Science.gov

Sample records for aerial radiometric surveys

  1. Statistical techniques applied to aerial radiometric surveys (STAARS): principal components analysis user's manual. [NURE program

    SciTech Connect

    Koch, C.D.; Pirkle, F.L.; Schmidt, J.S.

    1981-01-01

    A Principal Components Analysis (PCA) has been written to aid in the interpretation of multivariate aerial radiometric data collected by the US Department of Energy (DOE) under the National Uranium Resource Evaluation (NURE) program. The variations exhibited by these data have been reduced and classified into a number of linear combinations by using the PCA program. The PCA program then generates histograms and outlier maps of the individual variates. Black and white plots can be made on a Calcomp plotter by the application of follow-up programs. All programs referred to in this guide were written for a DEC-10. From this analysis a geologist may begin to interpret the data structure. Insight into geological processes underlying the data may be obtained.

  2. Aerial radiometric and magnetic reconnaissance survey of portions of Maryland, Pennsylvania, Virginia, and West Virginia: Cumberland quadrangle. Final report

    SciTech Connect

    Not Available

    1980-03-01

    The results of a high-sensitivity, aerial, gamma-ray spectrometer and magnetometer survey of the Cumberland Quadrangle, Maryland, Pennsylvania, Virginia, and West Virginia, are presented. Instrumentation and methods are described in Volume 1 of this final report. This work was done as part of the US Department of Energy National Uranium Resource Evaluation (NURE) Program. Statisical and geological analysis of the radiometric data revealed 38 anomalies worthy of field checking as possible prospects. Seventeen anomalies coincide with cultural features that may be major contributors to their anomalous values. The Elwood Formation of Cambrian age has the greatest concentration of anomalies, followed by the Monongahela Formation of Pennsylvanian age and Hampshire/Catskill formations of Devonian age.

  3. Aerial radiometric and magnetic survey: San Antonio National Topographic Map, Texas. Final report

    SciTech Connect

    Not Available

    1980-05-01

    The results of analyses of the airborne gamma radiation and total magnetic field survey flown for the region identified as the San Antonio National Topographic Map NH14-8 are presented. The airborne data gathered are reduced by ground computer facilities to yield profile plots of the basic uranium, thorium, and potassium equivalent gamma radiation intensities, ratios of these intensities, aircraft altitude above the earth's surface, total gamma ray and earth's magnetic field intensity, correlated as a function of geologic units. The distribution of data within each geologic unit, for all surveyed map lines and tie lines, has been calculated and is included. Two sets of profiled data for each line are included, with one set displaying the above-cited data. The second set includes only flight line magnetic field, temperature, pressure, altitude data plus magnetic field data as measured at a base station. A general description of the area, including descriptions of the various geologic units and the corresponding airborne data, is included also.

  4. Aerial radiometric and magnetic survey, San Angelo National Topographic Map: Texas, West Texas Project. Final report

    SciTech Connect

    Not Available

    1980-05-01

    The results of analyses of the airborne gamma radiation and total magnetic field survey flown for the region identified as the San Angelo National Topographic Map NH14-1 are presented. The airborne data gathered are reduced by ground computer facilities to yield profile plots of the basic uranium, thorium, and potassium equivalent gamma radiation intensities, ratios of these intensities, aircraft altitude above the earth's surface, total gamma ray and earth's magnetic field intensity, correlated as a function of geologic units. The distribution of data within each geologic unit, for all surveyed map lines and tie lines, has been calculated and is included. Two sets of profiled data for each line are included, with one set displaying the above-cited data. The second set includes only flight line magnetic field, temperature, pressure, altitude data plus magnetic field data as measured at a base station. A general description of the area, including descriptions of the various geologic units and the corresponding airborne data, is included.

  5. Aerial radiometric and magnetic survey: Perryton National Topographic Map, Texas/Oklahoma/Kansas. Final report

    SciTech Connect

    Not Available

    1980-05-01

    The results of analyses of the airborne gamma radiation and total magnetic field survey flown for the region identified as the Perryton National Topographic Map NJ14-10 are presented. The airborne data gathered are reduced by ground computer facilities to yield profile plots of the basic uranium, thorium and potassium equivalent gamma radiation intensities, ratios of these intensities, aircraft altitude above the earth's surface, total gamma ray and earth's magnetic field intensity, correlated as a function of geologic units. The distribution of data within each geologic unit, for all surveyed map lines and tie lines, has been calculated and is included. Two sets of profiled data for each line are included, with one set displaying the above-cited data. The second set includes only flight line magnetic field, temperature, pressure, altitude data plus magnetic field data as measured at a base station. A general description of the area, including descriptions of the various geologic units and the corresponding airborne data, is included also.

  6. Aerial radiation surveys

    SciTech Connect

    Jobst, J.

    1980-01-01

    A recent aerial radiation survey of the surroundings of the Vitro mill in Salt Lake City shows that uranium mill tailings have been removed to many locations outside their original boundary. To date, 52 remote sites have been discovered within a 100 square kilometer aerial survey perimeter surrounding the mill; 9 of these were discovered with the recent aerial survey map. Five additional sites, also discovered by aerial survey, contained uranium ore, milling equipment, or radioactive slag. Because of the success of this survey, plans are being made to extend the aerial survey program to other parts of the Salt Lake valley where diversions of Vitro tailings are also known to exist.

  7. Radiometric surveys in underground environment

    NASA Astrophysics Data System (ADS)

    Bochiolo, Massimo; Chiozzi, Paolo; Verdoya, Massimo; Pasquale, Vincenzo

    2010-05-01

    Due to their ability to travel through the air for several metres, gamma-rays emitted from natural radioactive elements can be successfully used in surveys carried out both with airborne and ground equipments. Besides the concentration of the radio-elements contained in rocks and soils and the intrinsic characteristics of the gamma-ray detector, the detected count rate depends on the solid angle around the spectrometer. On a flat outcrop, ground spectrometry detects the radiation ideally produced by a cylindrical mass of rock of about two metres in diameter and thickness of about half a meter. Under these geometrical conditions, the natural radioactivity can be easily evaluated. With operating conditions different from the standard ones, such as at the edge of an escarpment, the count rate halves because of the missing material, whereas in the vicinity of a rock wall the count rate will increase. In underground environment, the recorded count rate may even double and the in situ assessment of the concentration of radio-elements may be rather difficult, even if the ratios between the different radio-elements may not be affected. We tested the applicability of gamma-ray spectrometry for rapid assessment of the potential hazard levels related to radon and radiation dose rate in underground environment. A mine shaft, located in a zone of uranium enrichment in Liguria (Italy), has been investigated. A preliminary ground radiometric survey was carried out to define the extent of the ore deposit. Then, the radiometric investigation was focussed on the mine shaft. Due to rock mass above the shaft vault, the background gamma radiation can be considered of negligible influence on measurements. In underground surveys, besides deviations from a flat geometry, factors controlling radon exhalation, emanation and stagnation, such as fractures, water leakage and the presence of ventilation, should be carefully examined. We attempted to evaluate these control factors and collected

  8. AERIAL RADIOLOGICAL SURVEYS

    SciTech Connect

    Proctor, A.E.

    1997-06-09

    Measuring terrestrial gamma radiation from airborne platforms has proved to be a useful method for characterizing radiation levels over large areas. Over 300 aerial radiological surveys have been carried out over the past 25 years including U.S. Department of Energy (DOE) sites, commercial nuclear power plants, Formerly Utilized Sites Remedial Action Program/Uranium Mine Tailing Remedial Action Program (FUSRAP/UMTRAP) sites, nuclear weapons test sites, contaminated industrial areas, and nuclear accident sites. This paper describes the aerial measurement technology currently in use by the Remote Sensing Laboratory (RSL) for routine environmental surveys and emergency response activities. Equipment, data-collection and -analysis methods, and examples of survey results are described.

  9. Survey of emissivity measurement by radiometric methods.

    PubMed

    Honner, M; Honnerová, P

    2015-02-01

    A survey of the state of the art in the field of spectral directional emissivity measurements by using radiometric methods is presented. Individual quantity types such as spectral, band, or total emissivity are defined. Principles of emissivity measurement by various methods (direct and indirect, and calorimetric and radiometric) are discussed. The paper is focused on direct radiometric methods. An overview of experimental setups is provided, including the design of individual parts such as the applied reference sources of radiation, systems of sample clamping and heating, detection systems, methods for the determination of surface temperature, and procedures for emissivity evaluation.

  10. Tests of Australian aerial radiometric data for use in petroleum reconnaissance

    SciTech Connect

    Saunders, D.F.; Branch, J.F.; Thompson, C.K. )

    1994-03-01

    Recon Exploration Pty. Ltd. has successfully completed initial testing of a new method for processing and interpretation of AGSO's (Australian Geological Survey Organization, formerly Bureau of Mineral Resources) aerial gamma-ray spectrometer data for petroleum exploration in the Canning Basin, Western Australia and the Otway Basin, Victoria. Count-rate data for potassium and uranium were normalized to the thorium count rate for each sample to suppress unwanted effects of variations in surface lithology or soil type, soil moisture, vegetation cover, and counting geometry. The Canning Basin test area included five producing oil fields. All except one clearly exhibit significant and characteristic radiometric anomalies which include negative normalized potassium and more positive normalized uranium values. The Otway Basin test areas included PPL-1 commercial gas production which is associated with a group of significant radiometric anomalies similar to those in the Canning Basin. These results are similar to extensive ongoing tests in the US and are explained in terms of well-understood geological, geochemical, and geophysical models. Based on 69 wells in the three test areas, it is estimated that the chance of encountering hydrocarbons (economic production or shows) in wells within the radiometrically favorable zones is about 2.6 times greater than outside the favorable areas.

  11. Analyzing Spectral Characteristics of Shadow Area from ADS-40 High Radiometric Resolution Aerial Images

    NASA Astrophysics Data System (ADS)

    Hsieh, Yi-Ta; Wu, Shou-Tsung; Chen, Chaur-Tzuhn; Chen, Jan-Chang

    2016-06-01

    The shadows in optical remote sensing images are regarded as image nuisances in numerous applications. The classification and interpretation of shadow area in a remote sensing image are a challenge, because of the reduction or total loss of spectral information in those areas. In recent years, airborne multispectral aerial image devices have been developed 12-bit or higher radiometric resolution data, including Leica ADS-40, Intergraph DMC. The increased radiometric resolution of digital imagery provides more radiometric details of potential use in classification or interpretation of land cover of shadow areas. Therefore, the objectives of this study are to analyze the spectral properties of the land cover in the shadow areas by ADS-40 high radiometric resolution aerial images, and to investigate the spectral and vegetation index differences between the various shadow and non-shadow land covers. According to research findings of spectral analysis of ADS-40 image: (i) The DN values in shadow area are much lower than in nonshadow area; (ii) DN values received from shadowed areas that will also be affected by different land cover, and it shows the possibility of land cover property retrieval as in nonshadow area; (iii) The DN values received from shadowed regions decrease in the visible band from short to long wavelengths due to scattering; (iv) The shadow area NIR of vegetation category also shows a strong reflection; (v) Generally, vegetation indexes (NDVI) still have utility to classify the vegetation and non-vegetation in shadow area. The spectral data of high radiometric resolution images (ADS-40) is potential for the extract land cover information of shadow areas.

  12. Unmanned aerial survey of elephants.

    PubMed

    Vermeulen, Cédric; Lejeune, Philippe; Lisein, Jonathan; Sawadogo, Prosper; Bouché, Philippe

    2013-01-01

    The use of a UAS (Unmanned Aircraft System) was tested to survey large mammals in the Nazinga Game Ranch in the south of Burkina Faso. The Gatewing ×100™ equipped with a Ricoh GR III camera was used to test animal reaction as the UAS passed, and visibility on the images. No reaction was recorded as the UAS passed at a height of 100 m. Observations, made on a set of more than 7000 images, revealed that only elephants (Loxodonta africana) were easily visible while medium and small sized mammals were not. The easy observation of elephants allows experts to enumerate them on images acquired at a height of 100 m. We, therefore, implemented an aerial strip sample count along transects used for the annual wildlife foot count. A total of 34 elephants were recorded on 4 transects, each overflown twice. The elephant density was estimated at 2.47 elephants/km(2) with a coefficient of variation (CV%) of 36.10%. The main drawback of our UAS was its low autonomy (45 min). Increased endurance of small UAS is required to replace manned aircraft survey of large areas (about 1000 km of transect per day vs 40 km for our UAS). The monitoring strategy should be adapted according to the sampling plan. Also, the UAS is as expensive as a second-hand light aircraft. However the logistic and flight implementation are easier, the running costs are lower and its use is safer. Technological evolution will make civil UAS more efficient, allowing them to compete with light aircraft for aerial wildlife surveys.

  13. Unmanned Aerial Survey of Elephants

    PubMed Central

    Vermeulen, Cédric; Lejeune, Philippe; Lisein, Jonathan; Sawadogo, Prosper; Bouché, Philippe

    2013-01-01

    The use of a UAS (Unmanned Aircraft System) was tested to survey large mammals in the Nazinga Game Ranch in the south of Burkina Faso. The Gatewing ×100™ equipped with a Ricoh GR III camera was used to test animal reaction as the UAS passed, and visibility on the images. No reaction was recorded as the UAS passed at a height of 100 m. Observations, made on a set of more than 7000 images, revealed that only elephants (Loxodonta africana) were easily visible while medium and small sized mammals were not. The easy observation of elephants allows experts to enumerate them on images acquired at a height of 100 m. We, therefore, implemented an aerial strip sample count along transects used for the annual wildlife foot count. A total of 34 elephants were recorded on 4 transects, each overflown twice. The elephant density was estimated at 2.47 elephants/km2 with a coefficient of variation (CV%) of 36.10%. The main drawback of our UAS was its low autonomy (45 min). Increased endurance of small UAS is required to replace manned aircraft survey of large areas (about 1000 km of transect per day vs 40 km for our UAS). The monitoring strategy should be adapted according to the sampling plan. Also, the UAS is as expensive as a second-hand light aircraft. However the logistic and flight implementation are easier, the running costs are lower and its use is safer. Technological evolution will make civil UAS more efficient, allowing them to compete with light aircraft for aerial wildlife surveys. PMID:23405088

  14. Results of magnetic HGI and radiometric surveys in W. Canada

    SciTech Connect

    LeSchack, L.A.

    1997-05-19

    This article presents four case histories in which ground-based magnetic horizontal gradient intensity (HGI) and radiometric surveys were used in Western Canada for cost-effective geochemical exploration for hydrocarbons. The authors has developed these two surface exploration techniques from published studies and adapted them for use on the prairies the past 7 years. These surveys are used in conjunction with the usual geologic and seismic studies for: (1) evaluating prospects and land; (2) verifying seismic anomalies and inexpensively locating areas for conducting expensive 3D seismic surveys. Occasionally, as in two of the case histories discussed, these surveys were used successfully as stand-alone exploration methods where seismic exploration is not effective. The HGI and radiometric surveys measure, by geophysical methods, those effects associated with geochemical alterations due to vertical microseepage of hydrocarbons. The total cost, including permitting, data acquisition, data processing, and interpretation of the combination HGI and radiometric surveys is about 15% the total cost of a 3D seismic survey. Because of this, the author finds them an attractive and rapid survey adjunct to traditional exploration. They substantially reduce finding costs and significantly raise the probability of financial success.

  15. Radiometric and geometric analysis of hyperspectral imagery acquired from an unmanned aerial vehicle

    SciTech Connect

    Hruska, Ryan; Mitchell, Jessica; Anderson, Matthew; Glenn, Nancy F.

    2012-09-17

    During the summer of 2010, an Unmanned Aerial Vehicle (UAV) hyperspectral in-flight calibration and characterization experiment of the Resonon PIKA II imaging spectrometer was conducted at the U.S. Department of Energy’s Idaho National Laboratory (INL) UAV Research Park. The purpose of the experiment was to validate the radiometric calibration of the spectrometer and determine the georegistration accuracy achievable from the on-board global positioning system (GPS) and inertial navigation sensors (INS) under operational conditions. In order for low-cost hyperspectral systems to compete with larger systems flown on manned aircraft, they must be able to collect data suitable for quantitative scientific analysis. The results of the in-flight calibration experiment indicate an absolute average agreement of 96.3%, 93.7% and 85.7% for calibration tarps of 56%, 24%, and 2.5% reflectivity, respectively. The achieved planimetric accuracy was 4.6 meters (based on RMSE).

  16. Aerial radiation survey at a military range.

    SciTech Connect

    Williams, G. P.; Martino, L. E.; Wrobel, J.; Environmental Assessment; U.S. Army Aberdeen Proving Ground

    2001-04-01

    Aberdeen Proving Ground (APG) is currently listed on the Superfund National Priorities List because of past waste handling practices at 13 'study areas.' Concern has been expressed that anthropogenic radioisotopes may have been released at some of the study areas, with the potential of posing health risks to human or ecological receptors. This concern was addressed by thoroughly searching archival records, sampling and analyzing environmental media, and performing an aerial radiation survey. The aerial radiation survey techniques employed have been used over all U.S. Department of Energy and commercial reactor sites. Use of the Aerial Measurement System (AMS) allowed investigators to safely survey areas where surveys using hand-held instruments would be difficult to perform. In addition, the AMS delivered a full spectrum of the measured gamma radiation, thereby providing a means of determining which radioisotopes were present at the surface. As a quality check on the aerial measurements, four ground truth measurements were made at selected locations and compared with the aerial data for the same locations. The results of the survey revealed no evidence of surface radioactive contamination. The measured background radiation, including the cosmic contribution, ranged from 4 to 11 {mu}R/h.

  17. Radiometric and geometric analysis of hyperspectral imagery acquired from an unmanned aerial vehicle

    DOE PAGES

    Hruska, Ryan; Mitchell, Jessica; Anderson, Matthew; Glenn, Nancy F.

    2012-09-17

    During the summer of 2010, an Unmanned Aerial Vehicle (UAV) hyperspectral in-flight calibration and characterization experiment of the Resonon PIKA II imaging spectrometer was conducted at the U.S. Department of Energy’s Idaho National Laboratory (INL) UAV Research Park. The purpose of the experiment was to validate the radiometric calibration of the spectrometer and determine the georegistration accuracy achievable from the on-board global positioning system (GPS) and inertial navigation sensors (INS) under operational conditions. In order for low-cost hyperspectral systems to compete with larger systems flown on manned aircraft, they must be able to collect data suitable for quantitative scientific analysis.more » The results of the in-flight calibration experiment indicate an absolute average agreement of 96.3%, 93.7% and 85.7% for calibration tarps of 56%, 24%, and 2.5% reflectivity, respectively. The achieved planimetric accuracy was 4.6 meters (based on RMSE).« less

  18. Aerosol, cloud, and radiometric measurements with small autonomous unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Ramanathan, V.; Roberts, G.; Corrigan, C.; Ramana, M.; Nguyen, H.

    2005-12-01

    The AUAV (autonomous unmanned aerial vehicle) project is a part of the Atmospheric Brown Clouds project. It has been designed to allow for routine vertical profile measurements of aerosols and clouds using AUAVs above ground-based observatories in the Indo-Pacific Ocean region. The current scientific payloads consist of optical particle counters, condensation particle counters, cloud droplet probes, aethelometers, upward and downward facing pyranometers, and temperature-relative humidity sensors. Aerosol, cloud and radiometric instruments have been miniaturized with a total payload weight and power less than 5 kg and 50 W, respectively. Demonstration flights at the Yuma Proving Grounds, AZ show the potential for small AUAVs in atmospheric studies. The flights were performed on two aircraft, which flew autonomously up to 3000 m above sea level (asl) along programmed flight tracks. The aircraft flew in stacked formation for part of the flights. Once the aircraft were stacked (550 and 2100 m asl), the projected distances were less than 50 m - which translates to less than a 1.5 sec latency between the aircraft. Vertical profiles show a constant 8 K km-1 lapse rate and increasing relative humidity with altitude. At 2000 m asl (1600 m above ground level), an aerosol layer is evident in the total aerosol concentration profile (NCN = 2000 cm-3); relative humidity also increased by 10% in this layer. No such increase in 0.3 μm aerosol (NOPC) is visible at 2000 m asl, suggesting transport from an urban center. Back trajectories indicate air masses originated from south and west across central Baja California, Mexico. Aerosol concentrations are fairly constant at 1000 cm-3 throughout the profile indicating a well-mixed boundary layer. Spikes in aerosol concentrations are a result of sampling the aircrafts' exhaust. The vertical profiles show that spikes occurred at levels where the aircraft maintained level, repeating holding patterns. The cloud droplet probe was flown

  19. Inertial instrument system for aerial surveying

    USGS Publications Warehouse

    Brown, R.H.; Chapman, W.H.; Hanna, W.F.; Mongan, C.E.; Hursh, J.W.

    1985-01-01

    An inertial guidance system for aerial surveying has been developed under contract to the U.S. Geological Survey. This prototype system, known as the aerial profiling of terrain (APT) system, is designed to determine continuously the positions of points along an aircraft flight path, or the underlying terrain profile, to an accuracy of + or - 0.5 ft (15 cm) vertically and + or - 2 ft (61 cm) horizontally. The system 's objective thus is to accomplish, from a fixed-wing aircraft, what would traditionally be accomplished from ground-based topographic surveys combined with aerial photography and photogrammetry. The two-part strategy for measuring the terrain profile entails: (1) use of an inertial navigator for continuous determination of the three-coordinate position of the aircraft, and (2) use of an eye-safe pulsed laser profiler for continuous measurement of the vertical distance from aircraft to land surface, so that the desired terrain profile can then be directly computed. The APT system, installed in a DeHavilland Twin Otter aircraft, is typically flown at a speed of 115 mph (105 knots) at an altitude of 2,000 ft (610 m) above the terrain. Performance-evaluation flights have shown that the vertical and horizontal accuracy specifications are met. (USGS)

  20. Aerial survey estimates of fallow deer abundance

    USGS Publications Warehouse

    Gogan, Peter J.; Gates, Natalie B.; Lubow, Bruce C.; Pettit, Suzanne

    2012-01-01

    Reliable estimates of the distribution and abundance of an ungulate species is essential prior to establishing and implementing a management program. We used ground surveys to determine distribution and ground and aerial surveys and individually marked deer to estimate the abundance of fallow deer (Dama dama) in north-coastal California. Fallow deer had limited distribution and heterogeneous densities. Estimated post-rut densities across 4 annual surveys ranged from a low of 1.4 (SE=0.2) deer/km2 to a high of 3.3 (se=0.5) deer/km2 in a low density stratum and from 49.0 (SE=8.3) deer/km2 to 111.6 deer/km2 in a high density stratum. Sightability was positively influenced by the presence of white color-phase deer in a group and group size, and varied between airial and ground-based observers and by density strata. Our findings underscore the utility of double-observer surveys and aerial surveys with individually marked deer, both incorporating covariates to model sightability, to estimate deer abundance.

  1. Interpretation of detailed aerial gamma-ray survey, Jabal Ashirah area, southeastern Arabian Shield, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Duval, J.S.

    1987-01-01

    A detailed aerial gamma-ray spectrometric survey of the Jabal Ashirah area in the southeastern Arabian Shield has been analyzed using computer-classification algorithms. The analysis resulted in maps that show radiometric map units and gamma-ray anomalies indicating the presence of possible concentrations of potassium and uranium. The radiometric-unit map was interpreted to 'produce a simplified radiolithic map that was correlated with the mapped geology. The gamma-ray data show uranium anomalies that coincide with a tin-bearing granite, but known gold and nickel mineralization do not have any associated gamma-ray signatures.

  2. Aerial radiological survey of Area 11, Nevada Test Site

    SciTech Connect

    1983-06-01

    An aerial radiological survey of Area 11's Plutonium Valley was conducted at the Nevada Test Site from 18 to 30 January 1982. Contour maps representing terrestrial exposure rates and soil concentrations of transuranics, /sup 235/U and /sup 137/Cs are presented on an aerial photograph. Inventories of the locale's transuranic and uranium activities are also included.

  3. A study of methods for lowering aerial environmental survey cost

    NASA Technical Reports Server (NTRS)

    Stansberry, J. R.

    1973-01-01

    The results are presented of a study of methods for lowering the cost of environmental aerial surveys. A wide range of low cost techniques were investigated for possible application to current pressing urban and rural problems. The objective of the study is to establish a definition of the technical problems associated with conducting aerial surveys using various low cost techniques, to conduct a survey of equipment which may be used in low cost systems, and to establish preliminary estimates of cost. A set of candidate systems were selected and described for the environmental survey tasks.

  4. Concept options for the aerial survey of Titan

    NASA Astrophysics Data System (ADS)

    Dorrington, G. E.

    2011-01-01

    Various aerial platforms intended for long endurance survey of the Titan surface are presented. A few novel concepts are introduced, including a heated methane balloon and a balloon with a tethered wind turbine. All the concept options are predicted to have lower scientific payload fractions than the Huygens probe. It is concluded that the selection of the best aerial platform option depends on more accurate mass estimates and a clear decision on whether, or not, in situ surface composition measurements are required in conjunction with aerial remote sensing.

  5. An aerial radiological survey of the Nevada Test Site

    SciTech Connect

    Hendricks, T J; Riedhauser, S R

    1999-12-01

    A team from the Remote Sensing Laboratory conducted an aerial radiological survey of the US Department of Energy's Nevada Test Site including three neighboring areas during August and September 1994. The survey team measured the terrestrial gamma radiation at the Nevada Test Site to determine the levels of natural and man-made radiation. This survey included the areas covered by previous surveys conducted from 1962 through 1993. The results of the aerial survey showed a terrestrial background exposure rate that varied from less than 6 microroentgens per hour (mR/h) to 50 mR/h plus a cosmic-ray contribution that varied from 4.5 mR/h at an elevation of 900 meters (3,000 feet) to 8.5 mR/h at 2,400 meters (8,000 feet). In addition to the principal gamma-emitting, naturally occurring isotopes (potassium-40, thallium-208, bismuth-214, and actinium-228), the man-made radioactive isotopes found in this survey were cobalt-60, cesium-137, europium-152, protactinium-234m an indicator of depleted uranium, and americium-241, which are due to human actions in the survey area. Individual, site-wide plots of gross terrestrial exposure rate, man-made exposure rate, and americium-241 activity (approximating the distribution of all transuranic material) are presented. In addition, expanded plots of individual areas exhibiting these man-made contaminations are given. A comparison is made between the data from this survey and previous aerial radiological surveys of the Nevada Test Site. Some previous ground-based measurements are discussed and related to the aerial data. In regions away from man-made activity, the exposure rates inferred from the gamma-ray measurements collected during this survey agreed very well with the exposure rates inferred from previous aerial surveys.

  6. An aerial radiological survey of Maralinga and EMU, South Australia

    SciTech Connect

    Tipton, W J; Berry, H A; Fritzsche, A E

    1988-10-01

    An aerial radiological survey was conducted over the former British nuclear test ranges at Maralinga and Emu in South Australia from May through July 1987. The survey covered an area of approximately 1,550 square kilometers which included the nine major trial sites, where a nuclear yield occurred, and all the minor trial sites, where physics experiments were conducted. Flight lines were flown at an altitude of 30 meters with line spacings of 50, 100, and 200 meters depending on the area and whether man-made contamination was present. Results of the aerial survey were processed for americium-241 (used to determine plutonium contamination), cesium-137, cobalt-60, and uranium-238. The aerial survey also detected the presence of europium-152, a soil activation product, in the immediate vicinity of the major trial ground zeros. Ground measurements were also made at approximately 120 locations using a high-resolution germanium detector to provide supplemental data for the aerial survey. This survey was conducted as part of a series of studies being conducted over a two to three-year timeframe to obtain information from which options and associated costs can be formulated about the decontamination and possible rehabilitation of the former nuclear test sites.

  7. Radiometric surveying applied to an evaluation of Sorrento Field, Cheyenne County, CO

    SciTech Connect

    Gallagher, A.V.

    1996-06-01

    The radiometric survey was performed in July of 1994 as part of the Colorado School of Mines Reservoir Characterization Project Phase V. The 5.5 square mile field study consisted of geologic; geophysical; reservoir engineering; geochemical; 3-D seismic and radiometric investigations over the Sorrento Field. Radiometric data was acquired over the study area using a 512 cu. In. NaI detector system and four channel digital acquisition system. Twenty foot stations were acquired along the same traverses as the source and receiver lines of the 3-D seismic program. Profiles were plotted for each line. Data was normalized and Z-Transform and ratio maps were produced. A profile interpretation map indicated the presence of several lineaments possibly related to fracturing now known to exist within the study area as a result of the 3-D seismic survey. An experimental north-south profile was also obtained through the study area using a NaI detector and full spectrum analyzer capable of 60,000 CPS. Data was processed into 1000 channels of data. An analysis of the full spectrum data indicates the presence of two discrete (4 to 6 KeV) windows in the lower portion of the gamma spectrum that exhibit a consistent high response over the productive portion of the field. The normally expected low radiometric response over petroleum reservoirs appears to be a function of a general overall decrease, principally in that portion of the gamma spectrum below 1.50 MeV.

  8. GIS for mapping waterfowl density and distribution from aerial surveys

    USGS Publications Warehouse

    Butler, W.I.; Stehn, R.A.; Balogh, G.R.

    1995-01-01

    We modified standard aerial survey data collection to obtain the geographic location for each waterfowl observation on surveys in Alaska during 1987-1993. Using transect navigation with CPS (global positioning system), data recording on continuously running tapes, and a computer data input program, we located observations with an average deviation along transects of 214 m. The method provided flexibility in survey design and data analysis. Although developed for geese nesting near the coast of the Yukon-Kuskokwim Delta, the methods are widely applicable and were used on other waterfowl surveys in Alaska to map distribution and relative abundance of waterfowl. Accurate location data with GIS analysis and display may improve precision and usefulness of data from any aerial transect survey.

  9. Evaluation of aerial survey methods for Dall's sheep

    USGS Publications Warehouse

    Udevitz, M.S.; Shults, B.S.; Adams, L.G.; Kleckner, C.

    2006-01-01

    Most Dall's sheep (Ovis dalli dalli) population-monitoring efforts use intensive aerial surveys with no attempt to estimate variance or adjust for potential sightability bias. We used radiocollared sheep to assess factors that could affect sightability of Dall's sheep in standard fixed-wing and helicopter surveys and to evaluate feasibility of methods that might account for sightability bias. Work was conducted in conjunction with annual aerial surveys of Dall's sheep in the western Baird Mountains, Alaska, USA, in 2000-2003. Overall sightability was relatively high compared with other aerial wildlife surveys, with 88% of the available, marked sheep detected in our fixed-wing surveys. Total counts from helicopter surveys were not consistently larger than counts from fixed-wing surveys of the same units, and detection probabilities did not differ for the 2 aircraft types. Our results suggest that total counts from helicopter surveys cannot be used to obtain reliable estimates of detection probabilities for fixed-wing surveys. Groups containing radiocollared sheep often changed in size and composition before they could be observed by a second crew in units that were double-surveyed. Double-observer methods that require determination of which groups were detected by each observer will be infeasible unless survey procedures can be modified so that groups remain more stable between observations. Mean group sizes increased during our study period, and our logistic regression sightability model indicated that detection probabilities increased with group size. Mark-resight estimates of annual population sizes were similar to sightability-model estimates, and confidence intervals overlapped broadly. We recommend the sightability-model approach as the most effective and feasible of the alternatives we considered for monitoring Dall's sheep populations.

  10. A hybrid double-observer sightability model for aerial surveys

    USGS Publications Warehouse

    Griffin, Paul C.; Lubow, Bruce C.; Jenkins, Kurt J.; Vales, David J.; Moeller, Barbara J.; Reid, Mason; Happe, Patricia J.; Mccorquodale, Scott M.; Tirhi, Michelle J.; Schaberi, Jim P.; Beirne, Katherine

    2013-01-01

    Raw counts from aerial surveys make no correction for undetected animals and provide no estimate of precision with which to judge the utility of the counts. Sightability modeling and double-observer (DO) modeling are 2 commonly used approaches to account for detection bias and to estimate precision in aerial surveys. We developed a hybrid DO sightability model (model MH) that uses the strength of each approach to overcome the weakness in the other, for aerial surveys of elk (Cervus elaphus). The hybrid approach uses detection patterns of 2 independent observer pairs in a helicopter and telemetry-based detections of collared elk groups. Candidate MH models reflected hypotheses about effects of recorded covariates and unmodeled heterogeneity on the separate front-seat observer pair and back-seat observer pair detection probabilities. Group size and concealing vegetation cover strongly influenced detection probabilities. The pilot's previous experience participating in aerial surveys influenced detection by the front pair of observers if the elk group was on the pilot's side of the helicopter flight path. In 9 surveys in Mount Rainier National Park, the raw number of elk counted was approximately 80–93% of the abundance estimated by model MH. Uncorrected ratios of bulls per 100 cows generally were low compared to estimates adjusted for detection bias, but ratios of calves per 100 cows were comparable whether based on raw survey counts or adjusted estimates. The hybrid method was an improvement over commonly used alternatives, with improved precision compared to sightability modeling and reduced bias compared to DO modeling.

  11. Optical transfer function measurment facility for aerial survey cameras.

    PubMed

    Bewsher, A; Powell, I

    1994-10-01

    The optical transfer function measurement facility developed at the National Research Council of Canada primarily for testing aerial survey cameras has been upgraded to perform the task in an appreciably more convenient manner. Modifications made to the facility, which is based on the line spread function technique, include the replacement of the cumbersome physical scanning mechanism and detector unit with a detector assembly comprising a relay lens and a linear photodiode array. While eliminating the need for physically scanning the line spread function, it did require a change of light source, a daylight filter, and a new computer software package. The new setup is described in this paper. Several aerial survey cameras have been evaluated with the system, and results are given for a fairly standard Zeiss camera. PMID:20941194

  12. Aerial data acquisition system for earth survey

    NASA Astrophysics Data System (ADS)

    Uhl, Bernd

    1990-11-01

    Zeiss, in cooperation with Niletus, have developed an airborne Data Recording and Control System using high resolution reconnaissance cameras combined with video tape recording. Sensors are installed in a Dornier DO-228 aircraft for special earth survey missions which provide forest damage assessment in mountainous regions. Sensors include KS-153A wide angle- and telelens camera configurations. A laser distance meter provides autofocus capability for the telelens camera. Flight and mission data are recorded on film and video for cross-reference purposes during photo-interpretation. Special photogrammetric interpretation equipment then produces detailed maps used to direct corrective activities.

  13. Radiometric Survey in Western Afghanistan: A Website for Distribution of Data

    USGS Publications Warehouse

    Sweeney, Ronald E.; Kucks, Robert P.; Hill, Patricia L.; Finn, Carol A.

    2007-01-01

    Radiometric (uranium content, thorium content, potassium content, and gamma-ray intensity) and related data were digitized from radiometric and survey route location maps of western Afghanistan published in 1976. The uranium content data were digitized along contour lines from 33 maps in a series entitled 'Map of Uranium (Radium) Contents of Afghanistan (Western Area),' compiled by V. N. Kirsanov and R. S. Dershimanov. The thorium content data were digitized along contour lines from 33 maps in a series entitled 'Map of Thorium Contents of Afghanistan (Western Area),' compiled by V. N. Kirsanov and R. S. Dershimanov. The potassium content data were digitized along contour lines from 33 maps in a series entitled 'Map of Potassium Contents of Afghanistan (Western Area),' compiled by V. N. Kirsanov and R. S. Dershimanov. The gamma-ray intensity data were digitized along contour lines from 33 maps in a series entitled 'Map of Gamma-Field of Afghanistan (Western Area),' compiled by V. N. Kirsanov and R. S. Dershimanov. The survey route location data were digitized along flight-lines located on 33 maps in a series entitled 'Survey Routes Location and Contours of Flight Equal Altitudes. Western Area of Afghanistan,' compiled by Z. A. Alpatova, V. G. Kurnosov, and F. A. Grebneva.

  14. Radiometric surveying for the assessment of radiation dose and radon specific exhalation in underground environment

    NASA Astrophysics Data System (ADS)

    Bochiolo, M.; Verdoya, M.; Chiozzi, P.; Pasquale, V.

    2012-08-01

    We performed a radiometric survey for evaluating the natural radioactivity and the related potential hazard level both outdoor and indoor a mine tunnel. The mine is located in a zone of uranium enrichment in the Western Alps (Italy). At first, a γ-ray spectrometry survey of the area surrounding the mine was carried out to define the extent of the ore deposit. Then, spectrometric measurements were performed in the tunnel and rock samples were collected for laboratory analyses. The results point to significant heterogeneity in uranium concentration and consequently in the absorbed dose rate spatial distribution. Spectrometric results in situ and in the laboratory, together with radon air concentration measurements, were used to infer the radon specific exhalation and flow from the mine rocks. The specific exhalation is positively related to the activity concentration of uranium.

  15. Aerial survey techniques for locating abandoned strip mine land

    SciTech Connect

    Dattavio, L.E.; Mroczynski, R.P.; Weismiller, R.A.

    1980-01-01

    The Surface Mining Control and Reclamation Act requires that states develop regulatory programs and reclamation plans for surface mining activities. Prior to passage of this law, the Indiana legislature required Indiana Department of Natural Resources (IDNR) to survey abandoned mine lands not under the control of state reclamation laws. IDNR then contracted the Laboratory for Applications of Remote Sensing (LARS) at Purdue University to conduct a preliminary survey of these lands. Photointerpretation techniques of medium scale color infrared photography enabled the LARS staff to identify partially reclaimed and nonreclaimed sites with a 20-county area in southwestern Indiana. Over 4700 ha of abandoned lands were located and classified on the aerial photography. This information is currently being used by IDNR to develop reclamation plans to revegetate the abandoned lands. The results of this survey clearly indicate that photointerpretation is an effective technique to complete initial inventories of nonreclaimed mine lands.

  16. Sightability adjustment methods for aerial surveys of wildlife populations

    USGS Publications Warehouse

    Steinhorst, R.K.; Samuel, M.D.

    1989-01-01

    Aerial surveys are routinely conducted to estimate the abundance of wildlife species and the rate of population change. However, sightability of animal groups is acknowledged as a significant source of bias in these estimates. Recent research has focused on the development of sightability models to predict the probability of sighting groups under various conditions. Given such models, we show how sightability can be incorporated into the estimator of population size as a probability of response using standard results from sample surveys. We develop formulas for the cases where the sighting probability must be estimated. An example, using data from a helicopter survey of moose in Alberta (Jacobson, Alberta Oil Sands Research Project Report, 1976), is given to illustrate the technique.

  17. Aerial Measuring System (AMS) Baseline Surveys for Emergency Planning

    SciTech Connect

    Lyons, C

    2012-06-04

    Originally established in the 1960s to support the Nuclear Test Program, the AMS mission is to provide a rapid and comprehensive worldwide aerial measurement, analysis, and interpretation capability in response to a nuclear/radiological emergency. AMS provides a responsive team of individuals whose processes allow for a mission to be conducted and completed with results available within hours. This presentation slide-show reviews some of the history of the AMS, summarizes present capabilities and methods, and addresses the value of the surveys.

  18. Aerial Survey of Ames Research Center - Flight Simulation Complex' Flight simulators create an

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Aerial Survey of Ames Research Center - Flight Simulation Complex' Flight simulators create an authentic aircraft environment by generating the appropriate physical cues that provide the sensations of flight.

  19. Aerial infrared surveys in the investigation of geothermal and volcanic heat sources

    USGS Publications Warehouse

    ,

    1995-01-01

    This factsheet briefly summarizes and clarifies the application of aerial infrared surveys in geophysical exploration for geothermal energy sources and environmental monitoring for potential volcanic hazards.

  20. AMS/NRCan Joint Survey Report: Aerial Campaign

    SciTech Connect

    Wasiolek, Piotr; Stampahar, Jez; Malchow, Rusty; Stampahar, Tom; Lukens, Mike; Seywerd, Henry; Fortin, Richard; Harvey, Brad; Sinclair, Laurel

    2014-12-31

    In January 2014 the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) Aerial Measuring System (AMS) and the Natural Resources Canada (NRCan) Nuclear Emergency Response project conducted a series of joint surveys at a number of locations in Nevada including the Nevada National Security Site (NNSS). The goal of this project was to compare the responses of the two agencies’ aerial radiation detection systems and data analysis techniques. This test included varied radioactive surface contamination levels and isotopic composition experienced at the NNSS and the differing data processing techniques utilized by the respective teams. Because both teams used the commercial aerial radiation detection systems from Radiation Solutions, Inc., the main focus of the campaign was to investigate the data acquisition techniques, data analysis, and ground-truth verification. The NRCan system consisted of four 4" × 4" × 16" NaI(Tl) scintillator crystals of which two were externally mounted in a modified commercial cargo basket certified for the Eurocopter AS350; the NNSA AMS system consisted of twelve 2" × 4" × 16" NaI(Tl) crystals in externally mounted dedicated pods. For NRCan, the joint survey provided an opportunity to characterize their system’s response to extended sources of various fission products at the NNSS. Since both systems play an important role in their respective countries’ national framework of radiological emergency response and are subject to multiple mutual cooperation agreements, it was important for each country to obtain more thorough knowledge of how they would employ these important assets and define the roles that they would each play in an actual response.

  1. An aerial survey method to estimate sea otter abundance

    USGS Publications Warehouse

    Bodkin, J.L.; Udevitz, M.S.

    1999-01-01

    Sea otters (Enhydra lutris) occur in shallow coastal habitats and can be highly visible on the sea surface. They generally rest in groups and their detection depends on factors that include sea conditions, viewing platform, observer technique and skill, distance, habitat and group size. While visible on the surface, they are difficult to see while diving and may dive in response to an approaching survey platform. We developed and tested an aerial survey method that uses intensive searches within portions of strip transects to adjust for availability and sightability biases. Correction factors are estimated independently for each survey and observer. In tests of our method using shore-based observers, we estimated detection probabilities of 0.52-0.72 in standard strip-transects and 0.96 in intensive searches. We used the survey method in Prince William Sound, Alaska to estimate a sea otter population size of 9,092 (SE = 1422). The new method represents an improvement over various aspects of previous methods, but additional development and testing will be required prior to its broad application.

  2. Detection probability in aerial surveys of feral horses

    USGS Publications Warehouse

    Ransom, Jason I.

    2011-01-01

    Observation bias pervades data collected during aerial surveys of large animals, and although some sources can be mitigated with informed planning, others must be addressed using valid sampling techniques that carefully model detection probability. Nonetheless, aerial surveys are frequently employed to count large mammals without applying such methods to account for heterogeneity in visibility of animal groups on the landscape. This often leaves managers and interest groups at odds over decisions that are not adequately informed. I analyzed detection of feral horse (Equus caballus) groups by dual independent observers from 24 fixed-wing and 16 helicopter flights using mixed-effect logistic regression models to investigate potential sources of observation bias. I accounted for observer skill, population location, and aircraft type in the model structure and analyzed the effects of group size, sun effect (position related to observer), vegetation type, topography, cloud cover, percent snow cover, and observer fatigue on detection of horse groups. The most important model-averaged effects for both fixed-wing and helicopter surveys included group size (fixed-wing: odds ratio = 0.891, 95% CI = 0.850–0.935; helicopter: odds ratio = 0.640, 95% CI = 0.587–0.698) and sun effect (fixed-wing: odds ratio = 0.632, 95% CI = 0.350–1.141; helicopter: odds ratio = 0.194, 95% CI = 0.080–0.470). Observer fatigue was also an important effect in the best model for helicopter surveys, with detection probability declining after 3 hr of survey time (odds ratio = 0.278, 95% CI = 0.144–0.537). Biases arising from sun effect and observer fatigue can be mitigated by pre-flight survey design. Other sources of bias, such as those arising from group size, topography, and vegetation can only be addressed by employing valid sampling techniques such as double sampling, mark–resight (batch-marked animals), mark–recapture (uniquely marked and

  3. New aerial survey and hierarchical model to estimate manatee abundance

    USGS Publications Warehouse

    Langimm, Cahterine A.; Dorazio, Robert M.; Stith, Bradley M.; Doyle, Terry J.

    2011-01-01

    Monitoring the response of endangered and protected species to hydrological restoration is a major component of the adaptive management framework of the Comprehensive Everglades Restoration Plan. The endangered Florida manatee (Trichechus manatus latirostris) lives at the marine-freshwater interface in southwest Florida and is likely to be affected by hydrologic restoration. To provide managers with prerestoration information on distribution and abundance for postrestoration comparison, we developed and implemented a new aerial survey design and hierarchical statistical model to estimate and map abundance of manatees as a function of patch-specific habitat characteristics, indicative of manatee requirements for offshore forage (seagrass), inland fresh drinking water, and warm-water winter refuge. We estimated the number of groups of manatees from dual-observer counts and estimated the number of individuals within groups by removal sampling. Our model is unique in that we jointly analyzed group and individual counts using assumptions that allow probabilities of group detection to depend on group size. Ours is the first analysis of manatee aerial surveys to model spatial and temporal abundance of manatees in association with habitat type while accounting for imperfect detection. We conducted the study in the Ten Thousand Islands area of southwestern Florida, USA, which was expected to be affected by the Picayune Strand Restoration Project to restore hydrology altered for a failed real-estate development. We conducted 11 surveys in 2006, spanning the cold, dry season and warm, wet season. To examine short-term and seasonal changes in distribution we flew paired surveys 1–2 days apart within a given month during the year. Manatees were sparsely distributed across the landscape in small groups. Probability of detection of a group increased with group size; the magnitude of the relationship between group size and detection probability varied among surveys. Probability

  4. Evaluation of aerial transect surveys for wintering American black ducks

    USGS Publications Warehouse

    Conroy, M.J.; Goldsberry, J.R.; Hines, J.E.; Stotts, D.B.

    1988-01-01

    We used an experimental aerial transect survey with stratified random sampling, to estimate the size of the population of wintering black ducks (Anas rubripes) in coastal New Jersey during 2 winters, and the coastal Atlantic Flyway (Me. to S.C.) during 4 years. Population estimates were precise (CV < 0.20) on a flyway basis, whereas individual strata (states) had coefficients of variation of 0.16-0.71. Population estimates agreed with the conventional mid-winter waterfowl surveys (MWS) for all 4 years (MWS within 95% CI of N). We recommend continuing these surveys to provide precise and statistically defensible population estimates for black ducks. Additional improvements in precision may be achieved using recent developments in estimation such as Bayesian techniques. Techniques to decrease bias through air-ground comparisons are likely to be expensive and will require more development. Air-ground comparisons can probably be justified if there is a demonstrable need for an estimate of the absolute size of the black duck population versus an index.

  5. Initial Efforts toward Mission-Representative Imaging Surveys from Aerial Explorers

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Plice, Laura; Ippolito, Corey; Young, Larry A.; Lau, Benton; Lee, Pascal

    2004-01-01

    Numerous researchers have proposed the use of robotic aerial explorers to perform scientific investigation of planetary bodies in our solar system. One of the essential tasks for any aerial explorer is to be able to perform scientifically valuable imaging surveys. The focus of this paper is to discuss the challenges implicit in, and recent observations related to, acquiring mission-representative imaging data from a small fixed-wing UAV, acting as a surrogate planetary aerial explorer. This question of successfully performing aerial explorer surveys is also tied to other topics of technical investigation, including the development of unique bio-inspired technologies.

  6. Monitoring Whooping Crane Abundance Using Aerial Surveys: Influences on Detectability

    PubMed Central

    Strobel, Bradley N; Butler, Matthew J

    2014-01-01

    The whooping crane (Grus americana), an endangered species, has been counted on its winter grounds in Texas, USA, since 1950 using fixed-wing aircraft. Many shortcomings of the traditional survey technique have been identified, calling into question its efficacy, defensibility, repeatability, and usefulness into the future. To improve and standardize monitoring effort, we began investigating new survey techniques. Here we focus on efficacy of line transect-based distance sampling during aerial surveys. We conducted a preliminary test of distance sampling during winter 2010–2011 while flying the traditional survey, which indicated that detectability within 500 m of transects was 0.558 (SE = 0.031). We then used an experimental decoy survey to evaluate impacts of observer experience, sun position, distance from transect, and group size on detectability. Our results indicated decoy detectability increased with group size and exhibited a quadratic relationship with distance likely due to pontoons on the aircraft. We found that detectability was 2.704 times greater when the sun was overhead and 3.912 times greater when the sun was at the observer's back than when it was in the observer's eyes. We found that an inexperienced observer misclassified non-target objects more often than an experienced observer. During the decoy experiment we used marks on the struts to categorize distances into intervals, but we found that observers misclassified distances 46.7% of the time (95% CI = 37.0–56.6%). Also, we found that detectability of individuals within detected groups was affected by group size and distance from transect. We discuss how these results inform design and implementation of future whooping crane monitoring efforts. Published 2013. This article is a U.S. Government work and is in the public domain in the USA. PMID:26388657

  7. Aerial surveys adjusted by ground surveys to estimate area occupied by black-tailed prairie dog colonies

    USGS Publications Warehouse

    Sidle, John G.; Augustine, David J.; Johnson, Douglas H.; Miller, Sterling D.; Cully, Jack F.; Reading, Richard P.

    2012-01-01

    Aerial surveys using line-intercept methods are one approach to estimate the extent of prairie dog colonies in a large geographic area. Although black-tailed prairie dogs (Cynomys ludovicianus) construct conspicuous mounds at burrow openings, aerial observers have difficulty discriminating between areas with burrows occupied by prairie dogs (colonies) versus areas of uninhabited burrows (uninhabited colony sites). Consequently, aerial line-intercept surveys may overestimate prairie dog colony extent unless adjusted by an on-the-ground inspection of a sample of intercepts. We compared aerial line-intercept surveys conducted over 2 National Grasslands in Colorado, USA, with independent ground-mapping of known black-tailed prairie dog colonies. Aerial line-intercepts adjusted by ground surveys using a single activity category adjustment overestimated colonies by ≥94% on the Comanche National Grassland and ≥58% on the Pawnee National Grassland. We present a ground-survey technique that involves 1) visiting on the ground a subset of aerial intercepts classified as occupied colonies plus a subset of intercepts classified as uninhabited colony sites, and 2) based on these ground observations, recording the proportion of each aerial intercept that intersects a colony and the proportion that intersects an uninhabited colony site. Where line-intercept techniques are applied to aerial surveys or remotely sensed imagery, this method can provide more accurate estimates of black-tailed prairie dog abundance and trends

  8. An aerial radiological survey of the Sandia National Laboratories and surrounding area

    SciTech Connect

    Riedhauser, S.R.

    1994-06-01

    A team from the Remote Sensing Laboratory conducted an aerial radiological survey of the area surrounding the Sandia National Laboratories and Kirtland Air Force Base in Albuquerque, New Mexico, during March and April 1993. The survey team measured the terrestrial gamma radiation at the site to determine the levels of natural and man-made radiation. This survey includes the areas covered by a previous survey in 1981. The results of the aerial survey show a background exposure rate which varies between 5 and 18 {mu}R/h plus an approximate 6 {mu}R/h contribution from cosmic rays. The major radioactive isotopes found in this survey were: potassium-40, thallium-208, bismuth-214, and actinium-228, which are all naturally-occurring isotopes, and cobalt-60, cesium-137, and excess amounts of thallium-208 and actinium-228, which are due to human actions in the survey area. In regions away from man-made activity, the exposure rates inferred from this survey`s gamma ray measurements agree almost exactly with the exposure rates inferred from the 1981 survey. In addition to the aerial measurements, another survey team conducted in situ and soil sample radiation measurements at three sites within the survey perimeter. These ground-based measurements agree with the aerial measurements within {+-} 5%.

  9. An aerial radiological survey of the Paducah Gaseous Diffusion Plant and surrounding area, Paducah, Kentucky

    SciTech Connect

    Not Available

    1992-11-01

    An aerial radiological survey of the Paducah Gaseous Diffusion Plant (PGDP) and surrounding area in Paducah, Kentucky, was conducted during May 15--25, 1990. The purpose of the survey was to measure and document the terrestrial radiological environment at the PGDP and surrounding area for use in effective environmental management and emergency response planning. The aerial survey was flown at an altitude of 61 meters (200 feet) along a series of parallel lines 107 meters (350 feet) apart. The survey encompassed an area of 62 square kilometers (24 square miles), bordered on the north by the Ohio River. The results of the aerial survey are reported as inferred exposure rates at 1 meter above ground level in the form of a gamma radiation contour map. Typical background exposure rates were found to vary from 5 to 12 microroentgens per hour ([mu]R/h). Protactinium-234m, a radioisotope indicative of uranium-238, was detected at several facilities at the PGDR. In support of the aerial survey, ground-based exposure rate and soil sample measurements were obtained at several sites within the survey perimeter. The results of the aerial and ground-based measurements were found to agree within [plus minus]15%.

  10. Aerial radiological surveys of Steed Pond, Savannah River Site: Dates of surveys, 1984--1989

    SciTech Connect

    Fritzsche, A.E.; Jobst, J.E.

    1993-09-01

    From June 1984 to August 1985, three aerial radiological surveys were conducted over Steed Pond at the Savannah River Site in South Carolina. In addition, Steed Pond was included in larger-area surveys of the Savannah River Site in subsequent years. The surveys were conducted by the Remote Sensing Laboratory of EG&G Energy Measurements, Inc., Las Vegas, Nevada, for the US Department of Energy. Airborne measurements were obtained for both natural and man-made gamma radiation over Steed Pond and surrounding areas. The first survey was conducted when the pond was filled to normal capacity for the time of the year. On September 1, 1984, the Steed Pond dam spillway failed causing the pond to drain. The four subsequent surveys were conducted with the pond drained. The second survey and the third were conducted to study silt deposits exposed by the drop in water level after the spillway`s opening. Steed Pond data from the February 1987 and April 1989 Savannah River Site surveys have been included to bring this study up to date.

  11. Results of a thermoluminescence radiometric survey in Takala area of China's Tarim basin

    SciTech Connect

    Siegel, F.R. ); Vaz, J.E. ); Su, J. )

    1993-01-11

    This paper reports on a thermoluminescence dosimeter (TLD) radiometric study of the near-surface radiation flux which was done as an adjunct to oil exploration research in the Takala area, Tarim basin, western China. About 80 sq km of the basin were evaluated using lithium fluoride (LiF) TLDs buried at about 0.5 m; Rn and [Delta]C (anomalous carbonate) measurements were made in this region as well. Small target areas were defined in the region by low value TL radiometric signals. Comparative measurements of Rn and [Delta]C were not as effective as TL in defining small areas for follow-up seismic work or in revealing the structural trends. The structural nature of the area was mimicked by the near-surface radiometries distribution pattern determined by TLDs and suggested the possibility of fault-influenced traps in the subsurface.

  12. An aerial radiological survey of the project Rio Blanco and surrounding area

    SciTech Connect

    Singman, L.V.

    1994-11-01

    A team from the Remote Sensing Laboratory in Las Vegas, Nevada, conducted an aerial radiation survey of the area surrounding ground zero of Project Rio Blanco in the northwestern section of Colorado in June 1993. The object of the survey was to determine if there were man-made radioisotopes on or near the surface resulting from a nuclear explosion in 1972. No indications of surface contamination were found. A search for the cesium-137 radioisotope was negative. The Minimum Detectable Activity for cesium-137 is presented for several detection probabilities. The natural terrestrial exposure rates in units of Roentgens per hour were mapped and are presented in the form of a contour map over-laid on an aerial photograph. A second team made independent ground-based measurements in four places within the survey area. The average agreement of the ground-based with aerial measurements was six percent.

  13. Aerial surveys and tagging of free-drifting icebergs using an unmanned aerial vehicle (UAV)

    NASA Astrophysics Data System (ADS)

    McGill, P. R.; Reisenbichler, K. R.; Etchemendy, S. A.; Dawe, T. C.; Hobson, B. W.

    2011-06-01

    Ship-based observations of free-drifting icebergs are hindered by the dangers of calving ice. To improve the efficacy and safety of these studies, new unmanned aerial vehicles (UAVs) were developed and then deployed in the Southern Ocean. These inexpensive UAVs were launched and recovered from a ship by scientific personal with a few weeks of flight training. The UAVs sent real-time video back to the ship, allowing researchers to observe conditions in regions of the icebergs not visible from the ship. In addition, the UAVs dropped newly developed global positioning system (GPS) tracking tags, permitting researchers to record the precise position of the icebergs over time. The position reports received from the tags show that the motion of free-drifting icebergs changes rapidly and is a complex combination of both translation and rotation.

  14. Distribution of radionuclides in the surface sea water developed by aerial radiological survey

    NASA Astrophysics Data System (ADS)

    Inomata, Yayoi; Aoyama, Michio; Hirose, Katsumi; Sanada, Yukihisa; Torii, Tatsuo; Tsubono, Takaki; Tsumune, Daisuke; Yamada, Masatoshi

    2014-05-01

    This study provides new data analysis method of aerial radiological survey to monitor the distribution of anthropogenic radioactivity in surface seawaters as a first attempt. The aerial radiological survey was performed by the U.S. Department of Energy National Nuclear Security Administration (DOE/NNSA) within a 30 km radius of the Fukushima Daiichi Nuclear Power Plant (FNPP1) on 18 April 2011. We found good correlations between the observed concentrations of FNPP1 derived radionuclides (131I, 134Cs, 137Cs) in the surface seawater and gamma-ray dose rates by aerial radiological surveys (correlation coefficients for 131I, 0.89; 134Cs, 0.96;137Cs, 0.95). The detection limits of 131I, 134Cs, and 137Cs in surface seawaters for the aerial radiological survey are 25, 21, 24 Bq L-1, respectively. Based on these relations, we find that the area with high concentrations of the FNPP1 derived radionuclides spread south-southeast from the FNPP1. The maximum concentrations of 131I, 134Cs, and 137Cs reached 303, 456, and 528 Bq L-1, respectively. The131I/134Cs ratios in surface waters of the high activities area are about 0.6-0.7. Considering the radioactive decay of 131I (half-life: 8.021 d), we confirm that radionuclides in the surface seawater of this area are due to direct release from FNPP1 to the ocean. From these results, it is concluded that the aerial radiological survey is very effective to investigate the accurate distribution of anthropogenic radioactivity in the surface seawater. Furthermore, the model reproduced the distribution pattern of the FNPP1 derived radionuclides in surface seawater obtained by the aerial radiological survey, although simulated results by regional ocean model are underestimated.

  15. An aerial multispectral thermographic survey of the Oak Ridge Reservation for selected areas K-25, X-10, and Y-12, Oak Ridge, Tennessee

    SciTech Connect

    Ginsberg, I.W.

    1996-10-01

    During June 5-7, 1996, the Department of Energy`s Remote Sensing Laboratory performed day and night multispectral surveys of three areas at the Oak Ridge Reservation: K-25, X-10, and Y-12. Aerial imagery was collected with both a Daedalus DS1268 multispectral scanner and National Aeronautics and Space Administration`s Thermal Infrared Multispectral System, which has six bands in the thermal infrared region of the spectrum. Imagery from the Thermal Infrared Multispectral System was processed to yield images of absolute terrain temperature and of the terrain`s emissivities in the six spectral bands. The thermal infrared channels of the Daedalus DS1268 were radiometrically calibrated and converted to apparent temperature. A recently developed system for geometrically correcting and geographically registering scanner imagery was used with the Daedalus DS1268 multispectral scanner. The corrected and registered 12-channel imagery was orthorectified using a digital elevation model. 1 ref., 5 figs., 5 tabs.

  16. An Aerial Radiological Survey of the Yucca Mountain Project Proposed Land Withdrawal and Adjacent Areas

    SciTech Connect

    Craig Lyons, Thane Hendricks

    2006-07-01

    An aerial radiological survey of the Yucca Mountain Project (YMP) proposed land withdrawal was conducted from January to April 2006, and encompassed a total area of approximately 284 square miles (73,556 hectares). The aerial radiological survey was conducted to provide a sound technical basis and rigorous statistical approach for determining the potential presence of radiological contaminants in the Yucca Mountain proposed Land withdrawal area. The survey site included land areas currently managed by the Bureau of Land Management, the U.S. Air Force as part of the Nevada Test and Training Range or the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as part of the Nevada Test Site (NTS). The survey was flown at an approximate ground speed of 70 knots (36 meters per second), at a nominal altitude of 150 ft (46 m) above ground level, along a set of parallel flight lines spaced 250 ft (76 m) apart. The flight lines were oriented in a north-south trajectory. The survey was conducted by the DOE NNSA/NSO Remote Sensing Laboratory-Nellis, which is located in Las Vegas, Nevada. The aerial survey was conducted at the request of the DOE Office of Civilian Radioactive Waste Management. The primary contaminant of concern was identified by YMP personnel as cesium-137 ({sup 137}Cs). Due to the proposed land withdrawal area's proximity to the historical Nuclear Rocket Development Station (NRDS) facilities located on the NTS, the aerial survey system required sufficient sensitivity to discriminate between dispersed but elevated {sup 137}Cs levels from those normally encountered from worldwide fallout. As part of that process, the survey also measured and mapped the exposure-rate levels that currently existed within the survey area. The inferred aerial exposure rates of the natural terrestrial background radiation varied from less than 3 to 22 microroentgens per hour. This range of exposure rates was primarily due to the

  17. Sources of variation in detection of wading birds from aerial surveys in the florida Everglades

    USGS Publications Warehouse

    Conroy, M.J.; Peterson, J.T.; Bass, O.L.; Fonnesbeck, C.J.; Howell, J.E.; Moore, C.T.; Runge, J.P.

    2008-01-01

    We conducted dual-observer trials to estimate detection probabilities (probability that a group that is present and available is detected) for fixed-wing aerial surveys of wading birds in the Everglades system, Florida. Detection probability ranged from <0.2 to similar to 0.75 and varied according to species, group size, observer, and the observer's position in the aircraft (front or rear seat). Aerial-survey simulations indicated that incomplete detection can have a substantial effect oil assessment of population trends, particularly river relatively short intervals (<= 3 years) and small annual changes in population size (<= 3%). We conclude that detection bias is an important consideration for interpreting observations from aerial surveys of wading birds, potentially limiting the use of these data for comparative purposes and trend analyses. We recommend that workers conducting aerial surveys for wading birds endeavor to reduce observer and other controllable sources of detection bias and account for uncontrollable sources through incorporation of dual-observer or other calibratior methods as part of survey design (e.g., using double sampling).

  18. NURE aerial gamma-ray and magnetic reconnaissance survey of portions of New Mexico, Arizona and Texas. Volume II. New Mexico-Las Cruces NI 13-10 Quadrangle. Final report

    SciTech Connect

    Not Available

    1981-09-01

    The results of a high-sensitivity, aerial gamma-ray spectrometer and magnetometer survey of the Las Cruces two degree quadrangle, New Mexico, are presented. Instrumentation and methods are described in Volume 1 of this final report. The work was done by Carson Helicopters, Inc., and International Exploration, Inc. The work was performed for the US Department of Energy - National Uranium Resource Evaluation (NURE) program. Analysis of this radiometric data yielded 192 statistically significant eU anomalies. Of this number, thirty-nine were considered to be of sufficient strength to warrant further investigation.

  19. A Methodological Intercomparison of Topographic and Aerial Photographic Habitat Survey Techniques

    NASA Astrophysics Data System (ADS)

    Bangen, S. G.; Wheaton, J. M.; Bouwes, N.

    2011-12-01

    A severe decline in Columbia River salmonid populations and subsequent Federal listing of subpopulations has mandated both the monitoring of populations and evaluation of the status of available habitat. Numerous field and analytical methods exist to assist in the quantification of the abundance and quality of in-stream habitat for salmonids. These methods range from field 'stick and tape' surveys to spatially explicit topographic and aerial photographic surveys from a mix of ground-based and remotely sensed airborne platforms. Although several previous studies have assessed the quality of specific individual survey methods, the intercomparison of competing techniques across a diverse range of habitat conditions (wadeable headwater channels to non-wadeable mainstem channels) has not yet been elucidated. In this study, we seek to enumerate relative quality (i.e. accuracy, precision, extent) of habitat metrics and inventories derived from an array of ground-based and remotely sensed surveys of varying degrees of sophistication, as well as quantify the effort and cost in conducting the surveys. Over the summer of 2010, seven sample reaches of varying habitat complexity were surveyed in the Lemhi River Basin, Idaho, USA. Complete topographic surveys were attempted at each site using rtkGPS, total station, ground-based LiDaR and traditional airborne LiDaR. Separate high spatial resolution aerial imagery surveys were acquired using a tethered blimp, a drone UAV, and a traditional fixed-wing aircraft. Here we also developed a relatively simplistic methodology for deriving bathymetry from aerial imagery that could be readily employed by instream habitat monitoring programs. The quality of bathymetric maps derived from aerial imagery was compared with rtkGPS topographic data. The results are helpful for understanding the strengths and weaknesses of different approaches in specific conditions, and how a hybrid of data acquisition methods can be used to build a more complete

  20. A review of aerial radiological surveys of Nevada Test Site fallout fields 1951 through 1970

    SciTech Connect

    1987-12-01

    Aerial surveys of offsite fallout radiation fields from the Nevada Test Site began in the early 1950s and continued throughout the above-ground testing period. The results of the aerial surveys were used to support ground data in determining the extent of the fallout patterns. For the series of tests conducted in 1953 and 1955, the primary uncertainty of the results was knowing the location of the aircraft. Navigation was made from aeronautical charts of a scale 1:1,000,000, and errors in location of several miles were experienced. Another problem was that exposure rate readings made in the aircraft of 1 milliroentgen per hour or lower were not reliable. Exposure rate measurements above 1 milliroentgen per hour were more accurate, however, and are considered reliable to within a factor of two or three in predicting 3-foot exposure rate levels. For the 1957 series, the aircraft position data were quite accurate. Ground-level exposure rates predicted from aerial data obtained by the United States Geological Survey aircraft for the five-detector array were considered reliable to within +-40% or better for most of the surveys. When the single detector was used, the accuracy decreased to about a factor of two. Relative count rates obtained by the aircraft operated by the Atomic Energy Commission, Raw Materials Division, are probably valid, but quantitative determination of 3-foot exposure rates are not. The Aerial Radiological Monitoring System performed all the aerial surveys in the 1960s. However, the air-to-ground conversion factors used were too low. Using a corrected conversion factor, the predicted 3-foot exposure rates should be valid to +-40% in most fallout fields if all other parameters are considered. 40 refs., 30 figs., 6 tabs.

  1. An aerial radiological survey of the Pilgrim Station Nuclear Power Plant and surrounding area, Plymouth, Massachusetts

    SciTech Connect

    Proctor, A.E.

    1997-06-01

    Terrestrial radioactivity surrounding the Pilgrim Station Nuclear Power Plant was measured using aerial radiolog- ical survey techniques. The purpose of this survey was to document exposure rates near the plant and to identify unexpected, man-made radiation sources within the survey area. The surveyed area included land areas within a three-mile radius of the plant site. Data were acquired using an airborne detection system that employs sodium iodide, thallium-activated detectors. Exposure rate and photopeak counts were computed from these data and plotted on aerial photographs of the survey area. Several ground-based exposure measurements were made for comparison with the,aerial survey results. Exposure rates in areas surrounding the plant site varied from 6 to 10 microroentgens per hour, with exposure rates below 6 microroentgens per hour occurring over bogs and marshy areas. Man-made radiation was found to be higher than background levels at the plant site. Radation due to nitrogen-1 6, which is produced in the steam cycle of a boiling-water reactor, was the primaty source of activity found at the plant site. Cesium-137 activity at levels slightly above those expected from natural fallout was found at isolated locations inland from the plant site. No other detectable sources of man-made radioactivity were found.

  2. An Aerial Radiological Survey of the Portsmouth Gaseous Diffusion Plant and Surrounding Area, Portsmouth, Ohio

    SciTech Connect

    Namdoo Moon

    2007-12-01

    An aerial radiological survey was conducted over the 16 square-mile (~41 square-kilometer) area surrounding the Portsmouth Gaseous Diffusion Plant. The survey was performed in August 2007 utilizing a large array of helicopter mounted sodium iodide detectors. The purpose of the survey was to update the previous radiological survey levels of the environment and surrounding areas of the plant. A search for a missing radium-226 source was also performed. Implied exposure rates, man-made activity, and excess bismuth-214 activity, as calculated from the aerial data are presented in the form of isopleth maps superimposed on imagery of the surveyed area. Ground level and implied aerial exposure rates for nine specific locations are compared. Detected radioisotopes and their associated gamma ray exposure rates were consistent with those expected from normal background emitters. At specific plant locations described in the report, man-made activity was consistent with the operational histories of the location. There was no spectral activity that would indicate the presence of the lost source.

  3. Unmanned aerial vehicles (UAVs) for surveying marine fauna: a dugong case study.

    PubMed

    Hodgson, Amanda; Kelly, Natalie; Peel, David

    2013-01-01

    Aerial surveys of marine mammals are routinely conducted to assess and monitor species' habitat use and population status. In Australia, dugongs (Dugong dugon) are regularly surveyed and long-term datasets have formed the basis for defining habitat of high conservation value and risk assessments of human impacts. Unmanned aerial vehicles (UAVs) may facilitate more accurate, human-risk free, and cheaper aerial surveys. We undertook the first Australian UAV survey trial in Shark Bay, western Australia. We conducted seven flights of the ScanEagle UAV, mounted with a digital SLR camera payload. During each flight, ten transects covering a 1.3 km(2) area frequently used by dugongs, were flown at 500, 750 and 1000 ft. Image (photograph) capture was controlled via the Ground Control Station and the capture rate was scheduled to achieve a prescribed 10% overlap between images along transect lines. Images were manually reviewed post hoc for animals and scored according to sun glitter, Beaufort Sea state and turbidity. We captured 6243 images, 627 containing dugongs. We also identified whales, dolphins, turtles and a range of other fauna. Of all possible dugong sightings, 95% (CI = 90%, 98%) were subjectively classed as 'certain' (unmistakably dugongs). Neither our dugong sighting rate, nor our ability to identify dugongs with certainty, were affected by UAV altitude. Turbidity was the only environmental variable significantly affecting the dugong sighting rate. Our results suggest that UAV systems may not be limited by sea state conditions in the same manner as sightings from manned surveys. The overlap between images proved valuable for detecting animals that were masked by sun glitter in the corners of images, and identifying animals initially captured at awkward body angles. This initial trial of a basic camera system has successfully demonstrated that the ScanEagle UAV has great potential as a tool for marine mammal aerial surveys.

  4. Unmanned aerial vehicles (UAVs) for surveying marine fauna: a dugong case study.

    PubMed

    Hodgson, Amanda; Kelly, Natalie; Peel, David

    2013-01-01

    Aerial surveys of marine mammals are routinely conducted to assess and monitor species' habitat use and population status. In Australia, dugongs (Dugong dugon) are regularly surveyed and long-term datasets have formed the basis for defining habitat of high conservation value and risk assessments of human impacts. Unmanned aerial vehicles (UAVs) may facilitate more accurate, human-risk free, and cheaper aerial surveys. We undertook the first Australian UAV survey trial in Shark Bay, western Australia. We conducted seven flights of the ScanEagle UAV, mounted with a digital SLR camera payload. During each flight, ten transects covering a 1.3 km(2) area frequently used by dugongs, were flown at 500, 750 and 1000 ft. Image (photograph) capture was controlled via the Ground Control Station and the capture rate was scheduled to achieve a prescribed 10% overlap between images along transect lines. Images were manually reviewed post hoc for animals and scored according to sun glitter, Beaufort Sea state and turbidity. We captured 6243 images, 627 containing dugongs. We also identified whales, dolphins, turtles and a range of other fauna. Of all possible dugong sightings, 95% (CI = 90%, 98%) were subjectively classed as 'certain' (unmistakably dugongs). Neither our dugong sighting rate, nor our ability to identify dugongs with certainty, were affected by UAV altitude. Turbidity was the only environmental variable significantly affecting the dugong sighting rate. Our results suggest that UAV systems may not be limited by sea state conditions in the same manner as sightings from manned surveys. The overlap between images proved valuable for detecting animals that were masked by sun glitter in the corners of images, and identifying animals initially captured at awkward body angles. This initial trial of a basic camera system has successfully demonstrated that the ScanEagle UAV has great potential as a tool for marine mammal aerial surveys. PMID:24223967

  5. Unmanned Aerial Vehicles (UAVs) for Surveying Marine Fauna: A Dugong Case Study

    PubMed Central

    Hodgson, Amanda; Kelly, Natalie; Peel, David

    2013-01-01

    Aerial surveys of marine mammals are routinely conducted to assess and monitor species’ habitat use and population status. In Australia, dugongs (Dugong dugon) are regularly surveyed and long-term datasets have formed the basis for defining habitat of high conservation value and risk assessments of human impacts. Unmanned aerial vehicles (UAVs) may facilitate more accurate, human-risk free, and cheaper aerial surveys. We undertook the first Australian UAV survey trial in Shark Bay, western Australia. We conducted seven flights of the ScanEagle UAV, mounted with a digital SLR camera payload. During each flight, ten transects covering a 1.3 km2 area frequently used by dugongs, were flown at 500, 750 and 1000 ft. Image (photograph) capture was controlled via the Ground Control Station and the capture rate was scheduled to achieve a prescribed 10% overlap between images along transect lines. Images were manually reviewed post hoc for animals and scored according to sun glitter, Beaufort Sea state and turbidity. We captured 6243 images, 627 containing dugongs. We also identified whales, dolphins, turtles and a range of other fauna. Of all possible dugong sightings, 95% (CI = 90%, 98%) were subjectively classed as ‘certain’ (unmistakably dugongs). Neither our dugong sighting rate, nor our ability to identify dugongs with certainty, were affected by UAV altitude. Turbidity was the only environmental variable significantly affecting the dugong sighting rate. Our results suggest that UAV systems may not be limited by sea state conditions in the same manner as sightings from manned surveys. The overlap between images proved valuable for detecting animals that were masked by sun glitter in the corners of images, and identifying animals initially captured at awkward body angles. This initial trial of a basic camera system has successfully demonstrated that the ScanEagle UAV has great potential as a tool for marine mammal aerial surveys. PMID:24223967

  6. NURE aerial gamma ray and magnetic detail survey of portions of northeast Washington. Final report

    SciTech Connect

    Not Available

    1981-11-01

    The Northeast Washington Survey was performed under the United States Department of Energy's National Uranium Resource Evaluation (NURE) Program, which is designed to provide radioelement distribution information to assist in assessing the uraniferous material potential of the United States. The radiometric and ancilliary data were digitally recorded and processed. The results are presented in the form of stacked profiles, contour maps, flight path maps, statistical tables and frequency distribution histograms. These graphical outputs are presented at a scale of 1:62,500 and are contained in the individual Volume 2 reports.

  7. An aerial radiological survey of the Portsmouth Gaseous Diffusion Plant and surrounding area, Portsmouth, Ohio

    SciTech Connect

    Not Available

    1992-09-01

    An aerial radiological survey was conducted from July 11--20, 1990, over an 83-square-kilometer (32-square-mile) area surrounding the Portsmouth Gaseous Diffusion Plant located near Portsmouth, Ohio. The survey was conducted at a nominal altitude of 91 meters (300 feet) with line spacings of 122 meters (400 feet). A contour map of the terrestrial gamma exposure rate extrapolated to 1 meter above ground level (AGL) was prepared and overlaid on an aerial photograph and a set of United States Geological Survey (USGS) topographic maps of the area. The terrestrial exposure rates varied from about 7 to 14 microroentgens per hour ([mu]R/h) at 1 meter above the ground. Analysis of the data for man-made sources and for the uranium decay product, protactinium-234m ([sup 234m]Pa), showed five sites within the boundaries of the Portsmouth Gaseous Diffusion Plant with elevated readings. Spectra obtained in the vicinity of the buildings at the Portsmouth Gaseous Diffusion Plant showed the presence of [sup 234m]Pa, a uranium-238 ([sup 238]U) decay product. In addition, spectral analysis of the data obtained over the processing plant facility showed gamma activity indicative of uranium-235 ([sup 234]U). No other man-made gamma ray emitting radioactive material was detected, either on or off the Portsmouth Gaseous Diffusion Plant property. Soil samples and pressurized ion chamber measurements were obtained at five different locations within the survey boundlaries to support the aerial data.

  8. An aerial radiological survey of the Fernald Environmental Management Project and surrounding area, Fernald, Ohio

    SciTech Connect

    Phoenix, K.A.

    1997-04-01

    An aerial radiological survey was conducted from May 17--22, 1994, over a 36 square mile (93 square kilometer) area centered on the Fernald Environmental Management Project located in Fernald, Ohio. The purpose of the survey was to detect anomalous gamma radiation in the environment surrounding the plant. The survey was conducted at a nominal altitude of 150 feet (46 meters) with a line spacing of 250 feet (76 meters). A contour map of the terrestrial gamma exposure rate extrapolated to 1 meter (3.3 feet) above ground was prepared and overlaid on an aerial photograph of the area. Analysis of the data for man made sources showed five sites within the boundaries of the Fernald Environmental Management Project having elevated readings. The exposure rates outside the plant boundary were typical of naturally occurring background radiation. Soil samples and pressurized ion chamber measurements were obtained at four locations within the survey boundaries to supplement the aerial data. It was concluded that although the radionuclides identified in the high-exposure-rate areas are naturally occurring, the levels encountered are greatly enhanced due to industrial activities at the plant.

  9. Summary of 1987 and 1988 manatee aerial surveys at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Provancha, Jane A.; Provancha, Mark J.

    1989-01-01

    Aerial surveys of manatees conducted since 1977 at Kennedy Space Center (KSC) have provided a very useful and cost effective monitoring tool in the assessment of abundance and distribution of manatees in the northern Banana River. Data collected in the mid 1980's as part of the KSC Environmental Monitoring Program indicated that the numbers of manatees utilizing the northern Banana River had increased dramatically from earlier years and that the animals appeared to have changed their distribution patterns within the area as well (Provancha and Provancha 1988). United States Fish and Wildlife Service (USFWS) and Florida Department of Natural Resources (FLDNR) conducted bimonthly aerial surveys in 1986 for the entire Florida east coast. Their data clearly show that the Banana River has the highest concentration of manatees during the non-winter months when compared to all other segments of the east coast surveys (B. Wiegle/FLDNR, unpublished data). They further show that, in spring, an average of 71 percent of the manatees in Brevard county were located in the Banana River. During that period 85 percent of the animals were north of the NASA Causeway (State Road (SR) 402) in the KSC security zone. These data indicate the importance of the KSC waters to the Florida east coast manatee population. We reinitiated KSC surveys in 1987 to document distributions and numbers of manatees during the spring influx. Aerial censuses were continued throughout the year in 1988 and this report provides a summary of our findings for the two years.

  10. Unmanned Aerial Survey of Fallen Trees in a Deciduous Broadleaved Forest in Eastern Japan

    PubMed Central

    Inoue, Tomoharu; Nagai, Shin; Yamashita, Satoshi; Fadaei, Hadi; Ishii, Reiichiro; Okabe, Kimiko; Taki, Hisatomo; Honda, Yoshiaki; Kajiwara, Koji; Suzuki, Rikie

    2014-01-01

    Since fallen trees are a key factor in biodiversity and biogeochemical cycling, information about their spatial distribution is of use in determining species distribution and nutrient and carbon cycling in forest ecosystems. Ground-based surveys are both time consuming and labour intensive. Remote-sensing technology can reduce these costs. Here, we used high-spatial-resolution aerial photographs (0.5–1.0 cm per pixel) taken from an unmanned aerial vehicle (UAV) to survey fallen trees in a deciduous broadleaved forest in eastern Japan. In nine sub-plots we found a total of 44 fallen trees by ground survey. From the aerial photographs, we identified 80% to 90% of fallen trees that were >30 cm in diameter or >10 m in length, but missed many that were narrower or shorter. This failure may be due to the similarity of fallen trees to trunks and branches of standing trees or masking by standing trees. Views of the same point from different angles may improve the detection rate because they would provide more opportunity to detect fallen trees hidden by standing trees. Our results suggest that UAV surveys will make it possible to monitor the spatial and temporal variations in forest structure and function at lower cost. PMID:25279817

  11. Unmanned aerial survey of fallen trees in a deciduous broadleaved forest in eastern Japan.

    PubMed

    Inoue, Tomoharu; Nagai, Shin; Yamashita, Satoshi; Fadaei, Hadi; Ishii, Reiichiro; Okabe, Kimiko; Taki, Hisatomo; Honda, Yoshiaki; Kajiwara, Koji; Suzuki, Rikie

    2014-01-01

    Since fallen trees are a key factor in biodiversity and biogeochemical cycling, information about their spatial distribution is of use in determining species distribution and nutrient and carbon cycling in forest ecosystems. Ground-based surveys are both time consuming and labour intensive. Remote-sensing technology can reduce these costs. Here, we used high-spatial-resolution aerial photographs (0.5-1.0 cm per pixel) taken from an unmanned aerial vehicle (UAV) to survey fallen trees in a deciduous broadleaved forest in eastern Japan. In nine sub-plots we found a total of 44 fallen trees by ground survey. From the aerial photographs, we identified 80% to 90% of fallen trees that were >30 cm in diameter or >10 m in length, but missed many that were narrower or shorter. This failure may be due to the similarity of fallen trees to trunks and branches of standing trees or masking by standing trees. Views of the same point from different angles may improve the detection rate because they would provide more opportunity to detect fallen trees hidden by standing trees. Our results suggest that UAV surveys will make it possible to monitor the spatial and temporal variations in forest structure and function at lower cost.

  12. Uav Aerial Survey: Accuracy Estimation for Automatically Generated Dense Digital Surface Model and Orthothoto Plan

    NASA Astrophysics Data System (ADS)

    Altyntsev, M. A.; Arbuzov, S. A.; Popov, R. A.; Tsoi, G. V.; Gromov, M. O.

    2016-06-01

    A dense digital surface model is one of the products generated by using UAV aerial survey data. Today more and more specialized software are supplied with modules for generating such kind of models. The procedure for dense digital model generation can be completely or partly automated. Due to the lack of reliable criterion of accuracy estimation it is rather complicated to judge the generation validity of such models. One of such criterion can be mobile laser scanning data as a source for the detailed accuracy estimation of the dense digital surface model generation. These data may be also used to estimate the accuracy of digital orthophoto plans created by using UAV aerial survey data. The results of accuracy estimation for both kinds of products are presented in the paper.

  13. Estimation and correction of visibility bias in aerial surveys of wintering ducks

    USGS Publications Warehouse

    Pearse, A.T.; Gerard, P.D.; Dinsmore, S.J.; Kaminski, R.M.; Reinecke, K.J.

    2008-01-01

    Incomplete detection of all individuals leading to negative bias in abundance estimates is a pervasive source of error in aerial surveys of wildlife, and correcting that bias is a critical step in improving surveys. We conducted experiments using duck decoys as surrogates for live ducks to estimate bias associated with surveys of wintering ducks in Mississippi, USA. We found detection of decoy groups was related to wetland cover type (open vs. forested), group size (1?100 decoys), and interaction of these variables. Observers who detected decoy groups reported counts that averaged 78% of the decoys actually present, and this counting bias was not influenced by either covariate cited above. We integrated this sightability model into estimation procedures for our sample surveys with weight adjustments derived from probabilities of group detection (estimated by logistic regression) and count bias. To estimate variances of abundance estimates, we used bootstrap resampling of transects included in aerial surveys and data from the bias-correction experiment. When we implemented bias correction procedures on data from a field survey conducted in January 2004, we found bias-corrected estimates of abundance increased 36?42%, and associated standard errors increased 38?55%, depending on species or group estimated. We deemed our method successful for integrating correction of visibility bias in an existing sample survey design for wintering ducks in Mississippi, and we believe this procedure could be implemented in a variety of sampling problems for other locations and species.

  14. Magnetic HGI, radiometric surveys prove cost-effective in W. Canada

    SciTech Connect

    LeSchack, L.A.

    1997-05-26

    The Rumsey Leduc reef (Late Devonian) in Central Alberta is an after-the-fact case history that illustrates the congruence of horizontal gradient intensity and seismic anomalies. The Rumsey reef is situated on the Feen-Big Valley Shoal near Stettler, Alberta. The geology of that shoal was described by Andrichuk. Andrichuk observed that at least 30 m of secondary dolomites indicative of subsequent Leduc reef formation can be seen underlying the Erskine, Stettler, Fenn, and Big Valley Leduc reef fields on the shoal. They further suggested that because this dolomitic trend extends about 7 miles southwest of Big Valley field, that area to the southwest may well contain productive reef buildups as yet undiscovered (in 1958). The Rumsey reef, discovered in that are in 1982, is the most significant new productive Leduc build-up discovered on the shoal since 1958. Subsequent to the Rumsey discovery, Gulf conducted a 3D seismic survey to determine the full extent of the reef. In 1994 Gulf participated in a joint project with the author to share and make public the 3D survey in exchange for the author`s HGI and DRAD survey of the same area. Gulf provided the 3D survey only after the author presented his survey results. The paper discusses results from these surveys as well as survey costs.

  15. Profiles of gamma-ray and magnetic data from aerial surveys over the conterminous United States

    USGS Publications Warehouse

    Duval, Joseph S.; Riggle, Frederic E.

    1999-01-01

    This publication contains images for the conterminous U.S. generated from geophysical data, software for displaying and analyzing the images, and software for displaying and examining the profile data from the aerial surveys flown as part of the National Uranium Resource Evaluation (NURE) Program of the U.S. Department of Energy. The images included are of gamma-ray data (uranium, thorium, and potassium channels), Bouguer gravity data, isostatic residual gravity data, aeromagnetic anomalies, topography, and topography with bathymetry.

  16. Aerial remote sensing surveys, geophysical characterization. Final report

    SciTech Connect

    Labson, V.F.; Pellerin, L.; Anderson, W.L.

    1998-06-01

    The application of helicopter electromagnetic (HEM) and magnetic methods to the requirements of the environmental restoration of the Oak Ridge Reservation (ORR) demand the use of advanced, nontraditional methods of data acquisition, processing and interpretation. The cooperative study by the U.S. Geological Survey (USGS), Oak Ridge National Laboratory (ORNL), and University of California (UCB) has resulted in the planning and supervision of data acquisition, the development of tools for data processing and interpretation, and an intensive application of the methods developed. This final report consists of a series of publications which the USGS collaborated with the ORNL technical staff. These reports represent the full scope of the USGS assistance. Copies of the reports and papers are included in the Appendix. The primary goals of this effort were to quantify the effectiveness of the geophysical methods applied in the survey of the ORR for the identification of buried waste, hydrogeologic pathways by which contamination could migrate through or off the site, and for the more accurate geologic mapping of the ORR. The objectives in buried waste identification are the accurate description of the source of the geophysical anomaly and the determination of the limits of resolution of the geophysical methods to acknowledge what we might have missed. The study of hydrogeologic pathways concentrated on the identification of karst features in the limestone underlying much of the ORR. Work in this study has indicated to the ORNL staff that these karst features can be located from the airborne geophysics. The defining characteristic of this helicopter geophysical study is the collaborative nature of the effort. Each task in which the USGS was involved has included a designated staff member from the Oak Ridge National Laboratory.

  17. Low-altitude aerial color digital photographic survey of the San Andreas Fault

    USGS Publications Warehouse

    Lynch, David K.; Hudnut, Kenneth W.; Dearborn, David S.P.

    2010-01-01

    Ever since 1858, when Gaspard-Félix Tournachon (pen name Félix Nadar) took the first aerial photograph (Professional Aerial Photographers Association 2009), the scientific value and popular appeal of such pictures have been widely recognized. Indeed, Nadar patented the idea of using aerial photographs in mapmaking and surveying. Since then, aerial imagery has flourished, eventually making the leap to space and to wavelengths outside the visible range. Yet until recently, the availability of such surveys has been limited to technical organizations with significant resources. Geolocation required extensive time and equipment, and distribution was costly and slow. While these situations still plague older surveys, modern digital photography and lidar systems acquire well-calibrated and easily shared imagery, although expensive, platform-specific software is sometimes still needed to manage and analyze the data. With current consumer-level electronics (cameras and computers) and broadband internet access, acquisition and distribution of large imaging data sets are now possible for virtually anyone. In this paper we demonstrate a simple, low-cost means of obtaining useful aerial imagery by reporting two new, high-resolution, low-cost, color digital photographic surveys of selected portions of the San Andreas fault in California. All pictures are in standard jpeg format. The first set of imagery covers a 92-km-long section of the fault in Kern and San Luis Obispo counties and includes the entire Carrizo Plain. The second covers the region from Lake of the Woods to Cajon Pass in Kern, Los Angeles, and San Bernardino counties (151 km) and includes Lone Pine Canyon soon after the ground was largely denuded by the Sheep Fire of October 2009. The first survey produced a total of 1,454 oblique digital photographs (4,288 x 2,848 pixels, average 6 Mb each) and the second produced 3,762 nadir images from an elevation of approximately 150 m above ground level (AGL) on the

  18. Evaluation of an aerial survey to estimate abundance of wintering ducks in Mississippi

    USGS Publications Warehouse

    Pearse, A.T.; Dinsmore, S.J.; Kaminski, R.M.; Reinecke, K.J.

    2008-01-01

    Researchers have successfully designed aerial surveys that provided precise estimates of wintering populations of ducks over large physiographic regions, yet few conservation agencies have adopted these probability-based sampling designs for their surveys. We designed and evaluated an aerial survey to estimate abundance of wintering mallards {Anas platyrhynchos), dabbling ducks (tribe Anatini) other than mallards, diving ducks (tribes Aythini, Mergini, and Oxyurini), and total ducks in western Mississippi, USA. We used design-based sampling of fixed width transects to estimate population indices (I?), and we used model-based methods to correct population indices for visibility bias and estimate population abundance (N?) for 14 surveys during winters 2002-2004. Correcting for bias increased estimates of mallards, other dabbling ducks, and diving ducks by an average of 40-48% among all surveys and contributed 48-61% of the estimated variance of N?. However, mean-squared errors were consistently less for N? than I?. Estimates of N? met our goals for precision (CV < 15%) in 7 of 14 surveys for mallards, 5 surveys for other dabbling ducks, no surveys for diving ducks, and 10 surveys for total ducks. Generally, we estimated more mallards and other dabbling ducks in mid- and late winter (Jan-Feb) than early winter (Nov-Dec) and determined that population indices from the late 1980s were nearly 3 times greater than those from our study. We developed a method to display relative densities of ducks spatially as an additional application of survey data. Our study advanced methods of estimating abundance of wintering waterfowl, and we recommend this design for continued monitoring of wintering ducks in western Mississippi and similar physiographic regions.

  19. Evaluation of an aerial survey to estimate abundance of wintering ducks in Mississippi

    USGS Publications Warehouse

    Pearse, A.T.; Dinsmore, S.J.; Kaminski, R.M.; Reinecke, K.J.

    2008-01-01

    Researchers have successfully designed aerial surveys that provided precise estimates of wintering populations of ducks over large physiographic regions, yet few conservation agencies have adopted these probability-based sampling designs for their surveys. We designed and evaluated an aerial survey to estimate abundance of wintering mallards {Anas platyrhynchos), dabbling ducks (tribe Anatini) other than mallards, diving ducks (tribes Aythini, Mergini, and Oxyurini), and total ducks in western Mississippi, USA. We used design-based sampling of fixed width transects to estimate population indices (I??), and we used model-based methods to correct population indices for visibility bias and estimate population abundance (N??) for 14 surveys during winters 2002-2004. Correcting for bias increased estimates of mallards, other dabbling ducks, and diving ducks by an average of 40-48% among all surveys and contributed 48-61% of the estimated variance of N??. However, mean-squared errors were consistently less for N?? than I??. Estimates of N?? met our goals for precision (CV ??? 15%) in 7 of 14 surveys for mallards, 5 surveys for other dabbling ducks, no surveys for diving ducks, and 10 surveys for total ducks. Generally, we estimated more mallards and other dabbling ducks in mid- and late winter (Jan-Feb) than early winter (Nov-Dec) and determined that population indices from the late 1980s were nearly 3 times greater than those from our study. We developed a method to display relative densities of ducks spatially as an additional application of survey data. Our study advanced methods of estimating abundance of wintering waterfowl, and we recommend this design for continued monitoring of wintering ducks in western Mississippi and similar physiographic regions.

  20. An aerial radiological survey of the Lawrence Livermore National Laboratory and surrounding area, Livermore, California

    SciTech Connect

    Not Available

    1990-07-01

    An aerial radiological survey was conducted over four areas in the California cities of Dublin, Livermore, and Tracy from 8 through 29 April 1986. Although a similar aerial survey had been previously conducted over Livermore and Tracy in 1975, this was the first such survey performed over the city of Dublin. The surveyed areas included the Camp Parks training facility in Dublin; the Las Positas Golf Course and the Livermore sewage treatment plant in west Livermore; the Lawrence Livermore National Laboratory (LLNL) facilities in east Livermore; and the LLNL facilities at Site 300 located three miles southwest of the city of Tracy, California. Only naturally-occurring radiation was detected over the Camp Parks area in Dublin and over the golf course and sewage treatment plant in west Livermore. Man-made radionuclides were detected over the LLNL facilities in east Livermore and over Site 300. These man-made sources were typical of source storage and radiological activities conducted at the facilities. In areas where only naturally-occurring gamma emitters were detected, the observed range of activity was essentially the same in both the 1975 and 1986 surveys. 14 figs., 3 tabs.

  1. Usefulness of systematic in situ gamma-ray surveys in the radiometric characterization of natural systems with poorly contrasting geological features (examples from NE of Portugal).

    PubMed

    Duarte, Pedro; Mateus, António; Paiva, Isabel; Trindade, Romão; Santos, Pedro

    2011-02-01

    This paper focuses on the starting point of various studies that are being carried out in two possible locations being considered to host a hypothetical site for a repository for low and intermediate level radioactive waste (LILW) produced in Portugal in compliance with international requirements on the long-term safety of this kind of repository. Previous studies concerning the geology of the much larger geographical areas where these locations are included were fundamental in the choice of these locations and for the design of the survey strategy. One of the fundamental assessment studies during the site-selection is the overall radiological characterization of the locations and its relation to the geology. This paper pretends to show the adequability of using a fast and reasonably inexpensive survey technique such as in situ gamma-ray portable detectors, to access the radiometric response of the systems in study by providing the radiometric mapping of the areas. The existence of adequate radiometric maps represents a critical pre-requisite to constrain both the number and spatial distribution of samples to be collected for further analysis, sustaining as well the subsequent extrapolation of results needed to fully characterise the surveyed system. Both areas were surveyed using portable gamma-ray spectrometers with NaI(Tl) detectors. In situ gamma-ray measurements have clearly shown not only the poorly contrasting geological features, but also their differences representing: (i) a deformed/metamorphosed ophiolite complex and (ii) a monotonous meta-sedimentary sequence. The radiometric maps obtained have show heterogeneities that reflect mostly changes in rock-forming mineral assemblages, even in the presence of small variations of gamma radiation. These maps support objective criteria about the number/distribution of samples to be collected for subsequent comprehensive studies and reinforce the valuable contribution of in situ gamma spectrometry to assess, in

  2. An aerial radiological survey of the Seabrook Nuclear Station and surrounding area, Seabrook, New Hampshire, July 1988

    SciTech Connect

    Not Available

    1989-09-01

    An aerial radiological survey was conducted over the Seabrook Nuclear Station, Seabrook, New Hampshire, during the period 6 July through 14 July 1988. The purpose of the 247-square-kilometer (96-square-mile) survey was to document the terrestrial gamma environment of the station and surrounding area. An exposure rate contour map at 1 meter above ground level (AGL) was constructed from the gamma data and overlaid on an aerial photograph and map of the area. Exposure rates measured in the area typically ranged form 9 to 12 microroentgens per hour ({mu}R/h). In areas where water shielded the earth, lower exposure rates were measured. Ground-based exposure rate measurements and soil samples were obtained to support the aerial data. Oblique aerial photographs of the station were also acquired during the survey. 9 refs., 5 figs., 1 tab.

  3. An aerial radiological survey of the southwest drainage basin area of the Savannah River Site

    SciTech Connect

    Feimster, E.L.

    1994-04-01

    An aerial radiological survey was conducted over a 106-square-mile area of the Savannah River Site (SRS), formerly the Savannah River Plant. The survey was conducted from August 24 through September 8, 1988, to collect baseline radiological data over the area. Both natural and man-made gamma emitting radionuclides were detected in the area. The detected man-made sources were confined to creeks, branches, and SRS facilities in the surveyed area and were a result of SRS operations. Naturally-occurring radiation levels were consistent with those levels detected in adjacent areas during previous surveys. The annual dose levels were within the range of levels found throughout the United States.

  4. An aerial radiological survey of the neutron products company and surrounding area

    SciTech Connect

    Vojtech, R.J.

    1994-12-01

    An aerial radiological survey was conducted from November 1-10, 1993, over the Neutron Products Company and neighboring areas. The company, located in Dickerson, Maryland, has two major operations involving the radioisotope cobalt-60 ({sup 60}Co)-the manufacture of commercial {sup 60}Co sources and the sterilization of medical products by exposure to radiation. The sterilization facility consists of two {sup 60}Co sources with activities of approximately 500,000 and 1,500,000 Ci, respectively. The purpose of the aerial survey was to detect and document any anomalous gamma-emitting radionuclides in the environment which may have resulted from operations of the Neutron Products Company. The survey covered two areas: the first was a 6.5- by 6.5-kilometer area centered over the Neutron Products facility; the second area was a 2- by 2.5-kilometer region surrounding a waste pumping station on Muddy Branch in Gaithersburg, Maryland. This site is approximately fifteen kilometers southeast of the Neutron Products facility and was included because sanitary and other liquid waste materials from the plant site are being disposed of at the pumping station. Contour maps showing gamma radiation exposure rates at 1 meter above ground level, overlaid on an aerial photo of the area, were constructed from the data measured during the flights. The exposure rates measured within the survey regions were generally uniform and typical of rates resulting from natural background radiation. Only one area showed an enhanced exposure rate not attributable to natural background. This area, located directly over the Neutron Products facility, was analyzed and identified as {sup 60}Co, the radioisotope used in the irradiation and source production operations conducted at the Neutron Products Company. The measurements over the Muddy Branch area in Gaithersburg were typical of natural background radiation and showed no evidence of {sup 60}Co or any other man-made radionuclide.

  5. An Aerial Radiological Survey of the Las Vegas Strip and Adjacent Areas

    SciTech Connect

    Wasiolek, Piotr

    2009-02-01

    As proficiency training for the Radiological Mapping mission of the Aerial Measuring System (AMS), a survey team from the Remote Sensing Laboratory–Nellis (RSL-Nellis) conducted an aerial radiological survey of the Las Vegas Strip and adjacent areas on December 29, 2008. This survey was one of the bi-annual surveys carried in support of the city of Las Vegas Police Department (LVPD) before significant events on the Las Vegas Strip: e.g., the annual New Year’s Eve and July Fourth celebrations. The AMS operation and appropriate law enforcement agencies selected this area as an appropriate urban location to exercise AMS capability for mapping environmental radiation and searching for man-made radioactive sources. The surveys covered approximately 11 square miles. Each survey required a 2.5-hour-long flight, performed at an altitude of 300 ft above ground level (AGL) at a line spacing of 600 ft. Water line and test line flights are conducted over the Lake Mead and Government Wash areas to determine the non-terrestrial background contributed by aircraft, radon, and cosmic activity, and to determine the altitude-dependent air mass correction. The data were collected by the AMS data acquisition system (REDAR V) using an array of twelve 2" x 4" x 16" sodium iodide (NaI) detectors flown on-board a twin-engine Bell 412 helicopter. Gamma energy spectral data were collected second-by-second over the survey area. This spectral data allows the system to distinguish between natural terrestrial background contributions and man-made radioisotope contributions. Spectral data can also be used to identify specific man-made radioactive isotopes. Data geo-locations were determined with a Real-Time Differential Global Positioning System (RDGPS).

  6. Surveying a Landslide in a Road Embankment Using Unmanned Aerial Vehicle Photogrammetry

    NASA Astrophysics Data System (ADS)

    Carvajal, F.; Agüera, F.; Pérez, M.

    2011-09-01

    Most of the works of civil engineering, and some others applications, need to be designed using a basic cartography with a suitable scale to the accuracy and extension of the plot.The Unmanned Aerial Vehicle (UAV) Photogrammetry covers the gap between classical manned aerial photogrammetry and hand- made surveying techniques because it works in the close-range domain, combining aerial and terrestrial photogrammetry, but also introduces low-cost alternatives. The aim of this work is developing of an accurate and low-cost method to characterize landslides located on the size of a road. It was applied at the kilometric point 339 belonging to the A92 dual carriageway, in the Abla municipal term, province of Almeria, Spain. A photogrammetric project was carried out from a set of images taken from an md4-200 Microdrones with an on-board calibrated camera 12 Megapixels Pentax Optio A40. The flight was previously planned to cover the whole extension of the embankment with three passes composed of 18 photos each one. All the images were taken with the vertical axe and it was registered 85% and 60% longitudinal and transversal overlaps respectively. The accuracy of the products, with planimetric and altimetric errors of 0.049 and 0.108m repectively, lets to take measurements of the landslide and projecting preventive and palliative actuations.

  7. Aerial Magnetic, Electromagnetic, and Gamma-ray Survey, Berrien County, Michigan

    USGS Publications Warehouse

    Duval, Joseph S.; Pierce, Herbert A.; Daniels, David L.; Mars, John L.; Webring, Michael W.; Hildenbrand, Thomas G.

    2002-01-01

    This publication includes maps, grids, and flightline databases of a detailed aerial survey and maps and grids of satellite data in Berrien County, Michigan. The purpose of the survey was to map aquifers in glacial terrains. This was accomplished by using a DIGHEMVRES mufti-coil, mufti-frequency electromagnetic system supplemented by a high sensitivity cesium magnetometer and 256-channel spectrometer. The information from these sensors was processed to produce maps, which display the conductive, magnetic and radioactive properties of the survey area. A GPS electronic navigation system ensured accurate positioning of the geophysical data. This report also includes data from the advanced spaceborne thermal emission and reflection (ASTER) radiometer. ASTER measures thermal emission and reflection data for 14 bands of the spectrum.

  8. Aerial Vehicle Surveys of other Planetary Atmospheres and Surfaces: Imaging, Remote-sensing, and Autonomy Technology Requirements

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Gregory; Ippolito, Corey; Alena, Rick

    2005-01-01

    The objective of this paper is to review the anticipated imaging and remote-sensing technology requirements for aerial vehicle survey missions to other planetary bodies in our Solar system that can support in-atmosphere flight. In the not too distant future such planetary aerial vehicle (a.k.a. aerial explorers) exploration missions will become feasible. Imaging and remote-sensing observations will be a key objective for these missions. Accordingly, it is imperative that optimal solutions in terms of imaging acquisition and real-time autonomous analysis of image data sets be developed for such vehicles.

  9. An Aerial Radiological Survey of Selected Areas of Area 18 - Nevada Test Site

    SciTech Connect

    Craig Lyons

    2009-07-31

    As part of the proficiency training for the Radiological Mapping mission of the Aerial Measuring System (AMS), a survey team from the Remote Sensing Laboratory-Nellis (RSL-Nellis) conducted an aerial radiological survey of selected areas of Area 18 of the Nevada Test Site (NTS) for the purpose of mapping man-made radiation deposited as a result of the Johnnie Boy and Little Feller I tests. The survey area centered over the Johnnie Boy ground zero but also included the ground zero and deposition area of the Little Feller I test, approximately 7,000 feet (2133 meters) southeast of the Johnnie Boy site. The survey was conducted in one flight. The completed survey covered a total of 4.0 square miles. The flight lines (with the turns) over the surveyed areas are presented in Figure 1. One 2.5-hour-long flight was performed at an altitude of 100 ft above ground level (AGL) with 200 foot flight-line spacing. A test-line flight was conducted near the Desert Rock Airstrip to ensure quality control of the data. The test line is not shown in Figure 1. However, Figure 1 does include the flight lines for a ''perimeter'' flight. The path traced by the helicopter flying over distinct roads within the survey area can be used to overlay the survey data on a base map or image. The flight survey lines were flown in an east-west orientation perpendicular to the deposition patterns for both sites. This technique provides better spatial resolution when contouring the data. The data were collected by the AMS data acquisition system (REDAR V) using an array of twelve 2-inch x 4-inch x 16-inch sodium iodide (NaI) detectors flown on-board a twin-engine Bell 412 helicopter. Data, in the form of gamma energy spectra, were collected every second over the course of the survey and were geo-referenced using a differential Global Positioning System. Spectral data allows the system to distinguish between ordinary fluctuations in natural background radiation levels and the signature produced by man

  10. Sea otter abundance in Kenai Fjords national Park: results from the 2010 aerial survey

    USGS Publications Warehouse

    Coletti, Heather A.; Bodkin, James L.; Esslinger, George

    2011-01-01

    Fjord, Nuka Bay and Nuka Island. All observed otters were in the high density stratum, defined as the 0 m to 40 m depth contour and minimum distances from shore, while no sea otters were observed in the low density stratum, which is defined as the area within the 40m to 100 m depth contour. We recommend that prior to the next aerial sea otter survey in KEFJ (scheduled for 2013), a power simulation be conducted to evaluate methods to improve precision of estimates and the ability to detect change.

  11. A double-observer method to estimate detection rate during aerial waterfowl surveys

    USGS Publications Warehouse

    Koneff, M.D.; Royle, J. Andrew; Otto, M.C.; Wortham, J.S.; Bidwell, J.K.

    2008-01-01

    We evaluated double-observer methods for aerial surveys as a means to adjust counts of waterfowl for incomplete detection. We conducted our study in eastern Canada and the northeast United States utilizing 3 aerial-survey crews flying 3 different types of fixed-wing aircraft. We reconciled counts of front- and rear-seat observers immediately following an observation by the rear-seat observer (i.e., on-the-fly reconciliation). We evaluated 6 a priori models containing a combination of several factors thought to influence detection probability including observer, seat position, aircraft type, and group size. We analyzed data for American black ducks (Anas rubripes) and mallards (A. platyrhynchos), which are among the most abundant duck species in this region. The best-supported model for both black ducks and mallards included observer effects. Sample sizes of black ducks were sufficient to estimate observer-specific detection rates for each crew. Estimated detection rates for black ducks were 0.62 (SE = 0.10), 0.63 (SE = 0.06), and 0.74 (SE = 0.07) for pilot-observers, 0.61 (SE = 0.08), 0.62 (SE = 0.06), and 0.81 (SE = 0.07) for other front-seat observers, and 0.43 (SE = 0.05), 0.58 (SE = 0.06), and 0.73 (SE = 0.04) for rear-seat observers. For mallards, sample sizes were adequate to generate stable maximum-likelihood estimates of observer-specific detection rates for only one aerial crew. Estimated observer-specific detection rates for that crew were 0.84 (SE = 0.04) for the pilot-observer, 0.74 (SE = 0.05) for the other front-seat observer, and 0.47 (SE = 0.03) for the rear-seat observer. Estimated observer detection rates were confounded by the position of the seat occupied by an observer, because observers did not switch seats, and by land-cover because vegetation and landform varied among crew areas. Double-observer methods with on-the-fly reconciliation, although not without challenges, offer one viable option to account for detection bias in aerial waterfowl

  12. An Aerial Radiological Survey of the City of North Las Vegas (Downtown) and the Motor Speedway

    SciTech Connect

    Piotr Wasiolek

    2007-12-01

    As part of the proficiency training for the Radiological Mapping mission of the Aerial Measuring System (AMS), a survey team from the Remote Sensing Laboratory-Nellis (RSL-Nellis) conducted an aerial radiological survey on December 11-12, 2007, with the purpose of mapping natural radiation background and locating any man-made radioactive sources. The survey covered 19.4 square miles (9.2 square miles over the downtown area of the City of North Las Vegas and 10.2 square miles over the Las Vegas Motor Speedway [LVMS]). The flight lines over the surveyed areas are presented in Figures 1 and 2. A total of four 2.5-hour-long flights were performed at an altitude of 150 ft above ground level (AGL) with 300 ft of flight line spacing. Water line and test line flights were conducted over the Lake Mead and Government Wash areas to ensure quality control of the data. The data were collected by the AMS data acquisition system-REDAR V using an array of twelve 2-inch x 4-inch x 16-inch sodium iodide (NaI) detectors flown on-board a twin-engine Bell 412 helicopter. Data in the form of gamma energy spectra were collected continually (every second) over the course of the survey and were geo-referenced using a differential Global Positioning System. Collection of spectral data allows the system to distinguish between ordinary fluctuations in natural background radiation levels and the signature produced by man-made radioisotopes sources. Spectral data can also be used to identify specific radioactive isotopes. As a courtesy service with the approval of the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office, RSL-Nellis is providing this summary to the office of the Mayor of City of North Las Vegas and LVMS security along with the gross counts-based exposure rate and man-made counts maps.

  13. Airborne geophysical surveys in the north-central region of Goias (Brazil): implications for radiometric characterization of tropical soils.

    PubMed

    Guimaraes, Suze Nei P; Hamza, Valiya M; da Silva, Joney Justo

    2013-02-01

    Progress obtained in analysis aerogammaspectrometric and aeromagnetic survey data for the north-central region of the state of Goias (Brazil) are presented. The results obtained have allowed not only determination of the abundances of naturally radioactive elements but also new insights into the processes that determine the radiometric characteristics of the main soil types. There are indications that the radioelement abundances of soils are not only related to their physical properties, but also chemical characteristics of source rocks from which they are derived. For example, oxisol soils derived from the felsic source rocks of the Mara Rosa and Green stone belts have equivalent uranium (eU) values higher than 1.7 ppm, while those derived from source rocks of the relatively more basic Uruaçu Group and sediment sequences of Proterozoic age are characterized by eU contents of less than 1 ppm. Oxisol soils of the Median massif, ultisol soils of the Paranoá, Canastra and Araxá Groups, cambisol soils of the Araí Group and plintosol soils of the Bambuí Group constitute an intermediate class with eU contents in the range of 1-1.3 ppm. Equivalent thorium abundances of soil types display similar trends, the range of variation being 4-16 ppm. Potassium abundances on the other hand are rather uniform with values in the range of 1-1.3%, the only exception being the sedimentary sequences of Proterozoic age, which has a mean value of 0.7%. These observations have been considered as indicative of characteristic features of tropical soils in the study area. In this context, we point out the possibility of using results of aerogammaspectrometry surveys as a convenient complementary tool in identifying geochemical zoning of soils in tropical environments. The ratios of eU/K are found to fall in the range of 1-1.7, which is typical of common soils. The ratios of eTh/K exhibit a relatively wide interval, with values in the range of 4-16. The ratios of eTh/eU are found to have

  14. Airborne geophysical surveys in the north-central region of Goias (Brazil): implications for radiometric characterization of tropical soils.

    PubMed

    Guimaraes, Suze Nei P; Hamza, Valiya M; da Silva, Joney Justo

    2013-02-01

    Progress obtained in analysis aerogammaspectrometric and aeromagnetic survey data for the north-central region of the state of Goias (Brazil) are presented. The results obtained have allowed not only determination of the abundances of naturally radioactive elements but also new insights into the processes that determine the radiometric characteristics of the main soil types. There are indications that the radioelement abundances of soils are not only related to their physical properties, but also chemical characteristics of source rocks from which they are derived. For example, oxisol soils derived from the felsic source rocks of the Mara Rosa and Green stone belts have equivalent uranium (eU) values higher than 1.7 ppm, while those derived from source rocks of the relatively more basic Uruaçu Group and sediment sequences of Proterozoic age are characterized by eU contents of less than 1 ppm. Oxisol soils of the Median massif, ultisol soils of the Paranoá, Canastra and Araxá Groups, cambisol soils of the Araí Group and plintosol soils of the Bambuí Group constitute an intermediate class with eU contents in the range of 1-1.3 ppm. Equivalent thorium abundances of soil types display similar trends, the range of variation being 4-16 ppm. Potassium abundances on the other hand are rather uniform with values in the range of 1-1.3%, the only exception being the sedimentary sequences of Proterozoic age, which has a mean value of 0.7%. These observations have been considered as indicative of characteristic features of tropical soils in the study area. In this context, we point out the possibility of using results of aerogammaspectrometry surveys as a convenient complementary tool in identifying geochemical zoning of soils in tropical environments. The ratios of eU/K are found to fall in the range of 1-1.7, which is typical of common soils. The ratios of eTh/K exhibit a relatively wide interval, with values in the range of 4-16. The ratios of eTh/eU are found to have

  15. Aerial Mobile Radiation Survey Following Detonation of a Radiological Dispersal Device.

    PubMed

    Sinclair, Laurel E; Fortin, Richard; Buckle, John L; Coyle, Maurice J; Van Brabant, Reid A; Harvey, Bradley J A; Seywerd, Henry C J; McCurdy, Martin W

    2016-05-01

    A series of experiments was conducted in 2012 at the Defence Research and Development Canada's Suffield Research Centre in Alberta, Canada, during which three radiological dispersal devices were detonated. The detonations released radioactive (140)La into the air, which was then carried by winds and detectable over distances of up to 2 km. The Nuclear Emergency Response group of Natural Resources Canada conducted airborne radiometric surveys shortly following the explosions to map the pattern of radioactivity deposited on the ground. The survey instrument suite was based on large volume NaI(Tl) scintillation gamma radiation detectors, which were situated in a basket mounted exterior to the helicopter and oriented end-to-end to maximize the sensitivity. A standard geophysical data treatment was used to subtract backgrounds and to correct the data to produce counts due to (140)La at the nominal altitude. Sensitivity conversion factors obtained from Monte Carlo simulations were then applied to express the measurements in terms of surface activity concentration in kBq m(-2). Integrated over the survey area, the results indicate that only 20 to 25% of the bomb's original inventory of radioactive material is deposited within a 1.5-km radius of ground zero. These results can be accommodated with a simple model for the RDD behavior and atmospheric dispersion. PMID:27023033

  16. Aerial survey methodology for bison population estimation in Yellowstone National Park

    USGS Publications Warehouse

    Hess, Steven C.

    2002-01-01

    I developed aerial survey methods for statistically rigorous bison population estimation in Yellowstone National Park to support sound resource management decisions and to understand bison ecology. Survey protocols, data recording procedures, a geographic framework, and seasonal stratifications were based on field observations from February 1998-September 2000. The reliability of this framework and strata were tested with long-term data from 1970-1997. I simulated different sample survey designs and compared them to high-effort censuses of well-defined large areas to evaluate effort, precision, and bias. Sample survey designs require much effort and extensive information on the current spatial distribution of bison and therefore do not offer any substantial reduction in time and effort over censuses. I conducted concurrent ground surveys, or 'double sampling' to estimate detection probability during aerial surveys. Group size distribution and habitat strongly affected detection probability. In winter, 75% of the groups and 92% of individual bison were detected on average from aircraft, while in summer, 79% of groups and 97% of individual bison were detected. I also used photography to quantify the bias due to counting large groups of bison accurately and found that undercounting increased with group size and could reach 15%. I compared survey conditions between seasons and identified optimal time windows for conducting surveys in both winter and summer. These windows account for the habitats and total area bison occupy, and group size distribution. Bison became increasingly scattered over the Yellowstone region in smaller groups and more occupied unfavorable habitats as winter progressed. Therefore, the best conditions for winter surveys occur early in the season (Dec-Jan). In summer, bison were most spatially aggregated and occurred in the largest groups by early August. Low variability between surveys and high detection probability provide population estimates

  17. Aerial radiological survey of the area surrounding the UNC Recovery Systems Facility, Wood River Junction, Rhode Island

    SciTech Connect

    Bluitt, C.M.

    1981-05-01

    An aerial radiological survey to measure terrestrial gamma radiation was carried out over the United Nuclear Corporation (UNC) Recovery Systems Facility located near Wood River Junction, Rhode Island. At the time of the survey (August 1979) materials were being processed at the facility. Gamma ray data were collected over a 3.28 km/sup 2/ area centered on the facility by flying north-south lines spaced 60 m apart. Processed data indicated that detected radioisotopes and their associated gamma ray exposure rates were consistent with those expected from normal background emitters, except directly over the UNC Facility. Average exposure rates 1 m above the ground, as calculated from the aerial data, are presented in the form of an isopleth map. No ground sample data were taken at the time of the aerial survey.

  18. Aerial Surveys Using Consumer Electronics: Fast, Cheap and Best of All: Useful!

    NASA Astrophysics Data System (ADS)

    Lynch, D. K.; Hudnut, K. W.; Dearborn, D. S.

    2010-12-01

    We report results from two low-cost, low-altitude, aerial imaging surveys of the San Andreas Fault (SAF) carried out in late 2009. In total 541 km of the fault was imaged with a ground sample distance (pixel size) of a few cm. The two surveys covered the Carrizo Plain and points north to the Choice Valley on 24 Sep 2009, and the SAF between I-5 (Tejon Pass) and I-15 (Cajon Pass) on 29 Dec 2009. Each area was imaged twice, once on the first pass and a short time later on the return pass. The I-5 to I-15 flight included Lone Pine Canyon east of Wrightwood soon after the Sheep Fire of early Oct 2009. Ground that was normally covered by heavy brush was revealed for the first time in many years. The data set consists of 5216 6Mb jpg photographs (31 Gb total) which were posted on the internet within hours of their acquisition. Shortly thereafter they were placed into PICASA web albums for easy browsing. Total cost for both surveys (excluding camera) was about $5000. The pictures were taken with a Nikon D90 with an attached GP-1 receiver that wrote the aircraft’s position into the EXIF file of each photograph. Organization, manipulation and geolocation of the images were done on a Macintosh laptop. All photographs are freely available and carry no copyright. They are in the public domain. Lynch, David K., Kenneth W. Hudnut and David S. P. Dearborn “Low Altitude Aerial Color Digital Photographic Survey of the San Andreas Fault in the Carrizo Plain”, Seismological Research Letters, 81, 453-459 (2010) Full frame image of Wallace Creek. The inset shows a visitor. The pixel size at the center of the frame is about 4 cm.

  19. An Aerial Radiological Survey of Selected Areas of the City of North Las Vegas

    SciTech Connect

    Piotr Wasiolek

    2008-06-01

    As part of the proficiency training for the Radiological Mapping mission of the Aerial Measuring System (AMS), a survey team from the Remote Sensing Laboratory-Nellis (RSL-Nellis) conducted an aerial radiological survey of selected areas of the city of North Las Vegas for the purpose of mapping natural radiation background and locating any man-made radioactive sources. Survey areas were selected in collaboration with the City Manager's office and included four separate areas: (1) Las Vegas Motor Speedway (10.6 square miles); (2) North Las Vegas Downtown Area (9.2 square miles); (3) I-15 Industrial Corridor (7.4 square miles); and (4) Future site of University of Nevada Las Vegas campus (17.4 square miles). The survey was conducted in three phases: Phase 1 on December 11-12, 2007 (Areas 1 and 2), Phase 2 on February 28, 2008 (Area 3), and Phase 3 on March 19, 2008 (Area 4). The total completed survey covered a total of 44.6 square miles. The flight lines (without the turns) over the surveyed areas are presented in Figures 1, 2, 3, and 4. A total of eight 2.5-hour-long flights were performed at an altitude of 150 ft above ground level (AGL) with 300 feet of flight-line spacing. Water line and test line flights were conducted over the Lake Mead and Government Wash areas to ensure quality control of the data. The data were collected by the AMS data acquisition system (REDAR V) using an array of twelve 2-inch x 4-inch x 16-inch sodium iodide (NaI) detectors flown on-board a twin-engine Bell 412 helicopter. Data, in the form of gamma energy spectra, were collected continually (every second) over the course of the survey and were geo-referenced using a differential Global Positioning System. Collection of spectral data allows the system to distinguish between ordinary fluctuations in natural background radiation levels and the signature produced by man-made radioisotopes. Spectral data can also be used to identify specific radioactive isotopes. As a courtesy service, with

  20. Detection probability of gyrfalcons and other cliff-nesting raptors during aerial surveys in Alaska

    USGS Publications Warehouse

    Booms, Travis L.; Fuller, Mark R.; Schempf, Philip F.; McCaffery, Brian J.; Lindberg, Mark S.; Watson, Richard T.; Cade, Tom J.; Fuller, Mark; Hunt, Grainger; Potapov, Eugene

    2011-01-01

    Assessing the status of Gyrfalcons (Falco rusticolus) and other cliffnesting raptors as the Arctic climate changes often requires aerial surveys of their breeding habitats. Because traditional, count-based surveys that do not adjust for differing detection probabilities can provide faulty inference about population status (Link and Sauer 1998, Thompson 2002), it will be important to incorporate measures of detection probability into survey methods whenever possible. To evaluate the feasibility of this, we conducted repeated aerial surveys for breeding cliff-nesting raptors on the Yukon Delta National Wildlife Refuge (YDNWR) in western Alaska to estimate detection probabilities of Gyrfalcons, Golden Eagles (Aquila chrysaetos), Rough-legged Hawks (Buteo lagopus), and also Common Ravens (Corvus corax). Using the program PRESENCE, we modeled detection histories of each species based on single species occupancy modeling following MacKenzie et al. (2002, 2006). We used different observers during four helicopter replicate surveys in the Kilbuck Mountains and five fixed-wing replicate surveys in the Ingakslugwat Hills (hereafter called Volcanoes) near Bethel, Alaska. We used the following terms and definitions throughout: Survey Site: site of a nest used previously by a raptor and marked with a GPS-obtained latitude and longitude accurate to within 20 m. All GPS locations were obtained in prior years from a helicopter hovering approximately 10?20 m from a nest. The site was considered occupied if a bird or an egg was detected within approximately 500 m of the nest and this area served as our sampling unit. When multiple historical nests were located on a single cliff, we used only one GPS location to locate the survey site. Detection probability (p): the probability of a species being detected at a site given the site is occupied. Occupancy (?): the probability that the species of interest is present at a site during the survey period. A site was considered occupied if the

  1. Aerial surveys of landslide bodies through light UAVs: peculiarities and advantages

    NASA Astrophysics Data System (ADS)

    Spilotro, Giuseppe; Pellicani, Roberta; Leandro, Gianfranco; Marzo, Cosimo; Manzari, Paola; Belmonte, Antonella

    2015-04-01

    The use of UAV in civil applications and particularly for aerial surveillance or surveying is rapidly expanding for several reasons. The first reason is undoubtedly the lowering of the costs of the machines, accompanied by high technology for their positioning and control. The results are high performances and ease of driving. Authors have surveyed some big landslides by drones, with excellent results, which can retail for this technique a specific role, not in conflict with classical airborne aerial surveys, such as LIDAR and others. Obviously the first difference is in the amount of payload, over 100 Kg for classical airborne apparatus, but 1000 times lower in the case of the drones. Nevertheless the advantages of the use of drones and of their products can be synthesized as follows: -Start from the site, without the need of transfers, flight plans and long time weather forecasts; -Imagery product georeferenced and immediately exportable to GIS -Inspection of areas not easily accessible (impervious areas, high layers of mud, crossing of rivers, etc) or unreachable in safety conditions; -Inspection of specific points, relevant for the interpretation of the type and intensity of movement. -The pilot and the landslide specialist define route and compare images in real time -Possibility of flying at very low altitude and hovering. For the geomorphological interpretation of the big landslide of Montescaglioso (Mt, Italy) has been used a 1.5 m EPP (Expanded polipropilene) fixed wing, driven by 3DR Open Source Autopilot, equipped with a 16 Mp compact camera CANON A2300. Very useful revealed the image of the toe of the landslide, critical point for the interpretation of the mechanics of the whole landslide. Results have been of excellent quality and allowed authors to an early correct analysis Other landslides have been explored with a commercial drone (Phantom Vision 2 Dji), the use of which has proved likewise invaluable for returning images of areas not otherwise

  2. An aerial radiological survey of the Evans Area, US Army Communications-Electronics Command, Fort Monmouth, New Jersey

    SciTech Connect

    Maurer, R.J.

    1989-12-01

    An aerial radiological survey was conducted over the Evans Area, US Army Communications-Electronics Command, Fort Monmouth, New Jersey, during the period November 14--18, 1988. The purposes of the survey were to document the terrestrial gamma environment of the Evans site and surrounding area and to determine if there had been any radiological impact on the area due to past laboratory operations. The results of the aerial survey are reported as inferred radiation exposure rates at 1 meter above ground level in the form of a contour map. The aerial data were compared to ground-based benchmark'' exposure rate measurements and radionuclide assay of soil samples obtained at sites outside the survey perimeter. Similar ground-based measurements were also made at several locations on the Evans site and at the bank of the Shark River bordering the Evans Area. No evidence for contamination was identified by either radionuclide assay of soil samples or the aerial survey. 6 refs., 5 figs., 2 tabs.

  3. Aerial surveys of endangered whales in the Beaufort Sea, Fall 1989. Final report

    SciTech Connect

    Treacy, S.D.

    1990-11-01

    The OCSLA Amendments of 1978 (43 U.S.C. 1802) established a policy for the management of oil and natural gas in the OCS and for protection of the marine and coastal environments. The amended OCSLA authorizes the Secretary of the Interior to conduct studies in areas or regions of sales to ascertain the environmental impacts on the marine and coastal environments of the outer Continental Shelf and the coastal areas which may be affected by oil and gas development (43 U.S.C. 1346). The report describes field activities and data analyses for aerial surveys of bowhead whales conducted between 1 September 1989 and 20 October 1989 in the Beaufort Sea, primarily between 140 W. and 154 W. longitudes south of 72 N. latitude. Ice cover during September and October 1989 was exceptionally light. A total of 215 bowhead whales, 104 belukha whales, 9 bearded seals, 84 ringed seals, and 32 unidentified pinnipeds were observed in 1989 during 98.70 hours of survey effort that included 38.10 hours on randomized transects. The last sighting of a bowhead whale made during the survey occurred in open water on 19 October 1989. No whales were sighted during a subsequent flight on 20 October 1989. Estimated median and mean water depths were shallower than for previous surveys (1982-1989). This is consistent with a trend for whales to be located in shallower water during years of generally light ice cover.

  4. An aerial radiological survey of the Oyster Creek Nuclear Power Plant and surrounding area, Forked River, New Jersey. Date of survey: September 18--25, 1992

    SciTech Connect

    Hopkins, H.A.; McCall, K.A.

    1994-05-01

    An aerial radiological survey was conducted over the Oyster Creek Nuclear Power Plant in Forked River, New Jersey, during the period September 18 through September 24, 1992. The survey was conducted at an altitude of 150 feet (46 meters) over a 26-square-mile (67-square-kilometer) area centered on the power station. The purpose of the survey was to document the terrestrial gamma radiation environment of the Oyster Creek Nuclear Power plant and surrounding area. The results of the aerial survey are reported as inferred gamma radiation exposure rates at 1 meter above ground level in the form of a contour map. Outside the plant boundary, exposure rates were found to vary between 4 and 10 microroentgens per hour and were attributed to naturally-occurring uranium, thorium, and radioactive potassium gamma emitters. The aerial data were compared to ground-based benchmark exposure rate measurements and radionuclide assays of soil samples obtained within the survey boundary. The ground-based measurements were found to be in good agreement with those inferred from the aerial measuring system. A previous survey of the power plant was conducted in August 1969 during its initial startup phase. Exposure rates and radioactive isotopes revealed in both surveys were consistent and within normal terrestrial background levels.

  5. Aerial radiological survey of Areas 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 15 and 17, Yucca Flat, Nevada Test Site, 8 August-2 September 1978

    SciTech Connect

    Fritzsche, A E

    1982-06-01

    An aerial gamma survey was conducted over Yucca Flat during August 1978. A limited quantity of soil samples was obtained and evaluated in support of the aerial survey. Results are presented in the form of exposure rate isopleths from man-made isotopes and estimates of concentrations and inventories of /sup 152/Eu, /sup 137/Cs and /sup 60/Co.

  6. An aerial radiological survey of the Robert Emmett Ginna Nuclear Power Plant and surrounding area, Ontario, New York

    SciTech Connect

    Proctor, A.E.

    1997-06-01

    Terrestrial radioactivity surrounding the Robert Emmett Ginna Nuclear Power Plant was measured using aerial radiological surveying techniques. The purpose of this survey was to document exposure rates near the plant and to identify unexpected, man-made radiation sources within the survey area. The surveyed area included land areas within a three-mile radius of the plant site. Data were acquired using an airborne detection system that employed sodium iodide, thallium-activated detectors. Exposure-rate and photopeak counts were computed from these data and plotted on aerial photographs of the survey area. Several ground-based exposure measurements were made for comparison with the aerial survey results. Exposure rates in the area surrounding the plant site varied from 6 to 10 microroentgens per hour. Man-made radiation (cobalt-60 within the plant site and cesium-1 37 directly over the reactor) was found at the plant site. In addition, small areas of suspected cesium-137 activity were found within the survey areas. Other than these small sites, the survey area was free of man-made radioac- tivity.

  7. The Aerial Regional-scale Environmental Survey (ARES) Mission to Mars

    NASA Technical Reports Server (NTRS)

    Levine, J. S.

    2005-01-01

    ARES is an exploration mission concept for an Aerial Regional-scale Environmental Survey of Mars designed to fly an instrumented platform over the surface of Mars at very low altitudes (1-3 km) for distances of hundreds to thousands of kilometers to obtain scientific data to address fundamental problems in Mars science. ARES helps to fill a gap in the scale and perspective of the Mars Exploration Program and addresses many key COMPLEX/MEPAG questions (e.g., nature and origin of crustal magnetic anomalies) not readily pursued in other parts of the exploration program. ARES supports the human exploration program through key environmental measurements and high-resolution contiguous data essential to reference mission design. Here we describe the major types of scientific goals, candidate instruments, and reference mission profiles.

  8. Mars Aerial Regional-Scale Environmental Survey (ARES) Coordinate Systems Definitions and Transformations

    NASA Technical Reports Server (NTRS)

    Kuhl, Christoper A.

    2009-01-01

    The Aerial Regional-Scale Environmental Survey (ARES) is a Mars exploration mission concept with the goal of taking scientific measurements of the atmosphere, surface, and subsurface of Mars by using an airplane as the payload platform. ARES team first conducted a Phase-A study for a 2007 launch opportunity, which was completed in May 2003. Following this study, significant efforts were undertaken to reduce the risk of the atmospheric flight system, under the NASA Langley Planetary Airplane Risk Reduction Project. The concept was then proposed to the Mars Scout program in 2006 for a 2011 launch opportunity. This paper summarizes the design and development of the ARES airplane propulsion subsystem beginning with the inception of the ARES project in 2002 through the submittal of the Mars Scout proposal in July 2006.

  9. An aerial radiological survey of the Davis-Monthan Air Force Base and surrounding area, Tucson, Arizona

    SciTech Connect

    1995-09-01

    An aerial radiological survey, which was conducted from March 1 to 13, 1995, covered a 51-square-mile (132-square-kilometer) area centered on the Davis-Monthan Air Force Base (DMAFB) in Tucson, Arizona. The results of the survey are reported as contours of bismuth-214 ({sup 214}Bi) soil concentrations, which are characteristic of natural uranium and its progeny, and as contours of the total terrestrial exposure rates extrapolated to one meter above ground level. All data were scaled and overlaid on an aerial photograph of the DMAFB area. The terrestrial exposure rates varied from 9 to 20 microroentgens per hour at one meter above the ground. Elevated levels of terrestrial radiation due to increased concentrations of {sup 214}Bi (natural uranium) were observed over the Southern Pacific railroad yard and along portions of the railroad track bed areas residing both within and outside the base boundaries. No man-made, gamma ray-emitting radioactive material was observed by the aerial survey. High-purity germanium spectrometer and pressurized ionization chamber measurements at eight locations within the base boundaries were used to verify the integrity of the aerial results. The results of the aerial and ground-based measurements were found to be in agreement. However, the ground-based measurements were able to detect minute quantities of cesium-137 ({sup 137}Cs) at six of the eight locations examined. The presence of {sup 137}Cs is a remnant of fallout from foreign and domestic atmospheric nuclear weapons testing that occurred in the 1950s and early 1960s. Cesium-137 concentrations varied from 0.1 to 0.3 picocuries per gram, which is below the minimum detectable activity of the aerial system.

  10. Survey on the novel hybrid aquatic-aerial amphibious aircraft: Aquatic unmanned aerial vehicle (AquaUAV)

    NASA Astrophysics Data System (ADS)

    Yang, Xingbang; Wang, Tianmiao; Liang, Jianhong; Yao, Guocai; Liu, Miao

    2015-04-01

    The aquatic unmanned aerial vehicle (AquaUAV), a kind of vehicle that can operate both in the air and the water, has been regarded as a new breakthrough to broaden the application scenario of UAV. Wide application prospects in military and civil field are more than bright, therefore many institutions have focused on the development of such a vehicle. However, due to the significant difference of the physical properties between the air and the water, it is rather difficult to design a fully-featured AquaUAV. Until now, majority of partially-featured AquaUAVs have been developed and used to verify the feasibility of an aquatic-aerial vehicle. In the present work, we classify the current partially-featured AquaUAV into three categories from the scope of the whole UAV field, i.e., the seaplane UAV, the submarine-launched UAV, and the submersible UAV. Then the recent advancements and common characteristics of the three kinds of AquaUAVs are reviewed in detail respectively. Then the applications of bionics in the design of AquaUAV, the transition mode between the air and the water, the morphing wing structure for air-water adaptation, and the power source and the propulsion type are summarized and discussed. The tradeoff analyses for different transition methods between the air and the water are presented. Furthermore, it indicates that applying the bionics into the design and development of the AquaUAV will be essential and significant. Finally, the significant technical challenges for the AquaUAV to change from a conception to a practical prototype are indicated.

  11. An aerial radiological survey of the West Valley Demonstration Project and surrounding area, West Valley, New York

    SciTech Connect

    Berry, H.A.

    1991-09-01

    An aerial radiological survey of the West Valley Demonstration Project and the surrounding area was conducted from mid-August through early September 1984 by EG G Energy Measurements, Inc. for the United States Department of Energy. The radiological survey was part of the United States Department of Energy Comprehensive Integrated Remote Sensing (CIRS) program, which provides state-of-the-art remote sensing to support the needs of the various DOE facilities. The survey consisted of airborne measurements of both natural and man-made gamma radiation emanating from the terrestrial surface. These measurements allowed an estimate of the distribution of isotopic concentrations in the area surrounding the project site. Results are reported as isopleths superimposed on aerial photographs of the area. Gamma ray energy spectra are also presented for the net man-made radionuclides. 8 refs., 16 figs., 9 tabs.

  12. Aerial Transient Electromagnetic Surveys of Alluvial Aquifers in Rural Watersheds of Arizona

    NASA Astrophysics Data System (ADS)

    Pool, D. R.; Callegary, J. B.; Groom, R. W.

    2006-12-01

    Development in rural areas of Arizona has led the State of Arizona (Arizona Department of Water Resources), in cooperation with the Arizona Water Science Center of the U.S. Geological Survey, to sponsor investigations of the hydrogeologic framework of several alluvial-basin aquifers. An efficient method for mapping the aquifer extent and lithology was needed due to sparse subsurface information. Aerial Transient Electro-Magnetic (ATEM) methods were selected because they can be used to quickly survey large areas and with a great depth of investigation. Both helicopter and fixed-wing ATEM methods are available. A fixed-wing method (GEOTEM) was selected because of the potential for a depth of investigation of 300 m or more and because previous surveys indicated the method is useful in alluvial basins in southeastern Arizona. About 2,900 km of data along flight lines were surveyed across five alluvial basins, including the Middle San Pedro and Willcox Basins in southeastern Arizona, and Detrital, Hualapai, and Sacramento Basins in northwestern Arizona. Data initially were analyzed by the contractor (FUGRO Airborne Surveys) to produce conductivity-depth-transforms, which approximate the general subsurface electrical-property distribution along profiles. Physically based two-dimensional physical models of the profile data were then developed by PetRos- Eikon by using EMIGMA software. Hydrologically important lithologies can have different electrical properties. Several types of crystalline and sedimentary rocks generally are poor aquifers that have low porosity and high electrical resistivity. Good alluvial aquifers of sand and gravel generally have an intermediate electrical resistivity. Poor aquifer materials, such as silt and clay, and areas of poor quality water have low electrical resistivity values. Several types of control data were available to constrain the models including drill logs, electrical logs, water levels , and water quality information from wells; and

  13. An Aerial Radiological survey of the Alvin W. Vogtle Nuclear Plant and surrounding area, Waynesboro, Georgia: Date of survey: August--September 1988

    SciTech Connect

    Not Available

    1990-09-01

    An Aerial Radiological Survey was conducted during the period of August 24 to September 14, 1988 over an area of approximately 310 square kilometers (120 square miles) surrounding the Alvin W. Vogtle Nuclear Plant. The Vogtle Nuclear Plant is located near Augusta, Georgia, along the Savannah River and adjacent to the Savannah River Site (SRS). Several anomalous areas were identified in the portion of the survey extending into the SRS perimeter. The dominant isotopes found in these areas were cesium-137 and cobalt-60. All of these man-made anomalies identified by the aerial measurements were attributed to SRS processing. For the remainder of the survey area, the inferred radiation exposure rates generally varied from 6 to 10 microroentgens per hour ({mu}R/h), which was found to be due to naturally occurring uranium, thorium, and radioactive potassium gamma emitters. The reported exposure rate values included an estimated cosmic ray contribution of 3.6 {mu}R/h. Soils samples and pressurized ion chamber measurements were obtained at three locations within the survey boundaries to support the aerial data. The exposure rate values obtained from these groundbased measurements were in agreement with the corresponding inferred aerial values. 6 refs., 13 figs., 4 tabs.

  14. Estimating the abundance of the Southern Hudson Bay polar bear subpopulation with aerial surveys

    USGS Publications Warehouse

    Obbard, Martyn E.; Stapleton, Seth P.; Middel, Kevin R.; Thibault, Isabelle; Brodeur, Vincent; Jutras, Charles

    2015-01-01

    The Southern Hudson Bay (SH) polar bear subpopulation occurs at the southern extent of the species’ range. Although capture–recapture studies indicate abundance was likely unchanged between 1986 and 2005, declines in body condition and survival occurred during the period, possibly foreshadowing a future decrease in abundance. To obtain a current estimate of abundance, we conducted a comprehensive line transect aerial survey of SH during 2011–2012. We stratified the study site by anticipated densities and flew coastal contour transects and systematically spaced inland transects in Ontario and on Akimiski Island and large offshore islands in 2011. Data were collected with double-observer and distance sampling protocols. We surveyed small islands in James Bay and eastern Hudson Bay and flew a comprehensive transect along the Québec coastline in 2012. We observed 667 bears in Ontario and on Akimiski Island and nearby islands in 2011, and we sighted 80 bears on offshore islands during 2012. Mark–recapture distance sampling and sight–resight models yielded an estimate of 860 (SE = 174) for the 2011 study area. Our estimate of abundance for the entire SH subpopulation (943; SE = 174) suggests that abundance is unlikely to have changed significantly since 1986. However, this result should be interpreted cautiously because of the methodological differences between historical studies (physical capture–recapture) and this survey. A conservative management approach is warranted given previous increases in duration of the ice-free season, which are predicted to continue in the future, and previously documented declines in body condition and vital rates.

  15. Estimating abundance of the Southern Hudson Bay polar bear subpopulation using aerial surveys, 2011 and 2012

    USGS Publications Warehouse

    Obbard, Martyn E.; Middel, Kevin R.; Stapleton, Seth P.; Thibault, Isabelle; Brodeur, Vincent; Jutras, Charles

    2013-01-01

    The Southern Hudson Bay (SH) polar bear subpopulation occurs at the southern extent of the species’ range. Although capture-recapture studies indicate that abundance remained stable between 1986 and 2005, declines in body condition and survival were documented during the period, possibly foreshadowing a future decrease in abundance. To obtain a current estimate of abundance, we conducted a comprehensive line transect aerial survey of SH during 2011–2012. We stratified the study site by anticipated densities and flew coastal contour transects and systematically spaced inland transects in Ontario and on Akimiski Island and large offshore islands in 2011. Data were collected with double observer and distance sampling protocols. We also surveyed small islands in Hudson Bay and James Bay and flew a comprehensive transect along the Québec coastline in 2012. We observed 667 bears in Ontario and on Akimiski Island and nearby islands in 2011, and we sighted 80 bears on offshore islands during 2012. Mark-recapture distance sampling and sightresight models yielded a model-averaged estimate of 868 (SE: 177) for the 2011 study area. Our estimate of abundance for the entire SH subpopulation (951; SE: 177) suggests that abundance has remained unchanged. However, this result should be interpreted cautiously because of the methodological differences between historical studies (physical capture) and this survey. A conservative management approach is warranted given the previous increases in the duration of the ice-free season, which are predicted to continue in the future, and previously documented declines in body condition and vital rates.

  16. An aerial radiological survey of Project Gasbuggy and surrounding area, Rio Arriba County, New Mexico. Date of survey: October 27, 1994

    SciTech Connect

    1995-08-01

    An aerial radiological survey was conducted over the Project Gasbuggy site, 55 miles (89 kilometers) east of Farmington, New Mexico, on October 27, 1994. Parallel lines were flown at intervals of 300 feet (91 meters) over a 16-square-mile (41-square-kilometer) area at a 150-foot (46-meter) altitude centered on the Gasbuggy site. The gamma energy spectra obtained were reduced to an exposure rate contour map overlaid on a high altitude aerial photograph of the area. The terrestrial exposure rate varied from 14 to 20 {micro}R/h at 1 meter above ground level. No anomalous or man-made isotopes were found.

  17. A Planetary Protection Strategy for the Mars Aerial Regional-Scale Environmental Survey (ARES) Mission Concept

    NASA Technical Reports Server (NTRS)

    Kuhl, Christopher A.

    2008-01-01

    The Aerial Regional-scale Environmental Survey (ARES) is a Mars exploration mission concept designed to send an airplane to fly through the lower atmosphere of Mars, with the goal of taking scientific measurements of the atmosphere, surface, and subsurface phenomenon. ARES was first proposed to the Mars Scout program in December 2002 for a 2007 launch opportunity and was selected to proceed with a Phase A study, step-2 proposal which was submitted in May 2003. ARES was not selected for the Scout mission, but efforts continued on risk reduction of the atmospheric flight system in preparation for the next Mars Scout opportunity in 2006. The ARES concept was again proposed in July 2006 to the Mars Scout program but was not selected to proceed into Phase A. This document describes the Planetary Protection strategy that was developed in ARES Pre Phase-A activities to help identify, early in the design process, certain hardware, assemblies, and/or subsystems that will require unique design considerations based on constraints imposed by Planetary Protection requirements. Had ARES been selected as an exploration project, information in this document would make up the ARES Project Planetary Protection Plan.

  18. Mass image data storage system for high resolution aerial photographic survey

    NASA Astrophysics Data System (ADS)

    Zen, Luan; Tan, Jiubin; Zhao, Zhongwen

    2008-10-01

    In order to make it possible for an image data acquisition and storage system used for aerial photographic survey to have a continuous storage speed of 144 MB/s and data storage capacity of 260GB, three main problems have been solved in this paper. First, with multi-channel synchronous DMA transfer, parallel data storage of four SCSI hard disks is realized. It solved the problem of the data transfer rate too high for direct storage. Then, to increase the data transfer rate, a high speed BUS based on LVDS and a SCSI control circuit based on FAS368M were designed. It solved the problem of PCI BUS limiting the storage speed. Finally, the problem of the SCSI hard disk continuous storage speed declining led by much time interval between two DMA transfers is solved by optimizing DMA channel. The practical system test shows that the acquisition and storage system has a continuous storage speed of 150 MB/s and a data storage capacity of 280GB. Therefore, it is a new storage method for high speed and mass image data.

  19. Infrared Surveys of Hawaiian Volcanoes: Aerial surveys with infrared imaging radiometer depict volcanic thermal patterns and structural features.

    PubMed

    Fisher, W A; Moxham, R M; Polcyn, F; Landis, G H

    1964-11-01

    Aerial infrared-sensor surveys of Kilauea volcano have depicted the areal extent and the relative intensity of abnormal thermal features in the caldera area of the volcano and along its associated rift zones. Many of these anomalies show correlation with visible steaming and reflect convective transfer of heat to the surface from subterranean sources. Structural details of the volcano, some not evident from surface observation, are also delineated by their thermal abnormalities. Several changes were observed in the patterns of infrared emission during the period of study; two such changes show correlation in location with subsequent eruptions, but the cause-and-effect relationship is uncertain. Thermal anomalies were also observed on the southwest flank of Mauna Loa; images of other volcanoes on the island of Hawaii, and of Haleakala on the island of Maui, revealed no thermal abnormalities. Approximately 25 large springs issuing into the ocean around the periphery of Hawaii have been detected. Infrared emission varies widely with surface texture and composition, suggesting that similar observations may have value for estimating surface conditions on the moon or planets.

  20. Payette National Forest aerial survey project using the Kodak digital color infrared camera

    NASA Astrophysics Data System (ADS)

    Greer, Jerry D.

    1997-11-01

    Staff of the Payette National Forest located in central Idaho used the Kodak Digital Infrared Camera to collect digital photographic images over a wide variety of selected areas. The objective of this aerial survey project is to collect airborne digital camera imagery and to evaluate it for potential use in forest assessment and management. The data collected from this remote sensing system is being compared with existing resource information and with personal knowledge of the areas surveyed. Resource specialists are evaluating the imagery to determine if it may be useful for; identifying cultural sites (pre-European settlement tribal villages and camps); recognizing ecosystem landscape pattern; mapping recreation areas; evaluating the South Fork Salmon River road reconstruction project; designing the Elk Summit Road; assessing the impact of sediment on anadramous fish in the South Fork Salmon River; assessing any contribution of sediment to the South Fork from the reconstructed road; determining post-wildfire stress development in conifer timber; in assessing the development of insect populations in areas initially determined to be within low intensity wildfire burn polygons; and to search for Idaho Ground Squirrel habitat. Project sites include approximately 60 linear miles of the South Fork of the Salmon River; a parallel road over about half that distance; 3 archaeological sites; two transects of about 6 miles each for landscape patterns; 3 recreation areas; 5 miles of the Payette River; 4 miles of the Elk Summit Road; a pair of transects 4.5 miles long for stress assessment in timber; a triplet of transects about 3 miles long for the assessment of the identification of species; and an area of about 640 acres to evaluate habitat for the endangered Idaho Ground Squirrel. Preliminary results indicate that the imagery is an economically viable way to collect site specific resource information that is of value in the management of a national forest.

  1. Testing the Accuracy of Aerial Surveys for Large Mammals: An Experiment with African Savanna Elephants (Loxodonta africana)

    PubMed Central

    Schlossberg, Scott; Chase, Michael J.; Griffin, Curtice R.

    2016-01-01

    Accurate counts of animals are critical for prioritizing conservation efforts. Past research, however, suggests that observers on aerial surveys may fail to detect all individuals of the target species present in the survey area. Such errors could bias population estimates low and confound trend estimation. We used two approaches to assess the accuracy of aerial surveys for African savanna elephants (Loxodonta africana) in northern Botswana. First, we used double-observer sampling, in which two observers make observations on the same herds, to estimate detectability of elephants and determine what variables affect it. Second, we compared total counts, a complete survey of the entire study area, against sample counts, in which only a portion of the study area is sampled. Total counts are often considered a complete census, so comparing total counts against sample counts can help to determine if sample counts are underestimating elephant numbers. We estimated that observers detected only 76% ± SE of 2% of elephant herds and 87 ± 1% of individual elephants present in survey strips. Detectability increased strongly with elephant herd size. Out of the four observers used in total, one observer had a lower detection probability than the other three, and detectability was higher in the rear row of seats than the front. The habitat immediately adjacent to animals also affected detectability, with detection more likely in more open habitats. Total counts were not statistically distinguishable from sample counts. Because, however, the double-observer samples revealed that observers missed 13% of elephants, we conclude that total counts may be undercounting elephants as well. These results suggest that elephant population estimates from both sample and total counts are biased low. Because factors such as observer and habitat affected detectability of elephants, comparisons of elephant populations across time or space may be confounded. We encourage survey teams to

  2. A Possibility of the Aeromagnetic Survey by a Small Unmanned Aerial Vehicles, Ant-Plane

    NASA Astrophysics Data System (ADS)

    Funaki, M.

    2004-12-01

    Magnetic surveys by helicopters and airplanes are a useful technique to estimate the geological structure under the ice sheets in Antarctica. However, it is not easy to employ this due to the transportation of the planes, logistic supports, security, and financial problems. Members of Ant-Plane Project have investigated the unmanned aerial vehicles (UAV, Ant-Plane) for the solution of the problems. Recently the aeromagnetic survey is verified by a model airplane navigated by GPS and a magneto-resistant (MR) magnetometer. The airplane (Ant-Plane) consists of 2m wing length, 2-cycles and 2-cylinder 85cc gasoline engine, GPS navigation system by microcomputer and radio telemeter system. The total weight is 15kg including 2 litter fuels, the MR magnetometer, a video camera and an emergency parachute. The speed is 130 km/h and maximum height is 2000m. The magnetometer system consists of a 3- component MR magnetometer, GPS and data logger. Three components of magnetic field, latitude, longitude, altitude, number of satellite and time are recorded in every second during 3 hours. The sensitivity of the magnetometer is 7 nT and we use a total magnetic field intensity for magnetic analysis due to unknown heading of the plane. November 2003 we succeeded the magnetic survey by the Ant-Plane at the slope of Sakurajima Volcano, Kyushu, Japan. The plane rotated 9 times along the programmed route of about 4x1 km, total flight distance of 80 km, keeping the altitude of 700 m. Consequently we obtained almost similar field variation on the route. The maximum deviation of each course was less than 100 m. Therefore, we concluded that the aeromagnetic survey in the relatively large anomaly areas can be performed by Ant-Plane with the MR magnetometer system. Finally the plane flew up 1400m with a video camera to take the photo of active volcano Sakurajima (1117m). It succeeded to take photos of craters through steam from the volcano.

  3. TES radiometric assessment

    NASA Technical Reports Server (NTRS)

    Worden, H.; Sarkissian, E.; Bowman, K.; Fisher, B.; Rider, D.; Aumann, H. H.; Apolinski, M.; Debaca, R. C.; Gluck, S.; Madatyan, M.; McDuffie, J.; Tremblay, D.; Shephard, M.; Cady-Pereira, K.; Tobin, D.; Revercomb, H.

    2005-01-01

    TES is an infrared Fourier transform spectrometer on board the EOS-Aura spacecraft launched July 15, 2004. Improvements to the radiometric calibration and consequent assessment of radiometric accuracy have been on-going since launch.

  4. An aerial radiological survey of the Babcock and Wilcox Nuclear Facilities and surrounding area, Lynchburg, Virginia. Date of survey: July 1988

    SciTech Connect

    Guss, P.P.

    1993-04-01

    An aerial radiological survey was conducted from July 18 through July 25, 1988, over a 41-square-kilometer (16-square-mile) area surrounding the Babcock and Wilcox nuclear facilities located near Lynchburg, Virginia. The survey was conducted at a nominal altitude of 61 meters (200 feet) with line spacings of 91 meters (300 feet). A contour map of the terrestrial gamma exposure rate extrapolated to 1 meter above ground level (AGL) was prepared and overlaid on an aerial photograph. The terrestrial exposure rates varied from 8 to 12 microroentgens per hour ({mu}R/h). A search of the data for man-made radiation sources revealed the presence of three areas of high count rates in the survey area. Spectra accumulated over the main plant showed the presence of cobalt-60 ({sup 60}Co) and cesium-137 ({sup 137}Cs). A second area near the main plant indicated the presence of uranium-235 ({sup 235}U). Protactinium-234m ({sup 234m}Pa) and {sup 60}Co were detected over a building to the east of the main plant. Soil samples and pressurized ion chamber measurements were obtained at four locations within the survey boundaries in support of the aerial data.

  5. Monitoring winter and summer abundance of cetaceans in the Pelagos Sanctuary (northwestern Mediterranean Sea) through aerial surveys.

    PubMed

    Panigada, Simone; Lauriano, Giancarlo; Burt, Louise; Pierantonio, Nino; Donovan, Greg

    2011-01-01

    Systematic long-term monitoring of abundance is essential to inform conservation measures and evaluate their effectiveness. To instigate such work in the Pelagos Sanctuary in the Mediterranean, two aerial surveys were conducted in winter and summer 2009. A total of 467 (131 in winter, 336 in summer) sightings of 7 species was made. Sample sizes were sufficient to estimate abundance of fin whales in summer (148; 95% CI = 87-254) and striped dolphins in winter (19,462; 95% CI = 12 939-29 273) and in summer (38 488; 95% CI = 27 447-53 968). Numbers of animals within the Sanctuary are significantly higher in summer, when human activities and thus potential population level impacts are highest. Comparisons with data from past shipboard surveys suggest an appreciable decrease in fin whales within the Sanctuary area and an appreciable increase in striped dolphins. Aerial surveys proved to be more efficient than ship surveys, allowing more robust estimates, with smaller CIs and CVs. These results provide essential baseline data for this marine protected area and continued regular surveys will allow the effectiveness of the MPA in terms of cetacean conservation to be evaluated and inform future management measures. The collected data may also be crucial in assessing whether ship strikes, one of the main causes of death for fin whales in the Mediterranean, are affecting the Mediterranean population. PMID:21829544

  6. Monitoring Winter and Summer Abundance of Cetaceans in the Pelagos Sanctuary (Northwestern Mediterranean Sea) Through Aerial Surveys

    PubMed Central

    Panigada, Simone; Lauriano, Giancarlo; Burt, Louise; Pierantonio, Nino; Donovan, Greg

    2011-01-01

    Systematic long-term monitoring of abundance is essential to inform conservation measures and evaluate their effectiveness. To instigate such work in the Pelagos Sanctuary in the Mediterranean, two aerial surveys were conducted in winter and summer 2009. A total of 467 (131 in winter, 336 in summer) sightings of 7 species was made. Sample sizes were sufficient to estimate abundance of fin whales in summer (148; 95% CI = 87–254) and striped dolphins in winter (19,462; 95% CI = 12 939–29 273) and in summer (38 488; 95% CI = 27 447–53 968). Numbers of animals within the Sanctuary are significantly higher in summer, when human activities and thus potential population level impacts are highest. Comparisons with data from past shipboard surveys suggest an appreciable decrease in fin whales within the Sanctuary area and an appreciable increase in striped dolphins. Aerial surveys proved to be more efficient than ship surveys, allowing more robust estimates, with smaller CIs and CVs. These results provide essential baseline data for this marine protected area and continued regular surveys will allow the effectiveness of the MPA in terms of cetacean conservation to be evaluated and inform future management measures. The collected data may also be crucial in assessing whether ship strikes, one of the main causes of death for fin whales in the Mediterranean, are affecting the Mediterranean population. PMID:21829544

  7. Seasonal distribution and aerial surveys of mountain goats in Mount Rainier, North Cascades, and Olympic National Parks, Washington

    USGS Publications Warehouse

    Jenkins, Kurt; Beirne, Katherine; Happe, Patricia; Hoffman, Roger; Rice, Cliff; Schaberl, Jim

    2011-01-01

    We described the seasonal distribution of Geographic Positioning System (GPS)-collared mountain goats (Oreamnos americanus) in Mount Rainier, North Cascades, and Olympic National Parks to evaluate aerial survey sampling designs and provide general information for park managers. This work complemented a companion study published elsewhere of aerial detection biases of mountain goat surveys in western Washington. Specific objectives reported here were to determine seasonal and altitudinal movements, home range distributions, and temporal dynamics of mountain goat movements in and out of aerial survey sampling frames established within each park. We captured 25 mountain goats in Mount Rainier (9), North Cascades (5), and Olympic (11) National Parks, and fitted them with GPS-collars programmed to obtain 6-8 locations daily. We obtained location data on 23 mountain goats for a range of 39-751 days from 2003 to 2008. Altitudinal distributions of GPS-collared mountain goats varied individually and seasonally, but median altitudes used by individual goats during winter ranged from 817 to 1,541 meters in Olympic and North Cascades National Parks, and 1,215 to 1,787 meters in Mount Rainier National Park. Median altitudes used by GPS-collared goats during summer ranged from 1,312 to 1,819 meters in Olympic and North Cascades National Parks, and 1,780 to 2,061 meters in Mount Rainier National Park. GPS-collared mountain goats generally moved from low-altitude winter ranges to high-altitude summer ranges between June 11 and June 19 (range April 24-July 3) and from summer to winter ranges between October 26 and November 9 (range September 11-December 23). Seasonal home ranges (95 percent of adaptive kernel utilization distribution) of males and female mountain goats were highly variable, ranging from 1.6 to 37.0 kilometers during summers and 0.7 to 9.5 kilometers during winters. Locations of GPS-collared mountain goats were almost 100 percent within the sampling frame used for

  8. Computing the Deflection of the Vertical for Improving Aerial Surveys: A Comparison between EGM2008 and ITALGEO05 Estimates

    PubMed Central

    Barzaghi, Riccardo; Carrion, Daniela; Pepe, Massimiliano; Prezioso, Giuseppina

    2016-01-01

    Recent studies on the influence of the anomalous gravity field in GNSS/INS applications have shown that neglecting the impact of the deflection of vertical in aerial surveys induces horizontal and vertical errors in the measurement of an object that is part of the observed scene; these errors can vary from a few tens of centimetres to over one meter. The works reported in the literature refer to vertical deflection values based on global geopotential model estimates. In this paper we compared this approach with the one based on local gravity data and collocation methods. In particular, denoted by ξ and η, the two mutually-perpendicular components of the deflection of the vertical vector (in the north and east directions, respectively), their values were computed by collocation in the framework of the Remove-Compute-Restore technique, applied to the gravity database used for estimating the ITALGEO05 geoid. Following this approach, these values have been computed at different altitudes that are relevant in aerial surveys. The (ξ, η) values were then also estimated using the high degree EGM2008 global geopotential model and compared with those obtained in the previous computation. The analysis of the differences between the two estimates has shown that the (ξ, η) global geopotential model estimate can be reliably used in aerial navigation applications that require the use of sensors connected to a GNSS/INS system only above a given height (e.g., 3000 m in this paper) that must be defined by simulations. PMID:27472333

  9. Computing the Deflection of the Vertical for Improving Aerial Surveys: A Comparison between EGM2008 and ITALGEO05 Estimates.

    PubMed

    Barzaghi, Riccardo; Carrion, Daniela; Pepe, Massimiliano; Prezioso, Giuseppina

    2016-01-01

    Recent studies on the influence of the anomalous gravity field in GNSS/INS applications have shown that neglecting the impact of the deflection of vertical in aerial surveys induces horizontal and vertical errors in the measurement of an object that is part of the observed scene; these errors can vary from a few tens of centimetres to over one meter. The works reported in the literature refer to vertical deflection values based on global geopotential model estimates. In this paper we compared this approach with the one based on local gravity data and collocation methods. In particular, denoted by ξ and η, the two mutually-perpendicular components of the deflection of the vertical vector (in the north and east directions, respectively), their values were computed by collocation in the framework of the Remove-Compute-Restore technique, applied to the gravity database used for estimating the ITALGEO05 geoid. Following this approach, these values have been computed at different altitudes that are relevant in aerial surveys. The (ξ, η) values were then also estimated using the high degree EGM2008 global geopotential model and compared with those obtained in the previous computation. The analysis of the differences between the two estimates has shown that the (ξ, η) global geopotential model estimate can be reliably used in aerial navigation applications that require the use of sensors connected to a GNSS/INS system only above a given height (e.g., 3000 m in this paper) that must be defined by simulations. PMID:27472333

  10. Aerial gamma ray and magnetic survey, Montrose detail Area 4, Colorado. Final report

    SciTech Connect

    Not Available

    1980-05-01

    The Montrose Detail Area No. 4 comprises approximately 215 square miles in the Central Sawatch Mountains in a region dominated by outcrops of Precambrian basement, Tertiary and Cretaceous intrusives, and glacial cover. A single uranium prospect lies in Precambrian rocks west of the Taylor Park. Other mining activity in the area appears to be limited to extensive prospecting for molybdenum in the Tertiary rocks in the Winfield area. A total of 26 groups of uranium samples constitute anomalies as defined in Volume I. the largest group of anomalies lies over the Windfield area. Other significant anomalies overlie certain Precambrian rocks, as in the Three Apostles area and over the single uranium prospect. Magnetic data outline some Precambrian and Tertiary rock units, but are largely uninterpretable in the scope of this report. There is little apparent correlation with the geology as mapped, or with the radiometric data. Three geochemical units were defined on the basis of the radiometric criteria set forth in Volume I.

  11. Aerial gamma ray and magnetic survey: Idaho Project, Nemo Detail Area, South Dakota. Final report

    SciTech Connect

    Not Available

    1980-04-01

    The Nemo Detail area covers 40 square miles in the eastern portion of the Black Hills Uplift. The region's geology is a combination of Precambrian igneous and metamorphic rocks, and overlying Early Paleozoic sediments and metasediments. The Paleozoics cover most of the eastern half of the area. A total of 7 groups of samples in uranium window constitute anomalies as defined in Volume I. These anomalies occur in locales of relatively high uranium and thorium with respect to the balance of the detail area. Magnetic data show a wide range of gradients; but fail to show a significant degree of correlation with available geologic interpretations or the radiometric data. Only one geochemical unit was defined on the basis of the radiometric criteria set forth in Volume I.

  12. An aerial radiological survey of the Wright-Patterson Air Force Base and surrounding area, Fairborn, Ohio

    SciTech Connect

    1995-08-01

    An aerial radiological survey was conducted over areas of Wright-Patterson Air Force Base (WPAFB) and the immediate surrounding area, during the period July 7 through 20, 1994. The survey was conducted to measure and map the gamma radiation in the area. This mission was the first aerial radiation survey conducted at WPAFB. In the surveyed area, five small localized sources of gamma radiation were detected which were atypical of naturally-occurring radionuclides. On WPAFB property, these sources included a radiation storage facility in Area B (krypton-85) and an ash pile near the Area C flight line (low energy gamma activity). In the area covered outside WPAFB boundaries, sources included cesium-137 in excess of worldwide fallout over a landfill in a northern Dayton industrial area, an X-ray radiography source over a steel plant in the same industrial area, and a mixture of cesium-137 in excess of worldwide fallout and possibly iridium-192 in an area near Crystal Lakes, Ohio. The naturally-occurring gamma emitters (uranium-238 and progeny, thorium and progeny, and potassium-40) were detected in the remaining area with a total exposure rate range of 4 to 16 {mu}R/h; this range is typical of that found in the United States, 1 to 20 {mu}R/h.

  13. Preparation of magnetic anomaly profile and contour maps from DOE-NURE aerial survey data. Volume I. Processing procedures

    SciTech Connect

    Tinnel, E.P.; Hinze, W.J.

    1981-09-01

    Total intensity magnetic anomaly data acquired as a supplement to radiometric data in the DOE National Uranium Resource Evaluation (NURE) Program are useful in preparing regional profile and contour maps. Survey-contractor-supplied magnetic anomaly data are subjected to a multiprocess, computer-based procedure which prepares these data for presentation. This procedure is used to produce the following machine plotted maps of National Topographic Map Series quadrangle units at a 1:250,000 scale: (1) profile map of contractor-supplied magnetic anomaly data, (2) profile map of high-cut filtered data with contour levels of each profile marked and annotated on the associated flight track, (3) profile map of critical-point data with contour levels indicated, and (4) contour map of filtered and selected data. These quadrangle maps are supplemented with a range of statistical measures of the data which are useful in quality evaluation.

  14. Early aerial photography and contributions to Digital Earth - The case of the 1921 Halifax air survey mission in Canada

    NASA Astrophysics Data System (ADS)

    Werle, D.

    2016-04-01

    This paper presents research into the military and civilian history, technological development, and practical outcomes of aerial photography in Canada immediately after the First World War. The collections of early aerial photography in Canada and elsewhere, as well as the institutional and practical circumstances and arrangements of their creation, represent an important part of remote sensing heritage. It is argued that the digital rendition of the air photos and their representation in mosaic form can make valuable contributions to Digital Earth historic inquiries and mapping exercises today. An episode of one of the first urban surveys, carried out over Halifax, Nova Scotia, in 1921, is highlighted and an air photo mosaic and interpretation key is presented. Using the almost one hundred year old air photos and a digitally re-assembled mosaic of a substantial portion of that collection as a guide, a variety of features unique to the post-war urban landscape of the Halifax peninsula are analysed, illustrated, and compared with records of past and current land use. The pan-chromatic air photo ensemble at a nominal scale of 1:5,000 is placed into the historical context with contemporary thematic maps, recent air photos, and modern satellite imagery. Further research opportunities and applications concerning early Canadian aerial photography are outlined.

  15. Aerial Survey Results for 131I Deposition on the Ground after the Fukushima Daiichi Nuclear Power Plant Accident

    SciTech Connect

    Torii, Tatsuo; Sugita, Takeshi; Okada, Colin E.; Reed, Michael S.; Blumenthal, Daniel J.

    2013-08-01

    In March 2011 the second largest accidental release of radioactivity in history occurred at the Fukushima Daiichi nuclear power plant following a magnitude 9.0 earthquake and subsequent tsunami. Teams from the U.S. Department of Energy, National Nuclear Security Administration Office of Emergency Response performed aerial surveys to provide initial maps of the dispersal of radioactive material in Japan. The initial results from the surveys did not report the concentration of 131I. This work reports on analyses performed on the initial survey data by a joint Japan-US collaboration to determine 131I ground concentration. This information is potentially useful in reconstruction of the inhalation and external exposure doses from this short-lived radionuclide. The deposited concentration of 134Cs is also reported.

  16. NASA Radiometric Characterization

    NASA Technical Reports Server (NTRS)

    Holekamp, Kara

    2006-01-01

    This viewgraph presentation reviews the characterization of radiometric data by NASA. The objective was to perform radiometric vicarious calibrations of imagery and compare with vendor-provided calibration coefficients. The approach was to use multiple, well-characterized sites. These sites are widely used by the NASA science community for radiometric characterization of airborne and space borne sensors. Using the data from these sites, the investigators performed independent characterizations with independent teams. Each team has slightly different measurement techniques and data processing methods.

  17. Map and Aerial Photo Collections in the United States: Survey of the Seventy Largest Collections.

    ERIC Educational Resources Information Center

    Stevens, Stanley D.

    1981-01-01

    Data gathered from 56 libraries, agencies, and other institutions holding large collections of maps and aerial photographs are reported, including such areas as personnel, equipment, acquisitions, floor space, promotion, and use of computers. The 70 largest collections are ranked and profiled, and a sample questionnaire is provided. (FM)

  18. An aerial radiological survey of the area surrounding the Rifle Mill sites, Rifle, Colorado

    SciTech Connect

    Jobst, J.

    1980-08-01

    Gamma ray isopleth maps have been constructed from aerial data taken over the old and new Rifle tailing piles near Rifle, Colorado. Spectral data from the more active areas reveal anomalous concentrations of bismuth-214. Tables that convert these anomalous levels to ground concentrations and corresponding exposure rates are included.

  19. An aerial radiological survey of the Tonopah Test Range including Clean Slate 1,2,3, Roller Coaster, decontamination area, Cactus Springs Ranch target areas. Central Nevada

    SciTech Connect

    Proctor, A.E.; Hendricks, T.J.

    1995-08-01

    An aerial radiological survey was conducted of major sections of the Tonopah Test Range (TTR) in central Nevada from August through October 1993. The survey consisted of aerial measurements of both natural and man-made gamma radiation emanating from the terrestrial surface. The initial purpose of the survey was to locate depleted uranium (detecting {sup 238}U) from projectiles which had impacted on the TTR. The examination of areas near Cactus Springs Ranch (located near the western boundary of the TTR) and an animal burial area near the Double Track site were secondary objectives. When more widespread than expected {sup 241}Am contamination was found around the Clean Slates sites, the survey was expanded to cover the area surrounding the Clean Slates and also the Double Track site. Results are reported as radiation isopleths superimposed on aerial photographs of the area.

  20. PV Solar Radiometric Measurements

    SciTech Connect

    Myers, D.R.; Cannon, T.W.

    1997-02-01

    Radiometric measurements performed by the PV Solar Radiometric Measurements Task support NREL{close_quote}s centers for Measurements and Characterization, Performance Engineering and Reliability, and Renewable Energy Resources. The task provides characterization, measurements, testing, designs, and analysis of radiometric instrumentation and data for the performance of PV cells, modules, and systems. We describe recent characterization of the radiometric performance of pyranometers deployed for PV system testing at the NREL Outdoor Test Facility (OTF) and improvements undertaken in NREL broadband radiometer characterization. Typical measurement and calibration issues with diode array spectroradiometers used for absolute spectral measurements applied to PV performance and characterization are discussed. {copyright} {ital 1997 American Institute of Physics.}

  1. Aerial infrared surveys of Reykjanes and Torfajökull thermal areas, Iceland, with a section on cost of exploration surveys

    USGS Publications Warehouse

    Pálmason, G.; Friedman, J.D.; Williams, R.S.; Jónsson, J.; Saemundsson, K.

    1970-01-01

    In 1966 and 1968 aerial infrared surveys were conducted over 10 of 13 high-temperature thermal areas in Iceland. The surveys were made with an airborne scanner system, utilizing radiation in the 4.5–5.5 μm wavelength band. Supplementary ground geological studies were made in the Reykjanes and Torfajökull thermal areas to interpret features depicted on the infrared imagery and to relate zones of high heat flux to tectonic structure. In the Reykjanes area in southwestern Iceland a shallow ground temperature map was prepared for temperatures at a depth of 0.5 meters; comparison of this map with the infrared imagery reveals some striking similarities. It appears that aerial infrared surveys outline the surface thermal patterns of high-temperature areas and aid in relating these patterns to possible geological structures controlling the upflow of hot water. Amplitude-slicing techniques applied to the magnetically taped airborne scanner data permit an estimate to be made of the natural heat output on the basis of size of area and specific radiance. In addition to their value in preliminary studies of high-temperature areas, infrared surveys conducted at regular intervals over thermal area under exploitation can provide valuable data on changes that occur in surface manifestations with time.

  2. NURE aerial gamma-ray and magnetic-reconnaissance survey portions of New Mexico, Arizona, and Texas. Volume I. Instrumentation and data reduction. Final report

    SciTech Connect

    Not Available

    1981-09-01

    As part of the Department of Energy (DOE) National Uranium Resource Evaluation Program, a rotary-wing high sensitivity radiometric and magnetic survey was flown covering portions of the State of New Mexico, Arizona and Texas. The survey encompassed six 1:250,000 scale quadrangles, Holbrook, El Paso, Las Cruces, Carlsbad, Fort Sumner and Roswell. The survey was flown with a Sikorsky S58T helicopter equipped with a high sensitivity gamma ray spectrometer which was calibrated at the DOE calibration facilities at Walker Field in Grand Junction, Colorado, and the Dynamic Test Range at Lake Mead, Arizona. The radiometric data were processed to compensate for Compton scattering effects and altitude variations. The data were normalized to 400 feet terrain clearance. The reduced data is presented in the form of stacked profiles, standard deviation anomaly plots, histogram plots and microfiche listings. The results of the geologic interpretation of the radiometric data together with the profiles, anomaly maps and histograms are presented in the individual quadrangle reports. The survey was awarded to LKB Resources, Inc. which completed the data acquisition. In April, 1980 Carson Helicopters, Inc. and Carson Geoscience Company agreed to manage the project and complete delivery of this final report.

  3. A Small Autonomous Unmanned Aerial Vehicle, Ant-Plane 4, for aeromagnetic survey

    NASA Astrophysics Data System (ADS)

    Funaki, M.; Tanabe, S.; Project, A.

    2007-05-01

    Autonomous unmanned aerial vehicles (UAV) are expected to use in Antarctica for geophysical research due to economy and safety operations. We have developed the technology of small UAVwith autonomous navigation referred to GPS and onboard magnetometer, meteorolgical devices and digital camera under the Ant-Plane project. The UAV focuses on operation for use in the summer season at coastal area in Antarctica; higher temperature than -15C under calm wind. In case of Ant-Plane 4, it can fly continuously more than 500 km, probably more than 1000 km, although the flight in Antarcitca has not succeeded The UAV of FRP is pusher type drone consisting of 2.6m span and 2.0m length with 2-cycles and 2-cylinder 86cc gasoline engine (7.2 HP) navigated. The maximum takeoff weight is 25kg including 1kg of payload. Cruising distance 500 km at speed of 130 km/h using 10 litter of fuel. The UAV is controlled by radio telemeter within 5km from a ground station and autonomous navigation referred to GPS latitude and longitude, pitot tube speed and barometer altitude. The magnetometer system consists of a 3-component magneto-resistant magnetometer (MR) sensor (Honeywell HMR2300), GPS and data logger. Three components of magnetic field, latitude, longitude, altitude, the number of satellite and time are recorded every second during 6 hours. The sensitivity of the magnetometer is 7 nT and we use a total magnetic field intensity for magnetic analysis due to unknown direction of heading of the plane. We succeeded in long distant flight to 500km with magnetometer by Ant-Plane 4 collaborated with Geoscience Australia, in March 2006. The survey was performed in the area 10kmx10km at Kalgoorlie, Western Australia. The magnetic data are obtained from 41 courses (250m in interval) of EW direction. The altitude of the flight was 900m from sea level and 500m from the runway. MR-magnetometer sensor was installed at the tip of a FRP pipe of 1m length, and the pipe was fixed to the head of the plane

  4. The Use of Small Scale Aerial Photography in a Regional Agricultural Survey

    NASA Technical Reports Server (NTRS)

    Draeger, W. C.

    1971-01-01

    The feasibility of performing inventories of agricultural resources using very small scale aerial or space photography has been investigated. Results to date are encouraging on two counts: (1) the questions posed initially are being answered, and (2) it would seem that a fully operational agricultural inventory using very small scale photography is not beyond the scope of present technology. The biggest problems to be faced in establishing a functional inventory system are those concerning logistics and data handling.

  5. NASA IKONOS Radiometric Characterization

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Frisbee, Troy; Zanoni, Vicki; Blonski, Slawek; Daehler, Erik; Grant, Brennan; Holekamp, Kara; Ryan, Robert; Sellers, Richard; Smith, Charles

    2002-01-01

    The objective of this program: Perform radiometric vicarious calibrations of IKQNOS imagery and compare with Space Imaging calibration coefficients The approach taken: utilize multiple well-characterized sites which are widely used by the NASA science community for radiometric characterization of airborne and spaceborne sensors; and to Perform independent characterizations with independent teams. Each team has slightly different measurement techniques and data processing methods.

  6. Effects of light pollution revealed during a nocturnal aerial survey by two hyperspectral imagers.

    PubMed

    Barducci, Alessandro; Marcoionni, Paolo; Pippi, Ivan; Poggesi, Marco

    2003-07-20

    A remote-sensing campaign was performed in September 2001 at nighttime under clear-sky conditions before moonrise to assess the level of light pollution of urban and industrial origin. Two hyperspectral sensors, namely, the Multispectral Infrared and Visible Imaging Spectrometer and the Visible Infrared Scanner-200, which provide spectral coverage from the visible to the thermal infrared, were flown over the Tuscany coast (Italy) on board a Casa 212 airplane. The acquired images were processed to produce radiometrically calibrated data, which were then analyzed and compared with ground-based spectral measurements. Calibrated data acquired at high spectral resolution (approximately 2.5 nm) showed a maximum scene brightness almost of the same order of magnitude as that observed during similar daytime measurements, whereas their average luminosity was 3 orders of magnitude lower. The measurement analysis confirmed that artificial illumination hinders astronomical observations and produces noticeable effects even at great distances from the sources of the illumination.

  7. Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: disturbance effects and species recognition.

    PubMed

    McEvoy, John F; Hall, Graham P; McDonald, Paul G

    2016-01-01

    The use of unmanned aerial vehicles (UAVs) for ecological research has grown rapidly in recent years, but few studies have assessed the disturbance impacts of these tools on focal subjects, particularly when observing easily disturbed species such as waterfowl. In this study we assessed the level of disturbance that a range of UAV shapes and sizes had on free-living, non-breeding waterfowl surveyed in two sites in eastern Australia between March and May 2015, as well as the capability of airborne digital imaging systems to provide adequate resolution for unambiguous species identification of these taxa. We found little or no obvious disturbance effects on wild, mixed-species flocks of waterfowl when UAVs were flown at least 60m above the water level (fixed wing models) or 40m above individuals (multirotor models). Disturbance in the form of swimming away from the UAV through to leaving the water surface and flying away from the UAV was visible at lower altitudes and when fixed-wing UAVs either approached subjects directly or rapidly changed altitude and/or direction near animals. Using tangential approach flight paths that did not cause disturbance, commercially available onboard optical equipment was able to capture images of sufficient quality to identify waterfowl and even much smaller taxa such as swallows. Our results show that with proper planning of take-off and landing sites, flight paths and careful UAV model selection, UAVs can provide an excellent tool for accurately surveying wild waterfowl populations and provide archival data with fewer logistical issues than traditional methods such as manned aerial surveys.

  8. Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: disturbance effects and species recognition

    PubMed Central

    Hall, Graham P.; McDonald, Paul G.

    2016-01-01

    The use of unmanned aerial vehicles (UAVs) for ecological research has grown rapidly in recent years, but few studies have assessed the disturbance impacts of these tools on focal subjects, particularly when observing easily disturbed species such as waterfowl. In this study we assessed the level of disturbance that a range of UAV shapes and sizes had on free-living, non-breeding waterfowl surveyed in two sites in eastern Australia between March and May 2015, as well as the capability of airborne digital imaging systems to provide adequate resolution for unambiguous species identification of these taxa. We found little or no obvious disturbance effects on wild, mixed-species flocks of waterfowl when UAVs were flown at least 60m above the water level (fixed wing models) or 40m above individuals (multirotor models). Disturbance in the form of swimming away from the UAV through to leaving the water surface and flying away from the UAV was visible at lower altitudes and when fixed-wing UAVs either approached subjects directly or rapidly changed altitude and/or direction near animals. Using tangential approach flight paths that did not cause disturbance, commercially available onboard optical equipment was able to capture images of sufficient quality to identify waterfowl and even much smaller taxa such as swallows. Our results show that with proper planning of take-off and landing sites, flight paths and careful UAV model selection, UAVs can provide an excellent tool for accurately surveying wild waterfowl populations and provide archival data with fewer logistical issues than traditional methods such as manned aerial surveys. PMID:27020132

  9. Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: disturbance effects and species recognition.

    PubMed

    McEvoy, John F; Hall, Graham P; McDonald, Paul G

    2016-01-01

    The use of unmanned aerial vehicles (UAVs) for ecological research has grown rapidly in recent years, but few studies have assessed the disturbance impacts of these tools on focal subjects, particularly when observing easily disturbed species such as waterfowl. In this study we assessed the level of disturbance that a range of UAV shapes and sizes had on free-living, non-breeding waterfowl surveyed in two sites in eastern Australia between March and May 2015, as well as the capability of airborne digital imaging systems to provide adequate resolution for unambiguous species identification of these taxa. We found little or no obvious disturbance effects on wild, mixed-species flocks of waterfowl when UAVs were flown at least 60m above the water level (fixed wing models) or 40m above individuals (multirotor models). Disturbance in the form of swimming away from the UAV through to leaving the water surface and flying away from the UAV was visible at lower altitudes and when fixed-wing UAVs either approached subjects directly or rapidly changed altitude and/or direction near animals. Using tangential approach flight paths that did not cause disturbance, commercially available onboard optical equipment was able to capture images of sufficient quality to identify waterfowl and even much smaller taxa such as swallows. Our results show that with proper planning of take-off and landing sites, flight paths and careful UAV model selection, UAVs can provide an excellent tool for accurately surveying wild waterfowl populations and provide archival data with fewer logistical issues than traditional methods such as manned aerial surveys. PMID:27020132

  10. Radiometric correction procedure study

    NASA Technical Reports Server (NTRS)

    Colby, C.; Sands, R.; Murphrey, S.

    1978-01-01

    A comparison of MSS radiometric processing techniques identified as a preferred radiometric processing technique a procedure which equalizes the mean and standard deviation of detector-specific histograms of uncalibrated scene data. Evaluation of MSS calibration data demonstrated that the relationship between detector responses is essentially linear over the range of intensities typically observed in MSS data, and that the calibration wedge data possess a high degree of temporal stability. An analysis of the preferred radiometric processing technique showed that it could be incorporated into the MDP-MSS system without a major redesign of the system, and with minimal impact on system throughput.

  11. Aerial photographic reproductions

    USGS Publications Warehouse

    ,

    1975-01-01

    The National Cartographic Information Center of the U.S. Geological Survey maintains records of aerial photographic coverage of the United States and its Territories, based on reports from other Federal agencies as well as State governmental agencies and commercial companies. From these records, the Center furnishes data to prospective purchasers on available photography and the agency holding the aerial film.

  12. Design of a Mars Airplane Propulsion System for the Aerial Regional-Scale Environmental Survey (ARES) Mission Concept

    NASA Technical Reports Server (NTRS)

    Kuhl. Christopher A.

    2009-01-01

    The Aerial Regional-Scale Environmental Survey (ARES) is a Mars exploration mission concept with the goal of taking scientific measurements of the atmosphere, surface, and subsurface of Mars by using an airplane as the payload platform. ARES team first conducted a Phase-A study for a 2007 launch opportunity, which was completed in May 2003. Following this study, significant efforts were undertaken to reduce the risk of the atmospheric flight system, under the NASA Langley Planetary Airplane Risk Reduction Project. The concept was then proposed to the Mars Scout program in 2006 for a 2011 launch opportunity. This paper summarizes the design and development of the ARES airplane propulsion subsystem beginning with the inception of the ARES project in 2002 through the submittal of the Mars Scout proposal in July 2006.

  13. Design of a Mars Airplane Propulsion System for the Aerial Regional-Scale Environmental Survey (ARES) Mission Concept

    NASA Technical Reports Server (NTRS)

    Kuhl, Christopher A.

    2008-01-01

    The Aerial Regional-Scale Environmental Survey (ARES) is a Mars exploration mission concept that utilizes a rocket propelled airplane to take scientific measurements of atmospheric, surface, and subsurface phenomena. The liquid rocket propulsion system design has matured through several design cycles and trade studies since the inception of the ARES concept in 2002. This paper describes the process of selecting a bipropellant system over other propulsion system options, and provides details on the rocket system design, thrusters, propellant tank and PMD design, propellant isolation, and flow control hardware. The paper also summarizes computer model results of thruster plume interactions and simulated flight performance. The airplane has a 6.25 m wingspan with a total wet mass of 185 kg and has to ability to fly over 600 km through the atmosphere of Mars with 45 kg of MMH / MON3 propellant.

  14. Aerial gamma ray and magnetic survey, Montrose detail Area 5, Colorado. Final report

    SciTech Connect

    Not Available

    1980-04-01

    The Montrose Detail Area No. 5 consists of a 180 square mile area covering portions of the West Elk Mountains, the Ruby Range, and associated mountainous regions of the Southern Rocky Mountains. The area's geology is dominated by Tertiary intrusive and extrusive rocks related to the West Elk Mountains Volcanic Province. Some exposures of underlying Tertiary and Cretaceous material are present. The Irwin Mining District (Anthracite) lies within the detail area, as well as several small prospects for zinc, lead, and silver. No uranium occurrences are known to be associated with these mineralized areas. A total of 26 groups of samples in the uranium window constitute anomalies as defined in Volume I. These anomalies lie over the highest uranium count rate areas in the Ruby Range, the Anthracite Range, and the East Beckwith Mountain area. The highest count rates appear associated with dikes of granodiorite and/or white quartz porphyry. Magnetic data outline the major intrusive and extrusive bodies in the south, but only partially define the intrusive complex to the north. Little correlation with the radiometric data was expected or observed. Despite a wide range in the count rates of the three radioisotopes, the area appeared to be geochemically homogeneous according to the criteria set forth in Volume I. Other methods of separating geochemically distinctive areas may be more successful. Multivariate analysis showed a high degree of correleation between the three isotopes.

  15. Age determination by back length for African savanna elephants: extending age assessment techniques for aerial-based surveys.

    PubMed

    Trimble, Morgan J; van Aarde, Rudi J; Ferreira, Sam M; Nørgaard, Camilla F; Fourie, Johan; Lee, Phyllis C; Moss, Cynthia J

    2011-01-01

    Determining the age of individuals in a population can lead to a better understanding of population dynamics through age structure analysis and estimation of age-specific fecundity and survival rates. Shoulder height has been used to accurately assign age to free-ranging African savanna elephants. However, back length may provide an analog measurable in aerial-based surveys. We assessed the relationship between back length and age for known-age elephants in Amboseli National Park, Kenya, and Addo Elephant National Park, South Africa. We also compared age- and sex-specific back lengths between these populations and compared adult female back lengths across 11 widely dispersed populations in five African countries. Sex-specific Von Bertalanffy growth curves provided a good fit to the back length data of known-age individuals. Based on back length, accurate ages could be assigned relatively precisely for females up to 23 years of age and males up to 17. The female back length curve allowed more precise age assignment to older females than the curve for shoulder height does, probably because of divergence between the respective growth curves. However, this did not appear to be the case for males, but the sample of known-age males was limited to ≤27 years. Age- and sex-specific back lengths were similar in Amboseli National Park and Addo Elephant National Park. Furthermore, while adult female back lengths in the three Zambian populations were generally shorter than in other populations, back lengths in the remaining eight populations did not differ significantly, in support of claims that growth patterns of African savanna elephants are similar over wide geographic regions. Thus, the growth curves presented here should allow researchers to use aerial-based surveys to assign ages to elephants with greater precision than previously possible and, therefore, to estimate population variables.

  16. Age Determination by Back Length for African Savanna Elephants: Extending Age Assessment Techniques for Aerial-Based Surveys

    PubMed Central

    Trimble, Morgan J.; van Aarde, Rudi J.; Ferreira, Sam M.; Nørgaard, Camilla F.; Fourie, Johan; Lee, Phyllis C.; Moss, Cynthia J.

    2011-01-01

    Determining the age of individuals in a population can lead to a better understanding of population dynamics through age structure analysis and estimation of age-specific fecundity and survival rates. Shoulder height has been used to accurately assign age to free-ranging African savanna elephants. However, back length may provide an analog measurable in aerial-based surveys. We assessed the relationship between back length and age for known-age elephants in Amboseli National Park, Kenya, and Addo Elephant National Park, South Africa. We also compared age- and sex-specific back lengths between these populations and compared adult female back lengths across 11 widely dispersed populations in five African countries. Sex-specific Von Bertalanffy growth curves provided a good fit to the back length data of known-age individuals. Based on back length, accurate ages could be assigned relatively precisely for females up to 23 years of age and males up to 17. The female back length curve allowed more precise age assignment to older females than the curve for shoulder height does, probably because of divergence between the respective growth curves. However, this did not appear to be the case for males, but the sample of known-age males was limited to ≤27 years. Age- and sex-specific back lengths were similar in Amboseli National Park and Addo Elephant National Park. Furthermore, while adult female back lengths in the three Zambian populations were generally shorter than in other populations, back lengths in the remaining eight populations did not differ significantly, in support of claims that growth patterns of African savanna elephants are similar over wide geographic regions. Thus, the growth curves presented here should allow researchers to use aerial-based surveys to assign ages to elephants with greater precision than previously possible and, therefore, to estimate population variables. PMID:22028925

  17. NASA IKONOS Radiometric Characterization

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Ryan, Robert E.; Kelly, Michelle; Holekamp, Kara; Daehler, Erik; Zanoni, Vicki; Schiller, Stephen; Thome, Kurtis

    2002-01-01

    NASA acquired imagery from the IKONOS satellite as part of its Scientific Data Purchase (SDP) program, which purchases scientific data sets from commercial sources. This viewgraph presentation describes the IKONOS satellite and its sensors, and then gives an overview of characterization efforts undertaken by NASA in cooperation with other government agencies. The characterization included relative radiometric correction, absolute radiometric characterization of data from Lunar Lake Playa, Nevada, and calibration of data from Stennis Space Center, Mississippi.

  18. Aerial Photography Summary Record System

    USGS Publications Warehouse

    ,

    1998-01-01

    The Aerial Photography Summary Record System (APSRS) describes aerial photography projects that meet specified criteria over a given geographic area of the United States and its territories. Aerial photographs are an important tool in cartography and a number of other professions. Land use planners, real estate developers, lawyers, environmental specialists, and many other professionals rely on detailed and timely aerial photographs. Until 1975, there was no systematic approach to locate an aerial photograph, or series of photographs, quickly and easily. In that year, the U.S. Geological Survey (USGS) inaugurated the APSRS, which has become a standard reference for users of aerial photographs.

  19. Aerial radiological and photographic survey of eleven atolls and two islands within the Northern Marshall Islands. Dates of surveys, July-November 1978

    SciTech Connect

    Not Available

    1981-06-01

    An aerial radiological survey was conducted over eleven atolls and two islands within the northern Marshall Islands between September and November 1978. This survey was part of a comprehensive radiological survey, which included extensive terrestrial and marine sampling, to determine possible residual contamination which might remain as a result of the United States nuclear testing program conducted at Bikini Enewetak Atolls between 1946 and 1958. A similar survey was conducted at Enewetak Atoll in 1972. The present survey covered those atolls known to have received direct fallout from the Bravo event, conducted in March 1954 at Bikini Atoll. These included Bikini, Rongelap, Rongerik, Ailinginae, Bikar, Taka, and Utirik Atolls. In addition, several atolls and islands which might have been at the fringes of the Bravo fallout were also surveyed, including Likiep and Ailuk Atolls, Jemo and Mejit Islands, and Wotho Atoll. Ujelang Atoll, which lies approximately 200 km southwest of Enewetak, was also surveyed. Island-averaged terrestrial exposure rates in the range of 30 to 50 ..mu..R/h were observed over parts of Bikini Atoll, including Bikini Island, and over the northern part of Rongelap Atoll. Levels over southern Rongelap and over Rongerik Atoll ranged from 4 to 7 ..mu..R/h. Levels were somewhat lower at Ailinginae Atoll (approximately 2 ..mu..R/h) and at Utirik Atoll (approximately 0.7 ..mu..R/h). The variations observed were consistent with what might be expected from the fallout pattern of the Bravo event. Levels at Ailuk, Likiep, Wotho and Ujelang Atolls and at Mejit and Jemo Islands were consistent with /sup 137/Cs activity, due to worldwide fallout, observed within the United States and at other locations in the central Pacific. These four atolls and the two islands, therefore, do not appear to have recieved any significant direct contamination from the Bravo event or the other tests conducted at Bikini and Enewetak Atolls.

  20. NOAA's National Geodetic Survey Utilization of Aerial Sensors for Emergency Response Efforts

    NASA Technical Reports Server (NTRS)

    White, Stephen

    2007-01-01

    Remote Sensing Division has a Coastal Mapping program and a Airport Survey program and research and development that support both programs. NOAA/NGS/RSD plans to acquire remotely sensed data to support the agency's homeland security and emergency response requirements.

  1. U.S. Geological Survey Aids Federal Agencies in ObtainingCommercial Satellite and Aerial Imagery

    USGS Publications Warehouse

    ,

    2005-01-01

    The U.S. Geological Survey (USGS) is a leading U.S. Federal civil agency in the implementation of the civil aspects of the Commercial Remote Sensing Space Policy (CRSSP). The USGS is responsible for collecting inter-agency near-term requirements, establishing an operational infrastructure, and supporting the policy and other Federal agencies.

  2. Planialtimetric Accuracy Evaluation of Digital Surface Model (dsm) and Digital Terrain Model (dtm) Obtained from Aerial Survey with LIDAR

    NASA Astrophysics Data System (ADS)

    Cruz, C. B. M.; Barros, R. S.; Rabaco, L. M. L.

    2012-07-01

    It's noticed a significant increase in the development of orbital and airborne sensors that enable the extraction of three-dimensional data. Consequently, it's important the increment of studies about the quality of altimetric values derived from these sensors to verify if the improvements implemented in the acquisition of data may influence the results. In this context, as part of a larger project that aims to evaluate the accuracy of various sensors, this work aims to analysis the planialtimetric accuracy of DSM and DTM generated from an aerial survey with LIDAR, using as reference for the planimetric analysis of the orthophotos obtained. The project was developed for an area of São Sebastião city, located in the basin of the North Coast of São Paulo state. The area's relief is very steep, with a predominance of dense forest vegetation, typical of the Atlantic Forest. All points have been established in the field, with the use of GNSS of one frequency (L1) through static relative positioning, acquiring a minimum of 1,500 epochs, for a distance less than 20 km to the base. In this work it's considered the Brazilian standard specifications for classification of cartographic bases (PEC). The Brazilian company responsible for the aerial survey (LACTEC) gave the following products for analysis: point clouds in raw format (x, y, z) using orthometric heights; point clouds (first and last pulse) for each range of flight to verify systematic errors; DTM uniformly spaced, filtering small natural obstacles, buildings and vegetation, in Geotiff format; DSM also uniformly spaced, in Geotiff format; and the mosaic of georeferenced digital images. The analysis realized on products from the LIDAR indicated their adoption to the scales 1:2,000 (Class A for the orthophotos and Class B for the DTM) and 1:5,000 (class C for the DSM). There were no indications of trends in the results. The average error was 0.01 m. It's important that new areas with different topographic

  3. Practical Bias Correction in Aerial Surveys of Large Mammals: Validation of Hybrid Double-Observer with Sightability Method against Known Abundance of Feral Horse (Equus caballus) Populations

    PubMed Central

    2016-01-01

    Reliably estimating wildlife abundance is fundamental to effective management. Aerial surveys are one of the only spatially robust tools for estimating large mammal populations, but statistical sampling methods are required to address detection biases that affect accuracy and precision of the estimates. Although various methods for correcting aerial survey bias are employed on large mammal species around the world, these have rarely been rigorously validated. Several populations of feral horses (Equus caballus) in the western United States have been intensively studied, resulting in identification of all unique individuals. This provided a rare opportunity to test aerial survey bias correction on populations of known abundance. We hypothesized that a hybrid method combining simultaneous double-observer and sightability bias correction techniques would accurately estimate abundance. We validated this integrated technique on populations of known size and also on a pair of surveys before and after a known number was removed. Our analysis identified several covariates across the surveys that explained and corrected biases in the estimates. All six tests on known populations produced estimates with deviations from the known value ranging from -8.5% to +13.7% and <0.7 standard errors. Precision varied widely, from 6.1% CV to 25.0% CV. In contrast, the pair of surveys conducted around a known management removal produced an estimated change in population between the surveys that was significantly larger than the known reduction. Although the deviation between was only 9.1%, the precision estimate (CV = 1.6%) may have been artificially low. It was apparent that use of a helicopter in those surveys perturbed the horses, introducing detection error and heterogeneity in a manner that could not be corrected by our statistical models. Our results validate the hybrid method, highlight its potentially broad applicability, identify some limitations, and provide insight and guidance

  4. Aerial Surveys of Waterfowl Production in North America, 1955-71

    USGS Publications Warehouse

    Henny, C.J.; Anderson, D.R.; Pospahala, R.S.

    1972-01-01

    Basic information obtained from the July Waterfowl Production Survey is presented in 32 Appendix tables for the period 1955-71. The discussion of the data is minimized because the report is designed primarily to make the data available to waterfowl biologists and other interested individuals. Data presented include: (1) the number of July ponds, (2) the brood index, (3) the average size forClass II and Cia s s !II broods, and (4) the late nesting index. These statistics are presented for each stratum surveyed. A few of the obvious correlations are discussed, although more refined analyses of the data will be presented in the Mallard Study reports. Furthermore, additional supporting information will be available for the mallard reports.

  5. Photovoltaics radiometric issues and needs

    SciTech Connect

    Myers, D.R.

    1995-11-01

    This paper presents a summary of issues discussed at the photovoltaic radiometric measurements workshop. Topics included radiometric measurements guides, the need for well-defined goals, documentation, calibration checks, accreditation of testing laboratories and methods, the need for less expensive radiometric instrumentation, data correlations, and quality assurance.

  6. Radiometric Dating Does Work!

    ERIC Educational Resources Information Center

    Dalrymple, G. Brent

    2000-01-01

    Discusses the accuracy of dating methods and creationist arguments that radiometric dating does not work. Explains the Manson meteorite impact and the Pierre shale, the ages of meteorites, the K-T tektites, and dating the Mount Vesuvius eruption. (Author/YDS)

  7. Small satellite radiometric measurements

    SciTech Connect

    Weber, P.G.

    1991-01-01

    A critical need for the Mission to Planet Earth is to provide continuous, well-calibrated radiometric data for the radiation budget. This paper describes a new, compact, flexible radiometer which will provide both spectrally integrated data and data in selected spectral bands. The radiometer design is suitable for use on small satellites, aircraft, or remotely piloted vehicles (RPVs). 12 refs., 2 figs.

  8. Aerial Surveys of Elevated Hydrocarbon Emissions from Oil and Gas Production Sites.

    PubMed

    Lyon, David R; Alvarez, Ramón A; Zavala-Araiza, Daniel; Brandt, Adam R; Jackson, Robert B; Hamburg, Steven P

    2016-05-01

    Oil and gas (O&G) well pads with high hydrocarbon emission rates may disproportionally contribute to total methane and volatile organic compound (VOC) emissions from the production sector. In turn, these emissions may be missing from most bottom-up emission inventories. We performed helicopter-based infrared camera surveys of more than 8000 O&G well pads in seven U.S. basins to assess the prevalence and distribution of high-emitting hydrocarbon sources (detection threshold ∼ 1-3 g s(-1)). The proportion of sites with such high-emitting sources was 4% nationally but ranged from 1% in the Powder River (Wyoming) to 14% in the Bakken (North Dakota). Emissions were observed three times more frequently at sites in the oil-producing Bakken and oil-producing regions of mixed basins (p < 0.0001, χ(2) test). However, statistical models using basin and well pad characteristics explained 14% or less of the variance in observed emission patterns, indicating that stochastic processes dominate the occurrence of high emissions at individual sites. Over 90% of almost 500 detected sources were from tank vents and hatches. Although tank emissions may be partially attributable to flash gas, observed frequencies in most basins exceed those expected if emissions were effectively captured and controlled, demonstrating that tank emission control systems commonly underperform. Tanks represent a key mitigation opportunity for reducing methane and VOC emissions.

  9. Aerial Surveys of Elevated Hydrocarbon Emissions from Oil and Gas Production Sites.

    PubMed

    Lyon, David R; Alvarez, Ramón A; Zavala-Araiza, Daniel; Brandt, Adam R; Jackson, Robert B; Hamburg, Steven P

    2016-05-01

    Oil and gas (O&G) well pads with high hydrocarbon emission rates may disproportionally contribute to total methane and volatile organic compound (VOC) emissions from the production sector. In turn, these emissions may be missing from most bottom-up emission inventories. We performed helicopter-based infrared camera surveys of more than 8000 O&G well pads in seven U.S. basins to assess the prevalence and distribution of high-emitting hydrocarbon sources (detection threshold ∼ 1-3 g s(-1)). The proportion of sites with such high-emitting sources was 4% nationally but ranged from 1% in the Powder River (Wyoming) to 14% in the Bakken (North Dakota). Emissions were observed three times more frequently at sites in the oil-producing Bakken and oil-producing regions of mixed basins (p < 0.0001, χ(2) test). However, statistical models using basin and well pad characteristics explained 14% or less of the variance in observed emission patterns, indicating that stochastic processes dominate the occurrence of high emissions at individual sites. Over 90% of almost 500 detected sources were from tank vents and hatches. Although tank emissions may be partially attributable to flash gas, observed frequencies in most basins exceed those expected if emissions were effectively captured and controlled, demonstrating that tank emission control systems commonly underperform. Tanks represent a key mitigation opportunity for reducing methane and VOC emissions. PMID:27045743

  10. Aeromagnetic Survey by Small Unmanned Aerial Vehicle with Magneto-Resistant Magnetometer at the northern Kalgoorlie area, Western Australia

    NASA Astrophysics Data System (ADS)

    Funaki, M.; Group, A.; Milligan, P.

    2006-12-01

    We have developed the technology of small drones (unmanned aerial vehicles (UAV)) and an onboard magnetometer focussed on the aeromagnetic surveys under the Ant-Plane project. We succeeded long distant flight to 500km with agnetometer by Ant-Plene4 drone collaborated with Geoscience, Australia, in March 2006. The survey was carried out in the area 10kmx10km around Mt. Vetters Station, Kalgoorlie, West Australian. The magnetic data are obtained from 41 courses (250m in interval) of EW dierction. The altitude of the flight was 900m from sea level and 500m from the runway. The Ant-Plane #4 consists of 2.6m span and 2.0m length with 2-cycles and 2-cylinder 85cc gasoline engine, GPS navigation system by microcomputer and radio telemeter system. The total weight is 25kg including 12.4 litter fuels and the coursing speed is 130. The magnetometer system consists of a 3-component magneto- resistant magnetometer (MR) sensor (Honeywell HMR2300), GPS and data logger. Three components of magnetic field, latitude, longitude, altitude, the number of satellite and time can be recorded in every second during 6 hours. The sensitivity of the magnetometer is 7 nT and we use a total magnetic field intensity for magnetic analysis due to unknown direction of heading of the plane. MR-magnetometer sensor was installed at the tip of a FRP pipe of 1m length, and the pipe was fixed to the head of the plane in order to reduce the plane magnetization. After 4 hours 14 minutes from the takeoff, the 500km flight was accomplished and the magnetic data were obtained from the data logger. The straight flight course was almost consistent with the way point course, but the course was drastically disturbed when the plane was turning. The magnetic noise level during the flight increased to 30nT, when the plane was flight in the tail wind. However, it is much higher when the plane flew in the head wind. The anomaly pattern obtained from Ant-Plane 4 was compared with the magnetic anomaly map published by

  11. Thermal features at some Cascade volcanoes as observed by aerial infrared surveys

    USGS Publications Warehouse

    Moxham, R.M.

    1970-01-01

    There have been no substantial changes in the thermal patterns at the summit of Mount Rainier in the period September 1964–September 1966, within the detection limits of the infrared instrumentation. Some differences in radiance are attributed to differences in snow cover. The highest apparent temperature is at a snow-free area on the west flank of the summit cone, several hundred feet below the west crater rim. An anomaly at this site was recorded on both infrared surveys, but no prior reports of thermal activity here have been made by ground parties. Other anomalous thermal zones at the summit are on the northern quadrants of both crater rims. A very small, low-temperature fumarole reported on Mount Adams was not detected, nor were any other thermal manifestations recorded. One anomaly consisting of a close-spaced cluster of thermal spots was detected at The Boot on Mount St. Helens and corresponds to a known fumarole area. The only thermal feature seen on Mount Shasta is near the summit at a thermal spring that has been observed by many climbers. Two anomalies were found on the north flank of Lassen Peak. Thermal activity had not been previously reported at either site, though one is in a known solfatarized area. No ground investigation has been made at the other location. Much of the other thermal activity in the Lassen Peak area is in the northeast quadrant of Brokeoff Caldera. Most of these features are well documented in the literature; others not previously described are in fairly accessible areas and doubtless result from springs and fumaroles related to Brokeoff Caldera.

  12. Thermal features at Volcanoes in the cascade range, as observed by aerial infrared surveys

    USGS Publications Warehouse

    Moxham, R.M.

    1970-01-01

    There have been no substantial changes in the thermal patterns at the summit of Mount Rainier in the period September 1964-September 1966, within the detection limits of the infrared instrumentation. Some differences in radiance are attributed to differences in snow cover. The highest apparent temperature is at a snow-free area on the west flank of the summit cone, several hundred feet below the west crater rim. An anomaly at this site was recorded on both infrared surveys, but no prior reports of thermal activity here have been made by ground parties. Other anomalous thermal zones at the summit are on the northern quadrants of both crater rims. A very small, low-temperature fumarole reported on Mount Adams was not detected, nor were any other thermal manifestations recorded. One anomaly consisting of a close-spaced cluster of thermal spots was detected at The Boot on Mount St. Helens and corresponds to a known fumarole area. The only thermal feature seen on Mount Shasta is near the summit at a thermal spring that has been observed by many climbers. Two anomalies were found on the north flank of Lassen Peak. Thermal activity had not been previously reported at either site, though one is in a known solfatarized area. No ground investigation has been made at the other location. Much of the other thermal activity in the Lassen Peak area is in the northeast quadrant of Brokeoff Caldera. Most of these features are well documented in the literature; others not previously described are in fairly accessible areas and doubtless result from springs and fumaroles related to Brokeoff Caldera. ?? 1970 Stabilimento Tipografico Francesco Giannini & Figli.

  13. Aerial Surveys of the Beaufort Sea Seasonal Ice Zone in 2012-2014

    NASA Astrophysics Data System (ADS)

    Dewey, S.; Morison, J.; Andersen, R.; Zhang, J.

    2014-12-01

    Seasonal Ice Zone Reconnaissance Surveys (SIZRS) of the Beaufort Sea aboard U.S. Coast Guard Arctic Domain Awareness flights were made monthly from May 2012 to October 2012, June 2013 to August 2013, and June 2014 to October 2014. In 2012 sea ice extent reached a record minimum and the SIZRS sampling ranged from complete ice cover to open water; in addition to its large spatial coverage, the SIZRS program extends temporal coverage of the seasonal ice zone (SIZ) beyond the traditional season for ship-based observations, and is a good set of measurements for model validation and climatological comparison. The SIZ, where ice melts and reforms annually, encompasses the marginal ice zone (MIZ). Thus SIZRS tracks interannual MIZ conditions, providing a regional context for smaller-scale MIZ processes. Observations with Air eXpendable CTDs (AXCTDs) reveal two near-surface warm layers: a locally-formed surface seasonal mixed layer and a layer of Pacific origin at 50-60m. Temperatures in the latter differ from the freezing point by up to 2°C more than climatologies. To distinguish vertical processes of mixed layer formation from Pacific advection, vertical heat and salt fluxes are quantified using a 1-D Price-Weller-Pinkel (PWP) model adapted for ice-covered seas. This PWP simulates mixing processes in the top 100m of the ocean. Surface forcing fluxes are taken from the Marginal Ice Zone Modeling and Assimilation System MIZMAS. Comparison of SIZRS observations with PWP output shows that the ocean behaves one-dimensionally above the Pacific layer of the Beaufort Gyre. Despite agreement with the MIZMAS-forced PWP, SIZRS observations remain fresher to 100m than do outputs from MIZMAS and ECCO.2. The shapes of seasonal cycles in SIZRS salinity and temperature agree with MIZMAS and ECCO.2 model outputs despite differences in the values of each. However, the seasonal change of surface albedo is not high enough resolution to accurately drive the PWP. Use of ice albedo

  14. Simplified Vicarious Radiometric Calibration

    NASA Technical Reports Server (NTRS)

    Stanley, Thomas; Ryan, Robert; Holekamp, Kara; Pagnutti, Mary

    2010-01-01

    A measurement-based radiance estimation approach for vicarious radiometric calibration of spaceborne multispectral remote sensing systems has been developed. This simplified process eliminates the use of radiative transfer codes and reduces the number of atmospheric assumptions required to perform sensor calibrations. Like prior approaches, the simplified method involves the collection of ground truth data coincident with the overpass of the remote sensing system being calibrated, but this approach differs from the prior techniques in both the nature of the data collected and the manner in which the data are processed. In traditional vicarious radiometric calibration, ground truth data are gathered using ground-viewing spectroradiometers and one or more sun photometer( s), among other instruments, located at a ground target area. The measured data from the ground-based instruments are used in radiative transfer models to estimate the top-of-atmosphere (TOA) target radiances at the time of satellite overpass. These TOA radiances are compared with the satellite sensor readings to radiometrically calibrate the sensor. Traditional vicarious radiometric calibration methods require that an atmospheric model be defined such that the ground-based observations of solar transmission and diffuse-to-global ratios are in close agreement with the radiative transfer code estimation of these parameters. This process is labor-intensive and complex, and can be prone to errors. The errors can be compounded because of approximations in the model and inaccurate assumptions about the radiative coupling between the atmosphere and the terrain. The errors can increase the uncertainty of the TOA radiance estimates used to perform the radiometric calibration. In comparison, the simplified approach does not use atmospheric radiative transfer models and involves fewer assumptions concerning the radiative transfer properties of the atmosphere. This new technique uses two neighboring uniform

  15. Aerial Explorers

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg; Ippolito, Corey

    2005-01-01

    This paper presents recent results from a mission architecture study of planetary aerial explorers. In this study, several mission scenarios were developed in simulation and evaluated on success in meeting mission goals. This aerial explorer mission architecture study is unique in comparison with previous Mars airplane research activities. The study examines how aerial vehicles can find and gain access to otherwise inaccessible terrain features of interest. The aerial explorer also engages in a high-level of (indirect) surface interaction, despite not typically being able to takeoff and land or to engage in multiple flights/sorties. To achieve this goal, a new mission paradigm is proposed: aerial explorers should be considered as an additional element in the overall Entry, Descent, Landing System (EDLS) process. Further, aerial vehicles should be considered primarily as carrier/utility platforms whose purpose is to deliver air-deployed sensors and robotic devices, or symbiotes, to those high-value terrain features of interest.

  16. Radiometric sounding system

    SciTech Connect

    Whiteman, C.D.; Anderson, G.A.; Alzheimer, J.M.; Shaw, W.J.

    1995-04-01

    Vertical profiles of solar and terrestrial radiative fluxes are key research needs for global climate change research. These fluxes are expected to change as radiatively active trace gases are emitted to the earth`s atmosphere as a consequence of energy production and industrial and other human activities. Models suggest that changes in the concentration of such gases will lead to radiative flux divergences that will produce global warming of the earth`s atmosphere. Direct measurements of the vertical variation of solar and terrestrial radiative fluxes that lead to these flux divergences have been largely unavailable because of the expense of making such measurements from airplanes. These measurements are needed to improve existing atmospheric radiative transfer models, especially under the cloudy conditions where the models have not been adequately tested. A tethered-balloon-borne Radiometric Sounding System has been developed at Pacific Northwest Laboratory to provide an inexpensive means of making routine vertical soundings of radiative fluxes in the earth`s atmospheric boundary layer to altitudes up to 1500 m above ground level. Such vertical soundings would supplement measurements being made from aircraft and towers. The key technical challenge in the design of the Radiometric Sounding System is to develop a means of keeping the radiometers horizontal while the balloon ascends and descends in a turbulent atmospheric environment. This problem has been addressed by stabilizing a triangular radiometer-carrying platform that is carried on the tetherline of a balloon sounding system. The platform, carried 30 m or more below the balloon to reduce the balloon`s effect on the radiometric measurements, is leveled by two automatic control loops that activate motors, gears and pulleys when the platform is off-level. The sensitivity of the automatic control loops to oscillatory motions of various frequencies and amplitudes can be adjusted using filters.

  17. Radiometric terrain correction of SPOT5 image

    NASA Astrophysics Data System (ADS)

    Feng, Xiuli; Zhang, Feng; Wang, Ke

    2007-06-01

    Remote sensing SPOT5 images have been widely applied to the surveying of agriculture and forest resources and to the monitoring of ecology environment of mountain areas. However, the accuracy of land-cover classification of mountain areas is often influenced by the topographical shadow effect. Radiometric terrain correction is important for this kind of application. In this study, a radiometric terrain correction model which based on the rationale of moment matching was made in ERDAS IMAGINE by using the Spatial Modeler Language. Lanxi city in China as the study area, a SPOT5 multispectral image with the spatial resolution of 10 m of that mountain area was corrected by the model. Furthermore, in order to present the advantage of this new model in radiometric terrain correction of remote sensing SPOT5 image, the traditional C correction approach was also applied to the same area to see its difference with the result of the radiometric terrain correction model. The results show that the C correction approach keeps the overall statistical characteristics of spectral bands. The mean and the standard deviation value of the corrected image are the same as original ones. However, the standard deviation value became smaller by using the radiometric terrain correction model and the mean value changed accordingly. The reason of these changes is that before the correction, the histogram of the original image is represented as the 'plus-skewness distribution' due to the relief-caused shade effect, after the correction of the model, the histogram of the image is represented as the normal distribution and the shade effect of the relief has been removed. But as for the result of the traditional C approach, the skewness of the histogram remains the same after the correction. Besides, some portions of the mountain area have been over-corrected. So in my study area, the C correction approach can't remove the shade effect of the relief ideally. The results show that the radiometric

  18. Preparation of magnetic anomaly profile and contour maps from DOE-NURE aerial survey data. Volume I: processing procedures. [National Uranium Resource Evaluation

    SciTech Connect

    Tinnel, E.P.; Hinze, W.J.

    1981-09-01

    Total intensity magnetic anomaly data acquired as a supplement to radiometric data in the DOE National Uranium Resource Evaluation (NURE) Program are useful in preparing regional profile and contour maps. Survey-contractor-supplied magnetic anomaly data are subjected to a multiprocess, computer-based procedure which prepares these data for presentation. This procedure is used to produce the following machine plotted maps of National Topographic Map Series quadrangle units at a 1:250,000 scale: (1) profile map of contractor-supplied magnetic anomaly data, (2) profile map of high-cut filtered data with contour levels of each profile marked and annotated on the associated flight track, (3) profile map of critical-point data with contour levels indicated, and (4) contour map of filtered and selected data. These quadrangle maps are supplemented with a range of statistical measures of the data which are useful in quality evaluation.

  19. Integration of historical aerial and satellite photos, recent satellite images and geophysical surveys for the knowledge of the ancient Dyrrachium (Durres, Albania)

    NASA Astrophysics Data System (ADS)

    Malfitana, Daniele; Shehi, Eduard; Masini, Nicola; Scardozzi, Giuseppe

    2010-05-01

    The paper presents the preliminary results of an integrated multidiscipliary research project concerning the urban area of the modern Durres (ancient Dyrrachium). Here a joint Italian and Albanian researcher are starting preliminary investigations on the place of an ancient roman villa placed in the urban centre of the modern town. In a initial phase are offering interesting results the use of a rich multitemporal remote sensing data-set, historical aerial photos of 1920s and 1930s, photos of USA spy satellites of 1960s and 1970s (Corona KH-4A and KH-4B), and very high resolution satellite imagery. The historical aerial documentation is very rich and includes aerial photogrammetrich flights of two Italian Institutions: the private company SARA - Società Anonima Rilevamenti Aerofotogrammetrici in Rome (1928) and the IGM - Istituto Geografico Militare (1936, 1937 e 1941), which flew on Durres for purposes of cartographic production and military. These photos offer an image of the city before the urban expansion after the Second World War and in recent decades, progressively documented by satellite images of the 1960s-1970s and recent years. They enable a reconstruction of the ancient topography of the urban area, even with the possibility of detailed analysis, as in the case of the the Roman villa, nowadays buried under a modern garden, but also investigated with a GPR survey, in order to rebuild its plan and contextualize the villa in relation to the urban area of the ancient Dyrrachium.

  20. Composite Digital Terrain Models: Synthesizing Aerial and Terrestrial LiDAR with Conventional Survey Data to Monitor Sediment Transport Through the Sunol Dam Removal Site

    NASA Astrophysics Data System (ADS)

    Storesund, R.; Minear, T.; Saleh, R.

    2007-12-01

    In 2006, the San Francisco Public Utilities Commission removed Sunol dam, located on Alameda Creek, near San Francisco California. The primary goals of the project were to improve fish passage, restore a self- sustaining population of steelhead to the watershed, and eliminate an existing public safety hazard. Approximately 28,300 cubic meters of sand and gravel-sized sediment had accumulated upstream of the dam and was left in place to move downstream naturally over a period of several decades. To create a baseline for future monitoring of sediment transport through the dam area, a combination of Aerial LiDAR, Terrestrial LiDAR, and conventional survey data was compiled and synthesized to generate a three dimensional digital model of the study area both upstream and downstream of the damsite. The primary survey method for characterization of above ground topography was Terrestrial LiDAR, with an approximate point spacing of centimeters. In submerged areas conventional survey techniques were used to augment the Aerial and Terrestrial LiDAR data sets. We found this approach to be effective in developing a high accuracy-high detail sediment volume model from which sediment transport can be monitored and modeled.

  1. Critical Assessment of Object Segmentation in Aerial Image Using Geo-Hausdorff Distance

    NASA Astrophysics Data System (ADS)

    Sun, H.; Ding, Y.; Huang, Y.; Wang, G.

    2016-06-01

    Aerial Image records the large-range earth objects with the ever-improving spatial and radiometric resolution. It becomes a powerful tool for earth observation, land-coverage survey, geographical census, etc., and helps delineating the boundary of different kinds of objects on the earth both manually and automatically. In light of the geo-spatial correspondence between the pixel locations of aerial image and the spatial coordinates of ground objects, there is an increasing need of super-pixel segmentation and high-accuracy positioning of objects in aerial image. Besides the commercial software package of eCognition and ENVI, many algorithms have also been developed in the literature to segment objects of aerial images. But how to evaluate the segmentation results remains a challenge, especially in the context of the geo-spatial correspondence. The Geo-Hausdorff Distance (GHD) is proposed to measure the geo-spatial distance between the results of various object segmentation that can be done with the manual ground truth or with the automatic algorithms.Based on the early-breaking and random-sampling design, the GHD calculates the geographical Hausdorff distance with nearly-linear complexity. Segmentation results of several state-of-the-art algorithms, including those of the commercial packages, are evaluated with a diverse set of aerial images. They have different signal-to-noise ratio around the object boundaries and are hard to trace correctly even for human operators. The GHD value is analyzed to comprehensively measure the suitability of different object segmentation methods for aerial images of different spatial resolution. By critically assessing the strengths and limitations of the existing algorithms, the paper provides valuable insight and guideline for extensive research in automating object detection and classification of aerial image in the nation-wide geographic census. It is also promising for the optimal design of operational specification of remote

  2. Aerial photographic reproductions

    USGS Publications Warehouse

    U.S. Geological Survey

    1971-01-01

    Geological Survey vertical aerial photography is obtained primarily for topographic and geologic mapping. Reproductions from this photography are usually satisfactory for general use. Because reproductions are not stocked, but are custom processed for each order, they cannot be returned for credit or refund.

  3. [Laser-based radiometric calibration].

    PubMed

    Li, Zhi-gang; Zheng, Yu-quan

    2014-12-01

    Increasingly higher demands are put forward to spectral radiometric calibration accuracy and the development of new tunable laser based spectral radiometric calibration technology is promoted, along with the development of studies of terrestrial remote sensing, aeronautical and astronautical remote sensing, plasma physics, quantitative spectroscopy, etc. Internationally a number of national metrology scientific research institutes have built tunable laser based spectral radiometric calibration facilities in succession, which are traceable to cryogenic radiometers and have low uncertainties for spectral responsivity calibration and characterization of detectors and remote sensing instruments in the UK, the USA, Germany, etc. Among them, the facility for spectral irradiance and radiance responsivity calibrations using uniform sources (SIRCCUS) at the National Institute of Standards and Technology (NIST) in the USA and the Tunable Lasers in Photometry (TULIP) facility at the Physikalisch-Technische Bundesanstalt (PTB) in Germany have more representatives. Compared with lamp-monochromator systems, laser based spectral radiometric calibrations have many advantages, such as narrow spectral bandwidth, high wavelength accuracy, low calibration uncertainty and so on for radiometric calibration applications. In this paper, the development of laser-based spectral radiometric calibration and structures and performances of laser-based radiometric calibration facilities represented by the National Physical Laboratory (NPL) in the UK, NIST and PTB are presented, technical advantages of laser-based spectral radiometric calibration are analyzed, and applications of this technology are further discussed. Laser-based spectral radiometric calibration facilities can be widely used in important system-level radiometric calibration measurements with high accuracy, including radiance temperature, radiance and irradiance calibrations for space remote sensing instruments, and promote the

  4. [Laser-based radiometric calibration].

    PubMed

    Li, Zhi-gang; Zheng, Yu-quan

    2014-12-01

    Increasingly higher demands are put forward to spectral radiometric calibration accuracy and the development of new tunable laser based spectral radiometric calibration technology is promoted, along with the development of studies of terrestrial remote sensing, aeronautical and astronautical remote sensing, plasma physics, quantitative spectroscopy, etc. Internationally a number of national metrology scientific research institutes have built tunable laser based spectral radiometric calibration facilities in succession, which are traceable to cryogenic radiometers and have low uncertainties for spectral responsivity calibration and characterization of detectors and remote sensing instruments in the UK, the USA, Germany, etc. Among them, the facility for spectral irradiance and radiance responsivity calibrations using uniform sources (SIRCCUS) at the National Institute of Standards and Technology (NIST) in the USA and the Tunable Lasers in Photometry (TULIP) facility at the Physikalisch-Technische Bundesanstalt (PTB) in Germany have more representatives. Compared with lamp-monochromator systems, laser based spectral radiometric calibrations have many advantages, such as narrow spectral bandwidth, high wavelength accuracy, low calibration uncertainty and so on for radiometric calibration applications. In this paper, the development of laser-based spectral radiometric calibration and structures and performances of laser-based radiometric calibration facilities represented by the National Physical Laboratory (NPL) in the UK, NIST and PTB are presented, technical advantages of laser-based spectral radiometric calibration are analyzed, and applications of this technology are further discussed. Laser-based spectral radiometric calibration facilities can be widely used in important system-level radiometric calibration measurements with high accuracy, including radiance temperature, radiance and irradiance calibrations for space remote sensing instruments, and promote the

  5. Radiometric Normalization of Large Airborne Image Data Sets Acquired by Different Sensor Types

    NASA Astrophysics Data System (ADS)

    Gehrke, S.; Beshah, B. T.

    2016-06-01

    Generating seamless mosaics of aerial images is a particularly challenging task when the mosaic comprises a large number of im-ages, collected over longer periods of time and with different sensors under varying imaging conditions. Such large mosaics typically consist of very heterogeneous image data, both spatially (different terrain types and atmosphere) and temporally (unstable atmo-spheric properties and even changes in land coverage). We present a new radiometric normalization or, respectively, radiometric aerial triangulation approach that takes advantage of our knowledge about each sensor's properties. The current implementation supports medium and large format airborne imaging sensors of the Leica Geosystems family, namely the ADS line-scanner as well as DMC and RCD frame sensors. A hierarchical modelling - with parameters for the overall mosaic, the sensor type, different flight sessions, strips and individual images - allows for adaptation to each sensor's geometric and radiometric properties. Additional parameters at different hierarchy levels can compensate radiome-tric differences of various origins to compensate for shortcomings of the preceding radiometric sensor calibration as well as BRDF and atmospheric corrections. The final, relative normalization is based on radiometric tie points in overlapping images, absolute radiometric control points and image statistics. It is computed in a global least squares adjustment for the entire mosaic by altering each image's histogram using a location-dependent mathematical model. This model involves contrast and brightness corrections at radiometric fix points with bilinear interpolation for corrections in-between. The distribution of the radiometry fixes is adaptive to each image and generally increases with image size, hence enabling optimal local adaptation even for very long image strips as typi-cally captured by a line-scanner sensor. The normalization approach is implemented in HxMap software. It has been

  6. Assessment of benthic disturbance associated with stingray foraging for ghost shrimp by aerial survey over an intertidal sandflat

    NASA Astrophysics Data System (ADS)

    Takeuchi, Seiji; Tamaki, Akio

    2014-08-01

    One notable type of bioturbation in marine soft sediments involves the excavation of large pits and displacement of sediment associated with predator foraging for infaunal benthos. Batoids are among the most powerful excavators, yet their impact on sediment has been poorly studied. For expansive tidal flats, only relatively small proportions of the habitat can be sampled due to physical and logistical constraints. The knowledge of the dynamics of these habitats, including the spatial and temporal distribution of ray bioturbation, thus remains limited. We combined the use of aerial photogrammetry and in situ benthic sampling to quantify stingray feeding pits in Tomioka Bay, Amakusa, Japan. Specifically, we mapped newly-formed pits over an 11-ha section of an intertidal sandflat over two consecutive daytime low tides. Pit size and distribution patterns were assumed to scale with fish size and reflect size-specific feeding behaviors, respectively. In situ benthic surveys were conducted for sandflat-surface elevation and prey density (callianassid shrimp). The volume versus area relationship was established as a logistic function for pits of varying sizes by photographing and refilling them with sediment. This relationship was applied to the area of every pit detected by air to estimate volume, in which special attention was paid to ray ontogenetic change in space utilization patterns. In total, 18,103 new pits were formed per day, with a mean individual area of 1060 cm2. The pits were divided into six groups (G1 to G6 in increasing areas), with abundances of G1, G2+G3, and G4-G6 being medium, high, and low, respectively. Statistical analyses using generalized linear models revealed a marked preference for the higher prey-density areas in G1 and the restriction of feeding grounds of G4-G6 to the lower shore, with G2+G3 being generalists for prey density and sandflat elevation. The lower degrees of overall bioturbation by G1 and G4-G6 were spatially structured for the

  7. Revised landsat-5 thematic mapper radiometric calibration

    USGS Publications Warehouse

    Chander, G.; Markham, B.L.; Barsi, J.A.

    2007-01-01

    Effective April 2, 2007, the radiometric calibration of Landsat-5 (L5) Thematic Mapper (TM) data that are processed and distributed by the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) will be updated. The lifetime gain model that was implemented on May 5, 2003, for the reflective bands (1-5, 7) will be replaced by a new lifetime radiometric-calibration curve that is derived from the instrument's response to pseudoinvariant desert sites and from cross calibration with the Landsat-7 (L7) Enhanced TM Plus (ETM+). Although this calibration update applies to all archived and future L5 TM data, the principal improvements in the calibration are for the data acquired during the first eight years of the mission (1984-1991), where the changes in the instrument-gain values are as much as 15%. The radiometric scaling coefficients for bands 1 and 2 for approximately the first eight years of the mission have also been changed. Users will need to apply these new coefficients to convert the calibrated data product digital numbers to radiance. The scaling coefficients for the other bands have not changed. ?? 2007 IEEE.

  8. Radiometric calibration by rank minimization.

    PubMed

    Lee, Joon-Young; Matsushita, Yasuyuki; Shi, Boxin; Kweon, In So; Ikeuchi, Katsushi

    2013-01-01

    We present a robust radiometric calibration framework that capitalizes on the transform invariant low-rank structure in the various types of observations, such as sensor irradiances recorded from a static scene with different exposure times, or linear structure of irradiance color mixtures around edges. We show that various radiometric calibration problems can be treated in a principled framework that uses a rank minimization approach. This framework provides a principled way of solving radiometric calibration problems in various settings. The proposed approach is evaluated using both simulation and real-world datasets and shows superior performance to previous approaches.

  9. Photovoltaic solar radiometric measurements and evaluation

    SciTech Connect

    Myers, D.R.; Cannon, T.W.

    1996-01-01

    We describe current activities in radiometric measurements by the Photovoltaic (PV) Solar Radiometric Measurements and Evaluation Team as part of the National Renewable Energy Laboratory (NREL) PV Module and System Performance and Engineering Project. Scientific and engineering understanding of incident solar irradiance is provided through radiometric instrumentation and/or measurement methods. Recently, deployed reference broadband radiometric and meteorological instrumentation and spectral instrumentation provide the project with best-practice routine and specialized radiometric data. {copyright} {ital 1996 American Institute of Physics.}

  10. Trial aerial survey of sea otters in Prince William Sound, Alaska, 1993. Restoration project 93043-2. Exxon Valdez oil spill restoration project final report

    SciTech Connect

    Bodkin, J.L.; Udevitz, M.S.

    1996-05-01

    We developed an aerial survey method for sea otters, using a strip transect design where otters observed in a strip along one side of the aircraft are counted. Two strata are sampled, one lies close to shore and/or in shallow. The other strata lies offshore and over deeper water. We estimate the proportion of otters not seen by the observer by conducting intensive searches of units (ISU`s) within strips when otters are observed. The first study found no significant differences in sea otter detection probabilities between ISU`s initiated by the sighting of an otter group compared to systematically located ISU`s. The second study consisted of a trial survey of all of Prince William Sound, excluding Orca Inlet. The survey area consisted of 5,017 sq km of water between the shore line and an offshore boundary based on shoreline physiography, the 100 m depth contour or a distance of 2 km from the shore. From 5-13 August 1993, two observers surveyed 1,023 linear km of high density sea otter habitat and 355 linear km of low density habitat.

  11. Aerial surveys of endangered cetaceans and other marine mammals in the northwestern Gulf of Alaska and southeastern Bering Sea. Final report

    SciTech Connect

    Brueggeman, J.J.; Green, G.A.; Grotefendt, R.A.; Chapman, D.G.

    1987-09-01

    Aerial surveys were conducted in the Northwestern Gulf of Alaska and southeastern Bering Sea to determine the abundance, distribution, and habitat use patterns of endangered cetaceans and other marine mammals. Four species of cetaceans listed by the Federal Government as endangered were observed: gray, humpback, finback, and sperm whales. Sightings were also made to seven nonendangered species of cetaceans: minke, Cuvier's beaked, Baird's beaked, belukha, and killer whales, and Dall and harbor porpoises. Results show that the project area is an important feeding ground for relatively large numbers of humpback and finback whales and lower numbers of gray whale migration route between seasonal ranges. The project area also supports a variety of other marine mammals both seasonally and annually.

  12. An aerial radiological survey of Par Pond and associated drainage pathways of the Savannah River Site, Aiken, South Carolina

    SciTech Connect

    Not Available

    1992-12-01

    The first of a three-phase effort to radiologically monitor the lowering of Par Pond and associated drainage pathways was conducted over three areas of the Savannah River Site (SRS). The areas surveyed during this first phase included Par Pond, the Savannah River swamp from Steel Creek to Little Hell Landing, and Lower Three Runs Creek from the mouth of Lower Three Runs to the Highway 301 Bridge. The first phase was conducted to coincide with the lowering of the water level of Par Pond to an elevation of 190 feet above sea level. Additional surveys were conducted when the water level was at an elevation of 180 feet and prior to refill. The first survey began August 19, 1991, and was completed September 11, 1991. The second survey was conducted in October/November, 1991, during the SRS site-wide survey, and the third survey was conducted in August/September, 1992. Only the Par Pond area itself was surveyed during the third and final phase. The radiation detected over the Creek Plantation portion of the Savannah River swamp and Lower Three Runs areas during the August 1991 survey was consistent with the spatial distribution, quantity, and kinds of radionuclides detected during the 1983 and 1986 surveys. No migration of man-made gamma emitting materials was detected when compared to the prior surveys. The major differences occurred along the Par Pond shoreline where lowered water levels exposed the contaminated pond bed. The activity in the pond bed was attenuated by the water cover prior to the start of the lowering of Par Pond in June 1991. The data collected during each survey were processed in the field and were presented to SRS. A comparison report is being generated after the completion of each survey. A final report will be generated for the three surveys and will include a quantitative comparison of the three surveys in the Par Pond area only.

  13. AERIAL MEASURING SYSTEM IN JAPAN

    SciTech Connect

    Lyons, Craig; Colton, David

    2012-01-01

    The U.S. Department of Energy National Nuclear Security Agency’s Aerial Measuring System deployed personnel and equipment to partner with the U.S. Air Force in Japan to conduct multiple aerial radiological surveys. These were the first and most comprehensive sources of actionable information for U.S. interests in Japan and provided early confirmation to the government of Japan as to the extent of the release from the Fukushima Daiichi Nuclear Power Generation Station. Many challenges were overcome quickly during the first 48 hours; including installation and operation of Aerial Measuring System equipment on multiple U.S. Air Force Japan aircraft, flying over difficult terrain, and flying with talented pilots who were unfamiliar with the Aerial Measuring System flight patterns. These all combined to make for a dynamic and non-textbook situation. In addition, the data challenges of the multiple and on-going releases, and integration with the Japanese government to provide valid aerial radiological survey products that both military and civilian customers could use to make informed decisions, was extremely complicated. The Aerial Measuring System Fukushima response provided insight in addressing these challenges and gave way to an opportunity for the expansion of the Aerial Measuring System’s mission beyond the borders of the US.

  14. Aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.

    1978-01-01

    Thermal infrared scanning from an aircraft is a convenient and commercially available means for determining relative rates of energy loss from building roofs. The need to conserve energy as fuel costs makes the mass survey capability of aerial thermography an attractive adjunct to community energy awareness programs. Background information on principles of aerial thermography is presented. Thermal infrared scanning systems, flight and environmental requirements for data acquisition, preparation of thermographs for display, major users and suppliers of thermography, and suggested specifications for obtaining aerial scanning services were reviewed.

  15. A series of low-altitude aerial radiological surveys of selected regions within Areas 3, 5, 8, 9, 11, 18, and 25 at the Nevada Test Site

    SciTech Connect

    Colton, D.P.

    1999-12-01

    A series of low-altitude, aerial radiological surveys of selected regions within Areas 3, 5, 8, 9, 11, 18,and 25 of the Nevada Test Site was conducted from December 1996 through June 1999. The surveys were conducted for the US Department of Energy by the Remote Sensing Laboratory, located in Las Vegas, Nevada, and maintained and operated by Bechtel Nevada. The flights were conducted at a nominal altitude of 15 meters above ground level along a set of parallel flight lines spaced 23 meters apart. The purpose of these low-altitude surveys was to measure, map, and define the areas of americium-241 activity. The americium contamination will be used to determine the areas of plutonium contamination. Americium-241 activity was detected within 8 of the 11 regions. The three regions where americium-241 was not detected were in the inactive Nuclear Rocket Development Station complex in Area 25, which encompassed the Test Cell A and Test Cell C reactor test stands and the Reactor Maintenance Assembly and Disassembly facility.

  16. Aerial Photography

    NASA Technical Reports Server (NTRS)

    1985-01-01

    John Hill, a pilot and commercial aerial photographer, needed an information base. He consulted NERAC and requested a search of the latest developments in camera optics. NERAC provided information; Hill contacted the manufacturers of camera equipment and reduced his photographic costs significantly.

  17. Turtles, birds, and mammals in the northern Gulf of Mexico and nearby Atlantic waters: an overview based on aerial surveys of OCS (Outer Continental Shelf) areas, with emphasis on oil and gas effects

    SciTech Connect

    Fritts, T.H.; Irvine, A.B.; Jennings, R.D.; Collum, L.A.; Hoffman, W.

    1983-07-01

    Aerial line transect surveys of marine turtles, birds, and mammals were conducted in four areas of the Gulf of Mexico and nearby Atlantic waters. Areas surveyed were 111 km by 222 km and located off Brownsville, Texas; Marsh Island, Louisiana; Naples, Florida; and Merritt Island, Florida. Data on distribution, abundance, seasonal occurrence, and habitat use are reported in accounts for each of the 88 species observed. Information on reproduction, behavior, and potential impacts of Outer Continental Shelf (OCS) development are also discussed.

  18. Radiometric Study of Soil Profiles in the Infrared Band

    NASA Astrophysics Data System (ADS)

    Ponomareva, T. V.; Ponomarev, E. I.

    2016-02-01

    The applicability of radiometric survey of soil profiles in the infrared range for the analysis of soil physical properties was studied. Radiometric data were obtained for different dates of the growing season for a number of soil profiles. The specificity of temperature profiles of texture-differentiated soils (Luvisols and Retisols) as related to weather conditions of the growing season was examined. The correlation analysis showed a close relationship between the air and surface soil temperatures and between the radiometric and thermodynamic soil temperatures in the upper 10 cm. In the studied profiles, the gradient of radiometric temperatures reached 0.5-0.8°C/cm in the humus horizons and sharply decreased at the depth of more than 15-20 cm. The gradient analysis of radiometric images made it possible to outline the boundaries of soil horizons. For the texture-differentiated soils, the most distinct boundaries were established between the gray-humus AY horizon and the underlying eluvial EL horizon in podzolic soils and between the AY horizon and the underlying humus-eluvial AEL horizon in gray soils.

  19. Aerial surveys of endangered whales in the Alaskan Chukchi and western Beaufort Seas, 1990. Final report, Oct-Nov 90

    SciTech Connect

    Moore, S.E.; Clarke, J.T.

    1991-06-01

    In keeping with the National Environmental Policy Act (1969), the Marine Mammal Protection Act (1972) and the Endangered Species Act (1973), the OCS Lands Act Amendments (1978) established a management policy that included studies in OCS lease sale areas to ascertain potential environmental impacts of oil and gas development on OCS marine coastal environments. The Minerals Management Service (MMS) is the agency responsible for these studies and for the leasing of submerged Federal lands. The report summarizes the 1990 investigations of the distribution, abundance, migration, behavior and habitat relationships of endangered whales in the Alaskan Chukchi and western Beaufort Seas (hereafter, study area); 1990 was the second of a three year (1989-91) study. The Bering Sea stock of bowhead whales (Balaena mysticetus) was the principal species studied, with incidental sightings of all other marine mammals routinely recorded. The 1990 season was compromised by circumstances that restricted the availability of the survey aircraft (Grumman Goose, model G21G) to the period 26 October - 7 November; opportunistic surveys were flown in the study area from 3-25 October. In 1990, there were 14 sightings of 19 bowheads from 9-29 October; 5 whales, including 2 calves, were seen north of the study area. One gray whale, 110 belukhas and 53 polar bears were also seen. Over nine survey seasons (1982-90), there were 240 sightings of 520 bowhead whales and 148 sightings of 398 gray whales.

  20. Aerial photographic surveys analyzed to deduce oil spill movement during the decay and breakup of fast ice, Prudhoe Bay, Alaska. Final report

    SciTech Connect

    Lissauer, I.M.; Baird, D.A.

    1982-09-01

    During the summers of 1979 and 1980 aerial photographs of the land fast ice north of Prudhoe Bay, Alaska, were taken. These photographs, covering two-week periods, highlight the decay and break-up of the land fast ice sheet. During the period of photography, wind speed, wind direction, barometric pressure, and tidal height measurements were recorded continuously. Several larger ice floes were 'tagged' with colored plywood markers during 1979. Both these marked flows and other distinctively shaped floes were tracked on the photographic surveys to determine the effect the wind had on their movement. Within the barrier islands, average ice floe velocities as a percentage of wind speed exceeded the 3.5% figure 'normally' found in the literature. North of these islands average ice floe velocities as a percentage of wind speed were less than the 3.5% value. In addition to the flow drift calculations the photographs provide information on melt pool formation and a comparison of the decay and breakup processes between the 1979 and 1980 seasons. The decay and breakup process appears to be triggered by strong wind events in early July.

  1. Radiometric acid-base titrations.

    PubMed

    Erdey, L; Gimesi, O; Szabadváry, F

    1969-03-01

    Acid-base titrations can be performed with radiometric end-point detection by use of labelled metal salts (e.g., ZnCl(2), HgCl(2)). Owing to the formation or dissolution of the corresponding hydroxide after the equivalence point, the activity of the titrated solution linearly increases or decreases as excess of standard solution is added. The end-point of the titration is determined graphically.

  2. National Uranium Resource Evaluation. Aerial gamma ray and magnetic survey, Tawas City and Flint quadrangles, Michigan. Final report

    SciTech Connect

    Not Available

    1981-07-01

    The Tawas City and Flint quadrangles of Michigan cover a land area of 6500 square miles, and an additional water surface area of 7200 square miles. Extremely thick Paleozoic deposits overlie a regional downwarp of the Precambrian basement called the Michigan Basin. These Paleozoic deposits shoal to only 1500 feet in the northeast corner. The entire survey area is covered by a mantle of Quaternary glacial material. A search of available literature revealed no economically feasible uranium deposits. Thirty-five uranium anomalies were detected and are discussed briefly. All appear to have cultural, and/or locally unsaturated associations, and none appear to contain significant measured quantities of uranium. Magnetic data appear to be in good agreement with existing structural interpretations of the area.

  3. Aerial videotape mapping of coastal geomorphic changes

    USGS Publications Warehouse

    Debusschere, Karolien; Penland, Shea; Westphal, Karen A.; Reimer, P. Douglas; McBride, Randolph A.

    1991-01-01

    An aerial geomorphic mapping system was developed to examine the spatial and temporal variability in the coastal geomorphology of Louisiana. Between 1984 and 1990 eleven sequential annual and post-hurricane aerial videotape surveys were flown covering periods of prolonged fair weather, hurricane impacts and subsequent post-storm recoveries. A coastal geomorphic classification system was developed to map the spatial and temporal geomorphic changes between these surveys. The classification system is based on 10 years of shoreline monitoring, analysis of aerial photography for 1940-1989, and numerous field surveys. The classification system divides shorelines into two broad classes: natural and altered. Each class consists of several genetically linked categories of shorelines. Each category is further subdivided into morphologic types on the basis of landform relief, elevation, habitat type, vegetation density and type, and sediment characteristics. The classification is used with imagery from the low-altitude, high-resolution aerial videotape surveys to describe and quantify the longshore and cross-shore geomorphic, sedimentologic, and vegetative character of Louisiana's shoreline systems. The mapping system makes it possible to delineate and map detailed geomorphic habitat changes at a resolution higher than that of conventional vertical aerial photography. Morphologic units are mapped parallel to the regional shoreline from the aerial videotape imagery onto the base maps at a scale of 1:24,000. The base maps were constructed from vertical aerial photography concurrent with the data of the video imagery.

  4. Detecting blind building façades from highly overlapping wide angle aerial imagery

    NASA Astrophysics Data System (ADS)

    Burochin, Jean-Pascal; Vallet, Bruno; Brédif, Mathieu; Mallet, Clément; Brosset, Thomas; Paparoditis, Nicolas

    2014-10-01

    This paper deals with the identification of blind building façades, i.e. façades which have no openings, in wide angle aerial images with a decimeter pixel size, acquired by nadir looking cameras. This blindness characterization is in general crucial for real estate estimation and has, at least in France, a particular importance on the evaluation of legal permission of constructing on a parcel due to local urban planning schemes. We assume that we have at our disposal an aerial survey with a relatively high stereo overlap along-track and across-track and a 3D city model of LoD 1, that can have been generated with the input images. The 3D model is textured with the aerial imagery by taking into account the 3D occlusions and by selecting for each façade the best available resolution texture seeing the whole façade. We then parse all 3D façades textures by looking for evidence of openings (windows or doors). This evidence is characterized by a comprehensive set of basic radiometric and geometrical features. The blindness prognostic is then elaborated through an (SVM) supervised classification. Despite the relatively low resolution of the images, we reach a classification accuracy of around 85% on decimeter resolution imagery with 60 × 40 % stereo overlap. On the one hand, we show that the results are very sensitive to the texturing resampling process and to vegetation presence on façade textures. On the other hand, the most relevant features for our classification framework are related to texture uniformity and horizontal aspect and to the maximal contrast of the opening detections. We conclude that standard aerial imagery used to build 3D city models can also be exploited to some extent and at no additional cost for facade blindness characterisation.

  5. Sea otter studies in Glacier Bay National Park and Preserve: Aerial surveys, foraging observations, and intertidal clam sampling

    USGS Publications Warehouse

    Bodkin, J.L.; Kloecker, K.A.; Esslinger, G.G.; Monson, D.H.; DeGroot, J.D.

    2001-01-01

    Following translocations to the outer coast of Southeast Alaska in 1965, sea otters have been expanding their range and increasing in abundance. We began conducting surveys for sea otters in Cross Sound, Icy Strait and Glacier Bay, Alaska in 1994, following initial reports of their presence in Glacier Bay in 1993. Since 1995, the number of sea otters in Glacier Bay proper has increased from about 5 to more than 500. Between 1993 and 1997 sea otters were apparently only occasional visitors to Glacier Bay, but in 1998 long-term residence was established as indicated by the presence of adult females and their dependent pups. Sea otter distribution is limited to the Lower Bay, south of Sandy Cove, and is not continuous within that area. Concentration occur in the vicinity of Sita Reef and Boulder Island and between Pt. Carolus and Rush Pt. on the west side of the Bay (Figure 1). We describe the diet of sea otters in Glacier Bay and south Icy Strait through visual observations of prey during >4,000 successful forage dives. In 2,399 successful foraging dives observed in Glacier Bay proper, diet consisted of 40% clam, 21% urchins, 18% mussel, 4% crab, 5% other and 12% unidentified. Most prey recovered by sea otters are commercially, socially, or ecological important species. Species of clam are primarily Saxidomus gigantea, Protothaca staminea, and Serripes groenlandicus. Urchins are primarily Strongylocentrotus droebachiensis while both mussles, Modiolus modiolus and Mytilus trossulus, are taken. Crabs include species of Cancer, Chinoecetes, Paralithodes, and Telmessus. Although we characterize diet at broad geographic scales, we found diet to vary between sites separated by as little as several hundred meters. Dietary variation among and within sites can reflect differences in prey availability and individual choice. We estimated species composition, density, biomass, and sizes of intertidal clams at 59 sites in Glacier Bay, 14 sites in Idaho Inlet, 12 sites in Port

  6. Radiometric and Geometric Accuracy Analysis of Rasat Pan Imagery

    NASA Astrophysics Data System (ADS)

    Kocaman, S.; Yalcin, I.; Guler, M.

    2016-06-01

    RASAT is the second Turkish Earth Observation satellite which was launched in 2011. It operates with pushbroom principle and acquires panchromatic and MS images with 7.5 m and 15 m resolutions, respectively. The swath width of the sensor is 30 km. The main aim of this study is to analyse the radiometric and geometric quality of RASAT images. A systematic validation approach for the RASAT imagery and its products is being applied. RASAT image pair acquired over Kesan city in Edirne province of Turkey are used for the investigations. The raw RASAT data (L0) are processed by Turkish Space Agency (TUBITAK-UZAY) to produce higher level image products. The image products include radiometrically processed (L1), georeferenced (L2) and orthorectified (L3) data, as well as pansharpened images. The image quality assessments include visual inspections, noise, MTF and histogram analyses. The geometric accuracy assessment results are only preliminary and the assessment is performed using the raw images. The geometric accuracy potential is investigated using 3D ground control points extracted from road intersections, which were measured manually in stereo from aerial images with 20 cm resolution and accuracy. The initial results of the study, which were performed using one RASAT panchromatic image pair, are presented in this paper.

  7. Radiometric studies of Mycobacterium lepraemurium.

    PubMed

    Camargo, E E; Larson, S M; Tepper, B S; Wagner, H N

    1976-01-01

    The radiometric method has been applied for studying the metabolism of M. lepraemurium and the conditions which might force or inhibit its metabolic activity in vitro. These organisms assimilate and oxidize (U-14C) glycerol, and (U-14C) acetate, but are unable to oxidize (U-14C) glucose, (U-14C) pyruvate, (U-14C) glycine and 14C-formate. When incubated at 30 degrees C M. lepraemurium oxidizes (U-14C) acetate to 14CO2 faster than 37 degrees C. The smae effect was observed with increasing concentrations of polysorbate 80 (Tween 80), or the 14C-substrate. No change in metabolic rate was observed when the organisms were kept at -20 degrees C for 12 days. Although tried several times, it was not possible to demonstrate any "inhibitors" of bacterial metabolism in the reaction system. The radiometric method seems to be an important tool for studying metabolic pathways and the influence of physical and biochemical factors on the metabolism of M. lepraemurium in vitro.

  8. Verification of Potency of Aerial Digital Oblique Cameras for Aerial Photogrammetry in Japan

    NASA Astrophysics Data System (ADS)

    Nakada, Ryuji; Takigawa, Masanori; Ohga, Tomowo; Fujii, Noritsuna

    2016-06-01

    Digital oblique aerial camera (hereinafter called "oblique cameras") is an assembly of medium format digital cameras capable of shooting digital aerial photographs in five directions i.e. nadir view and oblique views (forward and backward, left and right views) simultaneously and it is used for shooting digital aerial photographs efficiently for generating 3D models in a wide area. For aerial photogrammetry of public survey in Japan, it is required to use large format cameras, like DMC and UltraCam series, to ensure aerial photogrammetric accuracy. Although oblique cameras are intended to generate 3D models, digital aerial photographs in 5 directions taken with them should not be limited to 3D model production but they may also be allowed for digital mapping and photomaps of required public survey accuracy in Japan. In order to verify the potency of using oblique cameras for aerial photogrammetry (simultaneous adjustment, digital mapping and photomaps), (1) a viewer was developed to interpret digital aerial photographs taken with oblique cameras, (2) digital aerial photographs were shot with an oblique camera owned by us, a Penta DigiCAM of IGI mbH, and (3) accuracy of 3D measurements was verified.

  9. Radiometric Measurements and Data for Evaluating Photovoltaics

    SciTech Connect

    Myers, D. R.; Andreas, A.; Rymes, M.; Stoffel, T.; Reda, I.; Wilcox, S.; Treadwell, J.

    2000-01-01

    The National Renewable Energy Laboratory (NREL) Photovoltiac Radiometric Measurements Task ddresses the impact of solar and optical radiation on photovoltaic (PV) devices. The task maintains spectral and broadband calibration capability directly traceable to the National Institute of Standards and Technology (NIST) and the World Radiometric Reference (WRR) of the World Meteorological Organization (WMO).

  10. VIIRS emissive band radiometric performance trending

    NASA Astrophysics Data System (ADS)

    Johnson, Eric; Ranshaw, Courtney

    2012-09-01

    The Visible/Infrared Imaging Radiometer Suite (VIIRS) is a key sensor on the Suomi National Polar-orbiting Partnership (NPP) satellite launched on October 28, 2011 into a polar orbit of 824 km nominal altitude. VIIRS collects radiometric and imagery data of the Earth's atmosphere, oceans, and land surfaces in 22 spectral bands spanning the visible and infrared spectrum from 0.4 to 12.5 μm. This paper summarizes the radiometric performance measured in the 7 VIIRS thermal emissive bands (3.7 to 12.5 μm), covering both pre-launch thermal-vacuum testing and early on-orbit characterizations. Radiometric characteristics trended include radiometric response and radiometric sensitivity (SNR/NEdT).

  11. The Spatial and Temporal Variability of a High-Energy Beach: Insight Gained From Over 50 High-Resolution Sub-aerial Surveys

    NASA Astrophysics Data System (ADS)

    Hansen, J. E.; Barnard, P. L.

    2008-12-01

    Since April 2004 a monitoring program of 7 km-long Ocean Beach, San Francisco, CA, has led to the completion of 55 Global Positioning System topographic surveys of the sub-aerial beach. The four-year timeseries contains over 1 million beach elevation measurements and documents detailed changes of the beach over a variety of spatial, temporal, and physical forcing scales. The goal of this ongoing data collection is to understand the variability in beach response as a function of wave forcing and offshore morphology which will ultimately aid in sediment management and erosion mitigation efforts. Several statistical methods are used to describe and account for the observed beach change, including empirical orthogonal functions (EOFs) and linear regression. Results from the EOF analysis show that the first mode, and approximately 50% of the observed variance of either the mean high water (MHW) or mean sea level (MSL) position, is explained by the seasonal movement of sediment on and offshore. The second mode, and approximately 15% of the variance, is dominated by alongshore variability, possibly corresponding to the position of cusps and embayments. Higher level modes become increasingly variable in the alongshore direction and each explain little of the observed variance. In both cases the first temporal mode is well correlated (R2~=0.7) with offshore significant wave height averaged over the previous 80 to 110 days, suggesting that seasonal wave height variations are the primary driver of intra-annual shoreline position. No other modes exhibit good correlation with offshore wave parameters regardless of the averaging time. The observed seasonal change is superimposed on a longer term trend of net annual accretion at the north end of Ocean Beach and erosion at the south end. Areas at the northern end have seen as much as 60 m of cumulative shoreline progradation since 2004, while some areas of the southern portion have retrograded nearly as much. This pattern shows an

  12. Small satellite radiometric measurement system

    SciTech Connect

    Weber, P.G.

    1992-01-01

    A critical need for the US Global Change Research Program is to provide continuous, well-calibrated radiometric data for the earth`s radiation budget. This paper describes a new, compact, relatively light-weight, adaptable radiometer which will provide both spectrally integrated measurements and data in selected spectral bands. The radiometer design is suitable for use on small satellites, aircraft, or remotely piloted aircraft (RPAs). An example of the implementation of this radiometer on a small satellite is given. Significant benefits derive from simultaneous measurements of specific narrow (in wavelength) spectral features; such data may be obtained by combining LARI with a compact spectrometer on the same platform. Well-chosen satellite orbits allow one to use data from other satellites (e.g. DMSP) to enhance the data product, or to provide superior coverage of specific locations. 23 refs.

  13. Daytime multispectral scanner aerial surveys of the Oak Ridge Reservation, 1992--1994: Overview of data processing and analysis by the Environmental Restoration Remote Sensing Program, Fiscal year 1995

    SciTech Connect

    Smyre, J.L.; Hodgson, M.E.; Moll, B.W.; King, A.L.; Cheng, Yang

    1995-11-01

    Environmental Restoration (ER) Remote Sensing and Special Surveys Program was in 1992 to apply the benefits of remote sensing technologies to Environmental Restoration Management (ERWM) programs at all of the five United States Department of Energy facilities operated and managed by Martin Marietta Energy Systems, Inc. (now Lockheed Martin Energy Systems)-the three Oak Ridge Reservation (ORR) facilities, the Paducah Gaseous Diffusion Plant (PGDP), the Portsmouth Gaseous Diffusion Plant (PORTS)-and adjacent off-site areas. The Remote Sensing Program includes the management of routine and special surveys at these sites, application of state-of-the-art remote sensing and geophysical technologies, and data transformation, integration, and analyses required to make the information valuable to ER. Remotely-sensed data collected of the ORR include natural color and color infrared (IR) aerial photography, 12-band multispectral scanner imagery, predawn thermal IR sensor imagery, magnetic and electromagnetic geophysical surveys, and gamma radiological data.

  14. Reliable aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.; Bowman, R. L.

    1981-01-01

    A method for energy conservation, the aerial thermography survey, is discussed. It locates sources of energy losses and wasteful energy management practices. An operational map is presented for clear sky conditions. The map outlines the key environmental conditions conductive to obtaining reliable aerial thermography. The map is developed from defined visual and heat loss discrimination criteria which are quantized based on flat roof heat transfer calculations.

  15. User's guide to the Radiometric Age Data Bank (RADB)

    USGS Publications Warehouse

    Zartman, Robert Eugene; Cole, James C.; Marvin, Richard F.

    1976-01-01

    The Radiometric Age Data Bank (RADB) has been established by the U.S. Geological Survey, as a means for collecting and organizing the estimated 100,000 radiometric ages presently published for the United States. RADB has been constructed such that a complete sample description (location, rock type, etc.), literature citation, and extensive analytical data are linked to form an independent record for each sample reported in a published work. Analytical data pertinent to the potassium-argon, rubidium-strontium, uranium-thorium-lead, lead-alpha, and fission-track methods can be accommodated, singly or in combinations, for each record. Data processing is achieved using the GIPSY program (University of Oklahoma) which maintains the data file and builds, updates, searches, and prints the records using simple yet versatile command statements. Searching and selecting records is accomplished by specifying the presence, absence, or (numeric or alphabetic) value of any element of information in the data bank, and these specifications can be logically linked to develop sophisticated searching strategies. Output is available in the form of complete data records, abbreviated tests, or columnar tabulations. Samples of data-reporting forms, GIPSY command statements, output formats, and data records are presented to illustrate the comprehensive nature and versatility of the Radiometric Age Data Bank.

  16. Spectrally Tunable Sources for Advanced Radiometric Applications.

    PubMed

    Brown, S W; Rice, J P; Neira, J E; Johnson, B C; Jackson, J D

    2006-01-01

    A common radiometric platform for the development of application-specific metrics to quantify the performance of sensors and systems is described. Using this platform, sensor and system performance may be quantified in terms of the accuracy of measurements of standardized sets of source distributions. The prototype platform consists of spectrally programmable light sources that can generate complex spectral distributions in the ultraviolet, visible and short-wave infrared regions for radiometric, photometric and colorimetric applications. In essence, the programmable spectral source is a radiometric platform for advanced instrument characterization and calibration that can also serve as a basis for algorithm testing and instrument comparison.

  17. Texture analysis of radiometric signatures of new sea ice forming in Arctic leads

    NASA Technical Reports Server (NTRS)

    Eppler, Duane T.; Farmer, L. Dennis

    1991-01-01

    Analysis of 33.6-GHz, high-resolution, passive microwave images suggests that new sea ice accumulating in open leads is characterized by a unique textural signature which can be used to discriminate new ice forming in this environment from adjacent surfaces of similar radiometric temperature. Ten training areas were selected from the data set, three of which consisted entirely of first-year ice, four entirely of multilayer ice, and three of new ice in open leads in the process of freezing. A simple gradient operator was used to characterize the radiometric texture in each training region in terms of the degree to which radiometric gradients are oriented. New ice in leads has a sufficiently high proportion of well-oriented features to distinguish it uniquely from first-year ice and multiyear ice. The predominance of well-oriented features probably reflects physical processes by which new ice accumulates in open leads. Banded structures, which are evident in aerial photographs of new ice, apparently give rise to the radiometric signature observed, in which the trend of brightness temperature gradients is aligned parallel to lead trends. First-year ice and multiyear ice, which have been subjected to a more random growth and process history, lack this banded structure and therefore are characterized by signatures in which well-aligned elements are less dominant.

  18. Off-the-Wall Project Brings Aerial Mapping down to Earth

    ERIC Educational Resources Information Center

    Davidhazy, Andrew

    2008-01-01

    The technology of aerial photography, photogrametry, has widespread applications in mapping and aerial surveying. A multi-billion-dollar industry, aerial surveying and mapping is "big business" in both civilian and military sectors. While the industry has grown increasingly automated, employment opportunities still exist for people with a basic…

  19. Pacific Continental Shelf Environmental Assessment (PaCSEA): aerial seabird and marine mammal surveys off northern California, Oregon, and Washington, 2011-2012

    USGS Publications Warehouse

    Adams, Josh; Felis, Jonathan J.; Mason, John W.; Takekawa, John Y.

    2014-01-01

    Marine birds and mammals comprise an important community of meso- and upper-trophic-level predators within the northern California Current System (NCCS). The NCCS is located within one of the world’s four major eastern boundary currents and is characterized by an abundant and diverse marine ecosystem fuelled seasonally by wind-driven upwelling which supplies nutrient-rich water to abundant phytoplankton inhabiting the surface euphotic zone. The oceanographic conditions throughout the NCCS fluctuate according to well-described seasonal, inter-annual, and decadal cycles. Such oceanographic variability can influence patterns in the distribution, abundance, and habitat use among marine birds and mammals. Although there are an increasing number of studies documenting distributions and abundances among birds and mammals in various portions of the NCCS, there have been no comprehensive, large-scale, multi-seasonal surveys completed throughout this region since the early 1980s (off northern California; Briggs et al. 1987) and early 1990s (off Oregon and Washington; Bonnell et al. 1992, Briggs et al. 1992, Green et al. 1992). During 2011 and 2012, we completed the Pacific Continental Shelf Environmental Assessment (PaCSEA) which included replicated surveys over the continental shelfslope from shore to the 2000-meter (m) isobath along 32 broad-scale transects from Fort Bragg, California (39° N) through Grays Harbor, Washington (47° N). Additionally, surveys at a finer scale were conducted over the continental shelf within six designated Focal Areas: Fort Bragg, CA; Eureka, CA; Siltcoos Bank, OR; Newport, OR; Nehalem Bank, OR; and Grays Harbor, WA. We completed a total of 26,752 km of standardized, low-elevation aerial survey effort across three bathymetric domains: inner-shelf waters ( Overall, we recorded 15,403 sightings of 59,466 individual marine birds (12 families, 54 species). During winter, seven species groupings comprised >90% of the total number of birds

  20. Radiometric ages of Tennessee rocks

    SciTech Connect

    Corgan, J.X.; Bradley, M.W.

    1983-01-01

    This report compiles and summarizes all known radiometric age determinations based on bedrock samples from Tennessee. Data are available for 89 sites. Specimens record both igneous and metamorphic events ranging in age from 1.3 billion to 220 million years before present. Tennessee rocks have been dated by techniques that measure the results of four different kinds of radioactive decay: thorium-lead, uranium-lead, potassium-argon, and rubidium-strontium. Most determinations meet normal scientific standards for reliability. This study focuses on clarifying published data by bringing together geochemical, geological, and geographical information for each site. In addition to data on the age of bedrock samples, this study presents basic information on the ages of meteorites from Tennessee and on the ages of sediments and organic remains from Ice Age fossil sites and more recent archeological sites. While bedrock ages are the thrust of the report, other kinds of absolute age determinations are briefly discussed. 98 references, 11 figures, 3 tables.

  1. Turtles, birds, and mammals in the northern Gulf of Mexico and nearby Atlantic waters. An overview based on aerial surveys of OCS areas, with emphasis on oil and gas effects

    SciTech Connect

    Fritts, T.H.; Irvine, A.B.; Jennings, R.D.; Collum, L.A.; Hoffman, W.; McGehee, M.A.

    1983-07-01

    Aerial line transect surveys of marine turtles, birds, and mammals were conducted in four areas of the Gulf of Mexico and nearby Atlantic waters. Areas surveyed were 111 km by 222 km and located off Brownsville, Texas; Marsh Island, Louisiana; Naples, Florida; and Merritt Island, Florida. Data on distribution, abundance, seasonal occurrence, and habitat use are reported in accounts for each of the 88 species observed. Information on reproduction, behavior, and potential impacts of Outer Continental Shelf (OCS) development are also discussed. Later chapters summarize the fauna of each of the four areas; characterize the inshore, nearshore, and offshore fauna; and discuss the effects of OCS development on marine vertebrates. 460 references, 167 figures, 65 tables.

  2. Pacific Continental Shelf Environmental Assessment (PaCSEA): aerial seabird and marine mammal surveys off northern California, Oregon, and Washington, 2011-2012

    USGS Publications Warehouse

    Adams, Josh; Felis, Jonathan J.; Mason, John W.; Takekawa, John Y.

    2014-01-01

    Marine birds and mammals comprise an important community of meso- and upper-trophic-level predators within the northern California Current System (NCCS). The NCCS is located within one of the world’s four major eastern boundary currents and is characterized by an abundant and diverse marine ecosystem fuelled seasonally by wind-driven upwelling which supplies nutrient-rich water to abundant phytoplankton inhabiting the surface euphotic zone. The oceanographic conditions throughout the NCCS fluctuate according to well-described seasonal, inter-annual, and decadal cycles. Such oceanographic variability can influence patterns in the distribution, abundance, and habitat use among marine birds and mammals. Although there are an increasing number of studies documenting distributions and abundances among birds and mammals in various portions of the NCCS, there have been no comprehensive, large-scale, multi-seasonal surveys completed throughout this region since the early 1980s (off northern California; Briggs et al. 1987) and early 1990s (off Oregon and Washington; Bonnell et al. 1992, Briggs et al. 1992, Green et al. 1992). During 2011 and 2012, we completed the Pacific Continental Shelf Environmental Assessment (PaCSEA) which included replicated surveys over the continental shelfslope from shore to the 2000-meter (m) isobath along 32 broad-scale transects from Fort Bragg, California (39° N) through Grays Harbor, Washington (47° N). Additionally, surveys at a finer scale were conducted over the continental shelf within six designated Focal Areas: Fort Bragg, CA; Eureka, CA; Siltcoos Bank, OR; Newport, OR; Nehalem Bank, OR; and Grays Harbor, WA. We completed a total of 26,752 km of standardized, low-elevation aerial survey effort across three bathymetric domains: inner-shelf waters ( Overall, we recorded 15,403 sightings of 59,466 individual marine birds (12 families, 54 species). During winter, seven species groupings comprised >90% of the total number of birds

  3. Aerial gamma ray and magnetic survey: Minnesota Project, Sault Sainte Marie and Blind River quadrangles, Michigan. Final report. [No known deposits within the study area

    SciTech Connect

    Not Available

    1980-02-01

    The Sault Sainte Marie and Blind River 1/sup 0/ x 2/sup 0/ quadrangles of Michigan are covered almost everywhere (United States only) with Wisconsin age glacial deposits (moraines, outwash, lake deposits, etc.) of variable thickness. Where exposed, bedrock is of Early and Middle Paleozoic age, and consists almost entirely of limestone and dolomite. There are no uranium deposits (or occurrences) known within the study area, though the Elliott Lake quartz pebble conglomerate uranium deposit lies in the Canadian section of the Blind River quadrangle. Magnetic data illustrate relative depth to magnetic basement in the area. Sources appear more shallow to the east. Twelve groups of uranium samples were defined as anomalies and are discussed briefly in this report. None of them are considered significant. Radiometric data indicate a strong contrast in the character of glacial outwash between the eastern and western portions of the upper peninsula region.

  4. Aerial Photographs and Satellite Images

    USGS Publications Warehouse

    ,

    1997-01-01

    Photographs and other images of the Earth taken from the air and from space show a great deal about the planet's landforms, vegetation, and resources. Aerial and satellite images, known as remotely sensed images, permit accurate mapping of land cover and make landscape features understandable on regional, continental, and even global scales. Transient phenomena, such as seasonal vegetation vigor and contaminant discharges, can be studied by comparing images acquired at different times. The U.S. Geological Survey (USGS), which began using aerial photographs for mapping in the 1930's, archives photographs from its mapping projects and from those of some other Federal agencies. In addition, many images from such space programs as Landsat, begun in 1972, are held by the USGS. Most satellite scenes can be obtained only in digital form for use in computer-based image processing and geographic information systems, but in some cases are also available as photographic products.

  5. Aerial Image Systems

    NASA Astrophysics Data System (ADS)

    Clapp, Robert E.

    1987-09-01

    Aerial images produce the best stereoscopic images of the viewed world. Despite the fact that every optic in existence produces an aerial image, few persons are aware of their existence and possible uses. Constant reference to the eye and other optical systems have produced a psychosis of design that only considers "focal planes" in the design and analysis of optical systems. All objects in the field of view of the optical device are imaged by the device as an aerial image. Use of aerial images in vision and visual display systems can provide a true stereoscopic representation of the viewed world. This paper discusses aerial image systems - their applications and designs and presents designs and design concepts that utilize aerial images to obtain superior visual displays, particularly with application to visual simulation.

  6. 11. Photocopy of aerial photograph (original aerial located in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photocopy of aerial photograph (original aerial located in the U.S. Forest Service, Toiyabe National Forest, Carson District Office). AERIAL VIEW OF THE GENOA PEAK ROAD, SPUR. - Genoa Peak Road, Spur, Glenbrook, Douglas County, NV

  7. Kite Aerial Photography (KAP) as a Tool for Field Teaching

    ERIC Educational Resources Information Center

    Sander, Lasse

    2014-01-01

    Kite aerial photography (KAP) is proposed as a creative tool for geography field teaching and as a medium to approach the complexity of readily available geodata. The method can be integrated as field experiment, surveying technique or group activity. The acquired aerial images can instantaneously be integrated in geographic information systems…

  8. Azimuthal radiometric temperature measurements of wheat canopies

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.

    1981-01-01

    The effects of azimuthal view angle on the radiometric temperature of wheat canopies at various stages of development are investigated. Measurements of plant height, total leaf area index, green leaf area index and Feeks growth stage together with infrared radiometric temperature measurements at 12 azimuth intervals with respect to solar azimuth and at different solar zenith angles were obtained for four wheat canopies at various heights. Results reveal a difference on the order of 2 C between the temperatures measured at azimuths of 0 and 180 deg under calm wind conditions, which is attributed to the time-dependent transfer of heat between canopy component surfaces. The azimuthal dependence must thus be taken into account in the determination of radiometric temperatures.

  9. THEMATIC MAPPER: DETAILED RADIOMETRIC AND GEOMETRIC CHARACTERISTICS.

    USGS Publications Warehouse

    Kieffer, Hugh

    1983-01-01

    The paper is in abstract form. It discusses those radiometric characteristics of the Landsat 4 Thematic Mapper (TM) that can be established without absolute calibration or spectral data. Subscenes of radiometrically raw data (B-data) were examined on an individual detector basis; areas of uniform radiance were used to characterize subtle radiometric differences and noise problems. The effective resolution in radiance is degraded by about a factor of two by irregular width of the digital levels. Several detectors have a change of gain with a period of several scans, the largest effect is about 4%. The geometric fidelity of the GSFC filmwriter used for Thematic Mapper (TM) images was assessed by measurement with accuracy better than three micrometers of a test grid.

  10. NURE aerial gamma-ray and magnetic reconnaissance survey of portions of New Mexico, Arizona and Texas. Volume II. Texas-New Mexico-El Paso NH 13-1 Quadrangle. Final report

    SciTech Connect

    Not Available

    1981-09-01

    The results of a high-sensitivity, aerial gamma-ray spectrometer and magnetometer survey of the El Paso, two degree quadrangle, New Mexico, are presented. Instrumentation and methods are described in Volume I of this final report. The work was done by Carson Helicopters Inc., and Carson Helicopters was assisted in the interpretation by International Exploration, Inc. The work was performed for the US Department of Energy - National Uranium Resource Evaluation (NURE) program. A total of 72 statistically significant eU anomalies were identified in this quadrangle. Of this number 20 were considered to be of sufficient intensity to warrant field investigations, however, many of these anomalies appear to be wholly, or in part, associated with various unconsolidated Quaternary deposits. Only three of the 20 can, with certainty be identified with bedrock; one with a Quaternary flow, one with Cambrian sandstone and one with a Precambrian granite.

  11. AIRS radiometric calibration validation for climate research

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Pagano, Thomas S.; Elliott, Denis; Gaiser, Steve; Gregorich, Dave; Broberg, Steve

    2005-01-01

    Climate research using data from satellite based radiometers makes extreme demands on the traceability and stability of the radiometric calibration. The selection of a cooled grating array spectrometer for the Atmospheric Infrared Sounder, AIRS, is key, but does not ensured that AIRS data will be of climate quality. Additional design features, plus additional pre-launch testing, and extensive on-orbit calibration subsystem monitoring beyond what would suffice for application of the data to weather forecasting were required to ensure the radiometric data quality required for climate research. Validation that climate data quality are being generated makes use of the sea surface skin temperatures (SST and (obs-calc).

  12. Automatic Generation of Building Mapping Using Digital, Vertical and Aerial High Resolution Photographs and LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Barragán, W.; Campos, A.; Sanchez, G.

    2016-06-01

    The objective of this research is automatic generation of buildings in the interest areas. This research was developed by using high resolution vertical aerial photographs and the LIDAR point cloud through radiometric and geometric digital processes. The research methodology usesknown building heights and various segmentation algorithms and spectral band combination. The overall effectiveness of the algorithm is 97.2% with the test data.

  13. Choosing a survey sample when data on the population are limited: a method using Global Positioning Systems and aerial and satellite photographs

    PubMed Central

    2012-01-01

    Background Various methods have been proposed for sampling when data on the population are limited. However, these methods are often biased. We propose a new method to draw a population sample using Global Positioning Systems and aerial or satellite photographs. Results We randomly sampled Global Positioning System locations in designated areas. A circle was drawn around each location with radius representing 20 m. Buildings in the circle were identified from satellite photographs; one was randomly chosen. Interviewers selected one household from the building, and interviews were conducted with eligible household members. Conclusions Participants had known selection probabilities, allowing proper estimation of parameters of interest and their variances. The approach was made possible by recent technological developments and access to satellite photographs. PMID:22967277

  14. Aerial photography summary record system - five years later.

    USGS Publications Warehouse

    Lauterborn, T.J.

    1980-01-01

    Describes the APSRS, an automated information system for conventional aerial photography projects, established after the formation of the National Cartographic Information Center in the US Geological Survey in 1974. -after Author

  15. Radiometric Characterization of IKONOS Multispectral Imagery

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Ryan, Robert E.; Kelly, Michelle; Holekamp, Kara; Zanoni, Vicki; Thome, Kurtis; Schiller, Stephen

    2002-01-01

    A radiometric characterization of Space Imaging's IKONOS 4-m multispectral imagery has been performed by a NASA funded team from the John C. Stennis Space Center (SSC), the University of Arizona Remote Sensing Group (UARSG), and South Dakota State University (SDSU). Both intrinsic radiometry and the effects of Space Imaging processing on radiometry were investigated. Relative radiometry was examined with uniform Antarctic and Saharan sites. Absolute radiometric calibration was performed using reflectance-based vicarious calibration methods on several uniform sites imaged by IKONOS, coincident with ground-based surface and atmospheric measurements. Ground-based data and the IKONOS spectral response function served as input to radiative transfer codes to generate a Top-of-Atmosphere radiance estimate. Calibration coefficients derived from each vicarious calibration were combined to generate an IKONOS radiometric gain coefficient for each multispectral band assuming a linear response over the full dynamic range of the instrument. These calibration coefficients were made available to Space Imaging, which subsequently adopted them by updating its initial set of calibration coefficients. IKONOS imagery procured through the NASA Scientific Data Purchase program is processed with or without a Modulation Transfer Function Compensation kernel. The radiometric effects of this kernel on various scene types was also investigated. All imagery characterized was procured through the NASA Scientific Data Purchase program.

  16. Kernel MAD Algorithm for Relative Radiometric Normalization

    NASA Astrophysics Data System (ADS)

    Bai, Yang; Tang, Ping; Hu, Changmiao

    2016-06-01

    The multivariate alteration detection (MAD) algorithm is commonly used in relative radiometric normalization. This algorithm is based on linear canonical correlation analysis (CCA) which can analyze only linear relationships among bands. Therefore, we first introduce a new version of MAD in this study based on the established method known as kernel canonical correlation analysis (KCCA). The proposed method effectively extracts the non-linear and complex relationships among variables. We then conduct relative radiometric normalization experiments on both the linear CCA and KCCA version of the MAD algorithm with the use of Landsat-8 data of Beijing, China, and Gaofen-1(GF-1) data derived from South China. Finally, we analyze the difference between the two methods. Results show that the KCCA-based MAD can be satisfactorily applied to relative radiometric normalization, this algorithm can well describe the nonlinear relationship between multi-temporal images. This work is the first attempt to apply a KCCA-based MAD algorithm to relative radiometric normalization.

  17. Absolute Radiometric Calibration Of The Thematic Mapper

    NASA Astrophysics Data System (ADS)

    Slater, P. N.; Biggar, S. F.; Holm, R. G.; Jackson, R. D.; Mao, Y.; Moran, M. S.; Palmer, J. M.; Yuan, B.

    1986-11-01

    The results are presented of five in-flight absolute radiometric calibrations, made in the period July 1984 to November 1985, at White Sands, New Mexico, of the solar reflective bands of the Landsat-5 Thematic Mapper (TM) . The 23 bandcalibrations made on the five dates show a ± 2.8% RMS variation from the mean as a percentage of the mean.

  18. Radiometric surface temperature components for row crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land surface temperature is a boundary condition often used in assessing soil moisture status and energy exchange from the soil-vegetation-atmosphere interface. For row crops having incomplete canopy cover, the radiometric surface temperature is a composite of sunlit and shaded vegetation and substr...

  19. Metrically preserving the USGS aerial film archive

    USGS Publications Warehouse

    Moe, Donald; Longhenry, Ryan

    2013-01-01

    Since 1972, the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center in Sioux Falls, South Dakota, has provided fi lm-based products to the public. EROS is home to an archive of 12 million frames of analog photography ranging from 1937 to the present. The archive contains collections from both aerial and satellite platforms including programs such as the National High Altitude Program (NHAP), National Aerial Photography Program (NAPP), U.S. Antarctic Resource Center (USARC), Declass 1(CORONA, ARGON, and LANYARD), Declass 2 (KH-7 and KH-9), and Landsat (1972 – 1992, Landsat 1–5).

  20. USGS Releases New Digital Aerial Products

    USGS Publications Warehouse

    ,

    2005-01-01

    The U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) has initiated distribution of digital aerial photographic products produced by scanning or digitizing film from its historical aerial photography film archive. This archive, located in Sioux Falls, South Dakota, contains thousands of rolls of film that contain more than 8 million frames of historic aerial photographs. The largest portion of this archive consists of original film acquired by Federal agencies from the 1930s through the 1970s to produce 1:24,000-scale USGS topographic quadrangle maps. Most of this photography is reasonably large scale (USGS photography ranges from 1:8,000 to 1:80,000) to support the production of the maps. Two digital products are currently available for ordering: high-resolution scanned products and medium-resolution digitized products.

  1. Looking for an old aerial photograph

    USGS Publications Warehouse

    ,

    1997-01-01

    Attempts to photograph the surface of the Earth date from the 1800's, when photographers attached cameras to balloons, kites, and even pigeons. Today, aerial photographs and satellite images are commonplace. The rate of acquiring aerial photographs and satellite images has increased rapidly in recent years. Views of the Earth obtained from aircraft or satellites have become valuable tools to Government resource planners and managers, land-use experts, environmentalists, engineers, scientists, and a wide variety of other users. Many people want historical aerial photographs for business or personal reasons. They may want to locate the boundaries of an old farm or a piece of family property. Or they may want a photograph as a record of changes in their neighborhood, or as a gift. The U.S. Geological Survey (USGS) maintains the Earth Science Information Centers (ESIC?s) to sell aerial photographs, remotely sensed images from satellites, a wide array of digital geographic and cartographic data, as well as the Bureau?s wellknown maps. Declassified photographs from early spy satellites were recently added to the ESIC offerings of historical images. Using the Aerial Photography Summary Record System database, ESIC researchers can help customers find imagery in the collections of other Federal agencies and, in some cases, those of private companies that specialize in esoteric products.

  2. A radiometric Bode's Law: Predictions for Uranus

    NASA Technical Reports Server (NTRS)

    Desch, M. D.; Kaiser, M. L.

    1984-01-01

    The magnetospheres of three planets, Earth, Jupiter, and Saturn, are known to be sources of intense, nonthermal radio bursts. The emissions from these sources undergo pronounced long term intensity fluctuations that are caused by the solar wind interaction with the magnetosphere of each planet. Determinations by spacecraft of the low frequency radio spectra and radiation beam geometry now permit a reliable assessment of the overall efficiency of the solar wind in stimulating these emissions. Earlier estimates of how magnetospheric radio output scales with the solar wind energy input must be revised greatly, with the result that, while the efficiency is much lower than previously thought, it is remarkably uniform from planet to planet. The formulation of a radiometric Bode's Law from which a planet's magnetic moment is estimated from its radio emission output is presented. Applying the radiometric scaling law to Uranus, the low-frequency radio power is likely to be measured by the Voyager 2 spacecraft as it approaches this planet.

  3. The Candela and Photometric and Radiometric Measurements

    PubMed Central

    Parr, Albert C.

    2001-01-01

    The national measurement system for photometric and radiometric quantities is presently based upon techniques that make these quantities traceable to a high-accuracy cryogenic radiometer. The redefinition of the candela in 1979 provided the opportunity for national measurement laboratories to base their photometric measurements on optical detector technology rather than on the emission from high-temperature blackbody optical sources. The ensuing technical developments of the past 20 years, including the significant improvements in cryogenic radiometer performance, have provided the opportunity to place the fundamental maintenance of photometric quantities upon absolute detector based technology as was allowed by the 1979 redefinition. Additionally, the development of improved photodetectors has had a significant impact on the methodology in most of the radiometric measurement areas. This paper will review the status of the NIST implementation of the technical changes mandated by the 1979 redefinition of the candela and its effect upon the maintenance and dissemination of optical radiation measurements. PMID:27500020

  4. Climate Change and Sounder Radiometric Stability

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Aumann, Hartmut H.; Manning, Evan

    2009-01-01

    Satellite instrument radiometric stability is critical for climate studies. The Atmospheric Infrared Sounder (AIRS) radiances are of sufficient stability and accuracy to serve as a climate data record as evidenced by comparisons with the global network of buoys. In this paper we examine the sensitivity of derived geophysical products to potential instrument radiometric stability issues due to diurnal, orbital and seasonal variations. Our method is to perturb the AIRS radiances and examine the impact to retrieved parameters. Results show that instability in retrieved temperature products will be on the same order of the brightness temperature error in the radiances and follow the same time dependences. AIRS excellent stability makes it ideal for examining impacts of instabilities of future systems on geophysical parameter performance.

  5. Geometric and Radiometric Evaluation of Rasat Images

    NASA Astrophysics Data System (ADS)

    Cam, Ali; Topan, Hüseyin; Oruç, Murat; Özendi, Mustafa; Bayık, Çağlar

    2016-06-01

    RASAT, the second remote sensing satellite of Turkey, was designed and assembled, and also is being operated by TÜBİTAK Uzay (Space) Technologies Research Institute (Ankara). RASAT images in various levels are available free-of-charge via Gezgin portal for Turkish citizens. In this paper, the images in panchromatic (7.5 m GSD) and RGB (15 m GSD) bands in various levels were investigated with respect to its geometric and radiometric characteristics. The first geometric analysis is the estimation of the effective GSD as less than 1 pixel for radiometrically processed level (L1R) of both panchromatic and RGB images. Secondly, 2D georeferencing accuracy is estimated by various non-physical transformation models (similarity, 2D affine, polynomial, affine projection, projective, DLT and GCP based RFM) reaching sub-pixel accuracy using minimum 39 and maximum 52 GCPs. The radiometric characteristics are also investigated for 8 bits, estimating SNR between 21.8-42.2, and noise 0.0-3.5 for panchromatic and MS images for L1R when the sea is masked to obtain the results for land areas. The analysis show that RASAT images satisfies requirements for various applications. The research is carried out in Zonguldak test site which is mountainous and partly covered by dense forest and urban areas.

  6. Robust radiometric calibration and vignetting correction.

    PubMed

    Kim, Seon Joo; Pollefeys, Marc

    2008-04-01

    In many computer vision systems, it is assumed that the image brightness of a point directly reflects the scene radiance of the point. However, the assumption does not hold in most cases due to nonlinear camera response function, exposure changes, and vignetting. The effects of these factors are most visible in image mosaics and textures of 3D models where colors look inconsistent and notable boundaries exist. In this paper, we propose a full radiometric calibration algorithm that includes robust estimation of the radiometric response function, exposures, and vignetting. By decoupling the effect of vignetting from the response function estimation, we approach each process in a manner that is robust to noise and outliers. We verify our algorithm with both synthetic and real data which shows significant improvement compared to existing methods. We apply our estimation results to radiometrically align images for seamless mosaics and 3D model textures. We also use our method to create high dynamic range (HDR) mosaics which are more representative of the scene than normal mosaics.

  7. Methods for LWIR Radiometric Calibration and Characterization

    NASA Technical Reports Server (NTRS)

    Ryan, Robert; Harrington, Gary; Howell, Dane; Pagnutti, Mary; Zanoni, Vicki

    2002-01-01

    The utility of a remote sensing system increases with its ability to retrieve surface temperature or radiance accurately. Research applications, such as sea temperature and power plant discharge, require a 0.2 C resolution or better for absolute temperature retrievals. Other applications, including agriculture water stress detection, require at least a 1 C resolution. To achieve these levels of accuracy routinely, scientists must perform laboratory and onboard calibration, as well as in-flight vicarious radiometric characterization. A common approach used for in-flight radiometric characterization incorporates a well-calibrated infrared radiometer that is mounted on a bouy and placed on a uniform water body. The radiometer monitors radiant temperature along with pressure, humidity, and temperature measurements of an associated column of atmosphere. On very still waters, however, a buoy can significantly distrub these measurements. Researchers at NASA's Stennis Space Center (SSC) have developed a novel approach of using an uncooled infrared camera mounted on a boom to quantify buoy effects. Another critical aspect of using buoy-mounted infrared radiometers is the need for extensive laboratory characterization of the instruments' radiometric sensitivity, field of view, and spectral response. Proper surface temperature retrieval also requires detailed knowledge of both the upward emission and the reflected sky emission. Recent work at SSC has demonstrated that the use of a polarization-based radiometer operating at the Brewster angle can greatly simplify temperature retrieval as well as improve overall accuracy.

  8. Retrospective farm scale spatial analysis of viticultural terroir fertility using a 70 y-aerial photograph time series, soil survey and very high resolution Pléiades and EM38 data

    NASA Astrophysics Data System (ADS)

    Vaudour, Emmanuelle; Leclercq, Léa; Gilliot, Jean-Marc; Chaignon, Benoît

    2016-04-01

    In order to elaborate adequate and sustainable practices while better controlling harvest composition at farm scale, the detailed spatial assessment of terroir units is needed. Although such assessment is made in the present time, it reflects vine behaviour and soil quality according to cumulated past choices in vineyard management. in addition to demarcate homogeneous within-vineyard zones, there is a need, in cases where the winegrower starts up its activities, to retrace the behaviour of these zones in the past, so as to consolidate the diagnosis of vine fertility, and determine further adoption of new soil and vineyard management practices that are likely to favour a long-term preservation of quality production together with soil ecosystem functions. In this study we aimed at performing such historical and spatial tracing using a long term time-series of aerial survey images, in combination with a set of very high resolution data: resistivity EM38 measurements and very high resolution Pléiades satellite images. This study was conducted over a 6 ha-farm mainly planted with rainfed black Grenache and Syrah varieties in the Southern Rhone Valley. In a previous study carried out at regional scale, soil landscape and potential terroir units had been characterized. A new field survey carried out in January 2015 considered a total of 98 topsoil sampling sites in addition to 14 soil pits, the horizons of which were described and sampled. Physico-chemical analyses were made for all soil samples, and for those horizons having the highest root development, additional analytical parameters such as copper, active lime and mineral nutrients contents were determined. Along with soil parameters, soil surface condition, vine biological parameters including vigour, presence of diseases, stock-unearthing were collected. A total of 25 aerial photographs in digitized format from the French National Institute of Geographic and Forest Information (IGN) were examined over the 1947

  9. Method of attenuating sea ice flexure noise during seismic surveys of permafrost regions involving a precursor aerial and/or satellite mapping step

    SciTech Connect

    Ostrander, W.J.

    1986-11-04

    This patent describes a method of improving resolution of seismic data collected in a transition zone of a permafrost region between a frozen land mass and an adjacent sea-ice region. The data is collected by common midpoint (CMP) collection methods including sequentially activating at least one conventional vibratory source at a series of sourcepoint locations across the surface of the permafrost region. In this region the amplitude and phase spectra of the generated energy are controlled so that the generated energy changes smoothly as a function of time, and redundantly collection reflections thereof via a series of receivers at receiver stations provide 2-dimensional multifold coverage of the subsurface along a survey line. The method comprises: (a) adopting a survey strategy wherein the sourcepoint locations established for the at least one vibratory source, are always separated from the receiver stations by one or more ice fracture areas formed on or about the surface of the along the survey line; and (b) generating seismic field records by positioning and employing the at least one vibratory source and the series of receivers in accordance with the collection strategy of step (a) such that individual sourcepoint-receiver station locations can be redundantly associated with a selected number of traces to form a series of CMP gathers.

  10. Challenges in collecting hyperspectral imagery of coastal waters using Unmanned Aerial Vehicles (UAVs)

    NASA Astrophysics Data System (ADS)

    English, D. C.; Herwitz, S.; Hu, C.; Carlson, P. R., Jr.; Muller-Karger, F. E.; Yates, K. K.; Ramsewak, D.

    2013-12-01

    Airborne multi-band remote sensing is an important tool for many aquatic applications; and the increased spectral information from hyperspectral sensors may increase the utility of coastal surveys. Recent technological advances allow Unmanned Aerial Vehicles (UAVs) to be used as alternatives or complements to manned aircraft or in situ observing platforms, and promise significant advantages for field studies. These include the ability to conduct programmed flight plans, prolonged and coordinated surveys, and agile flight operations under difficult conditions such as measurements made at low altitudes. Hyperspectral imagery collected from UAVs should allow the increased differentiation of water column or shallow benthic communities at relatively small spatial scales. However, the analysis of hyperspectral imagery from airborne platforms over shallow coastal waters differs from that used for terrestrial or oligotrophic ocean color imagery, and the operational constraints and considerations for the collection of such imagery from autonomous platforms also differ from terrestrial surveys using manned aircraft. Multispectral and hyperspectral imagery of shallow seagrass and coral environments in the Florida Keys were collected with various sensor systems mounted on manned and unmanned aircrafts in May 2012, October 2012, and May 2013. The imaging systems deployed on UAVs included NovaSol's Selectable Hyperspectral Airborne Remote-sensing Kit (SHARK), a Tetracam multispectral imaging system, and the Sunflower hyperspectal imager from Galileo Group, Inc. The UAVs carrying these systems were Xtreme Aerial Concepts' Vision-II Rotorcraft UAV, MLB Company's Bat-4 UAV, and NASA's SIERRA UAV, respectively. Additionally, the Galileo Group's manned aircraft also surveyed the areas with their AISA Eagle hyperspectral imaging system. For both manned and autonomous flights, cloud cover and sun glint (solar and viewing angles) were dominant constraints on retrieval of quantitatively

  11. Profiles of gamma-ray and magnetic data for aerial surveys over parts of the Western United States from longitude 108 to 126 degrees W. and from latitude 34 to 49 degrees N.

    USGS Publications Warehouse

    Duval, Joseph S.

    1995-01-01

    This CD-ROM contains images generated from geophysical data, software for displaying and analyzing the images and software for displaying and examining profile data from aerial surveys flown as part of the National Uranium Resource Evaluation (NURE) Program of the U.S. Department of Energy. The images included are of gamma-ray data (uranium, thorium, and potassium channels), Bouguer gravity data, isostatic residual gravity data, aeromagnetic anomalies, topography, and topography with bathymetry. This publication contains image data for the conterminous United States and profile data for the conterminous United States within the area longitude 108 to 126 degrees W. and latitude 34 to 49 degrees N. The profile data include apparent surface concentrations of potassium, uranium, and thorium, the residual magnetic field, and the height above the ground. The images on this CD-ROM include graytone and color images of each data set, color shaded-relief images of the potential-field and topographic data, and color composite images of the gamma-ray data. The image display and analysis software can register images with geographic and geologic overlays. The profile display software permits the user to view the profiles as well as obtain data listings and export ASCII versions of data for selected flight lines.

  12. INTRABAND RADIOMETRIC PERFORMANCE OF THE LANDSAT 4 THEMATIC MAPPER.

    USGS Publications Warehouse

    Kieffer, Hugh H.; Eliason, Eric M.; Chavez, Pat S.; ,

    1985-01-01

    This preliminary report examines those radiometric characteristics of the Landsat 4 Thematic Mapper (TM) that can be established without absolute calibration of spectral data. Analysis is based largely on radiometrically raw (B type) data of three daytime and two nighttime scenes; in most scenes, a set of 512 lines were examined on an individual-detector basis. Subscenes selected for uniform-radiance were used to characterize subtle radiometric differences and noise problems.

  13. Relative radiometric calibration of LANDSAT TM reflective bands

    NASA Technical Reports Server (NTRS)

    Barker, J. L.

    1984-01-01

    Raw thematic mapper (TM) calibration data from pre-launch tests and in-orbit acquisitions from LANDSAT 4 and 5 satellites are analyzed to assess the radiometric characteristics of the TM sensor. A software program called TM radiometric and algorithmic performance program (TRAPP) was used for the majority of analyses. Radiometric uncertainty in the final TM image originates from: (1) scene variability (solar irradiance and atmospheric scattering); (2) optical and electrical variability of the sensor; and (3) variability introduced during image processing.

  14. Current status and future plans for NBS radiometric source standards

    NASA Technical Reports Server (NTRS)

    Kostkowski, H. J.

    1975-01-01

    The accuracy and long-term stability of currently available NBS radiometric source standards are described. Current research efforts and expected results in this area are outlined. There are over ten NBS radiometric source standards currently available or under development that are of interest for solar measurements or for remote sensing of the earth. The standards and sources are classified and described in terms of the radiometric quantities they represent -- spectral radiance, spectral irradiance and irradiance.

  15. Application of airborne gamma spectrometric survey data to estimating terrestrial gamma-ray dose rates: an example in California.

    PubMed

    Wollenberg, H A; Revzan, K L; Smith, A R

    1994-01-01

    We examined the applicability of radioelement data from the National Aerial Radiometric Reconnaissance, an element of the National Uranium Resource Evaluation, to estimate terrestrial gamma-ray absorbed dose rates, by comparing dose rates calculated from aeroradiometric surveys of uranium, thorium, and potassium concentrations with dose rates calculated from a radiogeologic data base and the distribution of lithologies in California. Gamma-ray dose rates increase generally from north to south following lithological trends, with low values of 25-30 nGy h-1 in the northernmost 1 x 2 degrees quadrangles between 41 and 42 degrees N to high values of 75-100 nGy h-1 in southeastern California. Lithologic-based estimates of mean dose rates in the quadrangles generally match those from aeroradiometric data, with statewide means of 63 and 60 nGy h-1, respectively. These are intermediate between a population-weighted global average of 51 nGy h-1 reported in 1982 by UNSCEAR and a weighted continental average of 70 nGy h-1, based on the global distribution of rock types. The concurrence of lithologically and aeroradiometrically determined dose rates in California, with its varied geology and topography encompassing settings representative of the continents, indicates that the National Aerial Radiometric Reconnaissance data are applicable to estimates of terrestrial absorbed dose rates from natural gamma emitters.

  16. Aerial Explorers and Robotic Ecosystems

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg

    2004-01-01

    A unique bio-inspired approach to autonomous aerial vehicle, a.k.a. aerial explorer technology is discussed. The work is focused on defining and studying aerial explorer mission concepts, both as an individual robotic system and as a member of a small robotic "ecosystem." Members of this robotic ecosystem include the aerial explorer, air-deployed sensors and robotic symbiotes, and other assets such as rovers, landers, and orbiters.

  17. Radiometric instrumentation and measurements guide for photovoltaic performance testing

    SciTech Connect

    Myers, D.

    1997-04-01

    The Photovoltaic Module and Systems Performance and Engineering Project at the National Renewable Energy Laboratory performs indoor and outdoor standardization, testing, and monitoring of the performance of a wide range of photovoltaic (PV) energy conversion devices and systems. The PV Radiometric Measurements and Evaluation Team (PVSRME) within that project is responsible for measurement and characterization of natural and artificial optical radiation which stimulates the PV effect. The PV manufacturing and research and development community often approaches project members for technical information and guidance. A great area of interest is radiometric instrumentation, measurement techniques, and data analysis applied to understanding and improving PV cell, module, and system performance. At the Photovoltaic Radiometric Measurements Workshop conducted by the PVSRME team in July 1995, the need to communicate knowledge of solar and optical radiometric measurements and instrumentation, gained as a result of NREL`s long-term experiences, was identified as an activity that would promote improved measurement processes and measurement quality in the PV research and manufacturing community. The purpose of this document is to address the practical and engineering need to understand optical and solar radiometric instrument performance, selection, calibration, installation, and maintenance applicable to indoor and outdoor radiometric measurements for PV calibration, performance, and testing applications. An introductory section addresses radiometric concepts and definitions. Next, concepts essential to spectral radiometric measurements are discussed. Broadband radiometric instrumentation and measurement concepts are then discussed. Each type of measurement serves as an important component of the PV cell, module, and system performance measurement and characterization process.

  18. User guide for the USGS aerial camera Report of Calibration.

    USGS Publications Warehouse

    Tayman, W.P.

    1984-01-01

    Calibration and testing of aerial mapping cameras includes the measurement of optical constants and the check for proper functioning of a number of complicated mechanical and electrical parts. For this purpose the US Geological Survey performs an operational type photographic calibration. This paper is not strictly a scientific paper but rather a 'user guide' to the USGS Report of Calibration of an aerial mapping camera for compliance with both Federal and State mapping specifications. -Author

  19. Absolute Radiometric Calibration of KOMPSAT-3A

    NASA Astrophysics Data System (ADS)

    Ahn, H. Y.; Shin, D. Y.; Kim, J. S.; Seo, D. C.; Choi, C. U.

    2016-06-01

    This paper presents a vicarious radiometric calibration of the Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) performed by the Korea Aerospace Research Institute (KARI) and the Pukyong National University Remote Sensing Group (PKNU RSG) in 2015.The primary stages of this study are summarized as follows: (1) A field campaign to determine radiometric calibrated target fields was undertaken in Mongolia and South Korea. Surface reflectance data obtained in the campaign were input to a radiative transfer code that predicted at-sensor radiance. Through this process, equations and parameters were derived for the KOMPSAT-3A sensor to enable the conversion of calibrated DN to physical units, such as at-sensor radiance or TOA reflectance. (2) To validate the absolute calibration coefficients for the KOMPSAT-3A sensor, we performed a radiometric validation with a comparison of KOMPSAT-3A and Landsat-8 TOA reflectance using one of the six PICS (Libya 4). Correlations between top-of-atmosphere (TOA) radiances and the spectral band responses of the KOMPSAT-3A sensors at the Zuunmod, Mongolia and Goheung, South Korea sites were significant for multispectral bands. The average difference in TOA reflectance between KOMPSAT-3A and Landsat-8 image over the Libya 4, Libya site in the red-green-blue (RGB) region was under 3%, whereas in the NIR band, the TOA reflectance of KOMPSAT-3A was lower than the that of Landsat-8 due to the difference in the band passes of two sensors. The KOMPSAT-3Aensor includes a band pass near 940 nm that can be strongly absorbed by water vapor and therefore displayed low reflectance. Toovercome this, we need to undertake a detailed analysis using rescale methods, such as the spectral bandwidth adjustment factor.

  20. Optical Imaging and Radiometric Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Ha, Kong Q.; Fitzmaurice, Michael W.; Moiser, Gary E.; Howard, Joseph M.; Le, Chi M.

    2010-01-01

    OPTOOL software is a general-purpose optical systems analysis tool that was developed to offer a solution to problems associated with computational programs written for the James Webb Space Telescope optical system. It integrates existing routines into coherent processes, and provides a structure with reusable capabilities that allow additional processes to be quickly developed and integrated. It has an extensive graphical user interface, which makes the tool more intuitive and friendly. OPTOOL is implemented using MATLAB with a Fourier optics-based approach for point spread function (PSF) calculations. It features parametric and Monte Carlo simulation capabilities, and uses a direct integration calculation to permit high spatial sampling of the PSF. Exit pupil optical path difference (OPD) maps can be generated using combinations of Zernike polynomials or shaped power spectral densities. The graphical user interface allows rapid creation of arbitrary pupil geometries, and entry of all other modeling parameters to support basic imaging and radiometric analyses. OPTOOL provides the capability to generate wavefront-error (WFE) maps for arbitrary grid sizes. These maps are 2D arrays containing digital sampled versions of functions ranging from Zernike polynomials to combination of sinusoidal wave functions in 2D, to functions generated from a spatial frequency power spectral distribution (PSD). It also can generate optical transfer functions (OTFs), which are incorporated into the PSF calculation. The user can specify radiometrics for the target and sky background, and key performance parameters for the instrument s focal plane array (FPA). This radiometric and detector model setup is fairly extensive, and includes parameters such as zodiacal background, thermal emission noise, read noise, and dark current. The setup also includes target spectral energy distribution as a function of wavelength for polychromatic sources, detector pixel size, and the FPA s charge

  1. An extended area blackbody for radiometric calibration

    NASA Astrophysics Data System (ADS)

    LaVeigne, Joe; Franks, Greg; Singer, Jake; Arenas, D. J.; McHugh, Steve

    2013-06-01

    SBIR is developing an enhanced blackbody for improved radiometric testing. The main feature of the blackbody is an improved coating with higher emissivity than the standard coating used. Comparative measurements of the standard and improved coatings are reported, including reflectance. The coatings were also tested with infrared imagers and a broadband emissivity estimate derived from the imagery data. In addition, a control algorithm for constant slew rate has been implemented, primarily for use in minimum resolvable temperature measurements. The system was tested over a range of slew rates from 0.05 K/min to 10 K/min and its performance reported.

  2. Aerial Perspective Artistry

    ERIC Educational Resources Information Center

    Wolfe, Linda

    2010-01-01

    This article presents a lesson centering on aerial perspective artistry of students and offers suggestions on how art teachers should carry this project out. This project serves to develop students' visual perception by studying reproductions by famous artists. This lesson allows one to imagine being lured into a landscape capable of captivating…

  3. Aerial of the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Even in this aerial view at KSC, the Vehicle Assembly Building is imposing. In front of it is the Launch Control Center. In the background is the Rotation/Processing Facility, next to the Banana Creek. In the foreground is the Saturn Causeway that leads to Launch Pads 39A and 39B.

  4. Comparative Assessment of Very High Resolution Satellite and Aerial Orthoimagery

    NASA Astrophysics Data System (ADS)

    Agrafiotis, P.; Georgopoulos, A.

    2015-03-01

    This paper aims to assess the accuracy and radiometric quality of orthorectified high resolution satellite imagery from Pleiades-1B satellites through a comparative evaluation of their quantitative and qualitative properties. A Pleiades-B1 stereopair of high resolution images taken in 2013, two adjacent GeoEye-1 stereopairs from 2011 and aerial orthomosaic (LSO) provided by NCMA S.A (Hellenic Cadastre) from 2007 have been used for the comparison tests. As control dataset orthomosaic from aerial imagery provided also by NCMA S.A (0.25m GSD) from 2012 was selected. The process for DSM and orthoimage production was performed using commercial digital photogrammetric workstations. The two resulting orthoimages and the aerial orthomosaic (LSO) were relatively and absolutely evaluated for their quantitative and qualitative properties. Test measurements were performed using the same check points in order to establish their accuracy both as far as the single point coordinates as well as their distances are concerned. Check points were distributed according to JRC Guidelines for Best Practice and Quality Checking of Ortho Imagery and NSSDA standards while areas with different terrain relief and land cover were also included. The tests performed were based also on JRC and NSSDA accuracy standards. Finally, tests were carried out in order to assess the radiometric quality of the orthoimagery. The results are presented with a statistical analysis and they are evaluated in order to present the merits and demerits of the imaging sensors involved for orthoimage production. The results also serve for a critical approach for the usability and cost efficiency of satellite imagery for the production of Large Scale Orthophotos.

  5. 1:500 Scale Aerial Triangulation Test with Unmanned Airship in Hubei Province

    NASA Astrophysics Data System (ADS)

    Feifei, Xie; Zongjian, Lin; Dezhu, Gui

    2014-03-01

    A new UAVS (Unmanned Aerial Vehicle System) for low altitude aerial photogrammetry is introduced for fine surveying and mapping, including the platform airship, sensor system four-combined wide-angle camera and photogrammetry software MAP-AT. It is demonstrated that this low-altitude aerial photogrammetric system meets the precision requirements of 1:500 scale aerial triangulation based on the test of this system in Hubei province, including the working condition of the airship, the quality of image data and the data processing report. This work provides a possibility for fine surveying and mapping.

  6. A multichannel wide FOV infrared radiometric system

    NASA Astrophysics Data System (ADS)

    Jacobson, S.; Lissak, Z.; Yoav, Y.; Komet, Y.; Davidson, R.

    1989-07-01

    A radiometric system which consists of five IR radiometers with a mutual data acquisition system is described. The system was designed, developed and built at IAI to conduct simultaneous IR signature measurements of a high intensity source at different aspect angles. The requirement to provide a wide FOV radiometric capability led to a technical solution based on the combination of refractive and reflective optics. Each radiometer is equipped with a ZnSe lens, elliptical mirror, mechanical chopper and a thermoelectrically cooled PbSe detector. The chopper is positioned before the entrance aperture and its blades serve as an ambient temperature reference Black Body. The reference temperature is monitored by a temperature transducer. The optical layout of the radiometers and relevant ray tracing examples are demonstrated. The radiometer sensitivity and field of view response data are presented. The data acquisition as well as software capabilities are described. The system is remotely operated. Data on source intensity, at different aspect angles, may be obtained immediately after the test.

  7. Mississippi exploration field trials using microbial, radiometrics, free soil gas, and other techniques

    SciTech Connect

    Moody, J.S.; Brown, L.R.; Thieling, S.C.

    1995-12-31

    The Mississippi Office of Geology has conducted field trials using the surface exploration techniques of geomicrobial, radiometrics, and free soil gas. The objective of these trials is to determine if Mississippi oil and gas fields have surface hydrocarbon expression resulting from vertical microseepage migration. Six fields have been surveyed ranging in depth from 3,330 ft to 18,500 ft. The fields differ in trapping styles and hydrocarbon type. The results so far indicate that these fields do have a surface expression and that geomicrobial analysis as well as radiometrics and free soil gas can detect hydrocarbon microseepage from pressurized reservoirs. All three exploration techniques located the reservoirs independent of depth, hydrocarbon type, or trapping style.

  8. Validation of Landsat 7 ETM+ band 6 radiometric performance

    NASA Technical Reports Server (NTRS)

    Palluconi, Frank; Hook, Simon; Abtahi, Ali; Alley, Ron

    2005-01-01

    Since shortly after launch the radiometric performance of band 6 of the ETM+ instrument on Landsat 7 has been evaluated using vicarious calbiration techniques for both land and water targets. This evaluation indicates the radiometric performance of band 6 has been both highly stable and accurate.

  9. Relative radiometric calibration of LANDSAT TM reflective bands

    NASA Technical Reports Server (NTRS)

    Barker, J. L.

    1984-01-01

    A common scientific methodology and terminology is outlined for characterizing the radiometry of both TM sensors. The magnitude of the most significant sources of radiometric variability are discussed and methods are recommended for achieving the exceptional potential inherent in the radiometric precision and accuracy of the TM sensors.

  10. Aerial views of the San Andreas Fault

    USGS Publications Warehouse

    Moore, M.

    1988-01-01

    These aerial photographs of the San Andreas fault were taken in 1965 by Robert E. Wallace of the U.S Geological Survey. The pictures were taken with a Rolliflex camera on 20 format black and white flim; Wallace was aboard a light, fixed-wing aircraft, flying mostly at low altitudes. He photographed the fault from San Francisco near its north end where it enters by the Salton Sea. These images represent only a sampling of the more than 300 images prodcued during this project. All the photographs reside in the U.S Geological Survey Library in Menlo Park, California. 

  11. Radiometric survey of teletherapy treatment rooms in Brazil.

    PubMed

    de Paiva, E; Giannoni, R A; Velasco, A F; Brito, R R A; Dovales, A C M; de Sá, L V; da Rosa, L A R

    2010-03-01

    The Brazilian national regulatory authority, National Commission of Nuclear Energy, requires that dose rates in the vicinity of teletherapy treatment rooms do not exceed the permissible limits for workers as well as members of the public, depending on the place considered. At the end of 2005, the Brazilian national regulatory authority reduced the permissible dose limit for controlled areas from 1000 to 400 microSv week(-1). Therefore, the aim of this work is to verify the adequacy of structural shielding to this new limit for telecobalt units that had their sources changed and clinic linear accelerators (ALs) installed before the end of 2005. Considering the ALs, measurements of dose rates in controlled areas did not exceed the new permissible limit, excepting for a single case. In the case of (60)Co units, a similar situation is observed for controlled areas, although several non-conformities to the limit of uncontrolled area could be observed. PMID:19926674

  12. Visible/infrared radiometric calibration station

    SciTech Connect

    Byrd, D.A.; Maier, W.B. II; Bender, S.C.; Holland, R.F.; Michaud, F.D.; Luettgen, A.L.; Christensen, R.W.; O`Brian, T.R.

    1994-07-01

    We have begun construction of a visible/infrared radiometric calibration station that will allow for absolute calibration of optical and IR remote sensing instruments with clear apertures less than 16 inches in diameter in a vacuum environment. The calibration station broadband sources will be calibrated at the National Institute of Standards and Technology (NIST) and allow for traceable absolute radiometric calibration to within {plus_minus}3% in the visible and near IR (0.4--2.5 {mu}m), and less than {plus_minus}1% in the infrared, up to 12 {mu}m. Capabilities for placing diffraction limited images or for sensor full-field flooding will exist. The facility will also include the calibration of polarization and spectral effects, spatial resolution, field of view performance, and wavefront characterization. The configuration of the vacuum calibration station consists of an off-axis 21 inch, f/3.2, parabolic collimator with a scanning fold flat in collimated space. The sources are placed, via mechanisms to be described, at the focal plane of the off-axis parabola. Vacuum system pressure will be in the 10{sup {minus}6} Torr range. The broadband white-light source is a custom design by LANL with guidance from Labsphere Inc. The continuous operating radiance of the integrating sphere will be from 0.0--0.006 W/cm{sup 2}/Sr/{mu}m (upper level quoted for {approximately}500 nm wavelength). The blackbody source is also custom designed at LANL with guidance from NIST. The blackbody temperature will be controllable between 250--350{degrees}K. Both of the above sources have 4.1 inch apertures with estimated radiometric instability at less than 1%. The designs of each of these units will be described. The monochromator and interferometer light sources are outside the vacuum, but all optical relay and beam shaping optics are enclosed within the vacuum calibration station. These sources are described, as well as the methodology for alignment and characterization.

  13. Thematic mapper: detailed radiometric and geometric characteristics

    USGS Publications Warehouse

    Kieffer, Hugh

    1983-01-01

    Those radiometric characteristics of the Landsat 4 Thematic Mapper (TM) that can be established without absolute calibration of spectral data have been examined. Subscenes of radiometric all raw data (B-data) were examined on an individual detector basis: areas of uniform radiance were used to characterize subtle radiometric differences and noise problems. A variety of anomalies have been discovered with magnitude of a few digital levels or less: the only problem not addressable by ground processing is irregular width of the digital levels. Essentially all of this non-ideal performance is incorporated in the fully processed (P-type) images, but disguised by the geometric resampling procedure. The overall performance of the Thematic Mapper is a great improvement over previous Landsat scanners. The effective resolution in radiance is degraded by about a factor of two by irregular width of the digital levels. Several detectors have a change of gain with a period of several scans, the largest effect is about 4%. These detectors appear to switch between two response levels during scan direction reversal; there is no apparent periodicity to these changes. This can cause small apparent difference between forward and reverse scans for portions of an image. The high-frequency noise level of each detector was characterized by the standard deviation of the first derivative in the sample direction across a flat field. Coherent sinusoidal noise patterns were determined using one-dimensional Fourier transforms. A "stitching" pattern in Band 1 has a period of 13.8 samples with a peak-to-peak amplitude ranging from 1 to 5 DN. Noise with a period of 3.24 samples is pronounced for most detectors in band 1, to a lesser extent in bands 2, 3, and 4, and below background noise levels in bands 5, 6, and 7. The geometric fidelity of the GSFC film writer used for Thematic Mapper (TM) images was assessed by measurement with accuracy bette than three micrometers of a test grid. A set of 55

  14. Radiometric characterization of the NASA GSFC radiometric calibration facility primary transfer radiometer

    NASA Astrophysics Data System (ADS)

    Cooper, John W.; Brown, Steven W.; Abel, Peter; Marketon, John E.; Butler, James J.

    2004-11-01

    As part of an effort to reduce uncertainties in the radiometric calibrations of integrating sphere sources and standard lamp irradiance sources, the Goddard Space Flight Center (GSFC) Radiometric Calibration Facility (RCF) primary radiometer was characterized at the NIST facility for Spectral Irradiance and Radiance Calibrations with Uniform Sources (SIRCUS). Specifically, the radiometer's slit spectral function was measured and the magnitude of out-of-band stray light was determined. The characterization also revealed significant contributions of spectral stray light due to fluorescence of the radiometer's input sphere. The RCF examined the effects of stray light and sphere fluorescence in the radiometer on source radiance calibrations along with approaches to reduce those sources of measurement error.

  15. Absolute radiometric calibration of the CCRS SAR

    NASA Astrophysics Data System (ADS)

    Ulander, Lars M. H.; Hawkins, Robert K.; Livingstone, Charles E.; Lukowski, Tom I.

    1991-11-01

    Determining the radar scattering coefficients from SAR (synthetic aperture radar) image data requires absolute radiometric calibration of the SAR system. The authors describe an internal calibration methodology for the airborne Canada Centre for Remote Sensing (CCRS) SAR system, based on radar theory, a detailed model of the radar system, and measurements of system parameters. The methodology is verified by analyzing external calibration data acquired over a 6-month period in 1988 by the C-band radar using HH polarization. The results indicate that the overall error is +/- 0.8 dB (1-sigma) for incidence angles +/- 20 deg from antenna boresight. The dominant error contributions are due to the antenna radome and uncertainties in the elevation angle relative to the antenna boresight.

  16. The Joint African Radiometric Propagation Measurement Programme

    NASA Astrophysics Data System (ADS)

    Arbesser-Rastburg, B.; Zaks, C.; Rogers, D. V.; McCarthy, D. K.; Allnutt, J. E.

    1990-06-01

    This paper summarizes the principal aspects of a major cooperative radiowave propagation experiment that was designed to collect data for improving rain attenuation prediction models for tropical Africa. A pressing need for such data had previously been identified by Resolution 79 of the CCIR. In a unique joint arrangement with three African governments, Intelsat, Comsat, the U.S. Agency for International Development, the U.S. National Telecommunications and Information Administration and the U.S. Telecommunications Training Institute (USTTI) collaborated in setting up a Ku-band radiometric measurement campaign in Cameroon, Kenya and Nigeria. A brief historical overview is given, together with the major technical parameters of the sites and the equipment installed there. The anticipated characteristics of the three locations are outlined with regard to meteorological and propagation conditions, and some preliminary indications of the results are presented based on an inspection of the early event data.

  17. GIFTS SM EDU Radiometric and Spectral Calibrations

    NASA Technical Reports Server (NTRS)

    Tian, J.; Reisse, R. a.; Johnson, D. G.; Gazarik, J. J.

    2007-01-01

    The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) Sensor Module (SM) Engineering Demonstration Unit (EDU) is a high resolution spectral imager designed to measure infrared (IR) radiance using a Fourier transform spectrometer (FTS). The GIFTS instrument gathers measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. This paper describes the processing algorithms involved in the calibration. The calibration procedures can be subdivided into three categories: the pre-calibration stage, the calibration stage, and finally, the post-calibration stage. Detailed derivations for each stage are presented in this paper.

  18. Absolute radiometric calibration of the Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Biggar, S. F.; Holm, R. G.; Jackson, R. D.; Mao, Y.

    1986-01-01

    Calibration data for the solar reflective bands of the Landsat-5 TM obtained from five in-flight absolute radiometric calibrations from July 1984-November 1985 at White Sands, New Mexico are presented and analyzed. Ground reflectance and atmospheric data were utilized to predict the spectral radiance at the entrance pupil of the TM and the average number of digital counts in each TM band. The calibration of each of the TM solar reflective bands was calculated in terms of average digital counts/unit spectral radiance for each band. It is observed that for the 12 reflectance-based measurements the rms variation from the means as a percentage of the mean is + or - 1.9 percent; for the 11 measurements in the IR bands, it is + or - 3.4 percent; and the rms variation for all 23 measurements is + or - 2.8 percent.

  19. Overview of the radiometric calibration of MOBY

    NASA Astrophysics Data System (ADS)

    Clark, Dennis K.; Feinholz, Michael; Yarbrough, Mark; Johnson, B. Carol; Brown, Steven W.; Kim, Yong S.; Barnes, Robert A.

    2002-01-01

    a negative difference for the post- deployment values. This trend is to be expected after a deployment of 3 months. To date, only the pre-deployment calibration measurements have been used to adjust the system responses for the MOBY time series. Based on these results, the estimated radiometric uncertainty for MOBY in-water ocean color measurements is estimated to be about 4% to 8% (kequals1). As part of a collaboration with NIST, annual radiometric comparisons are made at the MOBY calibration facility. NIST personnel use transfer radiometers and integrating spheres to validate (verify) the accuracy of the MOBY calibration sources. Recently, we began a study of the stray light contribution to the radiometric uncertainty in the MOBY systems. A complete reprocessing of the MOBY data set, including the changes within each MOBY deployment, will commence upon the completion of the stray light characterization, which is scheduled for the fall of 2001. It is anticipated that this reprocessing will reduce the overall radiometric uncertainty to less than 5% (kequals1).

  20. Absolute Radiometric Calibration of EUNIS-06

    NASA Technical Reports Server (NTRS)

    Thomas, R. J.; Rabin, D. M.; Kent, B. J.; Paustian, W.

    2007-01-01

    The Extreme-Ultraviolet Normal-Incidence Spectrometer (EUNIS) is a soundingrocket payload that obtains imaged high-resolution spectra of individual solar features, providing information about the Sun's corona and upper transition region. Shortly after its successful initial flight last year, a complete end-to-end calibration was carried out to determine the instrument's absolute radiometric response over its Longwave bandpass of 300 - 370A. The measurements were done at the Rutherford-Appleton Laboratory (RAL) in England, using the same vacuum facility and EUV radiation source used in the pre-flight calibrations of both SOHO/CDS and Hinode/EIS, as well as in three post-flight calibrations of our SERTS sounding rocket payload, the precursor to EUNIS. The unique radiation source provided by the Physikalisch-Technische Bundesanstalt (PTB) had been calibrated to an absolute accuracy of 7% (l-sigma) at 12 wavelengths covering our bandpass directly against the Berlin electron storage ring BESSY, which is itself a primary radiometric source standard. Scans of the EUNIS aperture were made to determine the instrument's absolute spectral sensitivity to +- 25%, considering all sources of error, and demonstrate that EUNIS-06 was the most sensitive solar E W spectrometer yet flown. The results will be matched against prior calibrations which relied on combining measurements of individual optical components, and on comparisons with theoretically predicted 'insensitive' line ratios. Coordinated observations were made during the EUNIS-06 flight by SOHO/CDS and EIT that will allow re-calibrations of those instruments as well. In addition, future EUNIS flights will provide similar calibration updates for TRACE, Hinode/EIS, and STEREO/SECCHI/EUVI.

  1. Aerial monitoring and environmental protection: aerial photography as an instrument for checking landscape damage

    NASA Astrophysics Data System (ADS)

    Tartara, Patrizia

    2009-09-01

    C.N.R. and University of Salento have realized a Geographical Information System for heritage management of the national territory (landscape) and historical urban settlements. Informations come from bibliography, archives, direct and systematic field survey, different kind of aerial photographs analysis, with the primary aim of knowledge for the establishment of an in existence Cultural Heritage Cadastre, focused to legal protection and exploitation of the sites, not last the correct territory planning.

  2. Radiometric cloud imaging with an uncooled microbolometer thermal infrared camera.

    PubMed

    Shaw, Joseph; Nugent, Paul; Pust, Nathan; Thurairajah, Brentha; Mizutani, Kohei

    2005-07-25

    An uncooled microbolometer-array thermal infrared camera has been incorporated into a remote sensing system for radiometric sky imaging. The radiometric calibration is validated and improved through direct comparison with spectrally integrated data from the Atmospheric Emitted Radiance Interferometer (AERI). With the improved calibration, the Infrared Cloud Imager (ICI) system routinely obtains sky images with radiometric uncertainty less than 0.5 W/(m(2 )sr) for extended deployments in challenging field environments. We demonstrate the infrared cloud imaging technique with still and time-lapse imagery of clear and cloudy skies, including stratus, cirrus, and wave clouds. PMID:19498585

  3. Intraband radiometric performance of the Landsat Thematic Mappers.

    USGS Publications Warehouse

    Kieffer, H.H.; Cook, D.A.; Eliason, E.M.; Eliason, P.T.

    1985-01-01

    Radiometric characteristics have been examined of the Landsat-4 and Landsat-5 Thematic Mappers (TMs) that can be established without absolute calibration of spectral data. This analysis is based on radiometrically and geometrically raw (B-type) data of both uniform (flat-field) and high-contrast scenes. Subscenes selected for uniform radiance were used to characterized subtle radiometric differences and noise problems. Although the general performance of the Thematic Mappers is excellent, various anomalies that have a magnitude of a few digital levels (DN) or less are quantified. -from Authors

  4. Radiometric cloud imaging with an uncooled microbolometer thermal infrared camera.

    PubMed

    Shaw, Joseph; Nugent, Paul; Pust, Nathan; Thurairajah, Brentha; Mizutani, Kohei

    2005-07-25

    An uncooled microbolometer-array thermal infrared camera has been incorporated into a remote sensing system for radiometric sky imaging. The radiometric calibration is validated and improved through direct comparison with spectrally integrated data from the Atmospheric Emitted Radiance Interferometer (AERI). With the improved calibration, the Infrared Cloud Imager (ICI) system routinely obtains sky images with radiometric uncertainty less than 0.5 W/(m(2 )sr) for extended deployments in challenging field environments. We demonstrate the infrared cloud imaging technique with still and time-lapse imagery of clear and cloudy skies, including stratus, cirrus, and wave clouds.

  5. Relative Radiometric Calibration of LANDSAT TM Reflective Bands

    NASA Technical Reports Server (NTRS)

    Barker, J. L.

    1985-01-01

    Results and recommendations pertaining to the characterization of the relative radiometric calibration of the protoflight thematic mapper (TM/PF) on the LANDSAT-4 satellite are presented. Some preliminary pre-launch and in-orbit results are also included from the flight model (TM/F) on LANDSAT-5. A common scientific methodology and terminology is outlined for characterizing the radiometry of both TM sensors. The magnitude of the most significant sources of radiometric variability are discussed and methods are recommended for achieving the exceptional potential inherent in the radiometric precision and accuracy of the sensors.

  6. Laboratory Measurement of Bidirectional Reflectance of Radiometric Tarps

    NASA Technical Reports Server (NTRS)

    Knowlton, Kelly

    2006-01-01

    Objectives: a) To determine the magnitude of radiometric tarp BRDF; b) To determine whether an ASD FieldSpec Pro spectroradiometer can be used to perform the experiment. Radiometric tarps with nominal reflectance values of 52%, 35%, and 3.5%, deployed for IKONOS. QuickBird, and OrbView-3 overpasses Ground-based spectroradiometric measurements of tarp and Spectralon@ panel taken during overpass using ASD FieldSpec Pro spectroradiometer, and tarp reflectance calculated. Reflectance data used in atmospheric radiative transfer model (MODTRAN) to predict satellite at-sensor radiance for radiometric calibration. Reflectance data also used to validate atmospheric correction of high-spatial-resolution multispectral image products

  7. INERTIAL INSTRUMENT SYSTEM FOR AERIAL SURVEYING.

    USGS Publications Warehouse

    Brown, Russell H.; Chapman, William H.; Hanna, William F.; Mongan, Charles E.; Hursh, John W.

    1987-01-01

    The purpose of this report is to describe an inertial guidance or navigation system that will enable use of relatively light aircraft for efficient data-gathering in geologgy, hydrology, terrain mapping, and gravity-field mapping. The instrument system capitalizes not only on virtual state-of-the-art inertial guidance technology but also on similarly advanced technology for measuring distance with electromagnetic radiating devices. The distance measurement can be made with a transceiver beamed at either a cooperative taget, with a specially designed reflecting surface, or a noncooperative target, such as the Earth's surface. The instrument system features components that use both techniques. Thus, a laser tracker device, which updates the inertial guidance unit or navigator in flight, makes distance measurements to a retroreflector target mounted at a ground-control point; a laser profiler device, beamed vertically downward, makes distance measurements to the Earth's surface along a path that roughly mirrors the aircraft flight path.

  8. Aerial Video Imaging

    NASA Technical Reports Server (NTRS)

    1991-01-01

    When Michael Henry wanted to start an aerial video service, he turned to Johnson Space Center for assistance. Two NASA engineers - one had designed and developed TV systems in Apollo, Skylab, Apollo- Soyuz and Space Shuttle programs - designed a wing-mounted fiberglass camera pod. Camera head and angles are adjustable, and the pod is shaped to reduce vibration. The controls are located so a solo pilot can operate the system. A microprocessor displays latitude, longitude, and bearing, and a GPS receiver provides position data for possible legal references. The service has been successfully utilized by railroads, oil companies, real estate companies, etc.

  9. DOE/NNSA Aerial Measuring System (AMS): Flying the 'Real' Thing

    SciTech Connect

    Craig Lyons

    2011-06-24

    This slide show documents aerial radiation surveys over Japan. Map product is a compilation of daily aerial measuring system missions from the Fukushima Daiichi power plant to 80 km radius. In addition, other flights were conducted over US military bases and the US embassy.

  10. A procedure for radiometric recalibration of Landsat 5 TM reflective-band data

    USGS Publications Warehouse

    Chander, G.; Haque, M.O.; Micijevic, E.; Barsi, J.A.

    2010-01-01

    From the Landsat program's inception in 1972 to the present, the Earth science user community has been benefiting from a historical record of remotely sensed data. The multispectral data from the Landsat 5 (L5) Thematic Mapper (TM) sensor provide the backbone for this extensive archive. Historically, the radiometric calibration procedure for the L5 TM imagery used the detectors' response to the internal calibrator (IC) on a scene-by-scene basis to determine the gain and offset for each detector. The IC system degraded with time, causing radiometric calibration errors up to 20%. In May 2003, the L5 TM data processed and distributed by the U.S. Geological Survey (USGS) Earth Resources Observation and Science Center through the National Landsat Archive Production System (NLAPS) were updated to use a lifetime lookup-table (LUT) gain model to radiometrically calibrate TM data instead of using scene-specific IC gains. Further modification of the gain model was performed in 2007. The L5 TM data processed using IC prior to the calibration update do not benefit from the recent calibration revisions. A procedure has been developed to give users the ability to recalibrate their existing level-1 products. The best recalibration results are obtained if the work-order report that was included in the original standard data product delivery is available. However, if users do not have the original work-order report, the IC trends can be used for recalibration. The IC trends were generated using the radiometric gain trends recorded in the NLAPS database. This paper provides the details of the recalibration procedure for the following: 1) data processed using IC where users have the work-order file; 2) data processed using IC where users do not have the work-order file; 3) data processed using prelaunch calibration parameters; and 4) data processed using the previous version of the LUT (e.g., LUT03) that was released before April 2, 2007.

  11. Infrared film for aerial photography

    USGS Publications Warehouse

    Anderson, William H.

    1979-01-01

    Considerable interest has developed recently in the use of aerial photographs for agricultural management. Even the simplest hand-held aerial photographs, especially those taken with color infrared film, often provide information not ordinarily available through routine ground observation. When fields are viewed from above, patterns and variations become more apparent, often allowing problems to be spotted which otherwise may go undetected.

  12. Radiometric Meteorology: radon progeny as tracers

    NASA Astrophysics Data System (ADS)

    Greenfield, Mark; Iwata, Atsushi; Ito, Nahoko; Kubo, Kenya; Komura, Kazu; Ishizaki, Miho

    2008-10-01

    In-situ measurement of atmospheric γ radiation from radon progeny determine rain and snow rates to better accuracy than standard rain gauges and gives a handle on how droplets are formed. The measured γ ray rates (GRR) have been shown to be proportional to a power of radiometric precipitation rates (RPR)^α, α giving a handle on the extent to which radon progeny are surface adsorbed or volume absorbed.ootnotetextM. B. Greenfield et al., J. Appl. Phys. 93, (2003) pp 5733-5741. More recently time dependent ratios of GRR from ^214Pb and ^214Bi, concentrated from collected rainwater, have been used to determine the elapsed time since activity from RPR, adhered to rain droplets, was removed from secular equilibrium. Ion exchange resins precipitate out the ^214Pb and ^214Bi ions, which are then filtered from 10s of liters of rainwater or snowmelt. A portable Ge detector is used to integrate the resulting activity over 5-10 min intervals. The measured evolution of these two activities from secular equilibrium to transient equilibrium has meteorological applications enabling both the determination of average elapsed times between the formation of raindrops and the time they reach the ground, as well as an estimate of the initial activity at the source of droplet formation.

  13. Radiometric dating of the Siloam Tunnel, Jerusalem.

    PubMed

    Frumkin, Amos; Shimron, Aryeh; Rosenbaum, Jeff

    2003-09-11

    The historical credibility of texts from the Bible is often debated when compared with Iron Age archaeological finds (refs. 1, 2 and references therein). Modern scientific methods may, in principle, be used to independently date structures that seem to be mentioned in the biblical text, to evaluate its historical authenticity. In reality, however, this approach is extremely difficult because of poor archaeological preservation, uncertainty in identification, scarcity of datable materials, and restricted scientific access into well-identified worship sites. Because of these problems, no well-identified Biblical structure has been radiometrically dated until now. Here we report radiocarbon and U-Th dating of the Siloam Tunnel, proving its Iron Age II date; we conclude that the Biblical text presents an accurate historic record of the Siloam Tunnel's construction. Being one of the longest ancient water tunnels lacking intermediate shafts, dating the Siloam Tunnel is a key to determining where and when this technological breakthrough took place. Siloam Tunnel dating also refutes a claim that the tunnel was constructed in the second century bc.

  14. Calibrated infrared ground/air radiometric spectrometer

    NASA Astrophysics Data System (ADS)

    Silk, J. K.; Schildkraut, Elliot Robert; Bauldree, Russell S.; Goodrich, Shawn M.

    1996-06-01

    The calibrated infrared ground/air radiometric spectrometer (CIGARS) is a new high performance, multi-purpose, multi- platform Fourier transform spectrometer (FPS) sensor. It covers the waveband from 0.2 to 12 micrometer, has spectral resolution as fine as 0.3 cm-1, and records over 100 spectra per second. Two CIGARS units are being used for observations of target signatures in the air or on the ground from fixed or moving platforms, including high performance jet aircraft. In this paper we describe the characteristics and capabilities of the CIGARS sensor, which uses four interchangeable detector modules (Si, InGaAs, InSb, and HgCdTe) and two optics modules, with internal calibration. The data recording electronics support observations of transient events, even without precise information on the timing of the event. We present test and calibration data on the sensitivity, spectral resolution, stability, and spectral rate of CIGARS, and examples of in- flight observations of real targets. We also discuss plans for adapting CIGARS for imaging spectroscopy observations, with simultaneous spectral and spatial data, by replacing the existing detectors with a focal plane array (FPA).

  15. Transportable high sensitivity small sample radiometric calorimeter

    SciTech Connect

    Wetzel, J.R.; Biddle, R.S.; Cordova, B.S.; Sampson, T.E.; Dye, H.R.; McDow, J.G.

    1998-12-31

    A new small-sample, high-sensitivity transportable radiometric calorimeter, which can be operated in different modes, contains an electrical calibration method, and can be used to develop secondary standards, will be described in this presentation. The data taken from preliminary tests will be presented to indicate the precision and accuracy of the instrument. The calorimeter and temperature-controlled bath, at present, require only a 30-in. by 20-in. tabletop area. The calorimeter is operated from a laptop computer system using unique measurement module capable of monitoring all necessary calorimeter signals. The calorimeter can be operated in the normal calorimeter equilibration mode, as a comparison instrument, using twin chambers and an external electrical calibration method. The sample chamber is 0.75 in (1.9 cm) in diameter by 2.5 in. (6.35 cm) long. This size will accommodate most {sup 238}Pu heat standards manufactured in the past. The power range runs from 0.001 W to <20 W. The high end is only limited by sample size.

  16. PRELIMINARY EVALUATION OF LANDSAT-4 THEMATIC MAPPER DATA FOR THEIR GEOMETRIC AND RADIOMETRIC ACCURACIES.

    USGS Publications Warehouse

    Podwysoki, M.H.; Falcone, N.; Bender, L.U.; Jones, O.D.; ,

    1985-01-01

    This report describes results of some preliminary analyses of Landsat-4 Thematic Mapper data for the NASA Landsat Image Quality Analysis program. The work is being done under interagency agreement S-12407-C between the U. S. Geological Survey and NASA-Goddard Space Flight Center. Landsat-4 TM scenes for Washington, D. C. Macon, Georgia (40050-15333, September 4, 1982) and Cape Canaveral, Florida have been examined to determine their geometric and radiometric accuracy. In addition, parts of these scenes are also being analyzed to determine the ability to identify specific rock types with the added near-infrared TM bands.

  17. Lessons Learned from the AIRS Pre-Flight Radiometric Calibration

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Aumann, Hartmut H.; Weiler, Margie

    2013-01-01

    The Atmospheric Infrared Sounder (AIRS) instrument flies on the NASA Aqua satellite and measures the upwelling hyperspectral earth radiance in the spectral range of 3.7-15.4 micron with a nominal ground resolution at nadir of 13.5 km. The AIRS spectra are achieved using a temperature controlled grating spectrometer and HgCdTe infrared linear arrays providing 2378 channels with a nominal spectral resolution of approximately 1200. The AIRS pre-flight tests that impact the radiometric calibration include a full system radiometric response (linearity), polarization response, and response vs scan angle (RVS). We re-derive the AIRS instrument radiometric calibration coefficients from the pre-flight polarization measurements, the response vs scan (RVS) angle tests as well as the linearity tests, and a recent lunar roll test that allowed the AIRS to view the moon. The data and method for deriving the coefficients is discussed in detail and the resulting values compared amongst the different tests. Finally, we examine the residual errors in the reconstruction of the external calibrator blackbody radiances and the efficacy of a new radiometric uncertainty model. Results show the radiometric calibration of AIRS to be excellent and the radiometric uncertainty model does a reasonable job of characterizing the errors.

  18. 3D geometrical description of landslides using photogrammetric data acquired by Remotely Piloted Aerial System

    NASA Astrophysics Data System (ADS)

    Dubbini, Marco; Benedetti, Gianluca; Lucente, Corrado Claudio

    2015-04-01

    The need to have three-dimensional digital products of high accuracy and high resolution is now increasingly important for the study of the hydrogeological instability phenomena both from a geomorphological point of view and a geotechnical-geomechanical one. What until now was considered the prerogative of the laser scanner (both air-transported and terrestrial) for data acquisition, in many contexts is to be integrated and often replaced by photogrammetric techniques. The integration of the typical photogrammetry algorithms (Aerial Triangulation, bundle adjustment, collinearity equations, etc.) with Structure from Motion (SFM) algorithms derived from Computer Vision (CV) allows to get products "dense points cloud" of high quality and high resolution with almost complete automation of processes. The use of Remotely Piloted Aerial System (RPAS) equipped with high resolution photogrammetric and positioning sensors, allows to obtain, in a very short time and with low costs, all necessary data for the purpose. Through all stages of the photogrammetric processing, is obtained, as a base product, a dense cloud of points. Subsequently, after the phase of cleaning and classification of data, it will be possible to obtained all the necessary products for studing the geomorphological characterization and, in specific cases, also geotechnical-geomechanical characterization. The high repeatability of surveys, due to the insertion of data always in the same reference system without introducing transformations between coordinate systems, and the high accuracy in the determination of Ground Control Point (GCP) measured and processed with geodetic techniques, mainly by GNSS instrumentation, allows to compare data and models over time. The possibility of the RPAS to carry on board the double frequency satellite positioning systems, so as to define the spatial coordinates of the perspective center with centimetric accuracy, it also allows to obtain repeatability of the data in

  19. Radiometric Characteristics of Cassini RADAR Imagery

    NASA Astrophysics Data System (ADS)

    Stiles, B. W.; Gim, Y.; Hamilton, G. A.; Johnson, W. T.; Shimada, J. G.; West, R. D.

    2004-12-01

    The Cassini RADAR instrument on-board the Cassini Orbiter is currently being employed to obtain SAR imagery of the surface of Saturn's largest moon, Titan. The viewing geometry of Cassini RADAR is different from most imaging radars because the Cassini Orbiter flies by Titan rather than entering into orbit about it. This unusual viewing geometry leads to variable noise characteristics throughout the SAR swath. Due to large changes in range to target and number of looks, noise characteristics and effective resolution vary widely throughout the swath. A good understanding of these parameters is important in order to draw scientific conclusions from the SAR images. Changes in noise bias could be misinterpreted as changes in reflectivity from the surface. Changes in resolution or noise variance could be misinterpreted as changes in the heterogeneity of the surface. The purpose of this paper is to quantify noise variance, bias, and effective radiometric resolution throughout the SAR swath in order to aid scientists in interpreting the data. Of the three parameters, the easiest to model is noise bias which increases with the range to the target. Noise variance is more complicated. The thermal noise (SNR) contribution to the overall variance increases with range, but the fading (speckle) noise contribution varies inversely with number of looks and thus with range. Effective resolution becomes coarser as range increases, but cross track and along track resolution vary differently. Along track resolution varies continuously, but cross track resolution has a discontinuity at 1600 km altitude, due to a change in commanded bandwidth. This paper presents the equations governing the noise characteristics and effective resolution as well as providing pseudo-color images of each quantity in SAR image coordinates for the October 2004 Cassini RADAR observation of Titan. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology under contract with

  20. Radiometric calibration of Landsat Thematic Mapper

    SciTech Connect

    Wukelic, G.E.; Gibbons, D.E.; Martucci, L.M.; Foote, H.P.

    1988-08-01

    Absolute calibration of satellite-acquired data is essential for quantification of scientific studies and a variety of image- processing applications. This paper describes a multiyear, on-orbit radiometric calibration of the Landsat Thematic Mapper (TM). Primary emphasis was placed on TM band 6 (thermal) calibration, but selected reflectance-band calibration measurements were also made. Twenty-five Landsat TM coverages were acquired, and included day, night, and seasonal scenes at several geographical locations. Concurrent with Landsat overpasses, thermal and reflectance field and local meteorological (surface and radiosonde) measurements were collected. At-satellite (uncorrected) radiances and temperatures for water and non-water land cover were compared to ground truth (GT) measurements after making adjustments for atmospheric (using LOWTRAN), mixed-pixel, and emissivity effects. Results indicate that for well-characterized water features, TM band 6 average corrected temperature determinations using local radiosonde data for atmospheric adjustments are within less than or equal to0.6/degree/C of GT temperature determinations. For non-water features, TM band 6 derived temperatures are within 1/degree/C of GT temperature determinations, if appropriate emissivity adjustments are made. Corrections using non-local radiosonde data resulted in errors as large as 12/degree/C. Corrections using the US Standard atmosphere gave temperature values within 1 to 2/degree/C of GT. The average uncertainty for field instruments was +-0.2/degree/C; average uncertainty for Landsat TM corrected temperature determinations was +-0.4/degree/C. A cross-calibration of TM band 6 and the Advanced Very High Resolution Radiometer (AVHRR) for a Landsat overpass gave similar temperature results. 15 refs., 3 figs., 5 tabs.

  1. Ultramap v3 - a Revolution in Aerial Photogrammetry

    NASA Astrophysics Data System (ADS)

    Reitinger, B.; Sormann, M.; Zebedin, L.; Schachinger, B.; Hoefler, M.; Tomasi, R.; Lamperter, M.; Gruber, B.; Schiester, G.; Kobald, M.; Unger, M.; Klaus, A.; Bernoegger, S.; Karner, K.; Wiechert, A.; Ponticelli, M.; Gruber, M.

    2012-07-01

    In the last years, Microsoft has driven innovation in the aerial photogrammetry community. Besides the market leading camera technology, UltraMap has grown to an outstanding photogrammetric workflow system which enables users to effectively work with large digital aerial image blocks in a highly automated way. Best example is the project-based color balancing approach which automatically balances images to a homogeneous block. UltraMap V3 continues innovation, and offers a revolution in terms of ortho processing. A fully automated dense matching module strives for high precision digital surface models (DSMs) which are calculated either on CPUs or on GPUs using a distributed processing framework. By applying constrained filtering algorithms, a digital terrain model can be derived which in turn can be used for fully automated traditional ortho texturing. By having the knowledge about the underlying geometry, seamlines can be generated automatically by applying cost functions in order to minimize visual disturbing artifacts. By exploiting the generated DSM information, a DSMOrtho is created using the balanced input images. Again, seamlines are detected automatically resulting in an automatically balanced ortho mosaic. Interactive block-based radiometric adjustments lead to a high quality ortho product based on UltraCam imagery. UltraMap v3 is the first fully integrated and interactive solution for supporting UltraCam images at best in order to deliver DSM and ortho imagery.

  2. Unmanned Aerial Vehicle in Cadastral Applications

    NASA Astrophysics Data System (ADS)

    Manyoky, M.; Theiler, P.; Steudler, D.; Eisenbeiss, H.

    2011-09-01

    This paper presents the investigation of UAVs (Unmanned Aerial Vehicles) for use in cadastral surveying. Within the scope of a pilot study UAVs were tested for capturing geodata and compared with conventional data acquisition methods for cadastral surveying. Two study sites were therefore surveyed with a tachymeter-GNSS combination as well as a UAV system. The workflows of both methods were investigated and the resulting data were compared with the requirements of Swiss cadastral surveying. Concerning data acquisition and evaluation, the two systems are found to be comparable in terms of time expenditure, accuracy, and completeness. In conclusion, the UAV image orientation proved to be the limiting factor for the obtained accuracy due to the low- cost camera including camera calibration, image quality, and definition of the ground control points (natural or artificial). However, the required level of accuracy for cadastral surveying was reached. The advantage of UAV systems lies in their high flexibility and efficiency in capturing the surface of an area from a low flight altitude. In addition, further information such as orthoimages, elevation models and 3D objects can easily be gained from UAV images. Altogether, this project endorses the benefit of using UAVs in cadastral applications and the new opportunities they provide for cadastral surveying.

  3. Modeling aerial refueling operations

    NASA Astrophysics Data System (ADS)

    McCoy, Allen B., III

    Aerial Refueling (AR) is the act of offloading fuel from one aircraft (the tanker) to another aircraft (the receiver) in mid flight. Meetings between tanker and receiver aircraft are referred to as AR events and are scheduled to: escort one or more receivers across a large body of water; refuel one or more receivers; or train receiver pilots, tanker pilots, and boom operators. In order to efficiently execute the Aerial Refueling Mission, the Air Mobility Command (AMC) of the United States Air Force (USAF) depends on computer models to help it make tanker basing decisions, plan tanker sorties, schedule aircraft, develop new organizational doctrines, and influence policy. We have worked on three projects that have helped AMC improve its modeling and decision making capabilities. Optimal Flight Planning. Currently Air Mobility simulation and optimization software packages depend on algorithms which iterate over three dimensional fuel flow tables to compute aircraft fuel consumption under changing flight conditions. When a high degree of fidelity is required, these algorithms use a large amount of memory and CPU time. We have modeled the rate of aircraft fuel consumption with respect to AC GrossWeight, Altitude and Airspeed. When implemented, this formula will decrease the amount of memory and CPU time needed to compute sortie fuel costs and cargo capacity values. We have also shown how this formula can be used in optimal control problems to find minimum costs flight plans. Tanker Basing Demand Mismatch Index. Since 1992, AMC has relied on a Tanker Basing/AR Demand Mismatch Index which aggregates tanker capacity and AR demand data into six regions. This index was criticized because there were large gradients along regional boundaries. Meanwhile tankers frequently cross regional boundaries to satisfy the demand for AR support. In response we developed continuous functions to score locations with respect to their proximity to demand for AR support as well as their

  4. Assessment of VIIRS radiometric performance using vicarious calibration sites

    NASA Astrophysics Data System (ADS)

    Uprety, Sirish; Cao, Changyong; Blonski, Slawomir; Wang, Wenhui

    2014-09-01

    Radiometric performance of satellite instruments needs to be regularly monitored to determine if there is any drift in the instrument response over time despite the calibration with the best effort. If a drift occurs, it needs to be characterized in order to keep the radiometric accuracy and stability well within the specification. Instrument gain change over time can be validated independently using many techniques such as using stable earth targets (desert, ocean, snow sites etc), inter-comparison with other well calibrated radiometers (using SNO, SNO-x), deep convective clouds (DCC), lunar observations or other methods. This study focus on using vicarious calibration sites for the assessment of radiometric performance of Suomi National Polar-Orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) reflective solar bands. The calibration stability is primarily analyzed by developing the top-of-atmosphere (TOA) reflectance time series over these sites. In addition, the radiometric bias relative to AQUA MODIS is estimated over these calibration sites and analyzed. The radiometric bias is quantified in terms of observed and spectral bias. The spectral characterization and bias analysis will be performed using hyperspectral measurements and radiative transfer models such as MODTRAN.

  5. Radiometric validation of NASA's Ames Research Center's Sensor Calibration Laboratory.

    PubMed

    Brown, Steven W; Johnson, B Carol; Biggar, Stuart F; Zalewski, Edward F; Cooper, John; Hajek, Pavel; Hildum, Edward; Grant, Patrick; Barnes, Robert A; Butler, James J

    2005-10-20

    The National Aeronautics and Space Administration's (NASA's) Ames Research Center's Airborne Sensor Facility (ASF) is responsible for the calibration of several airborne Earth-viewing sensor systems in support of NASA Earth Observing System (EOS) investigations. The primary artifact used to calibrate these sensors in the reflective solar region from 400 to 2500 nm is a lamp-illuminated integrating sphere source. In September 1999, a measurement comparison was made at the Ames ASF Sensor Calibration Facility to validate the radiometric scale, establish the uncertainties assigned to the radiance of this source, and examine its day-to-day repeatability. The comparison was one of a series of validation activities overseen by the EOS Calibration Program to ensure the radiometric calibration accuracy of sensors used in long-term, global, remote-sensing studies. Results of the comparison, including an evaluation of the Ames Sensor Calibration Laboratory (SCL) measurement procedures and assigned radiometric uncertainties, provide a validation of their radiometric scale at the time of the comparison. Additionally, the maintenance of the radiance scale was evaluated by use of independent, long-term, multiyear radiance validation measurements of the Ames sphere source. This series of measurements provided an independent assessment of the radiance values assigned to integrating sphere sources by the Ames SCF. Together, the measurements validate the SCF radiometric scale and assigned uncertainties over the time period from September 1999 through July 2003.

  6. Radiometric validation of NASA's Ames Research Center's Sensor Calibration Laboratory

    SciTech Connect

    Brown, Steven W.; Johnson, B. Carol; Biggar, Stuart F.; Zalewski, Edward F.; Cooper, John; Hajek, Pavel; Hildum, Edward; Grant, Patrick; Barnes, Robert A.; Butler, James J

    2005-10-20

    The National Aeronautics and Space Administration's (NASA's) Ames Research Center's Airborne Sensor Facility (ASF) is responsible for the calibration of several airborne Earth-viewing sensor systems in support of NASA Earth Observing System (EOS) investigations. The primary artifact used to calibrate these sensors in the reflective solar region from 400 to 2500 nm is a lamp-illuminated integrating sphere source. In September 1999, a measurement comparison was made at the Ames ASF Sensor Calibration Facility to validate the radiometric scale, establish the uncertainties assigned to the radiance of this source, and examine its day-to-day repeatability. The comparison was one of a series of validation activities overseen by the EOS Calibration Program to ensure the radiometric calibration accuracy of sensors used in long-term, global, remote-sensing studies. Results of the comparison, including an evaluation of the Ames Sensor Calibration Laboratory (SCL) measurement procedures and assigned radiometric uncertainties, provide a validation of their radiometric scale at the time of the comparison. Additionally, the maintenance of the radiance scale was evaluated by use of independent, long-term, multiyear radiance validation measurements of the Ames sphere source. This series of measurements provided an independent assessment of the radiance values assigned to integrating sphere sources by the Ames SCF. Together, the measurements validate the SCF radiometric scale and assigned uncertainties over the time period from September 1999 through July 2003.

  7. The Absolute Radiometric Calibration of Space - Sensors.

    NASA Astrophysics Data System (ADS)

    Holm, Ronald Gene

    1987-09-01

    The need for absolute radiometric calibration of space-based sensors will continue to increase as new generations of space sensors are developed. A reflectance -based in-flight calibration procedure is used to determine the radiance reaching the entrance pupil of the sensor. This procedure uses ground-based measurements coupled with a radiative transfer code to characterize the effects the atmosphere has on the signal reaching the sensor. The computed radiance is compared to the digital count output of the sensor associated with the image of a test site. This provides an update to the preflight calibration of the system and a check on the on-board internal calibrator. This calibration procedure was used to perform a series of five calibrations of the Landsat-5 Thematic Mapper (TM). For the 12 measurements made in TM bands 1-3, the RMS variation from the mean as a percentage of the mean is (+OR-) 1.9%, and for measurements in the IR, TM bands 4,5, and 7, the value is (+OR-) 3.4%. The RMS variation for all 23 measurements is (+OR-) 2.8%. The absolute calibration techniques were put to another test with a series of three calibration of the SPOT-1 High Resolution Visible, (HRV), sensors. The ratio, HRV-2/HRV-1, of absolute calibration coefficients compared very well with ratios of histogrammed data obtained when the cameras simultaneously imaged the same ground site. Bands PA, B1 and B3 agreed to within 3%, while band B2 showed a 7% difference. The procedure for performing a satellite calibration was then used to demonstrate how a calibrated satellite sensor can be used to quantitatively evaluate surface reflectance over a wide range of surface features. Predicted reflectance factors were compared to values obtained from aircraft -based radiometer data. This procedure was applied on four dates with two different surface conditions per date. A strong correlation, R('2) = .996, was shown between reflectance values determined from satellite imagery and low-flying aircraft

  8. Radiometric rectification - Toward a common radiometric response among multidate, multisensor images

    NASA Technical Reports Server (NTRS)

    Hall, F. G.; Strebel, D. E.; Nickeson, J. E.; Goetz, S. J.

    1991-01-01

    A method is developed for relating scene digital counts among several images of the same scene by identifying radiometric control sets with mean reflectances that are basically constant. The average digital-count values of the control sets are utilized to compute linear transforms that relate digital count values between images. Two Landsat TM images are studied by means of the technique using simulations of a wide range of atmospheric conditions. In the visible and near-IR bands the algorithm effectively adjusts the surface reflectance for the effects of relative atmospheric differences to within 1 percent. The proposed method is found to be an effective relative correction procedure that can be used when atmospheric optical-depth data and calibration coefficients are not available.

  9. Exploration of Titan Using Vertical Lift Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Young, L. A.

    2001-01-01

    Autonomous vertical lift aerial vehicles (such as rotorcraft or powered-lift vehicles) hold considerable potential for supporting planetary science and exploration missions. Vertical lift aerial vehicles would have the following advantages/attributes for planetary exploration: (1) low-speed and low-altitude detailed aerial surveys; (2) remote-site sample return to lander platforms; (3) precision placement of scientific probes; (4) soft landing capability for vehicle reuse (multiple flights) and remote-site monitoring; (5) greater range, speed, and access to hazardous terrain than a surface rover; and (6) greater resolution of surface details than an orbiter or balloons. Exploration of Titan presents an excellent opportunity for the development and usage of such vehicles. Additional information is contained in the original extended abstract.

  10. Radiological Disaster Simulators for Field and Aerial Measurements

    SciTech Connect

    H. W. Clark, Jr

    2002-11-01

    Simulators have been developed to dramatically improve the fidelity of play for field monitors and aircraft participating in radiological disaster drills and exercises. Simulated radiological measurements for the current Global Positioning System (GPS) location are derived from realistic models of radiological consequences for accidents and malicious acts. The aerial version outputs analog pulses corresponding to the signal that would be produced by various NaI (Tl) detectors at that location. The field monitor version reports the reading for any make/model of survey instrument selected. Position simulation modes are included in the aerial and field versions. The aerial version can generate a flight path based on input parameters or import an externally generated sequence of latitude and longitude coordinates. The field version utilizes a map-based point and click/drag interface to generate individual or a sequence of evenly spaced instrument measurements.

  11. In-flight Absolute Radiometric Calibration of the Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, D.; Savage, R. K.

    1984-01-01

    The Thematic Mapper (TM) multispectral scanner system was placed into Earth orbit on July 16, 1982, as part of NASA's LANDSAT 4 payload. To determine temporal changes of the absolute radiometric calibration of the entire system in flight, spectroradiometric measurements of the ground and the atmosphere are made simultaneously with TM image acquisitions over the White Sands, New Mexico area. By entering the measured values into an atmospheric radiative transfer program, the radiance levels at the entrance pupil of the TM in four of the TM spectral bands are determined. These levels are compared to the output digital counts from the detectors that sampled the radiometrically measured ground area, thus providing an absolute radiometric calibration of the entire TM system utilizing those detectors. By reference to an adjacent, larger uniform area, the calibration is extended to all 16 detectors in each of the three bands.

  12. In-flight absolute radiometric calibration of the thematic mapper

    NASA Technical Reports Server (NTRS)

    Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, R. D.; Savage, R. K.

    1984-01-01

    In order to determine temporal changes of the absolute radiometric calibration of the entire TM system in flight spectroradiometric measurements of the ground and the atmosphere were made simultaneously with TM image collections over the White Sands, New Mexico area. By entering the measured values in an atmospheric radiative transfer program, the radiance levels in four of the spectral bands of the TM were determined, band 1:0.45 to 0.52 micrometers, band 2:0.53 to 0.61 micrometers band 3:0.62 to 0.70 micrometers and 4:0.78 to 0.91 micrometers. These levels were compared to the output digital counts from the detectors that sampled the radiometrically measured ground area, thus providing an absolute radiometric calibration of the entire TM system utilizing those detectors.

  13. In-flight absolute radiometric calibration of the Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, R. D.; Savage, R. K.

    1984-01-01

    In order to determine temporal changes of the absolute radiometric calibration of the entire TM system in flight spectroradiometric measurements of the ground and the atmosphere were made simultaneously with TM image collections over the White Sands, NM area. By entering the measured values in an atmospheric radiative transfer program, the radiance levels in four of the spectral bands of the TM were determined, band 1: 0.45 to 0.52 micrometers, band 2: 0.53 to 0.61 micrometers, band 3: 0.62 to 0.70 micrometers, and 4: 0.78 to 0.91 micrometers. These levels were compared to the output digital counts from the detectors that sampled the radiometrically measured ground area, thus providing an absolute radiometric calibration of the entire TM system utilizing those detectors. Previously announced in STAR as N84-15633

  14. Landsat-5 TM reflective-band absolute radiometric calibration

    USGS Publications Warehouse

    Chander, G.; Helder, D.L.; Markham, B.L.; Dewald, J.D.; Kaita, E.; Thome, K.J.; Micijevic, E.; Ruggles, T.A.

    2004-01-01

    The Landsat-5 Thematic Mapper (TM) sensor provides the longest running continuous dataset of moderate spatial resolution remote sensing imagery, dating back to its launch in March 1984. Historically, the radiometric calibration procedure for this imagery used the instrument's response to the Internal Calibrator (IC) on a scene-by-scene basis to determine the gain and offset of each detector. Due to observed degradations in the IC, a new procedure was implemented for U.S.-processed data in May 2003. This new calibration procedure is based on a lifetime radiometric calibration model for the instrument's reflective bands (1-5 and 7) and is derived, in part, from the IC response without the related degradation effects and is tied to the cross calibration with the Landsat-7 Enhanced Thematic Mapper Plus. Reflective-band absolute radiometric accuracy of the instrument tends to be on the order of 7% to 10%, based on a variety of calibration methods.

  15. An automatic high precision registration method between large area aerial images and aerial light detection and ranging data

    NASA Astrophysics Data System (ADS)

    Du, Q.; Xie, D.; Sun, Y.

    2015-06-01

    The integration of digital aerial photogrammetry and Light Detetion And Ranging (LiDAR) is an inevitable trend in Surveying and Mapping field. We calculate the external orientation elements of images which identical with LiDAR coordinate to realize automatic high precision registration between aerial images and LiDAR data. There are two ways to calculate orientation elements. One is single image spatial resection using image matching 3D points that registered to LiDAR. The other one is Position and Orientation System (POS) data supported aerotriangulation. The high precision registration points are selected as Ground Control Points (GCPs) instead of measuring GCPs manually during aerotriangulation. The registration experiments indicate that the method which registering aerial images and LiDAR points has a great advantage in higher automation and precision compare with manual registration.

  16. Sentinel-3 OLCI Radiometric and Spectral Performance Activities

    NASA Astrophysics Data System (ADS)

    Bourg, L.; Blanot, L.; Lamquin, N.; Bruniquel, V.; Meskini, N.; Nieke, J.; Bouvet, M.; Fougnie, B.

    2015-12-01

    The paper presents the activities to be undertaken by ACRI-ST under ESA/ESTEC coordination for the assessment of OLCI Radiometric and Spectral Performances during the SENTINEL-3 Commissioning Phase. As an introduction, it briefly describes the instrument concept and available on-board calibration hardware, the context and main objective of the work. Insisting on the fact that radiometric calibration of OLCI is based on in-flight measurements, as was for MERIS, it then describes the methodology and tools to be used during Commissioning. Finally, as in-flight based radiometry implies the need for independent validation, it describes the corresponding methods and tools.

  17. Ellipsoidal geometry in asteroid thermal models - The standard radiometric model

    NASA Technical Reports Server (NTRS)

    Brown, R. H.

    1985-01-01

    The major consequences of ellipsoidal geometry in an othewise standard radiometric model for asteroids are explored. It is shown that for small deviations from spherical shape a spherical model of the same projected area gives a reasonable aproximation to the thermal flux from an ellipsoidal body. It is suggested that large departures from spherical shape require that some correction be made for geometry. Systematic differences in the radii of asteroids derived radiometrically at 10 and 20 microns may result partly from nonspherical geometry. It is also suggested that extrapolations of the rotational variation of thermal flux from a nonspherical body based solely on the change in cross-sectional area are in error.

  18. Prelaunch absolute radiometric calibration of LANDSAT-4 protoflight Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Barker, J. L.; Ball, D. L.; Leung, K. C.; Walker, J. A.

    1984-01-01

    Results are summarized and analyzed from several prelaunch tests with a 122 cm integrating sphere used as part of the absolute radiometric calibration experiments for the protoflight TM sensor carried on the LANDSAT-4 satellite. The calibration procedure is presented and the radiometric sensitivity of the TM is assessed. The internal calibrator and dynamic range after calibration are considered. Tables show dynamic range after ground processing, spectral radiance to digital number and digital number to spectral radiance values for TM bands 1, 2, 3, 4, 5, 7 and for channel 4 of band 6.

  19. Radiometric comparison of the Landsat-5 TM and MSS sensors

    NASA Astrophysics Data System (ADS)

    Royer, Alain; Charbonneau, Lise; Brochu, Richard; Murphy, Jennifer M.; Teillet, Philippe M.

    1987-04-01

    The radiometric accuracy of Landsat-5 TM data and MSS data is evaluated. The TM and MSS images employed in the study were recorded simultaneously over Montreal on August 4, 1984. The radiometric and geometric correction procedures of the Canada Center for Remote Sensing are described. TM and MSS normalized and corrected apparent reflectances computed for 11 different cover types (four water areas, three urban areas having different densities, and four vegetative surfaces) are compared. It is observed that the normalized and corrected apparent reflectances from TM and MSS correlate well; and the usefulness of the processing procedure is validated.

  20. U. S. Department of Energy Aerial Measuring Systems

    SciTech Connect

    J. J. Lease

    1998-10-01

    The Aerial Measuring Systems (AMS) is an aerial surveillance system. This system consists of remote sensing equipment to include radiation detectors; multispectral, thermal, radar, and laser scanners; precision cameras; and electronic imaging and still video systems. This equipment, in varying combinations, is mounted in an airplane or helicopter and flown at different heights in specific patterns to gather various types of data. This system is a key element in the US Department of Energy's (DOE) national emergency response assets. The mission of the AMS program is twofold--first, to respond to emergencies involving radioactive materials by conducting aerial surveys to rapidly track and map the contamination that may exist over a large ground area and second, to conduct routinely scheduled, aerial surveys for environmental monitoring and compliance purposes through the use of credible science and technology. The AMS program evolved from an early program, begun by a predecessor to the DOE--the Atomic Energy Commission--to map the radiation that may have existed within and around the terrestrial environments of DOE facilities, which produced, used, or stored radioactive materials.

  1. Archive of post-Hurricane Isabel coastal oblique aerial photographs collected during U.S. Geological Survey Field Activity 03CCH01 from Ocean City, Maryland, to Fort Caswell, North Carolina and Inland from Waynesboro to Redwood, Virginia, September 21 - 23, 2003

    USGS Publications Warehouse

    Subino, Janice A.; Morgan, Karen L.M.; Krohn, M. Dennis; Dadisman, Shawn V.

    2013-01-01

    On September 21 - 23, 2003, the United States Geological Survey (USGS) conducted an oblique aerial photographic survey along the Atlantic coast from Ocean City, Md., to Fort Caswell, N.C., and inland oblique aerial photographic survey from Waynesboro to Redwood, Va., aboard a Navajo Piper twin-engine airplane. The coastal survey was conducted at an altitude of 500 feet (ft) and approximately 1,000 ft offshore. For the inland photos, the aircraft tried to stay approximately 500 ft above the terrain. These coastal photos were used to document coastal changes like beach erosion and overwash caused by Hurricane Isabel, while the inland photos looked for potential landslides caused by heavy rains. The photos may also be used as baseline data for future coastal change analysis. The USGS and the National Aeronautics and Space Administration (NASA) surveyed the impact zone of Hurricane Isabel to better understand the changes in vulnerability of the Nation’s coasts to extreme storms (Morgan, 2009). This report serves as an archive of photographs collected during the September 21 - 23, 2003, post-Hurricane Isabel coastal and inland oblique aerial survey along with associated survey maps, KML files, navigation files, digital Field Activity Collection System (FACS) logs, and Federal Geographic Data Committee (FGDC) metadata. Refer to the Acronyms page for expansions of all acronyms and abbreviations used in this report. The USGS St. Petersburg Coastal and Marine Science Center (SPCMSC) assigns a unique identifier to each cruise or field activity. For example, 03CCH01 tells us the data were collected in 2003 for the Coastal Change Hazards (CCH) study and the data were collected during the first field activity for that project in that calendar year. Refer to http://walrus.wr.usgs.gov/infobank/programs/html/definition/activity.html for a detailed description of the method used to assign the ID number. The photographs provided here are Joint Photographic Experts Group (JPEG

  2. An aerial sightability model for estimating ferruginous hawk population size

    USGS Publications Warehouse

    Ayers, L.W.; Anderson, S.H.

    1999-01-01

    Most raptor aerial survey projects have focused on numeric description of visibility bias without identifying the contributing factors or developing predictive models to account for imperfect detection rates. Our goal was to develop a sightability model for nesting ferruginous hawks (Buteo regalis) that could account for nests missed during aerial surveys and provide more accurate population estimates. Eighteen observers, all unfamiliar with nest locations in a known population, searched for nests within 300 m of flight transects via a Maule fixed-wing aircraft. Flight variables tested for their influence on nest-detection rates included aircraft speed, height, direction of travel, time of day, light condition, distance to nest, and observer experience level. Nest variables included status (active vs. inactive), condition (i.e., excellent, good, fair, poor, bad), substrate type, topography, and tree density. A multiple logistic regression model identified nest substrate type, distance to nest, and observer experience level as significant predictors of detection rates (P < 0.05). The overall model was significant (??26 = 124.4, P < 0.001, n = 255 nest observations), and the correct classification rate was 78.4%. During 2 validation surveys, observers saw 23.7% (14/59) and 36.5% (23/63) of the actual population. Sightability model predictions, with 90% confidence intervals, captured the true population in both tests. Our results indicate standardized aerial surveys, when used in conjunction with the predictive sightability model, can provide unbiased population estimates for nesting ferruginous hawks.

  3. Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology1

    PubMed Central

    Cruzan, Mitchell B.; Weinstein, Ben G.; Grasty, Monica R.; Kohrn, Brendan F.; Hendrickson, Elizabeth C.; Arredondo, Tina M.; Thompson, Pamela G.

    2016-01-01

    Premise of the study: Low-elevation surveys with small aerial drones (micro–unmanned aerial vehicles [UAVs]) may be used for a wide variety of applications in plant ecology, including mapping vegetation over small- to medium-sized regions. We provide an overview of methods and procedures for conducting surveys and illustrate some of these applications. Methods: Aerial images were obtained by flying a small drone along transects over the area of interest. Images were used to create a composite image (orthomosaic) and a digital surface model (DSM). Vegetation classification was conducted manually and using an automated routine. Coverage of an individual species was estimated from aerial images. Results: We created a vegetation map for the entire region from the orthomosaic and DSM, and mapped the density of one species. Comparison of our manual and automated habitat classification confirmed that our mapping methods were accurate. A species with high contrast to the background matrix allowed adequate estimate of its coverage. Discussion: The example surveys demonstrate that small aerial drones are capable of gathering large amounts of information on the distribution of vegetation and individual species with minimal impact to sensitive habitats. Low-elevation aerial surveys have potential for a wide range of applications in plant ecology. PMID:27672518

  4. Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology1

    PubMed Central

    Cruzan, Mitchell B.; Weinstein, Ben G.; Grasty, Monica R.; Kohrn, Brendan F.; Hendrickson, Elizabeth C.; Arredondo, Tina M.; Thompson, Pamela G.

    2016-01-01

    Premise of the study: Low-elevation surveys with small aerial drones (micro–unmanned aerial vehicles [UAVs]) may be used for a wide variety of applications in plant ecology, including mapping vegetation over small- to medium-sized regions. We provide an overview of methods and procedures for conducting surveys and illustrate some of these applications. Methods: Aerial images were obtained by flying a small drone along transects over the area of interest. Images were used to create a composite image (orthomosaic) and a digital surface model (DSM). Vegetation classification was conducted manually and using an automated routine. Coverage of an individual species was estimated from aerial images. Results: We created a vegetation map for the entire region from the orthomosaic and DSM, and mapped the density of one species. Comparison of our manual and automated habitat classification confirmed that our mapping methods were accurate. A species with high contrast to the background matrix allowed adequate estimate of its coverage. Discussion: The example surveys demonstrate that small aerial drones are capable of gathering large amounts of information on the distribution of vegetation and individual species with minimal impact to sensitive habitats. Low-elevation aerial surveys have potential for a wide range of applications in plant ecology.

  5. Radiometric sources for the Los Alamos National Laboratory calibration Laboratory

    SciTech Connect

    Maier, W.B. II; Holland, R.; Bender, S.; Byrd, D.; Michaud, F.D.; Moore, S.; O`Brian, T.R.

    1994-07-01

    Los Alamos is developing a laboratory that will support state of the art calibration of moderate-aperture instrumentation (< 40 cm diameter) having high spatial and thermal resolution. Highly accurate calibration in the reflected solar and thermal infrared spectral regions are required for newly developed instrumentation. Radiometric calibration of the instrumentation requires well-characterized, extensive sources of radiation from 0.45 to 12 {mu}m. For wavelengths above 2.5 {mu}m, blackbodies having temperature control and radiometric uniformity to within 100 mK are being designed and will be radiometrically characterized at the National Institute of Standards and Technology (NIST). For the spectral range 0.45--2.5 {mu}m, a ``whitebody`` integrating sphere equipped with tungsten-halogen lamps and enclosed inside a vacuum shroud will be used; this vacuum-compatible extensive standard diffuse source utilizes well-known technology and will be characterized at NIST`s existing facilities. Characterization of instrumental contrast performance for wavelengths, {lambda}, beyond 2.5 {mu}m will utilize a recently designed absolute variable-contrast IR radiometric calibrator, and preliminary data indicate that this calibrator will perform satisfactorily. Conceptual design and status of these extensive broad-band sources and of a monochromatic source to be used for spectral calibrations will be presented.

  6. A Non-Radiative Transfer Approach to Radiometric Vicarious Calibration

    NASA Technical Reports Server (NTRS)

    Ryan, Robert; Holekamp, Kara; Pagnutti, Mary; Stanley, Thomas

    2007-01-01

    TOA (top-of-atmosphere) radiance from high-spatial-resolution satellite imagery systems is important for a wide variety of research and applications. Many research initiatives require data with absolute radiometric accuracy better than a few percent. The conversion of satellite digital numbers to radiance depends on accurate radiometric calibration. A common method for determining and validating radiometric calibrations is to rely upon vicarious calibration approaches. Historically, vicarious calibration methods use radiative transfer codes with ground-based atmosphere and surface reflectance or radiance inputs for estimating TOA radiance values. These TOA radiance values are compared against the satellite digital numbers to determine the radiometric calibration. However, the radiative transfer codes used depend on many assumptions about the aerosol properties and the atmospheric point spread function. A measurement-based atmospheric radiance estimation approach for high-spatial-resolution, multispectral, visible/near-infrared sensors is presented that eliminates the use of radiative transfer codes and many of the underlying assumptions. A comparison between the radiative transfer and non-radiative transfer approaches is made.

  7. Laboratory-based bidirectional reflectance distribution functions of radiometric tarps

    SciTech Connect

    Georgiev, Georgi T.; Butler, James J

    2008-06-20

    Laboratory-based bidirectional reflectance distribution functions (BRDFs) of radiometric tarp samples used in the vicarious calibration of Earth remote sensing satellite instruments are presented in this paper. The results illustrate the BRDF dependence on the orientation of the tarps' weft and warp threads. The study was performed using the GSFC scatterometer at incident zenith angles of 0 deg., 10 deg., and 30 deg.; scatter zenith angles from 0 deg. to 60 deg.; and scatter azimuth angles of 0 deg., 45 deg., 90 deg., 135 deg., and 180 deg.. The wavelengths were 485 nm, 550 nm, 633 nm, and 800 nm. The tarp's weft and warp dependence on BRDF is well defined at all measurement geometries and wavelengths. The BRDF difference can be as high as 8% at 0 deg. incident angle and 12% at 30 deg. incident angle. The fitted BRDF data show a very small discrepancy from the measured ones. New data on the forward and backscatter properties of radiometric tarps are reported. The backward scatter is well pronounced for the white samples. The black sample has well-pronounced forward scatter. The provided BRDF characterization of radiometric tarps is an excellent reference for anyone interested in using tarps for radiometric calibrations. The results are NIST traceable.

  8. Laboratory-based bidirectional reflectance distribution functions of radiometric tarps.

    PubMed

    Georgiev, Georgi T; Butler, James J

    2008-06-20

    Laboratory-based bidirectional reflectance distribution functions (BRDFs) of radiometric tarp samples used in the vicarious calibration of Earth remote sensing satellite instruments are presented in this paper. The results illustrate the BRDF dependence on the orientation of the tarps' weft and warp threads. The study was performed using the GSFC scatterometer at incident zenith angles of 0 degrees, 10 degrees, and 30 degrees; scatter zenith angles from 0 degrees to 60 degrees; and scatter azimuth angles of 0 degrees, 45 degrees, 90 degrees, 135 degrees, and 180 degrees. The wavelengths were 485 nm, 550 nm, 633 nm, and 800 nm. The tarp's weft and warp dependence on BRDF is well defined at all measurement geometries and wavelengths. The BRDF difference can be as high as 8% at 0 degrees incident angle and 12% at 30 degrees incident angle. The fitted BRDF data show a very small discrepancy from the measured ones. New data on the forward and backscatter properties of radiometric tarps are reported. The backward scatter is well pronounced for the white samples. The black sample has well-pronounced forward scatter. The provided BRDF characterization of radiometric tarps is an excellent reference for anyone interested in using tarps for radiometric calibrations. The results are NIST traceable.

  9. Thematic Mapper, band 6, radiometric calibration and assessment

    NASA Astrophysics Data System (ADS)

    Schott, John R.

    1988-01-01

    A technique is presented for absolute radiometric calibration of longwave infrared satellite systems. The technique involves a combination underflight technique and radiometric models to estimate the radiance field reaching a satellite sensor. The radiance field can then be compared to the radiance observed at the satellite to evaluate the sensor's post launch calibration. The technique was applied to the Thematic Mapper band 6 sensor on board Landsat 5. Results are presented for three underflight dates. These results indicate that the TM band 6 sensor can be calibrated to yield an expected error (1 standard deviation) in surface temperature of 0.9K. The radiometric propagation models used to achieve these results are presented along with estimates of potential sensor calibration errors. The final radiometric propagation models developed can be applied independent of underflight requirements and represent a general approach to computation of kinetic surface temperatures. The parameters included in the analysis encompass internal calibration, sensor spectral response, atmospheric transmission, upwelled radiance, downwelled radiance, and sample emissivity.

  10. The moon as a radiometric reference source for on-orbit sensor stability calibration

    USGS Publications Warehouse

    Stone, T.C.

    2009-01-01

    The wealth of data generated by the world's Earth-observing satellites, now spanning decades, allows the construction of long-term climate records. A key consideration for detecting climate trends is precise quantification of temporal changes in sensor calibration on-orbit. For radiometer instruments in the solar reflectance wavelength range (near-UV to shortwave-IR), the Moon can be viewed as a solar diffuser with exceptional stability properties. A model for the lunar spectral irradiance that predicts the geometric variations in the Moon's brightness with ???1% precision has been developed at the U.S. Geological Survey in Flagstaff, AZ. Lunar model results corresponding to a series of Moon observations taken by an instrument can be used to stabilize sensor calibration with sub-percent per year precision, as demonstrated by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). The inherent stability of the Moon and the operational model to utilize the lunar irradiance quantity provide the Moon as a reference source for monitoring radiometric calibration in orbit. This represents an important capability for detecting terrestrial climate change from space-based radiometric measurements.

  11. A Review of LIDAR Radiometric Processing: From Ad Hoc Intensity Correction to Rigorous Radiometric Calibration.

    PubMed

    Kashani, Alireza G; Olsen, Michael J; Parrish, Christopher E; Wilson, Nicholas

    2015-11-06

    In addition to precise 3D coordinates, most light detection and ranging (LIDAR) systems also record "intensity", loosely defined as the strength of the backscattered echo for each measured point. To date, LIDAR intensity data have proven beneficial in a wide range of applications because they are related to surface parameters, such as reflectance. While numerous procedures have been introduced in the scientific literature, and even commercial software, to enhance the utility of intensity data through a variety of "normalization", "correction", or "calibration" techniques, the current situation is complicated by a lack of standardization, as well as confusing, inconsistent use of terminology. In this paper, we first provide an overview of basic principles of LIDAR intensity measurements and applications utilizing intensity information from terrestrial, airborne topographic, and airborne bathymetric LIDAR. Next, we review effective parameters on intensity measurements, basic theory, and current intensity processing methods. We define terminology adopted from the most commonly-used conventions based on a review of current literature. Finally, we identify topics in need of further research. Ultimately, the presented information helps lay the foundation for future standards and specifications for LIDAR radiometric calibration.

  12. A Review of LIDAR Radiometric Processing: From Ad Hoc Intensity Correction to Rigorous Radiometric Calibration.

    PubMed

    Kashani, Alireza G; Olsen, Michael J; Parrish, Christopher E; Wilson, Nicholas

    2015-01-01

    In addition to precise 3D coordinates, most light detection and ranging (LIDAR) systems also record "intensity", loosely defined as the strength of the backscattered echo for each measured point. To date, LIDAR intensity data have proven beneficial in a wide range of applications because they are related to surface parameters, such as reflectance. While numerous procedures have been introduced in the scientific literature, and even commercial software, to enhance the utility of intensity data through a variety of "normalization", "correction", or "calibration" techniques, the current situation is complicated by a lack of standardization, as well as confusing, inconsistent use of terminology. In this paper, we first provide an overview of basic principles of LIDAR intensity measurements and applications utilizing intensity information from terrestrial, airborne topographic, and airborne bathymetric LIDAR. Next, we review effective parameters on intensity measurements, basic theory, and current intensity processing methods. We define terminology adopted from the most commonly-used conventions based on a review of current literature. Finally, we identify topics in need of further research. Ultimately, the presented information helps lay the foundation for future standards and specifications for LIDAR radiometric calibration. PMID:26561813

  13. A Review of LIDAR Radiometric Processing: From Ad Hoc Intensity Correction to Rigorous Radiometric Calibration

    PubMed Central

    Kashani, Alireza G.; Olsen, Michael J.; Parrish, Christopher E.; Wilson, Nicholas

    2015-01-01

    In addition to precise 3D coordinates, most light detection and ranging (LIDAR) systems also record “intensity”, loosely defined as the strength of the backscattered echo for each measured point. To date, LIDAR intensity data have proven beneficial in a wide range of applications because they are related to surface parameters, such as reflectance. While numerous procedures have been introduced in the scientific literature, and even commercial software, to enhance the utility of intensity data through a variety of “normalization”, “correction”, or “calibration” techniques, the current situation is complicated by a lack of standardization, as well as confusing, inconsistent use of terminology. In this paper, we first provide an overview of basic principles of LIDAR intensity measurements and applications utilizing intensity information from terrestrial, airborne topographic, and airborne bathymetric LIDAR. Next, we review effective parameters on intensity measurements, basic theory, and current intensity processing methods. We define terminology adopted from the most commonly-used conventions based on a review of current literature. Finally, we identify topics in need of further research. Ultimately, the presented information helps lay the foundation for future standards and specifications for LIDAR radiometric calibration. PMID:26561813

  14. Dynamics of aerial target pursuit

    NASA Astrophysics Data System (ADS)

    Pal, S.

    2015-12-01

    During pursuit and predation, aerial species engage in multitasking behavior that involve simultaneous target detection, tracking, decision-making, approach and capture. The mobility of the pursuer and the target in a three dimensional environment during predation makes the capture task highly complex. Many researchers have studied and analyzed prey capture dynamics in different aerial species such as insects and bats. This article focuses on reviewing the capture strategies adopted by these species while relying on different sensory variables (vision and acoustics) for navigation. In conclusion, the neural basis of these capture strategies and some applications of these strategies in bio-inspired navigation and control of engineered systems are discussed.

  15. AERIAL OF VEHICLE ASSEMBLY BUILDING & SURROUNDING AREA

    NASA Technical Reports Server (NTRS)

    1977-01-01

    AERIAL OF VEHICLE ASSEMBLY BUILDING & SURROUNDING AREA KSC-377C-0082.41 116-KSC-377C-82.41, P-15877, ARCHIVE-04151 Aerial view - Shuttle construction progress - VAB and Orbiter Processing Facilities - direction northwest.

  16. Floating aerial LED signage based on aerial imaging by retro-reflection (AIRR).

    PubMed

    Yamamoto, Hirotsugu; Tomiyama, Yuka; Suyama, Shiro

    2014-11-01

    We propose a floating aerial LED signage technique by utilizing retro-reflection. The proposed display is composed of LEDs, a half mirror, and retro-reflective sheeting. Directivity of the aerial image formation and size of the aerial image have been investigated. Furthermore, a floating aerial LED sign has been successfully formed in free space.

  17. Precision wildlife monitoring using unmanned aerial vehicles

    PubMed Central

    Hodgson, Jarrod C.; Baylis, Shane M.; Mott, Rowan; Herrod, Ashley; Clarke, Rohan H.

    2016-01-01

    Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology. Careful consideration will be required to ensure the coherence of historic data sets with new UAV-derived data and we propose a method for determining the number of duplicated (concurrent UAV and ground counts) sampling points needed to achieve data compatibility. PMID:26986721

  18. Precision wildlife monitoring using unmanned aerial vehicles.

    PubMed

    Hodgson, Jarrod C; Baylis, Shane M; Mott, Rowan; Herrod, Ashley; Clarke, Rohan H

    2016-03-17

    Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology. Careful consideration will be required to ensure the coherence of historic data sets with new UAV-derived data and we propose a method for determining the number of duplicated (concurrent UAV and ground counts) sampling points needed to achieve data compatibility.

  19. Precision wildlife monitoring using unmanned aerial vehicles.

    PubMed

    Hodgson, Jarrod C; Baylis, Shane M; Mott, Rowan; Herrod, Ashley; Clarke, Rohan H

    2016-01-01

    Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology. Careful consideration will be required to ensure the coherence of historic data sets with new UAV-derived data and we propose a method for determining the number of duplicated (concurrent UAV and ground counts) sampling points needed to achieve data compatibility. PMID:26986721

  20. Radiometric Calibration of Earth-Observing Sensors Using the Radiometric Calibration Test Site (RadCaTS)

    NASA Astrophysics Data System (ADS)

    Czapla-Myers, J.; Anderson, N. J.; Thome, K. J.; Biggar, S. F.

    2014-12-01

    The Remote Sensing Group (RSG) of the College of Optical Sciences at the University of Arizona uses the reflectance-based approach to perform the absolute radiometric calibration of such sensors as Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI, Terra and Aqua MODIS, ASTER, RapidEye, and others. The reflectance-based approach requires that personnel be present at a test site during the sensor overpass, so the Radiometric Calibration Test Site (RadCaTS) was developed in order to capture data during every possible overpass, which assists in the temporal trending of the radiometric calibration of earth-observing sensors. The number of earth-observing sensors is rapidly increasing in recent years, and RadCaTS provides the ability to radiometrically calibrate them without the requirement of frequent field campaigns. The 2013 launch of Landsat 8 provides a unique opportunity for RadCaTS in that it is being used to supplement the in situ measurements by RSG ground personnel, and it will be used throughout the lifetime of the Landsat 8 mission. This allows more data to be collected throughout the year, and it also allows the accuracy and uncertainty of RadCaTS to be analyzed. The current top-of-atmosphere (TOA) spectral radiance uncertainty of the reflectance-based approach is ~2.6% in the mid-visible region of the spectrum, and current work indicates that the uncertainty of RadCaTS in TOA spectral radiance is ~3-4%. This work presents the radiometric calibration results of RadCaTS for a variety of sensors such as Landsat 7 ETM+, Landsat 8 OLI, Terra and Aqua MODIS, MISR, ASTER, and Suomi NPP VIIRS.

  1. Reconnaissance mapping from aerial photographs

    NASA Technical Reports Server (NTRS)

    Weeden, H. A.; Bolling, N. B. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Engineering soil and geology maps were successfully made from Pennsylvania aerial photographs taken at scales from 1:4,800 to 1:60,000. The procedure involved a detailed study of a stereoscopic model while evaluating landform, drainage, erosion, color or gray tones, tone and texture patterns, vegetation, and cultural or land use patterns.

  2. Orbit Determination and Gravity Field Estimation of the Dawn spacecraft at Vesta Using Radiometric and Image Constraints with GEODYN Software

    NASA Astrophysics Data System (ADS)

    Centinello, F. J.; Zuber, M. T.; Mazarico, E.

    2013-12-01

    The Dawn spacecraft orbited the protoplanet Vesta from May 3, 2011 to July 25, 2012. Precise orbit determination was critical for the geophysical investigation, as well as the definition of the Vesta-fixed reference frame and the subsequent registration of datasets to the surface. GEODYN, the orbit determination and geodetic parameter estimation software of NASA Goddard Spaceflight Center, was used to compute the orbit of the Dawn spacecraft and estimate the gravity field of Vesta. GEODYN utilizes radiometric Doppler and range measurements, and was modified to process image data from Dawn's cameras. X-band radiometric measurements were acquired by the NASA Deep Space Network (DSN). The addition of the capability to process image constraints decreases position uncertainty in the along- and cross-orbit track directions because of their geometric strengths compared with radiometric measurements. This capability becomes critical for planetary missions such as Dawn due to the weak gravity environment, where non-conservative forces affect the orbit more than typical of orbits at larger planetary bodies. Radiometric measurements were fit to less than 0.1 mm/s and 5 m for Doppler and range during the Survey orbit phase (compared with measurement noise RMS of about 0.05 mm/s and 2 m for Doppler and range). Image constraint RMS was fit to less than 100 m (resolution is 5 - 150 m/pixel, depending on the spacecraft altitude). Orbits computed using GEODYN were used to estimate a 20th degree and order gravity field of Vesta. The quality of the orbit determination and estimated gravity field with and without image constraints was assessed through comparison with the spacecraft trajectory and gravity model provided by the Dawn Science Team.

  3. Can reliable sage-grouse lek counts be obtained using aerial infrared technology

    USGS Publications Warehouse

    Gillette, Gifford L.; Coates, Peter S.; Petersen, Steven; Romero, John P.

    2013-01-01

    More effective methods for counting greater sage-grouse (Centrocercus urophasianus) are needed to better assess population trends through enumeration or location of new leks. We describe an aerial infrared technique for conducting sage-grouse lek counts and compare this method with conventional ground-based lek count methods. During the breeding period in 2010 and 2011, we surveyed leks from fixed-winged aircraft using cryogenically cooled mid-wave infrared cameras and surveyed the same leks on the same day from the ground following a standard lek count protocol. We did not detect significant differences in lek counts between surveying techniques. These findings suggest that using a cryogenically cooled mid-wave infrared camera from an aerial platform to conduct lek surveys is an effective alternative technique to conventional ground-based methods, but further research is needed. We discuss multiple advantages to aerial infrared surveys, including counting in remote areas, representing greater spatial variation, and increasing the number of counted leks per season. Aerial infrared lek counts may be a valuable wildlife management tool that releases time and resources for other conservation efforts. Opportunities exist for wildlife professionals to refine and apply aerial infrared techniques to wildlife monitoring programs because of the increasing reliability and affordability of this technology.

  4. Issues in Absolute Spectral Radiometric Calibration: Intercomparison of Eight Sources

    NASA Technical Reports Server (NTRS)

    Goetz, Alexander F. H.; Kindel, Bruce; Pilewskie, Peter

    1998-01-01

    The application of atmospheric models to AVIRIS and other spectral imaging data to derive surface reflectance requires that the sensor output be calibrated to absolute radiance. Uncertainties in absolute calibration are to be expected, and claims of 92% accuracy have been published. Measurements of accurate surface albedos and cloud absorption to be used in radiative balance calculations depend critically on knowing the absolute spectral-radiometric response of the sensor. The Earth Observing System project is implementing a rigorous program of absolute radiometric calibration for all optical sensors. Since a number of imaging instruments that provide output in terms of absolute radiance are calibrated at different sites, it is important to determine the errors that can be expected among calibration sites. Another question exists about the errors in the absolute knowledge of the exoatmospheric spectral solar irradiance.

  5. Radiometric calibration procedures for a wideband infrared scene projector (WISP)

    NASA Astrophysics Data System (ADS)

    Flynn, David S.; Marlow, Steven A.; Bergin, Thomas P.; Kircher, James R.

    1999-07-01

    The Wideband Infrared Scene Projector (WISP) has been undergoing development for the Kinetic-Kill Vehicle Hardware-in-the-Loop Simulator facility at Eglin AFB, Florida. In order to perform realistic tests of an infrared seeker, the radiometric output of the WISP system must produce the same response in the seeker as the real scene. In order to ensure this radiometric realism, calibration procedures must be established and followed. This paper describes calibration procedures that have been used in recent tests. The procedures require knowledge of the camera spectral response in the seeker under test. The camera is set up to operate over the desired range of observable radiances. The camera is then nonuniformity corrected (NUCed) and calibrated with an extended blackbody. The camera drift rates are characterized, and as necessary, the camera is reNUCed and recalibrated. The camera is then set up to observe the WISP system, and calibration measurements are made of the camera/WISP system.

  6. The OLI Radiometric Scale Realization Round Robin Measurement Campaign

    NASA Technical Reports Server (NTRS)

    Cutlip, Hansford; Cole,Jerold; Johnson, B. Carol; Maxwell, Stephen; Markham, Brian; Ong, Lawrence; Hom, Milton; Biggar, Stuart

    2011-01-01

    A round robin radiometric scale realization was performed at the Ball Aerospace Radiometric Calibration Laboratory in January/February 2011 in support of the Operational Land Imager (OLI) Program. Participants included Ball Aerospace, NIST, NASA Goddard Space Flight Center, and the University of Arizona. The eight day campaign included multiple observations of three integrating sphere sources by nine radiometers. The objective of the campaign was to validate the radiance calibration uncertainty ascribed to the integrating sphere used to calibrate the OLI instrument. The instrument level calibration source uncertainty was validated by quatnifying: (1) the long term stability of the NIST calibrated radiance artifact, (2) the responsivity scale of the Ball Aerospace transfer radiometer and (3) the operational characteristics of the large integrating sphere.

  7. Radiometric and Spatial Characterization of High-Spatial Resolution Sensors

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; Zanoni, Vicki (Technical Monitor)

    2002-01-01

    The development and improvement of commercial hyperspatial sensors in recent years has increased the breadth of information that can be retrieved from spaceborne and airborne imagery. NASA, through it's Scientific Data Purchases, has successfully provided such data sets to its user community. A key element to the usefulness of these data are an understanding of the radiometric and spatial response quality of the imagery. This proposal seeks funding to examine the absolute radiometric calibration of the Ikonos sensor operated by Space Imaging and the recently-launched Quickbird sensor from DigitalGlobe. In addition, we propose to evaluate the spatial response of the two sensors. The proposed methods rely on well-understood, ground-based targets that have been used by the University of Arizona for more than a decade.

  8. SLC-off Landsat-7 ETM+ reflective band radiometric calibration

    USGS Publications Warehouse

    Markham, B.L.; Barsi, J.A.; Thome, K.J.; Barker, J.L.; Scaramuzza, P.L.; Helder, D.L.; ,

    2005-01-01

    Since May 31, 2003, when the scan line corrector (SLC) on the Landsat-7 ETM+ failed, the primary foci of Landsat-7 ETM+ analyses have been on understanding and attempting to fix the problem and later on developing composited products to mitigate the problem. In the meantime, the Image Assessment System personnel and vicarious calibration teams have continued to monitor the radiometric performance of the ETM+ reflective bands. The SLC failure produced no measurable change in the radiometric calibration of the ETM+ bands. No trends in the calibration are definitively present over the mission lifetime, and, if present, are less than 0.5% per year. Detector 12 in Band 7 dropped about 0.5% in response relative to the rest of the detectors in the band in May 2004 and recovered back to within 0.1% of its initial relative gain in October 2004.

  9. Thematic Mapper radiometric correction research and development results and performance

    NASA Technical Reports Server (NTRS)

    Singh, A.

    1985-01-01

    The present paper has the objective to discuss three modifications made to the Thematic Mapper Image Processing System (TIPS) radiometric correction process during the R&D period, before turnover of the Landsat Ground Segment to the National Oceanic and Atmospheric Administration. The R&D period was to enhance the correction performance of the ground processing of Thematic Mapper (TM) data, taking into account the correction of sensor anomalies. In the context of a brief review of the major steps in TM radiometric correction, a description is provided of the approaches employed to overcome the effects of the Landsat-5 light leak and the saturated calibration lamp states. Attention is also given to scene content correction limitations, and a performance bench mark.

  10. Thematic Mapper radiometric correction research and development results and performance

    NASA Astrophysics Data System (ADS)

    Singh, A.

    1985-09-01

    The present paper has the objective to discuss three modifications made to the Thematic Mapper Image Processing System (TIPS) radiometric correction process during the R&D period, before turnover of the Landsat Ground Segment to the National Oceanic and Atmospheric Administration. The R&D period was to enhance the correction performance of the ground processing of Thematic Mapper (TM) data, taking into account the correction of sensor anomalies. In the context of a brief review of the major steps in TM radiometric correction, a description is provided of the approaches employed to overcome the effects of the Landsat-5 light leak and the saturated calibration lamp states. Attention is also given to scene content correction limitations, and a performance bench mark.

  11. Validation of Landsat 7 ETM+ band 6 radiometric performance

    NASA Astrophysics Data System (ADS)

    Palluconi, Frank; Hook, Simon; Abtahi, Ali; Alley, Ron

    2005-08-01

    Since shortly after launch the radiometric performance of band 6 of the ETM+ instrument on Landsat 7 has been evaluated using vicarious calibration techniques for both land and water targets. This evaluation indicates the radiometric performance of band 6 has been both highly stable and accurate. Over a range corresponding to a factor of two in radiance (5 to 55 C in kinetic temperature terms) the difference between the in-situ derived radiance and the image derived radiance is on average 0.5% or less. Water targets are the easiest to use but are limited to the temperature range from 0 to about 32 C. Land targets can reach 55 C or more but are far less spatially homogeneous than water targets with respect to both local surface temperature and spectral emissivity. The techniques used and the results are described.

  12. Characterization of radiometric calibration of LANDSAT-4 TM reflective bands

    NASA Technical Reports Server (NTRS)

    Barker, J. L.; Abrams, R. B.; Ball, D. L.; Leung, K. C.

    1984-01-01

    Prelaunch and postlaunch internal calibrator, image, and background data is to characterize the radiometric performance of the LANDSAT-4 TM and to recommend improved procedures for radiometric calibration. All but two channels (band 2, channel 4; band 5, channel 3) behave normally. Gain changes relative to a postlaunch reference for channels within a band vary within 0.5 percent as a group. Instrument gain for channels in the cold focal plane oscillates. Noise in background and image data ranges from 0.5 to 1.7 counts. Average differences in forward and reverse image data indicate a need for separate calibration processing of forward and reverse scans. Precision is improved by increasing the pulse integration width from 31 to 41 minor frames, depending on the band.

  13. The 90 GHz radiometric imaging. [for terrain analysis

    NASA Technical Reports Server (NTRS)

    King, H. E.; White, J. D.; Wilson, W. J.; Mori, T. T.; Hollinger, J. P.; Troy, B. E.; Kenney, J. E.; Mcgoogan, J. T.

    1976-01-01

    A 90-GHz (3 mm wavelength) radiometer with a noise output fluctuation of 0.22 K (RMS), with a scanning antenna beam mirror, and the data processing system are described. Real-time radiometric imaging of terrain and man-made objects are shown. Flying at an altitude of 1500 ft a radiometer antenna with a 2 degrees halfpower beamwidth can distinguish landforms, waterways, roads, runways, bridges, ships at sea and their wakes, aircraft on runways, and athletic fields. A flight taken at an altitude of 3000 ft with approximately 2000 ft of clouds below the radiometer demonstrates the ability to distinguish bridges, rivers, marshland and other landforms even though the clouds are optically opaque. The radiometric images of a few representative scenes along with photographs of the corresponding scenes are presented to demonstrate the resolution of the imager system.

  14. BOREAS TE-18, 60-m, Radiometrically Rectified Landsat TM Imagery

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Knapp, David

    2000-01-01

    The BOREAS TE-18 team used a radiometric rectification process to produce standardized DN values for a series of Landsat TM images of the BOREAS SSA and NSA in order to compare images that were collected under different atmospheric conditions. The images for each study area were referenced to an image that had very clear atmospheric qualities. The reference image for the SSA was collected on 02-Sep-1994, while the reference image for the NSA was collected on 2 1 Jun-1995. The 23 rectified images cover the period of 07-Jul-1985 to 18-Sep-1994 in the SSA and 22-Jun-1984 to 09-Jun-1994 in the NSA. Each of the reference scenes had coincident atmospheric optical thickness measurements made by RSS-11. The radiometric rectification process is described in more detail by Hall et al. (1991). The original Landsat TM data were received from CCRS for use in the BOREAS project. Due to the nature of the radiometric rectification process and copyright issues, the full-resolution (30-m) images may not be publicly distributed. However, this spatially degraded 60-m resolution version of the images may be openly distributed and is available on the BOREAS CD-ROM series. After the radiometric rectification processing, the original data were degraded to a 60-m pixel size from the original 30-m pixel size by averaging the data over a 2- by 2-pixel window. The data are stored in binary image-format files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Activity Archive Center (DAAC).

  15. High speed radiometric measurements of IED detonation fireballs

    NASA Astrophysics Data System (ADS)

    Spidell, Matthew T.; Gordon, J. Motos; Pitz, Jeremey; Gross, Kevin C.; Perram, Glen P.

    2010-04-01

    Continuum emission is predominant in fireball spectral phenomena and in some demonstrated cases, fine detail in the temporal evolution of infrared spectral emissions can be used to estimate size and chemical composition of the device. Recent work indicates that a few narrow radiometric bands may reveal forensic information needed for the explosive discrimination and classification problem, representing an essential step in moving from "laboratory" measurements to a rugged, fieldable system. To explore phenomena not observable in previous experiments, a high speed (10μs resolution) radiometer with four channels spanning the infrared spectrum observed the detonation of nine home made explosive (HME) devices in the < 100lb class. Radiometric measurements indicate that the detonation fireball is well approximated as a single temperature blackbody at early time (0 < t <~ 3ms). The effective radius obtained from absolute intensity indicates fireball growth at supersonic velocity during this time. Peak fireball temperatures during this initial detonation range between 3000.3500K. The initial temperature decay with time (t <~ 10ms) can be described by a simple phenomenological model based on radiative cooling. After this rapid decay, temperature exhibits a small, steady increase with time (10 <~ t <~ 50ms) and peaking somewhere between 1000.1500K-likely the result of post-detonation combustion-before subsequent cooling back to ambient conditions . Radius derived from radiometric measurements can be described well (R2 > 0.98) using blast model functional forms, suggesting that energy release could be estimated from single-pixel radiometric detectors. Comparison of radiometer-derived fireball size with FLIR infrared imagery indicate the Planckian intensity size estimates are about a factor of two smaller than the physical extent of the fireball.

  16. Changes in the Radiometric Sensitivity of SeaWiFS

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Barnes, Robert A.; Eplee, Robert E., Jr.; Patt, Frederick S.

    1998-01-01

    We report on the lunar and solar measurements used to determine the changes in the radiometric sensitivity of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Radiometric sensitivity is defined as the output from the instrument (or from one of the instrument bands) per unit spectral radiance at the instrument's input aperture. Knowledge of the long-term repeatability of the SeaWiFS measurements is crucial to maintaining the quality of the ocean scenes derived from measurements by the instrument. For SeaWiFS bands 1 through 6 (412 nm through 670 rim), the change in radiometric sensitivity is less than 0.2% for the period from November 1997 through November 1998. For band 7 (765 nm), the change is about 1.5%, and for band 8 (865 nm) about 5%. The rates of change of bands 7 and 8, which were linear with time for the first eight months of lunar measurements, are now slowing. The scatter in the data points about the trend lines in this analysis is less than 0.3% for all eight SeaWiFS bands. These results are based on monthly measurements of the moon. Daily solar measurements using an onboard diffuser show that the radiometric sensitivities of the SeaWiFS bands have changed smoothly during the time intervals between lunar measurements. Since SeaWiFS measurements have continued past November 1998, the results presented here are considered as a snapshot of the instrument performance as of that date.

  17. LANDSAT-4 multispectral scanner (MSS) subsystem radiometric characterization

    NASA Technical Reports Server (NTRS)

    Alford, W. (Editor); Barker, J. (Editor); Clark, B. P.; Dasgupta, R.

    1983-01-01

    The multispectral band scanner (mass) and its spectral characteristics are described and methods are given for relating video digital levels on computer compatible tapes to radiance into the sensor. Topics covered include prelaunch calibration procedures and postlaunch radiometric processng. Examples of current data resident on the MSS image processing system are included. The MSS on LANDSAT 4 is compared with the scanners on earlier LANDSAT satellites.

  18. Radiometrically accurate thermal imaging in the Landsat program

    NASA Astrophysics Data System (ADS)

    Lansing, Jack C., Jr.

    1988-01-01

    Methods of calibrating Landsat TM thermal IR data have been developed so that the residual error is reduced to 0.9 K (1 standard deviation). Methods for verifying the radiometric performance of TM on orbit and ground calibration methods are discussed. The preliminary design of the enhanced TM for Landsat-6 is considered. A technique for accurately reducing raw data from the Landsat-5 thermal band is described in detail.

  19. Preliminary radiometric calibration assessment of ALOS AVNIR-2

    USGS Publications Warehouse

    Bouvet, M.; Goryl, P.; Chander, G.; Santer, R.; Saunier, S.

    2008-01-01

    This paper summarizes the activities carried out in the frame of the data quality activities of the Advanced Visible and Near Infrared Radiometer type 2 (AVNIR-2) sensor onboard the Advanced Land Observing Satellite (ALOS). Assessment of the radiometric calibration of the AVNIR-2 multi-spectral imager is achieved via three intercomparisons to currently flying sensors over the Libyan desert, during the first year of operation. AU three methodologies indicate a slight underestimation of AVNIR-2 in band 1 by 4 to 7% with respect to other sensors radiometric scale. Band 2 does not show any obvious bias. Results for band 3 are affected by saturation due to inappropriate gain setting. Two methodologies indicate no significant bias in band 4. Preliminary results indicate possible degradations of the AVNIR-2 channels, which, when modeled as an exponentially decreasing functions, have time constants of respectively 13.2 %.year-1, 8.8%.year-1 and 0.1%.year-1 in band 1, 2 and 4 (with respect to the radiometric scale of the MEdium Resolution Imaging Spectrometer, MERIS). Longer time series of AVNIR-2 data are needed to draw final conclusions. ?? 2007 IEEE.

  20. [Spectral radiometric calibration research of Quick Bird digital image].

    PubMed

    Zhang, Guo-Kun; Chen, Chun; Xing, Fu; Zhang, Hong-Yan; Zhao, Yun-Sheng

    2008-03-01

    The present article uses the basic operation of the digital remote image radiometric calibration of the Quickbird with high distinguishing rate, including the physical attribute and the mathematical basement of digital images, the annotation as well as the format of image data. The study makes use of information of spectral radiance from the ground-atmosphere system, which is recorded by the digital remote image of Quick Bird in Honghe area. This dissertation offered the calculation means of radiometric calibration, and changed the pixel digital number into band-integrated radiance. Then, the spectral radiance was calculated. After the radiometric calibration, the Quick Bird image showed the quantitative information of spectral feature from various ground items. Only through the calibration can the Quick Bird image be quantitatively compared and analyzed with other remote sensor images. Thus, the inversion image has the value of application. The significance consists in offering important basic condition for the image amalgamation and better disposal of the special inforation pick-up. This effort also offered spectral information of the ground items for the inversion of the remote image. Therefore, the authors can combine the research of the spectral character of ground items with the establishment of the remote application model in order to quantitatively analyze the ground items.

  1. [Radiometric calibration of LCTF-based multispectral area CCD camera].

    PubMed

    Du, Li-Li; Yi, Wei-Ning; Zhang, Dong-Ying; Huang, Hong-Lian; Qiao, Yan-Li; Zhang, Xie

    2011-01-01

    Multispectral area CCD camera based on liquid crystal tunable filter (LCTF) is a new spectral imaging system, which could record image of one wavelength on the area CCD by utilizing electrically controlled birefringence of liquid-crystal and interference principle of polarized light. Because of the special working principle of LCTF and frame transfer area CCD, the existing radiometric calibration method can not meet the precision need of remote sensing application if it is used for LCTF-camera. An improved radiometric calibration method is proposed, in which the camera performance test and calibration experiment are carried out relying on the devices of integrating sphere and standard detector, and the absolute calibration coefficient is calculated via correcting frame transfer smear and improving data process algorithm. Then the validity of the laboratory calibration coefficient is checked by a field validation experiment. Experimental result indicates that the calibration coefficient is valid, and the radiation information on the ground could be accurately inverted from the calibrated image data. With the resolution of radiometric calibration of LCTF-camera and the improvement of calibration precision, the application field of the image data acquired by the camera would be extended effectively.

  2. Laboratory-Based BRDF Calibration of Radiometric Tarps

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Butler, James J.

    2007-01-01

    The current study provides the remote sensing community with important high accuracy laboratory-based BRDF calibration of radiometric tarps. The results illustrate the dependence of tarps' weft and warp threads orientation on BRDF. The study was done at incident angles of 0deg, 10deg, and 30deg; scatter zenith angles from 0deg to 60deg, and scatter azimuth angles of 0deg, 45deg, 90deg, 135deg, and 180deg. The wavelengths were 485nm, 550nm, 633nm and 800nm. The dependence is well defined at all measurement geometries and wavelengths. It can be as high as 8% at 0deg incident angle and 2% at 30deg incident angle. The fitted BRDF data show a very small discrepancy from the measured ones. New data on the forward and backscatter properties of radiometric tarps is reported. The backward scatter is well pronounced for the white samples. The black sample has well pronounced forward scatter. The BRDF characterization of radiometric tarps can be successfully extended to other structured surface fabric samples. The results are NIST traceable.

  3. Radiometric cross-calibration of KOMPSAT-3 with Landsat-8

    NASA Astrophysics Data System (ADS)

    Shin, Dongyoon; Jin, Cheonggil; Ahn, Hoyong; Choi, Chuluong

    2015-10-01

    This paper presents a radiometric cross calibration of KOMPSAT-3 AEISS based on Landsat-8 OLI. Cross calibration between the two sensors using simultaneous image pairs, acquired during an underfly event over the Libya 4 pseudo invariant calibration site (PICS) site. The spectral profile of the target comes from the near-simultaneous EO-1 Hyperion data over these sites for apply Spectral Band Adjustment Factor (SBAF). The results indicate that the Top Of Atmosphere (TOA) reflectance measurements for KOMPSAT-3 agree with Landsat-8 to within 5% after the application of SBAF. To validate radiometric coefficient, comparison TOA reflectance executed in north Virginia, USA. The difference in TOA reflectance was calculated to within a maximum ±1.55%. There was a huge improvement when the standard deviation altered from 0.1 to 0.01, when applying the SBAF. The result of radiometric coefficient presented here appear to be a good standard for maintaining the optical quality of the KOMPSAT-3, for which prelaunch, onboard, and vicarious calibration data are lacking.

  4. A Preliminary Analysis of LANDSAT-4 Thematic Mapper Radiometric Performance

    NASA Technical Reports Server (NTRS)

    Justice, C.; Fusco, L.; Mehl, W.

    1985-01-01

    The NASA raw (BT) product, the radiometrically corrected (AT) product, and the radiometrically and geometrically corrected (PT) product of a TM scene were analyzed examine the frequency distribution of the digital data; the statistical correlation between the bands; and the variability between the detectors within a band. The analyses were performed on a series of image subsets from the full scence. Results are presented from one 1024 c 1024 pixel subset of Realfoot Lake, Tennessee which displayed a representative range of ground conditions and cover types occurring within the full frame image. From this cursory examination of one of the first seven channel TM data sets, it would appear that the radiometric performance of the system is most satisfactory and largely meets pre-launch specifications. Problems were noted with Band 5 Detector 3 and Band 2 Detector 4. Differences were observed between forward and reverse scan detector responses both for the BT and AT products. No systematic variations were observed between odd and even detectors.

  5. Uas for Archaeology - New Perspectives on Aerial Documentation

    NASA Astrophysics Data System (ADS)

    Fallavollita, P.; Balsi, M.; Esposito, S.; Melis, M. G.; Milanese, M.; Zappino, L.

    2013-08-01

    In this work some Unmanned Aerial Systems applications are discussed and applied to archaeological sites survey and 3D model reconstructions. Interesting results are shown for three important and different aged sites on north Sardinia (Italy). An easy and simplified procedure has proposed permitting the adoption of multi-rotor aircrafts for daily archaeological survey during excavation and documentation, involving state of art in UAS design, flight control systems, high definition sensor cameras and innovative photogrammetric software tools. Very high quality 3D models results are shown and discussed and how they have been simplified the archaeologist work and decisions.

  6. Identification and extraction of the seaward edge of terrestrial vegetation using digital aerial photography

    USGS Publications Warehouse

    Harris, Melanie; Brock, John C.; Nayegandhi, A.; Duffy, M.; Wright, C.W.

    2006-01-01

    This report is created as part of the Aerial Data Collection and Creation of Products for Park Vital Signs Monitoring within the Northeast Region Coastal and Barrier Network project, which is a joint project between the National Park Service Inventory and Monitoring Program (NPS-IM), the National Aeronautics and Space Administration (NASA) Observational Sciences Branch, and the U.S. Geological Survey (USGS) Center for Coastal and Watershed Studies (CCWS). This report is one of a series that discusses methods for extracting topographic features from aerial survey data. It details step-by-step methods used to extract a spatially referenced digital line from aerial photography that represents the seaward edge of terrestrial vegetation along the coast of Assateague Island National Seashore (ASIS). One component of the NPS-IM/USGS/NASA project includes the collection of NASA aerial surveys over various NPS barrier islands and coastal parks throughout the National Park Service's Northeast Region. These aerial surveys consist of collecting optical remote sensing data from a variety of sensors, including the NASA Airborne Topographic Mapper (ATM), the NASA Experimental Advanced Airborne Research Lidar (EAARL), and down-looking digital mapping cameras.

  7. Aerial robotic data acquisition system

    SciTech Connect

    Hofstetter, K.J.; Hayes, D.W.; Pendergast, M.M.; Corban, J.E.

    1993-12-31

    A small, unmanned aerial vehicle (UAV), equipped with sensors for physical and chemical measurements of remote environments, is described. A miniature helicopter airframe is used as a platform for sensor testing and development. The sensor output is integrated with the flight control system for real-time, interactive, data acquisition and analysis. Pre-programmed flight missions will be flown with several sensors to demonstrate the cost-effective surveillance capabilities of this new technology.

  8. Automated recognition of forest patterns using aerial photographs

    NASA Astrophysics Data System (ADS)

    Barbezat, Vincent; Kreiss, Philippe; Sulzmann, Armin; Jacot, Jacques

    1996-12-01

    In Switzerland, aerial photos are indispensable tools for research into ecosystems and their management. Every six years since 1950, the whole of Switzerland has been systematically surveyed by aerial photos. In the forestry field, these documents not only provide invaluable information but also give support to field activities such as the drawing up of tree population maps, intervention planning, precise positioning of the upper forest limit, evaluation of forest damage and rates of tree growth. Up to now, the analysis of aerial photos has been carried out by specialists who painstakingly examine every photograph, which makes it a very long, exacting and expensive job. The IMT-DMT of the EPFL and Antenne romande of FNP, aware of the special interest involved and the necessity of automated classification of aerial photos, have pooled their resources to develop a software program capable of differentiating between single trees, copses and dense forests. The developed algorithms detect the crowns of the trees and the surface of the orthogonal projection. Form the shadow of each tree they calculate its height. They also determine the position of the tree in the Swiss national coordinate thanks to the implementation of a numeric altitude model. For the future, we have the prospect of many new and better uses of aerial photos being available to us, particularly where isolated stands are concerned and also when evolutions based on a diachronic series of photos have to be assessed: from timberline monitoring in the research on global change to the exploitation of wooded pastures on small surface areas.

  9. Telemetry of Aerial Radiological Measurements

    SciTech Connect

    H. W. Clark, Jr.

    2002-10-01

    Telemetry has been added to National Nuclear Security Administration's (NNSA's) Aerial Measuring System (AMS) Incident Response aircraft to accelerate availability of aerial radiological mapping data. Rapid aerial radiological mapping is promptly performed by AMS Incident Response aircraft in the event of a major radiological dispersal. The AMS airplane flies the entire potentially affected area, plus a generous margin, to provide a quick look at the extent and severity of the event. The primary result of the AMS Incident Response over flight is a map of estimated exposure rate on the ground along the flight path. Formerly, it was necessary to wait for the airplane to land before the map could be seen. Now, while the flight is still in progress, data are relayed via satellite directly from the aircraft to an operations center, where they are displayed and disseminated. This permits more timely utilization of results by decision makers and redirection of the mission to optimize its value. The current telemetry capability can cover all of North America. Extension to a global capability is under consideration.

  10. Cadastral Audit and Assessments Using Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Cunningham, K.; Walker, G.; Stahlke, E.; Wilson, R.

    2011-09-01

    Ground surveys and remote sensing are integral to establishing fair and equitable property valuations necessary for real property taxation. The International Association of Assessing Officers (IAAO) has embraced aerial and street-view imaging as part of its standards related to property tax assessments and audits. New technologies, including unmanned aerial systems (UAS) paired with imaging sensors, will become more common as local governments work to ensure their cadastre and tax rolls are both accurate and complete. Trends in mapping technology have seen an evolution in platforms from large, expensive manned aircraft to very small, inexpensive UAS. Traditional methods of photogrammetry have also given way to new equipment and sensors: digital cameras, infrared imagers, light detection and ranging (LiDAR) laser scanners, and now synthetic aperture radar (SAR). At the University of Alaska Fairbanks (UAF), we work extensively with unmanned aerial systems equipped with each of these newer sensors. UAF has significant experience flying unmanned systems in the US National Airspace, having begun in 1969 with scientific rockets and expanded to unmanned aircraft in 2003. Ongoing field experience allows UAF to partner effectively with outside organizations to test and develop leading-edge research in UAS and remote sensing. This presentation will discuss our research related to various sensors and payloads for mapping. We will also share our experience with UAS and optical systems for creating some of the first cadastral surveys in rural Alaska.

  11. Ground-based radiometric calibration of the Landsat 8 Operational Land Imager (OLI) using in situ techniques

    NASA Astrophysics Data System (ADS)

    Czapla-Myers, J.

    2013-12-01

    Landsat 8 was successfully launched from Vandenberg Air Force Base in California on 11 February 2013, and was placed into the orbit previously occupied by Landsat 5. Landsat 8 is the latest platform in the 40-year history of the Landsat series of satellites, and it contains two instruments that operate in the solar-reflective and the thermal infrared regimes. The Operational Land Imager (OLI) is a pushbroom sensor that contains eight multispectral bands ranging from 400-2300 nm, and one panchromatic band. The spatial resolution of the multispectral bands is 30 m, which is similar to previous Landsat sensors, and the panchromatic band has a 15-m spatial resolution, which is also similar to previous Landsat sensors. The 12-bit radiometric resolution of OLI improves upon the 8-bit resolution of the Enhanced Thematic Mapper Plus (ETM+) onboard Landsat 7. An important requirement for the Landsat program is the long-term radiometric continuity of its sensors. Ground-based vicarious techniques have been used for over 20 years to determine the absolute radiometric calibration of sensors that encompass a wide variety of spectral and spatial characteristics. This work presents the early radiometric calibration results of Landsat 8 OLI that were obtained using the traditional reflectance-based approach. University of Arizona personnel used five sites in Arizona, California, and Nevada to collect ground-based data. In addition, a unique set of in situ data were collected in March 2013, when Landsat 7 and Landsat 8 were observing the same site within minutes of each other. The tandem overfly schedule occurred while Landsat 8 was shifting to the WRS-2 orbital grid, and lasted only a few days. The ground-based data also include results obtained using the University of Arizona's Radiometric Calibration Test Site (RadCaTS), which is an automated suite of instruments located at Railroad Valley, Nevada. The results presented in this work include a comparison to the L1T at

  12. Formulation of radiometric feasibility measures for feature selection and planning in visual servoing.

    PubMed

    Janabi-Sharifi, Farrokh; Ficocelli, M

    2004-04-01

    Feature selection and planning are integral parts of visual servoing systems. Because many irrelevant and nonreliable image features usually exist, higher accuracy and robustness can be expected by selecting and planning good features. Assumption of perfect radiometric conditions is common in visual servoing. The following paper discusses the issue of radiometric constraints for feature selection in the context of visual servoing. Here, radiometric constraints are presented and measures are formulated to select the optimal features (in a radiometric sense) from a set of candidate features. Simulation and experimental results verify the effectiveness of the proposed measures.

  13. BOREAS TE-18, 30-m, Radiometrically Rectified Landsat TM Imagery

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Knapp, David

    2000-01-01

    The BOREAS TE-18 team used a radiometric rectification process to produce standardized DN values for a series of Landsat TM images of the BOREAS SSA and NSA in order to compare images that were collected under different atmospheric conditions. The images for each study area were referenced to an image that had very clear atmospheric qualities. The reference image for the SSA was collected on 02-Sep-1994, while the reference image for the NSA was collected on 21-Jun-1995. the 23 rectified images cover the period of 07-Jul-1985 to 18 Sep-1994 in the SSA and from 22-Jun-1984 to 09-Jun-1994 in the NSA. Each of the reference scenes had coincident atmospheric optical thickness measurements made by RSS-11. The radiometric rectification process is described in more detail by Hall et al. (199 1). The original Landsat TM data were received from CCRS for use in the BOREAS project. The data are stored in binary image-format files. Due to the nature of the radiometric rectification process and copyright issues, these full-resolution images may not be publicly distributed. However, a spatially degraded 60-m resolution version of the images is available on the BOREAS CD-ROM series. See Sections 15 and 16 for information about how to possibly acquire the full resolution data. Information about the full-resolution images is provided in an inventory listing on the CD-ROMs. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Activity Archive Center (DAAC).

  14. Radiometric calibration of the Landsat MSS sensor series

    USGS Publications Warehouse

    Helder, Dennis L.; Karki, Sadhana; Bhatt, Rajendra; Micijevik, Esad; Aaron, David; Jasinski, Benjamin

    2012-01-01

    Multispectral remote sensing of the Earth using Landsat sensors was ushered on July 23, 1972, with the launch of Landsat-1. Following that success, four more Landsat satellites were launched, and each of these carried the Multispectral Scanner System (MSS). These five sensors provided the only consistent multispectral space-based imagery of the Earth's surface from 1972 to 1982. This work focuses on developing both a consistent and absolute radiometric calibration of this sensor system. Cross-calibration of the MSS was performed through the use of pseudoinvariant calibration sites (PICSs). Since these sites have been shown to be stable for long periods of time, changes in MSS observations of these sites were attributed to changes in the sensors themselves. In addition, simultaneous data collections were available for some MSS sensor pairs, and these were also used for cross-calibration. Results indicated substantial differences existed between instruments, up to 16%, and these were reduced to 5% or less across all MSS sensors and bands. Lastly, this paper takes the calibration through the final step and places the MSS sensors on an absolute radiometric scale. The methodology used to achieve this was based on simultaneous data collections by the Landsat-5 MSS and Thematic Mapper (TM) instruments. Through analysis of image data from a PICS location and through compensating for the spectral differences between the two instruments, the Landsat-5 MSS sensor was placed on an absolute radiometric scale based on the Landsat-5 TM sensor. Uncertainties associated with this calibration are considered to be less than 5%.

  15. Site characterization for calibration of radiometric sensors using vicarious method

    NASA Astrophysics Data System (ADS)

    Parihar, Shailesh; Rathore, L. S.; Mohapatra, M.; Sharma, A. K.; Mitra, A. K.; Bhatla, R.; Singh, R. S.; Desai, Yogdeep; Srivastava, Shailendra S.

    2016-05-01

    Radiometric performances of earth observation satellite/sensors vary from ground pre-launch calibration campaign to post launch period extended to lifetime of the satellite due to launching vibrations. Therefore calibration is carried out worldwide through various methods throughout satellite lifetime. In India Indian Space Research Organization (ISRO) calibrates the sensor of Resourcesat-2 satellite by vicarious method. One of these vicarious calibration methods is the reflectance-based approach that is applied in this study for radiometric calibration of sensors on-board Resouresat-2 satellite. The results of ground-based measurement of atmospheric conditions and surface reflectance are made at Bap, Rajasthan Calibration/Validation (Cal/Val) site. Cal/Val observations at site were carried out with hyper-spectral Spectroradiometer covering spectral range of 350nm- 2500nm for radiometric characterization of the site. The Sunphotometer/Ozonometer for measuring the atmospheric parameters has also been used. The calibrated radiance is converted to absolute at-sensor spectral reflectance and Top-Of-Atmosphere (TOA) radiance. TOA radiance was computed using radiative transfer model `Second simulation of the satellite signal in the solar spectrum' (6S), which can accurately simulate the problems introduced by the presence of the atmosphere along the path from Sun to target (surface) to Sensor. The methodology for band averaged reflectance retrieval and spectral reflectance fitting process are described. Then the spectral reflectance and atmospheric parameters are put into 6S code to predict TOA radiance which compare with Resourcesat-2 radiance. Spectral signature and its reflectance ratio indicate the uniformity of the site. Thus the study proves that the selected site is suitable for vicarious calibration of sensor of Resourcesat-2. Further the study demonstrates the procedure for similar exercise for site selection for Cal/Val analysis of other satellite over India

  16. Evaluation of S190A radiometric exposure test data

    NASA Technical Reports Server (NTRS)

    Lockwood, H. E.; Goodding, R. A.

    1974-01-01

    The S190A preflight radiometric exposure test data generated as part of preflight and system test of KM-002 Sequence 29 on flight camera S/N 002 was analyzed. The analysis was to determine camera system transmission using available data which included: (1) films exposed to a calibrated light source subject; (2) filter transmission data; (3) calibrated light source data; (4) density vs. log10 exposure curves for the films; and (5) spectral sensitometric data for the films. The procedure used is outlined, and includes the data and a transmission matrix as a function of field position for nine measured points on each station-film-filter-aperture-shutter speed combination.

  17. In-flight absolute radiometric calibration of the thematic mapper

    NASA Technical Reports Server (NTRS)

    Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, R. D.; Savage, R. K.

    1983-01-01

    The TM multispectral scanner system was calibrated in an absolute manner before launch. To determine the temporal changes of the absolute radiometric calibration of the entire system, spectroradiometric measurements of the ground and the atmosphere were made simultaneously with TM collections over White Sands, New Mexico. By entering the measured values in an atmospheric radiative transfer program, the radiance levels of the in four of the spectral bands of the TM were determined. Tables show values for the reflectance of snow at White Sands measured by a modular 8 channel radiometer, and values for exoatmospheric irradiance within the TM passbands, calculated for the Earth-Sun distance using a solar radiometer.

  18. Spectrally and Radiometrically Stable, Wideband, Onboard Calibration Source

    NASA Technical Reports Server (NTRS)

    Coles, James B.; Richardson, Brandon S.; Eastwood, Michael L.; Sarture, Charles M.; Quetin, Gregory R.; Porter, Michael D.; Green, Robert O.; Nolte, Scott H.; Hernandez, Marco A.; Knoll, Linley A.

    2013-01-01

    The Onboard Calibration (OBC) source incorporates a medical/scientific-grade halogen source with a precisely designed fiber coupling system, and a fiber-based intensity-monitoring feedback loop that results in radiometric and spectral stabilities to within less than 0.3 percent over a 15-hour period. The airborne imaging spectrometer systems developed at the Jet Propulsion Laboratory incorporate OBC sources to provide auxiliary in-use system calibration data. The use of the OBC source will provide a significant increase in the quantitative accuracy, reliability, and resulting utility of the spectral data collected from current and future imaging spectrometer instruments.

  19. Calibration method for radiometric and wavelength calibration of a spectrometer

    NASA Astrophysics Data System (ADS)

    Granger, Edward M.

    1998-12-01

    A new calibration target or Certified Reference Material (CRM) has been designed that uses violet, orange, green and cyan dyes ont cotton paper. This paper type was chosen because it has a relatively flat spectral response from 400 nm to 700 nm and good keeping properties. These specific dyes were chosen because the difference signal between the orange, cyan, green and purple dyes have certain characteristics that then a low the calibration of an instrument. The ratio between the difference readings is a direct function of the center wavelength of a given spectral band. Therefore, the radiometric and spectral calibration can be determined simultaneously from the physical properties of the reference materials.

  20. Radiometric correction and equalization of satellite digital data

    NASA Technical Reports Server (NTRS)

    Algazi, V. R.; Ford, G. E.; Kazakoff, J. A.

    1979-01-01

    Satellite digital data from Landsat and NOAA satellites is often marred by striping or streaking errors due to variations in the response of the radiometric sensors. In this paper, we discuss the equalization of the digital data as a preprocessing step, prior to image enhancement or automatic classification. The methods described make use of statistics of the data itself to generate nonlinear or linear memory-less equalization algorithms. These algorithms, by contrast to multidimensional filtering, do not result in a loss of spatial resolution. Examples of applications to Landsat and NOAA-3 thermal infrared data are given and illustrated.

  1. A radiometric interpretive legend for Landsat digital thematic maps

    USGS Publications Warehouse

    Robinove, Charles J.

    1977-01-01

    A legend is suggested for use with computer-generated thematic maps made from Landsat digital data that designates some of the radiometric characteristics of each thematic map unit as well as the described terrain attributes of each map unit. The relationship between spectral band and radiance for each map unit is shown by a two-dimensional polygon with the four Landsat multispectral scanner bands plotted on the ordinate and radiance levels on the abscissa. The resulting shape is colored to correspond with the map unit color, thus facilitating the recognition and understanding of the computer-generated map units.

  2. Radiometric calibration of Landsat Thematic Mapper multispectral images

    USGS Publications Warehouse

    Chavez, P.S.

    1989-01-01

    A main problem encountered in radiometric calibration of satellite image data is correcting for atmospheric effects. Without this correction, an image digital number (DN) cannot be converted to a surface reflectance value. In this paper the accuracy of a calibration procedure, which includes a correction for atmospheric scattering, is tested. Two simple methods, a stand-alone and an in situ sky radiance measurement technique, were used to derive the HAZE DN values for each of the six reflectance Thematic Mapper (TM) bands. The DNs of two Landsat TM images of Phoenix, Arizona were converted to surface reflectances. -from Author

  3. Earth Observing-1 Advanced Land Imager: Radiometric Response Calibration

    NASA Technical Reports Server (NTRS)

    Mendenhall, J. A.; Lencioni, D. E.; Evans, J. B.

    2000-01-01

    The Advanced Land Imager (ALI) is one of three instruments to be flown on the first Earth Observing mission (EO-1) under NASA's New Millennium Program (NMP). ALI contains a number of innovative features, including a wide field of view optical design, compact multispectral focal plane arrays, non-cryogenic HgCdTe detectors for the short wave infrared bands, and silicon carbide optics. This document outlines the techniques adopted during ground calibration of the radiometric response of the Advanced Land Imager. Results from system level measurements of the instrument response, signal-to-noise ratio, saturation radiance, and dynamic range for all detectors of every spectral band are also presented.

  4. A review of some radiometric calibration problems and methods

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1984-01-01

    The in-flight radiometric calibration instrumentation and procedures of the Landsat Thematic Mapper and the high-resolution visible-range instruments of SPOT are illustrated with drawings and diagrams, characterized, and compared. Problems encountered in the laboratory calibration process, minimizing the temporal instability of the systems, identifying anomalies in the electronics in flight, and rechecking the calibration are examined, and it is pointed out that the stability of the calibration systems is less than that of the instruments themselves. The use of carefully measured ground-site data and atmospheric parameters in combination with radiative-transfer models for periodic calibration is recommended.

  5. A Spherical Aerial Terrestrial Robot

    NASA Astrophysics Data System (ADS)

    Dudley, Christopher J.

    This thesis focuses on the design of a novel, ultra-lightweight spherical aerial terrestrial robot (ATR). The ATR has the ability to fly through the air or roll on the ground, for applications that include search and rescue, mapping, surveillance, environmental sensing, and entertainment. The design centers around a micro-quadcopter encased in a lightweight spherical exoskeleton that can rotate about the quadcopter. The spherical exoskeleton offers agile ground locomotion while maintaining characteristics of a basic aerial robot in flying mode. A model of the system dynamics for both modes of locomotion is presented and utilized in simulations to generate potential trajectories for aerial and terrestrial locomotion. Details of the quadcopter and exoskeleton design and fabrication are discussed, including the robot's turning characteristic over ground and the spring-steel exoskeleton with carbon fiber axle. The capabilities of the ATR are experimentally tested and are in good agreement with model-simulated performance. An energy analysis is presented to validate the overall efficiency of the robot in both modes of locomotion. Experimentally-supported estimates show that the ATR can roll along the ground for over 12 minutes and cover the distance of 1.7 km, or it can fly for 4.82 minutes and travel 469 m, on a single 350 mAh battery. Compared to a traditional flying-only robot, the ATR traveling over the same distance in rolling mode is 2.63-times more efficient, and in flying mode the system is only 39 percent less efficient. Experimental results also demonstrate the ATR's transition from rolling to flying mode.

  6. Archive of post-Hurricane Charley coastal oblique aerial photographs collected during U.S. Geological Survey field activity 04CCH01 from Marco Island to Fort DeSoto, Florida, August 15, 2004

    USGS Publications Warehouse

    Subino, Janice A.; Morgan, Karen L.M.; Krohn, M. Dennis; Miller, Gregory K.; Dadisman, Shawn V.; Forde, Arnell S.

    2012-01-01

    To view the survey maps and navigation files, and for more information about these items, see the Navigation page. Figure 1 displays the acquisition geometry. The tables provide detailed information about the assigned location, name, data, and time the photograph was taken along with links to the photo and corresponding 5-min contact sheet. Refer to table 1 and table 2 for details of the northern and southern county photographs, respectively.

  7. Use of aerial photographs for assessment of soil organic carbon and delineation of agricultural management zones.

    NASA Astrophysics Data System (ADS)

    Bartholomeus, H.; Kooistra, L.

    2012-04-01

    For quantitative estimation of soil properties by means of remote sensing, often hyperspectral data are used. But these data are scarce and expensive, which prohibits wider implementation of the developed techniques in agricultural management. For precision agriculture, observations at a high spatial resolution are required. Colour aerial photographs at this scale are widely available, and can be acquired at no of very low costs. Therefore, we investigated whether publically available aerial photographs can be used to a) automatically delineate management zones and b) estimate levels of organic carbon spatially. We selected three study areas within the Netherlands that cover a large variance in soil type (peat, sand, and clay). For the fields of interest, RGB aerial photographs with a spatial resolution of 50 cm were extracted from a publically available data provider. Further pre-processing exists of geo-referencing only. Since the images originate from different sources and are potentially acquired under unknown illumination conditions, the exact radiometric properties of the data are unknown. Therefore, we used spectral indices to emphasize the differences in reflectance and normalize for differences in radiometry. To delineate management zones we used image segmentation techniques, using the derived indices as input. Comparison with management zone maps as used by the farmers shows that there is good correspondence. Regression analysis between a number of soil properties and the derived indices shows that organic carbon is the major explanatory variable for differences in index values within the fields. However, relations do not hold for large regions, indicating that local models will have to be used, which is a problem that is also still relevant for hyperspectral remote sensing data. With this research, we show that low-cost aerial photographs can be a valuable tool for quantitative analysis of organic carbon and automatic delineation of management zones

  8. Radiation Exchanges at the Atmosphere-Vegetation Canopy Boundary Layer Based on Unmanned Aerial Vehicle Observations

    NASA Astrophysics Data System (ADS)

    Dim, J. R.; Kajiwara, K.; Honda, Y.

    2007-12-01

    Radiation exchanges at the vegetation boundary layer, regulating the amount of energy received by the vegetation canopy are examined through remote sensing observations carried out by an unmanned helicopter, flying according to pre-programmed plans, above a forested area. Information obtained from the laser scanning system, radiometric measurements and aerial photographs are combined to ambient meteorological parameters in order to examine interactions between leaf characteristics, elements of vegetation structure, and the surrounding atmosphere. A vegetation mass transfer model showing variable dependencies of leaf water content, leaf temperature, leaf-air vapor-pressure differences and solar radiation intensity as well as canopy structure is used to discuss transpiration mechanisms of the studied forest.

  9. Untethered microscale flight: mechanisms and platforms for future aerial MEMS microrobots

    NASA Astrophysics Data System (ADS)

    Hussain, Syed A.; Ward, Spencer; Mahdavipour, Omid; Majumdar, Ratul; Paprotny, Igor

    2015-06-01

    This paper describes initial work on untethered microscale flying structures as a platform for new class of aerial MEMS microrobots. We present and analyze both biomimetic structures based partially on wing designs of smallest flying insects on Earth, as well as stress-engineered structures powered by radiometric (thermal) forces. The latter devices, also called MEMS Microfliers are 300 μm × 300 μm × 1.5 μm in size, and are fabricated out of polycrystalline silicon. A convex chassis, formed through a novel in-situ masked post-release stress-engineering process, ensures their static inflight stability. High-speed optical micrography was used to image these MEMS microfliers in mid-flight, analyzing their flight profile.

  10. Astronomical Methods in Aerial Navigation

    NASA Technical Reports Server (NTRS)

    Beij, K Hilding

    1925-01-01

    The astronomical method of determining position is universally used in marine navigation and may also be of service in aerial navigation. The practical application of the method, however, must be modified and adapted to conform to the requirements of aviation. Much of this work of adaptation has already been accomplished, but being scattered through various technical journals in a number of languages, is not readily available. This report is for the purpose of collecting under one cover such previous work as appears to be of value to the aerial navigator, comparing instruments and methods, indicating the best practice, and suggesting future developments. The various methods of determining position and their application and value are outlined, and a brief resume of the theory of the astronomical method is given. Observation instruments are described in detail. A complete discussion of the reduction of observations follows, including a rapid method of finding position from the altitudes of two stars. Maps and map cases are briefly considered. A bibliography of the subject is appended.

  11. a Comparison of LIDAR Reflectance and Radiometrically Calibrated Hyperspectral Imagery

    NASA Astrophysics Data System (ADS)

    Roncat, A.; Briese, C.; Pfeifer, N.

    2016-06-01

    In order to retrieve results comparable under different flight parameters and among different flight campaigns, passive remote sensing data such as hyperspectral imagery need to undergo a radiometric calibration. While this calibration, aiming at the derivation of physically meaningful surface attributes such as a reflectance value, is quite cumbersome for passively sensed data and relies on a number of external parameters, the situation is by far less complicated for active remote sensing techniques such as lidar. This fact motivates the investigation of the suitability of full-waveform lidar as a "single-wavelength reflectometer" to support radiometric calibration of hyperspectral imagery. In this paper, this suitability was investigated by means of an airborne hyperspectral imagery campaign and an airborne lidar campaign recorded over the same area. Criteria are given to assess diffuse reflectance behaviour; the distribution of reflectance derived by the two techniques were found comparable in four test areas where these criteria were met. This is a promising result especially in the context of current developments of multi-spectral lidar systems.

  12. In-flight radiometric calibration of AVIRIS in 1994

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Conel, James E.; Helmlinger, Mark; Vandenbosch, Jeannette; Hajek, Pavel

    1995-01-01

    The AVIRIS sensor must be calibrated at the time it measures spectra from the ER-2 airborne platform in order to achieve research and application objectives that are both quantitative and physically based. However, the operational environment inside the Q-bay of the ER-2 at 20 km altitude differs from that in the AVIRIS laboratory with respect to temperature, pressure, vibration, and high-frequency electromagnetic fields. Experiments at surface calibration targets are used in each flight season to confirm the accuracy of AVIRIS in-flight radiometric calibrations. For these experiments, the MODTRAN radiative transfer code is constrained by using in situ measurements to independently predict the upwelling spectral radiance arriving at AVIRIS for a specific calibration target. AVIRIS calibration is validated in flight by comparing the MODTRAN-predicted radiance to the laboratory-calibrated radiance measured by the AVIRIS sensor for the same time over the calibration target. We present radiometric calibration results for the AVIRIS in-flight calibration experiment held at the beginning of the 1994 flight season.

  13. Automated gamma spectrometry and data analysis on radiometric neutron dosimeters

    SciTech Connect

    Matsumoto, W.Y.

    1983-01-01

    An automated gamma-ray spectrometry system was designed and implemented by the Westinghouse Hanford Company at the Hanford Engineering Development Laboratory (HEDL) to analyze radiometric neutron dosimeters. Unattended, automatic, 24 hour/day, 7 day/week operation with online data analysis and mainframe-computer compatible magnetic tape output are system features. The system was used to analyze most of the 4000-plus radiometric monitors (RM's) from extensive reactor characterization tests during startup and initial operation of th Fast Flux Test Facility (FFTF). The FFTF, operated by HEDL for the Department of Energy, incorporates a 400 MW(th) sodium-cooled fast reactor. Aumomated system hardware consists of a high purity germanium detector, a computerized multichannel analyzer data acquisition system (Nuclear Data, Inc. Model 6620) with two dual 2.5 Mbyte magnetic disk drives plus two 10.5 inch reel magnetic tape units for mass storage of programs/data and an automated Sample Changer-Positioner (ASC-P) run with a programmable controller. The ASC-P has a 200 sample capacity and 12 calibrated counting (analysis) positions ranging from 6 inches (15 cm) to more than 20 feet (6.1 m) from the detector. The system software was programmed in Fortran at HEDL, except for the Nuclear Data, Inc. Peak Search and Analysis Program and Disk Operating System (MIDAS+).

  14. Radiometric measurement of differential metabolism of fatty acid by mycobacteria

    SciTech Connect

    Camargo, E.E.; Kertcher, J.A.; Larson, S.M.; Tepper, B.S.; Wagner, H.N. Jr.

    1982-06-01

    An assay system has been developed based on automated radiometric quantification of /sup 14/CO2 produced through oxidation of (1-/sup 14/C) fatty acids by mycobacteria. Two stains of M. tuberculosis (H37Rv and Erdman) and one of M. bovis (BCG) in 7H9 medium (ADC) with 1.0 microCi of one of the fatty acids (butyric, hexanoic, octanoic, decanoic, lauric, myristic, palmitic, stearic, oleic, linoleic and linolenic) were studied. Results previously published on M. lepraemurium (Hawaiian) were also included for comparison. Both strains of M. tuberculosis had maximum /sup 14/CO2 production from hexanoic acid. Oxidation of butyric and avid oxidation of lauric acids were also found with the H37Rv strain but not with Erdman. In contrast, /sup 14/CO2 production by M. bovis was greatest from lauric and somewhat less from decanoic acid. M. lepraemurium showed increasing oxidation rates from myristic, decanoic and lauric acids. Assimilation studies of M. tuberculosis H37Rv confirmed that most of the oxidized substrates were converted into by-products with no change in those from which no oxidation was found. These data suggest that the radiometric measurement of differential fatty acid metabolism may provide a basis of strain identification of the genus Mycobacterium.

  15. Radiometric Characterization of Hyperspectral Imagers using Multispectral Sensors

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel; Kurt, Thome; Leisso, Nathan; Anderson, Nikolaus; Czapla-Myers, Jeff

    2009-01-01

    The Remote Sensing Group (RSG) at the University of Arizona has a long history of using ground-based test sites for the calibration of airborne and satellite based sensors. Often, ground-truth measurements at these test sites are not always successful due to weather and funding availability. Therefore, RSG has also automated ground instrument approaches and cross-calibration methods to verify the radiometric calibration of a sensor. The goal in the cross-calibration method is to transfer the calibration of a well-known sensor to that of a different sensor, This work studies the feasibility of determining the radiometric calibration of a hyperspectral imager using multispectral a imagery. The work relies on the Moderate Resolution Imaging Spectroradiometer (M0DIS) as a reference for the hyperspectral sensor Hyperion. Test sites used for comparisons are Railroad Valley in Nevada and a portion of the Libyan Desert in North Africa. Hyperion bands are compared to MODIS by band averaging Hyperion's high spectral resolution data with the relative spectral response of M0DlS. The results compare cross-calibration scenarios that differ in image acquisition coincidence, test site used for the calibration, and reference sensor. Cross-calibration results are presented that show agreement between the use of coincident and non-coincident image pairs within 2% in most brands as well as similar agreement between results that employ the different MODIS sensors as a reference.

  16. Reduction of radiometric miscalibration--applications to pushbroom sensors.

    PubMed

    Rogass, Christian; Spengler, Daniel; Bochow, Mathias; Segl, Karl; Lausch, Angela; Doktor, Daniel; Roessner, Sigrid; Behling, Robert; Wetzel, Hans-Ulrich; Kaufmann, Hermann

    2011-01-01

    The analysis of hyperspectral images is an important task in Remote Sensing. Foregoing radiometric calibration results in the assignment of incident electromagnetic radiation to digital numbers and reduces the striping caused by slightly different responses of the pixel detectors. However, due to uncertainties in the calibration some striping remains. This publication presents a new reduction framework that efficiently reduces linear and nonlinear miscalibrations by an image-driven, radiometric recalibration and rescaling. The proposed framework-Reduction Of Miscalibration Effects (ROME)-considering spectral and spatial probability distributions, is constrained by specific minimisation and maximisation principles and incorporates image processing techniques such as Minkowski metrics and convolution. To objectively evaluate the performance of the new approach, the technique was applied to a variety of commonly used image examples and to one simulated and miscalibrated EnMAP (Environmental Mapping and Analysis Program) scene. Other examples consist of miscalibrated AISA/Eagle VNIR (Visible and Near Infrared) and Hawk SWIR (Short Wave Infrared) scenes of rural areas of the region Fichtwald in Germany and Hyperion scenes of the Jalal-Abad district in Southern Kyrgyzstan. Recovery rates of approximately 97% for linear and approximately 94% for nonlinear miscalibrated data were achieved, clearly demonstrating the benefits of the new approach and its potential for broad applicability to miscalibrated pushbroom sensor data. PMID:22163960

  17. Principal Component Noise Filtering for NAST-I Radiometric Calibration

    NASA Technical Reports Server (NTRS)

    Tian, Jialin; Smith, William L., Sr.

    2011-01-01

    The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed- Interferometer (NAST-I) instrument is a high-resolution scanning interferometer that measures emitted thermal radiation between 3.3 and 18 microns. The NAST-I radiometric calibration is achieved using internal blackbody calibration references at ambient and hot temperatures. In this paper, we introduce a refined calibration technique that utilizes a principal component (PC) noise filter to compensate for instrument distortions and artifacts, therefore, further improve the absolute radiometric calibration accuracy. To test the procedure and estimate the PC filter noise performance, we form dependent and independent test samples using odd and even sets of blackbody spectra. To determine the optimal number of eigenvectors, the PC filter algorithm is applied to both dependent and independent blackbody spectra with a varying number of eigenvectors. The optimal number of PCs is selected so that the total root-mean-square (RMS) error is minimized. To estimate the filter noise performance, we examine four different scenarios: apply PC filtering to both dependent and independent datasets, apply PC filtering to dependent calibration data only, apply PC filtering to independent data only, and no PC filters. The independent blackbody radiances are predicted for each case and comparisons are made. The results show significant reduction in noise in the final calibrated radiances with the implementation of the PC filtering algorithm.

  18. Reduction of radiometric miscalibration--applications to pushbroom sensors.

    PubMed

    Rogass, Christian; Spengler, Daniel; Bochow, Mathias; Segl, Karl; Lausch, Angela; Doktor, Daniel; Roessner, Sigrid; Behling, Robert; Wetzel, Hans-Ulrich; Kaufmann, Hermann

    2011-01-01

    The analysis of hyperspectral images is an important task in Remote Sensing. Foregoing radiometric calibration results in the assignment of incident electromagnetic radiation to digital numbers and reduces the striping caused by slightly different responses of the pixel detectors. However, due to uncertainties in the calibration some striping remains. This publication presents a new reduction framework that efficiently reduces linear and nonlinear miscalibrations by an image-driven, radiometric recalibration and rescaling. The proposed framework-Reduction Of Miscalibration Effects (ROME)-considering spectral and spatial probability distributions, is constrained by specific minimisation and maximisation principles and incorporates image processing techniques such as Minkowski metrics and convolution. To objectively evaluate the performance of the new approach, the technique was applied to a variety of commonly used image examples and to one simulated and miscalibrated EnMAP (Environmental Mapping and Analysis Program) scene. Other examples consist of miscalibrated AISA/Eagle VNIR (Visible and Near Infrared) and Hawk SWIR (Short Wave Infrared) scenes of rural areas of the region Fichtwald in Germany and Hyperion scenes of the Jalal-Abad district in Southern Kyrgyzstan. Recovery rates of approximately 97% for linear and approximately 94% for nonlinear miscalibrated data were achieved, clearly demonstrating the benefits of the new approach and its potential for broad applicability to miscalibrated pushbroom sensor data.

  19. Branching Ratios for The Radiometric Calibration of EUNIS-2012

    NASA Technical Reports Server (NTRS)

    Daw, Adrian N.; Bhatia, A. K.; Rabin, Douglas M.

    2012-01-01

    The Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS) sounding rocket instrument is a two-channel imaging spectrograph that observes the solar corona and transition region with high spectral resolution and a rapid cadence made possible by unprecedented sensitivity. The upcoming flight will incorporate a new wavelength channel covering the range 524-630 Angstroms, the previously-flown 300-370 Angstroms channel, and the first flight demonstration of cooled active pixel sensor (APS) arrays. The new 524-630 Angstrom channel incorporates a Toroidal Varied Line Space (TVLS) grating coated with B4C/Ir, providing broad spectral coverage and a wide temperature range of 0.025 to 10 MK. Absolute radiometric calibration of the two channels is being performed using a hollow cathode discharge lamp and NIST-calibrated AXUV-100G photodiode. Laboratory observations of He I 584 Angstroms and He II 304 Angstroms provide absolute radiometric calibrations of the two channels at those two respective wavelengths by using the AXUV photodiode as a transfer standard. The spectral responsivity is being determined by observing line pairs with a common upper state in the spectra of Ne I-III and Ar II-III. Calculations of A-values for the observed branching ratios are in progress.

  20. Investigation of radiometric properties of the LANDSAT-4 multispectral scanner

    NASA Technical Reports Server (NTRS)

    Malila, W. A. (Principal Investigator); Rice, D. P.

    1983-01-01

    The radiometric data quality of the LANDSAT 4 multispectral scanner (MSS) was examined using several LANDSAT 4 frames. It was found that LANDSAT 4 MSS produces high-quality data of the caliber experienced with previous LANDSATS. For example, the detector equalization procedure worked well, leaving a residual banding effect of about 0.3 digital counts RMS, close to the theoretical minimum value of quantization error. Nevertheless, artifacts of the data were found, two of which were not experienced in previous MSS data. A low-level coherent noise effect was observed in all bands, with a magnitude of about 0.5 digital counts and a frequency of approximately 28 KHz (representing a wavelength of about 3.6 pixels); a substantial increase in processing complexity would be required to reduce this artifact in the data. Also, a substantial scan-length variation (of up to six pixels) was noted in MSS data when the TM sensor was operating; the LANDSAT 4 correction algorithms being applied routinely by the EROS Data Center to produce a p-type data should remove most of this variation. Between-satellite calibrations were examined in paired LANDSAT 3 and LANDSAT 4 MSS data sets, which were closely matched in acquisition time and place. Radiometric comparisons showed that all bands were highly linear in digital counts, and a well-determined linear transformation between the MSS's was established.

  1. A Preliminary Analysis of LANDSAT-4 Thematic Mapper Radiometric Performance

    NASA Technical Reports Server (NTRS)

    Justice, C.; Fusco, L.; Mehl, W.

    1984-01-01

    Analysis was performed to characterize the radiometry of three Thematic Mapper (TM) digital products of a scene of Arkansas. The three digital products examined were the NASA raw (BT) product, the radiometrically corrected (AT) product and the radiometrically and geometrically corrected (PT) product. The frequency distribution of the digital data; the statistical correlation between the bands; and the variability between the detectors within a band were examined on a series of image subsets from the full scene. The results are presented from one 1024 x 1024 pixel subset of Realfoot Lake, Tennessee which displayed a representative range of ground conditions and cover types occurring within the full frame image. Bands 1, 2 and 5 of the sample area are presented. The subsets were extracted from the three digital data products to cover the same geographic area. This analysis provides the first step towards a full appraisal of the TM radiometry being performed as part of the ESA/CEC contribution to the NASA/LIDQA program.

  2. Overview of atmospheric correction and radiometric calibration efforts during FIFE

    SciTech Connect

    Halthore, R.N. ); Markham, B.L. )

    1992-11-30

    This work is part of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), an international land-surface-atmosphere experiment aimed at improving the way climate models represent energy, water, heat, and carbon exchanges, and improving the utilization of satellite based remote sensing to monitor such parameters. This paper reports on the work of the atmospheric corrections and radiometric calibration subgroup of FIFE. The responsibility of this group included calibration of remote sensing instrumentation used on surface platforms and aircraft, establishing recommendations for calibrating satellite observations, measurement of relevant atmospheric properties, development of algorithms which will perform the atmospheric corrections for the remotely sensed data, and finally evaluation of surface properties, including reflectances and temperatures. Good progress was made for cloudless and low-haze atmospheric conditions, but no effort was directed toward more complicated conditions, since little FIFE data was collected in these conditions. Studies of aircraft mounted instrumentation revealed that some of this instrumentation was not adequately designed for radiometric calibration, and thus the errors are very large for some of this data.

  3. Blood culture cross contamination associated with a radiometric analyzer

    SciTech Connect

    Griffin, M.R.; Miller, A.D.; Davis, A.C.

    1982-04-01

    During a 9-day period in August 1980 in a New Jersey hospital, three pairs of consecutively numbered blood cultures from different patients were identified as positive for the same organism, for each pair, both cultures were positive in the same atmosphere, both organisms had the same sensitivities, and the second of each pair grew at least 2 days after the first and was the only positive blood culture obtained from the patient. When the hospital laboratory discontinued use of its radiometric culture analyzer for 15 days, no more consecutive pairs of positive cultures occurred. Subsequent use of the machine for 9 days with a new power unit but the original circuit boards resulted in one more similar consecutive pair (Staphylococcus epidermidis). After replacement of the entire power unit, there were no further such pairs. Examination of the machine by the manufacturer revealed a defective circuit board which resulted in inadequate needle sterilization. Laboratories which utilize radiometric analyzers should be aware of the potential for cross contamination. Recognition of such events requires alert microbiologists and infection control practitioners and a record system in the bacteriology laboratory designed to identify such clusters.

  4. Radiometric infrared focal plane array imaging system for thermographic applications

    NASA Technical Reports Server (NTRS)

    Esposito, B. J.; Mccafferty, N.; Brown, R.; Tower, J. R.; Kosonocky, W. F.

    1992-01-01

    This document describes research performed under the Radiometric Infrared Focal Plane Array Imaging System for Thermographic Applications contract. This research investigated the feasibility of using platinum silicide (PtSi) Schottky-barrier infrared focal plane arrays (IR FPAs) for NASA Langley's specific radiometric thermal imaging requirements. The initial goal of this design was to develop a high spatial resolution radiometer with an NETD of 1 percent of the temperature reading over the range of 0 to 250 C. The proposed camera design developed during this study and described in this report provides: (1) high spatial resolution (full-TV resolution); (2) high thermal dynamic range (0 to 250 C); (3) the ability to image rapid, large thermal transients utilizing electronic exposure control (commandable dynamic range of 2,500,000:1 with exposure control latency of 33 ms); (4) high uniformity (0.5 percent nonuniformity after correction); and (5) high thermal resolution (0.1 C at 25 C background and 0.5 C at 250 C background).

  5. Empirical radiometric correction of optical remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Palubinskas, Gintautas; Mueller, Rupert M.; Reinartz, Peter H.

    2002-08-01

    We propose an empirical radiometric correction method for the effects, such as atmospheric effects and anisotropic reflection of the surface, in optical remote sensing data. These distortions are sensor viewing (scanning) angle dependent, thus they can be significant for data received from airborne sensors due to their wide field of view. The procedure is based solely on the digital image data and consists of several steps. First, the initial image region near nadir (minimal distortions) is clustered by an extended k-means algorithm, which automatically detects the clusters (surface types) in an image. Then, for each cluster an average line profile is calculated. These profiles (initially defined in a middle part of an image line) are extrapolated to the whole line of an image by a polynomial approximation. Finally, from these polynomial functions the linear regression over all clusters is build using the radiative transfer equation, which allows the radiometric correction for each viewing angle in an image relative to the reference angle, usually nadir. The procedure is iterative, that is the correction is first performed for a narrow part around the initial region. Then the procedure is initialized with this newly corrected image region and repeated until the whole image is corrected. The experiments for data acquired by airborne multispectral scanner DAEDALUS AADS 1268 ATM show the effectiveness of the proposed method especially for the mosaicking and classification applications.

  6. Radiometric calibration of Landsat Thematic Mapper Thermal Band

    NASA Technical Reports Server (NTRS)

    Wukelic, G. E.; Gibbons, D. E.; Martucci, L. M.; Foote, H. P.

    1989-01-01

    Radiometric calibration of satellite-acquired data is essential for quantitative scientific studies, as well as for a variety of image-processing applications. This paper describes a multiyear, on-orbit radiometric calibration of the Landsat Thematic Mapper (TM) Band 6 conducted at DOE's Pacific Northwest Laboratory. Numerous Landsat TM scenes acquired and analyzed included day and night coverages at several geographical locations over several seasons. Concurrent with Landsat overpasses, thermal field and local meteorological (surface and radiosonde) measurements were collected. At-satellite (uncorrected) radiances and temperatures for water and nonwater land cover were compared to ground truth (GT) measurements after making adjustments for atmospheric (using LOWTRAN), mixed-pixel, and emissivity effects. Results indicate that, for both water and nonwater features, TM Band 6 average corrected temperature determinations using local radiosonde data to adjust for atmospheric effects, and using appropriate emissivities, are within 1.0 C of GT temperature values. Temperatures of water pixels derived from uncorrected TM Band 6 data varied roughly between 1 and 3 C of ground truth values for water temperatures ranging between 4 and 24 C. Moreover, corrections using nonlocal and noncoincident radiosonde data resulted in errors as large as 12 C. Corrections using the U.S. Standard Atmosphere gave temperature values within 1 to 2 C of GT. The average uncertainty for field instruments was + or - 0.2 C; average uncertainty for Landsat TM corrected temperature determinations was + or - 0.4 C.

  7. Modeling the Seasonal Ice Zone from the Air: use of repeat aerial hydrographic surveys to constrain a regional ice-ocean model in an area of rapidly evolving ice cover

    NASA Astrophysics Data System (ADS)

    Dewey, S.; Morison, J.; Zhang, J.

    2015-12-01

    The Seasonal Ice Zone of the Beaufort Sea is the area of ocean north of Alaska over which sea ice melts and reforms annually. It contains the more narrow, near-edge marginal ice zone (MIZ). Seasonal Ice Zone Reconnaissance Surveys (SIZRS) measure hydrography along two meridional sections using Air eXpendable CTDs (AXCTDs) and Air eXpendable Current Profilers (AXCPs). These surveys take place aboard U.S. Coast Guard Arctic Domain Awareness flights of opportunity during each melt season (June-October) starting in 2012. The Marginal Ice Zone Modeling and Assimilation System (MIZMAS) is a high-resolution regional ice-ocean model with daily, three-dimensional output encompassing the SIZRS survey area. Direct comparison of the SIZRS data with MIZMAS output as well as with several regional climatologies can constrain the ice-ocean model and help to explain recent changes in subsurface heat content and salinity. For example, observed freshening relative to climatology has been used as a reference to which MIZMAS surface salinity values can be relaxed. MIZMAS may in turn shed light on the physical mechanisms driving the observed freshening. In addition, use of MIZMAS surface fluxes to drive a one-dimensional mixed layer model gives results close to observations when the model is initialized with SIZRS profiles. Because SIZRS observations range in time from the onset of melt to the onset of Fall freeze-up, the comparison of the one-dimensional model with MIZMAS illustrates the relative roles of local and regional processes in forming near-surface temperature maxima and salinity minima. The SIZRS observations and one-dimensional model are used to constrain MIZMAS estimations of stored subsurface heat while establishing the physical drivers of these temperature and salinity changes.

  8. BOREAS Level-0 ER-2 Aerial Photography

    NASA Technical Reports Server (NTRS)

    Newcomer, Jeffrey A.; Dominquez, Roseanne; Hall, Forrest G. (Editor)

    2000-01-01

    For BOReal Ecosystem-Atmosphere Study (BOREAS), the ER-2 and other aerial photography was collected to provide finely detailed and spatially extensive documentation of the condition of the primary study sites. The ER-2 aerial photography consists of color-IR transparencies collected during flights in 1994 and 1996 over the study areas.

  9. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the American National... 29 Labor 8 2011-07-01 2011-07-01 false Aerial lifts. 1926.453 Section 1926.453 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Scaffolds § 1926.453 Aerial lifts. (a)...

  10. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the American National... 29 Labor 8 2014-07-01 2014-07-01 false Aerial lifts. 1926.453 Section 1926.453 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Scaffolds § 1926.453 Aerial lifts. (a)...

  11. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the American National... 29 Labor 8 2010-07-01 2010-07-01 false Aerial lifts. 1926.453 Section 1926.453 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Scaffolds § 1926.453 Aerial lifts. (a)...

  12. Aerial shaking performance of wet Anna's hummingbirds.

    PubMed

    Ortega-Jimenez, Victor Manuel; Dudley, Robert

    2012-05-01

    External wetting poses problems of immediate heat loss and long-term pathogen growth for vertebrates. Beyond these risks, the locomotor ability of smaller animals, and particularly of fliers, may be impaired by water adhering to the body. Here, we report on the remarkable ability of hummingbirds to perform rapid shakes in order to expel water from their plumage even while in flight. Kinematic performance of aerial versus non-aerial shakes (i.e. those performed while perching) was compared. Oscillation frequencies of the head, body and tail were lower in aerial shakes. Tangential speeds and accelerations of the trunk and tail were roughly similar in aerial and non-aerial shakes, but values for head motions while perching were twice as high when compared with aerial shakes [corrected] . Azimuthal angular amplitudes for both aerial and non-aerial shakes reached values greater than 180° for the head, greater than 45° for the body trunk and slightly greater than 90° for the tail and wings. Using a feather on an oscillating disc to mimic shaking motions, we found that bending increased average speeds by up to 36 per cent and accelerations of the feather tip up to fourfold relative to a hypothetical rigid feather. Feather flexibility may help to enhance shedding of water and reduce body oscillations during shaking.

  13. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Aerial wire. 32.2431 Section 32.2431 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire....

  14. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Aerial wire. 32.2431 Section 32.2431 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire....

  15. A Classroom Simulation of Aerial Photography.

    ERIC Educational Resources Information Center

    Baker, Simon

    1981-01-01

    Explains how a simulation of aerial photography can help students in a college level beginning course on interpretation of aerial photography understand the interrelationships of the airplane, the camera, and the earth's surface. Procedures, objectives, equipment, and scale are discussed. (DB)

  16. Automatic Sea Bird Detection from High Resolution Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Mader, S.; Grenzdörffer, G. J.

    2016-06-01

    Great efforts are presently taken in the scientific community to develop computerized and (fully) automated image processing methods allowing for an efficient and automatic monitoring of sea birds and marine mammals in ever-growing amounts of aerial imagery. Currently the major part of the processing, however, is still conducted by especially trained professionals, visually examining the images and detecting and classifying the requested subjects. This is a very tedious task, particularly when the rate of void images regularly exceeds the mark of 90%. In the content of this contribution we will present our work aiming to support the processing of aerial images by modern methods from the field of image processing. We will especially focus on the combination of local, region-based feature detection and piecewise global image segmentation for automatic detection of different sea bird species. Large image dimensions resulting from the use of medium and large-format digital cameras in aerial surveys inhibit the applicability of image processing methods based on global operations. In order to efficiently handle those image sizes and to nevertheless take advantage of globally operating segmentation algorithms, we will describe the combined usage of a simple performant feature detector based on local operations on the original image with a complex global segmentation algorithm operating on extracted sub-images. The resulting exact segmentation of possible candidates then serves as a basis for the determination of feature vectors for subsequent elimination of false candidates and for classification tasks.

  17. Aerial monitoring in active mud volcano by UAV technique

    NASA Astrophysics Data System (ADS)

    Pisciotta, Antonino; Capasso, Giorgio; Madonia, Paolo

    2016-04-01

    UAV photogrammetry opens various new applications in the close range domain, combining aerial and terrestrial photogrammetry, but also introduces low-cost alternatives to the classical manned aerial photogrammetry. Between 2014 and 2015 tree aerial surveys have been carried out. Using a quadrotor drone, equipped with a compact camera, it was possible to generate high resolution elevation models and orthoimages of The "Salinelle", an active mud volcanoes area, located in territory of Paternò (South Italy). The main risks are related to the damages produced by paroxysmal events. Mud volcanoes show different cyclic phases of activity, including catastrophic events and periods of relative quiescence characterized by moderate activity. Ejected materials often are a mud slurry of fine solids suspended in liquids which may include water and hydrocarbon fluids, the bulk of released gases are carbon dioxide, with some methane and nitrogen, usually pond-shaped of variable dimension (from centimeters to meters in diameter). The scope of the presented work is the performance evaluation of a UAV system that was built to rapidly and autonomously acquire mobile three-dimensional (3D) mapping data in a volcanic monitoring scenario.

  18. Region Three Aerial Measurement System Flight Planning Tool - 12006

    SciTech Connect

    Messick, Chuck; Pham, Minh; Smith, Ron; Isiminger, Dave

    2012-07-01

    The Region 3 Aerial Measurement System Flight Planning Tool is used by the National Nuclear Security Agency (NNSA), United States Department of Energy, Radiological Assistance Program, Region 3, to respond to emergency radiological situations. The tool automates the flight planning package process while decreasing Aerial Measuring System response times and decreases the potential for human error. Deployment of the Region Three Aerial Measurement System Flight Planning Tool has resulted in an immediate improvement to the flight planning process in that time required for mission planning has been reduced from 1.5 hours to 15 minutes. Anecdotally, the RAP team reports that the rate of usable data acquired during surveys has improved from 40-60 percent to over 90 percent since they began using the tool. Though the primary product of the flight planning tool is a pdf format document for use by the aircraft flight crew, the RAP team has begun carrying their laptop computer on the aircraft during missions. By connecting a Global Positioning System (GPS) device to the laptop and using ESRI ArcMap's GPS tool bar to overlay the aircraft position directly on the flight plan in real time, the RAP team can evaluate and correct the aircraft position as the mission is executed. (authors)

  19. Measurements from an Aerial Vehicle: A New Tool for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Wright, Henry S.; Levine, Joel S.; Croom, Mark A.; Edwards, William C.; Qualls, Garry D.; Gasbarre, Joseph F.

    2004-01-01

    Aerial vehicles fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Aerial vehicles used in planetary exploration bridge the scale and resolution measurement gaps between orbiters (global perspective with limited spatial resolution) and landers (local perspective with high spatial resolution) thus complementing and extending orbital and landed measurements. Planetary aerial vehicles can also survey scientifically interesting terrain that is inaccessible or hazardous to landed missions. The use of aerial assets for performing observations on Mars, Titan, or Venus will enable direct measurements and direct follow-ons to recent discoveries. Aerial vehicles can be used for remote sensing of the interior, surface and atmosphere of Mars, Venus and Titan. Types of aerial vehicles considered are airplane "heavier than air" and airships and balloons "lighter than air". Interdependencies between the science measurements, science goals and objectives, and platform implementation illustrate how the proper balance of science, engineering, and cost, can be achieved to allow for a successful mission. Classification of measurement types along with how those measurements resolve science questions and how these instruments are accommodated within the mission context are discussed.

  20. High resolution channel geometry from repeat aerial imagery

    NASA Astrophysics Data System (ADS)

    King, T.; Neilson, B. T.; Jensen, A.; Torres-Rua, A. F.; Winkelaar, M.; Rasmussen, M. T.

    2015-12-01

    River channel cross sectional geometry is a key attribute for controlling the river energy balances where surface heat fluxes dominate and discharge varies significantly over short time periods throughout the open water season. These dynamics are seen in higher gradient portions of Arctic rivers where surface heat fluxes can dominates river energy balances and low hillslope storage produce rapidly varying hydrographs. Additionally, arctic river geometry can be highly dynamic in the face of thermal erosion of permafrost landscape. While direct in-situ measurements of channel cross sectional geometry are accurate, they are limited in spatial resolution and coverage, and can be access limited in remote areas. Remote sensing can help gather data at high spatial resolutions and large areas, however techniques for extracting channel geometry is often limited to the banks and flood plains adjacent to river, as the water column inhibits sensing of the river bed itself. Green light LiDAR can be used to map bathymetry, however this is expensive, difficult to obtain at large spatial scales, and dependent on water quality. Alternatively, 3D photogrammetry from aerial imagery can be used to analyze the non-wetted portion of the river channel, but extracting full cross sections requires extrapolation into the wetted portion of the river. To bridge these gaps, an approach for using repeat aerial imagery surveys with visual (RGB) and near infrared (NIR) to extract high resolution channel geometry for the Kuparuk River in the Alaskan Arctic was developed. Aerial imagery surveys were conducted under multiple flow conditions and water surface geometry (elevation and width) were extracted through photogrammetry. Channel geometry was extracted by combining water surface widths and elevations from multiple flights. The accuracy of these results were compared against field surveyed cross sections at many locations throughout the study reach and a digital elevation model created under

  1. Adaptive planning of emergency aerial photogrammetric mission

    NASA Astrophysics Data System (ADS)

    Shen, Fuqiang; Zhu, Qing; Zhang, Junxiao; Miao, Shuangxi; Zhou, Xingxia; Cao, Zhenyu

    2015-12-01

    Aiming at the diversity of emergency aerial photogrammetric mission requirements, complex ground and air environmental constraints make the planning mission time-consuming. This paper presents a fast adaptation for the UAV aerial photogrammetric mission planning. First, Building emergency aerial UAVs mission the unified expression of UAVs model and mechanical model of performance parameters in the semantic space make the integrated expression of mission requirements and low altitude environment. Proposed match assessment method which based on resource and mission efficiency. Made the Adaptive match of UAV aerial resources and mission. According to the emergency aerial resource properties, considering complex air-ground environment and mission requirements constraints. Made accurate design of UAV route. Experimental results show, the method scientific and efficient, greatly enhanced the emergency response rate.

  2. Evaluating Radiometric Measurements Using a Fixed 45 Degrees Responsivity and Zenith Angle Dependent Responsivities (Poster)

    SciTech Connect

    Dooraghi, M.; Habte, A.; Reda, I.; Sengupta, M.; Gotseff, P.; Andreas, A.; Anderberg, M.

    2014-03-01

    This poster seeks to demonstrate the importance and application of an existing but unused approach that ultimately reduces the uncertainty of radiometric measurements. Current radiometric data is based on a single responsivity value that introduces significant uncertainty to the data, however, through using responsivity as a function of solar zenith angle, the uncertainty could be decreased by 50%.

  3. Application of radiometric surface temperature for surface energy balance estimation: John Monteith's contributions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over 25 years ago, Huband and Monteith paper’s investigating the radiative surface temperature and the surface energy balance of a wheat canopy, highlighted the key issues in computing fluxes with radiometric surface temperature. These included the relationship between radiometric and aerodynamic s...

  4. Galileo SSI/Gaspra Radiometrically Calibrated Images V1.0

    NASA Astrophysics Data System (ADS)

    Domingue, D. L.

    2015-05-01

    This data set includes Galileo Orbiter SSI radiometrically calibrated images of the asteroid 951 Gaspra, created using ISIS software and assuming nadir pointing. This is an original delivery of radiometrically calibrated files, not an update to existing files. All images archived include the the asteroid within the image frame. Calibration was performed in 2013-2014.

  5. Experimental evaluation of shark detection rates by aerial observers.

    PubMed

    Robbins, William D; Peddemors, Victor M; Kennelly, Steven J; Ives, Matthew C

    2014-01-01

    Aerial surveys are a recognised technique to identify the presence and abundance of marine animals. However, the capability of aerial observers to reliably sight coastal sharks has not been previously assessed, nor have differences in sighting rates between aircraft types been examined. In this study we investigated the ability of observers in fixed-wing and helicopter aircraft to sight 2.5 m artificial shark analogues placed at known depths and positions. Initial tests revealed that the shark analogues could only be detected at shallow depths, averaging only 2.5 m and 2.7 m below the water surface for observers in fixed-wing and helicopter aircraft, respectively. We then deployed analogues at shallower depths along a 5 km-long grid, and assessed their sightability to aircraft observers through a series of transects flown within 500 m. Analogues were seen infrequently from all distances, with overall sighting rates of only 12.5% and 17.1% for fixed-wing and helicopter observers, respectively. Although helicopter observers had consistently higher success rates of sighting analogues within 250 m of their flight path, neither aircraft observers sighted more than 9% of analogues deployed over 300 m from their flight paths. Modelling of sighting rates against environmental and experimental variables indicated that observations were affected by distance, aircraft type, sun glare and sea conditions, while the range of water turbidities observed had no effect. We conclude that aerial observers have limited ability to detect the presence of submerged animals such as sharks, particularly when the sharks are deeper than ∼ 2.6 m, or over 300 m distant from the aircraft's flight path, especially during sunny or windy days. The low rates of detections found in this study cast serious doubts on the use of aerial beach patrols as an effective early-warning system to prevent shark attacks.

  6. Experimental Evaluation of Shark Detection Rates by Aerial Observers

    PubMed Central

    Robbins, William D.; Peddemors, Victor M.; Kennelly, Steven J.; Ives, Matthew C.

    2014-01-01

    Aerial surveys are a recognised technique to identify the presence and abundance of marine animals. However, the capability of aerial observers to reliably sight coastal sharks has not been previously assessed, nor have differences in sighting rates between aircraft types been examined. In this study we investigated the ability of observers in fixed-wing and helicopter aircraft to sight 2.5 m artificial shark analogues placed at known depths and positions. Initial tests revealed that the shark analogues could only be detected at shallow depths, averaging only 2.5 m and 2.7 m below the water surface for observers in fixed-wing and helicopter aircraft, respectively. We then deployed analogues at shallower depths along a 5 km-long grid, and assessed their sightability to aircraft observers through a series of transects flown within 500 m. Analogues were seen infrequently from all distances, with overall sighting rates of only 12.5% and 17.1% for fixed-wing and helicopter observers, respectively. Although helicopter observers had consistently higher success rates of sighting analogues within 250 m of their flight path, neither aircraft observers sighted more than 9% of analogues deployed over 300 m from their flight paths. Modelling of sighting rates against environmental and experimental variables indicated that observations were affected by distance, aircraft type, sun glare and sea conditions, while the range of water turbidities observed had no effect. We conclude that aerial observers have limited ability to detect the presence of submerged animals such as sharks, particularly when the sharks are deeper than ∼2.6 m, or over 300 m distant from the aircraft's flight path, especially during sunny or windy days. The low rates of detections found in this study cast serious doubts on the use of aerial beach patrols as an effective early-warning system to prevent shark attacks. PMID:24498258

  7. The Landsat Data Continuity Mission Operational Land Imager (OLI) Radiometric Calibration

    NASA Technical Reports Server (NTRS)

    Markham, Brian L.; Dabney, Philip W.; Murphy-Morris, Jeanine E.; Knight, Edward J.; Kvaran, Geir; Barsi, Julia A.

    2010-01-01

    The Operational Land Imager (OLI) on the Landsat Data Continuity Mission (LDCM) has a comprehensive radiometric characterization and calibration program beginning with the instrument design, and extending through integration and test, on-orbit operations and science data processing. Key instrument design features for radiometric calibration include dual solar diffusers and multi-lamped on-board calibrators. The radiometric calibration transfer procedure from NIST standards has multiple checks on the radiometric scale throughout the process and uses a heliostat as part of the transfer to orbit of the radiometric calibration. On-orbit lunar imaging will be used to track the instruments stability and side slither maneuvers will be used in addition to the solar diffuser to flat field across the thousands of detectors per band. A Calibration Validation Team is continuously involved in the process from design to operations. This team uses an Image Assessment System (IAS), part of the ground system to characterize and calibrate the on-orbit data.

  8. A semi-operational agricultural inventory using small scale aerial photography

    NASA Technical Reports Server (NTRS)

    Draeger, W. C.; Pettinger, L. R.

    1970-01-01

    The feasibility of performing inventories of agricultural resources using very small scale aerial or space photography was studied. The results were encouraging on two counts: (1) The very practical problems of an operational survey are being faced and solutions are being found. (2) It seems that a fully operational agricultural inventory using space photography is not beyond the scope of present technology.

  9. COCOA: tracking in aerial imagery

    NASA Astrophysics Data System (ADS)

    Ali, Saad; Shah, Mubarak

    2006-05-01

    Unmanned Aerial Vehicles (UAVs) are becoming a core intelligence asset for reconnaissance, surveillance and target tracking in urban and battlefield settings. In order to achieve the goal of automated tracking of objects in UAV videos we have developed a system called COCOA. It processes the video stream through number of stages. At first stage platform motion compensation is performed. Moving object detection is performed to detect the regions of interest from which object contours are extracted by performing a level set based segmentation. Finally blob based tracking is performed for each detected object. Global tracks are generated which are used for higher level processing. COCOA is customizable to different sensor resolutions and is capable of tracking targets as small as 100 pixels. It works seamlessly for both visible and thermal imaging modes. The system is implemented in Matlab and works in a batch mode.

  10. Whitecap coverage from aerial photography

    NASA Technical Reports Server (NTRS)

    Austin, R. W.

    1970-01-01

    A program for determining the feasibility of deriving sea surface wind speeds by remotely sensing ocean surface radiances in the nonglitter regions is discussed. With a knowledge of the duration and geographical extent of the wind field, information about the conventional sea state may be derived. The use of optical techniques for determining sea state has obvious limitations. For example, such means can be used only in daylight and only when a clear path of sight is available between the sensor and the surface. However, sensors and vehicles capable of providing the data needed for such techniques are planned for the near future; therefore, a secondary or backup capability can be provided with little added effort. The information currently being sought regarding white water coverage is also of direct interest to those working with passive microwave systems, the study of energy transfer between winds and ocean currents, the aerial estimation of wind speeds, and many others.

  11. The DOE ARM Aerial Facility

    SciTech Connect

    Schmid, Beat; Tomlinson, Jason M.; Hubbe, John M.; Comstock, Jennifer M.; Mei, Fan; Chand, Duli; Pekour, Mikhail S.; Kluzek, Celine D.; Andrews, Elisabeth; Biraud, S.; McFarquhar, Greg

    2014-05-01

    The Department of Energy Atmospheric Radiation Measurement (ARM) Program is a climate research user facility operating stationary ground sites that provide long-term measurements of climate relevant properties, mobile ground- and ship-based facilities to conduct shorter field campaigns (6-12 months), and the ARM Aerial Facility (AAF). The airborne observations acquired by the AAF enhance the surface-based ARM measurements by providing high-resolution in-situ measurements for process understanding, retrieval-algorithm development, and model evaluation that are not possible using ground- or satellite-based techniques. Several ARM aerial efforts were consolidated into the AAF in 2006. With the exception of a small aircraft used for routine measurements of aerosols and carbon cycle gases, AAF at the time had no dedicated aircraft and only a small number of instruments at its disposal. In this "virtual hangar" mode, AAF successfully carried out several missions contracting with organizations and investigators who provided their research aircraft and instrumentation. In 2009, AAF started managing operations of the Battelle-owned Gulfstream I (G-1) large twin-turboprop research aircraft. Furthermore, the American Recovery and Reinvestment Act of 2009 provided funding for the procurement of over twenty new instruments to be used aboard the G-1 and other AAF virtual-hangar aircraft. AAF now executes missions in the virtual- and real-hangar mode producing freely available datasets for studying aerosol, cloud, and radiative processes in the atmosphere. AAF is also engaged in the maturation and testing of newly developed airborne sensors to help foster the next generation of airborne instruments.

  12. The remote characterization of vegetation using Unmanned Aerial Vehicle photography

    NASA Astrophysics Data System (ADS)

    Rango, A.; Laliberte, A.; Winters, C.; Maxwell, C.; Steele, C.

    2008-12-01

    Unmanned Aerial Vehicles (UAVs) can fly in place of piloted aircraft to gather remote sensing information on vegetation characteristics. The type of sensors flown depends on the instrument payload capacity available, so that, depending on the specific UAV, it is possible to obtain video, aerial photographic, multispectral and hyperspectral radiometric, LIDAR, and radar data. The characteristics of several small UAVs less than 55lbs (25kg)) along with some payload instruments will be reviewed. Common types of remote sensing coverage available from a small, limited-payload UAV are video and hyperspatial, digital photography. From evaluation of these simple types of remote sensing data, we conclude that UAVs can play an important role in measuring and monitoring vegetation health and structure of the vegetation/soil complex in rangelands. If we fly our MLB Bat-3 at an altitude of 700ft (213m), we can obtain a digital photographic resolution of 6cm. The digital images acquired cover an area of approximately 29,350sq m. Video imaging is usually only useful for monitoring the flight path of the UAV in real time. In our experiments with the 6cm resolution data, we have been able to measure vegetation patch size, crown width, gap sizes between vegetation, percent vegetation and bare soil cover, and type of vegetation. The UAV system is also being tested to acquire height of the vegetation canopy using shadow measurements and a digital elevation model obtained with stereo images. Evaluation of combining the UAV digital photography with LIDAR data of the Jornada Experimental Range in south central New Mexico is ongoing. The use of UAVs is increasing and is becoming a very promising tool for vegetation assessment and change, but there are several operational components to flying UAVs that users need to consider. These include cost, a whole set of, as yet, undefined regulations regarding flying in the National Air Space(NAS), procedures to gain approval for flying in the NAS

  13. Determination of precipitation profiles from airborne passive microwave radiometric measurements

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian; Hakkarinen, Ida M.; Pierce, Harold F.; Weinman, James A.

    1991-01-01

    This study presents the first quantitative retrievals of vertical profiles of precipitation derived from multispectral passive microwave radiometry. Measurements of microwave brightness temperature (Tb) obtained by a NASA high-altitude research aircraft are related to profiles of rainfall rate through a multichannel piecewise-linear statistical regression procedure. Statistics for Tb are obtained from a set of cloud radiative models representing a wide variety of convective, stratiform, and anvil structures. The retrieval scheme itself determines which cloud model best fits the observed meteorological conditions. Retrieved rainfall rate profiles are converted to equivalent radar reflectivity for comparison with observed reflectivities from a ground-based research radar. Results for two case studies, a stratiform rain situation and an intense convective thunderstorm, show that the radiometrically derived profiles capture the major features of the observed vertical structure of hydrometer density.

  14. Mixing geometric and radiometric features for change classification

    NASA Astrophysics Data System (ADS)

    Fournier, Alexandre; Descombes, Xavier; Zerubia, Josiane

    2008-02-01

    Most basic change detection algorithms use a pixel-based approach. Whereas such approach is quite well defined for monitoring important area changes (such as urban growth monitoring) in low resolution images, an object based approach seems more relevant when the change detection is specifically aimed toward targets (such as small buildings and vehicles). In this paper, we present an approach that mixes radiometric and geometric features to qualify the changed zones. The goal is to establish bounds (appearance, disappearance, substitution ...) between the detected changes and the underlying objects. We proceed by first clustering the change map (containing each pixel bitemporal radiosity) in different classes using the entropy-kmeans algorithm. Assuming that most man-made objects have a polygonal shape, a polygonal approximation algorithm is then used in order to characterize the resulting zone shapes. Hence allowing us to refine the primary rough classification, by integrating the polygon orientations in the state space. Tests are currently conducted on Quickbird data.

  15. Radiometric performance of the Viking Mars lander cameras

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Burcher, E. E.; Taylor, E. J.; Wall, S. D.

    1975-01-01

    The Viking lander cameras feature an array of 12 silicon photodiodes for electronic focus selection and multispectral imaging. Comparisons of absolute radiometric calibrations of the four cameras selected for the mission to Mars with performance predictions based on their design data revealed minor discrepancies. These discrepancies were caused primarily by the method used to calibrate the photosensor array and apparently also from light reflections internal to the array. The sensitivity and dynamic range of all camera channels are found to be sufficient for high quality pictures, providing that the commandable gains and offsets can be optimized for the scene radiance; otherwise, the quantization noise may be too high or the dynamic range too low for an adequate characterization of the scene.

  16. New Sentinel-2 radiometric validation approaches (SEOM program)

    NASA Astrophysics Data System (ADS)

    Bruniquel, Véronique; Lamquin, Nicolas; Ferron, Stéphane; Govaerts, Yves; Woolliams, Emma; Dilo, Arta; Gascon, Ferran

    2016-04-01

    SEOM is an ESA program element whose one of the objectives aims at launching state-of-the-art studies for the scientific exploitation of operational missions. In the frame of this program, ESA awarded ACRI-ST and its partners Rayference and National Physical Laboratory (NPL) early 2016 for a R&D study on the development and intercomparison of algorithms for validating the Sentinel-2 radiometric L1 data products beyond the baseline algorithms used operationally in the frame of the S2 Mission Performance Centre. In this context, several algorithms have been proposed and are currently in development: The first one is based on the exploitation of Deep Convective Cloud (DCC) observations over ocean. This method allows an inter-band radiometry validation from the blue to the NIR (typically from B1 to B8a) from a reference band already validated for example with the well-known Rayleigh method. Due to their physical properties, DCCs appear from the remote sensing point of view to have bright and cold tops and they can be used as invariant targets to monitor the radiometric response degradation of reflective solar bands. The DCC approach is statistical i.e. the method shall be applied on a large number of measurements to derive reliable statistics and decrease the impact of the perturbing contributors. The second radiometric validation method is based on the exploitation of matchups combining both concomitant in-situ measurements and Sentinel-2 observations. The in-situ measurements which are used here correspond to measurements acquired in the frame of the RadCalNet networks. The validation is performed for the Sentinel-2 bands similar to the bands of the instruments equipping the validation site. The measurements from the Cimel CE 318 12-filters BRDF Sun Photometer installed recently in the Gobabeb site near the Namib desert are used for this method. A comprehensive verification of the calibration requires an analysis of MSI radiances over the full dynamic range

  17. Radiometric Calibrations, Measurements, and Standards Development at NREL: Preprint

    SciTech Connect

    Myers, D. R.; Andreas, A.; Stoffel, T.; Reda, I.; Wilcox, S.; Gotseff, P.; Kay, B.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: Radiometric calibrations, measurements, and standards development at NREL. We describe proposed revisions to current reference standard spectral distributions used to evaluate photovoltaic device performance and durability of materials. Improvements in broadband outdoor radiometer calibrations reduce uncertainties in broadband radiometer calibrations. We report a method to quantify the rate of change of broadband radiometer responsivities as a function of integrated exposure to irradiance and thermal energy. The results of applying a vector of calibration factors or responsivities to field data to remove zenith-angle dependent errors in global solar radiation measurements are shown. We report on the relative sensitivity of radiometers to daily versus biweekly cleaning.

  18. [In-flight absolute radiometric calibration of UAV multispectral sensor].

    PubMed

    Chen, Wei; Yan, Lei; Gou, Zhi-Yang; Zhao, Hong-Ying; Liu, Da-Ping; Duan, Yi-Ni

    2012-12-01

    Based on the data of the scientific experiment in Urad Front Banner for UAV Remote Sensing Load Calibration Field project, with the help of 6 hyperspectral radiometric targets with good Lambertian property, the wide-view multispectral camera in UAV was calibrated adopting reflectance-based method. The result reveals that for green, red and infrared channel, whose images were successfully captured, the linear correlation coefficients between the DN and radiance are all larger than 99%. In final analysis, the comprehensive error is no more than 6%. The calibration results demonstrate that the hyperspectral targets equipped by the calibration field are well suitable for air-borne multispectral load in-flight calibration. The calibration result is reliable and could be used in the retrieval of geophysical parameters.

  19. Active radiometric calorimeter for absolute calibration of radioactive sources

    SciTech Connect

    Stump, K.E.; DeWerd, L.A.; Rudman, D.A.; Schima, S.A.

    2005-03-01

    This report describes the design and initial noise floor measurements of a radiometric calorimeter designed to measure therapeutic medical radioactive sources. The instrument demonstrates a noise floor of approximately 2 nW. This low noise floor is achieved by using high temperature superconducting (HTS) transition edge sensor (TES) thermometers in a temperature-control feedback loop. This feedback loop will be used to provide absolute source calibrations based upon the electrical substitution method. Other unique features of the calorimeter are (a) its ability to change sources for calibration without disrupting the vacuum of the instrument, and (b) the ability to measure the emitted power of a source in addition to the total contained source power.

  20. New approach for the radiometric calibration of spectral imaging systems.

    PubMed

    Kohler, David; Bissett, W; Steward, Robert; Davis, Curtiss

    2004-05-31

    The calibration of multispectral and hyperspectral imaging systems is typically done in the laboratory using an integrating sphere, which usually produces a signal that is red rich. Using such a source to calibrate environmental monitoring systems presents some difficulties. Not only is much of the calibration data outside the range and spectral quality of data values that are expected to be captured in the field, using these measurements alone may exaggerate the optical flaws found within the system. Left unaccounted for, these flaws will become embedded in to the calibration, and thus, they will be passed on to the field data when the calibration is applied. To address these issues, we used a series of well-characterized spectral filters within our calibration. It provided us with a set us stable spectral standards to test and account for inadequacies in the spectral and radiometric integrity of the optical imager.

  1. Radiometric calibration and SNR calculation of a SWIR imaging telescope

    SciTech Connect

    Yilmaz, Ozgur; Turk, Fethi; Selimoglu, Ozgur

    2012-09-06

    Radiometric calibration of an imaging telescope is usually made using a uniform illumination sphere in a laboratory. In this study, we used the open-sky images taken during bright day conditions to calibrate our telescope. We found a dark signal offset value and a linear response coefficient value for each pixel by using three different algorithms. Then we applied these coefficients to the taken images, and considerably lowered the image non-uniformity. Calibration can be repeated during the operation of telescope with an object that has better uniformity than open-sky. Also SNR (Signal to Noise Ratio) of each pixel was calculated from the open-sky images using the temporal mean and standard deviations. It is found that SNR is greater than 80 for all pixels even at low light levels.

  2. Airborne Millimeter-Wave Radiometric Observations of Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Racette, P.

    1997-01-01

    This paper reports the first radiometric measurements of cirrus clouds in the frequency range of 89-325 GHz from a high-altitude aircraft flight. The measurements are conducted with a Millimeter-wave Imaging Radiometer (MIR) on board the NASA ER-2 aircraft over a region in northern Oklahoma. Aboard the same aircraft are a cloud lidar system and a multichannel radiometer operating at the visible and infrared wavelengths. The instrument ensemble is well suited for identifying cirrus clouds. It is shown that the depressions in brightness temperatures associated with a few intense cirrus clouds occur at all frequency channels of the MIR. Estimates of total ice water path of the cirrus clouds are derived from comparisons of radiative transfer calculations and observed brightness depressions.

  3. Radiometric Ages of Martian Meteorites compared to Martian Surfaces Ages

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C.-Y.

    1999-01-01

    The surprisingly young Rb-Sr age of the Shergotty meteorite contributed to early suggestions that it might be of martian origin. their redox state and oxygen isotopic compositions linked the shergottites to the clino-pyroxenite nakhlites and the dunite Chassigny, causing them to be grouped as SNC meteorites. These characteristics, but especially the similarity of the elemental and isotopic compositions of gases trapped in shergottites to those of the martian atmosphere, have caused the martian origin of the SNC and related meteorites to be widely accepted. Although the young ages were one of the early hints of a martian origin for the SNC meteorites, their interpretation has remained somewhat ambiguous. We will review the radiometric ages of the martian meteorites and attempt to place them into the context of martian surface ages.

  4. Multivariate analysis of subsurface radiometric data in Rongsohkham area, East Khasi Hills district, Meghalaya (India): implication on uranium exploration.

    PubMed

    Kukreti, B M; Pandey, Pradeep; Singh, R V

    2012-08-01

    Non-coring based exploratory drilling was under taken in the sedimentary environment of Rangsohkham block, East Khasi Hills district to examine the eastern extension of existing uranium resources located at Domiasiat and Wakhyn in the Mahadek basin of Meghalaya (India). Although radiometric survey and radiometric analysis of surface grab/channel samples in the block indicate high uranium content but the gamma ray logging results of exploratory boreholes in the block, did not obtain the expected results. To understand this abrupt discontinuity between the two sets of data (surface and subsurface) multivariate statistical analysis of primordial radioactive elements (K(40), U(238) and Th(232)) was performed using the concept of representative subsurface samples, drawn from the randomly selected 11 boreholes of this block. The study was performed to a high confidence level (99%), and results are discussed for assessing the U and Th behavior in the block. Results not only confirm the continuation of three distinct geological formations in the area but also the uranium bearing potential in the Mahadek sandstone of the eastern part of Mahadek Basin.

  5. IRCM spectral signature measurements instrumentation featuring enhanced radiometric accuracy

    NASA Astrophysics Data System (ADS)

    Lantagne, Stéphane; Prel, Florent; Moreau, Louis; Roy, Claude; Willers, Cornelius J.

    2015-10-01

    Hyperspectral Infrared (IR) signature measurements are performed in military applications including aircraft- and -naval vessel stealth characterization, detection/lock-on ranges, and flares efficiency characterization. Numerous military applications require high precision measurement of infrared signature characterization. For instance, Infrared Countermeasure (IRCM) systems and Infrared Counter-Countermeasure (IRCCM) system are continuously evolving. Infrared flares defeated IR guided seekers, IR flares became defeated by intelligent IR guided seekers and Jammers defeated the intelligent IR guided seekers [7]. A precise knowledge of the target infrared signature phenomenology is crucial for the development and improvement of countermeasure and counter-countermeasure systems and so precise quantification of the infrared energy emitted from the targets requires accurate spectral signature measurements. Errors in infrared characterization measurements can lead to weakness in the safety of the countermeasure system and errors in the determination of detection/lock-on range of an aircraft. The infrared signatures are analyzed, modeled, and simulated to provide a good understanding of the signature phenomenology to improve the IRCM and IRCCM technologies efficiency [7,8,9]. There is a growing need for infrared spectral signature measurement technology in order to further improve and validate infrared-based models and simulations. The addition of imagery to Spectroradiometers is improving the measurement capability of complex targets and scenes because all elements in the scene can now be measured simultaneously. However, the limited dynamic range of the Focal Plane Array (FPA) sensors used in these instruments confines the ranges of measurable radiance intensities. This ultimately affects the radiometric accuracy of these complex signatures. We will describe and demonstrate how the ABB hyperspectral imaging spectroradiometer features enhanced the radiometric accuracy

  6. JPSS-1 VIIRS pre-launch radiometric performance

    NASA Astrophysics Data System (ADS)

    Oudrari, Hassan; McIntire, Jeff; Xiong, Xiaoxiong; Butler, James; Efremova, Boryana; Ji, Qiang; Lee, Shihyan; Schwarting, Tom

    2015-09-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) on-board the first Joint Polar Satellite System (JPSS) completed its sensor level testing on December 2014. The JPSS-1 (J1) mission is scheduled to launch in December 2016, and will be very similar to the Suomi-National Polar-orbiting Partnership (SNPP) mission. VIIRS instrument was designed to provide measurements of the globe twice daily. It is a wide-swath (3,040 km) cross-track scanning radiometer with spatial resolutions of 370 and 740 m at nadir for imaging and moderate bands, respectively. It covers the wavelength spectrum from reflective to long-wave infrared through 22 spectral bands [0.412 μm to 12.01 μm]. VIIRS observations are used to generate 22 environmental data products (EDRs). This paper will briefly describe J1 VIIRS characterization and calibration performance and methodologies executed during the pre-launch testing phases by the independent government team, to generate the at-launch baseline radiometric performance, and the metrics needed to populate the sensor data record (SDR) Look-Up-Tables (LUTs). This paper will also provide an assessment of the sensor pre-launch radiometric performance, such as the sensor signal to noise ratios (SNRs), dynamic range, reflective and emissive bands calibration performance, polarization sensitivity, bands spectral performance, response-vs-scan (RVS), near field and stray light responses. A set of performance metrics generated during the pre-launch testing program will be compared to the SNPP VIIRS pre-launch performance.

  7. Absolute Radiometric Calibration of the GÖKTÜRK-2 Satellite Sensor Using Tuz GÖLÜ (landnet Site) from Ndvi Perspective

    NASA Astrophysics Data System (ADS)

    Sakarya, Ufuk; Hakkı Demirhan, İsmail; Seda Deveci, Hüsne; Teke, Mustafa; Demirkesen, Can; Küpçü, Ramazan; Feray Öztoprak, A.; Efendioğlu, Mehmet; Fehmi Şimşek, F.; Berke, Erdinç; Zübeyde Gürbüz, Sevgi

    2016-06-01

    TÜBİTAK UZAY has conducted a research study on the use of space-based satellite resources for several aspects of agriculture. Especially, there are two precision agriculture related projects: HASSAS (Widespread application of sustainable precision agriculture practices in Southeastern Anatolia Project Region (GAP) Project) and AKTAR (Smart Agriculture Feasibility Project). The HASSAS project aims to study development of precision agriculture practice in GAP region. Multi-spectral satellite imagery and aerial hyperspectral data along with ground measurements was collected to analyze data in an information system. AKTAR aims to develop models for irrigation, fertilization and spectral signatures of crops in Inner Anatolia. By the end of the project precision agriculture practices to control irrigation, fertilization, pesticide and estimation of crop yield will be developed. Analyzing the phenology of crops using NDVI is critical for the projects. For this reason, absolute radiometric calibration of the Red and NIR bands in space-based satellite sensors is an important issue. The Göktürk-2 satellite is an earth observation satellite which was designed and built in Turkey and was launched in 2012. The Göktürk-2 satellite sensor has a resolution 2.5 meters in panchromatic and 5 meters in R/G/B/NIR bands. The absolute radiometric calibration of the Göktürk-2 satellite sensor was performed via the ground-based measurements - spectra-radiometer, sun photometer, and meteorological station- in Tuz Gölü cal/val site in 2015. In this paper, the first ground-based absolute radiometric calibration results of the Göktürk-2 satellite sensor using Tuz Gölü is demonstrated. The absolute radiometric calibration results of this paper are compared with the published cross-calibration results of the Göktürk-2 satellite sensor utilizing Landsat 8 imagery. According to the experimental comparison results, the Göktürk-2 satellite sensor coefficients for red and NIR bands

  8. Line Matching Algorithm for Aerial Image Combining image and object space similarity constraints

    NASA Astrophysics Data System (ADS)

    Wang, Jingxue; Wang, Weixi; Li, Xiaoming; Cao, Zhenyu; Zhu, Hong; Li, Miao; He, Biao; Zhao, Zhigang

    2016-06-01

    A new straight line matching method for aerial images is proposed in this paper. Compared to previous works, similarity constraints combining radiometric information in image and geometry attributes in object plane are employed in these methods. Firstly, initial candidate lines and the elevation values of lines projection plane are determined by corresponding points in neighborhoods of reference lines. Secondly, project reference line and candidate lines back forward onto the plane, and then similarity measure constraints are enforced to reduce the number of candidates and to determine the finial corresponding lines in a hierarchical way. Thirdly, "one-to-many" and "many-to-one" matching results are transformed into "one-to-one" by merging many lines into the new one, and the errors are eliminated simultaneously. Finally, endpoints of corresponding lines are detected by line expansion process combing with "image-object-image" mapping mode. Experimental results show that the proposed algorithm can be able to obtain reliable line matching results for aerial images.

  9. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Availability of aerial photography. 611.21 Section 611... § 611.21 Availability of aerial photography. The National Cartography and Geospatial Center obtains necessary clearance for all aerial photography for NRCS. New aerial photography of designated areas in...

  10. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Availability of aerial photography. 611.21 Section 611... § 611.21 Availability of aerial photography. The National Cartography and Geospatial Center obtains necessary clearance for all aerial photography for NRCS. New aerial photography of designated areas in...

  11. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Availability of aerial photography. 611.21 Section 611... § 611.21 Availability of aerial photography. The National Cartography and Geospatial Center obtains necessary clearance for all aerial photography for NRCS. New aerial photography of designated areas in...

  12. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Availability of aerial photography. 611.21 Section 611... § 611.21 Availability of aerial photography. The National Cartography and Geospatial Center obtains necessary clearance for all aerial photography for NRCS. New aerial photography of designated areas in...

  13. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Availability of aerial photography. 611.21 Section 611... § 611.21 Availability of aerial photography. The National Cartography and Geospatial Center obtains necessary clearance for all aerial photography for NRCS. New aerial photography of designated areas in...

  14. Analysis and modeling of radiometric error caused by imaging blur in optical remote sensing systems

    NASA Astrophysics Data System (ADS)

    Xie, Xufen; Zhang, Yuncui; Wang, Hongyuan; Zhang, Wei

    2016-07-01

    Imaging blur changes the digital output values of imaging systems. It leads to radiometric errors when the system is used for measurement. In this paper, we focus on the radiometric error due to imaging blur in remote sensing imaging systems. First, in accordance with the radiometric response calibration of imaging systems, we provide a theoretical analysis on the evaluation standard of radiometric errors caused by imaging blur. Then, we build a radiometric error model for imaging blur based on the natural stochastic fractal characteristics of remote sensing images. Finally, we verify the model by simulations and physical defocus experiments. The simulation results show that the modeling estimation result approaches to the simulation computation. The maximum difference of relative MSE (Mean Squared Error) between simulation computation and modeling estimation can achieve 1.6%. The physical experimental results show that the maximum difference of relative MSE between experimental results and modeling estimation is only 1.29% under experimental conditions. Simulations and experiments demonstrate that the proposed model is correct, which can be used to estimate the radiometric error caused by imaging blur in remote sensing images. This research is of great importance for radiometric measurement system evaluation and application.

  15. Evaluation of aerial transects for counting winter mallards

    USGS Publications Warehouse

    Reinecke, K.J.; Brown, M.W.; Nassar, J.R.

    1992-01-01

    Winter waterfowl surveys rarely use sampling methods, and little is known about the precision and biases of their population estimates. Consequently, we developed aerial transect surveys (n=5) in 4 strata comprising 16 substrata in the lower Mississippi Alluvial Valley during winters 1987-88 through 1989-90 to estimate mallard (Anas platyrhynchos) population indices and determine regional patterns of habitat use. Mallard population indices ranged from 1,147,628 (SE=192,341) in December 1988 to 1,790,708 (SE=179,406) in January 1988. Coefficients of variation (CV's) for early winter surveys averaged 0.15 and those for late winter surveys averaged 0.10. During early winter, 59-69% of mallards were on wetlands with water regimes managed for waterfowl; whereas in late winter, 52-79% used wetlands with unmanaged water regimes. Late winter was wet during 1987-88 and 1988-89, and most mallards (62-68%) were on naturally flooded croplands. Use of forested wetlands (3-11%) and moist-soil habitats (3-29%) varied among surveys but was not correlated with water conditions. The number of mallards using naturally flooded croplands (e.g., >1,100,000 in Jan 1988) illustrated the extent of habitat use on private lands. We recommend transect surveys (e.g., 5-yr intervals) for evaluating responses of mallard populations to management programs and as a sampling framework for integrating regional waterfowl research and management data.

  16. Locating buildings in aerial photos

    NASA Technical Reports Server (NTRS)

    Green, James S.

    1994-01-01

    Algorithms and techniques for use in the identification and location of large buildings in digitized copies of aerial photographs are developed and tested. The building data would be used in the simulation of objects located in the vicinity of an airport that may be detected by aircraft radar. Two distinct approaches are considered. Most building footprints are rectangular in form. The first approach studied is to search for right-angled corners that characterize rectangular objects and then to connect these corners to complete the building. This problem is difficult because many nonbuilding objects, such as street corners, parking lots, and ballparks often have well defined corners which are often difficult to distinguish from rooftops. Furthermore, rooftops come in a number of shapes, sizes, shadings, and textures which also limit the discrimination task. The strategy used linear sequences of different samples to detect straight edge segments at multiple angles and to determine when these segments meet at approximately right-angles with respect to each other. This technique is effective in locating corners. The test image used has a fairly rectangular block pattern oriented about thirty degrees clockwise from a vertical alignment, and the overall measurement data reflect this. However, this technique does not discriminate between buildings and other objects at an operationally suitable rate. In addition, since multiple paths are tested for each image pixel, this is a time consuming task. The process can be speeded up by preprocessing the image to locate the more optimal sampling paths. The second approach is to rely on a human operator to identify and select the building objects and then to have the computer determine the outline and location of the selected structures. When presented with a copy of a digitized aerial photograph, the operator uses a mouse and cursor to select a target building. After a button on the mouse is pressed, with the cursor fully within

  17. Draper Laboratory small autonomous aerial vehicle

    NASA Astrophysics Data System (ADS)

    DeBitetto, Paul A.; Johnson, Eric N.; Bosse, Michael C.; Trott, Christian A.

    1997-06-01

    The Charles Stark Draper Laboratory, Inc. and students from Massachusetts Institute of Technology and Boston University have cooperated to develop an autonomous aerial vehicle that won the 1996 International Aerial Robotics Competition. This paper describes the approach, system architecture and subsystem designs for the entry. This entry represents a combination of many technology areas: navigation, guidance, control, vision processing, human factors, packaging, power, real-time software, and others. The aerial vehicle, an autonomous helicopter, performs navigation and control functions using multiple sensors: differential GPS, inertial measurement unit, sonar altimeter, and a flux compass. The aerial transmits video imagery to the ground. A ground based vision processor converts the image data into target position and classification estimates. The system was designed, built, and flown in less than one year and has provided many lessons about autonomous vehicle systems, several of which are discussed. In an appendix, our current research in augmenting the navigation system with vision- based estimates is presented.

  18. Characterization of the Sonoran desert as a radiometric calibration target for Earth observing sensors

    USGS Publications Warehouse

    Angal, Amit; Chander, Gyanesh; Xiong, Xiaoxiong; Choi, Tae-young; Wu, Aisheng

    2011-01-01

    To provide highly accurate quantitative measurements of the Earth's surface, a comprehensive calibration and validation of the satellite sensors is required. The NASA Moderate Resolution Imaging Spectroradiometer (MODIS) Characterization Support Team, in collaboration with United States Geological Survey, Earth Resources Observation and Science Center, has previously demonstrated the use of African desert sites to monitor the long-term calibration stability of Terra MODIS and Landsat 7 (L7) Enhanced Thematic Mapper plus (ETM+). The current study focuses on evaluating the suitability of the Sonoran Desert test site for post-launch long-term radiometric calibration as well as cross-calibration purposes. Due to the lack of historical and on-going in situ ground measurements, the Sonoran Desert is not usually used for absolute calibration. An in-depth evaluation (spatial, temporal, and spectral stability) of this site using well calibrated L7 ETM+ measurements and local climatology data has been performed. The Sonoran Desert site produced spatial variability of about 3 to 5% in the reflective solar regions, and the temporal variations of the site after correction for view-geometry impacts were generally around 3%. The results demonstrate that, barring the impacts due to occasional precipitation, the Sonoran Desert site can be effectively used for cross-calibration and long-term stability monitoring of satellite sensors, thus, providing a good test site in the western hemisphere.

  19. Revisiting the NEAR mission with radiometric, altimetric and image tracking data

    NASA Astrophysics Data System (ADS)

    Mazarico, Erwan; Neumann, Gregory; Rowlands, David; Barnouin, Olivier

    2014-05-01

    The NEAR mission to asteroid 433 Eros in 2000-2001 was the first extended survey of an asteroid. In orbit around Eros for about one year, NEAR acquired a wealth of global and high-resolution data about this Near-Earth Asteroid. The primary geodetic dataset is the radiometric tracking data collected by the NASA Deep Space Network, which have been used to reconstruct the orbits of multiple planetary orbiter missions and determine the gravity field of their target body. However, given the small size of Eros compared to terrestrial bodies, the gravitational environment is relatively weak, and the constraints from Doppler data are not as strong. Altimetric data from the NLR instrument, in the form of altimetric crossovers, were used by the NLR team to support the radio data. Image-based constraints, such as landmark data, were used by the navigation team to provide out-of-plane orbital information. Here, we process the three types of measurements simultaneously. We use the altimetric data not as crossovers, but as direct shot-to-shot distance constraints. We implemented in our GEODYN software both the landmark data type and a constraint on the geometry of image pairs which does not rely on prior accurate knowledge of surface point locations. We present results from this analysis, in terms of spacecraft orbits, gravity field and orientation solution, and shape of 433 Eros.

  20. Radiometric Calibration Assessment of Commercial High Spatial Resolution Multispectral Image Products

    NASA Technical Reports Server (NTRS)

    Holekamp, Kara; Aaron, David; Thome, Kurtis

    2006-01-01

    Radiometric calibration of commercial imaging satellite products is required to ensure that science and application communities can better understand their properties. Inaccurate radiometric calibrations can lead to erroneous decisions and invalid conclusions and can limit intercomparisons with other systems. To address this calibration need, satellite at-sensor radiance values were compared to those estimated by each independent team member to determine the sensor's radiometric accuracy. The combined results of this evaluation provide the user community with an independent assessment of these commercially available high spatial resolution sensors' absolute calibration values.

  1. Radiometric Characterization of the IKONOS, QuickBird, and OrbView-3 Sensors

    NASA Technical Reports Server (NTRS)

    Holekamp, Kara

    2006-01-01

    Radiometric calibration of commercial imaging satellite products is required to ensure that science and application communities can better understand their properties. Inaccurate radiometric calibrations can lead to erroneous decisions and invalid conclusions and can limit intercomparisons with other systems. To address this calibration need, satellite at-sensor radiance values were compared to those estimated by each independent team member to determine the sensor's radiometric accuracy. The combined results of this evaluation provide the user community with an independent assessment of these commercially available high spatial resolution sensors' absolute calibration values.

  2. Identifying areas with potential for high indoor radon levels: analysis of the national airborne radiometric reconnaissance data for California and the Pacific Northwest

    SciTech Connect

    Moed, B.A.; Nazaroff, W.W.; Nero, A.V.; Schwehr, M.B.; Van Heuvelen, A.

    1984-04-01

    Radon-222 is an important indoor air pollutant which, through the inhalation of its radioactive decay products, accounts for nearly half of the effective dose equivalent to the public from natural ionizing radiation. Indoor radon concentrations vary widely, largely because of local and regional differences in the rate of entry from sources. The major sources are soil and rock near building foundations, earth-based building materials, and domestic water; of these, soil and rock are thought to be predominant in many buildings with higher-than-average concentrations. Thus, one key factor in determining radon source potential is the concentration of radium, the progenitor of radon, in surficial rocks and soils. Aerial radiometric data were analyzed, collected for the National Uranium Resource Evaluation Program, for seven Western states to: (1) provide information on the spatial distribution of radium contents in surficial geologic materials for those states; and (2) investigate approaches for using the aerial data, which have been collected throughout the contiguous United States and Alaska, to identify areas where high indoor radon levels may be common. Radium concentrations were found to be relatively low in central and western portions of Washington, Oregon, and northern California; they were found to be relatively high in central and southern California. A field validation study, conducted along two flight-line segments near Spokane, Washington, showed close correspondence between the aerial data, in situ measurements of both radium content and radon flux from soil, and laboratory measurements of both radium content of and radon emanation rate from soil samples. 99 references, 11 figures, 3 tables.

  3. Gravity, magnetic, and radiometric data for Newberry Volcano, Oregon, and vicinity

    USGS Publications Warehouse

    Wynn, Jeff

    2014-01-01

    Newberry Volcano in central Oregon is a 3,100-square-kilometer (1,200-square-mile) shield-shaped composite volcano, occupying a location east of the main north-south trend of the High Cascades volcanoes and forming a transition between the High Lava Plains subprovince of the Basin and Range Province to the east and the Cascade Range to the west. Magnetic, gravity, and radiometric data have been gathered and assessed for the region around the volcano. These data have widely varying quality and resolution, even within a given dataset, and these limitations are evaluated and described in this release. Publicly available gravity data in general are too sparse to permit detailed modeling except along a few roads with high-density coverage. Likewise, magnetic data are also unsuitable for all but very local modeling, primarily because available data consist of a patchwork of datasets with widely varying line-spacing. Gravity data show only the broadest correlation with mapped geology, whereas magnetic data show moderate correlation with features only in the vicinity of Newberry Caldera. At large scales, magnetic data correlate poorly with both geologic mapping and gravity data. These poor correlations are largely due to the different sensing depths of the two potential fields methods, which respond to physical properties deeper than the surficial geology. Magnetic data derive from rocks no deeper than the Curie-point isotherm depth (10 to 15 kilometers, km, maximum), whereas gravity data reflect density-contrasts to 100 to 150 km depths. Radiometric data from the National Uranium Resource Evaluation (NURE) surveys of the 1980s have perhaps the coarsest line-spacing of all (as much as 10 km between lines) and are extremely “noisy” for several reasons inherent to this kind of data. Despite its shallow-sensing character, only a few larger anomalies in the NURE data correlate well with geologic mapping. The purpose of this data series release is to collect and place the

  4. Beach monitoring using Unmanned Aerial Vehicles: results of a multi-temporal study

    NASA Astrophysics Data System (ADS)

    Casella, Elisa; Rovere, Alessio; Casella, Marco; Pedroncini, Andrea; Ferrari, Marco; Vacchi, Matteo; Firpo, Marco

    2015-04-01

    The application of Unmanned Aerial Vehicles and photogrammetry techniques in earth sciences is flourishing. In this study, we show how we applied small Unmanned Aerial Vehicles to the study of topographic changes of a beach in Italy, NW Mediterranean Sea. We surveyed the same stretch of coastline three times in 5 months, obtaining ortophotos and digital elevation models of the beach using a structure from motion approach. We then calculated the difference in beach topography between each time step, and we related topography changes to both human and natural modifications of the beach morphology that can be inferred from aerial photos or wave data. We conclude that small drones have the potential to open new possibilities for beach monitoring studies, and can be successfully employed for multi-temporal monitoring studies at relatively low cost.

  5. Observation of coral reefs on Ishigaki Island, Japan, using Landsat TM images and aerial photographs

    SciTech Connect

    Matsunaga, Tsuneo; Kayanne, Hajime

    1997-06-01

    Ishigaki Island is located at the southwestern end of Japanese Islands and famous for its fringing coral reefs. More than twenty LANDSAT TM images in twelve years and aerial photographs taken on 1977 and 1994 were used to survey two shallow reefs on this island, Shiraho and Kabira. Intensive field surveys were also conducted in 1995. All satellite images of Shiraho were geometrically corrected and overlaid to construct a multi-date satellite data set. The effects of solar elevation and tide on satellite imagery were studied with this data set. The comparison of aerial and satellite images indicated that significant changes occurred between 1977 and 1984 in Kabira: rapid formation in the western part and decrease in the eastern part of dark patches. The field surveys revealed that newly formed dark patches in the west contain young corals. These results suggest that remote sensing is useful for not only mapping but also monitoring of shallow coral reefs.

  6. Landsat-7 ETM+ radiometric stability and absolute calibration

    USGS Publications Warehouse

    Markham, B.L.; Barker, J.L.; Barsi, J.A.; Kaita, E.; Thome, K.J.; Helder, D.L.; Palluconi, Frank Don; Schott, J.R.; Scaramuzza, P.; ,

    2002-01-01

    Launched in April 1999, the Landsat-7 ETM+ instrument is in its fourth year of operation. The quality of the acquired calibrated imagery continues to be high, especially with respect to its three most important radiometric performance parameters: reflective band instrument stability to better than ??1%, reflective band absolute calibration to better than ??5%, and thermal band absolute calibration to better than ??0.6 K. The ETM+ instrument has been the most stable of any of the Landsat instruments, in both the reflective and thermal channels. To date, the best on-board calibration source for the reflective bands has been the Full Aperture Solar Calibrator, which has indicated changes of at most -1.8% to -2.0% (95% C.I.) change per year in the ETM+ gain (band 4). However, this change is believed to be caused by changes in the solar diffuser panel, as opposed to a change in the instrument's gain. This belief is based partially on ground observations, which bound the changes in gain in band 4 at -0.7% to +1.5%. Also, ETM+ stability is indicated by the monitoring of desert targets. These image-based results for four Saharan and Arabian sites, for a collection of 35 scenes over the three years since launch, bound the gain change at -0.7% to +0.5% in band 4. Thermal calibration from ground observations revealed an offset error of +0.31 W/m 2 sr um soon after launch. This offset was corrected within the U. S. ground processing system at EROS Data Center on 21-Dec-00, and since then, the band 6 on-board calibration has indicated changes of at most +0.02% to +0.04% (95% C.I.) per year. The latest ground observations have detected no remaining offset error with an RMS error of ??0.6 K. The stability and absolute calibration of the Landsat-7 ETM+ sensor make it an ideal candidate to be used as a reference source for radiometric cross-calibrating to other land remote sensing satellite systems.

  7. The Landsat Data Continuity Mission Operational Land Imager: Radiometric Performance

    NASA Technical Reports Server (NTRS)

    Markham, Brian; Dabney, Philip; Pedelty, Jeffrey

    2011-01-01

    The Operational Land Imager (OLI) is one of two instruments to fly on the Landsat Data Continuity Mission (LDCM), which is scheduled to launch in December 2012 to become the 8th in the series of Landsat satellites. The OLI images in the solar reflective part of the spectrum, with bands similar to bands 1-5, 7 and the panchromatic band on the Landsat-7 ETM+ instrument. In addition, it has a 20 nm bandpass spectral band at 443 nm for coastal and aerosol studies and a 30 nm band at 1375 nm to aid in cirrus cloud detection. Like ETM+, spatial resolution is 30 m in the all but the panchromatic band, which is 15 meters. OLI is a pushbroom radiometer with approximately 6000 detectors per 30 meter band as opposed to the 16 detectors per band on the whiskbroom ETM+. Data are quantized to 12 bits on OLI as opposed to 8 bits on ETM+ to take advantage of the improved signal to noise ratio provided by the pushbroom design. The saturation radiances are higher on OLI than ETM+ to effectively eliminate saturation issues over bright Earth targets. OLI includes dual solar diffusers for on-orbit absolute and relative (detector to detector) radiometric calibration. Additionally, OLI has 3 sets of on-board lamps that illuminate the OLI focal plane through the full optical system, providing additional checks on the OLI's response[l]. OLI has been designed and built by Ball Aerospace & Technology Corp. (BATC) and is currently undergoing testing and calibration in preparation for delivery in Spring 2011. Final pre-launch performance results should be available in time for presentation at the conference. Preliminary results will be presented below. These results are based on the performance of the Engineering Development Unit (EDU) that was radiometrically tested at the integrated instrument level in 2010 and assembly level measurements made on the flight unit. Signal-to-Noise (SNR) performance: One of the advantages of a pushbroom system is the increased dwell time of the detectors

  8. Landsat-7 ETM+ radiometric stability and absolute calibration

    NASA Astrophysics Data System (ADS)

    Markham, Brian L.; Barker, John L.; Barsi, Julia A.; Kaita, Ed; Thome, Kurtis J.; Helder, Dennis L.; Palluconi, Frank D.; Schott, John R.; Scaramuzza, Pat

    2003-04-01

    Launched in April 1999, the Landsat-7 ETM+ instrument is in its fourth year of operation. The quality of the acquired calibrated imagery continues to be high, especially with respect to its three most important radiometric performance parameters: reflective band instrument stability to better than +/-1%, reflective band absolute calibration to better than +/-5%, and thermal band absolute calibration to better than +/- 0.6 K. The ETM+ instrument has been the most stable of any of the Landsat instruments, in both the reflective and thermal channels. To date, the best on-board calibration source for the reflective bands has been the Full Aperture Solar Calibrator, which has indicated changes of at most -1.8% to -2.0% (95% C.I.) change per year in the ETM+ gain (band 4). However, this change is believed to be caused by changes in the solar diffuser panel, as opposed to a change in the instrument's gain. This belief is based partially on ground observations, which bound the changes in gain in band 4 at -0.7% to +1.5%. Also, ETM+ stability is indicated by the monitoring of desert targets. These image-based results for four Saharan and Arabian sites, for a collection of 35 scenes over the three years since launch, bound the gain change at -0.7% to +0.5% in band 4. Thermal calibration from ground observations revealed an offset error of +0.31 W/m2 sr um soon after launch. This offset was corrected within the U. S. ground processing system at EROS Data Center on 21-Dec-00, and since then, the band 6 on-board calibration has indicated changes of at most +0.02% to +0.04% (95% C.I.) per year. The latest ground observations have detected no remaining offset error with an RMS error of +/- 0.6 K. The stability and absolute calibration of the Landsat-7 ETM+ sensor make it an ideal candidate to be used as a reference source for radiometric cross-calibrating to other land remote sensing satellite systems.

  9. Susceptibility testing of filamentous fungi to amphotericin B by a rapid radiometric method

    SciTech Connect

    Merz, W.G.; Fay, D.; Thumar, B.; Dixon, D.

    1984-01-01

    A rapid, radiometric method was developed to determine the susceptibility of filamentous fungi to amphotericin B. The rapid, radiometric method depended on measurement of the inhibition of /sup 24/CO/sub 2/ production in the presence of amphotericin B. Thirty isolates of filamentous fungi were tested by the rapid, radiometric method and a reference agar dilution method. There was 93% agreement between the two methods when an 80% or greater decrease in CO/sub 2/ production was used to calculate the minimal inhibitory concentration with the rapid, radiometric method. Minimal inhibitory concentrations, based on 80% decrease of CO/sub 2/ production, were achieved within 24 h of incubation with all of the fungi tested.

  10. Experimental Research on Passive Millimeter Wave Radiometric Stealth Technology of Metal Objects

    NASA Astrophysics Data System (ADS)

    Zhang, Guangfeng; Lou, Guowei; Li, Xingguo

    2012-12-01

    Working all day and all weather, a passive millimeter wave radiometer (PMMW) can be widely used in civil and military affairs. It can get some specific information about the material characteristics different from radar and infrared detectors. On basis of the radiometric operating range equation, the radiation cross section and stealth effect of metal objects are presented for the PMMW near-sensing application. The measurement experiments of metal solid models adopts 3 mm band Dicke radiometer with the outdoor calibration system. The sky temperature and other different surface metal objects are also measured as the contrastive experiments. The results show the radiometric temperature contrasts of solid models have remarkable difference in the bare and coated conditions, and the radiometric operating range can decrease to 60.8 %. In addition, the PMMW stealth methods through different surface treatment respectively reduce the radiometric antenna temperature contrast in some degree.

  11. Flight Technology Improvement. [spaceborne optical radiometric instruments, attitude control, and electromechanical and power subsystems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Shortcomings in spaceborne instrumentation technology are analyzed and recommendations are given for corrections and technology development. The technologies discussed are optical radiometric instruments and calibration, attitude control and determination, and electromechanical and power subsystems.

  12. Level 1 In-Flight Radiometric Calibration and Characterization Algorithm Theoretical Basis

    NASA Technical Reports Server (NTRS)

    Bruegge, C.; Chrien, N.; Diner, D.

    2000-01-01

    This Algorithm Theoretical Basis (ATB) document describes the algorithms which operate at the Multi-angle Imaging SpectroRadiometer (MISR) Science Computing Facility (SCF) as part of the In-flight Radiometric Calibration and characterization (IFRCC) subsystem.

  13. Intra-annual NDVI validation of the Landsat 5 TM radiometric calibration

    USGS Publications Warehouse

    Chander, G.; Groeneveld, D.P.

    2009-01-01

    Multispectral data from the Landsat 5 (L5) Thematic Mapper (TM) sensor provide the backbone of the extensive archive of moderate-resolution Earth imagery. Even after more than 24 years of service, the L5 TM is still operational. Given the longevity of the satellite, the detectors have aged and the sensor's radiometric characteristics have changed since launch. The calibration procedures and parameters in the National Land Archive Production System (NLAPS) have also changed with time. Revised radiometric calibrations in 2003 and 2007 have improved the radiometric accuracy of recently processed data. This letter uses the Normalized Difference Vegetation Index (NDVI) as a metric to evaluate the radiometric calibration. The calibration change has improved absolute calibration accuracy, consistency over time, and consistency with Landsat 7 (L7) Enhanced Thematic radiometry and will provide the basis for continued long-term studies of the Earth's land surfaces.

  14. Advanced radiometric complex for detection of radioactive release from Siberian chemical combine

    NASA Astrophysics Data System (ADS)

    Kolotkov, Gennady A.; Penin, Sergei T.

    2015-11-01

    The paper states limited availability of the use of the automated radiation situation monitoring system and proposes radiometric complex as more reliable system in the case of an accidental release of the Siberian Chemical Enterprises.

  15. Radiometric-microbiologic assay fo vitamin B-6: analysis of plasma samples

    SciTech Connect

    Guilarte, T.R.; McIntyre, P.A.

    1981-11-01

    A radiometric microbiologic assay for the analysis of vitamin B-6 in plasma was developed. The method is based on the measurement of 14CO2 generated from the metabolism of DL-l-14C-valine (L-l-14C-valine) by Kloeckera brevis. The assay is specific for the biologically active forms of the vitamin, that is, pyridoxine, pyridoxal and pyridoxamine, and their respective phosphorylated forms. The biologically inert vitamin B-6 metabolite (4-pyridoxic acid) did not generate a response at concentrations tested. The radiometric technique was shown to be sensitive to the 1 nanogram level. Reproducibility and recovery studies gave good results. Fifteen plasma samples were assayed using the radiometric and turbidimetric techniques. The correlation coefficient was r . 0.98. Turbid material or precipitated debris did not interfere with the radiometric microbiologic assay, thus allowing for simplification of assay procedure.

  16. USE OF THE AERIAL MEASUREMENT SYSTEM HELICOPTER EMERGENCY RESPONSE ACQUISITION SYSTEMS WITH GEOGRAPHIC INFORMATION SYSTEM FOR RADIOACTIVE SOIL REMEDIATION - [11504

    SciTech Connect

    BROCK CT

    2011-02-15

    The Aerial Measurement System (AMS) Helicopter Emergency Response Acquisition System provides a thorough and economical means to identify and characterize the contaminants for large area radiological surveys. The helicopter system can provide a 100-percent survey of an area that qualifies as a scoping survey under the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) methodology. If the sensitivity is adequate when compared to the clean up values, it may also be used for the characterization survey. The data from the helicopter survey can be displayed and manipulated to provide invaluable data during remediation activities.

  17. Aerial photo SBVC1962". Photo no. 360. Low oblique aerial view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Aerial photo -SBVC-1962". Photo no. 360. Low oblique aerial view of the campus, looking southeast. Stamped on the rear: "Ron Wilhite, Sun-Telegram photo, file, 10/22/62/ - San Bernardino Valley College, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  18. Study of Spectral/Radiometric Characteristics of the Thematic Mapper for Land Use Applications

    NASA Technical Reports Server (NTRS)

    Malila, W. A. (Principal Investigator); Metzler, M. D. (Principal Investigator)

    1985-01-01

    An investigation conducted in support of the LANDSAT 4/5 Image Data Quality Analysis (LIDQA) Program is discussed. Results of engineering analyses of radiometric, spatial, spectral, and geometric properties of the Thematic Mapper systems are summarized; major emphasis is placed on the radiometric analysis. Details of the analyses are presented in appendices, which contain three of the eight technical papers produced during this investigation; these three, together, describe the major activities and results of the investigation.

  19. Radiometric and signal-to-noise ratio properties of multiplex dispersive spectrometry

    SciTech Connect

    Barducci, Alessandro; Guzzi, Donatella; Lastri, Cinzia; Nardino, Vanni; Marcoionni, Paolo; Pippi, Ivan

    2010-10-01

    Recent theoretical investigations have shown important radiometric disadvantages of interferential multiplexing in Fourier transform spectrometry that apparently can be applied even to coded aperture spectrometers. We have reexamined the methods of noninterferential multiplexing in order to assess their signal-to-noise ratio (SNR) performance, relying on a theoretical modeling of the multiplexed signals. We are able to show that quite similar SNR and radiometric disadvantages affect multiplex dispersive spectrometry. The effect of noise on spectral estimations is discussed.

  20. Robust Multiscale Stereo Matching from Fundus Images with Radiometric Differences

    PubMed Central

    Tang, Li; Garvin, Mona K.; Lee, Kyungmoo; Alward, Wallace L.M.; Kwon, Young H.; Abràmoff, Michael D.

    2013-01-01

    A robust multiscale stereo matching algorithm is proposed to find reliable correspondences between low contrast and weakly textured retinal image pairs with radiometric differences. Existing algorithms designed to deal with piecewise planar surfaces with distinct features and Lambertian reflectance do not apply in applications such as 3D reconstruction of medical images including stereo retinal images. In this paper, robust pixel feature vectors are formulated to extract discriminative features in the presence of noise in scale space, through which the response of low-frequency mechanisms alter and interact with the response of high-frequency mechanisms. The deep structures of the scene are represented with the evolution of disparity estimates in scale space, which distributes the matching ambiguity along the scale dimension to obtain globally coherent reconstructions. The performance is verified both qualitatively by face validity and quantitatively on our collection of stereo fundus image sets with ground truth, which have been made publicly available as an extension of standard test images for performance evaluation. PMID:21464502

  1. A hyperspectral imager for high radiometric accuracy Earth climate studies

    NASA Astrophysics Data System (ADS)

    Espejo, Joey; Drake, Ginger; Heuerman, Karl; Kopp, Greg; Lieber, Alex; Smith, Paul; Vermeer, Bill

    2011-10-01

    We demonstrate a visible and near-infrared prototype pushbroom hyperspectral imager for Earth climate studies that is capable of using direct solar viewing for on-orbit cross calibration and degradation tracking. Direct calibration to solar spectral irradiances allow the Earth-viewing instrument to achieve required climate-driven absolute radiometric accuracies of <0.2% (1σ). A solar calibration requires viewing scenes having radiances 105 higher than typical Earth scenes. To facilitate this calibration, the instrument features an attenuation system that uses an optimized combination of different precision aperture sizes, neutral density filters, and variable integration timing for Earth and solar viewing. The optical system consists of a three-mirror anastigmat telescope and an Offner spectrometer. The as-built system has a 12.2° cross track field of view with 3 arcmin spatial resolution and covers a 350-1050 nm spectral range with 10 nm resolution. A polarization compensated configuration using the Offner in an out of plane alignment is demonstrated as a viable approach to minimizing polarization sensitivity. The mechanical design takes advantage of relaxed tolerances in the optical design by using rigid, non-adjustable diamond-turned tabs for optical mount locating surfaces. We show that this approach achieves the required optical performance. A prototype spaceflight unit is also demonstrated to prove the applicability of these solar cross calibration methods to on-orbit environments. This unit is evaluated for optical performance prior to and after GEVS shake, thermal vacuum, and lifecycle tests.

  2. Advanced radiometric and interferometric milimeter-wave scene simulations

    NASA Technical Reports Server (NTRS)

    Hauss, B. I.; Moffa, P. J.; Steele, W. G.; Agravante, H.; Davidheiser, R.; Samec, T.; Young, S. K.

    1993-01-01

    Smart munitions and weapons utilize various imaging sensors (including passive IR, active and passive millimeter-wave, and visible wavebands) to detect/identify targets at short standoff ranges and in varied terrain backgrounds. In order to design and evaluate these sensors under a variety of conditions, a high-fidelity scene simulation capability is necessary. Such a capability for passive millimeter-wave scene simulation exists at TRW. TRW's Advanced Radiometric Millimeter-Wave Scene Simulation (ARMSS) code is a rigorous, benchmarked, end-to-end passive millimeter-wave scene simulation code for interpreting millimeter-wave data, establishing scene signatures and evaluating sensor performance. In passive millimeter-wave imaging, resolution is limited due to wavelength and aperture size. Where high resolution is required, the utility of passive millimeter-wave imaging is confined to short ranges. Recent developments in interferometry have made possible high resolution applications on military platforms. Interferometry or synthetic aperture radiometry allows the creation of a high resolution image with a sparsely filled aperture. Borrowing from research work in radio astronomy, we have developed and tested at TRW scene reconstruction algorithms that allow the recovery of the scene from a relatively small number of spatial frequency components. In this paper, the TRW modeling capability is described and numerical results are presented.

  3. Radiometric STFT Analysis of PDV recordings and detectivity limit

    NASA Astrophysics Data System (ADS)

    Bozier, Olivier; Prudhomme, Gabriel; Mercier, Patrick; Berthe, Laurent

    2015-06-01

    Photonic Doppler Velocimetry is a plug-and-play and versatile diagnostic used in dynamic physic experiments to measure velocities. When signals are analyzed using a Short-Time Fourier Transform, multiple velocities can be distinguished: by example, the velocities of moving particle-cloud appear on spectrograms. In order to estimate the back-scattering fluxes of target, we propose an original approach ``PDV Radiometric analysis'' resulting in an expression of time-velocity spectrograms coded in power units. Experiments involving micron-sized particles raise the issue of detection limit; particle-size limit is very difficult to evaluate. From the quantification of noise sources, we derivate an estimation of the spectrogram noise leading to a detectivity limit. It may be compared to back-scattering and collected power from a particle, which is increasing with its size. At least, some results from laser-shock accelerated particles using two different PDV systems are compared: it may show the improvement of sensitivity.

  4. Optimized mapping of radiometric quantities into OpenGL

    NASA Astrophysics Data System (ADS)

    Lorenzo, Maximo; Jacobs, Eddie L.; Moulton, J. R., Jr.; Liu, Jesse

    1999-07-01

    Physically realistic synthesis of FLIR imagery requires intensive phenomenology calculations of the spectral band thermal emission and reflection from scene elements in the database. These calculations predict the heat conduction, convection, and radiation exchange between scene elements and the environment. Balancing this requirement is the need for imagery to be presented to a display in a timely fashion, often in real time. In order to support these conflicting requirements, some means of overcoming the gap between real time and high fidelity must be achieved. Over the past several years, the US Army Night Vision and Electronic Sensors Directorate (NVESD) has been developing a real-time forward looking infrared sensor simulation known as Paint the Night (PTN). As part of this development, NVESD has explored schemes for optimizing signature models and for mapping model radiometric output into parameters compatible with OpenGL, real-time rendering architectures. Relevant signature and mapping optimization issues are discussed, and a current NVESD PTN real-time implementation scheme is presented.

  5. History of Solar Radiometry and the World Radiometric Reference

    NASA Astrophysics Data System (ADS)

    Fröhlich, C.

    1991-01-01

    The history of solar radiometry since the first pyrheliometer of Pouillet is presented. After the invention of the Ångström and the Smithsonian pyrheliometers around the turn of this century two different "scales" were in use. Comparisons with absolute cavity radiometers developed in America and Europe have been performed since about 1910 which show remarkably accurate measurements in terms of the SI units. However, these results have never been accepted and several rules have been established to reference radiation measurements in the meteorological community and to remedy the unsatisfactory fact of having different "scales". Unfortunately none of these rules led to a reference close to the SI units of irradiance, confusing the issue even more. With the advent of modern absolute radiometers in the late 1960s the situation improved and led to the definition of the World Radiometric Reference in use by the meteorological community since 1981. This reference has an estimated accuracy of 0,3% and guarantees the worldwide homogeneity of radiation measurements within 0,1% precision.

  6. JPSS-1 VIIRS pre-launch radiometric performance

    NASA Astrophysics Data System (ADS)

    Oudrari, Hassan; McIntire, Jeff; Xiong, Xiaoxiong; Butler, James; Ji, Qiang; Schwarting, Tom; Zeng, Jinan

    2016-05-01

    The first Joint Polar Satellite System (JPSS-1 or J1) mission is scheduled to launch in January 2017, and will be very similar to the Suomi-National Polar-orbiting Partnership (SNPP) mission. The Visible Infrared Imaging Radiometer Suite (VIIRS) on board the J1 spacecraft completed its sensor level performance testing in December 2014. VIIRS instrument is expected to provide valuable information about the Earth environment and properties on a daily basis, using a wide-swath (3,040 km) cross-track scanning radiometer. The design covers the wavelength spectrum from reflective to long-wave infrared through 22 spectral bands, from 0.412 μm to 12.01 μm, and has spatial resolutions of 370 m and 740 m at nadir for imaging and moderate bands, respectively. This paper will provide an overview of pre-launch J1 VIIRS performance testing and methodologies, describing the at-launch baseline radiometric performance as well as the metrics needed to calibrate the instrument once on orbit. Key sensor performance metrics include the sensor signal to noise ratios (SNRs), dynamic range, reflective and emissive bands calibration performance, polarization sensitivity, bands spectral performance, response-vs-scan (RVS), near field response, and stray light rejection. A set of performance metrics generated during the pre-launch testing program will be compared to the sensor requirements and to SNPP VIIRS pre-launch performance.

  7. Design, manufacture, and calibration of infrared radiometric blackbody sources

    SciTech Connect

    Byrd, D.A.; Michaud, F.D.; Bender, S.C.

    1996-04-01

    A Radiometric Calibration Station (RCS) is being assembled at the Los Alamos National Laboratories (LANL) which will allow for calibration of sensors with detector arrays having spectral capability from about 0.4-15 {mu}m. The configuration of the LANL RCS. Two blackbody sources have been designed to cover the spectral range from about 3-15 {mu}m, operating at temperatures ranging from about 180-350 K within a vacuum environment. The sources are designed to present a uniform spectral radiance over a large area to the sensor unit under test. The thermal uniformity requirement of the blackbody cavities has been one of the key factors of the design, requiring less than 50 mK variation over the entire blackbody surface to attain effective emissivity values of about 0.999. Once the two units are built and verified to the level of about 100 mK at LANL, they will be sent to the National Institute of Standards and Technology (NIST), where at least a factor of two improvement will be calibrated into the blackbody control system. The physical size of these assemblies will require modifications of the existing NIST Low Background Infrared (LBIR) Facility. LANL has constructed a bolt-on addition to the LBIR facility that will allow calibration of our large aperture sources. Methodology for attaining the two blackbody sources at calibrated levels of performance equivalent to present state of the art will be explained in the following.

  8. Infrared atmospheric sounder interferometer radiometric noise assessment from spectral residuals.

    PubMed

    Serio, Carmine; Standfuss, Carsten; Masiello, Guido; Liuzzi, Giuliano; Dufour, Emmanuel; Tournier, Bernard; Stuhlmann, Rolf; Tjemkes, Stephen; Antonelli, Paolo

    2015-07-01

    The problem of characterizing and estimating the radiometric noise of satellite high spectral resolution infrared spectrometers from Earth views is addressed in this paper. A methodology has been devised which is based on the common concept of spectral residuals (Observations-Calculations) obtained after spectral radiance inversion for atmospheric and surface parameters. An in-depth analytical assessment of the statistical covariance matrix of the spectral residuals has been performed which is based on the optimal estimation theory. It has been mathematically demonstrated that the use of spectral residuals to assess instrument noise leads to an effective estimator, which is largely independent of possible departures of the observational covariance matrix from the true covariances. Application to the Infrared Atmospheric Sounder Interferometer has been considered. It is shown that Earth-view-derived observation errors agree with blackbody in-flight calibration. The spectral residuals approach also proved to be effective in characterizing noise features due to mechanical microvibrations of the beam splitter of the IASI instrument.

  9. Radiometric sensitivity contrast metrics for hyperspectral remote sensors

    NASA Astrophysics Data System (ADS)

    Silny, John F.; Zellinger, Lou

    2014-09-01

    This paper discusses the calculation, interpretation, and implications of various radiometric sensitivity metrics for Earth-observing hyperspectral imaging (HSI) sensors. The most commonly used sensor performance metric is signal-to-noise ratio (SNR), from which additional noise equivalent quantities can be computed, including: noise equivalent spectral radiance (NESR), noise equivalent delta reflectance (NEΔρ), noise equivalent delta emittance (NEΔƐ), and noise equivalent delta temperature (NEΔT). For hyperspectral sensors, these metrics are typically calculated from an at-aperture radiance (typically generated by MODTRAN) that includes both target radiance and non-target (atmosphere and background) radiance. Unfortunately, these calculations treat the entire at-aperture radiance as the desired signal, even when the target radiance is only a fraction of the total (such as when sensing through a long or optically dense atmospheric path). To overcome this limitation, an augmented set of metrics based on contrast signal-to-noise ratio (CNSR) is developed, including their noise equivalent counterparts (CNESR, CNEΔρ, CNEΔƐ, and CNEΔT). These contrast metrics better quantify sensor performance in an operational environment that includes remote sensing through the atmosphere.

  10. Phoretic and Radiometric Force Measurements on Microparticles in Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Davis, E. James

    1996-01-01

    Thermophoretic, diffusiophoretic and radiometric forces on microparticles are being measured over a wide range of gas phase and particle conditions using electrodynamic levitation of single particles to simulate microgravity conditions. The thermophoretic force, which arises when a particle exists in a gas having a temperature gradient, is measured by levitating an electrically charged particle between heated and cooled plates mounted in a vacuum chamber. The diffusiophoretic force arising from a concentration gradient in the gas phase is measured in a similar manner except that the heat exchangers are coated with liquids to establish a vapor concentration gradient. These phoretic forces and the radiation pressure force acting on a particle are measured directly in terms of the change in the dc field required to levitate the particle with and without the force applied. The apparatus developed for the research and the experimental techniques are discussed, and results obtained by thermophoresis experiments are presented. The determination of the momentum and energy accommodation coefficients associated with molecular collisions between gases molecules and particles and the measurement of the interaction between electromagnetic radiation and small particles are of particular interest.

  11. Combined Geometric/radiometric Point Cloud Matching for Shear Analysis

    NASA Astrophysics Data System (ADS)

    Gehrke, S.

    2012-07-01

    In the recent past, dense image matching methods such as Semi-Global Matching (SGM) became popular for many applications. The SGM approach has been adapted to and implemented for Leica ADS line-scanner data by North West Geomatics (North West) in co-operation with Leica Geosystems; it is used in North West's production workflow. One of the advantages of ADS imagery is the calibrated color information (RGB and near infrared), extending SGM-derived point clouds to dense "image point clouds" or, more general, information clouds (info clouds). With the goal of automating the quality control of ADS data, info clouds are utilized for Shear Analysis: Three-dimensional offsets of adjacent ADS image strips are determined from a pattern of info cloud pairs in strip overlaps by point cloud matching. The presented approach integrates geometry (height) and radiometry (intensity) information; matching is based on local point-to-plane distances for all points in a given cloud. The offset is derived in a least squares adjustment by applying it to each individual distance computation equation. Using intensities in addition to heights greatly benefits the offset computation, because intensity gradients tend to occur more frequently than height gradients. They can provide or complement the required information for the derivation of planimetric offset components. The paper details the combined geometric/radiometric point cloud matching approach and verifies the results against manual measurements.

  12. Effects on Spacecraft Radiometric Data at Superior Solar Conjunction

    NASA Technical Reports Server (NTRS)

    Morley, Trevor; Budnik, Frank

    2007-01-01

    During 2006, three ESA interplanetary spacecraft, Rosetta, Mars Express (MEX) and Venus Express (VEX), passed through superior solar conjunction. For all three spacecraft, the noise in the post-fit range-rate residuals from the orbit determination was analysed. At small Sun-Earth-Probe (SEP) angles the level was almost two orders of magnitude higher than normal. The main objective was to characterize the Doppler (rangerate) noise as a function of SEP angle. At least then the range-rate data can be appropriately weighted within the orbit determination so that the solution uncertainties are realistic. For VEX, some intervals of particularly noisy Doppler data could be correlated with unusual solar activity. For Rosetta, the biases in the range data residuals were analysed with the aim of improving the model used for calibrating the signal delay due to the solar plasma. The model, which originally had fixed coefficients, was adjusted to achieve better fits to the data. Even the relatively small Doppler biases were well represented. Using the improved model, the electron density at 20 solar radii was compared with earlier results obtained by radio science studies using Voyager 2 and Ulysses radiometric data. There is some evidence for a dependency of the density on the phase within the 11 years solar cycle.

  13. Optical Diffraction Corrections in Radiometric Thermodynamic Temperature Determination

    NASA Astrophysics Data System (ADS)

    Briaudeau, S.; Rougié, B.; Sadli, M.; Richard, A.; Coutin, J. M.

    2009-02-01

    One of the main components of uncertainty in high-temperature thermometry arises because of the size-of-source effect (SSE). This effect makes the temperature measurement sensitive to the geometry of the radiating environment. It is caused by optical diffraction and especially by light scattering off/from, and inter-reflections between, optical components inside the pyrometer. The LNE-INM/CNAM is involved in extending the thermometry temperature scale to very high temperatures ( T > 2000 °C) and has developed eutectic-based fixed points (Sadli et al. (in: Zvizdic (ed.) Proceedings of TEMPMEKO 2004, 9th International Symposium on Temperature and Thermal Measurements in Industry and Science, 2004)) and a thermodynamic temperature measurement capability based on absolute radiometric methods (Briaudeau et al. (in: D. Zvizdic (ed.) Proceedings of TEMPMEKO 2004, 9th International Symposium on Temperature and Thermal Measurements in Industry and Science 2004)). A new measurement technique that uses an optical fiber has been developed and tested, allowing the determination of the SSE at any defocusing plane, with high resolution. A model based on optical diffraction has been developed to simulate the SSE in a real situation, considering the contribution to the pyrometer signal of the whole “3D” optical scene inside the blackbody furnace. Using the same approach, it has been demonstrated that optical scattering in a simple radiance meter can be estimated from accurate optical diffraction measurement.

  14. Investigation of Aerodynamic and Aerodynamic and Radiometric Land Surface Temperatures

    NASA Technical Reports Server (NTRS)

    Crago, Richard D.; Friedl, Mark; Kustas, William; Wang, Ye-Qiao

    2003-01-01

    The overall goal of the project was to reconcile the difference between T(sub s,r) and T(sub aero), while maintaining consistency within models and with theory and data. The project involved collaboration between researchers at Bucknell University, Boston University, University of mode Island, and the USDNARS Hydrology Laboratory. This report focuses on the work done at Bucknell, which used an analytical continuous-source flux model developed by Crago (1998), based on work by Brutsaert and Sugita (1996) to generate fluxes at all levels of the canopy. Named ALARM [Analytical Land- Atmosphere-Radiometer Model] by Suleiman and Crago (2002), the model assumes the foliage has an exponential vertical temperature profile. The same profile is felt by the within-canopy turbulence and 'seen" by a radiometer viewing the surface from any zenith view angle. ALARM converts radiometric surface temperatures taken from any view angle into a clearly-defined version of Taero called the equivalent isothermal surface temperature T(sub s,j), and then calculates the sensible heat flux H using Monin-Obukhov similarity theory. This allows remotely sensed Ts,r measurements to be used to produce high quality sensible and latent heat flux estimates, or to validate or update the surface temperature produced by SVATs in climate or mesoscale models.

  15. Evaluation of relative radiometric correction techniques on Landsat 8 OLI sensor data

    NASA Astrophysics Data System (ADS)

    Novelli, Antonio; Caradonna, Grazia; Tarantino, Eufemia

    2016-08-01

    The quality of information derived from processed remotely sensed data may depend upon many factors, mostly related to the extent data acquisition is influenced by atmospheric conditions, topographic effects, sun angle and so on. The goal of radiometric corrections is to reduce such effects in order enhance the performance of change detection analysis. There are two approaches to radiometric correction: absolute and relative calibrations. Due to the large amount of free data products available, absolute radiometric calibration techniques may be time consuming and financially expensive because of the necessary inputs for absolute calibration models (often these data are not available and can be difficult to obtain). The relative approach to radiometric correction, known as relative radiometric normalization, is preferred with some research topics because no in situ ancillary data, at the time of satellite overpasses, are required. In this study we evaluated three well known relative radiometric correction techniques using two Landsat 8 - OLI scenes over a subset area of the Apulia Region (southern Italy): the IR-MAD (Iteratively Reweighted Multivariate Alteration Detection), the HM (Histogram Matching) and the DOS (Dark Object Subtraction). IR-MAD results were statistically assessed within a territory with an extremely heterogeneous landscape and all computations performed in a Matlab environment. The panchromatic and thermal bands were excluded from the comparisons.

  16. A multi-channel radiometric profiler of temperature, humidity and cloud liquid.

    SciTech Connect

    Ware, R.; Carpenter, R.; Guldner, J.; Liljegren, J.; Nehrkorn, T.; Solheim, F.; Vandenberghe, F.; Environmental Research; Radiometrics Corp.; Univ. Corp. for Atmospheric Research; Weather Decision Technologies Inc.; Atmospheric and Environmental Research Inc.; National Center for Atmospheric Research

    2003-07-31

    A microwave radiometer is described that provides continuous thermodynamic (temperature, water vapor, and moisture) soundings during clear and cloudy conditions. The radiometric profiler observes radiation intensity at 12 microwave frequencies, along with zenith infrared and surface meteorological measurements. Historical radiosonde and neural network or regression methods are used for profile retrieval. We compare radiometric, radiosonde, and forecast soundings and evaluate the accuracy of radiometric temperature and water vapor soundings on the basis of statistical comparison with radiosonde soundings. We find that radiometric soundings are equivalent in accuracy to radiosonde soundings when used in numerical weather forecasting. A case study is described that demonstrates improved fog forecasting on the basis of variational assimilation of radiometric soundings. The accuracy of radiometric cloud liquid soundings is evaluated by comparison with cloud liquid sensors carried by radiosondes. Accurate high-resolution three-dimensional water vapor and wind analysis is described on the basis of assimilation of simulated thermodynamic and wind soundings along with GPS slant delays. Examples of mobile thermodynamic and wind profilers are shown. Thermodynamic profiling, particularly when combined with wind profiling and slant GPS, provides continuous atmospheric soundings for improved weather and dispersion forecasting.

  17. Selection of chemotherapy for patient treatment utilizing a radiometric versus a cloning system

    SciTech Connect

    Von Hoff, D.D.; Forseth, B.J.; Turner, J.N.; Clark, G.M.; Warfel, L.E.

    1986-01-01

    From the 1950s to the 1970s, a number of in vitro systems that measured inhibition of glucose metabolism were used to predict the responsiveness of patients' tumors to chemotherapy. In vitro-in vivo correlations were excellent, with true positive predictions ranging from 68% to 96% and true negative predictions of 95% to 100%. The radiometric system is a new in vitro technique that measures the conversion of 14C-glucose to 14CO2. The system already has been utilized to screen prospective new antineoplastic agents for cytotoxicity. The present study was undertaken to determine if the radiometric system might be used to predict correctly the responsiveness of an individual patient's tumor to single-agent or combination-agent chemotherapy. Fifty-six tumor specimens were divided and tested for drug sensitivity in the radiometric system and a conventional human tumor clonning system. Overall, there was a significant correlation between in vitro and in vivo results for the conventional cloning system (P = 0.03). However, there was no significant relationship between in vitro and in vivo results for the radiometric system. The radiometric system consistently failed to predict the tumor's clinical sensitivity to single agents. A radiometric system is not useful in predicting the responsiveness of a patient's tumor to single agent chemotherapy and is not a replacement for the more biologically attractive human tumor cloning system.

  18. Pasadena, California Anaglyph with Aerial Photo Overlay

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This anaglyph shows NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California. Red-blue glasses are required to see the 3-D effect. The surrounding residential areas of La Canada-Flintridge (to the left) and Altadena/Pasadena (to the right) are also shown. JPL is located at the base of the San Gabriel Mountains, an actively growing mountain range, seen towards the top of the image. The large canyon coming out of the mountains (top to bottom of image) is the Arroyo Seco, which is a major drainage channel for the mountains. Sand and gravel removal operations in the lower part of the arroyo (bottom of image) are removing debris brought down by flood and mudflow events. Old landslide scars (lobe-shaped features) are seen in the arroyo, evidence that living near steep canyon slopes in tectonically active areas can be hazardous. The data can also be utilized by recreational users such as hikers enjoying the natural beauty of these rugged mountains.

    This anaglyph was generated using topographic data from the Shuttle Radar Topography Mission to create two differing perspectives of a single image, one perspective for each eye. The detailed aerial image was provided by U. S. Geological Survey digital orthophotography. Each point in the image is shifted slightly, depending on its elevation. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna

  19. Use of low-altitude aerial photography to identify submersed aquatic macrophytes

    USGS Publications Warehouse

    Schloesser, Donald W.; Manny, Bruce A.; Brown, Charles L.; Jaworski, Eugene

    1987-01-01

    The feasibility of using low-altitude aerial photography to identify beds of submersed macrophytes is demonstrated. True color aerial photos and collateral ground survey information for submersed aquatic macrophyte beds at 10 sites in the St.Clair-Detroit River system were obtained in September 1978. Using the photos and collateral ground survey information, a dichotomous key was developed for the identification of six classes - beds of five genera of macrophytes and one substrate type. A test was prepared to determine how accurately photo interpreters could identify the six classes. The test required an interpreter to examine an unlabeled, outlined area on photographs and identify it using the key. Six interpreters were tested. One pair of interpreters was trained in the interpretation of a variety of aerial photos, a second pair had field experience in the collection and identification of submersed macrophytes in the river system, and a third pair had neither training in the interpretation of aerial photos nor field experience. The criteria that we developed were applied equally well by the interpretors, regardless of their training or experience. Overall accuracy (i.e., omission errors) of all six classes combined was 68% correct, whereas, overall accuracy of individual classes ranged from 50 to 100% correct. Mapping accuracy (i.e. omission and commission errors) of individual classes ranged from 36 to 75%. Although the key developed for this study has only limited application outside the context of the data and sites examined in this study, it is concluded that low-altitude aerial photography, together with limited amounts of collateral ground survey information, can be used to economically identify beds of submersed macrophytes in the St. Clair-Detroit River system and other similar water bodies.

  20. Aerial photographs and satellite images

    USGS Publications Warehouse

    U.S. Geological Survey

    1995-01-01

    Because photographs and images taken from the air or from space are acquired without direct contact with the ground, they are referred to as remotely sensed images. The U.S. Geological Survey (USGS) has used remote sensing from the early years of the 20th century to support earth science studies and for mapping purposes.