Sample records for aerial radiometric surveys

  1. Aerial radiometric and magnetic reconnaissance survey of the Eagle--Dillingham area, Alaska, Mt. Hayes Quadrangle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-06-01

    The results of a high-sensitivity aerial gamma-ray spectrometer and magnetometer survey of the Mt. Hayes Quadrangle, Alaska, are presented. Instrumentation and methods are described in Volume 1 of this final report. Statistical and geological analysis of the radiometric data revealed two uranium anomalies worthy of field checking as possible prospects. One is located near Mesozoic granite, which is believed to have the best potential for future economic uranium deposits. Another uranium anomaly is associated with Paleozoic-Precambrian rocks and may be caused by augen gneiss or possibly granitic intrusives. Two weakly uraniferous provinces merit study: one in the northwest, which maymore » be related to the Tertiary-Cretaceous coal-bearing unit, and a second in the northeast, which may be related to Mesozoic granites.« less

  2. Aerial radiometric and magnetic reconnaissance survey of Baltimore, Washington, and Richmond Quadrangles: Washington Quadrangle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-09-01

    The results of a high-sensitivity aerial gamma-ray spectrometer and magnetometer survey of the Washington Quadrangle, Maryland and Virginia, are presentd. Instrumentation and methods are described in Volume 1 of this final report. Statistical and geological analysis of the radiometric data revealed six uranium anomalies worthy of field checking as possible prospects. Four (1, 2, 7, and 8) are located over sediments that may have long-range future potential for low-grade sedimentary uranium deposits. In particular, anomalies 1 and 8 are related to a unit (Triassic New Oxford Formation) known to contain uranium occurrences in Pennsylvania. One anomaly (3) may be associatedmore » with vein-type mineralization in augen gneiss, and one (12) may be caused by vein-type or hydrothermal uranium associated with a north-south striking fault at the boundary between the Appalachian Highlands and the Coastal Plain physiographic provinces.« less

  3. Aerial radiometric and magnetic reconnaissance survey of portions of Kentucky, Virginia, and West Virginia: Jenkins Quadrangle. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The results of a high-sensitivity, aerial, gamma-ray spectrometer and magnetometer survey of the Jenkins Quadrangle, Kentucky, Virginia, West Virginia, are presented. Instrumentation and methods are described in Volume 1 of this final report. This work was done as part of the US Department of Energy National Uranium Resource Evaluation (NURE) Program. Statistical and geological analysis of the radiometric data revealed 52 anomalies worthy of field checking as possible prospects. Twelve anomalies coincide with cultural features that may be major contributors to their anomalous values. Eight anomalies may be due to late dissipation of low-level inversion conditions and low topographic location.more » Pennsylvanian and Mississippian sandstone and shales have the greatest concentration of anomalies.« less

  4. Statistical techniques applied to aerial radiometric surveys (STAARS): principal components analysis user's manual. [NURE program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, C.D.; Pirkle, F.L.; Schmidt, J.S.

    1981-01-01

    A Principal Components Analysis (PCA) has been written to aid in the interpretation of multivariate aerial radiometric data collected by the US Department of Energy (DOE) under the National Uranium Resource Evaluation (NURE) program. The variations exhibited by these data have been reduced and classified into a number of linear combinations by using the PCA program. The PCA program then generates histograms and outlier maps of the individual variates. Black and white plots can be made on a Calcomp plotter by the application of follow-up programs. All programs referred to in this guide were written for a DEC-10. From thismore » analysis a geologist may begin to interpret the data structure. Insight into geological processes underlying the data may be obtained.« less

  5. Interpretation of detailed aerial gamma-ray survey, Jabal Ashirah area, southeastern Arabian Shield, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Duval, J.S.

    1987-01-01

    A detailed aerial gamma-ray spectrometric survey of the Jabal Ashirah area in the southeastern Arabian Shield has been analyzed using computer-classification algorithms. The analysis resulted in maps that show radiometric map units and gamma-ray anomalies indicating the presence of possible concentrations of potassium and uranium. The radiometric-unit map was interpreted to 'produce a simplified radiolithic map that was correlated with the mapped geology. The gamma-ray data show uranium anomalies that coincide with a tin-bearing granite, but known gold and nickel mineralization do not have any associated gamma-ray signatures.

  6. Aerial detection surveys in the United States

    Treesearch

    E. W. Johnson; D. Wittwer

    2006-01-01

    Aerial detection surveys, also known as aerial sketchmapping, is a remote sensing technique of observing forest change events from an aircraft and documenting them manually onto a map. Data from aerial surveys have become an important component of the Forest Health Monitoring, a national program designed to determine the status, changes, and trends in indicators of...

  7. Method of radiometric quality assessment of NIR images acquired with a custom sensor mounted on an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Wierzbicki, Damian; Fryskowska, Anna; Kedzierski, Michal; Wojtkowska, Michalina; Delis, Paulina

    2018-01-01

    Unmanned aerial vehicles are suited to various photogrammetry and remote sensing missions. Such platforms are equipped with various optoelectronic sensors imaging in the visible and infrared spectral ranges and also thermal sensors. Nowadays, near-infrared (NIR) images acquired from low altitudes are often used for producing orthophoto maps for precision agriculture among other things. One major problem results from the application of low-cost custom and compact NIR cameras with wide-angle lenses introducing vignetting. In numerous cases, such cameras acquire low radiometric quality images depending on the lighting conditions. The paper presents a method of radiometric quality assessment of low-altitude NIR imagery data from a custom sensor. The method utilizes statistical analysis of NIR images. The data used for the analyses were acquired from various altitudes in various weather and lighting conditions. An objective NIR imagery quality index was determined as a result of the research. The results obtained using this index enabled the classification of images into three categories: good, medium, and low radiometric quality. The classification makes it possible to determine the a priori error of the acquired images and assess whether a rerun of the photogrammetric flight is necessary.

  8. Locating waterfowl observations on aerial surveys

    USGS Publications Warehouse

    Butler, W.I.; Hodges, J.I.; Stehn, R.A.

    1995-01-01

    We modified standard aerial survey data collection to obtain the geographic location for each waterfowl observation on surveys in Alaska during 1987-1993. Using transect navigation with CPS (global positioning system), data recording on continuously running tapes, and a computer data input program, we located observations with an average deviation along transects of 214 m. The method provided flexibility in survey design and data analysis. Although developed for geese nesting near the coast of the Yukon-Kuskokwim Delta, the methods are widely applicable and were used on other waterfowl surveys in Alaska to map distribution and relative abundance of waterfowl. Accurate location data with GIS analysis and display may improve precision and usefulness of data from any aerial transect survey.

  9. Radiometric and geometric analysis of hyperspectral imagery acquired from an unmanned aerial vehicle

    DOE PAGES

    Hruska, Ryan; Mitchell, Jessica; Anderson, Matthew; ...

    2012-09-17

    During the summer of 2010, an Unmanned Aerial Vehicle (UAV) hyperspectral in-flight calibration and characterization experiment of the Resonon PIKA II imaging spectrometer was conducted at the U.S. Department of Energy’s Idaho National Laboratory (INL) UAV Research Park. The purpose of the experiment was to validate the radiometric calibration of the spectrometer and determine the georegistration accuracy achievable from the on-board global positioning system (GPS) and inertial navigation sensors (INS) under operational conditions. In order for low-cost hyperspectral systems to compete with larger systems flown on manned aircraft, they must be able to collect data suitable for quantitative scientific analysis.more » The results of the in-flight calibration experiment indicate an absolute average agreement of 96.3%, 93.7% and 85.7% for calibration tarps of 56%, 24%, and 2.5% reflectivity, respectively. The achieved planimetric accuracy was 4.6 meters (based on RMSE).« less

  10. Algorithm for automatic image dodging of unmanned aerial vehicle images using two-dimensional radiometric spatial attributes

    NASA Astrophysics Data System (ADS)

    Li, Wenzhuo; Sun, Kaimin; Li, Deren; Bai, Ting

    2016-07-01

    Unmanned aerial vehicle (UAV) remote sensing technology has come into wide use in recent years. The poor stability of the UAV platform, however, produces more inconsistencies in hue and illumination among UAV images than other more stable platforms. Image dodging is a process used to reduce these inconsistencies caused by different imaging conditions. We propose an algorithm for automatic image dodging of UAV images using two-dimensional radiometric spatial attributes. We use object-level image smoothing to smooth foreground objects in images and acquire an overall reference background image by relative radiometric correction. We apply the Contourlet transform to separate high- and low-frequency sections for every single image, and replace the low-frequency section with the low-frequency section extracted from the corresponding region in the overall reference background image. We apply the inverse Contourlet transform to reconstruct the final dodged images. In this process, a single image must be split into reasonable block sizes with overlaps due to large pixel size. Experimental mosaic results show that our proposed method reduces the uneven distribution of hue and illumination. Moreover, it effectively eliminates dark-bright interstrip effects caused by shadows and vignetting in UAV images while maximally protecting image texture information.

  11. Aerial surveys adjusted by ground surveys to estimate area occupied by black-tailed prairie dog colonies

    USGS Publications Warehouse

    Sidle, John G.; Augustine, David J.; Johnson, Douglas H.; Miller, Sterling D.; Cully, Jack F.; Reading, Richard P.

    2012-01-01

    Aerial surveys using line-intercept methods are one approach to estimate the extent of prairie dog colonies in a large geographic area. Although black-tailed prairie dogs (Cynomys ludovicianus) construct conspicuous mounds at burrow openings, aerial observers have difficulty discriminating between areas with burrows occupied by prairie dogs (colonies) versus areas of uninhabited burrows (uninhabited colony sites). Consequently, aerial line-intercept surveys may overestimate prairie dog colony extent unless adjusted by an on-the-ground inspection of a sample of intercepts. We compared aerial line-intercept surveys conducted over 2 National Grasslands in Colorado, USA, with independent ground-mapping of known black-tailed prairie dog colonies. Aerial line-intercepts adjusted by ground surveys using a single activity category adjustment overestimated colonies by ≥94% on the Comanche National Grassland and ≥58% on the Pawnee National Grassland. We present a ground-survey technique that involves 1) visiting on the ground a subset of aerial intercepts classified as occupied colonies plus a subset of intercepts classified as uninhabited colony sites, and 2) based on these ground observations, recording the proportion of each aerial intercept that intersects a colony and the proportion that intersects an uninhabited colony site. Where line-intercept techniques are applied to aerial surveys or remotely sensed imagery, this method can provide more accurate estimates of black-tailed prairie dog abundance and trends

  12. An aerial radiological survey of the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, T J; Riedhauser, S R

    1999-12-01

    A team from the Remote Sensing Laboratory conducted an aerial radiological survey of the US Department of Energy's Nevada Test Site including three neighboring areas during August and September 1994. The survey team measured the terrestrial gamma radiation at the Nevada Test Site to determine the levels of natural and man-made radiation. This survey included the areas covered by previous surveys conducted from 1962 through 1993. The results of the aerial survey showed a terrestrial background exposure rate that varied from less than 6 microroentgens per hour (mR/h) to 50 mR/h plus a cosmic-ray contribution that varied from 4.5 mR/hmore » at an elevation of 900 meters (3,000 feet) to 8.5 mR/h at 2,400 meters (8,000 feet). In addition to the principal gamma-emitting, naturally occurring isotopes (potassium-40, thallium-208, bismuth-214, and actinium-228), the man-made radioactive isotopes found in this survey were cobalt-60, cesium-137, europium-152, protactinium-234m an indicator of depleted uranium, and americium-241, which are due to human actions in the survey area. Individual, site-wide plots of gross terrestrial exposure rate, man-made exposure rate, and americium-241 activity (approximating the distribution of all transuranic material) are presented. In addition, expanded plots of individual areas exhibiting these man-made contaminations are given. A comparison is made between the data from this survey and previous aerial radiological surveys of the Nevada Test Site. Some previous ground-based measurements are discussed and related to the aerial data. In regions away from man-made activity, the exposure rates inferred from the gamma-ray measurements collected during this survey agreed very well with the exposure rates inferred from previous aerial surveys.« less

  13. Inertial instrument system for aerial surveying

    USGS Publications Warehouse

    Brown, R.H.; Chapman, W.H.; Hanna, W.F.; Mongan, C.E.; Hursh, J.W.

    1985-01-01

    An inertial guidance system for aerial surveying has been developed under contract to the U.S. Geological Survey. This prototype system, known as the aerial profiling of terrain (APT) system, is designed to determine continuously the positions of points along an aircraft flight path, or the underlying terrain profile, to an accuracy of + or - 0.5 ft (15 cm) vertically and + or - 2 ft (61 cm) horizontally. The system 's objective thus is to accomplish, from a fixed-wing aircraft, what would traditionally be accomplished from ground-based topographic surveys combined with aerial photography and photogrammetry. The two-part strategy for measuring the terrain profile entails: (1) use of an inertial navigator for continuous determination of the three-coordinate position of the aircraft, and (2) use of an eye-safe pulsed laser profiler for continuous measurement of the vertical distance from aircraft to land surface, so that the desired terrain profile can then be directly computed. The APT system, installed in a DeHavilland Twin Otter aircraft, is typically flown at a speed of 115 mph (105 knots) at an altitude of 2,000 ft (610 m) above the terrain. Performance-evaluation flights have shown that the vertical and horizontal accuracy specifications are met. (USGS)

  14. Initial Efforts toward Mission-Representative Imaging Surveys from Aerial Explorers

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Plice, Laura; Ippolito, Corey; Young, Larry A.; Lau, Benton; Lee, Pascal

    2004-01-01

    Numerous researchers have proposed the use of robotic aerial explorers to perform scientific investigation of planetary bodies in our solar system. One of the essential tasks for any aerial explorer is to be able to perform scientifically valuable imaging surveys. The focus of this paper is to discuss the challenges implicit in, and recent observations related to, acquiring mission-representative imaging data from a small fixed-wing UAV, acting as a surrogate planetary aerial explorer. This question of successfully performing aerial explorer surveys is also tied to other topics of technical investigation, including the development of unique bio-inspired technologies.

  15. A case study of comparing radiometrically calibrated reflectance of an image mosaic from unmanned aerial system with that of a single image from manned aircraft over a same area

    NASA Astrophysics Data System (ADS)

    Shi, Yeyin; Thomasson, J. Alex; Yang, Chenghai; Cope, Dale; Sima, Chao

    2017-05-01

    Though sharing with many commonalities, one of the major differences between conventional high-altitude airborne remote sensing and low-altitude unmanned aerial system (UAS) based remote sensing is that the latter one has much smaller ground footprint for each image shot. To cover the same area on the ground, it requires the low-altitude UASbased platform to take many highly-overlapped images to produce a good mosaic, instead of just one or a few image shots by the high-altitude aerial platform. Such an UAS flight usually takes 10 to 30 minutes or even longer to complete; environmental lighting change during this time span cannot be ignored especially when spectral variations of various parts of a field are of interests. In this case study, we compared the visible reflectance of two aerial imagery - one generated from mosaicked UAS images, the other generated from a single image taken by a manned aircraft - over the same agricultural field to quantitatively evaluate their spectral variations caused by the different data acquisition strategies. Specifically, we (1) developed our customized ground calibration points (GCPs) and an associated radiometric calibration method for UAS data processing based on camera's sensitivity characteristics; (2) developed a basic comparison method for radiometrically calibrated data from the two aerial platforms based on regions of interests. We see this study as a starting point for a series of following studies to understand the environmental influence on UAS data and investigate the solutions to minimize such influence to ensure data quality.

  16. Optimizing Radiometric Fidelity to Enhance Aerial Image Change Detection Utilizing Digital Single Lens Reflex (DSLR) Cameras

    NASA Astrophysics Data System (ADS)

    Kerr, Andrew D.

    Determining optimal imaging settings and best practices related to the capture of aerial imagery using consumer-grade digital single lens reflex (DSLR) cameras, should enable remote sensing scientists to generate consistent, high quality, and low cost image data sets. Radiometric optimization, image fidelity, image capture consistency and repeatability were evaluated in the context of detailed image-based change detection. The impetus for this research is in part, a dearth of relevant, contemporary literature, on the utilization of consumer grade DSLR cameras for remote sensing, and the best practices associated with their use. The main radiometric control settings on a DSLR camera, EV (Exposure Value), WB (White Balance), light metering, ISO, and aperture (f-stop), are variables that were altered and controlled over the course of several image capture missions. These variables were compared for their effects on dynamic range, intra-frame brightness variation, visual acuity, temporal consistency, and the detectability of simulated cracks placed in the images. This testing was conducted from a terrestrial, rather than an airborne collection platform, due to the large number of images per collection, and the desire to minimize inter-image misregistration. The results point to a range of slightly underexposed image exposure values as preferable for change detection and noise minimization fidelity. The makeup of the scene, the sensor, and aerial platform, influence the selection of the aperture and shutter speed which along with other variables, allow for estimation of the apparent image motion (AIM) motion blur in the resulting images. The importance of the image edges in the image application, will in part dictate the lowest usable f-stop, and allow the user to select a more optimal shutter speed and ISO. The single most important camera capture variable is exposure bias (EV), with a full dynamic range, wide distribution of DN values, and high visual contrast and

  17. An aerial radiological survey of Maralinga and EMU, South Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tipton, W J; Berry, H A; Fritzsche, A E

    An aerial radiological survey was conducted over the former British nuclear test ranges at Maralinga and Emu in South Australia from May through July 1987. The survey covered an area of approximately 1,550 square kilometers which included the nine major trial sites, where a nuclear yield occurred, and all the minor trial sites, where physics experiments were conducted. Flight lines were flown at an altitude of 30 meters with line spacings of 50, 100, and 200 meters depending on the area and whether man-made contamination was present. Results of the aerial survey were processed for americium-241 (used to determine plutoniummore » contamination), cesium-137, cobalt-60, and uranium-238. The aerial survey also detected the presence of europium-152, a soil activation product, in the immediate vicinity of the major trial ground zeros. Ground measurements were also made at approximately 120 locations using a high-resolution germanium detector to provide supplemental data for the aerial survey. This survey was conducted as part of a series of studies being conducted over a two to three-year timeframe to obtain information from which options and associated costs can be formulated about the decontamination and possible rehabilitation of the former nuclear test sites.« less

  18. Evaluation of aerial survey methods for Dall's sheep

    USGS Publications Warehouse

    Udevitz, Mark S.; Shults, Brad S.; Adams, Layne G.; Kleckner, Christopher

    2006-01-01

    Most Dall's sheep (Ovis dalli dalli) population-monitoring efforts use intensive aerial surveys with no attempt to estimate variance or adjust for potential sightability bias. We used radiocollared sheep to assess factors that could affect sightability of Dall's sheep in standard fixed-wing and helicopter surveys and to evaluate feasibility of methods that might account for sightability bias. Work was conducted in conjunction with annual aerial surveys of Dall's sheep in the western Baird Mountains, Alaska, USA, in 2000–2003. Overall sightability was relatively high compared with other aerial wildlife surveys, with 88% of the available, marked sheep detected in our fixed-wing surveys. Total counts from helicopter surveys were not consistently larger than counts from fixed-wing surveys of the same units, and detection probabilities did not differ for the 2 aircraft types. Our results suggest that total counts from helicopter surveys cannot be used to obtain reliable estimates of detection probabilities for fixed-wing surveys. Groups containing radiocollared sheep often changed in size and composition before they could be observed by a second crew in units that were double-surveyed. Double-observer methods that require determination of which groups were detected by each observer will be infeasible unless survey procedures can be modified so that groups remain more stable between observations. Mean group sizes increased during our study period, and our logistic regression sightability model indicated that detection probabilities increased with group size. Mark–resight estimates of annual population sizes were similar to sightability-model estimates, and confidence intervals overlapped broadly. We recommend the sightability-model approach as the most effective and feasible of the alternatives we considered for monitoring Dall's sheep populations.

  19. A hybrid double-observer sightability model for aerial surveys

    USGS Publications Warehouse

    Griffin, Paul C.; Lubow, Bruce C.; Jenkins, Kurt J.; Vales, David J.; Moeller, Barbara J.; Reid, Mason; Happe, Patricia J.; Mccorquodale, Scott M.; Tirhi, Michelle J.; Schaberi, Jim P.; Beirne, Katherine

    2013-01-01

    Raw counts from aerial surveys make no correction for undetected animals and provide no estimate of precision with which to judge the utility of the counts. Sightability modeling and double-observer (DO) modeling are 2 commonly used approaches to account for detection bias and to estimate precision in aerial surveys. We developed a hybrid DO sightability model (model MH) that uses the strength of each approach to overcome the weakness in the other, for aerial surveys of elk (Cervus elaphus). The hybrid approach uses detection patterns of 2 independent observer pairs in a helicopter and telemetry-based detections of collared elk groups. Candidate MH models reflected hypotheses about effects of recorded covariates and unmodeled heterogeneity on the separate front-seat observer pair and back-seat observer pair detection probabilities. Group size and concealing vegetation cover strongly influenced detection probabilities. The pilot's previous experience participating in aerial surveys influenced detection by the front pair of observers if the elk group was on the pilot's side of the helicopter flight path. In 9 surveys in Mount Rainier National Park, the raw number of elk counted was approximately 80–93% of the abundance estimated by model MH. Uncorrected ratios of bulls per 100 cows generally were low compared to estimates adjusted for detection bias, but ratios of calves per 100 cows were comparable whether based on raw survey counts or adjusted estimates. The hybrid method was an improvement over commonly used alternatives, with improved precision compared to sightability modeling and reduced bias compared to DO modeling.

  20. A study of methods for lowering aerial environmental survey cost

    NASA Technical Reports Server (NTRS)

    Stansberry, J. R.

    1973-01-01

    The results are presented of a study of methods for lowering the cost of environmental aerial surveys. A wide range of low cost techniques were investigated for possible application to current pressing urban and rural problems. The objective of the study is to establish a definition of the technical problems associated with conducting aerial surveys using various low cost techniques, to conduct a survey of equipment which may be used in low cost systems, and to establish preliminary estimates of cost. A set of candidate systems were selected and described for the environmental survey tasks.

  1. Radiometric Survey in Western Afghanistan: A Website for Distribution of Data

    USGS Publications Warehouse

    Sweeney, Ronald E.; Kucks, Robert P.; Hill, Patricia L.; Finn, Carol A.

    2007-01-01

    Radiometric (uranium content, thorium content, potassium content, and gamma-ray intensity) and related data were digitized from radiometric and survey route location maps of western Afghanistan published in 1976. The uranium content data were digitized along contour lines from 33 maps in a series entitled 'Map of Uranium (Radium) Contents of Afghanistan (Western Area),' compiled by V. N. Kirsanov and R. S. Dershimanov. The thorium content data were digitized along contour lines from 33 maps in a series entitled 'Map of Thorium Contents of Afghanistan (Western Area),' compiled by V. N. Kirsanov and R. S. Dershimanov. The potassium content data were digitized along contour lines from 33 maps in a series entitled 'Map of Potassium Contents of Afghanistan (Western Area),' compiled by V. N. Kirsanov and R. S. Dershimanov. The gamma-ray intensity data were digitized along contour lines from 33 maps in a series entitled 'Map of Gamma-Field of Afghanistan (Western Area),' compiled by V. N. Kirsanov and R. S. Dershimanov. The survey route location data were digitized along flight-lines located on 33 maps in a series entitled 'Survey Routes Location and Contours of Flight Equal Altitudes. Western Area of Afghanistan,' compiled by Z. A. Alpatova, V. G. Kurnosov, and F. A. Grebneva.

  2. Aerial radiometric and magnetic reconnaissance survey of portions of Arizona, Idaho, Montana, New Mexico, South Dakota and Washington. Volume 2-F. Lewistown Quadrangle. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-06-01

    Results of a high-sensitivity, aerial, gamma-ray spectrometer and magnetometer survey of the Lewistown Quadrangle, Montana, are presented. Instrumentation and methods are described in Volume 1 of this final report. Statistical and geological analysis of the radiometric data revealed 58 uranium anomalies worthy of field-checking as possible prospects. One anomaly may be associated with the Cambrian Flathead Quartzite that may contain deposits similar to the Blind River and Rand uranium deposits. Three anomalies may be indicative of sandstone-type deposits in Jurassic rocks, particularly the Morrison Formation, which hosts uranium mineralization elsewhere. One of the latter anomalies is also related to rocksmore » of the Mississippian Madison Group, and this suggests the possible presence of uranium in limestones of the Mission Canyon Formation. There are 45 anomalies related to the Cretaceous rocks. Lignite in the Hell Creek and Judith River formations and Eagle Sandstone may have caused the formation of 22 epigenetic uranium deposits. Many anomalies occur in the Bearpaw Shale and Claggett Formation. However, only five are considered significant of the remainder are expected to be caused by large amounts of radioactive bentonite or bentonitic shale. Two other Cretaceous units that may host sandstone-type deposits are the Colorado Shale and Kootenai Formation that register 16 and two anomalies respectively. Only one anomaly pertains to Tertiary rocks, and it may be indicative of vein-type deposits in the intrusives of the Judith Mountains. These rocks may also act as source rocks for deposits surrounding the Judith Mountains. Eight anomalies related only to Quaternary units may be demonstrative of uranium-rich source rocks that could host uranium mineralization.Several anomalies are located close to oil fields and may have been cause by radium-rich oil-field brines.« less

  3. NURE aerial gamma-ray and magnetic reconnaissance survey of portions of New Mexico, Arizona and Texas. Volume II. New Mexico-Roswell NI 13-8 quadrangle. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The results of a high-sensitivity, aerial gamma-ray spectrometer and magnetometer survey of the Roswell two degree quadrangle, New Mexico are presented. Instrumentation and methods are described in Volume I of this final report. The work was done by Carson Helicopters, Inc., and Carson Helicopters was assisted in the interpretation by International Exploration, Inc. The work was performed for the US Department of Energy - National Uranium Resource Evaluation (NURE) program. Analysis of this radiometric data yielded 238 statistically significant eU anomalies. Of this number, seventy-four were considered to be sufficient strength to warrant further investigation.

  4. Analysis of the Radiometric Response of Orange Tree Crown in Hyperspectral Uav Images

    NASA Astrophysics Data System (ADS)

    Imai, N. N.; Moriya, E. A. S.; Honkavaara, E.; Miyoshi, G. T.; de Moraes, M. V. A.; Tommaselli, A. M. G.; Näsi, R.

    2017-10-01

    High spatial resolution remote sensing images acquired by drones are highly relevant data source in many applications. However, strong variations of radiometric values are difficult to correct in hyperspectral images. Honkavaara et al. (2013) presented a radiometric block adjustment method in which hyperspectral images taken from remotely piloted aerial systems - RPAS were processed both geometrically and radiometrically to produce a georeferenced mosaic in which the standard Reflectance Factor for the nadir is represented. The plants crowns in permanent cultivation show complex variations since the density of shadows and the irradiance of the surface vary due to the geometry of illumination and the geometry of the arrangement of branches and leaves. An evaluation of the radiometric quality of the mosaic of an orange plantation produced using images captured by a hyperspectral imager based on a tunable Fabry-Pérot interferometer and applying the radiometric block adjustment method, was performed. A high-resolution UAV based hyperspectral survey was carried out in an orange-producing farm located in Santa Cruz do Rio Pardo, state of São Paulo, Brazil. A set of 25 narrow spectral bands with 2.5 cm of GSD images were acquired. Trend analysis was applied to the values of a sample of transects extracted from plants appearing in the mosaic. The results of these trend analysis on the pixels distributed along transects on orange tree crown showed the reflectance factor presented a slightly trend, but the coefficients of the polynomials are very small, so the quality of mosaic is good enough for many applications.

  5. Radiometric Normalization of Large Airborne Image Data Sets Acquired by Different Sensor Types

    NASA Astrophysics Data System (ADS)

    Gehrke, S.; Beshah, B. T.

    2016-06-01

    Generating seamless mosaics of aerial images is a particularly challenging task when the mosaic comprises a large number of im-ages, collected over longer periods of time and with different sensors under varying imaging conditions. Such large mosaics typically consist of very heterogeneous image data, both spatially (different terrain types and atmosphere) and temporally (unstable atmo-spheric properties and even changes in land coverage). We present a new radiometric normalization or, respectively, radiometric aerial triangulation approach that takes advantage of our knowledge about each sensor's properties. The current implementation supports medium and large format airborne imaging sensors of the Leica Geosystems family, namely the ADS line-scanner as well as DMC and RCD frame sensors. A hierarchical modelling - with parameters for the overall mosaic, the sensor type, different flight sessions, strips and individual images - allows for adaptation to each sensor's geometric and radiometric properties. Additional parameters at different hierarchy levels can compensate radiome-tric differences of various origins to compensate for shortcomings of the preceding radiometric sensor calibration as well as BRDF and atmospheric corrections. The final, relative normalization is based on radiometric tie points in overlapping images, absolute radiometric control points and image statistics. It is computed in a global least squares adjustment for the entire mosaic by altering each image's histogram using a location-dependent mathematical model. This model involves contrast and brightness corrections at radiometric fix points with bilinear interpolation for corrections in-between. The distribution of the radiometry fixes is adaptive to each image and generally increases with image size, hence enabling optimal local adaptation even for very long image strips as typi-cally captured by a line-scanner sensor. The normalization approach is implemented in HxMap software. It has been

  6. Visual aids for aerial observers on forest insect surveys.

    Treesearch

    A.T. Larsen

    1957-01-01

    Aerial surveys are widely used to detect, appraise, and map damage caused to forest trees by insects. The success of these surveys largely depends upon the ability of observers to distinguish differences in foliage color and tree condition. The observers' ability is influenced by several factors.

  7. Airborne gamma-ray spectrometer and magnetometer survey: Platoro Caldera Detail Survey, Durango quadrangle (Colorado). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-02-01

    Between October 18 and November 7, 1978, a high sensitivity airborne gamma-ray spectrometer and magnetometer survey was conducted over the Durango Detailed Survey Area No. 3, which is centered about 20 miles northeast of Pagosa Springs, Colorado and located within the San Juan Mountains. The study was carried out as part of the Aerial Radiometric and Magnetic Reconnaissance Survey Program, designed to map the regional distribution of the natural radioelements for the principal rock units of the United States in support of the National Uranium Resource Evaluation (NURE) program.

  8. A Methodological Intercomparison of Topographic and Aerial Photographic Habitat Survey Techniques

    NASA Astrophysics Data System (ADS)

    Bangen, S. G.; Wheaton, J. M.; Bouwes, N.

    2011-12-01

    A severe decline in Columbia River salmonid populations and subsequent Federal listing of subpopulations has mandated both the monitoring of populations and evaluation of the status of available habitat. Numerous field and analytical methods exist to assist in the quantification of the abundance and quality of in-stream habitat for salmonids. These methods range from field 'stick and tape' surveys to spatially explicit topographic and aerial photographic surveys from a mix of ground-based and remotely sensed airborne platforms. Although several previous studies have assessed the quality of specific individual survey methods, the intercomparison of competing techniques across a diverse range of habitat conditions (wadeable headwater channels to non-wadeable mainstem channels) has not yet been elucidated. In this study, we seek to enumerate relative quality (i.e. accuracy, precision, extent) of habitat metrics and inventories derived from an array of ground-based and remotely sensed surveys of varying degrees of sophistication, as well as quantify the effort and cost in conducting the surveys. Over the summer of 2010, seven sample reaches of varying habitat complexity were surveyed in the Lemhi River Basin, Idaho, USA. Complete topographic surveys were attempted at each site using rtkGPS, total station, ground-based LiDaR and traditional airborne LiDaR. Separate high spatial resolution aerial imagery surveys were acquired using a tethered blimp, a drone UAV, and a traditional fixed-wing aircraft. Here we also developed a relatively simplistic methodology for deriving bathymetry from aerial imagery that could be readily employed by instream habitat monitoring programs. The quality of bathymetric maps derived from aerial imagery was compared with rtkGPS topographic data. The results are helpful for understanding the strengths and weaknesses of different approaches in specific conditions, and how a hybrid of data acquisition methods can be used to build a more complete

  9. Radiometric surveys in underground environment

    NASA Astrophysics Data System (ADS)

    Bochiolo, Massimo; Chiozzi, Paolo; Verdoya, Massimo; Pasquale, Vincenzo

    2010-05-01

    Due to their ability to travel through the air for several metres, gamma-rays emitted from natural radioactive elements can be successfully used in surveys carried out both with airborne and ground equipments. Besides the concentration of the radio-elements contained in rocks and soils and the intrinsic characteristics of the gamma-ray detector, the detected count rate depends on the solid angle around the spectrometer. On a flat outcrop, ground spectrometry detects the radiation ideally produced by a cylindrical mass of rock of about two metres in diameter and thickness of about half a meter. Under these geometrical conditions, the natural radioactivity can be easily evaluated. With operating conditions different from the standard ones, such as at the edge of an escarpment, the count rate halves because of the missing material, whereas in the vicinity of a rock wall the count rate will increase. In underground environment, the recorded count rate may even double and the in situ assessment of the concentration of radio-elements may be rather difficult, even if the ratios between the different radio-elements may not be affected. We tested the applicability of gamma-ray spectrometry for rapid assessment of the potential hazard levels related to radon and radiation dose rate in underground environment. A mine shaft, located in a zone of uranium enrichment in Liguria (Italy), has been investigated. A preliminary ground radiometric survey was carried out to define the extent of the ore deposit. Then, the radiometric investigation was focussed on the mine shaft. Due to rock mass above the shaft vault, the background gamma radiation can be considered of negligible influence on measurements. In underground surveys, besides deviations from a flat geometry, factors controlling radon exhalation, emanation and stagnation, such as fractures, water leakage and the presence of ventilation, should be carefully examined. We attempted to evaluate these control factors and collected

  10. Unmanned Aerial Survey of Elephants

    PubMed Central

    Vermeulen, Cédric; Lejeune, Philippe; Lisein, Jonathan; Sawadogo, Prosper; Bouché, Philippe

    2013-01-01

    The use of a UAS (Unmanned Aircraft System) was tested to survey large mammals in the Nazinga Game Ranch in the south of Burkina Faso. The Gatewing ×100™ equipped with a Ricoh GR III camera was used to test animal reaction as the UAS passed, and visibility on the images. No reaction was recorded as the UAS passed at a height of 100 m. Observations, made on a set of more than 7000 images, revealed that only elephants (Loxodonta africana) were easily visible while medium and small sized mammals were not. The easy observation of elephants allows experts to enumerate them on images acquired at a height of 100 m. We, therefore, implemented an aerial strip sample count along transects used for the annual wildlife foot count. A total of 34 elephants were recorded on 4 transects, each overflown twice. The elephant density was estimated at 2.47 elephants/km2 with a coefficient of variation (CV%) of 36.10%. The main drawback of our UAS was its low autonomy (45 min). Increased endurance of small UAS is required to replace manned aircraft survey of large areas (about 1000 km of transect per day vs 40 km for our UAS). The monitoring strategy should be adapted according to the sampling plan. Also, the UAS is as expensive as a second-hand light aircraft. However the logistic and flight implementation are easier, the running costs are lower and its use is safer. Technological evolution will make civil UAS more efficient, allowing them to compete with light aircraft for aerial wildlife surveys. PMID:23405088

  11. Polar bear aerial survey in the eastern Chukchi Sea: A pilot study

    USGS Publications Warehouse

    Evans, Thomas J.; Fischbach, Anthony S.; Schliebe, Scott L.; Manly, Bryan; Kalxdorff, Susanne B.; York, Geoff S.

    2003-01-01

    Alaska has two polar bear populations: the Southern Beaufort Sea population, shared with Canada, and the Chukchi/Bering Seas population, shared with Russia. Currently a reliable population estimate for the Chukchi/Bering Seas population does not exist. Land-based aerial and mark-recapture population surveys may not be possible in the Chukchi Sea because variable ice conditions, the limited range of helicopters, extremely large polar bear home ranges, and severe weather conditions may limit access to remote areas. Thus line-transect aerial surveys from icebreakers may be the best available tool to monitor this polar bear stock. In August 2000, a line-transect survey was conducted in the eastern Chukchi Sea and western Beaufort Sea from helicopters based on a U.S. Coast Guard icebreaker under the "Ship of Opportunity" program. The objectives of this pilot study were to estimate polar bear density in the eastern Chukchi and western Beaufort Seas and to assess the logistical feasibility of using ship-based aerial surveys to develop polar bear population estimates. Twenty-nine polar bears in 25 groups were sighted on 94 transects (8257 km). The density of bears was estimated as 1 bear per 147 km² (CV = 38%). Additional aerial surveys in late fall, using dedicated icebreakers, would be required to achieve the number of sightings, survey effort, coverage, and precision needed for more effective monitoring of population trends in the Chukchi Sea.

  12. NURE aerial gamma-ray and magnetic reconnaissance survey of portions of New Mexico, Arizona and Texas. Volume II. Arizona-Holbrook NI 12-5 Quadrangle. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-09-01

    The results of a high-sensitivity, aerial gamma-ray spectrometer and magnetometer survey of the Holbrook two degree quadrangle, Arizona are presented. Instrumentation and methods are described in Volume 1 of this final report. The work was done by Carson Helicopters, Inc., and Carson Helicopters was assisted in the interpretation by International Exploration, Inc. The work was performed for the US Department of Energy - National Uranium Resource Evaluation (NURE) program. Analysis of this radiometric data yielded 260 statistically significant eU anomalies. Of this number, forty-four were considered to be of sufficient strength to warrant further investigation. These preferred anomalies are separatedmore » into groups having some geologic aspect in common.« less

  13. Aerial radiometric and magnetic survey: Lander National Topographic Map, Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    The results of analyses of the airborne gamma radiation and total magnetic field survey flown for the region identified as the Lander National Topographic Map NK12-6 are presented. The airborne data gathered are reduced by ground computer facilities to yield profile plots of the basic uranium, thorium and potassium equivalent gamma radiation intensities, ratios of these intensities, aircraft altitude above the earth's surface, total gamma ray and earth's magnetic field intensity, correlated as a function of geologic units. The distribution of data within each geologic unit, for all surveyed map lines and tie lines, has been calculated and is included.more » Two sets of profiled data for each line are included, with one set displaying the above-cited data. The second set includes only flight line magnetic field, temperature, pressure, altitude data plus magnetic field data as measured at a base station. A general description of the area, including descriptions of the various geologic units and the corresponding airborne data, is included also.« less

  14. SURVEYS OF FALLOUT SHELTER--A COMPARISON BETWEEN AERIAL PHOTOGRAPHIC AND DOCUMENTARY METHODS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinecke, D.C.

    1960-02-01

    In 1959 a large part of Contra Costa County, California, was surveyed for fallout shelter areas. This survey was based on an examination of the tax assessor's records of existing buildings. A portion of this area was also surveyed independently by a method based on aerial photography. A statistical comparison of the results of these two surveys indicates that the aerial photographic method was more efficient than the documentary method in locating potential shelter space in buildings of heavy construction. This result, however, is probably not operationally significant. There is reason to believe that a combination of these two surveymore » methods could be devised which would be operationally preferable to either method. (auth)« less

  15. Six years of aerial and ground monitoring surveys for sudden oak death in California

    Treesearch

    Lisa Bell; Jeff Mai; Zachary Heath; Erik Haunreiter; Lisa M. Fischer

    2008-01-01

    Aerial surveys have been conducted since 2001 to map recent hardwood mortality and consequently target ground visits for detection of Phytophthora ramorum, the pathogen that causes sudden oak death (SOD). Each year the aerial and ground surveys monitored much of California?s forests at risk for SOD resulting in new maps of hardwood mortality,...

  16. An aerial radiological survey of the project Rio Blanco and surrounding area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singman, L.V.

    1994-11-01

    A team from the Remote Sensing Laboratory in Las Vegas, Nevada, conducted an aerial radiation survey of the area surrounding ground zero of Project Rio Blanco in the northwestern section of Colorado in June 1993. The object of the survey was to determine if there were man-made radioisotopes on or near the surface resulting from a nuclear explosion in 1972. No indications of surface contamination were found. A search for the cesium-137 radioisotope was negative. The Minimum Detectable Activity for cesium-137 is presented for several detection probabilities. The natural terrestrial exposure rates in units of Roentgens per hour were mappedmore » and are presented in the form of a contour map over-laid on an aerial photograph. A second team made independent ground-based measurements in four places within the survey area. The average agreement of the ground-based with aerial measurements was six percent.« less

  17. Sources of variation in detection of wading birds from aerial surveys in the Florida Everglades

    USGS Publications Warehouse

    Conroy, M.J.; Peterson, J.T.; Bass, O.L.; Fonnesbeck, C.J.; Howell, J.E.; Moore, C.T.; Runge, J.P.

    2008-01-01

    We conducted dual-observer trials to estimate detection probabilities (probability that a group that is present and available is detected) for fixed-wing aerial surveys of wading birds in the Everglades system, Florida. Detection probability ranged from <0.2 to similar to 0.75 and varied according to species, group size, observer, and the observer's position in the aircraft (front or rear seat). Aerial-survey simulations indicated that incomplete detection can have a substantial effect oil assessment of population trends, particularly river relatively short intervals (<= 3 years) and small annual changes in population size (<= 3%). We conclude that detection bias is an important consideration for interpreting observations from aerial surveys of wading birds, potentially limiting the use of these data for comparative purposes and trend analyses. We recommend that workers conducting aerial surveys for wading birds endeavor to reduce observer and other controllable sources of detection bias and account for uncontrollable sources through incorporation of dual-observer or other calibratior methods as part of survey design (e.g., using double sampling).

  18. Unmanned aerial vehicles (UAVs) for surveying marine fauna: a dugong case study.

    PubMed

    Hodgson, Amanda; Kelly, Natalie; Peel, David

    2013-01-01

    Aerial surveys of marine mammals are routinely conducted to assess and monitor species' habitat use and population status. In Australia, dugongs (Dugong dugon) are regularly surveyed and long-term datasets have formed the basis for defining habitat of high conservation value and risk assessments of human impacts. Unmanned aerial vehicles (UAVs) may facilitate more accurate, human-risk free, and cheaper aerial surveys. We undertook the first Australian UAV survey trial in Shark Bay, western Australia. We conducted seven flights of the ScanEagle UAV, mounted with a digital SLR camera payload. During each flight, ten transects covering a 1.3 km(2) area frequently used by dugongs, were flown at 500, 750 and 1000 ft. Image (photograph) capture was controlled via the Ground Control Station and the capture rate was scheduled to achieve a prescribed 10% overlap between images along transect lines. Images were manually reviewed post hoc for animals and scored according to sun glitter, Beaufort Sea state and turbidity. We captured 6243 images, 627 containing dugongs. We also identified whales, dolphins, turtles and a range of other fauna. Of all possible dugong sightings, 95% (CI = 90%, 98%) were subjectively classed as 'certain' (unmistakably dugongs). Neither our dugong sighting rate, nor our ability to identify dugongs with certainty, were affected by UAV altitude. Turbidity was the only environmental variable significantly affecting the dugong sighting rate. Our results suggest that UAV systems may not be limited by sea state conditions in the same manner as sightings from manned surveys. The overlap between images proved valuable for detecting animals that were masked by sun glitter in the corners of images, and identifying animals initially captured at awkward body angles. This initial trial of a basic camera system has successfully demonstrated that the ScanEagle UAV has great potential as a tool for marine mammal aerial surveys.

  19. Unmanned Aerial Vehicles (UAVs) for Surveying Marine Fauna: A Dugong Case Study

    PubMed Central

    Hodgson, Amanda; Kelly, Natalie; Peel, David

    2013-01-01

    Aerial surveys of marine mammals are routinely conducted to assess and monitor species’ habitat use and population status. In Australia, dugongs (Dugong dugon) are regularly surveyed and long-term datasets have formed the basis for defining habitat of high conservation value and risk assessments of human impacts. Unmanned aerial vehicles (UAVs) may facilitate more accurate, human-risk free, and cheaper aerial surveys. We undertook the first Australian UAV survey trial in Shark Bay, western Australia. We conducted seven flights of the ScanEagle UAV, mounted with a digital SLR camera payload. During each flight, ten transects covering a 1.3 km2 area frequently used by dugongs, were flown at 500, 750 and 1000 ft. Image (photograph) capture was controlled via the Ground Control Station and the capture rate was scheduled to achieve a prescribed 10% overlap between images along transect lines. Images were manually reviewed post hoc for animals and scored according to sun glitter, Beaufort Sea state and turbidity. We captured 6243 images, 627 containing dugongs. We also identified whales, dolphins, turtles and a range of other fauna. Of all possible dugong sightings, 95% (CI = 90%, 98%) were subjectively classed as ‘certain’ (unmistakably dugongs). Neither our dugong sighting rate, nor our ability to identify dugongs with certainty, were affected by UAV altitude. Turbidity was the only environmental variable significantly affecting the dugong sighting rate. Our results suggest that UAV systems may not be limited by sea state conditions in the same manner as sightings from manned surveys. The overlap between images proved valuable for detecting animals that were masked by sun glitter in the corners of images, and identifying animals initially captured at awkward body angles. This initial trial of a basic camera system has successfully demonstrated that the ScanEagle UAV has great potential as a tool for marine mammal aerial surveys. PMID:24223967

  20. 4. July 1971. AERIAL RECONNAISSANCE II, ERIE RAILWAY SURVEY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. July 1971. AERIAL RECONNAISSANCE II, ERIE RAILWAY SURVEY. - Erie Railway, Parallel French Creek Bridges, 100 feet South of Millers Station Road, 0.4 mile Northeast of State Route 408, 0.9 mile East of Cambridge Springs, Cambridge Springs, Crawford County, PA

  1. 2. July 1971. AERIAL RECONNAISSANCE II, ERIE RAILWAY SURVEY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. July 1971. AERIAL RECONNAISSANCE II, ERIE RAILWAY SURVEY. - Erie Railway, Parallel French Creek Bridges, 100 feet South of Millers Station Road, 0.4 mile Northeast of State Route 408, 0.9 mile East of Cambridge Springs, Cambridge Springs, Crawford County, PA

  2. 3. July 1971. AERIAL RECONNAISSANCE II, ERIE RAILWAY SURVEY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. July 1971. AERIAL RECONNAISSANCE II, ERIE RAILWAY SURVEY. - Erie Railway, Parallel French Creek Bridges, 100 feet South of Millers Station Road, 0.4 mile Northeast of State Route 408, 0.9 mile East of Cambridge Springs, Cambridge Springs, Crawford County, PA

  3. 1. July 1971. AERIAL RECONNAISSANCE II, ERIE RAILWAY SURVEY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. July 1971. AERIAL RECONNAISSANCE II, ERIE RAILWAY SURVEY. - Erie Railway, Parallel French Creek Bridges, 100 feet South of Millers Station Road, 0.4 mile Northeast of State Route 408, 0.9 mile East of Cambridge Springs, Cambridge Springs, Crawford County, PA

  4. Aerial radiometric and magnetic survey: Aztec National Topographic Map, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    The results of analyses of the airborne gamma radiation and total magnetic field survey flown for the region identified as the Aztec National Topographic Map NJ13-10 are presented. The airborne data gathered are reduced by ground computer facilities to yield profile plots of the basic uranium, thorium and potassium equivalent gamma radiation intensities, ratios of these intensities, aircraft altitude above the earth's surface, total gamma ray and earth's magnetic field intensity, correlated as a function of geologic units. The distribution of data within each geologic unit, for all surveyed map lines and tie lines, has been calculated and is included.more » Two sets of profiled data for each line are included, with one set displaying the above-cited data. The second set includes only flight line magnetic field, temperature, pressure, altitude data plus magnetic field data as measured at a base station. A general description of the area, including descriptions of the various geologic units and the corresponding airborne data, is included also.« less

  5. Radiometric Block Adjusment and Digital Radiometric Model Generation

    NASA Astrophysics Data System (ADS)

    Pros, A.; Colomina, I.; Navarro, J. A.; Antequera, R.; Andrinal, P.

    2013-05-01

    In this paper we present a radiometric block adjustment method that is related to geometric block adjustment and to the concept of a terrain Digital Radiometric Model (DRM) as a complement to the terrain digital elevation and surface models. A DRM, in our concept, is a function that for each ground point returns a reflectance value and a Bidirectional Reflectance Distribution Function (BRDF). In a similar way to the terrain geometric reconstruction procedure, given an image block of some terrain area, we split the DRM generation in two phases: radiometric block adjustment and DRM generation. In the paper we concentrate on the radiometric block adjustment step, but we also describe a preliminary DRM generator. In the block adjustment step, after a radiometric pre-calibraton step, local atmosphere radiative transfer parameters, and ground reflectances and BRDFs at the radiometric tie points are estimated. This radiometric block adjustment is based on atmospheric radiative transfer (ART) models, pre-selected BRDF models and radiometric ground control points. The proposed concept is implemented and applied in an experimental campaign, and the obtained results are presented. The DRM and orthophoto mosaics are generated showing no radiometric differences at the seam lines.

  6. An aerial radiological survey of the Evans Area, US Army Communications-Electronics Command, Fort Monmouth, New Jersey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurer, R.J.

    1989-12-01

    An aerial radiological survey was conducted over the Evans Area, US Army Communications-Electronics Command, Fort Monmouth, New Jersey, during the period November 14--18, 1988. The purposes of the survey were to document the terrestrial gamma environment of the Evans site and surrounding area and to determine if there had been any radiological impact on the area due to past laboratory operations. The results of the aerial survey are reported as inferred radiation exposure rates at 1 meter above ground level in the form of a contour map. The aerial data were compared to ground-based benchmark'' exposure rate measurements and radionuclidemore » assay of soil samples obtained at sites outside the survey perimeter. Similar ground-based measurements were also made at several locations on the Evans site and at the bank of the Shark River bordering the Evans Area. No evidence for contamination was identified by either radionuclide assay of soil samples or the aerial survey. 6 refs., 5 figs., 2 tabs.« less

  7. Unmanned aerial vehicles for surveying marine fauna: assessing detection probability.

    PubMed

    Hodgson, Amanda; Peel, David; Kelly, Natalie

    2017-06-01

    Aerial surveys are conducted for various fauna to assess abundance, distribution, and habitat use over large spatial scales. They are traditionally conducted using light aircraft with observers recording sightings in real time. Unmanned Aerial Vehicles (UAVs) offer an alternative with many potential advantages, including eliminating human risk. To be effective, this emerging platform needs to provide detection rates of animals comparable to traditional methods. UAVs can also acquire new types of information, and this new data requires a reevaluation of traditional analyses used in aerial surveys; including estimating the probability of detecting animals. We conducted 17 replicate UAV surveys of humpback whales (Megaptera novaeangliae) while simultaneously obtaining a 'census' of the population from land-based observations, to assess UAV detection probability. The ScanEagle UAV, carrying a digital SLR camera, continuously captured images (with 75% overlap) along transects covering the visual range of land-based observers. We also used ScanEagle to conduct focal follows of whale pods (n = 12, mean duration = 40 min), to assess a new method of estimating availability. A comparison of the whale detections from the UAV to the land-based census provided an estimated UAV detection probability of 0.33 (CV = 0.25; incorporating both availability and perception biases), which was not affected by environmental covariates (Beaufort sea state, glare, and cloud cover). According to our focal follows, the mean availability was 0.63 (CV = 0.37), with pods including mother/calf pairs having a higher availability (0.86, CV = 0.20) than those without (0.59, CV = 0.38). The follows also revealed (and provided a potential correction for) a downward bias in group size estimates from the UAV surveys, which resulted from asynchronous diving within whale pods, and a relatively short observation window of 9 s. We have shown that UAVs are an effective alternative to

  8. Summary of 1987 and 1988 manatee aerial surveys at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Provancha, Jane A.; Provancha, Mark J.

    1989-01-01

    Aerial surveys of manatees conducted since 1977 at Kennedy Space Center (KSC) have provided a very useful and cost effective monitoring tool in the assessment of abundance and distribution of manatees in the northern Banana River. Data collected in the mid 1980's as part of the KSC Environmental Monitoring Program indicated that the numbers of manatees utilizing the northern Banana River had increased dramatically from earlier years and that the animals appeared to have changed their distribution patterns within the area as well (Provancha and Provancha 1988). United States Fish and Wildlife Service (USFWS) and Florida Department of Natural Resources (FLDNR) conducted bimonthly aerial surveys in 1986 for the entire Florida east coast. Their data clearly show that the Banana River has the highest concentration of manatees during the non-winter months when compared to all other segments of the east coast surveys (B. Wiegle/FLDNR, unpublished data). They further show that, in spring, an average of 71 percent of the manatees in Brevard county were located in the Banana River. During that period 85 percent of the animals were north of the NASA Causeway (State Road (SR) 402) in the KSC security zone. These data indicate the importance of the KSC waters to the Florida east coast manatee population. We reinitiated KSC surveys in 1987 to document distributions and numbers of manatees during the spring influx. Aerial censuses were continued throughout the year in 1988 and this report provides a summary of our findings for the two years.

  9. Low-altitude aerial color digital photographic survey of the San Andreas Fault

    USGS Publications Warehouse

    Lynch, David K.; Hudnut, Kenneth W.; Dearborn, David S.P.

    2010-01-01

    Ever since 1858, when Gaspard-Félix Tournachon (pen name Félix Nadar) took the first aerial photograph (Professional Aerial Photographers Association 2009), the scientific value and popular appeal of such pictures have been widely recognized. Indeed, Nadar patented the idea of using aerial photographs in mapmaking and surveying. Since then, aerial imagery has flourished, eventually making the leap to space and to wavelengths outside the visible range. Yet until recently, the availability of such surveys has been limited to technical organizations with significant resources. Geolocation required extensive time and equipment, and distribution was costly and slow. While these situations still plague older surveys, modern digital photography and lidar systems acquire well-calibrated and easily shared imagery, although expensive, platform-specific software is sometimes still needed to manage and analyze the data. With current consumer-level electronics (cameras and computers) and broadband internet access, acquisition and distribution of large imaging data sets are now possible for virtually anyone. In this paper we demonstrate a simple, low-cost means of obtaining useful aerial imagery by reporting two new, high-resolution, low-cost, color digital photographic surveys of selected portions of the San Andreas fault in California. All pictures are in standard jpeg format. The first set of imagery covers a 92-km-long section of the fault in Kern and San Luis Obispo counties and includes the entire Carrizo Plain. The second covers the region from Lake of the Woods to Cajon Pass in Kern, Los Angeles, and San Bernardino counties (151 km) and includes Lone Pine Canyon soon after the ground was largely denuded by the Sheep Fire of October 2009. The first survey produced a total of 1,454 oblique digital photographs (4,288 x 2,848 pixels, average 6 Mb each) and the second produced 3,762 nadir images from an elevation of approximately 150 m above ground level (AGL) on the

  10. Unmanned aerial survey of fallen trees in a deciduous broadleaved forest in eastern Japan.

    PubMed

    Inoue, Tomoharu; Nagai, Shin; Yamashita, Satoshi; Fadaei, Hadi; Ishii, Reiichiro; Okabe, Kimiko; Taki, Hisatomo; Honda, Yoshiaki; Kajiwara, Koji; Suzuki, Rikie

    2014-01-01

    Since fallen trees are a key factor in biodiversity and biogeochemical cycling, information about their spatial distribution is of use in determining species distribution and nutrient and carbon cycling in forest ecosystems. Ground-based surveys are both time consuming and labour intensive. Remote-sensing technology can reduce these costs. Here, we used high-spatial-resolution aerial photographs (0.5-1.0 cm per pixel) taken from an unmanned aerial vehicle (UAV) to survey fallen trees in a deciduous broadleaved forest in eastern Japan. In nine sub-plots we found a total of 44 fallen trees by ground survey. From the aerial photographs, we identified 80% to 90% of fallen trees that were >30 cm in diameter or >10 m in length, but missed many that were narrower or shorter. This failure may be due to the similarity of fallen trees to trunks and branches of standing trees or masking by standing trees. Views of the same point from different angles may improve the detection rate because they would provide more opportunity to detect fallen trees hidden by standing trees. Our results suggest that UAV surveys will make it possible to monitor the spatial and temporal variations in forest structure and function at lower cost.

  11. Unmanned Aerial Survey of Fallen Trees in a Deciduous Broadleaved Forest in Eastern Japan

    PubMed Central

    Inoue, Tomoharu; Nagai, Shin; Yamashita, Satoshi; Fadaei, Hadi; Ishii, Reiichiro; Okabe, Kimiko; Taki, Hisatomo; Honda, Yoshiaki; Kajiwara, Koji; Suzuki, Rikie

    2014-01-01

    Since fallen trees are a key factor in biodiversity and biogeochemical cycling, information about their spatial distribution is of use in determining species distribution and nutrient and carbon cycling in forest ecosystems. Ground-based surveys are both time consuming and labour intensive. Remote-sensing technology can reduce these costs. Here, we used high-spatial-resolution aerial photographs (0.5–1.0 cm per pixel) taken from an unmanned aerial vehicle (UAV) to survey fallen trees in a deciduous broadleaved forest in eastern Japan. In nine sub-plots we found a total of 44 fallen trees by ground survey. From the aerial photographs, we identified 80% to 90% of fallen trees that were >30 cm in diameter or >10 m in length, but missed many that were narrower or shorter. This failure may be due to the similarity of fallen trees to trunks and branches of standing trees or masking by standing trees. Views of the same point from different angles may improve the detection rate because they would provide more opportunity to detect fallen trees hidden by standing trees. Our results suggest that UAV surveys will make it possible to monitor the spatial and temporal variations in forest structure and function at lower cost. PMID:25279817

  12. An aerial radiological survey of the Robert Emmett Ginna Nuclear Power Plant and surrounding area, Ontario, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proctor, A.E.

    1997-06-01

    Terrestrial radioactivity surrounding the Robert Emmett Ginna Nuclear Power Plant was measured using aerial radiological surveying techniques. The purpose of this survey was to document exposure rates near the plant and to identify unexpected, man-made radiation sources within the survey area. The surveyed area included land areas within a three-mile radius of the plant site. Data were acquired using an airborne detection system that employed sodium iodide, thallium-activated detectors. Exposure-rate and photopeak counts were computed from these data and plotted on aerial photographs of the survey area. Several ground-based exposure measurements were made for comparison with the aerial survey results.more » Exposure rates in the area surrounding the plant site varied from 6 to 10 microroentgens per hour. Man-made radiation (cobalt-60 within the plant site and cesium-1 37 directly over the reactor) was found at the plant site. In addition, small areas of suspected cesium-137 activity were found within the survey areas. Other than these small sites, the survey area was free of man-made radioac- tivity.« less

  13. Aerial Survey of Ames Research Center - Flight Simulation Complex' Flight simulators create an

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Aerial Survey of Ames Research Center - Flight Simulation Complex' Flight simulators create an authentic aircraft environment by generating the appropriate physical cues that provide the sensations of flight.

  14. Sightability adjustment methods for aerial surveys of wildlife populations

    USGS Publications Warehouse

    Steinhorst, R.K.; Samuel, M.D.

    1989-01-01

    Aerial surveys are routinely conducted to estimate the abundance of wildlife species and the rate of population change. However, sightability of animal groups is acknowledged as a significant source of bias in these estimates. Recent research has focused on the development of sightability models to predict the probability of sighting groups under various conditions. Given such models, we show how sightability can be incorporated into the estimator of population size as a probability of response using standard results from sample surveys. We develop formulas for the cases where the sighting probability must be estimated. An example, using data from a helicopter survey of moose in Alberta (Jacobson, Alberta Oil Sands Research Project Report, 1976), is given to illustrate the technique.

  15. Aerial survey of insect-caused mortality...operation recorder gathers data quickly, cheaply

    Treesearch

    Steven L. Wert; Bruce Roettigering

    1967-01-01

    An Aerial survey using an operation recorder was made over a remote forested area of the Sierra Nevada, in central California. Data on insect-caused mortality were gathered. The survey saved several man-weeks of costly ground work that would have otherwise been required to obtain this information. The technique used proved to be an efficient and inexpensive way of...

  16. Detection probability in aerial surveys of feral horses

    USGS Publications Warehouse

    Ransom, Jason I.

    2011-01-01

    Observation bias pervades data collected during aerial surveys of large animals, and although some sources can be mitigated with informed planning, others must be addressed using valid sampling techniques that carefully model detection probability. Nonetheless, aerial surveys are frequently employed to count large mammals without applying such methods to account for heterogeneity in visibility of animal groups on the landscape. This often leaves managers and interest groups at odds over decisions that are not adequately informed. I analyzed detection of feral horse (Equus caballus) groups by dual independent observers from 24 fixed-wing and 16 helicopter flights using mixed-effect logistic regression models to investigate potential sources of observation bias. I accounted for observer skill, population location, and aircraft type in the model structure and analyzed the effects of group size, sun effect (position related to observer), vegetation type, topography, cloud cover, percent snow cover, and observer fatigue on detection of horse groups. The most important model-averaged effects for both fixed-wing and helicopter surveys included group size (fixed-wing: odds ratio = 0.891, 95% CI = 0.850–0.935; helicopter: odds ratio = 0.640, 95% CI = 0.587–0.698) and sun effect (fixed-wing: odds ratio = 0.632, 95% CI = 0.350–1.141; helicopter: odds ratio = 0.194, 95% CI = 0.080–0.470). Observer fatigue was also an important effect in the best model for helicopter surveys, with detection probability declining after 3 hr of survey time (odds ratio = 0.278, 95% CI = 0.144–0.537). Biases arising from sun effect and observer fatigue can be mitigated by pre-flight survey design. Other sources of bias, such as those arising from group size, topography, and vegetation can only be addressed by employing valid sampling techniques such as double sampling, mark–resight (batch-marked animals), mark–recapture (uniquely marked and

  17. Radiometric Correction of Multitemporal Hyperspectral Uas Image Mosaics of Seedling Stands

    NASA Astrophysics Data System (ADS)

    Markelin, L.; Honkavaara, E.; Näsi, R.; Viljanen, N.; Rosnell, T.; Hakala, T.; Vastaranta, M.; Koivisto, T.; Holopainen, M.

    2017-10-01

    Novel miniaturized multi- and hyperspectral imaging sensors on board of unmanned aerial vehicles have recently shown great potential in various environmental monitoring and measuring tasks such as precision agriculture and forest management. These systems can be used to collect dense 3D point clouds and spectral information over small areas such as single forest stands or sample plots. Accurate radiometric processing and atmospheric correction is required when data sets from different dates and sensors, collected in varying illumination conditions, are combined. Performance of novel radiometric block adjustment method, developed at Finnish Geospatial Research Institute, is evaluated with multitemporal hyperspectral data set of seedling stands collected during spring and summer 2016. Illumination conditions during campaigns varied from bright to overcast. We use two different methods to produce homogenous image mosaics and hyperspectral point clouds: image-wise relative correction and image-wise relative correction with BRDF. Radiometric datasets are converted to reflectance using reference panels and changes in reflectance spectra is analysed. Tested methods improved image mosaic homogeneity by 5 % to 25 %. Results show that the evaluated method can produce consistent reflectance mosaics and reflectance spectra shape between different areas and dates.

  18. UAV using the open-source flight-control-system in the application of aerial survey

    NASA Astrophysics Data System (ADS)

    Huang, Ji-chen; Ru, Chen

    2015-12-01

    The aerial survey as one of the branches of the Space Information Technology system, has an important application in data acquisition of the earth's surface. In recent years, the trend of UVA (unmanned aerial vehicle) to replace traditional survey aircraft has become increasingly obvious with the progress of science and technology. At present, the price of the commercial UAV Flight Control System is higher, limiting the application of UVA. This paper mainly discusses the possibility that the open-source's flight-control-system take the place of the commercial one. Result is that the costs of UVA are reduced, and make the application more widely.

  19. Radiometric calibration updates to the Landsat collection

    USGS Publications Warehouse

    Micijevic, Esad; Haque, Md. Obaidul; Mishra, Nischal

    2016-01-01

    The Landsat Project is planning to implement a new collection management strategy for Landsat products generated at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center. The goal of the initiative is to identify a collection of consistently geolocated and radiometrically calibrated images across the entire Landsat archive that is readily suitable for time-series analyses. In order to perform an accurate land change analysis, the data from all Landsat sensors must be on the same radiometric scale. Landsat 7 Enhanced Thematic Mapper Plus (ETM+) is calibrated to a radiance standard and all previous sensors are cross-calibrated to its radiometric scale. Landsat 8 Operational Land Imager (OLI) is calibrated to both radiance and reflectance standards independently. The Landsat 8 OLI reflectance calibration is considered to be most accurate. To improve radiometric calibration accuracy of historical data, Landsat 1-7 sensors also need to be cross-calibrated to the OLI reflectance scale. Results of that effort, as well as other calibration updates including the absolute and relative radiometric calibration and saturated pixel replacement for Landsat 8 OLI and absolute calibration for Landsat 4 and 5 Thematic Mappers (TM), will be implemented into Landsat products during the archive reprocessing campaign planned within the new collection management strategy. This paper reports on the planned radiometric calibration updates to the solar reflective bands of the new Landsat collection.

  20. Estimation and correction of visibility bias in aerial surveys of wintering ducks

    USGS Publications Warehouse

    Pearse, A.T.; Gerard, P.D.; Dinsmore, S.J.; Kaminski, R.M.; Reinecke, K.J.

    2008-01-01

    Incomplete detection of all individuals leading to negative bias in abundance estimates is a pervasive source of error in aerial surveys of wildlife, and correcting that bias is a critical step in improving surveys. We conducted experiments using duck decoys as surrogates for live ducks to estimate bias associated with surveys of wintering ducks in Mississippi, USA. We found detection of decoy groups was related to wetland cover type (open vs. forested), group size (1?100 decoys), and interaction of these variables. Observers who detected decoy groups reported counts that averaged 78% of the decoys actually present, and this counting bias was not influenced by either covariate cited above. We integrated this sightability model into estimation procedures for our sample surveys with weight adjustments derived from probabilities of group detection (estimated by logistic regression) and count bias. To estimate variances of abundance estimates, we used bootstrap resampling of transects included in aerial surveys and data from the bias-correction experiment. When we implemented bias correction procedures on data from a field survey conducted in January 2004, we found bias-corrected estimates of abundance increased 36?42%, and associated standard errors increased 38?55%, depending on species or group estimated. We deemed our method successful for integrating correction of visibility bias in an existing sample survey design for wintering ducks in Mississippi, and we believe this procedure could be implemented in a variety of sampling problems for other locations and species.

  1. Land Survey from Unmaned Aerial Veichle

    NASA Astrophysics Data System (ADS)

    Peterman, V.; Mesarič, M.

    2012-07-01

    In this paper we present, how we use a quadrocopter unmanned aerial vehicle with a camera attached to it, to do low altitude photogrammetric land survey. We use the quadrocopter to take highly overlapping photos of the area of interest. A "structure from motion" algorithm is implemented to get parameters of camera orientations and to generate a sparse point cloud representation of objects in photos. Than a patch based multi view stereo algorithm is applied to generate a dense point cloud. Ground control points are used to georeference the data. Further processing is applied to generate digital orthophoto maps, digital surface models, digital terrain models and assess volumes of various types of material. Practical examples of land survey from a UAV are presented in the paper. We explain how we used our system to monitor the reconstruction of commercial building, then how our UAV was used to assess the volume of coal supply for Ljubljana heating plant. Further example shows the usefulness of low altitude photogrammetry for documentation of archaeological excavations. In the final example we present how we used our UAV to prepare an underlay map for natural gas pipeline's route planning. In the final analysis we conclude that low altitude photogrammetry can help bridge the gap between laser scanning and classic tachymetric survey, since it offers advantages of both techniques.

  2. Aerial Radiological Survey of Abandoned Uranium Mines (AUM) Map Service, Navajo Nation, 1994-1999, US EPA Region 9

    EPA Pesticide Factsheets

    This map service contains data from aerial radiological surveys of 41 potential uranium mining areas (1,144 square miles) within the Navajo Nation that were conducted during the period from October 1994 through October 1999. The US Environmental Protection Agency (USEPA) Region 9 funded the surveys and the US Department of Energy (USDOE) Remote Sensing Laboratory (RSL) in Las Vegas, Nevada conducted the aerial surveys. The aerial survey data were used to characterize the overall radioactivity and excess Bismuth 214 levels within the surveyed areas.This US EPA Region 9 web service contains the following map layers: Total Terrestrial Gamma Activity Polygons, Total Terrestrial Gamma Activity Contours, Excess Bismuth 214 Contours, Excess Bismuth 214 Polygons, Flight AreasFull FGDC metadata records for each layer can be found by clicking the layer name at the web service endpoint and viewing the layer description.Security Classification: Public. Access Constraints: None. Use Constraints: None. Please check sources, scale, accuracy, currentness and other available information. Please confirm that you are using the most recent copy of both data and metadata. Acknowledgement of the EPA would be appreciated.

  3. Aerial Vehicle Surveys of other Planetary Atmospheres and Surfaces: Imaging, Remote-sensing, and Autonomy Technology Requirements

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Gregory; Ippolito, Corey; Alena, Rick

    2005-01-01

    The objective of this paper is to review the anticipated imaging and remote-sensing technology requirements for aerial vehicle survey missions to other planetary bodies in our Solar system that can support in-atmosphere flight. In the not too distant future such planetary aerial vehicle (a.k.a. aerial explorers) exploration missions will become feasible. Imaging and remote-sensing observations will be a key objective for these missions. Accordingly, it is imperative that optimal solutions in terms of imaging acquisition and real-time autonomous analysis of image data sets be developed for such vehicles.

  4. Aerial Magnetic, Electromagnetic, and Gamma-ray Survey, Berrien County, Michigan

    USGS Publications Warehouse

    Duval, Joseph S.; Pierce, Herbert A.; Daniels, David L.; Mars, John L.; Webring, Michael W.; Hildenbrand, Thomas G.

    2002-01-01

    This publication includes maps, grids, and flightline databases of a detailed aerial survey and maps and grids of satellite data in Berrien County, Michigan. The purpose of the survey was to map aquifers in glacial terrains. This was accomplished by using a DIGHEMVRES mufti-coil, mufti-frequency electromagnetic system supplemented by a high sensitivity cesium magnetometer and 256-channel spectrometer. The information from these sensors was processed to produce maps, which display the conductive, magnetic and radioactive properties of the survey area. A GPS electronic navigation system ensured accurate positioning of the geophysical data. This report also includes data from the advanced spaceborne thermal emission and reflection (ASTER) radiometer. ASTER measures thermal emission and reflection data for 14 bands of the spectrum.

  5. Texture analysis of radiometric signatures of new sea ice forming in Arctic leads

    NASA Technical Reports Server (NTRS)

    Eppler, Duane T.; Farmer, L. Dennis

    1991-01-01

    Analysis of 33.6-GHz, high-resolution, passive microwave images suggests that new sea ice accumulating in open leads is characterized by a unique textural signature which can be used to discriminate new ice forming in this environment from adjacent surfaces of similar radiometric temperature. Ten training areas were selected from the data set, three of which consisted entirely of first-year ice, four entirely of multilayer ice, and three of new ice in open leads in the process of freezing. A simple gradient operator was used to characterize the radiometric texture in each training region in terms of the degree to which radiometric gradients are oriented. New ice in leads has a sufficiently high proportion of well-oriented features to distinguish it uniquely from first-year ice and multiyear ice. The predominance of well-oriented features probably reflects physical processes by which new ice accumulates in open leads. Banded structures, which are evident in aerial photographs of new ice, apparently give rise to the radiometric signature observed, in which the trend of brightness temperature gradients is aligned parallel to lead trends. First-year ice and multiyear ice, which have been subjected to a more random growth and process history, lack this banded structure and therefore are characterized by signatures in which well-aligned elements are less dominant.

  6. Aerial thermography for energy efficiency of buildings: the ChoT project

    NASA Astrophysics Data System (ADS)

    Mandanici, Emanuele; Conte, Paolo

    2016-10-01

    The ChoT project aims at analysing the potential of aerial thermal imagery to produce large scale datasets for energetic efficiency analyses and policies in urban environments. It is funded by the Italian Ministry of Education, University and Research (MIUR) in the framework of the SIR 2014 (Scientific Independence of young Researchers) programme. The city of Bologna (Italy) was chosen as the case study. The acquisition of thermal infrared images at different times by multiple aerial flights is one of the main tasks of the project. The present paper provides an overview of the ChoT project, but it delves into some specific aspects of the data processing chain: the computing of the radiometric quantities of the atmosphere, the estimation of surface emissivity (through an object-oriented classification applied on a very high resolution multispectral image, to distinguish among the major roofing materials) and sky-view factor (by means of a digital surface model). To collect ground truth data, the surface temperature of roofs and road pavings was measured at several locations at the same time as the aircraft acquired the thermal images. Furthermore, the emissivity of some roofing materials was estimated by means of a thermal camera and a contact probe. All the surveys were georeferenced by GPS. The results of the first surveying campaign demonstrate the high sensitivity of the model to the variability of the surface emissivity and the atmospheric parameters.

  7. Aerial radiological survey of the Salem Nuclear Generating Station and surrounding area, Salem, New Jersey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feimster, E.L.

    An aerial radiological survey was performed from 24 July through 1 August 1980 over a 244-square-kilometer (95-square-mile) area centered on the Salem Nuclear Generating Station near Salem, New Jersey. All gamma ray data were collected by flying lines oriented north-south and spaced 152 meters (500 feet) apart, at an altitude of 91 meters (300 feet) above the ground. Processed data showed that all gamma rays detected within the survey area were those expected from naturally occurring terrestrial background emitters except directly over the site, where spectral analysis revealed the presence of /sup 60/Co. Count rates obtained from the aerial platformmore » were converted to exposure rates at 1 meter above the ground and are presented in the form of an exposure rate contour map. The resulting exposure rates varied between 5 and 55 microroentgens per hour (..mu..R/h). The river-shore areas ranged from 5 to 7 ..mu..R/h, inland areas showed 7 to 12 ..mu..R/h, and the site had a maximum exposure rate of 55 ..mu..R/h. These values include an estimated cosmic ray contribution of 4 ..mu..R/h. The exposure rates obtained from soil samples taken within the survey area displayed good agreement with the aerial data.« less

  8. An aerial survey method to estimate sea otter abundance

    USGS Publications Warehouse

    Bodkin, James L.; Udevitz, Mark S.; Garner, Gerald W.; Amstrup, Steven C.; Laake, Jeffrey L.; Manly, Bryan F.J.; McDonald, Lyman L.; Robertson, Donna G.

    1999-01-01

    Sea otters (Enhydra lutris) occur in shallow coastal habitats and can be highly visible on the sea surface. They generally rest in groups and their detection depends on factors that include sea conditions, viewing platform, observer technique and skill, distance, habitat and group size. While visible on the surface, they are difficult to see while diving and may dive in response to an approaching survey platform. We developed and tested an aerial survey method that uses intensive searches within portions of strip transects to adjust for availability and sightability biases. Correction factors are estimated independently for each survey and observer. In tests of our method using shore-based observers, we estimated detection probabilities of 0.52-0.72 in standard strip-transects and 0.96 in intensive searches. We used the survey method in Prince William Sound, Alaska to estimate a sea otter population size of 9,092 (SE = 1422). The new method represents an improvement over various aspects of previous methods, but additional development and testing will be required prior to its broad application.

  9. Mapping of Rill Erosion of Arable Soils Based on Unmanned Aerial Vehicles Survey

    NASA Astrophysics Data System (ADS)

    Kashtanov, A. N.; Vernyuk, Yu. I.; Savin, I. Yu.; Shchepot'ev, V. V.; Dokukin, P. A.; Sharychev, D. V.; Li, K. A.

    2018-04-01

    Possibilities of using data obtained from unmanned aerial vehicles for detection and mapping of rill erosion on arable lands are analyzed. Identification and mapping of rill erosion was performed on a key plot with a predominance of arable gray forest soils (Greyzemic Phaeozems) under winter wheat in Tula oblast. This plot was surveyed from different heights and in different periods to determine the reliability of identification of rill erosion on the basis of automated procedures in a GIS. It was found that, despite changes in the pattern of rills during the warm season, only one survey during this season is sufficient for adequate assessment of the area of eroded soils. According to our data, the most reliable identification of rill erosion is based on the aerial survey from the height of 50 m above the soil surface. When the height of the flight is more than 200 m, erosional rills virtually escape identification. The efficiency of identification depends on the type of crops, their status, and time of the survey. The surveys of bare soil surface in periods with maximum possible interval from the previous rain or snowmelt season are most efficient. The results of our study can be used in the systems of remote sensing monitoring of erosional processes on arable fields. Application of multiand hyperspectral cameras can improve the efficiency of monitoring.

  10. NURE aerial gamma-ray and magnetic-reconnaissance survey portions of New Mexico, Arizona, and Texas. Volume I. Instrumentation and data reduction. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    As part of the Department of Energy (DOE) National Uranium Resource Evaluation Program, a rotary-wing high sensitivity radiometric and magnetic survey was flown covering portions of the State of New Mexico, Arizona and Texas. The survey encompassed six 1:250,000 scale quadrangles, Holbrook, El Paso, Las Cruces, Carlsbad, Fort Sumner and Roswell. The survey was flown with a Sikorsky S58T helicopter equipped with a high sensitivity gamma ray spectrometer which was calibrated at the DOE calibration facilities at Walker Field in Grand Junction, Colorado, and the Dynamic Test Range at Lake Mead, Arizona. The radiometric data were processed to compensate formore » Compton scattering effects and altitude variations. The data were normalized to 400 feet terrain clearance. The reduced data is presented in the form of stacked profiles, standard deviation anomaly plots, histogram plots and microfiche listings. The results of the geologic interpretation of the radiometric data together with the profiles, anomaly maps and histograms are presented in the individual quadrangle reports. The survey was awarded to LKB Resources, Inc. which completed the data acquisition. In April, 1980 Carson Helicopters, Inc. and Carson Geoscience Company agreed to manage the project and complete delivery of this final report.« less

  11. Small unmanned aerial vehicles for aeromagnetic surveys and their flights in the South Shetland Islands, Antarctica

    NASA Astrophysics Data System (ADS)

    Funaki, Minoru; Higashino, Shin-Ichiro; Sakanaka, Shinya; Iwata, Naoyoshi; Nakamura, Norihiro; Hirasawa, Naohiko; Obara, Noriaki; Kuwabara, Mikio

    2014-12-01

    We developed small computer-controlled unmanned aerial vehicles (UAVs, Ant-Plane) using parts and technology designed for model airplanes. These UAVs have a maximum flight range of 300-500 km. We planned aeromagnetic and aerial photographic surveys using the UAVs around Bransfield Basin, Antarctica, beginning from King George Island. However, we were unable to complete these flights due to unsuitable weather conditions and flight restrictions. Successful flights were subsequently conducted from Livingston Island to Deception Island in December 2011. This flight covered 302.4 km in 3:07:08, providing aeromagnetic and aerial photographic data from an altitude of 780 m over an area of 9 × 18 km around the northern region of Deception Island. The resulting magnetic anomaly map of Deception Island displayed higher resolution than the marine anomaly maps published already. The flight to South Bay in Livingston Island successfully captured aerial photographs that could be used for assessment of glacial and sea-ice conditions. It is unclear whether the cost-effectiveness of the airborne survey by UAV is superior to that of manned flight. Nonetheless, Ant-Plane 6-3 proved to be highly cost-effective for the Deception Island flight, considering the long downtime of the airplane in the Antarctic storm zone.

  12. Aerial survey methodology for bison population estimation in Yellowstone National Park

    USGS Publications Warehouse

    Hess, Steven C.

    2002-01-01

    I developed aerial survey methods for statistically rigorous bison population estimation in Yellowstone National Park to support sound resource management decisions and to understand bison ecology. Survey protocols, data recording procedures, a geographic framework, and seasonal stratifications were based on field observations from February 1998-September 2000. The reliability of this framework and strata were tested with long-term data from 1970-1997. I simulated different sample survey designs and compared them to high-effort censuses of well-defined large areas to evaluate effort, precision, and bias. Sample survey designs require much effort and extensive information on the current spatial distribution of bison and therefore do not offer any substantial reduction in time and effort over censuses. I conducted concurrent ground surveys, or 'double sampling' to estimate detection probability during aerial surveys. Group size distribution and habitat strongly affected detection probability. In winter, 75% of the groups and 92% of individual bison were detected on average from aircraft, while in summer, 79% of groups and 97% of individual bison were detected. I also used photography to quantify the bias due to counting large groups of bison accurately and found that undercounting increased with group size and could reach 15%. I compared survey conditions between seasons and identified optimal time windows for conducting surveys in both winter and summer. These windows account for the habitats and total area bison occupy, and group size distribution. Bison became increasingly scattered over the Yellowstone region in smaller groups and more occupied unfavorable habitats as winter progressed. Therefore, the best conditions for winter surveys occur early in the season (Dec-Jan). In summer, bison were most spatially aggregated and occurred in the largest groups by early August. Low variability between surveys and high detection probability provide population estimates

  13. An Aerial Radiological Survey of the Las Vegas Strip and Adjacent Areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasiolek, Piotr

    2009-02-01

    As proficiency training for the Radiological Mapping mission of the Aerial Measuring System (AMS), a survey team from the Remote Sensing Laboratory–Nellis (RSL-Nellis) conducted an aerial radiological survey of the Las Vegas Strip and adjacent areas on December 29, 2008. This survey was one of the bi-annual surveys carried in support of the city of Las Vegas Police Department (LVPD) before significant events on the Las Vegas Strip: e.g., the annual New Year’s Eve and July Fourth celebrations. The AMS operation and appropriate law enforcement agencies selected this area as an appropriate urban location to exercise AMS capability for mappingmore » environmental radiation and searching for man-made radioactive sources. The surveys covered approximately 11 square miles. Each survey required a 2.5-hour-long flight, performed at an altitude of 300 ft above ground level (AGL) at a line spacing of 600 ft. Water line and test line flights are conducted over the Lake Mead and Government Wash areas to determine the non-terrestrial background contributed by aircraft, radon, and cosmic activity, and to determine the altitude-dependent air mass correction. The data were collected by the AMS data acquisition system (REDAR V) using an array of twelve 2" x 4" x 16" sodium iodide (NaI) detectors flown on-board a twin-engine Bell 412 helicopter. Gamma energy spectral data were collected second-by-second over the survey area. This spectral data allows the system to distinguish between natural terrestrial background contributions and man-made radioisotope contributions. Spectral data can also be used to identify specific man-made radioactive isotopes. Data geo-locations were determined with a Real-Time Differential Global Positioning System (RDGPS).« less

  14. Radiometric surveying for the assessment of radiation dose and radon specific exhalation in underground environment

    NASA Astrophysics Data System (ADS)

    Bochiolo, M.; Verdoya, M.; Chiozzi, P.; Pasquale, V.

    2012-08-01

    We performed a radiometric survey for evaluating the natural radioactivity and the related potential hazard level both outdoor and indoor a mine tunnel. The mine is located in a zone of uranium enrichment in the Western Alps (Italy). At first, a γ-ray spectrometry survey of the area surrounding the mine was carried out to define the extent of the ore deposit. Then, spectrometric measurements were performed in the tunnel and rock samples were collected for laboratory analyses. The results point to significant heterogeneity in uranium concentration and consequently in the absorbed dose rate spatial distribution. Spectrometric results in situ and in the laboratory, together with radon air concentration measurements, were used to infer the radon specific exhalation and flow from the mine rocks. The specific exhalation is positively related to the activity concentration of uranium.

  15. Aerial Photography Summary Record System

    USGS Publications Warehouse

    ,

    1998-01-01

    The Aerial Photography Summary Record System (APSRS) describes aerial photography projects that meet specified criteria over a given geographic area of the United States and its territories. Aerial photographs are an important tool in cartography and a number of other professions. Land use planners, real estate developers, lawyers, environmental specialists, and many other professionals rely on detailed and timely aerial photographs. Until 1975, there was no systematic approach to locate an aerial photograph, or series of photographs, quickly and easily. In that year, the U.S. Geological Survey (USGS) inaugurated the APSRS, which has become a standard reference for users of aerial photographs.

  16. Chapter 31: Abundance and Distribution of Marbled Murrelets in Oregon and Washington Based on Aerial Surveys

    Treesearch

    Daniel H. Varoujean II; Wendy A. Williams

    1995-01-01

    To determine the abundance and distribution of Marbled Murrelets, aerial surveys of the Oregon coast, Washington outer coast, and shores of the western Strait of Juan de Fuca were conducted in August/September 1993. Based on these marine surveys, abundance estimates are established for Oregon (6,400-6,800 birds) and the waters surveyed in Washington (3,400-3,600 birds...

  17. Aerial and ground surveys for mapping the distribution of Phytophthora ramorum in California

    Treesearch

    Jeffrey A. Mai; Walter Mark; Lisa Fischer; Amy Jirka

    2006-01-01

    Since 2001, the USDA Forest Service and California Polytechnic State University, San Luis Obispo have been collaborating for early detection and monitoring of the occurrence of Phytophthora ramorum, the pathogen known to cause sudden oak death (SOD). The effort consists of annual aerial surveys to map hardwood mortality in overstory tree species...

  18. Mapping snow depth in complex alpine terrain with close range aerial imagery - estimating the spatial uncertainties of repeat autonomous aerial surveys over an active rock glacier

    NASA Astrophysics Data System (ADS)

    Goetz, Jason; Marcer, Marco; Bodin, Xavier; Brenning, Alexander

    2017-04-01

    Snow depth mapping in open areas using close range aerial imagery is just one of the many cases where developments in structure-from-motion and multi-view-stereo (SfM-MVS) 3D reconstruction techniques have been applied for geosciences - and with good reason. Our ability to increase the spatial resolution and frequency of observations may allow us to improve our understanding of how snow depth distribution varies through space and time. However, to ensure accurate snow depth observations from close range sensing we must adequately characterize the uncertainty related to our measurement techniques. In this study, we explore the spatial uncertainties of snow elevation models for estimation of snow depth in a complex alpine terrain from close range aerial imagery. We accomplish this by conducting repeat autonomous aerial surveys over a snow-covered active-rock glacier located in the French Alps. The imagery obtained from each flight of an unmanned aerial vehicle (UAV) is used to create an individual digital elevation model (DEM) of the snow surface. As result, we obtain multiple DEMs of the snow surface for the same site. These DEMs are obtained from processing the imagery with the photogrammetry software Agisoft Photoscan. The elevation models are also georeferenced within Photoscan using the geotagged imagery from an onboard GNSS in combination with ground targets placed around the rock glacier, which have been surveyed with highly accurate RTK-GNSS equipment. The random error associated with multi-temporal DEMs of the snow surface is estimated from the repeat aerial survey data. The multiple flights are designed to follow the same flight path and altitude above the ground to simulate the optimal conditions of repeat survey of the site, and thus try to estimate the maximum precision associated with our snow-elevation measurement technique. The bias of the DEMs is assessed with RTK-GNSS survey observations of the snow surface elevation of the area on and surrounding

  19. A survey of hybrid Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Saeed, Adnan S.; Younes, Ahmad Bani; Cai, Chenxiao; Cai, Guowei

    2018-04-01

    This article presents a comprehensive overview on the recent advances of miniature hybrid Unmanned Aerial Vehicles (UAVs). For now, two conventional types, i.e., fixed-wing UAV and Vertical Takeoff and Landing (VTOL) UAV, dominate the miniature UAVs. Each type has its own inherent limitations on flexibility, payload, flight range, cruising speed, takeoff and landing requirements and endurance. Enhanced popularity and interest are recently gained by the newer type, named hybrid UAV, that integrates the beneficial features of both conventional ones. In this survey paper, a systematic categorization method for the hybrid UAV's platform designs is introduced, first presenting the technical features and representative examples. Next, the hybrid UAV's flight dynamics model and flight control strategies are explained addressing several representative modeling and control work. In addition, key observations, existing challenges and conclusive remarks based on the conducted review are discussed accordingly.

  20. TES radiometric assessment

    NASA Technical Reports Server (NTRS)

    Worden, H.; Sarkissian, E.; Bowman, K.; Fisher, B.; Rider, D.; Aumann, H. H.; Apolinski, M.; Debaca, R. C.; Gluck, S.; Madatyan, M.; hide

    2005-01-01

    TES is an infrared Fourier transform spectrometer on board the EOS-Aura spacecraft launched July 15, 2004. Improvements to the radiometric calibration and consequent assessment of radiometric accuracy have been on-going since launch.

  1. AERIAL MEASURING SYSTEM IN JAPAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, Craig; Colton, David

    2012-01-01

    The U.S. Department of Energy National Nuclear Security Agency’s Aerial Measuring System deployed personnel and equipment to partner with the U.S. Air Force in Japan to conduct multiple aerial radiological surveys. These were the first and most comprehensive sources of actionable information for U.S. interests in Japan and provided early confirmation to the government of Japan as to the extent of the release from the Fukushima Daiichi Nuclear Power Generation Station. Many challenges were overcome quickly during the first 48 hours; including installation and operation of Aerial Measuring System equipment on multiple U.S. Air Force Japan aircraft, flying over difficultmore » terrain, and flying with talented pilots who were unfamiliar with the Aerial Measuring System flight patterns. These all combined to make for a dynamic and non-textbook situation. In addition, the data challenges of the multiple and on-going releases, and integration with the Japanese government to provide valid aerial radiological survey products that both military and civilian customers could use to make informed decisions, was extremely complicated. The Aerial Measuring System Fukushima response provided insight in addressing these challenges and gave way to an opportunity for the expansion of the Aerial Measuring System’s mission beyond the borders of the US.« less

  2. Radiometric and Geometric Accuracy Analysis of Rasat Pan Imagery

    NASA Astrophysics Data System (ADS)

    Kocaman, S.; Yalcin, I.; Guler, M.

    2016-06-01

    RASAT is the second Turkish Earth Observation satellite which was launched in 2011. It operates with pushbroom principle and acquires panchromatic and MS images with 7.5 m and 15 m resolutions, respectively. The swath width of the sensor is 30 km. The main aim of this study is to analyse the radiometric and geometric quality of RASAT images. A systematic validation approach for the RASAT imagery and its products is being applied. RASAT image pair acquired over Kesan city in Edirne province of Turkey are used for the investigations. The raw RASAT data (L0) are processed by Turkish Space Agency (TUBITAK-UZAY) to produce higher level image products. The image products include radiometrically processed (L1), georeferenced (L2) and orthorectified (L3) data, as well as pansharpened images. The image quality assessments include visual inspections, noise, MTF and histogram analyses. The geometric accuracy assessment results are only preliminary and the assessment is performed using the raw images. The geometric accuracy potential is investigated using 3D ground control points extracted from road intersections, which were measured manually in stereo from aerial images with 20 cm resolution and accuracy. The initial results of the study, which were performed using one RASAT panchromatic image pair, are presented in this paper.

  3. Testing the Accuracy of Aerial Surveys for Large Mammals: An Experiment with African Savanna Elephants (Loxodonta africana).

    PubMed

    Schlossberg, Scott; Chase, Michael J; Griffin, Curtice R

    2016-01-01

    Accurate counts of animals are critical for prioritizing conservation efforts. Past research, however, suggests that observers on aerial surveys may fail to detect all individuals of the target species present in the survey area. Such errors could bias population estimates low and confound trend estimation. We used two approaches to assess the accuracy of aerial surveys for African savanna elephants (Loxodonta africana) in northern Botswana. First, we used double-observer sampling, in which two observers make observations on the same herds, to estimate detectability of elephants and determine what variables affect it. Second, we compared total counts, a complete survey of the entire study area, against sample counts, in which only a portion of the study area is sampled. Total counts are often considered a complete census, so comparing total counts against sample counts can help to determine if sample counts are underestimating elephant numbers. We estimated that observers detected only 76% ± SE of 2% of elephant herds and 87 ± 1% of individual elephants present in survey strips. Detectability increased strongly with elephant herd size. Out of the four observers used in total, one observer had a lower detection probability than the other three, and detectability was higher in the rear row of seats than the front. The habitat immediately adjacent to animals also affected detectability, with detection more likely in more open habitats. Total counts were not statistically distinguishable from sample counts. Because, however, the double-observer samples revealed that observers missed 13% of elephants, we conclude that total counts may be undercounting elephants as well. These results suggest that elephant population estimates from both sample and total counts are biased low. Because factors such as observer and habitat affected detectability of elephants, comparisons of elephant populations across time or space may be confounded. We encourage survey teams to

  4. Aerial remote sensing survey of Fusarium wilt of cotton in New Mexico and Texas

    USDA-ARS?s Scientific Manuscript database

    Fusarium wilt of cotton, caused by the fungus Fusarium oxysporum f. sp. vasinfectum (FOV), is a widespread cotton disease, but the more virulent FOV race 4 (FOV4) has recently been identified in the New Mexico-Texas border area near El Paso, Texas. A preliminary aerial remote sensing survey was cond...

  5. Detecting blind building façades from highly overlapping wide angle aerial imagery

    NASA Astrophysics Data System (ADS)

    Burochin, Jean-Pascal; Vallet, Bruno; Brédif, Mathieu; Mallet, Clément; Brosset, Thomas; Paparoditis, Nicolas

    2014-10-01

    This paper deals with the identification of blind building façades, i.e. façades which have no openings, in wide angle aerial images with a decimeter pixel size, acquired by nadir looking cameras. This blindness characterization is in general crucial for real estate estimation and has, at least in France, a particular importance on the evaluation of legal permission of constructing on a parcel due to local urban planning schemes. We assume that we have at our disposal an aerial survey with a relatively high stereo overlap along-track and across-track and a 3D city model of LoD 1, that can have been generated with the input images. The 3D model is textured with the aerial imagery by taking into account the 3D occlusions and by selecting for each façade the best available resolution texture seeing the whole façade. We then parse all 3D façades textures by looking for evidence of openings (windows or doors). This evidence is characterized by a comprehensive set of basic radiometric and geometrical features. The blindness prognostic is then elaborated through an (SVM) supervised classification. Despite the relatively low resolution of the images, we reach a classification accuracy of around 85% on decimeter resolution imagery with 60 × 40 % stereo overlap. On the one hand, we show that the results are very sensitive to the texturing resampling process and to vegetation presence on façade textures. On the other hand, the most relevant features for our classification framework are related to texture uniformity and horizontal aspect and to the maximal contrast of the opening detections. We conclude that standard aerial imagery used to build 3D city models can also be exploited to some extent and at no additional cost for facade blindness characterisation.

  6. Revised landsat-5 thematic mapper radiometric calibration

    USGS Publications Warehouse

    Chander, G.; Markham, B.L.; Barsi, J.A.

    2007-01-01

    Effective April 2, 2007, the radiometric calibration of Landsat-5 (L5) Thematic Mapper (TM) data that are processed and distributed by the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) will be updated. The lifetime gain model that was implemented on May 5, 2003, for the reflective bands (1-5, 7) will be replaced by a new lifetime radiometric-calibration curve that is derived from the instrument's response to pseudoinvariant desert sites and from cross calibration with the Landsat-7 (L7) Enhanced TM Plus (ETM+). Although this calibration update applies to all archived and future L5 TM data, the principal improvements in the calibration are for the data acquired during the first eight years of the mission (1984-1991), where the changes in the instrument-gain values are as much as 15%. The radiometric scaling coefficients for bands 1 and 2 for approximately the first eight years of the mission have also been changed. Users will need to apply these new coefficients to convert the calibrated data product digital numbers to radiance. The scaling coefficients for the other bands have not changed.

  7. Complex Building Detection Through Integrating LIDAR and Aerial Photos

    NASA Astrophysics Data System (ADS)

    Zhai, R.

    2015-02-01

    This paper proposes a new approach on digital building detection through the integration of LiDAR data and aerial imagery. It is known that most building rooftops are represented by different regions from different seed pixels. Considering the principals of image segmentation, this paper employs a new region based technique to segment images, combining both the advantages of LiDAR and aerial images together. First, multiple seed points are selected by taking several constraints into consideration in an automated way. Then, the region growing procedures proceed by combining the elevation attribute from LiDAR data, visibility attribute from DEM (Digital Elevation Model), and radiometric attribute from warped images in the segmentation. Through this combination, the pixels with similar height, visibility, and spectral attributes are merged into one region, which are believed to represent the whole building area. The proposed methodology was implemented on real data and competitive results were achieved.

  8. Off-the-Wall Project Brings Aerial Mapping down to Earth

    ERIC Educational Resources Information Center

    Davidhazy, Andrew

    2008-01-01

    The technology of aerial photography, photogrametry, has widespread applications in mapping and aerial surveying. A multi-billion-dollar industry, aerial surveying and mapping is "big business" in both civilian and military sectors. While the industry has grown increasingly automated, employment opportunities still exist for people with a basic…

  9. Estimating occupancy and abundance using aerial images with imperfect detection

    USGS Publications Warehouse

    Williams, Perry J.; Hooten, Mevin B.; Womble, Jamie N.; Bower, Michael R.

    2017-01-01

    Species distribution and abundance are critical population characteristics for efficient management, conservation, and ecological insight. Point process models are a powerful tool for modelling distribution and abundance, and can incorporate many data types, including count data, presence-absence data, and presence-only data. Aerial photographic images are a natural tool for collecting data to fit point process models, but aerial images do not always capture all animals that are present at a site. Methods for estimating detection probability for aerial surveys usually include collecting auxiliary data to estimate the proportion of time animals are available to be detected.We developed an approach for fitting point process models using an N-mixture model framework to estimate detection probability for aerial occupancy and abundance surveys. Our method uses multiple aerial images taken of animals at the same spatial location to provide temporal replication of sample sites. The intersection of the images provide multiple counts of individuals at different times. We examined this approach using both simulated and real data of sea otters (Enhydra lutris kenyoni) in Glacier Bay National Park, southeastern Alaska.Using our proposed methods, we estimated detection probability of sea otters to be 0.76, the same as visual aerial surveys that have been used in the past. Further, simulations demonstrated that our approach is a promising tool for estimating occupancy, abundance, and detection probability from aerial photographic surveys.Our methods can be readily extended to data collected using unmanned aerial vehicles, as technology and regulations permit. The generality of our methods for other aerial surveys depends on how well surveys can be designed to meet the assumptions of N-mixture models.

  10. Photovoltaics radiometric issues and needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, D.R.

    1995-11-01

    This paper presents a summary of issues discussed at the photovoltaic radiometric measurements workshop. Topics included radiometric measurements guides, the need for well-defined goals, documentation, calibration checks, accreditation of testing laboratories and methods, the need for less expensive radiometric instrumentation, data correlations, and quality assurance.

  11. Conducting a Southern Pine Beetle Survey Using Digital Aerial Sketchmapping (DASM) - An Overview

    Treesearch

    Chris A. Steiner

    2011-01-01

    This is an overview on conducting a southern pine beetle (SPB) survey using Digital Aerial Sketchmapping (DASM); for a detailed treatment of DASM visit the following Web site: http://www.fs.fed.us/foresthealth/ technology/dasm.shtml. Sketchmapping – “A remote sensing technique of observing forest change events from an aircraft and documenting them manually on a map” (...

  12. Resource understanding: a challenge to aerial methods

    USGS Publications Warehouse

    Udall, Stewart L.

    1965-01-01

    Aerial survey methods are speeding acquisition of survey data needed to provide and manage the nation's resources. These methods have been applied to topographic mapping for a number of years and the record clearly shows their advantages in terms of cost and speed in contrast to the ground methods that have been historically employed. Limited use is now being made of aerial methods to assist cadastral surveys, in location, acquisition and development of National Parks, in mapping the geology of the nation, in locating and developing water resources, and in surveys of the oceans. It is the purpose of this paper to call attention to these uses and to encourage the scientific community to further refine aerial methods so that their use may be increased and the veracity of data improved.

  13. Surveying a Landslide in a Road Embankment Using Unmanned Aerial Vehicle Photogrammetry

    NASA Astrophysics Data System (ADS)

    Carvajal, F.; Agüera, F.; Pérez, M.

    2011-09-01

    Most of the works of civil engineering, and some others applications, need to be designed using a basic cartography with a suitable scale to the accuracy and extension of the plot.The Unmanned Aerial Vehicle (UAV) Photogrammetry covers the gap between classical manned aerial photogrammetry and hand- made surveying techniques because it works in the close-range domain, combining aerial and terrestrial photogrammetry, but also introduces low-cost alternatives. The aim of this work is developing of an accurate and low-cost method to characterize landslides located on the size of a road. It was applied at the kilometric point 339 belonging to the A92 dual carriageway, in the Abla municipal term, province of Almeria, Spain. A photogrammetric project was carried out from a set of images taken from an md4-200 Microdrones with an on-board calibrated camera 12 Megapixels Pentax Optio A40. The flight was previously planned to cover the whole extension of the embankment with three passes composed of 18 photos each one. All the images were taken with the vertical axe and it was registered 85% and 60% longitudinal and transversal overlaps respectively. The accuracy of the products, with planimetric and altimetric errors of 0.049 and 0.108m repectively, lets to take measurements of the landslide and projecting preventive and palliative actuations.

  14. Radiometric characterization of Landsat Collection 1 products

    USGS Publications Warehouse

    Micijevic, Esad; Haque, Md. Obaidul; Mishra, Nischal

    2017-01-01

    Landsat data in the U.S. Geological Survey (USGS) archive are being reprocessed to generate a tiered collection of consistently geolocated and radiometrically calibrated products that are suitable for time series analyses. With the implementation of the collection management, no major updates will be made to calibration of the Landsat sensors within a collection. Only calibration parameters needed to maintain the established calibration trends without an effect on derived environmental records will be regularly updated, while all other changes will be deferred to a new collection. This first collection, Collection 1, incorporates various radiometric calibration updates to all Landsat sensors including absolute and relative gains for Landsat 8 Operational Land Imager (OLI), stray light correction for Landsat 8 Thermal Infrared Sensor (TIRS), absolute gains for Landsat 4 and 5 Thematic Mappers (TM), recalibration of Landsat 1-5 Multispectral Scanners (MSS) to ensure radiometric consistency among different formats of archived MSS data, and a transfer of Landsat 8 OLI reflectance based calibration to all previous Landsat sensors. While all OLI/TIRS, ETM+ and majority of TM data have already been reprocessed to Collection 1, a completion of MSS and remaining TM data reprocessing is expected by the end of this year. It is important to note that, although still available for download from the USGS web pages, the products generated using the Pre-Collection processing do not benefit from the latest radiometric calibration updates. In this paper, we are assessing radiometry of solar reflective bands in Landsat Collection 1 products through analysis of trends in on-board calibrator and pseudo invariant site (PICS) responses.

  15. Radiometric characterization of Landsat Collection 1 products

    NASA Astrophysics Data System (ADS)

    Micijevic, Esad; Haque, Md. Obaidul; Mishra, Nischal

    2017-09-01

    Landsat data in the U.S. Geological Survey (USGS) archive are being reprocessed to generate a tiered collection of consistently geolocated and radiometrically calibrated products that are suitable for time series analyses. With the implementation of the collection management, no major updates will be made to calibration of the Landsat sensors within a collection. Only calibration parameters needed to maintain the established calibration trends without an effect on derived environmental records will be regularly updated, while all other changes will be deferred to a new collection. This first collection, Collection 1, incorporates various radiometric calibration updates to all Landsat sensors including absolute and relative gains for Landsat 8 Operational Land Imager (OLI), stray light correction for Landsat 8 Thermal Infrared Sensor (TIRS), absolute gains for Landsat 4 and 5 Thematic Mappers (TM), recalibration of Landsat 1-5 Multispectral Scanners (MSS) to ensure radiometric consistency among different formats of archived MSS data, and a transfer of Landsat 8 OLI reflectance based calibration to all previous Landsat sensors. While all OLI/TIRS, ETM+ and majority of TM data have already been reprocessed to Collection 1, a completion of MSS and remaining TM data reprocessing is expected by the end of this year. It is important to note that, although still available for download from the USGS web pages, the products generated using the Pre-Collection processing do not benefit from the latest radiometric calibration updates. In this paper, we are assessing radiometry of solar reflective bands in Landsat Collection 1 products through analysis of trends in on-board calibrator and pseudo invariant site (PICS) responses.

  16. Testing the Accuracy of Aerial Surveys for Large Mammals: An Experiment with African Savanna Elephants (Loxodonta africana)

    PubMed Central

    Schlossberg, Scott; Chase, Michael J.; Griffin, Curtice R.

    2016-01-01

    Accurate counts of animals are critical for prioritizing conservation efforts. Past research, however, suggests that observers on aerial surveys may fail to detect all individuals of the target species present in the survey area. Such errors could bias population estimates low and confound trend estimation. We used two approaches to assess the accuracy of aerial surveys for African savanna elephants (Loxodonta africana) in northern Botswana. First, we used double-observer sampling, in which two observers make observations on the same herds, to estimate detectability of elephants and determine what variables affect it. Second, we compared total counts, a complete survey of the entire study area, against sample counts, in which only a portion of the study area is sampled. Total counts are often considered a complete census, so comparing total counts against sample counts can help to determine if sample counts are underestimating elephant numbers. We estimated that observers detected only 76% ± SE of 2% of elephant herds and 87 ± 1% of individual elephants present in survey strips. Detectability increased strongly with elephant herd size. Out of the four observers used in total, one observer had a lower detection probability than the other three, and detectability was higher in the rear row of seats than the front. The habitat immediately adjacent to animals also affected detectability, with detection more likely in more open habitats. Total counts were not statistically distinguishable from sample counts. Because, however, the double-observer samples revealed that observers missed 13% of elephants, we conclude that total counts may be undercounting elephants as well. These results suggest that elephant population estimates from both sample and total counts are biased low. Because factors such as observer and habitat affected detectability of elephants, comparisons of elephant populations across time or space may be confounded. We encourage survey teams to

  17. NURE aerial gamma-ray and magnetic reconnaissance survey: NE Washington area, Okanogan NM 11-10, Sandpoint NM 11-11 Quadrangles. Volume I. Narrative report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-08-01

    As part of the Department of Energy (DOE) National Uranium Resource Evaluation (NURE) Program, LKB Resources, Inc. has performed a rotary-wing, reconnaissance high sensitivity radiometric and magnetic survey in north-east Washington. Three 1:250,000 scale NTMS quadrangles (Spokane, Sandpoint, and Okanogan) were surveyed. A total of 14,421 line miles (23,203 kilometers) of data were collected utilizing a Sikorsky S58T helicopter. Traverse lines were flown in an east-west direction at 1.0 and 3.0 mile (1.6 and 4.8 kilometers) spacing, with tie lines flown in a north-south direction at 12 mile (20 kilometer) spacing. The data were digitally recorded at 1.0 second intervals.more » The NaI terrestrial detectors used in this survey had a total volume of 2,154 cubic inches. The magnetometer employed was a modified ASQ-10 fluxgate system. This report covers only the Okanogan and Sandpoint 1:250,000 scale NTMS quadrangles. Spokane 1:250,000 scale NTMS quadrangle is covered in a separate report. The radiometric data were normalized to 400 feet terrain clearance. The data are presented in the form of computer listings on microfiche and as stacked profile plots. Profile plots are contained in Volume II of this report. A geologic interpretation of the radiometric and magnetic data is included as part of this report.« less

  18. Seasonal distribution and aerial surveys of mountain goats in Mount Rainier, North Cascades, and Olympic National Parks, Washington

    USGS Publications Warehouse

    Jenkins, Kurt; Beirne, Katherine; Happe, Patricia; Hoffman, Roger; Rice, Cliff; Schaberl, Jim

    2011-01-01

    We described the seasonal distribution of Geographic Positioning System (GPS)-collared mountain goats (Oreamnos americanus) in Mount Rainier, North Cascades, and Olympic National Parks to evaluate aerial survey sampling designs and provide general information for park managers. This work complemented a companion study published elsewhere of aerial detection biases of mountain goat surveys in western Washington. Specific objectives reported here were to determine seasonal and altitudinal movements, home range distributions, and temporal dynamics of mountain goat movements in and out of aerial survey sampling frames established within each park. We captured 25 mountain goats in Mount Rainier (9), North Cascades (5), and Olympic (11) National Parks, and fitted them with GPS-collars programmed to obtain 6-8 locations daily. We obtained location data on 23 mountain goats for a range of 39-751 days from 2003 to 2008. Altitudinal distributions of GPS-collared mountain goats varied individually and seasonally, but median altitudes used by individual goats during winter ranged from 817 to 1,541 meters in Olympic and North Cascades National Parks, and 1,215 to 1,787 meters in Mount Rainier National Park. Median altitudes used by GPS-collared goats during summer ranged from 1,312 to 1,819 meters in Olympic and North Cascades National Parks, and 1,780 to 2,061 meters in Mount Rainier National Park. GPS-collared mountain goats generally moved from low-altitude winter ranges to high-altitude summer ranges between June 11 and June 19 (range April 24-July 3) and from summer to winter ranges between October 26 and November 9 (range September 11-December 23). Seasonal home ranges (95 percent of adaptive kernel utilization distribution) of males and female mountain goats were highly variable, ranging from 1.6 to 37.0 kilometers during summers and 0.7 to 9.5 kilometers during winters. Locations of GPS-collared mountain goats were almost 100 percent within the sampling frame used for

  19. NURE aerial gamma ray and magnetic detail survey of portions of northeast Washington. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-11-01

    The Northeast Washington Survey was performed under the United States Department of Energy's National Uranium Resource Evaluation (NURE) Program, which is designed to provide radioelement distribution information to assist in assessing the uraniferous material potential of the United States. The radiometric and ancilliary data were digitally recorded and processed. The results are presented in the form of stacked profiles, contour maps, flight path maps, statistical tables and frequency distribution histograms. These graphical outputs are presented at a scale of 1:62,500 and are contained in the individual Volume 2 reports.

  20. A line transect model for aerial surveys

    USGS Publications Warehouse

    Quang, Pham Xuan; Lanctot, Richard B.

    1991-01-01

    We employ a line transect method to estimate the density of the common and Pacific loon in the Yukon Flats National Wildlife Refuge from aerial survey data. Line transect methods have the advantage of automatically taking into account “visibility bias” due to detectability difference of animals at different distances from the transect line. However, line transect methods must overcome two difficulties when applied to inaccurate recording of sighting distances due to high travel speeds, so that in fact only a few reliable distance class counts are available. We propose a unimodal detection function that provides an estimate of the effective area lost due to the blind strip, under the assumption that a line of perfect detection exists parallel to the transect line. The unimodal detection function can also be applied when a blind strip is absent, and in certain instances when the maximum probability of detection is less than 100%. A simple bootstrap procedure to estimate standard error is illustrated. Finally, we present results from a small set of Monte Carlo experiments.

  1. Toward Automatic Georeferencing of Archival Aerial Photogrammetric Surveys

    NASA Astrophysics Data System (ADS)

    Giordano, S.; Le Bris, A.; Mallet, C.

    2018-05-01

    Images from archival aerial photogrammetric surveys are a unique and relatively unexplored means to chronicle 3D land-cover changes over the past 100 years. They provide a relatively dense temporal sampling of the territories with very high spatial resolution. Such time series image analysis is a mandatory baseline for a large variety of long-term environmental monitoring studies. The current bottleneck for accurate comparison between epochs is their fine georeferencing step. No fully automatic method has been proposed yet and existing studies are rather limited in terms of area and number of dates. State-of-the art shows that the major challenge is the identification of ground references: cartographic coordinates and their position in the archival images. This task is manually performed, and extremely time-consuming. This paper proposes to use a photogrammetric approach, and states that the 3D information that can be computed is the key to full automation. Its original idea lies in a 2-step approach: (i) the computation of a coarse absolute image orientation; (ii) the use of the coarse Digital Surface Model (DSM) information for automatic absolute image orientation. It only relies on a recent orthoimage+DSM, used as master reference for all epochs. The coarse orthoimage, compared with such a reference, allows the identification of dense ground references and the coarse DSM provides their position in the archival images. Results on two areas and 5 dates show that this method is compatible with long and dense archival aerial image series. Satisfactory planimetric and altimetric accuracies are reported, with variations depending on the ground sampling distance of the images and the location of the Ground Control Points.

  2. Suitability of low cost commercial off-the-shelf aerial platforms and consumer grade digital cameras for small format aerial photography

    NASA Astrophysics Data System (ADS)

    Turley, Anthony Allen

    Many research projects require the use of aerial images. Wetlands evaluation, crop monitoring, wildfire management, environmental change detection, and forest inventory are but a few of the applications of aerial imagery. Low altitude Small Format Aerial Photography (SFAP) is a bridge between satellite and man-carrying aircraft image acquisition and ground-based photography. The author's project evaluates digital images acquired using low cost commercial digital cameras and standard model airplanes to determine their suitability for remote sensing applications. Images from two different sites were obtained. Several photo missions were flown over each site, acquiring images in the visible and near infrared electromagnetic bands. Images were sorted and analyzed to select those with the least distortion, and blended together with Microsoft Image Composite Editor. By selecting images taken within minutes apart, radiometric qualities of the images were virtually identical, yielding no blend lines in the composites. A commercial image stitching program, Autopano Pro, was purchased during the later stages of this study. Autopano Pro was often able to mosaic photos that the free Image Composite Editor was unable to combine. Using telemetry data from an onboard data logger, images were evaluated to calculate scale and spatial resolution. ERDAS ER Mapper and ESRI ArcGIS were used to rectify composite images. Despite the limitations inherent in consumer grade equipment, images of high spatial resolution were obtained. Mosaics of as many as 38 images were created, and the author was able to record detailed aerial images of forest and wetland areas where foot travel was impractical or impossible.

  3. Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology.

    PubMed

    Cruzan, Mitchell B; Weinstein, Ben G; Grasty, Monica R; Kohrn, Brendan F; Hendrickson, Elizabeth C; Arredondo, Tina M; Thompson, Pamela G

    2016-09-01

    Low-elevation surveys with small aerial drones (micro-unmanned aerial vehicles [UAVs]) may be used for a wide variety of applications in plant ecology, including mapping vegetation over small- to medium-sized regions. We provide an overview of methods and procedures for conducting surveys and illustrate some of these applications. Aerial images were obtained by flying a small drone along transects over the area of interest. Images were used to create a composite image (orthomosaic) and a digital surface model (DSM). Vegetation classification was conducted manually and using an automated routine. Coverage of an individual species was estimated from aerial images. We created a vegetation map for the entire region from the orthomosaic and DSM, and mapped the density of one species. Comparison of our manual and automated habitat classification confirmed that our mapping methods were accurate. A species with high contrast to the background matrix allowed adequate estimate of its coverage. The example surveys demonstrate that small aerial drones are capable of gathering large amounts of information on the distribution of vegetation and individual species with minimal impact to sensitive habitats. Low-elevation aerial surveys have potential for a wide range of applications in plant ecology.

  4. Aerial Mobile Radiation Survey Following Detonation of a Radiological Dispersal Device.

    PubMed

    Sinclair, Laurel E; Fortin, Richard; Buckle, John L; Coyle, Maurice J; Van Brabant, Reid A; Harvey, Bradley J A; Seywerd, Henry C J; McCurdy, Martin W

    2016-05-01

    A series of experiments was conducted in 2012 at the Defence Research and Development Canada's Suffield Research Centre in Alberta, Canada, during which three radiological dispersal devices were detonated. The detonations released radioactive (140)La into the air, which was then carried by winds and detectable over distances of up to 2 km. The Nuclear Emergency Response group of Natural Resources Canada conducted airborne radiometric surveys shortly following the explosions to map the pattern of radioactivity deposited on the ground. The survey instrument suite was based on large volume NaI(Tl) scintillation gamma radiation detectors, which were situated in a basket mounted exterior to the helicopter and oriented end-to-end to maximize the sensitivity. A standard geophysical data treatment was used to subtract backgrounds and to correct the data to produce counts due to (140)La at the nominal altitude. Sensitivity conversion factors obtained from Monte Carlo simulations were then applied to express the measurements in terms of surface activity concentration in kBq m(-2). Integrated over the survey area, the results indicate that only 20 to 25% of the bomb's original inventory of radioactive material is deposited within a 1.5-km radius of ground zero. These results can be accommodated with a simple model for the RDD behavior and atmospheric dispersion.

  5. Aerial radiometric and magnetic reconnaissance survey of a portion of Texas: Beaumont and Palestine quadrangles, final report. Volume 1 and Volume 2A, Beaumont quadrangle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-12-01

    Instrumentation and methods described were used for a Department of Energy (DOE) sponsored, high-sensitivity, aerial gamma-ray spectrometer and magnetometer survey of a portion of Beaumont and all of Palestine (Texas), NTMS, 1:250,000-scale quadrangles. The objective of the work was to define areas showing surface indications of a generally higher uranium content where detailed exploration for uranium would most likely be successful. A DC-3 aircraft equipped with a high-sensitivity gamma-ray spectrometer and ancillary geophysical and electronic equipment ws employed for each quadrangle. The system was calibrated using the DOE calibration facilities at Grand Junction, Colorado, and Lake Mead, Arizona. Gamma-ray spectrometricmore » data were processed to correct for variations in atmospheric, flight, and instrument conditions and were statistically evaluated to remove the effects of surface geologic variations. The resulting first-priority uranium anomalies (showing simultaneously valid eU, eU/eTh, and eU/K anomalies) were interpreted to evaluate their origin and significance. Results of the interpretation in the form of a preferred-anomaly map, along with significance-factor profile maps, stacked profiles, histograms, and descriptions of the geology and known uranium occurrences are presented in Volume 2 of this final report.« less

  6. Aerial radiometric and magnetic reconnaissance survey of a portion of Texas: Beaumont and Palestine quadrangles, final report. Volume 1 and Volume 2B, Palestine quadrangle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-12-01

    Instrumentation and methods described were used for a Department of Energy (DOE) sponsored, high-sensitivity, aerial gamma-ray spectrometer and magnetometer survey of a portion of Beaumont and all of Palestine (Texas), NTMS, 1:250,000-scale quadrangles. The objective of the work was to define areas showing surface indications of a generally higher uranium content where detailed exploration for uranium would most likely be successful. A DC-3 aircraft equipped with a high-sensitivity gamma-ray spectrometer and ancillary geophysical and electronic equipment was employed for each quadrangle. The system was calibrated using the DOE calibration facilities at Grand Junction, Colorado, and Lake Mead, Arizona. Gamma-ray spectrometricmore » data were processed to correct for variations in atmospheric, flight, and instrument conditions and were statistically evaluated to remove the effects of surface geologic variations. The resulting first-priority uranium anomalies (showing simultaneously valid eU, eU/eTh, and eU/K anomalies) were interpreted to evaluate their origin and significance. Results of the interpretation in the form of a preferred-anomaly map, along with significance-factor profile maps, stacked profiles, histograms, and descriptions of the geology and known uranium occurrences are presented in Volume 2 of this final report.« less

  7. Radiometric age file for Alaska: A section in The United States Geological Survey in Alaska: Accomplishments during 1980

    USGS Publications Warehouse

    Shew, Nora B.; Wilson, Frederic H.

    1982-01-01

    The Alaska radiometric age file of the Branch of Alaskan Geology is a computer-based compilation of radiometric dates from the state of Alaska and the western parts of the Yukon Territory and British Columbia. More than 1800 age determinations from over 250 references have been entered in the file. References date back to 1958 and include both published and unpublished sources. The file is the outgrowth of an original radiometric age file compiled by Don Grybeck and students at the University of Alaska-Fairbanks (Turner and others, 1975).

  8. Aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.

    1978-01-01

    Thermal infrared scanning from an aircraft is a convenient and commercially available means for determining relative rates of energy loss from building roofs. The need to conserve energy as fuel costs makes the mass survey capability of aerial thermography an attractive adjunct to community energy awareness programs. Background information on principles of aerial thermography is presented. Thermal infrared scanning systems, flight and environmental requirements for data acquisition, preparation of thermographs for display, major users and suppliers of thermography, and suggested specifications for obtaining aerial scanning services were reviewed.

  9. New aerial survey and hierarchical model to estimate manatee abundance

    USGS Publications Warehouse

    Langimm, Cahterine A.; Dorazio, Robert M.; Stith, Bradley M.; Doyle, Terry J.

    2011-01-01

    Monitoring the response of endangered and protected species to hydrological restoration is a major component of the adaptive management framework of the Comprehensive Everglades Restoration Plan. The endangered Florida manatee (Trichechus manatus latirostris) lives at the marine-freshwater interface in southwest Florida and is likely to be affected by hydrologic restoration. To provide managers with prerestoration information on distribution and abundance for postrestoration comparison, we developed and implemented a new aerial survey design and hierarchical statistical model to estimate and map abundance of manatees as a function of patch-specific habitat characteristics, indicative of manatee requirements for offshore forage (seagrass), inland fresh drinking water, and warm-water winter refuge. We estimated the number of groups of manatees from dual-observer counts and estimated the number of individuals within groups by removal sampling. Our model is unique in that we jointly analyzed group and individual counts using assumptions that allow probabilities of group detection to depend on group size. Ours is the first analysis of manatee aerial surveys to model spatial and temporal abundance of manatees in association with habitat type while accounting for imperfect detection. We conducted the study in the Ten Thousand Islands area of southwestern Florida, USA, which was expected to be affected by the Picayune Strand Restoration Project to restore hydrology altered for a failed real-estate development. We conducted 11 surveys in 2006, spanning the cold, dry season and warm, wet season. To examine short-term and seasonal changes in distribution we flew paired surveys 1–2 days apart within a given month during the year. Manatees were sparsely distributed across the landscape in small groups. Probability of detection of a group increased with group size; the magnitude of the relationship between group size and detection probability varied among surveys. Probability

  10. Monitoring winter and summer abundance of cetaceans in the Pelagos Sanctuary (northwestern Mediterranean Sea) through aerial surveys.

    PubMed

    Panigada, Simone; Lauriano, Giancarlo; Burt, Louise; Pierantonio, Nino; Donovan, Greg

    2011-01-01

    Systematic long-term monitoring of abundance is essential to inform conservation measures and evaluate their effectiveness. To instigate such work in the Pelagos Sanctuary in the Mediterranean, two aerial surveys were conducted in winter and summer 2009. A total of 467 (131 in winter, 336 in summer) sightings of 7 species was made. Sample sizes were sufficient to estimate abundance of fin whales in summer (148; 95% CI = 87-254) and striped dolphins in winter (19,462; 95% CI = 12 939-29 273) and in summer (38 488; 95% CI = 27 447-53 968). Numbers of animals within the Sanctuary are significantly higher in summer, when human activities and thus potential population level impacts are highest. Comparisons with data from past shipboard surveys suggest an appreciable decrease in fin whales within the Sanctuary area and an appreciable increase in striped dolphins. Aerial surveys proved to be more efficient than ship surveys, allowing more robust estimates, with smaller CIs and CVs. These results provide essential baseline data for this marine protected area and continued regular surveys will allow the effectiveness of the MPA in terms of cetacean conservation to be evaluated and inform future management measures. The collected data may also be crucial in assessing whether ship strikes, one of the main causes of death for fin whales in the Mediterranean, are affecting the Mediterranean population.

  11. Aerial surveys of landslide bodies through light UAVs: peculiarities and advantages

    NASA Astrophysics Data System (ADS)

    Spilotro, Giuseppe; Pellicani, Roberta; Leandro, Gianfranco; Marzo, Cosimo; Manzari, Paola; Belmonte, Antonella

    2015-04-01

    The use of UAV in civil applications and particularly for aerial surveillance or surveying is rapidly expanding for several reasons. The first reason is undoubtedly the lowering of the costs of the machines, accompanied by high technology for their positioning and control. The results are high performances and ease of driving. Authors have surveyed some big landslides by drones, with excellent results, which can retail for this technique a specific role, not in conflict with classical airborne aerial surveys, such as LIDAR and others. Obviously the first difference is in the amount of payload, over 100 Kg for classical airborne apparatus, but 1000 times lower in the case of the drones. Nevertheless the advantages of the use of drones and of their products can be synthesized as follows: -Start from the site, without the need of transfers, flight plans and long time weather forecasts; -Imagery product georeferenced and immediately exportable to GIS -Inspection of areas not easily accessible (impervious areas, high layers of mud, crossing of rivers, etc) or unreachable in safety conditions; -Inspection of specific points, relevant for the interpretation of the type and intensity of movement. -The pilot and the landslide specialist define route and compare images in real time -Possibility of flying at very low altitude and hovering. For the geomorphological interpretation of the big landslide of Montescaglioso (Mt, Italy) has been used a 1.5 m EPP (Expanded polipropilene) fixed wing, driven by 3DR Open Source Autopilot, equipped with a 16 Mp compact camera CANON A2300. Very useful revealed the image of the toe of the landslide, critical point for the interpretation of the mechanics of the whole landslide. Results have been of excellent quality and allowed authors to an early correct analysis Other landslides have been explored with a commercial drone (Phantom Vision 2 Dji), the use of which has proved likewise invaluable for returning images of areas not otherwise

  12. An Aerial Radiological Survey of Selected Areas of Area 18 - Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig Lyons

    As part of the proficiency training for the Radiological Mapping mission of the Aerial Measuring System (AMS), a survey team from the Remote Sensing Laboratory-Nellis (RSL-Nellis) conducted an aerial radiological survey of selected areas of Area 18 of the Nevada Test Site (NTS) for the purpose of mapping man-made radiation deposited as a result of the Johnnie Boy and Little Feller I tests. The survey area centered over the Johnnie Boy ground zero but also included the ground zero and deposition area of the Little Feller I test, approximately 7,000 feet (2133 meters) southeast of the Johnnie Boy site. Themore » survey was conducted in one flight. The completed survey covered a total of 4.0 square miles. The flight lines (with the turns) over the surveyed areas are presented in Figure 1. One 2.5-hour-long flight was performed at an altitude of 100 ft above ground level (AGL) with 200 foot flight-line spacing. A test-line flight was conducted near the Desert Rock Airstrip to ensure quality control of the data. The test line is not shown in Figure 1. However, Figure 1 does include the flight lines for a ''perimeter'' flight. The path traced by the helicopter flying over distinct roads within the survey area can be used to overlay the survey data on a base map or image. The flight survey lines were flown in an east-west orientation perpendicular to the deposition patterns for both sites. This technique provides better spatial resolution when contouring the data. The data were collected by the AMS data acquisition system (REDAR V) using an array of twelve 2-inch x 4-inch x 16-inch sodium iodide (NaI) detectors flown on-board a twin-engine Bell 412 helicopter. Data, in the form of gamma energy spectra, were collected every second over the course of the survey and were geo-referenced using a differential Global Positioning System. Spectral data allows the system to distinguish between ordinary fluctuations in natural background radiation levels and the signature produced

  13. Google Haul Out: Earth Observation Imagery and Digital Aerial Surveys in Coastal Wildlife Management and Abundance Estimation

    PubMed Central

    Moxley, Jerry H.; Bogomolni, Andrea; Hammill, Mike O.; Moore, Kathleen M. T.; Polito, Michael J.; Sette, Lisa; Sharp, W. Brian; Waring, Gordon T.; Gilbert, James R.; Halpin, Patrick N.; Johnston, David W.

    2017-01-01

    Abstract As the sampling frequency and resolution of Earth observation imagery increase, there are growing opportunities for novel applications in population monitoring. New methods are required to apply established analytical approaches to data collected from new observation platforms (e.g., satellites and unmanned aerial vehicles). Here, we present a method that estimates regional seasonal abundances for an understudied and growing population of gray seals (Halichoerus grypus) in southeastern Massachusetts, using opportunistic observations in Google Earth imagery. Abundance estimates are derived from digital aerial survey counts by adapting established correction-based analyses with telemetry behavioral observation to quantify survey biases. The result is a first regional understanding of gray seal abundance in the northeast US through opportunistic Earth observation imagery and repurposed animal telemetry data. As species observation data from Earth observation imagery become more ubiquitous, such methods provide a robust, adaptable, and cost-effective solution to monitoring animal colonies and understanding species abundances. PMID:29599542

  14. Google Haul Out: Earth Observation Imagery and Digital Aerial Surveys in Coastal Wildlife Management and Abundance Estimation.

    PubMed

    Moxley, Jerry H; Bogomolni, Andrea; Hammill, Mike O; Moore, Kathleen M T; Polito, Michael J; Sette, Lisa; Sharp, W Brian; Waring, Gordon T; Gilbert, James R; Halpin, Patrick N; Johnston, David W

    2017-08-01

    As the sampling frequency and resolution of Earth observation imagery increase, there are growing opportunities for novel applications in population monitoring. New methods are required to apply established analytical approaches to data collected from new observation platforms (e.g., satellites and unmanned aerial vehicles). Here, we present a method that estimates regional seasonal abundances for an understudied and growing population of gray seals (Halichoerus grypus) in southeastern Massachusetts, using opportunistic observations in Google Earth imagery. Abundance estimates are derived from digital aerial survey counts by adapting established correction-based analyses with telemetry behavioral observation to quantify survey biases. The result is a first regional understanding of gray seal abundance in the northeast US through opportunistic Earth observation imagery and repurposed animal telemetry data. As species observation data from Earth observation imagery become more ubiquitous, such methods provide a robust, adaptable, and cost-effective solution to monitoring animal colonies and understanding species abundances.

  15. Aerial Surveys Give New Estimates for Orangutans in Sabah, Malaysia

    PubMed Central

    Gimenez, Olivier; Ambu, Laurentius; Ancrenaz, Karine; Andau, Patrick; Goossens, Benoît; Payne, John; Sawang, Azri; Tuuga, Augustine; Lackman-Ancrenaz, Isabelle

    2005-01-01

    Great apes are threatened with extinction, but precise information about the distribution and size of most populations is currently lacking. We conducted orangutan nest counts in the Malaysian state of Sabah (North Borneo), using a combination of ground and helicopter surveys, and provided a way to estimate the current distribution and size of the populations living throughout the entire state. We show that the number of nests detected during aerial surveys is directly related to the estimated true animal density and that a helicopter is an efficient tool to provide robust estimates of orangutan numbers. Our results reveal that with a total estimated population size of about 11,000 individuals, Sabah is one of the main strongholds for orangutans in North Borneo. More than 60% of orangutans living in the state occur outside protected areas, in production forests that have been through several rounds of logging extraction and are still exploited for timber. The role of exploited forests clearly merits further investigation for orangutan conservation in Sabah. PMID:15630475

  16. Radiometric performance of the Voyager cameras

    NASA Technical Reports Server (NTRS)

    Danielson, G. E.; Kupferman, P. N.; Johnson, T. V.; Soderblom, L. A.

    1981-01-01

    The Voyager Imaging Experiment provided high-quality data of Jupiter and the Galilean satellites with the two flyby trajectories in March and July of 1979. Moderately accurate radiometric measurements have been made using these data. This paper evaluates the radiometric results and describes the inflight and ground geometric and radiometric correction factors. The radiometric quantities of intensity I and geometric albedo I/F are derived, and scaling factors for each of the filters are tabulated for correcting the 'calibrated' data from the Image Processing Laboratory at JPL. In addition, the key characteristics of both Voyager I and Voyager 2 cameras are tabulated.

  17. An aerial radiological survey of the Durango, Colorado uranium mill tailings site and surrounding area. Date of survey: August 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilton, L.K.

    1981-06-01

    An aerial radiological survey of Durango, Colorado, including the inactive uranium mill tailings piles located southwest of the town, was conducted during August 25--29, 1980, for the Department of Energy`s Environmental and Safety Engineering Division. Areas of radiation exposure rates higher than the local background, which was about 15 microrentgens per hour ({mu}R/h), were observed directly over and to the south of the mill tailings piles, over a cemetery, and at two spots near the fairgrounds. The rapidly changing radiation exposure rates at the boundaries of the piles preclude accurate extrapolation of aerial radiological data to ground level exposure ratesmore » in their immediate vicinity. Estimated radiation exposure rates close to the piles, however, approached 30 times background, or about 450 {mu}R/h. Radiation exposure rates in a long area extending south from the tailings piles were about 25 {mu}R/h.« less

  18. Automatic digital surface model (DSM) generation from aerial imagery data

    NASA Astrophysics Data System (ADS)

    Zhou, Nan; Cao, Shixiang; He, Hongyan; Xing, Kun; Yue, Chunyu

    2018-04-01

    Aerial sensors are widely used to acquire imagery for photogrammetric and remote sensing application. In general, the images have large overlapped region, which provide a lot of redundant geometry and radiation information for matching. This paper presents a POS supported dense matching procedure for automatic DSM generation from aerial imagery data. The method uses a coarse-to-fine hierarchical strategy with an effective combination of several image matching algorithms: image radiation pre-processing, image pyramid generation, feature point extraction and grid point generation, multi-image geometrically constraint cross-correlation (MIG3C), global relaxation optimization, multi-image geometrically constrained least squares matching (MIGCLSM), TIN generation and point cloud filtering. The image radiation pre-processing is used in order to reduce the effects of the inherent radiometric problems and optimize the images. The presented approach essentially consists of 3 components: feature point extraction and matching procedure, grid point matching procedure and relational matching procedure. The MIGCLSM method is used to achieve potentially sub-pixel accuracy matches and identify some inaccurate and possibly false matches. The feasibility of the method has been tested on different aerial scale images with different landcover types. The accuracy evaluation is based on the comparison between the automatic extracted DSMs derived from the precise exterior orientation parameters (EOPs) and the POS.

  19. NASA IKONOS Radiometric Characterization

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Frisbee, Troy; Zanoni, Vicki; Blonski, Slawek; Daehler, Erik; Grant, Brennan; Holekamp, Kara; Ryan, Robert; Sellers, Richard; Smith, Charles

    2002-01-01

    The objective of this program: Perform radiometric vicarious calibrations of IKQNOS imagery and compare with Space Imaging calibration coefficients The approach taken: utilize multiple well-characterized sites which are widely used by the NASA science community for radiometric characterization of airborne and spaceborne sensors; and to Perform independent characterizations with independent teams. Each team has slightly different measurement techniques and data processing methods.

  20. Monitoring Winter and Summer Abundance of Cetaceans in the Pelagos Sanctuary (Northwestern Mediterranean Sea) Through Aerial Surveys

    PubMed Central

    Panigada, Simone; Lauriano, Giancarlo; Burt, Louise; Pierantonio, Nino; Donovan, Greg

    2011-01-01

    Systematic long-term monitoring of abundance is essential to inform conservation measures and evaluate their effectiveness. To instigate such work in the Pelagos Sanctuary in the Mediterranean, two aerial surveys were conducted in winter and summer 2009. A total of 467 (131 in winter, 336 in summer) sightings of 7 species was made. Sample sizes were sufficient to estimate abundance of fin whales in summer (148; 95% CI = 87–254) and striped dolphins in winter (19,462; 95% CI = 12 939–29 273) and in summer (38 488; 95% CI = 27 447–53 968). Numbers of animals within the Sanctuary are significantly higher in summer, when human activities and thus potential population level impacts are highest. Comparisons with data from past shipboard surveys suggest an appreciable decrease in fin whales within the Sanctuary area and an appreciable increase in striped dolphins. Aerial surveys proved to be more efficient than ship surveys, allowing more robust estimates, with smaller CIs and CVs. These results provide essential baseline data for this marine protected area and continued regular surveys will allow the effectiveness of the MPA in terms of cetacean conservation to be evaluated and inform future management measures. The collected data may also be crucial in assessing whether ship strikes, one of the main causes of death for fin whales in the Mediterranean, are affecting the Mediterranean population. PMID:21829544

  1. Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology1

    PubMed Central

    Cruzan, Mitchell B.; Weinstein, Ben G.; Grasty, Monica R.; Kohrn, Brendan F.; Hendrickson, Elizabeth C.; Arredondo, Tina M.; Thompson, Pamela G.

    2016-01-01

    Premise of the study: Low-elevation surveys with small aerial drones (micro–unmanned aerial vehicles [UAVs]) may be used for a wide variety of applications in plant ecology, including mapping vegetation over small- to medium-sized regions. We provide an overview of methods and procedures for conducting surveys and illustrate some of these applications. Methods: Aerial images were obtained by flying a small drone along transects over the area of interest. Images were used to create a composite image (orthomosaic) and a digital surface model (DSM). Vegetation classification was conducted manually and using an automated routine. Coverage of an individual species was estimated from aerial images. Results: We created a vegetation map for the entire region from the orthomosaic and DSM, and mapped the density of one species. Comparison of our manual and automated habitat classification confirmed that our mapping methods were accurate. A species with high contrast to the background matrix allowed adequate estimate of its coverage. Discussion: The example surveys demonstrate that small aerial drones are capable of gathering large amounts of information on the distribution of vegetation and individual species with minimal impact to sensitive habitats. Low-elevation aerial surveys have potential for a wide range of applications in plant ecology. PMID:27672518

  2. The Aerial Regional-scale Environmental Survey (ARES) Mission to Mars

    NASA Technical Reports Server (NTRS)

    Levine, J. S.

    2005-01-01

    ARES is an exploration mission concept for an Aerial Regional-scale Environmental Survey of Mars designed to fly an instrumented platform over the surface of Mars at very low altitudes (1-3 km) for distances of hundreds to thousands of kilometers to obtain scientific data to address fundamental problems in Mars science. ARES helps to fill a gap in the scale and perspective of the Mars Exploration Program and addresses many key COMPLEX/MEPAG questions (e.g., nature and origin of crustal magnetic anomalies) not readily pursued in other parts of the exploration program. ARES supports the human exploration program through key environmental measurements and high-resolution contiguous data essential to reference mission design. Here we describe the major types of scientific goals, candidate instruments, and reference mission profiles.

  3. An aerial radiological survey of the Browns Ferry Nuclear Power Station and surrounding area, Decatur, Alabama

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, H.A.

    1986-10-01

    An aerial radiological survey was conducted during the period 12 July to 17 July 1985 over a 97-square-kilometer (37-square-mile) area centered on the Browns Ferry Nuclear Power Station located near Decatur, Alabama. The survey was conducted at a nominal altitude of 46 meters (150 feet) with line spacings of 76 meters (250 feet). A contour map of the terrestrial gamma exposure rate plus the cosmic exposure rate extrapolated to 1 meter above ground level was prepared and overlaid on an aerial photograph and a USGS topographic map of the area. The terrestrial exposure rates north and east of Wheeler Lakemore » ranged from approximately 11 to 18 microroentgens per hour (..mu..R/h), while the area south and west of the lake ranged from approximately 9 to 11 ..mu..R/h. Two areas of increased exposure rate were evident. One of these areas was associated with the main units of the reactor facility, while the other was associated with a temporary radiological waste holding area inside the plant's protected area. A machine-aided search of the data for man-made sources of radiation indicated the presence of a third area within the plant facility. This area is utilized as a temporary low-level radioactive waste storage site. All three areas indicated the presence of Co-60. Soil samples and ion chamber measurements were obtained at four locations to support the aerial data. In addition, soil samples were also taken at six locations along the shore of Wheeler Lake. 8 refs., 13 figs., 4 tabs.« less

  4. First demonstration of aerial gamma-ray imaging using drone for prompt radiation survey in Fukushima

    NASA Astrophysics Data System (ADS)

    Mochizuki, S.; Kataoka, J.; Tagawa, L.; Iwamoto, Y.; Okochi, H.; Katsumi, N.; Kinno, S.; Arimoto, M.; Maruhashi, T.; Fujieda, K.; Kurihara, T.; Ohsuka, S.

    2017-11-01

    Considerable amounts of radioactive substances (mainly 137Cs and 134Cs) were released into the environment after the Japanese nuclear disaster in 2011. Some restrictions on residence areas were lifted in April 2017, owing to the successive and effective decontamination operations. However, the distribution of radioactive substances in vast areas of mountain, forest and satoyama close to the city is still unknown; thus, decontamination operations in such areas are being hampered. In this paper, we report on the first aerial gamma-ray imaging of a schoolyard in Fukushima using a drone that carries a high sensitivity Compton camera. We show that the distribution of 137Cs in regions with a diameter of several tens to a hundred meters can be imaged with a typical resolution of 2-5 m within a 10-20 min flights duration. The aerial gamma-ray images taken 10 m and 20 m above the ground are qualitatively consistent with a dose map reconstructed from the ground-based measurements using a survey meter. Although further quantification is needed for the distance and air-absorption corrections to derive in situ dose map, such an aerial drone system can reduce measurement time by a factor of ten and is suitable for place where ground-based measurement are difficult.

  5. User's guide to the Radiometric Age Data Bank (RADB)

    USGS Publications Warehouse

    Zartman, Robert Eugene; Cole, James C.; Marvin, Richard F.

    1976-01-01

    The Radiometric Age Data Bank (RADB) has been established by the U.S. Geological Survey, as a means for collecting and organizing the estimated 100,000 radiometric ages presently published for the United States. RADB has been constructed such that a complete sample description (location, rock type, etc.), literature citation, and extensive analytical data are linked to form an independent record for each sample reported in a published work. Analytical data pertinent to the potassium-argon, rubidium-strontium, uranium-thorium-lead, lead-alpha, and fission-track methods can be accommodated, singly or in combinations, for each record. Data processing is achieved using the GIPSY program (University of Oklahoma) which maintains the data file and builds, updates, searches, and prints the records using simple yet versatile command statements. Searching and selecting records is accomplished by specifying the presence, absence, or (numeric or alphabetic) value of any element of information in the data bank, and these specifications can be logically linked to develop sophisticated searching strategies. Output is available in the form of complete data records, abbreviated tests, or columnar tabulations. Samples of data-reporting forms, GIPSY command statements, output formats, and data records are presented to illustrate the comprehensive nature and versatility of the Radiometric Age Data Bank.

  6. An aerial radiological survey of the Durango, Colorado uranium mill tailings site and surrounding area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilton, L.K.

    1981-06-01

    An aerial radiological survey of Durango, Colorado, including the inactive uranium mill tailings piles located southwest of the town, was conducted during August 25--29, 1980, for the Department of Energy's Environmental and Safety Engineering Division. Areas of radiation exposure rates higher than the local background, which was about 15 microrentgens per hour ({mu}R/h), were observed directly over and to the south of the mill tailings piles, over a cemetery, and at two spots near the fairgrounds. The rapidly changing radiation exposure rates at the boundaries of the piles preclude accurate extrapolation of aerial radiological data to ground level exposure ratesmore » in their immediate vicinity. Estimated radiation exposure rates close to the piles, however, approached 30 times background, or about 450 {mu}R/h. Radiation exposure rates in a long area extending south from the tailings piles were about 25 {mu}R/h.« less

  7. Broadband Radiometric LED Measurements

    PubMed Central

    Eppeldauer, G. P.; Cooksey, C. C.; Yoon, H. W.; Hanssen, L. M.; Podobedov, V. B.; Vest, R. E.; Arp, U.; Miller, C. C.

    2017-01-01

    At present, broadband radiometric measurements of LEDs with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(λ) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irradiance meters with spectrally constant response and high-intensity LED irradiance sources were developed here to implement the previously suggested broadband radiometric LED measurement procedure [1, 2]. Using a detector with spectrally constant response, the broadband radiometric quantities of any LEDs or LED groups can be simply measured with low uncertainty without using any source standard. The spectral flatness of filtered-Si detectors and low-noise pyroelectric radiometers are compared. Examples are given for integrated irradiance measurement of UV and blue LED sources using the here introduced reference (standard) pyroelectric irradiance meters. For validation, the broadband measured integrated irradiance of several LED-365 sources were compared with the spectrally determined integrated irradiance derived from an FEL spectral irradiance lamp-standard. Integrated responsivity transfer from the reference irradiance meter to transfer standard and field UV irradiance meters is discussed. PMID:28649167

  8. Broadband radiometric LED measurements

    NASA Astrophysics Data System (ADS)

    Eppeldauer, G. P.; Cooksey, C. C.; Yoon, H. W.; Hanssen, L. M.; Podobedov, V. B.; Vest, R. E.; Arp, U.; Miller, C. C.

    2016-09-01

    At present, broadband radiometric LED measurements with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(λ) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irradiance meters with spectrally constant response and high-intensity LED irradiance sources were developed here to implement the previously suggested broadband radiometric LED measurement procedure [1, 2]. Using a detector with spectrally constant response, the broadband radiometric quantities of any LEDs or LED groups can be simply measured with low uncertainty without using any source standard. The spectral flatness of filtered-Si detectors and low-noise pyroelectric radiometers are compared. Examples are given for integrated irradiance measurement of UV and blue LED sources using the here introduced reference (standard) pyroelectric irradiance meters. For validation, the broadband measured integrated irradiance of several LED-365 sources were compared with the spectrally determined integrated irradiance derived from an FEL spectral irradiance lamp-standard. Integrated responsivity transfer from the reference irradiance meter to transfer standard and field UV irradiance meters is discussed.

  9. Broadband Radiometric LED Measurements.

    PubMed

    Eppeldauer, G P; Cooksey, C C; Yoon, H W; Hanssen, L M; Podobedov, V B; Vest, R E; Arp, U; Miller, C C

    2016-01-01

    At present, broadband radiometric measurements of LEDs with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(λ) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irradiance meters with spectrally constant response and high-intensity LED irradiance sources were developed here to implement the previously suggested broadband radiometric LED measurement procedure [1, 2]. Using a detector with spectrally constant response, the broadband radiometric quantities of any LEDs or LED groups can be simply measured with low uncertainty without using any source standard. The spectral flatness of filtered-Si detectors and low-noise pyroelectric radiometers are compared. Examples are given for integrated irradiance measurement of UV and blue LED sources using the here introduced reference (standard) pyroelectric irradiance meters. For validation, the broadband measured integrated irradiance of several LED-365 sources were compared with the spectrally determined integrated irradiance derived from an FEL spectral irradiance lamp-standard. Integrated responsivity transfer from the reference irradiance meter to transfer standard and field UV irradiance meters is discussed.

  10. Reliable aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.; Bowman, R. L.

    1981-01-01

    A method for energy conservation, the aerial thermography survey, is discussed. It locates sources of energy losses and wasteful energy management practices. An operational map is presented for clear sky conditions. The map outlines the key environmental conditions conductive to obtaining reliable aerial thermography. The map is developed from defined visual and heat loss discrimination criteria which are quantized based on flat roof heat transfer calculations.

  11. Profiles of gamma-ray and magnetic data from aerial surveys over the conterminous United States

    USGS Publications Warehouse

    Duval, Joseph S.; Riggle, Frederic E.

    1999-01-01

    This publication contains images for the conterminous U.S. generated from geophysical data, software for displaying and analyzing the images, and software for displaying and examining the profile data from the aerial surveys flown as part of the National Uranium Resource Evaluation (NURE) Program of the U.S. Department of Energy. The images included are of gamma-ray data (uranium, thorium, and potassium channels), Bouguer gravity data, isostatic residual gravity data, aeromagnetic anomalies, topography, and topography with bathymetry.

  12. Can reliable sage-grouse lek counts be obtained using aerial infrared technology

    USGS Publications Warehouse

    Gillette, Gifford L.; Coates, Peter S.; Petersen, Steven; Romero, John P.

    2013-01-01

    More effective methods for counting greater sage-grouse (Centrocercus urophasianus) are needed to better assess population trends through enumeration or location of new leks. We describe an aerial infrared technique for conducting sage-grouse lek counts and compare this method with conventional ground-based lek count methods. During the breeding period in 2010 and 2011, we surveyed leks from fixed-winged aircraft using cryogenically cooled mid-wave infrared cameras and surveyed the same leks on the same day from the ground following a standard lek count protocol. We did not detect significant differences in lek counts between surveying techniques. These findings suggest that using a cryogenically cooled mid-wave infrared camera from an aerial platform to conduct lek surveys is an effective alternative technique to conventional ground-based methods, but further research is needed. We discuss multiple advantages to aerial infrared surveys, including counting in remote areas, representing greater spatial variation, and increasing the number of counted leks per season. Aerial infrared lek counts may be a valuable wildlife management tool that releases time and resources for other conservation efforts. Opportunities exist for wildlife professionals to refine and apply aerial infrared techniques to wildlife monitoring programs because of the increasing reliability and affordability of this technology.

  13. Infrared search and track performance estimates for detection of commercial unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Nicholas, Robert; Driggers, Ronald; Shelton, David; Furxhi, Orges

    2018-04-01

    Unmanned aerial vehicles (UAVs) have become more readily available in the past 5 years and are proliferating rapidly. New aviation regulations are accelerating the use of UAVs in many applications. As a result, there are increasing concerns of potential air threats in situational environments including commercial airport security and drug trafficking. In this study, radiometric signatures of commercially available miniature UAVs is determined for long-wave infrared (LWIR) bands in both clear sky and partial cloudy conditions. Results are presented that compare LWIR performance estimates for the detection of commercial UAVs via infrared search and track (IRST) systems with two candidate sensors.

  14. Research on the Application of Rapid Surveying and Mapping for Large Scare Topographic Map by Uav Aerial Photography System

    NASA Astrophysics Data System (ADS)

    Gao, Z.; Song, Y.; Li, C.; Zeng, F.; Wang, F.

    2017-08-01

    Rapid acquisition and processing method of large scale topographic map data, which relies on the Unmanned Aerial Vehicle (UAV) low-altitude aerial photogrammetry system, is studied in this paper, elaborating the main work flow. Key technologies of UAV photograph mapping is also studied, developing a rapid mapping system based on electronic plate mapping system, thus changing the traditional mapping mode and greatly improving the efficiency of the mapping. Production test and achievement precision evaluation of Digital Orth photo Map (DOM), Digital Line Graphic (DLG) and other digital production were carried out combined with the city basic topographic map update project, which provides a new techniques for large scale rapid surveying and has obvious technical advantage and good application prospect.

  15. Evaluation on Radiometric Capability of Chinese Optical Satellite Sensors

    PubMed Central

    Yang, Aixia; Zhong, Bo; Wu, Shanlong; Liu, Qinhuo

    2017-01-01

    The radiometric capability of on-orbit sensors should be updated on time due to changes induced by space environmental factors and instrument aging. Some sensors, such as Moderate Resolution Imaging Spectroradiometer (MODIS), have onboard calibrators, which enable real-time calibration. However, most Chinese remote sensing satellite sensors lack onboard calibrators. Their radiometric calibrations have been updated once a year based on a vicarious calibration procedure, which has affected the applications of the data. Therefore, a full evaluation of the sensors’ radiometric capabilities is essential before quantitative applications can be made. In this study, a comprehensive procedure for evaluating the radiometric capability of several Chinese optical satellite sensors is proposed. In this procedure, long-term radiometric stability and radiometric accuracy are the two major indicators for radiometric evaluation. The radiometric temporal stability is analyzed by the tendency of long-term top-of-atmosphere (TOA) reflectance variation; the radiometric accuracy is determined by comparison with the TOA reflectance from MODIS after spectrally matching. Three Chinese sensors including the Charge-Coupled Device (CCD) camera onboard Huan Jing 1 satellite (HJ-1), as well as the Visible and Infrared Radiometer (VIRR) and Medium-Resolution Spectral Imager (MERSI) onboard the Feng Yun 3 satellite (FY-3) are evaluated in reflective bands based on this procedure. The results are reasonable, and thus can provide reliable reference for the sensors’ application, and as such will promote the development of Chinese satellite data. PMID:28117745

  16. Evaluation on Radiometric Capability of Chinese Optical Satellite Sensors.

    PubMed

    Yang, Aixia; Zhong, Bo; Wu, Shanlong; Liu, Qinhuo

    2017-01-22

    The radiometric capability of on-orbit sensors should be updated on time due to changes induced by space environmental factors and instrument aging. Some sensors, such as Moderate Resolution Imaging Spectroradiometer (MODIS), have onboard calibrators, which enable real-time calibration. However, most Chinese remote sensing satellite sensors lack onboard calibrators. Their radiometric calibrations have been updated once a year based on a vicarious calibration procedure, which has affected the applications of the data. Therefore, a full evaluation of the sensors' radiometric capabilities is essential before quantitative applications can be made. In this study, a comprehensive procedure for evaluating the radiometric capability of several Chinese optical satellite sensors is proposed. In this procedure, long-term radiometric stability and radiometric accuracy are the two major indicators for radiometric evaluation. The radiometric temporal stability is analyzed by the tendency of long-term top-of-atmosphere (TOA) reflectance variation; the radiometric accuracy is determined by comparison with the TOA reflectance from MODIS after spectrally matching. Three Chinese sensors including the Charge-Coupled Device (CCD) camera onboard Huan Jing 1 satellite (HJ-1), as well as the Visible and Infrared Radiometer (VIRR) and Medium-Resolution Spectral Imager (MERSI) onboard the Feng Yun 3 satellite (FY-3) are evaluated in reflective bands based on this procedure. The results are reasonable, and thus can provide reliable reference for the sensors' application, and as such will promote the development of Chinese satellite data.

  17. Estimating tree heights from shadows on vertical aerial photographs

    Treesearch

    Earl J. Rogers

    1947-01-01

    Aerial photographs are now being applied more and more to practical forestry - especially to forest survey. Many forest characteristics can be recognized on aerial photographs in greater detail than is possible through ground methods alone. The basic need is for tools and methods for interpreting the detail in quantitative terms.

  18. An Aerial Radiological Survey of Selected Areas of the City of North Las Vegas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piotr Wasiolek

    2008-06-01

    As part of the proficiency training for the Radiological Mapping mission of the Aerial Measuring System (AMS), a survey team from the Remote Sensing Laboratory-Nellis (RSL-Nellis) conducted an aerial radiological survey of selected areas of the city of North Las Vegas for the purpose of mapping natural radiation background and locating any man-made radioactive sources. Survey areas were selected in collaboration with the City Manager's office and included four separate areas: (1) Las Vegas Motor Speedway (10.6 square miles); (2) North Las Vegas Downtown Area (9.2 square miles); (3) I-15 Industrial Corridor (7.4 square miles); and (4) Future site ofmore » University of Nevada Las Vegas campus (17.4 square miles). The survey was conducted in three phases: Phase 1 on December 11-12, 2007 (Areas 1 and 2), Phase 2 on February 28, 2008 (Area 3), and Phase 3 on March 19, 2008 (Area 4). The total completed survey covered a total of 44.6 square miles. The flight lines (without the turns) over the surveyed areas are presented in Figures 1, 2, 3, and 4. A total of eight 2.5-hour-long flights were performed at an altitude of 150 ft above ground level (AGL) with 300 feet of flight-line spacing. Water line and test line flights were conducted over the Lake Mead and Government Wash areas to ensure quality control of the data. The data were collected by the AMS data acquisition system (REDAR V) using an array of twelve 2-inch x 4-inch x 16-inch sodium iodide (NaI) detectors flown on-board a twin-engine Bell 412 helicopter. Data, in the form of gamma energy spectra, were collected continually (every second) over the course of the survey and were geo-referenced using a differential Global Positioning System. Collection of spectral data allows the system to distinguish between ordinary fluctuations in natural background radiation levels and the signature produced by man-made radioisotopes. Spectral data can also be used to identify specific radioactive isotopes. As a courtesy

  19. An Aerial Radiological Survey of the City of North Las Vegas (Downtown) and the Motor Speedway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piotr Wasiolek

    2007-12-01

    As part of the proficiency training for the Radiological Mapping mission of the Aerial Measuring System (AMS), a survey team from the Remote Sensing Laboratory-Nellis (RSL-Nellis) conducted an aerial radiological survey on December 11-12, 2007, with the purpose of mapping natural radiation background and locating any man-made radioactive sources. The survey covered 19.4 square miles (9.2 square miles over the downtown area of the City of North Las Vegas and 10.2 square miles over the Las Vegas Motor Speedway [LVMS]). The flight lines over the surveyed areas are presented in Figures 1 and 2. A total of four 2.5-hour-long flightsmore » were performed at an altitude of 150 ft above ground level (AGL) with 300 ft of flight line spacing. Water line and test line flights were conducted over the Lake Mead and Government Wash areas to ensure quality control of the data. The data were collected by the AMS data acquisition system-REDAR V using an array of twelve 2-inch x 4-inch x 16-inch sodium iodide (NaI) detectors flown on-board a twin-engine Bell 412 helicopter. Data in the form of gamma energy spectra were collected continually (every second) over the course of the survey and were geo-referenced using a differential Global Positioning System. Collection of spectral data allows the system to distinguish between ordinary fluctuations in natural background radiation levels and the signature produced by man-made radioisotopes sources. Spectral data can also be used to identify specific radioactive isotopes. As a courtesy service with the approval of the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office, RSL-Nellis is providing this summary to the office of the Mayor of City of North Las Vegas and LVMS security along with the gross counts-based exposure rate and man-made counts maps.« less

  20. Mississippi exploration field trials using microbial, radiometrics, free soil gas, and other techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, J.S.; Brown, L.R.; Thieling, S.C.

    1995-12-31

    The Mississippi Office of Geology has conducted field trials using the surface exploration techniques of geomicrobial, radiometrics, and free soil gas. The objective of these trials is to determine if Mississippi oil and gas fields have surface hydrocarbon expression resulting from vertical microseepage migration. Six fields have been surveyed ranging in depth from 3,330 ft to 18,500 ft. The fields differ in trapping styles and hydrocarbon type. The results so far indicate that these fields do have a surface expression and that geomicrobial analysis as well as radiometrics and free soil gas can detect hydrocarbon microseepage from pressurized reservoirs. Allmore » three exploration techniques located the reservoirs independent of depth, hydrocarbon type, or trapping style.« less

  1. Identification and extraction of the seaward edge of terrestrial vegetation using digital aerial photography

    USGS Publications Warehouse

    Harris, Melanie; Brock, John C.; Nayegandhi, A.; Duffy, M.; Wright, C.W.

    2006-01-01

    This report is created as part of the Aerial Data Collection and Creation of Products for Park Vital Signs Monitoring within the Northeast Region Coastal and Barrier Network project, which is a joint project between the National Park Service Inventory and Monitoring Program (NPS-IM), the National Aeronautics and Space Administration (NASA) Observational Sciences Branch, and the U.S. Geological Survey (USGS) Center for Coastal and Watershed Studies (CCWS). This report is one of a series that discusses methods for extracting topographic features from aerial survey data. It details step-by-step methods used to extract a spatially referenced digital line from aerial photography that represents the seaward edge of terrestrial vegetation along the coast of Assateague Island National Seashore (ASIS). One component of the NPS-IM/USGS/NASA project includes the collection of NASA aerial surveys over various NPS barrier islands and coastal parks throughout the National Park Service's Northeast Region. These aerial surveys consist of collecting optical remote sensing data from a variety of sensors, including the NASA Airborne Topographic Mapper (ATM), the NASA Experimental Advanced Airborne Research Lidar (EAARL), and down-looking digital mapping cameras.

  2. Mars Aerial Regional-Scale Environmental Survey (ARES) Coordinate Systems Definitions and Transformations

    NASA Technical Reports Server (NTRS)

    Kuhl, Christoper A.

    2009-01-01

    The Aerial Regional-Scale Environmental Survey (ARES) is a Mars exploration mission concept with the goal of taking scientific measurements of the atmosphere, surface, and subsurface of Mars by using an airplane as the payload platform. ARES team first conducted a Phase-A study for a 2007 launch opportunity, which was completed in May 2003. Following this study, significant efforts were undertaken to reduce the risk of the atmospheric flight system, under the NASA Langley Planetary Airplane Risk Reduction Project. The concept was then proposed to the Mars Scout program in 2006 for a 2011 launch opportunity. This paper summarizes the design and development of the ARES airplane propulsion subsystem beginning with the inception of the ARES project in 2002 through the submittal of the Mars Scout proposal in July 2006.

  3. NASA’s Aerial Survey of Polar Ice Expands Its Arctic Reach

    NASA Image and Video Library

    2017-12-08

    For the past eight years, Operation IceBridge, a NASA mission that conducts aerial surveys of polar ice, has produced unprecedented three-dimensional views of Arctic and Antarctic ice sheets, providing scientists with valuable data on how polar ice is changing in a warming world. Now, for the first time, the campaign will expand its reach to explore the Arctic’s Eurasian Basin through two research flights based out of Svalbard, a Norwegian archipelago in the northern Atlantic Ocean. More: go.nasa.gov/2ngAxX2 Credits: NASA/Nathan Kurtz NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Practical Bias Correction in Aerial Surveys of Large Mammals: Validation of Hybrid Double-Observer with Sightability Method against Known Abundance of Feral Horse (Equus caballus) Populations

    PubMed Central

    2016-01-01

    Reliably estimating wildlife abundance is fundamental to effective management. Aerial surveys are one of the only spatially robust tools for estimating large mammal populations, but statistical sampling methods are required to address detection biases that affect accuracy and precision of the estimates. Although various methods for correcting aerial survey bias are employed on large mammal species around the world, these have rarely been rigorously validated. Several populations of feral horses (Equus caballus) in the western United States have been intensively studied, resulting in identification of all unique individuals. This provided a rare opportunity to test aerial survey bias correction on populations of known abundance. We hypothesized that a hybrid method combining simultaneous double-observer and sightability bias correction techniques would accurately estimate abundance. We validated this integrated technique on populations of known size and also on a pair of surveys before and after a known number was removed. Our analysis identified several covariates across the surveys that explained and corrected biases in the estimates. All six tests on known populations produced estimates with deviations from the known value ranging from -8.5% to +13.7% and <0.7 standard errors. Precision varied widely, from 6.1% CV to 25.0% CV. In contrast, the pair of surveys conducted around a known management removal produced an estimated change in population between the surveys that was significantly larger than the known reduction. Although the deviation between was only 9.1%, the precision estimate (CV = 1.6%) may have been artificially low. It was apparent that use of a helicopter in those surveys perturbed the horses, introducing detection error and heterogeneity in a manner that could not be corrected by our statistical models. Our results validate the hybrid method, highlight its potentially broad applicability, identify some limitations, and provide insight and guidance

  5. Practical Bias Correction in Aerial Surveys of Large Mammals: Validation of Hybrid Double-Observer with Sightability Method against Known Abundance of Feral Horse (Equus caballus) Populations.

    PubMed

    Lubow, Bruce C; Ransom, Jason I

    2016-01-01

    Reliably estimating wildlife abundance is fundamental to effective management. Aerial surveys are one of the only spatially robust tools for estimating large mammal populations, but statistical sampling methods are required to address detection biases that affect accuracy and precision of the estimates. Although various methods for correcting aerial survey bias are employed on large mammal species around the world, these have rarely been rigorously validated. Several populations of feral horses (Equus caballus) in the western United States have been intensively studied, resulting in identification of all unique individuals. This provided a rare opportunity to test aerial survey bias correction on populations of known abundance. We hypothesized that a hybrid method combining simultaneous double-observer and sightability bias correction techniques would accurately estimate abundance. We validated this integrated technique on populations of known size and also on a pair of surveys before and after a known number was removed. Our analysis identified several covariates across the surveys that explained and corrected biases in the estimates. All six tests on known populations produced estimates with deviations from the known value ranging from -8.5% to +13.7% and <0.7 standard errors. Precision varied widely, from 6.1% CV to 25.0% CV. In contrast, the pair of surveys conducted around a known management removal produced an estimated change in population between the surveys that was significantly larger than the known reduction. Although the deviation between was only 9.1%, the precision estimate (CV = 1.6%) may have been artificially low. It was apparent that use of a helicopter in those surveys perturbed the horses, introducing detection error and heterogeneity in a manner that could not be corrected by our statistical models. Our results validate the hybrid method, highlight its potentially broad applicability, identify some limitations, and provide insight and guidance

  6. Computing the Deflection of the Vertical for Improving Aerial Surveys: A Comparison between EGM2008 and ITALGEO05 Estimates.

    PubMed

    Barzaghi, Riccardo; Carrion, Daniela; Pepe, Massimiliano; Prezioso, Giuseppina

    2016-07-26

    Recent studies on the influence of the anomalous gravity field in GNSS/INS applications have shown that neglecting the impact of the deflection of vertical in aerial surveys induces horizontal and vertical errors in the measurement of an object that is part of the observed scene; these errors can vary from a few tens of centimetres to over one meter. The works reported in the literature refer to vertical deflection values based on global geopotential model estimates. In this paper we compared this approach with the one based on local gravity data and collocation methods. In particular, denoted by ξ and η, the two mutually-perpendicular components of the deflection of the vertical vector (in the north and east directions, respectively), their values were computed by collocation in the framework of the Remove-Compute-Restore technique, applied to the gravity database used for estimating the ITALGEO05 geoid. Following this approach, these values have been computed at different altitudes that are relevant in aerial surveys. The (ξ, η) values were then also estimated using the high degree EGM2008 global geopotential model and compared with those obtained in the previous computation. The analysis of the differences between the two estimates has shown that the (ξ, η) global geopotential model estimate can be reliably used in aerial navigation applications that require the use of sensors connected to a GNSS/INS system only above a given height (e.g., 3000 m in this paper) that must be defined by simulations.

  7. Computing the Deflection of the Vertical for Improving Aerial Surveys: A Comparison between EGM2008 and ITALGEO05 Estimates

    PubMed Central

    Barzaghi, Riccardo; Carrion, Daniela; Pepe, Massimiliano; Prezioso, Giuseppina

    2016-01-01

    Recent studies on the influence of the anomalous gravity field in GNSS/INS applications have shown that neglecting the impact of the deflection of vertical in aerial surveys induces horizontal and vertical errors in the measurement of an object that is part of the observed scene; these errors can vary from a few tens of centimetres to over one meter. The works reported in the literature refer to vertical deflection values based on global geopotential model estimates. In this paper we compared this approach with the one based on local gravity data and collocation methods. In particular, denoted by ξ and η, the two mutually-perpendicular components of the deflection of the vertical vector (in the north and east directions, respectively), their values were computed by collocation in the framework of the Remove-Compute-Restore technique, applied to the gravity database used for estimating the ITALGEO05 geoid. Following this approach, these values have been computed at different altitudes that are relevant in aerial surveys. The (ξ, η) values were then also estimated using the high degree EGM2008 global geopotential model and compared with those obtained in the previous computation. The analysis of the differences between the two estimates has shown that the (ξ, η) global geopotential model estimate can be reliably used in aerial navigation applications that require the use of sensors connected to a GNSS/INS system only above a given height (e.g., 3000 m in this paper) that must be defined by simulations. PMID:27472333

  8. Verification of the radiometric map of the Czech Republic.

    PubMed

    Matolín, Milan

    2017-01-01

    The radiometric map of the Czech Republic is based on uniform regional airborne radiometric total count measurements (1957-1959) which covered 100% of the country. The airborne radiometric instrument was calibrated to a 226 Ra point source. The calibration facility for field gamma-ray spectrometers, established in the Czech Republic in 1975, significantly contributed to the subsequent radiometric data standardization. In the 1990's, the original analogue airborne radiometric data were digitized and using the method of back-calibration (IAEA, 2003) converted to dose rate. The map of terrestrial gamma radiation expressed in dose rate (nGy/h) was published on the scale 1:500,000 in 1995. Terrestrial radiation in the Czech Republic, formed by magmatic, sedimentary and metamorphic rocks of Proterozoic to Quaternary age, ranges mostly from 6 to 245 nGy/h, with a mean of 65.6 ± 19.0 nGy/h. The elevated terrestrial radiation in the Czech Republic, in comparison to the global dose rate average of 54 nGy/h, reflects an enhanced content of natural radioactive elements in the rocks. The 1995 published radiometric map of the Czech Republic was successively studied and verified by additional ground gamma-ray spectrometric measurements and by comparison to radiometric maps of Germany, Poland and Slovakia in border zones. A ground dose rate intercomparison measurement under participation of foreign and domestic professional institutions revealed mutual dose rate deviations about 20 nGy/h and more due to differing technical parameters of applied radiometric instruments. Studies and verification of the radiometric map of the Czech Republic illustrate the magnitude of current deviations in dose rate data. This gained experience can assist in harmonization of dose rate data on the European scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. USGS Releases New Digital Aerial Products

    USGS Publications Warehouse

    ,

    2005-01-01

    The U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) has initiated distribution of digital aerial photographic products produced by scanning or digitizing film from its historical aerial photography film archive. This archive, located in Sioux Falls, South Dakota, contains thousands of rolls of film that contain more than 8 million frames of historic aerial photographs. The largest portion of this archive consists of original film acquired by Federal agencies from the 1930s through the 1970s to produce 1:24,000-scale USGS topographic quadrangle maps. Most of this photography is reasonably large scale (USGS photography ranges from 1:8,000 to 1:80,000) to support the production of the maps. Two digital products are currently available for ordering: high-resolution scanned products and medium-resolution digitized products.

  10. Ultramap v3 - a Revolution in Aerial Photogrammetry

    NASA Astrophysics Data System (ADS)

    Reitinger, B.; Sormann, M.; Zebedin, L.; Schachinger, B.; Hoefler, M.; Tomasi, R.; Lamperter, M.; Gruber, B.; Schiester, G.; Kobald, M.; Unger, M.; Klaus, A.; Bernoegger, S.; Karner, K.; Wiechert, A.; Ponticelli, M.; Gruber, M.

    2012-07-01

    In the last years, Microsoft has driven innovation in the aerial photogrammetry community. Besides the market leading camera technology, UltraMap has grown to an outstanding photogrammetric workflow system which enables users to effectively work with large digital aerial image blocks in a highly automated way. Best example is the project-based color balancing approach which automatically balances images to a homogeneous block. UltraMap V3 continues innovation, and offers a revolution in terms of ortho processing. A fully automated dense matching module strives for high precision digital surface models (DSMs) which are calculated either on CPUs or on GPUs using a distributed processing framework. By applying constrained filtering algorithms, a digital terrain model can be derived which in turn can be used for fully automated traditional ortho texturing. By having the knowledge about the underlying geometry, seamlines can be generated automatically by applying cost functions in order to minimize visual disturbing artifacts. By exploiting the generated DSM information, a DSMOrtho is created using the balanced input images. Again, seamlines are detected automatically resulting in an automatically balanced ortho mosaic. Interactive block-based radiometric adjustments lead to a high quality ortho product based on UltraCam imagery. UltraMap v3 is the first fully integrated and interactive solution for supporting UltraCam images at best in order to deliver DSM and ortho imagery.

  11. Mapping hardwood mortality for the early detection of P. ramorum: an assessment of aerial surveys and object-oriented image analysis

    Treesearch

    Erik Haunreiter; Zhanfeng Liu; Jeff Mai; Zachary Heath; Lisa Fischer

    2008-01-01

    Effective monitoring and identification of areas of hardwood mortality is a critical component in the management of sudden oak death (SOD). From 2001 to 2005, aerial surveys covering 13.5 million acres in California were conducted to map and monitor hardwood mortality for the early detection of Phytophthora ramorum, the pathogen responsible for SOD....

  12. The radiometric characteristics of KOMPSAT-3A by using reference radiometric tarps and ground measurement

    NASA Astrophysics Data System (ADS)

    Yeom, Jong-Min

    2016-09-01

    In this study, we performed the vicarious radiometric calibration of KOMPSAT-3A multispectral bands by using 6S radiative transfer model, radiometric tarps, MFRSR measurements. Furthermore, to prepare the accurate input parameter, we also did experiment work to measure the BRDF of radiometric tarps based on hyperspectral gonioradiometer to compensate the observation geometry difference between satellite and ASD Fieldspec 3. Also, we measured point spread function (PSF) by using the bright star and corrected multispectral bands based on the Wiener filter. For accurate atmospheric constituent effects such as aerosol optical depth, column water, and total ozone, we used MFRSR instrument and estimated related optical depth of each gases. Based on input parameters for 6S radiative transfer model, we simulated top of atmosphere (TOA) radiance by observed by KOMPSAT-3A and matched-up the digital number. Consequently, DN to radiance coefficients was determined based on aforementioned methods and showed reasonable statistics results.

  13. Improving inference for aerial surveys of bears: The importance of assumptions and the cost of unnecessary complexity.

    PubMed

    Schmidt, Joshua H; Wilson, Tammy L; Thompson, William L; Reynolds, Joel H

    2017-07-01

    Obtaining useful estimates of wildlife abundance or density requires thoughtful attention to potential sources of bias and precision, and it is widely understood that addressing incomplete detection is critical to appropriate inference. When the underlying assumptions of sampling approaches are violated, both increased bias and reduced precision of the population estimator may result. Bear ( Ursus spp.) populations can be difficult to sample and are often monitored using mark-recapture distance sampling (MRDS) methods, although obtaining adequate sample sizes can be cost prohibitive. With the goal of improving inference, we examined the underlying methodological assumptions and estimator efficiency of three datasets collected under an MRDS protocol designed specifically for bears. We analyzed these data using MRDS, conventional distance sampling (CDS), and open-distance sampling approaches to evaluate the apparent bias-precision tradeoff relative to the assumptions inherent under each approach. We also evaluated the incorporation of informative priors on detection parameters within a Bayesian context. We found that the CDS estimator had low apparent bias and was more efficient than the more complex MRDS estimator. When combined with informative priors on the detection process, precision was increased by >50% compared to the MRDS approach with little apparent bias. In addition, open-distance sampling models revealed a serious violation of the assumption that all bears were available to be sampled. Inference is directly related to the underlying assumptions of the survey design and the analytical tools employed. We show that for aerial surveys of bears, avoidance of unnecessary model complexity, use of prior information, and the application of open population models can be used to greatly improve estimator performance and simplify field protocols. Although we focused on distance sampling-based aerial surveys for bears, the general concepts we addressed apply to a

  14. Kite Aerial Photography (KAP) as a Tool for Field Teaching

    ERIC Educational Resources Information Center

    Sander, Lasse

    2014-01-01

    Kite aerial photography (KAP) is proposed as a creative tool for geography field teaching and as a medium to approach the complexity of readily available geodata. The method can be integrated as field experiment, surveying technique or group activity. The acquired aerial images can instantaneously be integrated in geographic information systems…

  15. Radiometric packaging of uncooled bolometric infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    García-Blanco, Sonia; Pope, Timothy; Côté, Patrice; Leclerc, Mélanie; Ngo Phong, Linh; Châteauneuf, François

    2017-11-01

    INO has a wide experience in the design and fabrication of different kinds of microbolometer focal plane arrays (FPAs). In particular, a 512x3 pixel microbolometer FPA has been selected as the sensor for the New Infrared Sensor Technology (NIRST) instrument, one of the payloads of the SACD/Aquarius mission. In order to make the absolute temperature measurements necessary for many infrared Earth observation applications, the microbolometer FPA must be integrated into a package offering a very stable thermal environment. The radiometric packaging technology developed at INO presents an innovative approach since it was conceived to be modular and adaptable for the packaging of different microbolometer FPAs and for different sets of assembly requirements without need for requalification of the assembly process. The development of the radiometric packaging technology has broadened the position of INO as a supplier of radiometric detector modules integrating FPAs of microbolometers inside a radiometric package capable of achieving the requirements of different space missions. This paper gives an overview of the design of INO's radiometric package. Key performance parameters are also discussed and the test campaign conducted with the radiometric package is presented.

  16. Looking for an old aerial photograph

    USGS Publications Warehouse

    ,

    1997-01-01

    Attempts to photograph the surface of the Earth date from the 1800's, when photographers attached cameras to balloons, kites, and even pigeons. Today, aerial photographs and satellite images are commonplace. The rate of acquiring aerial photographs and satellite images has increased rapidly in recent years. Views of the Earth obtained from aircraft or satellites have become valuable tools to Government resource planners and managers, land-use experts, environmentalists, engineers, scientists, and a wide variety of other users. Many people want historical aerial photographs for business or personal reasons. They may want to locate the boundaries of an old farm or a piece of family property. Or they may want a photograph as a record of changes in their neighborhood, or as a gift. The U.S. Geological Survey (USGS) maintains the Earth Science Information Centers (ESIC?s) to sell aerial photographs, remotely sensed images from satellites, a wide array of digital geographic and cartographic data, as well as the Bureau?s wellknown maps. Declassified photographs from early spy satellites were recently added to the ESIC offerings of historical images. Using the Aerial Photography Summary Record System database, ESIC researchers can help customers find imagery in the collections of other Federal agencies and, in some cases, those of private companies that specialize in esoteric products.

  17. Radiometric temperature reference

    NASA Technical Reports Server (NTRS)

    Monford, L. G., Jr.

    1969-01-01

    Radiometric Temperature Reference uses a thermistor as both a heating and sensing element to maintain its resistance at a preselected level to continuously control the power supplying it. The fixed infrared radiation level must be simple, rugged, and capable of high temperature operation.

  18. Aerial Transient Electromagnetic Surveys of Alluvial Aquifers in Rural Watersheds of Arizona

    NASA Astrophysics Data System (ADS)

    Pool, D. R.; Callegary, J. B.; Groom, R. W.

    2006-12-01

    Development in rural areas of Arizona has led the State of Arizona (Arizona Department of Water Resources), in cooperation with the Arizona Water Science Center of the U.S. Geological Survey, to sponsor investigations of the hydrogeologic framework of several alluvial-basin aquifers. An efficient method for mapping the aquifer extent and lithology was needed due to sparse subsurface information. Aerial Transient Electro-Magnetic (ATEM) methods were selected because they can be used to quickly survey large areas and with a great depth of investigation. Both helicopter and fixed-wing ATEM methods are available. A fixed-wing method (GEOTEM) was selected because of the potential for a depth of investigation of 300 m or more and because previous surveys indicated the method is useful in alluvial basins in southeastern Arizona. About 2,900 km of data along flight lines were surveyed across five alluvial basins, including the Middle San Pedro and Willcox Basins in southeastern Arizona, and Detrital, Hualapai, and Sacramento Basins in northwestern Arizona. Data initially were analyzed by the contractor (FUGRO Airborne Surveys) to produce conductivity-depth-transforms, which approximate the general subsurface electrical-property distribution along profiles. Physically based two-dimensional physical models of the profile data were then developed by PetRos- Eikon by using EMIGMA software. Hydrologically important lithologies can have different electrical properties. Several types of crystalline and sedimentary rocks generally are poor aquifers that have low porosity and high electrical resistivity. Good alluvial aquifers of sand and gravel generally have an intermediate electrical resistivity. Poor aquifer materials, such as silt and clay, and areas of poor quality water have low electrical resistivity values. Several types of control data were available to constrain the models including drill logs, electrical logs, water levels , and water quality information from wells; and

  19. Aerial Survey Results for 131I Deposition on the Ground after the Fukushima Daiichi Nuclear Power Plant Accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torii, Tatsuo; Sugita, Takeshi; Okada, Colin E.

    In March 2011 the second largest accidental release of radioactivity in history occurred at the Fukushima Daiichi nuclear power plant following a magnitude 9.0 earthquake and subsequent tsunami. Teams from the U.S. Department of Energy, National Nuclear Security Administration Office of Emergency Response performed aerial surveys to provide initial maps of the dispersal of radioactive material in Japan. The initial results from the surveys did not report the concentration of 131I. This work reports on analyses performed on the initial survey data by a joint Japan-US collaboration to determine 131I ground concentration. This information is potentially useful in reconstruction ofmore » the inhalation and external exposure doses from this short-lived radionuclide. The deposited concentration of 134Cs is also reported.« less

  20. Aerial surveys of endangered whales in the Beaufort Sea, Fall 1989. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treacy, S.D.

    1990-11-01

    The OCSLA Amendments of 1978 (43 U.S.C. 1802) established a policy for the management of oil and natural gas in the OCS and for protection of the marine and coastal environments. The amended OCSLA authorizes the Secretary of the Interior to conduct studies in areas or regions of sales to ascertain the environmental impacts on the marine and coastal environments of the outer Continental Shelf and the coastal areas which may be affected by oil and gas development (43 U.S.C. 1346). The report describes field activities and data analyses for aerial surveys of bowhead whales conducted between 1 September 1989more » and 20 October 1989 in the Beaufort Sea, primarily between 140 W. and 154 W. longitudes south of 72 N. latitude. Ice cover during September and October 1989 was exceptionally light. A total of 215 bowhead whales, 104 belukha whales, 9 bearded seals, 84 ringed seals, and 32 unidentified pinnipeds were observed in 1989 during 98.70 hours of survey effort that included 38.10 hours on randomized transects. The last sighting of a bowhead whale made during the survey occurred in open water on 19 October 1989. No whales were sighted during a subsequent flight on 20 October 1989. Estimated median and mean water depths were shallower than for previous surveys (1982-1989). This is consistent with a trend for whales to be located in shallower water during years of generally light ice cover.« less

  1. Three scales of aerial photography compared for making stand measurements

    Treesearch

    Earl J. Rogers; Gene Avery; Roy A. Chapman

    1959-01-01

    Three scales of aerial photography were tested in an attempt to determine the best scale to use in forest surveying. This was done by comparing photo measurements of average tree height, average crown diameter, and crown-closure percent. These stand variables were selected for testing because of their applicability in making aerial estimates of timber volume.

  2. Lessons learned from the AIRS pre-flight radiometric calibration

    NASA Astrophysics Data System (ADS)

    Pagano, Thomas S.; Aumann, Hartmut H.; Weiler, Margie

    2013-09-01

    The Atmospheric Infrared Sounder (AIRS) instrument flies on the NASA Aqua satellite and measures the upwelling hyperspectral earth radiance in the spectral range of 3.7-15.4 μm with a nominal ground resolution at nadir of 13.5 km. The AIRS spectra are achieved using a temperature controlled grating spectrometer and HgCdTe infrared linear arrays providing 2378 channels with a nominal spectral resolution of approximately 1200. The AIRS pre-flight tests that impact the radiometric calibration include a full system radiometric response (linearity), polarization response, and response vs scan angle (RVS). We re-derive the AIRS instrument radiometric calibration coefficients from the pre-flight polarization measurements, the response vs scan (RVS) angle tests as well as the linearity tests, and a recent lunar roll test that allowed the AIRS to view the moon. The data and method for deriving the coefficients is discussed in detail and the resulting values compared amongst the different tests. Finally, we examine the residual errors in the reconstruction of the external calibrator blackbody radiances and the efficacy of a new radiometric uncertainty model. Results show the radiometric calibration of AIRS to be excellent and the radiometric uncertainty model does a reasonable job of characterizing the errors.

  3. Geometry of the hemispherical radiometric footprint over plant canopies

    NASA Astrophysics Data System (ADS)

    Marcolla, B.; Cescatti, A.

    2017-11-01

    Radiometric measurements of hemispherical surface reflectance and long-wave irradiance are required to quantify the broadband albedo and the outgoing thermal radiation. These observations are typically integrated with eddy covariance measurements of sensible and latent heat fluxes to characterize the surface energy budget. While the aerodynamic footprint has been widely investigated, the geometry of the hemispherical radiometric footprint over plant canopies has been rarely tackled. In the present work, the size and shape of the hemispherical radiometric footprint are formalized for a bare surface and in presence of a vegetation cover. For this purpose, four idealized canopies are analyzed and the dependency of the radiometric footprint on leaf area index and canopy height is explored. Besides, the radiometric footprint is compared with the aerodynamic footprint in conditions of neutral stability. It was observed that almost 100% of the hemispherical radiometric signal originates within a distance of a few radiometer heights, while only about 50-80% of the cumulative aerodynamic signal is generated within a distance of about 20 sensor heights. In order to achieve comparable extensions of the footprint areas, hemispherical radiometric measurements should therefore be taken about 6-15 times higher than turbulent flux ones, depending on the vegetation type. The analysis also highlights that the size of the radiative footprint decreases at increasing leaf area index, whereas the aerodynamic footprint shows an opposite behavior. For the abovementioned reasons, this work may support the interpretation of energy flux measurements and the optimal design of eddy covariance stations located in heterogeneous sites.

  4. Early aerial photography and contributions to Digital Earth - The case of the 1921 Halifax air survey mission in Canada

    NASA Astrophysics Data System (ADS)

    Werle, D.

    2016-04-01

    This paper presents research into the military and civilian history, technological development, and practical outcomes of aerial photography in Canada immediately after the First World War. The collections of early aerial photography in Canada and elsewhere, as well as the institutional and practical circumstances and arrangements of their creation, represent an important part of remote sensing heritage. It is argued that the digital rendition of the air photos and their representation in mosaic form can make valuable contributions to Digital Earth historic inquiries and mapping exercises today. An episode of one of the first urban surveys, carried out over Halifax, Nova Scotia, in 1921, is highlighted and an air photo mosaic and interpretation key is presented. Using the almost one hundred year old air photos and a digitally re-assembled mosaic of a substantial portion of that collection as a guide, a variety of features unique to the post-war urban landscape of the Halifax peninsula are analysed, illustrated, and compared with records of past and current land use. The pan-chromatic air photo ensemble at a nominal scale of 1:5,000 is placed into the historical context with contemporary thematic maps, recent air photos, and modern satellite imagery. Further research opportunities and applications concerning early Canadian aerial photography are outlined.

  5. RapidEye constellation relative radiometric accuracy measurement using lunar images

    NASA Astrophysics Data System (ADS)

    Steyn, Joe; Tyc, George; Beckett, Keith; Hashida, Yoshi

    2009-09-01

    The RapidEye constellation includes five identical satellites in Low Earth Orbit (LEO). Each satellite has a 5-band (blue, green, red, red-edge and near infrared (NIR)) multispectral imager at 6.5m GSD. A three-axes attitude control system allows pointing the imager of each satellite at the Moon during lunations. It is therefore possible to image the Moon from near identical viewing geometry within a span of 80 minutes with each one of the imagers. Comparing the radiometrically corrected images obtained from each band and each satellite allows a near instantaneous relative radiometric accuracy measurement and determination of relative gain changes between the five imagers. A more traditional terrestrial vicarious radiometric calibration program has also been completed by MDA on RapidEye. The two components of this program provide for spatial radiometric calibration ensuring that detector-to-detector response remains flat, while a temporal radiometric calibration approach has accumulated images of specific dry dessert calibration sites. These images are used to measure the constellation relative radiometric response and make on-ground gain and offset adjustments in order to maintain the relative accuracy of the constellation within +/-2.5%. A quantitative comparison between the gain changes measured by the lunar method and the terrestrial temporal radiometric calibration method is performed and will be presented.

  6. Aerial photography summary record system - five years later.

    USGS Publications Warehouse

    Lauterborn, T.J.

    1980-01-01

    Describes the APSRS, an automated information system for conventional aerial photography projects, established after the formation of the National Cartographic Information Center in the US Geological Survey in 1974. -after Author

  7. Relative radiometric calibration of LANDSAT TM reflective bands

    NASA Technical Reports Server (NTRS)

    Barker, J. L.

    1984-01-01

    A common scientific methodology and terminology is outlined for characterizing the radiometry of both TM sensors. The magnitude of the most significant sources of radiometric variability are discussed and methods are recommended for achieving the exceptional potential inherent in the radiometric precision and accuracy of the TM sensors.

  8. Laboratory Measurement of Bidirectional Reflectance of Radiometric Tarps

    NASA Technical Reports Server (NTRS)

    Knowlton, Kelly

    2006-01-01

    Objectives: a) To determine the magnitude of radiometric tarp BRDF; b) To determine whether an ASD FieldSpec Pro spectroradiometer can be used to perform the experiment. Radiometric tarps with nominal reflectance values of 52%, 35%, and 3.5%, deployed for IKONOS. QuickBird, and OrbView-3 overpasses Ground-based spectroradiometric measurements of tarp and Spectralon@ panel taken during overpass using ASD FieldSpec Pro spectroradiometer, and tarp reflectance calculated. Reflectance data used in atmospheric radiative transfer model (MODTRAN) to predict satellite at-sensor radiance for radiometric calibration. Reflectance data also used to validate atmospheric correction of high-spatial-resolution multispectral image products

  9. NASA’s Aerial Survey of Polar Ice Expands Its Arctic Reach

    NASA Image and Video Library

    2017-12-08

    For the past eight years, Operation IceBridge, a NASA mission that conducts aerial surveys of polar ice, has produced unprecedented three-dimensional views of Arctic and Antarctic ice sheets, providing scientists with valuable data on how polar ice is changing in a warming world. Now, for the first time, the campaign will expand its reach to explore the Arctic’s Eurasian Basin through two research flights based out of Svalbard, a Norwegian archipelago in the northern Atlantic Ocean. More: go.nasa.gov/2ngAxX2 Caption: Ellesmere Island mountain tops bathed in light as the sun began to peak over the horizon during Operation IceBridge’s first flight of its 2017 Arctic campaign, on March 9, 2017. Credits: NASA/Nathan Kurtz NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Comparison and assessment of aerial and ground estimates of waterbird colonies

    USGS Publications Warehouse

    Green, M.C.; Luent, M.C.; Michot, T.C.; Jeske, C.W.; Leberg, P.L.

    2008-01-01

    Aerial surveys are often used to quantify sizes of waterbird colonies; however, these surveys would benefit from a better understanding of associated biases. We compared estimates of breeding pairs of waterbirds, in colonies across southern Louisiana, USA, made from the ground, fixed-wing aircraft, and a helicopter. We used a marked-subsample method for ground-counting colonies to obtain estimates of error and visibility bias. We made comparisons over 2 sampling periods: 1) surveys conducted on the same colonies using all 3 methods during 3-11 May 2005 and 2) an expanded fixed-wing and ground-survey comparison conducted over 4 periods (May and Jun, 2004-2005). Estimates from fixed-wing aircraft were approximately 65% higher than those from ground counts for overall estimated number of breeding pairs and for both dark and white-plumaged species. The coefficient of determination between estimates based on ground and fixed-wing aircraft was ???0.40 for most species, and based on the assumption that estimates from the ground were closer to the true count, fixed-wing aerial surveys appeared to overestimate numbers of nesting birds of some species; this bias often increased with the size of the colony. Unlike estimates from fixed-wing aircraft, numbers of nesting pairs made from ground and helicopter surveys were very similar for all species we observed. Ground counts by one observer resulted in underestimated number of breeding pairs by 20% on average. The marked-subsample method provided an estimate of the number of missed nests as well as an estimate of precision. These estimates represent a major advantage of marked-subsample ground counts over aerial methods; however, ground counts are difficult in large or remote colonies. Helicopter surveys and ground counts provide less biased, more precise estimates of breeding pairs than do surveys made from fixed-wing aircraft. We recommend managers employ ground counts using double observers for surveying waterbird colonies

  11. Radiometric sounding system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiteman, C.D.; Anderson, G.A.; Alzheimer, J.M.

    1995-04-01

    Vertical profiles of solar and terrestrial radiative fluxes are key research needs for global climate change research. These fluxes are expected to change as radiatively active trace gases are emitted to the earth`s atmosphere as a consequence of energy production and industrial and other human activities. Models suggest that changes in the concentration of such gases will lead to radiative flux divergences that will produce global warming of the earth`s atmosphere. Direct measurements of the vertical variation of solar and terrestrial radiative fluxes that lead to these flux divergences have been largely unavailable because of the expense of making suchmore » measurements from airplanes. These measurements are needed to improve existing atmospheric radiative transfer models, especially under the cloudy conditions where the models have not been adequately tested. A tethered-balloon-borne Radiometric Sounding System has been developed at Pacific Northwest Laboratory to provide an inexpensive means of making routine vertical soundings of radiative fluxes in the earth`s atmospheric boundary layer to altitudes up to 1500 m above ground level. Such vertical soundings would supplement measurements being made from aircraft and towers. The key technical challenge in the design of the Radiometric Sounding System is to develop a means of keeping the radiometers horizontal while the balloon ascends and descends in a turbulent atmospheric environment. This problem has been addressed by stabilizing a triangular radiometer-carrying platform that is carried on the tetherline of a balloon sounding system. The platform, carried 30 m or more below the balloon to reduce the balloon`s effect on the radiometric measurements, is leveled by two automatic control loops that activate motors, gears and pulleys when the platform is off-level. The sensitivity of the automatic control loops to oscillatory motions of various frequencies and amplitudes can be adjusted using filters.« less

  12. Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: disturbance effects and species recognition.

    PubMed

    McEvoy, John F; Hall, Graham P; McDonald, Paul G

    2016-01-01

    The use of unmanned aerial vehicles (UAVs) for ecological research has grown rapidly in recent years, but few studies have assessed the disturbance impacts of these tools on focal subjects, particularly when observing easily disturbed species such as waterfowl. In this study we assessed the level of disturbance that a range of UAV shapes and sizes had on free-living, non-breeding waterfowl surveyed in two sites in eastern Australia between March and May 2015, as well as the capability of airborne digital imaging systems to provide adequate resolution for unambiguous species identification of these taxa. We found little or no obvious disturbance effects on wild, mixed-species flocks of waterfowl when UAVs were flown at least 60m above the water level (fixed wing models) or 40m above individuals (multirotor models). Disturbance in the form of swimming away from the UAV through to leaving the water surface and flying away from the UAV was visible at lower altitudes and when fixed-wing UAVs either approached subjects directly or rapidly changed altitude and/or direction near animals. Using tangential approach flight paths that did not cause disturbance, commercially available onboard optical equipment was able to capture images of sufficient quality to identify waterfowl and even much smaller taxa such as swallows. Our results show that with proper planning of take-off and landing sites, flight paths and careful UAV model selection, UAVs can provide an excellent tool for accurately surveying wild waterfowl populations and provide archival data with fewer logistical issues than traditional methods such as manned aerial surveys.

  13. Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: disturbance effects and species recognition

    PubMed Central

    Hall, Graham P.; McDonald, Paul G.

    2016-01-01

    The use of unmanned aerial vehicles (UAVs) for ecological research has grown rapidly in recent years, but few studies have assessed the disturbance impacts of these tools on focal subjects, particularly when observing easily disturbed species such as waterfowl. In this study we assessed the level of disturbance that a range of UAV shapes and sizes had on free-living, non-breeding waterfowl surveyed in two sites in eastern Australia between March and May 2015, as well as the capability of airborne digital imaging systems to provide adequate resolution for unambiguous species identification of these taxa. We found little or no obvious disturbance effects on wild, mixed-species flocks of waterfowl when UAVs were flown at least 60m above the water level (fixed wing models) or 40m above individuals (multirotor models). Disturbance in the form of swimming away from the UAV through to leaving the water surface and flying away from the UAV was visible at lower altitudes and when fixed-wing UAVs either approached subjects directly or rapidly changed altitude and/or direction near animals. Using tangential approach flight paths that did not cause disturbance, commercially available onboard optical equipment was able to capture images of sufficient quality to identify waterfowl and even much smaller taxa such as swallows. Our results show that with proper planning of take-off and landing sites, flight paths and careful UAV model selection, UAVs can provide an excellent tool for accurately surveying wild waterfowl populations and provide archival data with fewer logistical issues than traditional methods such as manned aerial surveys. PMID:27020132

  14. Metrically preserving the USGS aerial film archive

    USGS Publications Warehouse

    Moe, Donald; Longhenry, Ryan

    2013-01-01

    Since 1972, the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center in Sioux Falls, South Dakota, has provided fi lm-based products to the public. EROS is home to an archive of 12 million frames of analog photography ranging from 1937 to the present. The archive contains collections from both aerial and satellite platforms including programs such as the National High Altitude Program (NHAP), National Aerial Photography Program (NAPP), U.S. Antarctic Resource Center (USARC), Declass 1(CORONA, ARGON, and LANYARD), Declass 2 (KH-7 and KH-9), and Landsat (1972 – 1992, Landsat 1–5).

  15. Radiometric Dating Does Work!

    ERIC Educational Resources Information Center

    Dalrymple, G. Brent

    2000-01-01

    Discusses the accuracy of dating methods and creationist arguments that radiometric dating does not work. Explains the Manson meteorite impact and the Pierre shale, the ages of meteorites, the K-T tektites, and dating the Mount Vesuvius eruption. (Author/YDS)

  16. Absolute Radiometric Calibration of the GÖKTÜRK-2 Satellite Sensor Using Tuz GÖLÜ (landnet Site) from Ndvi Perspective

    NASA Astrophysics Data System (ADS)

    Sakarya, Ufuk; Hakkı Demirhan, İsmail; Seda Deveci, Hüsne; Teke, Mustafa; Demirkesen, Can; Küpçü, Ramazan; Feray Öztoprak, A.; Efendioğlu, Mehmet; Fehmi Şimşek, F.; Berke, Erdinç; Zübeyde Gürbüz, Sevgi

    2016-06-01

    TÜBİTAK UZAY has conducted a research study on the use of space-based satellite resources for several aspects of agriculture. Especially, there are two precision agriculture related projects: HASSAS (Widespread application of sustainable precision agriculture practices in Southeastern Anatolia Project Region (GAP) Project) and AKTAR (Smart Agriculture Feasibility Project). The HASSAS project aims to study development of precision agriculture practice in GAP region. Multi-spectral satellite imagery and aerial hyperspectral data along with ground measurements was collected to analyze data in an information system. AKTAR aims to develop models for irrigation, fertilization and spectral signatures of crops in Inner Anatolia. By the end of the project precision agriculture practices to control irrigation, fertilization, pesticide and estimation of crop yield will be developed. Analyzing the phenology of crops using NDVI is critical for the projects. For this reason, absolute radiometric calibration of the Red and NIR bands in space-based satellite sensors is an important issue. The Göktürk-2 satellite is an earth observation satellite which was designed and built in Turkey and was launched in 2012. The Göktürk-2 satellite sensor has a resolution 2.5 meters in panchromatic and 5 meters in R/G/B/NIR bands. The absolute radiometric calibration of the Göktürk-2 satellite sensor was performed via the ground-based measurements - spectra-radiometer, sun photometer, and meteorological station- in Tuz Gölü cal/val site in 2015. In this paper, the first ground-based absolute radiometric calibration results of the Göktürk-2 satellite sensor using Tuz Gölü is demonstrated. The absolute radiometric calibration results of this paper are compared with the published cross-calibration results of the Göktürk-2 satellite sensor utilizing Landsat 8 imagery. According to the experimental comparison results, the Göktürk-2 satellite sensor coefficients for red and NIR bands

  17. Aerial Explorers

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg; Ippolito, Corey

    2005-01-01

    This paper presents recent results from a mission architecture study of planetary aerial explorers. In this study, several mission scenarios were developed in simulation and evaluated on success in meeting mission goals. This aerial explorer mission architecture study is unique in comparison with previous Mars airplane research activities. The study examines how aerial vehicles can find and gain access to otherwise inaccessible terrain features of interest. The aerial explorer also engages in a high-level of (indirect) surface interaction, despite not typically being able to takeoff and land or to engage in multiple flights/sorties. To achieve this goal, a new mission paradigm is proposed: aerial explorers should be considered as an additional element in the overall Entry, Descent, Landing System (EDLS) process. Further, aerial vehicles should be considered primarily as carrier/utility platforms whose purpose is to deliver air-deployed sensors and robotic devices, or symbiotes, to those high-value terrain features of interest.

  18. Improved Absolute Radiometric Calibration of a UHF Airborne Radar

    NASA Technical Reports Server (NTRS)

    Chapin, Elaine; Hawkins, Brian P.; Harcke, Leif; Hensley, Scott; Lou, Yunling; Michel, Thierry R.; Moreira, Laila; Muellerschoen, Ronald J.; Shimada, Joanne G.; Tham, Kean W.; hide

    2015-01-01

    The AirMOSS airborne SAR operates at UHF and produces fully polarimetric imagery. The AirMOSS radar data are used to produce Root Zone Soil Moisture (RZSM) depth profiles. The absolute radiometric accuracy of the imagery, ideally of better than 0.5 dB, is key to retrieving RZSM, especially in wet soils where the backscatter as a function of soil moisture function tends to flatten out. In this paper we assess the absolute radiometric uncertainty in previously delivered data, describe a method to utilize Built In Test (BIT) data to improve the radiometric calibration, and evaluate the improvement from applying the method.

  19. User guide for the USGS aerial camera Report of Calibration.

    USGS Publications Warehouse

    Tayman, W.P.

    1984-01-01

    Calibration and testing of aerial mapping cameras includes the measurement of optical constants and the check for proper functioning of a number of complicated mechanical and electrical parts. For this purpose the US Geological Survey performs an operational type photographic calibration. This paper is not strictly a scientific paper but rather a 'user guide' to the USGS Report of Calibration of an aerial mapping camera for compliance with both Federal and State mapping specifications. -Author

  20. Radiometric age map of Aleutian Islands

    USGS Publications Warehouse

    Wilson, Frederic H.; Turner, D.L.

    1975-01-01

    This map includes published, thesis, and open-file radiometric data available to us as of June, 1975. Some dates are not plotted because of inadequate location data in the original references.The map is divided into five sections, based on 1:1,000,000 scale enlargements of the National Atlas maps of Alaska. Within each section (e.g., southeastern Alaska), radiometric dates are plotted and keyed to 1:250,000 scale quadrangles. Accompanying each map section is table 1, listing map numbers and the sample identification numbers used in DGGS Special Report 10: Radiometric Dates from Alaska-A 1975 Compilation”. The reader is referred to Special Report 10 for more complete information on location, rock type, dating method, and literature references for each age entry. A listing of dates in Special Report lo which require correction or deletion is included S table 2. Corrected and additional entries are listed in table 3. The listings in tables 2 and 3 follow the format of Special Report 10. Table 4 is a glossary of abbreviations used for quadrangle name, rock type, mineral dated, and type of dating method used.

  1. Radiometric age map of southcentral Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Turner, D.L.

    1975-01-01

    This map includes published, thesis, and open-file radiometric data available to us as of June, 1975. Some dates are not plotted because of inadequate location data in the original references.The map is divided into five sections, based on 1:1,000,000 scale enlargements of the National Atlas maps of Alaska. Within each section (e.g., southeastern Alaska), radiometric dates are plotted and keyed to 1:250,000 scale quadrangles. Accompanying each map section is table 1, listing map numbers and the sample identification numbers used in DGGS Special Report 10: Radiometric Dates from Alaska-A 1975 Compilation”. The reader is referred to Special Report 10 for more complete information on location, rock type, dating method, and literature references for each age entry. A listing of dates in Special Report lo which require correction or deletion is included S table 2. Corrected and additional entries are listed in table 3. The listings in tables 2 and 3 follow the format of Special Report 10. Table 4 is a glossary of abbreviations used for quadrangle name, rock type, mineral dated, and type of dating method used.

  2. Radiometric age map of southwest Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Turner, D.L.

    1975-01-01

    This map includes published, thesis, and open-file radiometric data available to us as of June, 1975. Some dates are not plotted because of inadequate location data in the original references.The map is divided into five sections, based on 1:1,000,000 scale enlargements of the National Atlas maps of Alaska. Within each section (e.g., southeastern Alaska), radiometric dates are plotted and keyed to 1:250,000 scale quadrangles. Accompanying each map section is table 1, listing map numbers and the sample identification numbers used in DGGS Special Report 10: Radiometric Dates from Alaska-A 1975 Compilation”. The reader is referred to Special Report 10 for more complete information on location, rock type, dating method, and literature references for each age entry. A listing of dates in Special Report lo which require correction or deletion is included S table 2. Corrected and additional entries are listed in table 3. The listings in tables 2 and 3 follow the format of Special Report 10. Table 4 is a glossary of abbreviations used for quadrangle name, rock type, mineral dated, and type of dating method used.

  3. Radiometric age map of southeast Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Turner, D.L.

    1975-01-01

    This map includes published, thesis, and open-file radiometric data available to us as of June, 1975. Some dates are not plotted because of inadequate location data in the original references.The map is divided into five sections, based on 1:1,000,000 scale enlargements of the National Atlas maps of Alaska. Within each section (e.g., southeastern Alaska), radiometric dates are plotted and keyed to 1:250,000 scale quadrangles. Accompanying each map section is table 1, listing map numbers and the sample identification numbers used in DGGS Special Report 10: Radiometric Dates from Alaska-A 1975 Compilation”. The reader is referred to Special Report 10 for more complete information on location, rock type, dating method, and literature references for each age entry. A listing of dates in Special Report lo which require correction or deletion is included S table 2. Corrected and additional entries are listed in table 3. The listings in tables 2 and 3 follow the format of Special Report 10. Table 4 is a glossary of abbreviations used for quadrangle name, rock type, mineral dated, and type of dating method used.

  4. Radiometric age map of northern Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Turner, D.L.

    1975-01-01

    This map includes published, thesis, and open-file radiometric data available to us as of June, 1975. Some dates are not plotted because of inadequate location data in the original references.The map is divided into five sections, based on 1:1,000,000 scale enlargements of the National Atlas maps of Alaska. Within each section (e.g., southeastern Alaska), radiometric dates are plotted and keyed to 1:250,000 scale quadrangles. Accompanying each map section is table 1, listing map numbers and the sample identification numbers used in DGGS Special Report 10: Radiometric Dates from Alaska-A 1975 Compilation”. The reader is referred to Special Report 10 for more complete information on location, rock type, dating method, and literature references for each age entry. A listing of dates in Special Report lo which require correction or deletion is included S table 2. Corrected and additional entries are listed in table 3. The listings in tables 2 and 3 follow the format of Special Report 10. Table 4 is a glossary of abbreviations used for quadrangle name, rock type, mineral dated, and type of dating method used.

  5. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Availability of aerial photography. 611.21 Section 611.21 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS SOIL SURVEYS Cartographic Operations...

  6. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Availability of aerial photography. 611.21 Section 611.21 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS SOIL SURVEYS Cartographic Operations...

  7. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Availability of aerial photography. 611.21 Section 611.21 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS SOIL SURVEYS Cartographic Operations...

  8. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Availability of aerial photography. 611.21 Section 611.21 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS SOIL SURVEYS Cartographic Operations...

  9. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Availability of aerial photography. 611.21 Section 611.21 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS SOIL SURVEYS Cartographic Operations...

  10. An overview of in-orbit radiometric calibration of typical satellite sensors

    NASA Astrophysics Data System (ADS)

    Zhou, G. Q.; Li, C. Y.; Yue, T.; Jiang, L. J.; Liu, N.; Sun, Y.; Li, M. Y.

    2015-06-01

    This paper reviews the development of in-orbit radiometric calibration methods in the past 40 years. It summarizes the development of in-orbit radiometric calibration technology of typical satellite sensors in the visible/near-infrared bands and the thermal infrared band. Focuses on the visible/near-infrared bands radiometric calibration method including: Lamp calibration and solar radiationbased calibration. Summarizes the calibration technology of Landsat series satellite sensors including MSS, TM, ETM+, OLI, TIRS; SPOT series satellite sensors including HRV, HRS. In addition to the above sensors, there are also summarizing ALI which was equipped on EO-1, IRMSS which was equipped on CBERS series satellite. Comparing the in-orbit radiometric calibration technology of different periods but the same type satellite sensors analyzes the similarities and differences of calibration technology. Meanwhile summarizes the in-orbit radiometric calibration technology in the same periods but different country satellite sensors advantages and disadvantages of calibration technology.

  11. The Landsat Data Continuity Mission Operational Land Imager (OLI) Radiometric Calibration

    NASA Technical Reports Server (NTRS)

    Markham, Brian L.; Dabney, Philip W.; Murphy-Morris, Jeanine E.; Knight, Edward J.; Kvaran, Geir; Barsi, Julia A.

    2010-01-01

    The Operational Land Imager (OLI) on the Landsat Data Continuity Mission (LDCM) has a comprehensive radiometric characterization and calibration program beginning with the instrument design, and extending through integration and test, on-orbit operations and science data processing. Key instrument design features for radiometric calibration include dual solar diffusers and multi-lamped on-board calibrators. The radiometric calibration transfer procedure from NIST standards has multiple checks on the radiometric scale throughout the process and uses a heliostat as part of the transfer to orbit of the radiometric calibration. On-orbit lunar imaging will be used to track the instruments stability and side slither maneuvers will be used in addition to the solar diffuser to flat field across the thousands of detectors per band. A Calibration Validation Team is continuously involved in the process from design to operations. This team uses an Image Assessment System (IAS), part of the ground system to characterize and calibrate the on-orbit data.

  12. Use of low-altitude aerial photography to identify submersed aquatic macrophytes

    USGS Publications Warehouse

    Schloesser, Donald W.; Manny, Bruce A.; Brown, Charles L.; Jaworski, Eugene

    1987-01-01

    The feasibility of using low-altitude aerial photography to identify beds of submersed macrophytes is demonstrated. True color aerial photos and collateral ground survey information for submersed aquatic macrophyte beds at 10 sites in the St.Clair-Detroit River system were obtained in September 1978. Using the photos and collateral ground survey information, a dichotomous key was developed for the identification of six classes - beds of five genera of macrophytes and one substrate type. A test was prepared to determine how accurately photo interpreters could identify the six classes. The test required an interpreter to examine an unlabeled, outlined area on photographs and identify it using the key. Six interpreters were tested. One pair of interpreters was trained in the interpretation of a variety of aerial photos, a second pair had field experience in the collection and identification of submersed macrophytes in the river system, and a third pair had neither training in the interpretation of aerial photos nor field experience. The criteria that we developed were applied equally well by the interpretors, regardless of their training or experience. Overall accuracy (i.e., omission errors) of all six classes combined was 68% correct, whereas, overall accuracy of individual classes ranged from 50 to 100% correct. Mapping accuracy (i.e. omission and commission errors) of individual classes ranged from 36 to 75%. Although the key developed for this study has only limited application outside the context of the data and sites examined in this study, it is concluded that low-altitude aerial photography, together with limited amounts of collateral ground survey information, can be used to economically identify beds of submersed macrophytes in the St. Clair-Detroit River system and other similar water bodies.

  13. An aerial sightability model for estimating ferruginous hawk population size

    USGS Publications Warehouse

    Ayers, L.W.; Anderson, S.H.

    1999-01-01

    Most raptor aerial survey projects have focused on numeric description of visibility bias without identifying the contributing factors or developing predictive models to account for imperfect detection rates. Our goal was to develop a sightability model for nesting ferruginous hawks (Buteo regalis) that could account for nests missed during aerial surveys and provide more accurate population estimates. Eighteen observers, all unfamiliar with nest locations in a known population, searched for nests within 300 m of flight transects via a Maule fixed-wing aircraft. Flight variables tested for their influence on nest-detection rates included aircraft speed, height, direction of travel, time of day, light condition, distance to nest, and observer experience level. Nest variables included status (active vs. inactive), condition (i.e., excellent, good, fair, poor, bad), substrate type, topography, and tree density. A multiple logistic regression model identified nest substrate type, distance to nest, and observer experience level as significant predictors of detection rates (P < 0.05). The overall model was significant (??26 = 124.4, P < 0.001, n = 255 nest observations), and the correct classification rate was 78.4%. During 2 validation surveys, observers saw 23.7% (14/59) and 36.5% (23/63) of the actual population. Sightability model predictions, with 90% confidence intervals, captured the true population in both tests. Our results indicate standardized aerial surveys, when used in conjunction with the predictive sightability model, can provide unbiased population estimates for nesting ferruginous hawks.

  14. Galileo SSI/Ida Radiometrically Calibrated Images V1.0

    NASA Astrophysics Data System (ADS)

    Domingue, D. L.

    2016-05-01

    This data set includes Galileo Orbiter SSI radiometrically calibrated images of the asteroid 243 Ida, created using ISIS software and assuming nadir pointing. This is an original delivery of radiometrically calibrated files, not an update to existing files. All images archived include the asteroid within the image frame. Calibration was performed in 2013-2014.

  15. Landsat-7 Enhanced Thematic Mapper plus radiometric calibration

    USGS Publications Warehouse

    Markham, B.L.; Boncyk, Wayne C.; Helder, D.L.; Barker, J.L.

    1997-01-01

    Landsat-7 is currently being built and tested for launch in 1998. The Enhanced Thematic Mapper Plus (ETM+) sensor for Landsat-7, a derivative of the highly successful Thematic Mapper (TM) sensors on Landsats 4 and 5, and the Landsat-7 ground system are being built to provide enhanced radiometric calibration performance. In addition, regular vicarious calibration campaigns are being planned to provide additional information for calibration of the ETM+ instrument. The primary upgrades to the instrument include the addition of two solar calibrators: the full aperture solar calibrator, a deployable diffuser, and the partial aperture solar calibrator, a passive device that allows the ETM+ to image the sun. The ground processing incorporates for the first time an off-line facility, the Image Assessment System (IAS), to perform calibration, evaluation and analysis. Within the IAS, processing capabilities include radiometric artifact characterization and correction, radiometric calibration from the multiple calibrator sources, inclusion of results from vicarious calibration and statistical trending of calibration data to improve calibration estimation. The Landsat Product Generation System, the portion of the ground system responsible for producing calibrated products, will incorporate the radiometric artifact correction algorithms and will use the calibration information generated by the IAS. This calibration information will also be supplied to ground processing systems throughout the world.

  16. Mapping surface soil moisture with L-band radiometric measurements

    NASA Technical Reports Server (NTRS)

    Wang, James R.; Shiue, James C.; Schmugge, Thomas J.; Engman, Edwin T.

    1989-01-01

    A NASA C-130 airborne remote sensing aircraft was used to obtain four-beam pushbroom microwave radiometric measurements over two small Kansas tall-grass prairie region watersheds, during a dry-down period after heavy rainfall in May and June, 1987. While one of the watersheds had been burned 2 months before these measurements, the other had not been burned for over a year. Surface soil-moisture data were collected at the time of the aircraft measurements and correlated with the corresponding radiometric measurements, establishing a relationship for surface soil-moisture mapping. Radiometric sensitivity to soil moisture variation is higher in the burned than in the unburned watershed; surface soil moisture loss is also faster in the burned watershed.

  17. A procedure for radiometric recalibration of Landsat 5 TM reflective-band data

    USGS Publications Warehouse

    Chander, G.; Haque, M.O.; Micijevic, E.; Barsi, J.A.

    2010-01-01

    From the Landsat program's inception in 1972 to the present, the Earth science user community has been benefiting from a historical record of remotely sensed data. The multispectral data from the Landsat 5 (L5) Thematic Mapper (TM) sensor provide the backbone for this extensive archive. Historically, the radiometric calibration procedure for the L5 TM imagery used the detectors' response to the internal calibrator (IC) on a scene-by-scene basis to determine the gain and offset for each detector. The IC system degraded with time, causing radiometric calibration errors up to 20%. In May 2003, the L5 TM data processed and distributed by the U.S. Geological Survey (USGS) Earth Resources Observation and Science Center through the National Landsat Archive Production System (NLAPS) were updated to use a lifetime lookup-table (LUT) gain model to radiometrically calibrate TM data instead of using scene-specific IC gains. Further modification of the gain model was performed in 2007. The L5 TM data processed using IC prior to the calibration update do not benefit from the recent calibration revisions. A procedure has been developed to give users the ability to recalibrate their existing level-1 products. The best recalibration results are obtained if the work-order report that was included in the original standard data product delivery is available. However, if users do not have the original work-order report, the IC trends can be used for recalibration. The IC trends were generated using the radiometric gain trends recorded in the NLAPS database. This paper provides the details of the recalibration procedure for the following: 1) data processed using IC where users have the work-order file; 2) data processed using IC where users do not have the work-order file; 3) data processed using prelaunch calibration parameters; and 4) data processed using the previous version of the LUT (e.g., LUT03) that was released before April 2, 2007.

  18. Pre-Flight Radiometric Model of Linear Imager on LAPAN-IPB Satellite

    NASA Astrophysics Data System (ADS)

    Hadi Syafrudin, A.; Salaswati, Sartika; Hasbi, Wahyudi

    2018-05-01

    LAPAN-IPB Satellite is Microsatellite class with mission of remote sensing experiment. This satellite carrying Multispectral Line Imager for captured of radiometric reflectance value from earth to space. Radiometric quality of image is important factor to classification object on remote sensing process. Before satellite launch in orbit or pre-flight, Line Imager have been tested by Monochromator and integrating sphere to get spectral and every pixel radiometric response characteristic. Pre-flight test data with variety setting of line imager instrument used to see correlation radiance input and digital number of images output. Output input correlation is described by the radiance conversion model with imager setting and radiometric characteristics. Modelling process from hardware level until normalize radiance formula are presented and discussed in this paper.

  19. Laboratory-Based BRDF Calibration of Radiometric Tarps

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Butler, James J.

    2007-01-01

    The current study provides the remote sensing community with important high accuracy laboratory-based BRDF calibration of radiometric tarps. The results illustrate the dependence of tarps' weft and warp threads orientation on BRDF. The study was done at incident angles of 0deg, 10deg, and 30deg; scatter zenith angles from 0deg to 60deg, and scatter azimuth angles of 0deg, 45deg, 90deg, 135deg, and 180deg. The wavelengths were 485nm, 550nm, 633nm and 800nm. The dependence is well defined at all measurement geometries and wavelengths. It can be as high as 8% at 0deg incident angle and 2% at 30deg incident angle. The fitted BRDF data show a very small discrepancy from the measured ones. New data on the forward and backscatter properties of radiometric tarps is reported. The backward scatter is well pronounced for the white samples. The black sample has well pronounced forward scatter. The BRDF characterization of radiometric tarps can be successfully extended to other structured surface fabric samples. The results are NIST traceable.

  20. Measurements from an Aerial Vehicle: A New Tool for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Wright, Henry S.; Levine, Joel S.; Croom, Mark A.; Edwards, William C.; Qualls, Garry D.; Gasbarre, Joseph F.

    2004-01-01

    Aerial vehicles fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Aerial vehicles used in planetary exploration bridge the scale and resolution measurement gaps between orbiters (global perspective with limited spatial resolution) and landers (local perspective with high spatial resolution) thus complementing and extending orbital and landed measurements. Planetary aerial vehicles can also survey scientifically interesting terrain that is inaccessible or hazardous to landed missions. The use of aerial assets for performing observations on Mars, Titan, or Venus will enable direct measurements and direct follow-ons to recent discoveries. Aerial vehicles can be used for remote sensing of the interior, surface and atmosphere of Mars, Venus and Titan. Types of aerial vehicles considered are airplane "heavier than air" and airships and balloons "lighter than air". Interdependencies between the science measurements, science goals and objectives, and platform implementation illustrate how the proper balance of science, engineering, and cost, can be achieved to allow for a successful mission. Classification of measurement types along with how those measurements resolve science questions and how these instruments are accommodated within the mission context are discussed.

  1. Landsat-8 Operational Land Imager (OLI) radiometric performance on-orbit

    USGS Publications Warehouse

    Morfitt, Ron; Barsi, Julia A.; Levy, Raviv; Markham, Brian L.; Micijevic, Esad; Ong, Lawrence; Scaramuzza, Pat; Vanderwerff, Kelly

    2015-01-01

    Expectations of the Operational Land Imager (OLI) radiometric performance onboard Landsat-8 have been met or exceeded. The calibration activities that occurred prior to launch provided calibration parameters that enabled ground processing to produce imagery that met most requirements when data were transmitted to the ground. Since launch, calibration updates have improved the image quality even more, so that all requirements are met. These updates range from detector gain coefficients to reduce striping and banding to alignment parameters to improve the geometric accuracy. This paper concentrates on the on-orbit radiometric performance of the OLI, excepting the radiometric calibration performance. Topics discussed in this paper include: signal-to-noise ratios that are an order of magnitude higher than previous Landsat missions; radiometric uniformity that shows little residual banding and striping, and continues to improve; a dynamic range that limits saturation to extremely high radiance levels; extremely stable detectors; slight nonlinearity that is corrected in ground processing; detectors that are stable and 100% operable; and few image artifacts.

  2. Floating aerial LED signage based on aerial imaging by retro-reflection (AIRR).

    PubMed

    Yamamoto, Hirotsugu; Tomiyama, Yuka; Suyama, Shiro

    2014-11-03

    We propose a floating aerial LED signage technique by utilizing retro-reflection. The proposed display is composed of LEDs, a half mirror, and retro-reflective sheeting. Directivity of the aerial image formation and size of the aerial image have been investigated. Furthermore, a floating aerial LED sign has been successfully formed in free space.

  3. Infrared Surveys of Hawaiian Volcanoes: Aerial surveys with infrared imaging radiometer depict volcanic thermal patterns and structural features.

    PubMed

    Fisher, W A; Moxham, R M; Polcyn, F; Landis, G H

    1964-11-06

    Aerial infrared-sensor surveys of Kilauea volcano have depicted the areal extent and the relative intensity of abnormal thermal features in the caldera area of the volcano and along its associated rift zones. Many of these anomalies show correlation with visible steaming and reflect convective transfer of heat to the surface from subterranean sources. Structural details of the volcano, some not evident from surface observation, are also delineated by their thermal abnormalities. Several changes were observed in the patterns of infrared emission during the period of study; two such changes show correlation in location with subsequent eruptions, but the cause-and-effect relationship is uncertain. Thermal anomalies were also observed on the southwest flank of Mauna Loa; images of other volcanoes on the island of Hawaii, and of Haleakala on the island of Maui, revealed no thermal abnormalities. Approximately 25 large springs issuing into the ocean around the periphery of Hawaii have been detected. Infrared emission varies widely with surface texture and composition, suggesting that similar observations may have value for estimating surface conditions on the moon or planets.

  4. The moon as a radiometric reference source for on-orbit sensor stability calibration

    USGS Publications Warehouse

    Stone, T.C.

    2009-01-01

    The wealth of data generated by the world's Earth-observing satellites, now spanning decades, allows the construction of long-term climate records. A key consideration for detecting climate trends is precise quantification of temporal changes in sensor calibration on-orbit. For radiometer instruments in the solar reflectance wavelength range (near-UV to shortwave-IR), the Moon can be viewed as a solar diffuser with exceptional stability properties. A model for the lunar spectral irradiance that predicts the geometric variations in the Moon's brightness with ???1% precision has been developed at the U.S. Geological Survey in Flagstaff, AZ. Lunar model results corresponding to a series of Moon observations taken by an instrument can be used to stabilize sensor calibration with sub-percent per year precision, as demonstrated by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). The inherent stability of the Moon and the operational model to utilize the lunar irradiance quantity provide the Moon as a reference source for monitoring radiometric calibration in orbit. This represents an important capability for detecting terrestrial climate change from space-based radiometric measurements.

  5. Age Determination by Back Length for African Savanna Elephants: Extending Age Assessment Techniques for Aerial-Based Surveys

    PubMed Central

    Trimble, Morgan J.; van Aarde, Rudi J.; Ferreira, Sam M.; Nørgaard, Camilla F.; Fourie, Johan; Lee, Phyllis C.; Moss, Cynthia J.

    2011-01-01

    Determining the age of individuals in a population can lead to a better understanding of population dynamics through age structure analysis and estimation of age-specific fecundity and survival rates. Shoulder height has been used to accurately assign age to free-ranging African savanna elephants. However, back length may provide an analog measurable in aerial-based surveys. We assessed the relationship between back length and age for known-age elephants in Amboseli National Park, Kenya, and Addo Elephant National Park, South Africa. We also compared age- and sex-specific back lengths between these populations and compared adult female back lengths across 11 widely dispersed populations in five African countries. Sex-specific Von Bertalanffy growth curves provided a good fit to the back length data of known-age individuals. Based on back length, accurate ages could be assigned relatively precisely for females up to 23 years of age and males up to 17. The female back length curve allowed more precise age assignment to older females than the curve for shoulder height does, probably because of divergence between the respective growth curves. However, this did not appear to be the case for males, but the sample of known-age males was limited to ≤27 years. Age- and sex-specific back lengths were similar in Amboseli National Park and Addo Elephant National Park. Furthermore, while adult female back lengths in the three Zambian populations were generally shorter than in other populations, back lengths in the remaining eight populations did not differ significantly, in support of claims that growth patterns of African savanna elephants are similar over wide geographic regions. Thus, the growth curves presented here should allow researchers to use aerial-based surveys to assign ages to elephants with greater precision than previously possible and, therefore, to estimate population variables. PMID:22028925

  6. Use of micro unmanned aerial vehicles for roadside condition assessment

    DOT National Transportation Integrated Search

    2010-12-01

    Micro unmanned aerial vehicles (MUAVs) that are equipped with digital imaging systems and global : positioning systems provide a potential opportunity for improving the effectiveness and safety of roadside : condition and inventory surveys. This stud...

  7. Survey on the novel hybrid aquatic-aerial amphibious aircraft: Aquatic unmanned aerial vehicle (AquaUAV)

    NASA Astrophysics Data System (ADS)

    Yang, Xingbang; Wang, Tianmiao; Liang, Jianhong; Yao, Guocai; Liu, Miao

    2015-04-01

    The aquatic unmanned aerial vehicle (AquaUAV), a kind of vehicle that can operate both in the air and the water, has been regarded as a new breakthrough to broaden the application scenario of UAV. Wide application prospects in military and civil field are more than bright, therefore many institutions have focused on the development of such a vehicle. However, due to the significant difference of the physical properties between the air and the water, it is rather difficult to design a fully-featured AquaUAV. Until now, majority of partially-featured AquaUAVs have been developed and used to verify the feasibility of an aquatic-aerial vehicle. In the present work, we classify the current partially-featured AquaUAV into three categories from the scope of the whole UAV field, i.e., the seaplane UAV, the submarine-launched UAV, and the submersible UAV. Then the recent advancements and common characteristics of the three kinds of AquaUAVs are reviewed in detail respectively. Then the applications of bionics in the design of AquaUAV, the transition mode between the air and the water, the morphing wing structure for air-water adaptation, and the power source and the propulsion type are summarized and discussed. The tradeoff analyses for different transition methods between the air and the water are presented. Furthermore, it indicates that applying the bionics into the design and development of the AquaUAV will be essential and significant. Finally, the significant technical challenges for the AquaUAV to change from a conception to a practical prototype are indicated.

  8. English/Russian terminology on radiometric calibration of space-borne optoelectronic sensors

    NASA Astrophysics Data System (ADS)

    Privalsky, V.; Zakharenkov, V.; Humpherys, T.; Sapritsky, V.; Datla, R.

    The efficient use of data acquired through exo-atmospheric observations of the Earth within the framework of existing and newly planned programs requires a unique understanding of respective terms and definitions. Yet, the last large-scale document on the subject - The International Electrotechnical Vocabulary - had been published 18 years ago. This lack of a proper document, which would reflect the changes that had occurred in the area since that time, is especially detrimental to the developing international efforts aimed at global observations of the Earth from space such as the Global Earth Observations Program proposed by the U.S.A. at the 2003 WMO Congress. To cover this gap at least partially, a bi-lingual explanatory dictionary of terms and definitions in the area of radiometric calibration of space-borne IR sensors is developed. The objectives are to produce a uniform terminology for the global space-borne observations of the Earth, establish a unique understanding of terms and definitions by the radiometric communities, including a correspondence between the Russian and American terms and definitions, and to develop a formal English/Russian reference dictionary for use by scientists and engineers involved in radiometric observations of the Earth from space. The dictionary includes close to 400 items covering basic concepts of geometric, wave and corpuscular optics, remote sensing technologies, and ground-based calibration as well as more detailed treatment of terms and definitions in the areas of radiometric quantities, symbols and units, optical phenomena and optical properties of objects and media, and radiometric systems and their properties. The dictionary contains six chapters: Basic Concepts, Quantities, Symbols, and Units, Optical phenomena, Optical characteristics of surfaces and media, Components of Radiometric Systems, Characteristics of radiometric system components, plus English/Russian and Russian/Inglish indices.

  9. Landsat-5 TM reflective-band absolute radiometric calibration

    USGS Publications Warehouse

    Chander, G.; Helder, D.L.; Markham, B.L.; Dewald, J.D.; Kaita, E.; Thome, K.J.; Micijevic, E.; Ruggles, T.A.

    2004-01-01

    The Landsat-5 Thematic Mapper (TM) sensor provides the longest running continuous dataset of moderate spatial resolution remote sensing imagery, dating back to its launch in March 1984. Historically, the radiometric calibration procedure for this imagery used the instrument's response to the Internal Calibrator (IC) on a scene-by-scene basis to determine the gain and offset of each detector. Due to observed degradations in the IC, a new procedure was implemented for U.S.-processed data in May 2003. This new calibration procedure is based on a lifetime radiometric calibration model for the instrument's reflective bands (1-5 and 7) and is derived, in part, from the IC response without the related degradation effects and is tied to the cross calibration with the Landsat-7 Enhanced Thematic Mapper Plus. Reflective-band absolute radiometric accuracy of the instrument tends to be on the order of 7% to 10%, based on a variety of calibration methods.

  10. Radiometric Calibration Assessment of Commercial High Spatial Resolution Multispectral Image Products

    NASA Technical Reports Server (NTRS)

    Holekamp, Kara; Aaron, David; Thome, Kurtis

    2006-01-01

    Radiometric calibration of commercial imaging satellite products is required to ensure that science and application communities can better understand their properties. Inaccurate radiometric calibrations can lead to erroneous decisions and invalid conclusions and can limit intercomparisons with other systems. To address this calibration need, satellite at-sensor radiance values were compared to those estimated by each independent team member to determine the sensor's radiometric accuracy. The combined results of this evaluation provide the user community with an independent assessment of these commercially available high spatial resolution sensors' absolute calibration values.

  11. Use of Aerial Photography to Monitor Fall Chinook Salmon Spawning in the Columbia River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visser, Richard H.; Dauble, Dennis D.; Geist, David R.

    2002-11-01

    This paper compares two methods for enumerating salmon redds and their application to monitoring spawning activity. Aerial photographs of fall chinook salmon spawning areas in the Hanford Reach of the Columbia River were digitized and mapped using Geographic Information Systems (GIS) techniques in 1994 and 1995 as part of an annual assessment of the population. The number of visible redds from these photographs were compared to counts obtained from visual surveys with fixed wing aircraft. The proportion of the total redds within each of five general survey areas was similar for the two monitoring techniques. However, the total number ofmore » redds based on aerial photographs was 2.2 and 3.0 times higher than those observed during visual surveys for 1994 and 1995, respectively. The divergence in redd counts was most evident near peak spawning activity when the number of redds within individual spawning clusters exceeded 500. Aerial photography improved our ability to monitor numbers of visible salmon redds and to quantify habitat use.« less

  12. Estimating the abundance of the Southern Hudson Bay polar bear subpopulation with aerial surveys

    USGS Publications Warehouse

    Obbard, Martyn E.; Stapleton, Seth P.; Middel, Kevin R.; Thibault, Isabelle; Brodeur, Vincent; Jutras, Charles

    2015-01-01

    The Southern Hudson Bay (SH) polar bear subpopulation occurs at the southern extent of the species’ range. Although capture–recapture studies indicate abundance was likely unchanged between 1986 and 2005, declines in body condition and survival occurred during the period, possibly foreshadowing a future decrease in abundance. To obtain a current estimate of abundance, we conducted a comprehensive line transect aerial survey of SH during 2011–2012. We stratified the study site by anticipated densities and flew coastal contour transects and systematically spaced inland transects in Ontario and on Akimiski Island and large offshore islands in 2011. Data were collected with double-observer and distance sampling protocols. We surveyed small islands in James Bay and eastern Hudson Bay and flew a comprehensive transect along the Québec coastline in 2012. We observed 667 bears in Ontario and on Akimiski Island and nearby islands in 2011, and we sighted 80 bears on offshore islands during 2012. Mark–recapture distance sampling and sight–resight models yielded an estimate of 860 (SE = 174) for the 2011 study area. Our estimate of abundance for the entire SH subpopulation (943; SE = 174) suggests that abundance is unlikely to have changed significantly since 1986. However, this result should be interpreted cautiously because of the methodological differences between historical studies (physical capture–recapture) and this survey. A conservative management approach is warranted given previous increases in duration of the ice-free season, which are predicted to continue in the future, and previously documented declines in body condition and vital rates.

  13. Intra-annual NDVI validation of the Landsat 5 TM radiometric calibration

    USGS Publications Warehouse

    Chander, G.; Groeneveld, D.P.

    2009-01-01

    Multispectral data from the Landsat 5 (L5) Thematic Mapper (TM) sensor provide the backbone of the extensive archive of moderate‐resolution Earth imagery. Even after more than 24 years of service, the L5 TM is still operational. Given the longevity of the satellite, the detectors have aged and the sensor's radiometric characteristics have changed since launch. The calibration procedures and parameters in the National Land Archive Production System (NLAPS) have also changed with time. Revised radiometric calibrations in 2003 and 2007 have improved the radiometric accuracy of recently processed data. This letter uses the Normalized Difference Vegetation Index (NDVI) as a metric to evaluate the radiometric calibration. The calibration change has improved absolute calibration accuracy, consistency over time, and consistency with Landsat 7 (L7) Enhanced Thematic radiometry and will provide the basis for continued long‐term studies of the Earth's land surfaces.

  14. Ground-Cover Measurements: Assessing Correlation Among Aerial and Ground-Based Methods

    NASA Astrophysics Data System (ADS)

    Booth, D. Terrance; Cox, Samuel E.; Meikle, Tim; Zuuring, Hans R.

    2008-12-01

    Wyoming’s Green Mountain Common Allotment is public land providing livestock forage, wildlife habitat, and unfenced solitude, amid other ecological services. It is also the center of ongoing debate over USDI Bureau of Land Management’s (BLM) adjudication of land uses. Monitoring resource use is a BLM responsibility, but conventional monitoring is inadequate for the vast areas encompassed in this and other public-land units. New monitoring methods are needed that will reduce monitoring costs. An understanding of data-set relationships among old and new methods is also needed. This study compared two conventional methods with two remote sensing methods using images captured from two meters and 100 meters above ground level from a camera stand (a ground, image-based method) and a light airplane (an aerial, image-based method). Image analysis used SamplePoint or VegMeasure software. Aerial methods allowed for increased sampling intensity at low cost relative to the time and travel required by ground methods. Costs to acquire the aerial imagery and measure ground cover on 162 aerial samples representing 9000 ha were less than 3000. The four highest correlations among data sets for bare ground—the ground-cover characteristic yielding the highest correlations (r)—ranged from 0.76 to 0.85 and included ground with ground, ground with aerial, and aerial with aerial data-set associations. We conclude that our aerial surveys are a cost-effective monitoring method, that ground with aerial data-set correlations can be equal to, or greater than those among ground-based data sets, and that bare ground should continue to be investigated and tested for use as a key indicator of rangeland health.

  15. Laboratory-Based Bidirectional Reflectance Distribution Functions of Radiometric Tarps

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Butler, James J.

    2008-01-01

    Laboratory-based bidirectional reflectance distribution functions of radiometric tarp samples used in the vicarious calibration of Earth remote sensing satellite instruments are presented in this paper. The results illustrate the BRDF dependence on the orientation of the tarps weft and warp threads. The study was performed using the GSFC scatterometer at incident zenith angles of 0 deg, 10 deg, and 30 deg; scatter zenith angles from 0 deg. to 60 deg.; and scatter azimuth angles of 0 deg., 45 deg., 90 deg., 135 deg. and 180 deg. The wavelengths were 485nm, 550nm, 633nm and 800nm. The tarp's weft and warp dependence on BRDF is well defined at all measurement geometries and wavelengths. The BRDF difference can be as high as 8% at 0o incident angle and 12% at 30 deg. incident angle. The fitted BRDF data shows a very small discrepancy from the measured ones. New data on the forward and backscatter properties of radiometric tarps are reported. The backward scatter is well pronounced for the white samples. The black sample has well pronounced forward scatter. The provided BRDF characterization of radiometric tarps is an excellent reference for anyone interested in using tarps for radiometric calibrations. The results are NIST traceable.

  16. Laboratory-based bidirectional reflectance distribution functions of radiometric tarps.

    PubMed

    Georgiev, Georgi T; Butler, James J

    2008-06-20

    Laboratory-based bidirectional reflectance distribution functions (BRDFs) of radiometric tarp samples used in the vicarious calibration of Earth remote sensing satellite instruments are presented in this paper. The results illustrate the BRDF dependence on the orientation of the tarps' weft and warp threads. The study was performed using the GSFC scatterometer at incident zenith angles of 0 degrees, 10 degrees, and 30 degrees; scatter zenith angles from 0 degrees to 60 degrees; and scatter azimuth angles of 0 degrees, 45 degrees, 90 degrees, 135 degrees, and 180 degrees. The wavelengths were 485 nm, 550 nm, 633 nm, and 800 nm. The tarp's weft and warp dependence on BRDF is well defined at all measurement geometries and wavelengths. The BRDF difference can be as high as 8% at 0 degrees incident angle and 12% at 30 degrees incident angle. The fitted BRDF data show a very small discrepancy from the measured ones. New data on the forward and backscatter properties of radiometric tarps are reported. The backward scatter is well pronounced for the white samples. The black sample has well-pronounced forward scatter. The provided BRDF characterization of radiometric tarps is an excellent reference for anyone interested in using tarps for radiometric calibrations. The results are NIST traceable.

  17. Accuracy of Flight Altitude Measured with Low-Cost GNSS, Radar and Barometer Sensors: Implications for Airborne Radiometric Surveys.

    PubMed

    Albéri, Matteo; Baldoncini, Marica; Bottardi, Carlo; Chiarelli, Enrico; Fiorentini, Giovanni; Raptis, Kassandra Giulia Cristina; Realini, Eugenio; Reguzzoni, Mirko; Rossi, Lorenzo; Sampietro, Daniele; Strati, Virginia; Mantovani, Fabio

    2017-08-16

    Flight height is a fundamental parameter for correcting the gamma signal produced by terrestrial radionuclides measured during airborne surveys. The frontiers of radiometric measurements with UAV require light and accurate altimeters flying at some 10 m from the ground. We equipped an aircraft with seven altimetric sensors (three low-cost GNSS receivers, one inertial measurement unit, one radar altimeter and two barometers) and analyzed ~3 h of data collected over the sea in the (35-2194) m altitude range. At low altitudes (H < 70 m) radar and barometric altimeters provide the best performances, while GNSS data are used only for barometer calibration as they are affected by a large noise due to the multipath from the sea. The ~1 m median standard deviation at 50 m altitude affects the estimation of the ground radioisotope abundances with an uncertainty less than 1.3%. The GNSS double-difference post-processing enhanced significantly the data quality for H > 80 m in terms of both altitude median standard deviation and agreement between the reconstructed and measured GPS antennas distances. Flying at 100 m the estimated uncertainty on the ground total activity due to the uncertainty on the flight height is of the order of 2%.

  18. Accuracy of Flight Altitude Measured with Low-Cost GNSS, Radar and Barometer Sensors: Implications for Airborne Radiometric Surveys

    PubMed Central

    Baldoncini, Marica; Chiarelli, Enrico; Fiorentini, Giovanni; Raptis, Kassandra Giulia Cristina; Realini, Eugenio; Reguzzoni, Mirko; Rossi, Lorenzo; Sampietro, Daniele; Strati, Virginia

    2017-01-01

    Flight height is a fundamental parameter for correcting the gamma signal produced by terrestrial radionuclides measured during airborne surveys. The frontiers of radiometric measurements with UAV require light and accurate altimeters flying at some 10 m from the ground. We equipped an aircraft with seven altimetric sensors (three low-cost GNSS receivers, one inertial measurement unit, one radar altimeter and two barometers) and analyzed ~3 h of data collected over the sea in the (35–2194) m altitude range. At low altitudes (H < 70 m) radar and barometric altimeters provide the best performances, while GNSS data are used only for barometer calibration as they are affected by a large noise due to the multipath from the sea. The ~1 m median standard deviation at 50 m altitude affects the estimation of the ground radioisotope abundances with an uncertainty less than 1.3%. The GNSS double-difference post-processing enhanced significantly the data quality for H > 80 m in terms of both altitude median standard deviation and agreement between the reconstructed and measured GPS antennas distances. Flying at 100 m the estimated uncertainty on the ground total activity due to the uncertainty on the flight height is of the order of 2%. PMID:28813023

  19. Ground-Based Radiometric Measurements of Slant Path Attenuation in the V/W Bands

    DTIC Science & Technology

    2016-04-01

    GROUND-BASED RADIOMETRIC MEASUREMENTS OF SLANT PATH ATTENUATION IN THE V/W BANDS APRIL 2016 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE...2. REPORT TYPE FINAL TECHNICAL REPORT 3. DATES COVERED (From - To) OCT 2012 – SEP 2015 4. TITLE AND SUBTITLE GROUND-BASED RADIOMETRIC MEASUREMENTS ...SUPPLEMENTARY NOTES 14. ABSTRACT Ground-based radiometric techniques were applied to measure the slant path attenuation cumulative distribution function to

  20. Study on Practical Technologies of Aerial Triangulation for Real Scene 3d Moeling with Oblique Photography

    NASA Astrophysics Data System (ADS)

    Cai, Z.; Liu, W.; Luo, G.; Xiang, Z.

    2018-04-01

    The key technologies in the real scene 3D modeling of oblique photography mainly include the data acquisition of oblique photography, layout and surveying of photo control points, oblique camera calibration, aerial triangulation, dense matching of multi-angle image, building of triangulation irregular network (TIN) and TIN simplification and automatic texture mapping, among which aerial triangulation is the core and the results of aerial triangulation directly affect the later model effect and the corresponding data accuracy. Starting from this point of view, this paper aims to study the practical technologies of aerial triangulation for real scene 3D modeling with oblique photography and finally proposes a technical method of aerial triangulation with oblique photography which can be put into practice.

  1. Small-area snow surveys on the northern plains of North Dakota

    USGS Publications Warehouse

    Emerson, Douglas G.; Carroll, T.R.; Steppuhn, Harold

    1985-01-01

    Snow-cover data are needed for many facets of hydrology. The variation in snow cover over small areas is the focus of this study. The feasibility of using aerial surveys to obtain information on the snow water equivalent of the snow cover in order to minimize the necessity of labor intensive ground snow surveys was- evaluated. A low-flying aircraft was used to measure attenuations of natural terrestrial gamma radiation by snow cover. Aerial and ground snow surveys of eight 1-mile snow courses and one 4-mile snow course were used in the evaluation, with ground snow surveys used as the base to evaluate aerial data. Each of the 1-mile snow courses consisted of a single land use and all had the same terrain type (plane). The 4-mile snow course consists of a variety of land uses and the same terrain type (plane). Using the aerial snow-survey technique, the snow water equivalent of the 1-mile snow courses was. measured with three passes of the aircraft. Use of more than one pass did not improve the results. The mean absolute difference between the aerial- and ground-measured snow water equivalents for the 1-mile snow courses was 26 percent (0.77 inches). The aerial snow water equivalents determined for the 1-mile snow courses were used to estimate the variations in the snow water equivalents over the 4-mile snow course. The weighted mean absolute difference for the 4-mile snow course was 27 percent (0.8 inches). Variations in snow water equivalents could not be verified adequately by segmenting the aerial snow-survey data because of the uniformity found in the snow cover. On the 4-mile snow coirse, about two-thirds of the aerial snow-survey data agreed with the ground snow-survey data within the accuracy of the aerial technique ( + 0.5 inch of the mean snow water equivalent).

  2. Cadastral Audit and Assessments Using Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Cunningham, K.; Walker, G.; Stahlke, E.; Wilson, R.

    2011-09-01

    Ground surveys and remote sensing are integral to establishing fair and equitable property valuations necessary for real property taxation. The International Association of Assessing Officers (IAAO) has embraced aerial and street-view imaging as part of its standards related to property tax assessments and audits. New technologies, including unmanned aerial systems (UAS) paired with imaging sensors, will become more common as local governments work to ensure their cadastre and tax rolls are both accurate and complete. Trends in mapping technology have seen an evolution in platforms from large, expensive manned aircraft to very small, inexpensive UAS. Traditional methods of photogrammetry have also given way to new equipment and sensors: digital cameras, infrared imagers, light detection and ranging (LiDAR) laser scanners, and now synthetic aperture radar (SAR). At the University of Alaska Fairbanks (UAF), we work extensively with unmanned aerial systems equipped with each of these newer sensors. UAF has significant experience flying unmanned systems in the US National Airspace, having begun in 1969 with scientific rockets and expanded to unmanned aircraft in 2003. Ongoing field experience allows UAF to partner effectively with outside organizations to test and develop leading-edge research in UAS and remote sensing. This presentation will discuss our research related to various sensors and payloads for mapping. We will also share our experience with UAS and optical systems for creating some of the first cadastral surveys in rural Alaska.

  3. Nure aerial gamma-ray and magnetic reconnaissance survey: Chugach/Yakutat area, Alaska, Mt. Saint Elias Quadrangle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-10-01

    Volume II contains the following data on Mt. Saint Elias, Alaska: geologic base map, flight path map, anomaly maps (U, Th, K, UlTh, UlK, ThlK), radiometric multiple-parameter stacked profiles, magnetic and ancillary profile data, and statistical data. (LK)

  4. Geometric and Radiometric Evaluation of Rasat Images

    NASA Astrophysics Data System (ADS)

    Cam, Ali; Topan, Hüseyin; Oruç, Murat; Özendi, Mustafa; Bayık, Çağlar

    2016-06-01

    RASAT, the second remote sensing satellite of Turkey, was designed and assembled, and also is being operated by TÜBİTAK Uzay (Space) Technologies Research Institute (Ankara). RASAT images in various levels are available free-of-charge via Gezgin portal for Turkish citizens. In this paper, the images in panchromatic (7.5 m GSD) and RGB (15 m GSD) bands in various levels were investigated with respect to its geometric and radiometric characteristics. The first geometric analysis is the estimation of the effective GSD as less than 1 pixel for radiometrically processed level (L1R) of both panchromatic and RGB images. Secondly, 2D georeferencing accuracy is estimated by various non-physical transformation models (similarity, 2D affine, polynomial, affine projection, projective, DLT and GCP based RFM) reaching sub-pixel accuracy using minimum 39 and maximum 52 GCPs. The radiometric characteristics are also investigated for 8 bits, estimating SNR between 21.8-42.2, and noise 0.0-3.5 for panchromatic and MS images for L1R when the sea is masked to obtain the results for land areas. The analysis show that RASAT images satisfies requirements for various applications. The research is carried out in Zonguldak test site which is mountainous and partly covered by dense forest and urban areas.

  5. Radiometric Characterization of the IKONOS, QuickBird, and OrbView-3 Sensors

    NASA Technical Reports Server (NTRS)

    Holekamp, Kara

    2006-01-01

    Radiometric calibration of commercial imaging satellite products is required to ensure that science and application communities can better understand their properties. Inaccurate radiometric calibrations can lead to erroneous decisions and invalid conclusions and can limit intercomparisons with other systems. To address this calibration need, satellite at-sensor radiance values were compared to those estimated by each independent team member to determine the sensor's radiometric accuracy. The combined results of this evaluation provide the user community with an independent assessment of these commercially available high spatial resolution sensors' absolute calibration values.

  6. Aerial detection of Ailanthus altissima: a cost-effective method to map an invasive tree in forested landscapes

    Treesearch

    Joanne Rebbeck; Aaron Kloss; Michael Bowden; Cheryl Coon; Todd F. Hutchinson; Louis Iverson; Greg Guess

    2015-01-01

    We present an aerial mapping method to efficiently and effectively identify seed clusters of the invasive tree, Ailanthus altissima (Mill.) Swingle across deciduous forest landscapes in the eastern United States. We found that the ideal time to conduct aerial digital surveys is early to middle winter, when Ailanthus seed...

  7. Determination of the microbolometric FPA's responsivity with imaging system's radiometric considerations

    NASA Astrophysics Data System (ADS)

    Gogler, Slawomir; Bieszczad, Grzegorz; Krupinski, Michal

    2013-10-01

    Thermal imagers and used therein infrared array sensors are subject to calibration procedure and evaluation of their voltage sensitivity on incident radiation during manufacturing process. The calibration procedure is especially important in so-called radiometric cameras, where accurate radiometric quantities, given in physical units, are of concern. Even though non-radiometric cameras are not expected to stand up to such elevated standards, it is still important, that the image faithfully represents temperature variations across the scene. Detectors used in thermal camera are illuminated by infrared radiation transmitted through an infrared transmitting optical system. Often an optical system, when exposed to uniform Lambertian source forms a non-uniform irradiation distribution in its image plane. In order to be able to carry out an accurate non-uniformity correction it is essential to correctly predict irradiation distribution from a uniform source. In the article a non-uniformity correction method has been presented, that takes into account optical system's radiometry. Predictions of the irradiation distribution have been confronted with measured irradiance values. Presented radiometric model allows fast and accurate non-uniformity correction to be carried out.

  8. High speed radiometric measurements of IED detonation fireballs

    NASA Astrophysics Data System (ADS)

    Spidell, Matthew T.; Gordon, J. Motos; Pitz, Jeremey; Gross, Kevin C.; Perram, Glen P.

    2010-04-01

    Continuum emission is predominant in fireball spectral phenomena and in some demonstrated cases, fine detail in the temporal evolution of infrared spectral emissions can be used to estimate size and chemical composition of the device. Recent work indicates that a few narrow radiometric bands may reveal forensic information needed for the explosive discrimination and classification problem, representing an essential step in moving from "laboratory" measurements to a rugged, fieldable system. To explore phenomena not observable in previous experiments, a high speed (10μs resolution) radiometer with four channels spanning the infrared spectrum observed the detonation of nine home made explosive (HME) devices in the < 100lb class. Radiometric measurements indicate that the detonation fireball is well approximated as a single temperature blackbody at early time (0 < t <~ 3ms). The effective radius obtained from absolute intensity indicates fireball growth at supersonic velocity during this time. Peak fireball temperatures during this initial detonation range between 3000.3500K. The initial temperature decay with time (t <~ 10ms) can be described by a simple phenomenological model based on radiative cooling. After this rapid decay, temperature exhibits a small, steady increase with time (10 <~ t <~ 50ms) and peaking somewhere between 1000.1500K-likely the result of post-detonation combustion-before subsequent cooling back to ambient conditions . Radius derived from radiometric measurements can be described well (R2 > 0.98) using blast model functional forms, suggesting that energy release could be estimated from single-pixel radiometric detectors. Comparison of radiometer-derived fireball size with FLIR infrared imagery indicate the Planckian intensity size estimates are about a factor of two smaller than the physical extent of the fireball.

  9. Experimental methods of indoor millimeter-wave radiometric imaging for personnel concealed contraband detection

    NASA Astrophysics Data System (ADS)

    Hu, Taiyang; Xiao, Zelong; Li, Hao; Lv, Rongchuan; Lu, Xuan

    2014-11-01

    The increasingly emerging terrorism attacks and violence crimes around the world have posed severe threats to public security, so carrying out relevant research on advanced experimental methods of personnel concealed contraband detection is crucial and meaningful. All of the advantages of imaging covertly, avoidance of interference with other systems, intrinsic property of being safe to persons under screening , and the superior ability of imaging through natural or manmade obscurants, have significantly combined to enable millimeter-wave (MMW) radiometric imaging to offer great potential in personnel concealed contraband detection. Based upon the current research status of MMW radiometric imaging and urgent demands of personnel security screening, this paper mainly focuses on the experimental methods of indoor MMW radiometric imaging. The reverse radiation noise resulting from super-heterodyne receivers seriously affects the image experiments carried out at short range, so both the generation mechanism and reducing methods of this noise are investigated. Then, the benefit of sky illumination no longer exists for the indoor radiometric imaging, and this leads to the decrease in radiometric temperature contrast between target and background. In order to enhance the radiometric temperature contrast for improving indoor imaging performance, the noise illumination technique is adopted in the indoor imaging scenario. In addition, the speed and accuracy of concealed contraband detection from acquired MMW radiometric images are usually restricted to the deficiencies in traditional artificial interpretation by security inspectors, thus an automatic recognition and location algorithm by integrating improved Fuzzy C-means clustering with moment invariants is put forward. A series of original results are also presented to demonstrate the significance and validity of these methods.

  10. The Development and Flight Testing of an Aerially Deployed Unmanned Aerial System

    NASA Astrophysics Data System (ADS)

    Smith, Andrew

    An investigation into the feasibility of aerial deployed unmanned aerial vehicles was completed. The investigation included the development and flight testing of multiple unmanned aerial systems to investigate the different components of potential aerial deployment missions. The project consisted of two main objectives; the first objective dealt with the development of an airframe capable of surviving aerial deployment from a rocket and then self assembling from its stowed configuration into its flight configuration. The second objective focused on the development of an autopilot capable of performing basic guidance, navigation, and control following aerial deployment. To accomplish these two objectives multiple airframes were developed to verify their completion experimentally. The first portion of the project, investigating the feasibility of surviving an aerial deployment, was completed using a fixed wing glider that following a successful deployment had 52 seconds of controlled flight. Before developing the autopilot in the second phase of the project, the glider was significantly upgraded to fix faults discovered in the glider flight testing and to enhance the system capabilities. Unfortunately to conform to outdoor flight restrictions imposed by the university and the Federal Aviation Administration it was required to switch airframes before flight testing of the new fixed wing platform could begin. As a result, an autopilot was developed for a quadrotor and verified experimentally completely indoors to remain within the limits of governing policies.

  11. Preliminary radiometric calibration assessment of ALOS AVNIR-2

    USGS Publications Warehouse

    Bouvet, M.; Goryl, P.; Chander, G.; Santer, R.; Saunier, S.

    2008-01-01

    This paper summarizes the activities carried out in the frame of the data quality activities of the Advanced Visible and Near Infrared Radiometer type 2 (AVNIR-2) sensor onboard the Advanced Land Observing Satellite (ALOS). Assessment of the radiometric calibration of the AVNIR-2 multi-spectral imager is achieved via three intercomparisons to currently flying sensors over the Libyan desert, during the first year of operation. AU three methodologies indicate a slight underestimation of AVNIR-2 in band 1 by 4 to 7% with respect to other sensors radiometric scale. Band 2 does not show any obvious bias. Results for band 3 are affected by saturation due to inappropriate gain setting. Two methodologies indicate no significant bias in band 4. Preliminary results indicate possible degradations of the AVNIR-2 channels, which, when modeled as an exponentially decreasing functions, have time constants of respectively 13.2 %.year-1, 8.8%.year-1 and 0.1%.year-1 in band 1, 2 and 4 (with respect to the radiometric scale of the MEdium Resolution Imaging Spectrometer, MERIS). Longer time series of AVNIR-2 data are needed to draw final conclusions. ?? 2007 IEEE.

  12. Design of a Mars Airplane Propulsion System for the Aerial Regional-Scale Environmental Survey (ARES) Mission Concept

    NASA Technical Reports Server (NTRS)

    Kuhl. Christopher A.

    2009-01-01

    The Aerial Regional-Scale Environmental Survey (ARES) is a Mars exploration mission concept with the goal of taking scientific measurements of the atmosphere, surface, and subsurface of Mars by using an airplane as the payload platform. ARES team first conducted a Phase-A study for a 2007 launch opportunity, which was completed in May 2003. Following this study, significant efforts were undertaken to reduce the risk of the atmospheric flight system, under the NASA Langley Planetary Airplane Risk Reduction Project. The concept was then proposed to the Mars Scout program in 2006 for a 2011 launch opportunity. This paper summarizes the design and development of the ARES airplane propulsion subsystem beginning with the inception of the ARES project in 2002 through the submittal of the Mars Scout proposal in July 2006.

  13. Ground-based radiometric calibration of the Landsat 8 Operational Land Imager (OLI) using in situ techniques

    NASA Astrophysics Data System (ADS)

    Czapla-Myers, J.

    2013-12-01

    Landsat 8 was successfully launched from Vandenberg Air Force Base in California on 11 February 2013, and was placed into the orbit previously occupied by Landsat 5. Landsat 8 is the latest platform in the 40-year history of the Landsat series of satellites, and it contains two instruments that operate in the solar-reflective and the thermal infrared regimes. The Operational Land Imager (OLI) is a pushbroom sensor that contains eight multispectral bands ranging from 400-2300 nm, and one panchromatic band. The spatial resolution of the multispectral bands is 30 m, which is similar to previous Landsat sensors, and the panchromatic band has a 15-m spatial resolution, which is also similar to previous Landsat sensors. The 12-bit radiometric resolution of OLI improves upon the 8-bit resolution of the Enhanced Thematic Mapper Plus (ETM+) onboard Landsat 7. An important requirement for the Landsat program is the long-term radiometric continuity of its sensors. Ground-based vicarious techniques have been used for over 20 years to determine the absolute radiometric calibration of sensors that encompass a wide variety of spectral and spatial characteristics. This work presents the early radiometric calibration results of Landsat 8 OLI that were obtained using the traditional reflectance-based approach. University of Arizona personnel used five sites in Arizona, California, and Nevada to collect ground-based data. In addition, a unique set of in situ data were collected in March 2013, when Landsat 7 and Landsat 8 were observing the same site within minutes of each other. The tandem overfly schedule occurred while Landsat 8 was shifting to the WRS-2 orbital grid, and lasted only a few days. The ground-based data also include results obtained using the University of Arizona's Radiometric Calibration Test Site (RadCaTS), which is an automated suite of instruments located at Railroad Valley, Nevada. The results presented in this work include a comparison to the L1T at

  14. Applicability of Unmanned Aerial Vehicles in Research on Aeolian Processes

    NASA Astrophysics Data System (ADS)

    Algimantas, Česnulevičius; Artūras, Bautrėnas; Linas, Bevainis; Donatas, Ovodas; Kęstutis, Papšys

    2018-02-01

    Surface dynamics and instabilities are characteristic of aeolian formation. The method of surface comparison is regarded as the most appropriate one for evaluation of the intensity of aeolian processes and the amount of transported sand. The data for surface comparison can be collected by topographic survey measurements and using unmanned aerial vehicles. Time cost for relief microform fixation and measurement executing topographic survey are very high. The method of unmanned aircraft aerial photographs fixation also encounters difficulties because there are no stable clear objects and contours that enable to link aerial photographs, to determine the boundaries of captured territory and to ensure the accuracy of surface measurements. Creation of stationary anchor points is irrational due to intense sand accumulation and deflation in different climate seasons. In September 2015 and in April 2016 the combined methodology was applied for evaluation of intensity of aeolian processes in the Curonian Spit. Temporary signs (marks) were installed on the surface, coordinates of the marks were fixed using GPS and then flight of unmanned aircraft was conducted. The fixed coordinates of marks ensure the accuracy of measuring aerial imagery and the ability to calculate the possible corrections. This method was used to track and measure very small (micro-rank) relief forms (5-10 cm height and 10-20 cm length). Using this method morphometric indicators of micro-terraces caused by sand dunes pressure to gytia layer were measured in a non-contact way. An additional advantage of the method is the ability to accurately link the repeated measurements. The comparison of 3D terrain models showed sand deflation and accumulation areas and quantitative changes in the terrain very clearly.

  15. Surveying and monitoring sudden oak death in southwest Oregon forests

    Treesearch

    Ellen Michaels Goheen; Alan Kanaskie; Mike McWilliams; Everett Hansen; Wendy Sutton; Nancy Osterbauer

    2006-01-01

    Phytophthora ramorum, the causal agent of sudden oak death, was first discovered in Oregon in July 2001 by aerial survey (Goheen and others 2002). Alerted to the situation in California and experienced in aerial tree mortality surveys, cooperators from the USDA Forest Service and the Oregon Department of Forestry planned a pilot survey for P...

  16. Automated geographic registration and radiometric correction for UAV-based mosaics

    NASA Astrophysics Data System (ADS)

    Thomasson, J. Alex; Shi, Yeyin; Sima, Chao; Yang, Chenghai; Cope, Dale A.

    2017-05-01

    Texas A and M University has been operating a large-scale, UAV-based, agricultural remote-sensing research project since 2015. To use UAV-based images in agricultural production, many high-resolution images must be mosaicked together to create an image of an agricultural field. Two key difficulties to science-based utilization of such mosaics are geographic registration and radiometric calibration. In our current research project, image files are taken to the computer laboratory after the flight, and semi-manual pre-processing is implemented on the raw image data, including ortho-mosaicking and radiometric calibration. Ground control points (GCPs) are critical for high-quality geographic registration of images during mosaicking. Applications requiring accurate reflectance data also require radiometric-calibration references so that reflectance values of image objects can be calculated. We have developed a method for automated geographic registration and radiometric correction with targets that are installed semi-permanently at distributed locations around fields. The targets are a combination of black (≍5% reflectance), dark gray (≍20% reflectance), and light gray (≍40% reflectance) sections that provide for a transformation of pixel-value to reflectance in the dynamic range of crop fields. The exact spectral reflectance of each target is known, having been measured with a spectrophotometer. At the time of installation, each target is measured for position with a real-time kinematic GPS receiver to give its precise latitude and longitude. Automated location of the reference targets in the images is required for precise, automated, geographic registration; and automated calculation of the digital-number to reflectance transformation is required for automated radiometric calibration. To validate the system for radiometric calibration, a calibrated UAV-based image mosaic of a field was compared to a calibrated single image from a manned aircraft. Reflectance

  17. 2. AERIAL VIEW OF MINUTEMAN SILOS. Low oblique aerial view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. AERIAL VIEW OF MINUTEMAN SILOS. Low oblique aerial view (original in color) of the two launch silos, covered. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Missile Silo Type, Test Area 1-100, northeast end of Test Area 1-100 Road, Boron, Kern County, CA

  18. MACS-Himalaya: A photogrammetric aerial oblique camera system designed for highly accurate 3D-reconstruction and monitoring in steep terrain and under extreme illumination conditions

    NASA Astrophysics Data System (ADS)

    Brauchle, Joerg; Berger, Ralf; Hein, Daniel; Bucher, Tilman

    2017-04-01

    The DLR Institute of Optical Sensor Systems has developed the MACS-Himalaya, a custom built Modular Aerial Camera System specifically designed for the extreme geometric (steep slopes) and radiometric (high contrast) conditions of high mountain areas. It has an overall field of view of 116° across-track consisting of a nadir and two oblique looking RGB camera heads and a fourth nadir looking near-infrared camera. This design provides the capability to fly along narrow valleys and simultaneously cover ground and steep valley flank topography with similar ground resolution. To compensate for extreme contrasts between fresh snow and dark shadows in high altitudes a High Dynamic Range (HDR) mode was implemented, which typically takes a sequence of 3 images with graded integration times, each covering 12 bit radiometric depth, resulting in a total dynamic range of 15-16 bit. This enables dense image matching and interpretation for sunlit snow and glaciers as well as for dark shaded rock faces in the same scene. Small and lightweight industrial grade camera heads are used and operated at a rate of 3.3 frames per second with 3-step HDR, which is sufficient to achieve a longitudinal overlap of approximately 90% per exposure time at 1,000 m above ground at a velocity of 180 km/h. Direct georeferencing and multitemporal monitoring without the need of ground control points is possible due to the use of a high end GPS/INS system, a stable calibrated inner geometry of the camera heads and a fully photogrammetric workflow at DLR. In 2014 a survey was performed on the Nepalese side of the Himalayas. The remote sensing system was carried in a wingpod by a Stemme S10 motor glider. Amongst other targets, the Seti Valley, Kali-Gandaki Valley and the Mt. Everest/Khumbu Region were imaged at altitudes up to 9,200 m. Products such as dense point clouds, DSMs and true orthomosaics with a ground pixel resolution of up to 15 cm were produced in regions and outcrops normally inaccessible to

  19. Sentinel-2 radiometric image quality commissioning: first results

    NASA Astrophysics Data System (ADS)

    Lachérade, S.; Lonjou, V.; Farges, M.; Gamet, P.; Marcq, S.; Raynaud, J.-L.; Trémas, T.

    2015-10-01

    In partnership with the European Commission and in the frame of the Copernicus program, the European Space Agency (ESA) is developing the Sentinel-2 optical imaging mission devoted to the operational monitoring of land and coastal areas. The Sentinel-2 mission is based on a satellites constellation deployed in polar sun-synchronous orbit. Sentinel-2 offers a unique combination of global coverage with a wide field of view (290km), a high revisit (5 days with two satellites), a high spatial resolution (10m, 20m and 60m) and multi-spectral imagery (13 spectral bands in visible and shortwave infrared domains). The first satellite, Sentinel-2A, has been launched in June 2015. The Sentinel-2A Commissioning Phase starts immediately after the Launch and Early Orbit Phase and continues until the In-Orbit Commissioning Review which is planned three months after the launch. The Centre National d'Etudes Spatiales (CNES) supports ESA/ESTEC to insure the Calibration/Validation commissioning phase during the first three months in flight. This paper provides first an overview of the Sentinel-2 system and a description of the products delivered by the ground segment associated to the main radiometric specifications to achieve. Then the paper focuses on the preliminary radiometric results obtained during the in-flight commissioning phase. The radiometric methods and calibration sites used in the CNES image quality center to reach the specifications of the sensor are described. A status of the Sentinel-2A radiometric performances at the end of the first three months after the launch is presented. We will particularly address in this paper the results in term of absolute calibration, pixel to pixel relative sensitivity and MTF estimation.

  20. Radiometric Characterization Results for the IKONOS, Quickbird, and OrbView-3 Sensor

    NASA Technical Reports Server (NTRS)

    Holekamp, Kara; Aaron, David; Thome, Kurtis

    2006-01-01

    Radiometric calibration of commercial imaging satellite products is required to ensure that science and application communities better understand commercial imaging satellite properties. Inaccurate radiometric calibrations can lead to erroneous decisions and invalid conclusions and can limit intercomparisons with other systems. To address this calibration need, the NASA Applied Sciences Directorate (ASD) at Stennis Space Center established a commercial satellite imaging radiometric calibration team consisting of three independent groups: NASA ASD, the University of Arizona Remote Sensing Group, and South Dakota State University. Each group independently determined the absolute radiometric calibration coefficients of available high-spatial-resolution commercial 4-band multispectral products, in the visible though near-infrared spectrum, from GeoEye(tradeMark) (formerly SpaceImaging(Registered TradeMark)) IKONOS, DigitalGlobe(Regitered TradeMark) QuickBird, and GeoEye (formerly ORBIMAGE(Registered TradeMark) OrbView. Each team member employed some variant of reflectance-based vicarious calibration approach, requiring ground-based measurements coincident with image acquisitions and radiative transfer calculations. Several study sites throughout the United States that covered a significant portion of the sensor's dynamic range were employed. Satellite at-sensor radiance values were compared to those estimated by each independent team member to evaluate the sensor's radiometric accuracy. The combined results of this evaluation provide the user community with an independent assessment of these sensors' absolute calibration values.

  1. Changes in the Radiometric Sensitivity of SeaWiFS

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Barnes, Robert A.; Eplee, Robert E., Jr.; Patt, Frederick S.

    1998-01-01

    We report on the lunar and solar measurements used to determine the changes in the radiometric sensitivity of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Radiometric sensitivity is defined as the output from the instrument (or from one of the instrument bands) per unit spectral radiance at the instrument's input aperture. Knowledge of the long-term repeatability of the SeaWiFS measurements is crucial to maintaining the quality of the ocean scenes derived from measurements by the instrument. For SeaWiFS bands 1 through 6 (412 nm through 670 rim), the change in radiometric sensitivity is less than 0.2% for the period from November 1997 through November 1998. For band 7 (765 nm), the change is about 1.5%, and for band 8 (865 nm) about 5%. The rates of change of bands 7 and 8, which were linear with time for the first eight months of lunar measurements, are now slowing. The scatter in the data points about the trend lines in this analysis is less than 0.3% for all eight SeaWiFS bands. These results are based on monthly measurements of the moon. Daily solar measurements using an onboard diffuser show that the radiometric sensitivities of the SeaWiFS bands have changed smoothly during the time intervals between lunar measurements. Since SeaWiFS measurements have continued past November 1998, the results presented here are considered as a snapshot of the instrument performance as of that date.

  2. Preliminary Evaluation of the Radiometric Calibration of LANDSAT-4 Thematic Mapper Data by the Canada Centre for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Murphy, J.; Park, W.; Fitzgerald, A.

    1985-01-01

    The radiometric characteristics of the LANDSAT-4 TM sensor are being studied with a view to developing absolute and relative radiometric calibration procedures. Preliminary results from several different approaches to the relative correction of all detectors within each band are reported. Topics covered include: the radiometric correction method; absolute calibration; the relative radiometric calibration algorithm; relative gain and offset calibration; relative gain and offset observations; and residual radiometric stripping.

  3. Aerial Explorers and Robotic Ecosystems

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg

    2004-01-01

    A unique bio-inspired approach to autonomous aerial vehicle, a.k.a. aerial explorer technology is discussed. The work is focused on defining and studying aerial explorer mission concepts, both as an individual robotic system and as a member of a small robotic "ecosystem." Members of this robotic ecosystem include the aerial explorer, air-deployed sensors and robotic symbiotes, and other assets such as rovers, landers, and orbiters.

  4. Use of aerial photographs for assessment of soil organic carbon and delineation of agricultural management zones.

    NASA Astrophysics Data System (ADS)

    Bartholomeus, H.; Kooistra, L.

    2012-04-01

    For quantitative estimation of soil properties by means of remote sensing, often hyperspectral data are used. But these data are scarce and expensive, which prohibits wider implementation of the developed techniques in agricultural management. For precision agriculture, observations at a high spatial resolution are required. Colour aerial photographs at this scale are widely available, and can be acquired at no of very low costs. Therefore, we investigated whether publically available aerial photographs can be used to a) automatically delineate management zones and b) estimate levels of organic carbon spatially. We selected three study areas within the Netherlands that cover a large variance in soil type (peat, sand, and clay). For the fields of interest, RGB aerial photographs with a spatial resolution of 50 cm were extracted from a publically available data provider. Further pre-processing exists of geo-referencing only. Since the images originate from different sources and are potentially acquired under unknown illumination conditions, the exact radiometric properties of the data are unknown. Therefore, we used spectral indices to emphasize the differences in reflectance and normalize for differences in radiometry. To delineate management zones we used image segmentation techniques, using the derived indices as input. Comparison with management zone maps as used by the farmers shows that there is good correspondence. Regression analysis between a number of soil properties and the derived indices shows that organic carbon is the major explanatory variable for differences in index values within the fields. However, relations do not hold for large regions, indicating that local models will have to be used, which is a problem that is also still relevant for hyperspectral remote sensing data. With this research, we show that low-cost aerial photographs can be a valuable tool for quantitative analysis of organic carbon and automatic delineation of management zones

  5. Methods for LWIR Radiometric Calibration and Characterization

    NASA Technical Reports Server (NTRS)

    Ryan, Robert; Harrington, Gary; Howell, Dane; Pagnutti, Mary; Zanoni, Vicki

    2002-01-01

    The utility of a remote sensing system increases with its ability to retrieve surface temperature or radiance accurately. Research applications, such as sea temperature and power plant discharge, require a 0.2 C resolution or better for absolute temperature retrievals. Other applications, including agriculture water stress detection, require at least a 1 C resolution. To achieve these levels of accuracy routinely, scientists must perform laboratory and onboard calibration, as well as in-flight vicarious radiometric characterization. A common approach used for in-flight radiometric characterization incorporates a well-calibrated infrared radiometer that is mounted on a bouy and placed on a uniform water body. The radiometer monitors radiant temperature along with pressure, humidity, and temperature measurements of an associated column of atmosphere. On very still waters, however, a buoy can significantly distrub these measurements. Researchers at NASA's Stennis Space Center (SSC) have developed a novel approach of using an uncooled infrared camera mounted on a boom to quantify buoy effects. Another critical aspect of using buoy-mounted infrared radiometers is the need for extensive laboratory characterization of the instruments' radiometric sensitivity, field of view, and spectral response. Proper surface temperature retrieval also requires detailed knowledge of both the upward emission and the reflected sky emission. Recent work at SSC has demonstrated that the use of a polarization-based radiometer operating at the Brewster angle can greatly simplify temperature retrieval as well as improve overall accuracy.

  6. Design of a Mars Airplane Propulsion System for the Aerial Regional-Scale Environmental Survey (ARES) Mission Concept

    NASA Technical Reports Server (NTRS)

    Kuhl, Christopher A.

    2008-01-01

    The Aerial Regional-Scale Environmental Survey (ARES) is a Mars exploration mission concept that utilizes a rocket propelled airplane to take scientific measurements of atmospheric, surface, and subsurface phenomena. The liquid rocket propulsion system design has matured through several design cycles and trade studies since the inception of the ARES concept in 2002. This paper describes the process of selecting a bipropellant system over other propulsion system options, and provides details on the rocket system design, thrusters, propellant tank and PMD design, propellant isolation, and flow control hardware. The paper also summarizes computer model results of thruster plume interactions and simulated flight performance. The airplane has a 6.25 m wingspan with a total wet mass of 185 kg and has to ability to fly over 600 km through the atmosphere of Mars with 45 kg of MMH / MON3 propellant.

  7. Application of radiometric surface temperature for surface energy balance estimation: John Monteith's contributions

    USDA-ARS?s Scientific Manuscript database

    Over 25 years ago, Huband and Monteith paper’s investigating the radiative surface temperature and the surface energy balance of a wheat canopy, highlighted the key issues in computing fluxes with radiometric surface temperature. These included the relationship between radiometric and aerodynamic s...

  8. Identifying areas with potential for high indoor radon levels: analysis of the national airborne radiometric reconnaissance data for California and the Pacific Northwest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moed, B.A.; Nazaroff, W.W.; Nero, A.V.

    1984-04-01

    Radon-222 is an important indoor air pollutant which, through the inhalation of its radioactive decay products, accounts for nearly half of the effective dose equivalent to the public from natural ionizing radiation. Indoor radon concentrations vary widely, largely because of local and regional differences in the rate of entry from sources. The major sources are soil and rock near building foundations, earth-based building materials, and domestic water; of these, soil and rock are thought to be predominant in many buildings with higher-than-average concentrations. Thus, one key factor in determining radon source potential is the concentration of radium, the progenitor ofmore » radon, in surficial rocks and soils. Aerial radiometric data were analyzed, collected for the National Uranium Resource Evaluation Program, for seven Western states to: (1) provide information on the spatial distribution of radium contents in surficial geologic materials for those states; and (2) investigate approaches for using the aerial data, which have been collected throughout the contiguous United States and Alaska, to identify areas where high indoor radon levels may be common. Radium concentrations were found to be relatively low in central and western portions of Washington, Oregon, and northern California; they were found to be relatively high in central and southern California. A field validation study, conducted along two flight-line segments near Spokane, Washington, showed close correspondence between the aerial data, in situ measurements of both radium content and radon flux from soil, and laboratory measurements of both radium content of and radon emanation rate from soil samples. 99 references, 11 figures, 3 tables.« less

  9. Measuring the Erosion of River Channel Widths Impacted by Watershed Urbanization Using Historic Aerial Photographs and Modern Surveys

    NASA Astrophysics Data System (ADS)

    Galster, J. C.; Pazzaglia, F. J.; Germanoski, D.

    2007-12-01

    Land use in a watershed exerts a strong influence on trunk channel form and process. Land use changes act over human time scales which is short enough to measure their effects directly using historic aerial photographs. We show that high-resolution topographic surveys comparing channel form for paired watersheds in the Lehigh Valley, PA are indistinguishable, but have channel widths that have changed dramatically in the past five decades. The two watersheds, Little Lehigh Creek and Sacony Creek, are similar in all respects except they have different amount of urban land use. Aerial photographs of the urbanized Little Lehigh Creek show that a majority of the measured widths (67 of 85) were statistically wider in 1999 than in 1947. In contrast, the measured widths from the agricultural Sacony Creek are more evenly distributed among those that widened (18), narrowed (28), and those that were statistically unchanged (6) from 1946 to 1999. From 1946 to 1999 the only section of Sacony creek that widened was that reach downstream of the only sizable urban area in the watershed. The current land use in Sacony Creek watershed resembles that of 1946, while the Little Lehigh Creek watershed has more than tripled its urban area. These data suggest that the increase in urban areas that subsequently increases peak discharges is the mechanism behind the widening that occurred in the Little Lehigh Creek. These wider channels can affect water quality, aquatic habitat, suspended sediment loads, and river aesthetics.

  10. Uas for Archaeology - New Perspectives on Aerial Documentation

    NASA Astrophysics Data System (ADS)

    Fallavollita, P.; Balsi, M.; Esposito, S.; Melis, M. G.; Milanese, M.; Zappino, L.

    2013-08-01

    In this work some Unmanned Aerial Systems applications are discussed and applied to archaeological sites survey and 3D model reconstructions. Interesting results are shown for three important and different aged sites on north Sardinia (Italy). An easy and simplified procedure has proposed permitting the adoption of multi-rotor aircrafts for daily archaeological survey during excavation and documentation, involving state of art in UAS design, flight control systems, high definition sensor cameras and innovative photogrammetric software tools. Very high quality 3D models results are shown and discussed and how they have been simplified the archaeologist work and decisions.

  11. A design of an on-orbit radiometric calibration device for high dynamic range infrared remote sensors

    NASA Astrophysics Data System (ADS)

    Sheng, Yicheng; Jin, Weiqi; Dun, Xiong; Zhou, Feng; Xiao, Si

    2017-10-01

    With the demand of quantitative remote sensing technology growing, high reliability as well as high accuracy radiometric calibration technology, especially the on-orbit radiometric calibration device has become an essential orientation in term of quantitative remote sensing technology. In recent years, global launches of remote sensing satellites are equipped with innovative on-orbit radiometric calibration devices. In order to meet the requirements of covering a very wide dynamic range and no-shielding radiometric calibration system, we designed a projection-type radiometric calibration device for high dynamic range sensors based on the Schmidt telescope system. In this internal radiometric calibration device, we select the EF-8530 light source as the calibration blackbody. EF-8530 is a high emittance Nichrome (Ni-Cr) reference source. It can operate in steady or pulsed state mode at a peak temperature of 973K. The irradiance from the source was projected to the IRFPA. The irradiance needs to ensure that the IRFPA can obtain different amplitude of the uniform irradiance through the narrow IR passbands and cover the very wide dynamic range. Combining the internal on-orbit radiometric calibration device with the specially designed adaptive radiometric calibration algorithms, an on-orbit dynamic non-uniformity correction can be accomplished without blocking the optical beam from outside the telescope. The design optimizes optics, source design, and power supply electronics for irradiance accuracy and uniformity. The internal on-orbit radiometric calibration device not only satisfies a series of indexes such as stability, accuracy, large dynamic range and uniformity of irradiance, but also has the advantages of short heating and cooling time, small volume, lightweight, low power consumption and many other features. It can realize the fast and efficient relative radiometric calibration without shielding the field of view. The device can applied to the design and

  12. A Preliminary Analysis of LANDSAT-4 Thematic Mapper Radiometric Performance

    NASA Technical Reports Server (NTRS)

    Justice, C.; Fusco, L.; Mehl, W.

    1985-01-01

    The NASA raw (BT) product, the radiometrically corrected (AT) product, and the radiometrically and geometrically corrected (PT) product of a TM scene were analyzed examine the frequency distribution of the digital data; the statistical correlation between the bands; and the variability between the detectors within a band. The analyses were performed on a series of image subsets from the full scence. Results are presented from one 1024 c 1024 pixel subset of Realfoot Lake, Tennessee which displayed a representative range of ground conditions and cover types occurring within the full frame image. From this cursory examination of one of the first seven channel TM data sets, it would appear that the radiometric performance of the system is most satisfactory and largely meets pre-launch specifications. Problems were noted with Band 5 Detector 3 and Band 2 Detector 4. Differences were observed between forward and reverse scan detector responses both for the BT and AT products. No systematic variations were observed between odd and even detectors.

  13. Monitoring beach evolution using low-altitude aerial photogrammetry and UAV drones

    NASA Astrophysics Data System (ADS)

    Rovere, Alessio; Casella, Elisa; Vacchi, Matteo; Mucerino, Luigi; Pedroncini, Andrea; Ferrari, Marco; Firpo, Marco

    2014-05-01

    Beach monitoring is essential in order to understand the mechanisms of evolution of soft coasts, and the rates of erosion. Traditional beach monitoring techniques involve topographic and bathymetric surveys of the beach, and/or aerial photos repeated in time and compared through geographical information systems. A major problem of this kind of approach is the high economic cost. This often leads to increase the time lag between successive monitoring campaigns to reduce survey costs, with the consequence of fragmenting the information available for coastal zone management. MIRAMar is a project funded by Regione Liguria through the PO CRO European Social Fund, and has two main objectives: i) to study and develop an innovative technique, relatively low-cost, to monitor the evolution of the shoreline using low-altitude Unmanned Aerial Vehicle (UAV) photogrammetry; ii) to study the impact of different type of storm events on a vulnerable coastal tract subject to coastal erosion using also the data collected by the UAV instrument. To achieve these aims we use a drone with its hardware and software suit, traditional survey techniques (bathymetric surveys, topographic GPS surveys and GIS techniques) and we implement a numerical modeling chain (coupling hydrodynamic, wave and sand transport modules) in order to study the impact of different type of storm events on a vulnerable coastal tract subject to coastal erosion.

  14. Estimating abundance of the Southern Hudson Bay polar bear subpopulation using aerial surveys, 2011 and 2012

    USGS Publications Warehouse

    Obbard, Martyn E.; Middel, Kevin R.; Stapleton, Seth P.; Thibault, Isabelle; Brodeur, Vincent; Jutras, Charles

    2013-01-01

    The Southern Hudson Bay (SH) polar bear subpopulation occurs at the southern extent of the species’ range. Although capture-recapture studies indicate that abundance remained stable between 1986 and 2005, declines in body condition and survival were documented during the period, possibly foreshadowing a future decrease in abundance. To obtain a current estimate of abundance, we conducted a comprehensive line transect aerial survey of SH during 2011–2012. We stratified the study site by anticipated densities and flew coastal contour transects and systematically spaced inland transects in Ontario and on Akimiski Island and large offshore islands in 2011. Data were collected with double observer and distance sampling protocols. We also surveyed small islands in Hudson Bay and James Bay and flew a comprehensive transect along the Québec coastline in 2012. We observed 667 bears in Ontario and on Akimiski Island and nearby islands in 2011, and we sighted 80 bears on offshore islands during 2012. Mark-recapture distance sampling and sightresight models yielded a model-averaged estimate of 868 (SE: 177) for the 2011 study area. Our estimate of abundance for the entire SH subpopulation (951; SE: 177) suggests that abundance has remained unchanged. However, this result should be interpreted cautiously because of the methodological differences between historical studies (physical capture) and this survey. A conservative management approach is warranted given the previous increases in the duration of the ice-free season, which are predicted to continue in the future, and previously documented declines in body condition and vital rates.

  15. Aerial photo SBVC1962". Photo no. 360. Low oblique aerial view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Aerial photo -SBVC-1962". Photo no. 360. Low oblique aerial view of the campus, looking southeast. Stamped on the rear: "Ron Wilhite, Sun-Telegram photo, file, 10/22/62/ - San Bernardino Valley College, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  16. Application of radiometric force to microactuation and energy transformation

    NASA Astrophysics Data System (ADS)

    Selden, Nathaniel; Gimelshein, Natalia; Gimelshein, Sergey; Ketsdever, Andrew

    2012-11-01

    The force that acts on a thin vane immersed in rarefied gas when a temperature gradient is imposed along or across the vane has historically been known as the Radiometric force. First observed by Fresnel in 1825, the radiometric force has regained its former popularity in recent decades due to the advent of micro-machines, where a transitional flow regime can occur at atmospheric pressures. Whether used for its force potential or simply viewed as a nuisance, this force cannot be ignored in micro-devices where thermal gradients exist. Potential applications of radiometric force now span from atomic force microscopy to astrophysics to high altitude flight. This paper describes an application of these forces to a conceptual micro-scale energy harvester, where two possible geometries of operation are described. It is shown that one configuration is significantly simpler to fabricate while the other geometry is more efficient at producing larger forces. The effect of pressure, feature separation, and feature-to-ring gap are analyzed. For consistency and the accurate treatment of the relevant flow conditions, an implementation of the SMOKE code that solves the ES BGK equation was used in all computations.

  17. Reconnaissance geologic map of part of the San Isidro Quadrangle, Baja California Sur, Mexico

    USGS Publications Warehouse

    McLean, Hugh; Hausback, B.P.; Knapp, J.H.

    1985-01-01

    Mapping was done on aerial photographs and transferred, where possible, to 1:50,000-scale topographic base maps. Areas with roads were field checked; however, in the northeast part of the map area, lack of roads prevented field checks. Previous geologic surveys of parts of the map area were made by horseback in the early 1920's; reports were published by Darton (1921), Heim (1922), and Beal (1948). Subsurface data from petroleum exploration and a geologic map were incorporated in a regional study by Mina (1957). The first radiometric ages of rocks from the map area were published by Gastil and others (1979). Recently determined radiometric ages and chemical analysis of volcanic rocks were reported by Hausback (1984) and by Sawlan and Smith (1984). Our study incorporates geologic mapping with age control based on new radiometric ages as well as paleontology, Flows and tuffs were dated by the K-Ar method. Fossil ages are based on diatom and mollusk assemblages.

  18. Modern aerial gamma-ray spectrometry and regional potassium map of the conterminous United States

    USGS Publications Warehouse

    Duval, Joseph S.

    1990-01-01

    The aerial gamma-ray data were obtained as part of the National Uranium Resource Evaluation (NURE) Program sponsored by the U.S. Department of Energy during the period 1975-1983. References for the Open-File Reports that describe the surveys and data collection can be found in Bendix Field Engineering Corp. (1983). The aerial surveys were flown by contractors using fixed-wing and helicopter systems with 33-50 L (liters) of thallium-activated sodium iodide (NaI (TI)) crystals. The nominal survey altitude used is 122 m. The survey lines were generally east-west with line spacings of 1.6-10 km. Tie lines were flown perpendicular to the flight lines at intervals of 16- 30 km. The data were corrected for background from aircraft contamination and cosmic rays, altitude variations, airborne 214Bi, and Compton scattering. The gamma-ray systems were calibrated using the calibrations pads at Grand Junction, Colorado (Ward, 1978 ) and the dynamic test strip at Lake Mead, Arizona (Geodata International, Inc., 1977).  

  19. Aerial monitoring in active mud volcano by UAV technique

    NASA Astrophysics Data System (ADS)

    Pisciotta, Antonino; Capasso, Giorgio; Madonia, Paolo

    2016-04-01

    UAV photogrammetry opens various new applications in the close range domain, combining aerial and terrestrial photogrammetry, but also introduces low-cost alternatives to the classical manned aerial photogrammetry. Between 2014 and 2015 tree aerial surveys have been carried out. Using a quadrotor drone, equipped with a compact camera, it was possible to generate high resolution elevation models and orthoimages of The "Salinelle", an active mud volcanoes area, located in territory of Paternò (South Italy). The main risks are related to the damages produced by paroxysmal events. Mud volcanoes show different cyclic phases of activity, including catastrophic events and periods of relative quiescence characterized by moderate activity. Ejected materials often are a mud slurry of fine solids suspended in liquids which may include water and hydrocarbon fluids, the bulk of released gases are carbon dioxide, with some methane and nitrogen, usually pond-shaped of variable dimension (from centimeters to meters in diameter). The scope of the presented work is the performance evaluation of a UAV system that was built to rapidly and autonomously acquire mobile three-dimensional (3D) mapping data in a volcanic monitoring scenario.

  20. Hyperspectral imaging spectro radiometer improves radiometric accuracy

    NASA Astrophysics Data System (ADS)

    Prel, Florent; Moreau, Louis; Bouchard, Robert; Bullis, Ritchie D.; Roy, Claude; Vallières, Christian; Levesque, Luc

    2013-06-01

    Reliable and accurate infrared characterization is necessary to measure the specific spectral signatures of aircrafts and associated infrared counter-measures protections (i.e. flares). Infrared characterization is essential to improve counter measures efficiency, improve friend-foe identification and reduce the risk of friendly fire. Typical infrared characterization measurement setups include a variety of panchromatic cameras and spectroradiometers. Each instrument brings essential information; cameras measure the spatial distribution of targets and spectroradiometers provide the spectral distribution of the emitted energy. However, the combination of separate instruments brings out possible radiometric errors and uncertainties that can be reduced with Hyperspectral imagers. These instruments combine both spectral and spatial information into the same data. These instruments measure both the spectral and spatial distribution of the energy at the same time ensuring the temporal and spatial cohesion of collected information. This paper presents a quantitative analysis of the main contributors of radiometric uncertainties and shows how a hyperspectral imager can reduce these uncertainties.

  1. The Candela and Photometric and Radiometric Measurements

    PubMed Central

    Parr, Albert C.

    2001-01-01

    The national measurement system for photometric and radiometric quantities is presently based upon techniques that make these quantities traceable to a high-accuracy cryogenic radiometer. The redefinition of the candela in 1979 provided the opportunity for national measurement laboratories to base their photometric measurements on optical detector technology rather than on the emission from high-temperature blackbody optical sources. The ensuing technical developments of the past 20 years, including the significant improvements in cryogenic radiometer performance, have provided the opportunity to place the fundamental maintenance of photometric quantities upon absolute detector based technology as was allowed by the 1979 redefinition. Additionally, the development of improved photodetectors has had a significant impact on the methodology in most of the radiometric measurement areas. This paper will review the status of the NIST implementation of the technical changes mandated by the 1979 redefinition of the candela and its effect upon the maintenance and dissemination of optical radiation measurements. PMID:27500020

  2. A radiometric Bode's Law: Predictions for Uranus

    NASA Technical Reports Server (NTRS)

    Desch, M. D.; Kaiser, M. L.

    1984-01-01

    The magnetospheres of three planets, Earth, Jupiter, and Saturn, are known to be sources of intense, nonthermal radio bursts. The emissions from these sources undergo pronounced long term intensity fluctuations that are caused by the solar wind interaction with the magnetosphere of each planet. Determinations by spacecraft of the low frequency radio spectra and radiation beam geometry now permit a reliable assessment of the overall efficiency of the solar wind in stimulating these emissions. Earlier estimates of how magnetospheric radio output scales with the solar wind energy input must be revised greatly, with the result that, while the efficiency is much lower than previously thought, it is remarkably uniform from planet to planet. The formulation of a radiometric Bode's Law from which a planet's magnetic moment is estimated from its radio emission output is presented. Applying the radiometric scaling law to Uranus, the low-frequency radio power is likely to be measured by the Voyager 2 spacecraft as it approaches this planet.

  3. Improved Thermal-Vacuum Compatible Flat Plate Radiometric Souce for System-Level Testing of Optical Sensors

    NASA Technical Reports Server (NTRS)

    Schwarz, Mark A.; Kent, Craig J.; Bousquet, Robert; Brown, Steven W.

    2015-01-01

    This work describes the development of an improved vacuum compatible flat plate radiometric source used for characterizing and calibrating remote optical sensors, in situ, throughout their testing period. The original flat plate radiometric source was developed for use by the VIIRS instrument during the NPOESS Preparatory Project (NPP). Following this effort, the FPI has had significant upgrades in order to improve both the radiometric throughput and uniformity. Results of the VIIRS testing with the reconfigured FPI are reported and discussed.

  4. The 90 GHz radiometric imaging. [for terrain analysis

    NASA Technical Reports Server (NTRS)

    King, H. E.; White, J. D.; Wilson, W. J.; Mori, T. T.; Hollinger, J. P.; Troy, B. E.; Kenney, J. E.; Mcgoogan, J. T.

    1976-01-01

    A 90-GHz (3 mm wavelength) radiometer with a noise output fluctuation of 0.22 K (RMS), with a scanning antenna beam mirror, and the data processing system are described. Real-time radiometric imaging of terrain and man-made objects are shown. Flying at an altitude of 1500 ft a radiometer antenna with a 2 degrees halfpower beamwidth can distinguish landforms, waterways, roads, runways, bridges, ships at sea and their wakes, aircraft on runways, and athletic fields. A flight taken at an altitude of 3000 ft with approximately 2000 ft of clouds below the radiometer demonstrates the ability to distinguish bridges, rivers, marshland and other landforms even though the clouds are optically opaque. The radiometric images of a few representative scenes along with photographs of the corresponding scenes are presented to demonstrate the resolution of the imager system.

  5. Improved Thermal-Vacuum Compatible Flat Plate Radiometric Source For System-Level Testing Of Optical Sensors

    NASA Technical Reports Server (NTRS)

    Schwarz, Mark A.; Kent, Craig J.; Bousquet, Robert; Brown, Steven W.

    2016-01-01

    In this work, we describe an improved thermal-vacuum compatible flat plate radiometric source which has been developed and utilized for the characterization and calibration of remote optical sensors. This source is unique in that it can be used in situ, in both ambient and thermal-vacuum environments, allowing it to follow the sensor throughout its testing cycle. The performance of the original flat plate radiometric source was presented at the 2009 SPIE1. Following the original efforts, design upgrades were incorporated into the source to improve both radiometric throughput and uniformity. The pre-thermal-vacuum (pre-TVAC) testing results of a spacecraft-level optical sensor with the improved flat plate illumination source, both in ambient and vacuum environments, are presented. We also briefly discuss potential FPI configuration changes in order to improve its radiometric performance.

  6. A semi-operational agricultural inventory using small scale aerial photography

    NASA Technical Reports Server (NTRS)

    Draeger, W. C.; Pettinger, L. R.

    1970-01-01

    The feasibility of performing inventories of agricultural resources using very small scale aerial or space photography was studied. The results were encouraging on two counts: (1) The very practical problems of an operational survey are being faced and solutions are being found. (2) It seems that a fully operational agricultural inventory using space photography is not beyond the scope of present technology.

  7. Monitoring Seabirds and Marine Mammals by Georeferenced Aerial Photography

    NASA Astrophysics Data System (ADS)

    Kemper, G.; Weidauer, A.; Coppack, T.

    2016-06-01

    The assessment of anthropogenic impacts on the marine environment is challenged by the accessibility, accuracy and validity of biogeographical information. Offshore wind farm projects require large-scale ecological surveys before, during and after construction, in order to assess potential effects on the distribution and abundance of protected species. The robustness of site-specific population estimates depends largely on the extent and design of spatial coverage and the accuracy of the applied census technique. Standard environmental assessment studies in Germany have so far included aerial visual surveys to evaluate potential impacts of offshore wind farms on seabirds and marine mammals. However, low flight altitudes, necessary for the visual classification of species, disturb sensitive bird species and also hold significant safety risks for the observers. Thus, aerial surveys based on high-resolution digital imagery, which can be carried out at higher (safer) flight altitudes (beyond the rotor-swept zone of the wind turbines) have become a mandatory requirement, technically solving the problem of distant-related observation bias. A purpose-assembled imagery system including medium-format cameras in conjunction with a dedicated geo-positioning platform delivers series of orthogonal digital images that meet the current technical requirements of authorities for surveying marine wildlife at a comparatively low cost. At a flight altitude of 425 m, a focal length of 110 mm, implemented forward motion compensation (FMC) and exposure times ranging between 1/1600 and 1/1000 s, the twin-camera system generates high quality 16 bit RGB images with a ground sampling distance (GSD) of 2 cm and an image footprint of 155 x 410 m. The image files are readily transferrable to a GIS environment for further editing, taking overlapping image areas and areas affected by glare into account. The imagery can be routinely screened by the human eye guided by purpose-programmed software

  8. Observation of coral reefs on Ishigaki Island, Japan, using Landsat TM images and aerial photographs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsunaga, Tsuneo; Kayanne, Hajime

    1997-06-01

    Ishigaki Island is located at the southwestern end of Japanese Islands and famous for its fringing coral reefs. More than twenty LANDSAT TM images in twelve years and aerial photographs taken on 1977 and 1994 were used to survey two shallow reefs on this island, Shiraho and Kabira. Intensive field surveys were also conducted in 1995. All satellite images of Shiraho were geometrically corrected and overlaid to construct a multi-date satellite data set. The effects of solar elevation and tide on satellite imagery were studied with this data set. The comparison of aerial and satellite images indicated that significant changesmore » occurred between 1977 and 1984 in Kabira: rapid formation in the western part and decrease in the eastern part of dark patches. The field surveys revealed that newly formed dark patches in the west contain young corals. These results suggest that remote sensing is useful for not only mapping but also monitoring of shallow coral reefs.« less

  9. BOREAS TE-18, 60-m, Radiometrically Rectified Landsat TM Imagery

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Knapp, David

    2000-01-01

    The BOREAS TE-18 team used a radiometric rectification process to produce standardized DN values for a series of Landsat TM images of the BOREAS SSA and NSA in order to compare images that were collected under different atmospheric conditions. The images for each study area were referenced to an image that had very clear atmospheric qualities. The reference image for the SSA was collected on 02-Sep-1994, while the reference image for the NSA was collected on 2 1 Jun-1995. The 23 rectified images cover the period of 07-Jul-1985 to 18-Sep-1994 in the SSA and 22-Jun-1984 to 09-Jun-1994 in the NSA. Each of the reference scenes had coincident atmospheric optical thickness measurements made by RSS-11. The radiometric rectification process is described in more detail by Hall et al. (1991). The original Landsat TM data were received from CCRS for use in the BOREAS project. Due to the nature of the radiometric rectification process and copyright issues, the full-resolution (30-m) images may not be publicly distributed. However, this spatially degraded 60-m resolution version of the images may be openly distributed and is available on the BOREAS CD-ROM series. After the radiometric rectification processing, the original data were degraded to a 60-m pixel size from the original 30-m pixel size by averaging the data over a 2- by 2-pixel window. The data are stored in binary image-format files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Activity Archive Center (DAAC).

  10. The OLI Radiometric Scale Realization Round Robin Measurement Campaign

    NASA Technical Reports Server (NTRS)

    Cutlip, Hansford; Cole,Jerold; Johnson, B. Carol; Maxwell, Stephen; Markham, Brian; Ong, Lawrence; Hom, Milton; Biggar, Stuart

    2011-01-01

    A round robin radiometric scale realization was performed at the Ball Aerospace Radiometric Calibration Laboratory in January/February 2011 in support of the Operational Land Imager (OLI) Program. Participants included Ball Aerospace, NIST, NASA Goddard Space Flight Center, and the University of Arizona. The eight day campaign included multiple observations of three integrating sphere sources by nine radiometers. The objective of the campaign was to validate the radiance calibration uncertainty ascribed to the integrating sphere used to calibrate the OLI instrument. The instrument level calibration source uncertainty was validated by quatnifying: (1) the long term stability of the NIST calibrated radiance artifact, (2) the responsivity scale of the Ball Aerospace transfer radiometer and (3) the operational characteristics of the large integrating sphere.

  11. A Planetary Protection Strategy for the Mars Aerial Regional-Scale Environmental Survey (ARES) Mission Concept

    NASA Technical Reports Server (NTRS)

    Kuhl, Christopher A.

    2008-01-01

    The Aerial Regional-scale Environmental Survey (ARES) is a Mars exploration mission concept designed to send an airplane to fly through the lower atmosphere of Mars, with the goal of taking scientific measurements of the atmosphere, surface, and subsurface phenomenon. ARES was first proposed to the Mars Scout program in December 2002 for a 2007 launch opportunity and was selected to proceed with a Phase A study, step-2 proposal which was submitted in May 2003. ARES was not selected for the Scout mission, but efforts continued on risk reduction of the atmospheric flight system in preparation for the next Mars Scout opportunity in 2006. The ARES concept was again proposed in July 2006 to the Mars Scout program but was not selected to proceed into Phase A. This document describes the Planetary Protection strategy that was developed in ARES Pre Phase-A activities to help identify, early in the design process, certain hardware, assemblies, and/or subsystems that will require unique design considerations based on constraints imposed by Planetary Protection requirements. Had ARES been selected as an exploration project, information in this document would make up the ARES Project Planetary Protection Plan.

  12. Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar.

    PubMed

    Li, Zhan; Jupp, David L B; Strahler, Alan H; Schaaf, Crystal B; Howe, Glenn; Hewawasam, Kuravi; Douglas, Ewan S; Chakrabarti, Supriya; Cook, Timothy A; Paynter, Ian; Saenz, Edward J; Schaefer, Michael

    2016-03-02

    Radiometric calibration of the Dual-Wavelength Echidna(®) Lidar (DWEL), a full-waveform terrestrial laser scanner with two simultaneously-pulsing infrared lasers at 1064 nm and 1548 nm, provides accurate dual-wavelength apparent reflectance (ρ(app)), a physically-defined value that is related to the radiative and structural characteristics of scanned targets and independent of range and instrument optics and electronics. The errors of ρ(app) are 8.1% for 1064 nm and 6.4% for 1548 nm. A sensitivity analysis shows that ρ(app) error is dominated by range errors at near ranges, but by lidar intensity errors at far ranges. Our semi-empirical model for radiometric calibration combines a generalized logistic function to explicitly model telescopic effects due to defocusing of return signals at near range with a negative exponential function to model the fall-off of return intensity with range. Accurate values of ρ(app) from the radiometric calibration improve the quantification of vegetation structure, facilitate the comparison and coupling of lidar datasets from different instruments, campaigns or wavelengths and advance the utilization of bi- and multi-spectral information added to 3D scans by novel spectral lidars.

  13. Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar

    PubMed Central

    Li, Zhan; Jupp, David L. B.; Strahler, Alan H.; Schaaf, Crystal B.; Howe, Glenn; Hewawasam, Kuravi; Douglas, Ewan S.; Chakrabarti, Supriya; Cook, Timothy A.; Paynter, Ian; Saenz, Edward J.; Schaefer, Michael

    2016-01-01

    Radiometric calibration of the Dual-Wavelength Echidna® Lidar (DWEL), a full-waveform terrestrial laser scanner with two simultaneously-pulsing infrared lasers at 1064 nm and 1548 nm, provides accurate dual-wavelength apparent reflectance (ρapp), a physically-defined value that is related to the radiative and structural characteristics of scanned targets and independent of range and instrument optics and electronics. The errors of ρapp are 8.1% for 1064 nm and 6.4% for 1548 nm. A sensitivity analysis shows that ρapp error is dominated by range errors at near ranges, but by lidar intensity errors at far ranges. Our semi-empirical model for radiometric calibration combines a generalized logistic function to explicitly model telescopic effects due to defocusing of return signals at near range with a negative exponential function to model the fall-off of return intensity with range. Accurate values of ρapp from the radiometric calibration improve the quantification of vegetation structure, facilitate the comparison and coupling of lidar datasets from different instruments, campaigns or wavelengths and advance the utilization of bi- and multi-spectral information added to 3D scans by novel spectral lidars. PMID:26950126

  14. 7 CFR 1755.506 - Aerial wire services

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false Aerial wire services 1755.506 Section 1755.506... § 1755.506 Aerial wire services (a) Aerial services of one through six pairs shall consist of Service...), Specifications and Drawings for Service Installations at Customer Access Locations. The wire used for aerial...

  15. Region Three Aerial Measurement System Flight Planning Tool - 12006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messick, Chuck; Pham, Minh; Smith, Ron

    The Region 3 Aerial Measurement System Flight Planning Tool is used by the National Nuclear Security Agency (NNSA), United States Department of Energy, Radiological Assistance Program, Region 3, to respond to emergency radiological situations. The tool automates the flight planning package process while decreasing Aerial Measuring System response times and decreases the potential for human error. Deployment of the Region Three Aerial Measurement System Flight Planning Tool has resulted in an immediate improvement to the flight planning process in that time required for mission planning has been reduced from 1.5 hours to 15 minutes. Anecdotally, the RAP team reports thatmore » the rate of usable data acquired during surveys has improved from 40-60 percent to over 90 percent since they began using the tool. Though the primary product of the flight planning tool is a pdf format document for use by the aircraft flight crew, the RAP team has begun carrying their laptop computer on the aircraft during missions. By connecting a Global Positioning System (GPS) device to the laptop and using ESRI ArcMap's GPS tool bar to overlay the aircraft position directly on the flight plan in real time, the RAP team can evaluate and correct the aircraft position as the mission is executed. (authors)« less

  16. Absolute Radiometric Calibration of KOMPSAT-3A

    NASA Astrophysics Data System (ADS)

    Ahn, H. Y.; Shin, D. Y.; Kim, J. S.; Seo, D. C.; Choi, C. U.

    2016-06-01

    This paper presents a vicarious radiometric calibration of the Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) performed by the Korea Aerospace Research Institute (KARI) and the Pukyong National University Remote Sensing Group (PKNU RSG) in 2015.The primary stages of this study are summarized as follows: (1) A field campaign to determine radiometric calibrated target fields was undertaken in Mongolia and South Korea. Surface reflectance data obtained in the campaign were input to a radiative transfer code that predicted at-sensor radiance. Through this process, equations and parameters were derived for the KOMPSAT-3A sensor to enable the conversion of calibrated DN to physical units, such as at-sensor radiance or TOA reflectance. (2) To validate the absolute calibration coefficients for the KOMPSAT-3A sensor, we performed a radiometric validation with a comparison of KOMPSAT-3A and Landsat-8 TOA reflectance using one of the six PICS (Libya 4). Correlations between top-of-atmosphere (TOA) radiances and the spectral band responses of the KOMPSAT-3A sensors at the Zuunmod, Mongolia and Goheung, South Korea sites were significant for multispectral bands. The average difference in TOA reflectance between KOMPSAT-3A and Landsat-8 image over the Libya 4, Libya site in the red-green-blue (RGB) region was under 3%, whereas in the NIR band, the TOA reflectance of KOMPSAT-3A was lower than the that of Landsat-8 due to the difference in the band passes of two sensors. The KOMPSAT-3Aensor includes a band pass near 940 nm that can be strongly absorbed by water vapor and therefore displayed low reflectance. Toovercome this, we need to undertake a detailed analysis using rescale methods, such as the spectral bandwidth adjustment factor.

  17. Optical Imaging and Radiometric Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Ha, Kong Q.; Fitzmaurice, Michael W.; Moiser, Gary E.; Howard, Joseph M.; Le, Chi M.

    2010-01-01

    OPTOOL software is a general-purpose optical systems analysis tool that was developed to offer a solution to problems associated with computational programs written for the James Webb Space Telescope optical system. It integrates existing routines into coherent processes, and provides a structure with reusable capabilities that allow additional processes to be quickly developed and integrated. It has an extensive graphical user interface, which makes the tool more intuitive and friendly. OPTOOL is implemented using MATLAB with a Fourier optics-based approach for point spread function (PSF) calculations. It features parametric and Monte Carlo simulation capabilities, and uses a direct integration calculation to permit high spatial sampling of the PSF. Exit pupil optical path difference (OPD) maps can be generated using combinations of Zernike polynomials or shaped power spectral densities. The graphical user interface allows rapid creation of arbitrary pupil geometries, and entry of all other modeling parameters to support basic imaging and radiometric analyses. OPTOOL provides the capability to generate wavefront-error (WFE) maps for arbitrary grid sizes. These maps are 2D arrays containing digital sampled versions of functions ranging from Zernike polynomials to combination of sinusoidal wave functions in 2D, to functions generated from a spatial frequency power spectral distribution (PSD). It also can generate optical transfer functions (OTFs), which are incorporated into the PSF calculation. The user can specify radiometrics for the target and sky background, and key performance parameters for the instrument s focal plane array (FPA). This radiometric and detector model setup is fairly extensive, and includes parameters such as zodiacal background, thermal emission noise, read noise, and dark current. The setup also includes target spectral energy distribution as a function of wavelength for polychromatic sources, detector pixel size, and the FPA s charge

  18. Application of a scattered-light radiometric power meter.

    PubMed

    Caron, James N; DiComo, Gregory P; Ting, Antonio C; Fischer, Richard P

    2011-04-01

    The power measurement of high-power continuous-wave laser beams typically calls for the use of water-cooled thermopile power meters. Large thermopile meters have slow response times that can prove insufficient to conduct certain tests, such as determining the influence of atmospheric turbulence on transmitted beam power. To achieve faster response times, we calibrated a digital camera to measure the power level as the optical beam is projected onto a white surface. This scattered-light radiometric power meter saves the expense of purchasing a large area power meter and the required water cooling. In addition, the system can report the power distribution, changes in the position, and the spot size of the beam. This paper presents the theory of the scattered-light radiometric power meter and demonstrates its use during a field test at a 2.2 km optical range. © 2011 American Institute of Physics

  19. Assessing the spatial distribution of coral bleaching using small unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Levy, Joshua; Hunter, Cynthia; Lukacazyk, Trent; Franklin, Erik C.

    2018-06-01

    Small unmanned aerial systems (sUAS) are an affordable, effective complement to existing coral reef monitoring and assessment tools. sUAS provide repeatable low-altitude, high-resolution photogrammetry to address fundamental questions of spatial ecology and community dynamics for shallow coral reef ecosystems. Here, we qualitatively describe the use of sUAS to survey the spatial characteristics of coral cover and the distribution of coral bleaching across patch reefs in Kānéohe Bay, Hawaii, and address limitations and anticipated technology advancements within the field of UAS. Overlapping sub-decimeter low-altitude aerial reef imagery collected during the 2015 coral bleaching event was used to construct high-resolution reef image mosaics of coral bleaching responses on four Kānéohe Bay patch reefs, totaling 60,000 m2. Using sUAS imagery, we determined that paled, bleached and healthy corals on all four reefs were spatially clustered. Comparative analyses of data from sUAS imagery and in situ diver surveys found as much as 14% difference in coral cover values between survey methods, depending on the size of the reef and area surveyed. When comparing the abundance of unhealthy coral (paled and bleached) between sUAS and in situ diver surveys, we found differences in cover from 1 to 49%, depending on the depth of in situ surveys, the percent of reef area covered with sUAS surveys and patchiness of the bleaching response. This study demonstrates the effective use of sUAS surveys for assessing the spatial dynamics of coral bleaching at colony-scale resolutions across entire patch reefs and evaluates the complementarity of data from both sUAS and in situ diver surveys to more accurately characterize the spatial ecology of coral communities on reef flats and slopes.

  20. Adjustments to the MODIS Terra Radiometric Calibration and Polarization Sensitivity in the 2010 Reprocessing

    NASA Technical Reports Server (NTRS)

    Meister, Gerhard; Franz, Bryan A.

    2011-01-01

    The Moderate-Resolution Imaging Spectroradiometer (MODIS) on NASA s Earth Observing System (EOS) satellite Terra provides global coverage of top-of-atmosphere (TOA) radiances that have been successfully used for terrestrial and atmospheric research. The MODIS Terra ocean color products, however, have been compromised by an inadequate radiometric calibration at the short wavelengths. The Ocean Biology Processing Group (OBPG) at NASA has derived radiometric corrections using ocean color products from the SeaWiFS sensor as truth fields. In the R2010.0 reprocessing, these corrections have been applied to the whole mission life span of 10 years. This paper presents the corrections to the radiometric gains and to the instrument polarization sensitivity, demonstrates the improvement to the Terra ocean color products, and discusses issues that need further investigation. Although the global averages of MODIS Terra ocean color products are now in excellent agreement with those of SeaWiFS and MODIS Aqua, and image quality has been significantly improved, the large corrections applied to the radiometric calibration and polarization sensitivity require additional caution when using the data.

  1. Radiometric calibration of the Landsat MSS sensor series

    USGS Publications Warehouse

    Helder, Dennis L.; Karki, Sadhana; Bhatt, Rajendra; Micijevik, Esad; Aaron, David; Jasinski, Benjamin

    2012-01-01

    Multispectral remote sensing of the Earth using Landsat sensors was ushered on July 23, 1972, with the launch of Landsat-1. Following that success, four more Landsat satellites were launched, and each of these carried the Multispectral Scanner System (MSS). These five sensors provided the only consistent multispectral space-based imagery of the Earth's surface from 1972 to 1982. This work focuses on developing both a consistent and absolute radiometric calibration of this sensor system. Cross-calibration of the MSS was performed through the use of pseudoinvariant calibration sites (PICSs). Since these sites have been shown to be stable for long periods of time, changes in MSS observations of these sites were attributed to changes in the sensors themselves. In addition, simultaneous data collections were available for some MSS sensor pairs, and these were also used for cross-calibration. Results indicated substantial differences existed between instruments, up to 16%, and these were reduced to 5% or less across all MSS sensors and bands. Lastly, this paper takes the calibration through the final step and places the MSS sensors on an absolute radiometric scale. The methodology used to achieve this was based on simultaneous data collections by the Landsat-5 MSS and Thematic Mapper (TM) instruments. Through analysis of image data from a PICS location and through compensating for the spectral differences between the two instruments, the Landsat-5 MSS sensor was placed on an absolute radiometric scale based on the Landsat-5 TM sensor. Uncertainties associated with this calibration are considered to be less than 5%.

  2. The Use of Small Scale Aerial Photography in a Regional Agricultural Survey

    NASA Technical Reports Server (NTRS)

    Draeger, W. C.

    1971-01-01

    The feasibility of performing inventories of agricultural resources using very small scale aerial or space photography has been investigated. Results to date are encouraging on two counts: (1) the questions posed initially are being answered, and (2) it would seem that a fully operational agricultural inventory using very small scale photography is not beyond the scope of present technology. The biggest problems to be faced in establishing a functional inventory system are those concerning logistics and data handling.

  3. Radiometric and Spatial Characterization of High-Spatial Resolution Sensors

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; Zanoni, Vicki (Technical Monitor)

    2002-01-01

    The development and improvement of commercial hyperspatial sensors in recent years has increased the breadth of information that can be retrieved from spaceborne and airborne imagery. NASA, through it's Scientific Data Purchases, has successfully provided such data sets to its user community. A key element to the usefulness of these data are an understanding of the radiometric and spatial response quality of the imagery. This proposal seeks funding to examine the absolute radiometric calibration of the Ikonos sensor operated by Space Imaging and the recently-launched Quickbird sensor from DigitalGlobe. In addition, we propose to evaluate the spatial response of the two sensors. The proposed methods rely on well-understood, ground-based targets that have been used by the University of Arizona for more than a decade.

  4. Landsat-7 ETM+ radiometric calibration status

    USGS Publications Warehouse

    Barsi, Julia A.; Markham, Brian L.; Czapla-Myers, J. S.; Helder, Dennis L.; Hook, Simon; Schott, John R.; Haque, Md. Obaidul

    2016-01-01

    Now in its 17th year of operation, the Enhanced Thematic Mapper + (ETM+), on board the Landsat-7 satellite, continues to systematically acquire imagery of the Earth to add to the 40+ year archive of Landsat data. Characterization of the ETM+ on-orbit radiometric performance has been on-going since its launch in 1999. The radiometric calibration of the reflective bands is still monitored using on-board calibration devices, though the Pseudo-Invariant Calibration Sites (PICS) method has proven to be an effective tool as well. The calibration gains were updated in April 2013 based primarily on PICS results, which corrected for a change of as much as -0.2%/year degradation in the worst case bands. A new comparison with the SADE database of PICS results indicates no additional degradation in the updated calibration. PICS data are still being tracked though the recent trends are not well understood. The thermal band calibration was updated last in October 2013 based on a continued calibration effort by NASA/Jet Propulsion Lab and Rochester Institute of Technology. The update accounted for a 0.036 W/m2 sr μm or 0.26K at 300K bias error. The updated lifetime trend is now stable to within +/- 0.4K.

  5. Landsat-7 ETM+ Radiometric Calibration Status

    NASA Technical Reports Server (NTRS)

    Barsi, Julia A.; Markham, Brian L.; Czapla-Myers, Jeffrey S.; Helder, Dennis L.; Hook, Simon J.; Schott, John R; Haque, Md. Obaidul

    2016-01-01

    Now in its 17th year of operation, the Enhanced Thematic Mapper + (ETM+), on board the Landsat-7 satellite, continues to systematically acquire imagery of the Earth to add to the 40+ year archive of Landsat data. Characterization of the ETM+ on-orbit radiometric performance has been on-going since its launch in 1999. The radiometric calibration of the reflective bands is still monitored using on-board calibration devices, though the Pseudo-Invariant Calibration Sites (PICS) method has proven to be an effect tool as well. The calibration gains were updated in April 2013 based primarily on PICS results, which corrected for a change of as much as -0.2%/year degradation in the worst case bands. A new comparison with the SADE database of PICS results indicates no additional degradation in the updated calibration. PICS data are still being tracked though the recent trends are not well understood. The thermal band calibration was updated last in October 2013 based on a continued calibration effort by NASA/Jet Propulsion Lab and Rochester Institute of Technology. The update accounted for a 0.31 W/sq m/ sr/micron bias error. The updated lifetime trend is now stable to within + 0.4K.

  6. Aerial surveys of endangered cetaceans and other marine mammals in the northwestern Gulf of Alaska and southeastern Bering Sea. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brueggeman, J.J.; Green, G.A.; Grotefendt, R.A.

    1987-09-01

    Aerial surveys were conducted in the Northwestern Gulf of Alaska and southeastern Bering Sea to determine the abundance, distribution, and habitat use patterns of endangered cetaceans and other marine mammals. Four species of cetaceans listed by the Federal Government as endangered were observed: gray, humpback, finback, and sperm whales. Sightings were also made to seven nonendangered species of cetaceans: minke, Cuvier's beaked, Baird's beaked, belukha, and killer whales, and Dall and harbor porpoises. Results show that the project area is an important feeding ground for relatively large numbers of humpback and finback whales and lower numbers of gray whale migrationmore » route between seasonal ranges. The project area also supports a variety of other marine mammals both seasonally and annually.« less

  7. Ellipsoidal geometry in asteroid thermal models - The standard radiometric model

    NASA Technical Reports Server (NTRS)

    Brown, R. H.

    1985-01-01

    The major consequences of ellipsoidal geometry in an othewise standard radiometric model for asteroids are explored. It is shown that for small deviations from spherical shape a spherical model of the same projected area gives a reasonable aproximation to the thermal flux from an ellipsoidal body. It is suggested that large departures from spherical shape require that some correction be made for geometry. Systematic differences in the radii of asteroids derived radiometrically at 10 and 20 microns may result partly from nonspherical geometry. It is also suggested that extrapolations of the rotational variation of thermal flux from a nonspherical body based solely on the change in cross-sectional area are in error.

  8. Radiometric Method for the Detection of Coliform Organisms in Water

    PubMed Central

    Bachrach, Uriel; Bachrach, Zelilah

    1974-01-01

    A new radiometric method for the detection of coliform bacteria in water has been described. The method is based on the release of 14CO2 from [14C]lactose by bacteria suspended in growth medium and incubated at 37 C. The evolved 14CO2 is trapped by hyamine hydroxide and counted in a liquid scintillation spectrometer. The method permits the detection of 1 to 10 organisms within 6 h of incubation. Coliform bacteria suspended in water for several days recover from starvation and may be quantitated by the proposed method. Bacteria from water samples may also be concentrated by filtration through membrane filters and detected by the radiometric assay. PMID:4605007

  9. Trial aerial survey of sea otters in Prince William Sound, Alaska, 1993. Restoration project 93043-2. Exxon Valdez oil spill restoration project final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodkin, J.L.; Udevitz, M.S.

    1996-05-01

    We developed an aerial survey method for sea otters, using a strip transect design where otters observed in a strip along one side of the aircraft are counted. Two strata are sampled, one lies close to shore and/or in shallow. The other strata lies offshore and over deeper water. We estimate the proportion of otters not seen by the observer by conducting intensive searches of units (ISU`s) within strips when otters are observed. The first study found no significant differences in sea otter detection probabilities between ISU`s initiated by the sighting of an otter group compared to systematically located ISU`s.more » The second study consisted of a trial survey of all of Prince William Sound, excluding Orca Inlet. The survey area consisted of 5,017 sq km of water between the shore line and an offshore boundary based on shoreline physiography, the 100 m depth contour or a distance of 2 km from the shore. From 5-13 August 1993, two observers surveyed 1,023 linear km of high density sea otter habitat and 355 linear km of low density habitat.« less

  10. Assessing responses of humpback whales to North Pacific Acoustic Laboratory (NPAL) transmissions: results of 2001--2003 aerial surveys north of Kauai.

    PubMed

    Mobley, Joseph R

    2005-03-01

    Eight aerial surveys were flown north of the Hawaiian island of Kauai during 2001 when the North Pacific Acoustic Laboratory (NPAL) source was not transmitting, and during 2002 and 2003 when it was. All surveys were performed during the period of peak residency of humpback whales (Feb-Mar). During 2002 and 2003, surveys commenced immediately upon cessation of a 24-h cycle of transmissions. Numbers and distribution of whales observed within 40 km of the NPAL source during 2001 (source off) were compared with those observed during 2002 and 2003 (source on). A total of 75 sightings was noted during 2001, as compared with 81 and 55 during 2002 and 2003, respectively. Differences in sighting rates (sightings/km) across years were not statistically significant. Assessment of distributional changes relied upon comparisons of three measures: (a) location depths; (b) distance from the NPAL source; and (c) distance offshore. None of the distributional comparisons revealed statistically significant differences across years. Several possible interpretations are examined: (a) whales have habituated to the NPAL signal; (b) insufficient statistical power exists in the present design to detect any effects; and (c) the effects are short-lived and become undetectable shortly after the cessation of transmissions.

  11. Integration of aerial imaging and variable-rate technology for site-specific aerial herbicide application

    USDA-ARS?s Scientific Manuscript database

    As remote sensing and variable rate technology are becoming more available for aerial applicators, practical methodologies on effective integration of these technologies are needed for site-specific aerial applications of crop production and protection materials. The objectives of this study were to...

  12. Design and analysis of radiometric instruments using high-level numerical models and genetic algorithms

    NASA Astrophysics Data System (ADS)

    Sorensen, Ira Joseph

    A primary objective of the effort reported here is to develop a radiometric instrument modeling environment to provide complete end-to-end numerical models of radiometric instruments, integrating the optical, electro-thermal, and electronic systems. The modeling environment consists of a Monte Carlo ray-trace (MCRT) model of the optical system coupled to a transient, three-dimensional finite-difference electrothermal model of the detector assembly with an analytic model of the signal-conditioning circuitry. The environment provides a complete simulation of the dynamic optical and electrothermal behavior of the instrument. The modeling environment is used to create an end-to-end model of the CERES scanning radiometer, and its performance is compared to the performance of an operational CERES total channel as a benchmark. A further objective of this effort is to formulate an efficient design environment for radiometric instruments. To this end, the modeling environment is then combined with evolutionary search algorithms known as genetic algorithms (GA's) to develop a methodology for optimal instrument design using high-level radiometric instrument models. GA's are applied to the design of the optical system and detector system separately and to both as an aggregate function with positive results.

  13. Radiometrically accurate scene-based nonuniformity correction for array sensors.

    PubMed

    Ratliff, Bradley M; Hayat, Majeed M; Tyo, J Scott

    2003-10-01

    A novel radiometrically accurate scene-based nonuniformity correction (NUC) algorithm is described. The technique combines absolute calibration with a recently reported algebraic scene-based NUC algorithm. The technique is based on the following principle: First, detectors that are along the perimeter of the focal-plane array are absolutely calibrated; then the calibration is transported to the remaining uncalibrated interior detectors through the application of the algebraic scene-based algorithm, which utilizes pairs of image frames exhibiting arbitrary global motion. The key advantage of this technique is that it can obtain radiometric accuracy during NUC without disrupting camera operation. Accurate estimates of the bias nonuniformity can be achieved with relatively few frames, which can be fewer than ten frame pairs. Advantages of this technique are discussed, and a thorough performance analysis is presented with use of simulated and real infrared imagery.

  14. The Art of Aerial Warfare

    DTIC Science & Technology

    2005-03-01

    14 3 THE POLITICAL DIMENSIONS OF AERIAL WARFARE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 How Political Effects in...Aerial Warfare . . . . . . Outweigh Military Effects . . . . . . . . . . . . . . . 19 Political Targets Versus Military Targets . . . . . 22...34 4 MILITARY AND POLITICAL EFFECTS OF STRATEGIC ATTACK . . . . . . . . . . . . . . . . . . 35 The Premise of

  15. 47 CFR 32.6431 - Aerial wire expense.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Aerial wire expense. 32.6431 Section 32.6431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6431 Aerial wire expense. This account shall include expenses associated with aerial wire. ...

  16. 47 CFR 32.6431 - Aerial wire expense.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Aerial wire expense. 32.6431 Section 32.6431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6431 Aerial wire expense. This account shall include expenses associated with aerial wire. ...

  17. Numerical study of the radiometric phenomenon exhibited by a rotating Crookes radiometer

    NASA Astrophysics Data System (ADS)

    Anikin, Yu. A.

    2011-11-01

    The two-dimensional rarefied gas flow around a rotating Crookes radiometer and the arising radiometric forces are studied by numerically solving the Boltzmann kinetic equation. The computations are performed in a noninertial frame of reference rotating together with the radiometer. The collision integral is directly evaluated using a projection method, while second- and third-order accurate TVD schemes are used to solve the advection equation and the equation for inertia-induced transport in the velocity space, respectively. The radiometric forces are found as functions of the rotation frequency.

  18. Publications - IC 52 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey ; Aerial Photography; Aeromagnetic; Aeromagnetic Data; Aeromagnetic Survey; Airborne Geophysical Survey Resistivity Data; Apparent Resistivity Map; Apparent Resistivity Survey; Arctic Deposit; Arsenic; Arsenopyrite

  19. Numerical study of radiometric forces via the direct solution of the Boltzmann kinetic equation

    NASA Astrophysics Data System (ADS)

    Anikin, Yu. A.

    2011-07-01

    The two-dimensional rarefied gas motion in a Crookes radiometer and the resulting radiometric forces are studied by numerically solving the Boltzmann kinetic equation. The collision integral is directly evaluated using a projection method, and second-order accurate TVD schemes are used to solve the advection equation. The radiometric forces are found as functions of the Knudsen number and the temperatures, and their spatial distribution is analyzed.

  20. Study of Spectral/Radiometric Characteristics of the Thematic Mapper for Land Use Applications

    NASA Technical Reports Server (NTRS)

    Malila, W. A. (Principal Investigator); Metzler, M. D. (Principal Investigator)

    1985-01-01

    An investigation conducted in support of the LANDSAT 4/5 Image Data Quality Analysis (LIDQA) Program is discussed. Results of engineering analyses of radiometric, spatial, spectral, and geometric properties of the Thematic Mapper systems are summarized; major emphasis is placed on the radiometric analysis. Details of the analyses are presented in appendices, which contain three of the eight technical papers produced during this investigation; these three, together, describe the major activities and results of the investigation.

  1. Characterization of radiometric calibration of LANDSAT-4 TM reflective bands

    NASA Technical Reports Server (NTRS)

    Barker, J. L.; Abrams, R. B.; Ball, D. L.; Leung, K. C.

    1984-01-01

    Prelaunch and postlaunch internal calibrator, image, and background data is to characterize the radiometric performance of the LANDSAT-4 TM and to recommend improved procedures for radiometric calibration. All but two channels (band 2, channel 4; band 5, channel 3) behave normally. Gain changes relative to a postlaunch reference for channels within a band vary within 0.5 percent as a group. Instrument gain for channels in the cold focal plane oscillates. Noise in background and image data ranges from 0.5 to 1.7 counts. Average differences in forward and reverse image data indicate a need for separate calibration processing of forward and reverse scans. Precision is improved by increasing the pulse integration width from 31 to 41 minor frames, depending on the band.

  2. Artifact correction and absolute radiometric calibration techniques employed in the Landsat 7 image assessment system

    USGS Publications Warehouse

    Boncyk, Wayne C.; Markham, Brian L.; Barker, John L.; Helder, Dennis

    1996-01-01

    The Landsat-7 Image Assessment System (IAS), part of the Landsat-7 Ground System, will calibrate and evaluate the radiometric and geometric performance of the Enhanced Thematic Mapper Plus (ETM +) instrument. The IAS incorporates new instrument radiometric artifact correction and absolute radiometric calibration techniques which overcome some limitations to calibration accuracy inherent in historical calibration methods. Knowledge of ETM + instrument characteristics gleaned from analysis of archival Thematic Mapper in-flight data and from ETM + prelaunch tests allow the determination and quantification of the sources of instrument artifacts. This a priori knowledge will be utilized in IAS algorithms designed to minimize the effects of the noise sources before calibration, in both ETM + image and calibration data.

  3. Unmanned Aerial Systems and Spectroscopy for Remote Sensing Applications in Archaeology

    NASA Astrophysics Data System (ADS)

    Themistocleous, K.; Agapiou, A.; Cuca, B.; Hadjimitsis, D. G.

    2015-04-01

    Remote sensing has open up new dimensions in archaeological research. Although there has been significant progress in increasing the resolution of space/aerial sensors and image processing, the detection of the crop (and soil marks) formations, which relate to buried archaeological remains, are difficult to detect since these marks may not be visible in the images if observed over different period or at different spatial/spectral resolution. In order to support the improvement of earth observation remote sensing technologies specifically targeting archaeological research, a better understanding of the crop/soil marks formation needs to be studied in detail. In this paper the contribution of both Unmanned Aerial Systems as well ground spectroradiometers is discussed in a variety of examples applied in the eastern Mediterranean region (Cyprus and Greece) as well in Central Europe (Hungary). In- situ spectroradiometric campaigns can be applied for the removal of atmospheric impact to simultaneous satellite overpass images. In addition, as shown in this paper, the systematic collection of ground truth data prior to the satellite/aerial acquisition can be used to detect the optimum temporal and spectral resolution for the detection of stress vegetation related to buried archaeological remains. Moreover, phenological studies of the crops from the area of interest can be simulated to the potential sensors based on their Relative Response Filters and therefore prepare better the satellite-aerial campaigns. Ground data and the use of Unmanned Aerial Systems (UAS) can provide an increased insight for studying the formation of crop and soil marks. New algorithms such as vegetation indices and linear orthogonal equations for the enhancement of crop marks can be developed based on the specific spectral characteristics of the area. As well, UAS can be used for remote sensing applications in order to document, survey and model cultural heritage and archaeological sites.

  4. Extraction of Dems and Orthoimages from Archive Aerial Imagery to Support Project Planning in Civil Engineering

    NASA Astrophysics Data System (ADS)

    Cogliati, M.; Tonelli, E.; Battaglia, D.; Scaioni, M.

    2017-12-01

    Archive aerial photos represent a valuable heritage to provide information about land content and topography in the past years. Today, the availability of low-cost and open-source solutions for photogrammetric processing of close-range and drone images offers the chance to provide outputs such as DEM's and orthoimages in easy way. This paper is aimed at demonstrating somehow and to which level of accuracy digitized archive aerial photos may be used within a such kind of low-cost software (Agisoft Photoscan Professional®) to generate photogrammetric outputs. Different steps of the photogrammetric processing workflow are presented and discussed. The main conclusion is that this procedure may come to provide some final products, which however do not feature the high accuracy and resolution that may be obtained using high-end photogrammetric software packages specifically designed for aerial survey projects. In the last part a case study is presented about the use of four-epoch archive of aerial images to analyze the area where a tunnel has to be excavated.

  5. SLC-off Landsat-7 ETM+ reflective band radiometric calibration

    USGS Publications Warehouse

    Markham, B.L.; Barsi, J.A.; Thome, K.J.; Barker, J.L.; Scaramuzza, P.L.; Helder, D.L.; ,

    2005-01-01

    Since May 31, 2003, when the scan line corrector (SLC) on the Landsat-7 ETM+ failed, the primary foci of Landsat-7 ETM+ analyses have been on understanding and attempting to fix the problem and later on developing composited products to mitigate the problem. In the meantime, the Image Assessment System personnel and vicarious calibration teams have continued to monitor the radiometric performance of the ETM+ reflective bands. The SLC failure produced no measurable change in the radiometric calibration of the ETM+ bands. No trends in the calibration are definitively present over the mission lifetime, and, if present, are less than 0.5% per year. Detector 12 in Band 7 dropped about 0.5% in response relative to the rest of the detectors in the band in May 2004 and recovered back to within 0.1% of its initial relative gain in October 2004.

  6. CFD Simulation of Aerial Crop Spraying

    NASA Astrophysics Data System (ADS)

    Omar, Zamri; Qiang, Kua Yong; Mohd, Sofian; Rosly, Nurhayati

    2016-11-01

    Aerial crop spraying, also known as crop dusting, is made for aerial application of pesticides or fertilizer. An agricultural aircraft which is converted from an aircraft has been built to combine with the aerial crop spraying for the purpose. In recent years, many studies on the aerial crop spraying were conducted because aerial application is the most economical, large and rapid treatment for the crops. The main objective of this research is to study the airflow of aerial crop spraying system using Computational Fluid Dynamics. This paper is focus on the effect of aircraft speed and nozzle orientation on the distribution of spray droplet at a certain height. Successful and accurate of CFD simulation will improve the quality of spray during the real situation and reduce the spray drift. The spray characteristics and efficiency are determined from the calculated results of CFD. Turbulence Model (k-ɛ Model) is used for the airflow in the fluid domain to achieve a more accurate simulation. Furthermore, spray simulation is done by setting the Flat-fan Atomizer Model of Discrete Phase Model (DPM) at the nozzle exit. The interaction of spray from each flat-fan atomizer can also be observed from the simulation. The evaluation of this study is validation and grid dependency study using field data from industry.

  7. Experimental evaluation of shark detection rates by aerial observers.

    PubMed

    Robbins, William D; Peddemors, Victor M; Kennelly, Steven J; Ives, Matthew C

    2014-01-01

    Aerial surveys are a recognised technique to identify the presence and abundance of marine animals. However, the capability of aerial observers to reliably sight coastal sharks has not been previously assessed, nor have differences in sighting rates between aircraft types been examined. In this study we investigated the ability of observers in fixed-wing and helicopter aircraft to sight 2.5 m artificial shark analogues placed at known depths and positions. Initial tests revealed that the shark analogues could only be detected at shallow depths, averaging only 2.5 m and 2.7 m below the water surface for observers in fixed-wing and helicopter aircraft, respectively. We then deployed analogues at shallower depths along a 5 km-long grid, and assessed their sightability to aircraft observers through a series of transects flown within 500 m. Analogues were seen infrequently from all distances, with overall sighting rates of only 12.5% and 17.1% for fixed-wing and helicopter observers, respectively. Although helicopter observers had consistently higher success rates of sighting analogues within 250 m of their flight path, neither aircraft observers sighted more than 9% of analogues deployed over 300 m from their flight paths. Modelling of sighting rates against environmental and experimental variables indicated that observations were affected by distance, aircraft type, sun glare and sea conditions, while the range of water turbidities observed had no effect. We conclude that aerial observers have limited ability to detect the presence of submerged animals such as sharks, particularly when the sharks are deeper than ∼ 2.6 m, or over 300 m distant from the aircraft's flight path, especially during sunny or windy days. The low rates of detections found in this study cast serious doubts on the use of aerial beach patrols as an effective early-warning system to prevent shark attacks.

  8. Experimental Evaluation of Shark Detection Rates by Aerial Observers

    PubMed Central

    Robbins, William D.; Peddemors, Victor M.; Kennelly, Steven J.; Ives, Matthew C.

    2014-01-01

    Aerial surveys are a recognised technique to identify the presence and abundance of marine animals. However, the capability of aerial observers to reliably sight coastal sharks has not been previously assessed, nor have differences in sighting rates between aircraft types been examined. In this study we investigated the ability of observers in fixed-wing and helicopter aircraft to sight 2.5 m artificial shark analogues placed at known depths and positions. Initial tests revealed that the shark analogues could only be detected at shallow depths, averaging only 2.5 m and 2.7 m below the water surface for observers in fixed-wing and helicopter aircraft, respectively. We then deployed analogues at shallower depths along a 5 km-long grid, and assessed their sightability to aircraft observers through a series of transects flown within 500 m. Analogues were seen infrequently from all distances, with overall sighting rates of only 12.5% and 17.1% for fixed-wing and helicopter observers, respectively. Although helicopter observers had consistently higher success rates of sighting analogues within 250 m of their flight path, neither aircraft observers sighted more than 9% of analogues deployed over 300 m from their flight paths. Modelling of sighting rates against environmental and experimental variables indicated that observations were affected by distance, aircraft type, sun glare and sea conditions, while the range of water turbidities observed had no effect. We conclude that aerial observers have limited ability to detect the presence of submerged animals such as sharks, particularly when the sharks are deeper than ∼2.6 m, or over 300 m distant from the aircraft's flight path, especially during sunny or windy days. The low rates of detections found in this study cast serious doubts on the use of aerial beach patrols as an effective early-warning system to prevent shark attacks. PMID:24498258

  9. Comparative Analysis of the Tour Jete and Aerial with Detailed Analysis of Aerial Takeoff Mechanics

    NASA Astrophysics Data System (ADS)

    Pierson, Mimi; Coplin, Kim

    2006-10-01

    Whether internally as muscle tension or from external sources, forces are necessary for all motion. This research focused on athletic rotations where conditions of flight are established during takeoff. By studying reaction forces that produce torques, moments of inertia, and linear and angular differences between distinct rotations around different principle axes of the body (tour jete in ballet - longitudinal axis; aerial in gymnastics - anteroposterior axis), and by looking at the values of angular momentum in the specific mechanics of aerial takeoff, we can gain insight into possible causes of injury, flaws in technique and limitations of athletes. Results showed significant differences in the horizontal and vertical components of takeoff between the tour jete and the aerial, and a realization that torque was produced in different biomechanical planes. Both rotations showed braking forces before takeoff to counteract forward momentum and increase vertical lift, but the angle of applied force varied, and the horizontal components of velocity and force and vertical velocity as well as moment of inertia throughout flight were consistently greater for the aerial. Breakdown of aerial takeoff highlighted the relative importance of the takeoff phases, showing that completion depends fundamentally upon the rotation of the rear foot and torso twisting during takeoff rather than the last foot in contact with the ground.

  10. Aerial 3D display by use of a 3D-shaped screen with aerial imaging by retro-reflection (AIRR)

    NASA Astrophysics Data System (ADS)

    Kurokawa, Nao; Ito, Shusei; Yamamoto, Hirotsugu

    2017-06-01

    The purpose of this paper is to realize an aerial 3D display. We design optical system that employs a projector below a retro-reflector and a 3D-shaped screen. A floating 3D image is formed with aerial imaging by retro-reflection (AIRR). Our proposed system is composed of a 3D-shaped screen, a projector, a quarter-wave retarder, a retro-reflector, and a reflective polarizer. Because AIRR forms aerial images that are plane-symmetric of the light sources regarding the reflective polarizer, the shape of the 3D screen is inverted from a desired aerial 3D image. In order to expand viewing angle, the 3D-shaped screen is surrounded by a retro-reflector. In order to separate the aerial image from reflected lights on the retro- reflector surface, the retro-reflector is tilted by 30 degrees. A projector is located below the retro-reflector at the same height of the 3D-shaped screen. The optical axis of the projector is orthogonal to the 3D-shaped screen. Scattered light on the 3D-shaped screen forms the aerial 3D image. In order to demonstrate the proposed optical design, a corner-cube-shaped screen is used for the 3D-shaped screen. Thus, the aerial 3D image is a cube that is floating above the reflective polarizer. For example, an aerial green cube is formed by projecting a calculated image on the 3D-shaped screen. The green cube image is digitally inverted in depth by our developed software. Thus, we have succeeded in forming aerial 3D image with our designed optical system.

  11. Vicarious absolute radiometric calibration of GF-2 PMS2 sensor using permanent artificial targets in China

    NASA Astrophysics Data System (ADS)

    Liu, Yaokai; Li, Chuanrong; Ma, Lingling; Wang, Ning; Qian, Yonggang; Tang, Lingli

    2016-10-01

    GF-2, launched on August 19 2014, is one of the high-resolution land resource observing satellite of the China GF series satellites plan. The radiometric performance evaluation of the onboard optical pan and multispectral (PMS2) sensor of GF-2 satellite is very important for the further application of the data. And, the vicarious absolute radiometric calibration approach is one of the most useful way to monitor the radiometric performance of the onboard optical sensors. In this study, the traditional reflectance-based method is used to vicarious radiometrically calibrate the onboard PMS2 sensor of GF-2 satellite using three black, gray and white reflected permanent artificial targets located in the AOE Baotou site in China. Vicarious field calibration campaign were carried out in the AOE-Baotou calibration site on 22 April 2016. And, the absolute radiometric calibration coefficients were determined with in situ measured atmospheric parameters and surface reflectance of the permanent artificial calibration targets. The predicted TOA radiance of a selected desert area with our determined calibrated coefficients were compared with the official distributed calibration coefficients. Comparison results show a good consistent and the mean relative difference of the multispectral channels is less than 5%. Uncertainty analysis was also carried out and a total uncertainty with 3.87% is determined of the TOA radiance.

  12. Multivariate analysis of subsurface radiometric data in Rongsohkham area, East Khasi Hills district, Meghalaya (India): implication on uranium exploration.

    PubMed

    Kukreti, B M; Pandey, Pradeep; Singh, R V

    2012-08-01

    Non-coring based exploratory drilling was under taken in the sedimentary environment of Rangsohkham block, East Khasi Hills district to examine the eastern extension of existing uranium resources located at Domiasiat and Wakhyn in the Mahadek basin of Meghalaya (India). Although radiometric survey and radiometric analysis of surface grab/channel samples in the block indicate high uranium content but the gamma ray logging results of exploratory boreholes in the block, did not obtain the expected results. To understand this abrupt discontinuity between the two sets of data (surface and subsurface) multivariate statistical analysis of primordial radioactive elements (K(40), U(238) and Th(232)) was performed using the concept of representative subsurface samples, drawn from the randomly selected 11 boreholes of this block. The study was performed to a high confidence level (99%), and results are discussed for assessing the U and Th behavior in the block. Results not only confirm the continuation of three distinct geological formations in the area but also the uranium bearing potential in the Mahadek sandstone of the eastern part of Mahadek Basin. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. The application of GPS precise point positioning technology in aerial triangulation

    NASA Astrophysics Data System (ADS)

    Yuan, Xiuxiao; Fu, Jianhong; Sun, Hongxing; Toth, Charles

    In traditional GPS-supported aerotriangulation, differential GPS (DGPS) positioning technology is used to determine the 3-dimensional coordinates of the perspective centers at exposure time with an accuracy of centimeter to decimeter level. This method can significantly reduce the number of ground control points (GCPs). However, the establishment of GPS reference stations for DGPS positioning is not only labor-intensive and costly, but also increases the implementation difficulty of aerial photography. This paper proposes aerial triangulation supported with GPS precise point positioning (PPP) as a way to avoid the use of the GPS reference stations and simplify the work of aerial photography. Firstly, we present the algorithm for GPS PPP in aerial triangulation applications. Secondly, the error law of the coordinate of perspective centers determined using GPS PPP is analyzed. Thirdly, based on GPS PPP and aerial triangulation software self-developed by the authors, four sets of actual aerial images taken from surveying and mapping projects, different in both terrain and photographic scale, are given as experimental models. The four sets of actual data were taken over a flat region at a scale of 1:2500, a mountainous region at a scale of 1:3000, a high mountainous region at a scale of 1:32000 and an upland region at a scale of 1:60000 respectively. In these experiments, the GPS PPP results were compared with results obtained through DGPS positioning and traditional bundle block adjustment. In this way, the empirical positioning accuracy of GPS PPP in aerial triangulation can be estimated. Finally, the results of bundle block adjustment with airborne GPS controls from GPS PPP are analyzed in detail. The empirical results show that GPS PPP applied in aerial triangulation has a systematic error of half-meter level and a stochastic error within a few decimeters. However, if a suitable adjustment solution is adopted, the systematic error can be eliminated in GPS

  14. How To Obtain Aerial Photographs

    USGS Publications Warehouse

    ,

    1999-01-01

    The U.S. Geological Survey (USGS) maintains an informational data base of aerial photographic coverage of the United States and its territories that dates back to the 1940?s. This information describes photographic projects from the USGS, other Federal, State, and local government agencies, and commercial firms. The pictures on this page show a part of a standard 9- by 9-inch photograph and the results obtained by enlarging the original photograph two and four times. Compare the size of the Qualcomm Stadium, Jack Murphy Field, in San Diego, Calif, and the adjacent parking lot and freeways shown at the different scales. USGS Earth Science Information Center (ESIC) representatives will assist you in locating and ordering photographs. Please submit the completed checklist and a marked map showing your area of interest to any ESIC.

  15. Automatic Sea Bird Detection from High Resolution Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Mader, S.; Grenzdörffer, G. J.

    2016-06-01

    Great efforts are presently taken in the scientific community to develop computerized and (fully) automated image processing methods allowing for an efficient and automatic monitoring of sea birds and marine mammals in ever-growing amounts of aerial imagery. Currently the major part of the processing, however, is still conducted by especially trained professionals, visually examining the images and detecting and classifying the requested subjects. This is a very tedious task, particularly when the rate of void images regularly exceeds the mark of 90%. In the content of this contribution we will present our work aiming to support the processing of aerial images by modern methods from the field of image processing. We will especially focus on the combination of local, region-based feature detection and piecewise global image segmentation for automatic detection of different sea bird species. Large image dimensions resulting from the use of medium and large-format digital cameras in aerial surveys inhibit the applicability of image processing methods based on global operations. In order to efficiently handle those image sizes and to nevertheless take advantage of globally operating segmentation algorithms, we will describe the combined usage of a simple performant feature detector based on local operations on the original image with a complex global segmentation algorithm operating on extracted sub-images. The resulting exact segmentation of possible candidates then serves as a basis for the determination of feature vectors for subsequent elimination of false candidates and for classification tasks.

  16. Geometric Calibration and Radiometric Correction of the Maia Multispectral Camera

    NASA Astrophysics Data System (ADS)

    Nocerino, E.; Dubbini, M.; Menna, F.; Remondino, F.; Gattelli, M.; Covi, D.

    2017-10-01

    Multispectral imaging is a widely used remote sensing technique, whose applications range from agriculture to environmental monitoring, from food quality check to cultural heritage diagnostic. A variety of multispectral imaging sensors are available on the market, many of them designed to be mounted on different platform, especially small drones. This work focuses on the geometric and radiometric characterization of a brand-new, lightweight, low-cost multispectral camera, called MAIA. The MAIA camera is equipped with nine sensors, allowing for the acquisition of images in the visible and near infrared parts of the electromagnetic spectrum. Two versions are available, characterised by different set of band-pass filters, inspired by the sensors mounted on the WorlView-2 and Sentinel2 satellites, respectively. The camera details and the developed procedures for the geometric calibrations and radiometric correction are presented in the paper.

  17. Standardized Technical Data Survey (STDS) for Aerial Refueling

    DTIC Science & Technology

    2016-09-06

    the KC-135 and the German Tornado . The tanker/receiver combination was certified by a technical evaluation of the performance interface survey, face...another. That document was first used in assessing the compatibility of the KC-135 and the German Tornado . The survey questions, when accurately answered

  18. Radiometric and geometric assessment of data from the RapidEye constellation of satellites

    USGS Publications Warehouse

    Chander, Gyanesh; Haque, Md. Obaidul; Sampath, Aparajithan; Brunn, A.; Trosset, G.; Hoffmann, D.; Roloff, S.; Thiele, M.; Anderson, C.

    2013-01-01

    To monitor land surface processes over a wide range of temporal and spatial scales, it is critical to have coordinated observations of the Earth's surface using imagery acquired from multiple spaceborne imaging sensors. The RapidEye (RE) satellite constellation acquires high-resolution satellite images covering the entire globe within a very short period of time by sensors identical in construction and cross-calibrated to each other. To evaluate the RE high-resolution Multi-spectral Imager (MSI) sensor capabilities, a cross-comparison between the RE constellation of sensors was performed first using image statistics based on large common areas observed over pseudo-invariant calibration sites (PICS) by the sensors and, second, by comparing the on-orbit radiometric calibration temporal trending over a large number of calibration sites. For any spectral band, the individual responses measured by the five satellites of the RE constellation were found to differ <2–3% from the average constellation response depending on the method used for evaluation. Geometric assessment was also performed to study the positional accuracy and relative band-to-band (B2B) alignment of the image data sets. The position accuracy was assessed by comparing the RE imagery against high-resolution aerial imagery, while the B2B characterization was performed by registering each band against every other band to ensure that the proper band alignment is provided for an image product. The B2B results indicate that the internal alignments of these five RE bands are in agreement, with bands typically registered to within 0.25 pixels of each other or better.

  19. Airborne gamma-ray spectrometer and magnetometer survey: Durango Quadrangle (Colorado). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-07-01

    Results from the airborne gamma-ray spectrometer and magnetometer survey of Durango Quadrangle in Colorado are presented in the form of radiometric multiple-parameter stacked profiles, histograms, flight path map, and magnetic and ancillary stacked profile data.

  20. A series of low-altitude aerial radiological surveys of selected regions within Areas 3, 5, 8, 9, 11, 18, and 25 at the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colton, D.P.

    1999-12-01

    A series of low-altitude, aerial radiological surveys of selected regions within Areas 3, 5, 8, 9, 11, 18,and 25 of the Nevada Test Site was conducted from December 1996 through June 1999. The surveys were conducted for the US Department of Energy by the Remote Sensing Laboratory, located in Las Vegas, Nevada, and maintained and operated by Bechtel Nevada. The flights were conducted at a nominal altitude of 15 meters above ground level along a set of parallel flight lines spaced 23 meters apart. The purpose of these low-altitude surveys was to measure, map, and define the areas of americium-241more » activity. The americium contamination will be used to determine the areas of plutonium contamination. Americium-241 activity was detected within 8 of the 11 regions. The three regions where americium-241 was not detected were in the inactive Nuclear Rocket Development Station complex in Area 25, which encompassed the Test Cell A and Test Cell C reactor test stands and the Reactor Maintenance Assembly and Disassembly facility.« less

  1. Aerial gamma ray and magnetic survey: Nebraska/Texas Project, the Tyler, Texarkana, and Waco quadrangles of Texas, Oklahoma, Arkansas, and Louisiana. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    During the months of September and October, 1979, EG and G geoMetrics collected 8866 line miles of high sensitivity airborne radiometric and magnetic data. Data were gathered primarily within the state of Texas, in three 1 x 2 degree NTMS quadrangles. This project is part of the Department of Energy's National Uranium Resource Evaluation Program. All radiometric and magnetic data were fully corrected and interpreted by geoMetrics and are presented as four Volumes (one Volume I and three Volume II's). The quadrangles are dominated by Cretaceous and Tertiary marine sediments. The cretaceous rocks are largely shallow marine sediments of biogenicmore » origin, whereas the Tertiary sequence represents transgressing shelf and slope deposits. No uranium deposits are known in this area (Schnabel, 1955).« less

  2. Inflight Radiometric Calibration of New Horizons' Multispectral Visible Imaging Camera (MVIC)

    NASA Technical Reports Server (NTRS)

    Howett, C. J. A.; Parker, A. H.; Olkin, C. B.; Reuter, D. C.; Ennico, K.; Grundy, W. M.; Graps, A. L.; Harrison, K. P.; Throop, H. B.; Buie, M. W.; hide

    2016-01-01

    We discuss two semi-independent calibration techniques used to determine the inflight radiometric calibration for the New Horizons Multi-spectral Visible Imaging Camera (MVIC). The first calibration technique compares the measured number of counts (DN) observed from a number of well calibrated stars to those predicted using the component-level calibration. The ratio of these values provides a multiplicative factor that allows a conversation between the preflight calibration to the more accurate inflight one, for each detector. The second calibration technique is a channel-wise relative radiometric calibration for MVIC's blue, near-infrared and methane color channels using Hubble and New Horizons observations of Charon and scaling from the red channel stellar calibration. Both calibration techniques produce very similar results (better than 7% agreement), providing strong validation for the techniques used. Since the stellar calibration described here can be performed without a color target in the field of view and covers all of MVIC's detectors, this calibration was used to provide the radiometric keyword values delivered by the New Horizons project to the Planetary Data System (PDS). These keyword values allow each observation to be converted from counts to physical units; a description of how these keyword values were generated is included. Finally, mitigation techniques adopted for the gain drift observed in the near-infrared detector and one of the panchromatic framing cameras are also discussed.

  3. Infrared film for aerial photography

    USGS Publications Warehouse

    Anderson, William H.

    1979-01-01

    Considerable interest has developed recently in the use of aerial photographs for agricultural management. Even the simplest hand-held aerial photographs, especially those taken with color infrared film, often provide information not ordinarily available through routine ground observation. When fields are viewed from above, patterns and variations become more apparent, often allowing problems to be spotted which otherwise may go undetected.

  4. 47 CFR 32.2421 - Aerial cable.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Aerial cable. 32.2421 Section 32.2421 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2421 Aerial cable. (a...

  5. LANDSAT-4 multispectral scanner (MSS) subsystem radiometric characterization

    NASA Technical Reports Server (NTRS)

    Alford, W. (Editor); Barker, J. (Editor); Clark, B. P.; Dasgupta, R.

    1983-01-01

    The multispectral band scanner (mass) and its spectral characteristics are described and methods are given for relating video digital levels on computer compatible tapes to radiance into the sensor. Topics covered include prelaunch calibration procedures and postlaunch radiometric processng. Examples of current data resident on the MSS image processing system are included. The MSS on LANDSAT 4 is compared with the scanners on earlier LANDSAT satellites.

  6. Radiometric and geometric evaluation of GeoEye-1, WorldView-2 and Pléiades-1A stereo images for 3D information extraction

    NASA Astrophysics Data System (ADS)

    Poli, D.; Remondino, F.; Angiuli, E.; Agugiaro, G.

    2015-02-01

    Today the use of spaceborne Very High Resolution (VHR) optical sensors for automatic 3D information extraction is increasing in the scientific and civil communities. The 3D Optical Metrology (3DOM) unit of the Bruno Kessler Foundation (FBK) in Trento (Italy) has collected VHR satellite imagery, as well as aerial and terrestrial data over Trento for creating a complete testfield for investigations on image radiometry, geometric accuracy, automatic digital surface model (DSM) generation, 2D/3D feature extraction, city modelling and data fusion. This paper addresses the radiometric and the geometric aspects of the VHR spaceborne imagery included in the Trento testfield and their potential for 3D information extraction. The dataset consist of two stereo-pairs acquired by WorldView-2 and by GeoEye-1 in panchromatic and multispectral mode, and a triplet from Pléiades-1A. For reference and validation, a DSM from airborne LiDAR acquisition is used. The paper gives details on the project, dataset characteristics and achieved results.

  7. Impact of aerial infrared roof moisture scans on the U.S. Army's ROOFER program

    NASA Astrophysics Data System (ADS)

    Knehans, Al; Ledford, Jim

    1993-04-01

    The ROOFER program is being used by the U.S. Army to inspect and evaluate its built-up and single-ply membrane roofs. The results of the inspection effort are used to develop an overall roof condition index. The condition of the roof insulation can greatly alter the final condition index. By using an aerial infrared (IR) roof moisture scan, all the insulated roofs at most Army installations can be effectively surveyed in a very short time. The aerial scans have detected numerous areas of wet roof insulation, which has had a profound impact on the results of the ROOFER program. The scans have also provided management personnel with more accurate analysis as to the actual condition of the installation's insulated roofs.

  8. Evaluation of aerial transects for counting winter mallards

    USGS Publications Warehouse

    Reinecke, K.J.; Brown, M.W.; Nassar, J.R.

    1992-01-01

    Winter waterfowl surveys rarely use sampling methods, and little is known about the precision and biases of their population estimates. Consequently, we developed aerial transect surveys (n=5) in 4 strata comprising 16 substrata in the lower Mississippi Alluvial Valley during winters 1987-88 through 1989-90 to estimate mallard (Anas platyrhynchos) population indices and determine regional patterns of habitat use. Mallard population indices ranged from 1,147,628 (SE=192,341) in December 1988 to 1,790,708 (SE=179,406) in January 1988. Coefficients of variation (CV's) for early winter surveys averaged 0.15 and those for late winter surveys averaged 0.10. During early winter, 59-69% of mallards were on wetlands with water regimes managed for waterfowl; whereas in late winter, 52-79% used wetlands with unmanaged water regimes. Late winter was wet during 1987-88 and 1988-89, and most mallards (62-68%) were on naturally flooded croplands. Use of forested wetlands (3-11%) and moist-soil habitats (3-29%) varied among surveys but was not correlated with water conditions. The number of mallards using naturally flooded croplands (e.g., >1,100,000 in Jan 1988) illustrated the extent of habitat use on private lands. We recommend transect surveys (e.g., 5-yr intervals) for evaluating responses of mallard populations to management programs and as a sampling framework for integrating regional waterfowl research and management data.

  9. Absolute Radiometric Calibration of EUNIS-06

    NASA Technical Reports Server (NTRS)

    Thomas, R. J.; Rabin, D. M.; Kent, B. J.; Paustian, W.

    2007-01-01

    The Extreme-Ultraviolet Normal-Incidence Spectrometer (EUNIS) is a soundingrocket payload that obtains imaged high-resolution spectra of individual solar features, providing information about the Sun's corona and upper transition region. Shortly after its successful initial flight last year, a complete end-to-end calibration was carried out to determine the instrument's absolute radiometric response over its Longwave bandpass of 300 - 370A. The measurements were done at the Rutherford-Appleton Laboratory (RAL) in England, using the same vacuum facility and EUV radiation source used in the pre-flight calibrations of both SOHO/CDS and Hinode/EIS, as well as in three post-flight calibrations of our SERTS sounding rocket payload, the precursor to EUNIS. The unique radiation source provided by the Physikalisch-Technische Bundesanstalt (PTB) had been calibrated to an absolute accuracy of 7% (l-sigma) at 12 wavelengths covering our bandpass directly against the Berlin electron storage ring BESSY, which is itself a primary radiometric source standard. Scans of the EUNIS aperture were made to determine the instrument's absolute spectral sensitivity to +- 25%, considering all sources of error, and demonstrate that EUNIS-06 was the most sensitive solar E W spectrometer yet flown. The results will be matched against prior calibrations which relied on combining measurements of individual optical components, and on comparisons with theoretically predicted 'insensitive' line ratios. Coordinated observations were made during the EUNIS-06 flight by SOHO/CDS and EIT that will allow re-calibrations of those instruments as well. In addition, future EUNIS flights will provide similar calibration updates for TRACE, Hinode/EIS, and STEREO/SECCHI/EUVI.

  10. The Second SIMBIOS Radiometric Intercomparison (SIMRIC-2), March-November 2002. Volume 2

    NASA Technical Reports Server (NTRS)

    Meister, Gerhard; Abel, Peter; Carder, Kendall; Chapin, Albert; Clark, Dennis; Cooper, John; Davis, Curtis; English, David; Fargion, Giulietta; Feinholz, Michael; hide

    2003-01-01

    The second SIMBIOS (Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies) Radiometric Intercomparison (SIMRIC-2) was carried out in 2002. The purpose of the SIMRIC's was to ensure a common radiometric scale among the calibration facilities that are engaged in calibrating in-situ radiometrics used for ocean color-related research and to document the calibration procedures and protocols. The SeaWIFS Transfer Radiometer (SXR-II) measured the calibration radiances at six wavelengths from 411nm to 777nm in the ten laboratories participating in the SIMRIC-2. The measured radiances were compared with the radiances expected by the laboratories. The agreement was within the combined uncertainties for all but two laboratories. Likely error sources were identified in these laboratories and corrective measures were implemented. NIST calibrations in December 2001 and January 2003 showed changes ranging from -0.6% to +0.7% for the six SXR-II channels. Two independent light sources were used to monitor changes in the SXR-II responsivity between the NIST calibrations. A 2% variation of the responsivity of channel 1 of the SXR-II was detected, and the SXR-II responsivity was corrected using the monitoring data. This report also compared directional reflectance calibrations of a Spectralon plaque by different calibration facilities

  11. Aerial Refueling Boom/Receptacle Guide

    DTIC Science & Technology

    2017-07-28

    Alleviation System; AR – Aerial Refueling; IDS – Independent Disconnect System; PDL – Pilot Director Lights; PSIG – Pounds per square inch gauge; TMF...proprietary, sensitive, classified or otherwise restricted information. ARSAG documents, as prepared, are not DOD, MOD or NATO standards, but provide...Boom Nozzle Disconnect Provisions, Aerial Refueling Fuel System and Tanker Aids and Cues for the Receiver Aircraft. Also included are Receiver

  12. Aerial Photography

    NASA Technical Reports Server (NTRS)

    1985-01-01

    John Hill, a pilot and commercial aerial photographer, needed an information base. He consulted NERAC and requested a search of the latest developments in camera optics. NERAC provided information; Hill contacted the manufacturers of camera equipment and reduced his photographic costs significantly.

  13. Validation of Radiometric Standards for the Laboratory Calibration of Reflected-Solar Earth Observing Satellite Instruments

    NASA Technical Reports Server (NTRS)

    Butler, James J.; Johnson, B. Carol; Rice, Joseph P.; Brown, Steven W.; Barnes, Robert A.

    2007-01-01

    Historically, the traceability of the laboratory calibration of Earth-observing satellite instruments to a primary radiometric reference scale (SI units) is the responsibility of each instrument builder. For the NASA Earth Observing System (EOS), a program has been developed using laboratory transfer radiometers, each with its own traceability to the primary radiance scale of a national metrology laboratory, to independently validate the radiances assigned to the laboratory sources of the instrument builders. The EOS Project Science Office also developed a validation program for the measurement of onboard diffuse reflecting plaques, which are also used as radiometric standards for Earth-observing satellite instruments. Summarized results of these validation campaigns, with an emphasis on the current state-of-the-art uncertainties in laboratory radiometric standards, will be presented. Future mission uncertainty requirements, and possible enhancements to the EOS validation program to ensure that those uncertainties can be met, will be presented.

  14. MAPPING SEAGRASS AND GREEN MACROALGAE DISTRIBUTIONS IN AN OREGON ESTUARY USING COLOR INFRARED AERIAL PHOTOGRAPHY: 1997 & 1998

    EPA Science Inventory

    Aerial photograph surveys of Oregon's Yaquina Bay estuary were conducted during the summers of 1997 and 1998. Advantage was taken of daylight low tide conditions when most of the intertidal mudflats in the estuary were exposed. The absence of overlying water permitted the use o...

  15. MAPPING SEAGRASS AND GREEN MACROALGAE DISTRIBUTIONS IN AN OREGON ESTUARY USING COLOR-INFRARED AERIAL PHOTOGRAPHY: 1997 & 1998

    EPA Science Inventory

    Aerial photograph surveys of Oregon's Yaquina Bay estuary were conducted during the summers of 1997 and 1998. Advantage was taken of daylight low tide conditions when most of the intertidal mudflats in the estuary were exposed. The absence of overlying water permitted the use o...

  16. Draper Laboratory small autonomous aerial vehicle

    NASA Astrophysics Data System (ADS)

    DeBitetto, Paul A.; Johnson, Eric N.; Bosse, Michael C.; Trott, Christian A.

    1997-06-01

    The Charles Stark Draper Laboratory, Inc. and students from Massachusetts Institute of Technology and Boston University have cooperated to develop an autonomous aerial vehicle that won the 1996 International Aerial Robotics Competition. This paper describes the approach, system architecture and subsystem designs for the entry. This entry represents a combination of many technology areas: navigation, guidance, control, vision processing, human factors, packaging, power, real-time software, and others. The aerial vehicle, an autonomous helicopter, performs navigation and control functions using multiple sensors: differential GPS, inertial measurement unit, sonar altimeter, and a flux compass. The aerial transmits video imagery to the ground. A ground based vision processor converts the image data into target position and classification estimates. The system was designed, built, and flown in less than one year and has provided many lessons about autonomous vehicle systems, several of which are discussed. In an appendix, our current research in augmenting the navigation system with vision- based estimates is presented.

  17. Remote sensing and image interpretation

    NASA Technical Reports Server (NTRS)

    Lillesand, T. M.; Kiefer, R. W. (Principal Investigator)

    1979-01-01

    A textbook prepared primarily for use in introductory courses in remote sensing is presented. Topics covered include concepts and foundations of remote sensing; elements of photographic systems; introduction to airphoto interpretation; airphoto interpretation for terrain evaluation; photogrammetry; radiometric characteristics of aerial photographs; aerial thermography; multispectral scanning and spectral pattern recognition; microwave sensing; and remote sensing from space.

  18. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Aerial wire. 32.2431 Section 32.2431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire. (a) This account shall include the original cost of bare line wire and other material used in the...

  19. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Aerial wire. 32.2431 Section 32.2431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire. (a) This account shall include the original cost of bare line wire and other material used in the...

  20. Radiometric infrared focal plane array imaging system for thermographic applications

    NASA Technical Reports Server (NTRS)

    Esposito, B. J.; Mccafferty, N.; Brown, R.; Tower, J. R.; Kosonocky, W. F.

    1992-01-01

    This document describes research performed under the Radiometric Infrared Focal Plane Array Imaging System for Thermographic Applications contract. This research investigated the feasibility of using platinum silicide (PtSi) Schottky-barrier infrared focal plane arrays (IR FPAs) for NASA Langley's specific radiometric thermal imaging requirements. The initial goal of this design was to develop a high spatial resolution radiometer with an NETD of 1 percent of the temperature reading over the range of 0 to 250 C. The proposed camera design developed during this study and described in this report provides: (1) high spatial resolution (full-TV resolution); (2) high thermal dynamic range (0 to 250 C); (3) the ability to image rapid, large thermal transients utilizing electronic exposure control (commandable dynamic range of 2,500,000:1 with exposure control latency of 33 ms); (4) high uniformity (0.5 percent nonuniformity after correction); and (5) high thermal resolution (0.1 C at 25 C background and 0.5 C at 250 C background).

  1. Radiometric infrared focal plane array imaging system for thermographic applications

    NASA Astrophysics Data System (ADS)

    Esposito, B. J.; McCafferty, N.; Brown, R.; Tower, J. R.; Kosonocky, W. F.

    1992-11-01

    This document describes research performed under the Radiometric Infrared Focal Plane Array Imaging System for Thermographic Applications contract. This research investigated the feasibility of using platinum silicide (PtSi) Schottky-barrier infrared focal plane arrays (IR FPAs) for NASA Langley's specific radiometric thermal imaging requirements. The initial goal of this design was to develop a high spatial resolution radiometer with an NETD of 1 percent of the temperature reading over the range of 0 to 250 C. The proposed camera design developed during this study and described in this report provides: (1) high spatial resolution (full-TV resolution); (2) high thermal dynamic range (0 to 250 C); (3) the ability to image rapid, large thermal transients utilizing electronic exposure control (commandable dynamic range of 2,500,000:1 with exposure control latency of 33 ms); (4) high uniformity (0.5 percent nonuniformity after correction); and (5) high thermal resolution (0.1 C at 25 C background and 0.5 C at 250 C background).

  2. A Preliminary Analysis of LANDSAT-4 Thematic Mapper Radiometric Performance

    NASA Technical Reports Server (NTRS)

    Justice, C.; Fusco, L.; Mehl, W.

    1984-01-01

    Analysis was performed to characterize the radiometry of three Thematic Mapper (TM) digital products of a scene of Arkansas. The three digital products examined were the NASA raw (BT) product, the radiometrically corrected (AT) product and the radiometrically and geometrically corrected (PT) product. The frequency distribution of the digital data; the statistical correlation between the bands; and the variability between the detectors within a band were examined on a series of image subsets from the full scene. The results are presented from one 1024 x 1024 pixel subset of Realfoot Lake, Tennessee which displayed a representative range of ground conditions and cover types occurring within the full frame image. Bands 1, 2 and 5 of the sample area are presented. The subsets were extracted from the three digital data products to cover the same geographic area. This analysis provides the first step towards a full appraisal of the TM radiometry being performed as part of the ESA/CEC contribution to the NASA/LIDQA program.

  3. Very high resolution aerial films

    NASA Astrophysics Data System (ADS)

    Becker, Rolf

    1986-11-01

    The use of very high resolution aerial films in aerial photography is evaluated. Commonly used panchromatic, color, and CIR films and their high resolution equivalents are compared. Based on practical experience and systematic investigations, the very high image quality and improved height accuracy that can be achieved using these films are demonstrated. Advantages to be gained from this improvement and operational restrictions encountered when using high resolution film are discussed.

  4. An equivalent method of mixed dielectric constant in passive microwave/millimeter radiometric measurement

    NASA Astrophysics Data System (ADS)

    Su, Jinlong; Tian, Yan; Hu, Fei; Gui, Liangqi; Cheng, Yayun; Peng, Xiaohui

    2017-10-01

    Dielectric constant is an important role to describe the properties of matter. This paper proposes This paper proposes the concept of mixed dielectric constant(MDC) in passive microwave radiometric measurement. In addition, a MDC inversion method is come up, Ratio of Angle-Polarization Difference(RAPD) is utilized in this method. The MDC of several materials are investigated using RAPD. Brightness temperatures(TBs) which calculated by MDC and original dielectric constant are compared. Random errors are added to the simulation to test the robustness of the algorithm. Keywords: Passive detection, microwave/millimeter, radiometric measurement, ratio of angle-polarization difference (RAPD), mixed dielectric constant (MDC), brightness temperatures, remote sensing, target recognition.

  5. Geomorphic change detection in proglacial areas using repetitive unmanned aerial vehicle (UAV) surveys

    NASA Astrophysics Data System (ADS)

    Ewertowski, Marek; Evans, David; Roberts, David; Tomczyk, Aleksandra; Ewertowski, Wojciech

    2017-04-01

    Glacial forelands exposed due to the glacier recession are one of the most dynamically transformed landscapes in Polar and mountainous areas. These areas are supposed to be intensively changed by various geomorphological processes related to the glacial retreat and meltwater activity, as well as paraglacial adjustment of topography. This study deals with landscape transformation in an annual time-scale in the foreland of Hørbyebreen and Rieperbreen (Svalbard) and Fjallsjökull and Kviárjökull (Iceland) to assess landscape changes in 2014-2016 period. The main aim of this study is to map and quantify landforms development in detailed spatial scale to provide an insight into geomorphological processes which occurred shortly after the retreat of the ice margin. Low-altitude aerial photographs were taken using small quadcopter equipped with 12 MP camera. Images were acquired at an elevation between 40 and 60 m above the ground level. The images were subsequently processed using structure-from-motion approach to produce orthomosaics ( 3 cm cell size) and digital elevation models (DEMs) with 5-10 cm cell size. Subtracting DEMs from subsequent time periods created DEMs of Differences — which enabled us to calculate the amount of material loss or deposition. Accuracy of the orthophotos and DEMs was improved using ground control points measured with dGPS. Over the 2014-2016 period repetitive UAV-based surveys revealed and quantify changes in landscape including: (1) glacier thinning; (2) ice-cored moraines degradation; (3) development of terminoglacial and supraglacial lakes; (4) debris flow activity. Short-time dynamics of different components showed very high variability over time and space illustrating relative importance of ice backwasting and downwasting as well as glacifluvial processes for studied forelands The research was founded by Polish National Science Centre (project granted by decision number DEC-2011/01/D/ST10/06494).

  6. Radiometric resolution enhancement by lossy compression as compared to truncation followed by lossless compression

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Manohar, Mareboyana

    1994-01-01

    Recent advances in imaging technology make it possible to obtain imagery data of the Earth at high spatial, spectral and radiometric resolutions from Earth orbiting satellites. The rate at which the data is collected from these satellites can far exceed the channel capacity of the data downlink. Reducing the data rate to within the channel capacity can often require painful trade-offs in which certain scientific returns are sacrificed for the sake of others. In this paper we model the radiometric version of this form of lossy compression by dropping a specified number of least significant bits from each data pixel and compressing the remaining bits using an appropriate lossless compression technique. We call this approach 'truncation followed by lossless compression' or TLLC. We compare the TLLC approach with applying a lossy compression technique to the data for reducing the data rate to the channel capacity, and demonstrate that each of three different lossy compression techniques (JPEG/DCT, VQ and Model-Based VQ) give a better effective radiometric resolution than TLLC for a given channel rate.

  7. Relative radiometric calibration for multispectral remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Ren, Hsuan

    2006-10-01

    Our environment has been changed continuously by nature causes or human activities. In order to identify what has been changed during certain time period, we need to spend enormous resources to collect all kinds of data and analyze them. With remote sensing images, change detection has become one efficient and inexpensive technique. It has wide applications including disaster management, agriculture analysis, environmental monitoring and military reconnaissance. To detect the changes between two remote sensing images collected at different time, radiometric calibration is one of the most important processes. Under the different weather and atmosphere conditions, even the same material might be resulting distinct radiance spectrum in two images. In this case, they will be misclassified as changes and false alarm rate will also increase. To achieve absolute calibration, i.e., to convert the radiance to reflectance spectrum, the information about the atmosphere condition or ground reference materials with known reflectance spectrum is needed but rarely available. In this paper, we present relative radiometric calibration methods which transform image pair into similar atmospheric effect instead of remove it in absolutely calibration, so that the information of atmosphere condition is not required. A SPOT image pair will be used for experiment to demonstrate the performance.

  8. A new radiometric unit of measure to characterize SWIR illumination

    NASA Astrophysics Data System (ADS)

    Richards, A.; Hübner, M.

    2017-05-01

    We propose a new radiometric unit of measure we call the `swux' to unambiguously characterize scene illumination in the SWIR spectral band between 0.8μm-1.8μm, where most of the ever-increasing numbers of deployed SWIR cameras (based on standard InGaAs focal plane arrays) are sensitive. Both military and surveillance applications in the SWIR currently suffer from a lack of a standardized SWIR radiometric unit of measure that can be used to definitively compare or predict SWIR camera performance with respect to SNR and range metrics. We propose a unit comparable to the photometric illuminance lux unit; see Ref. [1]. The lack of a SWIR radiometric unit becomes even more critical if one uses lux levels to describe SWIR sensor performance at twilight or even low light condition, since in clear, no-moon conditions in rural areas, the naturally-occurring SWIR radiation from nightglow produces a much higher irradiance than visible starlight. Thus, even well-intentioned efforts to characterize a test site's ambient illumination levels in the SWIR band may fail based on photometric instruments that only measure visible light. A study of this by one of the authors in Ref. [2] showed that the correspondence between lux values and total SWIR irradiance in typical illumination conditions can vary by more than two orders of magnitude, depending on the spectrum of the ambient background. In analogy to the photometric lux definition, we propose the SWIR irradiance equivalent `swux' level, derived by integration over the scene SWIR spectral irradiance weighted by a spectral sensitivity function S(λ), a SWIR analog of the V(λ) photopic response function.

  9. BOREAS TE-18, 30-m, Radiometrically Rectified Landsat TM Imagery

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Knapp, David

    2000-01-01

    The BOREAS TE-18 team used a radiometric rectification process to produce standardized DN values for a series of Landsat TM images of the BOREAS SSA and NSA in order to compare images that were collected under different atmospheric conditions. The images for each study area were referenced to an image that had very clear atmospheric qualities. The reference image for the SSA was collected on 02-Sep-1994, while the reference image for the NSA was collected on 21-Jun-1995. the 23 rectified images cover the period of 07-Jul-1985 to 18 Sep-1994 in the SSA and from 22-Jun-1984 to 09-Jun-1994 in the NSA. Each of the reference scenes had coincident atmospheric optical thickness measurements made by RSS-11. The radiometric rectification process is described in more detail by Hall et al. (199 1). The original Landsat TM data were received from CCRS for use in the BOREAS project. The data are stored in binary image-format files. Due to the nature of the radiometric rectification process and copyright issues, these full-resolution images may not be publicly distributed. However, a spatially degraded 60-m resolution version of the images is available on the BOREAS CD-ROM series. See Sections 15 and 16 for information about how to possibly acquire the full resolution data. Information about the full-resolution images is provided in an inventory listing on the CD-ROMs. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Activity Archive Center (DAAC).

  10. Preliminary Design of Aerial Spraying System for Microlight Aircraft

    NASA Astrophysics Data System (ADS)

    Omar, Zamri; Idris, Nurfazliawati; Rahim, M. Zulafif

    2017-10-01

    Undoubtedly agricultural is an important sector because it provides essential nutrients for human, and consequently is among the biggest sector for economic growth worldwide. It is crucial to ensure crops production is protected from any plant diseases and pests. Thus aerial spraying system on crops is developed to facilitate farmers to for crops pests control and it is very effective spraying method especially for large and hilly crop areas. However, the use of large aircraft for aerial spaying has a relatively high operational cost. Therefore, microlight aircraft is proposed to be used for crops aerial spraying works for several good reasons. In this paper, a preliminary design of aerial spraying system for microlight aircraft is proposed. Engineering design methodology is adopted in the development of the aerial sprayer and steps involved design are discussed thoroughly. A preliminary design for the microlight to be attached with an aerial spraying system is proposed.

  11. Development of a car-borne γ-ray survey system, KURAMA

    NASA Astrophysics Data System (ADS)

    Tanigaki, M.; Okumura, R.; Takamiya, K.; Sato, N.; Yoshino, H.; Yamana, H.

    2013-10-01

    A compact radiometric survey system, named KURAMA (Kyoto University RAdiation MApping system), has been developed as a response to the nuclear disaster of Fukushima Daiichi nuclear power plant. KURAMA is based on GPS (Global Positioning System) and network technology, and intended for the realtime data accumulation of multiple mobile monitoring stations, such as monitoring cars. KURAMA now serves for the car-borne surveys in Fukushima and surrounding prefectures by the Japanese Government and local authorities. An outline of KURAMA and discussions on car-borne γ-ray surveys using KURAMA are introduced.

  12. An Empirical Approach to Ocean Color Data: Reducing Bias and the Need for Post-Launch Radiometric Re-Calibration

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Casey, Nancy W.; O'Reilly, John E.; Esaias, Wayne E.

    2009-01-01

    A new empirical approach is developed for ocean color remote sensing. Called the Empirical Satellite Radiance-In situ Data (ESRID) algorithm, the approach uses relationships between satellite water-leaving radiances and in situ data after full processing, i.e., at Level-3, to improve estimates of surface variables while relaxing requirements on post-launch radiometric re-calibration. The approach is evaluated using SeaWiFS chlorophyll, which is the longest time series of the most widely used ocean color geophysical product. The results suggest that ESRID 1) drastically reduces the bias of ocean chlorophyll, most impressively in coastal regions, 2) modestly improves the uncertainty, and 3) reduces the sensitivity of global annual median chlorophyll to changes in radiometric re-calibration. Simulated calibration errors of 1% or less produce small changes in global median chlorophyll (less than 2.7%). In contrast, the standard NASA algorithm set is highly sensitive to radiometric calibration: similar 1% calibration errors produce changes in global median chlorophyll up to nearly 25%. We show that 0.1% radiometric calibration error (about 1% in water-leaving radiance) is needed to prevent radiometric calibration errors from changing global annual median chlorophyll more than the maximum interannual variability observed in the SeaWiFS 9-year record (+/- 3%), using the standard method. This is much more stringent than the goal for SeaWiFS of 5% uncertainty for water leaving radiance. The results suggest ocean color programs might consider less emphasis of expensive efforts to improve post-launch radiometric re-calibration in favor of increased efforts to characterize in situ observations of ocean surface geophysical products. Although the results here are focused on chlorophyll, in principle the approach described by ESRID can be applied to any surface variable potentially observable by visible remote sensing.

  13. Planialtimetric Accuracy Evaluation of Digital Surface Model (dsm) and Digital Terrain Model (dtm) Obtained from Aerial Survey with LIDAR

    NASA Astrophysics Data System (ADS)

    Cruz, C. B. M.; Barros, R. S.; Rabaco, L. M. L.

    2012-07-01

    It's noticed a significant increase in the development of orbital and airborne sensors that enable the extraction of three-dimensional data. Consequently, it's important the increment of studies about the quality of altimetric values derived from these sensors to verify if the improvements implemented in the acquisition of data may influence the results. In this context, as part of a larger project that aims to evaluate the accuracy of various sensors, this work aims to analysis the planialtimetric accuracy of DSM and DTM generated from an aerial survey with LIDAR, using as reference for the planimetric analysis of the orthophotos obtained. The project was developed for an area of São Sebastião city, located in the basin of the North Coast of São Paulo state. The area's relief is very steep, with a predominance of dense forest vegetation, typical of the Atlantic Forest. All points have been established in the field, with the use of GNSS of one frequency (L1) through static relative positioning, acquiring a minimum of 1,500 epochs, for a distance less than 20 km to the base. In this work it's considered the Brazilian standard specifications for classification of cartographic bases (PEC). The Brazilian company responsible for the aerial survey (LACTEC) gave the following products for analysis: point clouds in raw format (x, y, z) using orthometric heights; point clouds (first and last pulse) for each range of flight to verify systematic errors; DTM uniformly spaced, filtering small natural obstacles, buildings and vegetation, in Geotiff format; DSM also uniformly spaced, in Geotiff format; and the mosaic of georeferenced digital images. The analysis realized on products from the LIDAR indicated their adoption to the scales 1:2,000 (Class A for the orthophotos and Class B for the DTM) and 1:5,000 (class C for the DSM). There were no indications of trends in the results. The average error was 0.01 m. It's important that new areas with different topographic

  14. JPSS-1 VIIRS Pre-Launch Radiometric Performance

    NASA Technical Reports Server (NTRS)

    Oudrari, Hassan; McIntire, Jeff; Xiong, Xiaoxiong; Butler, James; Efremova, Boryana; Ji, Jack; Lee, Shihyan; Schwarting, Tom

    2015-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) on-board the first Joint Polar Satellite System (JPSS) completed its sensor level testing on December 2014. The JPSS-1 (J1) mission is scheduled to launch in December 2016, and will be very similar to the Suomi-National Polar-orbiting Partnership (SNPP) mission. VIIRS instrument was designed to provide measurements of the globe twice daily. It is a wide-swath (3,040 kilometers) cross-track scanning radiometer with spatial resolutions of 370 and 740 meters at nadir for imaging and moderate bands, respectively. It covers the wavelength spectrum from reflective to long-wave infrared through 22 spectral bands [0.412 microns to 12.01 microns]. VIIRS observations are used to generate 22 environmental data products (EDRs). This paper will briefly describe J1 VIIRS characterization and calibration performance and methodologies executed during the pre-launch testing phases by the independent government team, to generate the at-launch baseline radiometric performance, and the metrics needed to populate the sensor data record (SDR) Look-Up-Tables (LUTs). This paper will also provide an assessment of the sensor pre-launch radiometric performance, such as the sensor signal to noise ratios (SNRs), dynamic range, reflective and emissive bands calibration performance, polarization sensitivity, bands spectral performance, response-vs-scan (RVS), near field and stray light responses. A set of performance metrics generated during the pre-launch testing program will be compared to the SNPP VIIRS pre-launch performance.

  15. Radiometric dates from Alaska: A 1975 compilation

    USGS Publications Warehouse

    Turner, D.L.; Grybeck, Donald; Wilson, Frederic H.

    1975-01-01

    The following table of radiometric dates from Alaska includes published material through 1972 as well as some selected later data. The table includes 726 mineral and whole-rock dates determined by the K-Ar, Rb-Sr, fission-track U-Pb, and Pb-alpha techniques.The data are organized in alphabetical order of the 1:250,000 scale quadrangles in which the dated rocks are located. The latitude and longitude of each sample are given. In addition, each sample is located on a 1:250,000 quadrangle map by a grid system. The initial point of the grid is taken as the southwest corner of the quadrangle and the location of the sample is measured in inches east and inches north from that corner, e.g., "156E 126N" indicated 15.6 inches east and 12.6 inches north of the southwest corner of the quadrangle. Zeroes in the location columns for some dates indicate that accurate locations are not available.Rock type, dating method, mineral dated, radiometric age, sample identification number, and reference are also listed where possible. Short comments, mostly geographic locality names, are given for some dates. These comments have been taken from the original references.Sample identification numbers beginning with "AA" or "BB" have been assigned arbitrarily in cases where sample numbers were not assigned in the original references. Abbreviations are explained in the appendix at the end of table 1.

  16. Cross-Calibration between ASTER and MODIS Visible to Near-Infrared Bands for Improvement of ASTER Radiometric Calibration

    PubMed Central

    Tsuchida, Satoshi; Thome, Kurtis

    2017-01-01

    Radiometric cross-calibration between the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) has been partially used to derive the ASTER radiometric calibration coefficient (RCC) curve as a function of date on visible to near-infrared bands. However, cross-calibration is not sufficiently accurate, since the effects of the differences in the sensor’s spectral and spatial responses are not fully mitigated. The present study attempts to evaluate radiometric consistency across two sensors using an improved cross-calibration algorithm to address the spectral and spatial effects and derive cross-calibration-based RCCs, which increases the ASTER calibration accuracy. Overall, radiances measured with ASTER bands 1 and 2 are on averages 3.9% and 3.6% greater than the ones measured on the same scene with their MODIS counterparts and ASTER band 3N (nadir) is 0.6% smaller than its MODIS counterpart in current radiance/reflectance products. The percentage root mean squared errors (%RMSEs) between the radiances of two sensors are 3.7, 4.2, and 2.3 for ASTER band 1, 2, and 3N, respectively, which are slightly greater or smaller than the required ASTER radiometric calibration accuracy (4%). The uncertainty of the cross-calibration is analyzed by elaborating the error budget table to evaluate the International System of Units (SI)-traceability of the results. The use of the derived RCCs will allow further reduction of errors in ASTER radiometric calibration and subsequently improve interoperability across sensors for synergistic applications. PMID:28777329

  17. A case study of comparing radiometrically calibrated reflectance of an image mosaic from unmanned aerial system with that of a single image from manned aircraft over a same area

    USDA-ARS?s Scientific Manuscript database

    Although conventional high-altitude airborne remote sensing and low-altitude unmanned aerial system (UAS) based remote sensing share many commonalities, one of the major differences between the two remote sensing platforms is that the latter has much smaller image footprint. To cover the same area o...

  18. USE OF THE AERIAL MEASUREMENT SYSTEM HELICOPTER EMERGENCY RESPONSE ACQUISITION SYSTEMS WITH GEOGRAPHIC INFORMATION SYSTEM FOR RADIOACTIVE SOIL REMEDIATION - [11504

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BROCK CT

    2011-02-15

    The Aerial Measurement System (AMS) Helicopter Emergency Response Acquisition System provides a thorough and economical means to identify and characterize the contaminants for large area radiological surveys. The helicopter system can provide a 100-percent survey of an area that qualifies as a scoping survey under the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) methodology. If the sensitivity is adequate when compared to the clean up values, it may also be used for the characterization survey. The data from the helicopter survey can be displayed and manipulated to provide invaluable data during remediation activities.

  19. Comparison of diverse methods for the correction of atmospheric effects on LANDSAT and SKYLAB images. [radiometric correction in Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Camara, G.; Dias, L. A. V.; Mascarenhas, N. D. D.; Desouza, R. C. M.; Pereira, A. E. C.

    1982-01-01

    Earth's atmosphere reduces a sensors ability in currently discriminating targets. Using radiometric correction to reduce the atmospheric effects may improve considerably the performance of an automatic image interpreter. Several methods for radiometric correction from the open literature are compared leading to the development of an atmospheric correction system.

  20. A comparison of two waterfowl brood survey techniques

    Treesearch

    Mark A. Rumble; Lester D. Flake

    1982-01-01

    Aerial surveys, brood beat outs, road surveys, and brood observations have been used to estimate numbers of waterfowl broods (M. E. Anderson, unpubl. reps., South Dakota Dep. Game, Fish, and Parks Fed. Aid Proj. W-17-R-7 and 8,1953, 1955; Bennett 1967). M. C. Hammond (unpubl. rep., U.S. Bur. Sport Fish and Wildl., 1970) summarized several brood survey techniques and...

  1. Actions, Observations, and Decision-Making: Biologically Inspired Strategies for Autonomous Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Ippolito, Corey; Plice, Laura; Young, Larry A.; Lau, Benton

    2003-01-01

    This paper details the development and demonstration of an autonomous aerial vehicle embodying search and find mission planning and execution srrategies inspired by foraging behaviors found in biology. It begins by describing key characteristics required by an aeria! explorer to support science and planetary exploration goals, and illustrates these through a hypothetical mission profile. It next outlines a conceptual bio- inspired search and find autonomy architecture that implements observations, decisions, and actions through an "ecology" of producer, consumer, and decomposer agents. Moving from concepts to development activities, it then presents the results of mission representative UAV aerial surveys at a Mars analog site. It next describes hardware and software enhancements made to a commercial small fixed-wing UAV system, which inc!nde a ncw dpvelopnent architecture that also provides hardware in the loop simulation capability. After presenting the results of simulated and actual flights of bioinspired flight algorithms, it concludes with a discussion of future development to include an expansion of system capabilities and field science support.

  2. Space Object Radiometric Modeling for Hardbody Optical Signature Database Generation

    DTIC Science & Technology

    2009-09-01

    Introduction This presentation summarizes recent activity in monitoring spacecraft health status using passive remote optical nonimaging ...Approved for public release; distribution is unlimited. Space Object Radiometric Modeling for Hardbody Optical Signature Database Generation...It is beneficial to the observer/analyst to understand the fundamental optical signature variability associated with these detection and

  3. Mapping elevations of tidal wetland restoration sites in San Francisco Bay: Comparing accuracy of aerial lidar with a singlebeam echosounder

    USGS Publications Warehouse

    Athearn, N.D.; Takekawa, John Y.; Jaffe, B.; Hattenbach, B.J.; Foxgrover, A.C.

    2010-01-01

    The southern edge of San Francisco Bay is surrounded by former salt evaporation ponds, where tidal flow has been restricted since the mid to late 1890s. These ponds are now the focus of a large wetland restoration project, and accurate measurement of current pond bathymetry and adjacent mud flats has been critical to restoration planning. Aerial light detection and ranging (lidar) has become a tool for mapping surface elevations, but its accuracy had rarely been assessed for wetland habitats. We used a singlebeam echosounder system we developed for surveying shallow wetlands to map submerged pond bathymetry in January of 2004 and compared those results with aerial lidar surveys in two ponds that were dry in May of 2004. From those data sets, we compared elevations for 5164 (Pond E9, 154 ha) and 2628 (Pond E14, 69 ha) echosounder and lidar points within a 0.375-m radius of each other (0.750-m diameter lidar spot size). We found that mean elevations of the lidar points were lower than the echosounder results by 5 ?? 0.1 cm in Pond E9 and 2 ?? 0.2 cm in Pond E14. Only a few points (5% in Pond E9, 2% in Pond E14) differed by more than 20 cm, and some of these values may be explained by residual water in the ponds during the lidar survey or elevation changes that occurred between surveys. Our results suggest that aerial lidar may be a very accurate and rapid way to assess terrain elevations for wetland restoration projects. ?? 2010 Coastal Education and Research Foundation.

  4. Unmanned Aerial Vehicle (UAV) associated DTM quality evaluation and hazard assessment

    NASA Astrophysics Data System (ADS)

    Huang, Mei-Jen; Chen, Shao-Der; Chao, Yu-Jui; Chiang, Yi-Lin; Chang, Kuo-Jen

    2014-05-01

    Taiwan, due to the high seismicity and high annual rainfall, numerous landslides triggered every year and severe impacts affect the island. Concerning to the catastrophic landslides, the key information of landslide, including range of landslide, volume estimation and the subsequent evolution are important when analyzing the triggering mechanism, hazard assessment and mitigation. Thus, the morphological analysis gives a general overview for the landslides and been considered as one of the most fundamental information. We try to integrate several technologies, especially by Unmanned Aerial Vehicle (UAV) and multi-spectral camera, to decipher the consequence and the potential hazard, and the social impact. In recent years, the remote sensing technology improves rapidly, providing a wide range of image, essential and precious information. Benefited of the advancing of informatics, remote-sensing and electric technologies, the Unmanned Aerial Vehicle (UAV) photogrammetry mas been improve significantly. The study tries to integrate several methods, including, 1) Remote-sensing images gathered by Unmanned Aerial Vehicle (UAV) and by aerial photos taken in different periods; 2) field in-situ geologic investigation; 3) Differential GPS, RTK GPS and Ground LiDAR field in-site geoinfomatics measurements; 4) Construct the DTMs before and after landslide, as well as the subsequent periods using UAV and aerial photos; 5) Discrete element method should be applied to understand the geomaterial composing the slope failure, for predicting earthquake-induced and rainfall-induced landslides displacement. First at all, we evaluate the Microdrones MD4-1000 UAV airphotos derived Digital Terrain Model (DTM). The ground resolution of the DSM point cloud of could be as high as 10 cm. By integrated 4 ground control point within an area of 56 hectares, compared with LiDAR DSM and filed RTK-GPS surveying, the mean error is as low as 6cm with a standard deviation of 17cm. The quality of the

  5. Ground-based microwave radiometric remote sensing of the tropical atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yong.

    1992-01-01

    A partially developed 9-channel ground-based microwave radiometer for the Department of Meteorology at Penn State was completed and tested. Complementary units were added, corrections to both hardware and software were made, and system software was corrected and upgraded. Measurements from this radiometer were used to infer tropospheric temperature, water vapor and cloud liquid water. The various weighting functions at each of the 9 channels were calculated and analyzed to estimate the sensitivities of the brightness temperature to the desired atmospheric variables. The mathematical inversion problem, in a linear form, was viewed in terms of the theory of linear algebra. Severalmore » methods for solving the inversion problem were reviewed. Radiometric observations were conducted during the 1990 Tropical Cyclone Motion Experiment. The radiometer was installed on the island of Saipan in a tropical region. The radiometer was calibrated using tipping curve and radiosonde data as well as measurements of the radiation from a blackbody absorber. A linear statistical method was applied for the data inversion. The inversion coefficients in the equation were obtained using a large number of radiosonde profiles from Guam and a radiative transfer model. Retrievals were compared with those from local, Saipan, radiosonde measurements. Water vapor profiles, integrated water vapor, and integrated liquid water were retrieved successfully. For temperature profile retrievals, however, the radiometric measurements with experimental noises added no more profile information to the inversion than that they were determined mainly by the surface pressure measurements. A method was developed to derive the integrated water vapor and liquid water from combined radiometer and ceilometer measurements. Significant improvement on radiometric measurements of the integrated liquid water can be gained with this method.« less

  6. PHASS99: A software program for retrieving and decoding the radiometric ages of igneous rocks from the international database IGBADAT

    NASA Astrophysics Data System (ADS)

    Al-Mishwat, Ali T.

    2016-05-01

    PHASS99 is a FORTRAN program designed to retrieve and decode radiometric and other physical age information of igneous rocks contained in the international database IGBADAT (Igneous Base Data File). In the database, ages are stored in a proprietary format using mnemonic representations. The program can handle up to 99 ages in an igneous rock specimen and caters to forty radiometric age systems. The radiometric age alphanumeric strings assigned to each specimen description in the database consist of four components: the numeric age and its exponential modifier, a four-character mnemonic method identification, a two-character mnemonic name of analysed material, and the reference number in the rock group bibliography vector. For each specimen, the program searches for radiometric age strings, extracts them, parses them, decodes the different age components, and converts them to high-level English equivalents. IGBADAT and similarly-structured files are used for input. The output includes three files: a flat raw ASCII text file containing retrieved radiometric age information, a generic spreadsheet-compatible file for data import to spreadsheets, and an error file. PHASS99 builds on the old program TSTPHA (Test Physical Age) decoder program and expands greatly its capabilities. PHASS99 is simple, user friendly, fast, efficient, and does not require users to have knowledge of programing.

  7. Using unmanned aerial vehicle-borne magnetic sensors to detect and locate improvised explosive devices and unexploded ordnance

    NASA Astrophysics Data System (ADS)

    Trammell, Hoke S., III; Perry, Alexander R.; Kumar, Sankaran; Czipott, Peter V.; Whitecotton, Brian R.; McManus, Tobin J.; Walsh, David O.

    2005-05-01

    Magnetic sensors configured as a tensor magnetic gradiometer not only detect magnetic targets, but also determine their location and their magnetic moment. Magnetic moment information can be used to characterize and classify objects. Unexploded ordnance (UXO) and thus many types of improvised explosive device (IED) contain steel, and thus can be detected magnetically. Suitable unmanned aerial vehicle (UAV) platforms, both gliders and powered craft, can enable coverage of a search area much more rapidly than surveys using, for instance, total-field magnetometers. We present data from gradiometer passes over different shells using a gradiometer mounted on a moving cart. We also provide detection range and speed estimates for aerial detection by a UAV.

  8. Action cameras and low-cost aerial vehicles in archaeology

    NASA Astrophysics Data System (ADS)

    Ballarin, M.; Balletti, C.; Guerra, F.

    2015-05-01

    This research is focused on the analysis of the potential of a close range aerial photogrammetry system, which is accessible both in economic terms and in terms of simplicity of use. In particular the Go Pro Hero3 Black Edition and the Parrot Ar. Drone 2.0 were studied. There are essentially two limitations to the system and they were found for both the instruments used. Indeed, the frames captured by the Go Pro are subject to great distortion and consequently pose numerous calibration problems. On the other hand, the limitation of the system lies in the difficulty of maintaining a flight configuration suitable for photogrammetric purposes in unfavourable environmental conditions. The aim of this research is to analyse how far the limitations highlighted can influence the precision of the survey and consequent quality of the results obtained. To this end, the integrated GoPro and Parrot system was used during a survey campaign on the Altilia archaeological site, in Molise. The data obtained was compared with that gathered by more traditional methods, such as the laser scanner. The system was employed in the field of archaeology because here the question of cost often has a considerable importance and the metric aspect is frequently subordinate to the qualitative and interpretative aspects. Herein one of the products of these systems; the orthophoto will be analysed, which is particularly useful in archaeology, especially in situations such as this dig in which there aren't many structures in elevation present. The system proposed has proven to be an accessible solution for producing an aerial documentation, which adds the excellent quality of the result to metric data for which the precision is known.

  9. Radiometric characterization of hyperspectral imagers using multispectral sensors

    NASA Astrophysics Data System (ADS)

    McCorkel, Joel; Thome, Kurt; Leisso, Nathan; Anderson, Nikolaus; Czapla-Myers, Jeff

    2009-08-01

    The Remote Sensing Group (RSG) at the University of Arizona has a long history of using ground-based test sites for the calibration of airborne and satellite based sensors. Often, ground-truth measurements at these tests sites are not always successful due to weather and funding availability. Therefore, RSG has also employed automated ground instrument approaches and cross-calibration methods to verify the radiometric calibration of a sensor. The goal in the cross-calibration method is to transfer the calibration of a well-known sensor to that of a different sensor. This work studies the feasibility of determining the radiometric calibration of a hyperspectral imager using multispectral imagery. The work relies on the Moderate Resolution Imaging Spectroradiometer (MODIS) as a reference for the hyperspectral sensor Hyperion. Test sites used for comparisons are Railroad Valley in Nevada and a portion of the Libyan Desert in North Africa. Hyperion bands are compared to MODIS by band averaging Hyperion's high spectral resolution data with the relative spectral response of MODIS. The results compare cross-calibration scenarios that differ in image acquisition coincidence, test site used for the calibration, and reference sensor. Cross-calibration results are presented that show agreement between the use of coincident and non-coincident image pairs within 2% in most bands as well as similar agreement between results that employ the different MODIS sensors as a reference.

  10. Reduction of Radiometric Miscalibration—Applications to Pushbroom Sensors

    PubMed Central

    Rogaß, Christian; Spengler, Daniel; Bochow, Mathias; Segl, Karl; Lausch, Angela; Doktor, Daniel; Roessner, Sigrid; Behling, Robert; Wetzel, Hans-Ulrich; Kaufmann, Hermann

    2011-01-01

    The analysis of hyperspectral images is an important task in Remote Sensing. Foregoing radiometric calibration results in the assignment of incident electromagnetic radiation to digital numbers and reduces the striping caused by slightly different responses of the pixel detectors. However, due to uncertainties in the calibration some striping remains. This publication presents a new reduction framework that efficiently reduces linear and nonlinear miscalibrations by an image-driven, radiometric recalibration and rescaling. The proposed framework—Reduction Of Miscalibration Effects (ROME)—considering spectral and spatial probability distributions, is constrained by specific minimisation and maximisation principles and incorporates image processing techniques such as Minkowski metrics and convolution. To objectively evaluate the performance of the new approach, the technique was applied to a variety of commonly used image examples and to one simulated and miscalibrated EnMAP (Environmental Mapping and Analysis Program) scene. Other examples consist of miscalibrated AISA/Eagle VNIR (Visible and Near Infrared) and Hawk SWIR (Short Wave Infrared) scenes of rural areas of the region Fichtwald in Germany and Hyperion scenes of the Jalal-Abad district in Southern Kyrgyzstan. Recovery rates of approximately 97% for linear and approximately 94% for nonlinear miscalibrated data were achieved, clearly demonstrating the benefits of the new approach and its potential for broad applicability to miscalibrated pushbroom sensor data. PMID:22163960

  11. Revised Radiometric Calibration Technique for LANDSAT-4 Thematic Mapper Data by the Canada Centre for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Murphy, J.; Butlin, T.; Duff, P.; Fitzgerald, A.

    1984-01-01

    A technique for the radiometric correction of LANDSAT-4 Thematic Mapper data was proposed by the Canada Center for Remote Sensing. Subsequent detailed observations of raw image data, raw radiometric calibration data and background measurements extracted from the raw data stream on High Density Tape highlighted major shortcomings in the proposed method which if left uncorrected, can cause severe radiometric striping in the output product. Results are presented which correlate measurements of the DC background with variations in both image data background and calibration samples. The effect on both raw data and on data corrected using the earlier proposed technique is explained, and the correction required for these factors as a function of individual scan line number for each detector is described. It is shown how the revised technique can be incorporated into an operational environment.

  12. Online Aerial Terrain Mapping for Ground Robot Navigation

    PubMed Central

    Peterson, John; Chaudhry, Haseeb; Abdelatty, Karim; Bird, John; Kochersberger, Kevin

    2018-01-01

    This work presents a collaborative unmanned aerial and ground vehicle system which utilizes the aerial vehicle’s overhead view to inform the ground vehicle’s path planning in real time. The aerial vehicle acquires imagery which is assembled into a orthomosaic and then classified. These terrain classes are used to estimate relative navigation costs for the ground vehicle so energy-efficient paths may be generated and then executed. The two vehicles are registered in a common coordinate frame using a real-time kinematic global positioning system (RTK GPS) and all image processing is performed onboard the unmanned aerial vehicle, which minimizes the data exchanged between the vehicles. This paper describes the architecture of the system and quantifies the registration errors between the vehicles. PMID:29461496

  13. Online Aerial Terrain Mapping for Ground Robot Navigation.

    PubMed

    Peterson, John; Chaudhry, Haseeb; Abdelatty, Karim; Bird, John; Kochersberger, Kevin

    2018-02-20

    This work presents a collaborative unmanned aerial and ground vehicle system which utilizes the aerial vehicle's overhead view to inform the ground vehicle's path planning in real time. The aerial vehicle acquires imagery which is assembled into a orthomosaic and then classified. These terrain classes are used to estimate relative navigation costs for the ground vehicle so energy-efficient paths may be generated and then executed. The two vehicles are registered in a common coordinate frame using a real-time kinematic global positioning system (RTK GPS) and all image processing is performed onboard the unmanned aerial vehicle, which minimizes the data exchanged between the vehicles. This paper describes the architecture of the system and quantifies the registration errors between the vehicles.

  14. Validating the MISR radiometric scale for the ocean aerosol science communities

    NASA Technical Reports Server (NTRS)

    Bruegge, Carol J.; Abdou, Wedad; Diner, David J.; Gaitley, Barbara; Helmlinger, Mark; Kahn, Ralph; Martonchik, John V.

    2004-01-01

    This paper validates that radiometric accuracy is maintained throughout the dynamic range of the instrument. As part of this study, a new look has been taken on the band-relative scale, and a decrease in the radiance reported for the Red and NIR Bands has resulted.

  15. Economic Outlook for Radiometric Selection of Ores; POSSIBILITES OUVERTES EN MATIERE ECONOMIQUE PAR SELECTION RADIOMETRIQUE DES MINERAIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Formery, P.; Ziegler, V.

    1959-10-31

    The radiometric grading of uranium ores is analyzed. The cut-off is defined, and its parameters are derived. Cut-off above ground and underground are statistically interpreted. An evaluation is made of the combined effects of both kinds of cut-off made in succession. The corrections to be made to the radiometric apparatus used are determined. Application of the theory of cutoff to the evaluation of reserves is discussed. (J.S.R.)

  16. Radiometric Calibration of the NASA Advanced X-Ray Astrophysics Facility

    NASA Technical Reports Server (NTRS)

    Kellogg, Edwin M.

    1999-01-01

    We present the results of absolute calibration of the quantum efficiency of soft x-ray detectors performed at the PTB/BESSY beam lines. The accuracy goal is 1%. We discuss the implementation of that goal. These detectors were used as transfer standards to provide the radiometric calibration of the AXAF X-ray observatory, to be launched in April 1999.

  17. Radiometric calibration of an ultra-compact microbolometer thermal imaging module

    NASA Astrophysics Data System (ADS)

    Riesland, David W.; Nugent, Paul W.; Laurie, Seth; Shaw, Joseph A.

    2017-05-01

    As microbolometer focal plane array formats are steadily decreasing, new challenges arise in correcting for thermal drift in the calibration coefficients. As the thermal mass of the cameras decrease the focal plane becomes more sensitive to external thermal inputs. This paper shows results from a temperature compensation algorithm for characterizing and radiometrically calibrating a FLIR Lepton camera.

  18. 3D Modelling of Inaccessible Areas using UAV-based Aerial Photography and Structure from Motion

    NASA Astrophysics Data System (ADS)

    Obanawa, Hiroyuki; Hayakawa, Yuichi; Gomez, Christopher

    2014-05-01

    In hardly accessible areas, the collection of 3D point-clouds using TLS (Terrestrial Laser Scanner) can be very challenging, while airborne equivalent would not give a correct account of subvertical features and concave geometries like caves. To solve such problem, the authors have experimented an aerial photography based SfM (Structure from Motion) technique on a 'peninsular-rock' surrounded on three sides by the sea at a Pacific coast in eastern Japan. The research was carried out using UAS (Unmanned Aerial System) combined with a commercial small UAV (Unmanned Aerial Vehicle) carrying a compact camera. The UAV is a DJI PHANTOM: the UAV has four rotors (quadcopter), it has a weight of 1000 g, a payload of 400 g and a maximum flight time of 15 minutes. The camera is a GoPro 'HERO3 Black Edition': resolution 12 million pixels; weight 74 g; and 0.5 sec. interval-shot. The 3D model has been constructed by digital photogrammetry using a commercial SfM software, Agisoft PhotoScan Professional®, which can generate sparse and dense point-clouds, from which polygonal models and orthophotographs can be calculated. Using the 'flight-log' and/or GCPs (Ground Control Points), the software can generate digital surface model. As a result, high-resolution aerial orthophotographs and a 3D model were obtained. The results have shown that it was possible to survey the sea cliff and the wave cut-bench, which are unobservable from land side. In details, we could observe the complexity of the sea cliff that is nearly vertical as a whole while slightly overhanging over the thinner base. The wave cut bench is nearly flat and develops extensively at the base of the cliff. Although there are some evidences of small rockfalls at the upper part of the cliff, there is no evidence of very recent activity, because no fallen rock exists on the wave cut bench. This system has several merits: firstly lower cost than the existing measuring methods such as manned-flight survey and aerial laser

  19. Thematic mapper: detailed radiometric and geometric characteristics

    USGS Publications Warehouse

    Kieffer, Hugh

    1983-01-01

    Those radiometric characteristics of the Landsat 4 Thematic Mapper (TM) that can be established without absolute calibration of spectral data have been examined. Subscenes of radiometric all raw data (B-data) were examined on an individual detector basis: areas of uniform radiance were used to characterize subtle radiometric differences and noise problems. A variety of anomalies have been discovered with magnitude of a few digital levels or less: the only problem not addressable by ground processing is irregular width of the digital levels. Essentially all of this non-ideal performance is incorporated in the fully processed (P-type) images, but disguised by the geometric resampling procedure. The overall performance of the Thematic Mapper is a great improvement over previous Landsat scanners. The effective resolution in radiance is degraded by about a factor of two by irregular width of the digital levels. Several detectors have a change of gain with a period of several scans, the largest effect is about 4%. These detectors appear to switch between two response levels during scan direction reversal; there is no apparent periodicity to these changes. This can cause small apparent difference between forward and reverse scans for portions of an image. The high-frequency noise level of each detector was characterized by the standard deviation of the first derivative in the sample direction across a flat field. Coherent sinusoidal noise patterns were determined using one-dimensional Fourier transforms. A "stitching" pattern in Band 1 has a period of 13.8 samples with a peak-to-peak amplitude ranging from 1 to 5 DN. Noise with a period of 3.24 samples is pronounced for most detectors in band 1, to a lesser extent in bands 2, 3, and 4, and below background noise levels in bands 5, 6, and 7. The geometric fidelity of the GSFC film writer used for Thematic Mapper (TM) images was assessed by measurement with accuracy bette than three micrometers of a test grid. A set of 55

  20. New Sentinel-2 radiometric validation approaches (SEOM program)

    NASA Astrophysics Data System (ADS)

    Bruniquel, Véronique; Lamquin, Nicolas; Ferron, Stéphane; Govaerts, Yves; Woolliams, Emma; Dilo, Arta; Gascon, Ferran

    2016-04-01

    SEOM is an ESA program element whose one of the objectives aims at launching state-of-the-art studies for the scientific exploitation of operational missions. In the frame of this program, ESA awarded ACRI-ST and its partners Rayference and National Physical Laboratory (NPL) early 2016 for a R&D study on the development and intercomparison of algorithms for validating the Sentinel-2 radiometric L1 data products beyond the baseline algorithms used operationally in the frame of the S2 Mission Performance Centre. In this context, several algorithms have been proposed and are currently in development: The first one is based on the exploitation of Deep Convective Cloud (DCC) observations over ocean. This method allows an inter-band radiometry validation from the blue to the NIR (typically from B1 to B8a) from a reference band already validated for example with the well-known Rayleigh method. Due to their physical properties, DCCs appear from the remote sensing point of view to have bright and cold tops and they can be used as invariant targets to monitor the radiometric response degradation of reflective solar bands. The DCC approach is statistical i.e. the method shall be applied on a large number of measurements to derive reliable statistics and decrease the impact of the perturbing contributors. The second radiometric validation method is based on the exploitation of matchups combining both concomitant in-situ measurements and Sentinel-2 observations. The in-situ measurements which are used here correspond to measurements acquired in the frame of the RadCalNet networks. The validation is performed for the Sentinel-2 bands similar to the bands of the instruments equipping the validation site. The measurements from the Cimel CE 318 12-filters BRDF Sun Photometer installed recently in the Gobabeb site near the Namib desert are used for this method. A comprehensive verification of the calibration requires an analysis of MSI radiances over the full dynamic range

  1. Rapid-Response or Repeat-Mode Topography from Aerial Structure from Motion

    NASA Astrophysics Data System (ADS)

    Nissen, E.; Johnson, K. L.; Fitzgerald, F. S.; Morgan, M.; White, J.

    2014-12-01

    This decade has seen a surge of interest in Structure-from-Motion (SfM) as a means of generating high-resolution topography and coregistered texture maps from stereo digital photographs. Using an unstructured set of overlapping photographs captured from multiple viewpoints and minimal GPS ground control, SfM solves simultaneously for scene topography and camera positions, orientations and lens parameters. The use of cheap unmanned aerial vehicles or tethered helium balloons as camera platforms expedites data collection and overcomes many of the cost, time and logistical limitations of LiDAR surveying, making it a potentially valuable tool for rapid response mapping and repeat monitoring applications. We begin this presentation by assessing what data resolutions and precisions are achievable using a simple aerial camera platform and commercial SfM software (we use the popular Agisoft Photoscan package). SfM point clouds generated at two small (~0.1 km2), sparsely-vegetated field sites in California compare favorably with overlapping airborne and terrestrial LiDAR surveys, with closest point distances of a few centimeters between the independent datasets. Next, we go on to explore the method in more challenging conditions, in response to a major landslide in Mesa County, Colorado, on 25th May 2014. Photographs collected from a small UAV were used to generate a high-resolution model of the 4.5 x 1 km landslide several days before an airborne LiDAR survey could be organized and flown. An initial estimate of the mass balance of the landslide could quickly be made by differencing this model against pre-event topography generated using stereo photographs collected in 2009 as part of the National Agricultural Imagery Program (NAIP). This case study therefore demonstrates the rich potential offered by this technique, as well as some of the challenges, particularly with respect to the treatment of vegetation.

  2. Aviation's role in earth resources surveys

    NASA Technical Reports Server (NTRS)

    Syvertson, C. A.; Mulholland, D. R.

    1972-01-01

    The role of satellites designed to make a wide variety of earth observations is discussed along with the renewed interest in the use of aircraft as platforms for similar and complementary earth resources surveys. Surveys covering the areas of forestry, agriculture, hydrology, oceanography, geology, and geography are included. Aerials surveys equipped for nonphotographic remote sensing and aircraft flights synchronized with satellite observations to provide correlated data are discussed. Photographs are shown to illustrate preliminary results from several of the test sites.

  3. Rain attenuation studies from radiometric and rain DSD measurements at two tropical locations

    NASA Astrophysics Data System (ADS)

    Halder, Tuhina; Adhikari, Arpita; Maitra, Animesh

    2018-05-01

    Efficient use of satellite communication in tropical regions demands proper characterization of rain attenuation, particularly, in view of the available popular propagation models which are mostly based on temperate climatic data. Thus rain attenuations at frequencies 22.234, 23.834 and 31.4/30 GHz over two tropical locations Kolkata (22.57°N, 88.36°E, India) and Belem (1.45°S, 48.49° W, Brazil), have been estimated for the year 2010 and 2011, respectively. The estimation has been done utilizing ground-based disdrometer observations and radiometric measurements over Earth-space path. The results show that rain attenuation estimations from radiometric data are reliable only at low rain rates (<30 mm/h). However, the rain attenuation estimations from disdrometer measurements show good agreement with the ITU-R model, even at high rain rates (upto100 mm/h). Despite having significant variability in terms of drop size distribution (DSD), the attenuation values calculated from DSD data (disdrometer measurements) at Kolkata and Belem differ a little for the rain rates below 30 mm/h. However, the attenuation values, obtained from radiometric measurements at the two places, show significant deviations ranging from 0.54 dB to 3.2 dB up to a rain rate of 30 mm/h, on account of different rain heights, mean atmospheric temperatures and climatology of the two locations.

  4. Branching Ratios for The Radiometric Calibration of EUNIS-2012

    NASA Technical Reports Server (NTRS)

    Daw, Adrian N.; Bhatia, A. K.; Rabin, Douglas M.

    2012-01-01

    The Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS) sounding rocket instrument is a two-channel imaging spectrograph that observes the solar corona and transition region with high spectral resolution and a rapid cadence made possible by unprecedented sensitivity. The upcoming flight will incorporate a new wavelength channel covering the range 524-630 Angstroms, the previously-flown 300-370 Angstroms channel, and the first flight demonstration of cooled active pixel sensor (APS) arrays. The new 524-630 Angstrom channel incorporates a Toroidal Varied Line Space (TVLS) grating coated with B4C/Ir, providing broad spectral coverage and a wide temperature range of 0.025 to 10 MK. Absolute radiometric calibration of the two channels is being performed using a hollow cathode discharge lamp and NIST-calibrated AXUV-100G photodiode. Laboratory observations of He I 584 Angstroms and He II 304 Angstroms provide absolute radiometric calibrations of the two channels at those two respective wavelengths by using the AXUV photodiode as a transfer standard. The spectral responsivity is being determined by observing line pairs with a common upper state in the spectra of Ne I-III and Ar II-III. Calculations of A-values for the observed branching ratios are in progress.

  5. BOREAS Level-0 ER-2 Aerial Photography

    NASA Technical Reports Server (NTRS)

    Newcomer, Jeffrey A.; Dominquez, Roseanne; Hall, Forrest G. (Editor)

    2000-01-01

    For BOReal Ecosystem-Atmosphere Study (BOREAS), the ER-2 and other aerial photography was collected to provide finely detailed and spatially extensive documentation of the condition of the primary study sites. The ER-2 aerial photography consists of color-IR transparencies collected during flights in 1994 and 1996 over the study areas.

  6. 7 CFR 1755.703 - Nonmetallic reinforced (NMR) aerial service wire.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 11 2014-01-01 2014-01-01 false Nonmetallic reinforced (NMR) aerial service wire... MATERIALS, AND STANDARD CONTRACT FORMS § 1755.703 Nonmetallic reinforced (NMR) aerial service wire. (a... resistance of each conductor in a completed NMR aerial service wire shall comply with the requirement...

  7. 7 CFR 1755.703 - Nonmetallic reinforced (NMR) aerial service wire.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 11 2013-01-01 2013-01-01 false Nonmetallic reinforced (NMR) aerial service wire... MATERIALS, AND STANDARD CONTRACT FORMS § 1755.703 Nonmetallic reinforced (NMR) aerial service wire. (a... resistance of each conductor in a completed NMR aerial service wire shall comply with the requirement...

  8. 7 CFR 1755.703 - Nonmetallic reinforced (NMR) aerial service wire.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 11 2012-01-01 2012-01-01 false Nonmetallic reinforced (NMR) aerial service wire... MATERIALS, AND STANDARD CONTRACT FORMS § 1755.703 Nonmetallic reinforced (NMR) aerial service wire. (a... resistance of each conductor in a completed NMR aerial service wire shall comply with the requirement...

  9. A preliminary study of a very large space radiometric antenna

    NASA Technical Reports Server (NTRS)

    Agrawal, P. K.

    1979-01-01

    An approach used to compute the size of a special radiometric reflector antenna is presented. Operating at 1 GHz, this reflector is required to produce 200 simultaneous contiguous beams, each with a 3 dB footprint of 1 km from an assumed satellite height of 650 km. The overall beam efficiency for each beam is required to be more than 90%.

  10. Investigation of coastal areas in Northern Germany using airborne geophysical surveys

    NASA Astrophysics Data System (ADS)

    Miensopust, Marion; Siemon, Bernhard; Wiederhold, Helga; Steuer, Annika; Ibs-von Seht, Malte; Voß, Wolfgang; Meyer, Uwe

    2014-05-01

    Since 2000, the German Federal Institute for Geosciences and Natural Resources (BGR) carried out several airborne geophysical surveys in Northern Germany to investigate the coastal areas of the North Sea and some of the North and East Frisian Islands. Several of those surveys were conducted in cooperation with the Leibniz Institute for Applied Geophysics (LIAG). Two helicopter-borne geophysical systems were used, namely the BGR system, which collects simultaneously frequency-domain electromagnetic, magnetic and radiometric data, and the SkyTEM system, a time-domain electromagnetic system developed by the University of Aarhus. Airborne geophysical surveys enable to investigate huge areas almost completely with high lateral resolution in a relatively short time at economic cost. In general, the results can support geological and hydrogeological mapping. Of particular importance are the airborne electromagnetic results, as the surveyed parameter - the electrical conductivity - depends on both lithology and groundwater status. Therefore, they can reveal buried valleys and the distribution of sandy and clayey sediments as well as salinization zones and fresh-water occurrences. The often simultaneously recorded magnetic and radiometric data support the electromagnetic results. Lateral changes of Quaternary and Tertiary sediments (shallow source - several tens of metres) as well as evidences of the North German Basin (deep source - several kilometres) are revealed by the magnetic results. The radiometric data indicate the various mineral compositions of the soil sediments. This BGR/LIAG project aims to build up a geophysics data base (http://geophysics-database.de/) which contains all airborne geophysical data sets. However, the more significant effort is to create a reference data set as basis for monitoring climate or man-made induced changes of the salt-water/fresh-water interface at the German North Sea coast. The significance of problems for groundwater extraction

  11. Knowledge-based understanding of aerial surveillance video

    NASA Astrophysics Data System (ADS)

    Cheng, Hui; Butler, Darren

    2006-05-01

    Aerial surveillance has long been used by the military to locate, monitor and track the enemy. Recently, its scope has expanded to include law enforcement activities, disaster management and commercial applications. With the ever-growing amount of aerial surveillance video acquired daily, there is an urgent need for extracting actionable intelligence in a timely manner. Furthermore, to support high-level video understanding, this analysis needs to go beyond current approaches and consider the relationships, motivations and intentions of the objects in the scene. In this paper we propose a system for interpreting aerial surveillance videos that automatically generates a succinct but meaningful description of the observed regions, objects and events. For a given video, the semantics of important regions and objects, and the relationships between them, are summarised into a semantic concept graph. From this, a textual description is derived that provides new search and indexing options for aerial video and enables the fusion of aerial video with other information modalities, such as human intelligence, reports and signal intelligence. Using a Mixture-of-Experts video segmentation algorithm an aerial video is first decomposed into regions and objects with predefined semantic meanings. The objects are then tracked and coerced into a semantic concept graph and the graph is summarized spatially, temporally and semantically using ontology guided sub-graph matching and re-writing. The system exploits domain specific knowledge and uses a reasoning engine to verify and correct the classes, identities and semantic relationships between the objects. This approach is advantageous because misclassifications lead to knowledge contradictions and hence they can be easily detected and intelligently corrected. In addition, the graph representation highlights events and anomalies that a low-level analysis would overlook.

  12. Gravity, magnetic, and radiometric data for Newberry Volcano, Oregon, and vicinity

    USGS Publications Warehouse

    Wynn, Jeff

    2014-01-01

    Newberry Volcano in central Oregon is a 3,100-square-kilometer (1,200-square-mile) shield-shaped composite volcano, occupying a location east of the main north-south trend of the High Cascades volcanoes and forming a transition between the High Lava Plains subprovince of the Basin and Range Province to the east and the Cascade Range to the west. Magnetic, gravity, and radiometric data have been gathered and assessed for the region around the volcano. These data have widely varying quality and resolution, even within a given dataset, and these limitations are evaluated and described in this release. Publicly available gravity data in general are too sparse to permit detailed modeling except along a few roads with high-density coverage. Likewise, magnetic data are also unsuitable for all but very local modeling, primarily because available data consist of a patchwork of datasets with widely varying line-spacing. Gravity data show only the broadest correlation with mapped geology, whereas magnetic data show moderate correlation with features only in the vicinity of Newberry Caldera. At large scales, magnetic data correlate poorly with both geologic mapping and gravity data. These poor correlations are largely due to the different sensing depths of the two potential fields methods, which respond to physical properties deeper than the surficial geology. Magnetic data derive from rocks no deeper than the Curie-point isotherm depth (10 to 15 kilometers, km, maximum), whereas gravity data reflect density-contrasts to 100 to 150 km depths. Radiometric data from the National Uranium Resource Evaluation (NURE) surveys of the 1980s have perhaps the coarsest line-spacing of all (as much as 10 km between lines) and are extremely “noisy” for several reasons inherent to this kind of data. Despite its shallow-sensing character, only a few larger anomalies in the NURE data correlate well with geologic mapping. The purpose of this data series release is to collect and place the

  13. APPLICATION OF THE AERIAL PROFILING OF TERRAIN SYSTEM.

    USGS Publications Warehouse

    Cyran, Edward J.

    1985-01-01

    The U. S. Geological Survey has completed the performance evaluation flight tests of the Aerial Profiling of Terrain System (APTS) and is now performing a series of application tests to determine its effectiveness and efficiency as an earth-science data collection tool. These tests are designed to evaluate the APTS at such tasks as positioning water wells, testing reliability of older maps, measuring elevations of kettle ponds, and profiling stream valleys for flood studies. The results of three application tests in Massachusetts are discussed: positioning water wells and measuring elevations along the Charles River; testing four older 1:24,000-scale quadrangle maps in the Plymouth area; and measuring elevations of several hundred kettle ponds near the Cape Cod Canal.

  14. Small catchments DEM creation using Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Gafurov, A. M.

    2018-01-01

    Digital elevation models (DEM) are an important source of information on the terrain, allowing researchers to evaluate various exogenous processes. The higher the accuracy of DEM the better the level of the work possible. An important source of data for the construction of DEMs are point clouds obtained with terrestrial laser scanning (TLS) and unmanned aerial vehicles (UAV). In this paper, we present the results of constructing a DEM on small catchments using UAVs. Estimation of the UAV DEM showed comparable accuracy with the TLS if real time kinematic Global Positioning System (RTK-GPS) ground control points (GCPs) and check points (CPs) were used. In this case, the main source of errors in the construction of DEMs are the errors in the referencing of survey results.

  15. Aerial gamma ray and magnetic survey: Powder River R and D Project. Portions of the: Forsyth and Hardin, Montana, and the Sheridan, Arminto, Newcastle, and Gillette, Wyoming Quadrangles. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-05-01

    During the months of August through September, 1978, geoMetrics, Inc. flew approximately 1520 line miles of high sensitivity airborne radiometric and magnetic data in Wyoming and southern Montana within four 1/sup 0/ x 2/sup 0/ NTMS quadrangles (Arminto, Sheridan, Hardin and Forsyth), and 1390 lines miles in the detail area in eastern Wyoming, as part of the Department of Energy's National Uranium Resource Evaluation program. All radiometric and magnetic data were fully reduced and interpreted by geoMetrics, and are presented as three volumes (one Volume I and two Volume II's) in this report. The survey area lies largely within themore » northern Great Plains Physiographic Province. The deep Powder River Basin is the dominant structure in the area. Portions of the Casper Arch, Big Horn Uplift, and Porcupine Dome fall within the western limits of the area. The Basin is one of the largest and deepest in the northern Great Plains and contains over 17,000 feet of Phanerozoic sediments at its deepest point. Economic deposits of oil, coal, bentonite and uranium are found in the Tertiary and/or Cretaceous rocks of the Basin. Epigenetic uranium deposits lie primarily in the Pumpkin Buttes - Turnercrest districts within arkosic sandstones of the Paleocene Fort Union Formation. A total of 62 groups of statistical values for the R and D area and 127 for the Arminto Detail in the uranium window meet the criteria for valid anomalies and are discussed in their respective interpretation sections. Most anomalies lie in the Tertiary sediments of the Powder River Basin. Some of the anomalies in the Arminto Detail are clearly related to mines or prospects.« less

  16. 7 CFR 1755.703 - Nonmetallic reinforced (NMR) aerial service wire.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false Nonmetallic reinforced (NMR) aerial service wire... MATERIALS, AND STANDARD CONTRACT FORMS § 1755.703 Nonmetallic reinforced (NMR) aerial service wire. (a..., paragraphs 2.2 and 2.2.1. The ANSI/ICEA S-89-648-1993 Standard For Telecommunications Aerial Service Wire...

  17. 7 CFR 1755.703 - Nonmetallic reinforced (NMR) aerial service wire.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Nonmetallic reinforced (NMR) aerial service wire... MATERIALS, AND STANDARD CONTRACT FORMS § 1755.703 Nonmetallic reinforced (NMR) aerial service wire. (a..., paragraphs 2.2 and 2.2.1. The ANSI/ICEA S-89-648-1993 Standard For Telecommunications Aerial Service Wire...

  18. 7 CFR 1755.700 - RUS specification for aerial service wires.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false RUS specification for aerial service wires. 1755.700..., AND STANDARD CONTRACT FORMS § 1755.700 RUS specification for aerial service wires. §§ 1755.701 through 1755.704 cover the requirements for aerial service wires. [61 FR 26074, May 24, 1996] ...

  19. 7 CFR 1755.700 - RUS specification for aerial service wires.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false RUS specification for aerial service wires. 1755.700..., AND STANDARD CONTRACT FORMS § 1755.700 RUS specification for aerial service wires. §§ 1755.701 through 1755.704 cover the requirements for aerial service wires. [61 FR 26074, May 24, 1996] ...

  20. Radiometric Characterization of Hyperspectral Imagers using Multispectral Sensors

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel; Kurt, Thome; Leisso, Nathan; Anderson, Nikolaus; Czapla-Myers, Jeff

    2009-01-01

    The Remote Sensing Group (RSG) at the University of Arizona has a long history of using ground-based test sites for the calibration of airborne and satellite based sensors. Often, ground-truth measurements at these test sites are not always successful due to weather and funding availability. Therefore, RSG has also automated ground instrument approaches and cross-calibration methods to verify the radiometric calibration of a sensor. The goal in the cross-calibration method is to transfer the calibration of a well-known sensor to that of a different sensor, This work studies the feasibility of determining the radiometric calibration of a hyperspectral imager using multispectral a imagery. The work relies on the Moderate Resolution Imaging Spectroradiometer (M0DIS) as a reference for the hyperspectral sensor Hyperion. Test sites used for comparisons are Railroad Valley in Nevada and a portion of the Libyan Desert in North Africa. Hyperion bands are compared to MODIS by band averaging Hyperion's high spectral resolution data with the relative spectral response of M0DlS. The results compare cross-calibration scenarios that differ in image acquisition coincidence, test site used for the calibration, and reference sensor. Cross-calibration results are presented that show agreement between the use of coincident and non-coincident image pairs within 2% in most brands as well as similar agreement between results that employ the different MODIS sensors as a reference.

  1. Radiometric stability of the Multi-angle Imaging SpectroRadiometer (MISR) following 15 years on-orbit

    NASA Astrophysics Data System (ADS)

    Bruegge, Carol J.; Val, Sebastian; Diner, David J.; Jovanovic, Veljko; Gray, Ellyn; Di Girolamo, Larry; Zhao, Guangyu

    2014-09-01

    The Multi-angle Imaging SpectroRadiometer (MISR) has successfully operated on the EOS/ Terra spacecraft since 1999. It consists of nine cameras pointing from nadir to 70.5° view angle with four spectral channels per camera. Specifications call for a radiometric uncertainty of 3% absolute and 1% relative to the other cameras. To accomplish this, MISR utilizes an on-board calibrator (OBC) to measure camera response changes. Once every two months the two Spectralon panels are deployed to direct solar-light into the cameras. Six photodiode sets measure the illumination level that are compared to MISR raw digital numbers, thus determining the radiometric gain coefficients used in Level 1 data processing. Although panel stability is not required, there has been little detectable change in panel reflectance, attributed to careful preflight handling techniques. The cameras themselves have degraded in radiometric response by 10% since launch, but calibration updates using the detector-based scheme has compensated for these drifts and allowed the radiance products to meet accuracy requirements. Validation using Sahara desert observations show that there has been a drift of ~1% in the reported nadir-view radiance over a decade, common to all spectral bands.

  2. Geography via Aerial Field Trips: Do It This Way, 6.

    ERIC Educational Resources Information Center

    Richason, Benjamin F., Jr.; Guell, Carl E.

    To provide guidance for geography teachers, this booklet presents information on how to plan and execute aerial field trips. The aerial field trip can be employed as an effective visual aid technique in the teaching of geography, especially for presenting earth generalizations and interrelationships. The benefits of an aerial field trip are…

  3. On a Fundamental Evaluation of a Uav Equipped with a Multichannel Laser Scanner

    NASA Astrophysics Data System (ADS)

    Nakano, K.; Suzuki, H.; Omori, K.; Hayakawa, K.; Kurodai, M.

    2018-05-01

    Unmanned aerial vehicles (UAVs), which have been widely used in various fields such as archaeology, agriculture, mining, and construction, can acquire high-resolution images at the millimetre scale. It is possible to obtain realistic 3D models using high-overlap images and 3D reconstruction software based on computer vision technologies such as Structure from Motion and Multi-view Stereo. However, it remains difficult to obtain key points from surfaces with limited texture such as new asphalt or concrete, or from areas like forests that may be concealed by vegetation. A promising method for conducting aerial surveys is through the use of UAVs equipped with laser scanners. We conducted a fundamental performance evaluation of the Velodyne VLP-16 multi-channel laser scanner equipped to a DJI Matrice 600 Pro UAV at a construction site. Here, we present our findings with respect to both the geometric and radiometric aspects of the acquired data.

  4. Application of airborne thermal imagery to surveys of Pacific walrus

    USGS Publications Warehouse

    Burn, D.M.; Webber, M.A.; Udevitz, M.S.

    2006-01-01

    We conducted tests of airborne thermal imagery of Pacific walrus to determine if this technology can be used to detect walrus groups on sea ice and estimate the number of walruses present in each group. In April 2002 we collected thermal imagery of 37 walrus groups in the Bering Sea at spatial resolutions ranging from 1-4 m. We also collected high-resolution digital aerial photographs of the same groups. Walruses were considerably warmer than the background environment of ice, snow, and seawater and were easily detected in thermal imagery. We found a significant linear relation between walrus group size and the amount of heat measured by the thermal sensor at all 4 spatial resolutions tested. This relation can be used in a double-sampling framework to estimate total walrus numbers from a thermal survey of a sample of units within an area and photographs from a subsample of the thermally detected groups. Previous methods used in visual aerial surveys of Pacific walrus have sampled only a small percentage of available habitat, resulting in population estimates with low precision. Results of this study indicate that an aerial survey using a thermal sensor can cover as much as 4 times the area per hour of flight time with greater reliability than visual observation.

  5. Applicability of Aerial Green LiDAR to a Large River in the Western United States

    NASA Astrophysics Data System (ADS)

    Conner, J. T.; Welcker, C. W.; Cooper, C.; Faux, R.; Butler, M.; Nayegandhi, A.

    2013-12-01

    In October 2012, aerial green LiDAR data were collected in the Snake River (within Idaho and Oregon) to test this emerging technology in a large river with poor water clarity. Six study areas (total of 30 river miles spread out over 250 river miles) were chosen to represent a variety of depths, channel types, and surface conditions to test the accuracy, depth penetration, data density of aerial green LiDAR. These characteristics along with cost and speed of acquisition were compared to other bathymetric survey techniques including rod surveys (total station and RTK-GPS), single-beam sonar, and multibeam echosounder (MBES). The green LiDAR system typically measured returns from the riverbed through 1-2 meters of water, which was less than one Secchi depth. However, in areas with steep banks or aquatic macrophytes, LiDAR returns from the riverbed were less frequent or non-existent. In areas of good return density, depths measured from green LiDAR data corresponded well with previously collected data sets from traditional bathymetric survey techniques. In such areas, the green LiDAR point density was much higher than both rod and single beam sonar surveys, yet lower than MBES. The green LiDAR survey was also collected more efficiently than all other methods. In the Snake River, green LiDAR does not provide a method to map the entire riverbed as it only receives bottom returns in shallow water, typically at the channel margins. However, green LiDAR does provide survey data that is an excellent complement to MBES, which is more effective at surveying the deeper portions of the channel. In some cases, the green LiDAR was able to provide data in areas that the MBES could not, often due to issues with navigating the survey boat in shallow water. Even where both MBES and green LiDAR mapped the river bottom, green LiDAR often provides more accurate data through a better angle of incidence and less shadowing than the MBES survey. For one MBES survey in 2013, the green Li

  6. Effects of pesticides aerial applications on rice quality

    USDA-ARS?s Scientific Manuscript database

    Aerial application of pesticides has become an important research topic in recent years. This research investigated the effects of two types of commercial pesticides on the rice quality under low volume aerial application. It could provide guidance for the pesticide application and choose the right ...

  7. Aerial Photography as a Tool to Document Coastal Change Along Eroding Shorelines in Northern Alaska

    NASA Astrophysics Data System (ADS)

    Gibbs, A.; Richmond, B. M.; Nolan, M.

    2014-12-01

    Chronic and widespread coastal erosion along the northern coast of Alaska is threatening traditional lifestyles, sensitive ecosystems, energy and defense related infrastructure, and large tracts of Native Alaskan, State, and Federally managed land. Recent USGS historical shoreline position studies have documented shoreline change rates along most of northern Alaska for the period from 1947 to circa 2000. Rates vary from an erosional high of -18.6 m/yr along vulnerable bluffed coasts, to accretion up to +10.9 m/yr along prograding sand-rich coasts (average rate for entire study area is -1.4 m/yr). The historical analysis gives valuable information regarding long-term rates of change but does not provide details on the timing and processes driving the change. Oblique and vertical aerial photography contains valuable coastal information on such things as bluff failure mechanisms, presence or absence of shorefast ice, beach characteristics including erosional scarps and ice-push ridges, wrack lines produced during storm surge events, and habitat identification. Recent advances in digital photogrammetry applied to oblique aerial photography can be used to construct high quality DEMs at a relatively low cost. Repeat aerial surveys and resultant DEM construction serve as a potential monitoring tool that can be used to quantify volumetric change, and, if conducted frequently enough, provide insights into the mechanisms responsible for coastal change in the Arctic. We provide examples from a few selected sites in northern Alaska where oblique aerial photography has been used to better understand coastal change in remote and threatened areas.

  8. Archive of post-Hurricane Isabel coastal oblique aerial photographs collected during U.S. Geological Survey Field Activity 03CCH01 from Ocean City, Maryland, to Fort Caswell, North Carolina and Inland from Waynesboro to Redwood, Virginia, September 21 - 23, 2003

    USGS Publications Warehouse

    Subino, Janice A.; Morgan, Karen L.M.; Krohn, M. Dennis; Dadisman, Shawn V.

    2013-01-01

    On September 21 - 23, 2003, the United States Geological Survey (USGS) conducted an oblique aerial photographic survey along the Atlantic coast from Ocean City, Md., to Fort Caswell, N.C., and inland oblique aerial photographic survey from Waynesboro to Redwood, Va., aboard a Navajo Piper twin-engine airplane. The coastal survey was conducted at an altitude of 500 feet (ft) and approximately 1,000 ft offshore. For the inland photos, the aircraft tried to stay approximately 500 ft above the terrain. These coastal photos were used to document coastal changes like beach erosion and overwash caused by Hurricane Isabel, while the inland photos looked for potential landslides caused by heavy rains. The photos may also be used as baseline data for future coastal change analysis. The USGS and the National Aeronautics and Space Administration (NASA) surveyed the impact zone of Hurricane Isabel to better understand the changes in vulnerability of the Nation’s coasts to extreme storms (Morgan, 2009). This report serves as an archive of photographs collected during the September 21 - 23, 2003, post-Hurricane Isabel coastal and inland oblique aerial survey along with associated survey maps, KML files, navigation files, digital Field Activity Collection System (FACS) logs, and Federal Geographic Data Committee (FGDC) metadata. Refer to the Acronyms page for expansions of all acronyms and abbreviations used in this report. The USGS St. Petersburg Coastal and Marine Science Center (SPCMSC) assigns a unique identifier to each cruise or field activity. For example, 03CCH01 tells us the data were collected in 2003 for the Coastal Change Hazards (CCH) study and the data were collected during the first field activity for that project in that calendar year. Refer to http://walrus.wr.usgs.gov/infobank/programs/html/definition/activity.html for a detailed description of the method used to assign the ID number. The photographs provided here are Joint Photographic Experts Group (JPEG

  9. International-Aerial Measuring System (I-AMS) Training Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasiolek, Piotre T.; Malchor, Russell L.; Maurer, Richard J.

    2015-10-01

    Since the Fukushima reactor accident in 2011, there has been an increased interest worldwide in developing national capabilities to rapidly map and assess ground contamination resulting from nuclear reactor accidents. The capability to rapidly measure the size of the contaminated area, determine the activity level, and identify the radionuclides can aid emergency managers and decision makers in providing timely protective action recommendations to the public and first responders. The development of an aerial detection capability requires interagency coordination to assemble the radiation experts, detection system operators, and aviation aircrews to conduct the aerial measurements, analyze and interpret the data, andmore » provide technical assessments. The Office of International Emergency Management and Cooperation (IEMC) at the U.S. Department of Energy, National Nuclear Security Administration (DOE/NNSA) sponsors an International - Aerial Measuring System (I-AMS) training program for partner nations to develop and enhance their response to radiological emergencies. An initial series of courses can be conducted in the host country to assist in developing an aerial detection capability. As the capability develops and expands, additional experience can be gained through advanced courses with the opportunity to conduct aerial missions over a broad range of radiation environments.« less

  10. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligence Revolutionizing Wildlife Monitoring and Conservation

    PubMed Central

    Gonzalez, Luis F.; Montes, Glen A.; Puig, Eduard; Johnson, Sandra; Mengersen, Kerrie; Gaston, Kevin J.

    2016-01-01

    Surveying threatened and invasive species to obtain accurate population estimates is an important but challenging task that requires a considerable investment in time and resources. Estimates using existing ground-based monitoring techniques, such as camera traps and surveys performed on foot, are known to be resource intensive, potentially inaccurate and imprecise, and difficult to validate. Recent developments in unmanned aerial vehicles (UAV), artificial intelligence and miniaturized thermal imaging systems represent a new opportunity for wildlife experts to inexpensively survey relatively large areas. The system presented in this paper includes thermal image acquisition as well as a video processing pipeline to perform object detection, classification and tracking of wildlife in forest or open areas. The system is tested on thermal video data from ground based and test flight footage, and is found to be able to detect all the target wildlife located in the surveyed area. The system is flexible in that the user can readily define the types of objects to classify and the object characteristics that should be considered during classification. PMID:26784196

  11. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligence Revolutionizing Wildlife Monitoring and Conservation.

    PubMed

    Gonzalez, Luis F; Montes, Glen A; Puig, Eduard; Johnson, Sandra; Mengersen, Kerrie; Gaston, Kevin J

    2016-01-14

    Surveying threatened and invasive species to obtain accurate population estimates is an important but challenging task that requires a considerable investment in time and resources. Estimates using existing ground-based monitoring techniques, such as camera traps and surveys performed on foot, are known to be resource intensive, potentially inaccurate and imprecise, and difficult to validate. Recent developments in unmanned aerial vehicles (UAV), artificial intelligence and miniaturized thermal imaging systems represent a new opportunity for wildlife experts to inexpensively survey relatively large areas. The system presented in this paper includes thermal image acquisition as well as a video processing pipeline to perform object detection, classification and tracking of wildlife in forest or open areas. The system is tested on thermal video data from ground based and test flight footage, and is found to be able to detect all the target wildlife located in the surveyed area. The system is flexible in that the user can readily define the types of objects to classify and the object characteristics that should be considered during classification.

  12. Career Profile- Jim Ross, Aerial Photographer

    NASA Image and Video Library

    2016-12-21

    Check out what it takes to “capture the moment” at Mach speeds. The stunning aerial imagery of NASA Armstrong Flight Research Center comes from well-skilled photographers like Jim Ross, Photo Lead. This career profile video highlights Jim’s job responsibilities in documenting aircraft hardware installations, aerial research, and mission work that happens both on center and around the world. During Jim’s 27-year career, he has logged over 800 flight hours in twelve different types of aircraft.

  13. Arachnid aloft: directed aerial descent in neotropical canopy spiders.

    PubMed

    Yanoviak, Stephen P; Munk, Yonatan; Dudley, Robert

    2015-09-06

    The behaviour of directed aerial descent has been described for numerous taxa of wingless hexapods as they fall from the tropical rainforest canopy, but is not known in other terrestrial arthropods. Here, we describe similar controlled aerial behaviours for large arboreal spiders in the genus Selenops (Selenopidae). We dropped 59 such spiders from either canopy platforms or tree crowns in Panama and Peru; the majority (93%) directed their aerial trajectories towards and then landed upon nearby tree trunks. Following initial dorsoventral righting when necessary, falling spiders oriented themselves and then translated head-first towards targets; directional changes were correlated with bilaterally asymmetric motions of the anterolaterally extended forelegs. Aerial performance (i.e. the glide index) decreased with increasing body mass and wing loading, but not with projected surface area of the spider. Along with the occurrence of directed aerial descent in ants, jumping bristletails, and other wingless hexapods, this discovery of targeted gliding in selenopid spiders further indicates strong selective pressures against uncontrolled falls into the understory for arboreal taxa. © 2015 The Author(s).

  14. Coastal Survey Using Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Walker, G.

    2012-12-01

    Generating high-resolution 3-dimensional costal imagery from imagery collected on small-unmanned aircraft is opening many opportunities to study marine wildlife and its use of costal habitats as well as climate change effects on northern coasts where storm surges are radically altering the coastline. Additionally, the technology is being evaluated for oil spill response planning and preparation. The University of Alaska Fairbanks works extensively with small-unmanned aircraft and recently began evaluating the aircraft utility for generating survey grade mapping of topographic features. When generating 3-D maps of coastal regions however there are added challenges that the University have identified and are trying to address. Recent projects with Alaska fisheries and BP Exploration Alaska have demonstrated that small-unmanned aircraft can support the generation of map-based products that are nearly impossible to generate with other technologies.

  15. Principal Component Noise Filtering for NAST-I Radiometric Calibration

    NASA Technical Reports Server (NTRS)

    Tian, Jialin; Smith, William L., Sr.

    2011-01-01

    The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed- Interferometer (NAST-I) instrument is a high-resolution scanning interferometer that measures emitted thermal radiation between 3.3 and 18 microns. The NAST-I radiometric calibration is achieved using internal blackbody calibration references at ambient and hot temperatures. In this paper, we introduce a refined calibration technique that utilizes a principal component (PC) noise filter to compensate for instrument distortions and artifacts, therefore, further improve the absolute radiometric calibration accuracy. To test the procedure and estimate the PC filter noise performance, we form dependent and independent test samples using odd and even sets of blackbody spectra. To determine the optimal number of eigenvectors, the PC filter algorithm is applied to both dependent and independent blackbody spectra with a varying number of eigenvectors. The optimal number of PCs is selected so that the total root-mean-square (RMS) error is minimized. To estimate the filter noise performance, we examine four different scenarios: apply PC filtering to both dependent and independent datasets, apply PC filtering to dependent calibration data only, apply PC filtering to independent data only, and no PC filters. The independent blackbody radiances are predicted for each case and comparisons are made. The results show significant reduction in noise in the final calibrated radiances with the implementation of the PC filtering algorithm.

  16. Radiometric 81Kr dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica

    PubMed Central

    Buizert, Christo; Baggenstos, Daniel; Jiang, Wei; Purtschert, Roland; Petrenko, Vasilii V.; Lu, Zheng-Tian; Müller, Peter; Kuhl, Tanner; Lee, James; Severinghaus, Jeffrey P.; Brook, Edward J.

    2014-01-01

    We present successful 81Kr-Kr radiometric dating of ancient polar ice. Krypton was extracted from the air bubbles in four ∼350-kg polar ice samples from Taylor Glacier in the McMurdo Dry Valleys, Antarctica, and dated using Atom Trap Trace Analysis (ATTA). The 81Kr radiometric ages agree with independent age estimates obtained from stratigraphic dating techniques with a mean absolute age offset of 6 ± 2.5 ka. Our experimental methods and sampling strategy are validated by (i) 85Kr and 39Ar analyses that show the samples to be free of modern air contamination and (ii) air content measurements that show the ice did not experience gas loss. We estimate the error in the 81Kr ages due to past geomagnetic variability to be below 3 ka. We show that ice from the previous interglacial period (Marine Isotope Stage 5e, 130–115 ka before present) can be found in abundance near the surface of Taylor Glacier. Our study paves the way for reliable radiometric dating of ancient ice in blue ice areas and margin sites where large samples are available, greatly enhancing their scientific value as archives of old ice and meteorites. At present, ATTA 81Kr analysis requires a 40–80-kg ice sample; as sample requirements continue to decrease, 81Kr dating of ice cores is a future possibility. PMID:24753606

  17. Radiometric 81Kr dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica.

    PubMed

    Buizert, Christo; Baggenstos, Daniel; Jiang, Wei; Purtschert, Roland; Petrenko, Vasilii V; Lu, Zheng-Tian; Müller, Peter; Kuhl, Tanner; Lee, James; Severinghaus, Jeffrey P; Brook, Edward J

    2014-05-13

    We present successful (81)Kr-Kr radiometric dating of ancient polar ice. Krypton was extracted from the air bubbles in four ∼350-kg polar ice samples from Taylor Glacier in the McMurdo Dry Valleys, Antarctica, and dated using Atom Trap Trace Analysis (ATTA). The (81)Kr radiometric ages agree with independent age estimates obtained from stratigraphic dating techniques with a mean absolute age offset of 6 ± 2.5 ka. Our experimental methods and sampling strategy are validated by (i) (85)Kr and (39)Ar analyses that show the samples to be free of modern air contamination and (ii) air content measurements that show the ice did not experience gas loss. We estimate the error in the (81)Kr ages due to past geomagnetic variability to be below 3 ka. We show that ice from the previous interglacial period (Marine Isotope Stage 5e, 130-115 ka before present) can be found in abundance near the surface of Taylor Glacier. Our study paves the way for reliable radiometric dating of ancient ice in blue ice areas and margin sites where large samples are available, greatly enhancing their scientific value as archives of old ice and meteorites. At present, ATTA (81)Kr analysis requires a 40-80-kg ice sample; as sample requirements continue to decrease, (81)Kr dating of ice cores is a future possibility.

  18. A continuous hyperspatial monitoring system of evapotranspiration and gross primary productivity from Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Bandini, Filippo; Jakobsen, Jakob; Zarco-Tejada, Pablo J.; Köppl, Christian Josef; Haugård Olesen, Daniel; Ibrom, Andreas; Bauer-Gottwein, Peter; Garcia, Monica

    2017-04-01

    Unmanned Aerial Systems (UAS) can collect optical and thermal hyperspatial (<1m) imagery with low cost and flexible revisit times regardless of cloudy conditions. The reflectance and radiometric temperature signatures of the land surface, closely linked with the vegetation structure and functioning, are already part of models to predict Evapotranspiration (ET) and Gross Primary Productivity (GPP) from satellites. However, there remain challenges for an operational monitoring using UAS compared to satellites: the payload capacity of most commercial UAS is less than 2 kg, but miniaturized sensors have low signal to noise ratios and small field of view requires mosaicking hundreds of images and accurate orthorectification. In addition, wind gusts and lower platform stability require appropriate geometric and radiometric corrections. Finally, modeling fluxes on days without images is still an issue for both satellite and UAS applications. This study focuses on designing an operational UAS-based monitoring system including payload design, sensor calibration, based on routine collection of optical and thermal images in a Danish willow field to perform a joint monitoring of ET and GPP dynamics over continuous time at daily time steps. The payload (<2 kg) consists of a multispectral camera (Tetra Mini-MCA6), a thermal infrared camera (FLIR Tau 2), a digital camera (Sony RX-100) used to retrieve accurate digital elevation models (DEMs) for multispectral and thermal image orthorectification, and a standard GNSS single frequency receiver (UBlox) or a real time kinematic double frequency system (Novatel Inc. flexpack6+OEM628). Geometric calibration of the digital and multispectral cameras was conducted to recover intrinsic camera parameters. After geometric calibration, accurate DEMs with vertical errors about 10cm could be retrieved. Radiometric calibration for the multispectral camera was conducted with an integrating sphere (Labsphere CSTM-USS-2000C) and the laboratory

  19. Processed 1938 aerial photography for selected areas of the lower Colorado River, southwestern United States

    USGS Publications Warehouse

    Norman, Laura M.; Gishey, Michael; Gass, Leila; Yanites, Brian; Pfeifer, Edwin; Simms, Ron; Ahlbrandt, Ray

    2006-01-01

    The U.S. Geological Survey (USGS) initiated a study of the Lower Colorado River to derive temporal-change characteristics from the predam period to the present. In this report, we present summary information on accomplishments under a USGS task for the Department of the Interior's Landscapes in the West project. We discuss our preliminary results in compiling a digital database of geospatial information on the Lower Colorado River and acquisition of data products, and present a geospatial digital dataset of 1938 aerial photography of the river valley. The U.S. Bureau of Reclamation (BOR)'s, Resources Management Office in Boulder City, Nev., provided historical aerial photographs of the river valley from the Hoover Dam to the United States-Mexican border, with some exclusions. USGS authors scanned and mosaicked the photographs, registered the photo mosaics, and created metadata describing each mosaic series, all 15 of which are presented here.

  20. Applications of thermal infrared imagery for energy conservation and environmental surveys

    NASA Technical Reports Server (NTRS)

    Carney, J. R.; Vogel, T. C.; Howard, G. E., Jr.; Love, E. R.

    1977-01-01

    The survey procedures, developed during the winter and summer of 1976, employ color and color infrared aerial photography, thermal infrared imagery, and a handheld infrared imaging device. The resulting imagery was used to detect building heat losses, deteriorated insulation in built-up type building roofs, and defective underground steam lines. The handheld thermal infrared device, used in conjunction with the aerial thermal infrared imagery, provided a method for detecting and locating those roof areas that were underlain with wet insulation. In addition, the handheld infrared device was employed to conduct a survey of a U.S. Army installation's electrical distribution system under full operating loads. This survey proved to be cost effective procedure for detecting faulty electrical insulators and connections that if allowed to persist could have resulted in both safety hazards and loss in production.

  1. A novel solution for car traffic control based on radiometric microwave devices

    NASA Astrophysics Data System (ADS)

    Soldovieri, Francesco; Denisov, Alexander; Speziale, Victor

    2014-05-01

    The significant problem of traffic in big cities, connected with huge and building up quantity of automobile cars, demands for novel strategies, based on nonconventional solutions, in order to improve system traffic control, especially at crossroads. As well known, the usual solution is based on the time relay, which requires the installation of a fixed traffic interval (signal light switching) at a crossroad; this solution is low cost, but does not account for the actual traffic conditions. Therefore, in the recent years, attention is towards to new designs, where the monitoring of the and control of traffic is carried out by using various methods including, optical, the infrared, magnetic, radar tracking, acoustical ones. In this work, we discuss the deployment of high sensitivity radiometric systems and radiometers(sensor) in the microwave range [1, 2]. In fact, the radiometer as "sensor" can provide an always updated information about the car traffic in any weather condition and in absence or low visibility conditions. In fact, the radiometric sensor detects the cars thanks to the different behavior of the car roofs which reflect the cold sky whereas the road asphalt is visible as warm object (at around outside temperature). [1] A. G. Denisov, V. P. Gorishnyak, S. E. Kuzmin et al., "Some experiments concerning resolution of 32 sensors passive 8mm wave imaging system," in Proceedings of the International Symposium on Space Terahertz Technology (ISSTT '09), Charlottesville, Va, USA, April 2009. [2] F. Soldovieri, A. Natale, V. Gorishnyak, A. Pavluchenko, A. Denisov, and L. Chen, "Radiometric Imaging for Monitoring and Surveillance Issues," International Journal of Antennas and Propagation, vol. 2013, Article ID 272561, 8 pages, 2013. doi:10.1155/2013/272561.

  2. Noise from aerial bursts of fireworks

    NASA Technical Reports Server (NTRS)

    Maglieri, D. J.; Henderson, H. R.

    1973-01-01

    A study was made recording the pressure time histories of the aerial bursts of mortars of various sizes launched during an actual fireworks display. The peak overpressure and duration of blast noise as well as the energy spectral density are compared with the characteristics of a blasting cap and of an F-104 aircraft at a Mach number of 1.4 and an altitude of 42,000 ft. Noise levels of the fireworks aerial bursts peaked 15 decibels below levels deemed damaging to hearing.

  3. Radiometric consistency assessment of hyperspectral infrared sounders

    NASA Astrophysics Data System (ADS)

    Wang, L.; Han, Y.; Jin, X.; Chen, Y.; Tremblay, D. A.

    2015-07-01

    The radiometric and spectral consistency among the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) is fundamental for the creation of long-term infrared (IR) hyperspectral radiance benchmark datasets for both inter-calibration and climate-related studies. In this study, the CrIS radiance measurements on Suomi National Polar-orbiting Partnership (SNPP) satellite are directly compared with IASI on MetOp-A and -B at the finest spectral scale and with AIRS on Aqua in 25 selected spectral regions through one year of simultaneous nadir overpass (SNO) observations to evaluate radiometric consistency of these four hyperspectral IR sounders. The spectra from different sounders are paired together through strict spatial and temporal collocation. The uniform scenes are selected by examining the collocated Visible Infrared Imaging Radiometer Suite (VIIRS) pixels. Their brightness temperature (BT) differences are then calculated by converting the spectra onto common spectral grids. The results indicate that CrIS agrees well with IASI on MetOp-A and IASI on MetOp-B at the longwave IR (LWIR) and middle-wave IR (MWIR) bands with 0.1-0.2 K differences. There are no apparent scene-dependent patterns for BT differences between CrIS and IASI for individual spectral channels. CrIS and AIRS are compared at the 25 spectral regions for both Polar and Tropical SNOs. The combined global SNO datasets indicate that, the CrIS-AIRS BT differences are less than or around 0.1 K among 21 of 25 comparison spectral regions and they range from 0.15 to 0.21 K in the remaining 4 spectral regions. CrIS-AIRS BT differences in some comparison spectral regions show weak scene-dependent features.

  4. Radiometric consistency assessment of hyperspectral infrared sounders

    NASA Astrophysics Data System (ADS)

    Wang, L.; Han, Y.; Jin, X.; Chen, Y.; Tremblay, D. A.

    2015-11-01

    The radiometric and spectral consistency among the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) is fundamental for the creation of long-term infrared (IR) hyperspectral radiance benchmark data sets for both intercalibration and climate-related studies. In this study, the CrIS radiance measurements on Suomi National Polar-orbiting Partnership (SNPP) satellite are directly compared with IASI on MetOp-A and MetOp-B at the finest spectral scale and with AIRS on Aqua in 25 selected spectral regions through simultaneous nadir overpass (SNO) observations in 2013, to evaluate radiometric consistency of these four hyperspectral IR sounders. The spectra from different sounders are paired together through strict spatial and temporal collocation. The uniform scenes are selected by examining the collocated Visible Infrared Imaging Radiometer Suite (VIIRS) pixels. Their brightness temperature (BT) differences are then calculated by converting the spectra onto common spectral grids. The results indicate that CrIS agrees well with IASI on MetOp-A and IASI on MetOp-B at the long-wave IR (LWIR) and middle-wave IR (MWIR) bands with 0.1-0.2 K differences. There are no apparent scene-dependent patterns for BT differences between CrIS and IASI for individual spectral channels. CrIS and AIRS are compared at the 25 spectral regions for both polar and tropical SNOs. The combined global SNO data sets indicate that the CrIS-AIRS BT differences are less than or around 0.1 K among 21 of 25 spectral regions and they range from 0.15 to 0.21 K in the remaining four spectral regions. CrIS-AIRS BT differences in some comparison spectral regions show weak scene-dependent features.

  5. Melon yield prediction using small unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Zhao, Tiebiao; Wang, Zhongdao; Yang, Qi; Chen, YangQuan

    2017-05-01

    Thanks to the development of camera technologies, small unmanned aerial systems (sUAS), it is possible to collect aerial images of field with more flexible visit, higher resolution and much lower cost. Furthermore, the performance of objection detection based on deeply trained convolutional neural networks (CNNs) has been improved significantly. In this study, we applied these technologies in the melon production, where high-resolution aerial images were used to count melons in the field and predict the yield. CNN-based object detection framework-Faster R-CNN is applied in the melon classification. Our results showed that sUAS plus CNNs were able to detect melons accurately in the late harvest season.

  6. SITE I - AERIAL - MSC

    NASA Image and Video Library

    1966-07-01

    S66-42379 (1966) --- Aerial view of construction progress at the Manned Spacecraft Center, Houston, Texas. NOTE: The Manned Spacecraft Center was named Lyndon B. Johnson Space Center in memory of the late President following his death.

  7. Flight Technology Improvement. [spaceborne optical radiometric instruments, attitude control, and electromechanical and power subsystems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Shortcomings in spaceborne instrumentation technology are analyzed and recommendations are given for corrections and technology development. The technologies discussed are optical radiometric instruments and calibration, attitude control and determination, and electromechanical and power subsystems.

  8. Introduction and Testing of a Monitoring and Colony-Mapping Method for Waterbird Populations That Uses High-Speed and Ultra-Detailed Aerial Remote Sensing

    PubMed Central

    Bakó, Gábor; Tolnai, Márton; Takács, Ádám

    2014-01-01

    Remote sensing is a method that collects data of the Earth's surface without causing disturbances. Thus, it is worthwhile to use remote sensing methods to survey endangered ecosystems, as the studied species will behave naturally while undisturbed. The latest passive optical remote sensing solutions permit surveys from long distances. State-of-the-art highly sensitive sensor systems allow high spatial resolution image acquisition at high altitudes and at high flying speeds, even in low-visibility conditions. As the aerial imagery captured by an airplane covers the entire study area, all the animals present in that area can be recorded. A population assessment is conducted by visual interpretations of an ortho image map. The basic objective of this study is to determine whether small- and medium-sized bird species are recognizable in the ortho images by using high spatial resolution aerial cameras. The spatial resolution needed for identifying the bird species in the ortho image map was studied. The survey was adjusted to determine the number of birds in a colony at a given time. PMID:25046012

  9. Radiometric assessment method for diffraction effects in hyperspectral imagers applied to the earth explorer #8 mission candidate flex

    NASA Astrophysics Data System (ADS)

    Berlich, R.; Harnisch, B.

    2017-11-01

    An accurate stray light analysis represents a crucial part in the early design phase of hyperspectral imaging systems, since scattering effects can severely limit the radiometric accuracy performance. In addition to conventional contributors including ghost images and surface scattering, i.e. caused by a residual surface micro-roughness and particle contamination, diffraction effects can result in significant radiometric errors in the spatial and spectral domain of pushbroom scanners. In this paper, we present a mathematical approach that efficiently evaluates these diffraction effects based on a Fourier analysis. It is shown that considering the conventional diffraction at the systems entrance pupil only, significantly overestimates the stray light contribution. In fact, a correct assessment necessitates taking into account the joint influence of the entrance pupil, the spectrometer slit as well as the dispersion element. We quantitatively investigate the corresponding impact on the Instrument Spectral Response Function (ISRF) of the Earth Explorer #8 Mission Candidate FLEX and analyse the expected radiometric error distribution for a typical earth observation scenario requirement.

  10. The effects of vegetation cover on the radar and radiometric sensitivity to soil moisture

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Dobson, M. C.; Brunfeldt, D. R.; Razani, M.

    1982-01-01

    The measured effects of vegetation canopies on radar and radiometric sensitivity to soil moisture are compared to emission and scattering models. The models are found to predict accurately the measured emission and backscattering for various crop canopies at frequencies between 1.4 and 5.0 GHz, especially at theta equal to or less than 30 deg. Vegetation loss factors, L(theta), increase with frequency and are found to be dependent upon canopy type and water content. In addition, the radiometric power absorption coefficient of a mature corn canopy is 1.75 times that calculated for the radar. Comparison of an L-band radiometer with a C-band radar shows the two systems to be complementary in terms of accurate soil moisture sensing over the extreme range of naturally occurring soil moisture conditions.

  11. GIFTS SM EDU Radiometric and Spectral Calibrations

    NASA Technical Reports Server (NTRS)

    Tian, J.; Reisse, R. a.; Johnson, D. G.; Gazarik, J. J.

    2007-01-01

    The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) Sensor Module (SM) Engineering Demonstration Unit (EDU) is a high resolution spectral imager designed to measure infrared (IR) radiance using a Fourier transform spectrometer (FTS). The GIFTS instrument gathers measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. This paper describes the processing algorithms involved in the calibration. The calibration procedures can be subdivided into three categories: the pre-calibration stage, the calibration stage, and finally, the post-calibration stage. Detailed derivations for each stage are presented in this paper.

  12. Radiometric calibration of Landsat Thematic Mapper multispectral images

    USGS Publications Warehouse

    Chavez, P.S.

    1989-01-01

    A main problem encountered in radiometric calibration of satellite image data is correcting for atmospheric effects. Without this correction, an image digital number (DN) cannot be converted to a surface reflectance value. In this paper the accuracy of a calibration procedure, which includes a correction for atmospheric scattering, is tested. Two simple methods, a stand-alone and an in situ sky radiance measurement technique, were used to derive the HAZE DN values for each of the six reflectance Thematic Mapper (TM) bands. The DNs of two Landsat TM images of Phoenix, Arizona were converted to surface reflectances. -from Author

  13. Spectrally and Radiometrically Stable, Wideband, Onboard Calibration Source

    NASA Technical Reports Server (NTRS)

    Coles, James B.; Richardson, Brandon S.; Eastwood, Michael L.; Sarture, Charles M.; Quetin, Gregory R.; Porter, Michael D.; Green, Robert O.; Nolte, Scott H.; Hernandez, Marco A.; Knoll, Linley A.

    2013-01-01

    The Onboard Calibration (OBC) source incorporates a medical/scientific-grade halogen source with a precisely designed fiber coupling system, and a fiber-based intensity-monitoring feedback loop that results in radiometric and spectral stabilities to within less than 0.3 percent over a 15-hour period. The airborne imaging spectrometer systems developed at the Jet Propulsion Laboratory incorporate OBC sources to provide auxiliary in-use system calibration data. The use of the OBC source will provide a significant increase in the quantitative accuracy, reliability, and resulting utility of the spectral data collected from current and future imaging spectrometer instruments.

  14. Classification of Dual-Wavelength Airborne Laser Scanning Point Cloud Based on the Radiometric Properties of the Objects

    NASA Astrophysics Data System (ADS)

    Pilarska, M.

    2018-05-01

    Airborne laser scanning (ALS) is a well-known and willingly used technology. One of the advantages of this technology is primarily its fast and accurate data registration. In recent years ALS is continuously developed. One of the latest achievements is multispectral ALS, which consists in obtaining simultaneously the data in more than one laser wavelength. In this article the results of the dual-wavelength ALS data classification are presented. The data were acquired with RIEGL VQ-1560i sensor, which is equipped with two laser scanners operating in different wavelengths: 532 nm and 1064 nm. Two classification approaches are presented in the article: classification, which is based on geometric relationships between points and classification, which mostly relies on the radiometric properties of registered objects. The overall accuracy of the geometric classification was 86 %, whereas for the radiometric classification it was 81 %. As a result, it can be assumed that the radiometric features which are provided by the multispectral ALS have potential to be successfully used in ALS point cloud classification.

  15. SITE I - AERIAL - MSC

    NASA Image and Video Library

    1965-08-01

    S65-51530 (September 1965) --- Aerial view of Manned Spacecraft Center, Site 1, Houston, Texas, looking north. NOTE: The Manned Spacecraft Center was named Lyndon B. Johnson Space Center in memory of the late President following his death.

  16. The First SIMBIOS Radiometric Intercomparison (SIMRIC-1), April-September 2001

    NASA Technical Reports Server (NTRS)

    Meister, Gerhard; Abel, Peter; McClain, Charles; Barnes, Robert; Fargion, Giulietta; Cooper, John; Davis, Curtiss; Korwan, Daniel; Godin, Mike; Maffione, Robert

    2002-01-01

    This report describes the first SIMBIOS (Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies) Radiometric Intercomparison (SIMRIC-1). The purpose of the SIMRIC-1 is to ensure a common radiometric scale of the calibration facilities that are engaged in calibrating in situ radiometers used for ocean color related research and to document the calibration procedures and protocols. SIMBIOS staff visited the seven participating laboratories for at least two days each. The SeaWiFS Transfer Radiometer SXR-II measured the calibration radiances produced in the laboratories. The measured radiances were compared with the radiances expected by the laboratories. Typically, the measured radiances were higher than the expected radiances by 0 to 2%. This level of agreement is satisfactory. Several issues were identified, where the calibration protocols need to be improved, especially the reflectance calibration of the reference plaques and the distance correction when using the irradiance standards at distances greater than the 50 cm. The responsivity of the SXR-II changed between 0.3% (channel 6) and 1.6% (channel 2) from December 2000 to December 2001. Monitoring the SXR-II with a portable light source showed a linear drift of the calibration, except for channel 1, where a 2% drop occurred in summer.

  17. Spectral and radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Vane, Gregg; Chrien, Thomas G.; Miller, Edward A.; Reimer, John H.

    1987-01-01

    The laboratory spectral and radiometric calibration of the AVIRIS science data collected since 1987 is described. The instrumentation and procedures used in the calibration are discussed and the accuracy achieved in the laboratory as determined by measurement and calculation is compared with the requirements. Instrument performance factors affecting radiometry are described. The paper concludes with a discussion of future plans.

  18. Advanced Image Processing of Aerial Imagery

    NASA Technical Reports Server (NTRS)

    Woodell, Glenn; Jobson, Daniel J.; Rahman, Zia-ur; Hines, Glenn

    2006-01-01

    Aerial imagery of the Earth is an invaluable tool for the assessment of ground features, especially during times of disaster. Researchers at the NASA Langley Research Center have developed techniques which have proven to be useful for such imagery. Aerial imagery from various sources, including Langley's Boeing 757 Aries aircraft, has been studied extensively. This paper discusses these studies and demonstrates that better-than-observer imagery can be obtained even when visibility is severely compromised. A real-time, multi-spectral experimental system will be described and numerous examples will be shown.

  19. AERIAL OF SHUTTLE LANDING FACILITY [SLF] POURING OF CONCRETE

    NASA Technical Reports Server (NTRS)

    1975-01-01

    AERIAL OF SHUTTLE LANDING FACILITY [SLF] POURING OF CONCRETE KSC-375C-10036.31 108-KSC-375C-10036.31, P-21426, ARCHIVE-04502 Aerial oblique of Shuttle runway facilities. Pouring concrete on runway. Direction north - altitude 100'.

  20. Ecological Energetics of an Abundant Aerial Insectivore, the Purple Martin

    PubMed Central

    Kelly, Jeffrey F.; Bridge, Eli S.; Frick, Winifred F.; Chilson, Phillip B.

    2013-01-01

    The atmospheric boundary layer and lower free atmosphere, or aerosphere, is increasingly important for human transportation, communication, environmental monitoring, and energy production. The impacts of anthropogenic encroachment into aerial habitats are not well understood. Insectivorous birds and bats are inherently valuable components of biodiversity and play an integral role in aerial trophic dynamics. Many of these insectivores are experiencing range-wide population declines. As a first step toward gaging the potential impacts of these declines on the aerosphere’s trophic system, estimates of the biomass and energy consumed by aerial insectivores are needed. We developed a suite of energetics models for one of the largest and most common avian aerial insectivores in North America, the Purple Martin ( Progne subis ). The base model estimated that Purple Martins consumed 412 (± 104) billion insects*y-1 with a biomass of 115,860 (± 29,192) metric tonnes*y-1. During the breeding season Purple Martins consume 10.3 (+ 3.0) kg of prey biomass per km3 of aerial habitat, equal to about 36,000 individual insects*km-3. Based on these calculations, the cumulative seasonal consumption of insects*km-3 is greater in North America during the breeding season than during other phases of the annual cycle, however the maximum daily insect consumption*km-3 occurs during fall migration. This analysis provides the first range-wide quantitative estimate of the magnitude of the trophic impact of this large and common aerial insectivore. Future studies could use a similar modeling approach to estimate impacts of the entire guild of aerial insectivores at a variety of temporal and spatial scales. These analyses would inform our understanding of the impact of population declines among aerial insectivores on the aerosphere’s trophic dynamics. PMID:24086755

  1. A definitive calibration record for the Landsat-5 thematic mapper anchored to the Landsat-7 radiometric scale

    USGS Publications Warehouse

    Teillet, P.M.; Helder, D.L.; Ruggles, T.A.; Landry, R.; Ahern, F.J.; Higgs, N.J.; Barsi, J.; Chander, G.; Markham, B.L.; Barker, J.L.; Thome, K.J.; Schott, J.R.; Palluconi, Frank Don

    2004-01-01

    A coordinated effort on the part of several agencies has led to the specification of a definitive radiometric calibration record for the Landsat-5 thematic mapper (TM) for its lifetime since launch in 1984. The time-dependent calibration record for Landsat-5 TM has been placed on the same radiometric scale as the Landsat-7 enhanced thematic mapper plus (ETM+). It has been implemented in the National Landsat Archive Production Systems (NLAPS) in use in North America. This paper documents the results of this collaborative effort and the specifications for the related calibration processing algorithms. The specifications include (i) anchoring of the Landsat-5 TM calibration record to the Landsat-7 ETM+ absolute radiometric calibration, (ii) new time-dependent calibration processing equations and procedures applicable to raw Landsat-5 TM data, and (iii) algorithms for recalibration computations applicable to some of the existing processed datasets in the North American context. The cross-calibration between Landsat-5 TM and Landsat-7 ETM+ was achieved using image pairs from the tandem-orbit configuration period that was programmed early in the Laridsat-7 mission. The time-dependent calibration for Landsat-5 TM is based on a detailed trend analysis of data from the on-board internal calibrator. The new lifetime radiometric calibration record for Landsat-5 will overcome problems with earlier product generation owing to inadequate maintenance and documentation of the calibration over time and will facilitate the quantitative examination of a continuous, near-global dataset at 30-m scale that spans almost two decades.

  2. Overview of meteorological measurements for aerial spray modeling.

    PubMed

    Rafferty, J E; Biltoft, C A; Bowers, J F

    1996-06-01

    The routine meteorological observations made by the National Weather Service have a spatial resolution on the order of 1,000 km, whereas the resolution needed to conduct or model aerial spray applications is on the order of 1-10 km. Routinely available observations also do not include the detailed information on the turbulence and thermal structure of the boundary layer that is needed to predict the transport, dispersion, and deposition of aerial spray releases. This paper provides an overview of the information needed to develop the meteorological inputs for an aerial spray model such as the FSCBG and discusses the different types of instruments that are available to make the necessary measurements.

  3. Assessment of Unmanned Aerial Vehicles Imagery for Quantitative Monitoring of Wheat Crop in Small Plots

    PubMed Central

    Lelong, Camille C. D.; Burger, Philippe; Jubelin, Guillaume; Roux, Bruno; Labbé, Sylvain; Baret, Frédéric

    2008-01-01

    This paper outlines how light Unmanned Aerial Vehicles (UAV) can be used in remote sensing for precision farming. It focuses on the combination of simple digital photographic cameras with spectral filters, designed to provide multispectral images in the visible and near-infrared domains. In 2005, these instruments were fitted to powered glider and parachute, and flown at six dates staggered over the crop season. We monitored ten varieties of wheat, grown in trial micro-plots in the South-West of France. For each date, we acquired multiple views in four spectral bands corresponding to blue, green, red, and near-infrared. We then performed accurate corrections of image vignetting, geometric distortions, and radiometric bidirectional effects. Afterwards, we derived for each experimental micro-plot several vegetation indexes relevant for vegetation analyses. Finally, we sought relationships between these indexes and field-measured biophysical parameters, both generic and date-specific. Therefore, we established a robust and stable generic relationship between, in one hand, leaf area index and NDVI and, in the other hand, nitrogen uptake and GNDVI. Due to a high amount of noise in the data, it was not possible to obtain a more accurate model for each date independently. A validation protocol showed that we could expect a precision level of 15% in the biophysical parameters estimation while using these relationships. PMID:27879893

  4. Aerial spray technology: possibilities and limitations for control of pear thrips

    Treesearch

    Karl Mierzejewski

    1991-01-01

    The feasibility of using aerial application as a means of managing a pear thrips infestation in maple forest stands is examined, based on existing knowledge of forest aerial application acquired from theoretical and empirical studies. Specific strategies by which aerial application should be performed and potential problem areas are discussed. Two new tools, aircraft...

  5. Aerial Radiological Measuring System (ARMS): systems, procedures and sensitivity (1976)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyns, P K

    1976-07-01

    This report describes the Aerial Radiological Measuring System (ARMS) designed and operated by EG and G, Inc., for the Energy Research and Development Administration's (ERDA) Division of Operational Safety with the cooperation of the Nuclear Regulatory Commission. Designed to rapidly survey large areas for low-level man-made radiation, the ARMS has also proven extremely useful in locating lost radioactive sources of relatively low activity. The system consists of sodium iodide scintillation detectors, data formatting and recording equipment, positioning equipment, meteorological instruments, direct readout hardware, and data analysis equipment. The instrumentation, operational procedures, data reduction techniques and system sensitivities are described, togethermore » with their applications and sample results.« less

  6. An algorithm for approximate rectification of digital aerial images

    USDA-ARS?s Scientific Manuscript database

    High-resolution aerial photography is one of the most valuable tools available for managing extensive landscapes. With recent advances in digital camera technology, computer hardware, and software, aerial photography is easier to collect, store, and transfer than ever before. Images can be automa...

  7. Unmanned Aerial Vehicle Systems for Disaster Relief: Tornado Alley

    NASA Technical Reports Server (NTRS)

    DeBusk, Wesley M.

    2009-01-01

    Unmanned aerial vehicle systems are currently in limited use for public service missions worldwide. Development of civil unmanned technology in the United States currently lags behind military unmanned technology development in part because of unresolved regulatory and technological issues. Civil unmanned aerial vehicle systems have potential to augment disaster relief and emergency response efforts. Optimal design of aerial systems for such applications will lead to unmanned vehicles which provide maximum potentiality for relief and emergency response while accounting for public safety concerns and regulatory requirements. A case study is presented that demonstrates application of a civil unmanned system to a disaster relief mission with the intent on saving lives. The concept utilizes unmanned aircraft to obtain advanced warning and damage assessments for tornados and severe thunderstorms. Overview of a tornado watch mission architecture as well as commentary on risk, cost, need for, and design tradeoffs for unmanned aerial systems are provided.

  8. Solar Tower Experiments for Radiometric Calibration and Validation of Infrared Imaging Assets and Analysis Tools for Entry Aero-Heating Measurements

    NASA Technical Reports Server (NTRS)

    Splinter, Scott C.; Daryabeigi, Kamran; Horvath, Thomas J.; Mercer, David C.; Ghanbari, Cheryl M.; Ross, Martin N.; Tietjen, Alan; Schwartz, Richard J.

    2008-01-01

    The NASA Engineering and Safety Center sponsored Hypersonic Thermodynamic Infrared Measurements assessment team has a task to perform radiometric calibration and validation of land-based and airborne infrared imaging assets and tools for remote thermographic imaging. The IR assets and tools will be used for thermographic imaging of the Space Shuttle Orbiter during entry aero-heating to provide flight boundary layer transition thermography data that could be utilized for calibration and validation of empirical and theoretical aero-heating tools. A series of tests at the Sandia National Laboratories National Solar Thermal Test Facility were designed for this task where reflected solar radiation from a field of heliostats was used to heat a 4 foot by 4 foot test panel consisting of LI 900 ceramic tiles located on top of the 200 foot tall Solar Tower. The test panel provided an Orbiter-like entry temperature for the purposes of radiometric calibration and validation. The Solar Tower provided an ideal test bed for this series of radiometric calibration and validation tests because it had the potential to rapidly heat the large test panel to spatially uniform and non-uniform elevated temperatures. Also, the unsheltered-open-air environment of the Solar Tower was conducive to obtaining unobstructed radiometric data by land-based and airborne IR imaging assets. Various thermocouples installed on the test panel and an infrared imager located in close proximity to the test panel were used to obtain surface temperature measurements for evaluation and calibration of the radiometric data from the infrared imaging assets. The overall test environment, test article, test approach, and typical test results are discussed.

  9. An aerial netting study of insects migrating at high altitude over England.

    PubMed

    Chapman, J W; Reynolds, D R; Smith, A D; Smith, E T; Woiwod, I P

    2004-04-01

    Day and night sampling of windborne arthropods at a height of 200 m above ground was undertaken at Cardington, Bedfordshire, UK, during July 1999, 2000 and 2002, using a net supported by a tethered balloon. The results from this study are compared with those from the classic aerial sampling programmes carried out by Hardy, Freeman and colleagues over the UK and North Sea in the 1930s. In the present study, aerial netting was undertaken at night as well as daytime, and so the diel periodicity of migration could be investigated, and comparisons made with the results from Lewis and Taylor's extensive survey of flight periodicity near ground level. In some taxa with day-time emigration, quite large populations could continue in high-altitude flight after dark, perhaps to a previously underrated extent, and this would greatly increase their potential migratory range. Any trend towards increases in night temperatures, associated with global warming, would facilitate movements of this type in the UK. Observations on the windborne migration of a variety of species, particularly those of economic significance or of radar-detectable size, are briefly discussed.

  10. Fusion of monocular cues to detect man-made structures in aerial imagery

    NASA Technical Reports Server (NTRS)

    Shufelt, Jefferey; Mckeown, David M.

    1991-01-01

    The extraction of buildings from aerial imagery is a complex problem for automated computer vision. It requires locating regions in a scene that possess properties distinguishing them as man-made objects as opposed to naturally occurring terrain features. It is reasonable to assume that no single detection method can correctly delineate or verify buildings in every scene. A cooperative-methods paradigm is useful in approaching the building extraction problem. Using this paradigm, each extraction technique provides information which can be added or assimilated into an overall interpretation of the scene. Thus, the main objective is to explore the development of computer vision system that integrates the results of various scene analysis techniques into an accurate and robust interpretation of the underlying three dimensional scene. The problem of building hypothesis fusion in aerial imagery is discussed. Building extraction techniques are briefly surveyed, including four building extraction, verification, and clustering systems. A method for fusing the symbolic data generated by these systems is described, and applied to monocular image and stereo image data sets. Evaluation methods for the fusion results are described, and the fusion results are analyzed using these methods.

  11. Yellow River Icicle Hazard Dynamic Monitoring Using UAV Aerial Remote Sensing Technology

    NASA Astrophysics Data System (ADS)

    Wang, H. B.; Wang, G. H.; Tang, X. M.; Li, C. H.

    2014-02-01

    Monitoring the response of Yellow River icicle hazard change requires accurate and repeatable topographic surveys. A new method based on unmanned aerial vehicle (UAV) aerial remote sensing technology is proposed for real-time data processing in Yellow River icicle hazard dynamic monitoring. The monitoring area is located in the Yellow River ice intensive care area in southern BaoTou of Inner Mongolia autonomous region. Monitoring time is from the 20th February to 30th March in 2013. Using the proposed video data processing method, automatic extraction covering area of 7.8 km2 of video key frame image 1832 frames took 34.786 seconds. The stitching and correcting time was 122.34 seconds and the accuracy was better than 0.5 m. Through the comparison of precise processing of sequence video stitching image, the method determines the change of the Yellow River ice and locates accurate positioning of ice bar, improving the traditional visual method by more than 100 times. The results provide accurate aid decision information for the Yellow River ice prevention headquarters. Finally, the effect of dam break is repeatedly monitored and ice break five meter accuracy is calculated through accurate monitoring and evaluation analysis.

  12. Initial Radiometric Calibration of the AWiFS using Vicarious Calibration Techniques

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Thome, Kurtis; Aaron, David; Leigh, Larry

    2006-01-01

    NASA SSC maintains four ASD FieldSpec FR spectroradiometers: 1) Laboratory transfer radiometers; 2) Ground surface reflectance for V&V field collection activities. Radiometric Calibration consists of a NIST-calibrated integrating sphere which serves as a source with known spectral radiance. Spectral Calibration consists of a laser and pen lamp illumination of integrating sphere. Environmental Testing includes temperature stability tests performed in environmental chamber.

  13. Ground-Based Microwave Radiometric Remote Sensing of the Tropical Atmosphere

    NASA Astrophysics Data System (ADS)

    Han, Yong

    A partially developed 9-channel ground-based microwave radiometer for the Department of Meteorology at Penn State was completed and tested. Complementary units were added, corrections to both hardware and software were made, and system software was corrected and upgraded. Measurements from this radiometer were used to infer tropospheric temperature, water vapor and cloud liquid water. The various weighting functions at each of the 9 channels were calculated and analyzed to estimate the sensitivities of the brightness temperatures to the desired atmospheric variables. The mathematical inversion problem, in a linear form, was viewed in terms of the theory of linear algebra. Several methods for solving the inversion problem were reviewed. Radiometric observations were conducted during the 1990 Tropical Cyclone Motion Experiment. The radiometer was installed on the island of Saipan in a tropical region. During this experiment, the radiometer was calibrated by using tipping curve and radiosonde data as well as measurements of the radiation from a blackbody absorber. A linear statistical method was first applied for the data inversion. The inversion coefficients in the equation were obtained using a large number of radiosonde profiles from Guam and a radiative transfer model. Retrievals were compared with those from local, Saipan, radiosonde measurements. Water vapor profiles, integrated water vapor, and integrated liquid water were retrieved successfully. For temperature profile retrievals, however, it was shown that the radiometric measurements with experimental noises added no more profile information to the inversion than that which was available from a climatological mean. Although successful retrievals of the geopotential heights were made, it was shown that they were determined mainly by the surface pressure measurements. The reasons why the radiometer did not contribute to the retrievals of temperature profiles and geopotential heights were discussed. A method

  14. Aerially released spray penetration of a tall coniferous canopy

    USDA-ARS?s Scientific Manuscript database

    An aerial spray deposition project was designed to evaluate aerial application to an Eastern Hemlock (Tsuga canadensis) canopy to combat Hemlock Woolly Adelgid (Adelges tsugae). This adelgid offers a difficult target residing in the forest canopy at the nodes of branchlets. The study collected 1680 ...

  15. Radiometric Measurement Comparisons Using Transfer Radiometers in Support of the Calibration of NASA's Earth Observing System (EOS) Sensors

    NASA Technical Reports Server (NTRS)

    Butler, James J.; Johnson, B. Carol; Brown, Steven W.; Yoon, Howard W.; Barnes, Robert A.; Markham, Brian L.; Biggar, Stuart F.; Zalewski, Edward F.; Spyak, Paul R.; Cooper, John W.; hide

    1999-01-01

    EOS satellite instruments operating in the visible through the shortwave infrared wavelength regions (from 0.4 micrometers to 2.5 micrometers) are calibrated prior to flight for radiance response using integrating spheres at a number of instrument builder facilities. The traceability of the radiance produced by these spheres with respect to international standards is the responsibility of the instrument builder, and different calibration techniques are employed by those builders. The National Aeronautics and Space Administration's (NASA's) Earth Observing System (EOS) Project Science Office, realizing the importance of preflight calibration and cross-calibration, has sponsored a number of radiometric measurement comparisons, the main purpose of which is to validate the radiometric scale assigned to the integrating spheres by the instrument builders. This paper describes the radiometric measurement comparisons, the use of stable transfer radiometers to perform the measurements, and the measurement approaches and protocols used to validate integrating sphere radiances. Stable transfer radiometers from the National Institute of Standards and Technology, the University of Arizona Optical Sciences Center Remote Sensing Group, NASA's Goddard Space Flight Center, and the National Research Laboratory of Metrology in Japan, have participated in these comparisons. The approaches used in the comparisons include the measurement of multiple integrating sphere lamp levels, repeat measurements of select lamp levels, the use of the stable radiometers as external sphere monitors, and the rapid reporting of measurement results. Results from several comparisons are presented. The absolute radiometric calibration standard uncertainties required by the EOS satellite instruments are typically in the +/- 3% to +/- 5% range. Preliminary results reported during eleven radiometric measurement comparisons held between February 1995 and May 1998 have shown the radiance of integrating spheres

  16. Initial On-Orbit Radiometric Calibration of the Suomi NPP VIIRS Reflective Solar Bands

    NASA Technical Reports Server (NTRS)

    Lei, Ning; Wang, Zhipeng; Fulbright, Jon; Lee, Shihyan; McIntire, Jeff; Chiang, Vincent; Xiong, Jack

    2012-01-01

    The on-orbit radiometric response calibration of the VISible/Near InfraRed (VISNIR) and the Short-Wave InfraRed (SWIR) bands of the Visible/Infrared Imager/Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (NPP) satellite is carried out through a Solar Diffuser (SD). The transmittance of the SD screen and the SD's Bidirectional Reflectance Distribution Function (BRDF) are measured before launch and tabulated, allowing the VIIRS sensor aperture spectral radiance to be accurately determined. The radiometric response of a detector is described by a quadratic polynomial of the detector?s digital number (dn). The coefficients were determined before launch. Once on orbit, the coefficients are assumed to change by a common factor: the F-factor. The radiance scattered from the SD allows the determination of the F-factor. In this Proceeding, we describe the methodology and the associated algorithms in the determination of the F-factors and discuss the results.

  17. Virtual and remote experiments for radiometric and photometric measurements

    NASA Astrophysics Data System (ADS)

    Thoms, L.-J.; Girwidz, R.

    2017-09-01

    The analysis of spectra is fundamental to our modern understanding of wave optics and colour perception. Since spectrometers are expensive, and accurate calibration is necessary to achieve high quality spectra, we developed a remote lab on optical spectrometry. With this tool, students can carry out real experiments over the Internet. In this article the pros and cons of remote labs, the physical background of optical spectrometry, and the development and use of a radiometric remote lab for higher education are discussed. The remote lab is freely accessible to everyone at http://virtualremotelab.net.

  18. Vehicle detection in aerial surveillance using dynamic Bayesian networks.

    PubMed

    Cheng, Hsu-Yung; Weng, Chih-Chia; Chen, Yi-Ying

    2012-04-01

    We present an automatic vehicle detection system for aerial surveillance in this paper. In this system, we escape from the stereotype and existing frameworks of vehicle detection in aerial surveillance, which are either region based or sliding window based. We design a pixelwise classification method for vehicle detection. The novelty lies in the fact that, in spite of performing pixelwise classification, relations among neighboring pixels in a region are preserved in the feature extraction process. We consider features including vehicle colors and local features. For vehicle color extraction, we utilize a color transform to separate vehicle colors and nonvehicle colors effectively. For edge detection, we apply moment preserving to adjust the thresholds of the Canny edge detector automatically, which increases the adaptability and the accuracy for detection in various aerial images. Afterward, a dynamic Bayesian network (DBN) is constructed for the classification purpose. We convert regional local features into quantitative observations that can be referenced when applying pixelwise classification via DBN. Experiments were conducted on a wide variety of aerial videos. The results demonstrate flexibility and good generalization abilities of the proposed method on a challenging data set with aerial surveillance images taken at different heights and under different camera angles.

  19. Laser Doppler velocimeter aerial spray measurements

    NASA Technical Reports Server (NTRS)

    Zalay, A. D.; Eberle, W. R.; Howle, R. E.; Shrider, K. R.

    1978-01-01

    An experimental research program for measuring the location, spatial extent, and relative concentration of airborne spray clouds generated by agricultural aircraft is described. The measurements were conducted with a ground-based laser Doppler velocimeter. The remote sensing instrumentation, experimental tests, and the results of the flight tests are discussed. The cross section of the aerial spray cloud and the observed location, extent, and relative concentration of the airborne particulates are presented. It is feasible to use a mobile laser Doppler velocimeter to track and monitor the transport and dispersion of aerial spray generated by an agricultural aircraft.

  20. AirBase - A database of 160,000 aerial photos of Greenland 1930-1980s

    NASA Astrophysics Data System (ADS)

    Korsgaard, Niels; Weng, Willy L.; Kjær, Kurt H.

    2017-04-01

    Beginning in the 1930s Danish survey agencies and US military organizations conducted large-scale aerial photograph surveys of Greenland for mapping purposes (1), eventuating in the recording of more than 160,000 photographs. Glaciological researchers have used this amazing resource of multi-decadal observations of the Greenlandic cryosphere for many decades (e.g. (2), (3), (4)). In recent years this information has been synthesized with modern remote sensing data resulting in a range of published research and data sets ((5), (6), (7), (8)). Today, the historical aerial photographs are stored at the SDFE (Agency for Data Supply and Effiency), the successor agency for the institutions doing the surveying and mapping of Greenland where the material is accessible to researchers and general public alike. The digitized flightline maps and databases necessary for the creation of this data for this work was made available by the SDFE, and it the past and present work with this database we present here. Based on digitized flight line maps, the database contains geocoded metadata such as recording dates, camera and film roll canister, connecting the database with the analog archive material. Past work concentrated on bulk digitization, while the focus of the current work is to improve positional accuracy, completeness, and refinements for web publication. (1) Nielsen, A., Olsen, J. & Weng, W. L. Grønlands opmåling og kortlægning. Landinspektøren 37 (1995). (2) Weidick A. Frontal variations at Upernaviks Isstrøm in the last 100 years. Medd. fra Dansk Geol. Forening. Vol. 14 (1958. (3) Bauer, A., Baussart, M., Carbonnell, M., Kasser, P. Perroud, P. & Renaud, A. Missions aériennes de reconnaissance au Groenland 1957-1958. Observations aériennes et terrestres, exploitation des photographies aériennes, détermination des vitesses des glaciers vêlant dans Disko Bugt et Umanak Fjord. Meddelelser om Grønland 173(3) (1968a. (4) Rignot, E. Box, J.E., Burgess, E. & Hanna, E

  1. 36 CFR 1237.24 - What are special considerations for storage and maintenance of aerial photographic records?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... maintenance of aerial photographic records? (a) Mark each aerial film container with a unique identification code to facilitate identification and filing. (b) Mark aerial film indexes with the unique aerial film identification codes or container codes for the aerial film that they index. Also, file and mark the aerial...

  2. 36 CFR 1237.24 - What are special considerations for storage and maintenance of aerial photographic records?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... maintenance of aerial photographic records? (a) Mark each aerial film container with a unique identification code to facilitate identification and filing. (b) Mark aerial film indexes with the unique aerial film identification codes or container codes for the aerial film that they index. Also, file and mark the aerial...

  3. 36 CFR 1237.24 - What are special considerations for storage and maintenance of aerial photographic records?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... maintenance of aerial photographic records? (a) Mark each aerial film container with a unique identification code to facilitate identification and filing. (b) Mark aerial film indexes with the unique aerial film identification codes or container codes for the aerial film that they index. Also, file and mark the aerial...

  4. 36 CFR 1237.24 - What are special considerations for storage and maintenance of aerial photographic records?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... maintenance of aerial photographic records? (a) Mark each aerial film container with a unique identification code to facilitate identification and filing. (b) Mark aerial film indexes with the unique aerial film identification codes or container codes for the aerial film that they index. Also, file and mark the aerial...

  5. System implications of large radiometric array antennas

    NASA Technical Reports Server (NTRS)

    Levis, C. A.; Lin, H. C.

    1976-01-01

    Current radiometric earth and atmospheric sensing systems in the centimeter wavelength range generally employ a directive antenna connected through a single terminal pair to a Dicke receiver. It is shown that this approach does not lend itself to systems with greatly increased spatial resolution. Signal to noise considerations relating to antenna efficiency force the introduction of active elements at the subarray level; thus, if Dicke switching is to be used, it must be distributed throughout the system. Some possible approaches are suggested. The introduction of active elements at the subarray level is found to ease the design constraints on time delay elements, necessary for bandwidth, and on multiple beam generation, required in order to achieve sufficient integration time with high resolution.

  6. Aerial gamma ray and magnetic survey: Powder River II Project, Newcastle Quadrangle, Wyoming. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-04-01

    Thick Phanerozoic sediments (greater than 17,000 ft) fill the northwest trending Powder River Basin which is the dominant tectonic structure in the Newcastle quadrangle. Lower Tertiary sediments comprise more than 85% of exposed units at the surface of the Basin. A small portion of the Black Hills Uplift occupies the eastern edge of the quadrangle. Residual magnetics clearly reflect the great depth to crystalline Precambrian basement in the Basin. The Basin/Uplift boundary is not readily observed in the magnetic data. Economic uranium deposits of roll-type configuration are present in the southwest within the Monument Hill-Box Creek District in fluvial sandstonesmore » of the Paleocene Fort Union Formation. Numerous small claims and prospects are found in the Pumpkin Buttes-Turnercrest District in the northwest. Interpretation of the radiometric data resulted in 86 statistical uranium anomalies listed for this quadrangle. Most anomalies are in the eastern-central portion of the map within Tertiary Fort Union and Wasatch Formations. However, several lie in the known uranium districts in the southwest and northwest.« less

  7. Monitoring and Assuring the Quality of Digital Aerial Data

    NASA Technical Reports Server (NTRS)

    Christopherson, Jon

    2007-01-01

    This viewgraph presentation explains the USGS plan for monitoring and assuring the quality of digital aerial data. The contents include: 1) History of USGS Aerial Imaging Involvement; 2) USGS Research and Results; 3) Outline of USGS Quality Assurance Plan; 4) Other areas of Interest; and 5) Summary

  8. Detail design of empennage of an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Sarker, Md. Samad; Panday, Shoyon; Rasel, Md; Salam, Md. Abdus; Faisal, Kh. Md.; Farabi, Tanzimul Hasan

    2017-12-01

    In order to maintain the operational continuity of air defense systems, unmanned autonomous or remotely controlled unmanned aerial vehicle (UAV) plays a great role as a target for the anti-aircraft weapons. The aerial vehicle must comply with the requirements of high speed, remotely controlled tracking and navigational aids, operational sustainability and sufficient loiter time. It can also be used for aerial reconnaissance, ground surveillance and other intelligence operations. This paper aims to develop a complete tail design of an unmanned aerial vehicle using Systems Engineering approach. The design fulfils the requirements of longitudinal and directional trim, stability and control provided by the horizontal and vertical tail. Tail control surfaces are designed to provide sufficient control of the aircraft in critical conditions. Design parameters obtained from wing design are utilized in the tail design process as required. Through chronological calculations and successive iterations, optimum values of 26 tail design parameters are determined.

  9. Development of radiometric assays for quantification of enzyme activities of the key enzymes of thyroid hormones metabolism.

    PubMed

    Pavelka, S

    2014-01-01

    We newly elaborated and adapted several radiometric enzyme assays for the determination of activities of the key enzymes engaged in the biosynthesis (thyroid peroxidase, TPO) and metabolic transformations (conjugating enzymes and iodothyronine deiodinases, IDs) of thyroid hormones (THs) in the thyroid gland and in peripheral tissues, especially in white adipose tissue (WAT). We also elaborated novel, reliable radiometric methods for extremely sensitive determination of enzyme activities of IDs of types 1, 2 and 3 in microsomal fractions of different rat and human tissues, as well as in homogenates of cultured mammalian cells. The use of optimized TLC separation of radioactive products from the unconsumed substrates and film-less autoradiography of radiochromatograms, taking advantage of storage phosphor screens, enabled us to determine IDs enzyme activities as low as 10(-18) katals. In studies of the interaction of fluoxetine (Fluox) with the metabolism of THs, we applied adapted radiometric enzyme assays for iodothyronine sulfotransferases (ST) and uridine 5'-diphospho-glucuronyltransferase (UDP-GT). Fluox is the most frequently used representative of a new group of non-tricyclic antidepressant drugs--selective serotonin re-uptake inhibitors. We used the elaborated assays for quantification the effects of Fluox and for the assessment of the degree of potential induction of rat liver ST and/or UDP-GT enzyme activities by Fluox alone or in combination with T(3). Furthermore, we studied possible changes in IDs activities in murine adipose tissue under the conditions that promoted either tissue hypertrophy (obesogenic treatment) or involution (caloric restriction), and in response to leptin, using our newly developed radiometric enzyme assays for IDs. Our results suggest that deiodinase D1 has a functional role in WAT, with D1 possibly being involved in the control of adipose tissue metabolism and/or accumulation of the tissue. Significant positive correlation between

  10. Calibrating Late Quaternary terrestrial climate signals: radiometrically dated pollen evidence from the southern Sierra Nevada, USA

    USGS Publications Warehouse

    Litwin, Ronald J.; Smoot, Joseph P.; Durika, Nancy J.; Smith, George I.

    1999-01-01

    We constructed a radiometrically calibrated proxy record of Late Pleistocene and Holocene climate change exceeding 230,000 yr duration, using pollen profiles from two cores taken through age-equivalent dry lakes - one core having greater age control (via 230Th alpha mass-spectrometry) and the other having greater stratigraphic completeness. The better dated of these two serial pollen records (Searles Lake) served as a reference section for improving the effective radiometric age control in a nearby and more complete pollen record (Owens Lake) because they: (1) are situated ~90 km apart in the same drainage system (on, and immediately leeward of, the eastern flank of the Sierra Nevada), and (2) preserved strikingly similar pollen profiles and concordant sequences of sedimentological changes. Pollen assemblages from both lakes are well preserved and diverse, and document serial changes in Late Pleistocene and Holocene plant zone distribution and composition in the westernmost Great Basin; they consist of taxa now inhabiting montane forest, woodland, steppe, and desert-scrub environments. The studied core intervals are interpreted here to be the terrestrial equivalent of marine δ18O stages 1 through 9; these pollen profiles now appear to be among the best radiometrically dated Late Pleistocene records of terrestrial climate change known.

  11. Arctic Oil Spill Mapping and Response Using Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Cunningham, K. W.

    2011-12-01

    The University of Alaska Fairbanks works extensively with unmanned aerial systems and various sensor payloads used in mapping. Recent projects with Royal Dutch Shell and British Petroleum have demonstrated that unmanned aerial systems, including fixed and rotary winged platforms, can provide quick response to oil spill mapping in a variety of flight conditions, including those not well suited for manned aerial systems. We describe this collaborative research between the University and oil companies exploring and developing oil resources in Alaska and the Arctic.

  12. Land Surface Reflectance Retrieval from Hyperspectral Data Collected by an Unmanned Aerial Vehicle over the Baotou Test Site

    PubMed Central

    Duan, Si-Bo; Li, Zhao-Liang; Tang, Bo-Hui; Wu, Hua; Ma, Lingling; Zhao, Enyu; Li, Chuanrong

    2013-01-01

    To evaluate the in-flight performance of a new hyperspectral sensor onboard an unmanned aerial vehicle (UAV-HYPER), a comprehensive field campaign was conducted over the Baotou test site in China on 3 September 2011. Several portable reference reflectance targets were deployed across the test site. The radiometric performance of the UAV-HYPER sensor was assessed in terms of signal-to-noise ratio (SNR) and the calibration accuracy. The SNR of the different bands of the UAV-HYPER sensor was estimated to be between approximately 5 and 120 over the homogeneous targets, and the linear response of the apparent reflectance ranged from approximately 0.05 to 0.45. The uniform and non-uniform Lambertian land surface reflectance was retrieved and validated using in situ measurements, with root mean square error (RMSE) of approximately 0.01–0.07 and relative RMSE of approximately 5%–12%. There were small discrepancies between the retrieved uniform and non-uniform Lambertian land surface reflectance over the homogeneous targets and under low aerosol optical depth (AOD) conditions (AOD = 0.18). However, these discrepancies must be taken into account when adjacent pixels had large land surface reflectance contrast and under high AOD conditions (e.g. AOD = 1.0). PMID:23785513

  13. Temporal dynamics of sand dune bidirectional reflectance characteristics for absolute radiometric calibration of optical remote sensing data

    NASA Astrophysics Data System (ADS)

    Coburn, Craig A.; Logie, Gordon S. J.

    2018-01-01

    Attempts to use pseudoinvariant calibration sites (PICS) for establishing absolute radiometric calibration of Earth observation (EO) satellites requires high-quality information about the nature of the bidirectional reflectance distribution function (BRDF) of the surfaces used for these calibrations. Past studies have shown that the PICS method is useful for evaluating the trend of sensors over time or for the intercalibration of sensors. The PICS method was not considered until recently for deriving absolute radiometric calibration. This paper presents BRDF data collected by a high-performance portable goniometer system to develop a temporal BRDF model for the Algodones Dunes in California. By sampling the BRDF of the sand surface at similar solar zenith angles to those normally encountered by EO satellites, additional information on the changing nature of the surface can improve models used to provide absolute radiometric correction. The results demonstrated that the BRDF of a reasonably simple sand surface was complex with changes in anisotropy taking place in response to changing solar zenith angles. For the majority of observation and illumination angles, the spectral reflectance anisotropy observed varied between 1% and 5% in patterns that repeat around solar noon.

  14. Detection ratios on winter surveys of Rocky Mountain Trumpeter Swans Cygnus buccinator

    USGS Publications Warehouse

    Bart, J.; Mitchell, C.D.; Fisher, M.N.; Dubovsky, J.A.

    2007-01-01

    We estimated the detection ratio for Rocky Mountain Trumpeter Swans Cygnus buccinator that were counted during aerial surveys made in winter. The standard survey involved counting white or grey birds on snow and ice and thus might be expected to have had low detection ratios. On the other hand, observers were permitted to circle areas where the birds were concentrated multiple times to obtain accurate counts. Actual numbers present were estimated by conducting additional intensive aerial counts either immediately before or immediately after the standard count. Surveyors continued the intensive surveys at each area until consecutive counts were identical. The surveys were made at 10 locations in 2006 and at 19 locations in 2007. A total of 2,452 swans were counted on the intensive surveys. Detection ratios did not vary detectably with year, observer, which survey was conducted first, age of the swans, or the number of swans present. The overall detection ratio was 0.93 (90% confidence interval 0.82-1.04), indicating that the counts were quite accurate. Results are used to depict changes in population size for Rocky Mountain Trumpeter Swans from 1974-2007. ?? Wildfowl & Wetlands Trust.

  15. Estimation of walrus populations on sea ice with infrared imagery and aerial photography

    USGS Publications Warehouse

    Udevitz, M.S.; Burn, D.M.; Webber, M.A.

    2008-01-01

    Population sizes of ice-associated pinnipeds have often been estimated with visual or photographic aerial surveys, but these methods require relatively slow speeds and low altitudes, limiting the area they can cover. Recent developments in infrared imagery and its integration with digital photography could allow substantially larger areas to be surveyed and more accurate enumeration of individuals, thereby solving major problems with previous survey methods. We conducted a trial survey in April 2003 to estimate the number of Pacific walruses (Odobenus rosmarus divergens) hauled out on sea ice around St. Lawrence Island, Alaska. The survey used high altitude infrared imagery to detect groups of walruses on strip transects. Low altitude digital photography was used to determine the number of walruses in a sample of detected groups and calibrate the infrared imagery for estimating the total number of walruses. We propose a survey design incorporating this approach with satellite radio telemetry to estimate the proportion of the population in the water and additional low-level flights to estimate the proportion of the hauled-out population in groups too small to be detected in the infrared imagery. We believe that this approach offers the potential for obtaining reliable population estimates for walruses and other ice-associated pinnipeds. ?? 2007 by the Society for Marine Mammalogy.

  16. Fuzzy C-Means Algorithm for Segmentation of Aerial Photography Data Obtained Using Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Akinin, M. V.; Akinina, N. V.; Klochkov, A. Y.; Nikiforov, M. B.; Sokolova, A. V.

    2015-05-01

    The report reviewed the algorithm fuzzy c-means, performs image segmentation, give an estimate of the quality of his work on the criterion of Xie-Beni, contain the results of experimental studies of the algorithm in the context of solving the problem of drawing up detailed two-dimensional maps with the use of unmanned aerial vehicles. According to the results of the experiment concluded that the possibility of applying the algorithm in problems of decoding images obtained as a result of aerial photography. The considered algorithm can significantly break the original image into a plurality of segments (clusters) in a relatively short period of time, which is achieved by modification of the original k-means algorithm to work in a fuzzy task.

  17. Integration of ground-based laser scanner and aerial digital photogrammetry for topographic modelling of Vesuvio volcano

    NASA Astrophysics Data System (ADS)

    Pesci, Arianna; Fabris, Massimo; Conforti, Dario; Loddo, Fabiana; Baldi, Paolo; Anzidei, Marco

    2007-05-01

    This work deals with the integration of different surveying methodologies for the definition of very accurate Digital Terrain Models (DTM) and/or Digital Surface Models (DSM): in particular, the aerial digital photogrammetry and the terrestrial laser scanning were used to survey the Vesuvio volcano, allowing the total coverage of the internal cone and surroundings (the whole surveyed area was about 3 km × 3 km). The possibility to reach a very high precision, especially from the laser scanner data set, allowed a detailed description of the morphology of the volcano. The comparisons of models obtained in repeated surveys allow a detailed map of residuals providing a data set that can be used for detailed studies of the morphological evolution. Moreover, the reflectivity information, highly correlated to materials properties, allows for the measurement and quantification of some morphological variations in areas where structural discontinuities and displacements are present.

  18. Aerial Images from AN Uav System: 3d Modeling and Tree Species Classification in a Park Area

    NASA Astrophysics Data System (ADS)

    Gini, R.; Passoni, D.; Pinto, L.; Sona, G.

    2012-07-01

    The use of aerial imagery acquired by Unmanned Aerial Vehicles (UAVs) is scheduled within the FoGLIE project (Fruition of Goods Landscape in Interactive Environment): it starts from the need to enhance the natural, artistic and cultural heritage, to produce a better usability of it by employing audiovisual movable systems of 3D reconstruction and to improve monitoring procedures, by using new media for integrating the fruition phase with the preservation ones. The pilot project focus on a test area, Parco Adda Nord, which encloses various goods' types (small buildings, agricultural fields and different tree species and bushes). Multispectral high resolution images were taken by two digital compact cameras: a Pentax Optio A40 for RGB photos and a Sigma DP1 modified to acquire the NIR band. Then, some tests were performed in order to analyze the UAV images' quality with both photogrammetric and photo-interpretation purposes, to validate the vector-sensor system, the image block geometry and to study the feasibility of tree species classification. Many pre-signalized Control Points were surveyed through GPS to allow accuracy analysis. Aerial Triangulations (ATs) were carried out with photogrammetric commercial software, Leica Photogrammetry Suite (LPS) and PhotoModeler, with manual or automatic selection of Tie Points, to pick out pros and cons of each package in managing non conventional aerial imagery as well as the differences in the modeling approach. Further analysis were done on the differences between the EO parameters and the corresponding data coming from the on board UAV navigation system.

  19. Herbicidal drift control: aerial spray equipment, formulations, and supervision.

    Treesearch

    H. Gratkowski

    1974-01-01

    Public concern over environmental pollution requires increasingly sophisticated procedures when herbicides are used in silviculture. Many specialized aerial application systems and spray additives have been developed to reduce drift of herbicidal sprays. This publication provides forest-land managers with a brief description of these aerial spray systems and additives...

  20. Calculated Drag of an Aerial Refueling Assembly Through Airplane Performance Analysis

    NASA Technical Reports Server (NTRS)

    Vachon, Jake; Ray, Ronald; Calianno, Carl

    2004-01-01

    This viewgraph document reviews NASA Dryden's work on Aerial refueling, with specific interest in calculating the drag of the refueling system. The aerodynamic drag of an aerial refueling assembly was calculated during the Automated Aerial Refueling project at the NASA Dryden Flight Research Center. An F/A-18A airplane was specially instrumented to obtain accurate fuel flow measurements and to determine engine thrust

  1. Investigation of radiometric properties of the LANDSAT-4 multispectral scanner

    NASA Technical Reports Server (NTRS)

    Malila, W. A. (Principal Investigator); Rice, D. P.

    1983-01-01

    The radiometric data quality of the LANDSAT 4 multispectral scanner (MSS) was examined using several LANDSAT 4 frames. It was found that LANDSAT 4 MSS produces high-quality data of the caliber experienced with previous LANDSATS. For example, the detector equalization procedure worked well, leaving a residual banding effect of about 0.3 digital counts RMS, close to the theoretical minimum value of quantization error. Nevertheless, artifacts of the data were found, two of which were not experienced in previous MSS data. A low-level coherent noise effect was observed in all bands, with a magnitude of about 0.5 digital counts and a frequency of approximately 28 KHz (representing a wavelength of about 3.6 pixels); a substantial increase in processing complexity would be required to reduce this artifact in the data. Also, a substantial scan-length variation (of up to six pixels) was noted in MSS data when the TM sensor was operating; the LANDSAT 4 correction algorithms being applied routinely by the EROS Data Center to produce a p-type data should remove most of this variation. Between-satellite calibrations were examined in paired LANDSAT 3 and LANDSAT 4 MSS data sets, which were closely matched in acquisition time and place. Radiometric comparisons showed that all bands were highly linear in digital counts, and a well-determined linear transformation between the MSS's was established.

  2. Precision wildlife monitoring using unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Hodgson, Jarrod C.; Baylis, Shane M.; Mott, Rowan; Herrod, Ashley; Clarke, Rohan H.

    2016-03-01

    Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology. Careful consideration will be required to ensure the coherence of historic data sets with new UAV-derived data and we propose a method for determining the number of duplicated (concurrent UAV and ground counts) sampling points needed to achieve data compatibility.

  3. The Future Spaceborne Hyperspectral Imager Enmap: its In-Flight Radiometric and Geometric Calibration Concept

    NASA Astrophysics Data System (ADS)

    Schneider, M.; Müller, R.; Krawzcyk, H.; Bachmann, M.; Storch, T.; Mogulsky, V.; Hofer, S.

    2012-07-01

    The German Aerospace Center DLR - namely the Earth Observation Center EOC and the German Space Operations Center GSOC - is responsible for the establishment of the ground segment of the future German hyperspectral satellite mission EnMAP (Environmental Mapping and Analysis Program). The Earth Observation Center has long lasting experiences with air- and spaceborne acquisition, processing, and analysis of hyperspectral image data. In the first part of this paper, an overview of the radiometric in-flight calibration concept including dark value measurements, deep space measurements, internal lamps measurements and sun measurements is presented. Complemented by pre-launch calibration and characterization these analyses will deliver a detailed and quantitative assessment of possible changes of spectral and radiometric characteristics of the hyperspectral instrument, e.g. due to degradation of single elements. A geometric accuracy of 100 m, which will be improved to 30 m with respect to a used reference image, if it exists, will be achieved by ground processing. Therfore, and for the required co-registration accuracy between SWIR and VNIR channels, additional to the radiometric calibration, also a geometric calibration is necessary. In the second part of this paper, the concept of the geometric calibration is presented in detail. The geometric processing of EnMAP scenes will be based on laboratory calibration results. During repeated passes over selected calibration areas images will be acquired. The update of geometric camera model parameters will be done by an adjustment using ground control points, which will be extracted by automatic image matching. In the adjustment, the improvements of the attitude angles (boresight angles), the improvements of the interior orientation (view vector) and the improvements of the position data are estimated. In this paper, the improvement of the boresight angles is presented in detail as an example. The other values and combinations

  4. The absolute radiometric calibration of the advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Teillet, P. M.; Ding, Y.

    1988-01-01

    The need for independent, redundant absolute radiometric calibration methods is discussed with reference to the Thematic Mapper. Uncertainty requirements for absolute calibration of between 0.5 and 4 percent are defined based on the accuracy of reflectance retrievals at an agricultural site. It is shown that even very approximate atmospheric corrections can reduce the error in reflectance retrieval to 0.02 over the reflectance range 0 to 0.4.

  5. Wildlife Multispecies Remote Sensing Using Visible and Thermal Infrared Imagery Acquired from AN Unmanned Aerial Vehicle (uav)

    NASA Astrophysics Data System (ADS)

    Chrétien, L.-P.; Théau, J.; Ménard, P.

    2015-08-01

    Wildlife aerial surveys require time and significant resources. Multispecies detection could reduce costs to a single census for species that coexist spatially. Traditional methods are demanding for observers in terms of concentration and are not adapted to multispecies censuses. The processing of multispectral aerial imagery acquired from an unmanned aerial vehicle (UAV) represents a potential solution for multispecies detection. The method used in this study is based on a multicriteria object-based image analysis applied on visible and thermal infrared imagery acquired from a UAV. This project aimed to detect American bison, fallow deer, gray wolves, and elks located in separate enclosures with a known number of individuals. Results showed that all bison and elks were detected without errors, while for deer and wolves, 0-2 individuals per flight line were mistaken with ground elements or undetected. This approach also detected simultaneously and separately the four targeted species even in the presence of other untargeted ones. These results confirm the potential of multispectral imagery acquired from UAV for wildlife census. Its operational application remains limited to small areas related to the current regulations and available technology. Standardization of the workflow will help to reduce time and expertise requirements for such technology.

  6. Extreme Ultraviolet Variability Experiment (EVE) Multiple EUV Grating Spectrographs (MEGS): Radiometric Calibrations and Results

    NASA Technical Reports Server (NTRS)

    Hock, R. A.; Woods, T. N.; Crotser, D.; Eparvier, F. G.; Woodraska, D. L.; Chamberlin, P. C.; Woods, E. C.

    2010-01-01

    The NASA Solar Dynamics Observatory (SDO), scheduled for launch in early 2010, incorporates a suite of instruments including the Extreme Ultraviolet Variability Experiment (EVE). EVE has multiple instruments including the Multiple Extreme ultraviolet Grating Spectrographs (MEGS) A, B, and P instruments, the Solar Aspect Monitor (SAM), and the Extreme ultraviolet SpectroPhotometer (ESP). The radiometric calibration of EVE, necessary to convert the instrument counts to physical units, was performed at the National Institute of Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF III) located in Gaithersburg, Maryland. This paper presents the results and derived accuracy of this radiometric calibration for the MEGS A, B, P, and SAM instruments, while the calibration of the ESP instrument is addressed by Didkovsky et al. . In addition, solar measurements that were taken on 14 April 2008, during the NASA 36.240 sounding-rocket flight, are shown for the prototype EVE instruments.

  7. Toxic hazards in aerial application.

    DOT National Transportation Integrated Search

    1962-04-01

    An analysis of the hazards accompanying the aerial application of toxic pest-control chemicals are presented. The nature of teh chemicals, teh symptoms of toxicity, recommended treatment, and suggestions for safe-handling, are discussed

  8. Applicability of New Approaches of Sensor Orientation to Micro Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Rehak, M.; Skaloud, J.

    2016-06-01

    This study highlights the benefits of precise aerial position and attitude control in the context of mapping with Micro Aerial Vehicles (MAVs). Accurate mapping with MAVs is gaining importance in applications such as corridor mapping, road and pipeline inspections or mapping of large areas with homogeneous surface structure, e.g. forests or agricultural fields. There, accurate aerial control plays a major role in successful terrain reconstruction and artifact-free ortophoto generation. The presented experiments focus on new approaches of aerial control. We confirm practically that the relative aerial position and attitude control can improve accuracy in difficult mapping scenarios. Indeed, the relative orientation method represents an attractive alternative in the context of MAVs for two reasons. First, the procedure is somewhat simplified, e.g. the angular misalignment, so called boresight, between the camera and the inertial measurement unit (IMU) does not have to be determined and, second, the effect of possible systematic errors in satellite positioning (e.g. due to multipath and/or incorrect recovery of differential carrier-phase ambiguities) is mitigated. First, we present a typical mapping project over an agricultural field and second, we perform a corridor road mapping. We evaluate the proposed methods in scenarios with and without automated image observations. We investigate a recently proposed concept where adjustment is performed using image observations limited to ground control and check points, so called fast aerial triangulation (Fast AT). In this context we show that accurate aerial control (absolute or relative) together with a few image observations can deliver accurate results comparable to classical aerial triangulation with thousands of image measurements. This procedure in turns reduces the demands on processing time and the requirements on the existence of surface texture. Finally, we compare the above mentioned procedures with direct sensor

  9. ARM Unmanned Aerial Systems Implementation Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmid, Beat; Ivey, Mark

    Recent advances in Unmanned Aerial Systems (UAS) coupled with changes in the regulatory environment for operations of UAS in the National Airspace increase the potential value of UAS to the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility. UAS include unmanned aerial vehicles (UAV) and tethered balloon systems (TBS). The roles UAVs and TBSs could play within the ARM Facility, particularly science questions they could help address, have been discussed in several workshops, reports, and vision documents, including: This document describes the implementation of a robust and vigorous program for use of UAV and TBS formore » the science missions ARM supports.« less

  10. Spectral anomaly methods for aerial detection using KUT nuisance rejection

    NASA Astrophysics Data System (ADS)

    Detwiler, R. S.; Pfund, D. M.; Myjak, M. J.; Kulisek, J. A.; Seifert, C. E.

    2015-06-01

    This work discusses the application and optimization of a spectral anomaly method for the real-time detection of gamma radiation sources from an aerial helicopter platform. Aerial detection presents several key challenges over ground-based detection. For one, larger and more rapid background fluctuations are typical due to higher speeds, larger field of view, and geographically induced background changes. As well, the possible large altitude or stand-off distance variations cause significant steps in background count rate as well as spectral changes due to increased gamma-ray scatter with detection at higher altitudes. The work here details the adaptation and optimization of the PNNL-developed algorithm Nuisance-Rejecting Spectral Comparison Ratios for Anomaly Detection (NSCRAD), a spectral anomaly method previously developed for ground-based applications, for an aerial platform. The algorithm has been optimized for two multi-detector systems; a NaI(Tl)-detector-based system and a CsI detector array. The optimization here details the adaptation of the spectral windows for a particular set of target sources to aerial detection and the tailoring for the specific detectors. As well, the methodology and results for background rejection methods optimized for the aerial gamma-ray detection using Potassium, Uranium and Thorium (KUT) nuisance rejection are shown. Results indicate that use of a realistic KUT nuisance rejection may eliminate metric rises due to background magnitude and spectral steps encountered in aerial detection due to altitude changes and geographically induced steps such as at land-water interfaces.

  11. Phytotoxic activity and chemical composition of Cassia absus seeds and aerial parts.

    PubMed

    Zribi, I; Sbai, H; Ghezal, N; Richard, G; Trisman, D; Fauconnier, M L; Haouala, R

    2017-12-01

    The present study was conducted to assess the phytotoxic potential and the phytochemical composition of Cassia absus. Aqueous extracts caused significant reduction in root growth of Lactuca sativa. Seed extract was more effective than aerial part extract. Successive extractions of this plant were performed using solvents with increasing polarities. The methanolic seed extract exerted strong phytotoxic effect on seedling growth, followed by petroleum ether extract of the aerial part. The phytochemical investigation showed that among the organic extracts, methanol extracts of seeds and aerial parts contained the highest amounts of total phenolics and proanthocyanidins. Seeds were rich in linoleic acid followed by palmitic acids. Palmitic, stearic and arachidic acids were the major fatty acids in aerial parts. HPLC-DAD analysis of the methanolic extracts revealed the presence of luteolin in C. absus aerial parts.

  12. United States Air Force in Southeast Asia 1965-1973. Aces and Aerial Victories

    DTIC Science & Technology

    1976-01-01

    UNITED STATES IN SOUTHEAST ACES and AERIAL VICTORIES The United States Air Force in SoutheastAsia 1965*19?3 by R Frank Fuirefl William H...TYPE 3. DATES COVERED 00-00-1976 to 00-00-1976 4. TITLE AND SUBTITLE United States Air Force in Southeast Asia 1965-1973. Aces and Aerial... aces and aerial victories, 1965-1973. Includes index and glossary. 1. Vietnamese Conflict, 1961-1975-Aerial operations, American. 2. Viet- namese

  13. AERIAL OF SHUTTLE LANDING FACILITY [SLF] POURING CONCRETE ON RUNWAY

    NASA Technical Reports Server (NTRS)

    1975-01-01

    AERIAL OF SHUTTLE LANDING FACILITY [SLF] POURING CONCRETE ON RUNWAY KSC-375C-10036.32 108-KSC-375C-10036.32, P-21425, ARCHIVE-04501 Aerial oblique of Shuttle Landing Facility. Pouring concrete on runway. Direction North - Altitude 100'.

  14. AERIAL OF SHUTTLE LANDING FACILITY [SLF] SAFING AND PARKING AREA

    NASA Technical Reports Server (NTRS)

    1975-01-01

    AERIAL OF SHUTTLE LANDING FACILITY [SLF] SAFING AND PARKING AREA KSC-375C-0654.18 108-KSC-375C-654.18, P-18812, ARCHIVE-04493 Aerial oblique - safing and parking area, Shuttle Orbiter Landing Facility. Altitude 800' direction- west.

  15. Sensor-driven area coverage for an autonomous fixed-wing unmanned aerial vehicle.

    PubMed

    Paull, Liam; Thibault, Carl; Nagaty, Amr; Seto, Mae; Li, Howard

    2014-09-01

    Area coverage with an onboard sensor is an important task for an unmanned aerial vehicle (UAV) with many applications. Autonomous fixed-wing UAVs are more appropriate for larger scale area surveying since they can cover ground more quickly. However, their non-holonomic dynamics and susceptibility to disturbances make sensor coverage a challenging task. Most previous approaches to area coverage planning are offline and assume that the UAV can follow the planned trajectory exactly. In this paper, this restriction is removed as the aircraft maintains a coverage map based on its actual pose trajectory and makes control decisions based on that map. The aircraft is able to plan paths in situ based on sensor data and an accurate model of the on-board camera used for coverage. An information theoretic approach is used that selects desired headings that maximize the expected information gain over the coverage map. In addition, the branch entropy concept previously developed for autonomous underwater vehicles is extended to UAVs and ensures that the vehicle is able to achieve its global coverage mission. The coverage map over the workspace uses the projective camera model and compares the expected area of the target on the ground and the actual area covered on the ground by each pixel in the image. The camera is mounted on a two-axis gimbal and can either be stabilized or optimized for maximal coverage. Hardware-in-the-loop simulation results and real hardware implementation on a fixed-wing UAV show the effectiveness of the approach. By including the already developed automatic takeoff and landing capabilities, we now have a fully automated and robust platform for performing aerial imagery surveys.

  16. 77 FR 36250 - Information Collection Request; Request for Aerial Photography

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... the responsibility for conducting and coordinating the FSA's aerial photography, remote sensing... FSA Aerial Photography Field Office (APFO) uses the information from this form to collect the customer... respond, including through the use of appropriate automated, electronic, mechanical, or other...

  17. 36 CFR § 1237.24 - What are special considerations for storage and maintenance of aerial photographic records?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... maintenance of aerial photographic records? (a) Mark each aerial film container with a unique identification code to facilitate identification and filing. (b) Mark aerial film indexes with the unique aerial film identification codes or container codes for the aerial film that they index. Also, file and mark the aerial...

  18. The ABCs of New Zealand Sign Language: Aerial Spelling.

    ERIC Educational Resources Information Center

    Forman, Wayne

    2003-01-01

    Aerial spelling is the term given for the way many people with deafness in New Zealand (NZ) manually represent letters of the alphabet. This article examines the nature and role of aerial spelling in New Zealand Sign Language, particularly that form used by older members of the NZ deaf community. (Contains references.) (Author/CR)

  19. Radiometric liquid level gauge with linear-detection (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glaeser, M.; Emmelmann, K.P.

    1973-09-01

    A description is given of a radiometric liquid level gauge with linear detection. It consists of a set of radioactive sources (e.g., /sup 137/Cs) with quadratic graduation in their activities, of a scintillation counter with electronic back-up unit and of a slender tube. The tube, sources and scintillation counter form a compact snd easily transportsble liquid level gauge. It is-especially adapted for liquid level measurements in slender, difficulty accessible and opaque containers. The device supplements the different methods for liquid level measurement with a new variant which is adopted for many cases in practice. (auth)

  20. Cropland measurement using Thematic Mapper data and radiometric model

    NASA Technical Reports Server (NTRS)

    Lyon, John G.; Khuwaiter, I. H. S.

    1989-01-01

    To halt erosion and desertification, it is necessary to quantify resources that are affected. Necessary information includes inventory of croplands and desert areas as they change over time. Several studies indicate the value of remote sensor data as input to inventories. In this study, the radiometric modeling of spectral characteristics of soil and vegetation provides the theoretical basis for the remote sensing approach. Use of Landsat Thematic Mapper images allows measurement of croplands in Saudi Arabia, demonstrating the capability of the approach. The inventory techniques and remote sensing approach presented are potentially useful in developing countries.