal infrared scanning from an aircraft is a convenient and commercially available means for determining relative rates of energy loss from building roofs. The need to conserve energy as fuel costs makes the mass survey capability of aerial thermography an attractive adjunct to community energy awareness programs. Background information on principles of aerial thermography is presented. Thermal infrared scanning systems, flight and environmental requirements for data acquisition, preparation of thermographs for display, major users and suppliers of thermography, and suggested specifications for obtaining aerial scanning services were reviewed.

  12. Phenotype analysis of Russian dandelion root tissues from the national plant germplasm system collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Russian dandelion (Taraxacum kok-saghyz) (TKS) produces high quality natural rubber (NR), cis-1,4 polyisoprene, by biosynthesis, and has been used historically as a source of NR during times of short supply or high prices for Hevea NR. The rubber is primarily located in root tissues along with appre...

  13. Dark respiration rate increases with plant size in saplings of three temperate tree species despite decreasing tissue nitrogen and nonstructural carbohydrates.

    PubMed

    Machado, José-Luis; Reich, Peter B

    2006-07-01

    In shaded environments, minimizing dark respiration during growth could be an important aspect of maintaining a positive whole-plant net carbon balance. Changes with plant size in both biomass distribution to different tissue types and mass-specific respiration rates (R(d)) of those tissues would have an impact on whole-plant respiration. In this paper, we evaluated size-related variation in R(d), biomass distribution, and nitrogen (N) and total nonstructural carbohydrate (TNC) concentrations of leaves, stems and roots of three cold-temperate tree species (Abies balsamea (L.) Mill, Acer rubrum L. and Pinus strobus L.) in a forest understory. We sampled individuals varying in age (6 to 24 years old) and in size (from 2 to 500 g dry mass), and growing across a range of irradiances (from 1 to 13% of full sun) in northern Minnesota, USA. Within each species, we found small changes in R(d), N and TNC when comparing plants growing across this range of light availability. Consistent with our hypotheses, as plants grew larger, whole-plant N and TNC concentrations in all species declined as a result of a combination of changes in tissue N and shifts in biomass distribution patterns. However, contrary to our hypotheses, whole-plant and tissue R(d) increased with plant size in the three species.

  14. Mercury Concentrations in Plant Tissues as Affected by FGDG Application to Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flue Gas Desulfurization Gypsum (FGDG) is produced by reducing sulfur dioxide emissions from themo-electric coal-fired power plants. The most common practice of FGDG production may trap some of the Mercury (Hg) present in the coal that normally would escape as vapor in the stack gases. Concern for t...

  15. Development of rapid isothermal amplification assays for Phytophthora species from plant tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several isothermal amplification techniques recently have been developed that are tolerant of inhibitors present in many plant extracts, which can reduce the need for obtaining purified DNA for running diagnostic assays. One such commercially available technique that has similarities with real time ...

  16. 2. AERIAL VIEW, LOOKING NORTHNORTHEAST, OF THE SUBBASEMENT OF BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. AERIAL VIEW, LOOKING NORTH-NORTHEAST, OF THE SUB-BASEMENT OF BUILDING 371 UNDER CONSTRUCTION. THE SUB-BASEMENT, THE BOTTOM LEVEL, IS AN IRREGULARLY SHAPED AREA, CONSISTING PRIMARILY OF THE LOWER PORTION OF THE PLUTONIUM STORAGE VAULT AND ITS TRANSFER, REPAIR, AND STACKER-RETRIEVER MAINTENANCE BAYS. THE PLUTONIUM STORAGE VAULT RUNS EAST-WEST. (7/2/74) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  17. 3. AERIAL VIEW, LOOKING SOUTH, OF BUILDING 371 BASEMENT UNDER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. AERIAL VIEW, LOOKING SOUTH, OF BUILDING 371 BASEMENT UNDER CONSTRUCTION. THE BASEMENT HOUSES HEATING, VENTILATION, AND AIR CONDITIONING EQUIPMENT AND MECHANICAL UTILITIES, THE UPPER PART OF THE PLUTONIUM STORAGE VAULT AND MAINTENANCE BAY, AND SMALL PLUTONIUM PROCESSING AREAS. THE BASEMENT LEVEL IS DIVIDED INTO NEARLY EQUAL NORTH AND SOUTH PARTS BY THE UPPER PORTION OF THE PLUTONIUM STORAGE VAULT. (10/7/74) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  18. 1. AERIAL VIEW, LOOKING SOUTHSOUTHEAST, OF BUILDING 371 UNDER CONSTRUCTION. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. AERIAL VIEW, LOOKING SOUTH-SOUTHEAST, OF BUILDING 371 UNDER CONSTRUCTION. THE BUILDING IS A MULTI-LEVEL STRUCTURE, PARTIALLY UNDERGROUND. THE PLUTONIUM STORAGE VAULT EXTENDS FROM THE WEST SIDE OF THE BUILDING. FOOTERS FOR BUILDING 374 ARE VISIBLE TO THE LEFT OF BUILDING 371. (5/2/74) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  19. Aerial Photography: Use in Detecting Simulated Insect Defoliation in Corn

    NASA Technical Reports Server (NTRS)

    Chiang, H. C.; Latham, R.; Meyer, M. P.

    1973-01-01

    Artificial defoliation in corn was used to explore the usefulness of aerial photography in detecting crop insect infestations. Defoliation on the top of plants was easily detected, while that on the base was less so. Aero infrared film with Wratten 89B filter gave the best results, and morning flights at the scale of 1:15840 are recommended. Row direction, plant growth stage, and time elapse since defoliation were not important factors.

  20. 9. AERIAL VIEW OF CROSSCUT FACILITY, LOOKING SOUTHWEST. THE NEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. AERIAL VIEW OF CROSSCUT FACILITY, LOOKING SOUTHWEST. THE NEW CROSSCUT CANAL ENTERS THE PICTURE AT FOREGROUND RIGHT, EMPTYING INTO THE FOREBAY AND DESILTING BASIN CENTER. THE DUAL PENSTOCKS ARE SEEN AS THE STRAIGHT LINE RUNNING TOWARD THE HYDRO PLANTS ACROSS VAN BUREN STREET. top. THE BEGINNING OF THE GRAND CANAL IS VISIBLE, CURVING TO THE RIGHT BEYOND THE RAILROAD TRACKS Photographer unknown, no date - Cross Cut Hydro Plant, North Side of Salt River, Tempe, Maricopa County, AZ

  1. Metaproteomic identification of diazotrophic methanotrophs and their localization in root tissues of field-grown rice plants.

    PubMed

    Bao, Zhihua; Okubo, Takashi; Kubota, Kengo; Kasahara, Yasuhiro; Tsurumaru, Hirohito; Anda, Mizue; Ikeda, Seishi; Minamisawa, Kiwamu

    2014-08-01

    In a previous study by our group, CH4 oxidation and N2 fixation were simultaneously activated in the roots of wild-type rice plants in a paddy field with no N input; both processes are likely controlled by a rice gene for microbial symbiosis. The present study examined which microorganisms in rice roots were responsible for CH4 oxidation and N2 fixation under the field conditions. Metaproteomic analysis of root-associated bacteria from field-grown rice (Oryza sativa Nipponbare) revealed that nitrogenase complex-containing nitrogenase reductase (NifH) and the alpha subunit (NifD) and beta subunit (NifK) of dinitrogenase were mainly derived from type II methanotrophic bacteria of the family Methylocystaceae, including Methylosinus spp. Minor nitrogenase proteins such as Methylocella, Bradyrhizobium, Rhodopseudomonas, and Anaeromyxobacter were also detected. Methane monooxygenase proteins (PmoCBA and MmoXYZCBG) were detected in the same bacterial group of the Methylocystaceae. Because these results indicated that Methylocystaceae members mediate both CH4 oxidation and N2 fixation, we examined their localization in rice tissues by using catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). The methanotrophs were localized around the epidermal cells and vascular cylinder in the root tissues of the field-grown rice plants. Our metaproteomics and CARD-FISH results suggest that CH4 oxidation and N2 fixation are performed mainly by type II methanotrophs of the Methylocystaceae, including Methylosinus spp., inhabiting the vascular bundles and epidermal cells of rice roots.

  2. Proton-dependent coniferin transport, a common major transport event in differentiating xylem tissue of woody plants.

    PubMed

    Tsuyama, Taku; Kawai, Ryo; Shitan, Nobukazu; Matoh, Toru; Sugiyama, Junji; Yoshinaga, Arata; Takabe, Keiji; Fujita, Minoru; Yazaki, Kazufumi

    2013-06-01

    Lignin biosynthesis is an essential physiological activity of vascular plants if they are to survive under various environmental stresses on land. The biosynthesis of lignin proceeds in the cell wall by polymerization of precursors; the initial step of lignin polymerization is the transportation of lignin monomers from the cytosol to the cell wall, which is critical for lignin formation. There has been much debate on the transported form of the lignin precursor, either as free monolignols or their glucosides. In this study, we performed biochemical analyses to characterize the membrane transport mechanism of lignin precursors using angiosperms, hybrid poplar (Populus sieboldii × Populus grandidentata) and poplar (Populus sieboldii), as well gymnosperms, Japanese cypress (Chamaecyparis obtusa) and pine (Pinus densiflora). Membrane vesicles prepared from differentiating xylem tissues showed clear ATP-dependent transport activity of coniferin, whereas less than 4% of the coniferin transport activity was seen for coniferyl alcohol. Bafilomycin A1 and proton gradient erasers markedly inhibited coniferin transport in hybrid poplar membrane vesicles; in contrast, vanadate had no effect. Cis-inhibition experiments suggested that this transport activity was specific for coniferin. Membrane fractionation of hybrid poplar microsomes demonstrated that transport activity was localized to the tonoplast- and endomembrane-rich fraction. Differentiating xylem of Japanese cypress exhibited almost identical transport properties, suggesting the involvement of a common endomembrane-associated proton/coniferin antiport mechanism in the lignifying tissues of woody plants, both angiosperms and gymnosperms.

  3. On the micro-indentation of plant cells in a tissue context.

    PubMed

    Mosca, Gabriella; Sapala, Aleksandra; Strauss, Soeren; Routier-Kierzkowska, Anne-Lise; Smith, Richard S

    2017-02-09

    The effect of geometry on cell stiffness measured with micro-indentation techniques has been explored in single cells, however it is unclear if results on single cells can be readily transferred to indentation experiments performed on a tissue in vivo. Here we explored this question by using simulation models of osmotic treatments and micro-indentation experiments on 3D multicellular tissues with the finite element method. We found that the cellular context does affect measured cell stiffness, and that several cells of context in each direction are required for optimal results. We applied the model to micro-indentation data obtained with cellular force microscopy on the sepal of A. thaliana, and found that differences in measured stiffness could be explained by cellular geometry, and do not necessarily indicate differences in cell wall material properties or turgor pressure.

  4. On the micro-indentation of plant cells in a tissue context

    NASA Astrophysics Data System (ADS)

    Mosca, Gabriella; Sapala, Aleksandra; Strauss, Soeren; Routier-Kierzkowska, Anne-Lise; Smith, Richard S.

    2017-02-01

    The effect of geometry on cell stiffness measured with micro-indentation techniques has been explored in single cells, however it is unclear if results on single cells can be readily transferred to indentation experiments performed on a tissue in vivo. Here we explored this question by using simulation models of osmotic treatments and micro-indentation experiments on 3D multicellular tissues with the finite element method. We found that the cellular context does affect measured cell stiffness, and that several cells of context in each direction are required for optimal results. We applied the model to micro-indentation data obtained with cellular force microscopy on the sepal of A. thaliana, and found that differences in measured stiffness could be explained by cellular geometry, and do not necessarily indicate differences in cell wall material properties or turgor pressure.

  5. Analysis of laser-induced fluorescence spectra of in vitro plant tissue cultures

    NASA Astrophysics Data System (ADS)

    Muñoz-Muñoz, Ana Celia; Gutiérrez-Pulido, Humberto; Rodríguez-Domínguez, José Manuel; Gutiérrez-Mora, Antonia; Rodríguez-Garay, Benjamín; Cervantes-Martínez, Jesús

    2007-04-01

    We demonstrate the effectiveness of laser-induced fluorescence (LIF) for monitoring the development and stress detection of in vitro tissue cultures in a nondestructive and noninvasive way. The changes in LIF spectra caused by the induction of organogenesis, the increase of the F690/F740 ratio as a result of the stress originated in the organogenic explants due to shoot emergence, and the relationship between fluorescence spectra and shoot development were detected by LIF through closed containers of Saintpaulia ionantha.

  6. Inducibility of chemical defences by two chewing insect herbivores in pine trees is specific to targeted plant tissue, particular herbivore and defensive trait.

    PubMed

    Moreira, Xoaquín; Lundborg, Lina; Zas, Rafael; Carrillo-Gavilán, Amparo; Borg-Karlson, Anna-Karin; Sampedro, Luis

    2013-10-01

    There is increasing evidence that plants can react to biotic aggressions with highly specific responses. However, few studies have attempted to jointly investigate whether the induction of plant defences is specific to a targeted plant tissue, plant species, herbivore identity, and defensive trait. Here we studied those factors contributing to the specificity of induced defensive responses in two economically important pine species against two chewing insect pest herbivores. Juvenile trees of Pinus pinaster and P. radiata were exposed to herbivory by two major pest threats, the large pine weevil Hylobius abietis (a bark-feeder) and the pine processionary caterpillar Thaumetopoea pityocampa (a folivore). We quantified in two tissues (stem and needles) the constitutive (control plants) and herbivore-induced concentrations of total polyphenolics, volatile and non-volatile resin, as well as the profile of mono- and sesquiterpenes. Stem chewing by the pine weevil increased concentrations of non-volatile resin, volatile monoterpenes, and (marginally) polyphenolics in stem tissues. Weevil feeding also increased the concentration of non-volatile resin and decreased polyphenolics in the needle tissues. Folivory by the caterpillar had no major effects on needle defensive chemistry, but a strong increase in the concentration of polyphenolics in the stem. Interestingly, we found similar patterns for all these above-reported effects in both pine species. These results offer convincing evidence that induced defences are highly specific and may vary depending on the targeted plant tissue, the insect herbivore causing the damage and the considered defensive compound.

  7. Two-Photon Sensing and Imaging of Endogenous Biological Cyanide in Plant Tissues Using Graphene Quantum Dot/Gold Nanoparticle Conjugate.

    PubMed

    Wang, Lili; Zheng, Jing; Yang, Sheng; Wu, Cuichen; Liu, Changhui; Xiao, Yue; Li, Yinhui; Qing, Zhihe; Yang, Ronghua

    2015-09-02

    One main source of cyanide (CN(-)) exposure for mammals is through the plant consumption, and thus, sensitive and selective CN(-) detection in plants tissue is a significant and urgent work. Although various fluorescence probes have been reported for CN(-) in water and mammalian cells, the detection of endogenous biological CN(-) in plant tissue remains to be explored due to the high background signal and large thickness of plant tissue that hamper the effective application of traditional one-photo excitation. To address these issues, we developed a new two-photo excitation (TPE) nanosensor using graphene quantum dots (GQDs)/gold nanoparticle (AuNPs) conjugate for sensing and imaging endogenous biological CN(-). With the benefit of the high quenching efficiency of AuNPs and excellent two-photon properties of GQDs, our sensing system can achieve a low detection limit of 0.52 μM and deeper penetration depth (about 400 μm) without interference from background signals of a complex biological environment, thus realizing sensing and imaging of CN(-) in different types of plant tissues and even monitoring CN(-) removal in food processing. To the best of our knowledge, this is the first time for fluorescent sensing and imaging of CN(-) in plant tissues. Moreover, our design also provides a new model scheme for the development of two-photon fluorescent nanomaterial, which is expected to hold great potential for food processing and safety testing.

  8. Disease Development and Symptom Expression of Xanthomonas axonopodis pv. citri in Various Citrus Plant Tissues.

    PubMed

    Vernière, C J; Gottwald, T R; Pruvost, O

    2003-07-01

    ABSTRACT Experimental inoculations of Xanthomonas axonopodis pv. citri in different tissues of Tahiti lime and Pineapple sweet orange were conducted monthly under natural conditions on Réunion Island. The interactions between a set of environmental and epidemic variables associated with disease expression and 184 different factor combinations were investigated to determine the parameters needed to explain Asiatic citrus canker (ACC) disease expression. Area under the disease progress curve (AUDPC), inoculation date (Id), fruit and leaf age ratings (FAR and LAR), and number of days during the first 2 weeks postinoculation for which the temperature was less than 14 degrees C (T(min)) or more than 28 degrees C (T(max)) were retained by principal component analysis and canonical correlation analysis as the most meaningful epidemic and environmental variables, respectively. AUDPC as the strongest dependent variable and combinations of the environmental variables as independent variables were used in multiple regression analyses. Tissue age rating at the time of infection was a good predictor for disease resulting from spray inoculation on fruits and leaves and also on fruits following a wound inoculation. Temperature, as expressed by T(min) or T(max), was also a significant factor in determining disease development described by AUDPC. Mature green stems were highly susceptible after wounding, similarly to leaves, but buds and leaf scars expressed the lowest susceptibility. These variations in disease expression according to the tissues will have different impacts on ACC epidemiology.

  9. Aerial Refueling Clearance Process Guide

    DTIC Science & Technology

    2014-08-21

    08-2014 2. REPORT TYPE Guidance Document 3. DATES COVERED 2008-2014 4. TITLE AND SUBTITLE Aerial Refueling Clearance Process Guide Attachment: Aerial...ATP-3.3.4.2 covers general operational procedures for AR and national/organizational SRDs cover data and procedures specific to their AR platforms...Receptacle, Probe/Drogue, and BDA Kit. 3.1.3 The items for assessment consideration cover several areas of interface for both the tanker and the

  10. Electron tomography of cryo-immobilized plant tissue: a novel approach to studying 3D macromolecular architecture of mature plant cell walls in situ.

    PubMed

    Sarkar, Purbasha; Bosneaga, Elena; Yap, Edgar G; Das, Jyotirmoy; Tsai, Wen-Ting; Cabal, Angelo; Neuhaus, Erica; Maji, Dolonchampa; Kumar, Shailabh; Joo, Michael; Yakovlev, Sergey; Csencsits, Roseann; Yu, Zeyun; Bajaj, Chandrajit; Downing, Kenneth H; Auer, Manfred

    2014-01-01

    Cost-effective production of lignocellulosic biofuel requires efficient breakdown of cell walls present in plant biomass to retrieve the wall polysaccharides for fermentation. In-depth knowledge of plant cell wall composition is therefore essential for improving the fuel production process. The precise spatial three-dimensional (3D) organization of cellulose, hemicellulose, pectin and lignin within plant cell walls remains unclear to date since the microscopy techniques used so far have been limited to two-dimensional, topographic or low-resolution imaging, or required isolation or chemical extraction of the cell walls. In this paper we demonstrate that by cryo-immobilizing fresh tissue, then either cryo-sectioning or freeze-substituting and resin embedding, followed by cryo- or room temperature (RT) electron tomography, respectively, we can visualize previously unseen details of plant cell wall architecture in 3D, at macromolecular resolution (∼ 2 nm), and in near-native state. Qualitative and quantitative analyses showed that wall organization of cryo-immobilized samples were preserved remarkably better than conventionally prepared samples that suffer substantial extraction. Lignin-less primary cell walls were well preserved in both self-pressurized rapidly frozen (SPRF), cryo-sectioned samples as well as high-pressure frozen, freeze-substituted and resin embedded (HPF-FS-resin) samples. Lignin-rich secondary cell walls appeared featureless in HPF-FS-resin sections presumably due to poor stain penetration, but their macromolecular features could be visualized in unprecedented details in our cryo-sections. While cryo-tomography of vitreous tissue sections is currently proving to be instrumental in developing 3D models of lignin-rich secondary cell walls, here we confirm that the technically easier method of RT-tomography of HPF-FS-resin sections could be used immediately for routine study of low-lignin cell walls. As a proof of principle, we characterized the

  11. Electron Tomography of Cryo-Immobilized Plant Tissue: A Novel Approach to Studying 3D Macromolecular Architecture of Mature Plant Cell Walls In Situ

    PubMed Central

    Sarkar, Purbasha; Bosneaga, Elena; Yap, Edgar G.; Das, Jyotirmoy; Tsai, Wen-Ting; Cabal, Angelo; Neuhaus, Erica; Maji, Dolonchampa; Kumar, Shailabh; Joo, Michael; Yakovlev, Sergey; Csencsits, Roseann; Yu, Zeyun; Bajaj, Chandrajit; Downing, Kenneth H.; Auer, Manfred

    2014-01-01

    Cost-effective production of lignocellulosic biofuel requires efficient breakdown of cell walls present in plant biomass to retrieve the wall polysaccharides for fermentation. In-depth knowledge of plant cell wall composition is therefore essential for improving the fuel production process. The precise spatial three-dimensional (3D) organization of cellulose, hemicellulose, pectin and lignin within plant cell walls remains unclear to date since the microscopy techniques used so far have been limited to two-dimensional, topographic or low-resolution imaging, or required isolation or chemical extraction of the cell walls. In this paper we demonstrate that by cryo-immobilizing fresh tissue, then either cryo-sectioning or freeze-substituting and resin embedding, followed by cryo- or room temperature (RT) electron tomography, respectively, we can visualize previously unseen details of plant cell wall architecture in 3D, at macromolecular resolution (∼2 nm), and in near-native state. Qualitative and quantitative analyses showed that wall organization of cryo-immobilized samples were preserved remarkably better than conventionally prepared samples that suffer substantial extraction. Lignin-less primary cell walls were well preserved in both self-pressurized rapidly frozen (SPRF), cryo-sectioned samples as well as high-pressure frozen, freeze-substituted and resin embedded (HPF-FS-resin) samples. Lignin-rich secondary cell walls appeared featureless in HPF-FS-resin sections presumably due to poor stain penetration, but their macromolecular features could be visualized in unprecedented details in our cryo-sections. While cryo-tomography of vitreous tissue sections is currently proving to be instrumental in developing 3D models of lignin-rich secondary cell walls, here we confirm that the technically easier method of RT-tomography of HPF-FS-resin sections could be used immediately for routine study of low-lignin cell walls. As a proof of principle, we characterized the

  12. Production of 2-hydroxy-4-methoxybenzaldehyde in roots of tissue culture raised and acclimatized plants of Decalepis hamiltonii Wight & Arn., an endangered shrub endemic to Southern India and evaluation of its performance vis-a-vis plants from natural habitat.

    PubMed

    Giridhar, P; Rajasekaran, T; Nagarajan, S; Ravishankar, G A

    2004-01-01

    Axillary buds obtained from field grown plants of D. hamiltonii were used to initiate multiple shoots on Murashige and Skoog's medium (MS) supplemented with 2 mg L(-1) 6-benzyl aminopurine (BA) and 0.5 mg L(-1) indole-3-acetic acid (IAA). Profuse rooting was achieved when the actively growing shoots were cultured on MS medium supplemented with 1.0 mg l(-1) indole-3-butyric acid (IBA). Regenerated plants were grown successfully in the plains, in contrast to wild growth in high altitudes and rocky crevices of hilly regions. Roots of different sizes from one-year-old tissue culture raised field grown plants had the same profile of 2-hydroxy-4-methoxybenzaldehyde as that of wild plants. A maximum of 0.14% and 0.12% 2-hydroxy-4-methoxybenzaldehyde was produced in roots of one year old tissue culture derived plants and greenhouse grown plants respectively.

  13. An effective system to produce smoke solutions from dried plant tissue for seed germination studies1

    PubMed Central

    Coons, Janice; Coutant, Nancy; Lawrence, Barbara; Finn, Daniel; Finn, Stephanie

    2014-01-01

    • Premise of the study: An efficient and inexpensive system was developed to produce smoke solutions from plant material to research the influence of water-soluble compounds from smoke on seed germination. • Methods and Results: Smoke solutions (300 mL per batch) were produced by burning small quantities (100–200 g) of dried plant material from a range of species in a bee smoker attached by a heater hose to a side-arm flask. The flask was attached to a vacuum water aspirator, to pull the smoke through the water. The entire apparatus was operated in a laboratory fume hood. • Conclusions: Compared with other smoke solution preparation systems, the system described is easy to assemble and operate, inexpensive to build, and effective at producing smoke solutions from desired species in a small indoor space. Quantitative measurements can be made when using this system, allowing for replication of the process. PMID:25202613

  14. Basic procedures for epigenetic analysis in plant cell and tissue culture.

    PubMed

    Rodríguez, José L; Pascual, Jesús; Viejo, Marcos; Valledor, Luis; Meijón, Mónica; Hasbún, Rodrigo; Yrei, Norma Yague; Santamaría, María E; Pérez, Marta; Fernández Fraga, Mario; Berdasco, María; Rodríguez Fernández, Roberto; Cañal, María J

    2012-01-01

    In vitro culture is one of the most studied techniques, and it is used to study many developmental processes, especially in forestry species, because of growth timing and easy manipulation. Epigenetics has been shown as an important influence on many research analyses such as cancer in mammals and developmental processes in plants such as flowering, but regarding in vitro culture, techniques to study DNA methylation or chromatin modifications were mainly limited to identify somaclonal variation of the micropropagated material. Because in vitro culture is not only a way to generate plant material but also a bunch of differentially induced developmental processes, an approach of techniques and some research carried out to study the different changes regarding DNA methylation and chromatin and translational modifications that take place during these processes is reviewed.

  15. A rapid immunoprecipitation assay for neomycin phosphotransferase II expression in transformed bacteria and plant tissues.

    PubMed

    Baszczynski, C L

    1990-06-01

    Anti-kanamycin antibodies produced in rabbits, following coupling of the antibiotic to bovine serum albumin, were used to immunoprecipitate radioactively labelled phosphorylated kanamycin from transformed bacterial or plant extracts in a novel assay system, for the detection of neomycin phosphotransferase II (NPTII) activity. Radioactive counts in the immunoprecipitated pellet give a semiquantitative measure of the kanamycin phosphorylation and hence the amount of NPTII activity. This assay is sensitive, uses very small amounts of radioactivity, and is very rapid, allowing many samples to be processed within a few hours. Immunoprecipitated counts from reactions with bacteria carrying a kanamycin resistance gene or from tobacco and Brassica napus plants transformed with NPTII gene-containing vectors were consistently higher than counts from nontransformed controls. Results obtained with this assay correlate well with those from the previously described gel overlay and dot-blot assays, but can be obtained in an appreciably shorter time frame.

  16. Studying microstructure and microstructural changes in plant tissues by advanced diffusion magnetic resonance imaging techniques.

    PubMed

    Morozov, Darya; Tal, Iris; Pisanty, Odelia; Shani, Eilon; Cohen, Yoram

    2017-04-08

    As sessile organisms, plants must respond to the environment by adjusting their growth and development. Most of the plant body is formed post-embryonically by continuous activity of apical and lateral meristems. The development of lateral adventitious roots is a complex process, and therefore the development of methods that can visualize, non-invasively, the plant microstructure and organ initiation that occur during growth and development is of paramount importance. In this study, relaxation-based and advanced diffusion magnetic resonance imaging (MRI) methods including diffusion tensor (DTI), q-space diffusion imaging (QSI), and double-pulsed-field-gradient (d-PFG) MRI, at 14.1 T, were used to characterize the hypocotyl microstructure and the microstructural changes that occurred during the development of lateral adventitious roots in tomato. Better contrast was observed in relaxation-based MRI using higher in-plane resolution but this also resulted in a significant reduction in the signal-to-noise ratio of the T2-weighted MR images. Diffusion MRI revealed that water diffusion is highly anisotropic in the vascular cylinder. QSI and d-PGSE MRI showed that in the vascular cylinder some of the cells have sizes in the range of 6-10 μm. The MR images captured cell reorganization during adventitious root formation in the periphery of the primary vascular bundles, adjacent to the xylem pole that broke through the cortex and epidermis layers. This study demonstrates that MRI and diffusion MRI methods allow the non-invasive study of microstructural features of plants, and enable microstructural changes associated with adventitious root formation to be followed.

  17. Extraction and labeling methods for microarrays using small amounts of plant tissue.

    PubMed

    Stimpson, Alexander J; Pereira, Rhea S; Kiss, John Z; Correll, Melanie J

    2009-03-01

    Procedures were developed to maximize the yield of high-quality RNA from small amounts of plant biomass for microarrays. Two disruption techniques (bead milling and pestle and mortar) were compared for the yield and the quality of RNA extracted from 1-week-old Arabidopsis thaliana seedlings (approximately 0.5-30 mg total biomass). The pestle and mortar method of extraction showed enhanced RNA quality at the smaller biomass samples compared with the bead milling technique, although the quality in the bead milling could be improved with additional cooling steps. The RNA extracted from the pestle and mortar technique was further tested to determine if the small quantity of RNA (500 ng-7 microg) was appropriate for microarray analyses. A new method of low-quantity RNA labeling for microarrays (NuGEN Technologies, Inc.) was used on five 7-day-old seedlings (approximately 2.5 mg fresh weight total) of Arabidopsis that were grown in the dark and exposed to 1 h of red light or continued dark. Microarray analyses were performed on a small plant sample (five seedlings; approximately 2.5 mg) using these methods and compared with extractions performed with larger biomass samples (approximately 500 roots). Many well-known light-regulated genes between the small plant samples and the larger biomass samples overlapped in expression changes, and the relative expression levels of selected genes were confirmed with quantitative real-time polymerase chain reaction, suggesting that these methods can be used for plant experiments where the biomass is extremely limited (i.e. spaceflight studies).

  18. The major plant-derived cannabinoid Δ(9)-tetrahydrocannabinol promotes hypertrophy and macrophage infiltration in adipose tissue.

    PubMed

    Wong, A; Gunasekaran, N; Hancock, D P; Denyer, G S; Meng, L; Radford, J L; McGregor, I S; Arnold, J C

    2012-02-01

    Synthetic cannabinoid receptor agonists activate lipoprotein lipase and the formation of lipid droplets in cultured adipocytes. Here we extend this work by examining whether Δ(9)-tetrahydrocannabinol (THC), a major plant-derived cannabinoid, increases adipocyte size in vivo. Further, possibly as a consequence of hypertrophy, we hypothesize that THC exposure promotes macrophage infiltration into adipose tissue, an inflammatory state observed in obese individuals. Rats repeatedly exposed to THC in vivo had reduced body weight, fat pad weight, and ingested less food over the drug injection period. However, THC promoted adipocyte hypertrophy that was accompanied by a significant increase in cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) expression, an enzyme important in packaging triglycerides. We also showed that THC induced macrophage infiltration and increased expression of the inflammatory cytokine tumor necrosis factor alpha (TNF-α) in adipose tissue but did not induce apoptosis as measured by TUNEL staining. That THC increased adipocyte cell size in the absence of greater food intake, body weight and fat provides a unique model to explore mechanisms underlying changes in adipocyte size associated with a mild inflammatory state in fat tissue.

  19. Online, real-time detection of volatile emissions from plant tissue

    PubMed Central

    Harren, Frans J. M.; Cristescu, Simona M.

    2013-01-01

    Trace gas monitoring plays an important role in many areas of life sciences ranging from agrotechnology, microbiology, molecular biology, physiology, and phytopathology. In plants, many processes can be followed by their low-concentration gas emission, for compounds such as ethylene, nitric oxide, ethanol or other volatile organic compounds (VOCs). For this, numerous gas-sensing devices are currently available based on various methods. Among them are the online trace gas detection methods; these have attracted much interest in recent years. Laser-based infrared spectroscopy and proton transfer reaction mass spectrometry are the two most widely used methods, thanks to their high sensitivity at the single part per billion level and their response time of seconds. This paper starts with a short description of each method and presents performances within a wide variety of biological applications. Using these methods, the dynamics of trace gases for ethylene, nitric oxide and other VOCs released by plants under different conditions are recorded and analysed under natural conditions. In this way many hypotheses can be tested, revealing the role of the key elements in signalling and action mechanisms in plants. PMID:23429357

  20. Unexpected behavior of some nitric oxide modulators under cadmium excess in plant tissue.

    PubMed

    Kováčik, Jozef; Babula, Petr; Klejdus, Bořivoj; Hedbavny, Josef; Jarošová, Markéta

    2014-01-01

    Various nitric oxide modulators (NO donors--SNP, GSNO, DEA NONOate and scavengers--PTIO, cPTIO) were tested to highlight the role of NO under Cd excess in various ontogenetic stages of chamomile (Matricaria chamomilla). Surprisingly, compared to Cd alone, SNP and PTIO elevated Cd uptake (confirmed also by PhenGreen staining) but depleted glutathione (partially ascorbic acid) and phytochelatins PC2 and PC3 in both older plants (cultured hydroponically) and seedlings (cultured in deionised water). Despite these anomalous impacts, fluorescence staining of NO and ROS confirmed predictable assumptions and revealed reciprocal changes (decrease in NO but increase in ROS after PTIO addition and the opposite after SNP application). Subsequent tests using alternative modulators and seedlings confirmed changes to NO and ROS after application of GSNO and DEA NONOate as mentioned above for SNP while cPTIO altered only NO level (depletion). On the contrary to SNP and PTIO, GSNO, DEA NONOate and cPTIO did not elevate Cd content and phytochelatins (PC2, PC3) were rather elevated. These data provide evidence that various NO modulators are useful in terms of NO and ROS manipulation but interactions with intact plants affect metal uptake and must therefore be used with caution. In this view, cPTIO and DEA NONOate revealed the less pronounced side impacts and are recommended as suitable NO scavenger/donor in plant physiological studies under Cd excess.

  1. Unexpected Behavior of Some Nitric Oxide Modulators under Cadmium Excess in Plant Tissue

    PubMed Central

    Kováčik, Jozef; Babula, Petr; Klejdus, Bořivoj; Hedbavny, Josef; Jarošová, Markéta

    2014-01-01

    Various nitric oxide modulators (NO donors - SNP, GSNO, DEA NONOate and scavengers – PTIO, cPTIO) were tested to highlight the role of NO under Cd excess in various ontogenetic stages of chamomile (Matricaria chamomilla). Surprisingly, compared to Cd alone, SNP and PTIO elevated Cd uptake (confirmed also by PhenGreen staining) but depleted glutathione (partially ascorbic acid) and phytochelatins PC2 and PC3 in both older plants (cultured hydroponically) and seedlings (cultured in deionised water). Despite these anomalous impacts, fluorescence staining of NO and ROS confirmed predictable assumptions and revealed reciprocal changes (decrease in NO but increase in ROS after PTIO addition and the opposite after SNP application). Subsequent tests using alternative modulators and seedlings confirmed changes to NO and ROS after application of GSNO and DEA NONOate as mentioned above for SNP while cPTIO altered only NO level (depletion). On the contrary to SNP and PTIO, GSNO, DEA NONOate and cPTIO did not elevate Cd content and phytochelatins (PC2, PC3) were rather elevated. These data provide evidence that various NO modulators are useful in terms of NO and ROS manipulation but interactions with intact plants affect metal uptake and must therefore be used with caution. In this view, cPTIO and DEA NONOate revealed the less pronounced side impacts and are recommended as suitable NO scavenger/donor in plant physiological studies under Cd excess. PMID:24626462

  2. Potassium (K+) gradients serve as a mobile energy source in plant vascular tissues

    PubMed Central

    Gajdanowicz, Pawel; Michard, Erwan; Sandmann, Michael; Rocha, Marcio; Corrêa, Luiz Gustavo Guedes; Ramírez-Aguilar, Santiago J.; Gomez-Porras, Judith L.; González, Wendy; Thibaud, Jean-Baptiste; van Dongen, Joost T.; Dreyer, Ingo

    2011-01-01

    The essential mineral nutrient potassium (K+) is the most important inorganic cation for plants and is recognized as a limiting factor for crop yield and quality. Nonetheless, it is only partially understood how K+ contributes to plant productivity. K+ is used as a major active solute to maintain turgor and to drive irreversible and reversible changes in cell volume. K+ also plays an important role in numerous metabolic processes, for example, by serving as an essential cofactor of enzymes. Here, we provide evidence for an additional, previously unrecognized role of K+ in plant growth. By combining diverse experimental approaches with computational cell simulation, we show that K+ circulating in the phloem serves as a decentralized energy storage that can be used to overcome local energy limitations. Posttranslational modification of the phloem-expressed Arabidopsis K+ channel AKT2 taps this “potassium battery,” which then efficiently assists the plasma membrane H+-ATPase in energizing the transmembrane phloem (re)loading processes. PMID:21187374

  3. 27. AERIAL VIEW LOOKING EAST DOWN THE WEST ACCESS ROAD. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. AERIAL VIEW LOOKING EAST DOWN THE WEST ACCESS ROAD. THE FIRST LARGE PROTEST AT THE PLANT CAME IN 1978. IT WAS THE FIRST MAJOR PROTEST AT ANY DEPARTMENT OF ENERGY PLANT. IN RESPONSE TO CONTINUING ANTI- NUCLEAR PROTESTS, IN PARTICULAR A 1979 RALLY THAT DREW 10,000 PARTICIPANTS, ROCKWELL EMPLOYEES AT THE PLANT FORMED A GRASSROOT ORGANIZATION, CITIZENS FOR ENERGY AND FREEDOM, AND ORGANIZED A PRO-NUCLEAR RALLY, 'POWER TO THE PEOPLE,' THAT ATTRACTED 16,000 PEOPLE (5/4/78). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  4. Micro-scaled high-throughput digestion of plant tissue samples for multi-elemental analysis

    PubMed Central

    Hansen, Thomas H; Laursen, Kristian H; Persson, Daniel P; Pedas, Pai; Husted, Søren; Schjoerring, Jan K

    2009-01-01

    Background Quantitative multi-elemental analysis by inductively coupled plasma (ICP) spectrometry depends on a complete digestion of solid samples. However, fast and thorough sample digestion is a challenging analytical task which constitutes a bottleneck in modern multi-elemental analysis. Additional obstacles may be that sample quantities are limited and elemental concentrations low. In such cases, digestion in small volumes with minimum dilution and contamination is required in order to obtain high accuracy data. Results We have developed a micro-scaled microwave digestion procedure and optimized it for accurate elemental profiling of plant materials (1-20 mg dry weight). A commercially available 64-position rotor with 5 ml disposable glass vials, originally designed for microwave-based parallel organic synthesis, was used as a platform for the digestion. The novel micro-scaled method was successfully validated by the use of various certified reference materials (CRM) with matrices rich in starch, lipid or protein. When the micro-scaled digestion procedure was applied on single rice grains or small batches of Arabidopsis seeds (1 mg, corresponding to approximately 50 seeds), the obtained elemental profiles closely matched those obtained by conventional analysis using digestion in large volume vessels. Accumulated elemental contents derived from separate analyses of rice grain fractions (aleurone, embryo and endosperm) closely matched the total content obtained by analysis of the whole rice grain. Conclusion A high-throughput micro-scaled method has been developed which enables digestion of small quantities of plant samples for subsequent elemental profiling by ICP-spectrometry. The method constitutes a valuable tool for screening of mutants and transformants. In addition, the method facilitates studies of the distribution of essential trace elements between and within plant organs which is relevant for, e.g., breeding programmes aiming at improvement of the

  5. Plant abiotic stress diagnostic by laser induced chlorophyll fluorescence spectral analysis of in vivo leaf tissue of biofuel species

    NASA Astrophysics Data System (ADS)

    Gouveia-Neto, Artur S.; Silva, Elias A., Jr.; Costa, Ernande B.; Bueno, Luciano A.; Silva, Luciana M. H.; Granja, Manuela M. C.; Medeiros, Maria J. L.; Câmara, Terezinha J. R.; Willadino, Lilia G.

    2010-02-01

    Laser induced fluorescence is exploited to evaluate the effect of abiotic stresses upon the evolution and characteristics of in vivo chlorophyll emission spectra of leaves tissues of brazilian biofuel plants species(Saccharum officinarum and Jatropha curcas). The chlorophyll fluorescence spectra of 20 min predarkened intact leaves were studied employing several excitation wavelengths in the UV-VIS spectral region. Red(Fr) and far-red (FFr) chlorophyll fluorescence emission signals around 685 nm and 735 nm, respectively, were analyzed as a function of the stress intensity and the time of illumination(Kautsky effect). The Chl fluorescence ratio Fr/FFr which is a valuable nondestructive indicator of the chlorophyll content of leaves was investigated during a period of time of 30 days. The dependence of the Chl fluorescence ratio Fr/FFr upon the intensity of the abiotic stress(salinity) was examined. The results indicated that the salinity plays a major hole in the chlorophyll concentration of leaves in both plants spieces, with a significant reduction in the chlorophyll content for NaCl concentrations in the 25 - 200 mM range. The laser induced chlorophyll fluorescence analysis allowed detection of damage caused by salinity in the early stages of the plants growing process, and can be used as an early-warning indicator of salinity stress

  6. Breaking dogmas: the plant vascular pathogen Xanthomonas albilineans is able to invade non-vascular tissues despite its reduced genome.

    PubMed

    Mensi, Imène; Vernerey, Marie-Stéphanie; Gargani, Daniel; Nicole, Michel; Rott, Philippe

    2014-02-12

    Xanthomonas albilineans, the causal agent of sugarcane leaf scald, is missing the Hrp type III secretion system that is used by many Gram-negative bacteria to colonize their host. Until now, this pathogen was considered as strictly limited to the xylem of sugarcane. We used confocal laser scanning microscopy, immunocytochemistry and transmission electron microscopy (TEM) to investigate the localization of X. albilineans in diseased sugarcane. Sugarcane plants were inoculated with strains of the pathogen labelled with a green fluorescent protein. Confocal microscopy observations of symptomatic leaves confirmed the presence of the pathogen in the protoxylem and metaxylem; however, X. albilineans was also observed in phloem, parenchyma and bulliform cells of the infected leaves. Similarly, vascular bundles of infected sugarcane stalks were invaded by X. albilineans. Surprisingly, the pathogen was also observed in apparently intact storage cells of the stalk and in intercellular spaces between these cells. Most of these observations made by confocal microscopy were confirmed by TEM. The pathogen exits the xylem following cell wall and middle lamellae degradation, thus creating openings to reach parenchyma cells. This is the first description of a plant pathogenic vascular bacterium invading apparently intact non-vascular plant tissues and multiplying in parenchyma cells.

  7. Application of a novel and automated branched DNA in situ hybridization method for the rapid and sensitive localization of mRNA molecules in plant tissues1

    PubMed Central

    Bowling, Andrew J.; Pence, Heather E.; Church, Jeffrey B.

    2014-01-01

    • Premise of the study: A novel branched DNA detection technology, RNAscope in situ hybridization (ISH), originally developed for use on human clinical and animal tissues, was adapted for use in plant tissue in an attempt to overcome some of the limitations associated with traditional ISH assays. • Methods and Results: Zea mays leaf tissue was formaldehyde fixed and paraffin embedded (FFPE) and then probed with the RNAscope ISH assay for two endogenous genes, phosphoenolpyruvate carboxylase (PEPC) and phosphoenolpyruvate carboxykinase (PEPCK). Results from both manual and automated methods showed tissue- and cell-specific mRNA localization patterns expected from these well-studied genes. • Conclusions: RNAscope ISH is a sensitive method that generates high-quality, easily interpretable results from FFPE plant tissues. Automation of the RNAscope method on the Ventana Discovery Ultra platform allows significant advantages for repeatability, reduction in variability, and flexibility of workflow processes. PMID:25202621

  8. Photosynthetic carbohydrate metabolism in the resurrection plant Craterostigma plantagineum.

    PubMed

    Norwood, M; Truesdale, M R; Richter, A; Scott, P

    2000-02-01

    The resurrection plant Craterostigma plantagineum (Hochst) is able to survive almost complete tissue dehydration when water is withheld from it, and then can rehydrate rapidly on rewatering. This ability is believed to be the result of the accumulation of sucrose in aerial tissues as a result of metabolism of 2-octulose. In this work the metabolic activity of well-watered Craterostigma plantagineum plants has been investigated. It is shown that Craterostigma makes raffinose series oligosaccharides as a product of photosynthesis and translocates them in the phloem. Evidence is also provided that 2-octulose is a product of photosynthesis and accumulates in the leaves over the light period and is mobilized at night. Thus 2-octulose acts as a temporary storage carbohydrate in leaves during photosynthesis in a similar fashion to starch in most C3 plants. Other potential roles of 2-octulose are discussed. Other than these observations Craterostigma plants are very similar to other C3 plants under these conditions.

  9. Effect of calcium silicate slag application on radium-226 concentrations in plant tissues

    SciTech Connect

    Mortvedt, J.J.

    1986-01-01

    A greenhouse pot experiment was conducted to determine if plants absorb Ra from slag applied to soil. Slag at rates equivalent to 0 and 22 mt/ha was mixed with Mountview silt loam (Typic Paleudults) limed to pH 5.8 and 7.2. Three clippings each of fescue (Festuca arundiancea Schreb.), and Swiss chard (Beta vulgaris L.), and one harvest of wheat (Triticum aestivum L.) for grain and straw were grown on separate series of treated soil, and plant samples were analyzed for radioactivity due to /sup 226/Ra uptake. Samples of sugarcane (Saccharum officinarum L.) forage and extracted juice from field experiments in Florida testing this slage as a Si source also were analyzed for radioactivity. Dry forage yields of fescue and wheat were not affected by slag applications, but those of Swiss chard were somewhat higher on slag-treated soil at pH 5.8. Wheat grain and straw yields were higher on soil at pH 7.2 than at pH 5.8 regardless of slag treatment. Uptake of /sup 226/Ra by fescue forage and wheat grain and straw was not affected by slag application. Concentrations of /sup 226/Ra were similar in forage and extracted juice from untreated sugarcane or that treated with slag at rates up to 5.6 mt/ha. These results suggest that plant uptake of radionuclides is negligible from calcium silicate slag applied at the recommended rates for liming acid soils or as a source of Si for sugarcane.

  10. Phosphatidylinositol(4,5)bisphosphate and phosphatidylinositol(4)phosphate in plant tissues. [Pisum sativum

    SciTech Connect

    Irvine, R.F.; Letcher, A.J.; Lander, D.J. ); Dawson, A.P. ); Musgrave, A. ); Drobak, B.K. )

    1989-03-01

    Pea (Pisum sativum) leaf discs or swimming suspensions of Chlamydomonas eugametos were radiolabeled with ({sup 3}H)myo-inositol or ({sup 32}P)Pi and the lipids were extracted, deacylated, and their glycerol moieties removed. The resulting inositol trisphosphate and bisphosphate fractions were examined by periodate degradation, reduction and dephosphorylation, or by incubation with human red cell membranes. Their likely structures were identified as D-myo-inositol(1,4,5)trisphosphate and D-myo-inositol(1,4,)-bisphosphate. It is concluded that plants contain phosphatidylinositol(4)phosphate and phosphatidylinositol(4,5)bisphosphate; no other polyphosphoinositides were detected.

  11. Improved Plant-based Production of E1 endoglucanase Using Potato: Expression Optimization and Tissue Targeting

    SciTech Connect

    Dai, Ziyu; Hooker, Brian S.; Anderson, Daniel B.; Thomas, Steven R.

    2000-06-01

    Optimization of Acidothermus cellulolyticus endoglucanase (E1) gene expression in transgenic potato (Solanum tuberosum L.) was examined in this study, where the E1 coding sequence was transcribed under control of a leaf specific promoter (tomato RbcS-3C) or the Mac promoter (a hybrid promoter of mannopine synthase promoter and cauliflower mosaic virus 35S promoter enhancer region). Average E1 activity in leaf extracts of potato transformants, in which E1 protein was targeted by a chloroplast signal peptide and an apoplast signal peptide were much higher than those by an E1 native signal peptide and a vacuole signal peptide. E1 protein accumulated up to 2.6% of total leaf soluble protein, where E1 gene was under control of the RbcS-3C promoter, alfalfa mosaic virus 5-untranslated leader, and RbcS-2A signal peptide. E1 protein production, based on average E1 activity and E1 protein accumulation in leaf extracts, is higher in potato than those measured previously in transgenic tobacco bearing the same transgene constructs. Comparisons of E1 activity, protein accumulation, and relative mRNA levels showed that E1 expression under control of tomato RbcS-3C promoter was specifically localized in leaf tissues, while E1 gene was expressed in both leaf and tuber tissues under control of Mac promoter. This suggests dual-crop applications in which potato vines serve as enzyme production `bioreactors' while tubers are preserved for culinary applications.

  12. Genome and metagenome sequencing: Using the human methyl-binding domain to partition genomic DNA derived from plant tissues1

    PubMed Central

    Yigit, Erbay; Hernandez, David I.; Trujillo, Joshua T.; Dimalanta, Eileen; Bailey, C. Donovan

    2014-01-01

    • Premise of the study: Variation in the distribution of methylated CpG (methyl-CpG) in genomic DNA (gDNA) across the tree of life is biologically interesting and useful in genomic studies. We illustrate the use of human methyl-CpG-binding domain (MBD2) to fractionate angiosperm DNA into eukaryotic nuclear (methyl-CpG-rich) vs. organellar and prokaryotic (methyl-CpG-poor) elements for genomic and metagenomic sequencing projects. • Methods: MBD2 has been used to enrich prokaryotic DNA in animal systems. Using gDNA from five model angiosperm species, we apply a similar approach to identify whether MBD2 can fractionate plant gDNA into methyl-CpG-depleted vs. enriched methyl-CpG elements. For each sample, three gDNA libraries were sequenced: (1) untreated gDNA, (2) a methyl-CpG-depleted fraction, and (3) a methyl-CpG-enriched fraction. • Results: Relative to untreated gDNA, the methyl-depleted libraries showed a 3.2–11.2-fold and 3.4–11.3-fold increase in chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA), respectively. Methyl-enriched fractions showed a 1.8–31.3-fold and 1.3–29.0-fold decrease in cpDNA and mtDNA, respectively. • Discussion: The application of MBD2 enabled fractionation of plant gDNA. The effectiveness was particularly striking for monocot gDNA (Poaceae). When sufficiently effective on a sample, this approach can increase the cost efficiency of sequencing plant genomes as well as prokaryotes living in or on plant tissues. PMID:25383266

  13. Improving knowledge of plant tissue culture and media formulation by neurofuzzy logic: a practical case of data mining using apricot databases.

    PubMed

    Gago, Jorge; Pérez-Tornero, Olaya; Landín, Mariana; Burgos, Lorenzo; Gallego, Pedro P

    2011-10-15

    Plant tissue growth can be regulated and controlled via culture media composition. A number of different laborious and time-consuming approaches have been used to attempt development of optimized media for a wide range of species and applications. However, plant tissue culture is a very complex task, and the identification of the influences of process factors such as mineral nutrients or plant growth regulators on a wide spectrum of growth responses cannot always well comprehended. This study employs a new approach, data mining, to uncover and integrate knowledge hidden in multiple data from plant tissue culture media formulations using apricot micropropagation databases as an example. Neurofuzzy logic technology made it possible to identify relationships among several factors (cultivars, mineral nutrients and plant growth regulators) and growth parameters (shoots number, shoots length and productivity), extracting biologically useful information from each database and combining them to create a model. The IF-THEN rule sets generated by neurofuzzy logic were completely in agreement with previous findings based on statistical analysis, but advantageously generated understandable and reusable knowledge that can be applied in future plant tissue culture media optimization.

  14. Safer DNA extraction from plant tissues using sucrose buffer and glass fiber filter.

    PubMed

    Takakura, Koh-Ichi; Nishio, Takayuki

    2012-11-01

    For some plant species, DNA extraction and downstream experiments are inhibited by various chemicals such as polysaccharides and polyphenols. This short communication proposed an organic-solvent free (except for ethanol) extraction method. This method consists of an initial washing step with STE buffer (0.25 M sucrose, 0.03 M Tris, 0.05 M EDTA), followed by DNA extraction using a piece of glass fiber filter. The advantages of this method are its safety and low cost. The purity of the DNA solution obtained using this method is not necessarily as high as that obtained using the STE/CTAB method, but it is sufficient for PCR experiments. These points were demonstrated empirically with two species, Japanese speedwell and common dandelion, for which DNA has proven difficult to amplify via PCR in past studies.

  15. Compartmentation of photosynthesis in cells and tissues of C(4) plants.

    PubMed

    Edwards, G E; Franceschi, V R; Ku, M S; Voznesenskaya, E V; Pyankov, V I; Andreo, C S

    2001-04-01

    Critical to defining photosynthesis in C(4) plants is understanding the intercellular and intracellular compartmentation of enzymes between mesophyll and bundle sheath cells in the leaf. This includes enzymes of the C(4) cycle (including three subtypes), the C(3) pathway and photorespiration. The current state of knowledge of this compartmentation is a consequence of the development and application of different techniques over the past three decades. Initial studies led to some alternative hypotheses on the mechanism of C(4) photosynthesis, and some controversy over the compartmentation of enzymes. The development of methods for separating mesophyll and bundle sheath cells provided convincing evidence on intercellular compartmentation of the key components of the C(4) pathway. Studies on the intracellular compartmentation of enzymes between organelles and the cytosol were facilitated by the isolation of mesophyll and bundle sheath protoplasts, which can be fractionated gently while maintaining organelle integrity. Now, the ability to determine localization of photosynthetic enzymes conclusively, through in situ immunolocalization by confocal light microscopy and transmission electron microscopy, is providing further insight into the mechanism of C(4) photosynthesis and its evolution. Currently, immunological, ultrastructural and cytochemical studies are revealing relationships between anatomical arrangements and photosynthetic mechanisms which are probably related to environmental factors associated with evolution of these plants. This includes interesting variations in the C(4) syndrome in leaves and cotyledons of species in the tribe Salsoleae of the family Chenopodiaceae, in relation to evolution and ecology. Thus, analysis of structure-function relationships using modern techniques is a very powerful approach to understanding evolution and regulation of the photosynthetic carbon reduction mechanisms.

  16. Optimization of cDNA amplification of Apricot Latent Virus (ApLV) from various plant tissues sources.

    PubMed

    Gumus, M; Sipahioğlu, H M; Paylan, I C; Erkan, S

    2007-03-15

    Although the reverse transcriptase polymerase chain reaction (RT-PCR) procedure is basically simple operation, often it is not possible to achieve optimum results without optimizing the protocols. An RT-PCR method targeting a 200 bp sequence of the CP gene of Apricot Latent Virus (ApLV) was used as a model to improve the detection limit and to compare the behavior of three different plant tissues in a RT-PCR assay. A number of factors should be considered when selecting the optimal system for RT-PCR. Important considerations include the optimal concentrations of MgCl2, dNTP, Taq DNA polymerase enzyme, specific primer and the amount of cDNA for the downstream applications. This study therefore discusses a series of critical PCR parameters and feasible strategies for optimization of RT-PCR detection of ApLV.

  17. Metaproteomic Identification of Diazotrophic Methanotrophs and Their Localization in Root Tissues of Field-Grown Rice Plants

    PubMed Central

    Bao, Zhihua; Okubo, Takashi; Kubota, Kengo; Kasahara, Yasuhiro; Tsurumaru, Hirohito; Anda, Mizue; Ikeda, Seishi

    2014-01-01

    In a previous study by our group, CH4 oxidation and N2 fixation were simultaneously activated in the roots of wild-type rice plants in a paddy field with no N input; both processes are likely controlled by a rice gene for microbial symbiosis. The present study examined which microorganisms in rice roots were responsible for CH4 oxidation and N2 fixation under the field conditions. Metaproteomic analysis of root-associated bacteria from field-grown rice (Oryza sativa Nipponbare) revealed that nitrogenase complex-containing nitrogenase reductase (NifH) and the alpha subunit (NifD) and beta subunit (NifK) of dinitrogenase were mainly derived from type II methanotrophic bacteria of the family Methylocystaceae, including Methylosinus spp. Minor nitrogenase proteins such as Methylocella, Bradyrhizobium, Rhodopseudomonas, and Anaeromyxobacter were also detected. Methane monooxygenase proteins (PmoCBA and MmoXYZCBG) were detected in the same bacterial group of the Methylocystaceae. Because these results indicated that Methylocystaceae members mediate both CH4 oxidation and N2 fixation, we examined their localization in rice tissues by using catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). The methanotrophs were localized around the epidermal cells and vascular cylinder in the root tissues of the field-grown rice plants. Our metaproteomics and CARD-FISH results suggest that CH4 oxidation and N2 fixation are performed mainly by type II methanotrophs of the Methylocystaceae, including Methylosinus spp., inhabiting the vascular bundles and epidermal cells of rice roots. PMID:24928870

  18. Determination of o,oEDDHA - a xenobiotic chelating agent used in Fe fertilizers - in plant tissues by liquid chromatography/electrospray mass spectrometry: overcoming matrix effects.

    PubMed

    Orera, Irene; Abadía, Anunciación; Abadía, Javier; Alvarez-Fernández, Ana

    2009-06-01

    The Fe(III)-chelate of ethylenediamine-N,N'-bis(o-hydroxyphenylacetic) acid (o,oEDDHA) is generally considered as the most efficient and widespread Fe fertilizer for fruit crops and intensive horticulture. The determination of the xenobiotic chelating agent o,oEDDHA inside the plant is a key issue in the study of this fertilizer. Both the low concentrations of o,oEDDHA expected and the complexity of plant matrices have been important drawbacks in the development of analytical methods for the determination of o,oEDDHA in plant tissues. The determination of o,oEDDHA in plant materials has been tackled in this study by liquid chromatography coupled to mass spectrometry using several plant species and tissues. Two types of internal standards have been tested: Iron stable isotope labeled compounds and a structural analogue compound, the Fe(III) chelate of ethylenediamine-N,N'-bis(2-hydroxy-4-methylphenylacetic) acid (o,oEDDHMA). Iron stable isotope labeled internal standards did not appear to be suitable because of the occurrence of isobaric endogenous compounds and/or isotope exchange reactions between plant native Fe pools and the Fe stable isotope of the internal standard. However, the structural analogue Fe(III)-o,oEDDHMA is an adequate internal standard for the determination of both isomers of o,oEDDHA (racemic and meso) in plant tissues. The method was highly sensitive, with limits of detection and quantification in the range of 3-49 and 11-162 pmol g(-1) fresh weight, respectively, and analyte recoveries were in the range of 74-116%. Using this methodology, both o,oEDDHA isomers were found in all tissues of sugar beet and tomato plants treated with 90 microM Fe(III)-o,oEDDHA for 24 h, including leaves, roots and xylem sap. This methodology constitutes a useful tool for studies on o,oEDDHA plant uptake, transport and allocation.

  19. Anti-spasmodic action of crude methanolic extract and a new compound isolated from the aerial parts of Myrsine africana

    PubMed Central

    2011-01-01

    Background Myrsine africana is an herbaceous plant that is traditionally used as appetizer and carminative. Locally, it is used for the treatment of pulmonary tuberculosis, rheumatism and diarrhea by healers. The aims of the current study were to screen the crude methanol extract obtained from the aerial parts (leaves and stem) of M. africana, for antispasmodic actions on isolated tissues and further to subject the ethyl acetate (EtOAc) fraction of plant to column chromatography for isolation of pure compounds. Methods The antispasmodic action of the crude methanol extract was measured on the spontaneous rabbit's jejunum preparations at concentration 0.01, 0.03, 0.1, 0.3, 1.0, 5.0 and 10.0 mg/ml. The crude extract was also applied, in similar concentrations, on KCl (80 mM) induced contractions to explain its possible mode of action. Results A new compound Myrsigenin was isolated from the EtOAc fraction of M. africana. The structure of the compound was identified with the help of 13C-NMR, 1H-NMR, HMBC, HMQC, NOESY and COSY. The plant crude methanol extract showed a significant antispasmodic action on rabbit jejunum and abolished the tissue contraction completely at concentration of 5.0 mg/ml. Conclusion The study concludes that the methanol crude extract of aerial parts of M. africana has antispasmodic action possibly through the calcium channel blocking mechanisms. A new compound Myrsigenin was isolated from the EtOAc fraction of the plant. PMID:21733176

  20. Tomato Phosphate Transporter Genes Are Differentially Regulated in Plant Tissues by Phosphorus1

    PubMed Central

    Liu, Chunming; Muchhal, Umesh S.; Uthappa, Mukatira; Kononowicz, Andrzej K.; Raghothama, Kaschandra G.

    1998-01-01

    Phosphorus is a major nutrient acquired by roots via high-affinity inorganic phosphate (Pi) transporters. In this paper, we describe the tissue-specific regulation of tomato (Lycopersicon esculentum L.) Pi-transporter genes by Pi. The encoded peptides of the LePT1 and LePT2 genes belong to a family of 12 membrane-spanning domain proteins and show a high degree of sequence identity to known high-affinity Pi transporters. Both genes are highly expressed in roots, although there is some expression of LePT1 in leaves. Their expression is markedly induced by Pi starvation but not by starvation of nitrogen, potassium, or iron. The transcripts are primarily localized in root epidermis under Pi starvation. Accumulation of LePT1 message was also observed in palisade parenchyma cells of Pi-starved leaves. Our data suggest that the epidermally localized Pi transporters may play a significant role in acquiring the nutrient under natural conditions. Divided root-system studies support the hypothesis that signal(s) for the Pi-starvation response may arise internally because of the changes in cellular concentration of phosphorus. PMID:9449838

  1. [Effects of alcohol extracts from three kinds of biomass energy plant tissues on biological activity of Bemisia tabaci].

    PubMed

    Zhou, Fu-cai; Zhou, Gui-sheng; Li, Chuan-ming; Yang, Yi-zhong; Qin, Pei

    2009-03-01

    To test the feasibility of using raw extracts from the tissues of biomass energy plants Ricinus communi and Kosteletzkya virginica as plant protection agents, the alcohol extracts from R. communi seed and leaf and from K. virginica leaf were used to treat adult Bemisia tabaci by spraying. The glutathione S-transferase and carboxylesterase activities in B. tabaci body were measured after treated for 4 h, 24 h, 48 h, 72 h, and 96 h, and the olfaction responses of B. tabaci to the alcohol extracts were detected with a Y-tube olfactomet. All the three alcohol extracts obviously inhibited the glutathione S-transferase and carboxylesterase activities in a concentration-dependent manner. The inhibitory effect of the 250-times diluted alcohol extracts on the two enzyme activities was equivalent to that of 3000 times-diluted 1.8% avermectins. In addition, the 250-times diluted alcohol extracts had obvious repellent effect on B. tabaci, with the repellent coefficient of the alcohol extracts from R. communi seed and leaf and from K, virginica leaf being 100.0%, 96.7%, and 79.4%, respectively. All of these suggested that the test three alcohol extracts had repellent and other biological effects on B. tabaci.

  2. PAPE (Prefractionation-Assisted Phosphoprotein Enrichment): A Novel Approach for Phosphoproteomic Analysis of Green Tissues from Plants

    PubMed Central

    Lassowskat, Ines; Naumann, Kai; Lee, Justin; Scheel, Dierk

    2013-01-01

    Phosphorylation is an important post-translational protein modification with regulatory roles in diverse cellular signaling pathways. Despite recent advances in mass spectrometry, the detection of phosphoproteins involved in signaling is still challenging, as protein phosphorylation is typically transient and/or occurs at low levels. In green plant tissues, the presence of highly abundant proteins, such as the subunits of the RuBisCO complex, further complicates phosphoprotein analysis. Here, we describe a simple, but powerful, method, which we named prefractionation-assisted phosphoprotein enrichment (PAPE), to increase the yield of phosphoproteins from Arabidopsis thaliana leaf material. The first step, a prefractionation via ammonium sulfate precipitation, not only depleted RuBisCO almost completely, but, serendipitously, also served as an efficient phosphoprotein enrichment step. When coupled with a subsequent metal oxide affinity chromatography (MOAC) step, the phosphoprotein content was highly enriched. The reproducibility and efficiency of phosphoprotein enrichment was verified by phospho-specific staining and, further, by mass spectrometry, where it could be shown that the final PAPE fraction contained a significant number of known and additionally novel (potential) phosphoproteins. Hence, this facile two-step procedure is a good prerequisite to probe the phosphoproteome and gain deeper insight into plant phosphorylation-based signaling events. PMID:28250405

  3. A new cadmium reduction device for the microplate determination of nitrate in water, soil, plant tissue, and physiological fluids.

    PubMed

    Crutchfield, James D; Grove, John H

    2011-01-01

    A reusable catalytic reductor consisting of 96 copperized-cadmium pins attached to a microplate lid was developed to simultaneously reduce nitrate (NO3-) to nitrite (NO2-) in all wells of a standard microplate. The resulting NO2- is analyzed colorimetrically by the Griess reaction using a microplate reader. Nitrate data from groundwater samples analyzed using the new device correlated well with data obtained by ion chromatography (r2 = 0.9959). Soil and plant tissue samples previously analyzed for NO3- in an interlaboratory validation study sponsored by the Soil Science Society of America were also analyzed using the new technique. For the soil sample set, the data are shown to correlate well with the other methods used (r2 = 0.9976). Plant data correlated less well, especially for samples containing low concentrations of NO3-. Reasons for these discrepancies are discussed, and new techniques to increase the accuracy of the analysis are explored. In addition, a method is presented for analyzing NO3- in physiological fluids (blood serum and urine) after matrix modification with Somogyi's reagent. A protocol for statistical validation of data when analyzing samples with complex matrixes is also established. The simplicity, adaptability, and low cost of the device indicate its potential for widespread application.

  4. Endophytic bacteria in plant tissue culture: differences between easy- and difficult-to-propagate Prunus avium genotypes.

    PubMed

    Quambusch, Mona; Pirttilä, Anna Maria; Tejesvi, Mysore V; Winkelmann, Traud; Bartsch, Melanie

    2014-05-01

    The endophytic bacterial communities of six Prunus avium L. genotypes differing in their growth patterns during in vitro propagation were identified by culture-dependent and culture-independent methods. Five morphologically distinct isolates from tissue culture material were identified by 16S rDNA sequence analysis. To detect and analyze the uncultivable fraction of endophytic bacteria, a clone library was established from the amplified 16S rDNA of total plant extract. Bacterial diversity within the clone libraries was analyzed by amplified ribosomal rDNA restriction analysis and by sequencing a clone for each identified operational taxonomic unit. The most abundant bacterial group was Mycobacterium sp., which was identified in the clone libraries of all analyzed Prunus genotypes. Other dominant bacterial genera identified in the easy-to-propagate genotypes were Rhodopseudomonas sp. and Microbacterium sp. Thus, the community structures in the easy- and difficult-to-propagate cherry genotypes differed significantly. The bacterial genera, which were previously reported to have plant growth-promoting effects, were detected only in genotypes with high propagation success, indicating a possible positive impact of these bacteria on in vitro propagation of P. avium, which was proven in an inoculation experiment.

  5. Inter-organ defense networking: Leaf whitefly sucking elicits plant immunity to crown gall disease caused by Agrobacterium tumefaciens.

    PubMed

    Park, Yong-Soon; Ryu, Choong-Min

    2015-01-01

    Plants have elaborate defensive machinery to protect against numerous pathogens and insects. Plant hormones function as modulators of defensive mechanisms to maintain plant resistance to natural enemies. Our recent study suggests that salicylic acid (SA) is the primary phytohormone regulating plant responses to Agrobacterium tumefaciens infection. Tobacco (Nicotiana benthamiana Domin.) immune responses against Agrobacterium-mediated crown gall disease were activated by exposure to the sucking insect whitefly, which stimulated SA biosynthesis in aerial tissues; in turn, SA synthesized in aboveground tissues systemically modulated SA secretion in root tissues. Further investigation revealed that endogenous SA biosynthesis negatively modulated Agrobacterium-mediated plant genetic transformation. Our study provides novel evidence that activation of the SA-signaling pathway mediated by a sucking insect infestation has a pivotal role in subsequently attenuating Agrobacterium infection. These results demonstrate new insights into interspecies cross-talking among insects, plants, and soil bacteria.

  6. Monitoring plant tissue nitrogen isotopes to assess nearshore inputs of nitrogen to Lake Crescent, Olympic National Park, Washington

    USGS Publications Warehouse

    Cox, Stephen E.; Moran, Patrick W.; Huffman, Raegan L.; Fradkin, Steven C.

    2016-05-31

    Mats of filamentous-periphytic algae present in some nearshore areas of Lake Crescent, Olympic National Park, Washington, may indicate early stages of eutrophication from nutrient enrichment of an otherwise highly oligotrophic lake. Natural abundance ratios of stable isotopes of nitrogen (δ15N) measured in plant tissue growing in nearshore areas of the lake indicate that the major source of nitrogen used by these primary producing plants is derived mainly from atmospherically fixed nitrogen in an undeveloped forested ecosystem. Exceptions to this pattern occurred in the Barnes Point area where elevated δ15N ratios indicate that effluent from septic systems also contribute nitrogen to filamentous-periphytic algae growing in the littoral zone of that area. Near the Lyre River outlet of Lake Crescent, the δ15N of filamentous-periphytic algae growing in close proximity to the spawning areas of a unique species of trout show little evidence of elevated δ15N indicating that nitrogen from on-site septic systems is not a substantial source of nitrogen for these plants. The δ15N data corroborate estimates that nitrogen input to Lake Crescent from septic sources is comparatively small relative to input from motor vehicle exhaust and vegetative sources in undeveloped forests, including litterfall, pollen, and symbiotic nitrogen fixation. The seasonal timing of blooms of filamentous-periphytic algal near the lake shoreline is also consistent with nitrogen exported from stands of red alder trees (Alnus rubra). Isotope biomonitoring of filamentous-periphytic algae may be an effective approach to monitoring the littoral zone for nutrient input to Lake Crescent from septic sources.

  7. Human health risk assessment of pharmaceuticals and personal care products in plant tissue due to biosolids and manure amendments, and wastewater irrigation.

    PubMed

    Prosser, R S; Sibley, P K

    2015-02-01

    Amending soil with biosolids or livestock manure provides essential nutrients in agriculture. Irrigation with wastewater allows for agriculture in regions where water resources are limited. However, biosolids, manure and wastewater have all been shown to contain pharmaceuticals and personal care products (PPCPs). Studies have shown that PPCPs can accumulate in the tissues of plants but the risk that accumulated residues may pose to humans via consumption of edible portions is not well documented. This study reviewed the literature for studies that reported residues of PPCPs in the edible tissue of plants grown in biosolids- or manure-amended soils or irrigated with wastewater. These residues were used to determine the estimated daily intake of PPCPs for an adult and toddler. Estimated daily intake values were compared to acceptable daily intakes to determine whether PPCPs in plant tissue pose a hazard to human health. For all three amendment practices, the majority of reported residues resulted in hazard quotients <0.1. Amendment with biosolids or manure resulted in hazard quotients ≥0.1 for carbamazepine, diphenhydramine, salbutamol, triclosan, and sulfamethazine. Irrigation with wastewater resulted in hazard quotients of ≥0.1 for ambrettolid, carbamazepine, diclofenac, flunixin, lamotrigine, metoprolol, naproxen, sildenafil and tonalide. [corrected]. Many of the residues that resulted in hazard quotients ≥0.1 were due to exposing plants to concentrations of PPCPs that would not be considered relevant based on concentrations reported in biosolids and manure or unrealistic methods of exposure, which lead to artificially elevated plant residues. Our assessment indicates that the majority of individual PPCPs in the edible tissue of plants due to biosolids or manure amendment or wastewater irrigation represent a de minimis risk to human health. Assuming additivity, the mixture of PPCPs could potentially present a hazard. Further work needs to be done to assess

  8. Binding affinity and capacities for ytterbium(3+) and hafinum(4+) by chemical entities of plant tissue fragments.

    PubMed

    Worley, R; Clearfield, A; Ellis, W C

    2002-12-01

    The binding affinity of ytterbium (Yb3+) and hafinum (Hf4+) to ligands of chemical entities of fragments of bermudagrass tissues and their resistance to exchanging Yb with other ligands and to displacement by protons were investigated. Chemical entities of acid resistant NDF (ARNDF), 0.1 N acid detergent fiber (0.1 N ADF), and permanganate cellulose (CELL) were prepared from fragments of bermudagrass hay (Cynodon dactylon [L.] Pers.) obtained by grinding to pass a 2-mm sieve. 175Ytterbium and Yb, as YbCl3, were initially bound to each preparation by soaking for 12 h in pH 5.5 borate buffer to obtain Yb bound onto ligands having affinity constants for Yb equal to or greater than that for the weakly stable borate ligand, Yb > or = borate. The fraction of Yb > or = borate was measured and fragments then sequentially exposed to acetate, citrate, nitrotriacetate (NTA), and EDTA ions to allow exchange of Yb from Yb > or = borate with ligands having affinity constants for Yb equal to or greater than acetate (Yb > or = acetate), citrate (Yb > or = citrate), NTA (Yb > or = NTA), and EDTA (Yb > or = EDTA) ions. Binding of Yb > or = borate indicated the existence of two species of ligands: strong ligands binding essentially 100% of added Yb at levels of 1 to 1,300 ppm (0.1 N ADF) and at 1 to 7,000 ppm (ARNDF); and weaker ligands binding 4 and 8% of the Yb, respectively, at levels of added Yb greater than 1,300 ppm and 7,000 ppm. Ytterbium > or = acetate of ARNDF, but not 0.1 N ADF, was as resistant to exchange as Yb > or = citrate. Ytterbium > or = borate was exchanged extensively (85% or greater) with soluble ligands having affinity constants > or = NTA. Ytterbium resistance to proton displacement at pH of 1.5 increased with Yb > or = EDTA > Yb > or = NTA > Yb > or = citrate > Yb > or = acetate. Very efficient binding of Yb to CELL suggested that such chemical preparations are not representative of native cellulose. Hafnium (4+) was strongly bound to plant tissues rendering

  9. RNA extraction from various recalcitrant plant tissues with a cethyltrimethylammonium bromide-containing buffer followed by an acid guanidium thiocyanate-phenol-chloroform treatment.

    PubMed

    Suzuki, Yuji; Mae, Tadahiko; Makino, Amane

    2008-07-01

    High-quality total RNA was extracted using a cethyltrimethylammonium bromide-containing buffer followed by an acid guanidium thiocyanate-phenol-chloroform treatment from recalcitrant plant tissues such as tree leaves (pine, Norway spruce, ginkgo, Japanese cedar, rose), flowers (rose, Lotus japonicus) and storage tissues (seeds of Lotus japonicus and rice, sweet potato tuber, banana fruit). This protocol greatly reduced the time required for RNA extraction.

  10. Dynamics of aerial target pursuit

    NASA Astrophysics Data System (ADS)

    Pal, S.

    2015-12-01

    During pursuit and predation, aerial species engage in multitasking behavior that involve simultaneous target detection, tracking, decision-making, approach and capture. The mobility of the pursuer and the target in a three dimensional environment during predation makes the capture task highly complex. Many researchers have studied and analyzed prey capture dynamics in different aerial species such as insects and bats. This article focuses on reviewing the capture strategies adopted by these species while relying on different sensory variables (vision and acoustics) for navigation. In conclusion, the neural basis of these capture strategies and some applications of these strategies in bio-inspired navigation and control of engineered systems are discussed.

  11. Characterization of nuclear membranes and endoplasmic reticulum isolated from plant tissue

    PubMed Central

    1976-01-01

    monovalent ion-stimulated ATPase, 5'-nucleotidase and glucose-6-phosphatase activities did not. The results obtained emphasize that the close biochemical similarities noted between rER and nuclear membranes of animal cells extend to these fractions from plant cells. PMID:173722

  12. Large-scale atlas of microarray data reveals the distinct expression landscape of different tissues in Arabidopsis

    SciTech Connect

    He, Fei; Maslov, Sergei; Yoo, Shinjae; Wang, Daifeng; Kumari, Sunita; Gerstein, Mark; Ware, Doreen

    2016-05-25

    Here, transcriptome datasets from thousands of samples of the model plant Arabidopsis thaliana have been collectively generated by multiple individual labs. Although integration and meta-analysis of these samples has become routine in the plant research community, it is often hampered by the lack of metadata or differences in annotation styles by different labs. In this study, we carefully selected and integrated 6,057 Arabidopsis microarray expression samples from 304 experiments deposited to NCBI GEO. Metadata such as tissue type, growth condition, and developmental stage were manually curated for each sample. We then studied global expression landscape of the integrated dataset and found that samples of the same tissue tend to be more similar to each other than to samples of other tissues, even in different growth conditions or developmental stages. Root has the most distinct transcriptome compared to aerial tissues, but the transcriptome of cultured root is more similar to those of aerial tissues as the former samples lost their cellular identity. Using a simple computational classification method, we showed that the tissue type of a sample can be successfully predicted based on its expression profile, opening the door for automatic metadata extraction and facilitating re-use of plant transcriptome data. As a proof of principle we applied our automated annotation pipeline to 708 RNA-seq samples from public repositories and verified accuracy of our predictions with samples’ metadata provided by authors.

  13. Large-scale atlas of microarray data reveals the distinct expression landscape of different tissues in Arabidopsis

    DOE PAGES

    He, Fei; Maslov, Sergei; Yoo, Shinjae; ...

    2016-05-25

    Here, transcriptome datasets from thousands of samples of the model plant Arabidopsis thaliana have been collectively generated by multiple individual labs. Although integration and meta-analysis of these samples has become routine in the plant research community, it is often hampered by the lack of metadata or differences in annotation styles by different labs. In this study, we carefully selected and integrated 6,057 Arabidopsis microarray expression samples from 304 experiments deposited to NCBI GEO. Metadata such as tissue type, growth condition, and developmental stage were manually curated for each sample. We then studied global expression landscape of the integrated dataset andmore » found that samples of the same tissue tend to be more similar to each other than to samples of other tissues, even in different growth conditions or developmental stages. Root has the most distinct transcriptome compared to aerial tissues, but the transcriptome of cultured root is more similar to those of aerial tissues as the former samples lost their cellular identity. Using a simple computational classification method, we showed that the tissue type of a sample can be successfully predicted based on its expression profile, opening the door for automatic metadata extraction and facilitating re-use of plant transcriptome data. As a proof of principle we applied our automated annotation pipeline to 708 RNA-seq samples from public repositories and verified accuracy of our predictions with samples’ metadata provided by authors.« less

  14. Plant tissue colonization by the fungus race 1.2 of Fusarium oxysporum f.sp. melonis in resistant melon genotypes.

    PubMed

    Chikh-Rouhou, H; González-Torres, R; Alvarez, M

    2009-01-01

    Four melon accessions; 'Shiroubi Okayoma', 'C-211', 'K.N.M' and 'BG-5384', resistant to race 1.2 of Fusarium oxysporum f.sp. melonis and a susceptible one 'Piel de Sapo' were tested to see which hypocotyl regions were invaded by the fungus, and to examine the relationship between resistance and presence of the pathogen in the plant tissue. While the fungus was shown to colonize all stem segments (either the upper, middle, or lower hypocotyl) of the susceptible and resistant plant accession, colonization was markedly lower in the resistant plants.

  15. Aerial Refueling Clearance Initiation Request

    DTIC Science & Technology

    2016-07-14

    and receiver agencies. The AR Clearance Initiation Request document recognizes the requirement for definitive aerial refueling agreements between...include directions for the development or content of these contractual agreements. 15. –SUBJECT TERMS See Document Terms and Definitions , Page 8 16...7 Terms and Definitions

  16. Reconnaissance mapping from aerial photographs

    NASA Technical Reports Server (NTRS)

    Weeden, H. A.; Bolling, N. B. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Engineering soil and geology maps were successfully made from Pennsylvania aerial photographs taken at scales from 1:4,800 to 1:60,000. The procedure involved a detailed study of a stereoscopic model while evaluating landform, drainage, erosion, color or gray tones, tone and texture patterns, vegetation, and cultural or land use patterns.

  17. 27. Aerial photograph dated 14 October 1943 taken directly over ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. Aerial photograph dated 14 October 1943 taken directly over Gould Island. Completed complex shown at north end of the island (to right in photograph), including power plant, shop, frame approach, firing pier, and small harbor formed by finger pier off east side of firing pier. Photo courtesy of Naval Undersea Warfare Center, Division Newport, Rhode Island. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  18. 29. Aerial photograph (1973) looking south across Gould Island. Firing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Aerial photograph (1973) looking south across Gould Island. Firing pier (still possessing third and fourth levels) in foreground. Pitched roof extending from south end of firing pier marks location of frame approach between pier and shop building (center rear) and power plant (to right of shop). Photo courtesy of Naval Undersea Warfare Center, Division Newport, Rhode Island. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  19. 25. Aerial photograph dated 20 June 1942, showing north end ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Aerial photograph dated 20 June 1942, showing north end of Gould Island from the northeast (caption on photo is in error). Shop and power plant under construction at left, firing pier under construction at far right. Photo courtesy of Naval Undersea Warfare Center, Division Newport, Rhode Island. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  20. 28. AERIAL VIEW LOOKING EAST AT THE WEST GATE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. AERIAL VIEW LOOKING EAST AT THE WEST GATE IN 1978. SHOWN IS BUILDING 100, THE MAIN ENTRANCE POINT TO THE SITE FROM 1969 UNTIL 1985. DURING THIS TIME EACH AUTOMOBILE THAT ENTERED THE SITE WAS SEARCHED. IN 1985, BUILDING 120 WAS BUILT AT THE OUTERMOST WEST EDGE OF THE SITE. THERE WERE 29 FACILITIES AROUND THE SITE DEDICATED TO SECURITY (5/4/78). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  1. Aerial Radiation Detection

    SciTech Connect

    W. M. Quam

    1999-09-30

    An airborne system designed for the detection of radioactive sources on the soil surface from an aircraft normally senses gamma rays emitted by the source. Gamma rays have the longest path length (least attenuation) through the air of any of the common radioactive emissions and will thus permit source detection at large distances. A secondary benefit from gamma rays detection if that nearly all radioactive isotopes can be identified by the spectrum of gammas emitted. Major gaseous emissions from fuel processing plants emit gammas that may be detected and identified. Some types of special nuclear material also emit neutrons which are also useful for detection at a distance.

  2. Flow paths of plant tissue residues and digesta through gastrointestinal segments in Spanish goats and methodological considerations.

    PubMed

    Walz, L S; Ellis, W C; White, T W; Matis, J H; Bateman, H G; Williams, C C; Fernandez, J M; Gentry, L R

    2004-02-01

    A sequence of eight twice-daily meals, each marked with different rare earth elements, was fed to 24 Spanish goats (BW = 20.6 +/- 1.94 kg) to produce meal-based profiles of rare earth markers within segments of the gastrointestinal digesta on subsequent slaughter. Accumulative mean residence time and time delay of rare earths and segmental and accumulative mean residence times of indigestible NDF (IDF) were estimated for each sampled segment. Diets consisted of ad libitum access to bermudagrass hay with a limit feeding of one of four supplements: 1) minerals (basal, B); 2) B + energy (E); 3) B + CP (CP); or 4) B + E + CP for 84 d. Mean daily intake (g/kg of BW) during the 5 d before slaughter differed (P < 0.05) via diet for DM but not for IDF (8.0 +/- 0.35 g/kg of BW). Larger estimates of cumulative mean residence time for IDF vs. rare earths were suggested to be the consequence of a meal-induced bias in the single measurement of IDF pool size by anatomical site. The rare earth compartment method was considered more reliable than the IDF pool dilution method because it yielded flow estimates based on the flux of eight meal-dosed rare earth markers over 4 d and was independent of anatomical definitions of pool size. Statistically indistinguishable estimates for gastrointestinal mean residence times for IDF and rare earths conform to assumed indelibility for the specifically applied rare earths and indigestibility of IDF. The potentially digestible NDF (PDF):IDF ratio of dietary fragments (0.8) progressively decreased in the following order: caudodorsal reticulorumen (0.390) > crainodorsal reticulorumen (0.357) approximately reticulum (0.354) > mid-dorsal reticulorumen (0.291) approximately ventral reticulorumen (0.286), to that within the omasal folds and in the abomasum (0.259). Such a gradient of progressively aging mixture of plant tissue fragments is consistent with age-dependent flow paths established in the reticulorumen and flowing to the omasum and abomasum

  3. Tissue-Specific, Development-Dependent Phenolic Compounds Accumulation Profile and Gene Expression Pattern in Tea Plant [Camellia sinensis

    PubMed Central

    Li, Weiwei; Zhao, Lei; Meng, Fei; Wang, Yunsheng; Tan, Huarong; Yang, Hua; Wei, Chaoling; Wan, Xiaochun; Gao, Liping; Xia, Tao

    2013-01-01

    Phenolic compounds in tea plant [Camellia sinensis (L.)] play a crucial role in dominating tea flavor and possess a number of key pharmacological benefits on human health. The present research aimed to study the profile of tissue-specific, development-dependent accumulation pattern of phenolic compounds in tea plant. A total of 50 phenolic compounds were identified qualitatively using liquid chromatography in tandem mass spectrometry technology. Of which 29 phenolic compounds were quantified based on their fragmentation behaviors. Most of the phenolic compounds were higher in the younger leaves than that in the stem and root, whereas the total amount of proanthocyanidins were unexpectedly higher in the root. The expression patterns of 63 structural and regulator genes involved in the shikimic acid, phenylpropanoid, and flavonoid pathways were analyzed by quantitative real-time polymerase chain reaction and cluster analysis. Based on the similarity of their expression patterns, the genes were classified into two main groups: C1 and C2; and the genes in group C1 had high relative expression level in the root or low in the bud and leaves. The expression patterns of genes in C2-2-1 and C2-2-2-1 groups were probably responsible for the development-dependent accumulation of phenolic compounds in the leaves. Enzymatic analysis suggested that the accumulation of catechins was influenced simultaneously by catabolism and anabolism. Further research is recommended to know the expression patterns of various genes and the reason for the variation in contents of different compounds in different growth stages and also in different organs. PMID:23646127

  4. [Rapid determination of eight organic acids in plant tissue by sequential extraction and high performance liquid chromatography].

    PubMed

    Huang, Tianzhi; Wang, Shijie; Liu Xiuming; Liu, Hong; Wu, Yanyou; Luo Xuqiang

    2014-12-01

    A sequential extraction method was developed to determine different forms of oxalate and seven oxalate-metabolism-related organic acids (glyoxylic acid, tartaric acid, glycolic acid, malic acid, acetic acid, citric acid, succinic acid) in plant tissue. The ultra-pure water was used as the extraction medium to obtain water-soluble oxalic acid and the other seven water-soluble organic acids. After the extraction of the water-soluble organic acids, the residues were extracted by dilute hydrochloric acid successively to get the acid-soluble oxalate which entered the liquid phase. A Hypersil ODS column was used with 5 mmol/L potassium dihydrogen phosphate buffer solution (pH 2. 8) as the mobile phase. The diode array detector was set at 210 nm and the column temperature at 30 °C with the injection volume of 5 µL. The flow rate was controlled at different times which allowed a good and rapid separation of the organic acids and hydrochloric acid. Under these conditions, the linear ranges of the method were 1-2000 mg/L for oxalic acid, 25-2,000 mg/L for acetic acid, and 10-2,000 mg/L for glyoxylic acid, tartaric acid, glycolic acid, malic acid, citric acid and succinic acid, with the correlation coefficients of the eight organic acids ≥ 0. 9996. The average recoveries of the eight organic acids in leaves and roots were 93. 5%-104. 4% and 85. 3%-105. 4% with RSDs of 0. 15% -2.43% and 0. 31%-2. 9% (n=7), respectively. The limits of detection ranged from 1 to 10 ng (S/N=3). The results indicated that the method is accurate, rapid and reproducible for the determination of organic acids in plant samples.

  5. Influence of atmospheric [CO2] on growth, carbon allocation and cost of plant tissues on leaf nitrogen concentration maintenance in nodulated Medicago sativa

    NASA Astrophysics Data System (ADS)

    Pereyra, Gabriela; Hartmann, Henrik; Ziegler, Waldemar; Michalzik, Beate; Gonzalez-Meler, Miquel; Trumbore, Susan

    2015-04-01

    Plant carbon (C) allocation and plant metabolic processes (i.e. photosynthesis and respiration) can be affected by changes in C availability, for example from changing atmospheric [CO2]. In nodulated plants, C availability may also influence nitrogen (N) fixation by bacteriods. But C allocation and N fixation are often studied independently and hence do not allow elucidating interactive effects. We investigated how different atmospheric [CO2] (Pleistocene: 170 ppm, ambient: 400 ppm and projected future: 700 ppm) influence plant growth, allocation to nodules, and the ratio of photosynthesis-to-respiration (R:A) as an indicator of C cost in Medicago sativa inoculated with Ensifer meliloti. M. sativa grew c. 38% more nodules at 400 ppm and 700 ppm than at 170 ppm. However, ratios of above- and belowground plant biomass to nodule biomass were constant over time and independent of atmospheric [CO2]. Total non-structural carbohydrate concentrations were not significantly different between plants grown at 400 and 700 ppm, but were four to five-fold higher than in 170 ppm plants. Leaf level N concentration was similar across treatments, but N-based photosynthetic rates were 82% and 93% higher in leaves of plants grown at 400 and 700 ppm, respectively, than plants grown at 170 ppm. In addition, leaf R:A was greater (48% or 55%) in plants grown at 170 ppm than plants grown at 400 and 700 ppm. Similarly, the greatest proportion of assimilated CO2 released by root respiration occurred in rhizobial plants growing at 170 ppm. Our results suggest that C limitation in nodulated Medicago sativa plants did not influence C allocation to nodule biomass but caused a proportionally greater allocation of C to belowground respiration, most likely to bacteriods. This suggests that N tissue concentration was maintained at low [CO2] by revving up bacteriod metabolism and at the expense of non-structural carbohydrate reserves.

  6. 5. AERIAL VIEW LOOKING SOUTH AT THE PLUTONIUM BUILDINGS (700S). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. AERIAL VIEW LOOKING SOUTH AT THE PLUTONIUM BUILDINGS (700S). BUILDING 776/777 IS THE LARGE BUILDING IN THE CENTER PORTION OF THE PHOTOGRAPH. BUILDING 771 IS IN THE LOWER RIGHT CORNER, AND BUILDING 707 IS TO THE SOUTH OF BUILDING 776/777. (6/21/88) - Rocky Flats Plant, Plutonium Fabrication, Central section of Plant, Golden, Jefferson County, CO

  7. AERIAL SHOWING COMPLETED REMOTE ANALYTICAL FACILITY (CPP627) ADJOINING FUEL PROCESSING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL SHOWING COMPLETED REMOTE ANALYTICAL FACILITY (CPP-627) ADJOINING FUEL PROCESSING BUILDING AND EXCAVATION FOR HOT PILOT PLANT TO RIGHT (CPP-640). INL PHOTO NUMBER NRTS-60-1221. J. Anderson, Photographer, 3/22/1960 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  8. 52. Neg. No.none, ca. 1950's, PhotographerUnknown, AERIAL VIEWS OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. Neg. No.-none, ca. 1950's, Photographer-Unknown, AERIAL VIEWS OF THE FORD MOTOR COMPANY ASSEMBLY PLANT, SOMETIME AFTER THE ADDITION OF THE NORTHERN WING - Ford Motor Company Long Beach Assembly Plant, Assembly Building, 700 Henry Ford Avenue, Long Beach, Los Angeles County, CA

  9. Anti-arthritic activity of various extracts of Sida rhombifolia aerial parts.

    PubMed

    Gupta, S R; Nirmal, S A; Patil, R Y; Asane, G S

    2009-01-01

    Aerial parts of the plant Sida rhombifolia Linn. (Malvaceae) were extracted successively to produce various extracts. These extracts were screened for various parameters of anti-arthritic activity, such as adjuvant-induced arthritis, motor performance, mean distance travelled, and histopathological study. Results showed that the polar constituents (ethanol and aqueous extracts) of the plant S. rhombifolia were useful in the treatment of arthritis.

  10. Effects of Inhibitors of RNA and Protein Synthesis on Aspartate Transcarbamylase Activity in Etiolated Plant Tissue 1

    PubMed Central

    Johnson, Lowell B.; Niblett, Charles L.; Lee, Richard F.

    1976-01-01

    Aspartate transcarbamylase (ATCase) activity declines in etiolated cowpea (Vigna unguiculata L. Walp.) and soybean (Glycine max L. Merr.) hypocotyls between 3 and 11 days after planting. Treating cow-pea hypocotyls with cycloheximide (CH), actinomycin D (AMD), 6-methyl purine (6-MP), or cordycepin increases ATCase activity up to 740, 350, 465, and 305%, respectively, over water-treated controls 48 to 72 hours after treatment. In contrast erythromycin had no effect, and d-threo-chloramphenicol (CHL) reduced ATCase activity nearly 40%. CH, AMD, and CHL, whose effects were further characterized, each markedly reduced total RNA synthesis and protein synthesis. Respiration was stimulated by CH and AMD and reduced by CHL. In soybean, CHL-treated tissues and water-treated controls had comparable ATCase activities 48 hours after treatment, while AMD, 6-MP, and CH treatments reduced activities 29, 37, and 78%, respectively. The results suggest that the level of ATCase activity in etiolated cowpea hypocotyls is regulated by a mechanism or mechanisms that are interfered with by inhibition of RNA and protein synthesis. Possibly the mechanism is absent from etiolated soybean hypocotyls. PMID:16659653

  11. Efficient extraction of proteins from recalcitrant plant tissue for subsequent analysis by two-dimensional gel electrophoresis.

    PubMed

    Parkhey, Suruchi; Chandrakar, Vibhuti; Naithani, S C; Keshavkant, S

    2015-10-01

    Protein extraction for two-dimensional electrophoresis from tissues of recalcitrant species is quite problematic and challenging due to the low protein content and high abundance of contaminants. Proteomics in Shorea robusta is scarcely conducted due to the lack of a suitable protein preparation procedure. To establish an effective protein extraction protocol suitable for two-dimensional electrophoresis in Shorea robusta, four procedures (borate buffer/trichloroacetic acid extraction, organic solvent/trichloroacetic acid precipitation, sucrose/Tris/phenol, and organic solvent/phenol/sodium dodecyl sulfate) were evaluated. Following these, proteins were isolated from mature leaves and were analyzed for proteomics, and also for potential contaminants, widely reported to hinder proteomics. The borate buffer/trichloroacetic acid extraction had the lowest protein yield and did not result in any banding even in one-dimensional electrophoresis. In contrast, organic solvent/phenol/sodium dodecyl sulfate extraction allowed the highest protein yield. Moreover, during proteomics, organic solvent/phenol/sodium dodecyl sulfate extracted protein resolved the maximum number (144) of spots. Further, when proteins were evaluated for contaminants, significant (77-95%) reductions in the nucleic acids, phenol, and sugars were discernible with refinement in extraction procedure. Accumulated data suggested that the organic solvent/phenol/sodium dodecyl sulfate extraction was the most effective protocol for protein isolation for proteomics of Shorea robusta and can be used for plants that have a similar set of contaminants.

  12. In-Field, In Situ, and In Vivo 3-Dimensional Elemental Mapping for Plant Tissue and Soil Analysis Using Laser-Induced Breakdown Spectroscopy

    PubMed Central

    Zhao, Chunjiang; Dong, Daming; Du, Xiaofan; Zheng, Wengang

    2016-01-01

    Sensing and mapping element distributions in plant tissues and its growth environment has great significance for understanding the uptake, transport, and accumulation of nutrients and harmful elements in plants, as well as for understanding interactions between plants and the environment. In this study, we developed a 3-dimensional elemental mapping system based on laser-induced breakdown spectroscopy that can be deployed in- field to directly measure the distribution of multiple elements in living plants as well as in the soil. Mapping is performed by a fast scanning laser, which ablates a micro volume of a sample to form a plasma. The presence and concentration of specific elements are calculated using the atomic, ionic, and molecular spectral characteristics of the plasma emission spectra. Furthermore, we mapped the pesticide residues in maize leaves after spraying to demonstrate the capacity of this method for trace elemental mapping. We also used the system to quantitatively detect the element concentrations in soil, which can be used to further understand the element transport between plants and soil. We demonstrate that this method has great potential for elemental mapping in plant tissues and soil with the advantages of 3-dimensional and multi-elemental mapping, in situ and in vivo measurement, flexible use, and low cost. PMID:27782074

  13. In-Field, In Situ, and In Vivo 3-Dimensional Elemental Mapping for Plant Tissue and Soil Analysis Using Laser-Induced Breakdown Spectroscopy.

    PubMed

    Zhao, Chunjiang; Dong, Daming; Du, Xiaofan; Zheng, Wengang

    2016-10-22

    Sensing and mapping element distributions in plant tissues and its growth environment has great significance for understanding the uptake, transport, and accumulation of nutrients and harmful elements in plants, as well as for understanding interactions between plants and the environment. In this study, we developed a 3-dimensional elemental mapping system based on laser-induced breakdown spectroscopy that can be deployed in- field to directly measure the distribution of multiple elements in living plants as well as in the soil. Mapping is performed by a fast scanning laser, which ablates a micro volume of a sample to form a plasma. The presence and concentration of specific elements are calculated using the atomic, ionic, and molecular spectral characteristics of the plasma emission spectra. Furthermore, we mapped the pesticide residues in maize leaves after spraying to demonstrate the capacity of this method for trace elemental mapping. We also used the system to quantitatively detect the element concentrations in soil, which can be used to further understand the element transport between plants and soil. We demonstrate that this method has great potential for elemental mapping in plant tissues and soil with the advantages of 3-dimensional and multi-elemental mapping, in situ and in vivo measurement, flexible use, and low cost.

  14. 11. AERIAL VIEW LOOKING NORTH AT THE BUILDING 800 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. AERIAL VIEW LOOKING NORTH AT THE BUILDING 800 - AREA COMPLEX. ENRICHED URANIUM COMPONENTS WERE MANUFACTURED IN THIS AREA OF THE SITE. BUILDING 881, IN THE RIGHT FOREGROUND OF THE PHOTOGRAPH, WAS THE ORIGINAL PLANT B. BUILDING 883, USED FOR ROLLING AND FORMING URANIUM COMPONENTS, IS DIRECTLY TO THE NORTH OF BUILDING 881. TO THE EAST OF BUILDING 883 IS BUILDING 885, A RESEARCH AND DEVELOPMENT FACILITY FOR ALLOYS AND NON-PLUTONIUM METALS. IN THE FOREGROUND TO THE WEST OF BUILDING 881 IS AN OFFICE BUILDING, 850 (6/7/90). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  15. Chemical constituents from the aerial parts of Gynura bicolor.

    PubMed

    Chen, Jian; Mangelinckx, Sven; Adams, An; Li, Wei-Lin; Wang, Zheng-Tao; De Kimpe, Norbert

    2012-12-01

    Gynura bicolor (Willd.) DC., is used in folk recipes for the treatment of diabetes mellitus in Jiangsu, Zhejiang and Sichuan province in the south of China. A previous pharmacological study proved that the plant showed significant hypoglycemic activity on normal and alloxan-diabetic mice. In this study, two terpenes, four megastigmane-type norisoprenoids and two glycosides were isolated from the aqueous ethanolic extract of the aerial parts of Gynura bicolor and characterized mainly by NMR spectroscopy and mass spectrometry. Thes e compounds were isolated for the first time from this plant, and no evidence could be found for the previous reported presence of megastigmane-type norisoprenoids in the genus Gynura.

  16. Aerial Photographs and Satellite Images

    USGS Publications Warehouse

    ,

    1997-01-01

    Photographs and other images of the Earth taken from the air and from space show a great deal about the planet's landforms, vegetation, and resources. Aerial and satellite images, known as remotely sensed images, permit accurate mapping of land cover and make landscape features understandable on regional, continental, and even global scales. Transient phenomena, such as seasonal vegetation vigor and contaminant discharges, can be studied by comparing images acquired at different times. The U.S. Geological Survey (USGS), which began using aerial photographs for mapping in the 1930's, archives photographs from its mapping projects and from those of some other Federal agencies. In addition, many images from such space programs as Landsat, begun in 1972, are held by the USGS. Most satellite scenes can be obtained only in digital form for use in computer-based image processing and geographic information systems, but in some cases are also available as photographic products.

  17. Aerial robotic data acquisition system

    SciTech Connect

    Hofstetter, K.J.; Hayes, D.W.; Pendergast, M.M.; Corban, J.E.

    1993-12-31

    A small, unmanned aerial vehicle (UAV), equipped with sensors for physical and chemical measurements of remote environments, is described. A miniature helicopter airframe is used as a platform for sensor testing and development. The sensor output is integrated with the flight control system for real-time, interactive, data acquisition and analysis. Pre-programmed flight missions will be flown with several sensors to demonstrate the cost-effective surveillance capabilities of this new technology.

  18. Low-dose oral immunization with lyophilized tissue of herbicide-resistant lettuce expressing hepatitis B surface antigen for prototype plant-derived vaccine tablet formulation.

    PubMed

    Pniewski, Tomasz; Kapusta, Józef; Bociąg, Piotr; Wojciechowicz, Jacek; Kostrzak, Anna; Gdula, Michał; Fedorowicz-Strońska, Olga; Wójcik, Piotr; Otta, Halina; Samardakiewicz, Sławomir; Wolko, Bogdan; Płucienniczak, Andrzej

    2011-05-01

    Efficient immunization against hepatitis B virus (HBV) and other pathogens with plant-based oral vaccines requires appropriate plant expressors and the optimization of vaccine compositions and administration protocols. Previous immunization studies were mainly based on a combination of the injection of a small surface antigen of HBV (S-HBsAg) and the feeding with raw tissue containing the antigen, supplemented with an adjuvant, and coming from plants conferring resistance to kanamycin. The objective of this study was to develop a prototype oral vaccine formula suitable for human immunization. Herbicide-resistant lettuce was engineered, stably expressing through progeny generation micrograms of S-HBsAg per g of fresh weight and formed into virus-like particles (VLPs). Lyophilized tissue containing a relatively low, 100-ng VLP-assembled antigen dose, administered only orally to mice with a long, 60-day interval between prime and boost immunizations and without exogenous adjuvant, elicited mucosal and systemic humoral anti-HBs responses at the nominally protective level. Lyophilized tissue was converted into tablets, which preserved S-HBsAg content for at least one year of room temperature storage. The results of the study provide indications on immunization methodology using a durable, efficacious, and convenient plant-derived prototype oral vaccine against hepatitis B.

  19. Determination of polyphenols in Mentha longifolia and M. piperita field-grown and in vitro plant samples using UPLC-TQ-MS.

    PubMed

    Krzyzanowska, Justyna; Janda, Bogdan; Pecio, Lukasz; Stochmal, Anna; Oleszek, Wieslaw; Czubacka, Anna; Przybys, Marcin; Doroszewska, Teresa

    2011-01-01

    Nine polyphenols in the aerial parts of Mentha longifolia have been separated by chromatographic techniques. Their structures have been confirmed by HPLC/electrospray ionization-MS/MS. The compounds identified included rosmarinic acid, salvianolic acid L, dedihydro-salvianolic acid, luteolin-glucuronide, luteolin-diglucuronide, luteolin-glucopyranosyl-rhamnopyranoside, and eriodictyol-glucopyranosyl-rhamnopyranoside. The extracts of M. longifolia and M. piperita field plants, in vitro plants, callus tissues, and cell suspension cultures were profiled, and their polyphenol composition was compared in different tissues and quantified using ultra-performance column liquid chromatography (UPLC)/triple-quadrupole-MS in the selected-ion recording detection mode. Determination of desired compounds was based on calibration curves obtained for standards, which were previously isolated from M. longifolia aerial parts. The UPLC profiles revealed considerable differences in the synthesis of secondary metabolites among samples coming from field plants, in vitro plants, callus tissues, and cell suspension cultures. Plant tissues coming from field cultivation (for both M. piperita and M. longifolia) contained several phenolic compounds (flavonoids and phenolic acids), whereas plants from in vitro conditions, callus tissues, and suspension cultures contained only a few of them. Rosmarinic acid dominated in all of these samples. These results show that under in vitro conditions, the metabolism of phenolics undergoes a fundamental change.

  20. Telemetry of Aerial Radiological Measurements

    SciTech Connect

    H. W. Clark, Jr.

    2002-10-01

    Telemetry has been added to National Nuclear Security Administration's (NNSA's) Aerial Measuring System (AMS) Incident Response aircraft to accelerate availability of aerial radiological mapping data. Rapid aerial radiological mapping is promptly performed by AMS Incident Response aircraft in the event of a major radiological dispersal. The AMS airplane flies the entire potentially affected area, plus a generous margin, to provide a quick look at the extent and severity of the event. The primary result of the AMS Incident Response over flight is a map of estimated exposure rate on the ground along the flight path. Formerly, it was necessary to wait for the airplane to land before the map could be seen. Now, while the flight is still in progress, data are relayed via satellite directly from the aircraft to an operations center, where they are displayed and disseminated. This permits more timely utilization of results by decision makers and redirection of the mission to optimize its value. The current telemetry capability can cover all of North America. Extension to a global capability is under consideration.

  1. Spatial Feature Evaluation for Aerial Scene Analysis

    SciTech Connect

    Swearingen, Thomas S; Cheriyadat, Anil M

    2013-01-01

    High-resolution aerial images are becoming more readily available, which drives the demand for robust, intelligent and efficient systems to process increasingly large amounts of image data. However, automated image interpretation still remains a challenging problem. Robust techniques to extract and represent features to uniquely characterize various aerial scene categories is key for automated image analysis. In this paper we examined the role of spatial features to uniquely characterize various aerial scene categories. We studied low-level features such as colors, edge orientations, and textures, and examined their local spatial arrangements. We computed correlograms representing the spatial correlation of features at various distances, then measured the distance between correlograms to identify similar scenes. We evaluated the proposed technique on several aerial image databases containing challenging aerial scene categories. We report detailed evaluation of various low-level features by quantitatively measuring accuracy and parameter sensitivity. To demonstrate the feature performance, we present a simple query-based aerial scene retrieval system.

  2. Pollutant-induced cell death and reactive oxygen species accumulation in the aerial roots of Chinese banyan (Ficus microcarpa)

    NASA Astrophysics Data System (ADS)

    Liu, Nan; Cao, Ce; Sun, Zhongyu; Lin, Zhifang; Deng, Rufang

    2016-11-01

    Industrial pollutants induce the production of toxic reactive oxygen species (ROS) such as O2.‑, H2O2, and ·OH in plants, but they have not been well quantified or localized in tissues and cells. This study evaluated the pollutant- (HSO3‑, NH4NO3, Al3+, Zn2+, and Fe2+) induced toxic effects of ROS on the aerial roots of Chinese banyan (Ficus microcarpa). Root cell viability was greatly reduced by treatment with 20 mM NaHSO3, 20 mM NH4NO3, 0.2 mM AlCl3, 0.2 mM ZnSO4, or 0.2 mM FeSO4. Biochemical assay and histochemical localization showed that O2.‑ accumulated in roots in response to pollutants, except that the staining of O2.‑ under NaHSO3 treatment was not detective. Cytochemical localization further indicated that the generated O2.‑ was present mainly in the root cortex, and pith cells, especially in NH4NO3- and FeSO4-treated roots. The pollutants also caused greatly accumulated H2O2 and ·OH in aerial roots, which finally resulted in lipid peroxidation as indicated by increased malondialdehyde contents. We conclude that the F. microcarpa aerial roots are sensitive to pollutant-induced ROS and that the histochemical localization of O2.‑ via nitrotetrazolium blue chloride staining is not effective for detecting the effects of HSO3‑ treatment because of the treatment’s bleaching effect.

  3. Pollutant-induced cell death and reactive oxygen species accumulation in the aerial roots of Chinese banyan (Ficus microcarpa)

    PubMed Central

    Liu, Nan; Cao, Ce; Sun, Zhongyu; Lin, Zhifang; Deng, Rufang

    2016-01-01

    Industrial pollutants induce the production of toxic reactive oxygen species (ROS) such as O2.−, H2O2, and ·OH in plants, but they have not been well quantified or localized in tissues and cells. This study evaluated the pollutant- (HSO3−, NH4NO3, Al3+, Zn2+, and Fe2+) induced toxic effects of ROS on the aerial roots of Chinese banyan (Ficus microcarpa). Root cell viability was greatly reduced by treatment with 20 mM NaHSO3, 20 mM NH4NO3, 0.2 mM AlCl3, 0.2 mM ZnSO4, or 0.2 mM FeSO4. Biochemical assay and histochemical localization showed that O2.− accumulated in roots in response to pollutants, except that the staining of O2.− under NaHSO3 treatment was not detective. Cytochemical localization further indicated that the generated O2.− was present mainly in the root cortex, and pith cells, especially in NH4NO3- and FeSO4-treated roots. The pollutants also caused greatly accumulated H2O2 and ·OH in aerial roots, which finally resulted in lipid peroxidation as indicated by increased malondialdehyde contents. We conclude that the F. microcarpa aerial roots are sensitive to pollutant-induced ROS and that the histochemical localization of O2.− via nitrotetrazolium blue chloride staining is not effective for detecting the effects of HSO3− treatment because of the treatment’s bleaching effect. PMID:27805029

  4. Pollutant-induced cell death and reactive oxygen species accumulation in the aerial roots of Chinese banyan (Ficus microcarpa).

    PubMed

    Liu, Nan; Cao, Ce; Sun, Zhongyu; Lin, Zhifang; Deng, Rufang

    2016-11-02

    Industrial pollutants induce the production of toxic reactive oxygen species (ROS) such as O2(.-), H2O2, and (·)OH in plants, but they have not been well quantified or localized in tissues and cells. This study evaluated the pollutant- (HSO3(-), NH4NO3, Al(3+), Zn(2+), and Fe(2+)) induced toxic effects of ROS on the aerial roots of Chinese banyan (Ficus microcarpa). Root cell viability was greatly reduced by treatment with 20 mM NaHSO3, 20 mM NH4NO3, 0.2 mM AlCl3, 0.2 mM ZnSO4, or 0.2 mM FeSO4. Biochemical assay and histochemical localization showed that O2(.-) accumulated in roots in response to pollutants, except that the staining of O2(.-) under NaHSO3 treatment was not detective. Cytochemical localization further indicated that the generated O2(.-) was present mainly in the root cortex, and pith cells, especially in NH4NO3- and FeSO4-treated roots. The pollutants also caused greatly accumulated H2O2 and (·)OH in aerial roots, which finally resulted in lipid peroxidation as indicated by increased malondialdehyde contents. We conclude that the F. microcarpa aerial roots are sensitive to pollutant-induced ROS and that the histochemical localization of O2(.-) via nitrotetrazolium blue chloride staining is not effective for detecting the effects of HSO3(-) treatment because of the treatment's bleaching effect.

  5. Unmanned Aerial Vehicles Master Plan, 1993.

    DTIC Science & Technology

    2007-11-02

    PHOTOGRAPH THIS SHEET AND RETURN To DTIC-FDAC DTIC 70A DOCUMENT PROCESSMING I~ SlEW -, mmllamm LOAN DOCUMENT DEPARTMENT OF DEFENSE UNMANNED AERIAL VEHICLES (UAV...11 B. Program Executive Officer for Cruise Missiles 3 and Unmanned Aerial Vehicles (PEO[CU...69 I ! I I ivI -- UAV 1993 MASTER PLAN U I EXECUTIVE SUMMARY 3 A. OVERVIEW Unmanned Aerial Vehicles (UAVs)* can make significant

  6. The influence of gravity and wind on land plant evolution.

    PubMed

    Niklas, K J

    1998-07-01

    Aspects of the engineering theory treating the elastic stability of vertical stems and cantilevered leaves supporting their own weight and additional wind-induced forces (drag) are reviewed in light of biomechanical studies of living and fossil terrestrial plant species. The maximum height to which arborescent species can grow before their stems elastically buckle under their own weight is estimated by means of the Euler-Greenhill formula which states that the critical buckling height scales as the 1/3 power of plant tissue-stiffness normalized with respect to tissue bulk density and as the 2/3 power of stem diameter. Data drawn from living plants indicate that progressively taller plant species employ stiffer and lighter-weight plant tissues as the principal stiffening agent in their vertical stems. The elastic stability of plants subjected to high lateral wind-loadings is governed by the drag torque (the product of the drag force and the height above ground at which this force is applied), which cannot exceed the gravitational bending moment (the product of the weight of aerial organs and the lever arm measured at the base of the plant). Data from living plants indicate that the largest arborescent plant species rely on massive trunks and broad, horizontally expansive root crowns to resist drag torques. The drag on the canopies of these plants is also reduced by highly flexible stems and leaves composed of tissues that twist and bend more easily than tissues used to stiffen older, more proximal stems. A brief review of the fossil record suggests that modifications in stem, leaf, and root morphology and anatomy capable of simultaneously coping with self-weight and wind-induced drag forces evolved by Devonian times, suggesting that natural selection acting on the elastic stability of sporophytes occurred early in the history of terrestrial plants.

  7. Characterization of plant-growth-promoting effects and concurrent promotion of heavy metal accumulation in the tissues of the plants grown in the polluted soil by Burkholderia strain LD-11.

    PubMed

    Huang, Gui-Hai; Tian, Hui-Hui; Liu, Hai-Ying; Fan, Xian-Wei; Liang, Yu; Li, You-Zhi

    2013-01-01

    Plant-growth-promoting (PGP) bacteria especially with the resistance to multiple heavy metals are helpful to phytoremediation. Further development of PGP bacteria is very necessary because of the extreme diversity of plants, soils, and heavy metal pollution. A Burkholderia sp. strain, numbered LD-11, was isolated, which showed resistances to multiple heavy metals and antibiotics. It can produce indole-3-acetic acid, 1-aminocyclopropane-1-carboxylic acid deaminase and siderophores. Inoculation with the LD-11 improved germination of seeds of the investigated vegetable plants in the presence of Cu, promoted elongation of roots and hypocotyledonary axes, enhanced the dry weights of the plants grown in the soils polluted with Cu and/or Pb, and increased activity of the soil urease and the rhizobacteria diversity. Inoculation with the LD-11 significantly enhanced Cu and/or Pb accumulation especially in the roots of the plants grown in the polluted soils. Notably, LD-11 could produce siderophores in the presence of Cu. Conclusively, the PGP effects and concurrent heavy metal accumulation in the plant tissues results from combined effects of the above-mentioned multiple factors. Cu is an important element that represses production of the siderophore by the bacteria. Phytoremediation by synergistic use of the investigated plants and the bacterial strain LD-11 is a phytoextraction process.

  8. Approach to engineer tomato by expression of AtHMA4 to enhance Zn in the aerial parts.

    PubMed

    Kendziorek, Maria; Barabasz, Anna; Rudzka, Justyna; Tracz, Katarzyna; Mills, Rebecca F; Williams, Lorraine E; Antosiewicz, Danuta Maria

    2014-09-15

    The aim of this work was to assess the potential for using AtHMA4 to engineer enhanced efficiency of Zn translocation to shoots, and to increase the Zn concentration in aerial tissues of tomato. AtHMA4, a P1B-ATPase, encodes a Zn export protein known to be involved in the control of Zn root-to-shoot translocation. In this work, 35S::AtHMA4 was expressed in tomato (Lycopersicon esculentum var. Beta). Wild-type and transgenic plants were tested for Zn and Cd tolerance; Zn, Fe and Cd accumulation patterns, and for the expression of endogenous Zn/Fe-homeostasis genes. At 10μM Zn exposure, a higher Zn concentration was observed in leaves of AtHMA4-expressing lines compared to wild-type, which is promising in terms of Zn biofortification. AtHMA4 also transports Cd and at 0.25μM Cd the transgenic plants showed similar levels of this element in leaves to wild-type but lower levels in roots, therefore indicating a reduction of Cd uptake due to AtHMA4 expression. Expression of this transgene AtHMA4 also resulted in distinct changes in Fe accumulation in Zn-exposed plants, and Fe/Zn-accumulation in Cd-exposed plants, even though Fe is not a substrate for AtHMA4. Analysis of the transcript abundance of key Zn/Fe-homeostasis genes showed that the pattern was distinct for transgenic and wild-type plants. The reduction of Fe accumulation observed in AtHMA4-transformants was accompanied by up-regulation of Fe-deficiency marker genes (LeFER, LeFRO1, LeIRT1), whereas down-regulation was detected in plants with the status of Fe-sufficiency. Furthermore, results strongly suggest the importance of the up-regulation of LeCHLN in the roots of AtHMA4-expressing plants for efficient translocation of Zn to the shoots. Thus, the modifications of Zn/Fe/Cd translocation to aerial plant parts due to AtHMA4 expression are closely related to the alteration of the endogenous Zn-Fe-Cd cross-homeostasis network of tomato.

  9. A Spherical Aerial Terrestrial Robot

    NASA Astrophysics Data System (ADS)

    Dudley, Christopher J.

    This thesis focuses on the design of a novel, ultra-lightweight spherical aerial terrestrial robot (ATR). The ATR has the ability to fly through the air or roll on the ground, for applications that include search and rescue, mapping, surveillance, environmental sensing, and entertainment. The design centers around a micro-quadcopter encased in a lightweight spherical exoskeleton that can rotate about the quadcopter. The spherical exoskeleton offers agile ground locomotion while maintaining characteristics of a basic aerial robot in flying mode. A model of the system dynamics for both modes of locomotion is presented and utilized in simulations to generate potential trajectories for aerial and terrestrial locomotion. Details of the quadcopter and exoskeleton design and fabrication are discussed, including the robot's turning characteristic over ground and the spring-steel exoskeleton with carbon fiber axle. The capabilities of the ATR are experimentally tested and are in good agreement with model-simulated performance. An energy analysis is presented to validate the overall efficiency of the robot in both modes of locomotion. Experimentally-supported estimates show that the ATR can roll along the ground for over 12 minutes and cover the distance of 1.7 km, or it can fly for 4.82 minutes and travel 469 m, on a single 350 mAh battery. Compared to a traditional flying-only robot, the ATR traveling over the same distance in rolling mode is 2.63-times more efficient, and in flying mode the system is only 39 percent less efficient. Experimental results also demonstrate the ATR's transition from rolling to flying mode.

  10. Effects of micro electric current load during cooling of plant tissues on intracellular ice crystal formation behavior and pH.

    PubMed

    Ninagawa, Takako; Kawamura, Yukio; Konishi, Tadashi; Narumi, Akira

    2016-08-01

    Cryopreservation techniques are expected to evolve further to preserve biomaterials and foods in a fresh state for extended periods of time. Long-term cryopreservation of living materials such as food and biological tissue is generally achieved by freezing; thus, intracellular freezing occurs. Intracellular freezing injures the cells and leads to cell death. Therefore, a dream cryopreservation technique would preserve the living materials without internal ice crystal formation at a temperature low enough to prevent bacterial activity. This study was performed to investigate the effect of micro electrical current loading during cooling as a new cryopreservation technique. The behavior of intracellular ice crystal formation in plant tissues with or without an electric current load was evaluated using the degree of supercooling, degree of cell deformation, and grain size and growing rate of intracellular ice crystal. Moreover, the transition of intracellular pH during plant tissue cooling with or without electric current loading was also examined using the fluorescence intensity ratio to comprehend cell activity at lower temperatures. The results indicated that micro electric current load did not only decrease the degree of cell deformation and grain size of intracellular ice crystal but also reduced the decline in intracellular pH due to temperature lowering, compared with tissues subjected to the same cooling rate without an electric current load. Thus, the effect of electric current load on cryopreservation and the potential of a new cryopreservation technique using electric current load were discussed based on these results.

  11. Nutrient deficiencies modify the ionomic composition of plant tissues: a focus on cross-talk between molybdenum and other nutrients in Brassica napus.

    PubMed

    Maillard, Anne; Etienne, Philippe; Diquélou, Sylvain; Trouverie, Jacques; Billard, Vincent; Yvin, Jean-Claude; Ourry, Alain

    2016-10-01

    The composition of the ionome is closely linked to a plant's nutritional status. Under certain deficiencies, cross-talk induces unavoidable accumulation of some nutrients, which upsets the balance and modifies the ionomic composition of plant tissues. Rapeseed plants (Brassica napus L.) grown under controlled conditions were subject to individual nutrient deficiencies (N, K, P, Ca, S, Mg, Fe, Cu, Zn, Mn, Mo, or B) and analyzed by inductively high-resolution coupled plasma mass spectrometry to determine the impact of deprivation on the plant ionome. Eighteen situations of increased uptake under mineral nutrient deficiency were identified, some of which have already been described (K and Na, S and Mo, Fe, Zn and Cu). Additionally, as Mo uptake was strongly increased under S, Fe, Cu, Zn, Mn, or B deprivation, the mechanisms underlying the accumulation of Mo in these deficient plants were investigated. The results suggest that it could be the consequence of multiple metabolic disturbances, namely: (i) a direct disturbance of Mo metabolism leading to an up-regulation of Mo transporters such as MOT1, as found under Zn or Cu deficiency, which are nutrients required for synthesis of the Mo cofactor; and (ii) a disturbance of S metabolism leading to an up-regulation of root SO4(2-) transporters, causing an indirect increase in the uptake of Mo in S, Fe, Mn, and B deficient plants.

  12. Unmanned aerial vehicles in astronomy

    NASA Astrophysics Data System (ADS)

    Biondi, Federico; Magrin, Demetrio; Ragazzoni, Roberto; Farinato, Jacopo; Greggio, Davide; Dima, Marco; Gullieuszik, Marco; Bergomi, Maria; Carolo, Elena; Marafatto, Luca; Portaluri, Elisa

    2016-07-01

    In this work we discuss some options for using Unmanned Aerial Vehicles (UAVs) for daylight alignment activities and maintenance of optical telescopes, relating them to a small numbers of parameters, and tracing which could be the schemes, requirements and benefits for employing them both at the stage of erection and maintenance. UAVs can easily reach the auto-collimation points of optical components of the next class of Extremely Large Telescopes. They can be equipped with tools for the measurement of the co-phasing, scattering, and reflectivity of segmented mirrors or environmental parameters like C2n and C2T to characterize the seeing during both the day and the night.

  13. Expression of a Human Prostatic Acid Phosphatase (PAP)-IgM Fc Fusion Protein in Plants Using In vitro Tissue Subculture.

    PubMed

    Kang, Yang J; Kim, Deuk-Su; Myung, Soon-Chul; Ko, Kisung

    2017-01-01

    In this study, prostatic acid phosphatase (PAP), which is overexpressed in human prostate cancer cells, was cloned to be fused to the IgM constant fragment (Fc) for enhancing immunogenicity and expressed in transgenic tobacco plants. Then, the transgenic plants were propagated by in vitro tissue subculture. Gene insertion and expression of the recombinant PAP-IgM Fc fusion protein were confirmed in each tested the first, second, and third subculture generations (SG1, SG2, and SG3, respectively). Transcription levels were constantly maintained in the SG1, SG2, and SG3 leaf section (top, middle, and base). The presence of the PAP-IgM Fc gene was also confirmed in each leaf section in all tested subculture generations. RNA expression was confirmed in all subculture generations using real-time PCR and quantitative real-time PCR. PAP-IgM Fc protein expression was confirmed in all leaves of the SG1, SG2, and SG3 recombinant transgenic plants by using quantitative western blotting and chemiluminescence immunoassays. These results demonstrate that the recombinant protein was stably expressed for several generations of in vitro subculture. Therefore, transgenic plants can be propagated using in vitro tissue subculture for the production of recombinant proteins.

  14. Evaluation of in vivo detection properties of 22Na, 65Zn, 86Rb, 109Cd and 137Cs in plant tissues using real-time radioisotope imaging system.

    PubMed

    Sugita, Ryohei; Kobayashi, Natsuko I; Hirose, Atsushi; Tanoi, Keitaro; Nakanishi, Tomoko M

    2014-02-21

    In plant research, radioisotope imaging provides useful information about physiological activities in various tissues and elemental transport between plant organs. To expand the usage of imaging techniques, a new system was developed to visualize beta particles, x-rays and gamma-rays emitted from plant bodies. This real-time radioisotope imaging system (RRIS) visualizes radioactivity after conversion into light with a CsI(Tl) scintillator plate. Herein, the RRIS detection properties of the gamma-ray emitters (22)Na, (65)Zn, (86)Rb, (109)Cd and (137)Cs were evaluated in comparison with those of radioluminography (RLG) using an imaging plate. The lower quantitative detection limit (Bq mm(-2)) during a 15 min period ranged from 0.1 to 4, depending on the nuclide, similar to that of RLG. When the quantitative ability to detect radiation from various Arabidopsis tissues was analyzed, the quantitative capability in silique and the thick internode tended to be low. In an EGS5 simulation, beta particles were the greatest contributors to RRIS imaging of (22)Na, (86)Rb and (137)Cs, and low-energy x-rays contributed significantly to (65)Zn and (109)Cd detection. Thus, both self-absorption and air space between the sample and scintillator surface could impair quantitative RRIS imaging. Despite these issues, RRIS is suggested for quantitative time-course measurements of radionuclide motion within plants.

  15. Expression of a Human Prostatic Acid Phosphatase (PAP)-IgM Fc Fusion Protein in Plants Using In vitro Tissue Subculture

    PubMed Central

    Kang, Yang J.; Kim, Deuk-Su; Myung, Soon-Chul; Ko, Kisung

    2017-01-01

    In this study, prostatic acid phosphatase (PAP), which is overexpressed in human prostate cancer cells, was cloned to be fused to the IgM constant fragment (Fc) for enhancing immunogenicity and expressed in transgenic tobacco plants. Then, the transgenic plants were propagated by in vitro tissue subculture. Gene insertion and expression of the recombinant PAP-IgM Fc fusion protein were confirmed in each tested the first, second, and third subculture generations (SG1, SG2, and SG3, respectively). Transcription levels were constantly maintained in the SG1, SG2, and SG3 leaf section (top, middle, and base). The presence of the PAP-IgM Fc gene was also confirmed in each leaf section in all tested subculture generations. RNA expression was confirmed in all subculture generations using real-time PCR and quantitative real-time PCR. PAP-IgM Fc protein expression was confirmed in all leaves of the SG1, SG2, and SG3 recombinant transgenic plants by using quantitative western blotting and chemiluminescence immunoassays. These results demonstrate that the recombinant protein was stably expressed for several generations of in vitro subculture. Therefore, transgenic plants can be propagated using in vitro tissue subculture for the production of recombinant proteins. PMID:28293250

  16. Plant material features responsible for bamboo's excellent mechanical performance: a comparison of tensile properties of bamboo and spruce at the tissue, fibre and cell wall levels

    PubMed Central

    Wang, Xiaoqing; Keplinger, Tobias; Gierlinger, Notburga; Burgert, Ingo

    2014-01-01

    Background and Aims Bamboo is well known for its fast growth and excellent mechanical performance, but the underlying relationships between its structure and properties are only partially known. Since it lacks secondary thickening, bamboo cannot use adaptive growth in the same way as a tree would in order to modify the geometry of the stem and increase its moment of inertia to cope with bending stresses caused by wind loads. Consequently, mechanical adaptation can only be achieved at the tissue level, and this study aims to examine how this is achieved by comparison with a softwood tree species at the tissue, fibre and cell wall levels. Methods The mechanical properties of single fibres and tissue slices of stems of mature moso bamboo (Phyllostachys pubescens) and spruce (Picea abies) latewood were investigated in microtensile tests. Cell parameters, cellulose microfibril angles and chemical composition were determined using light and electron microscopy, wide-angle X-ray scattering and confocal Raman microscopy. Key Results Pronounced differences in tensile stiffness and strength were found at the tissue and fibre levels, but not at the cell wall level. Thus, under tensile loads, the differing wall structures of bamboo (multilayered) and spruce (sandwich-like) appear to be of minor relevance. Conclusions The superior tensile properties of bamboo fibres and fibre bundles are mainly a result of amplified cell wall formation, leading to a densely packed tissue, rather than being based on specific cell wall properties. The material optimization towards extremely compact fibres with a multi-lamellar cell wall in bamboo might be a result of a plant growth strategy that compensates for the lack of secondary thickening growth at the tissue level, which is not only favourable for the biomechanics of the plant but is also increasingly utilized in terms of engineering products made from bamboo culms. PMID:25180290

  17. Accumulation of arsenic in tissues of rice plant (Oryza sativa L.) and its distribution in fractions of rice grain.

    PubMed

    Rahman, M Azizur; Hasegawa, H; Rahman, M Mahfuzur; Rahman, M Arifur; Miah, M A M

    2007-10-01

    A study was conducted to investigate the accumulation and distribution of arsenic in different fractions of rice grain (Oryza sativa L.) collected from arsenic affected area of Bangladesh. The agricultural soil of study area has become highly contaminated with arsenic due to the excessive use of arsenic-rich underground water (0.070+/-0.006 mg l(-1), n=6) for irrigation. Arsenic content in tissues of rice plant and in fractions of rice grain of two widely cultivated rice varieties, namely BRRI dhan28 and BRRI hybrid dhan1, were determined. Regardless of rice varieties, arsenic content was about 28- and 75-folds higher in root than that of shoot and raw rice grain, respectively. In fractions of parboiled and non-parboiled rice grain of both varieties, the order of arsenic concentrations was; rice hull>bran-polish>brown rice>raw rice>polish rice. Arsenic content was higher in non-parboiled rice grain than that of parboiled rice. Arsenic concentrations in parboiled and non-parboiled brown rice of BRRI dhan28 were 0.8+/-0.1 and 0.5+/-0.0 mg kg(-1) dry weight, respectively while those of BRRI hybrid dhan1 were 0.8+/-0.2 and 0.6+/-0.2 mg kg(-1) dry weight, respectively. However, parboiled and non-parboiled polish rice grain of BRRI dhan28 contained 0.4+/-0.0 and 0.3+/-0.1 mg kg(-1) dry weight of arsenic, respectively while those of BRRI hybrid dhan1 contained 0.43+/-0.01 and 0.5+/-0.0 mg kg(-1) dry weight, respectively. Both polish and brown rice are readily cooked for human consumption. The concentration of arsenic found in the present study is much lower than the permissible limit in rice (1.0 mg kg(-1)) according to WHO recommendation. Thus, rice grown in soils of Bangladesh contaminated with arsenic of 14.5+/-0.1 mg kg(-1) could be considered safe for human consumption.

  18. Photochemical studies of a fluorescent chlorophyll catabolite--source of bright blue fluorescence in plant tissue and efficient sensitizer of singlet oxygen.

    PubMed

    Jockusch, Steffen; Turro, Nicholas J; Banala, Srinivas; Kräutler, Bernhard

    2014-02-01

    Fluorescent chlorophyll catabolites (FCCs) are fleeting intermediates of chlorophyll breakdown, which is seen as an enzyme controlled detoxification process of the chlorophylls in plants. However, some plants accumulate large amounts of persistent FCCs, such as in senescent leaves and in peels of yellow bananas. The photophysical properties of such a persistent FCC (Me-sFCC) were investigated in detail. FCCs absorb in the near UV spectral region and show blue fluorescence (max at 437 nm). The Me-sFCC fluorescence had a quantum yield of 0.21 (lifetime 1.6 ns). Photoexcited Me-sFCC intersystem crosses into the triplet state (quantum yield 0.6) and generates efficiently singlet oxygen (quantum yield 0.59). The efficient generation of singlet oxygen makes fluorescent chlorophyll catabolites phototoxic, but might also be useful as a (stress) signal and for defense of the plant tissue against infection by pathogens.

  19. Specificity of expression of the GUS reporter gene (uidA) driven by the tobacco ASA2 promoter in soybean plants and tissue cultures.

    PubMed

    Inaba, Yoshimi; Zhong, Wei Qun; Zhang, Xing-Hai; Widholm, Jack M

    2007-07-01

    Twelve independent lines were transformed by particle bombardment of soybean embryogenic suspension cultures with the tobacco anthranilate synthase (ASA2) promoter driving the uidA (beta-glucuronidase, GUS) reporter gene. ASA2 appears to be expressed in a tissue culture specific manner in tobacco (Song H-S, Brotherton JE, Gonzales RA, Widholm JM. Tissue culture specific expression of a naturally occurring tobacco feedback-insensitive anthranilate synthase. Plant Physiol 1998;117:533-43). The transgenic lines also contained the hygromycin phosphotransferase (hpt) gene and were selected using hygromycin. All the selected cultures or the embryos that were induced from these cultures expressed GUS measured histochemically. However, no histochemical GUS expression could be found in leaves, stems, roots, pods and root nodules of the plants formed from the embryos and their progeny. Pollen from some of the plants and immature and mature seeds and embryogenic cultures initiated from immature cotyledons did show GUS activity. Quantitative 4-methylumbelliferyl-glucuronide (MUG) assays of the GUS activity in various tissues showed that all with observable histochemical GUS activity contained easily measurable activities and leaves and stems that showed no observable histochemical GUS staining did contain very low but measurable MUG activity above that of the untransformed control but orders of magnitude lower than the constitutive 35S-uidA controls used. Low but clearly above background levels of boiling sensitive GUS activity could be observed in the untransformed control immature seeds and embryogenic cultures using the MUG assay. Thus in soybean the ASA2 promoter drives readily observable GUS expression in tissue cultures, pollen and seeds, with only extremely low levels seen in vegetative tissues of the plants. The ASA2 driven expression seen in mature seed was, however, much lower than that seen with the constitutive 35S promoter; less than 2% in seed coats and less than

  20. The use of color infrared aerial photography in determining salt marsh vegetation and delimiting man-made structures of Lynnhaven Bay, Virginia. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Holman, R. E., III

    1974-01-01

    Color infrared aerial photography was found to be superior to color aerial photography in an ecological study of Lynnhaven Bay, Virginia. The research was divided into three phases: (1) Determination of the feasibility of correlating color infrared aerial photography with saline wetland species composition and zonation patterns, (2) determination of the accuracy of the aerial interpretation and problems related to the aerial method used; and (3) comparison of developed with undeveloped areas along Lynnhaven Bay's shoreline. Wetland species composition and plant community zonation bands were compared with aerial infrared photography and resulted in a high degree of correlation. Problems existed with changing physical conditions; time of day, aircraft angle and sun angle, making it necessary to use several different characteristics in wetland species identification. The main characteristics used were known zonation patterns, textural signatures and color tones. Lynnhaven Bay's shoreline was 61.5 percent developed.

  1. Approximate Dynamic Programming and Aerial Refueling

    DTIC Science & Technology

    2007-06-01

    were values derived from “AFPAM 10-1403, AIR MOBILITY PLANNING FACTORS” used by the US Air Force when making gross calculations of aerial refueling...Aerial Refueling. U.S. Centennial of Flight Commision. centennialofflight.gov/essay/EvolutionofT echnology /refueling?Tech22.htm. 20003. 5 [6] DOD Needs

  2. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Aerial wire. 32.2431 Section 32.2431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire. (a) This account shall include the original cost of bare line wire and other material used in...

  3. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Aerial wire. 32.2431 Section 32.2431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire. (a) This account shall include the original cost of bare line wire and other material used in...

  4. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Aerial wire. 32.2431 Section 32.2431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire. (a) This account shall include the original cost of bare line wire and other material used in...

  5. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Aerial wire. 32.2431 Section 32.2431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire. (a) This account shall include the original cost of bare line wire and other material used in...

  6. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Aerial wire. 32.2431 Section 32.2431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire. (a) This account shall include the original cost of bare line wire and other material used in...

  7. BOREAS Level-0 ER-2 Aerial Photography

    NASA Technical Reports Server (NTRS)

    Newcomer, Jeffrey A.; Dominquez, Roseanne; Hall, Forrest G. (Editor)

    2000-01-01

    For BOReal Ecosystem-Atmosphere Study (BOREAS), the ER-2 and other aerial photography was collected to provide finely detailed and spatially extensive documentation of the condition of the primary study sites. The ER-2 aerial photography consists of color-IR transparencies collected during flights in 1994 and 1996 over the study areas.

  8. Removal of the pharmaceuticals ibuprofen and iohexol by four wetland plant species in hydroponic culture: plant uptake and microbial degradation.

    PubMed

    Zhang, Yang; Lv, Tao; Carvalho, Pedro N; Arias, Carlos A; Chen, Zhanghe; Brix, Hans

    2016-02-01

    We aimed at assessing the effects of four wetland plant species commonly used in constructed wetland systems: Typha, Phragmites, Iris and Juncus for removing ibuprofen (IBU) and iohexol (IOH) from spiked culture solution and exploring the mechanisms responsible for the removal. IBU was nearly completely removed by all plant species during the 24-day experiment, whereas the IOH removal varied between 13 and 80 %. Typha and Phragmites were the most efficient in removing IBU and IOH, respectively, with first-order removal rate constants of 0.38 and 0.06 day(-1), respectively. The pharmaceuticals were taken up by the roots and translocated to the aerial tissues. However, at the end of the experiment, plant accumulation constituted only up to 1.1 and 5.7 % of the amount of IBU and IOH spiked initially. The data suggest that the plants mainly function by facilitating pharmaceutical degradation in the rhizosphere through release of root exudates.

  9. Comparison of aerial counts at different sites in beef and sheep abattoirs and the relationship between aerial and beef carcass contamination.

    PubMed

    Okraszska-Lasica, Wioletta; Bolton, D J; Sheridan, J J; McDowell, D A

    2012-12-01

    The study examined and compared levels of aerial contamination in commercial beef and sheep plants at four sites, i.e. lairage, hide/fleece pulling, evisceration and chilling. Aerial contamination was determined by impaction and sedimentation onto Plate Count Agar to enumerate Total Viable Counts, MacConkey Agar to enumerate coliforms and Violate Red Bile Glucose Agar to enumerate Enterobacteriaceae. AS I cannot see any difference in the text here - I am not sure what the change is?. The levels of aerial contamination were similar at equivalent sites in beef and sheep plants, irrespective of the sampling method or the type of organisms recovered. Mean log counts recovered on each medium in the chillers were generally significantly lower (P < .05) than the corresponding mean log numbers recovered at the other three sites. The relationship between impaction (air) and sedimentation (surface) counts could be described by the surface to air ratio (SAR) which in this study had an R(2) of 0.77. Further studies in an experimental plant compared counts recovered from the neck of beef carcasses with aerial counts determined by impaction and sedimentation onto agar and irradiated meat pieces. A relationship between counts on beef carcasses and in the air could not be established, irrespective of the method used to compare counts.

  10. Astronomical Methods in Aerial Navigation

    NASA Technical Reports Server (NTRS)

    Beij, K Hilding

    1925-01-01

    The astronomical method of determining position is universally used in marine navigation and may also be of service in aerial navigation. The practical application of the method, however, must be modified and adapted to conform to the requirements of aviation. Much of this work of adaptation has already been accomplished, but being scattered through various technical journals in a number of languages, is not readily available. This report is for the purpose of collecting under one cover such previous work as appears to be of value to the aerial navigator, comparing instruments and methods, indicating the best practice, and suggesting future developments. The various methods of determining position and their application and value are outlined, and a brief resume of the theory of the astronomical method is given. Observation instruments are described in detail. A complete discussion of the reduction of observations follows, including a rapid method of finding position from the altitudes of two stars. Maps and map cases are briefly considered. A bibliography of the subject is appended.

  11. Virulence genes of the phytopathogen Rhodococcus fascians show specific spatial and temporal expression patterns during plant infection.

    PubMed

    Cornelis, Karen; Maes, Tania; Jaziri, Mondher; Holsters, Marcelle; Goethals, Koen

    2002-04-01

    The phytopathogenic bacterium Rhodococcus fascians provokes shoot meristem formation and malformations on aerial plant parts, mainly at the axils. The interaction is accompanied by bacterial colonization of the plant surface and tissues. Upon infection, the two bacterial loci required for full virulence, fas and att, were expressed only at the sites of symptom development, although their expression profiles differed both spatially and temporally. The att locus was expressed principally in bacteria located on the plant surface at early stages of infection. Expression of the fas locus occurred throughout infection, mainly in bacteria that were penetrating, or had penetrated, the plant tissues and coincided with sites of meristem initiation and proliferation. The implications for the regulation of virulence genes of R. fascians during plant infection are discussed.

  12. Acetone enhances the direct analysis of total condensed tannins in plant tissues by the butanol-HCl-iron assay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The butanol-HCl spectrophotometric assay is widely used to quantify extractable and insoluble forms of condensed tannin (CT, syn. proanthocyanidin) in foods, feeds, and foliage of herbaceous and woody plants. However, this method underestimates total CT content when applied directly to plant materia...

  13. Use of aerial photography to inventory aquatic vegetation

    USGS Publications Warehouse

    Schloesser, Donald W.; Brown, Charles L.; Manny, Bruce A.

    1988-01-01

    This study demonstrates the feasibility of using low-altitude aerial photography to inventory submersed macrophytes in the connecting channels of the Great Lakes. For this purpose, we obtained aerial color transparencies and collateral ground truth information about submersed vegetation at 160 stations within four study sites in the St. Clair and Detroit rivers, September 17 to October 4, 1984. Photographs were interpreted by five test subjects to determine with what accuracy they could detect beds of submersed macrophytes, and the precision of delineating the extent of such vegetation beds. The interpreters correctly determined the presence or absence of vegetation 80% of the time (range 73-86%). Differences between individuals were statistically significant. Determination of the presence or absence of macrophytes depended partly on their relative abundance and water clarity. Analysis of one photograph from each of the four study sites revealed that photointerpreters delineated between 35 and 75 ha of river bottom covered by vegetation. This wide range indicates that individuals should be tested to assess their relative capability and be trained before they are employed to delineate plant beds in large-scale inventories. Within limits, low-altitude aerial photography, combined with collateral ground truth information, can be used to determine the presence or absence and delineate the extent of submersed macrophytes in connecting channels of the Great Lakes.

  14. Understanding cross-communication between aboveground and belowground tissues via transcriptome analysis of a sucking insect whitefly-infested pepper plants.

    PubMed

    Park, Yong-Soon; Ryu, Choong-Min

    2014-01-03

    Plants have developed defensive machinery to protect themselves against herbivore and pathogen attacks. We previously reported that aboveground whitefly (Bemisia tabaci Genn.) infestation elicited induced resistance in leaves and roots and influenced the modification of the rhizosphere microflora. In this study, to obtain molecular evidence supporting these plant fitness strategies against whitefly infestation, we performed a 300 K pepper microarray analysis using leaf and root tissues of pepper (Capsicum annuum L.) applied with whitefly, benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), and the combination of BTH+whitefly. We defined differentially expressed genes (DEGs) as genes exhibiting more than 2-fold change (1.0 based on log2 values) in expression in leaves and roots in response to each treatment compared to the control. We identified a total of 16,188 DEGs in leaves and roots. Of these, 6685, 6752, and 4045 DEGs from leaf tissue and 6768, 7705, and 7667 DEGs from root tissue were identified in the BTH, BTH+whitefly, and whitefly treatment groups, respectively. The total number of DEGs was approximately two-times higher in roots than in whitefly-infested leaves subjected to whitefly infestation. Among DEGs, whitefly feeding induced salicylic acid and jasmonic acid/ethylene-dependent signaling pathways in leaves and roots. Several transporters and auxin-responsive genes were upregulated in roots, which can explain why biomass increase is facilitated. Using transcriptome analysis, our study provides new insights into the molecular basis of whitefly-mediated intercommunication between aboveground and belowground plant tissues and provides molecular evidence that may explain the alteration of rhizosphere microflora and root biomass by whitefly infestation.

  15. Novel use of positively charged nylon transfer membranes for trapping indoleacetic acid or other small anions during efflux from plant tissues.

    PubMed

    Cha M-R; Evans, M L; Hangarter, R P

    1993-01-01

    Positively charged nylon blotting membranes were used as an anion binding medium to trap [14C]indoleactic acid (IAA) as it exited cells at the basal ends of Coleus blumei L. stem and Zea mays L. coleoptile segments. Autoradiography was used to visualize where the [14C] that moved out of the cut ends was localized on the nylon membrane. Diffusion of [14C]IAA from the initial point of contact with the nylon membrane was minimal. Comparison of the autoradiograms with anatomical tissue prints of the cut ends of the segments was used to determine what tissues participate in IAA movement. The results of these initial studies were consistent with other reports suggesting that [14C]IAA movement was primarily associated with vascular tissues in both C. blumei stems and corn coleoptiles, but the resolution was not sufficient to identify which vascular tissues were involved in IAA transport. With further refinements, this technique could also be used for studying the movement of other small charged molecules through plant tissues.

  16. Novel use of positively charged nylon transfer membranes for trapping indoleacetic acid or other small anions during efflux from plant tissues

    NASA Technical Reports Server (NTRS)

    Evans, M. L.; Hangarter, R. P.

    1993-01-01

    Positively charged nylon blotting membranes were used as an anion binding medium to trap [14C]indoleactic acid (IAA) as it exited cells at the basal ends of Coleus blumei L. stem and Zea mays L. coleoptile segments. Autoradiography was used to visualize where the [14C] that moved out of the cut ends was localized on the nylon membrane. Diffusion of [14C]IAA from the initial point of contact with the nylon membrane was minimal. Comparison of the autoradiograms with anatomical tissue prints of the cut ends of the segments was used to determine what tissues participate in IAA movement. The results of these initial studies were consistent with other reports suggesting that [14C]IAA movement was primarily associated with vascular tissues in both C. blumei stems and corn coleoptiles, but the resolution was not sufficient to identify which vascular tissues were involved in IAA transport. With further refinements, this technique could also be used for studying the movement of other small charged molecules through plant tissues.

  17. Deep RNA-Seq profile reveals biodiversity, plant-microbe interactions and a large family of NBS-LRR resistance genes in walnut (Juglans regia) tissues.

    PubMed

    Chakraborty, Sandeep; Britton, Monica; Martínez-García, P J; Dandekar, Abhaya M

    2016-03-01

    Deep RNA-Seq profiling, a revolutionary method used for quantifying transcriptional levels, often includes non-specific transcripts from other co-existing organisms in spite of stringent protocols. Using the recently published walnut genome sequence as a filter, we present a broad analysis of the RNA-Seq derived transcriptome profiles obtained from twenty different tissues to extract the biodiversity and possible plant-microbe interactions in the walnut ecosystem in California. Since the residual nature of the transcripts being analyzed does not provide sufficient information to identify the exact strain, inferences made are constrained to the genus level. The presence of the pathogenic oomycete Phytophthora was detected in the root through the presence of a glyceraldehyde-3-phosphate dehydrogenase. Cryptococcus, the causal agent of cryptococcosis, was found in the catkins and vegetative buds, corroborating previous work indicating that the plant surface supported the sexual cycle of this human pathogen. The RNA-Seq profile revealed several species of the endophytic nitrogen fixing Actinobacteria. Another bacterial species implicated in aerobic biodegradation of methyl tert-butyl ether (Methylibium petroleiphilum) is also found in the root. RNA encoding proteins from the pea aphid were found in the leaves and vegetative buds, while a serine protease from mosquito with significant homology to a female reproductive tract protease from Drosophila mojavensis in the vegetative bud suggests egg-laying activities. The comprehensive analysis of RNA-seq data present also unraveled detailed, tissue-specific information of ~400 transcripts encoded by the largest family of resistance (R) genes (NBS-LRR), which possibly rationalizes the resistance of the specific walnut plant to the pathogens detected. Thus, we elucidate the biodiversity and possible plant-microbe interactions in several walnut (Juglans regia) tissues in California using deep RNA-Seq profiling.

  18. CONTEXTUAL AERIAL VIEW OF "EXCLUSION" MTR AREA WITH IDAHO CHEMICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTEXTUAL AERIAL VIEW OF "EXCLUSION" MTR AREA WITH IDAHO CHEMICAL PROCESSING PLANT IN BACKGROUND AT CENTER TOP OF VIEW. CAMERA FACING EAST. EXCLUSION GATE HOUSE AT LEFT OF VIEW. BEYOND MTR BUILDING AND ITS WING, THE PROCESS WATER BUILDING AND WORKING RESERVOIR ARE LEFT-MOST. FAN HOUSE AND STACK ARE TO ITS RIGHT. PLUG STORAGE BUILDING IS RIGHT-MOST STRUCTURE. NOTE FAN LOFT ABOVE MTR BUILDING'S ONE-STORY WING. THIS WAS LATER CONVERTED FOR OFFICES. INL NEGATIVE NO. 3610. Unknown Photographer, 10/30/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  19. 24. AERIAL VIEW LOOKING SOUTHEAST AT BUILDING 371 UNDER CONSTRUCTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. AERIAL VIEW LOOKING SOUTHEAST AT BUILDING 371 UNDER CONSTRUCTION IN 1974. BY 1968, BUILDING 771 WAS OUTMODED AND NEW TECHNOLOGIES HAD BEEN DEVELOPED FOR PLUTONIUM RECOVERY. AS A RESULT, A NEW RECOVERY BUILDING, BUILDING 371 WAS PLANNED. BUILDING 371 SUFFERED FROM VARIOUS DESIGN PROBLEMS, WHICH PREVENTED ITS OPENING UNTIL 1981 AND CAUSED TERMINATION OF RECOVERY OPERATIONS IN 1986. IT NEVER BECAME FULLY OPERATIONAL. TO THE EAST OF BUILDING 371, IS THE 700 BUILDING COMPLEX (4/74). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  20. Molecular chemistry of plant protein structure at a cellular level by synchrotron-based FTIR spectroscopy: Comparison of yellow ( Brassica rapa) and Brown ( Brassica napus) canola seed tissues

    NASA Astrophysics Data System (ADS)

    Yu, Peiqiang

    2008-05-01

    The objective of this study was to use synchrotron light sourced FTIR microspectroscopy as a novel approach to characterize protein molecular structure of plant tissue: compared yellow and brown Brassica canola seed within cellular dimensions. Differences in the molecular chemistry and the structural-chemical characteristics were identified between two type of plant tissues. The yellow canola seeds contained a relatively lower (P < 0.05) percentage of model-fitted α-helices (33 vs. 37), a higher (P < 0.05) relative percentage of model-fitted β-sheets (27 vs. 21) and a lower (P < 0.05) ratio of α-helices to β-sheets (1.3 vs. 1.9) than the brown seeds. These results may indicate that the protein value of the yellow canola seeds as food or feed was different from that of the brown canola seeds. The cluster analysis and principal component analysis did not show clear differences between the yellow and brown canola seed tissues in terms of protein amide I structures, indicating they are related to each other. Both yellow and brown canola seeds contain the same proteins but in different ratios.

  1. Analytical and Radio-Histo-Chemical Experiments of Plants and Tissue Culture Cells Treated with Lunar and Terrestrial Materials

    NASA Technical Reports Server (NTRS)

    Halliwell, R. S.

    1973-01-01

    The nature and mechanisms of the apparent simulation of growth originally observed in plants growing in contact with lunar soil during the Apollo project quarantine are examined. Preliminary experiments employing neutron activated lunar soil indicate uptake of a few elements by plants. It was found that while the preliminary neutron activation technique allowed demonstration of uptake of minerals it presented numerous disadvantages for use in critical experiments directed at elucidating possible mechanisms of stimulation.

  2. Evidence for bioaccumulation of PAHs within internal shoot tissues by a halophytic plant artificially exposed to petroleum-polluted sediments.

    PubMed

    Meudec, A; Dussauze, J; Deslandes, E; Poupart, N

    2006-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants of natural and anthropic origins. Despite their poor water solubility, they can be taken up and bioaccumulated by plants. This study was aimed at determining whether the PAHs present in sediments artificially polluted by heavy fuel oil are transferred to shoots of a coastal and edible plant, Salicornia fragilis Ball et Tutin. Bioaccumulation was quantified after a one-week exposure to sediments polluted with 0.2%, 2% and 20% fuel oil (w/w) and over a six-week monitoring at 0.2%. Quantification by GC-MS of PAH amounts in plants and sediments evidenced a bioaccumulation in the shoots by a soil-to-plant transfer through the root system. This bioaccumulation depended on the duration of exposure and on the substratum contamination. PAHs distributions in plants and sediments looked alike with a predominance of low- and medium-weight hydrocarbons. Moreover, high-weight PAHs were also detected in the upper part of plants.

  3. MEMS Based Micro Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Joshi, Niranjan; Köhler, Elof; Enoksson, Peter

    2016-10-01

    Designing a flapping wing insect robot requires understanding of insect flight mechanisms, wing kinematics and aerodynamic forces. These subsystems are interconnected and their dependence on one another affects the overall performance. Additionally it requires an artificial muscle like actuator and transmission to power the wings. Several kinds of actuators and mechanisms are candidates for this application with their own strengths and weaknesses. This article provides an overview of the insect scaled flight mechanism along with discussion of various methods to achieve the Micro Aerial Vehicle (MAV) flight. Ongoing projects in Chalmers is aimed at developing a low cost and low manufacturing time MAV. The MAV design considerations and design specifications are mentioned. The wings are manufactured using 3D printed carbon fiber and are under experimental study.

  4. COCOA: tracking in aerial imagery

    NASA Astrophysics Data System (ADS)

    Ali, Saad; Shah, Mubarak

    2006-05-01

    Unmanned Aerial Vehicles (UAVs) are becoming a core intelligence asset for reconnaissance, surveillance and target tracking in urban and battlefield settings. In order to achieve the goal of automated tracking of objects in UAV videos we have developed a system called COCOA. It processes the video stream through number of stages. At first stage platform motion compensation is performed. Moving object detection is performed to detect the regions of interest from which object contours are extracted by performing a level set based segmentation. Finally blob based tracking is performed for each detected object. Global tracks are generated which are used for higher level processing. COCOA is customizable to different sensor resolutions and is capable of tracking targets as small as 100 pixels. It works seamlessly for both visible and thermal imaging modes. The system is implemented in Matlab and works in a batch mode.

  5. How To Obtain Aerial Photographs

    USGS Publications Warehouse

    ,

    1999-01-01

    The U.S. Geological Survey (USGS) maintains an informational data base of aerial photographic coverage of the United States and its territories that dates back to the 1940?s. This information describes photographic projects from the USGS, other Federal, State, and local government agencies, and commercial firms. The pictures on this page show a part of a standard 9- by 9-inch photograph and the results obtained by enlarging the original photograph two and four times. Compare the size of the Qualcomm Stadium, Jack Murphy Field, in San Diego, Calif, and the adjacent parking lot and freeways shown at the different scales. USGS Earth Science Information Center (ESIC) representatives will assist you in locating and ordering photographs. Please submit the completed checklist and a marked map showing your area of interest to any ESIC.

  6. Unmanned aerial survey of elephants.

    PubMed

    Vermeulen, Cédric; Lejeune, Philippe; Lisein, Jonathan; Sawadogo, Prosper; Bouché, Philippe

    2013-01-01

    The use of a UAS (Unmanned Aircraft System) was tested to survey large mammals in the Nazinga Game Ranch in the south of Burkina Faso. The Gatewing ×100™ equipped with a Ricoh GR III camera was used to test animal reaction as the UAS passed, and visibility on the images. No reaction was recorded as the UAS passed at a height of 100 m. Observations, made on a set of more than 7000 images, revealed that only elephants (Loxodonta africana) were easily visible while medium and small sized mammals were not. The easy observation of elephants allows experts to enumerate them on images acquired at a height of 100 m. We, therefore, implemented an aerial strip sample count along transects used for the annual wildlife foot count. A total of 34 elephants were recorded on 4 transects, each overflown twice. The elephant density was estimated at 2.47 elephants/km(2) with a coefficient of variation (CV%) of 36.10%. The main drawback of our UAS was its low autonomy (45 min). Increased endurance of small UAS is required to replace manned aircraft survey of large areas (about 1000 km of transect per day vs 40 km for our UAS). The monitoring strategy should be adapted according to the sampling plan. Also, the UAS is as expensive as a second-hand light aircraft. However the logistic and flight implementation are easier, the running costs are lower and its use is safer. Technological evolution will make civil UAS more efficient, allowing them to compete with light aircraft for aerial wildlife surveys.

  7. Unmanned Aerial Survey of Elephants

    PubMed Central

    Vermeulen, Cédric; Lejeune, Philippe; Lisein, Jonathan; Sawadogo, Prosper; Bouché, Philippe

    2013-01-01

    The use of a UAS (Unmanned Aircraft System) was tested to survey large mammals in the Nazinga Game Ranch in the south of Burkina Faso. The Gatewing ×100™ equipped with a Ricoh GR III camera was used to test animal reaction as the UAS passed, and visibility on the images. No reaction was recorded as the UAS passed at a height of 100 m. Observations, made on a set of more than 7000 images, revealed that only elephants (Loxodonta africana) were easily visible while medium and small sized mammals were not. The easy observation of elephants allows experts to enumerate them on images acquired at a height of 100 m. We, therefore, implemented an aerial strip sample count along transects used for the annual wildlife foot count. A total of 34 elephants were recorded on 4 transects, each overflown twice. The elephant density was estimated at 2.47 elephants/km2 with a coefficient of variation (CV%) of 36.10%. The main drawback of our UAS was its low autonomy (45 min). Increased endurance of small UAS is required to replace manned aircraft survey of large areas (about 1000 km of transect per day vs 40 km for our UAS). The monitoring strategy should be adapted according to the sampling plan. Also, the UAS is as expensive as a second-hand light aircraft. However the logistic and flight implementation are easier, the running costs are lower and its use is safer. Technological evolution will make civil UAS more efficient, allowing them to compete with light aircraft for aerial wildlife surveys. PMID:23405088

  8. The DOE ARM Aerial Facility

    SciTech Connect

    Schmid, Beat; Tomlinson, Jason M.; Hubbe, John M.; Comstock, Jennifer M.; Mei, Fan; Chand, Duli; Pekour, Mikhail S.; Kluzek, Celine D.; Andrews, Elisabeth; Biraud, S.; McFarquhar, Greg

    2014-05-01

    The Department of Energy Atmospheric Radiation Measurement (ARM) Program is a climate research user facility operating stationary ground sites that provide long-term measurements of climate relevant properties, mobile ground- and ship-based facilities to conduct shorter field campaigns (6-12 months), and the ARM Aerial Facility (AAF). The airborne observations acquired by the AAF enhance the surface-based ARM measurements by providing high-resolution in-situ measurements for process understanding, retrieval-algorithm development, and model evaluation that are not possible using ground- or satellite-based techniques. Several ARM aerial efforts were consolidated into the AAF in 2006. With the exception of a small aircraft used for routine measurements of aerosols and carbon cycle gases, AAF at the time had no dedicated aircraft and only a small number of instruments at its disposal. In this "virtual hangar" mode, AAF successfully carried out several missions contracting with organizations and investigators who provided their research aircraft and instrumentation. In 2009, AAF started managing operations of the Battelle-owned Gulfstream I (G-1) large twin-turboprop research aircraft. Furthermore, the American Recovery and Reinvestment Act of 2009 provided funding for the procurement of over twenty new instruments to be used aboard the G-1 and other AAF virtual-hangar aircraft. AAF now executes missions in the virtual- and real-hangar mode producing freely available datasets for studying aerosol, cloud, and radiative processes in the atmosphere. AAF is also engaged in the maturation and testing of newly developed airborne sensors to help foster the next generation of airborne instruments.

  9. Dealing with the problem of non-specific in situ mRNA hybridization signals associated with plant tissues undergoing programmed cell death

    PubMed Central

    2010-01-01

    Background In situ hybridization is a general molecular method typically used for the localization of mRNA transcripts in plants. The method provides a valuable tool to unravel the connection between gene expression and anatomy, especially in species such as pines which show large genome size and shortage of sequence information. Results In the present study, expression of the catalase gene (CAT) related to the scavenging of reactive oxygen species (ROS) and the polyamine metabolism related genes, diamine oxidase (DAO) and arginine decarboxylase (ADC), were localized in developing Scots pine (Pinus sylvestris L.) seeds. In addition to specific signals from target mRNAs, the probes continually hybridized non-specifically in the embryo surrounding region (ESR) of the megagametophyte tissue, in the remnants of the degenerated suspensors as well as in the cells of the nucellar layers, i.e. tissues exposed to cell death processes and extensive nucleic acid fragmentation during Scots pine seed development. Conclusions In plants, cell death is an integral part of both development and defence, and hence it is a common phenomenon in all stages of the life cycle. Our results suggest that extensive nucleic acid fragmentation during cell death processes can be a considerable source of non-specific signals in traditional in situ mRNA hybridization. Thus, the visualization of potential nucleic acid fragmentation simultaneously with the in situ mRNA hybridization assay may be necessary to ensure the correct interpretation of the signals in the case of non-specific hybridization of probes in plant tissues. PMID:20181098

  10. A Mechanical Model to Interpret Cell-Scale Indentation Experiments on Plant Tissues in Terms of Cell Wall Elasticity and Turgor Pressure

    PubMed Central

    Malgat, Richard; Faure, François; Boudaoud, Arezki

    2016-01-01

    Morphogenesis in plants is directly linked to the mechanical elements of growing tissues, namely cell wall and inner cell pressure. Studies of these structural elements are now often performed using indentation methods such as atomic force microscopy. In these methods, a probe applies a force to the tissue surface at a subcellular scale and its displacement is monitored, yielding force-displacement curves that reflect tissue mechanics. However, the interpretation of these curves is challenging as they may depend not only on the cell probed, but also on neighboring cells, or even on the whole tissue. Here, we build a realistic three-dimensional model of the indentation of a flower bud using SOFA (Simulation Open Framework Architecture), in order to provide a framework for the analysis of force-displacement curves obtained experimentally. We find that the shape of indentation curves mostly depends on the ratio between cell pressure and wall modulus. Hysteresis in force-displacement curves can be accounted for by a viscoelastic behavior of the cell wall. We consider differences in elastic modulus between cell layers and we show that, according to the location of indentation and to the size of the probe, force-displacement curves are sensitive with different weights to the mechanical components of the two most external cell layers. Our results confirm most of the interpretations of previous experiments and provide a guide to future experimental work. PMID:27656191

  11. Overview of NASA aerial applications research

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.

    1978-01-01

    Aerial applications research conducted by NASA seeks improvements in environmental safety, fuel efficiency, and aircraft productivity and safety. From 1976 to 1978, NASA studied the technology needs of the aerial applications industry and developed in-house research capabilities for meeting those needs. This paper presents the research plans developed by NASA. High potential appears to exist for near term contributions to the industry from existing NASA research capabilities in drift reduction, stall departure safety, and dry materials dispersal system technology. A brief, annotated bibliography is included listing documents recently produced as a result of NASA aerial applications research efforts.

  12. Determination of trace amounts of molybdenum in plant tissue by solvent extraction-atomic-absorption and direct-current plasma emission spectrometry.

    PubMed

    Lajunen, L H; Kubin, A

    1986-03-01

    Methods are presented for determination of molybdenum in plant tissue by flame and graphite-furnace atomic-absorption spectrometry and direct-current argon-plasma emission spectrometry. The samples are digested in HNO(3)-H(2)SO(4)-HC1O(4) mixture, and Mo is separated and concentrated by chelation and extraction. Three organic solvents (methyl isobutyl ketone, di-isobutyl ketone and isoamyl alcohol) and two ligands (8-hydroxyquinoline and toluene-3,4-dithiol) were studied. The procedure were tested on pine needle and birch leaf samples.

  13. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Availability of aerial photography. 611.21 Section 611... § 611.21 Availability of aerial photography. The National Cartography and Geospatial Center obtains necessary clearance for all aerial photography for NRCS. New aerial photography of designated areas in...

  14. Unmanned Aerial Vehicles: Replacing the Army’s Comanche Helicopter?

    DTIC Science & Technology

    2007-11-02

    This strategic research project explores the possibility of unmanned aerial vehicles replacing the Comanche Helicopter in its doctrinal missions...capabilities of unmanned aerial vehicles , and analyzes unmanned aerial vehicles capabilities against those aviation critical tasks. This research will...Army’s current helicopters, this analysis reveals that unmanned aerial vehicles can only perform 67% of the reconnaissance critical tasks, 50% of the

  15. Engineering the cell wall by reducing de-methyl-esterified homogalacturonan improves saccharification of plant tissues for bioconversion

    PubMed Central

    Lionetti, Vincenzo; Francocci, Fedra; Ferrari, Simone; Volpi, Chiara; Bellincampi, Daniela; Galletti, Roberta; D’Ovidio, Renato; De Lorenzo, Giulia; Cervone, Felice

    2010-01-01

    Plant cell walls represent an abundant, renewable source of biofuel and other useful products. The major bottleneck for the industrial scale-up of their conversion to simple sugars (saccharification), to be subsequently converted by microorganisms into ethanol or other products, is their recalcitrance to enzymatic saccharification. We investigated whether the structure of pectin that embeds the cellulose-hemicellulose network affects the exposure of cellulose to enzymes and consequently the process of saccharification. Reduction of de-methyl-esterified homogalacturonan (HGA) in Arabidopsis plants through the expression of a fungal polygalacturonase (PG) or an inhibitor of pectin methylesterase (PMEI) increased the efficiency of enzymatic saccharification. The improved enzymatic saccharification efficiency observed in transformed plants could also reduce the need for acid pretreatment. Similar results were obtained in PG-expressing tobacco plants and in PMEI-expressing wheat plants, indicating that reduction of de-methyl-esterified HGA may be used in crop species to facilitate the process of biomass saccharification. PMID:20080727

  16. Analysis of phytochelatin-cadmium complexes from plant tissue culture using nano-electrospray ionization tandem mass spectrometry and capillary liquid chromatography/electrospray ionization tandem mass spectrometry.

    PubMed

    Yen, T Y; Villa, J A; DeWitt, J G

    1999-09-01

    Phytochelatins (PCs, also known as class III metallothioneins), a family of sulfhydryl-rich peptides with the formula (gamma-GluCys)(n)Gly(Pc(n), n = 2-11), are induced in plants, yeast and fungi exposed to heavy metals, and are thought to detoxify metals by forming PC- metal complexes. Although PCs have been detected, PC- metal complexes have not been well characterized. In this work, nano-electrospray ionization tandem mass spectrometry (nano-ESI-MS/MS) and capillary liquid chromatography/electrospray ionization tandem mass spectrometry (capillary LC/ESI-MS/MS) methods were used to analyze PC - Cd complexes isolated from Datura innoxia, also known as Jimsonweed, cell culture exposed to Cd. With nano-ESI-MS/MS and capillary LC/ESI-MS/MS we could simultaneously detect the presence of PCs and PC - Cd complexes from plant cell extracts, unambiguously identify these species and elucidate the nature of individual PC - Cd complexes. Phytochelatins with n = 3-6 were detected, as were PC - Cd complexes with PC(3), PC(4) and PC(5). This is the first study to report the size and nature of native PC - Cd complexes from plant tissue samples. These results demonstrate that the direct analysis of plant extracts using nano-ESI-MS/MS and capillary LC/ESI-MS/MS methods is simple and sensitive to the range of PCs and PC - Cd complexes in plants. Hence these methods open up new opportunities for further quantitative analysis of PCs and PC - metal complexes in cell culture and plant systems to understand the relationship between the biosynthesis of these compounds and metal tolerance.

  17. Increasing CO[sub 2] concentration inhibits cytochrome c oxidase (cytox) in vitro, cytochrome pathway (cytpath) activity in plant mitochondria and dark respiration in plant tissue

    SciTech Connect

    Gonzalez-Meler, M.A.; Drake, B.G.; Jacob, J. ); Ribas-Carbo, M.; Siedow, J.N. ); Aranda, X.; Azcon-Bieto, J.; Palet, A. )

    1994-06-01

    Dark respiration is inhibited in many plant be exposure to elevated atmospheric CO[sub 2] concentration. The addition of 0.2mM free CO[sub 2] in the reaction medium decreased citpath activity in Pisum sativum and Glycine max mitochondria at pH 7.2, possibly by inhibiting cytox. Under similar conditions, activity of purified cytox from beef heart was also inhibited. Cytox activity extracted from plants grown in elevated CO[sub 2] for 7 years was lower than in those grown in normal ambient. The relationship among these effects and the rate of respiration as well as the role of the alternative pathway in each case will be discussed.

  18. Plant growth and metal distribution in tissues of Prosopis juliflora-velutina grown on chromium contaminated soil in the presence of Glomus deserticola

    PubMed Central

    Arias, Jack A.; Peralta-Videa, Jose R.; Ellzey, Joanne T.; Viveros, Marian N.; Ren, Minghua; Mokgalaka-Matlala, Ntebogeng S.; Castillo-Michel, Hiram; Gardea-Torresdey, Jorge L.

    2015-01-01

    Arbuscular mycorrhizal fungi have been known to increase metal uptake in plants. In this study, mesquite (Prosopis juliflora-velutina) inoculated with Glomus deserticola or amended with EDTA were grown for 30 days in soil containing Cr(III) or Cr(VI) at 0, 40, 80, and 160 mg kg−1. Total amylase activity (TAA) was monitored as a stress indicator. Element concentrations and distribution in tissue were determined using ICP-OES, electron scanning microprobe, and TEM. Inoculated Cr(VI) treated plants had 21% and 30% more Cr than uninoculated and EDTA treated roots, respectively, at 80 mg Cr kg−1 treatment. In the case of Cr(III), EDTA produced the highest Cr accumulation in roots. TAA was higher in inoculated plants grown with Cr(III) at 80 and 160 mg kg−1 and Cr(VI) at 40 and 160 mg kg−1. The X-ray mapping showed higher metal concentrations in the vascular system of inoculated plants and the TEM micrographs demonstrated the presence of G. deserticola in roots. PMID:20795657

  19. Plant growth and metal distribution in tissues of Prosopis juliflora-velutina grown on chromium contaminated soil in the presence of Glomus deserticola.

    PubMed

    Arias, Jack A; Peralta-Videa, Jose R; Ellzey, Joanne T; Viveros, Marian N; Ren, Minghua; Mokgalaka-Matlala, Ntebogeng S; Castillo-Michel, Hiram; Gardea-Torresdey, Jorge L

    2010-10-01

    Arbuscular mycorrhizal fungi have been known to increase metal uptake in plants. In this study, mesquite (Prosopis juliflora-velutina) inoculated with Glomus deserticola or amended with EDTA were grown for 30 days in soil containing Cr(III) or Cr(VI) at 0, 40, 80, and 160 mg kg(-1). Total amylase activity (TAA) was monitored as a stress indicator. Element concentrations and distribution in tissue were determined using ICP-OES, electron scanning microprobe, and TEM. Inoculated Cr(VI) treated plants had 21% and 30% more Cr than uninoculated and EDTA treated roots, respectively, at 80 mg Cr kg(-1) treatment. In the case of Cr(III), EDTA produced the highest Cr accumulation in roots. TAA was higher in inoculated plants grown with Cr(III) at 80 and 160 mg kg(-1) and Cr(VI) at 40 and 160 mg kg(-1). The X-ray mapping showed higher metal concentrations in the vascular system of inoculated plants and the TEM micrographs demonstrated the presence of G. deserticola in roots.

  20. 3D reconstructions with pixel-based images are made possible by digitally clearing plant and animal tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reconstruction of 3D images from a series of 2D images has been restricted by the limited capacity to decrease the opacity of surrounding tissue. Commercial software that allows color-keying and manipulation of 2D images in true 3D space allowed us to produce 3D reconstructions from pixel based imag...